
  
 

  
 

 

 

Biological Processing in Oscillatory Baffled 

Reactors (OBRs) 

 

A Thesis Submitted by 

Matthew Richard Stanley Abbott 

For the Degree of  

Engineering Doctorate (EngD) in Biopharmaceutical Process Development 

 

 

Biopharmaceutical Bioprocessing Technology Centre within 

School of Chemical Engineering and Advanced Materials 

Newcastle University 

 

Sponsored by The Centre for Process Innovation (CPI) 

 

December 2015



i 
 

i 
 





i 
 

i 
 

Abstract 

Bioprocessing involves using complete cells or any of their components for the 

manufacture of products such as pharmaceuticals, fuel, health products and 

precursor compounds for plastics. Bioprocessing can provide sustainable routes for 

the manufacture of products which are traditionally manufactured from fossil-derived 

chemicals. The stirred tank reactor (STR) is the prevalent fermenter/reaction vessel 

in industry due to its simplicity and cost. However; the basic design has not changed 

for centuries. This thesis describes the use of oscillatory baffled reactors (OBRs) for 

bioprocessing. Generally, the “niche application” of OBRs is in performing ‘long’ 

processes in plug flow conditions, so they should be suitable for many bioprocesses.  

In this thesis, four research projects using OBRs are presented:  modelling of plug 

flow and OBR design; enzymatic saccharification; microalgae culture; and anaerobic 

digestion (AD).  

A robust method to maximise plug flow in various OBR designs is described. Second 

order, polynomial models (R2=92.1% and 97.3%) were used to maximise plug flow at 

Ψ=1.9. The net flow rate (Q) was shown to affect the quality of plug flow which has 

implications for OBR design.  

Enzymatic saccharification was conducted in reactors based on OBR and STR 

technology. The OBR required 94-99% less power to achieve the necessary mixing 

intensities to maximise glucose production.  

Chlamydomonas reinhardtii was cultured in a modified OBR for use as a 

photobioreactor (PBR). Maximum growth rates were increased by 95% in the OBR 

compared to cultures conducted in T-flasks. A flotation effect was observed that 

suggests that a dual culture and harvest device for microalgae is possible.  

Anaerobic digestion of dairy slurry and co-digestion with glycerol was conducted in 

digesters based on OBR and STR technology. The OBR achieved a maximum 

specific methane yield 28% higher than the STR. However, blockages occurred in 

the OBR and 89% less power was required for temperature control in the STR, 

predominantly due to differences in surface areas to volume ratios.  

Overall, OBR technology was successfully used in three bioprocesses, with 

improvements demonstrated over traditional technologies such as STR and/or T-
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flasks. Commercial systems based on OBR technology could be designed, provided 

that sufficient data is generated to overcome the risks associated with adoption of a 

novel technology such as OBRs.   
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Chapter 1: Introduction 

1.1 Background 

Oscillatory baffled reactors (OBRs) are novel, tubular devices that provide a platform 

for continuous process development under plug flow conditions (Stonestreet and van 

der Veeken, 1999). Reactor contents are oscillated via the action of a pump or piston 

relative to internal baffles spaced periodically along the reactor length. Vortex 

formation creates a novel mixing mechanism that is power-efficient (Abbott et al., 

2014b, Jambi et al., 2013), uniform (Ikwebe, 2013), even under low shear (Ni et al., 

2000) and enhances mass (Ni et al., 1995, Al-Abduly et al., 2014) and heat transfer 

(Mackley and Stonestreet, 1995). These attributes have proven successful for the 

development and intensification of continuous chemical processes, especially within 

crystallization (Ni and Liao, 2010, Chew et al., 2004). For example, the reaction time 

for an active pharmaceutical ingredient (API) was reduced from 10 hours in a 

traditional batch stirred tank reactor (STR) to 20 minutes in a continuous OBR (Ni, 

2006). This demonstrates the great potential this technology exhibits for process 

intensification.   

Numerous bioprocesses have been conducted in OBRs with mixed results. Glucose 

production from the enzymatic saccharification of cellulose was enhanced by only 7% 

in an OBR when compared to a shake flask (Ikwebe and Harvey, 2011), whereas the 

required time to reach a pullulan concentration of 12.1 g/L was reduced by 73% 

when compared to an STR (Gaidhani et al., 2005). These findings demonstrate that 

process intensification is not guaranteed by the use of enhanced mixing. However, 

great potential exists for the application of OBR technology to specific processes 

where mixing is the rate determining step. This thesis provides a comprehensive 

review of bioprocessing in OBRs (chapter 2) and summarises research findings from 

four distinct projects. The research covers plug flow modelling (chapter 3), the 

enzymatic saccharification of cellulose (chapter 4), the culture of microalgae (chapter 

5) and anaerobic digestion (chapter 6). 

1.2 The engineering doctorate (EngD) 

The engineering doctorate (EngD) programme is distinct from a traditional PhD in 

that research is directed by a sponsor company in response to commercial needs. 

These programmes were developed in response to industry following 
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recommendations from the Parnaby report that concluded ‘PhDs lack industrial 

relevance’ and ‘…are too narrow and academic for the industry’s needs’ (Parnaby, 

1990). The first EngD programmes began in 1992 and aimed to build on existing 

skills acquired at undergraduate and Master’s level while being distinct from, but 

complementary to, traditional PhDs.  

In this project, the sponsor company was The Centre for Process Innovation (CPI). 

CPI is a technology innovation centre (TIC) that uses applied knowledge in science 

and engineering, combined with state of the art facilities, to enable clients to develop, 

prove, prototype and scale up the next generation of products and processes.     

Central to the EngD philosophy is cross-disciplinary research conducted in an 

industrial environment, exposing students (known as research engineers) to business 

cultures of the workplace. Research consists of a series of linked projects brought 

together by an overarching theme to provide a contribution to knowledge. The 

overarching theme for research during this EngD was bioprocessing in oscillatory 

baffled reactors (OBRs). 

1.3 Commercial motivation   

The first published example of equipment similar to the ‘standard’ OBR (see §2.3.1.1) 

appeared in 1973 and described a high efficiency membrane oxygenator (Bellhouse 

et al., 1973). This was later patented for the specific application of blood oxygenation, 

as it requires enhanced mass transfer under non-turbulent flow conditions to 

minimise protein damage (Bellhouse, 1978). Subsequent research focused on 

aspects of the technology including flow patterns (Sobey, 1980, Brunold et al., 1989), 

axial dispersion (Howes and Mackley, 1990, Howes et al., 1991) and heat transfer 

(Mackley et al., 1990). The first biological application of OBR technology was 

published in 1992 and described the culture of a rapidly growing micro-organism 

(Harrison and Mackley, 1992). Significant research into bioprocessing in OBRs 

followed suggesting great potential for industry adoption of the technology (see §2.6).      

CPI identified an intellectual property (IP) space for biological process applications of 

OBR technology. This was surprising given the amount of information available in the 

literature (see §2.6). Twelve patents associated with OBR technology with a diverse 

range of applications have been identified dating from 1978. These have been 
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divided into chemical and biological process applications and are summarised below 

in Tables 1.1 and 1.2, respectively.  

Table 1.1: Summary of chemical related patent applications involving OBR technology.  

Title Summary Reference 

Method and apparatus 
for phase separated 

synthesis 

Continuous polymerisation inside a multi-column, 
tubular vessel containing annular baffles for even 

mixing of fluid provided by oscillations. 
(Ni, 2002 ) 

Tubular oscillatory 
flow reactor with 

multiple conical ring 
baffles inside for 

reaction mixture of 
high solid content 

Apparatus for solid particle suspension in a liquid. 
Can be operated continuously and prevents local 

accumulation of solids. Suitable for uncatalysed or 
catalysed processes of liquid-solid suspensions.  

(Wu et al., 2008) 

Apparatus and 
method for 

temperature controlled 
process 

Apparatus allowing separate columns to be 
controlled at a specific temperature for local 

control. Can be operated continuously during a 
crystallisation process.   

(Ni et al., 2009b) 

Apparatus and 
method for applying 
oscillatory motion 

An apparatus for applying oscillatory motion to a 
fluid inside a tubular vessel containing annular 

baffles whereby the oscillations are controlled by 
a predetermined waveform.  

(Ni et al., 2009a) 

Method and apparatus 
for fluid liquid 

reactions. 

A continuous, semi-continuous or fed-batch 
apparatus for heterogeneous catalysis. The 

vessel contains orificed baffles and oscillations to 
maintain uniform mixing and efficient dispersion. 

(Ni et al., 2010a) 

Continuous process 
for producing toner 
using an oscillatory 

flow continuous 
reactor 

Apparatus for continuous formation of emulsion 
aggregation toners. Resin, colorant and wax are 

introduced into the apparatus where they 
aggregate to form toner particles before recovery. 

(Mang et al., 
2012) 

Device for inducing 
nucleation 

Device for inducing crystal nucleation in a 
crystalliser (OBR). The device is significantly 

cheaper and more reliable than known ultrasound 
devices. 

(Ni and 
Callahan, 2013)  

 

Professor Xiongwei Ni from Heriot-Watt University and Ni-Tech Solutions is 

associated with half of all patents listed. The majority of his work is focused on 

chemical related applications, especially crystallisation (Ni and Liao, 2010), with only 

one patent overlapping the bioprocessing IP space: a general mixing apparatus (Ni et 

al., 2010b). CPI recognised that this competition could hinder commercial progress 

within chemical related applications, stimulating research into a different area i.e. 

bioprocessing.       
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Table 1.2: Summary of biological related patent applications involving OBR technology.  
Bold italics represent patents filed by CPI.   

Title Summary Reference 

Method for effecting 
heat or mass transfer 

Method for effecting heat or mass transfer with a 
fluid (blood) inside a constricted tube oscillated at 
0.83 to 3 Hz and another fluid (oxygen) diffusing 

through a membrane. 
(Bellhouse, 

1978) 

The reduction of 
redox-sensitive 
substances by 

bacteria of the genus 
Alteromonas or 

Shewanella 

Apparatus for bio-treatment of aqueous effluents 
using bacteria from the genus Alteromonas or 
Shewanella, or other facultative anaerobes. 

Includes continuous operation and addition of a 
red-ox mediator such as riboflavin. 

(Loyd et al., 
2010 ) 

*Mixing apparatus and 
process 

A continuous, semi-continuous or fed-batch 
mixing apparatus for achieving consistently mixed 

substances. Consists of a tubular vessel with a 
plurality of annular baffles. No oscillations are 

present; mixing achieved via unidirectional flow. 

(Ni et al., 2010b) 

Anaerobic process 

Method for a controlled AD
1
 process. Substrate, 

anaerobic organisms and a feed material are 
continuously fed into the apparatus under 

anaerobic conditions while oscillating relative to 
the vessel, increasing digestion rate. 

(Cooper et al., 
2009) 

Continuous culture 
of anaerobic solvent-
producing bacteria 

Continuous anaerobic culture of Clostridia (a 
solvent producing bacterium) under approximately 

plug flow conditions. Bacteria reach their 
productive point before the end of the OBR and 

are recycled with solvents extracted. 

 (Cooper et al., 
2011) 

*General application 
1
Anaerobic Digestion 

Three of the five patents listed in Table 1.2 have been filed by CPI since 2009 and 

aim to protect biological related applications. Of the remaining two, one was filed in 

1978, so has exceeded the 20 year protection term (Intellectual Property Office, 

2011) and another is a general patent for a mixing device (Ni et al., 2010b).  

The bioprocessing gap in the IP landscape enabled CPI to freely pursue and protect 

commercially relevant applications of OBR technology. Initial filing of two patents 

required experimental data in the selected areas of anaerobic digestion (AD) and 

solvent production. This EngD project aimed to provide the necessary data to support 

and develop bioprocessing in OBRs. Evaluation of the scientific literature and 

industry needs gave direction to the research, supporting that already given from 

evaluation of the IP landscape.  

The initial project proposal required the following aims to be achieved: 
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‘…1) to construct a laboratory prototype OBR suitable for continuous conversion of 

plant biomass using appropriate microorganisms; 2) to model and demonstrate 

enhanced operating characteristics of the reactor under conditions that approximate 

to plug flow; 3) to construct an economic model to compare cost and sustainability 

benefits of OBR technology versus conventional, completely-mixed, stirred-tank 

reactors (CSTRs); and 4) to deploy the reactor to demonstrate one or more process 

applications.’ 

The following chapters describe the route taken to achieve these aims.  

1.4 Thesis structure 

The thesis is broken down into seven chapters with chapters 1 and 7 being the 

introduction and conclusion, respectively. Chapters 2-6 are presented in a journal 

format and reproduced here in their published/submitted form. They are intended to 

be read in isolation or as a whole and therefore some repetition occurs. The end of 

each chapter provides insight into how the results were used to guide further 

research and links back to the original aims.       

1.4.1 Chapter 2: Literature review 

This review focuses on bioprocessing in OBRs and covers three main areas of the 

technology: operation, advantages and future potential. A critical assessment is 

provided to outline the main barriers facing industry adoption of OBRs, followed by 

several suggested strategies to overcome these. Chapter 2 forms a review article 

published  by The Royal Society in a special edition of Interface Focus entitled 

Biofuels, Science and Society (Abbott et al., 2013). The objectives of conducting this 

review were to gain an understanding of the field, provide a literature review of 

bioprocessing in OBRs, and increase public awareness of CPI in relation to OBR 

technology.  

1.4.2 Chapter 3: Modelling plug flow and OBR design 

This research describes plug flow behaviour in a ‘standard’ design OBR installed at 

CPI. The chapter forms a research paper published in the International Journal of 

Chemical Reactor Engineering (Abbott et al., 2014a). Previous experiments 

conducted by CPI used pH vs. time plots generated from ‘pulses’ of acid and alkaline 

material to assess flow conditions. A more robust and accurate method was required 
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that used a theoretical model to quantify the degree of plug flow. The objectives of 

conducting this research were to model plug flow in an OBR; provide a simple and 

effective tool to rapidly quantify and maximise plug flow behaviour in OBRs of 

‘standard’ and ‘non-standard’ designs; and discuss more general implications for 

OBR design.  

1.4.3 Chapter 4: Enzymatic saccharification  

This research describes batch comparisons between an OBR and STR for the 

enzymatic saccharification of cellulose. The chapter forms a research paper 

published in a special edition of Chemical Engineering Research and Design entitled 

Green Processes and Eco Technologies (Abbott et al., 2014b). Power density 

calculations enabled reactions to be conducted under comparable conditions. A 

direct comparison of reaction rates and energy requirements between OBR and STR 

designs is given to highlight any differences and potential advantages of either 

technology. This is followed by a simple economic assessment of the two 

technologies at industrial scale for a commercial process. The objectives of 

conducting this research were to compare an OBR with an STR for enzymatic 

saccharification as well as calculate minimum energy requirements for mixing to 

maximise conversion rates. 

1.4.4 Chapter 5: Microalgae culture 

This research describes the use of OBRs as photobioreactors (PBRs) for culture of 

Chlamydomonas reinhardtii under photoautotrophic conditions. The chapter forms a 

research paper published in Chemical Engineering Science (Abbott et al., 2015). C. 

reinhardtii has great potential for the production of biopharmaceuticals (Mayfield et 

al., 2007), especially anti-cancer immunotoxins (Tran et al., 2013). It has been 

reported, however, that C. reinhardtii cells are susceptible to shear stress (Gudin and 

Chaumont, 1991) so may require low shear culture conditions. The objectives of this 

research were to test the feasibility of OBRs for the culture of C. reinhardtii; 

determine how the mixing intensity affects the maximum growth rate; and compare to 

T-flasks run under comparable conditions.              
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1.4.5 Chapter 6: Anaerobic digestion 

This research describes anaerobic digestion (AD) of cow slurry and its co-digestion 

with glycerol at pilot scale (40 L) in an OBR and an STR. Funding for the project was 

provided by an additional grant from The Technology Strategy Board (TSB) and 

aimed to test the hypothesis that low shear and well mixed conditions in an OBR 

could provide an environment conducive to mixed community floc formation that 

could improve biogas production (Schink and Stams, 2006). Objectives of conducting 

this research were to test the feasibility of OBRs for AD; determine how the agitation 

intensity and feed rate affect biogas production and composition; and compare 

overall performance to a traditional STR design run under comparable conditions.       

1.5 Research objectives 

The objectives of this research were to:  

1) Compose a comprehensive literature review of bioprocessing in OBRs. 

2) Demonstrate, model and maximise plug flow in an OBR using a DoE 

approach, and consider associated design implications.   

3) Compare an OBR to a conventional STR for the enzymatic saccharification of 

cellulose.   

4) Evaluate an OBR for the photoautotrophic culture of C. reinhardtii.  

5) Compare a pilot scale OBR to a conventional digester for AD of dairy slurry 

and co-digestion with glycerol.
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Chapter 2: Literature review 

‘Biological processing in oscillatory baffled reactors: operation advantages and 

potential.’ 

2.1 Abstract 

The development of efficient and commercially viable bioprocesses is essential for 

reducing the need for fossil-derived products. Increasingly, pharmaceuticals, fuel, 

health products and precursor compounds for plastics are being synthesized using 

bioprocessing routes as opposed to more traditional chemical technologies. 

Production vessels or reactors are required for synthesis of crude product before 

downstream processing for extraction and purification. Reactors are operated either 

in discrete batches or, preferably, continuously in order to reduce waste, cost and 

energy. This review describes the oscillatory baffled reactor (OBR), which, generally, 

has a niche application in performing ‘long’ processes in plug flow conditions, and so 

should be suitable for various bioprocesses. We report findings to suggest that OBRs 

could increase reaction rates for specific bioprocesses owing to low shear, good 

global mixing and enhanced mass transfer compared with conventional reactors. By 

maintaining geometrical and dynamic conditions, the technology has been proven to 

be easily scaled up and operated continuously, allowing laboratory-scale results to 

be easily transferred to industrial-sized processes. This is the first comprehensive 

review of bioprocessing using OBRs. The barriers facing industrial adoption of the 

technology are discussed alongside some suggested strategies to overcome these 

barriers. OBR technology could prove to be a major aid in the development of 

commercially viable and sustainable bioprocesses, essential for moving towards a 

greener future. 

2.2 Introduction 

Bioprocessing uses complete living cells or any of their components for the 

production of useful products ranging from high value pharmaceuticals (Meyer et al., 

2008a) to low value fuels (Shi et al., 2009). A growing interest in renewable 

technologies to replace traditional fossil derived chemicals with, for example, 

biomass (Lynd and Wang, 2003) has stimulated increased research and 

development targeting a range of bioprocesses. The aim is to develop bioprocesses 

based on renewable and organic feedstocks, with the constraint of maintaining or 
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decreasing current production costs compared to traditional technologies. This is 

challenging, given the decades of optimisation and intensification of chemical 

processes. In addition, biopharmaceuticals (e.g., Trastuzumab) (Barginear and 

Budman, 2009), nutraceuticals (e.g., astaxanthin) (Guerin et al., 2003), CO2 capture 

(Chiu et al., 2008) and protein refolding (Lee et al., 2001) utilise bioprocessing 

routes.   

The entire production pathway from feedstock to product requires many stages 

including: pre-treatment, production, extraction and purification. Traditional batch 

stirred tank reactors (STRs) and continuously stirred tank reactors (CSTRs) have 

existed for centuries and are still widely adopted throughout the chemical and 

bioprocessing sectors for production due to their simplicity. In essence, STRs and 

CSTRs are nothing more than large vessels mixed using a paddled shaft and, 

although suitable for many processes, lack specific characteristics essential for 

intensified and cost effective bioprocessing. For example, achieving good global 

mixing complemented with low shear is difficult in STRs: a combination essential for 

specific bioprocesses including the culture of microalgae that require mixing to 

provide illumination and CO2 but suffer from cell fragility (Gudin and Chaumont, 

1991).     

Continuous technologies for bioprocessing and biopharmaceutical sectors have 

become more prevalent due to their ability to reduce footprint, waste, cost and 

energy compared to batch technologies by, for example, removing down time 

inherent in batch processing (Plumb, 2005). Once at steady state, a continuous 

process produces product with little variation in output; providing variable factors 

such as temperature, pH and feed constituents are kept constant. OBRs allow the 

development of continuous processes under plug flow conditions whereby biological 

components move continuously through the reactor with laminar flow. Plug flow in 

OBRs can, therefore, be viewed as batch culture with the time dimension replaced by 

reactor length. This enables bioprocesses containing cell cultures to be extracted at 

the outlet, with cells at any desired metabolic state to maximise product 

concentration. This includes cultures with zero or negative growth rates, such as 

those in the decline phase of batch culture: unachievable using traditional continuous 

chemostats in CSTRs that rely on net growth rates for dynamic stability (Voloshin et 

al., 2005).   
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2.3 Theory governing OBR design and operation 

2.3.1 Design 

2.3.1.1 The ‘standard’ design  

A ‘standard’ OBR consists of a tube, generally 10–150 mm internal diameter (D), 

containing equally spaced orifice plates (Figure 2.1). Typically, a reciprocating pump 

or piston located at one end oscillates back and forth generating oscillatory flow. For 

continuous operation, a second pump is required to create net flow through the 

column. Uniform mixing at exceptionally low shear is provided by vortices that form 

as fluid is forced through each orifice plate. OBRs can act as either batch or 

continuous systems depending on whether a net flow of new material is being 

introduced to the reactor and product removed at an equal rate. 

2.3.1.2 Other designs 

Although Figure 2.1 shows the most common design, other OBR designs exist for 

scaling-down (meso-scale) and up (e.g., ‘multi-orifice’ see §2.5.2).  

Meso-scale OBRs have a niche application for the rapid screening and 

characterisation of reactions (e.g., biodiesel formation) (Phan et al., 2011b). These 

meso-reactors have a small diameter (~5 mm) and subsequently volumes of a few 

millilitres (Phan et al., 2011a). Several baffle designs have been evaluated at the 

meso-scale: helical (Phan et al., 2011a, Phan and Harvey, 2012), smooth periodic 

constricted (SPC) tube (Reis et al., 2007), central and integral (Phan and Harvey, 

2010). 
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Figure 2.1: Standard OBR design. (a) Tube containing equally spaced orifice plates (baffles) with a 
reciprocating pump required for generation of oscillatory motion. (b) Geometrical parameters important 
for OBR design. (c) Continuous operation requires a 2

nd
 pump to create net flow through the column. 

2.3.2 Mixing through vortices 

Unlike STRs and conventional tubular reactors which rely on stirring mechanisms 

and/or turbulent flow conditions for mixing (Rossi, 2001, van Vliet et al., 2005), the 

OBR uses oscillations to produce vortices (Figure 2.2). These form periodically along 

the entire length of the reactor, effectively causing each inter-baffle zone to act as a 

CSTR; the entire reactor therefore consists of a finite number of CSTRs connected in 

series. The key difference between a conventional tubular reactor and an OBR is that 

mixing intensity in the latter can be controlled, not by altering the flow rate, but 

instead by changing the oscillating conditions, impacting the size and frequency of 

vortex formation.  

The Navier-Stokes equations have been used to calculate the flow patterns 

generated inside periodically constricted tubes (Sobey, 1980) and predict a two 

phase cycle for oscillatory flow: during acceleration vortices form behind constrictions 

in furrows, growing until flow reversal when they are forced into the mainstream flow 

and fade. These predictions were observed experimentally (Stephanoff et al., 1980) 

and are relevant to OBRs because orifice plates produce constricted regions, 

resulting in similar flow conditions when oscillated. 

Net flow Oscillatory motion

Reciprocating pump

Material 
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Figure 2.2: Vortex formation in an OBR created by oscillatory flow. Vortices form in the furrows during 
acceleration and are forced into the mainstream flow during flow reversal. (a) Back stroke. (b) Forward 
stroke. 

2.3.3 Geometrical parameters 

The geometrical parameters, or physical dimensions, important for OBR design are 

summarised in Table 2.1 and Figure 2.1b. In total there are five parameters which 

need to be considered with the baffle spacing (L) and baffle open area (α), defined as 

(Do/D)
 2
, being the most important. 

Table 2.1: Geometrical parameters important for OBR design. 

Parameter Symbol Optimal value Reference 

Baffle thickness δ 2-3 mm (Ni et al., 1998) 

Baffle spacing L 1.5 D (Brunold et al., 1989) 

Baffle open area  α 20-22% (Ni et al., 1998) 

Orifice diameter Do 0.45 -0.50 D (Ni et al., 1998) 

Tube diameter D  Usually 10-150 mm N/A 

The shape and length of vortex formation is defined by L. To generate uniform and 

effective mixing, vortices require adequate room to fully expand and spread 

throughout the inter-baffle zone. Suboptimal distances result in vortices colliding with 

neighbouring baffles before full expansion, leading to undesired axial dispersion 

when operating continuously. Superoptimal distances lead to vortices that do not 

Furrow

Inter-baffle zone

Mainstream flow

(a)

(b)
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propagate through the full volume of the inter-baffle region, producing stagnant 

regions. The effects on mixing of altering the baffle spacing using distances of 1, 1.5 

and 2 times D has been evaluated (Ni et al., 1998). A spacing of 1.5D gave the most 

effective mixing over the greatest range of oscillation amplitudes (Xo) so has been 

standardised and used for most subsequent work with OBRs.  

The width of vortices formed within inter-baffle zones is defined by α, with larger 

values giving rise to narrow vortices and, consequently, poor mixing. By reducing the 

orifice diameter (Do) fluid is constricted to a greater extent as it passes through each 

baffle resulting in wide vortex formation, generating effective mixing conditions. The 

effects on mixing for 11<α<51 % has been evaluated using the ‘mixing time’ defined 

as ‘the time measured from the instant of tracer addition until the column contents 

has reached a specified degree of uniformity’ (Brunold et al., 1989). Using 4% 

sodium hydroxide as tracer, 20<α<22% was found to minimise the mixing time. Baffle 

thickness (δ) was also evaluated in a 50 mm diameter OBR using thicknesses of 1-

48 mm (Brunold et al., 1989). It was found that thicker baffles resulted in vortex 

deformation due to an increased ‘cling time’ with the optimum thickness being 

identified as 2-3 mm.  

2.3.4 Operational parameters 

2.3.4.1 Batch operation 

Table 2.2 summarises the dimensionless groups and dynamic parameters used in 

oscillatory flow. 

The oscillatory Reynolds number (Reo) gives an indication of mixing intensity. Flow 

separation occurs when the boundary layer becomes detached from a surface and 

forms vortices, in this case the OBR contents detaching from the wall. For flow 

separation to occur in OBRs, Reo must exceed 50-100 (Neves-Saraiva, 1998), as 

opposed to a net flow Reynolds number (Ren) in conventional smooth walled, baffle-

free tubular reactors of 2100 (Perry et al., 1997). An increase in Reo can be achieved 

in situ by increasing the amplitude (Xo) or frequency (f) of oscillation, producing a 

wide range of mixing intensities from ‘soft’ (50<Reo<500), where vortex formation 

occurs, to the most intense (Reo>5000) corresponding to mixed flow with the OBR 

acting as a STR (Harvey et al., 2001). 
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Table 2.2: Dimensionless groups and dynamic parameters required for OBR operation. 

Parameter Symbol Equation Description 

Centre to peak amplitude 
of oscillation (m) 

Xo N/A Half the fluid oscillation distance. 

Frequency of oscillation 
(Hz) 

f N/A 
Number of oscillations per 

second.  

Volumetric flow rate  

(e.g. mL/min) 
Q N/A 

Volume of material entering the 
OBR over a given time period. 

Reynolds number of 
oscillation 

Reo (ρ.2πf.Xo.D) / μ A measure of mixing intensity.  

Strouhal number St D / 4π.Xo 
A measure of effective vortex 

propagation. 

Net flow Reynolds number Ren (ρ.D.u) / μ A measure of the net flow. 

Velocity ratio ψ Reo / Ren The ratio of Reo to Ren.  

The Strouhal number (St) is inversely proportional to Xo and measures vortex 

propagation (Brunold et al., 1989, Ni and Gough, 1997). Large St values are 

produced at small amplitudes giving poor vortex formation and vice versa. From 

studies available in the literature, the tested range for St is 0.01–9 (Ni et al., 1998, 

Dickens et al., 1989) however, the most common range used is 0.15–4 (Mackley and 

Stonestreet, 1995, Smith, 1999). 

2.3.4.2 Continuous operation 

When operating continuously, the Reo should dominate, giving almost full reversal in 

flow, thereby creating vortices and generating effective mixing. The value of the 

velocity ratio (ψ) is a measure of the degree of plug flow achieved (Stonestreet and 

van der Veeken, 1999) and can be evaluated using the tanks-in-series (TiS) model 

for plug flow (Levenspiel, 1999). 

The TiS model assumes flow conditions can be represented by a variable number of 

ideal CSTRs in series (Nt). As Nt increases, the predicted residence time distribution 

(RTD) curve during a pulse test approaches one which would be observed during 

perfect plug flow. RTD is the probability distribution that describes how long material 

could spend in a reactor. Mixed flow is characterised by an RTD with a peak followed 



15 
 

15 
 

by a steady decline whereas plug flow is symmetrical about the mean residence time. 

Mixed and plug flow describe two extreme RTDs achievable but, in reality, the true 

flow condition lies somewhere in between. If Nt is infinite, then all molecules leave the 

reactor with identical residence times, a characteristic of perfect plug flow. Achieving 

approximations to plug flow is beneficial for processes that require precise residence 

times or removal of back mixing.   

Experimental RTD profiles have been produced by injecting 3 M aqueous potassium 

chloride into a 1.3 L OBR with a net flow of deionised water under varying Reo and 

Ren (Stonestreet and van der Veeken, 1999). By comparing to theoretical RTD 

profiles, Nt was evaluated and plotted against ψ. The range of 2<ψ<4 maximised Nt 

and generated optimal plug flow conditions however, useable degrees of plug flow 

can still be achieved using values of ψ between 2 and 10. Using values of ψ below 2 

results in loss of the major design advantage of achieving plug flow in reduced length 

reactors for long residence time processes, whereas values of ψ above 10 lead to 

loss of plug flow.       

2.4 Bioprocessing advantages 

2.4.1 Overview 

The OBR offers numerous advantages over conventional reactors that not only allow 

development of continuous bioprocesses, but can also enhance reaction rates and 

productivity during batch operation. Some of these advantages are unique to 

culturing living organisms that require key nutrients for maximum growth. For 

example, living cells that often require oxygen (e.g., yeast) or carbon dioxide (e.g., 

microalgae) to grow and can be shear sensitive because of their relative fragility and 

large size. Table 2.3 summarises these major advantages. 
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Table 2.3: Advantages provided by OBRs over conventional CSTRs and tubular reactors. 

Advantage Description Benefit References 

Uniform 
mixing 

The vortex cycle creates 
equal radial transfer across 
the tube producing uniform 
mixing patterns throughout 

the OBR, reducing heat 
and concentration 

gradients. 

The removal of gradients can 
reduce the overall reaction 

time; e.g., up to 18-fold 
reduction for speciality 

chemicals. 

(Ni, 2006) 

Low and 
uniform 
shear 

Low, uniform shear in the 
OBR compared to STRs 
makes the reactor more 

suitable for shear-sensitive 
organisms and large 

molecules. 

Up to a 10-fold reduction in 
shear rates compared to 

STRs. Generates increased 
particle flotation.  

(Ni et al., 
2000, 

Anderson et 
al., 2009) 

Increased 
mass 

transfer 

Uniform bubble size and 
increased gas hold up 

produce enhanced mass 
transfer rates. 

6-fold and 75% increases for 
oxygen transfer (kLa) into 
water and yeast culture, 

respectively. 

(Hewgill et al., 
1993, Ni et al., 

1995) 

Compact 
reactor 
design 

The ability to generate long 
residence times, under 
plug flow, with reduced 
reactor lengths allows 

compact designs. 

Up to a 600-fold decrease in 
reactor length compared to 

conventional tubular 
reactors. 

(Stonestreet 
and Harvey, 

2002) 

Linear 
scale up 

Maintaining St, Reo and 
Ren allows mixing intensity 
and flow conditions to be 
predicted in large volume 

OBRs using data from lab-
scale experiments.  

Lab-scale experiments can 
be scaled up by increasing 

OBR diameter or length while 
maintaining predictability.  

(Smith, 1999, 
Smith and 
Mackley, 

2006, Jian and 
Ni, 2005) 

2.4.2 Reduced shear rate 

Shear is an important factor for bioprocesses involving cells or large molecules, such 

as enzymes, which can be inhibited by high shear rates. The biological definition is 

given as ‘the rate of change of velocity at which one layer of fluid flows over an 

adjacent parallel layer, often expressed in seconds-1’ (Biology-online, 2010 ). Particle 

image velocimetry (PIV) has been used to record the shear rate distribution in a 50 

mm diameter OBR and a close correlation between Reo and the mean shear rate 

(γOBR) was observed (Ni et al., 2000). 

The average shear rate generated in STRs is proportional to the impeller speed (N), 

although this relationship differs according to various authors (Tanguy et al., 1996, 

Harnby et al., 1992, Nagata, 1975). A comparison is shown in Figure 2.3 using the 

lowest estimation of shear for a 2 L STR (Harnby et al., 1992), previously used for 
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comparison against a 50 mm OBR (251<Reo<4021)  (Ni et al., 2000). The average 

shear rate has been plotted against power density (P/V): a measure of energy being 

applied to a system, expressed in W/m3.  

 
Figure 2.3: Theoretical average shear rates for a 50 mm OBR (solid) and 2 L STR (dashed) during 
unaerated operation at increasing power densities (Ni et al., 2000). 

Figure 2.3 demonstrates that the average shear rate is much higher in STRs: at 40 

W/m3, the OBR shows a 5-fold reduction. Periodic shedding of vortices and vortex-

vortex interactions provide uniform shear, controlled by the oscillation conditions. The 

flow patterns in OBRs are such that radial and axial flows are of similar magnitude. 

This leads to a more uniform shear field. In particular the high shear points around 

impellers in typical STRs are absent. High shear near the impeller in STRs can 

damage micro-organisms even if the experience is brief. Mammalian and insect cells 

have been reported to be shear-sensitive (van der Pol and Tramper, 1998, Tramper 

et al., 1986), as well as cellulase enzymes, which are important for saccharification 

reactions (Reese and Ryu, 1980, Kaya et al., 1996, Ganesh et al., 2000, Gunjikar et 

al., 2001), and microalgae (Gudin and Chaumont, 1991). The OBR offers a viable 

alternative for bioprocesses inhibited by high shear rates produced in STRs where a 

degree of mixing is required to achieve sufficient mass transfer.  

Shear uniformity throughout a reactor benefits bioprocesses where larger particles, 

millimetres in size, are being used. For example, during flotation particles must be 
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suspended and sedimentation avoided. Flotation is a separation technique whereby 

material is ground into fine particles before being made hydrophobic by surfactant 

addition. Once suspended in an agitated tank sparged with air, the hydrophobic 

particles attach to rising air bubbles forming a surface froth to be concentrated and 

purified.  

Fine quartz particles, 3–104 μm in size, rendered hydrophobic using dodecylamine 

were used to test the suitability of an OBR for use as a flotation device (Anderson et 

al., 2009). A 60% improvement in flotation for finer particles, <30 μm, and 30–40% for 

coarse particles up to 104 μm at much lower power densities compared to 

conventional flotation devices was reported. Compared to Rushton impeller agitated 

flotation devices that can have up to 30–40 times the energy dissipation close to the 

impeller compared to the bulk of the vessel (Koh and Schwarz, 2003), OBRs have 

been shown to have a more even distribution of shear (Ni et al., 2000), explaining the 

improvements in flotation. This strongly suggests that OBRs are suitable for 

performing bioprocesses containing biomass particles that need to be retained in 

suspension without sedimentation.     

2.4.3 Enhanced mass transfer 

Many bioprocesses utilise aerobic organisms to produce useful products such as 

polyhydroxyalkanoates (PHA), a precursor for bioplastics, synthesised by the aerobic 

bacterium, Pseudomonas putida (Troeger and Harvey, 2009). During culture of these 

organisms, air must be sparged into the reactor providing oxygen. In some cases, the 

oxygen uptake rate (OUR) becomes higher than the maximum achievable oxygen 

transfer rate (OTR) resulting in oxygen limitation. One method to overcome this is to 

sparge with pure oxygen but this creates additional safety issues and adds cost. 

However, OBRs offer an alternative solution to increasing OTRs with 6-fold increases 

in kLa for oxygen transfer into water reported compared to conventional STRs 

(Hewgill et al., 1993). 

Mass transfer of gases, in particular oxygen, into liquids is usually quantified using 

the kLa: ‘the volumetric mass transfer coefficient that describes the efficiency with 

which oxygen can be delivered to a bioreactor’ (Kane, 2012). Rate of mass transfer 

of gas is a function of the mass transfer coefficient of the specific gas in question and 

the surface area available for transfer into the bulk liquid medium (which itself is a 
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function of both bubble size and hold-up time). The kLa values for a 2 L STR and 50 

mm diameter OBR during the fermentation of yeast cells, Saccharomyces cerevisiae, 

have been determined (Ni et al., 1995). A comparison of kLa against power density 

using this data is shown in Figure 2.4.  

 
Figure 2.4: kLa against increasing power density for a 50 mm OBR (solid) and 2 L STR (dotted) at a 
constant aeration rate (Ni et al., 1995). 

At a power density of 100 W/m3 intense mixing conditions are produced in both 

reactor types. However, the kLa value produced in the OBR is approximately 75% 

higher than the STR: predominantly a result of enhanced gas hold-up time but also 

reduced bubble diameter (Oliveira and Ni, 2001). The unique fluid mechanics in 

OBRs produce a longer path length for individual gas bubbles, thereby increasing 

gas hold-up, by increasing each bubble’s residence time. Vortex interaction with gas 

bubbles causes breakup producing a larger surface area for gas transfer. These 

characteristics allow OBRs to maintain sufficient oxygen transfer with good mixing at 

low shear. Achieving similar values for kLa in STRs would require reactor modification 

(Jenzsch et al., 2004), increased impeller speeds (producing increased shear rates) 

or a switch to pure oxygen.  

2.4.4 Compact design for plug flow 

Traditionally plug flow has been achieved on an industrial scale by either connecting 

a series of CSTRs together or using tubular reactors under turbulent flow conditions 
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(Ni, 2006). On a practical level, there is a limit to how many CSTRs can be connected 

in series or how long a reactor can be. In OBRs mixing intensity is decoupled from 

the flow rate allowing long residence time processes in reduced length reactors. For 

example, it has been calculated that for a flow rate of 2,381 L/hr and residence time 

of 4 hours, the required reactor lengths for an OBR and conventional tubular reactor 

are 1,213 and 757,894 m, respectively (Stonestreet and Harvey, 2002). The OBR 

offers an alternative process intensification methodology that provides a high degree 

of plug flow in a reactor with a much reduced length (Stonestreet and van der 

Veeken, 1999). 

2.5 Scale up 

2.5.1 Direct diameter increases  

A promising aspect of OBR technology is the ability to scale up processes by 

maintaining geometric and dynamic similarity, allowing mixing and flow conditions 

produced at laboratory scale to be easily replicated for pilot and industrial scale 

processes. St, Reo and Ren are assumed to fully define the fluid dynamic conditions 

for a particular OBR geometry (Smith and Mackley, 2006). By keeping these 

parameters constant, an OBR with a diameter of, for example, 24 mm should behave 

the same as one with a diameter of 150 mm.  

Axial dispersion coefficients (Dc) have been used to study the effects of tube 

diameter on the mixing and flow conditions of three OBRs with 24, 54 and 150 mm 

diameters (Smith and Mackley, 2006). An imperfect pulse technique was adopted 

and the pulse concentration measured at a minimum of two points downstream. By 

comparing the two RTD profiles, Dc was calculated using the dispersion model 

(Levenspiel, 1999). The model assumes that a diffusion-like process is occurring that 

is superimposed on to plug flow resulting in axial spreading of material. Dc represents 

the extent of spreading with large values equating to rapid spreading and small 

values to slow spreading, or closer approximations to true plug flow. Methylene blue 

was selected as the tracer due to its high optical density at low concentrations and 

measured using optical sensors placed at known distances from the site of injection. 

Three distinct flow regimes were identified: for Reo<80, Dc tends towards 5x10-4 m2/s; 

for 80<Reo<800 axial dispersion was minimised with values for Dc as low as 10-4 

m2/s; and for Reo>800, Dc increases approximately linearly with Reo (Smith and 
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Mackley, 2006). Optimal interaction between the net flow and oscillatory mixing was 

identified as the reason for the minimum: at 80<Reo<800 the vortices created were 

optimal for radial redistribution of dye, thereby minimising axial dispersion (Smith, 

1999). It was established that axial dispersion was not a function of D, indicating that 

fluid dynamic conditions could be maintained during scale up providing St, Reo and 

Ren were kept constant.  

2.5.2 Multi-orifice design  

During scale up of OBRs, a doubling of the reactor diameter must be complemented 

with a doubling in Xo to maintain St at a specified value. This results in Xo being fixed 

leaving only f as a variable operational parameter to control the Reo. Table 2.4 

summarises the values of Xo and f required to maintain St and Reo at 1.0 and 500, 

respectively, during scale up from 25 to 150 mm diameter. 

Table 2.4: Required operating conditions to maintain St and Reo at 1.0 and 500, respectively. 

Tube diameter (mm) Required Xo (mm) Required f (Hz) 

25 1.99 1.6 

50 3.98 0.4 

150 11.94 0.04 

At higher diameters, the frequency of oscillation must be extremely low which 

reduces the mixing intensity and the opportunity for improved mass transfer (Smith, 

1999). To overcome this problem, a method of scale up involving a bundle of 

relatively small diameter OBRs operated in parallel, thereby removing the need for 

extremely low frequencies, has been proposed (Ni, 1994). However, this solution 

produces two other problems: how to maintain an equal distribution of flow to each 

separate tube; and generating equal oscillating conditions. 

A different approach has been adopted whereby baffles containing multiple orifices 

are used with D being replaced by the effective tube diameter (De), calculated by 

dividing the total baffle area by the number of orifices. It was predicted that a 150 mm 

diameter OBR with internal baffles consisting of 37 orifices would behave in a similar 

way to a 24 mm diameter OBR (Smith and Mackley, 2006). This was demonstrated 

by recording similar axial dispersions at increasing Reo, while maintaining Ren at 107, 

in both 24 mm and multi-orifice 150 mm OBRs (Smith and Mackley, 2006). The major 

advantage of this design is that the same shear rates and intensity of mixing 



22 
 

22 
 

achieved in a smaller diameter OBR can be maintained while greatly increasing the 

throughput of the process (per unit length of reactor). Multi-orifice designs are 

particularly attractive due to the ease of manufacture and ability to maintain fluid 

mechanics and axial dispersion, allowing experiments conducted at laboratory scale 

to be increased to industrial volume with predictability of axial dispersion and mixing 

intensity (Smith, 1999). Figure 2.5 depicts a multi-orifice baffle design, 100 mm in 

diameter that produces characteristics observed in a conventional 25 mm OBR. 

 
Figure 2.5: Multi-orifice baffle design creating the effect of 16 ‘standard design’ 25 mm diameter OBRs 
operated in parallel for a 100 mm diameter reactor (Smith, 1999).   

2.6 Bioprocessing in OBRs 

2.6.1 Overview 

Typical chemical processes can take anywhere from fractions of a second to many 

hours in a conventional reactor. The process advantages of OBRs have been 

investigated and described for a range of applications including biofuel production 

(Harvey et al., 2003, Masngut et al., 2010), flotation (Anderson et al., 2009), 

butylation of phenylacetonitrile (Wilson et al., 2005), oil droplet breakage (Mignard et 

al., 2006, Mignard et al., 2004, Ni et al., 2002, Zhang et al., 1996), photo-oxidation 

(Gao et al., 2003, Fabiyi and Skelton, 1999), polymerisation (Ni et al., 1999) and 

extensive work on crystallisation (Brown and Ni, 2011, Ni et al., 2004, Ni, 2009, 

Lawton et al., 2009, Chew and Ristic, 2005, Ristic, 2007). However, this review aims 

37.5 mm

12.5 mm 

orifice

100  mm 25 mm
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to target bioprocesses so chemical reactions will not be discussed in any further 

detail. 

Tables 2.5-2.7 summarise the current bioprocesses conducted in OBRs available in 

the literature, all being performed in batch mode. They have been grouped into those 

processes that use a cellular component such as an enzyme (Table 2.5) and those 

using living cells, under both anaerobic (Table 2.6) and aerobic (Table 2.7) 

conditions. 

2.6.2 Bioprocesses using cellular components 

Three of the four bioprocesses described in Table 2.5 are related to protein refolding: 

a key unit operation when producing recombinant biopharmaceuticals from 

expression systems such as Escherichia coli. Most protein refolding operations are 

optimised with respect to the chemical environment (Lee et al., 2002) however, the 

mixing environment also impacts on refolding yield (Lee et al., 2001, Goldberg et al., 

1991). The preferred protein refolding method at industrial scale remains direct 

dilution in STRs, mainly because of its simplicity and widespread use. However, as 

STRs are scaled from laboratory to industrial volumes, the mixing efficiency declines 

(Lee et al., 2002) impacting negatively on protein refolding yield.  

Results summarised in Table 2.5 demonstrate that protein refolding can be 

performed in OBRs with comparable yields to STRs at laboratory scale. The lack of 

improvement does not suggest, however, that OBRs offer no additional benefit to this 

bioprocess. The major advantage on offer is a scalable mixing environment (Smith 

and Mackley, 2006), allowing yields obtained in the lab to be predictably replicated 

on an industrial scale: currently unachievable using STRs. As a result, higher yields 

are possible at large scale during protein refolding bioprocesses, reducing overall 

production costs.  
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Table 2.5: OBR bioprocesses using cellular components. 

Bioprocess 
Cellular 

component 
Year Conclusion 

Process 
Type 

Reference 

Protein 
refolding 

Hen egg 
white 

lysozyme 
2001 

OBRs are suitable 
refolding devices and 
comparable to STRs. 

Non-cell 
culture 

(Lee et al., 
2001) 

Protein 
renaturation 

Hen egg 
white 

lysozyme 
2002 

Refolding yield in 
OBR comparable to 
STR. Uniform shear 

important for 
successful refolding. 

Non-cell 
culture 

(Lee et al., 
2002) 

Protein 
refolding 

Chicken egg 
white 

lysozyme 
2006 

 Prevention of 
aggregation 

enhances refolding 
during initial stages 

(0-4 mins).  

Non-cell 
culture 

(Reis, 
2006) 

Saccharification 

Cellulase 
from 

Trichoderma 
reesei 

2011 

7% increase in 
glucose production 

after 48 hours 
compared to shake 

flask. 

Enzymatic 

(Ikwebe 
and 

Harvey, 
2011) 

Lignocellulosic materials are ubiquitous in nature with cellulose, the support molecule 

in plants, being the most abundant carbohydrate on Earth. It is possible to hydrolyse 

cellulose (saccharification) using various chemical or biological methods, thereby 

liberating the glucose monomers that constitute its structure, which can be fermented 

into a variety of useful chemicals including ethanol and lactic acid (Sarkar et al., 

2012, Abdel-Rahman et al., 2011). During the enzymatic conversion of cellulose into 

monosaccharide, cellulase deactivation occurs. This deactivation of cellulases is 

caused by a number of process-dependent factors: shear inactivation (Reese and 

Ryu, 1980, Kaya et al., 1996, Ganesh et al., 2000, Gunjikar et al., 2001), sugar 

inhibition (Takagi, 1984, Xiao et al., 2004, Ye et al., 2012), ion strength (Kumakura, 

1996), temperature (Demerdash and Attia, 1992) and formation of inert enzyme 

substrate complexes. A further factor involved in cellulose depolymerisation is the 

changing nature of the substrate over time; the easily hydrolysable amorphous 

regions are digested first leaving the recalcitrant crystalline regions (Gan et al., 

2003). Saccharification has been conducted in a 25 mm diameter OBR using Xo and f 

values of 3 mm and 3 Hz, respectively (Ikwebe and Harvey, 2011). The substrate 

used was pure microcrystalline cellulose at a loading of 2.5% w/v. An enzyme 

loading of 40 filter paper units (FPU) per gram of cellulose and 10% β-glucosidase 

was used. The results of the study showed an increase in the glucose yield of 7% 
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after 48 hours compared to a shake flask run under the same conditions. The 

increase in glucose production in the OBR was attributed to a ‘better mixed 

hydrolysis environment’ (Ikwebe and Harvey, 2011). In other words, the uniform and 

effective mixing under low shear rates allowed the cellulase enzymes access to 

substrate, increasing glucose production. A further possible benefit is the reduced 

shear rates present in OBRs. One of the factors contributing to cellulase deactivation 

is shear which, if reduced, will result in cellulases retaining their activity for longer 

generating increased glucose. However, as the comparison was made with a shake 

flask, this requires further investigation. 

2.6.3 Anaerobic bioprocesses 

Table 2.6 lists the anaerobic bioprocesses previously conducted in an OBR. 

Flocculation is a process by which small particles aggregate, with the aid of a 

polymer, to form flocs large enough to settle or be filtered: commonly used 

industrially for example in water and wastewater treatment (Ni et al., 2001). 

Traditionally, STRs known as stirred tank flocculators are used for this process to 

provide agitation essential for generating particle collisions. An OBR has been used 

as a flocculation device for the bacterium Alcaligenes eutrophus and compared to an 

STR, assessing the percentage flocculation at various operating conditions (Ni et al., 

2001). Although 100% flocculation was not reached in the OBR, a comparison to 

another study (Whittington and George, 1992) demonstrated that, for similar starting 

bacterial concentrations, fuller flocculation was achieved in the OBR at much lower 

shear rates. Previous authors have commented on the non-homogenous nature of 

STRs that result in floc breakup near the impeller zone where shear rates can be 2 

orders of magnitude higher than the average (Glasgow and Kim, 1986). The more 

even shear distribution in OBRs (Ni et al., 2000) allows flocculation to occur at much 

lower average shear providing an attractive, alternative flocculation device to STRs. 
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Table 2.6: OBR bioprocesses using anaerobic cell cultures. *Denotes patent pending 

Bioprocess Organism  Year Conclusion Cell type Reference 

Flocculation  
Alcaligenes 
eutrophus 

2001 

Higher degree of 
flocculation compared 

to STR at lower 
polymer dose. St the 

dominant factor  

Bacterial  
(Ni et al., 

2001) 

*ABE 
fermentation 

Clostridium 
acetobutylicum 

2009 

115% increase in 
solvent production in 
OBR from 0-0.78 Hz. 

90% increase in 
butanol compared to 

STR  

Bacterial  

(Takriff et al., 
2009, 

Masngut et 
al., 2010, 

Cooper et al., 
2011)* 

*Anaerobic 
process 

Patent for 
culture of 

facultative / 
obligate 

anaerobes in 
OBRs 

2010 Patent publication Bacterial  
(Cooper et 
al., 2009)* 

Ethanol 
production 

Saccharomyces 
cerevisiae 

2011 

9% increase in ethanol 
production after 48 
hours compared to 

shake flask 

Yeast  
(Ikwebe and 

Harvey, 
2011) 

Acetone, butanol and ethanol (ABE) fermentation and bioethanol production have 

been extensively covered in a previous review (Masngut et al., 2010) so will not be 

discussed in any further detail. No data currently exists for anaerobic digestion (AD) 

using OBRs as the reference is to a patent pending (Cooper et al., 2009). The patent 

describes a system for using OBRs as a generic platform for culture of facultative and 

obligate anaerobes. Volatile fatty acids and methane were produced using microbial 

consortia from the rumen. The culture of gut fungi was also highlighted in the patent.  

2.6.4 Aerobic bioprocesses 

Table 2.7 lists the aerobic bioprocesses previously conducted in an OBR. 

Alcaligenes eutrophus H16 has commercial interest for production of the 

biodegradable plastic, poly-β-hydroxybutyrate (PHB). This bacterium has been 

cultured in an OBR (Harrison and Mackley, 1992) with a maximum specific growth 

rate (μmax) of 0.39 h-1 compared to 0.36 h-1 and 0.35 h-1 when using Erlenmeyer flasks 

at 10 and 40% working volumes, respectively. OBRs are, therefore, suitable for 

culturing rapidly growing, oxygen demanding microorganisms. The same paper 

alluded to the use of OBRs for culturing animal cells: an interesting proposal as they 



27 
 

27 
 

are notoriously shear-sensitive (Chisti, 2001) with cell death being proportional to 

energy input so any scaled up reactor should minimise energy input (van der Pol and 

Tramper, 1998). Bioprocesses containing animal cells could greatly benefit from the 

low shear, high mass transfer environment produced in OBRs to minimise shear 

while maintaining sufficient OTRs. 

The fruity, peach-like aroma compound, γ-decalactone, has applications in the food 

industry as flavouring and can be biologically produced from the yeast, Yarrowia 

lipolytica. Micro-reactors are important tools for rapidly screening and optimising 

bioprocesses (Reis et al., 2006b). A mesoscale OBR (D=4.4 mm) has been used to 

culture Yarrowia lipolytica for the production of γ-decalactone (Reis et al., 2006a). 

The processing time required to reach maximum γ-decalactone concentration in the 

OBR was 50% lower compared to traditional scaled down platforms: STRs and shake 

flasks. Enhanced mass transfer rates were reported as the reason for the observed 

reduction in processing time. The same mesoscale OBR was used to culture 

Saccharomyces cerevisiae, with an increase in biomass of 83%, using 93.6% less 

air, compared to a scaled down STR. The use of mesoscale OBRs for rapid 

screening and optimisation has two major advantages: precise control over mixing 

and mass transfer; and optimisations achieved at this scale can be predictably scaled 

up to industry volumes. 

A. pullulans IMI 145194 was cultured in a 100 mm diameter OBR, with a working 

volume of 2.5 L, using fixed Xo and f values of 20 mm and 2 Hz, respectively. The 

aeration rate was optimised and then kept constant at 1.0 vvm (volume of air per unit 

volume of medium per minute). The results showed that production of the versatile 

biopolymer pullulan occurred during the exponential and stationary phases, reaching 

a concentration of ~11.7 g/L after 38 hours. These values were compared to STR 

data available in the literature (Madi, 1995), indicating that to reach a comparable 

pullulan concentration in 2 and 10 L STRs, the fermentation time must be increased 

to 96 and 144 hours, respectively. This equates to a reduction in the required 

processing times of 60% and 74% when using OBRs as opposed to STRs and 

highlights the problems encountered when scaling up STRs. The move from 2 L to 

10 L using STRs has resulted in a 50% increase in the required processing time to 

reach similar product concentrations.   
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Table 2.7: OBR bioprocesses using aerobic cell cultures.   

Bioprocess Organism Year Conclusion Cell Type Reference 

Animal cell 
culture 

Unknown 1991 
Feasible to culture 

animal cells in OBRs. 
Mammalian  

Cited in 
(Harrison 

and 
Mackley, 

1992)  

PHB 
production 

Alcaligenes 
eutrophus H16 

1992 

Feasible to culture 
rapidly growing, O2 

demanding 
microorganisms in 

OBRs. 

Bacterial  

(Harrison 
and 

Mackley, 
1992) 

Yeast culture  
Saccharomyces 

cerevisiae 
1995 

75% increase in OTR 
(kLa) compared to 

STR. 
Yeast  

(Ni et al., 
1995) 

Pullulan 
production 

Aureobasidium 
pullulans IMI 

145194 
2005 

Pullulan of 11.3 and 
12.1 g/L takes 96 
and 144 hours in 

STRs compared to 
37-39 hours in OBR. 

Fungal  
(Gaidhani 

et al., 2005) 

γ-
decalactone 
production  

Yarrowia 
lipolytica W29 

2006 

50% time reduction 
for maximum [γ-

decalactone] 
compared to other 

scaled down 
reactors.  

Yeast  
(Reis et al., 

2006a) 

Yeast growth 
rate 

Saccharomyces 
cerevisiae 

2006 

Biomass increases of 
83 and 214% in OBR 

when compared to 
STR and shaken 
flask respectively 

Yeast  
(Reis et al., 

2006b) 

PHA 
production 

Pseudomonas 
putida  

2009 

56% increase in 
biomass after 25 

hours compared to 
STR 

Bacterial 

(Troeger 
and 

Harvey, 
2009) 

No reasons were given for possible causes of increased pullulan production but it 

seems likely that both effective oxygen transfer and low shear rates contribute. It is 

not entirely clear which of these factors is more important however, previous studies 

have shown that pullulan production increased at higher impeller speeds and, 

therefore, high oxygen transfer but also higher shear (Rho et al., 1988, McNeil and 

Kristiansen, 1987). These are contradicted by another study suggesting that low 

impeller speeds and low shear are optimal (Wecker and Onken, 1991). It has been 

demonstrated that an assisted airlift reactor designed for maximum oxygen transfer 
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and mixing produced a significant increase in pullulan production from A. pullulans 

(Gibbs and Seviour, 1992). These studies suggest that both high oxygen transfer and 

low shear are most effective for pullulan production. Both of these conditions are 

hard to achieve simultaneously in conventional STRs because any increase in the 

impeller speed for increased oxygen transfer is accompanied by an increase in 

shear. Figures 2.3 and 2.4 show, however, that an OBR can achieve both of these 

conditions which could explain the increased pullulan production observed, 

highlighting the potential of OBRs for this type of bioprocess.  

2.7 Industrial implementation 

The ultimate niche application for the technology would be in continuous 

bioprocessing under plug flow conditions, removing down-time inherent in batch 

processing and reducing plant footprint as a result of compact reactor design. 

However, in reaching this goal, several key barriers must be overcome in both the 

complex design of a large OBR and the conservative attitude prevalent in the 

bioprocessing industry. 

2.7.1 Barriers 

Table 2.8 highlights the key barriers facing adoption of OBR technology by the 

bioprocessing industry. 

Bioprocesses typically require residence times in excess of 24 hours. Standard 

tubular plug flow reactors would need to be thousands of metres in length compared 

to the OBR’s hundreds of metres. Nevertheless, over these distances transmission of 

oscillations, gas sparging and maintenance of a compact design remain problematic. 

There are also issues with fouling and the requirement to process large volumes, 

both relevant to any bioprocess utilising micro-organisms.  
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Table 2.8: Keys barriers facing adoption of OBR technology 

Design 

Lengths hundreds of metres required for fully continuous operation with residence times of 
hours to days 

Pressure drop due to frictional losses will dampen oscillations 

Gas bubbles during aerobic operation may dampen oscillations and disrupt plug flow 

Multiple sparging and feeding points required down OBR length 

Fouling of baffles and internal surfaces due to micro-organism adhesion 

Large volumes required  

Conservative nature of bioprocessing industry 

Increased complexity of OBR technology compared to other bioreactor designs 

No industrial scale OBRs dedicated to bioprocessing exist 

Lack of data for industrial scale bioprocessing using OBRs 

There are currently no industrial bioprocessing facilities using OBR technology so it 

has not yet been proven for an industrial process. The issue is that for industry to 

invest time and money developing an OBR capable of performing a continuous 

bioprocess with a residence time of hours or days, there must be solid evidence 

supporting the benefits of doing so. This evidence is currently based on smaller pilot 

and lab scale experiments in batch because even at reduced diameters, the length 

must still be hundreds of metres to support fully continuous operation: unlikely to 

occur in a university or small research company. Experimental evidence is therefore 

based on batch experiments (focusing on low shear and enhanced mass transfer) 

with advantages from continuous operation and predictable scale up being 

theoretical. 

2.7.2 Recommended strategies 

2.7.2.1 Design solutions 

Obviously, a straight tube hundreds of metres in length would be impracticable. A 

compact reactor design can be maintained using a serpentine shape consisting of 

numerous short sections connected using baffled ‘u-bends’: a successful design 

used at lab scale. The benefit of this design is that it provides the opportunity to add 

numerous oscillators ensuring transmission of oscillations down the reactor which 

would otherwise diminish over the lengths required. Vertical orientation enables gas 

sparging at the base (and removal at the top) of each column for aerobic 
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bioprocesses. A major issue that needs addressing is how the flow conditions would 

be affected in those columns where the internal fluid is flowing against rising gas 

bubbles. Numerous oscillators and sparging points add complexity and possible 

contamination sites to the design and must be weighed against the benefits OBR 

technology would bring to the bioprocess. 

Industrial scale bioprocesses require large volumes to be processed as product titres 

can be as low as 2 g/L (Meyer et al., 2008a). Current scale up using STRs is complex 

due to different mixing patterns occurring at scale. Conventional STRs are prone to 

impeller flooding, a phenomena characterised by gas rapidly flowing axially upwards 

passed the impeller with no radial discharge, and the formation of stagnant zones 

(Bombac and Zun, 2006, Rau et al., 1992). There are also other acknowledged 

limitations when using STRs including gas channelling, resulting in reduced gas 

dissolution, and poor bulk mixing (Rossi, 2001, Leib et al., 2001). This requires 

implementation of different scale up strategies depending on the specific bioprocess 

(Garcia-Ochoa and Gomez, 2009, Junker, 2004). By lengthening an OBR or 

increasing the diameter (see §2.5), volumes can be increased while maintaining the 

mixing environment. This allows large volumes to be processed either in batch or 

continuously under plug flow: the ultimate niche application of the technology not 

achievable in CSTRs.    

It is possible that micro-organism adhesion to baffles and internal surfaces will 

present fouling issues, as occurs in other bioprocesses. Careful selection of 

construction material could mitigate this problem but it is likely that periodic cleaning 

will need to take place depending on the extent and rapidity of fouling.  

2.7.2.2 Selecting a model bioprocess 

The range of bioprocesses highlighted in Tables 2.5-2.7 demonstrate the variability in 

improvement witnessed from OBRs. It is imperative that each bioprocess is 

evaluated on a case-by-case basis to ensure the technology is being utilised to its full 

potential. The key operating advantages available from OBRs are low shear, 

enhanced mass transfer, scalability and continuous operation under plug flow.  

Selection of a bioprocess that benefits from at least one (and preferably more) of 

these is vital to ensuring the correct application of OBR technology. 
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However, proving the benefits of continuous operation and predictable scale up are 

difficult without development of long OBRs. This has resulted in all experiments being 

batch comparisons benefitting purely from low shear and enhanced mass transfer. 

Therefore, a shear sensitive organism (or component) requiring aerobic conditions 

will show the greatest improvements during batch operation (e.g., pullulan production 

(Gaidhani et al., 2005)). Several anaerobic bioprocesses have been conducted in 

OBRs and, with the exception of ABE production, have shown marginal 

improvements with the main justification for using the technology being scalability. In 

comparison, four aerobic bioprocesses witnessed a greater than 50% improvement 

providing greater incentive for industry to adopt OBRs (Troeger and Harvey, 2009, 

Gaidhani et al., 2005, Reis et al., 2006a, Reis et al., 2006b). It is difficult to predict 

those bioprocesses that will benefit from continuous operation and predictable scale 

up at this stage.   

2.7.2.3 Open access facilities 

Open access facilities provide equipment capable of testing various bioprocesses at 

scale. Large companies could utilise these facilities to gather data assessing the 

benefits of OBR technology for their specific bioprocess. Such facilities as The 

Centre for Process Innovation (CPI) on Teesside in the UK already house a number 

of OBRs available for industry-focused research. The next stage is to develop an 

OBR capable of fully continuous operation with at least a 24 hour residence time to 

generate solid data on the benefits of predictable scale up and continuous operation 

for specific bioprocesses.  

2.8 Summary 

OBR technology provides a novel production vessel for bioprocessing over a wide 

range of cellular components and microorganisms. The reactor has several 

advantages over conventional STRs: good mixing complemented with low shear; 

increased mass transfer rates; linear and predictable scale up; and continuous 

operation under plug flow conditions. As mixing intensity is controlled by oscillating 

conditions, long residence time processes required for biological reactions are 

possible in relatively short OBRs compared to conventional tubular reactors that rely 

on high flow rates to achieve mixing.  
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The advantages OBR technology could bring to bioprocessing are evident however, 

issues remain regarding the design and uptake of industrial scale OBRs. Reactors 

hundreds of metres in length will be required to realise the ultimate goal of using 

OBRs for continuous bioprocessing under plug flow conditions. Over these distances, 

it is likely that multiple oscillators and sparging points will be required and it is unclear 

as to how rising gas bubbles will interact with internal fluid, possibly disrupting plug 

flow. Open access facilities could prove essential in providing industry with OBRs 

capable of testing bioprocesses in a continuous fashion on large scale: currently not 

possible using small lab scale OBRs. Nevertheless, work to date has demonstrated 

the ability OBRs have to enhance product production during bioprocessing, moving 

closer towards developing viable replacement technologies based on sustainable, 

biological systems. More research is required to identify those bioprocesses that 

could be greatly intensified through OBR technology and funding provided to develop 

industrial scale systems, operated continuously. Table 2.9 summaries the findings of 

this review. 

 

Table 2.9: Summary of literature review. 

The OBR Tubular reactor, containing orifice plates. 

 

Capable of batch or continuous operation. 

  
Reciprocating piston or pump creates oscillatory flow forming vortices 
for effective mixing. 

Process advantages Low and even distribution of shear compared to STRs. 

 

Increased mass transfer, specifically gases including O2. 

 

Good global mixing. 

  

Enhanced reaction rates for specific bioprocesses. 

Bioprocesses inhibited by mass transfer, high shear and 
heterogeneity are likely to benefit more from OBRs. 

Continuous operation Plug flow achievable over a range of laminar flow rates. 

  Compact plug flow design compared to conventional tubular reactors. 

Scale up 
Predictable scale up (for batch and continuous) from laboratory to 
industrial scale by maintaining geometric and dynamic similarity. 
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Chapter 3: Modelling plug flow and OBR design 

‘Rapid determination of the residence time distribution (RTD) function in an oscillatory 

baffled reactor (OBR) using a design of experiments (DoE) approach.’ 

3.1 Abstract 

Residence time distribution (RTD) profiles were investigated in a standard oscillatory 

baffled reactor (OBR) as a function of oscillatory and bulk flow components using a 

design of experiments (DoE) approach. Two second order, polynomial models 

(R2=92.1% and 97.3%) were fitted to Nt values estimated from concentration profiles 

and used to maximise plug flow conditions. The velocity ratio (Ψ) required to 

maximise plug flow was 1.9, agreeing well with the range previously identified by 

Stonestreet and van der Veeken (1999) (1.8<Ψ<2.0), suggesting the approach used 

here is valid. This method could be used to rapidly quantify and maximise plug flow in 

various OBR designs in a simple and robust manner which could prove valuable for 

the operation and design of continuous processes using OBR technology.   

3.2 Introduction 

Oscillatory baffled reactors (OBRs) have been investigated for the last two decades 

as novel systems for achieving efficient and uniform mixing at average shear rates up 

to one order of magnitude lower than standard stirred tank systems (STRs) (Ni et al., 

2000). Mixing in OBRs occurs via fluid oscillation relative to equally spaced, low 

constriction orifice plates (baffles). Typically, a reciprocating pump or piston provides 

oscillatory motion of the fluid, forcing it through the baffles. This creates vortices 

behind each baffle along the entire OBR length, resulting in similar radial and axial 

flows that generate effective, uniform mixing, the intensity of which is precisely 

controlled by oscillation amplitude (Xo) and frequency (f). 

Scale up of OBR technology on the basis of maintaining the same degree of axial 

dispersion has been achieved by maintaining the values of three dimensionless 

groups: the net flow Reynolds (Ren), oscillatory Reynolds (Reo) and Strouhal (St) 

numbers (Smith and Mackley, 2006, Smith, 1999). This simple scaling rule should 

allow optimisation studies conducted at laboratory scale to be easily transferred to 

pilot and manufacturing scales with a low degree of risk. Current STR technology 

suffers from a degree of unpredictability during scale up, caused by phenomena 
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including impeller flooding, stagnant zone formation, gas channelling and poor bulk 

mixing (Bombac and Zun, 2006, Rau et al., 1992, Rossi, 2001, Leib et al., 2001). 

Numerous scale up strategies that are highly process-dependent exist for STR 

technology, but no standardised strategy is guaranteed to replicate lab scale results 

at a larger scale (Garcia-Ochoa and Gomez, 2009, Junker, 2004).  

Continuous processing is one method of process intensification as it allows increased 

production per unit reactor volume compared to conventional  batch manufacturing 

(Anderson, 2012). OBR technology allows for the development of continuous 

processes that could reduce plant footprint and increase throughput (Stonestreet and 

Harvey, 2002). In continuous operation the reactor is often substantially smaller, 

thereby reducing the inventory of material in a hazardous state (although small feed 

vessels are usually still required). Continuous processing enables the exploration of 

novel manufacturing techniques of, for example, pharmaceuticals using reactions 

that utilise hazardous chemicals or are too exothermic for STRs (Trafton, 2012).  

When converting a batch process to continuous in an OBR or any other form of batch 

reactor, the time dimension is effectively replaced by reactor length, provided axial 

dispersion is minimised. Plug flow describes the condition where no axial dispersion 

occurs (reactants have identical residence times) and, in practice, only 

approximations to plug flow are achievable. The velocity ratio (Ψ) is a dimensionless 

group associated with OBR operation based on oscillatory and bulk flow 

components. A range of 1.8<Ψ<2.0 to maximise plug flow conditions was identified 

for ‘standard’ OBR designs (Stonestreet and van der Veeken, 1999). However, this 

range may not maximise plug flow for ‘non-standard’ OBR designs that use modified 

baffles, smaller diameters or other geometries (Phan and Harvey, 2011). For 

example, in meso-scale OBRs (4-5 mm diameters) with central baffles, plug flow was 

maximised for 4<Ψ<8, and with integral baffles for 5<Ψ<10 (Phan and Harvey, 

2010).      

An experimental design would be needed to identify the operating conditions required 

to maximise plug flow in ‘non-standard’ OBR designs, if plug flow was important for 

the process. A ‘one-factor-at-a-time’ (OFAT) approach involves the selection of 

numerous factors that are likely to affect the response (in this case, the degree of 

plug flow), and then changing the value of only one. A more efficient method is the 

factorial design of experiments (DoE) where the values of selected factors are 



36 
 

36 
 

changed simultaneously (Fisher, 1926). The advantages of DoE over OFAT are the 

use of less time and resources as fewer runs are required. Interactions between 

factors can be estimated and experimental information is gathered from a larger 

region of factor space (Czitrom, 1999).   

In this study, a simple, effective and robust method that is based on a DoE approach 

to rapidly assess and maximise plug flow conditions in a ‘standard’ OBR design is 

described, demonstrated and validated. Key operating conditions (factors) can be 

chosen to maximise plug flow (the response) in a methodical manner with the 

removal of extensive and time-consuming studies associated with an OFAT 

approach. A central composite design provides the framework to assess how 

relevant experimental factors and their possible interactions affect the RTD, which is 

modelled and quantified using the tanks-in-series model (TiS) for plug flow 

(Levenspiel, 1999).   

3.3 Materials and methods 

A horizontal 700 mL OBR operated continuously was used for this study. The design 

is such that both baffle spacing (L) of 1.5 times the reactor diameter (D) and baffle 

constriction ratio (α) of 0.25 are consistent with the ‘standard’ OBR design (Ni et al., 

1998, Brunold et al., 1989). The baffle constriction ratio is defined as (Do/D)2 where, 

Do is the baffle orifice diameter.  

De-ionised (DI) water was used as bulk flow material, pumped through Norprene® 

tubing (Masterflex, size 36) by a peristaltic pump (Cole Palmer, Model 77200-62) at 

desired flow rates. A pulse dampener (Cole Palmer, HV-07596-20) was used to 

minimise oscillations caused by the pump that would interfere with oscillations in the 

OBR. Tracer pulses for each run consisted of 1 mL sodium hydroxide (2.5 M) injected 

over 3 seconds (Fisher Scientific, BP359-212). Two pH probes with response times 

of 10 s (Mettler Toledo, InPro 3250) were connected to digital displays (Mettler 

Toledo, M300) and measured pH at the exit (probe 2) and 50 mm from the injection 

point (probe 1). pH values were recorded every 10 seconds on a data logger 

(Eurotherm Chessel, 5180V). Each run began at the time of injection and ended once 

pH had returned to the starting value. A photograph of the apparatus used in this 

study is shown in Figure 3.1. 
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Figure 3.1: A photograph of the apparatus used for this study with the tracer injection port, pH probes, 
pulse dampener, peristaltic pump and direction of flow labelled.  
 

3.4 Theory and calculation 

3.4.1 Factor selection 

DoE requires the selection of experimental factors that are systematically varied in 

order to determine their effect on a response variable. RTD profiles in OBRs are 

influenced by interactions between oscillatory and bulk flow components. The Reo 

gives an indication of mixing intensity (oscillatory component) and the Ren describes 

the net flow during continuous operation (bulk flow component), calculated using 

equations 3.1 and 3.2, respectively. The velocity ratio (Ψ) is Reo divided by Ren.   

Reo = ρ2πfXoD
µ                                    Eq. 3.1 

 

Ren = 
ρDu

µ                                    Eq. 3.2 

Where, ρ is the fluid density (kg/m3), f and Xo, the frequency (Hz) and amplitude (m) 

of oscillation, respectively, D, the reactor diameter (m), µ, the fluid dynamic viscosity 

(Pa.s) and u, the superficial fluid velocity (m/s).  

Injection port
Probe 2

Peristaltic pump

Pulse dampener
Direction of flow

Probe 1
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Fluid density and viscosity were kept constant (1000 kg/m3 and 0.001 Pa.s, 

respectively) and the reactor diameter fixed at 25 mm, leaving Xo, f and u (or flow 

rate, Q) as the factors in the experimental design.  

3.4.2 Experimental design   

A basic full factorial design consists of k factors that are tested at p levels, for 

example, low and high (Fisher, 1926, Fisher, 1935, Box and Behnken, 1960). The 

number of runs required is pk. For the three factors outlined above (Xo, f and Q) 

tested at two levels, 8 runs (23) would be required for a full two-level factorial. The 

limitation with this design is that second order models cannot be developed (Czitrom, 

1999). This can be addressed by increasing the number of levels in the design to 

three, for example, however; the number of runs is substantially increased (33=27).  

Central composite designs are able to build second order models without the need 

for a full three-level factorial (Box and Behnken, 1960). These designs consist of a 

full two-level factorial augmented with centre and axial points. The values of centre 

points are the median of each factor, with replication to estimate error. The values of 

axial points are +/- αe from the centre points, where αe is calculated by (pk)0.25. A 

central composite design was chosen for this study because it enabled a second 

order model to be developed and minimised the run number. The design was created 

using Minitab® (Minitab, 2007) with axial point ranges for Xo, f and Q of 0.6-3.6 mm; 

0.47-2.29 Hz and 86-304 mL/min, respectively. The design consisted of 20 runs 

summarised in Table 3.1, with the factor space represented in Figure 3.2. Table 3.1 

also shows the corresponding values of dimensionless groups associated with OBR 

operation. Ren, Reo and Ψ have been discussed (§3.4.1). The Strouhal number (St) 

is a measure of effective vortex propagation relative to the OBR diameter and is 

calculated using equation 3.3. 

 

Strouhal number: St=
D

4πXo
                                 Eq. 3.3 
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Table 3.1: A central composite experimental design to assess the effects of Xo, f and Q on the flow 
conditions in an OBR. The corresponding dimensionless groups associated with OBR operation (Ren, 
Reo, Ψ and St) are also shown. *Indicates the centre point replicated six times.   

Run Xo (mm) f (Hz) Q (mL/min) Ren Reo ψ St 

1* 2.1 1.38 195 166 455 2.7 0.95 

2 2.1 2.29 195 166 755 4.6 0.95 

3* 2.1 1.38 195 166 455 2.7 0.95 

4 3 1.92 260 221 905 4.1 0.66 

5 3 1.92 130 111 905 8.2 0.66 

6 3.6 1.38 195 166 783 4.7 0.55 

7 1.2 1.92 260 221 362 1.6 1.66 

8* 2.1 1.38 195 166 455 2.7 0.95 

9 1.2 0.84 260 221 158 0.7 1.66 

10 1.2 1.92 130 111 362 3.3 1.66 

11 3 0.84 130 111 396 3.6 0.66 

12 3 0.84 260 221 396 1.8 0.66 

13 1.2 0.84 130 111 158 1.4 1.66 

14 2.1 1.38 304 259 455 1.8 0.95 

15* 2.1 1.38 195 166 455 2.7 0.95 

16 0.6 1.38 195 166 127 0.8 3.32 

17* 2.1 1.38 195 166 455 2.7 0.95 

18 2.1 0.47 195 166 156 0.9 0.95 

19 2.1 1.38 86 73 455 6.3 0.95 

20* 2.1 1.38 195 166 455 2.7 0.95 

 

The response for this study was the degree of plug flow, estimated in terms of a 

variable number (Nt) of continuously stirred tank reactors (CSTRs) in series (see 

§3.4.3). The values of Nt for each run were fitted to a second order, polynomial 

equation (Coward et al., 2013) in the form shown in equation 3.4 to model Nt in terms 

of Xo, f and Q. The model was used to select values for each factor that maximised 

plug flow. Each term is either linear, square or an interaction between factors and 

has an associated coefficient that generates the best fit (as determined by regression 

analysis) between the model and experimental values.  

Nt = β0 + β1Xo + β2f + β3Q + β11Xo
2
 + β22f

2
 + β33Q

2
 + β12Xof + β13XoQ + β23fQ                               Eq. 3.4 

Where, Nt represents the degree of plug flow; β0, a constant; Xo, f and Q, values of 

the experimental factors; β1, β2 and β3, linear coefficients; β11, β22 and β33, square 

coefficients; and β12, β13 and β23, interaction coefficients. 
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Figure 3.2: A representation of the factor space for the experimental design described in Table 3.1.  

The significance of each term in equation 3.4 was determined by generated p-values 

which are the probabilities of obtaining the results if the null hypothesis is true (i.e. 

the term has no significant effect). A cut-off value of 0.05 was selected, meaning that 

terms with p-values above this were removed from the model. A backward, stepwise 

elimination technique was applied whereby significant terms (p<0.05) contribute to 

the model and insignificant terms are eliminated (Bosma et al., 2003). Coefficients 

were put into the polynomial model equation and the term with the highest p-value 

selectively removed. To establish model hierarchy, a linear term remained in the 

model when an interaction or square effect of that term was significant (Bosma et al., 

2003). For example, Table 3.3 shows that the p-value for the Xo term is 0.684 

(original model). However, this term remains in the model because the p-values for 

the Xo
2 and Xof terms are both below 0.05. The coefficient of determination (R2) was 

used to evaluate the quality of fit for the final model.         
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3.4.3 Residence time distribution analysis  

Normalised RTD profiles were created for each run using equations 3.5-3.10 from pH 

data gathered from probe 2 (Figure 3.1). The data was offset by 10 s to account for 

the probe response time. Concentration data was used to perform a mass balance of 

hydroxide ions between probes 1 and 2. 

Hydroxide ion concentration (M): [OH
-] = 10

-(14-pH)
                                                                         Eq. 3.5 

 

Mean residence time (s): ť = 
ΣtiCi

ΣCi
                                 Eq. 3.6 

 

Dimensionless time: θ = 
ti
ť

                                              Eq. 3.7      

 
Area under C(t) curve: A = ΣCiΔt                                   Eq. 3.8    
 

Residence time distribution: E = 
Ci

A
                                   Eq. 3.9 

 
In normalised form: Eθ = ťE                                 Eq. 3.10 

 

Where, ti and Ci are the time and [OH-] (M) at time i, respectively, and Δt, the time 

interval between readings (10 s in this study). 

The tanks-in-series (TiS) model for plug flow has been used to quantify flow 

conditions in OBRs in terms of a variable number (Nt) of continuous stirred tank 

reactors (CSTRs) in series (Stonestreet and van der Veeken, 1999, Dickens et al., 

1989, Fitch and Ni, 2003, Phan and Harvey, 2010). Normalised RTD profiles using 

the TiS model are created using equation 3.11 (Levenspiel, 2012). 

Eθ = 
Nt(Ntθ)

Nt-1e
-Ntθ

(Nt-1)!
                                Eq. 3.11 

Where, Nt represents a variable number of CSTRs in series. 

Closer approximations to plug flow are achieved with increasing Nt. Perfect plug flow 

occurs when Nt is infinite (Levenspiel, 1999) although in practice Nt>10 usually 

provides an adequate level of plug flow (represented in Figure 3.3b) (Phan and 

Harvey, 2010). Mixed flow occurs for lower values of Nt and the RTD profile for Nt=2 

is shown in Figure 3.3a.  
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Figure 3.3: Theoretical RTD profiles for a) near mixed flow (Nt=2) and b) increased plug flow (Nt=10). 
The x-axis represents dimensionless time (θ) and the y-axis normalised exit age function (Eθ).  
 

The response for this study was the degree of plug flow estimated in terms of Nt. One 

of the advantages of this method is that quantification of plug flow is expressed in 

terms of only one variable. Each inter-baffle zone can act as a discrete compartment 

during continuous operation of OBRs in the soft mixing regime (Reo<5000) resulting 

in the column behaving as numerous CSTRs in series (Dickens et al., 1989, 

Stonestreet and van der Veeken, 1999). The experimental design uses a maximum 

Reo of 905. Therefore the TiS model is appropriate as it approximates the mode of 

operation of this reactor in this regime.  

Data from probe 2 was used to create normalised RTD profiles (experimental) for 

each run, which were visually compared in Excel (Microsoft, 2010) to normalised 

RTD profiles created from the TiS model (model). The value for Nt in the TiS model 

that gave the closest fit to the experimental RTD profile gave the response variable 

for that run (the degree of plug flow). Regression analysis was performed to 

determine the quality of fit (R2) between the experimental and model RTD profiles.  
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3.5 Results and discussion 

3.5.1 Flow condition analysis 

Tracer material was introduced into the OBR and its concentration measured over 

time at a specified location downstream from the site of injection (probe 2). Sodium 

hydroxide was used for this study, as the concentration is easily determined from pH 

measurements (equation 3.5). The RTD profiles created from probe 2 for the 20 runs 

in the experimental design are shown in Figure 3.4 a-d. 

There is a clear difference in the RTD profiles in response to changes in the 

experimental factors (Xo, f and Q). This indicates that the factors affect the quality of 

plug flow. The profile becomes symmetrical about the mean residence time (t’) 

corresponding to θ=1 as the flow conditions tend towards plug flow. Figure 3.3b 

clearly shows this symmetry. The profile peaks at θ=1 and becomes more 

symmetrical as the quality of plug flow increases, indicated by the arrows in Figure 

3.4. 

The level of plug flow achieved for each run was quantified by comparison to the TiS 

model which gave the response value for each run (Nt). These values are shown in 

Table 3.2. Plug flow was maximised for conditions described in run 14 (Nt=33) and 

minimised for run 5 (Nt=9). Changes in the values of selected factors within the space 

described in Figure 3.2 resulted in a response range of 9<Nt<33. The result from run 

14 suggests the OBR shown in Figure 3.1 can act as 33 CSTRs in series when 

appropriate values for Xo, f and Q are selected. 
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Figure 3.4:  Experimental (probe 2) RTD profiles for runs outlined in Table 3.1 forming the 
experimental design. The vertical dashed line corresponds to the mean residence time (t’) and * 
denotes replicated runs at the centre point. Figure (a) shows runs with Nt values of 9-13, (b), Nt values 
of 14-25, (c), Nt values of 26-33 and (d), all 20 runs in the experimental design.   

Regression analysis was performed for each run (Minitab, 2007) to evaluate the 

model’s fit. Coefficients of determination (R2) were calculated for each run (shown in 

Table 3.2). The R2 values are >95% except for runs 9 (88.5%), 13 (94.1%) and 18 

(85.4%) where the Nt values were relatively low at 13, 10 and 12, respectively. Figure 
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3.5 shows the RTD profiles, and their associated model fit plots, for runs 17 and 18 

which represent the best and poorest fits, respectively.  

Table 3.2: The quality of plug flow (Nt), coefficients of determination (R
2
), mixing efficiencies (η) and 

total hydroxide ions recorded at probes (Pb.) 1 and 2 for the 20 runs in the experimental design (Table 
3.1). Bold represents poor fit (R

2
<95%).  

Run Nt R
2
 η 

Pb.1 
(mmol) 

Pb.2 
(mmol) 

Run Nt R
2
 η 

Pb.1 
(mmol) 

Pb.2 
(mmol) 

1* 26 99.1% 0.87 2.65 2.59 11 24 99.2% 0.80 2.62 2.53 

2 13 98.0% 0.43 2.76 2.61 12 26 98.4% 0.87 2.52 2.43 

3* 26 99.0% 0.87 2.69 2.56 13 10 94.1% 0.33 2.38 2.27 

4 15 98.7% 0.50 2.54 2.41 14 33 99.2% 1.10 2.53 2.32 

5 9 96.4% 0.30 2.55 2.48 15* 27 99.3% 0.90 2.60 2.48 

6 13 98.8% 0.43 2.60 2.54 16 13 95.8% 0.43 2.62 2.37 

7 30 99.0% 1.00 2.63 2.52 17* 28 99.4% 0.93 2.57 2.47 

8* 25 99.2% 0.83 2.60 2.43 18 12 85.4% 0.40 2.54 2.43 

9 13 88.5% 0.43 2.50 2.36 19 14 98.4% 0.47 2.51 2.38 

10 17 99.0% 0.57 2.54 2.39 20* 26 99.3% 0.87 2.47 2.45 

It is clear that the model accurately represents flow conditions in an OBR for 

relatively high Nt values (e.g. 28) as the experimental and model RTD profiles match. 

The model can lose accuracy for Nt<15 as indicated by the poorer fit when Nt=12 

(Figure 3.5). However, a low Nt value does not necessarily correspond to a poor fit as 

indicated by the R2 values for runs 2 (98.0%), 5 (96.4%), 6 (98.8%), 16 (95.8%) and 

19 (98.4%) having Nt values of 13, 9, 13, 13 and 14, respectively.            

 
Figure 3.5: Experimental (markers) and model (lines) RTD profiles for runs 17 (circles, solid) and 18 
(triangles, dashed) which represent the best and poorest fits observed in the study, respectively.   
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In theory the maximum value calculated for Nt cannot exceed the number of inter-

baffle zones because under ideal conditions each can behave as one CSTR 

(Stonestreet and van der Veeken, 1999, Dickens et al., 1989, Phan and Harvey, 

2010). The actual number of CSTRs in series (M) can therefore be directly related to 

the OBR length and corresponding number of inter-baffle zones. There are 30 inter-

baffle zones forming the OBR shown in Figure 3.1, therefore M=30.  

The mixing efficiency (η) can be used to estimate the performance of an OBR in 

relation to plug flow (Stonestreet and van der Veeken, 1999, Carberry, 1958) and is 

calculated using equation 3.12. A theoretical maximum value (η=1) occurs when 

Nt=M and the OBR is achieving the maximum level of plug flow possible.  

Mixing efficiency: η = Nt/M                                            Eq. 3.12 

Where, Nt is the calculated number of CSTRs in series and M, the actual number of 

CSTRs (equivalent to the number of inter-baffle zones for OBR operation).  

The mixing efficiencies for the experimental runs are shown in Table 3.2. A maximum 

η was achieved for run 14 where η=1.10 (33/30) which is higher than the theoretical 

maximum value of 1. The apparatus that forms the OBR consists of two borosilicate 

glass columns coupled by stainless steel blocks that provide probe entry and sample 

ports (Figure 3.1). The column sections of the reactor contain 30 inter-baffle zones, 

however; this does not include three blocks connected at the centre and both ends. It 

is probable that these blocks act as mixed compartments which would increase the 

value of M and explain how Nt>M. Further work is needed to determine the effect 

each block has on the flow conditions and allow a precise value for M to be given.    

Changes in the factor values (Xo, f and Q) within the experimental space produced a 

mixing efficiency range of 0.3<η<1.1. Response values (Nt) were calculated 

assuming a perfect pulse technique as tracer (NaOH) was rapidly added over 3 

seconds. Addition of an imperfect pulse would produce values for η below the 

theoretical maximum. The values for η obtained suggest the perfect pulse technique 

assumption is valid because the theoretical maximum value for η was achieved 

(exceeded for run 14).       
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3.5.2 Mass Balance Analysis  

Data collected from probes 1 (entry) and 2 (exit) enabled a mass balance of 

hydroxide ions to be performed between the OBR entry and exit. Each 1 mL tracer 

pulse contained 2.50 mmol hydroxide ions (2.50/1000). The total amount of 

hydroxide ions recorded at probes 1 and 2 are shown in Table 3.2. The data for 

probe 1 shows a standard deviation of 3.31% from 2.50 mmol and a maximum 

deviation of +10.40% for run 2. The major source of error probably occurred from the 

volume of tracer injected, which for most runs was very close to the target of 1 mL. 

There is an average reduction of 4.66% for the total hydroxide ions between the OBR 

entry (probe 1) and exit (probe 2) points. >95% of the tracer passed through the 

OBR, which indicates that few stagnation points were present where tracer material 

could accumulate. The use of 2.5 M NaOH was therefore suitable.        

3.5.3 Model Development 

A second order model was developed in Minitab® to predict the quality of plug flow 

(Nt) that would be achieved with different values for the experimental factors (Xo, f 

and Q). The method used (see §3.4.2) resulted in seven terms for the final model, 

which are shown in Table 3.3. These consist of a constant, all three linear terms, two 

square terms (Xo
2 and f2) and one interaction term (Xof). Table 3.3 also shows the 

coefficient for each term and its associated p-value (original model). 

The p-values for the Xo and f terms in the original model are both higher than the cut 

off for this study (0.05) however; both are required for hierarchy terms (Xo
2 and f2, 

respectively) so must remain in the model. The p-values for the constant, square and 

interaction terms are all <0.05 which suggest they contribute significantly to the 

model. The R2 (=92.1%) shows that 7.9% of the total variability cannot be explained 

by the model. Sources of this error could be slight variation in tracer addition (e.g. 

volume), as this was done manually so perfect replication is unlikely, and 

experimental RTDs being poorly modelled. Although the model produced a relatively 

high R2 (=92.1%), a second model was developed after removal of runs where 

experimental RTDs were poorly modelled (R2<95%). This second model resulted in 

eight terms and a higher R2 (=97.3%), shown in Table 3.3 (outlier corrected). This 

indicates that some unknown variation in the original model was a result of a poor fit 
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between experimental RTDs and the TiS model. The outlier corrected model was 

deemed sufficiently accurate to predict factor values that maximise plug flow.  

Table 3.3: Terms included in the original and outlier corrected models, their coefficients and 
associated p-values.  

Original Model Outlier Corrected 

Term Coefficient p-value Term Coefficient p-value 

Constant  -76.200 0.000 Constant  -63.500 0.000 

Xo 40.300 0.684 Xo 41.850 0.730 

f 68.200 0.974 f 62.760 0.961 

Q 0.063 <0.000 Q -0.020 <0.000 

Xo
2
 -5.258 <0.000 Xo

2
 -5.656 <0.000 

f
2
 -14.889 <0.000 f

2
 -16.420 <0.000 

Xof -12.951 <0.000 
Xof -12.950 <0.000 

fQ 0.050 0.018 

Coefficient of determination (R
2
)=92.1% Coefficient of determination (R

2
)=97.3% 

  

3.5.4 Selection of Factor Values to Maximise Plug Flow 

Contour plots are useful for showing the effects that two experimental factors have 

on a response. Figure 3.6 shows contour plots for all three pairs of experimental 

factors used in this study and their relative effect on the quality of plug flow (Nt). 

 
Figure 3.6: Contour plots for the effects a) f and Xo, b) Q and Xo, c) Q and f, and d) Reo and Ren have 
on plug flow (Nt) in a ‘standard’ OBR design. Hold values are defined as the centre point during the 
experimental design. The line in d) represents a velocity ratio (Ψ) of 2.  
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It is clear from Figure 3.6 that all three experimental factors in this study affect the 

quality of plug flow. A range to maximise plug flow exists for both Xo (1.5-3.0 mm) and 

f (1.00-1.75 Hz) indicated by the central region in Figure 3.6a (where Nt>30). Flow 

rate (Q) affects plug flow quality with an increased net flow producing closer 

approximations to plug flow, maximised for Q>260 mL/min (where Nt>30). The 

response optimisation tool in Minitab® was used to select values for Xo (=2.2 mm), f 

(=1.4 Hz) and Q (304 mL/min) that maximise plug flow conditions (target=40, 

lower=30, upper=50). These values produce a velocity ratio of 1.9, within the range 

(1.8<Ψ<2.0) stated by Stonestreet and van der Veeken (1999). The optimisation tool 

selected the highest available value for Q. It indicated that closer approximations to 

plug flow are achieved with increased Ren, consistent with several studies 

(Stonestreet and van der Veeken, 1999, Phan and Harvey, 2010).  

Figure 3.6d shows Reo against Ren. These dimensionless groups are functions of all 

three experimental factors. Nt increases with Ren and is maximised for the highest 

Ren when Ψ~2.0, consistent with the previous analysis. A plot showing Ψ against Nt 

over the factor range tested in the experimental design is shown in Figure 3.7. As Ψ 

is a function of Reo and Ren, which are themselves functions of Xo, f and Q, the trend 

shown in Figure 3.7 captures all known variation with the quality of plug flow (Nt).  

 
Figure 3.7: The dependency of plug flow quality (Nt) on the velocity ratio (Ψ). Error bars represent +/- 
one standard deviation calculated from six replicates at the centre point.  Red circles indicate runs 
where the experimental RTD fit poorly with the model (R

2
<95%).  
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The Nt values generated from the six replicated runs at the centre point have been 

averaged and used to calculate the error for Figure 3.7 (standard deviation=1.03). 

There is a clear maximum level of plug flow achieved within the range 1.6<Ψ<2.0 

which supports the factor values suggested from the model to maximise plug flow 

(Ψ=1.9). This range is almost identical to that stated in a previous study (1.8<Ψ<2.0) 

(Stonestreet and van der Veeken, 1999), which suggests the method described 

above is accurate and can be used with confidence to select factor values to 

maximise plug flow conditions. However, Figure 3.7 suggests an extremely rapid 

increase in the quality of plug flow with a minor change to the velocity ratio from 1.4 

to 1.6 which seems unrealistic. This could be due to all Nt values being plotted, 

irrespective of how accurate the experimental data fit the TiS model. 

Values circled in red in Figure 3.7 are runs 9, 13 and 18 which produced low Nt 

values (<14). The experimental RTDs resulting from these runs did not fit the TiS 

model as accurately as other runs, with R2 values below 95%. With these runs 

removed from the analysis, the R2 value for the final model is higher (=97.3%) and 

the rapid increase in the quality of plug flow is removed from Figure 3.7, producing a 

more gradual and realistic increase.     

The third dimensionless group (St) has been plotted against Nt and shown in Figure 

3.8 to support the conclusion that only velocity ratio shows a trend when plotted 

against the quality of plug flow. It is clear from Figure 3.8 that there is no obvious 

trend between the quality of plug flow (Nt) and the Strouhal number (St).  
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Figure 3. 8: The dependency of plug flow quality (Nt) on the Strouhal number (St). 
     

3.5.5 Method Overview 

The use of DoE in the form of a central composite experimental design has enabled 

a second order model to be developed that describes the relationship between the 

quality of plug flow (Nt) and three experimental factors (Xo, f and Q). The model was 

used to select factor values to maximise plug flow and the results agree with a 

previous study (Stonestreet and van der Veeken, 1999) where approximately 110 

individual pulse tests were conducted and each factor assessed using a ‘one factor 

at a time’ (OFAT) approach. In this study the same conclusions were made using 20 

runs which is an 82% reduction in the run number.  

A ‘standard’ OBR design was used, so that conclusions could be validated against 

Stonestreet and van der Veeken (1999).  

The method described in this study consists of:  

1) Factor selection (Xo, f and Q). 

2) Experimental design in the form of a central composite. 

3) Data acquisition at the OBR exit. 

4) Tracer pulse method and suggested material. 

5) RTD profile generation from pH versus time data. 
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6) Quantification of plug flow by comparison to the TiS model.  

7) Model development using the response values for each run (Nt).   

There is no reason to suggest this method could not be applied to ‘non-standard’ 

OBR designs. Therefore, this method could provide a simple and robust way to 

rapidly quantify flow conditions and select factor values to maximise plug flow, which 

is often preferred for continuous operation when using OBR technology (Abbott et al., 

2013).  

3.5.6 Application to OBR Design 

A major advantage of OBR technology is the ability to control mixing intensity 

independently of the net flow rate through manipulation of Xo and f. In conventional 

tubular reactors turbulent flow conditions (Ren>2100) are required to achieve good 

radial mixing (van Vliet et al., 2005). This results in residence times for continuous 

operation using conventional tubular reactors being severely limited because 

extremely long, narrow reactors, that are often simply impractical to operate, are 

required to achieve long residence times (Harvey et al., 2001). OBR technology 

mitigates this problem by decoupling the achievement of plug flow from net flow 

allowing longer residence time processes in significantly shorter reactors. 

The results from this study and previous work (Stonestreet and van der Veeken, 

1999, Dickens et al., 1989, Reis et al., 2004) have demonstrated that net flow during 

continuous operation in OBRs affects the RTD. Mixing intensity is decoupled from net 

flow but the RTD is not. This fact must be taken into consideration when designing a 

continuous process, under plug flow conditions, based on OBR technology. For fixed 

OBR dimensions a lower limit exists for net flow below which plug flow conditions are 

lost and the OBR behaves as a mixed vessel. This limit for Ren will put an upper limit 

on the residence time achievable for a specified OBR. To increase the residence 

time for a specified Reo and maintain an adequate level of plug flow, the OBR length 

must be increased. Figure 3.9 shows ‘standard’ OBR design lengths required to 

achieve a 12 hour residence time for two mixing intensities (Reo=1000 and 2000) and 

velocity ratios (Ψ=1.8 and 10). 
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Figure 3.9: ‘Standard’ OBR design lengths required to maximise plug flow (Ψ=1.8) for a 12 hour 
residence time process with mixing intensities (Reo) of 2000 (triangles) and 1000 (circles).  
The length for reduced plug flow conditions (Ψ=10) with a mixing intensity of 1000 is shown for 
comparison (circles, dashed).   

Figure 3.9 shows that for a 25 mm diameter OBR, similar to one used in this study, a 

length of 1920 m would be required to maximise plug flow (Ψ=1.8) over 12 hours at 

Reo=2000. This length is halved to 960 m if the required mixing intensity is also 

halved to Reo=1000 and again reduced by a factor of ~5, to 173 m, if Ψ is increased 

from 1.8 to 10 (which may not produce the desired level of plug flow). This length 

may still be impractical and highlights the importance of establishing the required 

operating conditions (mixing intensity, residence time and flow conditions) for each 

process to ensure the resultant OBR is suitable. Note that this is just illustrative, as it 

is based upon a fixed diameter, which would usually be a degree of freedom in 

design. Hence, the methodical approach to designing processes based on OBR 

technology in Figure 3.10. 
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Figure 3.10: A methodical approach for designing batch or continuous processes based on OBR 
technology.   

The method presented in this study allows step 2b (Figure 3.10) to be performed in a 

robust manner with minimal time required for extensive testing. There are several 

benefits to this method: fewer runs are required (up 82% fewer) compared with 

OFAT, saving both time and reagents; relevant experimental factors and their 

interactions are assessed; and a framework is provided that accurately describes the 

conditions to be tested. 

Figure 3.10 demonstrates that operating OBRs continuously under plug flow 

conditions is more complex than batch operation, but is described as the niche 

application for this technology (Abbott et al., 2013). 

3.6 Conclusions 

A central composite experimental design was used to evaluate the effects three 

experimental factors (Xo, f and Q) have on the quality of plug flow achieved during 

continuous operation of a ‘standard’ OBR design by analysing RTD profiles. The 
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tanks-in-series model was shown to be a good representation of the flow conditions 

in the OBR, especially for relatively high Nt values (Nt>15) where R2>95%. At 

relatively low Nt values (Nt<15), the model could lose some accuracy with the poorest 

fit occurring for Nt=12 (R2=85.4%). Mass balances demonstrated that >95% of tracer 

material introduced passed through the reactor. The level of plug flow was quantified 

by comparison to the TiS model to give the response for each run (Nt). The Nt values 

were used to build a second order polynomial model which was shown to fit the 

experimental results well (R2=92.1%). This fit was improved by removal of the 

outliers (R2=97.3%). The optimisation tool in Minitab (Minitab, 2007) selected a Ψ 

(=1.9) to maximise plug flow in the range previously identified by Stonestreet and van 

der Veeken (1999) (1.8<Ψ<2.0). This suggests plug flow can be maximised using the 

method described in this study, which is simple and robust and could speed up 

successful design of continuous processes under plug flow conditions based on OBR 

technology. 

3.7 Research implications 

The following research project focused on enzymatic saccharification and used the 

same OBR as described above. One of the initial aims was to conduct 

saccharification in the OBR under plug flow conditions and compare to a traditional 

STR. However, as has been proven, an OBR 173 m in length would be required to 

achieve plug flow with the present design. The current OBR is ~1 m in length and 

therefore plug flow was not achievable over the 12-24 hour residence times required. 

Batch experiments were therefore required for the following study which aimed to 

evaluate the energy requirements to maximise glucose production from the 

enzymatic saccharification of cellulose.  
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Chapter 4: Enzymatic saccharification 

‘Reduced power consumption compared to a traditional stirred tank reactor (STR) for 

enzymatic saccharification of alpha-cellulose using oscillatory baffled reactor (OBR) 

technology.’ 

4.1 Abstract 

Enzymatic saccharification of pure α-cellulose was conducted in oscillatory baffled 

(OBR) and stirred tank (STR) reactors over a range of mixing intensities requiring 

power densities (P/V) from 0-250 Watts per cubic metre (W/m3). Both reactor designs 

produced similar saccharification conversion rates at zero mixing. Conversion 

increased with increasing mixing intensity. The maximum conversion rate occurred at 

an oscillatory Reynolds number (Reo) of 600 in the OBR and at an impeller speed of 

185-350 rpm in the STR. The OBR was able to achieve a maximum conversion rate 

at a much lower power density (2.36 W/m3) than the STR (37.2-250 W/m3). The OBR 

demonstrated a 94-99% decrease in the required power density to achieve maximum 

conversion rates and showed a 12% increase in glucose production after 24 hours at 

2.36 W/m3. 

4.2 Introduction 

The utilisation of lignocellulosic materials to aid replacing fossil based fuels and 

chemicals has received much attention over the past decade (Lynd and Wang, 2003, 

Sanders et al., 2012). Lignocellulosic materials are ubiquitous in nature with 

cellulose, the dominant structural polysaccharide in terrestrial plants, being the most 

abundant carbohydrate on Earth. It is possible to hydrolyse cellulose using chemical 

or biological methods, liberating the glucose monomers constituting its structure 

(saccharification), before fermenting into various useful chemicals including ethanol 

and lactic acid (Sarkar et al., 2012, Abdel-Rahman et al., 2011). Utilisation of crop 

wastes, including straws and stover, avoids conflict between human food and 

industrial use (Boddiger, 2007). An estimated worldwide production of lignocellulosic 

biomass from seven major crops including rice straw and corn stover is 1.5 Pg per 

year (Kim and Dale, 2004) offering great potential. However, there are numerous 

problems surrounding the creation of industrial processes using lignocellulosics that 

can economically compete with current chemical manufacturing routes based on 

fossil sources.  
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Plant materials have evolved support and protective properties in the form of 

lignocellulose, which comprises a mixture of cellulose, hemicellulose and lignin. The 

ratio of these three components varies with, for example, wheat straw containing 35-

45% cellulose, 20-30% hemicellulose and 8-15% lignin (Saha and Cotta, 2006). In 

order to maximise chemical production from lignocellulosics, a pre-treatment step is 

required to delignify the material, exposing cellulose content making it more 

accessible for conversion into fermentable sugars. Detailed reviews are available 

describing current pre-treatment protocols (Min et al., 2011, Agbor et al., 2011, Li et 

al., 2010).  

Enzymatic saccharification requires a cellulase enzyme system to convert cellulose 

to glucose. During this bioprocess the reaction rate diminishes with time due to 

cellulase inhibition and deactivation (Zhang et al., 2010). Reduced enzyme activity 

can be caused by a variety of process factors: shear inactivation (Kaya et al., 1996, 

Reese and Ryu, 1980, Ganesh et al., 2000, Gunjikar et al., 2001), sugar inhibition 

(Xiao et al., 2004, Takagi, 1984, Ye et al., 2012), ion strength (Kumakura, 1996), 

temperature (Demerdash and Attia, 1992) and formation of inert enzyme-substrate 

complexes. Cellulose properties change over time because easily hydrolysable 

amorphous regions are digested leaving recalcitrant crystalline regions (Gan et al., 

2003). The combination of these factors results in a typical saccharification curve 

consisting of an initial rapid conversion rate lasting approximately 12 hours followed 

by an almost stationary phase lasting 2-3 days.  

The aims of this study were to compare two reactor designs, the oscillatory baffled 

reactor (OBR) and conventional stirred tank reactor (STR), to identify any differences 

in the required power density for mixing and overall conversion rates of pure α-

cellulose to glucose.  

The OBR is a novel production vessel possessing several key advantages over 

conventional reactors, including uniform mixing at low shear (Ni et al., 2000); 

enhanced mass transfer (Ni et al., 1995, Hewgill et al., 1993); scalability using linear 

relationships (Smith, 1999, Smith and Mackley, 2006); and the possibility of 

continuous process development under plug flow conditions (Abbott et al., 2013). A 

‘standard’ OBR consists of a tube, generally 10-150 mm internal diameter (D), 

containing equally spaced orifice plate baffles. A piston located at one end oscillates 

back and forth generating oscillatory flow required for vortex formation and mixing. A 
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detailed review of the operation and advantages associated with OBR technology in 

relation to bioprocessing is available (Abbott et al., 2013). A schematic describing the 

OBR used in this study is shown in Figure 4.1 and is consistent with the ‘standard’ 

design (Brunold et al., 1989, Stonestreet and Harvey, 2002). 

 

Figure 4.1: Schematic describing the OBR geometry used for this study.  

 

Ikwebe and Harvey (2011) demonstrated that an OBR produced a 7% increase in 

glucose production after 48 hours compared to a shake flask during enzymatic 

saccharification. This increase in glucose production was attributed to a ‘better mixed 

hydrolysis environment’ (Ikwebe and Harvey, 2011). In other words uniform and 

effective mixing under low shear allowed cellulase enzymes improved access to their 

substrates, increasing the conversion rate and, therefore, glucose production. This 

study aimed to build on that research by making a direct comparison between OBRs 

and STRs for enzymatic conversion of cellulose to glucose. The low shear 

environment and efficient mixing in the OBR suggest that this reactor design is 

suitable for saccharification, as it involves shear-sensitive components, where energy 

usage and other process economic factors are critical. 

4.3 Materials and methods 

4.3.1 Reactor designs 

A horizontal 700 mL batch OBR was constructed of two borosilicate glass columns 

(QVF, DPS25/500), coupled by stainless steel collars, containing  two stainless steel 

shafts connecting equally spaced baffles (Figure 4.1). An oscillating piston was used 

to impose sinusoidal wave form oscillations with set frequency (0-3 Hz) and 

amplitude (0-6 mm) ranges. 
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The oscillatory Reynolds number (Reo) provides an indication of mixing intensity in an 

OBR and is precisely controlled by the frequency (f) and amplitude (Xo) of oscillation 

(equation 4.1). 

Reo = 
ρ2πfXoD

µ
                                                Eq. 4.1 

Where, ρ is the fluid density (kg/m3), f and Xo the frequency (Hz) and amplitude (m) of 

oscillation, respectively, D the OBR diameter (m) and μ the dynamic fluid viscosity 

(Pa.s). 

Temperature and pH were measured at three locations in the OBR using probes 

(Mettler Toledo, InPro 3250) inserted through the stainless steel collars and 

connected to digital displays (Mettler Toledo, M300). Temperature was controlled by 

a water bath (Huber) connected to glass jackets surrounding both columns. The 

apparatus used in this study is shown diagrammatically in Figure 4.2. 

 

 
Figure 4.2: The OBR used during this study. 1, 2 and 3 are pH and temperature probes; F the fill port; 
S the sample port; and in / out the water jacket inlet and outlet, respectively. The OBR exit is open 
ended and raised above the main reactor body to prevent draining of contents during batch operation.  

 

Three 1.6 L Univessel® double jacket STRs (working volumes of 0.4-1.0 L) 

connected to a Sartorius Biostat Q plus control system and operated in parallel at 

700 mL were used in this study. A water bath (Frigomix® 1000) provided temperature 

control, and mixing was achieved using one 6-bladed impeller placed approximately 

25 mm from the base with a power number (Po) of 4.6. Figure 4.3 shows a diagram of 

the STRs used for the study with important dimensions labelled. 
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Figure 4.3: The STRs used during this study. M is the impeller motor; 1 the temperature probe; and in / 
out the water jacket inlet and outlet, respectively. 

4.3.2 Enzyme system 

Commercially available Celluclast 1.5 L (Sigma, C2730), containing exo- and endo- 

glucanases (cellulase) from Trichoderma reesei, and Novozyme 188 (Sigma, C6105), 

containing β-glucosidase (cellobiase) from Aspergillus niger, were used. Cellulase 

activity was measured in terms of filter paper units (FPU) defined as the amount of 

enzyme which produces 2.0 mg of glucose from 50 mg of Whatman No.1 filter paper 

in 1 h (Ghose, 1987). 50 mM citrate buffer was used to maintain pH at 4.8, formed by 

adding citric acid monohydrate (Sigma, C1909) and sodium hydroxide (Sigma, 

221465) to de-ionised (DI) water according to the standard protocol (Adney and 

Baker, 1996). A reaction mixture containing 0.5 mL of diluted enzyme solution, 1.0 

mL of 50 mM citrate buffer and 50 mg of Whatman No. 1 filter paper was incubated 

at 50oC for 1 h. Cellobiase activity was measured in terms of cellobiase units (CBU) 

based on the international unit (IU) of enzyme activity. A reaction mixture containing 

1.0 mL of diluted enzyme solution (in 50 mM citrate buffer) and 1.0 mL of 15 mM 

cellobiose (Sigma, 22150) was incubated at 50oC for 30 minutes. Glucose 

concentrations were measured using a biochemical analyser (YSI Life Sciences, 

2700 SELECTTM) before calculating cellulase (FPU/mL) and cellobiase (CBU/mL) 

activities according to the standard protocols (Adney and Baker, 1996, Ghose, 1987). 

Activities were measured as 40 FPU/mL and 19 CBU/mL for Celluclast 1.5 L and 712 

CBU/mL for Novozyme 188. 
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4.3.3 Conditions and procedure 

Enzymatic saccharifications were conducted using 5.2% (w/v) α-cellulose (Sigma, 

100953734) and 9.7 FPU/g α-cellulose supplemented with an excess of β-

glucosidase at 14.6 CBU/g α-cellulose. Microbial growth was inhibited by adding the 

appropriate amount of 2% sodium azide according to the standard protocol (Selig et 

al., 2008). All runs were conducted at 50oC and pH 4.8 with 1 mL samples taken at 0, 

0.5, 1, 3, 6 and 24 hours. Mixing intensity was increased briefly before taking each 

sample to ensure homogenisation of reactor contents and provide the most 

representative sample. Each sample was centrifuged at 16,000 g for 2 minutes 

before removal of 250 μL supernatant stored at 4oC for later glucose analysis. 

Tap water was flushed through the OBR before each run to clean internal surfaces 

and remove any debris. High flow rates prevented air pocket formation at inter-baffle 

zones that could dampen oscillations. To fill the OBR α-cellulose, sodium azide and 

50 mM citrate buffer, previously equilibrated to 50oC, were homogenised in a 1 L 

measuring cylinder using a magnetic stirrer (ρ = 1000 kg/m3 and μ = 0.001 Pa.s 

assumed for calculations). The appropriate amounts of Celluclast 1.5 L and 

Novozyme 188 were added before immediately filling the reactor with a peristaltic 

pump (Cole Palmer, Model 77200-62) through Norprene® tubing (Masterflex, size 

36) before setting the oscillating conditions as described in Table 4.1. 

Table 4.1: Mixing intensities and corresponding power densities (P/V) 
for the OBR (Reo) and STR (Re) (numbers in brackets denote impeller speed (rpm).  

Run  Reactor Mixing P/V (W/m
3
) 

1 

 
OBR 

 

0 0.00 

2 300 0.30 

3 400 0.71 

4 600 2.36 

5 1500 37.2 

6 2827 250 

7 

 
STR 

 

0 (0) 0.00 

8 1250 (37) 0.30 

9 1690 (50) 0.71 

10 2530 (75) 2.36 

11 6240 (185) 37.2 

12 11800 (350) 250 
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The volume of each STR was maintained at 700 mL consistent with the OBR. 

Appropriate amounts of 50 mM citrate buffer, α-cellulose and sodium azide were 

added to each STR and homogenized to 50oC. The impeller speed was set to 200 

rpm before addition of Celluclast 1.5 L and Novozyme 188 to ensure a homogenous 

starting mixture. The impeller speed was then adjusted to give the desired mixing 

intensity as described in Table 4.1. Three runs were conducted in parallel (runs 7, 8 

and 9 followed by runs 10, 11 and 12). 

4.3.4 Calculations 

The power density (P/V) was used to estimate power required to achieve mixing 

intensities outlined in Table 4.1 and is expressed in terms of power per unit volume in 

Watts per cubic metre (W/m3). The power consumption for an unaerated reaction 

mixture in an STR is defined by equation 4.2 (Holland and Chapman, 1966).  

P

V
 = 

PoρN
3
Ds

5

1

4
.πDv

2
Lh

                                     Eq. 4.2 

Where Po is the power number of the impeller (4.6), N the impeller rotational speed 

(rps), Ds the impeller diameter (m), Dv the vessel diameter (m) and Lh the height of 

liquid in the reactor (m). 

The power density for a ‘standard’ OBR design (Brunold et al., 1989, Stonestreet and 

Harvey, 2002) can be estimated using equation 4.3 (Hewgill et al., 1993). 

P

V
 = 

2ρNB

3πCD
2

1-α
2

α
2 Xo

3
(2πf)

3
                                 Eq. 4.3 

Where NB is the number of baffles per unit length (m), CD the discharge coefficient 

and α the reactor to orifice area ratio. The value of CD was taken as 0.7, to be 

consistent with a previous study (Ni et al., 2000).  

Error bars represent the average error of +/- 2.5% present from the YSI biochemical 

analyser calculated using a range of standard glucose solutions from 0-25 g/L. 

4.4 Results and discussion 

4.4.1 OBR saccharifications  

Glucose concentration profiles for 6 runs conducted at different mixing intensities in 

the OBR are shown in Figure 4.4. 
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Figure 4.4: OBR saccharification runs showing glucose concentration over 24 hours. 

At low mixing intensities, up to Reo=400, no significant effect of mixing was observed 

i.e. the time profiles were indistinguishable from those at Reo=0. Vortex formation 

and propagation were not achieved at these mixing intensities. This resulted in 

sedimentation of cellulose particles on the OBR wall (due to the horizontal orientation 

of the reactor), presumably inhibiting some exposure of cellulose to the enzyme. 

The enzymatic conversion of cellulose to glucose still proceeded in low mixing 

conditions suggesting access to substrate was not completely prevented by reduced 

mixing intensity. Presumably the initial homogenisation spread enzyme proteins 

throughout the cellulose allowing local catalysis to occur. However, agitation has 

been shown to enhance adsorption of exo-glucanase on to cellulose increasing the 

conversion rate up to 500 rpm in an STR (Sakata et al., 1985). At low mixing 

intensities adsorption of exo-glucanase was reduced, slowing the conversion rate.   

The opportunity of moving and adhering to fresh cellulose was possibly reduced due 

to sedimentation of material. This could have led to local conversion of amorphous 

cellulose to glucose leaving more recalcitrant crystalline regions that slow the 

conversion rate. Amorphous (and crystalline) regions not initially in contact with 

enzyme proteins remained isolated due to lack of mixing and mass transfer resulting 

in reduced glucose production at low mixing intensities.  
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Cellulase enzymes are susceptible to product inhibition from cellobiose and glucose 

(Ye et al., 2012, Takagi, 1984, Xiao et al., 2004). At low mixing intensities the 

transport of glucose away from regions containing cellulose and enzymes was 

reduced, possibly leading to localised glucose build-up and subsequent product 

inhibition, slowing the conversion rate. This inhibitory effect coupled with reduced 

adsorption of exo-glucanase and the possible increase in crystallinity reduced 

conversion by 20% after 24 hours in runs 1-3 compared to those runs with sufficient 

mixing to prevent sedimentation. 

Conversion rate increased with increasing mixing intensity to achieve a maximum 

rate between 400 and 600 Reo. The mixing intensity was sufficient to prevent 

sedimentation of cellulose thereby removing glucose concentration gradients, to 

minimise effects of product inhibition, and enhance exo-glucanase adsorption. 

Presumably, enzymes were constantly moving throughout the reactor so came into 

contact with easily hydrolysable amorphous regions of cellulose resulting in 

increased conversion rates. Conversion began to slow after approximately 6 hours 

due to amorphous regions being converted to glucose leaving only more recalcitrant 

crystalline regions. At a mixing intensity of 600 Reo the conversion rate was no longer 

mass transfer limited so increasing the mixing intensity had no effect. A maximum 

conversion rate was achieved for 600 Reo with any increase in mixing intensity 

beyond this having no impact.  

4.4.2 STR saccharifications 

Glucose concentration profiles for 6 runs conducted at different mixing intensities in 

STRs (at comparable power densities to the OBR) are shown in Figure 4.5. 



66 
 

66 
 

 
Figure 4.5: STR saccharification runs showing glucose concentration over 24 hours. 

A similar trend to the OBR was seen. At lower mixing intensities the conversion rates 

were lower, but increase to a maximum with increasing mixing intensity. The product 

inhibition effect coupled with an increase in crystallinity caused by concentration 

gradients and minimal mass transfer could explain these lower conversion rates (see 

§4.4.1). The conversion rate only began to increase after a sufficient mixing intensity 

was reached to prevent sedimentation of material and enhance exo-glucanase 

adsorption. This began to occur at an impeller speed of 75 rpm, however a fully 

homogenous mixture did not appear to be achieved until 185 rpm (see Figure 4.7). At 

this mixing intensity the conversion rate was still below the maximum suggesting 

mass transfer was limiting at 185 rpm requiring an increase in mixing intensity to 

achieve maximum conversion rates. 

The highest conversion rate was seen at maximum mixing intensity suggesting shear 

was not inactivating enzyme proteins at any point during this study for runs 

conducted in STRs. Previous studies have identified the shear-sensitive nature of 

cellulase enzymes in STRs (Gunjikar et al., 2001, Ganesh et al., 2000). These 

studies show an impeller speed of 1000 rpm (approx. 2 kW/m3) is required to cause 

10% inactivation (Gunjikar et al., 2001) and 500 rpm (approx. 600 W/m3) to cause 3% 

inactivation in 5 hours (Ganesh et al., 2000). These impeller speeds are substantially 
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higher than those used in this study and are not required to achieve maximum 

conversion rates. 

4.4.3 Comparison of designs 

A similar trend was seen in both reactor designs. Increased mixing had a positive 

effect on conversion rates. In the OBR the mixing intensity required to maximise 

cellulose conversion was seen at 2.36 W/m3. This should be compared to the STR, 

which exhibited maximum conversion at 250 W/m3. Without mixing similar conversion 

rates were produced in both the OBR and STR as shown in Figure 4.6 (green). This 

suggests conditions were similar in both reactor designs with subsequent runs 

differing in only the mixing mechanism and intensity. 

At 2.36 W/m3 the resultant Reo and impeller speed were 600 and 75 rpm, 

respectively. This power input was sufficient to produce maximum conversion in the 

OBR which was 12% higher after 24 hours and 25% higher after 6 hours than the 

STR. This result demonstrates the OBR is a more efficient mixing device able to 

prevent sedimentation of material with a much reduced power input. Photographs 

taken throughout the runs are presented in Figure 4.7 showing the extent of 

sedimentation for different power densities in both the OBR and STR. 

Figure 4.6: Comparison of glucose concentrations between OBR and STR designs over 24 hours for 
different mixing intensities requiring comparable power densities. Green = 0 W/m

3
, black = 2.36 W/m

3
, 

red = 250 W/m
3
. 
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Figure 4.7c shows the extent of sedimentation in the STR for a power density of 2.36 

W/m3, explaining the reduced conversion rate compared with the OBR, which was 

able to generate a fully homogenous mixture at this power density (3 in Figure 4.7). 

The maximum conversion rate in the OBR (2.36 W/m3) was most similar to that seen 

in the STR for a power density of 250 W/m3, although after 24 hours a power density 

of 37.2 W/m3 in the STR produced a similar glucose concentration (22.8 g/L) to the 

OBR at 2.36 W/m3 (22.7 g/L). This is a reduction of between 94-99% for the required 

power input in the OBR compared to the STR to achieve the maximum rate of 

cellulose conversion to glucose.  

 
Figure 4.7: Photographs taken during different saccharification runs in the OBR (left) and STR (right). 
1) and a) = 0.30 W/m

3
, 2) and b) = 0.71 W/m

3
, 3) and c) = 2.36 W/m

3
, d) = 37.2 W/m

3
.   

Figure 4.6 demonstrates that both reactor designs were capable of achieving similar 

conversion rates with optimal power input for mixing (2.36 W/m3 for the OBR and 250 

W/m3 for the STR). Once at this level, the rate was no longer mass transfer limited, 

so increasing the mixing intensity had no effect. The large difference in required 

power input to achieve maximum conversion suggests the OBR is more suitable for 

performing saccharification reactions where running costs are critical. It is probable 

that most processes involving cellulose saccharification will be large scale, 

particularly ethanol production (Humbird et al., 2011), where running costs tend to 

have more of an impact on the process economics.   
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4.5 Conclusions 

Enzymatic saccharification of pure α-cellulose was mass transfer limited in both OBR 

and STR designs with no or minimal mixing. Concentration gradients of glucose and 

enzymes presumably increased product inhibition and substrate crystallinity, 

reducing the overall rate compared to well-mixed conditions. The maximum 

conversion rate in the OBR was seen at a relatively low power density (2.36 W/m3). 

To achieve a similar conversion rate in the STR an impeller speed of 350 rpm (250 

W/m3) was required, although 185 rpm (37.2 W/m3) was sufficient to produce similar 

glucose concentrations after 24 hours. No evidence of shear inactivation was 

observed for STR runs due to a relatively low impeller speed compared to previous 

studies (Gunjikar et al., 2001, Ganesh et al., 2000). A comparison of the power 

density required to achieve maximum conversion rates shows a reduction of 94-99% 

in the OBR (2.36 W/m3) compared to the STR (37.2-250 W/m3).  

This study has shown that OBRs are suitable for performing enzymatic 

saccharification reactions in a power-efficient manner compared to conventional 

STRs. The development of continuous enzymatic saccharification using OBR 

technology could further enhance process economics. Results from this study 

provide essential data on power input to allow an economic assessment of industrial 

scale enzymatic saccharification processes based on both OBR (batch and 

continuous) and STR (batch) designs.  

Scale up of STR technology can be difficult with numerous strategies available, for 

example, by maintaining geometric similarity and constant power density (Junker, 

2004). OBR technology, in theory, can be easily scaled using a combination of linear 

relationships and multi-orifice baffles (Smith and Mackley, 2006) potentially enabling 

lab scale results to be transferred to industrial processes. More research needs to be 

done to prove this in practice however; this possible benefit offers great potential 

over the conventional STR.   

4.6 Economic assessment  

The study has proven that in theory OBR technology can be operated with 

significantly less power requirements for mixing compared to STR technology for 

enzymatic saccharification. However a commercial process at industrial scale which 

converts biomass to platform chemicals consists of numerous unit operations other 
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than saccharification. A simple economic assessment was required to evaluate the 

commercial benefits that would be realised from the use of OBR technology as the 

saccharification reactor. The following assessment was developed based on a 

commercial process for conversion of lignocellulosic biomass to ethanol produced by 

the National Renewable Energy Laboratory (NREL) (Humbird et al., 2011). Only brief 

details are provided as the report available in the literature provides extensive 

information. It must be noted that the comparative values are important and not the 

absolute values which will change significantly based on the stated assumptions.     

4.6.1 Commercial enzymatic saccharification 

Conversion of corn stover to ethanol requires a facility with the unit operations 

outlined in Figure 4.8. Corn stover is delivered to the facility where it is stored before 

entering the pretreatment stage. Sulphuric acid pretreatment has been selected to 

convert the xylan component to its constituent 5-carbon monomer units (xylose) as 

well as delignify and expose the material. The addition of ammonia and water are 

required after pretreatment to raise the pH to ~4.8 before enzymatic saccharification 

begins. A genetically modified bacterium (Zymomonas mobilis) is added to the 

mixture after saccharification to ferment the sugar monomers to ethanol which is then 

distilled and stored for sale and/or use. Solids and liquids produced through the 

distillation process are used to generate electricity through a turbogenerator and for 

process water after treatment, respectively. Total processing time is 160 hours which 

consists of feed handling (36 hours), pretreatment (2 hours), saccharification (84 

hours), fermentation (36 hours) and distillation (2 hours).       
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Figure 4.8: Unit operations required for a commercial process to convert corn stover to ethanol. 
Capital costs (solid), operating costs (dashed, italics) and revenue (dashed) are shown.    
 

Table 4.2 shows the assumed composition of corn stover entering the facility, and the 

reactions and their assumed conversions for the pretreatment and saccharification 

stages. 

Capital costs were taken directly from the NREL report (Humbird et al., 2011) and the 

operational costs used were as follows: corn stover £38.36 per ton, sulphuric acid 

£35.66 per ton, ammonia £403.70 per ton, process water £1.73 per ton, cellulase 

system £2.78 per kg protein and electricity £85.58 per MWh. It was assumed that 

saccharification reactors based on OBR and STR technologies would cost the same 

at £10.4 M; that the OBR could process 30% solids which is the concentration used 

by NREL; and the energy requirements for mixing were constant upon scale up. The 

model also assumed treatment of 2000 ton corn stover per day. 
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Table 4.2: Corn stover composition and the reactions and their assumed conversions for the 
pretreatment and saccharification stages. 

Corn stover Pretreatment 

Glucan 35.05% Reaction Conversion (%) 

Xylan 19.53% (Glucan)n + n H2O -˃ n Glucose 9.9 

Lignin 15.76% 
(Glucan)n + n H2O -˃ n Glucose 
Oligomer 

0.3 

Ash 4.93% (Glucan)n + n HMF -˃ 2n H2O 0.3 

Acetate 1.81% Sucrose -˃ HMF + Glucose + 2 H2O 100.0 

Protein 3.10% (Xylan)n + n H2O -˃ n Xylose 90.0 

Extractives 14.65% (Xylan)n + m H2O -˃ m Xylose Oligomer 2.4 

Arabinan 2.38% (Xylan)n  -˃ n Furfural + 2n H2O 5.0 

Galactan 1.43% Acetate -˃ Acetic Acid 100.0 

Mannan 0.60% (Lignin)n -˃ n Soluble Lignin 5.0 

Sucrose 0.77% Saccharification 

Glucose and xylose 
conversion to 
ethanol during 
fermentation was 
assumed to be 95 
and 85%, 
respectively.  

Reaction Conversion (%) 

(Glucan)n -˃ n Glucose Oligomer  4.0 

(Glucan)n +  1/2n H2O -˃ 1/2n 
Cellobiose 

1.2 

(Glucan)n +  n H2O -˃ n Glucose 90.0 

Cellobiose + H2O -˃ 2 Glucose 100.0 

4.6.2 Results 

Reactions and their assumed conversions defined in Table 4.2 were used to 

determine the amount of material after each stage of the process. Figure 4.9 shows 

the amounts of glucan (cellulose), xylan, glucose, xylose, ethanol and CO2 present in 

the raw corn stover and after pretreatment, saccharification and fermentation. Other 

components were omitted due their concentrations being negligible. Figure 4.9 

shows that pretreatment converts the majority of xylan to xylose; saccharification, the 

majority of glucan to glucose; and fermentation converts these sugars to ethanol and 

CO2.    

The profit generated per year based on the operational costs and revenue generated 

was calculated for both scenarios. A P/V of 2.36 W/m3 is required to maximise 

glucose production in OBRs and 40-250 W/m3 in STRs. This equates to a profit for 

the process based on OBR technology of ~£61 M per year compared to that based 

on STR technology of £54-60 M per year. The process based on OBR technology 

could therefore potentially increase profits by 2-14% compared to processes based 

on STR technology. However, this is a very simplistic assessment and makes various 

assumptions that significantly increase the risk of developing saccharification 

processes based on OBRs. These assumptions are 1) the capital cost is equal to that 
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of STRs; 2) OBRs could process 30% solids; and 3) power requirements remain 

constant upon scale up.  

Figure 4.9: The mass of material at each stage of the process. 

This assessment has highlighted that power requirements for mixing are significantly 

less than other operational and capital costs associated with a commercial process at 

industrial scale for the conversion of biomass to ethanol. The 94-99% reduction in 

power in OBRs compared to STRs for saccharification therefore results in only 

marginal improvements in profit if the assumptions are correct. The risks of 

developing OBR technology outweigh the possible benefits making 

commercialisation of OBRs for saccharification less attractive. These results 

motivated a change in the research direction to another bioprocess which could be 

commercially more attractive.  

4.6.3 Bioprocess selection 

The following two bioprocesses were selected for possible development using OBR 

technology based on their commercial and scientific potential. They were presented 

to managers at CPI to help with their decision making for future research. 

0

100

200

300

400

500

600

700

800

Glucan
(cellulose)

Xylan Glucose Xylose Ethanol CO2

m
e

tr
ic

 t
o

n
 p

e
r 

d
a

y
 

Corn stover After pretreatment After saccharification After fermentation



74 
 

74 
 

4.6.4 Heterologous protein production using Pichia pastoris 

The methylotrophic yeast P. pastoris has been developed into a successful 

expression system for heterologous protein production over the last two decades. Its 

increased popularity is due to several factors: ease of genetic manipulation; similarity 

to Saccharomyces cerevisiae, the most well characterised experimental system in 

biology; its ability to produce foreign proteins at high levels both intra and 

extracellularly; presence of post translational modification machinery; and its 

commercial availability (Cereghino and Cregg, 2000). The major advantage over S. 

cerevisiae is Pichia’s preference for respiratory growth, removing risks of ethanol 

production that can ‘pickle’ the culture.   

Hundreds of heterologous proteins have been successfully produced using P. 

pastoris ranging from viral to human. 5% of expression systems requested by Lonza 

customers were P. pastoris with a total of 10% requesting Pichia sp. (Meyer et al., 

2008b). The therapeutic nature of heterologous proteins make them very high value 

products, and developing a continuous bioprocess using OBR technology could 

increase production efficiency and allow improved process monitoring, in line with 

new quality by design (QbD) initiatives.  

The Pichia fermentation process guidelines, supplied by Invitrogen and available 

online (Invitrogen Co., 2002), provide operational and equipment information required 

for successful heterologous protein production. There are three phases for 

production of a protein using a transgene linked to the AOX1 promoter (transcribing 

alcohol oxidase required for the first step in methanol metabolism).  

1) Glycerol batch: starting at 40 g/L glycerol for 18-24 hours producing 90-150 

g/L wet cells. 

2) Glycerol fed-batch: 50% w/v glycerol fed over 4 hours producing 180-220 g/L 

wet cells.  

3) Methanol fed-batch: 100% methanol at 3.6 mL/hr/L fermentation volume 

stimulating protein production and producing 350-450 g/L wet cells.  

The protocol emphasises the importance of maintaining a dissolved oxygen 

concentration above 20%. This is achieved by supplementing with pure oxygen at 

0.1-0.3 vvm or cutting the glycerol/methanol feed to slow cell growth, reducing 

oxygen demand. A method for retro-fitting a standard STR to avoid pure oxygen 
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supplementation in an attempt to overcome limitation to productivity has been 

described (Jenzsch et al., 2004), demonstrating that current reactors are often 

incapable of reaching required oxygen transfer rates (OTR) for this bioprocess. 

OBRs have been reported to have a 6-fold increase in oxygen transfer (kLa) into 

water (Hewgill et al., 1993) and a 75% increase into a yeast culture of S. cerevisiae 

(Ni et al., 1995). These studies highlight the suitability for using OBRs to culture P. 

pastoris as oxygen limitation may be overcome removing the need for a pure oxygen 

supply. The increased OTR could also allow increased growth rates, reducing the 

overall processing time while maintaining productivity. A further advantage is that 

plug flow conditions are achievable during continuous operation. It would be possible 

to select the optimal time to start methanol feeding without inducing protein 

production upstream of the injection site. This is not possible using an STR because 

methanol will rapidly mix throughout the entire reactor volume requiring the start of 

another batch.  

4.6.5 Astaxanthin production using Haematococcus pluvialis 

Astaxanthin is a keto-carotenoid used mainly in aquaculture but has an increasing 

demand for use in dietary supplements (Guerin et al., 2003). This red pigment is 

responsible for the colouration of salmon and certain crustaceans so is essential for 

farming of these organisms. Recent studies have shown that astaxanthin could have 

many health promoting effects in the prevention and treatment of diseases including 

cancers, chronic inflammatory diseases, diabetes and cardio-vascular diseases 

(Yuan et al., 2011).  

The market is dominated by synthetic astaxanthin with 95% being derived from 

chemical sources (Lorenz and Cysewski, 2000). Growing demand for natural sources 

of this pigment has stimulated production using H. pluvialis which can contain up to 

3% dry weight astaxanthin (Lorenz and Cysewski, 2000). Four global leaders 

dominate the market for natural astaxanthin production from H. pluvialis: Valensa 

(USA), Algatechnologies (Israel), Cyanotech (Hawaii) and Astareal (Japan, 

Scandanavia) (Heller, 2009). The value of astaxanthin has been estimated to be 

$2500 per kg but could increase for biological sources which, unlike chemical routes, 

do not contain a mix of isomers (Del Campo et al., 2007). The mixture of isomers 
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prevents synthetic astaxanthin being accepted for human consumption, except 

indirectly through aquaculture.  

Production of natural astaxanthin by H. pluvialis occurs in two stages:  

1) During exponential growth, green vegetative cells are produced until a 

relatively high cell density is reached. 

2) The cells are subjected to stressful conditions e.g. increased light intensity or 

salt concentrations stimulating them to encyst and produce astaxanthin.    

Figure 4.10 shows the contrast between cells during phase 1 and 2. During phase 1, 

the cells exist in biflagellate form with the polysaccharide link between the flagella 

and cell wall acting as a fragility zone (Gudin and Chaumont, 1991). If this area is 

damaged, the cells encyst, entering stationary growth resulting in lower cell 

concentrations and, therefore lower astaxanthin production. A semi-continuous, 2 

phase technique achieved maximum astaxanthin concentrations at higher initial cell 

concentrations (Fabregas et al., 2001). Reaching high cell concentrations in phase 1 

produces enhanced astaxanthin production. Cell fragility in phase 1 requires low 

shear environments for maximum growth complemented with good mixing to achieve 

sufficient overall illumination which is difficult to achieve in conventional tubular 

photobioreactors (PBRs) which require turbulent flow for mixing. The alternative 

solution is to use open raceways. 

This bioprocess has been identified as a candidate for OBRs because it contains a 

stage requiring low shear rates with good mixing. Conventional tubular PBRs require 

turbulent flow conditions to overcome light limitation which can result in reduced 

growth caused by high shear rates. Open ponds are used by some companies 

culturing H. pluvialis but these are difficult to monitor, control and are prone to 

contamination which is undesirable for products aimed at human consumption. The 

OBR could offer an alternative platform for H. pluvialis culturing under continuous 

and controlled conditions with improvement in astaxanthin production.  
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Figure 4.10: a) Vegetative, actively growing H. pluvialis cells and b) H. pluvialis haematocysts that 
have accumulated astaxanthin as a result of nutrient starvation and sunlight. 400 x magnification. 

There is evidence in the literature to suggest OBRs could intensify microalgae 

cultures. Static mixers have been used, similar to baffles in an OBR, to enhance 

mass transfer characteristics in tubular PBRs (Ugwu et al., 2002). The results 

indicate higher kLa values and increased biomass production from Chlorella 

sorokinina. Although similar to an OBR, this design still relies on turbulent flow for 

mixing. OBRs are capable of achieving good mass transfer, independent of net flow, 

at low shear so appear to be an ideal candidate for developing continuous 

microalgae bioprocesses, especially shear sensitive ones such as H. pluvialis. 

4.6.6 Summary 

Both P. pastoris and H. pluvialis are viable candidates for study using OBRs. These 

bioprocesses have commercial applications already in use and the OBR could 

provide a platform for developing continuous processes that increase production 

rates and allow better process control. Microalgae in particular seem promising as no 

published literature currently exists whereas several studies are reported on the 

effects of yeast culture in OBRs (Ni et al., 1995, Reis et al., 2006b). There is currently 

an upward trend into research using microalgae for a range of applications from low 

value products such as biodiesel to therapeutic compounds. Table 4.3 summarises 

the advantages and disadvantages of each process. 
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Table 4.3: Advantages and disadvantages of proposed bioprocesses in an OBR. 

  Advantages Disadvantages Possible gains due to OBR 

Pichia pastoris 

Relatively easy 
protocol Other methods 

available to 
overcome 

oxygen demand 

Better oxygen transfer rates 

Widely used 
expression system 

Removes need for pure 
oxygen 

Used for high value 
products 

Yeast studies 
exist in literature 

Improved growth rates 

Haematococcus 
pluvialis 

Already commercially 
used 

Light adds 
complexity to 

process 

Low shear 

Possibility of 
applying to 

microalgae in 
general  

Improved illumination due to 
efficient mixing 

Market growth for 
astaxanthin 

Likely to foul 
reactor wall 

Increased growth in stage 1 

No currently 
published data for 

microalgae in OBRs 

Increased astaxanthin 
production 

4.6.7 Conclusions 

The above-mentioned bioprocesses were evaluated by managers at CPI. Their 

decision was to focus on the development of microalgae cultures using OBR 

technology. Modifications to the OBR were required to convert it to a photobioreactor 

(PBR) and Chlamydomonas reinhardtii was selected as the organism due to its 

fragility and potential for biopharmaceutical production.   
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Chapter 5: Microalgae culture 

‘Liquid culture of microalgae in a photobioreactor (PBR) based on oscillatory baffled 

reactor (OBR) technology – A feasibility study.’ 

5.1 Abstract 

Chlamydomonas reinhardtii (CCAP 11/32C) cells were grown in liquid culture under 

photoautotrophic conditions using a photobioreactor (PBR) based on oscillatory 

baffled reactor (OBR) technology. A flotation effect was observed when using a 

porous gas sparger which resulted in accumulation of microalgae at the top of the 

column. Linear growth was achieved with a different sparger, designed to produce 

larger, faster rising gas bubbles. Changes in the mixing intensity had no effect on the 

maximum growth rate of 0.130 OD750/day (+/- 0.010) achieved which was 95% higher 

than that achieved in T-flasks of 0.067 OD750/day (+/- 0.011) under comparable 

conditions. The increase in growth rate achieved in the OBR was probably a result of 

increased gas transfer, and exponential growth was not achieved probably due to the 

relatively low light intensity used of 78 μmol/m2s (+/- 20). The results demonstrate the 

feasibility of OBR technology for use as PBRs with the potential for the dual culture 

and harvest of microalgal biomass through manipulation of the bubble diameter. This 

could greatly improve bioprocess economics for microalgae culture.         

5.2 Introduction 

Microalgae form a diverse group of prokaryotic and eukaryotic photosynthetic 

organisms (Li et al., 2008b) that can be photosynthetically more efficient than land 

plants (Chisti, 2010). The simple structure of microalgae enables rapid 

photoautotrophic growth in either open or closed systems from basic components, 

namely carbon dioxide (CO2), light, water and trace elements (Pragya et al., 2013). 

Great potential exists to develop bioprocesses based on microalgae that require low 

cost raw materials and would reduce dependency on fossil based resources. These 

potential bioprocesses could serve as production systems for a variety of low to high 

value, sustainable products that include biomass (Sialve et al., 2009), biofuels 

(Brennan and Owende, 2010, Pittman et al., 2011), pigments, such as astaxanthin 

(Phan et al., 2011b), and therapeutic proteins (Mayfield et al., 2007). However, there 

are several barriers to the development of economic bioprocesses for production of 

sustainable products based on microalgae. These include light penetration (Lee, 
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1999), oxygen removal (Richmond et al., 1993), CO2 addition (Eriksen, 2008), 

contamination (Chen et al., 2011) and harvesting (Coward et al., 2013).  

There is an exponential decrease in light penetration associated with increased 

microalgae cell concentrations (Lee, 1999). The culture depth at which light intensity 

becomes too low to support net photosynthesis is referred to as the irradiance 

compensation point (Ic) and differs for each species of microalgae (Nag-Jong et al., 

2002, Sorokin and Krauss, 1958). The Ic is reached at relatively low depths (<100 

mm) for microalgae cultures due to the efficiency of light absorbing pigments (Nag-

Jong et al., 2002). This prevents high cell densities from being obtained for deep 

cultures where long light path lengths are present. Low cell concentrations require 

extremely large volumes to be de-watered to obtain relatively low quantities of 

product. For example, lipid concentrations of between 0.3 to 5 g/L are typical for 

biodiesel production (Li et al., 2008a, Wang et al., 2008) even though cells contain 50 

to 70% lipid per dry weight (Chisti, 2007).   

Photosynthesis is the process by which light energy is used to fix CO2 into 

carbohydrate molecules. The principal carboxylating enzyme in this process is 

ribulose-1,5-bisphoshate carboxylase (Rubisco) which can also utilise oxygen (O2) 

for photorespiration at high O2 concentrations. It was reported that microalgae growth 

could be severely inhibited by accumulation of photosynthetically generated O2, 

especially in closed systems (Weissman et al., 1988). Sufficient mixing to promote 

turbulence and/or a dedicated gas exchange unit is required in microalgae cultivation 

systems to ensure net photosynthesis and remove inhibitory effects from O2 build-up 

(Wang et al., 2012). 

Cultivation of microalgae currently occurs in either open or closed systems. An open 

system typically consists of a pond or raceway with a paddle wheel to provide some 

agitation (da Rosa et al., 2011). Most industrial microalgae cultivation, for example 

astaxanthin production in Hawaii, is currently based on open systems due to their low 

capital and operational costs (Milledge, 2011). However, an open system can only 

sustain low cell concentrations because growth is limited to the surface where 

photosynthesis is not light limited. Furthermore, little control is provided over species 

population or general contamination (Wang et al., 2012). In comparison, closed 

systems enable greater process control which includes temperature, mass transfer, 
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pH and microorganism population. Closed systems are therefore able to generate 

higher cell concentrations but suffer from increased capital costs (Wang et al., 2012).   

Regulatory requirements must be considered for any industrial production system, 

especially those products designed for human consumption such as therapeutics 

(Manuell et al., 2007) and nutraceuticals (Bishop and Zubeck, 2012). In the case of 

therapeutic protein production in microalgae, use of genetically modified organisms 

(GMOs) is unavoidable. The European Parliament has issued several directives 

associated with the use of GMOs, notably two concerned with their contained use 

(Directive 2009/41/EC, 2009) and controlled release (Directive 2001/18/EC, 2001). 

Manufacture of active pharmaceutical ingredients (APIs), such as therapeutic 

proteins, must comply with good manufacturing practice (GMP) guidelines. These 

guidelines include stringent process controls defined by ‘…process parameters that 

could affect the critical quality attributes of the API’ (CPMP/ICH/4106/00, 2000). The 

use of closed systems would almost certainly be required to comply with the 

regulations surrounding use of GMOs and the guidelines for manufacture of APIs. 

Photobioreactors (PBRs) are closed systems for microalgae cultivation and there are 

currently three main design groups available (Carvalho et al., 2011). These designs 

are tubular (Molina et al., 2001), flat panel (Issarapayup et al., 2009) or fermenter-

type (Carvalho et al., 2006). Tubular and flat-panel PBRs are designed for the 

efficient harvest of sunlight and are therefore based on the principle of high area to 

volume ratios. Fermenter-type PBRs require artificial illumination so are less popular 

due to additional power requirements (Carvalho et al., 2011). The use of tubular or 

flat panel PBRs for the development of bioprocesses based on microalgae 

cultivation, especially therapeutic protein production, has the following advantages: 

1) Good control of process parameters which include temperature, pH, mixing, 

and mass transfer. This enables higher cell concentrations to be obtained 

thereby reducing harvesting requirements.  

2) The use of a closed system reduces contamination risk and greatly improves 

process control. This allows compliance with the necessary regulations and 

guidelines associated with GMO use and API manufacture.    

3) A high area to volume ratio is conductive to the efficient harvest of sunlight. 

This can reduce power requirements associated with artificial illumination.        
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Although microalgae can potentially be used to produce many products, one exiting 

area is protein production. Numerous studies have reported the successful use of the 

microalga Chlamydomonas reinhardtii for production of therapeutic proteins (Mayfield 

et al., 2007, Muto et al., 2009, Rosales-Mendoza et al., 2012, Tran et al., 2009, 

Mayfield, 2013). Of particular interest are synthetic fusion proteins that combine the 

characteristics from different molecules to provide an enhanced physiological 

response (Mayfield, 2013). For example, immunotoxins combine protein portions that 

deliver a toxin to cells displaying a specific antigen (Goldenberg and Sharkey, 2012). 

A major hurdle to production of these immunotoxins is high cost from both the lack of 

a suitable expression system and their production in cultivation systems (Mayfield, 

2013). Bacterial expression systems lack the protein chaperones responsible for the 

successful folding of complex proteins required for biological function (Baneyx, 

1999). Mammalian (Wurm, 2004) and yeast expression (Cereghino and Cregg, 2000) 

systems can produce functional and complex proteins however; these immunotoxins 

are lethal to eukaryotic cells (Tran et al., 2013). 

C. reinhardtii cells can be used to produce immunotoxins due to the presence of a 

large chloroplast (40-70% cell volume) that contains its own protein translation 

apparatus (Harris, 2008, Mayfield, 2013). Immunotoxins produced in the chloroplast 

are sequestered there and so are unable to target and inhibit the eukaryotic 

translational system which would otherwise cause cell death. An immunotoxin 

containing a single chain antibody (scFv) that targets the B-cell antigen CD22, fused 

to a ribosome inactivating protein (gelonin) was successfully expressed in C. 

reinhardtii, supporting its use as an expression system for immunotoxins (Tran et al., 

2013). The development of economically viable bioprocesses based on this 

technology requires a suitable cultivation system that is both cost effective and able 

to comply with the relevant regulations and guidelines. This will most likely require 

use of a PBR of either a tubular or flat-panel design to provide a closed system and 

the potential to operate with minimal cost. 

Of the three PBR designs discussed, tubular reactors have had the greatest success. 

The world’s largest, closed microalgae cultivation system consists of approx. 500 km 

of glass tubes with a total volume of 600 m3 (Schenk et al., 2008, Algomed, 2014). 

An important design consideration for PBRs is mixing which is necessary to prevent 

settlement of cells and fouling, ensure uniform exposure to light and nutrients, 
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prevent temperature gradients and enhance gas exchange (Wang et al., 2012). 

Mixing can be achieved by aeration, net flow, mechanical agitation or a combination 

of these, however; some microalgae cells are sensitive to hydrodynamic stress which 

leads to a reduction in growth and metabolic activity (Suh and Lee, 2003, Vunjak-

Novakovic et al., 2005). Cell fragility has been reported as a key problem for the 

mass cultivation of microalgae in closed systems (Gudin and Chaumont, 1991). In 

particular, the photosynthetic activity (PA) of C. reinhardtii cells cultivated in a 

fermenter-type PBR decreased by approx. 15% with an increase in the impeller tip 

speed from 126 to 589 cm/s (Leupold et al., 2013).           

The oscillatory baffled reactor (OBR) is a novel, tubular device that has demonstrated 

several key advantages over conventional tubular and fermenter-type reactors. A 

‘standard’ OBR design consists of a tube, generally 10 to 150 mm internal diameter 

(D), with a piston located at one end to generate oscillatory motion of internal 

material. Vortices form down the length of the OBR as material is forced through 

periodically spaced orifice plates (baffles). The advantages of this agitation type 

include uniform mixing at low shear (Ni et al., 2000), enhanced mass (Hewgill et al., 

1993, Ni et al., 1995) and heat (Mackley and Stonestreet, 1995) transfer, the 

possibility of linear scale-up (Smith and Mackley, 2006, Smith, 1999) and power 

efficient agitation (Abbott et al., 2014b, Jambi et al., 2013). The mixing intensity is 

also decoupled from the net flow rate which enables plug flow to be achieved in 

substantially shorter reactors compared to conventional tubular designs where high 

net flows are required for turbulence (Stonestreet and van der Veeken, 1999, van 

Vliet et al., 2005, Stonestreet and Harvey, 2002, Abbott et al., 2014a). Numerous 

bioprocesses have been developed using OBR technology with mixed success 

(Abbott et al., 2013). This ranges from a 7% increase in glucose production for the 

enzymatic saccharification of cellulose (Ikwebe and Harvey, 2011) to a 56% increase 

in biomass for the culture of the aerobic bacterium Pseudomonas putida (Troeger 

and Harvey, 2009). These studies and the advantages offered suggest potential for 

the use of OBR technology as a PBR for the cultivation of microalgae.        

This study presents results from the cultivation of C. reinhardtii cells in a lab scale 

(700 mL) OBR, modified for use as a PBR. There is no reported use of OBR 

technology for microalgae cultivation so this study provides essential information that 

may enable the development of economically viable cultivation systems for 
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production of various sustainable products, especially therapeutic proteins. There are 

four objectives: 

1) Test the feasibility of OBR technology for use as a PBR in microalgae 

cultivation, specifically C. reinhardtii.   

2) Determine the effects of two different sparger designs. 

3) Compare the maximum growth rates achieved in the OBR to control cultures 

conducted in T-flasks.  

4) Quantify the effect mixing intensity in the OBR has on the maximum growth 

rate achieved.    

5.3 Materials and methods 

5.3.1 Reactor operation and design 

The mixing intensity for an OBR is controlled by adjustments to the amplitude and 

frequency of oscillation. The oscillatory Reynolds (Reo) and Strouhal (St) numbers 

are dimensionless groups used to measure the mixing intensity and degree of vortex 

propagation, respectively. These are defined by equations 5.1 and 5.2, below. 

Reo = 
ρ2πfXoD

µ
                               Eq. 5.1 

St = 
D

4πXo
                                Eq. 5.2 

Where, ρ is the fluid density (kg/m3), f and Xo, the frequency (Hz) and centre-to-peak 

amplitude (m) of oscillation, respectively, D, the tube diameter (m) and μ, the 

dynamic fluid viscosity (Pa s). ρ and μ are assumed to be that of water for the 

remainder of this study (1000 kg/m3 and 0.001 Pa s, respectively). The net flow 

Reynolds number (Ren) is a measure of net flow through the reactor but is not 

relevant for batch operation.                         

The geometrical parameters associated with OBR design are the baffle thickness (δ), 

spacing (L), orifice diameter (Do) and open area (α), where, α = (Do/D)2. A ‘standard’ 

OBR design is such that L = 1.5D and α = 22%. More detail on this geometry can be 

found elsewhere (Ni et al., 1998).    

A ‘standard’, vertical 700 mL batch OBR shown in Figure 1 was constructed from two 

0.5 m (D=25 mm), jacketed, borosilicate glass columns (QVF, PS25/500) coupled 
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directly together and containing two stainless steel shafts that connected equally 

spaced baffles (L=37.5 mm, Do=12.5 mm). Two stainless steel collars were fixed to 

each end of the resulting 1.0 m column to which a capsule filter (Pall, NovasipTM) and 

vent line at the top, and a four-way cross piece (QVF, PX15) via a reducer (QVF, 

PR25/15) at the bottom were connected. The oscillating piston and feed lines were 

connected to the horizontal ends of the cross piece (D=15 mm) via peristaltic and 

stainless steel tubing, respectively. Two stainless steel shafts connected smaller, 

equally spaced baffles (L=22.5 mm, Do=7.5 mm) in the cross piece in horizontal and 

vertical directions. A steam line connected a steam generator to the oscillating pump 

housing. Three sanitary diaphragm valves (Gemu, type 601) were placed on the 

feed, vent and steam lines. Temperature and pH were measured by a probe (Mettler 

Toledo, InPro 3250) inserted through the bottom steel collar and connected to a 

digital display (Mettler Toledo, M300). Temperature was controlled by a water bath 

(Huber) connected to the jackets surrounding both columns. Pressure was monitored 

with two pressure gauges (Parker, G63-102BG) placed before and after the filter.     

5.3.2 Light setup 

Two 0.55 m LED strip lights were connected to form one 1.10 m light bank and 

attached vertically to the OBR so the diodes were ~100 mm from the column. The top 

strip emitted warm white light (Leyton Lighting, SL-LED-550-WW) and the bottom, 

cool white light (Leyton Lighting, SL-LED-550). A second, identical bank was inverted 

and attached in a similar manner so it faced the column at ~90 degrees from the first 

bank. The light intensity was measured using a photoradiometer (Delta Ohm, 

HD2102.2) at 12 separate locations on the OBR surface, with an average intensity of 

78 µmol/m2s (+/- 20). Figure 5.1 shows a diagrammatical representation of the 

reactor setup.  
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Figure 5.1: A diagrammatical representation of the OBR setup used for this study. a are the glass 
columns, b, the steel collars, c, the filter, d, the four-way cross piece, e, the oscillating line, f, the feed 
line, P1 and P2, pressure gauges, F1 and F2, the air and feed peristaltic pumps, respectively, T/pH, 
the temperature and pH probe, S, the steam generator, In/Out, the water jacket inlet and outlet, 
respectively and V1, V2 and V3, diaphragm valves on the feed, steam and vent lines, respectively.   

5.3.3 Sparger design 

A section of peristaltic tubing (Masterflex, size 15), the end of which was plugged 

with a solid, plastic rod and the first 20 mm punctured approx. 15 times with a 

hypodermic needle, was used as the gas sparger for all cultures and designed to 

produce large, fast-rising bubbles. The sparger was inserted through the vertical end 

of the cross piece and a peristaltic pump (Cole Palmer, Model 77200-62) used to 

pump air through at 35 mL/min (0.05 vvm). A porous gas sparger (Mott, type 6400) 

designed to produce small, slow-rising bubbles to maximise mass transfer was 

tested. However, the porous sparger was not suitable for microalgae culture in the 

OBR due to generation of a flotation effect (see §5.4.1). Figure 5.2a shows a 
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photograph of the porous sparger tested and Figure 5.2b, the sparger used for all 

cultures.  

 
Figure 5.2: The a) porous gas sparger tested and b) punctured peristaltic tubing used as the sparger 
for all cultures in this study.    

5.3.4 Culture conditions and procedure 

Chlamydomonas reinhardtii CCAP 11/32C was ordered from the Culture Collection of 

Algae and Protozoa in two, 10 mL tubes containing liquid culture. Two streak plates 

were made from each tube on potato dextrose (PDA) and tryptone soya agar (TSA) 

and left to incubate at 28oC (+/-1) in a cooled incubator (LMS, model 600) illuminated 

with strip lights (Sylvania, FHO39W/865) that emitted in the colour temperature of 

600k. Healthy growth was observed with no contamination after 7 days. A 50mL T-

flask (Greiner, Cellstar® T-25) containing 30 mL of Sueoka’s high salt (HS) medium 

(Sueoka, 1960) was inoculated with one colony from a TSA plate. The T-flask was 

placed inside the cooled incubator at a location where the light intensity was ~80 

µmol/m2s and on a shaker set to 40 rpm (IKA®, KS260 Basic). The culture was 

grown for 7 days and used as inoculum for experiments in the OBR. Table 5.1 shows 

the compounds and their relative amounts required to make the three solutions used 

in the medium preparation, full instructions of which are available online 

(Chlamydomonas connection, 2011). 

The OBR was steam sterilised before each run. Valves on the steam and vent lines 

were opened to allow steam to flow through the system. The vent line valve was 

slowly closed to increase the internal pressure to approx. 0.12 MPa (1.2 barg) 

creating a temperature above 120oC which was held for 15 minutes. Condensate was 

a) b)
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periodically released through the feed line valve. The steam generator was turned 

off, the steam and feed line valves closed and the vent line opened. The system was 

left to cool to room temperature. 1 L of medium was autoclaved in a Duran bottle and 

left to cool in the incubator before 30 mL was transferred to a fresh T-flask. The 7 day 

old culture was used to inoculate the Duran bottle and new flask to a target starting 

optical density at 750 nm (OD750) of 0.05. Inoculated medium in the Duran bottle was 

pumped through the feed line and into the OBR to a volume of 700 mL via a 

peristaltic pump. The newly inoculated flask was placed on the shaker in the 

incubator to act as a control and inoculum for the next run. Temperature was 

controlled at 28oC (+/-1) and the starting pH at 7.0, as recommended in the C. 

reinhardtii guidelines (Invitrogen, 2012). Growth was monitored with a 

spectrophotometer (Biochrom, WPAS800) by measuring the OD750 (Harris, 2008). 

Table 5.1: Compounds and their relative amounts used to make the solutions required for Sueoka’s 
HS medium. 

Hutner's Trace Elements Salt Solution Phosphate Solution 

Compound Amount (g/L) Compound 
Amount 

(g/L) 
Compound 

Amount 
(g/L) 

ZnSO4.7H2O 220 NH4Cl 100 KH2PO4 144 

H3BO3 57 MgSO4.7H2O 4 
K2HPO4 288 

MnCl2.4H2O 101.2 CaCl2.2H2O 2 

CoCl2.6H2O 32.2 Sueoka's High Salt Medium 

CuSO4.5H2O 31.4 All solutions were made in distilled water. For the final 
medium, 5 mL salt and phosphate solutions and 1 mL 
Hutner's trace elements (Hutner et al., 1950) were 
added per litre of distilled water. 

(NH4)6Mo7O24.4H2O 22 

FeSO4.7H2O 99.8 

Na2EDTA.2H2O 200 

5.3.5 Experimental design 

The study aimed to assess, firstly, the feasibility to culture C. reinhardtii in an OBR 

and secondly, the effect mixing intensity had on the maximum growth rate 

(OD750/day). The experimental design consisted of 8 separate runs in the OBR at 

duplicated Reo values of 0, 300, 1000 and 2827 corresponding to no, light, moderate 

and intense mixing conditions. Runs in the OBR lasted for ~3 days and were 

conducted in parallel to a control that consisted of a T-flask in the incubator. The 

starting pH and OD750, temperature and light intensity were kept constant in the OBR 

and control flasks at 7.0, 0.05, 28oC (+/-1) and 80 µmol/m2s (+/-20), respectively. 

OD750/day was determined by identification of the steepest part of the curve for OD750 

against time (over at least three data points). The maximum specific growth rate 

(µmax) was not used because cultures appeared not to achieve exponential growth 
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at any time. Table 5.2 summarises the mixing intensity used for each of the 8 runs in 

the study.  

Table 5.2: The run order and corresponding mixing intensity (Reo). 

Run  Reo Run  Reo Run  Reo 

1 1000 4 300 7 2827 

2 2827 5 0 
8 0 

3 1000 6 300 

5.4 Results and discussion 

5.4.1 Flotation effects 

Preliminary test cultures (results not shown) were setup in the OBR and aerated 

through the porous gas sparger (Figure 5.2a) with the aim to maximise gas transfer. 

Smaller bubbles increase the surface area available for gas transfer (Mott 

Corporation, 2014), which in the case of microalgae cultivation improves the transfer 

of CO2 into and  O2 out of the culture. This provides Rubisco with sufficient CO2 to fix 

into carbohydrate and remove inhibition caused by O2 build up, ultimately driving net 

photosynthesis and maximising cellular growth. However, growth did not occur in 

these test cultures in the OBR over a period of several days. The OD750 remained 

close to the starting value before decreasing to zero. In comparison, the control test 

cultures in T-flasks demonstrated constant and linear growth which indicated that 

conditions in the OBR were not conducive to growth of C. reinhardtii cells (results not 

shown).  

A systematic approach was used to identify the reason(s) for lack of growth in the 

OBR. The light system, medium, pH and temperature were all verified and shown to 

support photoautotrophic growth in T-flasks. The aeration system was tested by 

introducing into the OBR a higher cell density culture (OD750 approx. 0.4) that was 

grown in a Duran bottle. There was an obvious accumulation of cells at the top of the 

column after 3 days which can be seen in Figure 5.3. This accumulation was not 

observed in the test cultures due to much lower starting cell concentrations. Figure 

5.3 clearly shows the accumulation of C. reinhardtii cells at the top of the column. 

This suggests the presence of a flotation effect whereby small particles accumulate 

at the top of the column due to adherence to rising air bubbles.  

Anderson et al. (2009) demonstrated that OBR technology could be used as a 

flotation device which was tested with a quartz-amine system, with addition of a 
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frothing agent. The flotation rate constant was improved by up to 60% compared to a 

standard flotation column for fine particles (<30 μm). This improvement was 

attributed to a combination of an even distribution of shear and oscillatory motion of 

reactor contents (Anderson et al., 2009).         

 
Figure 5.3: Photographs showing a) and b) C. reinhardtii accumulation at the top of the OBR during 
test cultures caused by flotation effects generated when using the porous gas sparger (Figure 5.2a) 
and c) removal of the flotation effect by use of a different sparger used for this study (Figure 5.2b).   
 

A promising technology for the harvest of microalgae biomass is foam flotation 

systems. The efficacy of a foam harvester that combined dispersed air flotation with 

foam fractionation to allow harvesting, concentration, and physical separation of 

particles in suspension has been demonstrated. A foam flotation system for the 

harvest of microalgae biomass was used to demonstrate that variables which 

increased foam residence time produced the greatest concentration factors. In 

addition, the surfactant cetyl trimethylammonium bromide (CTB) was required to 

enhance foam flotation and stability (Coward et al., 2013).    

Wild-type C. reinhardtii cells are approx. 10 μm in diameter (Harris, 2001). The 

observed accumulation of cells in Figure 5.3 indicates that small bubble diameters 

generated from the porous gas sparger combined with oscillatory motion, even shear 

distribution and the presence of 10 μm particles (cells) produced a flotation effect. 

This result is not surprising given previous studies that demonstrate OBR technology 

for use as a flotation device (Anderson et al., 2009) and the design of foam flotation 

systems (Coward et al., 2013).  

a) b) c)
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The test cultures using the porous gas sparger demonstrated a flotation effect 

without addition of a frothing agent or surfactant suggesting OBR technology could 

be used to simultaneously culture and harvest microalgae cells through control of the 

bubble diameter. However, to achieve growth and culture microalgae using an OBR, 

the sparger was changed for this study to a design which generates larger, faster 

rising bubbles (Figure 5.2b) in order to remove the flotation effect. 

5.4.2 Microalgae growth  

Eight cultures of C. reinhardtii were setup in the OBR according to Table 5.2, in 

parallel to control cultures setup in T-flasks. Growth curves obtained for the OBR and 

control cultures are shown in Figures 5.4 and 5.5, respectively.  

Figure 5.4 shows a lag period of approx. 24 hours for each of the growth curves 

obtained in the OBR. This lag phase is followed by a period of steady growth until the 

end of the experiment at approx. 72 hours. Cultures in the OBR were inoculated to a 

target starting OD750 of approx. 0.05 with C. reinhardtii cells grown in T-flasks. The 

conditions in the OBR were different to those in the T-flask in which inoculum was 

prepared. The presence of a lag phase in the OBR can be explained by the cells 

requiring a period in which to adjust to the new conditions as they moved from the 

inoculum environment (T-flask) to the OBR (Becker, 1995). This lag phase is not 

present in control cultures (Figure 5.5) because there were no changes in the 

environmental conditions between the inoculum and experimental cultures i.e. both 

were in T-flasks. 

A common measure used to analyse growth of microorganisms is the specific growth 

rate (μ) or maximum specific growth rate (μmax) which indicates the amount of 

biomass produced per biomass in the culture per unit of time. μ can also be 

calculated in terms of the doubling time (k) and is constant over the log (exponential) 

phase of growth which occurs when there are no environmental limitations present..         
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Figure 5.4: Cell concentration measured as optical density (OD750) for the eight C. reinhardtii cultures 
in the OBR, conducted at mixing intensities identified in Table 5.2. Dashed and dotted lines represent 
duplicated cultures under identical conditions.  
 
 

 
Figure 5.5: Cell concentration measured as optical density (OD750) for the corresponding eight C. 
reinhardtii control cultures, all conducted under identical conditions.  

It is imperative that μ is reserved to measure only exponential growth. μ can be 

calculated for linear growth (Devgoswami et al., 2011), however; the resultant value 

is almost meaningless and even miss-leading because it suggests exponential 
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growth when only linear growth is present. The use of μ values calculated from linear 

growth can result in the over prediction of potential biomass production which can be 

detrimental to researchers designing cultivation systems. Figures 5.4 and 5.5 show 

linear growth which suggests the cultures are limited in some way and therefore the 

use of μ is not appropriate. Therefore, growth has been analysed in terms of the 

growth rate which indicates the amount of biomass produced per unit of time. This 

can be given as OD750 per day (OD750/day) as optical density at 750 nm is directly 

correlated to biomass concentration (Harris, 2008). 

Figure 5.6 shows the maximum growth rates obtained in the eight control cultures 

and each of the duplicated OBR cultures at the four different mixing intensities 

summarised in Table 5.2.  

 
Figure 5.6: The maximum growth rates (OD750/day) achieved for all eight control cultures (T-flask) and 
at each mixing intensity in the OBR. Errors bars represent +/- one standard deviation between the 
average maximum growth rates of eight control cultures and duplicate cultures in the OBR. 
 

The average maximum growth rate achieved in control cultures was 0.067 (+/- 0.011) 

OD750/day. This growth rate was approximately constant and linear in all control 

cultures over the 72 hours recorded. The presence of linear growth in these cultures 

suggests that growth is limited in some way. It is probable that the control cultures 

were CO2 and/or light limited because no dedicated sparger was used and the light 

intensity was relatively low at approx. 80 µmol/m2s (the light intensity in the OBR was 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

T-flask OBR, Reo = 0 OBR, Reo = 300 OBR, Reo = 1000 OBR, Reo = 2827

M
a

x
im

u
m

 G
ro

w
th

 R
a
te

 (
O

D
7
5
0
/d

a
y
) 

+/- 1 St.Dev 



94 
 

94 
 

similar at approx. 78 µmol/m2s). In general, photosynthesis is saturated at 100 to 500 

µmol/m2s and photoinhibition does not occur until irradiances over 1000 µmol/m2s 

(Acién Fernández et al., 2013). However, to more accurately determine the limiting 

factor(s), further work is required.  

The average maximum growth rates achieved in the OBR at Reo values of 0, 300, 

1000 and 2827 were 0.127 (+/- 0.017), 0.131 (+/- 0.007), 0.129 (+/- 0.017) and 0.134 

(+/- 0.001) OD750/day, respectively. The maximum growth rates achieved in the OBR 

were significantly higher compared to those obtained in T-flasks which indicate that 

the conditions in the OBR were more conducive to C. reinhardtii growth.  

There was no significant difference between the maximum growth rates achieved in 

the OBR at different mixing intensities which indicates that the mixing intensity had 

no effect on the growth rate under these conditions. No negative effect on the growth 

rate was observed even at intense mixing conditions of Reo = 2827, in contrast to 

impeller driven systems (Leupold et al., 2013). This indicates that intense mixing can 

occur in the OBR without impacting C. reinhardtii cells, a result of the low and even 

shear distribution generated in the OBR. This may be beneficial in cultivation 

systems with much higher cell concentrations where enhanced gas exchange is 

required.  

The growth rates achieved in the OBR were combined to give an average value 

because the mixing intensity was shown to have no significant effect. The average 

maximum growth rates achieved in the control and OBR cultures were 0.067 (+/- 

0.011) and 0.130 (+/- 0.010) OD750/day, respectively. The OBR was able to generate 

a 95% increase in the maximum growth rate for C. reinhardtii cultures compared to 

control cultures under comparable conditions. The main differences between the 

control and OBR cultures were the presence of mixing and sparging in the OBR. As 

noted before, the mixing intensity was shown to have no significant effect on the 

growth rate under these conditions in the OBR. Therefore, the increase in growth 

observed in the OBR compared to the T-flask is most likely due to enhanced gas 

transfer provided by the sparging device. However, linear growth was observed in all 

cultures which suggests limitation.    
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5.4.3 Light limitation 

The compensation irradiance point (Ic) is the depth at which light intensity becomes 

too low to support net photosynthesis. The culture depth (Ix) at which Ic occurs is 

defined by equation 5.3 (Nag-Jong et al., 2002). 

Ix = 
Log(I0

Ic
)

α.X
                                  Eq. 5.3 

Where, Ix is the light penetration depth at which Ic occurs (cm), I0, the incident light 

intensity (W/m2), Ic, the compensation irradiance point (W/m2), α, the specific light 

absorption coefficient (cm2/cell) and X, the cell concentration (cells/mL).  

OD750 was correlated to the cell number (cells/mL) using a Hawksley (improved 

Neubauer) double cell haemocytometer. 1.0 OD750 was shown to correlate to 2.57 x 

106 cells/mL. α was calculated as 6.13 x 10-8 cm2/cell, in close agreement with a 

previous study where α was reported as 4.33 x 10-8 cm2/cell for Chlorella kessleri 

(Lee, 1999), and I0 was determined as 21.8 W/m2. Ic for C. reinhardtii has been 

calculated at 60 foot candles or 1.91 W/m2 (Sorokin and Krauss, 1958). Figure 5.7 

shows on log axes the calculated Ix values for a range of C. reinhardtii cell 

concentrations and I0 values from 5 to 2000 W/m2.       

 
Figure 5.7: Ix against C. reinhardtii cell concentration (cells/mL) for five different light intensities (I0) 
from 5 to 2000 W/m
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The highest OD750 achieved in this study was approx. 0.40 which correlates to a cell 

concentration of approx. 1.0 x 106 cells/mL. This corresponds to the y-axis in Figure 

5.7 which indicates that at this cell concentration and I0 (21.8 W.m2), the light 

intensity only becomes too low to support net photosynthesis at approx. 10 cm. The 

internal diameter of the OBR used in this study was 2.5 cm therefore Ix was not 

reached and the cells were not light limited. However, although light intensity was 

sufficient to support net photosynthesis, it appears to have been insufficient to 

support maximum growth, hence linear growth was observed. 

These results suggest that growth was both CO2 and light limited in T-flasks. 

Dedicated sparging in the OBR removed CO2 limitation thereby increasing the 

average maximum growth rate by 95%, however; it appears that the relatively low I0 

could not support maximum cellular growth resulting in linear growth in the OBR.     

5.5 Conclusions and future work 

This study has demonstrated for the first time the feasibility of using OBR technology 

as a cultivation system for microalgae, and specifically C. reinhardtii. The tubular 

design results in a large surface area to volume ratio providing efficient light 

harvesting which could reduce operational costs associated with the cultivation of 

microalgae. Furthermore, OBR technology offers a closed system which enables 

compliance with the necessary regulations and guidelines associated with GMO use 

and API manufacture.  

An unexpected result was a flotation effect without the need for addition of a frothing 

agent or surfactant. The potential exists to develop a dual culture and harvesting 

device through control of the bubble diameter. This could greatly improve process 

economics for production of microalgae derived products by removal of the de-

watering step which is currently a major obstacle in this area.  

The OBR demonstrated a 95% increase in the average maximum growth rate 

compared to control cultures in T-flasks. However, linear growth was still observed in 

the OBR so further work is required to achieve exponential growth and higher cell 

concentrations where the efficient mixing and enhanced gas transfer provided by this 

technology may confer even greater benefits to the culture of microalgae.             
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5.6 Research implications 

The results generated from this study demonstrated that OBR technology could be 

modified into PBRs suitable for the photoautotrophic growth of microalgae cultures. 

Work was planned to conduct a follow on study that aimed to grow higher cell density 

cultures and operate the OBR as a dual culture and harvest device for microalgae. 

This could greatly improve process economics due to removal/reduction of the 

expensive and time consuming dewatering step present in these systems. In 

addition, the efficient mixing under low shear could improve growth rates and cell 

densities obtained if conducted over longer time periods; mixing had actually been 

shown to have no significant effect on growth rates - probably a result of the low cell 

densities and light intensities used.    

CPI were successful with a funding bid to InnovateUK (formerly TSB) which I had 

helped draft in 2012. Circumstances required someone with OBR expertise to take 

technical lead on the 12 month project which aimed to test a pilot scale OBR for 

anaerobic digestion (AD). Results from the study would inform CPI with regards to 

the commercial potential of this application for OBR technology as well as help with 

their intellectual property (IP) management in terms of a patent application (Cooper 

et al., 2009). Research into microalgae was therefore postponed and focus was 

given to AD which forms the final study in this thesis. 
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Chapter 6: Anaerobic digestion 

‘Anaerobic co-digestion of dairy slurry and glycerol: A pilot (40 L) study to compare 

digesters based on novel oscillatory baffled (OBR) and conventional stirred tank 

(STR) reactor technologies.’ 

6.1. Abstract 

Anaerobic digestion (AD) of dairy slurry (DS) and co-digestion with glycerol was 

conducted in two pilot scale (40 L) digesters based on oscillatory baffled (OBR) and 

stirred tank (STR) reactor technologies. The OBR was unable to process raw DS due 

to particulate accumulation and blockages in the ‘u-bends’. Centrifuged DS (cDS) 

with reduced solids content was used for the majority of the study to prevent the 

formation of blockages in the OBR. The OBR with continuous agitation produced 

43% more biogas compared to the STR with intermittent agitation for digestion of 

cDS. Addition of 1.4% glycerol to cDS resulted in destabilisation in the STR which 

required a reduction in the feed rate and continuous agitation to prevent complete 

process collapse. The OBR recovered from the shock load of glycerol addition due to 

the presence of a ‘buffer zone’ near the feed inlet which enabled maintenance of a 

higher feed rate. Both digesters showed ~270% increase in methane production with 

addition of 1.4% glycerol to cDS. Methane yields were maximised in the OBR for 

3220<Reo<6440 and the STR for ~80 rpm which corresponded to power densities 

(P/Vs) in Watts per cubic meter (W/m3) of 23<P/V<190 and ~20, respectively. The 

STR showed signs of destabilisation at P/V=150 W/m3 which suggested floc 

disruption due to increased shear rates near the impeller. The optimum organic 

loading rate (OLR) to maximise the specific methane yield (SMY) was ~4.3 kg 

COD/m3 day in both digesters. This OLR produced maximum SMYs of 0.51 and 0.40 

m3/kg VSadded in the OBR and STR, respectively. SMYs were similar in both digesters 

for the majority of conditions tested. Variation in feed quality throughout the long 

study period caused fluctuations in the SMY and added an additional uncontrolled 

variable. Power consumption required for temperature control was 89% less in the 

STR compared to the OBR as a result of an 82% reduction in the surface area 

available for heat loss. The actual power consumption for agitation was significantly 

higher in both digesters compared to theoretical values which indicated the difficulty 

of achieving the calculated efficiencies as well as the need for adequate equipment 

specification. These results demonstrate the potential of using OBR technology for 
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AD, however; the design needs to be carefully considered before commercial 

adoption occurs. 

6.2 Introduction 

6.2.1 Anaerobic digestion 

Anaerobic digestion (AD) is a fermentation process by which mixed communities of 

microorganisms grow and breakdown biodegradable material in the complete 

absence of oxygen. Material suitable for AD can be derived from a variety of sources 

which include but are not limited to forestry and agricultural crops and residues 

(Sawatdeenarunat et al., 2014), sewage (Astals et al., 2013), algae (Ward et al., 

2014) municipal solid (Cecchi et al., 1991, Chen et al., 1990) and industrial (Meyer 

and Edwards, 2014) wastes. Fermentation occurs in the second of four main stages 

of AD and methane is the final product of the reaction pathway: the key processes 

are hydrolysis, acidogenesis, acetogenesis and methanogenesis.  

Proteins, fats and carbohydrate molecules such as cellulose and starch are initially 

hydrolysed to amino acids, long chain fatty acids and sugars. These are converted to 

volatile fatty acids (VFA) in acidogenesis, predominantly lactic, propionic, butyric and 

valeric acids. Mixed communities of microorganisms metabolise the VFAs produced 

to generate acetic acid, carbon dioxide (CO2) and hydrogen which are then 

metabolised by methanogenic microorganisms to produce methane (Abbasi et al., 

2011). The resultant biogas produced through AD comprises 40 to 70% methane as 

well as carbon dioxide and other trace gases, and can be used as a sustainable fuel. 

6.2.2 Environmental considerations and sustainable/renewable energy 

The EU energy directive requires that 20% of the bloc’s final energy consumption 

should be produced from renewable sources by 2020, with the UK given a target of 

15% (European Parliament - Council of the European Union, 2009). In addition, the 

UK’s climate change act requires greenhouse gas emission reductions of 80% by 

2050 compared to 1990 levels (UK Parliament, 2008). There were 213 AD plants in 

the UK in August 2011 treating wet sewage, food and agricultural waste that 

represented 151 MW of electricity generating capacity (Allen and Wentworth, 2011). 

In comparison, Germany had approximately 6,800 AD plants. The use of AD in 

combination with other renewable energy technologies could help the UK reduce 
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greenhouse gas emissions and meet the above-mentioned targets, a major factor 

contributing to the UK government’s commitment to an increase in energy production 

from AD (Department for Environment Food and Rural Affairs, 2011). 

Biodiesel is another renewable energy technology which could contribute to 

reductions in greenhouse gas emissions and has been produced at industrial scales 

in Europe by transesterifying lipid feedstocks with alcohol (Astals et al., 2011). Over 

8,000,000 tonnes of biodiesel were produced in Europe in 2011 (European Biodiesel 

Board, 2011) with the main by-product being crude glycerol. The current market 

demand for glycerol is unable to absorb the increase in supply from biodiesel 

production (Johnson and Taconi, 2007). Furthermore, treatment of crude glycerol is 

prohibitively expensive for many plants (Pachauri and He, 2006) and few direct uses 

exist (Pagliaro and Rossi, 2008). This has led to the disposal of crude glycerol as 

waste in many regions.  

6.2.3 Co-digestion 

One potential source of biodegradable material for biogas production through AD is 

animal slurry and specifically dairy slurry. However, typical methane yields obtainable 

from the AD of dairy slurry are relatively low and range from 10 to 20 m3/tonne slurry 

(Angelidaki and Ellegaard, 2003). This low methane yield can render farm-scale 

plants uneconomical where significant capital costs are required (Cavinato et al., 

2010). Nevertheless, dairy slurry is an excellent carrier material for more 

concentrated wastes due to its high water content, buffering capacity and nutrient 

content, all required for optimal microorganism growth (Angelidaki and Ellegaard, 

2003).   

Crude glycerol produced from biodiesel production contains predominantly glycerol, 

alcohol, water and small quantities of other materials including heavy metals (Astals 

et al., 2012). The precise composition of crude glycerol depends on the substrate 

and process utilised for biodiesel production. Glycerol consists of carbon, hydrogen 

and oxygen (C3H8O3) and is therefore classed as a carbohydrate which can be used 

to increase the carbon content available to microorganisms during AD. However, the 

optimum carbon to nitrogen (C/N) ratio for AD is 20-30. Elevated C/N ratios lead to 

rapid nitrogen consumption by methanogens to meet their protein requirements, 
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followed by a repression of biogas production (Abbasi et al., 2011). The amount of 

glycerol added must therefore maintain a suitable C/N ratio.   

Co-digestion involves the combination of biodegradable material from different 

sources. Biogas production through AD has been demonstrated for the co-digestion 

of dairy slurry supplemented with crude glycerol from biodiesel production. Methane 

yields of 0.299 (Castrillón et al., 2011) and 0.590 (Castrillón et al., 2013) m3 

methane/kg volatile solids (VS) have been achieved when supplementing dairy slurry 

with 6% crude glycerol. In comparison, AD of pure dairy slurry produced methane 

yields of 0.15 to 0.19 m3 methane/kg VS (Castrillón et al., 2011, Amon et al., 2007). 

Glycerol supplementation therefore increased methane yields by up to 293% which 

greatly improves the economics of farm-scale AD plants. This could promote and 

enable development of AD plants which would not only increase production of 

sustainable energy in the form of biogas, but also provide a use for the increased 

amounts of crude glycerol from biodiesel production.         

6.2.4 Digester design and agitation 

Simple digester designs for AD typically consist of a large vessel with a feed inlet, 

digestate outlet and biogas collector. The hydraulic residence time (HRT) can be 

used to estimate the average time feed spends in the digester and is derived from 

the digester volume and volumetric flow rate, as shown in equation 6.1.  

HRT (days) = 
V
Q

                                   Eq. 6.1 

Where, V is the digester volume (L) and Q, the volmetric flow rate (L/day).  

These simple digesters are common throughout India, China and the developing 

world as well as in the UK within the agricultural sector due to their simplicity, 

however; they are poorly agitated and require long HRTs of up to 50 days (Abbasi et 

al., 2011). This must be reduced in order to increase biogas productivity and improve 

process economics without impacting overall conversion. Research over the past few 

decades has aimed to achieve decreased HRTs while maintaining high solids 

retention times (SRTs), where ‘solids’ refers to microorganisms. This results in low 

feed to microorganism (F/M) ratios which increase digestion rates and biogas 

productivity. Common methods employed to retain microorganisms include 1) 

formation of sludge aggregates e.g. upflow anaerobic sludge blanket (UASB) 
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digesters, 2) use of films for microorganism adhesion e.g. fluidised bed reactors 

(FBR) and 3) retention of sludge aggregates between packing material e.g. downflow 

anaerobic filters (Rajeshwari et al., 2000). 

Agitation is important during AD to prevent the formation of a floating layer of solids 

and to encourage distribution of enzymes and microorganisms (Chapman, 1989, 

Parkin and Owen, 1986, Lema et al., 1991). However, numerous studies exist that 

report conflicting effects of agitation during AD.    

A floating layer of solids was observed in a non-agitated digester which exhibited a 

higher methane yield than a continuously agitated digester. This was attributed to a 

longer SRT (Chen et al., 1990). Switching from continuous to intermittent agitation (2 

min agitation/hour) produced significantly more biogas during AD of a liquid waste 

stream which was attributed to increased bioflocculation and solids retention (Dague 

et al., 1970). Operational problems were experienced with a high total solids loading 

caused by accumulation of a scum layer of cellulosic fibre at the surface which 

interfered with mechanical agitators (Stroot et al., 2001). Satisfactory performance at 

low agitation was observed in one study that concluded low agitation was preferable 

due to reduced energy requirements (Rivard et al., 1990).  

Little or no agitation may improve high solids AD by providing an immobile 

environment for microorganisms. However, agitation is required to mix in feed and 

form new spatial associations among different microbial populations (Lettinga, 1981, 

Stroot et al., 2001). This is particularly relevant for co-digestion where a concentrated 

feed is added which must be properly mixed throughout the digester material to 

prevent formation of concentration gradients. Agitation is also required to ensure 

single cells do not remain isolated and surrounded by their own progeny which 

results in reduced kinetic effectiveness (Schink and Stams, 2006). However, rapid 

agitation can disrupt floc structures and disturb syntrophic relationships between 

microorganisms (Whitmore et al., 1987). In vigorously agitated systems, spacial 

associations can be continuously disrupted causing instability. During AD of the 

organic fraction of municipal solid waste, continuous agitation was detrimental to the 

process as a result of instability which stabilised when agitation intensities were 

reduced (Stroot et al., 2001).   
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Evidence from the literature therefore suggests that agitation is required to generate 

homogeneity within the digester and promote syntrophic relationships between 

microorganisms. However, the agitation intensity must not be so high as to disrupt 

floc formation and also be achieved in an energy efficient manner.    

6.2.5 Oscillatory baffled reactor (OBR) technology 

Oscillatory baffled reactors (OBRs) are novel, tubular devices that have 

demonstrated several key advantages over conventional tubular and stirred tank 

reactors (STRs). A ‘standard’ OBR design consists of a tube, generally 10-150 mm 

internal diameter (D), with a piston located at one end to generate oscillatory motion 

of internal material. Vortices form down the length of the OBR as material is forced 

through periodically spaced orifice plates (baffles). Agitation intensity is controlled by 

adjustments to the amplitude (Xo) and frequency (f) of oscillation. The oscillatory 

Reynolds (Reo) and Strouhal (St) numbers are dimensionless groups used to 

measure the level of agitation and degree of vortex propagation, respectively. These 

are defined by equations 6.2 and 6.3, respectively.  

Reo = 
ρ2πfXoD

µ                                    Eq. 6.2 

 

St = 
D

4πXo
                                    Eq. 6.3 

Where, ρ is the fluid density (kg/m3), f and Xo, the frequency (Hz) and centre-to-peak 

amplitude (m) of oscillation, respectively, D, the tube diameter (m) and μ, the 

dynamic fluid viscosity (Pa s).  

The net flow Reynolds number (Ren) which is defined by equation 6.4 is a 

dimensionless group used to measure net flow and is relevant for continuous 

operation when using OBR technology.  

Ren = 
ρDu

µ                           Eq. 6.4 

 

Where, u is the superficial fluid velocity (m/s). 

The geometrical parameters associated with OBR design are the baffle thickness (δ), 

spacing (L), orifice diameter (Do) and open area (α), where, α = (Do/D)2. A ‘standard’ 

OBR design is such that L = 1.5D and α = 22%. More detail on this geometry can be 

found elsewhere (Ni et al., 1998, Brunold et al., 1989).   
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Agitation performed in this manner confers several key advantages to OBR 

technology, which include uniform mixing at low shear (Ni et al., 2000), enhanced 

mass (Hewgill et al., 1993, Ni et al., 1995) and heat (Mackley and Stonestreet, 1995) 

transfer, the possibility of linear scale up (Smith and Mackley, 2006, Smith, 1999) 

and power efficient agitation (Abbott et al., 2014b, Jambi et al., 2013). Furthermore, 

agitation intensity is decoupled from the net flow rate which can enable development 

of processes under plug flow conditions in substantially shorter reactors compared to 

conventional tubular designs where high net flows are required for turbulence (van 

Vliet et al., 2005, Stonestreet and van der Veeken, 1999, Stonestreet and Harvey, 

2002). However, long reactor lengths are still required to achieve plug flow for long 

residence time processes, such as AD (Abbott et al., 2014a).  

These advantages (specifically low shear and power efficiency) could provide a level 

of agitation that generates homogeneity to promote syntrophic relationships between 

microorganisms without floc disruption. Uniform and efficient agitation would also 

ensure concentrated feeds such as glycerol were dispersed throughout the digester 

material thereby preventing the formation of concentration gradients. These 

advantages conferred by OBR technology could increase digestion rates and 

therefore increase biogas productivities to result in process intensification of AD. 

Numerous bioprocesses in OBRs have been reported in the literature, which 

demonstrate the potential of this technology (Abbott et al., 2013). These include a 

90% increase in solvent concentration compared to an STR for an anaerobic process 

(Masngut et al., 2006).  

The present study is directed towards AD of dairy slurry and co-digestion with 

glycerol and aims to 1) test the feasibility of a novel digester design based on OBR 

technology; 2) compare its overall performance to a more conventional digester 

based on STR technology and 3) determine the effects of agitation and HRT on 

biogas production and quality in both digester designs. Co-digestion with glycerol 

was chosen to improve biogas production thereby providing an economically 

attractive process. STR technology was used as a comparison because of its wide 

application and the ability to accurately control agitation intensities. Both digesters 

were designed at pilot scale (40 L) and operated in a semi-continuous mode. 
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6.3 Materials and Methods 

6.3.1 Digester designs 

The novel digester based on OBR technology consisted of a jacketed stainless steel 

tube ~20 m in length and 50 mm internal diameter (D) with a working volume of ~40 

L. 11 vertical columns were connected via circular bends to give 6 ‘n’ bends at the 

top and 5 ‘u’ bends at the bottom forming a serpentine shape. Gas-liquid separators 

(Spirax-Sarco) were connected at the top of each ‘n’ bend to allow gas to escape 

while retaining digester material. Drain valves (Arita, 1000 WOG) at the bottom of 

each ‘u’ bend allowed digestate samples to be taken if required.  

A 3-way valve connected to an air operated, pneumatic actuator (Valbia, 52) was 

connected to the digester inlet and to the top and bottom of a 50 L feed tank. Feed 

was continuously pumped (Watson Marlow, 620U) from the bottom to the top of the 

feed tank (0.2 L/min) and periodically diverted into the digester via control of the 3-

way valve (red lion). Digestate exited the digester at the opposite end to the inlet. 

Probes connected to controllers (Walchem, WDP410-52NU) were inserted through 

columns 2, 3, 5, 7, 9 and 11 to monitor and record pH and temperature. A water bath 

(Grant, GR150/R4) and motor (AO Smith) were used for temperature control (35.8oC 

+/- 2.1) by pumping water through the jacketed column. An oscillating piston was 

connected to the digester before the feed inlet. Gas from each separator was 

combined into one line and passed through catch and bubble pots (Duran, GL45), a 

coalescing filter (micrafilter, MG102-2564) and a flow meter (Aalborg, GFM17) before 

being vented. Figure 6.1 shows a diagrammatical representation of the digester 

setup based on OBR technology.  
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Figure 6.1: The digester setup based on OBR technology. Units in mm unless stated. V1 represents 
the 3-way valve, F, the feed tank and D, the digestate exit. The gas lines (dashed), probes (black 
circles), filter (diamond), flow meter (circle), bubble/catch pots and columns (C1-C11) are also shown.    
 

The more conventional digester based on STR technology consisted of a stainless 

steel vessel 320 mm in diameter (Dv), also with a working volume of ~40 L when 

operated at a liquid height (Lh) of 490 mm. Agitation was achieved by three 120 mm 

diameter (Ds), 6-blade disc impellers connected to a motor, each with a power 

number (Po) of 4.1 (Nienow and Miles, 1971). A probe (Mettler Toledo, InPro3250) 

connected to a controller (Mettler Toledo, M300) was inserted through the digester 

wall to monitor pH and temperature. A water bath (Grant, GR150/R4) was used for 

temperature control (35.6oC +/- 0.5) by pumping water through an internal coil. 

A peristaltic pump (Cole-Parmer) with two heads (easy-load II, 77200-62) was 

connected between the digester and 1) a 50 L stainless steel feed tank and 2) a 

collection vessel. The two lines (Masterflex, size 36) were setup to pump in opposite 

directions. The pump was programmed to periodically and simultaneously pump 1) 

new feed from the feed tank into the digester and 2) digestate from the digester into a 

collection vessel via a tundish. The top of the digester was sealed except for a 

tundish for digestate removal and two gas lines. Gas from one gas line was diverted 
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through a bubble pot (Duran, GL45), a coalescing filter (micrafilter, MG102-2564) and 

a flow meter (Aalborg, GFM17) before being vented. The other gas line acted as an 

overpressure release. Figure 6.2 shows a diagrammatical representation of the 

digester setup based on STR technology.  

 
Figure 6.2: The digester setup based on STR technology. Units in mm. D represents the digestate 
exit, F, the feed tank and M, the impeller motor. The gas lines (dashed), probe (black circle), filter 
(diamond), flow meter (circle) and bubble pot are also shown.       

Material was agitated in both feed tanks with a paddle impeller connected to a motor 

(Stuart Stirrer, SS30). Flow meters connected to both digester gas lines recorded the 

flow rate every minute. The gas flow data along with the pH and temperature data 

from the STR digester were logged on a data logger (dataTaker, DT80) and 

displayed on a laptop (IBM ThinkPad, R40) with appropriate software (DeLogger).        

6.3.2 Digestate and gas analyses 

Digestate was collected daily (where possible) from the exit lines of both digesters. 

Hach-Lange cuvette tests were used to determine the chemical oxygen demand 

(COD), soluble COD (sCOD), ammonium and organic acid (OA) concentrations. The 

cuvette test for OA specifically measured acetate, propanoate and both isomers of 
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butanoate. Instructions on how to use the cuvette tests are available online from the 

manufacturer (Hach-Lange, 2014) with brief details provided below. 

Digestate was initially passed through a small, 1-2mm sieve to remove large 

particulates for all cuvette tests. COD concentrations were determined by pipetting 

the appropriate digestate volume into the cuvette (Hach Lange, LCK914). Ammonium 

concentrations were determined by diluting the digestate by 20 with distilled water 

and pipetting the appropriate volume into the cuvette (Hach Lange, LCK303). sCOD 

and OA concentrations were determined by centrifuging (Heraeus, Pico 21) 1 mL 

digestate at 10,000 g for 10 minutes, passing the supernatant through a 0.45 μm filter 

(Whatman, GD/X), diluting the filtrate by 4 with distilled water and pipetting the 

appropriate volumes into the cuvette for sCOD (Hach Lange, LCK014) or OA (Hach 

Lange, LCK365). All cuvettes were heated appropriately in a thermostat (Hach 

Lange, LT200) and left to cool before reading in a spectrophotometer (Hach Lange, 

DR3900). COD, ammonium, sCOD and OA concentrations were determined with 

errors of +/- 0.90, 0.08, 0.40 and 0.19 g/L, respectively.  

A titrimetric method was used to determine total volatile organic acid (FOS) and 

inorganic carbonate (TAC) concentrations. Digestate was passed through the small 

1-2mm sieve before syringing 30 mL into a glass beaker, adding 120 mL distilled 

water and placing on the automatic titrator (SI Analytics, TitroLine 6000). FOS and 

TAC concentrations were determined with an error of +/- 0.05 g/L.  

Total solids (TS) were determined by adding ~30 mL digestate into pre-weighed 

ceramic crucibles, weighing on a lab balance (Sartorius, CPA3245), placing in an 

oven (memmert) at 100oC for at least 24 hours, leaving to cool in a desiccator 

(Duran, DN300) and then weighing. Volatile solids (VS) were then determined by 

placing the crucibles in a chamber furnace (Carbolite) for at least 2 hours at 550oC, 

before leaving to cool in a desiccator and reweighing. TS and VS were determined 

from recorded masses using equations 6.5 and 6.6, respectively, with VS expressed 

here as a percentage of the digestate and not a percentage of TS.  

TS (%) = 
Mo - Mc

Mt - Mc

 x 100                                  Eq. 6.5 

 

VS (%) = 
Mo - Mf

Mt - Mc

 x 100                                  Eq. 6.6 
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Where, M is mass (g) and the subscript letters c, t, o and f represent the crucible 

conditions: empty, with digestate (full), post-oven and post-furnace, respectively.     

Gas samples were taken (daily where possible) from the gas lines on both digesters. 

Plastic, 3-way valves connected to the digester gas lines were opened and left for ~1 

minute to prime the sample line with gas before collecting ~5 mL gas in a plastic 

syringe. A gas chromatograph (Shimadzu, GC-2014) with a 20 m long, 0.32 mm 

internal diameter mesh column (Hayesep, 60/80) and a thermal conductivity sensor 

(DTCD) set at 250oC was used to determine methane (+/- 1.79%), carbon dioxide 

(+/- 2.97%), oxygen (+/- 9.26%), nitrogen (4.97%) and hydrogen (+/- 2.06%) 

concentrations using an argon gas carrier at 23 mL/min. A pulsed flame photometric 

detector (PFPD) set at 100oC simultaneously determined hydrogen sulphide (+/- 

14.91%) concentrations. The temperature profile was: hold at 45oC for 4.5 min; ramp 

at 40oC per min to 175oC; and hold for 45 s.           

6.3.3 Experimental design, calibration and calculations 

Digesters were initially seeded with onsite dairy slurry digestate to ensure 

appropriate microorganisms were present for biogas production. Manual feeding of 

fresh dairy slurry in 2 L amounts occurred daily (where possible) to produce a HRT of 

~20 days (conditions 0, Table 6.1). This continued for 20 days after which extensive 

blockages were seen in the bends of the OBR. In addition, gas flow data were 

unreliable due to variable times at which the digesters were fed. Dairy slurry was 

centrifuged to remove large particulates for the remainder of the study to prevent 

blockages. The feed regime was automated (see §6.3.1) to remove the variable feed 

times and generate more reliable data. Table 6.1 summarises the conditions used 

throughout the study. 
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Table 6.1: The conditions used throughout the study. Dairy slurry (DS), centrifuged dairy slurry (cDS), 
glycerol (G) and revolutions per minute (rpm). Time (days) represents the time in the study at which 
the step change occurred.    

Condition Feed material 
HRT (days) Agitation 

Time (days) 
OBR STR OBR (Reo) STR (rpm) 

0 DS 20 20 1610 40 (2/30 mins) N/A 

1 cDS 10 10 1610 40 (2/30 mins) 0 

2 cDS + G (1.4%) 10 20 1610 40 48.0 

3 cDS + G (1.4%) 10 10 1610 40 69.0 

4 cDS + G (1.4%) 10 10 3220 80 83.0 

5 cDS + G (1.4%) 10 10 6440 160 92.0 

6 cDS + G (1.4%) 6.7 6.7 3220 80 97.0 

7 cDS + G (1.4%) 5 5 3220 80 105.0 

8 cDS + G (1.4%) 4 4 3220 80 118.2 

9 cDS + G (1.4%) 4 4 3220 80 (2/30 mins) 125.1 

Conditions 0 and 1 aimed to test the feasibility of a novel digester design based on 

OBR technology for digestion of dairy slurry. The remaining conditions aimed to 

compare the digesters and determine the effects of agitation and HRT on biogas 

production and quality for co-digestion of dairy slurry and glycerol. Pure glycerol 

(70%) was added to dairy slurry at 2% v/v to give a total glycerol concentration of 

1.4% for conditions 2 to 9. This relatively low pure glycerol concentration was used 

compared to 6% crude glycerol in previous work (Castrillón et al., 2013) to ensure 

appropriate C/N ratios, which should be 25-30:1 for optimal AD.  

Gas flow data were used to calculate gas volumes produced over time for each 

digester. Flow rates were input into Excel and multiplied by the interval between 

readings (1 min) to give the volume produced each minute. This method was 

calibrated by sequentially connecting the gas lines from each digester to a tube bank 

in order to capture the evolved gas and directly measure the actual volume produced 

over time. The actual and calculated volumes were plotted against each other over a 

21 day period. A linear relationship (R2=0.99) was observed for both digesters with a 

coefficient of 0.57 required to convert the calculated volumes to the actual volumes. 

This coefficient was used for the remainder of the study to determine gas volumes 

and plot cumulative production over time for both digesters. 

Power densities (P/V) are a measure of the amount of power per unit volume 

required to achieve agitation in vessels and can be expressed in Watts per cubic 

metre (W/m3). P/V can be estimated for an unaerated reaction mixture in an STR 

using equation 6.7 (Holland and Chapman, 1966).  
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P

V
 = 

PoρN
3
Ds
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1

4
.πDv

2
Lh

                                   Eq. 6.7 

Where, Po is the power number of the impeller (4.1), N, the impeller rotational speed 

(rps), Ds, the impeller diameter (m), Dv, the vessel diameter (m) and Lh, the height of 

liquid in the reactor (m). 

P/V can be estimated for a ‘standard’ OBR design such as that used in this study 

using equation 6.8 (Hewgill et al., 1993). 

P

V
 = 

2ρNB

3πCD
2

1-α
2

α
2 Xo

3
(2πf)

3
                                  Eq. 6.8 

Where, NB is the number of baffles per unit length (m), CD, the discharge coefficient 

and α, the reactor to orifice area ratio. The value of CD was taken as 0.7, to be 

consistent with a previous study (Ni et al., 2000).    

6.4 Results and discussion 

6.4.1 Flow conditions 

OBR technology has the potential to generate plug flow conditions when operated 

continuously, provided the oscillatory (Reo) and bulk flow (Ren) components result in 

a suitable velocity ratio (Ψ), where Ψ=Reo/Ren. A range of 1.8<Ψ<2.0 maximises 

plug flow in conventional OBRs (Abbott et al., 2014a, Stonestreet and van der 

Veeken, 1999), however; Ψ<10 has been reported as sufficient for practical 

applications (Phan and Harvey, 2010).  

The OBR was required to operate in a semi-continuous mode for the present study 

where 2 L of fresh material was fed every 4.8-24 hours to give HRTs of 4-20 days. 

Achieving plug flow could be beneficial to AD because it would enable the four 

process stages to be separated along the reactor length, effectively replacing the 

time dimension associated with batch manufacturing. Variables such as pH and 

temperature could then be controlled down the OBR length to optimise the conditions 

for each stage in the process. For example, maintaining a slightly lower pH for 

hydrolysis. This optimisation could increase the reaction rates associated with AD 

thereby increasing productivity and biogas production (Cooper et al., 2009).  

A simple method based on previous work (Abbott et al., 2014a) was developed to 

determine the mixing times for a range of mixing intensities (1003< Reo< 10,000) in 
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the OBR. The mixing time is defined as ‘the time taken for the reactor to reach a 

specified degree of uniformity’ (Ni et al., 1998) and was determined by recording the 

time taken for pH to reach similar levels (+/- 0.1) at each probe down the OBR length. 

50 mL of 2.5 M sodium hydroxide was injected into the OBR contents (water) at the 

base of column 10.  The mixing times were recorded for batch operation (i.e. Ren=0) 

which were plotted against Reo and shown in Figure 6.3.  

Figure 6.3: The mixing time (hours) plotted against mixing intensity (Reo) for batch operation of the 
OBR used in this study. 
 

Figure 6.3 shows that the mixing time decreases exponentially as the mixing intensity 

increases which occurs for other systems (Bonvillani et al., 2006). Increased agitation 

results in more rapid dispersion of material throughout the OBR which reduces the 

time taken to reach uniformity. The mixing time increases with reduced Reo due to 

lack of vortex formation and effective propagation. The mixing time was shown to be 

40 hours at Reo=2006 which represents a relatively moderate level of agitation. AD 

requires HRTs of 4-50 days, however; these results indicate that the contents are 

fully mixed within 2 days for moderate levels of agitation (Reo=2006). This suggests 

that the process stages would not be separated when operated semi-continuously to 

achieve the required HRTs for AD. 

These results are not surprising given that the range 695<Ψ<3400 is required to 

achieve HRTs of 4-50 days, assuming the net flow is continuous. This range is 
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orders of magnitude higher than required to achieve practical levels of plug flow and 

indicates that the oscillatory component dominates over the bulk flow component. 

The OBR was therefore predicted to behave as a mixed vessel for the remainder of 

the study, although a higher concentration of feed would be expected near the feed 

inlet. OBR lengths (with the same design used in this study) of 1380-6900 m would 

be required to achieve plug flow (Ψ=10) for HRTs of 4-20 days. These lengths are 

almost certainly impractical to build and operate but would allow separation of the AD 

process, however; such levels of plug flow may not be required to achieve separation 

given there are only four stages present in the process.               

6.4.2 Digestion of dairy slurry 

The digesters were seeded with digestate from on-site digesters before manually 

feeding fresh dairy slurry at 2 L per day (conditions 0). The initial indications were 

positive with both digesters producing biogas which could be seen in the bubble pots. 

However, oscillation transmission had markedly reduced in the OBR after ~10 days 

caused by a build-up of particulates in the ‘u-bends’. An attempt was made to 

overcome the blockages with increased agitation (Reo=10,000) which proved 

unsuccessful after several days. Data (not shown) were also very unreliable and 

variable due to sporadic feed times dependent on personnel presence in the facility. 

Blockages were manually removed and both digesters re-seeded with digestate.  

Dairy slurry was centrifuged to remove larger particulates and minimise blockages in 

the OBR. Blockages indicate that the OBR design used in this study is more suitable 

for liquid feed stocks and that a different design is required to process feeds 

containing particulates, such as fresh dairy slurry. The feed regime was automated 

as described (see §6.3.1) to remove the variability associated with feed times and 

enable the generation of more reliable and consistent data.  

Fresh, centrifuged dairy slurry (2 L) was fed into the digesters every 12 hours to give 

a HRT of 10 days (conditions 1). Both digesters stabilised after 10 days which was 

expected because a full digester volume had passed through, replacing most of the 

digestate used as seed material. Biogas production remained stable in both digesters 

over 11 days with cumulative volumes shown in Figure 6.4.  
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Figure 6.4: Cumulative biogas volumes produced by the digesters based on OBR (black) and STR 
(red) technologies. Brown diamonds represent feed times where 2 L of fresh dairy slurry was pumped 
into the digesters and 2 L digestate simultaneously removed. Linear models are shown for 
comparison. 

Digestion of centrifuged dairy slurry resulted in biogas productions in the OBR and 

STR of 10.4 and 7.3 L/day, respectively. The results shown in Figure 6.4 indicate that 

the OBR produced 43% more biogas compared to the STR. Methane contents 

(averaged over 3 samples) of biogas produced from the OBR and STR were 78.9% 

(+/- 1.4) and 82.0% (+/- 2.3), respectively, which indicates that differences in biogas 

quality were insignificant between the two digester designs. Digestate and feed 

samples were analysed for numerous compounds/parameters which are summarised 

in Figures 6.5 and 6.6. These are average values from numerous samples taken over 

the 11 day period shown in Figure 6.4.   
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Figure 6.5: Ammonia, volatile organic acids (VOA), total solids (TS), volatile solids (VS) and the 
FOS/TAC ratios for the OBR (black), STR (red) and feed (brown). Error bars represent +/- 1 standard 
deviation from at least 3 measurements.  
 

 
Figure 6.6: Chemical oxygen demand (COD), soluble COD (sCOD) and pH for the OBR (black), STR 
(red) and feed (brown). Error bars represent +/- 1 standard deviation from at least 3 measurements.       

Differences in ammonia, TS, VS, FOS/TAC, COD, sCOD and pH were insignificant 

between the two digester designs with average values of 1.5 g/L, 2.4%, 1.4%, 0.2, 

24.3 g/L, 7.1 g/L and 7.9, respectively. The FOS/TAC ratio has long been recognised 
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as a guide value for assessing fermentation processes. It enables process problems 

extending as far as the imminent inversion of the digester biology to be detected at 

an early stage, so that countermeasures can be initiated (Lange, 2007). Each 

digester has its own optimal FOS/TAC ratio at which point it can be considered 

‘healthy’. Values of 0.2 suggest that both digesters are able to cope with this rate of 

nutrient addition and are behaving in a similar manner. The OBR produced lower 

values for TS and VS compared with the STR possibly due to either increased 

conversion or small particles settling in the OBR, however; this difference is 

statistically insignificant. The concentration of VOAs was lower in the OBR than the 

STR with values of 2.0 and 2.2 g/L, respectively. This reduction of 9% suggests the 

OBR is utilising a greater proportion of nutrients and converting it to biogas thereby 

increasing the volumes produced. Concentrations of COD, sCOD and VOAs in the 

feed were significantly higher compared to digestate from both digesters. This is 

expected because fresh feed is rich in complex organic compounds which serve as a 

nutrient source for biogas production. Their concentrations reduce in the digesters as 

the reactions proceed and biogas is produced.       

These results suggest that OBRs operated with continuous agitation are capable of 

intensifying the AD process compared to standard technologies based on 

conventional STR designs operated with intermittent agitation. The OBR 

demonstrated a 43% increase in biogas production coupled with a 9% decrease in 

the concentration of VOAs compared to the STR. Analysis of compounds and 

parameters showed that both digesters were stable. However, agitation in the OBR 

was continuous whereas the STR was agitated for 2 minutes every half hour. The 

reason for increased biogas production in the OBR could be a result of the mixing 

type, some separation of the process stages or purely a result of continuous 

agitation, and should be identified to enable development of the technology.       

6.4.3 Glycerol addition 

Glycerol was added to the feed after 42.5 days at a total concentration of 1.4% to 

provide a readily available carbon source, increase biogas productivity and 

accentuate any differences between the digesters. Addition occurred without 

restarting the digesters thereby subjecting the process to a ‘step change’ in feed 

composition. The agitation intensities and feed rates were maintained at the levels 

described in conditions 1 with a HRT of 10 days, continuous agitation in the OBR and 
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intermittent agitation in the STR. The performance of both digesters was determined 

principally by methane production rates. Figure 6.7 shows the cumulative methane 

volumes calculated from biogas composition and volume data produced over the 

entire study for both digesters.  

Figure 6.7: Cumulative methane volumes produced by the digesters based on OBR (black) and STR 
(red) technologies over the entire study. Dotted arrows represent step changes in agitation intensity or 
feed rate outlined in Table 6.1. The purple arrow indicates 1.4% glycerol addition.   

There was an increase of ~270% in methane production in both digesters ~3 days 

after glycerol addition which is consistent with previous studies (Robra et al., 2010, 

Castrillón et al., 2011). However, methane production decreased significantly in the 

STR with continued addition of glycerol at 1.4% whereas the OBR maintained 

increased levels of methane production. This suggests the STR destabilised due to 

the rapid increase in nutrient availability caused by glycerol. Figures 6.8 and 6.9 

show the pH and FOS/TAC ratios, respectively, for both digesters over the entire 

study. 
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Figure 6.8: Average pH for the digesters based on OBR (black) and STR (red) technologies over the 
entire study. Dotted arrows represent step changes in agitation intensity or feed rate outlined in Table 
6.1. The purple arrow indicates 1.4% glycerol addition.  
  

Figure 6.9: FOS/TAC ratios for the digesters based on OBR (black) and STR (red) technologies over 
the entire study. Dotted arrows represent step changes in agitation intensity or feed rate outlined in 
Table 6.1. The purple arrow indicates 1.4% glycerol addition. 

The pH decreased significantly in both digesters shortly after glycerol addition. Rapid 

conversion of glycerol to VOAs occurs during the initial hydrolysis and acidogenesis 

stages of AD. Increases in acid concentrations in the digester contents results in a 
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decrease in pH, shown in Figure 6.8 for both digesters. This also increases the 

FOS/TAC ratio, as shown in Figure 6.9, as more acids are present. High FOS/TAC 

ratios indicate reduced buffering capacity and the imminent destabilisation of the 

process. A continued reduction in pH results in complete process collapse due to 

unsuitable conditions for the correct consortia of microorganisms to grow and 

metabolise, especially those responsible for methanogenesis. 

Figures 6.8 and 6.9 show severe decreases in pH and increases in FOS/TAC ratios, 

respectively, for the STR compared to the OBR after glycerol addition. A reduction in 

the feed rate to 2 L/day coupled with continuous agitation was required in the STR to 

prevent complete process collapse. The process slowly recovered over a period of 

10 days in the STR at this reduced feed rate until steady state was reached 

(conditions 2). It was then possible to increase the feed rate to the initial value of 4 

L/day in the STR (conditions 3) without process destabilisation. However, the OBR 

demonstrated an enhanced capacity to cope with the shock load of increased 

nutrients as it was able to recover at the continued, higher feed rate of 4 L/day.  

Any acids produced in the STR are rapidly mixed throughout the entire contents, 

thereby immediately affecting all microorganisms. The tubular nature of the OBR 

provides a ‘buffer zone’ near the feed inlet where acids produced through hydrolysis 

and acidogenesis accumulate. The mixing time studies showed that components 

would be fully mixed within at least 40 hours, however; it is likely that a large 

proportion of the acids would be converted by acetogenesis and methanogenesis 

before this time. This results in reduced acid exposure to microorganisms further 

down the OBR which could minimise the inhibitory effect caused by a decrease in 

pH. Figure 6.10 shows the average pH down the OBR length for the period of dairy 

slurry and co-digestion with glycerol.  

The pH for digestion of dairy slurry was similar at all locations down the OBR at 7.5-

7.8. However, with glycerol addition, the pH at probe 1 was significantly lower (7.4) 

compared to the rest of the digester (7.6-7.8), except for probe 6 (7.4). This is 

consistent with the hypothesis that VOAs are rapidly formed near the feed inlet and 

then converted by the AD process before being mixed down the OBR. The reduction 

in pH at probe 6 is difficult to explain and needs further work to identify the reason. 

These results strongly suggest that digesters based on OBR technology are able to 
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cope with shock loads in nutrient availability due to a ‘buffer zone’ effect even without 

the presence of plug flow.   

Figure 6.10: The average pH down the OBR digester length for dairy slurry (black) and glycerol 
addition (red). Data from probe 2 was not used due to a technical fault.        

6.4.4 Digester performance, agitation intensity and feed rate 

Agitation intensity or feed rate was changed in both digesters which were then left to 

stabilise at the new conditions, identified by maintenance of steady state in terms of 

methane production. The performance of each digester was then determined before 

implementing another step change in either the agitation intensity or feed rate. 

Previous analyses have described digester performance in terms of total biogas 

(Figure 6.4) or methane (Figure 6.7) production, however; more appropriate criteria 

are the yields of methane produced. Yield analyses were performed in terms of the 

volume of methane produced per 1) L feed added and 2) kg VS added, with average 

values calculated over a period of steady state methane production and shown for 

each of the conditions in Figures 6.11 and 6.12, respectively.  
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Figure 6.11: Methane yields for each condition in the OBR (black) and STR (red) in terms of L 
methane produced per L feed added to the digesters. Error bars represent +/- 1 standard deviation 
from the measurement with the highest error (gas composition).  
 

Figure 6.12: Methane yields for each condition in the OBR (black) and STR (red) in terms of m
3
 

methane produced per kg VS added to the digesters. Error bars represent +/- 1 standard deviation 
from the measurement with the highest error (gas composition).   

Methane yields were also calculated for kg COD removed, however; the results were 

variable and significantly different from the other yield analyses performed and 

therefore not used. 
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The subsequent comparisons between conditions and digesters consider both 

methane analyses. Figures 6.11 and 6.12 show increased methane yield from the 

OBR compared to the STR for conditions 1 which is consistent with the previous 

analysis (see §6.4.2). Both digesters were continuously agitated for conditions 2 with 

double the feed rate in the OBR (4 L/day) to that of the STR (2 L/day). However, the 

differences in methane yield for both digesters was statistically insignificant which 

indicates that the OBR was able to utilise feed as efficiently as the STR at a much 

reduced HRT of 10 days.  

The feed rate was increased to 4 L/day in the STR for conditions 3 and maintained in 

the OBR at those described in conditions 2. Both digesters produced similar methane 

yields with continuous agitation and feed rates of 4 L/day (HRT=10 days) which 

indicates that both technologies perform in a similar manner at these conditions and 

suggests that the increase in biogas production from the OBR, seen for conditions 1, 

was caused by continuous agitation. It must be noted that there was a significant 

increase in methane yield observed in the OBR between conditions 2 and 3 which 

was unexpected because the conditions were identical. This increase may be 

explained by changes in feed quality caused by inter-batch variability, which is 

supported by the fact that the STR and OBR performed similarly under conditions 3. 

Fresh slurry was delivered to the facility on a weekly basis with no guarantee that the 

quality, in terms of nutrient content or availability, would be consistent. There was a 

long period of ~3 weeks between conditions 2 and 3 (Figure 6.7), as the STR 

recovered from the shock load caused by glycerol addition. The results suggest that 

feed quality changed significantly over this long period resulting in changes in 

methane yields. Therefore, reliable comparisons cannot be made between conditions 

over long time periods due to potential changes in feed quality which is difficult to 

control over the long study time required. However, maintenance of consistent feed 

quality could be achieved in future by sourcing a large volume of slurry sufficient for 

the entire study period and chilling to prevent degradation, if practical to do so.  

Agitation intensities were increased in both digesters for conditions 4, which 

increased the methane yields by 9% and 10% for the OBR and STR, respectively, 

compared to conditions 3. This suggests that increased agitation intensities 

increased reaction rates through more efficient mixing and therefore feed conversion. 

The difference in methane yield between the OBR and STR for conditions 4 was 



123 
 

123 
 

insignificant which indicates similar performance in both digesters for these 

conditions. Agitation intensities were increased again for conditions 5, at which point 

the STR showed signs of process destabilisation with a decreased methane yield, 

whereas the OBR maintained a similar methane yield compared to conditions 4. 

There was a significant increase in the methane yield in terms of VS added for the 

OBR but no significant change in terms of feed volume. VS in the feed was 1.77% 

and 1.54% for conditions 4 and 5, respectively, which results in a higher yield for 

conditions 5 compared to conditions 4 because similar methane volumes were being 

produced in the OBR. This indicates a change in the feed composition which 

significantly impacts on the yield obtained.       

These results indicate that continuous agitation increases methane yields and is 

beneficial to AD processes. This could be caused by removal of concentration 

gradients throughout the digester contents and/or movement of microorganisms to 

encourage floc formation and syntrophic relationships, thereby increasing kinetic 

effectiveness (Schink and Stams, 2006). However, relatively moderate levels of 

agitation (160 rpm) in digesters based on STR technology result in process 

destabilisation with decreased methane yields. This could be caused by the 

generation of high shear environments that disrupt floc formation and reduce kinetic 

effectiveness, which is inhibitory to the process. Increased agitation intensities in the 

OBR were not inhibitory to the AD process because of the lower average shear (Ni et 

al., 2000) environments generated that are less likely to disrupt floc formation. A 

balance between continuous agitation and intensity is therefore required to maximise 

methane yields from AD processes.  

Agitation intensities were reduced to the median values in both digesters (Reo=3220 

and 80 rpm) before periodically increasing the feed rate to 6 (conditions 6), 8 

(conditions 7) and finally 10 (conditions 8) L/day to give HRTs of 6.7, 5 and 4 days, 

respectively. Figures 6.11 and 6.12 show a sequential reduction in methane yields in 

the OBR from conditions 5 through 7 and in the STR from conditions 4 through 8. 

This suggests that the increased feed rates provided insufficient time for optimum 

conversion of feed components to biogas which results in reduced methane yields. 

Differences in methane yields between the digesters for conditions 6 and 7 were also 

insignificant which indicates that both digesters were behaving in a similar manner 

with regards to methane yield.  
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The OBR demonstrated a 24% increase in methane yield compared to the STR at 

the highest feed rate (10 L/day) tested for conditions 8. However, a decrease in yield 

was observed in the OBR from conditions 8 to 9 which could be the result of 

microbial wash out caused by the consistently high feed rate. Wash out occurs when 

the rate of microbial growth is less than the feed rate which results in a higher F/M 

ratio and lower conversion of nutrients to biogas.   

Agitation was set to intermittent in the STR whilst continuous agitation was 

maintained in the OBR for conditions 9. The results show that the OBR demonstrated 

a 30% increase in methane yields compared to the STR which is consistent with the 

hypothesis that continuous agitation (of the non-shear type) is required to maximise 

methane yields. The STR did not show any signs of process destabilisation at the 

high feed rate of 10 L/day with intermittent agitation; in fact the FOS/TAC ratio started 

to recover at condition 9, following an increase from condition 6 through to 9 due to 

increasing feed rate with constant mixing. This indicates that continuous agitation in 

an STR is not required to prevent process destabilisation once the digester has 

adapted to changes in feed quality. Therefore,  the presence of a ‘buffer zone’ in the 

OBR is the aspect which enables this digester type to cope with shock loads in 

nutrient availability such as glycerol addition. 

The pH dropped significantly in the OBR near the end of the study which suggests 

process destabilisation. Possible removal or reduction of the ‘buffer zone’ by the high 

feed rate could expose microorganisms near the end of the OBR to conditions at the 

feed inlet i.e. higher acid concentrations and lower pH. Further work is required to 

identify the highest feed rates achievable in both digester types before process 

destabilisation occurs.  

The results generated from changes in agitation and feed rate demonstrate the 

following: 1) continuous agitation is required to maximise methane yield from AD 

processes; 2) relatively moderate agitation intensities (160 rpm) are inhibitory to AD 

for digesters based on STR technology; 3) presence of a ‘buffer zone’ in digesters 

based on OBR technology enable the process to cope with shock loads in nutrient 

availability; 4) This ‘buffer zone’ is generated without the presence of plug flow; and 

5) HRTs of 10 days gave maximum methane yields in both digester types for the 

blend of feed used.                        
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6.4.5 Optimum conditions 

Sample analyses were used to determine the optimum conditions required to 

maximise the methane yield. The previous results demonstrate that continuous 

agitation is required to maximise the methane yield and increases in the intensity can 

improve methane yields but can also become inhibitory in STRs. Therefore, optimum 

continuous agitation intensities of ~3200<Reo<6400 and 80 rpm in the OBR and 

STR, respectively, are required to maximise methane yields from this feed blend.  

The organic loading rate (OLR) can be used to determine the amount of digestible 

organic solids (VS) or organic compounds (COD) being added to a digester and can 

be expressed as either kg of COD or VS added per m3 of the digester per day. Figure 

6.13 shows specific methane yields (SMYs) (m3 methane/kg VSadded) produced at 

different OLRs for co-digestion with glycerol in both digesters (conditions 2-9).  

Figure 6.13: Specific methane yields plotted against the organic loading rates (OLRs) for the OBR 
(black) and STR (red) digesters during conditions 2-9 in both digesters. Black, dotted circles represent 
results achieved for conditions 2 in both digesters.  

The OLR to maximise methane yields in both digester designs was shown to be ~4.3 

kg COD/m3 day. Increases in the OLR above 4.3 kg COD/m3 day was shown to 

result in decreased SMYs in both digester designs which indicate the processes are 

performing less efficiently with regards to nutrient conversion to methane. The dotted, 

black circles in Figure 6.14 represent results obtained for conditions 2. The lower 
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SMYs observed for conditions 2 could be a result of reduced feed quality and a lower 

OLR, especially for the STR which was operated at half the feed rate of the OBR. 

The trend fitted to Figure 6.13 shows that SMY increases with reduced OLR. Further 

work is required to determine the optimum OLR as it is reasonable to assume that 

the SMY will begin to decrease with extremely low OLRs. Table 6.2 shows the 

maximum SMYs and associated OLRs obtained for digestion of dairy slurry and co-

digestion with glycerol for this study and those available in the literature. Castrillón 

(2013) and Robra (2010) used STR type digesters, with no dedicated stirring device 

used by Robra (2010). Amon (2007) did not specify the digester deign used.  

Table 6.2: Maximum specific methane yields (SMYs) (m
3
/kg VSadded) obtained for AD of dairy slurry 

(DS) and co-digestion with glycerol and associated organic loading rates (OLRs) (kg COD/m
3
 day).  

Digester or study 

SMY (DS) Glycerol 
SMY(Co-
digestion) 

OLR (Co-
digestion) 

m
3
/kg 

VSadded 
% v/v m

3
/kg VSadded kg COD/m

3
 day 

OBR 0.11 1.4 0.51 4.30 

STR 0.09 1.4 0.40 4.30 

(Robra et al., 2010) - 5.8-8.7 0.58 - 

(Castrillón et al., 2013) - 3.0 0.59 6.44 

(Amon et al., 2007)  0.17 - - - 

The maximum SMYs obtained for digestion of dairy slurry in this study were 0.11 and 

0.09 m3/kg VSadded for the OBR and STR, respectively, compared to 0.17 m3/kg 

VSadded in the literature (Amon et al., 2007). The maximum SMYs obtained for co-

digestion with glycerol were 0.51 and 0.40 m3/kg VSadded for the OBR and STR, 

respectively, compared to ~0.59 m3/kg VSadded in the literature (Robra et al., 2010, 

Castrillón et al., 2013). It is difficult to make direct comparisons between studies 

because of the large number of additional variables which include glycerol 

concentration, digester design, feed quality/blend, process control and set-up. 

Nevertheless, the values generated in this study and those in the literature are 

somewhat similar and suggest the results from this study are reliable. The OBR was 

able to generate a SMY 28% higher than the STR over the entire study period, 

however; this increase cannot be generalised between the two digester designs. 

Similar SMYs were obtained in both digesters for conditions 2, 3, 4, 6 and 7 with the 

OBR outperforming the STR for conditions 5, 8 and 9. The STR had destabilised for 

conditions 5 due to high shear agitation and agitation was intermittent for conditions 

9. Therefore, the SMYs were shown to be similar in both digesters for the majority of 

conditions tested in this study.      
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6.4.6 Power consumption 

The two main objectives of AD are to produce biogas which can be used as a 

sustainable energy source and treat waste streams by reducing its organic matter 

content to acceptable levels. Digestate that meets the standards set out in the 

Publicly Available Specification (PAS) 110 is regarded as fully recovered and no 

longer considered as a waste material, which can be sold and/or used as a ‘bio-

fertiliser’ (WRAP, 2014). Commercial AD systems can therefore generate profit from 

the sale of biogas and bio-fertiliser as well as the provision of a service to treat waste 

material. However, these products/services are high volume, low value which 

requires a strong focus on capital and operating costs to enhance the commercial 

potential of the endeavour. A major operating cost associated with AD is power 

consumption of the facility, particularly for agitation and temperature control.  

Theoretical power densities (P/Vs) were calculated for the STR and OBR using the 

relationships defined in equations 7 and 8, respectively, for agitation intensities. The 

estimated P/Vs and agitation parameters required for each of the conditions in both 

digesters during the study are summarised in Table 6.3. 

Table 6.3: Theoretical power density (P/V) requirements (W/m
3
) to achieve the agitation  

intensities in this study for both digester designs. Intermittent (int.) agitation.  

Condition 
OBR STR P/V (W/m

3
) 

Xo (mm) f (Hz) Reo rpm OBR STR 

0 10.3 0.5 1610 40 (int.) 3.0 0.2 

1 10.3 0.5 1610 40 (int.) 3.0 0.2 

2 10.3 0.5 1610 40 3.0 2.0 

3 10.3 0.5 1610 40 3.0 2.0 

4 20.5 0.5 3220 80 23 18 

5 20.5 1.0 6440 160 190 150 

6 20.5 0.5 3220 80 23 18 

7 20.5 0.5 3220 80 23 18 

8 20.5 0.5 3220 80 23 18 

9 20.5 0.5 3220 80 (int.) 23 1.2 

 

The P/Vs described in Table 3 indicate that the digesters were subjected to similar 

levels of power input for the period of the study focused on the effects of agitation 

intensity and feed rate (conditions 3-8). Figure 6.14 shows the methane yields 

obtained from both digesters at the three P/Vs tested. 
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Figure 6.14: Methane yields in terms of feed volume (solid) and VS added (dotted) achieved at 
increasing power densities (W/m

3
) for the OBR (black) and STR (red). Error bars represent +/- 1 

standard deviation from the measurement with the highest error (gas composition). 

Both digesters achieved similar methane yields at lower P/Vs which were maximised 

for ~20 W/m3. The OBR maintained this yield at the highest agitation intensity tested 

which required ~190 W/m3, however; the STR demonstrated a significant reduction in 

the yield at a significantly lower P/V of ~150 W/m3. This reduction in the yield 

suggests initiation of process destabilisation and is consistent with previous work 

which has shown that OBR technology is able to generate lower average shear 

environments compared to STR technology (Ni et al., 2000). The lower shear 

environment is conducive to floc formation, which enhances syntrophic relationships 

and kinetic effectiveness (Schink and Stams, 2006). High shear environments 

generated in the STR near the impeller disrupt floc formation which results in process 

destabilisation and a reduction in methane yields. OBRs are therefore able to provide 

a significantly larger agitation intensity range for AD processes without inhibiting 

methane production. 

The previous analysis was done with theoretical P/V calculations. However, the 

actual power consumption required for agitation was measured with an energy 

monitor (efergy, engage hub 1.1). For conditions 3, agitation in the OBR and STR 

required 1822 and 17 W/m3, respectively. In comparison, the theoretical P/V 

requirements were significantly less than those actually used, especially for the OBR. 
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Equipment is never 100% energy efficient as losses are produced through heat and 

sound, for example. Therefore, the theoretical power consumption calculated is the 

absolute minimum which is never achieved in practice. Power consumption in the 

OBR was orders of magnitude higher than those calculated and used in the STR, 

which was unexpected because OBR technology is cited as being energy efficient 

(Abbott et al., 2014b, Jambi et al., 2013). However, the oscillating pump used was 

oversized for the equipment, so was operated at only 3% of its maximum output. This 

exacerbates energy losses as a significant amount of energy is required to merely 

keep the pump on stand-by. This highlights the need to ensure equipment meets 

specification requirements, thereby minimising energy consumption.      

Another major source of power consumption associated with AD facilties is 

temperature control. Many facilities operate in mesophilic (20-45oC) or thermophilic 

(49-57oC) temperature ranges to maximise biogas production, which requires 

(especially in the UK) heating apparatus. An energy monitor (efergy, engage hub 1.1) 

was used to directly measure the power consumption of the temperature control units 

used for both digesters. The results showed that the OBR and STR required 44 and 

5 kWh/day, respectively, to maintain the set point temperature (~36oC). This 

translates as 89% less power consumption for the STR compared to the OBR.  

The tubular design and in this instance, the material used (stainless steel), of the 

OBR resulted in a much greater heat loss compared to the STR. At 20 m in length, 

the OBR has a surface area of ~3.1 m
2
 compared to the STR at ~0.57 m

2
. Both 

digesters have a volume of 40 L equating to surface area to volume (SA:V) ratios of 

77.5 and 14.3 m-1 for the OBR and STR, respectively; a reduction of 82% in the STR 

compared to the OBR. The OBR also requires a larger pump to circulate water 

around the jacketed columns. These aspects of the OBR result in significantly 

increased power consumptions required for temperature control, which is undesirable 

for commercial facilties. This could be mitigated through digester lagging to reduce 

temperature loss; increasing the OBR diameter to reduce SA:V ratios; and/or housing 

the entire OBR unit in a closed vessel which is maintained at the desired 

temperature. However, it appears difficult to achieve similar power consumption 

requirements for temperature control to those digesters based on STR technology 

without significant design changes to the present OBR.                   



130 
 

130 
 

6.4.7 Design considerations 

A major advantage of OBR technology is the ability to scale up in a linear and more 

predictable manner (Smith and Mackley, 2006, Smith, 1999) compared to STR 

technologies where numerous scale up methodologies exist (Junker, 2004). Smith 

(1999) was able to demonstrate that multi-orifice baffles could be used to maintain 

the conditions achieved in small diameter OBRs (10-100 mm diameter) in those with 

much larger diameters (>150 mm) by simulating the effect of numerous OBRs 

operated in parallel, another scale up methodology (Ni, 1994). By adopting the multi-

orifice baffle scale up approach, the SA:V ratio of OBRs could be significantly 

reduced thereby decreasing the power consumption required for temperature control. 

Furthermore, it is likely that OBRs with increased diameters could process feed with 

a relatively high particulate content due to the removal of constricted regions formed 

by ‘u-bends’. Figure 6.15 shows the design of a 200 mm diameter OBR which could 

be operated as 16 individual 50 mm diameter OBRs in parallel.  

OBRs scaled with multi-orifice baffles could be designed to have diameters 

approaching those of comparable STRs which would result in equal SA:V ratios and 

remove the power consumption issue identified for temperature control. This would 

enable replication of the agitation environment at larger scale, however; the OBR 

would lose its ‘buffer zone’ and become sensitive to ‘shock’ changes in feed 

composition. Plug flow would also not be possible, which prevents separation of the 

process stages and subsequent optimisation to maximise methane production. A 

balance therefore exists between power consumption and simple design on one 

hand; and process separation through plug flow and a ‘buffer zone’ on the other for 

digesters based on OBR technology. The OBR used in this study has achieved and 

sometimes exceeded methane yields obtained from a more conventional STR and 

was able to cope with shock changes in feed composition making it more robust. 

However, although the current OBR showed potential for the AD process, changes to 

the design are required to reduce power consumption and simplify the design before 

digesters based on the technology are commercially viable.     
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Figure 6.15: Multi-orifice baffle design creating the effect of 16 ‘standard design’ OBRs operated in 
parallel for a 200 mm diameter reactor. Reproduced (Abbott et al., 2013). 
 

6.5 Conclusions and future work 

This study has compared the performance of two digester designs based on OBR 

and STR technologies for AD of dairy slurry and co-digestion with glycerol. 

Blockages demonstrated that feed with a particulate content was not suitable for this 

OBR design, which required centrifugation of slurry to prevent further blockages. 

Biogas production was enhanced by 43% in the OBR with continuous agitation 

compared to the STR with intermittent agitation. Destabilisation occurred in the STR 

with the addition of 1.4% glycerol to the feed which required a reduction in the feed 

rate and continuous agitation to prevent complete process collapse. The OBR was 

able to cope with a shock change in feed composition due a ‘buffer zone’ created by 

the tubular design. Co-digestion with glycerol enhanced methane production by 

~270% in both digesters compared to AD of dairy slurry. Maximum SMYs of 0.51 and 

0.40 m3/kg VSadded were achieved at theoretical P/Vs of ~190 and 20 W/m3 in the 

OBR and STR, respectively. At P/V=150 W/m3 the STR showed a significant 

reduction in the SMY, which indicates process destabilisation at moderate agitation 

intensities. The optimum OLR in both digesters was shown to be ~4.3 kg COD/m3 

day which generated 0.51 and 0.40 m3/kg VSadded for the OBR and STR, 

respectively, compared to 6.44 kg COD/m3 day and ~0.59 m3/kg VSadded in the 

literature (Castrillón et al., 2013). Theoretical power consumption calculations for 

75 mm
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agitation were shown to be significantly less than those measured, probably due to 

equipment inefficiencies. These measurements also highlighted the importance of 

adequate equipment specification to minimise power consumption. A value of 89% 

less power consumption for temperature control was measured for the STR 

compared to the OBR. This difference was probably caused by the STR having 82% 

less SA:V ratio compared to the OBR, which would reduce heat loss. 

These results demonstrate for the first time that OBR technology is capable of being 

used for AD and can equal or exceed the performance in terms of SMY of digesters 

based on STR technology. OBRs offer a platform for the development of processes 

under plug flow conditions, which for AD could enable separation and optimisation of 

the four process stages. This is difficult to achieve with conventional STR and vessel 

based digesters so offers a unique aspect which needs further development to 

determine the extent to which OBR technology could intensify the AD process and 

enhance uptake of commercial AD plants. Furthermore, the baffle plates required for 

OBR operation provide a large, internal surface area suitable for microorganism 

immobilisation which, if achieved, could significantly increase the SRT and generate 

low feed to microorganism (F/M) ratios that increase digestion rates and methane 

production.                                
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Chapter 7: Conclusions and future work 

7.1 Conclusions 

OBR technology provides an alternative reactor design to conventional STR, tubular 

and/or flat panel technologies. It could be used to intensify a wide range of 

processes. This could be achieved through development of continuous processes 

under plug flow conditions to increase throughput per reactor volume and reduce 

plant footprint (Stonestreet and van der Veeken, 1999, Abbott et al., 2014a, 

Stonestreet and Harvey, 2002); generation of intimate mixing under low shear 

combined with enhanced mass and heat transfer to increase reaction rates (Ni et al., 

2000, Mackley and Stonestreet, 1995, Ni et al., 1995); and reductions in power 

consumption required for mixing to improve overall process economics (Abbott et al., 

2014b, Jambi et al., 2013). This chapter presents the main findings of four research 

projects, followed by suggestions for future research to continue development of 

OBR technology towards commercial applications. 

7.2 Modelling plug flow 

A central composite experimental design was used to evaluate the effects of 

amplitude (Xo), frequency (f) and net flow (Q) on the quality of plug flow achieved 

during continuous operation of a ‘standard’ OBR design by analysing residence time 

distribution profiles (RTD). The following were key findings:  

 The tanks-in-series (TiS) model was shown to be a good representation of the 

flow conditions in an OBR.  

 Mass balances demonstrated that >95% of tracer material introduced passed 

through the reactor indicating little stagnation.  

 A second order polynomial model (R2=92.1%) was developed to predict the 

quality of plug flow from three variable factors (Xo, f and Q). 

 Plug flow was maximised for Ψ=1.9 which is in the range previously identified 

by Stonestreet and van der Veeken (1999) (1.8<Ψ<2.0).  

 Generation of plug flow is not entirely decoupled from the mixing intensity. 

Hence OBRs can still be “long” if plug flow is desired over a long residence 

time. However, they are still orders of magnitude shorter than conventional 

plug flow designs. 
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The final point above is important for development of commercial processes based 

on OBR technology because it demonstrates the need for consideration of OBR 

design in relation to process requirements. For example, not all OBRs can achieve 

plug flow for all processes, especially those with long residence times (>24 hours) 

such as many bioprocesses (e.g. enzymatic saccharification). 

7.3 Enzymatic saccharification 

Enzymatic saccharification of pure α-cellulose was conducted using OBR and 

conventional STR technologies over a range of mixing intensities, generating the 

following key findings:  

 Reaction rates were mass transfer limited in both reactor designs at 

conditions of no or minimal mixing.  

 The maximum conversion rate in the OBR was observed at a relatively low 

power density (2.36 W/m3) compared to the STR (37.2-250 W/m3).  

 No evidence of shear inactivation was observed for STR runs due to a 

relatively low impeller speed compared to previous studies (Gunjikar et al., 

2001, Ganesh et al., 2000).  

 A comparison of the theoretical power densities required to achieve maximum 

conversion rates shows a reduction of 94-99% in the OBR (2.36 W/m3) 

compared to the STR (37.2-250 W/m3). 

 OBR technology could potentially increase profits by 2-14% compared to 

enzymatic saccharification processes based on STR technology.   

The study demonstrated that OBRs are suitable for performing enzymatic 

saccharification reactions in a power-efficient manner compared to conventional 

STRs. However, a simple economic assessment with numerous assumptions 

suggested that the overall improvement would be 2-14% for a full scale process 

(2000 ton corn stover/day). This level of improvement is relatively low compared to 

the high risk associated with the design and manufacture of OBRs suitable for a full 

scale process. Commercial adoption of OBR technology is likely to require greater 

improvements that outweigh the risks associated with novel technologies.   
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7.4 Microalgae culture 

Chlamydomonas reinhardtii was grown in a modified OBR to test the technology for 

use as a photobioreactor (PBR). The following were key findings:   

 A flotation effect was observed without the need for addition of a frothing 

agent or surfactant.  

 The OBR demonstrated a 95% increase in the average maximum growth rate 

compared to control cultures in T-flasks. 

 Mixing intensity in the OBR had no effect on the maximum growth rate 

achieved, even with no mixing.   

 Linear growth was observed in all cultures which indicates limitation. 

The study demonstrated that OBR technology could be used for the liquid culture of 

microalgae. The tubular design is conducive to efficient harvest of sunlight and a 

closed system enables compliance with the necessary regulations and guidelines 

associated with GMO use and API manufacture. However, the mixing intensity was 

shown to have no effect on the growth rate achieved which suggests agitation 

caused by gas rising through the column is sufficient under these conditions. The 

main finding was a flotation effect which could enable development of a more 

economic process for the dual culture and harvest of microalgae cells.      

7.5 Anaerobic digestion 

This study compared the performance of two digester designs based on OBR and 

STR technologies for anaerobic digestion (AD) of dairy slurry and co-digestion with 

glycerol. The following were key findings:    

 Feed with a particulate content was not suitable for this OBR design. 

 Biogas production was enhanced by 43% in the OBR with continuous agitation 

compared to the STR with intermittent agitation.  

 Destabilisation occurred in the STR with the addition of 1.4% glycerol to the 

feed which required a reduction in the feed rate and continuous agitation to 

prevent complete process collapse.  

 The OBR was able to cope with a shock change in feed composition due a 

‘buffer zone’ created by the tubular design.  
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 Co-digestion with glycerol enhanced methane production by ~270% in both 

digesters compared to AD of dairy slurry.  

 Maximum specific methane yields (SMYs) of 0.51 and 0.40 m3/kg VSadded were 

achieved at theoretical P/Vs of ~190 and 20 W/m3 in the OBR and STR, 

respectively. 

 At P/V=150 W/m3 the STR showed a significant reduction in the SMY, which 

indicates process destabilisation at moderate agitation intensities. 

 The optimum organic loading rate (OLR) in both digesters was shown to be 

~4.3 kg COD/m3 day which generated 0.51 and 0.40 m3/kg VSadded for the 

OBR and STR, respectively, compared to 6.44 kg COD/m3 day and ~0.59 

m
3
/kg VSadded in the literature (Castrillón et al., 2013).  

 89% less power consumption was required for temperature control in the STR 

compared to the OBR due to a reduction of 82% in the SA:V ratio which 

reduces heat loss. 

These results demonstrate that OBR technology is capable of being used for AD and 

can equal or exceed the performance in terms of SMY of digesters based on STR 

technology. However, there are design issues with digesters based on OBR 

technology which include an increased SA:V ratio for heat loss; and potential 

blockages in ‘u-bends’ when using feed with a moderate particulate content.   

7.6 Future work     

This thesis has included a series of projects which have demonstrated the successful 

application of OBR technology to three distinct bioprocesses: enzymatic 

saccharification, microalgae culture and anaerobic digestion. The OBR was able to 

match or exceed process performance compared to more traditional technologies 

(i.e. STRs and/or T-flasks) for all three bioprocesses. This included a reduction in 

power requirements for mixing of 94-99% compared to an STR to maximise glucose 

production during enzymatic saccharification; a 95% increase in the maximum growth 

rate achieved compared to T-flasks for cultures of C. reinhardtii; and a 28% increase 

in the maximum specific methane yield obtained compared to an STR for co-

digestion of dairy slurry and glycerol. 

It is therefore clear that OBR technology offers a viable alternative to traditional 

technologies with the potential of further process intensification. If STR and OBR 
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technologies had been developed at similar times in history, then it is probable many 

commercial processes would use OBRs today due to the benefits on offer. However, 

the reality is that OBR technology is in its infancy with only ~30 years of development 

compared to STR technology which has been used for centuries. To justify the use of 

OBRs in place of STRs, the risks of adopting this novel technology must be far 

outweighed by the improvements. Further work is therefore required to demonstrate 

OBRs at pilot and industrial scales for applications that greatly benefit from the 

technology. Two possible applications identified in this thesis are the development of 

a dual culture and harvest device for microalgae culture; and intensification of AD 

through increased concentrated feed components and/or utilisation of the baffle 

surface for microorganism immobilisation. The research presented in this thesis 

provides results which further demonstrate the utility of OBR technology, especially 

for bioprocess related applications, and move a step closer to realising this potential 

in commercial systems which utilise the technology. 
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