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Abstract 
The NAD⁺-dependent class III histone deacetylase SIRT1 appears to increase 

healthspan in some model organisms. Details of how SIRT1 is regulated and affects 

specific systems linked to ageing are limited. Here we aimed to gather a body of data to 

be used to generate a mathematical model of the interactions between SIRT1, 

resveratrol, NAD⁺, Poly-ADP ribose polymerase (PARP) and chaperone mediated 

autophagy (CMA). There is evidence that the dietary polyphenol resveratrol can 

increase healthspan and is believed to do this through activating SIRT1. PARP repairs 

DNA single-strand breaks and is also considered to be a modifier of ageing. Both SIRT1 

and PARP consume NAD+, providing a point of interaction at the centre of cellular 

metabolism. Chaperone mediated autophagy (CMA) is reduced in ageing but evidence 

from our laboratory suggests the CMA regulator LAMP2 may be regulated by SIRT1, 

including by effects on DNA methylation at the LAMP2 promoter. 

Firstly, we observed that resveratrol increased SIRT1 mRNA, SIRT1 promoter activity 

and NAD⁺ in cultured cells (Caco-2). However, we also found that an increase in NAD⁺ 

reduced SIRT1 mRNA dramatically. Thus, interactions between SIRT1, resveratrol and 

NAD+ are complex. Secondly, SIRT1, PARP or NAD⁺ were each manipulated 

pharmaceutically or genetically and the response of the other two variables measured. 

Overall, the data suggested that SIRT1 and PARP have mutually inhibitory effects, which 

we hypothesise is driven by competition for NAD⁺. Next we developed and tested a 

functional assay based on a fluorescent substrate for CMA to measure activity directly. 

Preliminary findings indicated that reducing SIRT1 by siRNA decreased the activity of 

the pathway. Finally, LAMP2 mRNA expression was increased by the use of 5-aza-

deoxycytidine to induce DNA hypomethylation, providing proof of principle that the 

gene is regulated by DNA methylation.  Thus, the observed effect of SIRT1 on DNA 

methylation of the LAMP2 promoter may be the basis of its stimulatory effect on CMA. 

This body of work uncovers more information on the pleiotropic actions of SIRT1 

relevant to modifying cellular ageing.  The complexity of interactions with the other 

modifiers of ageing studied highlights the need for a system-level approach to data 

integration, and for further data to develop such a model, ultimately to identify target 

nodes for intervention to improve health-span. 
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1 Introduction 

1.1 Sirtuin1  

Sirtuin1 (SIRT1) is a NAD⁺-dependent deacetylase enzyme, found in the nucleus and 

cytoplasm that removes acetyl groups from lysine residues in proteins. In contrast to 

enzymes that require NAD⁺ as a co factor, where it is reduced to NADH in redox 

reactions, SIRT1 cleaves and thus consumes NAD⁺. Nicotinamide (NAM) is released 

from NAD⁺ as the acetyl group is transferred from the protein substrate to the ADP-

ribose to generate 2′-O-acetyl-adenosine disphosphoribose. Changes in the acetylation 

status of a protein can result in a functional change. For example, acetylated p53 is 

active but deacetylation by SIRT1 at lysine 382 attenuates p53 activity (Vaziri et al., 

2001).  

SIRT1 is made up of four domains: NAD⁺ binding domain, zinc binding domain, helical 

module and the C-terminal regulatory segment (CTR) (Figure 1.1.1 (Davenport et al., 

2014)). The active site is located between the zinc binding domain and the helical 

module. Upon substrate and NAD⁺ binding, the zinc binding domain and the helical 

module undergo a conformational change forming a hydrophobic tunnel. The CTR can 

 

Figure 1.1.1. SIRT1 crystal structure. Red- Pseudo substrate peptide, blue- NAD⁺ binding domain, green- zinc 

binding domain, yellow- helical module and purple- C-terminal regulatory segment Figure adapted from (Davenport 

et al., 2014).  



 

2 
 

also undergo a conformational change at the C terminal end and inhibit the active site 

by interacting with the helical module (Davenport et al., 2014). 

1.2 The SIRT1 as an energy sensor in the cell 

SIRT1 has a prominent role in energy sensing and metabolism in the cell, some details 

of which are outlined in Table 1.2.1.  

Table 1.2.1. Examples of actions of SIRT1 related to energy sensing. As reviewed by (Anastasiou and Krek, 

2006; Li, 2013). 

SIRT1 as an energy sensor 
Adipose tissue  SIRT1 promotes fat metabolism over fat storage in 

white adipocytes by repressing the activity of 
peroxisome proliferator-activated receptor gamma 
(PPAR-γ) through docking with the PPAR-γ co factors 
nuclear receptor co-repressor (NCoR) and silencing 
mediator of retinoid and thyroid hormone receptors 
(SMRT), causing reduced expression of PPAR-γ 
regulated genes. PPAR-γ promotes adipose 
differentiation and lipid storage (Picard et al., 2004).  

 SIRT1 deacetylation and activation of PPAR-γ on lysine 
268 and lysine 293 can promote the differentiation of 
white adipocytes to healthier brown adipocytes (Qiang 
et al., 2012). 

 Acetyl-CoA synthetases are activated by SIRT1 
deacetylation leading to the production of acetyl-CoA 
for fatty acid synthesis (Hallows et al., 2006). 

 Our laboratory has shown that genistein 
(phytoestrogen from soya) promotes white adipocyte 
differentiation to brown adipocytes and increases UCP1 
expression (brown adipocyte marker), the expression 
of which is prevented when SIRT1 is inhibited by EX-
527 (Sadat Aziz personal communications). 

Insulin secretion  Uncoupling protein 2 (UCP2) is transcriptionally 
repressed by SIRT1 as SIRT1 directly binds to the UCP2 
promoter. UCP2 reduction improves glucose stimulated 
insulin secretion in islet cells (Bordone et al., 2006). 

 SIRT1 over expression using a recombinant herpes 
simplex virus in C2C12 myotubes caused increased 
glucose uptake following insulin stimulation. However, 
when protein-tyrosine phosphatase 1B (PTP1B), a 
phosphatase enzyme, which when reduced improves 
whole body glucose uptake after insulin stimulation in 
Ptp1b null mice (Klaman et al., 2000), was over 
expressed alongside SIRT1, glucose uptake was 
impaired. It was suggested that SIRT1 down regulates 



 

3 
 

PTPB1 transcriptionally through deacetylation of 
histone 3 located at the promoter of PTP1B (Sun et al., 
2007). 

Liver processes  CREB regulated transcription coactivator 2 (CRTC2) is 
a transcription factor that regulates genes involved in 
gluconeogenesis. SIRT1 inhibition using sirtinol and 
nicotinamide in hepatocytes increased CRTC2 activity, 
acetylation and gluconeogenic gene expression. SIRT1 
deacetylation of CRTC2 could be a potential mechanism 
for SIRT1 regulation of CRTC2 and hence 
gluconeogenesis (Liu et al., 2008b). 

 PGC-1α is deacetylated at several lysine residues and 
activated by SIRT1 in 293T cells, which causes an 
increase in genes related to gluconeogenesis (PEPCK 
and G6Pase) and a decrease in genes related to 
glycolysis (Glucokinase and LPK) (Nemoto et al., 2005; 
Rodgers et al., 2005).  

 SIRT1 deacetylates sterol regulatory element-binding 
protein (SREBP), which results in decreased levels of 
the transcription factor localising in the nucleus of cells. 
Inhibition of SIRT1 using sirtinol and nicotinamide in 
293T and HeLa cells increased SREBP regulated gene 
expression (including LDLR and SCD1), such genes are 
involved in lipid storage, thus SIRT1 may attenuate 
lipid storage through repressing SREBP (Walker et al., 
2010). 

Neuronal  In the hypothalamus, anorexigenic POMC neurons 
inhibit feeding and the orexigenic agouti-related 
protein (AgRP) neurons promote feeding (Li, 2013). 
Inhibition of SIRT1 increased FOXO acetylation and 
reduced feeding through POMC and AgRP neurons 
(Cakir et al., 2009; Dietrich et al., 2010) 
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1.3 Regulation of SIRT1  

The activity or expression of SIRT1 is influenced by a number of mechanisms about 

which current knowledge is described below. 

1.3.1 Regulation of SIRT1 by NAD⁺ and components of its synthetic and degradation 

pathways. 

NAD⁺ is synthesised in the cell from the dietary amino acid tryptophan or through 

salvage pathways from NAD⁺ precursors, such as nicotinamide which, as explained, is 

one of the products of NAD⁺ cleavage during SIRT1-mediated protein substrate (lysine) 

deacetylation. Nicotinamide at physiological concentrations inhibits SIRT1 activity 

(Bitterman et al., 2002) resulting in an auto-regulatory feedback loop (Figure 1.3.1). As 

may be expected based on the requirement for NAD⁺ for SIRT1 function, Sirt1 

enzymatic activity was increased in mouse fibroblasts when expression of the enzyme 

nicotinamide phosphoribosyltransferase (NAMPT), which is involved in NAD⁺ salvage 

(Figure 1.3.1), was increased (Revollo et al., 2004). This effect of NAMPT on SIRT1 

activity may be one of the mechanisms through which reduced calorie intake activates 

SIRT1 since an increase in AMP-activated protein kinase (AMPK), a well-documented 

effect of dietary restriction (Greer and Brunet, 2009), has been shown to increase 

NAMPT transcription (Fulco et al., 2008). Increased Nampt expression in mouse 

fibroblasts was seen to increase Sirt1 expression, as well as Sirt1 activity (Revollo et al., 

2004). The underlying mechanism here is less apparent. A direct effect of NAMPT on 

the SIRT1 gene is a possibility, but more likely is that the manipulation involves other 

feedback loops, such as, the FOXO1/SIRT1 feedback loop described below.  

 

Figure 1.3.1. NAD⁺ Salvage Pathway. NAD⁺- Nicotinamide adenine dinucleotide, NAM- 

Nicotinamide, ADP- Adenosine diphosphate ribose, NAMPT- nicotinamide 

phosphoribosyltransferase NMN- nicotinamide mononucleotide, NMNAT- nicotinamide 

mononucleotide adenyltransferase. SIRT1 cleaves NAD⁺ in to NAM and 2′-O-acetyl-adenosine 

disphosphoribose, NAM inhibits SIRT1 activity and is also converted to NMN by NAMPT. NMN is 

then converted back to NAD⁺ by NMNAT. 
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1.3.2 Regulatory interactions between SIRT1 and key transcription factors 

Forkhead transcription factors (FOXO) control many cellular stress responses by 

regulating gene expression. FOXO1 has been identified as one of the targets of SIRT1 

deacetylation, which results in FOXO1 activation (Brunet et al., 2004). FOXO1 itself 

controls transcription of the SIRT1 gene, as indicated by increased expression of a 

reporter gene under the control of the SIRT1 promoter in HEK293 cells in which FOXO1 

was overexpressed (Xiong et al., 2011). Thus it appears that SIRT1 and FOXO1 interact 

in a positive feedback loop; SIRT1 activity increases FOXO1 activity and FOXO1 

increases SIRT1 expression. 

SIRT1 is also co-regulated in a feedback loop with the transcription factor c-MYC. c-MYC 

binds to the SIRT1 promoter and increases SIRT1 expression. However, is itself a 

substrate for SIRT1-catalysed deacetylation, which has been reported both to increase 

and repress its activity. Lysine 323 was found to be deacetylated by SIRT1, which was 

linked to c-MYC instability (Yuan et al., 2009). Whereas in another study SIRT1 

deacetylation was linked with lysine 63-linked ubiquitin chains and the stabilization of 

c-MYC (Menssen et al., 2012). Further research is needed to clarify the feedback loop, 

however, it may be the case that the feedback loop is cell line specific as both studies 

used different cell lines or be reliant on another stimuli.  

A potential SIRT1 negative feedback loop is with PPAR-γ. In mice it was shown that 

Sirt1 can deacetylate Ppar-γ at lysine 268 and 293, which activated Ppar-γ and 

promoted brown adipocyte formation (Qiang et al., 2012). PPAR-γ can also block SIRT1 

activity by directly binding to SIRT1 and when PPAR-γ was reduced by siRNA SIRT1 

protein expression increased in HeLa cells (Han et al., 2010). However, it has also been 

shown that SIRT1 can repress PPAR-γ activity by binding to its cofactors NCoR and 

SMRT in human 3T3-L1 adipocytes (Picard et al., 2004). Further data will be needed to 

clarify a negative feedback loop and under what circumstances SIRT1 activates or 

represses PPAR-γ.  
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1.3.3 Regulation of SIRT1 by reversible phosphorylation 

Whereas changes in NAD⁺ levels can take hours, regulation of SIRT1 by reversible 

phosphorylation provides a mechanism that causes relatively rapid changes in SIRT1 

activity. Below are just a few examples of SIRT1 regulation by phosophorylation: 

 Phosphorylation of SIRT1 at serine 434 located in the catalytic domain of SIRT1 

by cAMP-dependent protein kinase A (PKA) amplified SIRT1 catalytic activity 

(Gerhart-Hines et al., 2011).  

 Dual specificity tyrosine phosphorylation-regulated kinase (DYRK) 1A and 3 

mediated phosphorylation of SIRT1 at threonine 522 was shown to be 

protective against its aggregation, which may be an important heat shock 

response that maintains SIRT1 function at elevated temperatures (Guo et al., 

2012).  

 Finally, AMPK can phosphorylate SIRT1 at threonine 344, which blocked 

Deleted in Breast Cancer 1 (DBC1) from binding to SIRT1 and inhibiting SIRT1 

activity (Lau et al., 2014).  
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1.4 Ageing 

Ageing is a degenerative process occurring in the body over time. It affects all 

individuals but at different rates. Genetic and environmental factors, such as diet, 

pollution and smoking, can increase or decrease the risk of developing age-related 

diseases, such as dementia or cardiovascular disease. Level of exposure to these 

environmental factors will ultimately affect  the rate of ageing and lifespan.  

Genetic factors include hereditary mutations as well as mutations that occur as a result 

of environmental exposures. Mutations occur frequently in cells and are generally 

repaired through systems such as, the DNA damage response. However, excess damage 

occurring from toxin build-up over time can cause repair systems to become 

overloaded and hence mutations accumulate. These mutations may have a significant 

effect on systems in the cell and lead to disease. For example, a malfunctioning p53 

protein can result in the cell being unable to arrest the cell cycle, which can cause 

uncontrolled replication and tumour formation (Richardson, 2013).  

The influence of environmental factors can be positive or negative. For example, air 

pollution, solvents and pesticides can increase the risk of Alzheimer’s disease but 

antioxidants and omega-3 fatty acids can decrease the risk (Migliore and Coppede, 

2009). Oxidative stress due to free radicals (OH and O2-), is widely believed to be one of 

the main causes of ageing and is malleable in response to environmental factors 

(Migliore and Coppede, 2009).  

The gradual build-up of damage to DNA, proteins and lipid through oxidative stress and 

other mechanisms results in malfunctioning cellular processes linked to ageing. For 

example, irreparable damage can cause cell death through apoptosis or replicative 

senescence. Cell death and/or senescence reduce tissue integrity, which ultimately 

leads to age-related diseases. For example, osteoporosis can result from apoptosis of 

osteocytes (Boskey and Coleman, 2010). Other molecular events involved in the ageing 

process are discussed later in this chapter.  

It is well understood that smoking, drinking alcohol, air pollution and eating a diet high 

in saturated fats are all detrimental in ageing but it is less well understood how dietary 

factors or practises that reduce oxidative stress or its damaging effects affect the cell 
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and if such factors in the diet can reduce ageing. Such dietary modifications include 

dietary restriction (DR) (described below) and resveratrol, which has similar effects to 

DR and is a focus of the current project. 

1.5 Dietary restriction extends lifespan and reduces the risk of age-related 

diseases. 

Dietary restriction (DR) (arguably considered synonymous with calorie restriction) is 

a term used to describe a decrease in energy intake by 10-40 % whilst maintaining a 

diet complete in essential nutrients. It was first demonstrated in 1935 that DR could 

increase the lifespan of rodents (McCay et al., 1989). Following this discovery it has 

been shown that the lifespan of other model organisms can be influenced by energy 

intake. For example, replicative lifespan of Saccharomyces cerevisiae was increased by 

a growth medium in which the glucose concentration was reduced (Lin et al., 2000). It 

has been shown in many studies that DR can affect not only lifespan but can reduce the 

occurrence of age-related disease. For example, it has been shown in mice that DR can 

increase glucose tolerance and insulin sensitivity, reduce oxidative stress, reduce 

spontaneous cancers and protect neurons from environmental and intercellular 

stresses (Weindruch and Walford, 1982; Guo et al., 2002; Masoro, 2005; Martin et al., 

2006; Fontana, 2008). Thus, DR has been researched extensively in the pursuit of 

ameliorating age-related disease in humans.  

Relatively few studies have investigated the effects of DR in primates and results of 

those that have are conflicting. For example, a study conducted in rhesus monkeys 

found no effect of DR (30-40% reduction in calorie intake) on maximum lifespan and 

did not see risk factors of age-related diseases, including fasting serum glucose and 

triglycerides reduce, in animals receiving DR from a young age. However, there was a 

reduction in these risk factors when DR was implemented in older animals. Finally, 

disease incidence was measured in both young and old groups compared with controls 

, which indicated an improvement in diabetes and cancer rates in DR animals but not 

cardio vascular disease (NIA study) (Mattison .J et al., 2012). A second study running in 

parallel reported contrasting findings. Rhesus monkeys fed a calorie restricted diet 

(30% reduction in calorie intake) had a longer lifespan than monkeys fed ab libitum. 

There was also a lower incidence of cardiovascular disease, diabetes and cancer in the 
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calorie restricted animals compared with controls (WNPRC study) (Ramsey et al., 2000; 

Ricki J. Colman, 2009). Several confounding factors that may account for the differences 

can be identified. For example, the monkeys used in the WNPRC study were from India 

whereas the monkeys in the NIA study were from India and China; thus genetic variance 

may contribute to the discordant findings. It was demonstrated that genetic differences 

between strains of mice had a measurable effect on the overall outcome of a 40% DR 

intervention with a negative effect on lifespan in certain strains of mice being observed; 

thus DR may not be a universal effect (Liao et al., 2010). Furthermore, the WNPRC study 

fed an ad libitum diet of purified food to control monkeys whereas the control monkeys 

in the NIA study where not fed ad libitum but received a meal twice daily following ‘The 

National Research Council guidelines’ for food quantity for the age and size of the 

animal, and consisted of predominantly natural ingredients (Weindruch, 1996). It is 

clear that more studies in primate models are needed to elucidate if DR can have an 

effect on lifespan in such species. 

Human populations with different cultural dietary practices can give an indication of 

the effects of DR in humans. An associational study of the population of Okinawa, Japan, 

suggested that the high life expectancy is linked to a low calorie diet mainly consisting 

of fruit, vegetables (largely sweet potatoes) and soya, contrasting with the typical diet 

of the Western world, which is high in calories (Willcox et al., 2009). Also cell culture 

models can reveal mechanistic detail relevant to likely effects of DR. One such study 

created conditions similar to calorie restriction by reducing glucose in cell culture 

medium. Human lung fibroblasts grown in the low glucose medium showed an increase 

in cellular lifespan, coincident with reduced expression of the p16 gene (senescence 

regulator) and reduced senescence as measured by presence of β-galactosidase (a 

marker of senescence). In addition expression of SIRT1, which has been linked to 

longevity, was elevated. Consistent with the increase in SIRT1 expression being an 

important component of the increase in cellular lifespan (described below), SIRT1 

knockdown in glucose restricted fibroblasts abolished p16 down regulation, thus 

allowing p16 signalling and cellular senescence but cellular lifespan was not measured 

under reduced glucose conditions and SIRT1 knockdown (Li and Tollefsbol, 2011). 



 

10 
 

1.5.1 SIRT1 plays a key role in the response to dietary restriction. 

In 1999 it was demonstrated in Saccharomyces cerevisiae that the manipulation of 

Sirtuin 2 (Sir2, the homologue of mammalian SIRT1) had an effect on lifespan. The 

deletion of Sir2 shortened lifespan and the addition of an extra copy of Sir2 extended 

lifespan (Kaeberlein et al., 1999). Many studies have now shown effects on lifespan 

achieved by manipulation of sirtuin expression provide evidence that sirtuin activation 

may be a key component of the longevity response to DR (Guarente and Picard, 2005). 

Mice over expressing Sirt1 from a Sirt1 transgene showed a similar phenotype to DR 

mice, including reduced blood cholesterol, reduced insulin and fasting glucose 

(Bordone et al., 2007). More recently, it was shown that overexpression of Sirt1 in the 

brains of mice conferred longevity, suggested to be due to increased neuronal activity 

caused by increased signalling through the Nk2 homeobox1 transcription factor and 

upregulation of Orexin type 2 g-protein coupled receptor (Satoh et al., 2013). 

Expression of SIRT1 was also found to be increased in response to DR in rodent and 

human tissues (Cohen et al., 2004; Civitarese et al., 2007). 

The view that sirtuins are an important determinant of lifespan, including under 

conditions of DR, remains contentious, however, for example, a recent study using 

strains of Caenorhabditis elegans and Drosophila melanogaster in which the Sir2 gene 

was over expressed attributed extended lifespan to other confounding genetic factors 

(Burnett et al., 2011). In contrast, however a later study that controlled for genetic 

background confirmed a positive influence of Sir2 over expression on lifespan 

(Banerjee et al., 2012). Thus, the theory that SIRT1 could play a significant role in 

lifespan extension is still credible but requires more research to resolve these 

controversies.  

1.5.2 The role of NAD⁺ in response to DR. 

A reduction in NAD⁺ in response to DR has been proposed to be a key ‘energy sensing’ 

cellular mechanism that is pivoted in the longevity response (Moroz et al., 2014). 

However, NAD⁺ synthesis is also a requirement of lifespan extension by DR. For 

example, in Saccharomyces cerevisiae the Ntp1 protein (an enzyme involved in NAD⁺ 

synthesis) was required for lifespan extension (Lin et al., 2002). Similarly in 
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Caenorhabditis elegans Pnc-1 (a nicotinamidase found in the NAD⁺ salvage pathway) 

was required for lifespan extension under conditions of DR (Ghislain et al., 2002; Moroz 

et al., 2014). Possible resolution of these apparently contradictory ideas and findings is 

that a reduction in NAD⁺, signals reduced energy status and promotes longer survival, 

yet there is a minimum level below which, a further reduction becomes detrimental. 

1.6 Resveratrol a proposed DR mimetic. 

Resveratrol is a plant polyphenol found at a high concentration in the roots of plants 

and plant-based foods including Japanese knotweed, red grape skin and peanuts 

(Dolinsky and Dyck, 2011). Resveratrol has been found to mimic some of the effects of 

DR (Chung et al., 2012), examples of what are summarised in Table 1.6.1. 

Table 1.6.1. The effect of resveratrol on lifespan and age-related diseases 

Examples of 

studies reporting 

positive effects on 

lifespan. 

 In Saccharomyces cerevisiae fed 10 µM resveratrol there 

was an increase in lifespan by 70% (Howitz et al., 2003). 

 Drosophila melanogaster and Caenorhabditis elegans fed 

100 µM resveratrol had up to a 20% increase in lifespan 

(Wood et al., 2004).  

Examples of 

studies reporting 

action to reduce 

risk factors of 

Cardiovascular 

Disease 

  Resveratrol at 0.1 µM can potentially help reduce blood 

pressure through the stimulation of nitric oxide synthase 

in HUVEC cells (Nicholson et al., 2008).  

 In rat cardiac-myocytes 50 µM resveratrol can have an 

anti-hypertrophic affect through the activation of AMPK 

(Chan et al., 2008).  

Examples of 

studies reporting 

action to reduce 

risk factors of 

Diabetes  

 Obese mice fed a diet containing 0.04 % resveratrol had 

improved insulin sensitivity and reduced insulin-like 

growth factor-1 (Baur et al., 2006). 

 Resveratrol from 10-100 µM can reversibly inhibit 

glucose stimulated rat pancreatic cell insulin secretion 

(Szkudelski, 2006). 

Examples of 

studies reporting 

action to reduce 

risk factors of 

cancer 

 Resveratrol fed in the diet at 10 ppm is an inhibitor of 

Nuclear factor (NF)-kappa B in female rats (Banerjee et 

al., 2002). 

 Resveratrol at 150 µM prevented colon cancer cell 

proliferation by suppressing IGF-1 (Vanamala et al., 

2010). 

Despite the substantial body of evidence that resveratrol can have actions to extend 

lifespan or reduce risks of age-related disease, there are many examples of observations 

discordant with resveratrol having such beneficial actions. For example, a null effect 



 

12 
 

was reported in Drosophila melanogaster and Caenorhabditis elegans on lifespan 

extension (Bass et al., 2007). Such inconsistencies in reported actions are likely to be a 

result of the process to supply resveratrol within specific dosing regimens (for example, 

nutrient medium, exposure time and concentration) for it to be efficacious. 

1.6.1 Resveratrol mediates its effects through SIRT1. 

It was originally believed that resveratrol was a potent activator of SIRT1 and that 

SIRT1 activation played a key role in the positive actions of resveratrol on healthspan 

in model organisms (Borra et al., 2005; Zhu et al., 2011; Stiaccini et al., 2012). These 

findings, however, come under scrutiny when it was demonstrated that a fluorescent 

peptide substrate of SIRT1, which was used to show that resveratrol was a SIRT1 

activator, bound within the enzyme active site, producing artifactual effects. When the 

fluorescent tag was removed resveratrol and other related compounds appeared no 

longer to activate SIRT1 (Beher et al., 2009; Pacholec et al., 2010). However, the 

relationship may still exist as recent findings have shown that resveratrol and other 

compounds do increase the activity of SIRT1 against substrates that include specific 

hydrophobic motifs and that glutamine 230 in the N-terminal region of SIRT1, is 

essential for SIRT1 activation by resveratrol (Basil P. Hubbard et al., 2013). Moreover, 

data has shown that resveratrol can increase SIRT1 mRNA and potentially SIRT1 

protein in rat ovarian cells, human prostate cells and porcine adipocytes (Bai et al., 

2008; Morita et al., 2012; Li et al., 2013). 

Another proposed mechanism by which resveratrol may act is through the AMPK 

pathway. There is a large body of evidence to suggest that resveratrol activates AMPK 

(Chung et al., 2012), and it is believed that resveratrol does this through the inhibition 

of phosphodiesterases that degrade cyclic-AMP (cAMP). cAMP activates protein kinase 

A, which in turn activates AMPK through liver kinase B1 (LKB1). For example, Ampk 

activation via phosphodiesterase inhibition by resveratrol increased NAD⁺ and SIRT1 

activity in mouse C2C12 myotubes (Chung et al., 2012; Park et al., 2012). Ampk also 

increases the expression of the NAD⁺ salvage pathway enzyme Nampt in mouse skeletal 

myoblasts (Fulco et al., 2008), which can decrease the SIRT1 inhibitor NAM. Sirt1 

activity is also increased by Ampk activation in mouse C2C12 myotubes (Canto et al., 
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2009). Furthermore, resveratrol has been shown to increase NAMPT activity in human 

primary hepatocytes (Schuster et al., 2014). Thus, is likely resveratrol has an effect on 

SIRT1 through several pathways. Current knowledge is outlined in a schematic diagram 

below (Figure 1.6.1). 

1.7 SIRT1 and age-related diseases. 

There is an extensive body of literature linking SIRT1 to age-related diseases, including 

diabetes, neurodegenerative diseases, multiple cancers and cardiovascular disease. 

SIRT1 has a central role in energy sensing and metabolism, which includes increasing 

insulin sensitivity (Bordone et al., 2006). A mouse model of type 2 diabetes fed a high 

fat/high sucrose diet was used to assess the benefits of Sirt1 on insulin resistance. 

Following over expression of Sirt1 in the liver, blood glucose was lowered and insulin 

sensitivity was increased. It was also shown that Sirt1 overexpression inhibited mTOR 

signalling and thus the unfolded protein response, which inhibits insulin receptor 

signalling, a regulator of glucose homeostasis in the cell (Li et al., 2011). 

SIRT1 may also play a positive role in protection against neurodegenerative disorders, 

such as Parkinson’s disease and Alzheimer’s disease. Activation of SIRT1 by resveratrol 

in neuroblastoma cells was demonstrated to reduce the toxicity of α-synuclein found in 

Parkinson’s disease and amyloid-β plaques found in Alzheimer’s disease but on 

addition of sirtinol, a SIRT1 inhibitor, toxicity was restored (Albani et al., 2009). 

 

Figure 1.6.1. A schematic diagram of interactions between SIRT1 and resveratrol. Green arrows- positive 

effect; red arrows- negative effect. Literature used is detailed and referenced in the text. 
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Moreover, increased SIRT1 expression from a lentivirus construct injected in to the 

hippocampus of p25 transgenic mice, a model known to over-produce amyloid-β 

plaques, was shown to have a preventative effect on neurodegeneration (Kim et al., 

2007). SIRT1 and other members of the sirtuin family confer protective roles against 

other neurodegenerative diseases and are now a focus for new therapeutic targets 

(Donmez and Outeiro, 2013). 

While an extensive body of published work, examples of which are cited above, 

supports the view that SIRT1 can protect against age-related disease, an equally large 

body of data reports that no such actions were observed or even that such actions can 

be detrimental. For example, a dose-dependent effect of overexpression of Sirt1 was 

reported in the heart tissue of mice. It was found that mild (≤2.5 fold) over expression 

of Sirt1 was beneficial and involved changes including reduced oxidative stress 

proportionate with reducing ageing of the heart. Higher levels of Sirt1 overexpression 

however, (≥7.5 fold) led to cardiomyopathy (Alcendor et al., 2007). Furthermore, Sirt1 

expression was increased in hypertensive rats and associated with cardiac hypertrophy 

(Li et al., 2009). Conversely, overexpression of SIRT1 by 4-5 fold using a recombinant 

adenovirus in neonatal cardiac myocytes, prevented hypertrophy (Planavila et al., 

2011).  

SIRT1 also appears to play a reciprocal role in cancer. SIRT1 has been found to be 

elevated in many cancer cell lines including prostate cancer, skin cancer and acute 

myeloid leukaemia (Bradbury et al., 2005; Hida et al., 2007; Huffman et al., 2007) but 

Sirt1 ectopic induction alleviated colon cancer growth in mice (Firestein et al., 2008). A 

pertinent question is whether changes in SIRT1 expression are a consequence or cause 

of malignancy? (Deng, 2009). SIRT1 can deacetylate and deactivate the tumour 

suppressor p53 (Chen et al., 2005), which would increase the risk of cancer. In contrast 

in mammary tumours from Brca1 mutant mice Sirt1 was reduced and survivin 

(negative regulator of apoptosis) increased but treatment with resveratrol increased 

Sirt1 and reduced survivin, which in turn reduced tumour-genesis. In normal breast 

cells Brca1 usually increases Sirt1 expression, and it was shown in mouse embryonic 

cells that Sirt1 expression reduced survivin expression (Wang et al., 2008). The genetic 

complexity of cancer is likely to be a major factor that accounts for these differentiated 
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actions of SIRT1 meaning that further research that takes into account the highly 

heterogeneous nature of cancer, and also inter-individual differences, is essential to 

determine conditions where manipulating SIRT1 actions would be of potential 

therapeutic benefit. 

The magnitude of SIRT1 expression or activation is another variable that may explain 

why SIRT1 in some instances has been seen to have cancer protective actions and in 

other sections appeared to promote cancer. As already noted, whether Sirt1 

overexpression in mouse heart tissue was cardio protective or lead to cardiomyopathy 

was dependent of the level of expression (Alcendor et al., 2007). Speculatively, higher 

levels of SIRT1 expression or activity could promote rather than protect against cancer 

if substrates for deacetylation by SIRT1 also influence cancer as there could be cancer 

protective acetylated agents (hence at hyper levels of SIRT1 expression their protective 

action would diminish) or agents that promote cancer when deacetylated. 

1.8 The involvement of SIRT1 in other mechanisms of ageing 

Alterations in SIRT1 function have been associated with multiple age-related diseases 

and there is growing evidence that SIRT1 interacts with several key mechanisms of 

ageing. Important processes or pathways where these relationships with SIRT1 

function appear to modify activity to influence ageing or age-related disease are 

considered below. 
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1.8.1 Apoptosis 

Apoptosis is a carefully managed process in the cell and is activated extrinsically by 

immune cell interactions or intrinsically by stressors, such as oxidative stress. Figure 

1.8.1 shows the intrinsic and extrinsic pathways that trigger apoptosis in the cell. The 

intrinsic pathway is initiated following stress by B-cell Lymphoma 2 (BCL-2) family 

members promoting mitochondrial release of cytochrome C, which triggers a caspase 

cascade. The extrinsic pathway is activated by immune cells binding to the cell via a Fas 

ligand/protein interaction causing the release of caspase-8 triggering a caspase 

cascade. Caspases contain a cysteine in their active site allowing them to cleave proteins 

at aspartic acid residues, cleavage of other caspases can activate them and cleavage of 

other proteins in the cell ultimately leads to the breakdown of the cell and cell death 

(Bruce Alberts, 2002). It is unclear if apoptosis is causal of ageing or occurs as a process 

in ageing but apoptosis markers have been observed at higher levels in ageing models, 

such as the Fas protein, which was increased in the livers of 24 month old Fischer 344 

 

Figure 1.8.1. Schematic diagram of the intrinsic and extrinsic apoptosis pathways. A simplistic diagram of the 

two main apoptosis pathways and the key molecules involved in these two pathways. Intrinsic- stress and damage 

cause the release of cytochrome C from the mitochondria, which binds to Apoptotic protease activating factor 1 (Apaf-

1) and in turn triggers the cleavage of caspase-9, which triggers a caspase activation cascade. Extrinsic- Killer T-cells 

bind to the cell via a Fas ligand to Fas protein on the cell surface. This triggers caspase-8 cleavage and activation 

triggering a caspase activation cascade, occasionally damaged cells will form the Fas ligand/protein themselves to 

trigger apoptosis. Adapted from (Bruce Alberts, 2002).  
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rats compared to 6 month old rats (Higami et al., 1997), and more recently, skeletal 

muscle from 29 month old Fischer 344 rats compared to younger 16 month old rats had 

increased expression of apoptosis associated proteins Bcl-2 Associated X protein (Bax) 

(BCL-2 family member) and increased Apaf-1 but also increased DNA fragmentation (a 

marker of apoptosis) (Chung and Ng, 2006). Apoptosis has been associated with some 

age-related diseases, including the amyloid-β proteins found in Alzheimer’s disease. 

Cultured neurons that were exposed to excess amyloid-β protein showed an increase 

in DNA fragmentation (a marker of apoptosis) compared with controls (Loo et al., 

1993). Also in cancer, apoptosis is often evaded in malignancy, which can be caused by 

the dysregulation of apoptosis proteins, such as the apoptosis initiating protein BAX. It 

was demonstrated in p53 mutant mice also deficient in Bax, that apoptosis was reduced 

by 50 % as measured by a TUNEL assay (the identification of DNA fragments using 

histochemistry) and brain tumour growth accelerated compared with p53 mutant mice 

with wild type Bax (Yin et al., 1997). Thus, apoptosis can be perceived as a negative or 

a positive process in age-related diseases. 

1.8.1.1 Mechanisms through which SIRT1 modifies apoptosis 

SIRT1 can be associated with apoptosis through deacetylation of nuclear proteins 

including p53, NF-κB, FOXO and Ku70 (Luo et al., 2001; Cohen et al., 2004; Motta et al., 

2004; Yeung et al., 2004; Takayama et al., 2009). The function of these nuclear proteins 

to affect apoptosis and how SIRT1 may be involved in the process are summarised in 

Table 1.8.1.  

Table 1.8.1. The function of nuclear proteins p53, FOXO, NF-κB and Ku70 in apoptosis 

and the effect of deacetylation by SIRT1 

p53 p53 promotes transcription of the p53 upregulated modulator of 

apoptosis/Bcl-2 binding component-3 (PUMA) gene, which initiates 

apoptosis by promoting the release of cytochrome C from the 

mitochondria. p53 overexpression in colorectal cancer cells resulted 

in increased PUMA led apoptosis (Yu et al., 2003). HaCaT 

keratinocytes were treated with a SIRT1 inhibitor caused p53 

acetylation and thus activity to increase along with PARP cleavage (a 

marker of apoptosis), however PUMA expression was not measured 

in this study (Herbert et al., 2014). 

FOXO FOXOs can upregulate transcription of extrinsic pro apoptotic factors 

including the Fas ligand and TNF-related apoptosis-inducing ligand 



 

18 
 

(TRAIL) but has also been linked to the intrinsic apoptosis pathway 

through the upregulation of PUMA. FOXOs can also be inhibited by 

RAC-alpha serine/threonine-protein kinase (AKT) phosphorylation 

preventing apoptosis (Zhang et al., 2011). TNF-α was used to 

increase apoptosis in vascular adventitial fibroblasts (VAS), and 

upon SIRT1 activation by resveratrol the number of cells expressing 

the apoptotic surface protein phosphatidylserine reduced. 

Knockdown of FOXO1 also reduced the number of cells expressing 

the apoptotic surface protein. SIRT1 and FOXO1 were found to be co-

immunoprecipitated and when SIRT1 was knocked down in VAS, 

FOXO1 acetylation increased. It was suggested that SIRT1 activity 

inhibits apoptosis in TNF-α stimulated VAS through deacetylation 

and deactivation of FOXO1, thus attenuating FOXO1 transcription of 

apoptosis proteins (Wang et al., 2013). However, it has also been 

demonstrated that SIRT1 deacetylation of FOXO1 promotes FOXO1 

transcriptional activity (Daitoku et al., 2004). Thus, further research 

is needed to clarify this relationship. 

NF-κB Nf-κB can promote the extrinsic apoptosis pathway through 

increased transcription of the Fas ligand (Barkett and Gilmore, 

1999). SIRT1 deacetylates lysine 310 in the RelA/p65 subunit of NF-

κB blocking its transcriptional activity (Yeung et al., 2004) and likely 

its transcriptional effects on apoptosis proteins. 

Ku70 Ku70 can inhibit BAX translocation to the mitochondria, thus 

inhibiting BAX mediated apoptosis. Rat 293T cells transfected with 

yellow fluorescent Bax protein used to measure Bax translocation to 

the mitochondria, showed reduced Bax translocation when Sirt1 

activity was increased by resveratrol (Cohen et al., 2004). It was also 

found that Sirt1 was co-immunoprecipiated with Ku70 in 293T cells 

and Sirt1 could deacetylate Ku70 at two key lysine residues (539 and 

542), located in the critical region of Ku70 for Bax binding and was 

suggested to promoteKu70 binding to Bax and thus Bax inhibition 

(Cohen et al., 2004).  

Dysregulation of apoptosis to cause survival of unwanted cells or degeneration of 

healthy cells is clearly detrimental. Thus, if there is an increased likelihood that the 

process is regulated less tightly in older organisms it would be a likely major 

contribution to ageing and age-related disease. Indeed, there is evidence that 

dysregulated apoptosis by SIRT1 plays a role in specific age-related diseases 

osteoarthritis is one example. Chondrocytes are important in the maintenance of 
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cartilage; apoptotic features were observed in chondrocytes from osteoarthritis 

patients and it was considered that apoptosis may play a pathological role in 

osteoarthritis (Blanco et al., 1998). Sirt1 knockout mice with induced osteoarthritis 

expressed increased DNA fragmentation, Parp cleavage and caspase 3 cleavage 

compared with wild type mice with induced osteoarthritis (Matsuzaki et al., 2014). In 

this case SIRT1 activation may be therapeutic to prevent apoptosis of chondrocytes. 

1.8.2 Senescence 

Replicative senescence is the term used to describe cells that stop dividing but remain 

active (Hayflick and Moorhead, 1961). Senescence is known to be induced by cellular 

stressors including DNA damage, mitochondrial dysfunction and telomere shortening. 

The principle proteins that initiate senescence are p21 and p16. p21 is induced by p53 

and inhibits cyclin-dependent kinase (CDK) activity, CDKs are also inhibited by p16. 

CDK inhibition allows the activation of pRB, which in turn inhibits E2F, which is 

involved in the transcription of genes that promote cell cycle progression, thus the cell 

cycle is halted. However, the same pathways are used to halt the cell cycle temporarily 

and more research is needed to distinguish how permanent cell cycle arrest occurs 

(Campisi and d'Adda di Fagagna, 2007).  

An alteration in the proportion of senescent versus actively dividing cells may have an 

impact that impairs tissue function in a way observed in older organisms. Both 

increased and reduced cellular senescence can lead to such age-related detrimental 

changes in function. For example p16 (Ink4a), a biomarker of senescence, was targeted 

in mice to eradicate all p16 (Ink4a) positive senescent cells. Particularly in the eye, 

adipocyte tissue and skeletal tissue removal of senescent cells in this way improved 

age-related phenotypes (Baker et al., 2011). On the other hand, the evasion of 

senescence is one of the pathological functions of cancer cells which hence divide 

indefinitely. Cancer cells evade senescence through the expression of oncogenes, such 

as c-MYC. Melanoma cells have a higher than normal expression of c-MYC and when c-

MYC was reduced by siRNA in melanoma cells, senescence associated β-galactosidase 

increased but how c-MYC inhibits apoptosis is still not fully understood (Campisi, 1997; 

Zhuang et al., 2008). 
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1.8.2.1 Mechanisms through which SIRT1 modifies senescence 

Much of SIRT1s involvement in cellular senescence is through mechanisms either 

related to the induction or initiation of cellular senescence. For instance, SIRT1 can 

deactivate p53 through deacetylation and prevent cell cycle arrest, reviewed by (Yi and 

Luo, 2010). Furthermore, SIRT1 over expressed in embryonic lung fibroblasts lead to 

decreased p16 expression, increased pRB phosphorylation and lower β-galactosidase 

expression (a marker of senescence) (Huang et al., 2008). LKB1 is a kinase, which 

predominantly phosphorylates AMPK, it was demonstrated in HepG2 and HEK-293T 

cells that LKB1 overexpression caused reduced phosphorylation of pRB and caused G1 

cell cycle arrest (Liang et al., 2014). Primary porcine endothelial cells undergoing 

senescence had increased LKB1 expression but decreased SIRT1 expression. It was 

shown that SIRT1 overexpression using a transiently transfected expression vector 

decreased LKB1 expression but increased LKB1 deacetylation and ubiquitination. 

However, the addition of a proteasome inhibitor (MG132) alongside SIRT1 

overexpression caused LKB1 protein to increase, thus it was suggested SIRT1 was 

initiating LKB1 degradation through deacetylation (Zu et al., 2010). 

1.8.3 Telomere length 

Telomeres are DNA tandem repeats (TTAAGGG) formed on the ends of chromosomes, 

which can loop back on themselves with the aid of shelterin protein complexes binding 

to the poly guanine tail to form a T-loop. These caps on the ends of the chromosomes 

protect the active DNA but telomere shortening and hence progressive telomere loss 

occurs in ageing cells (Aubert and Lansdorp, 2008; Shammas, 2011). Telomere loss is 

partly due to what has been described as the “end replication problem” on the lagging 

strand of the DNA replication fork. DNA polymerase can only travel in a 5’ to 3’ direction 

therefore, RNA primers are used to initiate replication but when these RNA primers are 

converted to DNA the transcription machinery are unable to bind ahead of the final RNA 

primer at the end of the strand (as there is no more DNA after this last primer) 

therefore, the RNA is degraded leaving a short DNA strand (Olovnikov, 1973; Aubert 

and Lansdorp, 2008). Telomerase is an enzyme that can elongate the short DNA strand 

following replication by adding TTAAGGG repeats (Aubert and Lansdorp, 2008). 

Alternatively, cells can elongate telomeres independently of telomerase by developing 
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alternative lengthening of telomeres (ALT), which evidence suggests is done by 

homologous recombination (Liau et al., 2015). Many germ line cells maintain telomeres 

through telomerase expression, whereas adult somatic cells have lower levels of 

telomerase expression (Cong et al., 2002). Faster telomere shortening has been linked 

to oxidative stress since triple guanines are particularly sensitive to oxidative damage 

(von Zglinicki, 2002). Telomere dysfunction/shortening can result in cell senescence or 

apoptosis. For example, shorter telomeres have been found in senescent human 

fibroblasts, and pre senescent fibroblasts were rescued from senescence by increasing 

telomerase expression (Martin-Ruiz et al., 2004). Additionally, when Trf2 (a component 

of shelterin) was inhibited using a dominant-negative mutant in mouse livers, there was 

increased telomere shortening, apoptosis and senescence (Lechel et al., 2005). 

Apoptosis and senescence as discussed above are associated with ageing, and are 

generally recognised as the outcome of excessive telomere shortening. On the contrary, 

telomerase or ALT gain of function have also been suggested to promote cancer 

progression. For example, increased TERC (RNA component of telomerase) copy 

number in cervical biopsies was associated with progression of uterine cervical 

dysplasia to invasive cancer (Hopman et al., 2006). Additionally, K5-Tert mice 

overexpressing Tert (catalytic subunit of telomerase) in the skin had increased 

tumourgenesis but also had improved wound healing (Cayuela et al., 2005).  

1.8.3.1 Mechanisms through which SIRT1 effects telomere length. 

SIRT1 can have a positive action on telomere maintenance, which may help prevent 

apoptosis or senescence in stem cell populations and adult somatic cells but equally 

may also promote malignancy in cancer cells. For example, in a mouse model 

overexpressing Sirt1, telomere length was increased in the embryonic fibroblasts but 

this lengthening of telomeres was not observed when Terc was knocked out, thus Sirt1 

mediated increase in telomere length may be in part reliant upon telomerase (Palacios 

et al., 2010). Telomere length measured by southern blot analysis in induced 

pluripotant stem cells decreased in the absence of SIRT1 (De Bonis et al., 2014). Finally, 

Sirt1 overexpression using a lentivirus expression vector in rat mesenchymal stem cells 

caused an increase in Tert expression, telomerase activity and Ttp1 expression (a 

shelterin component) but in contrast to other studies did not increase telomere length 
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(Chen et al., 2014). Further work will be required to assess if targeting SIRT1 

therapeutically could be used to improve telomere maintenance/length in age-related 

diseases, which are in part caused by telomere loss; or reduce telomere 

maintenance/length by inhibiting SIRT1 in cancer cells, which have a gain of function 

of telomerase or ALT to evade apoptosis and senescence. 

1.8.4 Oxidative stress 

Oxidative stress is caused by the accumulation of reactive oxygen species (ROS) within 

the cell. The mitochondrial electron transport chain is the main source of these free 

radicals. Cytochrome p450 enzymes present in the endoplasmic reticulum also make a 

substantial contribution to the intracellular production of ROS, and NADPH oxidases 

produce ROS when the immune system is triggered. Many extrinsic environmental 

factors can also contribute to oxidative stress including pollution, smoking, alcohol and 

UV light. The superoxide (O2-) oxidises iron clusters to release free iron, which in turn 

can react with H2O2 in a Fenton reaction (Fe2++H2O2→Fe3++OH+OH-), producing the 

highly reactive hydroxyl radical (OH-). Consumption of these ROS in reactions catalysed 

by enzymes including superoxide dismutase (SOD) (O2- + SOD → H2O2) and catalase 

(2H2O2 + catalase → 2 H2O + O2) reduces their accumulation within the cell. Hence these 

enzymes are often described as having an antioxidant protective function. The 

antioxidant defence mechanisms of the cell also include a wide variety of molecules 

derived from the diet. These dietary antioxidants include vitamin E, β-carotene, 

flavonoids, ubiquinol and many others. Accumulation of ROS causes damage to the 

cellular macromolecules notably DNA, proteins and lipids. Overloading the cells 

defence capability or impairment of its function results in a build-up of macromolecule 

oxidative damage in the cell, a characteristic feature of ageing and age-related diseases 

(Jezek and Hlavata, 2005; Jomova et al., 2010; Romano et al., 2010).  

1.8.4.1 Mechanisms through which SIRT1 affects oxidative stress 

Since SIRT1-catalysed reactions consume NAD⁺, the source (in its reduced form) of 

electrons that feed into the mitochondrial electron transport chain, it is a key 

candidate/major modifier of cellular oxidative stress. Thus, a substantial body of 

research has explored how SIRT1 influences oxidative stress, with the balance of 

evidence towards a protective role. For example, overexpression of Sirt1 in mouse 
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hearts reduced oxidative stress from paraquat and increased catalase expression 

through FOXO1 activation (Alcendor et al., 2007). Secondly, when SIRT1 was activated 

by the small molecule activator SRTAW04 in a transgenic mouse model with symptoms 

of multiple schlerosis in the optic nerve, expression of Sod was increased and oxidative 

stress was reduced (Khan et al., 2014). As a further example, SIRT1 activates PGC-1α by 

deacetylation as mentioned above, which promotes mitochondrial biogenesis and the 

expression of antioxidant enzymes, including catalase and SOD (Nemoto et al., 2005; 

Rodgers et al., 2005; St-Pierre et al., 2006).  

1.8.5 Protein degradation 

Protein degradation in the cell occurs principally through the activity of two systems, 

ubiquitin proteasome degradation and lysosomal autophagy. The ubiquitin proteasome 

system requires unwanted proteins to be marked for degradation by the ligation of 

ubiquitin molecules to the protein to form a polyubiquitin chain. This chain is 

subsequently recognised by the proteasome, a multicatalytic enzyme made up of 

several subunits of which the 20s subunit is the core enzyme involved protein 

degradation (Martinez-Vicente et al., 2005).  

Lysosomal autophagy is the process of internal degradation in the cell to remove 

unwanted cellular components including organelles and proteins, recycle the 

constituents of old cellular components, destroy pathogens and, under some 

conditions, activate cell death (Martinez-Vicente et al., 2005; Levine et al., 2011). Under 

conditions of DR, autophagy is up regulated to recycle the constituents of cellular 

components and, hence, maintain growth and development of the organism (Jia and 

Levine, 2007; Hansen et al., 2008). There are currently three main types of lysosomal 

autophagy, which are described below: 

Microautophagy is the process where the lysosomal membrane invaginates and/or 

protrudes from the plasma membrane to engulf large areas of the cytoplasm including 

organelles, which are then degraded inside the lysosome (Martinez-Vicente et al., 

2005).  
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Macroautophagy is when organelles and unwanted proteins are surrounded in the 

cytosol by a new membrane to form an autophagosome. The autophagasome then fuses 

with the lysosome allowing the contents to be degraded (Martinez-Vicente et al., 2005).  

Chaperone mediated autophagy (CMA) is a more specific mechanism where by 

individual proteins are chaperoned to the lysosome. A KFERQ motif in the protein 

sequence is recognised by heat shock chaperone 70, which binds to the protein along 

with other co-chaperones. The protein is transported to the lysosome membrane where 

the chaperones dock to the LAMP2 receptor. The protein is then fed through LAMP2 in 

to the lysosome for degradation (Martinez-Vicente et al., 2005). 

Misfolded proteins, damaged proteins and unwanted proteins build-up in the cell with 

age and are often stored as plaques or aggregates, which is due to overload or 

malfunction of degradation pathways (Cuervo and Dice, 2000b; Martinez-Vicente et al., 

2005). For example, it has been demonstrated in epidermal cells harvested from human 

females of varying ages, that the 20S proteasome component (the proteasome is a 

multicatalytic enzyme which degrades ubiquitin tagged proteins (Martinez-Vicente et 

al., 2005) decreases with age (Bulteau et al., 2000). LAMP2 the lysosomal membrane 

receptor for protein substrates chaperoned during CMA, had reduced self-recycling 

capability from the lysosomal lumen to the lysosomal membrane in 22 month old rats 

compared with 4 month old rats (Kiffin et al., 2007). Also the mitochondrial unfolded 

protein response is a response to cellular stress that corrects misfolded proteins. 

Alterations in the activity of this pathway have been seen to affect lifespan in 

Caenorhabditis elegans. A transgenic strain of Caenorhabditis elegans carrying a 

deletion of the mitochondrial ribosomal protein S5 lived longer than controls, 

coincident with increased activity of the mitochondrial unfolded protein response 

pathway (Houtkooper et al., 2013). Protein aggregation in mammalian cells can lead to 

age-related diseases particularly neurodegenerative diseases such as Alzheimer’s 

disease, associated with amyloid-β plaques, Huntington’s disease associated with 

huntingtin misfolded proteins and Parkinson’s disease associated with protein 

aggregates in dopaminergic neurons (Martinez-Vicente et al., 2005; Gundersen, 2010; 

Arrasate and Finkbeiner, 2012).  
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1.8.5.1 Mechanisms through which SIRT1 influences protein degradation and 

specifically autophagy. 

SIRT1 is believed to be involved in the regulation of autophagy. Treatment of THP-1 

cells with sirtinol (a SIRT1 inhibitor) impaired autophagy function and resulted in 

inflammation, which could be through inhibition of the mTOR pathway (Takeda-

Watanabe et al., 2012). However, another study demonstrated that depletion of the 

SIRT1 substrate NAD⁺ using the drug FK866 induced autophagy, which could be 

interpreted to be an observation discordant with the view that SIRT1 action promotes 

autophagy (since SIRT1 should be less active under these conditions) or that SIRT1 

promotes autophagy by consuming and depleting NAD⁺ (Billington et al., 2008). Effects 

of SIRT1 on CMA is a relatively under-investigated area, which forms the focus of some 

of the work in this thesis presented in Chapter 5. 
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1.8.6 DNA damage response 

The DNA damage response comprises several pathways that act to repair single base 

pair mutations, double strand breaks and base additions. Figure 1.8.2 shows a 

simplistic diagram of the DNA damage response. DNA damage sensors recruit Ataxia 

telangiectasia-mutated (ATM) or ataxia telangiectasia rad3 related (ATR) kinases to the 

site of damage, ATM is recruited to DNA single strand breaks and ATR is recruited to 

damage, which occurs during replication. ATM and ATR activate DNA damage response 

mediators, which remain at the site of damage and initiate repair, and initiate signalling 

through check point kinases (CHK) to effectors such as, p53 which can halt the cell cycle 

until DNA is repaired (Sulli et al., 2012). It has been well documented that DNA damage 

increases with age. For example, in normal human fibroblasts, W134 fibroblasts and 

prostate epithelial cells, γ-H2AX foci (a marker of DNA damage) increased with 

 

Figure 1.8.2. The DNA damage response. DNA damage occurs during DNA replication and can be caused by 

stressor, such as oxidative stress. Sensors detect the damage and recruit the signalling molecule ATM or ATR kinases 

to the site of damage. ATM and ATR phosphorylate and recruit DNA damage mediator, which can initiate repair, and 

cause phosphorylation and activation of CHKs, which cause cell cycle arrest through effectors like p53, to allow for 

DNA repair or apoptosis if the damage is unrepairable. Diagram sourced from (Sulli et al., 2012) 
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passages (Sedelnikova et al., 2004).Many studies have also shown changes in the 

activity of DNA repair pathways with age. For example, ATM and ATR kinases, involved 

in the initiation of the DNA damage response, were shown to be more active with age 

and following paraquat treatment in intestinal stem cells of Drosophila melanogaster 

(Park et al., 2015). Another major point of interaction between ageing and the response 

to DNA damage arises because DNA damage accumulates progressively with age, to a 

point where the DNA damage response becomes overloaded, ultimately leading to cell 

senescence, apoptosis and in some circumstances cancer (Seviour and Lin, 2010). 

1.8.6.1 Mechanisms through which SIRT1 affects DNA damage repair 

SIRT1 has been associated with components of the DNA damage response, examples 

include: 

 SIRT1 and the DNA single strand break sensing enzymes PARPs appear to cross 

talk. Sirt1 can deacetylate and deactivate Parp1 and Sirt1 expression was 

increased in Parp2-knockout mice (Luna et al., 2013), discussed in more detail 

below. 

 Interestingly, it would appear that SIRT1 is repressed when the DNA damage 

response is initiated. For example, the Homeodomain interacting protein kinase 

2 (HIPK2) is a signaling kinase, which promotes apoptosis in response to DNA 

damage, also phosphorylates SIRT1 at serine 682, deactivating SIRT1 upon 

severe DNA damage (Conrad et al., 2015). Once more, Deleted in bladder cancer 

protein 1 (DBC1) is phosphorylated at threonine 454 and activated by ATM or 

ATR, DBC1 is a potent inhibitor of SIRT1 activity, thus repressing p53 

deacetylation by SIRT1 and allowing active p53 to arrest the cell cycle in the DNA 

damage response (Magni et al., 2014) (Zannini et al., 2012). 

1.9 The sirtuin family 

SIRT1 is the most intensively researched and thus best understood member of the 

sirtuin family. However, several other members of the sirtuin family have also been 

associated with ageing and/or the response to DR, as summarised below: 

 SIRT2- SIRT2 similar to SIRT1 is elevated in response to DR. However, research 

on the effects of SIRT2 on lifespan and healthspan is currently lacking (de 
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Oliveira et al., 2012). SIRT2 has been linked to some age-related diseases 

including Parkinson’s disease but unlike SIRT1, SIRT2 appears to have a toxic 

effect. For example, SIRT2 was inhibited by siRNA in a human cell line 

Parkinson’s disease model, which resulted in α-synuclein toxicity reducing 

(Outeiro et al., 2007). 

 SIRT3- SIRT3 is also elevated in DR and plays an essential role in metabolism by 

activating multiple mitochondria enzymes involved in the electron transport 

chain and fatty acid oxidation (Kincaid and Bossy-Wetzel, 2013). SIRT3 also 

directly deacetylates and promotes ROS scavenging in the mitochondria by 

SOD2 (Qiu et al., 2010), thus reducing oxidative stress. 

 SIRT4- Reduced SIRT4 activity was measured in mice undergoing DR and it was 

shown in mouse pancreatic β cells that SIRT4 ribosylates glutamate 

dehydrogenase (involved in the metabolism of glutamate to produce ATP) and 

thus inhibits its catalytic activity. This resulted in reduced insulin release (Haigis 

et al., 2006). 

 SIRT5- SIRT5 was found to be elevated alongside SIRT1 in the cerebral tissue of 

DR rats (Geng et al., 2011). Minimal research has been undertaken on SIRT5. 

Although not a direct link to ageing, it was shown that SIRT5 promotes ammonia 

detoxification by deacetylating and activating carbamoyl phosphate synthetase 

1 (urea cycle regulator) (Nakagawa et al., 2009). Further research is needed to 

expand our knowledge of SIRT5 and determine if it has a role in ageing. 

 SIRT6- SIRT6 has been associated with DR, for example HEK293 cells grown in 

reduced serum medium to mimic DR had elevated SIRT6 protein levels (Kanfi et 

al., 2008). More recently it was also shown in male SIRT6 transgenic mice over 

expressing SIRT6 that lifespan increased by 14.5% compared to wild type 

littermates. These SIRT6 transgenic mice also showed lowered IGF1 serum 

levels and phosphorylation changes in the IGF signaling pathway, which has 

been previously linked to lifespan regulation (Kanfi et al., 2012) (Zarse et al., 

2012). 

 SIRT7- SIRT7 was measured in adipocyte, muscle, heart and liver tissue from 

DR rats but SIRT7 protein, and mRNA levels were either unaffected or 
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inconsistently reduced (Wronska et al., 2015). SIRT7 overexpression was shown 

to improve aged hematopoietic stem cell regeneration ability (Mohrin et al., 

2015). 

The examples presented above suggest the high likelihood that all members of the 

sirtuin family play a role in ageing. Although SIRT1 was the specific focus of the current 

project but other sirtuin family members may play equally important roles. 

1.10 Cross talk between SIRT1 and the DNA damage response enzyme PARP.  

1.10.1 PARP enzymes 

Poly ADP-ribose polymerases (PARPs) are a group of enzymes that synthesise ADP-

ribose polymers through the cleavage of NAD⁺ to release ADP-ribose. There is evidence 

that PARP enzymes are involved in several cellular processes and pathways including:  

 Cell death caused by extensive DNA damage resulting in PARP over activation; 

o  This then either depletes cellular NAD⁺ reserves causing necrosis or 

causes the release of Apoptosis Inducing Factor (AIF) from the 

mitochondria, which relocates to the nucleus to initiate apoptosis 

(Chiarugi and Moskowitz, 2002).  

 Chromatin compaction and de-condensation through attachment of PARP to 

nucleosomes; 

o The mechanism for chromatin compaction has not been fully elucidated 

but PAR polymer synthesis on histones can destabilise the nucleosome 

causing de-condensation (Poirier et al., 1982).  

 Transcriptional regulation through chromatin remodelling or through promoter 

enhancement or inhibition, which is cell and gene dependent (Pavri et al., 2005); 

 Inflammation; 

o PARP is a coactivator of NF-κB, which initiates the inflammatory 

response. Inhibition of Parp in rats where cerebral bleeding (stroke) was 

induced, reduced the inflammatory response and improved long term 

neuronal survival (Kauppinen et al., 2009). 

 Repair of DNA damage; 
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o This is considered to be the primary function of PARP enzymes. PARP 

binds to DNA single strand breaks to stabilise the break and poly ADP-

ribose (PAR) is synthesised to recruit other enzymes to the break for bass 

excision repair (Malanga and Althaus, 2005). It was shown that PAR 

synthesis triggers ATM signalling; when DNA damage was induced using 

MNNG in A-T fibroblasts PAR synthesis increased and phosphorylation 

of ATM substrates p53, SMC1, and H2AX also increased but in cells 

deficient in ATM, MNNG caused PAR synthesis to increase but 

phosphorylation of p53, SMC1, and H2AX did not change(Haince et al., 

2007). 

The PARP family consists of multiple enzymes (listed below). Research to date has 

focused on PARP1 and PARP2, hence understanding of other members of the family is 

minimal: 

 The function of PARP1 in DNA strand break repair has been studied extensively. 

The important contribution made by PARP1 to this process was demonstrated 

in Parp1 -/- mouse embryonic fibroblasts. Whole cell lysate incubated with a 

DNA substrate containing a basic sites was half as efficient at repairing the DNA 

compared to control cell lysate (Dantzer et al., 2000). 

 PARP2 is highly similar to PARP1 but has been identified as a nucleolar enzyme 

(Ame et al., 1999; Ame et al., 2004). PARP2 also functions in DNA strand break 

repair, which is revealed through multiple published observations, including 

increased sensitivity of Parp2 -/- mouse embryonic fibroblasts to DNA damage 

causing agents (Menissier de Murcia et al., 2003). 

 PARP3 has been localised to the nucleus and believed to be involved in 

transcriptional silencing through binding with polycomb group bodies (Rouleau 

et al., 2007). Immunofluorescence in HeLa cells has revealed that PARP3 was a 

component of the daughter centrosome during the cell cycle (Augustin et al., 

2003). 

 PARP4 is the largest family member and has been shown to interact with 

telomerase-associated protein 1 (TEP1). However, telomere maintenance and 
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length appeared unaffected in Parp4 deficient mice suggesting action in this 

context is dispensable (Liu et al., 2004).  

 PARP5, also known as Tankyrase, has been found in 3T3-L1 fibroblasts to 

associate with the Golgi apparatus and specifically with insulin-responsive 

amino peptidase (IRAP) a member of the GLUT4 vesicle, leading to the 

suggestion the enzyme may play a role in the regulation of glucose metabolism 

(Chi and Lodish, 2000). 

 PARP6 through to PARP16 have also been identified but currently little is known 

about their function. 

1.10.2 PARP activity can modify the ageing process. 

Like SIRT1 PARPs appear to have actions that modify cellular ageing and age-related 

disease. Table 1.10.1 presents and summarises some specific actions of PARPs in this 

context. 
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Table 1.10.1. PARP involvement in ageing processes and disease. 

Ageing process or 

disease 
Relevant actions of PARPs 

Telomere 

shortening 

 PARP2 binds with a TTAAGGG repeat binding protein 
(TRF2) (a telomere t-loop forming protein) and inhibits 
its ability to bind DNA by poly ADP-ribose formation in 
U2OS cells (Dantzer et al., 2004). However, Parp2 -/- 
mouse embryonic fibroblasts maintained telomerase 
activity and telomere length similar to wild type cells 
(Dantzer et al., 2004).  

Cancer  Parp1 -/- mice exposed to the carcinogen N:-nitrosobis 
(2-hydroxypropyl) amine, experienced faster tumour 
progression compared with Parp1 +/+ mice (Tsutsumi 
et al., 2001). 

 Inhibition of PARP1, reducing DNA single strand break 
repair, led to apoptosis of embryonic stem cells with 
mutated BRCA1 and BRCA2 (Farmer et al., 2005). 

 PARP1 over expression in breast cancer has been 
associated with higher tumour grade and a poorer 
prognosis (Rojo et al., 2012). 

Thus, PARP activity may increase tumour progression after 
cancer initiation but appears to be protective against cancer in 
normal cells.  

Lifespan extension  Increased PARP activity across several species was 
associated with longer lifespans. For example, PARP 
activity was 5x higher in human mononuclear 
leukocytes compared with rat mononuclear leukocytes, 
corresponding with a 20x difference in lifespan. PARP 
activity decreased with age in both rats and humans 
(Grube and Burkle, 1992).  

 PARP activity was higher in human centenarians 
compared with controls aged 20-70 years (Muiras et al., 
1998).  

Neurodegeneration  Studies have indicated that PARP1 activity can promote 
or progress neurodegenerative diseases, including, 
Parkinson’s disease and Alzheimer’s disease. PARP1-/- 
mice were resistant to the neurotoxin MPTP, which 
induces Parkinsonism. PARP1-/- mice experienced 
decreased microglial response to amyloid-β injected 
into the brain compared with controls. This microglial 
response was also shown to involve activation of NF-κB 
by PARP1 (Love et al., 1999; Mandir et al., 1999; 
Kauppinen et al., 2011) 
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Cardiovascular 

disease 

 Cardiac toxicity was induced using doxorubicin in Parp 
-/- and Parp +/+ mice. PARP -/- mice had greater left 
ventricle dysfunction compared with Parp +/+ mice 
(Pacher et al., 2002). 

 Parp1 activity correlated positively with cardiac 
hypertrophy in mice and humans and PARP1 activation 
by a PERP expression plasmid in human cardiac 
myocytes led to cell death (Pillai et al., 2005). 

Diabetes  The destruction of islet cells in mice using streptozocin 
caused Parp activation. Parp inhibition using PJ34 post 
streptozocin treatment improved vascular 
responsiveness, which is affected by hyperglycemia that 
reduces NO production (Garcia Soriano et al., 2001). 

 Furthermore, Parp -/- mice were resistant to induction 
of diabetes by the β-cell toxin streptozocin (Burkart et 
al., 1999). 

1.10.3 PARP1 and PARP2 associations with SIRT1 

Thus far some of the separate effects of SIRT1 and PARPs on cellular ageing and age-

related diseases have been outlined. However, a notable commonality in their catalytic 

function, the cleavage of NAD⁺, suggests that effects of both enzymes in this context may 

be inter-dependent. Indeed, published findings show that such interactions do play out 

both through likely competition for the cellular NAD⁺ pool but also through other NAD⁺-

independent mechanisms. For example, PARP1 has been shown to have an indirect 

effect on SIRT1 transcription through the transcription factors c-MYC and E2F1. PARP1 

binds to E2F1 promoting E2F1 transcription of c-MYC (Simbulan-Rosenthal et al., 

2003). Over expression of c-MYC has been shown to increase SIRT1 transcription, which 

in turn led to deacetylation at lysine 323 of c-MYC by SIRT1 and its consequent de-

stabilisation (Yuan et al., 2009). However, in contrast to the findings of the earlier study 

deacetylation at lysine 63 of c-MYC by SIRT1 appeared to increase stability of c-MYC 

(Menssen et al., 2012). On the other hand, it appears that expression of Sirt1 can be 

repressed by Parp. Specifically, knockout of Parp2 in mice increased the expression and 

activity of Sirt1 (Bai et al., 2011). 

SIRT1 and PARP1 can also interact more directly, for example, SIRT1 can deacetylate 

and hence inactivate PARP1, as indicated by the observation that Sirt1 -/- mice showed 

increased acetylation of Parp1 (Rajamohan et al., 2009a). Another example of a more 

direct interaction between SIRT1 and PARP is that transcription of the PARP1 gene 
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appears to be inhibited by SIRT1, as suggested by the observation that Parp1 

expression was decreased in rat cardiac myocytes by overexpression of Sirt1 

(Rajamohan et al., 2009a). However, published data on the interactions of SIRT1 and 

PARP are limited and thus will be revisited in Chapter 4 of this thesis.  
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1.11 The involvement of epigenetics in ageing and how SIRT1 may influence 

epigenetics. 

Epigenetic modifications can influence gene expression without changing the 

underlying DNA sequence; this is achieved through the organisation and structure of 

DNA, which is influenced by covalent chemical modifications of both the DNA and 

associated histone proteins. Nucleosomes are stretches of 147 bps of DNA organised 

around an octamer of the histone proteins: H2A, H2B, H3 and H4. The DNA is wrapped 

around each histone octamer twice and the nucleosomes are joined by segments of 

linker DNA. The N-terminal domains of histone proteins undergo epigenetic 

modifications that have the ability to activate or repress gene expression. Modifications 

of histone N-terminals include methylation, acetylation, phosphorylation and 

ubiquitination. The outcome of single/multiple histone modifications on gene 

expression is dependent upon the location and the type of modification; a large body of 

research is dedicated to unlocking further the histone code (Quina et al., 2006; Kondo, 

2009; Ford et al., 2011). 

Additional to histone modifications, DNA can also undergo direct chemical 

modification, including methylation at cytosine basics when followed by a guanine (CpG 

site). This modification also affects gene activation and repression. When a CpG site in 

or around a gene promoter region is methylated the methyl group may block the 

binding of the transcriptional machinery hence blocking gene transcription. It is still 

currently unknown how many CpG sites need to such functional effects or whether the 

methylation of just one critical CpG site is sufficient. Specific genes may require 

different patterns of CpG site methylation to alter their expression and effects at the 

level of tissue function are likely dependent on the proportion of cells with DNA 

methylation at critical sites (Quina et al., 2006; Kondo, 2009; Ford et al., 2011). 

DNA methylation changes over time and may be linked to age-related phenotypes. The 

epigenome of monozygotic twins is barely distinguished as babies but in older 

monozygotic twins there is a discordant pattern of global DNA methylation 

(methylation across the genome measured at repetitive elements) between twin pairs. 

It is proposed that the change in global DNA methylation between monozygotic twin 
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pairs comes about through environmental exposures (Fraga et al., 2005). More 

recently, an Icelandic cohort of 111 individuals and a Utah cohort of 126 individuals 

were tested 11 and 16 years apart respectively. Changes in global DNA methylation 

over time showed considerable inter-individual variation with some of the individual’s 

genomes becoming more methylated where others lost DNA methylation over time 

(Bjornsson et al., 2008).  

The studies cited above measured age-related changes in global, DNA methylation and 

hence are very limited with respect to providing any insight into influences of these 

changes on parameters of ageing at a molecular level. Information on gene-specific 

alterations in DNA methylation is essential to understand how DNA methylation may 

affect age-related phenotypes. Studies of gene-specific effects of age on DNA 

methylation take one of two approaches, either gene-targeted investigations, which 

study candidate genes or genome wide measurement of DNA methylation. As examples 

of gene targeted approaches an increase in DNA methylation in genes previously linked 

to prostate cancer specifically RARbeta2, RASSF1A, GSTP1, NKX2-5, ESR1 and CLSTN1 1 

was observed in prostate tumour tissue compared to normal prostate tissue (Kwabi-

Addo et al., 2007). In Parkinson’s disease patients compared to healthy controls, the 

Neuronal PAS Domain Protein 2 (NPAS2) clock gene was found to have significantly 

decreased DNA methylation (Lin et al., 2012).  

Although there was an observed change in DNA methylation of specific genes in these 

two studies, the DNA methylation changes can only be associated with age-related 

phenotypes until models are developed to test directly if these observed alterations in 

DNA methylation actually affect gene expression in a manner that contributes to the 

disease process. In this regard the most incisive test would be to recapitulate 

specifically the observed alteration in DNA methylation on a control background to test 

for the appearance of the age-related phenotype in question. Currently genome editing 

tools with such capability have not to our knowledge, been developed. An approach that 

could derive data consistent with causality would be to manipulate DNA methylation in 

                                                        
1 Retinoic acid receptor beta2 (RARbeta2), Ras Association (RalGDS/AF-6) Domain Family Member 1 
(RASSF1A), Glutathione S-Transferase Pi 1 (GSTP1), NK2 Homeobox 5 (NKX2-5), Estrogen Receptor 1 
(ESR1) and Calsyntenin 1(CLSTN1). 
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vivo through (tissue specific and possibly age specific) over expression of a DNMT 

transgene or through reduced DNMT expression using (again targeted) gene knockout 

approaches. 

A comprehensive map of the human epigenome has not yet been produced, but has 

potential to improve understanding of how changes in DNA methylation could affect 

ageing. Recent epigenome-wide association studies (EWAS) have begun to pave the 

way forward in linking epigenetic variations with complex diseases and ageing (Rakyan 

et al., 2011). One EWAS study conducted in females aged 32 through to 80 measured 

changes in DNA hyper-methylation with age and identified 490 sites with increased 

DNA methylation with age but found that very few age-related phenotype genes had 

differential methylation in ageing (Bell et al., 2012). 

1.11.1 Epigenetic functions of SIRT1. 

Both epigenetic alteration, notably but not exclusively DNA methylation and SIRT1 

have well documented likely roles in modifying ageing. Evidence as described below, 

that SIRT1 itself has epigenetic actions links these two modifying variables.  

SIRT1 is classified as a (class III) histone deacetylase (Liu et al., 2009). Thus, histone 

deacetylation is one of the epigenetic actions of SIRT1 that is best understood. SIRT1 

deacetylation of lysine residues in histones 1, 3 and 4 (lysine 26, 9 and 16 respectively) 

in turn promotes histone methylation. It has also been shown that SIRT1 can activate 

the histone methyltransferase SUV39H1 through deacetylation at lysine 266, SUV39H1 

methylates histone3 at lysine 9 (Vaquero et al., 2007).  

There are also observations that suggest SIRT1 affects DNA methylation. SIRT1 was 

found localised at hypermethylated promoters of tumour suppressor gene (which were 

repressed) but not localised at these promoter regions when the tumour suppressor 

genes were expressed in other cell lines. When SIRT1 was inhibited by splitomycin or 

nicotinamide in cell lines with repressed tumour suppressor genes, the genes were no 

longer repressed. However, DNA hypermethylation of the tumour suppressor gene 

promoters remained after SIRT1 inhibition and it was suggested SIRT1 inhibition 

increased tumour suppressor gene expression through an increase in histone 

acetylation observed (Pruitt et al., 2006). Possible interpretations of these observations 
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are that SIRT1 promotes DNA methylation at CpG islands (which may not be reversed 

by SIRT1 inhibition alone) or that SIRT1 binds preferentially to these sites once they 

have been methylated through other mechanisms. In our laboratory we observed that 

when SIRT1 was knocked down or over expressed in Caco-2 cells and HuVECs and 

whole genome analysis was performed to observe DNA methylation patterns in an 

array of genes. Significant changes in DNA methylation across the array were observed 

in response to SIRT1 manipulations in both cell lines (Wakeling et al., 2015), suggesting 

SIRT1 has an effect on DNA methylation. One mechanism suggested for SIRT1 to cause 

DNA methylation is through DNA methytransferase 1 (DNMT1), SIRT1 deacetylates 

DNMT1 at lysine residues 1349 and 1415 instigating increased DNMT1 catalytic 

activity (Peng et al., 2011). 

Epigenetic modifications like methylation could be a key mechanism for SIRT1 to 

regulate systems in the cell through targeting gene expression. Epigenetic 

modifications by SIRT1 specifically DNA methylation has been hypothesised by our 

laboratory to be a contributing factor to ageing (Ions et al., 2012). As a regulatory 

mechanism, genome methylation in response to SIRT1 manipulation will be 

investigated further in later chapters of this thesis.  

1.12 Effects of ageing on stem cell function and the influence of SIRT1.  

Several organs and tissues are known to be renewed through the differentiation of an 

adult stem cell population. Adult stem cells are vulnerable to the same mechanisms of 

cellular ageing that affect differentiated cells, including telomere shortening and 

damage from oxidative stress (Smith and Daniel, 2012). An example of this is in mouse 

embryonic stem cells exposed to oxidative stress via H2O2 treatment, which resulted in 

increased expression of the apoptotic surface protein phosphatidylserine, a marker of 

apoptosis (Guo et al., 2010). Stem cells can also develop age-related diseases similar to 

differentiated cells. For example, in the rat colon mucosa there was as an increase in the 

expression of cancer biomarkers, including, cell surface markers Cd44 and Cd166 and 

the cytoplasmic marker alcohol dehydrogenase1, with age (Nautiyal et al., 2012).  



 

39 
 

1.12.1 Polycomb group proteins regulate stem cell differentiation. 

Polycomb group proteins were first discovered to be gene repressors in Drosophila 

melanogaster in the context of Hox gene inhibition (Lewis, 1978). Polycomb group 

proteins form two complexes, Polycomb Repressive Complex 1 (PRC1) and Polycomb 

Repressive Complex 2 (PRC2), which can ubiquitinate and methylate histones 

respectively. PRC2 is made up of the components EED, EZH2, SUZ12 and RbAP48 

(defined in the list of abbreviation) and PRC1 is made up of the components BMI1, PHC1 

and RNF2 (defined in the list of abbreviation). PRC1 and PRC2 silence chromatin at 

polycomb gene targets (PCGTs). PCGTs are typically lineage-specific genes expressed 

only in mature, differentiated cells, thus PRCs regulate stem cell differentiation (Di 

Croce and Helin, 2013).  

Polycomb group protein function can influence cellular ageing. For example, premature 

senescence of haematopoietic stem cells was observed in a Bmi-1 knockout mouse 

model and further studies revealed that Bmi-1 inhibition of Arf1 and Ink4a is important 

in maintaining the haematopoietic stem cell population. Arf1 stabilises p53, and Ink4a 

is a cyclin dependent kinase inhibitor, both Arf1 and Ink4a promote cellular senescence 

(Park et al., 2003; Molofsky et al., 2005). As another example, transplanted 

haematopoietic cells differentiated and provided a sustained population of mature 

blood cells only when the Prc2 component Ezh2 was overexpressed, which concurs 

with an observation that overexpression of Ezh2 in mouse embryonic fibroblasts 

allowed by-pass of cellular senescence, which suggested to be due to stabilised 

chromatin structure (Kamminga et al., 2006). 

1.12.2 Effects of SIRT1 on stem cell differentiation. 

Several studies have shown an effect of SIRT1 on stem cell differentiation. For example, 

Sirt1 knockout in mesenchymal stem cells in mice resulted in defects in tissue function 

with age, which was shown to be due to reduced deacetylation of β-catenin by Sirt1 and 

consequently reduction in β-catenin in the nuclei of mesenchymal stem cells, which 

normally promotes the transcription of genes involved in mesenchymal stem cell 

differentiation (Simic et al., 2013). A similar function of Sirt1 to slow stem cell 

differentiation has also been shown in mouse embryonic stem cells. Sirt1 deacetylates 

retinoic acid binding protein II and hence prevents its localisation to the nucleus to 
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promote differentiation. When Sirt1 was deficient, mouse embryonic stem cells entered 

a state of hyper differentiation resulting in severe developmental abnormalities (Tang 

et al., 2014). Furthermore, differentiation of mouse pluripotent stem cells into neural 

stem cells was associated with a reduction in Sirt1 expression, and Sirt1 inhibition 

increased differentiation into neural stem cells (Hu et al., 2014). On the other hand, 

embryonic stem cells from Sirt1 knockout mice were unable to form substantial blast 

cell colonies (Ou et al., 2011).  

As already described, SIRT1 has been associated with DNA methylation, based on 

evidence that includes data on gene-specific actions from our own laboratory (Ions et 

al., 2012). Further exploration of the action of SIRT1 on DNA methylation carried out in 

our laboratory using MeDIP then either hybridisation to a promoter microarray (Caco-

2 cells) or sequencing (HuVECs) revealed that across the genome the effects of SIRT1 

on DNA methylation clustered in particular at PCGTs. This observation formed the basis 

of a hypothesis investigated in work presented as Chapter 6 of this thesis that SIRT1 

affects DNA methylation at PCGTs and hence may influence stem cell differentiation 

through actions on the polycomb proteins (Wakeling et al., 2015). 

In summary, it appears that SIRT1 plays varying roles in different types of stem cells, 

and can either promote or prevent stem cell differentiation. Further research is 

required to fully understand the likely pleiotropic roles of SIRT1 in stem cell renewal 

and differentiation. DNA methylation is a potential novel aspect of the function of SIRT1 

that may be important in this context. 
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1.13 Aims and Objectives 

1.13.1 Project Aims 

The aim of the work presented in chapters 3, 4 and 5 is to acquire data ultimately to 

populate a model of the interrelationship between the activity of SIRT1, PARP and CMA 

that will enable us to generate testable predictions about the effect on the other 

variables in the system of modifiers of their activity in particular NAD⁺ and resveratrol. 

Over the longer term such a model may inform how targeted manipulations to this 

system can counteract effects of cellular ageing. 

Another level at which SIRT1 may act to influence cellular ageing is on DNA 

methylation. As already stated, other work in the laboratory uncovered the finding that 

the effects of SIRT1 on DNA methylation cluster in particular at loci that are targets of 

the polycomb repressive complexes. These complexes repress the expression of genes 

involved in stem cell differentiation through epigenetic actions. The work presented in 

Chapter 6 began to explore the mechanism through which SIRT1 affects DNA 

methylation at the target loci of the polycomb repressive complexes. 

1.13.2 Specific objectives 

 To investigate if resveratrol affects SIRT1 expression and/or NAD⁺ 

concentration in Caco-2 cells. 

 To determine in vivo, using mice, and in vitro, using Caco-2 cells, if there are 

associations between levels of expression of Sirt1, Parp activity and NAD⁺ 

concentration. 

 To determine if SIRT1 and/or resveratrol affects CMA in Caco-2 cells and to 

determine if DNA methylation is a likely mediating mechanism. 

 To determine if SIRT1 affects the expression of any of the components of the 

polycomb repressive complexes and/ or if SIRT1 associates directly with the 

component of PRC2 EZH2. 
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2 Materials and Methods 

2.1 Reagents 

Unless otherwise stated chemicals and reagents were purchased from Sigma Aldrich. 

2.2 Mouse tissue 

PARP 1 -/- mice were a gift from de Murcia JM and de Murcia G. PARP -/- mice were 

generated by electroporation of mouse embryonic stem cells with a targeting vector 

consisting of a 9 kb region of the Parp1 gene (introns 2-7) into which the neo gene 

driven by the phosphoglycerate kinase promoter was inserted at exon 4. Cells resistant 

to G418 were selected and positive clones were injected into C57BL/6 blastocysts. The 

F2 generation resulting from mating of the chimeric F1 offspring were genotyped by 

Southern blotting to detect germ-line (de Murcia et al., 1997). Intestinal tissue was 

harvested from the mice and immediately frozen in liquid nitrogen and stored at -80 °C 

until protein extraction (described below). 
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2.3 Cell culture 

Human intestinal Caco-2 cells (ATCC® HTB-37™) sourced from a colorectal 

adenocarcinoma of a 72 year old caucasian male were cultured at 37 ˚C with 5 % CO2 in 

air in175 ml flasks with complete cell growth medium (15 ml of DMEM containing 0.6 

µl/ml gentamycin, 10% foetal bovine serum (FBS) and 1% non-essential amino acids). 

During routine passage (approximately every 7 days), confluent cells had the complete 

cell growth medium removed and were washed twice with 10 ml PBS before adding 3 

ml trypsin and incubating for 10 min to detach the cells from the base of the flask. Seven 

millilitres of complete cell growth medium was then added to the detached cells before 

transferring the suspension in to a universal tube. The cells were pelleted by 

centrifuging (3000 g, 5 min, RT) and the supernatant fluid was discarded. The Cells 

were resuspended in 10 ml complete cell growth medium before counting the cells 

using a haemocytometer to enable reseeding at a density of 3.5 x 104 cells/ml. Caco-2 

cells when confluent differentiate in to mature enterocytes forming a monolayer similar 

to that found in the intestinal epithelium, thus making them a firm choice to study the 

effects of diet and ageing (Sambuy et al., 2005).  

Human umbilical vein endothelial cells (HuVECs) (Lonza) were cultured at 37 °C with 

5 % CO2 in air in 175 ml flasks with 15 ml of EBM-2 medium (Lonza) containing Bullet 

KitTM (Lonza). HuVEC cells were attached to the bottom of the flask using 1 % Gelatin 

Attachment Factor (Life Technologies). Routine passage was as described above for 

Caco-2 cells, substituting the complete cell growth medium for EBM-2 medium but also 

using a seeding density of 3.5 x 104 cells/ml.  

For counting, cells were suspended in 50 % complete cell culture medium (as above) 

and 50 % Trypan Blue, which allows visualisation of only living cells only under a light 

microscope. A seeding density of 3.5x104 cells/ml was used for experimental 

manipulations, which were performed in 6 well transparent plastic plates (Greiner 

BioOne).  
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For cryogenic storage cells were detached from 175 ml flasks using trypsin and 

collected by centrifugation (for 5 min at 3000 g). Each cell pellet was resuspended in 4 

ml of freezing medium (90 % FBS, 10 % DMSO) and resuspended cells were placed in 

cryotubes in 1 ml aliquots. The cryotubes were sealed then placed in a Mr. Frosty™ 

freezing container (Thermo Scientific) containing isopropanol and incubated overnight 

at -80 ̊C. Cryotubes were stored for future use in liquid nitrogen. 
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2.4 Experimental manipulation of cultured cells 

All experimental manipulations on Caco-2 cells and HuVECs were conducted 24 h after 

cells were seeded. 

2.4.1 Genetic manipulation of cells 

2.4.1.1 siRNA 

SIRT1 knockdown was achieved by transfecting Caco-2 cells and HuVECs with Stealth 

RNAi (Life Technologies). Two siRNA constructs were used:  

siRNA1: 5’UACAAAUCAGGCAAGAUGCUGUUGC3’ sense 

siRNA2: 5’UUUGUCAUACUUCAUGGCUCUAUGA3’ sense 

A [DT][DT] 3’ overhang was added to each sequence. A Stealth RNAiTM siRNA negative 

control Lo GC (Life Technologies) was also used in all experiments. Cells were 

transfected using Lipofectamine® RNAIMAX Transfection Reagent (Life Technologies) 

Lipofectamine® RNAIMAX Transfection Reagent was incubated with opti-MEM 

medium for 5 min at RT (4 µl of reagent and 150 µl opti-MEM for 1 well) and siRNA was 

also incubated with opti-MEM medium for 5 min at RT (5 µl siRNA and 150 µl opti-MEM 

for 1 well). The two mixtures were then combined and incubated for a further 20 min 

at RT before adding to the cells alongside 2 ml per well complete cell growth medium. 

The medium was refreshed with 2 ml complete cell growth medium 24 h post 

transfection and cells were then harvested 72 h post transfection. 

2.4.1.2 Transfection with pPS-CFP2-N  

Caco-2 cells were transfected with a recombinant plasmid generated from the pPS-

CFP2-N vector (Appendix C) (Evrogen) using Lipofectamine® 2000 Transfection 

Reagent (Life Technologies). Lipofectamine® 2000 Transfection Reagent was 

incubated with opti-MEM medium for 5 min at RT (9 µl of reagent and 150 µl opti-MEM 

for 1 well) and DNA was also incubated with opti-MEM medium for 5 min at RT (2500 

ng DNA and 150 µl opti-MEM for 1 well). The two mixtures were then combined and 

incubated for a further 20 min at RT before adding to the cells alongside 2 ml per well 

complete cell growth medium The medium was refreshed with 2 ml complete cell 

growth medium 24 h post transfection immediately before capturing images. 
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2.4.1.3 Transfection with a SIRT1 promoter reporter plasmid 

The SIRT1 promoter-reporter construct generated using the vector pBlue-TOPO® 

(Appendix A) (Life Technologies) was transfected in to Caco-2 cells using 1.7 µg/well 

with Genejammer® transfection reagent (Stratagene). Four micro litres per well 

Genejammer® and 100 μl per well DMEM were mixed together and incubated for 5 min 

at RT. DNA (1700 ng per well) was then added to the Genejammer®/DMEM mixture 

and incubated for 15 min at RT. The mixture was then added to the cells alongside 900 

μl per well complete cell growth medium. The medium was refreshed with complete 

cell growth medium containing either resveratrol or vehicle only (DMSO) 24 h after 

transfection.  
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2.5 Pharmocological/chemical treatment of cells 

2.5.1 Resveratrol 

Resveratrol was incubated for 30 min in FBS prior to addition to FBS-free cell growth 

medium, which was applied to the cells for 24 h at a final concentration of 60 µM from 

a 10 mM stock. This was repeated after 24 h incubation for experiments performed over 

48 h. 

2.5.2 3-aminobenzamide 

The PARP inhibitor 3-aminobenzamide was dissolved and diluted in DMSO and applied 

in the cell culture medium at a concentration of 1 mM from a 100x (100mM) stock for 

0, 4, 6, 12 and 16 h.  

2.5.3 Apigenin 

The CD38 NADase inhibitor Apigenin (Santa Cruz) was dissolved and diluted in DMSO 

and applied in the cell culture medium at a concentration of 25 µM from a 10 mM stock 

for 4 h.  

2.5.4 FK866 

The nicotinamide phosphoribosyltransferase inhibitor FK866 (Merck Chemicals LTD) 

was dissolved and diluted in DMSO and applied in the cell culture medium at a 

concentration of 0.1 µM form a 100 mM stock for 4 h.  

2.5.5 Temozolomide 

Temozolomide (TMZ) (Santa Cruz) was dissolved and diluted in DMSO and applied in 

the cell culture medium at a concentration of 30 µM from a 10 mM stock for 4 h.  

2.5.6 5-azacytidine 

5-azacytidine was dissolved and diluted in PBS and applied in the cell culture medium 

for 24 h at a concentration of 10 µM from a 10 mM stock.  

2.5.7 EX-527 

Ex-527 was dissolved and diluted in DMSO and applied in the cell culture medium at a 

concentration of 10 µM from a 10 mM stock for 4, 6, 12 and 16 h.  
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2.6 Routine manipulation of DNA 

2.6.1 Restriction digests 

DNA was digested with restriction enzymes in the manufacturer’s supplied buffers 

(Promega). Reactions typically were performed on 1 µg DNA using 5 units of restriction 

enzyme and then incubated for 1 h at 37 ˚C. 

2.6.2 Ligation of DNA into plasmid vectors 

Ligation was carried out using the T4 DNA Ligase (Promega) in the supplied buffer. 

Reactions typically contained a 5x molar excess of insert over vector and was incubated 

at 16 ˚C over-night. 

2.6.3 Polymerase Chain Reaction (PCR) 

All PCR reactions were based on the following protocol. One microliter cDNA (~100 ng) 

was added to 2 µl forward and reverse PCR primers (10 µM), 12.5 μl Hotstart Taq 

Master Mix (Qiagen) and made up to 25 μl with distilled H2O. Thermal cycling (Techne 

TC-5000 PCR machin) was as follows: 95 ˚C, 5 min (initial denaturation) followed by 35 

cycles of 95 ˚C, 30 s (denature), 45-65 ˚C, 30 s (anneal), 72 ˚C, 1 min (elongate) then 72 

˚C, 5 min. Samples were then held in the thermal cycler at 4 ˚C and stored at -20 ˚C for 

future use.  

2.6.4 Agarose gel electrophoresis 

One gram of agarose was dissolved in 50 ml 1x Tris-EDTA buffer (Tris-HCl 10 mM, 

EDTA 1 mM) by heating in a microwave for 30-60 sec. Two microliters of SafeView DNA 

dye (NBS Biotechnologies) was mixed in to the agarose solution before pouring in to an 

electrophoresis tank, applying a comb to create 20 μl wells and allowing to solidify. To 

prepare samples, 2 μl 5x DNA loading dye (Bioline) was mixed with 8 μl PCR product. 

Five microlitres HyperLadder™ (Bioline) was loaded alongside samples as a size 

marker. Electrophoresis was in 1x Tris-EDTA buffer at 65 V for 30 min. Gels were 

viewed and images were captured under UV light on a gel documentation system 

(Quantity One® Biorad). 

2.6.5 Purification of PCR products 

PCR products were purified for use in downstream applications using the QIAquick PCR 

Purification Kit (Qiagen). PCR product was mixed with Buffer PB at a ratio of 1:5 and 
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added to the QIAquick spin column and centrifuged (17,000 g, 30 sec, RT). The flow 

through was discarded from the collection tube before the column was washed with 

750 μl Buffer PE by centrifuging (17,000 g, 30 sec, RT). The flow through was again 

discarded and the column was dried by centrifuging (17,000 g, 1 min, RT). The QIAquick 

column was then placed in a new collection tube and 50 μl of distilled H2O was added 

to the centre of the column and the column left to stand for 2 min. The sample was 

finally eluted by centrifuging (17,000 g, 1 min, RT). 

2.6.6 Purification of DNA from agarose gels 

Bands were excised under UV light then DNA was purified using QIAquick Gel 

Extraction Kit (Qiagen). The gel weighing no more than 0.2 g was added to 1 ml Buffer 

QG and incubated at 55 °C with occasional vortexing until the gel was dissolved. The 

mixture was then put in to a QIAquick gel extraction spin column and centrifuged 

(12,000 g, 1 min, RT) and the flow through discarded. The column was then washed by 

adding 750 μl Buffer PE and centrifuged (12,000 g, 1 min, RT) and the flow through 

discarded. Finally, the column was dried by centrifuging (12,000 g, 1 min, RT) before 

30 μl Buffer EB was added to the centre of the column and incubated for 2 min at RT. 

The column was inserted in to a new collection tube and centrifuged (12,000 g, 1 min, 

RT) to elute the product.  

2.6.7 Transformation of E.coli 

SIG10 chemically competent cells were used in the transformation reaction. Fifty 

microlitres of competent cells were incubated on ice for 20 min before addition of 20 

ng DNA and then incubated on ice for 30 min before heat shocked at 42 ˚C, 30 s in a 

water bath before placing back on to ice for 2 min. Luria Broth (LB) growth medium 

(250 µl) (10 g Tryptone, 10 g NaCl and 5 g yeast extract, 1 l distilled H2O) was added to 

the competent cells under a Bunsen Burner flame and incubated for 1 h at 37 ˚C in a 

shaking incubator. Then 100 μl, 50 μl, 25 μl and 10 μl volumes of competent cells in LB 

were evenly spread on to room temperature LB Agar 10 cm plates (LB containing 15 

g/l agar and antibiotic to select for antibiotic resistant colonies) under a Bunsen Burner 

flame. Plates were incubated over night at 37 ˚C and checked for colonies the next day.  

2.6.8 Small scale preparation of plasmid DNA from bacterial cultures 
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Several bacterial colonies grown on antibiotic LB agar plates were selected and 

inoculated individually in to 2 ml of LB containing antibiotic under a Bunsen Burner 

flame and incubated for 6 h at 37 ˚C in a shaking incubator. Plasmid DNA was harvested 

from the bacterial starter broths using the QIAprep® Spin Miniprep Kit (Qiagen). The 

bacteria were pelleted by centrifuging (6000 g, 3 min, RT). The supernatant was 

discarded and the pellet re-suspended in 250 μl Buffer P1. Two hundred and fifty micro 

litres Buffer P2 was added to the re-suspension and inverted to mix then immediately 

350 μl Buffer N3 was added to the mixture and inverted to mix before centrifuging 

(17,000 g, 13 min, RT). The supernatant was then added to a QIAprep spin column and 

centrifuged (17,000 g, 30 sec, RT) and flow through discarded. The column was then 

washed with 750 ml Buffer PE by centrifuging (17,000 g, 30 sec, RT) and the flow 

through discarded. The column was finally dried by centrifuging (17,000 g, 1 min, RT) 

before placing the column in a new collection tube and addition of 50 μl Buffer EB to 

the centre of the column, incubating for 1 min at RT. The plasmid was then eluted by 

centrifugation (17,000 g, 1 min, RT). Plasmid DNA was then sent for sequencing 

(Eurofins Genomics). 

2.6.9 Large scale preparation of plasmid DNA from bacterial cultures 

Two millilitre bacterial starter broths were prepared as described above. The bacterial 

starter broths were added to 250 ml LB containing antibiotic under a Bunsen Burner 

flame and incubated over night at 37 ˚C in a shaking incubator. Plasmid DNA was then 

harvested using a QIAGEN Plasmid plus Maxi Kit (Qiagen). The bacteria were pelleted 

by centrifuging (6000 g, 15 min, 4 °C). Supernatent was discarded and the bacterial 

pellet was re-suspended in 10 ml Buffer P1. Ten millilitres of Buffer P2 was added to 

the sample and inverted to mix before incubating at RT for 5 min. The QIAfilter 

cartridge was prepared by capping, adding 10 ml Buffer P3 and placing in a universial 

tube before pouring the lysate in to the QIAfilter cartridge and incubating at RT for 10 

min. The QIAfilter cap was then removed and the plunger inserted to filter the lysate in 

to the universial tube. To the lysate 2.5 ml Buffer ER was added and inverted 10 times 

before incubating on ice for 30 min. The Qiagen-tip 500 column was equilibrated by 

allowing 10 ml Buffer QBT to flow through it by gravity. The lysate was poured in the 

Qiagen-tip 500 column and allowed to flow through it and then the column was washed 
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twice with 30 ml Buffer QC. The plasmid was eluted in to a new universial tube by 

adding 15 ml Buffer QN to the column. The elution was divided in to 750 μl samples and 

each sample was mixed with 525 μl 100 % isopropanol and centrifuged (15,000 g, 30 

min, RT). The supernatant was discarded and the pellet washed with 250 μl 100 % 

ethanol by centrifuging (15,000 g, 10 min, RT). The supernatant was discarded and the 

pellet re-suspended in 75 μl Buffer TE. Plasmid DNA was then sent for sequencing 

(Eurofins Genomics) and stored at -20 ˚C until future use. Before use plasmid DNA 

concentration was checked by Nanodrop (Nanodrop® ND-1000). 

2.7 RNA analysis 

2.7.1 RNA extraction 

Cells were washed once with ice cold PBS (1x) before the addition of TRIzol® Reagent 

(Life Technologies) using 500 µl/9.5 cm2 cell monolayer. Cells were scraped in to 1.5 

ml microfuge tubes and frozen for 1 h at -80 ˚C. RNA was extracted from cells by adding 

100 µl phenol:chloroform (5:1) and centrifuging in a bench top centrifuge (13,000 g, 15 

min, 4 ˚C), 200 µl of the aqueous layer produced was removed in to a new centrifuge 

tube with equal volume of 70 % ethanol. RNA was then purified from the aqueous layer 

plus ethanol using the Purelink® RNA mini kit (Life Technologies). Seven hundred 

micro litres was transferred in to a spin column and centrifuged (12,000 g, 15 sec, RT), 

flow through was discarded from the collection tube and the column was then washed 

with 700 µl wash buffer 1 by centrifuging (12,000 g, 15 sec, RT) and the flow through 

discarded. With a new collection tube the column was washed twice with 500 µl wash 

buffer 2 by centrifuging (12,000 g, 15 sec, RT). The column was then dried by 

centrifuging (12,000 g, 1 min, RT) before adding 50 µl H2O to the centre of the column 

and centrifuging (12,000 g, 2 min, RT) to elute the RNA in to a new collection tube and 

stored at -80 ˚C. The concentration of RNA was determined using a Nanodrop 

spectrophotometer at 260 nm (NanoDrop® ND-1000).  
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2.7.2 DNase treatment 

All RNA samples were treated with DNAse to eradicate DNA contamination. RNA (4.5 

µg) was added to 2 μl DNAse buffer and 4.5 U DNAse (DNAse RQ1 kit, Promega) and 

distilled H2O was added to make the final volume to 20 μl. The DNAse/RNA mix was 

incubated at 37 ˚C for 30 min then 4 μl of Stop Solution (DNAse RQ1 kit, Promega) was 

added before incubating the mixture at 65 ˚C for 10 min. Samples were then placed on 

ice before immediately performing reverse transcription.  

2.7.3 Reverse transcription  

Immediately following DNAse treatment, RNA samples were reverse transcribed to 

generate cDNA. Ten microlitres of each sample was added to 1 μl random primers (150 

ng/μl, Promega), 0.4 μl dNTPs (25 μM, Bioline) and 0.6 μl distilled H2O. The sample was 

then incubated at 65 ˚C for 5 min. Following incubation, 1 μl Superscript®III 

(Invitrogen), 1 μl RNasin® ribonuclease inhibitor (20-40 U/μl, Promega), 1μl DTT 

(0.1M, Invitrogen) and 4 μl 5x Superscript buffer (Invitrogen) was added to each 

sample. Samples were then incubated at 25 ˚C for 5 min, 50 ˚C for 45 min then 70 ˚C for 

15 min. Samples were stored at -20 ˚C until used.  

2.7.4 Real time PCR 

cDNA was quantified using real time PCR. One microliter cDNA (~100 ng) was added 

to 2 µl forward and reverse primers (10 µM), 10 μl SYBR Green Master Mix (Roche) and 

made up to a volume of 17 μl with distilled H2O. Samples were loaded in to a 96 well 

white plate (Starlab) and sealed. PCR was performed on a Roche Lightcycler® 480 

using the following parameters: 4 min, 95 °C then 50 cycles of 95 ˚C, 10 s (denature), 52 

˚C, 10 s (anneal), 72 ˚C, 15 s (elongation). The ΔΔCt method was used to calculate 

quantities of specific cDNAs relative to reference genes and the control condition. 
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2.7.5 Primers used for PCR are listed in Table 2.7.1 

Table 2.7.1 Primers used for real time PCR 

Primer name Sequence (note reverse 
primers are in reverse 

complement) 

Annealing 
temperature 

(˚C) 

Supplier 

Homo sapien    
SIRT1 Forward gaacttcagtggctggaacagtg 55 Eurofins 

Genomics 
SIRT1 Reverse cagagtctgaatatacctcagcgc 55 Eurofins 

Genomics 
GAPDH Forward tgaaggtcggagtcaacggatttg 55 Eurofins 

Genomics 
GAPDH Reverse catgtaaaccatgtagttgaggtc 55 Eurofins 

Genomics 
TOP1 designed by manufacturer 55 Primer Design 

Rn18s Forward aggaattgacggaagggcaccac 58 Eurofins 
Genomics 

Rn18s Reverse gtgcagccccggacatctaagg 58 Eurofins 
Genomics 

LAMP2 Forward cctacaacactggtgataacac 55 Eurofins 
Genomics 

LAMP2 Reverse catttgtgctgctcactgtgc 55 Eurofins 
Genomics 

HSC70 Forward gcttatggtgcagctg 55 Eurofins 
Genomics 

HSC70 Reverse gaatggtggtattacgc 55 Eurofins 
Genomics 

EZH2 Forward gtcctcattggcacttactatg 58 Eurofins 
Genomics 

EZH2 Reverse cttggaggagtatccacatc 58 Eurofins 
Genomics 

SUZ12 Forward gtgatacctgcttacctctcc 58 Eurofins 
Genomics 

SUZ12 Reverse catgacatggagattccag 58 Eurofins 
Genomics 

RNF2 Forward gatgacagtgcacagacgag 58 Eurofins 
Genomics 

RNF2 Reverse gtatactgcttctcactggctg 58 Eurofins 
Genomics 

KDM2B Forward ggacatcacagatgcctc 58 Eurofins 
Genomics 

KDM2B Reverse cttattgcagtcagacaggttg 58 Eurofins 
Genomics 

PHC1 Forward cagtgctaccaccttgac 55 Eurofins 
Genomics 
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PHC1 Reverse aggagactgagcagatgg 55 Eurofins 
Genomics 

DNMT1 Forward gagctgaaccttcacctagc 58 Eurofins 
Genomics 

DNMT1 Reverse cttccttgatggactcatcc 58 Eurofins 
Genomics 

DNMT3B 
Forward 

gaagactcgatcctcgtc 55 Eurofins 
Genomics 

DNMT3B 
Reverse 

gtagcttagcagactggacac 55 Eurofins 
Genomics 

BMI1 Forward gcagctcgcttcaagatg 58 Eurofins 
Genomics 

BMI1 Reverse gagggtacttcattgatgcc 58 Eurofins 
Genomics 

EED Forward ggaatatccagacggacactc 58 Eurofins 
Genomics 

EED Reverse gagaatgatccataccacagg 58 Eurofins 
Genomics 

RBAP48 
Forward 

cagtggaagaacgagtgatc 58 Eurofins 
Genomics 

RBAP48 Reverse gcattca tcgacttgtcc 58 Eurofins 
Genomics 

Mus musculus    
SIRT1 Forward gtgctacagctctctgacgaac 58 Eurofins 

Genomics 
SIRT1 Reverse gtgctacagctctctgacgaac 58 Eurofins 

Genomics 
GAPDH Forward gtgctacagctctctgacgaac 58 Eurofins 

Genomics 
GAPDH Reverse gtgctacagctctctgacgaac 58 Eurofins 

Genomics 
TOP1 Forward gactggcagaagtatgagactgc 55 Eurofins 

Genomics 
Top1 Reverse gtgctacagctctctgacgaac 55 Eurofins 

Genomics 
Bovine    

Ribo A Forward ctcaagcttatggctctgaagtccctggt 55 Eurofins 
Genomics 

Ribo A Reverse gaggaattctctggttacagtagttggag 55 Eurofins 
Genomics 
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2.8 Protein analysis 

2.8.1 Protein extraction from cells 

Cells were washed with 1 ml 1x ice cold PBS before the addition of 1 ml 1x PBS 

containing 1x protease inhibitor (Roche) per 9.5 cm2 of cell monolayer. Cells were then 

scraped in to 1.5 ml microfuge tubes and centrifuged (4°C, 13,000 rpm for 15 min) 

(Fisher Scientific AccuSpin Micro 17R). The cell pellet was resuspended in 200 µl Ripa 

buffer containing 1x protease inhibitor (Roche) and incubated for 30 min on ice. 

Samples were centrifuged (4 ˚C, 13,000 rpm for 5 min) and the supernatant fluid was 

stored at -80 °C until future use. 

2.8.2 Protein extraction from tissue samples 

Tissue samples weighing 10 mg were homogenised in 4 volumes of ice cold isotonic 

buffer. The homogenate was then diluted 1:5 with Ripa Buffer containing 1x protease 

inhibitor (Roche). Sonication was performed twice for 10 s with 1 min incubation on 

ice in between sonication’s. The samples were then incubated at room temperature for 

10 min before centrifuging (4 °C, 16,000 g, 10 min) (Fisher Scientific AccuSpin Micro 

17R). The supernatant fluid was then stored at -80 °C until further use.  

2.8.3 Determination of protein concentration 

Protein concentration was determined using Bradford Reagent (Biorad). Samples were 

diluted 1:100 with distilled H2O. Fifty microliters was then added to 200 µl of 1x 

Bradford Reagent in a clear flat bottomed 96 well plate and then the absorbance was 

measured at 595 nm (Thermo Labsystems Multiscan Ascent). Final concentrations of 

protein were calculated using a standard curve with standards of 0, 20, 40, 60, 80 and 

100 (ug/ml) bovine serum albumin.  



 

56 
 

2.8.4 Western blotting  

2.8.4.1 SDS-PAGE gels 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used to 

separate protein on 10% acrylamide gels (3.5 ml bis-acrylamide (37.5:1 40%), 4.8 ml 

H2O, 5.6 ml 2.5x separating buffer (1.875 M TRIS base, 0.25 % SDS, pH 8.9), 12 µl 

tetramethylethylenediamine (TEMED) and 130 µl 10 % ammonium persulphate) and a 

5 % Acrylamide gel was used as a stacking gel (500 µl bis-acrylamide (37.5:1 40%), 2.64 

ml H2O, 800 µl 5x stacking buffer (0.3 M TRIS base, 0.5 % SDS, pH 6.7), 5 µl TEMED and 

36 µl 10 % ammonium persulphate). The separating gel was poured first between two 

sealed glass plates (filling ¾ way up the glass plates) and left to solidify at room 

temperature (~ 20 min). The stacking gel was poured on top of the separating gel, a 

comb inserted to form wells and left to set at room temperature (~ 1 h). The glass plates 

were then wrapped in cling film and stored at 4 ˚C overnight prior to SDS-PAGE. 

2.8.4.2 SDS-PAGE 

Gels were placed in electrophoresis tanks and submerged in 1x running buffer (from a 

5x stock of TRIS base 60.6 g, Glycine 144.1 g and SDS 5 g in 1 l of distilled H2O). Protein 

lysate was mixed with loading buffer and 2-mercaptoethanol (1 µg/µl protein lysate, 

0.25 µl of 5% 2-mercaptoethanol and 2.5 µl loading buffer (2.25 ml 1 M TRIS base, 5 ml 

glycerol, 0.5 g SDS, 5 mg bromophenol blue and 2.5 ml 1 M dithiottreitol). The samples 

were then denatured at 95 °C for 5 min. Ten microliters of each sample was loaded on 

the gel alongside 5 µl of 8000-220,000 Dalton Colourburst Ladder (Sigma). 

Electrophoresis was for 2 h at 120 V. 

2.8.4.3 Transfer of protein to membrane 

A wet blot system was used to blot proteins from the polyacrylamide gel on to a 

polyvinylidene difluride (PVDF) membrane (Roche). The membrane was prepared by 

immersing it in 100 % methanol (30 s) then washing in distilled H2O (2 min) before 

immersing in transfer buffer (15 min) (3.86 g TRIS base, 9 g glycine, 200 ml 100 % 

methanol, 1800 ml distilled H2O). The gel and membrane were sandwiched together 

between two pieces of Whatman® blotting paper soaked in transfer buffer (1:5 100 % 

methanol to running buffer). The assembly was then immersed in transfer buffer in a 

wet blotting tank. Transfer was for 4 h at 30 V or overnight at 20 V. 
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2.8.4.4 Probing with antibodies 

Following transfer, the membrane was blocked overnight at 4 °C in 1x Odyssey Blocking 

Buffer and 1x PBS (1:1). The membrane was then incubated for 1 hour with primary 

antibody diluted in 1x Odyssey Blocking Buffer and 1x PBS (1:1) containing 0.1 % 

Tween-20. The membrane was washed for 5 min 4 times in membrane wash buffer (1x 

PBS and 0.1 % Tween-20) before incubating for 1 h with fluorescently-labelled 

secondary antibody in 1x Odyssey Blocking Buffer and 1x PBS (1:1) containing 0.1 % 

tween-20. The membrane was washed for 5 min 4 times in membrane wash buffer. The 

antibodies used are listed in Table 2.8.1 

2.8.4.5 Antibody detection 

Fluorescently-labelled secondary antibody bound to membrane was detected using the 

Li-Cor Odyssey Scanner. Images were captured and densitometry was performed on 

the signal using the Li-Cor Odyssey Scanner software. 

2.8.5 Immunoprecipitation 

Immunoprecipitation of protein from Caco-2 cells and HuVECs was carried out using 

the Pierce Classic IP Kit (Pierce Biotechnologies). The cell monolayer (175 ml flask) was 

washed with ice cold PBS before addition of 1.5 ml IP lysis Buffer. The cells were 

incubated on ice for 5 min and then transferred to a microfuge tube for centrifugation 

(13,000 g, 10 min, RT). Supernatant was transferred in to a new microfuge tube for 

analysis. Protein concentration was determined using a Bradford Reagent (see above 

for details). The protein lysate was pre-cleared by adding Control Agarose Resin slurry 

to a spin column (80 µl per 1 mg protein) and centrifuged (1000 g, 1 min, RT) to remove 

the storage buffer. The Control Agarose Resin was then washed by adding 100 µl 

sodium phosphate 0.1 M and sodium chloride 0.15M buffer and centrifuging (1000 g, 1 

min, RT) the flow through was discarded. The protein lysate was then added to the 

column and incubated with the Control Agarose Resin for 1 hour at 4 °C with end-over-

end mixing. The protein lysate was then eluted from the column by centrifuging (1000 

g, 1 min, RT) and the flow through (protein lysate) was saved at this point. Ten micro 

litres of antibody (antibodies used are listed in Table 2.8.1) was added to 1000 µg 

protein lysate and diluted to 600 µl using IP Lysis/Wash Buffer before incubating 

overnight at 4 °C with end-over-end mixing. Twenty micro litres Pierce Protein A/G 
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Agarose resin slurry was added to a new spin column and centrifuged (1000 g, 1min, 

RT) to remove the storage buffer. The resin was washed twice by adding 100 µl IP 

Lysis/Wash Buffer and centrifuging (1000 g, 1 min, RT) then the flow through 

discarded. The overnight incubated protein lysate/antibody solution was then added 

to the spin column containing the Protein A/G Agarose resin and incubated for 1 hour 

at 4 °C with end-over-end mixing. The spin column was then centrifuged (1000 g, 1 min, 

RT) and the flow through discarded. The resin in the spin column was washed 3 times 

using 200 µl IP Lysis/Wash Buffer and centrifuged (1000 g, 1 min, RT) and once with 

100 µl 1X Conditioning Buffer, each time the flow through was discarded. The protein 

was eluted from the column by adding 2X reducing sample buffer (50 µl 2X Non-

reducing Lane Marker Sample buffer and 20 mM DTT) and incubating for 10 min at 100 

°C before centrifuging (1000 g, 1 min, RT) to elute the sample. Finally the sample was 

cooled to RT before immediately loading on to a SDS-PAGE gel for further analysis. 
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2.8.6 Antibodies 

Table 2.8.1 Antibodies used with the concentrations used, the system they were used 

on and where they were manufactured. 

Antibody Concentration System Supplier 
Rabbit Anti-SIRT1 
primary 

1:500 Odyssey Li-Cor  Pierce 

Rabbit Anti-LAMP2 
primary 

1:250 Odyssey Li-Cor Abcam 

Rabbit Anti-α-tubulin 
primary 

1:1000 Odyssey Li-Cor Abcam 

Goat Anti-EZH2 
primary 

1 µg/ml Immunoprecipitation 
and Odyssey Li-Cor 

R & D systems 

Rabbit Anti-SIRT1 
primary 

1 µg/ml Immunoprecipitation Abcam 

Rabbit Anti-HSC70 
primary 

1:500 Odyssey Li-Cor Abcam 

Secondary Anti-Rabbit 
Fluorescent IRDye® 

1:10,000 Odyssey Li-Cor Li-Cor 

Secondary Anti-Goat 
Fluorescent IRDye® 

1:10,000 Odyssey Li-Cor Li-Cor 

 

2.9 SIRT1 promoter reporter assay 

Caco-2 cells transfected with a SIRT1 promoter-reporter vector (Appendix A and B) 

were lysed using 200 µl of lysis buffer (0.25 M Tris-HCL, 2.5 mM EDTA and 0.25 % 

Nonident p40) per 9.5 cm2 of cell monolayer. Cells were completely lysed by freeze thaw 

action. Twenty microlitres of cell lysate and 130 µl 1x chlorophenolred-ß-D-

galactopyranoside diluted in buffer A (25 mM MOPs, 100 mM NaCl and 10 mM MgCl2 in 

100 ml distilled H2O) were incubated in a clear flat bottomed 96 well plate at 37 °C. 

Absorbance was measured at 560 nm (Thermo Labsystems Multiscan Ascent) every 15 

min. The protein concentration in each sample was measured using Bradford Reagent 

(Biorad) in a Bradford assay (described above) and data were expressed relative to 

total protein. 

2.10 Measurement of NAD⁺ 

NAD⁺ was measured in cell lysate as the change in NADH fluorescence following 

addition of 100 % ethanol and alcohol dehydrogenase. 

Whole cell lysate was prepared by washing cell monolayers with 1x PBS and lysed the 

with 200 µl 0.6 M perchloric acid. Lysed cells were then scraped in to a 1.5 ml microfuge 
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tubes. The samples were centrifuged (4 °C, 5000 g, 5 min) to pellet the debris. The 

supernatant fluid was removed into new 1.5 ml microfuge tubes and 1:5 1 M potassium 

phosphate was added to each sample on ice. 3 M potassium hydroxide was then added 

to neutralise each sample to pH 7.2-7.4. In a clear flat bottomed 96 well plate, 100 µl of 

sample was added to 1 µl 100 % ethanol and 100 µl diphosphate buffer (4.5 g tetrabasic 

sodium pyrophosphate, 0.5 g semicarbazide hydrochloride and 100 ml H2O) and 

incubated for 10 min at room temperature. Absorbance was measured after incubation 

(340 nm excitation and 460 nm emission) on a BMG LABTECH FLVOstar Omega Plate 

Reader. One microlitre 300 U/ml alcohol dehydrogenase (Saccharomyces cerevisiae) 

was added to each sample before incubating for 6 min at room temperature, then taking 

a final absorbance reading (340 nm excitation and 460 nm emission).  

NAD⁺ concentration was calculated using a standard curve (Melford) with 

concentrations of 0, 0.02, 0.04, 0.05, 0.08, 0.1 µM. The NAD content of cells was 

expressed as µM/mg protein, using the protein concentration of each sample as 

determined using the Bradford assay (described above).  

2.11 Measurement of PARP activity 

PARP activity was measured in Caco-2 cells following treatment with SIRT1 siRNA or 

apigenin. The PARP activity assay was performed with our collaborator (Professor 

Nicola Curtin, Newcastle University). Caco-2 cells were harvested using trypsin (as 

described above) and resuspended in 1 ml PBS. The cells were centrifuged (5000 g, 5 

min, 4 °C) and the supernatant fluid was discarded. The pellet was resuspended in 1 ml 

PBS before centrifuging (5000 g, 5 min, 4 °C) and removing the supernatant fluid. Cells 

were then permeabilised using 100 µl digitonin (0.15 mg/ml) and incubated for 10 min 

on ice. Nine hundred micro litres ice cold PBS was then added to the permeabilised cells 

before counting the cells using a Coulter counter. Five hundred cells were exposed to a 

blunt-ended oligonucleotide (5′-CGGAATTCCG-3′, Invitrogen, 200 µg/ml) and NAD⁺ (7 

mM) in the reaction buffer (100 mM Tris–HCl, 120 mM MgCl2, pH 7.8) for 6 min at 26 

°C. The reactions were then suctioned in individual wells through a membrane to 

capture the newly synthesized PAR polymer. The membrane was washed twice in 10 

ml PBS before blocking in 10 ml milk overnight. PAR was detected using mouse 

monoclonal anti-PAR 10H antibody (1.5 mg/mL, a gift from Professor Alex Bürkle, 
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University Konstanz, Germany) with horseradish peroxidase–conjugated polyclonal 

goat anti-mouse IgG (DAKO) as a secondary antibody. Both antibodies were diluted 

1:1000 in phosphate-buffered saline with 0.05 % Tween 20 and 5 % milk power). The 

membrane was incubated for 1 h with anti-PAR antibody then washed 3 times for 10 

min in 10 ml wash buffer (1x PBS and 0.1 % Tween-20) and incubated for a further 1 h 

with the secondary antibody then washed 3 times for 10 min in 10 ml wash buffer (1x 

PBS and 0.1 % Tween-20). Secondary antibody was detected using ECL (Amersham) by 

a Fujifilm LAS 3000 imager (Raytest) (Drew et al., 2011).  
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2.12 Fluorescence microscopy on Caco-2 cells a CMA substrate 

Fluorescence microscopy was carried out on Caco-2 cells transformed with a 

fluorescent substrate for CMA in the Newcastle University Bioimaging suite with the 

help of Dr. Alex Laude. A Nikon A1R confocal microscope was used for the 

photoconversion (20X lense, ND1-4.42mW LED array, 8 min) of the protein product 

from cyan to green. Images were captured before and after photoconversion at 30 min 

intervals for 45 h using the Nikon A1R microscope (40X lense). Nikon Elements Viewer 

software was used to view the images and Volocity 3D image analysis software (Perkin 

Elmer) was used to measure the fluorescent intensity of individual cells. 

2.13 Statistical analysis 

Statistical analysis was performed using IBM SPSS Statistics 22 software. All data had a 

normal distribution and were analysed by ANOVA combined with Tukey’s post hoc 

statistical test for comparison of greater than two data sets with control or Student’s T-

test where there were only 2 conditions. 

2.14 Equipment list 

Techne TC-500 PCR machin- PCR machine 

Roche lightcycler® 480- Real-time PCR machine 

Fisher Scientific-accuSpin MICRO 17R- Desktop centrifuge 

Thermo Labsystems Multiskan Ascent- Plate reader used for Bradford reagent and 

promoter-reporter assay 

BMG LABTECH FLVOstar Omega- Plate reader used for NAD⁺ assay 

Techne Dri-Block DB2A- Heat block 

Li-Cor Odyssey- fluorescence scanner 

NanoDrop® ND-1000- Nanodrop machine 

Fujifilm LAS 3000 imager Raytest- PARP assay scanner 

Nikon A1R confocal microscope- CMA assay 
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3 Chapter 3. Interactions between SIRT1, resveratrol and NAD⁺ 

3.1 Introduction 

A reduction in calorie intake by around 30-40 %, can extend lifespan by 40 % in mice 

(McCay et al., 1989). Similar responses to reducing energy and/or specific nutrients 

available from food have been seen in other model organisms including Saccharomyces 

cerevisiae, Caenorhabditis elegans and Drosophila melanogaster (Lin et al., 2000; Clancy 

et al., 2001; Guarente and Picard, 2005; Greer and Brunet, 2009). Furthermore, the 

healthspan of animals maintained under such conditions of dietary restriction (DR) is 

markedly improved. For example, studies in Rhesus monkeys have shown that DR can 

decrease the risk of developing neoplasia and diabetes (Colman. R, 2009; Mattison .J et 

al., 2012).SIRT1 is thought to play a role in mediating the effects of DR on cell and/or 

systemic ageing. When the SIRT1 homologue Sir2 was mutated in Saccharomyces 

cerevisiae the lifespan-extending effects of DR were lost (Lin et al., 2000), whereas, 

increasing the copy number of Sir2 in Caenorhabditis elegans extended lifespan 

(Tissenbaum and Guarente, 2001). Thus, SIRT1 is believed to play a fundamental role 

in ageing. However, interactions between SIRT1 and many other molecular modulators 

of ageing are understood only partially. 

Resveratrol can also increase the lifespan and healthspan of model organisms. For 

example, in obese mice fed resveratrol insulin sensitivity increased and in 

Caenorhabditis elegans and Drosophila melanogaster resveratrol extended lifespan by 

up to 20 % (Wood et al., 2004; Baur et al., 2006). Resveratrol has thus been labelled a 

DR mimetic. Moreover, in mice resveratrol treatment improved mitochondrial 

biogenesis; however, when SIRT1 was knocked down resveratrol had no effect on 

mitochondrial biogenesis (Price et al., 2012). Such findings have led to the view that 

SIRT1 also plays an essential role in mediating the cellular response to resveratrol that 

counteracts some features of ageing.  

Originally it was considered that resveratrol was a direct activator of SIRT1 but this 

theory has been controversial with no clear resolution. Resveratrol has also been 

shown to affect the expression of SIRT1. For example, resveratrol increased SIRT1 

mRNA and protein levels in human ovary cells (Morita et al., 2012). Moreover, 
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resveratrol has been shown to increase intracellular NAD⁺, through the AMPK 

pathway, which may result in the NAD⁺-dependent activation of SIRT1 (Park et al., 

2012). In Saccharomyces cerevisiae it was shown that deletion of the Ntp1 gene 

(involved in NAD⁺ synthesis) abolished the extension of lifespan seen under conditions 

of DR, suggesting that NAD⁺ may be essential for DR to extend lifespan (Lin et al., 2000). 

Together these studies link SIRT1, resveratrol and NAD⁺ as key components that can 

extend lifespan but whose potentially complex interactions remain to be elucidated. 

The work presented in this chapter explores possible mechanisms through which 

resveratrol and/or NAD⁺ affect SIRT1 expression in human Caco-2 cells and investigate 

if resveratrol can affect intracellular NAD⁺ levels.  
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3.2 Resveratrol increases SIRT1 mRNA in human Caco-2 cells. 

To determine if resveratrol affects SIRT1 expression, SIRT1 mRNA and protein were 

measured in Caco-2 cells after adding 60 µM resveratrol to the extracellular medium 

for 48 h. This concentration of resveratrol was used because previous work carried out 

in the laboratory testing a range of resveratrol concentrations from 10 µM to 100 µM 

showed that a minimum of 60 µM (a pharmaceutical concentration) extracellularly was 

required to produce level changes in gene expression and in DNA methylation (Dr. L. 

Wakeling personal communications). mRNA was measured by RT-qPCR and protein 

was measured by Western blotting. 

Resveratrol significantly increased SIRT1 mRNA relative to the reference genes GAPDH 

and TOP1 (Figure 3.2.1 A), preliminary measurements of SIRT1 protein relative to the 

α-tubulin loading control displayed a trend to increase by approximately 2 fold but 

further repeats are needed to show statistical significance (Figure 3.2.1 B and C). 
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Figure 3.2.1. The effect of resveratrol on SIRT1 mRNA and protein in Caco-2 cells. 

Resveratrol was included in the extracellular medium at 60 µM over 48 h (replenished at 24 

h). A SIRT1 mRNA levels measured by RT-qPCR, relative to GAPDH and TOP1 n=2 (based on 

6 data points comprising 2 biological replicates, each the mean of 3 wells measured 

separately). B SIRT1 protein measured by densitometry from western blot against α-tubulin 

loading control n=1. C Representative western blot raw data; lanes 1-3 control, lanes 4-6 

medium containing resveratrol. SIRT1 produced a signal at 120 KDa and α-tubulin produced 

a signal at 50 KDa. *P<0.05, by Student’s T-test. Data are shown as ± standard deviation (SD). 
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3.3 Resveratrol increases SIRT1 promoter activity in human Caco-2 cells. 

Having observed that resveratrol increased SIRT1 mRNA we sought to determine if this 

response was due to an increase in transcription of the SIRT1 gene. We thus 

investigated if resveratrol affected the activity of a SIRT1 promoter-reporter construct. 

Caco-2 cells were transfected with the promoter-reporter construct then treated with 

60 µM resveratrol over 48 h. Promoter activity was measured as activity of β-

galactosidase, the product of the reporter gene, in the cell lysate.  

Resveratrol significantly increased SIRT1 promoter activity by around 20%, providing 

evidence that the increases in SIRT1 mRNA observed included at least a component that 

resulted from an increase in SIRT1 gene transcription (Figure 3.3.1).  
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Figure 3.3.1. The effect of resveratrol on the activity of a SIRT1 promoter-reporter 

construct in Caco-2 cells. Caco-2 cells were transfected with a SIRT1 promoter-reporter 

construct and incubated with 60 µM resveratrol for 48 h extracellularly (replenished at 24 h). 

β-galactosidase activity was then measured by incubating the cell lysate with CPGR β-

galactosidase substrate. Colour change was measured at 560 nm. *P<0.05 by Student’s T-test. 

Data are shown as mean ± standard deviation (SD), n=2 (based on 6 data points comprising 

2 biological replicates, each the mean of 3 wells measured separately). 
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3.4 Preventing the breakdown of NAD⁺ reduced SIRT1 mRNA in Caco-2 cells, 

whereas an inhibitor of de novo synthesis of NAD⁺ had no effect on SIRT1 

mRNA but appears to increase SIRT1 protein. 

Sir2 (SIRT1 homologue) and Ntp1 (involved in NAD⁺ synthesis) are required for 

lifespan extension in Saccharomyces cerevisiae under conditions of DR (Lin et al., 2000). 

As NAD⁺ is required for SIRT1 to function as an enzyme, NAD⁺ may be required for 

SIRT1 to extend lifespan. It has been reported previously that resveratrol can increase 

intracellular NAD⁺ levels through the AMPK pathway (Park et al., 2012) and we have 

shown that resveratrol can also increase SIRT1 expression. To determine if the change 

in expression of SIRT1 by resveratrol is linked to changes in NAD⁺, we investigated if 

manipulation of NAD⁺ can change SIRT1 mRNA and protein levels. NAD⁺ was 

manipulated using the CD38 NADase inhibitor apigenin, which prevents the breakdown 

of NAD⁺, and the nicotinamide phosphoribosyltransferase inhibitor FK866, which 

prevents NAD⁺ synthesis. SIRT1 mRNA was measured by RT-qPCR relative to GAPDH 

and TOP1 reference genes. SIRT1 protein was measured by Western blot relative to the 

α-tubulin loading control. Apigenin is typically used in cell culture at a concentration in 

the range of 0.5-100 µM (Escande et al., 2013; Fale et al., 2013). FK866 has been used 

previously in experiments reported in the literature at a range of 0.01 µM-0.4 µM but 

concentrations higher than 20 nM produced over a 80 % reduction in NAD⁺ after 1 day 

incubation in Leukemia cells (Hasmann and Schemainda, 2003; Gehrke et al., 2014; 

Schuster et al., 2015). Previous work carried out by Professor Nicola Curtin’s 

Laboratory with whom we collaborated for this work, used apigenin at a concentration 

of 25 µM and FK866 at a concentration of 0.1 µM over 4 h and found that these 

concentrations were sufficient to show effects on K564 cells after 4 h incubation. We 

used these same concentrations in our Caco-2 cell culture model to be consistent with 

our collaborators. 

Addition of apigenin (25 µM, 4h), which we confirmed increased NAD⁺, resulted in a 90 

% reduction in SIRT1 mRNA and a slight decrease in SIRT1 protein but FK866 (0.1 µM, 

4h), which we showed reduced NAD⁺, had no effect on SIRT1 mRNA but showed a trend 

to increase SIRT1 protein (Figure 3.4.1). 
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Figure 3.4.1. The effect of Apigenin and FK866 treatment on NAD⁺ and SIRT1 mRNA and protein in Caco-2 cells. 

Apigenin (25 µM), or FK866 (0.1 µM) were added to the medium for 4 h. SIRT1 mRNA was measured by RT-qPCR relative to 

GAPDH and TOP1. A- Effect of apigenin on SIRT1 mRNA. B- Effect of FK866 on SIRT1 mRNA. C-Quantification of SIRT1 protein 

by densitometry to measure the response to apigenin and FK866 n=1. D-Western blot raw data of SIRT1 protein in response 

to apigenin and FK866 (SIRT1 120 KDa and α-tubulin 50 KDa) lanes 1-3 control, lanes 4-6 apigenin, lanes 7-9 FK866. E- Effect 

of apigenin on NAD⁺ levels. F- Effect of FK866 on NAD⁺ levels. *p<0.05, ***p<0.0001 by Student’s T-test. Data are shown as 

mean ± standard deviation (SD) n=2 (based on 6 data points comprising 2 biological replicates, each the mean of 3 

wells measured separately). 
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3.5 The effect of resveratrol on NAD⁺ availability in Caco-2 cells. 

Apigenin decreased SIRT1 mRNA and protein and FK866 increased SIRT1 protein, 

indicating that NAD⁺ availability may have an effect on SIRT1 expression. It was 

reported previously that resveratrol can increase intracellular NAD⁺ levels (Park et al., 

2012) but here we observed that when NAD⁺ was increased using apigenin SIRT1 was 

reduced. However, resveratrol increased SIRT1 expression. We proposed a scheme to 

account for the observed increase in SIRT1 expression we observed in response to 

resveratrol and the reduction in SIRT1 expression we observed in response to apigenin 

whereby NAD⁺ is the point of SIRT1 regulation and resveratrol reduces NAD⁺ to reduce 

its responsive action on SIRT1 expression. Figure 3.5.1 is a schematic diagram 

representing this proposed scheme. 

To test this model we investigated how NAD⁺ was affected by resveratrol in Caco-2 cells. 

Resveratrol (60 µM) was applied to cell culture medium for 48 h. NAD⁺ was then 

measured in the cell lysate by measuring a change in NADH fluorescence intensity 

before and after the addition of alcohol dehydrogenase and ethanol. 

Published data demonstrate that resveratrol increased NAD⁺ (Park et al., 2012). Here, 

we saw a significant trend for resveratrol (60 µM, 48 h) to increase intracellular NAD⁺ 

(Figure 3.5.2). Thus, NAD⁺, which supresses SIRT1 expression, may not be the pivot 

point for the increase in SIRT1 expression observed in response to resveratrol and the 

reduction in SIRT1 expression we observed in response to apigenin. However, lack of 

statistical validity means that further experimental repeats are required to substantiate 

this interpretation. 

  

 

Figure 3.5.1. Schematic diagram of the proposed scheme that resveratrol reduces NAD⁺ in Caco-2 cells 

to increase SIRT1 expression. 
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Figure 3.5.2. The effect of resveratrol treatment on NAD⁺ in Caco-2 cells. NAD⁺ is converted in to 

NADH by Alcohol dehydrogenase, the change in NADH fluorescence is measured at 360 nm excitation 

and 420 nm emission. Resveratrol (60 µM) was applied to the cell culture medium for 48 h (replenished 

at 24 h). #p=0.08 by Student’s T-test. Data are shown as mean ± standard deviation (SD), n=2 (based 

on 6 data points comprising 2 biological replicates, each the mean of 3 wells measured separately). 
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3.6 Discussion 

The work presented in this chapter aimed to determine if resveratrol could affect the 

expression of SIRT1 in Caco-2 cells and to uncover details of the mechanism through 

which any such effects were mediated and, in particular, to determine if NAD⁺ was 

involved in the interactions. 

SIRT1 mRNA and protein were measured by RT-qPCR and Western blot respectively. 

SIRT1 mRNA expression was doubled in response to the treatment of cells with 

resveratrol (60 µM, 48 h) but although there was a trend of SIRT1 protein increasing in 

response to resveratrol, further experimental repeats are required to show statistical 

significance. Similar effects of resveratrol (100 µM) on SIRT1 expression have also been 

observed in human ovary cells (Morita et al., 2012). To investigate if the increase in 

SIRT1 mRNA by resveratrol was via increased transcription from the SIRT1 promoter, 

Caco-2 cells were transfected with a SIRT1 promoter-reporter construct and 

resveratrol (60 µM, 48 h) was applied in the cell medium. SIRT1 promoter activity 

increased in response to resveratrol but the increase was only a modest 20 % and hence 

substantially smaller than the parallel increases in SIRT1 mRNA and protein. Without 

information on the absolute transcription rate and mRNA half-life it is not possible to 

determine if the increase in transcription could account in full for the increase in mRNA. 

However, it seems likely that other actions of resveratrol may contribute to the effect 

on SIRT1 mRNA.  

We hypothesised that resveratrol affected the expression of SIRT1 through changing 

intracellular NAD⁺ levels, as it was reported previously that resveratrol can increase 

intracellular NAD⁺ through the AMPK pathway in mice (Park et al., 2012). To investigate 

if NAD⁺ can alter SIRT1 expression, SIRT1 mRNA was measured by RT-qPCR in 

response to NAD⁺ manipulation. Apigenin (CD38 NADase inhibitor) increased NAD⁺ 

availability and FK866 (nicotinamide phosphoribosyltransferase inhibitor) decreased 

NAD⁺ availability. There was no change in SIRT1 mRNA in Caco-2 cells in response to 

FK866 but SIRT1 protein was increased. This effect could be indicative of lowered NAD⁺ 

levels increasing the stability of SIRT1 mRNA leading to an increase in SIRT1 translation 

to protein. However, measurement of SIRT1 mRNA stability, for example by measuring 

the rate of decline after the addition of actinomycin to halt transcription, is required to 
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investigate this suggestion further. Furthermore, SIRT1 mRNA and protein decreased 

in response to increasing NAD⁺ availability by treatment of Caco-2 cells with apigenin. 

This mode of regulation, whereby an increase in the essential co-factor NAD⁺ for SIRT1- 

mediated substrate deacetylation leads to reduced SIRT1 transcription and mRNA, 

could in theory be mediated through SIRT1 deacetylating a transcription factor that 

acts to stimulate transcription from the SIRT1 promoter that is deactivated by 

deacetylation (shown schematically in Figure 3.6.1). To our knowledge, however, 

examples of such auto-regulatory processes have not yet been fully uncovered. 

However, PPAR-γ has been shown to share a negative association with SIRT1 by 

inhibiting SIRT1 transcription and activity (Han et al., 2010), and SIRT1 has been shown 

it activate PPAR-γ through deacetylation in mice (Qiang et al., 2012). However, SIRT1 

can also bind to PPAR-γ and inhibit its activity (Picard et al., 2004), thus further work 

is needed to clarify a negative feedback loop. 

Resveratrol was shown previously to increase NAD⁺ levels through the AMPK pathway 

in mice (Park et al., 2012) but our observations that increased NAD⁺ decreases SIRT1 

mRNA and protein, and resveratrol increases SIRT1 expression, are difficult to 

reconcile with this in vitro observation. Therefore, to determine the effect of resveratrol 

on NAD⁺ in Caco-2 cells, resveratrol was applied in the cell culture medium and NAD⁺ 

was measured in the cell lysate. Resveratrol appeared to increase NAD⁺ but to draw a 

 

Figure 3.6.1. A proposed NAD⁺-dependent auto-regulatory feedback loop acting on SIRT1 gene 

transcription. NAD⁺ is required for SIRT1-mediated deacetylation and hence inactivation of a transcription 

factor that in its acetylated form increases transcription from the SIRT1 promoter. Ac=Acetyl group. 
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firm conclusion more experimental repetition is needed and thus the apparent 

discordance remains.  

It appears that the interrelationships between SIRT1, NAD⁺ and resveratrol are highly 

complex. It is reasonable to assume that many other pathways interlink and intersect 

in regulatory feedback loops. The large number of substrates, including transcription 

factors that can be deacetylated by the NAD⁺-dependent action of SIRT1 makes such a 

scenario highly likely. A full understanding of these interactions and therefore of how 

they could be manipulated to achieve benefits to healthspan requires further work. 
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4 Chapter 4. Does competition between SIRT1 and PARP1 for the 

cellular NAD+ pool drive cross-talk that has implications for cell 

vitality? 

4.1 Introduction 

The work presented in Chapter 3 shows that resveratrol can increase the expression of 

SIRT1 and may also increase intracellular NAD⁺. However, when intracellular NAD⁺ was 

increased using the pharmaceutical agent apigenin we observed a reduction in SIRT1 

expression, rather than the increase predicted if there was a simple relationship 

between these three variables such that resveratrol would increase NAD⁺, which in turn 

would increase SIRT1 expression. Thus, it was important to explore how other 

demands on the cellular NAD⁺ pool, in particular demands believed to be important in 

ageing, affected SIRT1 expression. 

Poly ADP ribose polymerases (PARPs) consume NAD⁺ and are involved in DNA single 

strand break repair. There is good evidence that PARPs play a role in ageing. For 

example, in mononuclear leukocytes from mammalian species of varying lifespans 

higher PARP activity was associated with longer lived species (Grube and Burkle, 

1992). However, PARP has also been negatively associated with ageing, for example, 

when Parp2 was reduced in mouse embryonic fibroblasts telomere maintenance 

increased (Dantzer et al., 2004) and in mice with destroyed islets, a mark of diabetes, 

Parp inhibition improved vascular responsiveness (Garcia Soriano et al., 2001).  

Crosstalk between SIRT1 and PARPs has been reported. For example, PARP1 can 

increase the transcription of c-MYC by activating the c-MYC transcription factor ESF1. 

Increased c-MYC can in turn increase SIRT1 expression (Simbulan-Rosenthal et al., 

2003; Yuan et al., 2009; Marshall et al., 2011). In contrast to this positive relationship 

between SIRT1 and PARP activity, Parp2 knockdown by siRNA caused an increase in 

Sirt1 mRNA in mouse C2C12 myotubes, and Sirt1 protein was also increased in Parp2 -

/- mice (Bai et al., 2011). Finally, PARP1 is activated by acetylation. Acetylation of Parp1 

was increased in Sirt1 -/- mice compared with controls, suggesting that deacetylation 

by SIRT1 deactivates PARP1 (Rajamohan et al., 2009a). 
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NAD⁺ may be pivotal in the interactions between SIRT1 and PARP, because both 

enzymes consume NAD⁺. NAD⁺ appears to be a key factor in ageing. For example, the 

NAD⁺ scavenger Pnc1 was required for lifespan extension in response to DR in 

Caenorhabditis elegans (Moroz et al., 2014). Similarly in Saccharomyces cerevisiae 

mutants for Ntp1, an enzyme involved in NAD⁺ synthesis, failed to live longer under 

conditions of DR (Lin et al., 2002).  

The work presented in this chapter measures some of the complex relationships 

between SIRT1, PARPs and NAD⁺ and addresses the hypothesis that SIRT1 and PARPs 

compete for the same intracellular NAD⁺ pool. Based on this hypothesis we predicted 

that PARP and SIRT1 would negatively affect the activity of each other, such that when 

PARP activity was high SIRT1 activity would be repressed and when SIRT1 activity was 

high PARP activity would be repressed. We took two main approaches. First, we used 

tissue available from mice of a range of different ages and also a Parp1 knockout mouse 

line to measure how age affected PARP activity and SIRT1 expression and if PARP1 

expression had a direct effect on SIRT1 expression. Second, we manipulated each of the 

three variables separately in a human cell line model (Caco-2 intestinal cells) and 

measured the effect on each of the other two variables. We were unable to establish a 

robust assay to measure SIRT1 activity. Thus, in addition to manipulating SIRT1 activity 

through reducing expression (using siRNA) we measured effects of manipulating PARP 

activity on SIRT1 expression. The data will be used in a mathematical model to help 

understand the links between SIRT1, PARPs and NAD⁺ and identify areas of 

intervention that may be beneficial or detrimental to cell vitality and ageing.  
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4.2 Sirt1 expression was negatively correlated with Parp activity in mouse liver, 

with a trend towards younger mice having higher levels of Sirt1 and lower 

Parp activity. 

To begin to understand the relationship between SIRT1 and PARPs, we measured Parp 

activity and Sirt1 protein in adult mice of different ages. Preliminary data were 

collected from male and female mouse liver samples ranging from 3 to 29 months of 

age. PARP activity was measured in these liver extracts as synthesis of the PAR polymer, 

which was then detected using an anti-PAR antibody. These measurements were made 

by the research group of Professor Nicola Curtin, Newcastle University, with whom we 

collaborated with for this part of the work. SIRT1 protein levels were measured by 

Western blot relative to the α-tubulin loading control. 

We saw no clear relationship between age, and either Parp activity or Sirt1 protein 

individually. However, we did observe a negative relationship between Sirt1 expression 

and Parp activity with a trend for younger mice to have higher Sirt1 and lower Parp 

that was particularly evident when the data for female and male mice were separated 

(Figure 4.2.1). 
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Figure 4.2.1. Female and male mouse liver samples analysed for Parp activity and Sirt1 protein levels. 

F=female, M=male, m=months old. Sirt1 protein was measured by western blot and is relative to α-tubulin 

loading control. Parp activity was measured by stimulating synthesis of the PAR polymer, which was detected 

by anti-PAR antibody. A- Sirt1 protein levels against Parp activity for female mice. B- Sirt1 protein measured 

by western blot (data as used for the plot in A) C- Sirt1 protein levels against Parp activity for male mice. D- 

Sirt1 protein measured by western blot (data as used for the plot in C). Measurements of Parp activity were 

provided by Professor Nicola Curtin, Newcastle University. 
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4.3 Sirt1 protein was unaffected in intestinal samples of Parp1 -/- mice.  

We took advantage of the availability of samples of intestinal tissue from a Parp1 -/- 

mouse line, provided by our collaborator Professor Nicola Curtin, Newcastle University, 

to measure if these animals had different levels of expression of Sirt1 compared with 

controls. The samples were taken when the mice were 3 months of age. Sirt1 was 

measured by Western blotting and compared with α-tubulin as a loading control. 

There was no difference in Sirt1 protein in the intestine between Parp1 -/- mice and 

Parp1 +/+ mice. Moreover, there were no apparent differences in Sirt1 protein between 

female and male mice (Figure 4.3.1). 
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Figure 4.3.1. SIRT1 protein measured in samples of the small intestine from Parp1 +/+ and Parp1 -/- male 

and female mice. Representative figure showing three samples taken from each of the four groups of five mice. 

Mice were 3 months old. A- The raw data showing Sirt1 protein measured by western blot. B- Quantitative data 

derived using densitometry to measure signals on western blots. Samples were provided by Professor Nicola 

Curtin, Newcastle University. ANOVA and Tukey’s post hoc statistical test were used. Data are shown as ± standard 

deviation (SD), n=3. 
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4.4 Inhibition of PARP led to a transient increase in SIRT1 mRNA levels in Caco-2 

cells. 

Thus far, preliminary data collected using mouse liver tissue had shown an apparent 

inverse correlation between Parp activity and Sirt1 expression in liver but no effect of 

Parp1 knockout on Sirt1 expression in intestine. Possible interpretations of these 

findings are that: i) intestine and liver differ with respect to the influence of Parp acting 

on Sirt1 expression; ii) the activity of Parp does not directly influence Sirt1 expression 

and the relationship observed in liver was the result of another factor influencing both 

variables (in opposite directions); iii) the small number of samples of tissue available 

and inter-animal variation in Sirt1 expression led to a lack of power to detect an effect 

of Parp1 knockout in intestine. Thus, to determine if PARP activity in intestinal cells 

influenced SIRT1 expression we inhibited PARP pharmaceutically in human intestinal 

Caco-2 cells and measured SIRT1 expression. PARP was inhibited using 3-

aminobenzamide (1 mM, 0-16 h). In published work 3-aminobenzamide has been 

commonly used at concentrations of 1-10 mM. Concentrations of >10 mM have been 

reported to delay growth of cultured cells which require a source of purines in the cell 

culture medium (Cleaver, 1984; Zingarelli et al., 1996; Karczewski et al., 1999). 

Therefore, 1 mM 3-aminobenzamide was used. SIRT1 mRNA was measured at 0 h, 4 h, 

6 h, 12 h and 16 h by RT-qPCR relative to GAPDH and TOP1 reference genes. 

After 6 h 3-aminobenzamide increased SIRT1 mRNA levels by 2.5 fold in Caco-2 cells. 

SIRT1 mRNA had returned to the control level at 12 h and at 16 h was reduced below 

the control level (Figure 4.4.1). Thus, we showed that PARP activity can influence SIRT1 

expression in human intestinal cells but the effect may be transient and also biphasic. 

These time dependent features of the response are a possible explanation for the fact 

that we measured no effect of Parp1 knockout on Sirt1 expression in intestine in vivo. 

However, a transient response is difficult to reconcile with the observed proposed 

relationship between Parp activity and Sirt1 expression we measured in mouse liver.  
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Figure 4.4.1. The effect of the PARP inhibitor 3-aminobenzamide at 4, 6, 12 and 16 h, on SIRT1 mRNA 

levels in Caco-2 cells. 3-aminobenzamide (3ABA) was applied in the medium at 1 mM for 0, 4, 6, 12 and 16 

h. SIRT1 mRNA was measured by RT-qPCR relative to GAPDH and TOP1 reference genes. **P<0.001 by 

Student’s T-test. Data are shown as mean ± standard deviation (SD), n=2 (based on 6 data points comprising 

2 biological replicates, each the mean of 3 wells measured separately). 
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4.5 Activating the DNA damage response, and thus PARP activity, did not change 

SIRT1 mRNA in Caco-2 cells. 

Having observed that PARP inhibition in Caco-2 cells increased SIRT1 mRNA, 

demonstrating an inverse relationship similar to that seen in the livers of young and old 

mice, we aimed to determine if this inverse relationship can be seen when PARP activity 

is increased. Thus, we treated Caco-2 cells with temozolomide (TMZ) and measured 

SIRT1 mRNA. TMZ causes DNA damage in the cell, which activates the DNA damage 

response, including PARP. TMZ was applied in the cell culture medium at a 

concentration of 30 µM for 4 h. TMZ has been used previously in the literature at 

concentrations of around 25-50 µM but also as high as 1000 µM (Liu et al., 2008a; Sahm 

et al., 2013). Previous work carried out by Professor Nicola Curtin’s Laboratory used 

TMZ at 30 µM over 4 h and found that this concentration caused sufficient damage 

without killing K564 cells after 4 h incubation. We thus used these same concentrations 

in our Caco-2 cell culture model to be consistent with our collaborators. SIRT1 mRNA 

was measured using RT-qPCR relative to GAPDH and TOP1 reference genes. 

We measured no effect of TMZ on SIRT1 mRNA under these conditions (Figure 4.5.1). 

Given the time-dependent nature of the response of SIRT1 to the PARP inhibitor 3ABA 

and the fact that the maximum response was measured after 6h (not 4h) further 

measurements are necessary; however, time did not permit us to pursue this part of the 

investigation further.  
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Figure 4.5.1. The effect of the PARP activator TMZ on SIRT1 mRNA in Caco-2 cells. TMZ was 

applied in the medium for 4 h at 30 µM. SIRT1 mRNA was measured by RT-qPCR relative to GAPDH and 

TOP1 reference genes. Student’s T-test was used. Data are shown as mean ± standard deviation (SD), 

n=2 (based on 6 data points comprising 2 biological replicates, each the mean of 3 wells measured 

separately). 
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4.6 SIRT1 knockdown appeared to increased PARP activity in Caco-2 cells. 

Having manipulated PARP activity and measured the effect on SIRT1 expression we 

manipulated SIRT1 expression and measured the effect on PARP activity, to derive 

more data on mutual interactions between these two apparent modifiers of ageing with 

the aim, ultimately, of populating a detailed model of this system. Thus, we used siRNA 

to reduce SIRT1 expression in Caco-2 cells then measured the effect on PARP activity. 

Two different siRNAs targeted to SIRT1 (see methods for details) were both highly 

effective in multiple respects of experiments involving their use in Caco-2 cells and 

compared with control siRNA consistently reduced SIRT1 mRNA by approximately 90 

% and reduced SIRT1 protein to levels barely detectable by Western blotting 72 h after 

transfection. Typical data confirming efficiency of these siRNAs are shown in Figure. 

4.6.1.  

  



 

87 
 

 

  

  

 

***
**

0

0.2

0.4

0.6

0.8

1

1.2

control siRNA1 siRNA2

m
R

N
A

 r
el

at
iv

e 
to

 G
A
P
D
H

an
d

 T
O
P
1

re
fe

re
n

ce
 g

en
es

A

*** **

0

0.05

0.1

0.15

0.2

0.25

0.3

control siRNA1 siRNA2

R
el

at
iv

e 
SI

R
T1

 e
xp

re
ss

io
n

 (
n

o
rm

al
is

ed
 

to
 α

-t
u

b
u

lin
)

B

Figure. 4.6.1 SIRT1 knockdown by siRNA reduced SIRT1 mRNA and protein at 72 h. SIRT1 mRNA was 

reduced consistently in Caco-2 cells by two different siRNAs. mRNA was measured by RT-qPCR relative to GAPDH 

and TOP1 reference genes 72 h after transfection. Protein was measured by western blot. A- The effect of SIRT1 

knockdown on SIRT1 mRNA. B- The effect of SIRT1 knockdown on SIRT1 protein derived by measuring signals 

on western blots by densitometry. C- Representative western blot, lanes 1-3 control, lanes 4-6 siRNA1 and lanes 

7-9 siRNA2, SIRT1 (120 KDa) and α-tubulin (50 KDa). **p<0.001, ***p<0.0001, by Student’s T-test. Data are 

shown as mean ± standard deviation (SD), n=2 (based on 6 data points comprising 2 biological replicates, each 

the mean of 3 wells measured separately). 
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PARP activity was measured by stimulating synthesis of the PARP-synthesised 

polymer, PAR, which was detected using an anti-PAR antibody by researchers working 

with our collaborator Professor Nicola Curtin, Newcastle University.  

Following SIRT1 knockdown by siRNA1, PARP activity appeared elevated in Caco-2 

cells but was not statistically significant, which may be due to a lack in experimental 

repeats (Figure 4.6.2). 
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Figure 4.6.2. The effect of SIRT1 knockdown by siRNA on PARP activity in Caco-2 cells. PARP 

activity was measured through the generation of the PARP polymerase product PAR following 

stimulation in Caco-2 cell lysate with NAD⁺ and a PARP substrate. siRNA1 was used to knockdown 

SIRT1 over 72 h. SIRT1 knockdown was verified using RT-qPCR. Below each bar is the corresponding 

representative raw data, 1-control, 2-control, 3- SIRT1 knockdown, 4- SIRT1 knockdown. #P=0.12 by 

Student’s T-test. Data are shown as mean ± standard deviation (SD), n=2 (based on 6 data points 

comprising 2 biological replicates, each the mean of 3 wells measured separately). PARP1 activity data 

were provided by Professor Nicola Curtin, Newcastle University. 
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4.7 Increasing cellular NAD⁺ by apigenin did not affect PARP activity in Caco-2 

cells. 

We had established previously that treatment of Caco-2 cells with apigenin was 

effective in increasing NAD⁺ and that SIRT1 mRNA was simultaneously reduced 

dramatically, concomitant with a reduction in SIRT1 protein (Chapter 3.4). This 

reduction in SIRT1 was of similar magnitude to the reduction we achieved using siRNA, 

which resulted in an apparent but not significant increase in PARP activity. Thus, we 

predicted that apigenin would cause an increase in PARP activity and tested this 

prediction. Caco-2 cells were treated with apigenin (25 µM) in the cell culture medium 

for 4 h. PARP activity was measured in the cell lysate by stimulating synthesis by PARP 

of the PAR polymer, which was detected using an anti-PAR antibody. We confirmed that 

the treatment with apigenin invoked the same reduction in SIRT1 expression we 

observed previously (Figure 4.7.1). PARP1 activity data were provided by Professor 

Nicola Curtin, Newcastle University. 

Contrary to our prediction, PARP activity was not affected in Caco-2 cells after 

treatment with apigenin (Figure 4.7.1). It is difficult to suggest reasons for this 

observation, since a likely mechanism through which a reduction in SIRT1 potentially 

invokes an increase in PARP activity is through reducing the drain on cellular NAD⁺ 

reserves, which in turn allows greater PARP activity. Were this the cause then the 

prediction would be that apigenin (through further increasing NAD⁺) should augment 

rather than supress this response. It is unlikely that the effect of the siRNA1 against 

SIRT1 on PARP activity was due to an off target action (on other genes) because we 

observed the same response with two different siRNAs. A possible explanation is that 

apigenin has other actions that influence PARP activity through other pathways.  
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Figure 4.7.1. The effect of apigenin on PARP activity in Caco-2 cells. A- PARP activity was measured in 

the cell lysate after stimulating PARP synthesis of the PAR polymer. Apigenin was applied in the cell culture 

medium for 4 h at 25 µM. Below each bar is representative raw data, 1-control, 2-control, 3-apigenin, 4-

apigenin. B- SIRT1 mRNA measured by RT-qPCR in response to apigenin in Caco-2 cells. **P<0.01. Data was 

analysed by Student’s T-test. Data are shown as mean ± standard deviation (SD), n=2 (based on 6 data points 

comprising 2 biological replicates, each the mean of 3 wells measured separately). 
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4.8 At endogenous levels of SIRT1 expression, PARP inhibition and knockdown of 

SIRT1 appeared to have no effect on NAD⁺ in Caco-2 cells. 

Thus far we had observed effects of manipulating PARP on SIRT1 expression in Caco-2 

cells and manipulating SIRT1 expression on PARP activity that in some instances 

satisfied the observed predictions for a model whereby PARP and SIRT1 compete for 

the same intracellular NAD⁺ pool but in other instances were contrary to predictions. 

Given the proposed central role of NAD⁺ in the proposed model we next measured the 

effect of inhibiting separately and together SIRT1 and PARP on intracellular NAD⁺. 

SIRT1 was reduced using interfering siRNA and PARP was inhibited using 3-

aminobenzamide (1 mM, 6 h). NAD⁺ was measured in the Caco-2 cell lysate by 

measuring the change in NADH fluorescence before and after the addition of ethanol 

and alcohol dehydrogenase (causing NAD⁺ to be reduced to NADH). 

Following SIRT1 knockdown and/or 3-aminobenzamide treatment there were no 

statistically significant changes in NAD⁺ (Figure 4.8.1). Due to the challenging nature of 

measuring small changes in intracellular NAD⁺, as NAD⁺ is strictly controlled in the cell, 

further experimental repeats are required to help elucidate if the small changes 

observed are true and significant representatives of the effect of SIRT1 knockdown 

and/or 3-aminobenzamide on NAD⁺ or just small divergences.  
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Figure 4.8.1. The effect of SIRT1 knockdown and PARP inhibition on NAD⁺ in Caco-2 cells. NAD⁺ was 

measured by the change in fluorescence of NADH following addition of alcohol dehydrogenase and ethanol 

to cell lysate. Fluorescence was measured at 360 nm excitation and 420 nm emission. Two siRNA’s were used 

separately to knockdown SIRT1 over 72 h. The PARP inhibitor (3-aminobenzamide- 3ABA) was applied in 

the cell medium at 1 mM over 6 h. Data are normalised to the control. Statistics measured using ANOVA and 

Tukey’s post hoc statistical test. Data are shown as mean ± standard deviation (SD), n=2 (based on 6 data 

points comprising 2 biological replicates, each the mean of 3 wells measured separately). 
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4.9 Modelling the interactions between SIRT1, PARP enzymes and NAD⁺. 

The aim of the work presented in this chapter was to obtain data that would provide 

further insight into the interactions between SIRT1, PARPs and NAD⁺ and ultimately 

feed in to a mathematical model. Such a model would improve understanding of the 

interactions between SIRT1, PARPs and NAD⁺ that may be beneficial or detrimental 

with respect to cell vitality and ageing. Due to the time constraints on the project we 

were unable to generate sufficient detailed data to generate a meaningful model; 

however, we show progress towards this goal as a schematic diagram and explanatory 

key of the interactions, incorporating also information from an existing model (Luna et 

al., 2013) (Figure 4.9.1). 
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Key for Figure 4.9.1 

1 PARP inhibition by 3-aminobenzamide increased SIRT1 mRNA and 

SIRT1 knockdown by siRNA appeared to increase PARP activity in 

Caco-2 cells (preliminary data) (current thesis) 

2 Parp2-/- mice had increased Sirt1 protein (Bai et al., 2011). 

3 PARP2 knockdown by siRNA in C2C12 myotubes increased SIRT1 

mRNA (Bai et al., 2011). 

4 Parp1 is activated through acetylation; Sirt1-/- mice had higher Parp1 

activity due to a decrease in deacetylation of PARP1 by SIRT1 

(Rajamohan et al., 2009b).  

5 Apigenin increased NAD⁺ and reduced SIRT1 mRNA and protein in 

Caco-2 cells (current thesis).  

6 NAD⁺ is consumed by PARP1. PARP2 and SIRT1, the Km values for 

NAD⁺ are: PARP1~20-60 µM, PARP2~130 µM, SIRT1~150-200 µM 

(Houtkooper et al., 2010).  

7 

8 The NAD⁺ precursor NAM is salvaged and recycled to NAD⁺ following 

NAD⁺ consumption by SIRT1 and PARP1 (Burgos, 2011; Luna et al., 

2013). 

9 

10 NAM inhibits SIRT1 (Bitterman et al., 2002) and PARP1 (Hageman and 

Stierum, 2001). 

11 PARP1 can promote SIRT1 expression through promoting C-MYC 

expression, which increases SIRT1 expression (Simbulan-Rosenthal et 

al., 2003; Yuan et al., 2009; Marshall et al., 2011). 

12 SIRT1 recruits NMNAT1 to promoter regions to convert NMN to NAD⁺ 

(Zhang et al., 2009). 

13 NMNAT1 recruits to the PARP1 polymer PAR and converts NMN to 
NAD⁺ to be utilised by PARP1 (Berger et al., 2007). 
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4.10 Discussion  

The work presented in this chapter probes aspects of the interactions between SIRT1, 

PARPs and NAD⁺, based on the proposal that NAD⁺ is a key mediator of interactions 

between SIRT1 and PARP, which both can influence the process of ageing and which 

share NAD⁺ as a substrate. A stimulus for the work was an apparently discordant effect 

of NAD⁺ when increased by resveratrol compared with apigenin on expression of 

SIRT1. Resveratrol increased SIRT1 expression in Caco-2 cells and also showed a trend 

to increase NAD⁺. However, when NAD⁺ was increased using the pharmaceutical agent 

apigenin SIRT1 expression was reduced dramatically. Thus, we sought additional 

information on how other factors that influence NAD⁺ affect SIRT1 expression, with an 

objective, ultimately, to develop a mathematical model of these seemingly complex 

interactions. Based on a simple model of competition between SIRT1 and PARP for a 

limited intracellular NAD⁺ pool we predicted that PARP and SIRT1 would affect the 

activity of each other such that PARP represses SIRT1 and vice versa, shown 

schematically in Figure 4.10.1. 

 

Figure 4.10.1 Schematic diagram on the predicted relationship between SIRT1, PARP and NAD⁺. 

When PARP utilises NAD⁺ SIRT1 is reduced and when SIRT1 utilises NAD⁺ PARP is reduced. 
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Our ability to test this hypothesis rigorously was compromised by the fact that we were 

unable to measure SIRT1 activity. Thus, we manipulated SIRT1 activity by reducing 

expression using siRNA and measuring the effect on PARP activity. We also measured 

the effect of inhibiting and activating PARP on the expression of SIRT1. We also used 

liver and intestinal tissues available from mice of different ages and PARP1 knockout 

mice (respectively) to determine if there was evidence for a reciprocal relationship 

between PARP activity and SIRT1 expression.  

Preliminary data collected from young and old mouse liver showed that Sirt1 protein 

and Parp activity were negatively correlated. There was a trend towards higher SIRT1 

protein levels in younger mice than in older mice and lower Parp activity in younger 

than in older mice. The correlation was more prominent in female mice than in male 

mice. There appears to be an interaction between the female hormone oestrogen and 

SIRT1; signalling through ERα was increased in breast cancer cells when SIRT1 was 

inhibited by sirtinol (Moore and Faller, 2013). However, this relationship provides no 

obvious explanation for the observed tighter correlation between Sirt1 protein and 

Parp activity in female mice. Moreover, the number of mice analysed was small, hence 

the apparent tighter correlation in the female mice may be a chance feature of specific 

animals included in the sample. Establishing uniquely a difference between male and 

female mice requires the analysis of additional animals. Should such a study observe 

that there is a difference between sexes in the correlation between Sirt1 expression and 

Parp activity it would be worth determining if the same pattern is observed in humans 

and to investigate the reason. Such information could be incorporated in to the system 

level mathematical model to which this work is eventually aimed and could be 

important with respect to different influences on ageing in men and women.  

We also gathered preliminary data on Sirt1 protein levels in the intestine of male and 

female Parp1 -/- mice. Sirt1 protein levels in Parp1 -/- mice did not appear to differ in 

either male or female animals. The data suggest that Parp1 knockout alone is not 

sufficient to effect Sirt1 protein levels. It is possible that other PARP enzymes, such as 

Parp2 (Bai et al., 2011), need also to be reduced to affect Sirt1 protein levels. Another 

explanation for Parp1 knockout having no effect on Sirt1 expression may be that in a 

whole body system Sirt1 remains in homeostasis due to other regulatory feedback 
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mechanisms controlling expression, such as the Foxo1/Sirt1 negative feedback loop, 

described in detail in the introduction to this thesis (Xiong et al., 2011).  

The data also indicate that the reciprocal relationship between Parp activity and Sirt1 

expression we observed in the liver of mice of different ages was not due to an effect of 

Parp1 on Sirt1 expression. However, alternative explanations include that a reciprocal 

relationship may be tissue specific or that the sample size of Parp1 -/- animals studied 

was too small to reveal an effect of the lack of Parp1 on Sirt1. Thus, further work should 

include measurement of Sirt1 in the livers of Parp1 -/- mice and also the analysis of a 

larger sample of Parp1 -/- mice.  

As predicted by our model whereby SIRT1 and PARP compete for the same intracellular 

NAD⁺ pool, SIRT1 knockdown in Caco-2 cells increased PARP activity. We did not test 

the effect on PARP activity of overexpressing SIRT1 in Caco-2 cells because an extensive 

body of work conducted in the laboratory has revealed that, although overexpression 

can be achieved by several fold using an expression plasmid construct, other 

measurements on which SIRT1 knockdown had a profound effect, such as DNA 

methylation (Wakeling et al., 2015), are unperturbed. Thus we have concluded that 

Caco-2 cells express SIRT1 at endogenous levels where all of its actions are already at 

the maximum. 

As already explained, we were unable to test the effect of PARP inhibition and activation 

on SIRT1 activity. The measurements of SIRT1 protein we made instead are not a direct 

substitute, thus the measurements cannot be linked directly with PARP in a model 

where both enzymes compete for NAD⁺. However, we observed a profound effect of 

increasing NAD⁺ using apigenin on SIRT1 expression, which was reduced dramatically. 

This finding uncovers a link between SIRT1 and the cellular NAD⁺ pool, and hence 

between PARP activity and SIRT1 expression, and provides a focal point from which 

other data derived in this study can be considered in the context of the predicted model.  

If the assumption is that NAD⁺ has a negative influence on SIRT1 expression then other 

predictions could include the following: 
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1. Inhibition of PARP would conserve NAD⁺ and lead to a suppression of SIRT1 

expression. 

2. Activation of PARP would consume NAD⁺ and lead to increased SIRT1 

expression. 

3. Reducing NAD⁺ pharmaceutically would increase SIRT1 expression. 

4. Increasing NAD⁺ using apigenin and hence reducing SIRT1 expression (as we 

observed) would increase PARP1 activity to mimic the response we observed 

when SIRT1 expression was reduced using siRNA. 

The outcomes of experiments we conducted that test these predictions were as follows: 

1. Inhibition of PARP using 3-aminobenzamide increased SIRT1 expression, but 

only transiently (6 h post application of apigenin) and showed no significant 

effect on NAD⁺. 

2. Activation of PARP using TMZ did not affect SIRT1 expression (4h post 

application of TMZ). 

3. Reducing NAD⁺ using FK866 appeared to increase SIRT1 protein, but there was 

no effect on SIRT1 mRNA. 

4. PARP1 activity was unaffected by apigenin. 

Thus, some of the predictions were met but others were not, and there remain many 

conflicts and limitations largely due to the fact that the current data are only a small 

component of all the data that must be obtained to test rigorously the predictions and 

also, more broadly, populate a system level mathematical model. Some of the specific 

limitations, relating to each of the four listed predictions and outcomes, are as follows: 

1. A further time course, including more data points around the 6 h point, should 

be derived. 

2. The effect of TMZ on SIRT1 expression should be measured over a time course, 

rather than a single time point. 

3. The measurements of SIRT1 protein based on a small number of samples using 

Western blotting are unreliable and should be validated. Moreover, the effect of 

FK866 should be measured over a time course, rather than at a single time point, 

which showed no effect on SIRT1 mRNA. 
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4. More experimental repeats would increase the robustness of the data and also 

allow more confidence in interpretation particularly where data show a strong 

trend or consistent pattern that fails to reach statistical significance (specifically 

the measurement of PARP activity in response to SIRT1 knockdown and the 

measurement of NAD⁺ in response to SIRT1 knockdown and PARP inhibition). 

A further complexity with respect to interpretation of our findings comes from the start 

point from which the work was initiated-i.e. that resveratrol may increase NAD⁺ but 

also increased SIRT1 expression in Caco-2 cells. An immediate priority for future work 

would hence be to measure the effect of resveratrol on PARP activity, with a view to 

eventually including information from experiments that measure the effect of 

resveratrol at different time points in the holistic mathematical model.  
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5 Chapter 5. An investigation into the effects of SIRT1 and 

resveratrol on chaperone mediated autophagy. 

5.1 Introduction 

Several observations and lines of investigation suggest that SIRT1 generally promotes 

protein degradation. For example, SIRT1 inhibition by sirtinol in human THP-1 cells 

induced inflammation and decreased the expression of LC3, a biomarker of 

macroautophagy. Furthermore, SIRT1 can inhibit the mammalian target of rapamycin 

(mTOR), which is a known inhibitor of autophagy via deactivation of autophagy 

initiating proteins, including, ULK family proteins (Jung et al., 2010; Takeda-Watanabe 

et al., 2012).  

It has also been shown that resveratrol can increase autophagy through the AMPK 

pathway. Increasing AMPK activity results in the inhibition of mTOR, which is a known 

inhibitor of autophagy (Vingtdeux et al., 2010). Moreover, the resveratrol derivative 

trans-3,4-dimethoxystilbene, which has a greater bioavailability than resveratrol, also 

inhibited mTOR through AMPK and increased autophagy (Zhang et al., 2012). Another 

study investigated the effects of two analogues of resveratrol, RSVA314 and RSVA405, 

on autophagy. The analogues were shown to have the same effect on autophagy as 

resveratrol but with 40 times more potency (Vingtdeux et al., 2011). 

The observations considered above all relate to macroautophagy; here auto 

phagosomes form around unwanted protein then combine with lysosomes (Martinez-

Vicente et al., 2005). Chaperone mediated autophagy (CMA) is a different process that 

fulfils the same ultimate function as macroautophagy to deplete cellular components 

and hence release their constituents for recycling. CMA is shown in Figure 5.1.1. HSC70 

binds to proteins containing the KFERQ motif and chaperones them to LAMP2 at the 

membrane of the lysosome. The protein is then unfolded and transported through the 

membrane to be degraded. LAMP2 is then either recycled or degraded (Cuervo, 2011). 

Figure 5.1.1. The process of CMA. Proteins containing the KFERQ motif are recognised by HSC70 and its co-

chaperones and transported to the lysosomal membrane where the motif binds to a LAMP2 dimer (stabilised by 

HSP90). The protein is unfolded for translocation through the LAMP2 multimer (stabilised by GFAP and lysosomal 

HSC70). LAMP2 is then disassembled by HSC70 and degraded by Cathepsin A unless EF1α binds to GFAP. Sourced 

from (Cuervo, 2011).  
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DNA microarray data collected previously in the laboratory indicated that LAMP2 gene 

expression was reduced by SIRT1 knockdown in Caco-2 cells (L. Wakeling personal 

communications). This observation is concordant with the view that one of the 

functions of SIRT1 to counteract ageing may be maintenance or enhancement of CMA. 

It has been shown that LAMP2 was reduced in models of ageing. For example, in 22 

month old rats a decline in CMA was linked to reduced LAMP2 expression (Cuervo and 

Dice, 2000a). Lower levels of LAMP2 may accelerate ageing as a result of accumulation 

of unwanted proteins in the cell (Martinez-Vicente et al., 2005; Kiffin et al., 2007). 

The work presented in this chapter first aimed to confirm the microarray data showing 

that SIRT1 knockdown can decrease LAMP2 mRNA. We also measured HSC70 mRNA in 

parallel, reasoning that both proteins are involved functionally in the process of CMA 

and, hence, may provide a read out of the level of activity of this process. A second aim 

was to determine if pharmacological manipulation of SIRT1 activity and/or resveratrol 

treatment can affect expression of LAMP2 and HSC70. The effect of pharmacological 

manipulation of the cellular NAD⁺ pool on the expression of LAMP2 and HSC70 was also 

measured. This work was aimed to build on and link with work presented in Chapter 4 

of this thesis that contributes to developing a system level mathematical model of SIRT1 

actions and interactions centred on the consumption of NAD⁺ by SIRT1-catalysed 

deacetylation reactions. A forth aim was to investigate further preliminary findings that 

showed SIRT1 knockdown affected DNA methylation of the LAMP2 promoter, 

providing insight in to the mechanism through which SIRT1 affects lAMP2 expression. 

As stated, we measured both LAMP2 and HSC70 as likely markers of the level of activity 

of CMA. However, these molecules can only provide an indirect indication of CMA 

activity and also are not necessarily regulated in a tight relationship with CMA function. 

Indeed, the observations we present in this chapter show that LAMP2 and HSC70 are 

not themselves tightly co-regulated. Thus, to understand the influence of SIRT1 and 

modifiers of its activity on the process of CMA a direct functional assay is required. A 

final aim was, therefore, to develop such an assay. The data collected in this chapter will 

then be linked in to the system level mathematical model.  

Caco-2 cells were used for this work because the microarray data collected following 

SIRT1 knockdown previously was from this cell line and the choice of Caco-2 cells for 
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most of the work in the laboratory on SIRT1 function is based on the fact that dietary 

influences on SIRT1 function are a focus and that intestinal cells are exposed directly to 

compounds in the diet. 
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5.2 SIRT1 knockdown reduced expression of LAMP2 but had no effect on the 

expression of HSC70. 

To confirm the effect of SIRT1 knockdown on LAMP2 mRNA, indicated in earlier work 

by microarray analysis, we used two siRNAs to reduce SIRT1 expression in Caco-2 cells. 

HSC70 mRNA and protein were measured alongside LAMP2 to determine if the effects 

of SIRT1 knockdown extend to this second component of CMA function. mRNA was 

measured by RT-qPCR relative to GAPDH and TOP1 reference genes and protein was 

measured by Western blotting relative to the α-tubulin loading control.  

SIRT1 knockdown by siRNA significantly decreased LAMP2 mRNA but did not 

significantly affect HSC70 mRNA. Visual inspection of corresponding Western blots 

showed no clear effect on LAMP2 protein (but a response may have been masked by 

the fact the signals were weak). Attempts to derive quantitative data on protein 

expression by densitometry analysis of Western blots were not successful because of 

the weak signals (Figure 5.2.1). 
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Figure 5.2.1. The effect of SIRT1 knockdown on LAMP2 and HSC70 mRNA and protein in Caco-2 cells. SIRT1 was 

knocked down using two different siRNAs separately. mRNA was measured by RT-qPCR relative to GAPDH and TOP1 

reference genes. Protein was measured by western blotting relative to α-tubulin loading control. A- LAMP2 mRNA in 

response to SIRT1 knockdown. B- HSC70 mRNA in response to SIRT1 knockdown. C- Representative western blot 

signals for SIRT1 (120 KDa), LAMP2 (95 KDa), HSC70 (70 KDa) and α-tubulin (50 KDa), (lanes 1-3 are controls, lanes 

4-5 SIRT1 knockdown with siRNA1 and lanes 7-9 SIRT1 knockdown with siRNA2). *P<0.05, by Student’s T-test. Data 

are shown as mean ± standard deviation (SD), n=2 (based on 6 data points comprising 2 biological replicates, each the 

mean of 3 wells measured separately). 
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5.3 Pharmaceutical inhibition of SIRT1 reduced LAMP2 mRNA but had no effect 

on HSC70 mRNA. 

Having shown an effect of SIRT1 knockdown on LAMP2 mRNA we also investigated 

how LAMP2 and HSC70 were affected by pharmacological inhibition of SIRT1. 

Pharmacological inhibition offers the opportunity to collect more data on effects at 

multiple specific time points, which is particularly important to develop, ultimately, a 

system-level mathematical model of functional interactions of SIRT1. Caco-2 cells were 

exposed to the SIRT1 inhibitor EX-527 (10 µM) in the cell culture medium for up to 48 

h and samples of cells for the measurement of LAMP2 and HSC70 were taken at several 

time points. EX-527 has been shown to decrease SIRT1 activity by 15x at a 

concentrations of both 10 µM and 100 µM (Solomon et al., 2006). The lower 

concentration of 10 µM was used here in Caco-2 cells. mRNAs were measured by RT-

qPCR relative to GAPDH and TOP1 reference genes.  

Treatment with EX-527 caused LAMP2 mRNA to be decreased transiently below the 

control level, which was significant only at 24 h. HSC70 mRNA also decreased 

transiently in response to EX-527 but was not significant. The lack of experimental 

repeats again limits interpretation of the data (Figure 5.3.1). Interestingly, the data does 

suggest that there may be a degree of reciprocity with respect to the levels of these two 

mRNAs; the shape of the response profiles are almost a mirror image. However, this 

interpretation is very speculative and further data is required to confirm such a 

relationship (Figure 5.3.1). 

  



 

107 
 

  

  

*

0.4

0.6

0.8

1

1.2

1.4

1.6

0 h 4 h 6 h 12 h 16 h 24 h 48 h

m
R

N
A

 le
ve

ls
 r

el
at

iv
e 

to
 t

w
o

 r
ef

er
en

ce
 g

en
es

 (
ar

b
it

ra
ry

 u
n

it
s)

Lamp2 HSC70 Control LAMP2 Control HSC70

Figure 5.3.1. The effect of EX-527 on LAMP2 and HSC70 mRNA in Caco-2 cells. SIRT1 was inhibited 

by EX-527 (10 µM) applied in the cell culture medium for 4,6,12,16,24 and 48 h. mRNA was measured 

by RT-qPCR relative to GAPDH and TOP1. *P<0.05 by Student’s T-test. Data are shown as mean ± 

standard deviation (SD), n=2 (based on 6 data points comprising 2 biological replicates, each the mean 

of 3 wells measured separately). 
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5.4 Resveratrol appears to increase LAMP2 mRNA but decreased LAMP2 protein. 

Work included in this thesis shows that resveratrol increases SIRT1 expression in Caco-

2 cells. We proposed that some of the reported effects of resveratrol associated with 

increased healthspan may be due to this increase in SIRT1 expression, which in turn 

increases CMA (as suggested by the positive relationship we observed between SIRT1 

and LAMP2 expression). Thus, we measured the effect of resveratrol on LAMP2 and also 

on HSC70 in Caco-2 cells. Caco-2 cells were treated with 60 µM resveratrol for 48 h 

(applied to the cell culture medium and refreshed at 24 h); LAMP2 and HSC70 mRNA 

and protein levels were measured. mRNA was measured by RT-qPCR relative to GAPDH 

and TOP1 reference genes and protein was measured by Western blotting relative to 

the α-tubulin loading control. 

When resveratrol was applied to Caco-2 cells it had no effect on HSC70 mRNA or LAMP2 

mRNA, however more observations will be required to confirm this (Figure 5.4.1). 

Visual inspection of the Western blots shows clearly a reduction in LAMP2 protein after 

treatment of cells with resveratrol but no clear effect on HSC70 mRNA. Analysis of blots 

using densitometry confirmed that resveratrol reduced LAMP2 protein and showed no 

effect on HSC70 protein but for statistical analysis more experimental repeats are 

needed.  

If a discordant response of LAMP2 mRNA and LAMP2 protein to resveratrol does exist, 

the opposite of which was not observed with SIRT1 knockdown (as would be predicted 

if the action of resveratrol was purely through increasing SIRT1 expression), may 

reflect actions of resveratrol through additional pathways that lead to more rapid 

clearance of LAMP2 protein. 
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Figure 5.4.1. The effect of resveratrol on LAMP2 and HSC70 mRNA and protein in Caco-2 cells. Resveratrol was 

applied in the cell culture medium at a concentration of 60 µM for 48 h (replenished at 24 h). mRNA was measured by 

RT-qPCR relative to GAPDH and TOP1 reference genes. Protein was measured by western blot relative to α-tubulin 

loading control. A- LAMP2 and HSC70 mRNA in response to resveratrol treatment n=2 (based on 6 data points 

comprising 2 biological replicates, each the mean of 3 wells measured separately). B- LAMP2 and HSC70 protein 

densitometry measurements n=1 C-Representative western blot signals for LAMP2 (95 KDa), HSC70 (70 KDa) and α-

tubulin (50 KDa), lanes 1-3 are controls, lanes 4-5 resveratrol. Data are shown as mean ± standard deviation (SD) and 

did not differ significantly according to analysis using Student’s T-test. 



 

110 
 

5.5 Increasing NAD⁺ using apigenin did not affect LAMP2 expression but 

reducing NAD⁺ using FK866 increased LAMP2 mRNA. 

Work presented in Chapter 3-5 of this thesis are aimed towards deriving data 

ultimately to populate a system level mathematical model of interactions of SIRT1 with 

other molecules and cellular pathways that influence ageing. NAD⁺, which is consumed 

in deacetylation reactions catalysed by SIRT1 and that we found may inhibit SIRT1 

expression, provides a common node for some of these interactions, particularly for 

proposed interactions with PARP. Also, we found that resveratrol may increase NAD⁺ 

in Caco-2 cells and in published findings resveratrol increases NAD⁺ in C2C12 myotubes 

(Park et al., 2012). Having thus far measured effects of manipulating SIRT1 and of 

resveratrol on LAMP2, a next logical step was to determine if manipulation of NAD⁺ 

affected LAMP2 expression. NAD⁺ was increased in Caco-2 cells using apigenin (CD38 

NADase inhibitor, 25µM applied in the cell culture medium for 4 h) and decreased by 

FK866 (nicotinamide phosphoribosyltransferase, 0.1 µM applied in the cell culture 

medium for 4 h). LAMP2 mRNA was measured by RT-qPCR relative to GAPDH and TOP1 

reference genes. LAMP2 protein was measured by Western blot relative to the α-tubulin 

loading control.  

Apigenin did not affect LAMP2 mRNA but FK866 increased LAMP2 mRNA (Figure 5.5.1 

A and B). Visual inspection of Western blots did not indicate any obvious effect of either 

agent on LAMP2 protein (Figure 5.5.1 C). However, quality of these data were poor so 

we avoid any firm conclusion concerning effects on LAMP2 protein. We confirmed the 

expected effects of apigenin and FK866 on NAD⁺ (Figure 5.5.1 D and E). The observed 

increase in LAMP2 mRNA driven by a reduction in NAD⁺ achieved using FK866 is 

consistent with a model whereby NAD⁺ has a negative effect on SIRT1 expression; thus 

SIRT1 is increased by treatment of cells with FK866 (Chapter 3) and (as we confirm in 

the work presented in this chapter) increases LAMP2 mRNA. Given that SIRT1 

knockdown reduced LAMP2 mRNA and that our model proposes that NAD⁺ reduces 

SIRT1, the prediction was that apigenin should also reduce LAMP2 mRNA. A possible 

explanation for the fact that this prediction was not met is that the response of SIRT1 

to NAD⁺ and the response of LAMP2 to SIRT1 could be time-dependent. Indeed, we 

show time dependent effects on SIRT1 in other experiments (Chapter 4) that PARP 
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inhibition by 3ABA over 6 h caused SIRT1 to increase but promoting PARP activity 

using TMZ over 4 h had no effect on SIRT1. These observations highlight the need for 

detailed data on these complex and multiple interactions of SIRT1 to understand its 

influences on cellular ageing.  
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Figure 5.5.1. The effect of apigenin and FK866 treatment on NAD⁺ and LAMP2 mRNA and protein 

in Caco-2 cells. Apigenin (25 µM), or FK866 (0.1 µM) was applied in the cell culture medium for 4 h. SIRT1 

mRNA was measured by RT-qPCR relative to GAPDH and TOP1. A- Effect of apigenin on LAMP2 mRNA. B- 

Effect of FK866 on LAMP2 mRNA. C- Representative western blot signals for LAMP2 protein in response 

to apigenin and FK866, LAMP2 95 KDa and α-tubulin 50 KDa, lanes 1-3 control, lanes 4-6 apigenin and 

lanes 7-9 FK866 . D- Effect of Apigenin on NAD⁺. E- Effect of FK866 on NAD⁺. *p<0.05, **p<0.001 by 

Student’s T-test. Data are shown as mean ± standard deviation (SD), n=2 (based on 6 data points 

comprising 2 biological replicates, each the mean of 3 wells measured separately). 
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5.6 Hypomethylation of DNA by 5-azacytidine treatment increased LAMP2 mRNA 

expression. 

Thus far, we had accumulated a body of data all broadly consistent with a model 

whereby SIRT1 has a positive influence on the expression of LAMP2. A body of work 

conducted in our laboratory has uncovered multiple and widespread effects of SIRT1 

on DNA methylation (Ions et al., 2012). With respect to LAMP2 specifically, SIRT1 

knockdown in Caco-2 cells and HuVECs caused an increase in DNA methylation at 

specific CpG sites in the LAMP2 promoter (L. Wakeling and D. Ford personal 

communication). This effect of SIRT1 on DNA methylation of the LAMP2 gene could be 

the mechanism through which expression is affected, but causality had not been 

demonstrated. Indeed it is always the case that showing a causal relationship between 

a change in DNA methylation and gene expression is challenging. Towards showing 

causality, here we determined if DNA methylation of LAMP2 gene affects its expression. 

To achieve this aim, Caco-2 cells were treated with 5-azacytidine, which blocks DNA 

methyltranferases causing DNA hypomethylation. 5-azacytidine (10 µM) was applied 

in the cell culture medium for 24 h. Concentrations of around 1-20 µM 5-azacytidine 

have been commonly used in experiments reported in the literature to de-methylate 

DNA over 24-48 h (Choi et al., 2004; Escher et al., 2005; Kiziltepe et al., 2007). For this 

study we used 10 µM over 24 h. mRNA was measured by RT-qPCR relative to GAPDH 

and RN18S reference genes.  

Treatment of Caco-2 cells with 5-azacytidine caused LAMP2 mRNA to increase (Figure 

5.6.1); showing that LAMP2 expression is affected by DNA methylation and hence 

further corroborating this as a likely mechanism through which SIRT1 affects LAMP2 

expression. 
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Figure 5.6.1. The effect of 5-azacytidine on LAMP2 mRNA in Caco-2 cells. 5-azacytidine 

(10 µM) was applied in the cell culture medium for 24 h. mRNA was measured by RT-qPCR 

relative to GAPDH and TOP1 reference genes. *P<0.05 by Student’s T-test. Data are shown 

as mean ± standard deviation (SD), n=2 (based on 6 data points comprising 2 biological 

replicates, each the mean of 3 wells measured separately). 
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5.7 The development of a functional assay to measure chaperone mediated 

autophagy. 

All of the data presented in this chapter so far, which on the whole but with some 

caveats, support the view that SIRT1 and resveratrol promote the process of CMA, relies 

on indirect measures of activity of the CMA pathway (LAMP2 and HSC70 mRNA and 

protein). Thus, we aimed to develop a directly functional assay of CMA in Caco-2 cells 

to investigate these likely effects more reliably. 

Our assay was based on a published procedure (Koga et al., 2011), with minor 

adjustments. The assay measures emission from a fluorescent tag attached to the 

KFERQ motif. HSC70 binds to the KFERQ motif and chaperones protein bound to the 

fluorescent tag to lysosomes for degradation. The PS-CFP fluorescent tag used is 

photoconvertable, which means the fluorescence emission changes from cyan to green 

fluorescence upon LED array exposure. Following photoconversion and upon CMA 

activation the green fluorescent protein (GFP) will localise to the lysosomes and be 

degraded. Green fluorescence will thus decrease. If CMA is not activated the green 

fluorescent emission will remain relatively constant, as the protein remains in the 

cytosol rather than being chaperoned to lysosomes. The photoconvertable fluorescent 

tag allows the measurement of CMA at a snapshot in time. Fluorescent tagged protein 

translated post photoconversion will have cyan emission and will not increase 

background fluorescence that may hinder the measurement of GFP (Koga et al., 2011). 

Figure 5.7.1 shows a schematic diagram outlining the assay principle. 
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To generate the plasmid construct for expression of the photoconvertable CMA 

substrate, a 287 bp region of the bovine Ribonuclease A gene containing the KFERQ motif 

was generated by PCR from bovine genomic DNA. PCR primers (Methods, Table 2.1) 

contained HindIII and EcoR1 restriction sites. PCR was performed as described in 

Methods (2.5.3). The insert sequence, protein sequence and MCS of the destination 

vector pPS-CFP2-N (Evrogen) and vector map are shown in Appendix C and D. The PCR 

product was purified (QIAquick PCR Purification Kit, Qiagen) then restriction enzyme 

digestion was performed on both the PCR product and the pPS-CFP2-N vector using 

EcoR1 and HindIII as described in Methods (2.5.1). Enzymes were then removed from 

the PRC product using (QIAquick PCR Purification Kit, Qiagen). The digested vector was 

also purified by agarose gel electrophoresis using (QIAquick Gel Extraction Kit, Qiagen) 

to purify the excised band as described in Methods (2.5.6). Ligation was carried out as 

described in Methods (2.5.2) then success of the ligation reaction was confirmed by 

running a sample of the product alongside a sample first digested with EcoR1 and 

 

Figure 5.7.1. Schematic diagram to show the principle of the CMA assay. Caco-2 cells are transfected a plasmid 

expression construct for a photoconvertable CMA substrate (recognised by the sequence KFERQ). Irradiation for 8 

min causes a colour change from CFP to GFP. Serum removal activates CMA causing the GFP to be chaperoned to 

lysosomes and degraded. Figure adapted from (Koga et al., 2011). 
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HindIII (Appendix E). E.coli cells were transformed using the ligation mixture then 

plasmid was prepared from 6 individual colonies and sequenced to confirm presence 

and correct identity of the insert. To prepare cells for the CMA assay, Caco-2 cells were 

seeded at a density of 3.5 x 104 cells/ml in a black, glass bottomed, 24 well plate 

(Greiner Bioone) and incubated at 37 ˚C, 5 % CO2 and 80 % humidity overnight. Cells 

were transfected with SIRT1 siRNA and incubated for a further 24 h. Cells were then 

transfected with the plasmid construct using Lipofectamine® 2000 (Life Technologies) 

following the manufacturer’s instructions. The cells were incubated for a further 24 h 

before capturing images. 
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Images captured using the cyan and green channels selected at random were analysed 

using Volocity 3D image analysis software. Unexpectedly, there was no change in the 

intensity of cyan fluorescent protein (CFP) after photoconversion. However, the 

intensity of green fluorescent protein (GFP) increased significantly after 

photoconversion indicating successful photoconversion of the substrate. The fact that 

CFP appeared to remain the same was possibly due to continued expression of new 

protein during the photoconversion period (Figure 5.7.2).  
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Figure 5.7.2. The effect of 8 minutes of photoconversion on CFP and GFP in Caco-2 cells expressing a 

photoconvertable CMA substrate. Photoconversion was for 8 m using an LED array (ND1-4.42 mW) on a 

Nikon A1R microscope. Nikon Elements viewer was used to view images and Volocity 3D image analysis 

software used to measure fluorescent intensity. A- Representative images of CFP and GFP in cells pre and 

post photoconversion .B-CFP and GFP intensities pre and post photoconversion. **p<0.001 by Student’s T-

test. Data are shown as mean ± standard deviation (SD), n=2. 

A 
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CMA was stimulated by the removal of serum from the cell culture medium. Based on 

analysis of three images for control and stimulated conditions it appeared that serum 

removal caused GFP to decrease by approximately 30 % over 45 h. A similar decrease 

is reported for the original assay (Koga et al., 2011). In contrast there was no apparent 

decrease in the GFP under control conditions. However, data for control and stimulated 

conditions did not differ significantly. Capture and analysis of a larger number of images 

is required to validate the assay (Figure 5.7.3). 
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Figure 5.7.3. The effect of stimulating CMA by serum removal on the GFP signal in Caco-2 cells transfected 

to express the substrate for CMA. Foetal bovine serum was excluded from the cell culture medium for the 

serum free samples. Images were captured using a Nikon A1R microscope. Serum +: Representative images 

taken at 0, 10, 20, 30 and 45 h in serum positive medium. Serum -: Representative images taken at 0, 10, 20, 30 

and 45 h in serum negative medium. B: GFP intensity at 45 h under conditions of serum+ and serum-. 

Photoconversion of CFP to GFP was by LED array (ND1-4.42 mW) on a Nikon A1R microscope. Nikon Elements 

viewer was used to view images and Volocity 3D image analysis software was used to measure fluorescent 

intensity. n=1. 
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To determine if knockdown of SIRT1 inhibited CMA, as we predicted, Caco-2 cells were 

transfected with siRNA targeted to SIRT1 then with the expression construct for the 

CMA substrate and images were captured after substrate photoconversion using the 

green channel over 45 h. Again, only very few useable images were captured and 

further optimisation and repetition is needed. However, those preliminary data 

indicated that CMA was active only under conditions where it was stimulated by serum 

removal but not when serum was removed from the cells transfected with the siRNA to 

reduce SIRT1 expression. Visual inspection of the typical images shown in Figure 5.7.4 

reveals a clear reduction in GFP intensity over 45 h where cells were transfected with 

the control siRNA and serum was removed (middle panel) but no apparent change 

when cells were transfected with the control siRNA then serum retained (top panel) or 

when serum removed from cells transfected with SIRT1 siRNA (lower panel). Due to 

small sample number and variability in intensities image analysis revealed no statistical 

significance, however these first observations are consistent with SIRT1 being required 

for CMA to be stimulated. 
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Figure 5.7.4. The effect of stimulating CMA by serum removal alongside SIRT1 knockdown on GFP 

intensity in Caco-2 cells. Photoconversion was done for 8 min to convert CFP to GFP using an LED array (ND1-

4.42 mW) on a Nikon A1R microscope. Nikon Elements viewer was used to view images and Volocity 3D image 

analysis software was used to measure fluorescent intensity. A- Representative images from 0-45 h of GFP in cells 

that   were retained in serum and transfected with control (Neg) siRNA, had serum removed and were transfected 

with control siRNA or that had serum removed and were transfected with SIRT1 siRNA. B- GFP intensities at 45 

h for the conditions serum+, serum- and serum- plus SIRT1 siRNA n=1. 
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5.8 Discussion 

Based on work carried out in the laboratory previously whereby microarray analysis 

revealed that SIRT1 knockdown in Caco-2 cells reduced LAMP2 expression (Dr. L. 

Wakeling personal communications), an aim of the work presented in this chapter was 

to explore the possibility that SIRT1 and/or resveratrol may have an influence on 

components of the CMA pathway as indicated by effects on the expression of LAMP2 

and also HSC70, a second component of the pathway. Since we had shown in the current 

study that manipulation of NAD⁺ affected SIRT1 expression and published data showed 

that resveratrol affected NAD⁺ (Park et al., 2012), we also sought to measure how 

manipulation of NAD⁺ affected expression of LAMP2 and HSC70. A further aim was to 

develop a functional assay to measure CMA activity. 

We first determined if a reduction in SIRT1 using siRNA or pharmaceutical inhibition 

using EX-527 affected LAMP2 and HSC70 expression in Caco-2 cells. Reducing SIRT1 

using siRNA decreased LAMP2 mRNAs after 72 h in Caco-2 cells and when SIRT1 was 

inhibited pharmaceutically LAMP2 mRNA decreased at 24 h. SIRT1 manipulation had 

no significant effect on HSC70 mRNA. A limitation with respect to comparing directly 

the effect of SIRT1 knockdown by siRNA compared with its pharmaceutical inhibition 

on these mRNAs is that the response to pharmacological inhibition was very time-

dependent, and it is not possible to relate directly the single time point at which the 

effect of the siRNA was measured (72 h after transfection) with the time course of 

pharmacological inhibition. This apparent transient effect of SIRT1 on these LAMP2 

further highlights the need for high-resolution detailed data collected at multiple time 

points ultimately to populate a system-level mathematical model to understand these 

complex interactions. Moreover, it is essential to measure in parallel with mRNAs the 

corresponding proteins. Here we were able to obtain only poor quality Western blots 

to measure effects on LAMP2 and HSC70 proteins, which were inconclusive.  

Given we had shown that resveratrol increases SIRT1 expression (Chapter 3) and, here, 

that SIRT1 affects LAMP2 mRNA, we proposed resveratrol would affect in particular 

LAMP2 expression. We also measured HSC70 expression in response to resveratrol 

alongside LAMP2 in Caco-2 cells. Resveratrol did not significantly affect HSC70 or 

LAMP2 mRNA and had no measurable effect on HSC70 protein. However, resveratrol 
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appeared to decrease LAMP2 protein but further observations are required to confirm 

this effect statistically. The anticipated effects of resveratrol on LAMP2 mRNA are 

concordant with the model whereby resveratrol increases SIRT1 expression which in 

turn activates CMA. For LAMP2 protein, the data on visual inspection appear convincing 

(although further repeats are necessary), we propose that actions of resveratrol 

additional to the effect on SIRT1 expression may underlie this response. Given that 

stimulation of CMA is a likely beneficial action of SIRT1 this counteracting effect of 

resveratrol may be a reason to seek alternative activators of SIRT1 as imitators of the 

response to dietary restriction to develop as dietary supplements. 

As SIRT1 was affected by NAD⁺ manipulation in Caco-2 cells (Chapter 3) the next logical 

step was to manipulate NAD⁺ and measure LAMP2 mRNA and protein. Apigenin was 

used to increase NAD⁺ and FK866 was used to reduce NAD⁺ in Caco-2 cells. FK866 

increased LAMP2 mRNA but apigenin had no effect on LAMP2 mRNA or protein 

(however the protein measurements were again of poor quality). However, the 

response to apigenin is inconsistent with the earlier observation that apigenin reduced 

SIRT1 mRNA and protein, which we would predict to reduce LAMP2 expression. As 

already discussed one explanation could be that the response is time-dependent. 

Therefore, future work should include measurement of these responses at multiple 

time points. 

Although our work has shown repeatedly and reproducibly that SIRT1 increases 

LAMP2 mRNA the mechanism is not known. We proposed here that altered DNA 

methylation of the LAMP2 gene by SIRT1 may be one possibility. This hypothesis arose 

from the earlier observation made in the laboratory whereby SIRT1 knockdown 

increased DNA methylation at specific CpG sites in the LAMP2 promoter in Caco-2 cells 

and HuVECs (Dr. L. Wakeling personal communications). We predicted that decreased 

promoter DNA methylation would increase LAMP2 expression because DNA 

methylation would negatively affect the binding of transcription factors to the LAMP2 

gene. To determine if in principle LAMP2 gene expression is repressed by DNA 

methylation 5-azacytidine was used to hypomethylate the genome in Caco-2 cells and 

then LAMP2 mRNA was measured. LAMP2 mRNA increased significantly following DNA 

demethylation, showing that LAMP2 expression is affected by DNA methylation; hence 
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this could be a mechanism that underlies the effect of SIRT1 on LAMP2 expression. 

Future work may include measuring HSC70 expression following DNA demethylation 

to determine if HSC70 is also affected by DNA methylation. Given we have shown that 

SIRT1 has effects on DNA methylation across the genome this is an attractive 

mechanism through which LAMP2 and HSC70 could respond to SIRT1. Measurement of 

DNA methylation at the HSC70 promoter following SIRT1 knockdown could be used to 

test this theory.  

Measurement of LAMP2 and HSC70 provide only indirect indications of the activity of 

the CMA pathway. As discussed, this may account to some degree for discordance 

between these two measurements leading to difficulties concerning data 

interpretation. A direct functional assay would give a more robust measurement of the 

effects of SIRT1 and resveratrol on CMA. Thus, we began to optimise a published assay 

(Koga et al., 2011) for use in our experimental model. The assay is based on expression 

of CFP expressed with a CMA substrate tag (KFERQ) that is photoconverted to GFP to 

track degradation of protein by CMA over time. The photoconversion step means that 

newly synthesised fluorescent protein is not “seen”, allowing only the disappearance of 

the CMA substrate to be measured.  

We observed a marked increase in GFP post photoconversion in Caco-2 cells 

transfected with a plasmid expression construct for this substrate, suggesting that the 

fluorescent tag was successfully converted from CFP to GFP. To test if the assay can be 

used to measure CMA in Caco-2 cells, CMA was activated by serum removal and GFP 

intensity was measured over 45 h. Compared to serum+ conditions there was an 

apparent decrease in the GFP signal after 45 h in the serum- conditions that could be 

seen by visual inspection of images, suggesting that CMA was active and could be 

measured by our assay. However, data acquisition was limited by time and resources 

and further experiments are required to show statistical significance. Preliminary data 

on the effects of SIRT1 knockdown by siRNA on CMA were also collected and appeared 

to show that SIRT1 knockdown prevented the reduction in GFP intensity observed over 

45 h induced by the removal of serum, indicating that CMA became inactive under these 

conditions and hence suggesting that SIRT1 plays a role in stimulating CMA. Again 
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repetition of the experiment is necessary since data were very limited and did not differ 

significantly. 

The CMA assay presented here will act as an experimental basis for future work to test 

if SIRT1 and/or resveratrol can affect CMA. As developed thus far, the assay is very time 

consuming, inflexible and (because number of images captured is limited by cell 

transfection efficiency) generated very limited data. It would not be practical to collect 

data on effects of SIRT1 inhibition/resveratrol exposure or other test treatments at 

different time points, for example. Thus, in its current form, the assay is only useful as 

a complementary approach to measuring LAMP2 and HSC70. A stable transfection of 

the recombinant plasmid in to Caco-2 cells would increase the number of images that 

can be captured in one experiment. Secondly, a concurrent stable knockdown of SIRT1 

could be achieved in cell lines by genome editing using the CRISPR/CAS9 system (Roy 

et al., 2015) and would improve assay utility. 

To conclude, the work presented in this chapter has shown that resveratrol and SIRT1 

may have a positive effect on CMA. Confirmation of this finding requires the collection 

and analysis of further measurements of LAMP2 and HSC70 expression over a range of 

timed exposures to resveratrol, NAD manipulation and SIRT1 manipulation and also 

direct measurement of CMA using a refined version of the assay developed. There is 

good evidence that SIRT1 affects LAMP2 expression through changes in DNA 

methylation.  
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6 Chapter 6. An investigation into the potential mechanisms 

through which SIRT1 has effects on DNA methylation that are 

clustered at the gene targets of the polycomb repressive 

complexes. 

6.1 Introduction 

It has become apparent in recent years that stem cells play a major role in ageing, which 

has led to ‘the stem cell theory of ageing’. The theory suggests that ageing happens due 

to an increase in failed differentiated stem cells and/or the depletion of stem cells. Stem 

cell differentiation requires that particular genes are silenced through chromatin 

modifications that result from the action of polycomb group proteins (Orlando, 2003; 

Kirmizis et al., 2004). Failed silencing due to changes in chromatin can lead to abnormal 

adult stem cell behaviour, which affects tissue regeneration and renewal (Brack and 

Rando, 2007; Bork et al., 2010; Beerman et al., 2013). However, not all tissues rely on 

adult stem cells for renewal but are affected by ageing; thus ‘the stem cell theory of 

ageing’ cannot be the sole cause of ageing. Nonetheless it has a likely place in the ageing 

process (Smith and Daniel, 2012). 

Previously in the laboratory, SIRT1 was shown to affect DNA methylation at specific 

CpG sites in several genes that also showed altered DNA methylation patterns in ageing 

and were affected by DR (Ions et al., 2012). A genome-wide analysis of effects of SIRT1 

on DNA methylation had been carried out subsequently by SIRT1 over expression and 

knockdown in HuVECs and Caco-2 cells. Of the genes that had either an increase or 

decrease in DNA methylation in response to SIRT1 manipulation, there was a statistical 

over representation of polycomb group protein target genes (PCGTs) (genes which are 

targeted for epigenetic changes by polycomb group proteins) (Wakeling et al., 2015). 

Hypermethylation at PCGTs has also been shown to increase with age in humans and 

mice (Maegawa et al., 2010; Teschendorff et al., 2010). We hypothesise here that SIRT1 

can affect DNA methylation of PCGTs through polycomb group proteins, which may 

impact on ageing. This idea is based on knowledge that the polycomb proteins 

themselves can effect epigenetic changes at their target loci. 

Two polycomb group protein complexes have been identified, polycomb repressive 

complex 1(PRC1) and polycomb repressive complex 2 (PRC2). PRC2 and PRC1 are each 
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made up of core proteins: EED, EZH2, SUZ12 and RbAP48, and: RNF2, BMI1 and PHC1, 

respectively (Vire et al., 2006; Margueron and Reinberg, 2011). PRC1 is targeted to 

PCGTs by KDM2B, which recognises non-methylated DNA in CpG islands (Farcas et al., 

2012). PRC1 has a CBX domain that recognises and binds to methylation marks on 

histone 3 lysine 27. PRC1 then monoubiquitinates histone 2A resulting in compaction 

of the chromatin. PRC2 also contributes to chromatin compaction by recruiting histone 

methyletransferase1 to methylate histone 3 lysine 27.  

The work presented in this chapter addressed the hypothesis that SIRT1 causes DNA 

methylation at PCGTs through PRCs, by determining if SIRT1 knockdown by siRNA 

affected expression (mRNAs) of polycomb proteins. We also measured if SIRT1 

knockdown affected DNMT1 and DNMT3b mRNAs, since an effect on DNMT1 or 

DNMT3b expression and hence activity is a second plausible mechanism through which 

DNA methylation could be affected. However, should an effect be shown further work 

would be necessary to explore how such a non-specific action could target 

preferentially DNA methylation at PCGTs. Finally, we determined if SIRT1 forms a 

protein-protein complex with EZH2, the best candidate of the polycomb proteins for 

mediating any action of SIRT1 on DNA methylation of PCGTs as EZH2 associates with 

DNA methyltransferases and has been shown to form an interaction with SIRT1 in HeLa 

cells (Kuzmichev et al., 2005). 
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6.2 SIRT1 knockdown had no effect on the mRNA of polycomb repressive complex 

proteins, DNA methyltransferases 1 and 3b or lysine (K)-specific 

demethylase 2B in human Caco-2 cells or HuVECs. 

To test our hypothesis that SIRT1 affects DNA methylation at PCGTs through PRCs, we 

determined if SIRT1 affected the mRNA of individual components of PRC1 and PRC2 

using two different siRNAs to reduce SIRT1 expression in HuVECs and Caco-2 cells. The 

components of PRC2 measured were: EED, EZH2, SUZ12 and RbAP48. The components 

of PRC1 measured were: BMI1, PHC1 and RNF2. The PRC1 recruiting protein KDM2B 

mRNA and the mRNAs of two DNA methyltransferase DNMT1 and DNMT3b were also 

measured. mRNA was measured by RT-qPCR relative to two reference genes GAPDH 

and TOP1.  

SIRT1 knockdown by siRNA in Caco-2 cells and HuVECs did not significantly affect any 

of the mRNAs measured (Figure 6.2.1). In some instances we observed a difference in 

mRNA as a result of SIRT1 knockdown using only one siRNA. Specifically siRNA1 caused 

a statistically significant increase in RNF2 mRNA and siRNA2 caused a statistically 

significant increase in SUZ12 and PHC1 mRNAs. Since the second siRNA induced none 

of these effects they must be considered as “false results” and not true effects of SIRT1 

knockdown. A possible explanation is that they arose from “off target” actions of the 

siRNA; i.e. a reduction in expression of other genes caused by siRNA that in turn 

influenced the affected mRNAs. 
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Figure 6.2.1. The effect of SIRT1 knockdown on PRC1, PRC2, DNMT1 and DNMT3b mRNA in HuVEC and Caco-2 

cells and KDM2B mRNA in Caco-2 cells. A-SIRT1 knockdown by two siRNAs in HuVECs B-SIRT1 knockdown by two 

siRNAs in Caco-2 cells. PRC2: RbAP48, EED, SUZ12 and EZH2. PRC1: BMI1, PHC1 and RNF2. SIRT1 was knockdown was 

over 72 h using two different siRNAs separately (siRNA1 and 2). Results are relative to two reference genes GAPDH and 

TOP1. **p<0.005 by ANOVA and Tukey’s post hoc statistical test. Data are shown as ± standard deviation (SD), n=2-6.  
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6.3 SIRT1 and EZH2 do not appear to form a direct inter-molecular association. 

Having found no evidence that SIRT1 affects expression of components of the PRCs we 

next sought to determine if SIRT1 associates directly with EZH2 in a protein-protein 

complex that could modify EZH2 activity and hence DNA methylation at PCGTs. SIRT1 

has been shown to associate with EZH2 in a PRC4 complex in HeLa cells overexpressing 

EZH2 (Kuzmichev et al., 2005). Initially we measured EZH2 protein after SIRT1 

knockdown by siRNA in Caco-2 cells. EZH2 protein was measured by Western blot 

relative to the α-tubulin loading control.  

SIRT1 knockdown in Caco-2 cells had no effect on EZH2 protein levels (Figure 6.3.1 A 

and B)  

To determine if SIRT1 can bind to EZH2, SIRT1 and EZH2 were immunoprecipitated 

separately from total lysate from HuVECs and Caco-2 cells. Input and 

immunoprecipitated protein was then resolved by SDS-PAGE, transferred to PVDF 

membrane then probed with anti-EZH2 or anti-SIRT1 antibody. Both SIRT1 and EZH2 

were self-enriched in the fraction achieved after immunoprecipitation as shown by a 

band intensity increase over input on the Western blot but neither antibody resulted in 

cross-enrichment (Figure 6.3.1 C). Thus we found no evidence that SIRT1 and EZH2 

associate directly under our cell culture conditions.  
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Figure 6.3.1. The effect of SIRT1 knockdown by siRNA on EZH2 protein, and immunoprecipitation of SIRT1 

and EZH2 to determine if either binds to the other in HuVEC and Caco-2 cells. SIRT1 was reduced by two siRNAs 

separately (siRNA 1 and 2). A-.Representative western blot raw data in response to SIRT1 knockdown by siRNA in 

Caco-2 cells. B- The densitometry measurement of the western blot raw data for EZH2 protein in response to SIRT1 

knockdown in Caco-2 cells. C- Western blot raw data following on from immunoprecipitation of SIRT1 or EZH2 

protein in Caco-2 cells or HuVECs. SIRT1 was 120 KDa, α-tubulin 50 KDa and EZH2 80 KDa. ‘Input’-whole protein 

lysate run alongside immunoprecipitated samples and probed for the corresponding immunoprecipitated protein, 

‘IP–ve’- Immunoprecipitate probed for the other protein (for example, SIRT1 protein immunoprecipitate was 

probed with anti-EZH2 antibody). ‘IP+ve’- Immunoprecipitate probed for the same protein as a control (for example, 

for example, SIRT1 protein immunoprecipitate was probed with anti-SIRT1 antibody) ANOVA and Tukey’s post hoc 

statistical test were used for statistical analysis. Data is shown ± standard deviation (SD), B n=2 (based on 6 data 

points comprising 2 biological replicates, each the mean of 3 wells measured separately), C n=3. 
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6.4 Discussion 

SIRT1 knockdown has been shown to change DNA methylation at PCGTs (Wakeling et 

al., 2015), which are DNA methylation sites targeted by PRCs for gene silencing by 

epigenetic mechanisms including histone methylation and ubiquitination (Margueron 

and Reinberg, 2011). We proposed that the action of SIRT1 to change DNA methylation 

at PCGTs was in some way mediated through PRCs to affect DNA methylation at these 

sites. Specifically we proposed that this action of SIRT1 could be through affecting the 

expression of components of the PRCs (i.e. the individual polycomb proteins) or 

KDM2B. Although not a PRC component KDM2B has been shown to recruit PCR1 to CpG 

islands in mouse embryonic stem cells (Farcas et al., 2012). Alternatively, we postulated 

that SIRT1 may act via components of the PRCs to alter DNA methylation at PCGTs 

through forming intermolecular associations with specific polycomb proteins, thereby 

affecting the way in which the PRC affects epigenetic modification at these target sites. 

A third idea was that SIRT1 may influence the expression of DNMTs. In this case, a 

mechanism that results in the genome wide actions of DNMTs being focused at PCGTs 

would also have to come into play to explain the observations. To explore these ideas 

the expression of SIRT1 was reduced by siRNA in Caco-2 cells and HuVECs. There were 

no significant changes in mRNA corresponding to any of the PRC1 or PRC2 components 

or in DNMT1, DNMT3b or KDM2B mRNAs. Any significant changes observed were not 

replicated by both siRNA1 and siRNA2 and were therefore put down to off target effects 

of the siRNAs. 

EZH2, a component of PRC2 that methylates histone 3, is a likely candidate for affecting 

DNA methylation. A PRC4 complex has been described, which was observed when EZH2 

was over expressed in HeLa cells and consists of EZH2, SIRT1 and isoform2 EED 

(Kuzmichev et al., 2005). We therefore reasoned that of the multiple PRC components 

EZH2 was the most likely binding partner with SIRT1 to explain our observations. 

Before determining if EZH2 and SIRT1 appeared to form a direct intermolecular 

association we first confirmed that, consistent with SIRT1 having no effect on EZH2 

mRNA. SIRT1 knockdown did not affect EZH2 protein expression. We then determined 

if SIRT1 associated directly with EZH2 protein in Caco-2 cells and HuVECs by 

performing immunoprecipitation on SIRT1 and EZH2 then using Western blot to probe 
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for the other protein. SIRT1 and EZH2 proteins were not co-immunoprecipitated, 

suggesting they do not bind one another in Caco-2 cells or HuVECs. Possible reasons for 

the apparent discordance with the published findings (Kuzmichev et al., 2005) are that 

the association may be cell line specific or that higher levels of EZH2 (as EZH2 was 

overexpressed in HeLa cells) may be required for association with SIRT1. 

The data presented in this chapter revealed that SIRT1 does not affect the expression 

of components of PRCs, KDM2B or DNMTs at the mRNA level. Further work is needed 

to measure the effect of SIRT1 knockdown on EED, SUZ12 and RbAP48, BMI1, PHC1, 

RNF2, KDM2B, DNMT1 and DNMT3b protein levels. We reasoned that EZH2 was the 

most likely component of the PRCs to explain the targeted action of SIRT1 on DNA 

methylation at PCGTs but we found no evidence for a direct association in Caco-2 cells 

and HuVECs. These data only begin to explore the many possible mechanisms through 

which SIRT1 may have effects on DNA methylation that are targeted to PCGTs and 

extensive further experimentation is required to shed light on the underlying 

mechanism. 
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7 Discussion 
The overall aim of the work presented in this thesis was to explore interactions of SIRT1 

with other cellular functions pertinent to ageing, specifically PARPs and CMA, towards 

developing a system-level model of which testing and refinement may ultimately reveal 

points of intervention to slow ageing or maintain better health during ageing. Each of 

the four chapters of results addressed a specific hypothesis. 

 Resveratrol increases SIRT1 expression through increasing NAD⁺. 

 Interactions between SIRT1 and PARP are driven by competition for the same 

intracellular NAD⁺ pool. 

 SIRT1 and resveratrol increase expression of components of CMA and CMA 

activity. We also proposed that effects on DNA methylation of the LAMP2 gene is 

one mechanism through which this effect is mediated. 

 SIRT1 alters DNA methylation at polycomb gene targets through polycomb 

repressive complexes. 

7.1 Hypothesis 1 

As discussed in Chapter 1, SIRT1 plays a central role in cell metabolism and is believed 

to mediate some of the effects of DR and resveratrol on ageing. Current evidence sways 

us towards a view that resveratrol activates SIRT1 (Basil P. Hubbard et al., 2013). Here 

we have shown that resveratrol increases SIRT1 mRNA, in agreement with previous 

studies (Bai et al., 2008; Morita et al., 2012), and increases SIRT1 promoter activity, 

revealing that an increase in transcription accounts for or at least contributes to this 

effect. These effects of resveratrol on SIRT1 would augments each other, which given 

well-evidenced actions of SIRT1 on aspects of cellular function that counteract features 

of ageing, such as activation of FOXO1, increased catalase expression and reduced 

oxidative stress (Alcendor et al., 2007) support a view that dietary resveratrol may be 

an efficacious intervention to increase healthspan. The efficacy of resveratrol to extend 

lifespan has been shown robustly in model organisms (Howitz et al., 2003; Wood et al., 

2004) but it may be premature, without further human intervention studies, to 

recommend dietary resveratrol as a supplement to human diets.  



 

134 
 

Alongside intervention studies, further research, such as presented in this thesis, on the 

interactions between resveratrol and SIRT1 and other cellular components at the 

molecular level may be illuminating in the same context. It has been shown that 

resveratrol can increase NAD⁺ in mouse C2C12 myotubes through activation of AMPK 

(Park et al., 2012). Thus we proposed that an increase in NAD⁺ may be a mechanism 

through which resveratrol increases expression of SIRT1. Thus, we investigated if NAD⁺ 

manipulation could alter SIRT1 expression. The most striking observation was that an 

increase in NAD⁺ induced using apigenin resulted in a 90 % reduction in SIRT1 mRNA 

and a reduction in SIRT1 protein levels a finding discordant with this hypothesis. 

Assuming that this measured increase in NAD⁺ drives the reduction in SIRT1 expression 

(which is unproven; the effect of apigenin on SIRT1 maybe through other unknown 

actions) then uncovering the mechanism requires further work. A plausible scenario is 

that increased activity of SIRT1 that results from the increased availability of NAD⁺ 

leads to deacetylation of a transcription factor that controls transcription of the SIRT1 

gene. The regulation of SIRT1 by PPAR-γ provides a precedent for such an auto-

regulatory feedback loop. PPAR-γ can inhibit SIRT1 transcription (Han et al., 2010) and 

is in turn deacetylated and hence activated by SIRT1 (Qiang et al., 2012).  

Since we did not confirm that resveratrol increased NAD⁺ in our Caco-2 cell model we 

proposed that the effect to increase SIRT1 expression maybe due to a reduction in 

NAD⁺, which attenuates the repressive action of NAD⁺ on SIRT1 expression indicated 

by the action of apigenin. We thus measured NAD⁺ in response to treating Caco-2 cells 

with resveratrol. Although, the data appeared to show an increase in NAD⁺ in response 

to resveratrol (with a p value of 0.08), the data were inconclusive and further 

experimental repeats are necessary to determine if data differ with statistical 

significance. Assuming that resveratrol increases NAD⁺, which agrees with published 

data (Park et al., 2012), it is possible that this response may underlie an observed 

increase in NAMPT and SIRT1 activity (both dependent on NAD⁺) in human primary 

hepatocytes induced by resveratrol (Schuster et al., 2014). Nampt was also shown to 

increase Sirt1 expression and activity in mouse fibroblasts (Revollo et al., 2004). A 

potential mechanism for this increase in SIRT1 expression in response to NAMPT is the 

FOXO1/SIRT1 positive feedback loop. NAMPT reduces the SIRT1 inhibitor NAM (in the 
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NAD⁺ salvage pathway) allowing SIRT1 activity to increase, active SIRT1 deacetylates 

FOXO1, which promotes FOXO1 activity and thus increasing SIRT1 transcription by 

FOXO1 (Brunet et al., 2004; Xiong et al., 2011).  

7.2 Hypothesis 2 

Predictions of the hypothesis is that SIRT1 and PARP compete for NAD⁺ in the cell are 

that activating one or other enzyme would reduce the activity of the other whereas 

inhibiting the activity of one or other enzyme would increase the activity of the other. 

The hypothesis also predicts that their effects would be magnified if NAD⁺ was reduced 

in the cell but attenuated when NAD⁺ is abundant. We tested these predictions as far as 

we were able by manipulating one of the three variables in the system and measuring 

the effects on the other two. Based on the observation discussed above, that NAD⁺ 

appears to reduce SIRT1 expression, the system is predicted to be far more complex, 

however. Also these experiments were limited by the fact that we were unable to 

measure SIRT1 activity. However, we measured SIRT1 expression and observed effects 

on this variable. As expected, the observation revealed that interactions between SIRT1, 

PARP and NAD⁺ are complex. 

1. There appeared to be a reciprocal relationship between Parp activity and Sirt1 

expression in mouse livers, with older mice having higher Sirt1 and lower Parp 

activity. However, this observation was made in a limited number of samples. 

Future work should include analysis of Sirt1protein and Parp activity in a larger 

sample of ageing mice to draw out any common relationships and allow 

statistical analysis. 

2. We found no difference in Sirt1 expression in the intestine of Parp1 -/- in mice 

compared with controls. However, only a limited number of samples were 

available, hence at this point we do not draw any definitive conclusions from 

these data. 

3. Pharmacological inhibition of PARP in Caco-2 cells increased SIRT1 mRNA at 6 

h but pharmacological induction of PARP through initiation of the DNA damage 

response did not affect SIRT1 mRNA at 4 h. 

4. SIRT1 knockdown by siRNA appeared to be increasing PARP activity. 
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5. An increase in NAD⁺ achieved using apigenin reduced SIRT1 mRNA but had no 

effect on PARP activity. 

6. Reduction of SIRT1 by siRNA and/or PARP inhibition did not affect NAD⁺. 

These findings add to other published studies that show an extensive and complex 

network of interactions between SIRT1 and PARP that appear relevant in the overall 

context of ageing and generally support the view that the activities of the two enzymes 

have a reciprocal relationship. For example, Sirt1 -/- mice had increased acetylated and 

thus activated Parp1, suggesting Sirt1 deacetylates and deactivate Parp1 (Rajamohan 

et al., 2009a). As further examples, Parp2 -/- mice had increased Sirt1 activity (Bai et 

al., 2011), and PARP1 appeared to increase SIRT1 transcription indirectly by promoting 

transcription of the SIRT1 transcription factor C-MYC (Simbulan-Rosenthal et al., 2003). 

Our own data presented in this thesis reveal further interactions, we show in ageing 

mice that SIRT1 protein is high when PARP activity is low, and our preliminary data 

indicate that SIRT1 knockdown increases PARP activity and PARP inhibition increases 

SIRT1 mRNA.  

The balance of reported effects of PARP and SIRT1 support the idea that increased 

activity of either enzyme is protective against effects of ageing, and thus that the 

consequent reduction in the actions of one enzyme that results from activating the 

other would limit efficacy to reduce features of ageing. However, this is not universally 

the case. For example, PARP1 over expression was associated with higher tumour 

grades in breast cancer (Rojo et al., 2012) whereas Sirt1 activity was associated with 

lower Survivin expression resulting in increased apoptosis and thus reduced tumour 

progression in mice with Brca1 associated breast cancer (Wang et al., 2008). 

Furthermore, PARP2 has been shown to inhibit TRF2 from binding to DNA in telomere 

T-loop formation (Dantzer et al., 2004) while SIRT1 can increase Tert expression, 

telomerase activity and Ttp1 expression (Chen et al., 2014). As a final example, PARP 

activity was higher in human centenarians compared to younger controls (Muiras et al., 

1998) but Sirt1 protein was found reduced with age in rat hippocampus neurons 

(Quintas et al., 2012). 
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We hypothesised that the opposing relationship between SIRT1 and PARP is driven by 

competition for NAD⁺. No previous studies had investigated SIRT1, PARP and NAD⁺ 

together, however it proved challenging to measure changes in NAD⁺, which is tightly 

regulated in the cell. However, apigenin, which only slightly increases NAD⁺ availability, 

had a large impact on reducing SIRT1 mRNA and therefore it is plausible that small 

NAD⁺ variations could have large implications. 

Overall, the observations outlined show that a simple linear model cannot describe the 

co-dependency of the actions of SIRT1 and PARP and the influence thereon of NAD⁺. 

Thus, the findings show that a system-level network is required to understand these 

interactions and to make further predictions. The data generated within the time 

constraints of the current project provide an important component of such a model but 

are currently inadequate to develop a robust mathematical model. However, tools are 

now in place to facilitate the generation of detailed data over suitable time courses and 

concentration ranges. 

7.3 Hypothesis 3 

SIRT1 appears to have a role in macroautophagy, as when SIRT1 was inhibited in THP-

1 cells macroautophagy function was lost (Takeda-Watanabe et al., 2012). 

Furthermore, there is also evidence that resveratrol can promote macroautophagy, 

since the resveratrol derivative trans-3,4-dimethoxystilbene inhibits mTOR, which 

itself inhibits autophagy (Zhang et al., 2012). As discussed earlier a reduction in protein 

degradation can be detrimental and cause age-related diseases through mechanisms, 

such as contributing to amyloid-β plaques in Alzheimer’s disease. Thus, if protein 

degradation was maintained at a sufficient level it may reduce the risk of age related 

diseases. Rapamycin, an mTOR inhibitor, has already been shown to reduce the build-

up of amyloid-β42 protein and promote macroautophagy in brain tissue from PDAPP 

mice (Spilman et al., 2010) and is thus a strong contender as a therapeutic therapy.  

A second type of autophagy, CMA, also has strong links to ageing. The CMA receptor and 

regulator LAMP2 has been shown to be reduced in ageing rats (Cuervo and Dice, 2000b) 

and is likely to be a contributor to age-related diseases linked to protein build-up in 
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cells. However, CMA is difficult to measure and has not, until now, been the focus in 

autophagy studies.  

Previous work in the laboratory showed that SIRT1 knockdown by siRNA reduced 

LAMP2 mRNA in Caco-2 cells (L. Wakeling and D. Ford, personal communication). We 

thus sought to investigate if SIRT1 and resveratrol can alter CMA activity. Prior to the 

development of a functional assay to measure CMA we measured the components of the 

CMA pathway LAMP2 and HSC70 under conditions where SIRT1 and resveratrol were 

manipulated in Caco-2 cells. SIRT1 inhibition by EX-527 decreased LAMP2 mRNA and 

resveratrol increased LAMP2 mRNA, in agreement with the hypothesis that resveratrol 

can increase SIRT1 expression which in turn increases CMA. Corresponding 

measurements of LAMP2 and HSC70 proteins by Western blotting were not entirely 

consistent with the mRNA data. However, data quality was compromised and we draw 

no firm conclusion at this stage. As we had shown that NAD⁺ affected SIRT1 expression 

we manipulated NAD⁺ and measured LAMP2 mRNA and protein. In agreement with the 

prediction that reducing NAD⁺ would alleviate a repressive action on SIRT1 expression 

and hence activate CMA, we observed an increase in LAMP2 mRNA on treatment of 

Caco-2 cells with FK866, which we confirmed to be effectively increasing NAD⁺. 

However, apigenin, which increased NAD⁺ effectively, had no effect on LAMP2 mRNA, 

which was discordant with this overall scheme for the effect of SIRT1 on LAMP2 

expression. A limitation of these data, however, are that they are constrained to being 

at a single time point. Moreover, given other data here discussed that show clearly a 

complex, non-linear effect of NAD⁺, and systems (for example PARP) that draw on this 

cellular resource, this finding is not surprising and highlights further the need to 

acquire further data for input into a comprehensive system-level mathematical model.  

Previous work in the laboratory suggested that SIRT1 may increase LAMP2 expression, 

through affecting DNA methylation of the LAMP2 promoter. However, we were unable 

to attribute any causal relationship between the observation that SIRT1 knockdown in 

Caco-2 cells and HuVECs increased LAMP2 promoter methylation and reduced LAMP2 

mRNA. Thus, we aimed to determine proof of concept that methylation of the LAMP2 

promoter does affect expression of the gene. We did this by inducing global DNA 

Hypomethylation in Caco-2 cells using 5-azacytidine. In response, we observed an 
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increase in LAMP2 mRNA, which showed that expression of the gene is influenced by 

DNA methylation. These observations still fall short of showing a direct causal 

relationship, but add more support to the proposal that SIRT1 affects LAMP2 

expression through an effect on DNA methylation of the gene promoter. 

Measuring the expression of components of the CMA pathway is only a surrogate for 

CMA activity and may give misleading information on activity of the pathway per se. We 

thus set up and tested a published assay to measure CMA activity (Koga et al., 2011). 

The assay is based on expression of a substrate for CMA with a fluorescent tag that 

undergoes photoconversion to allow measurement of CMA unimpeded by any 

background expression of new tagged substrate. Preliminary results indicated that the 

assay is useful and that knockdown of SIRT1 reduced CMA activity. However, use of 

cells transfected only transiently with the plasmid for expression of the tagged 

substrate meant that, due to relatively low transcription efficiency, only a small number 

of cells could be assayed by timed image capturing a single experiment. Improvement 

and optimisation of the assay for future use should include stable knockdown of SIRT1 

and stable transfection of the recombinant plasmid for expression of the CMA substrate 

to enable capture of more images. Future work will also include measuring CMA in 

response to resveratrol and NAD⁺ manipulation. 

Along with the improvements mentioned above, this CMA assay will allow us to gather 

a larger body of data on the functional effects in the cell of SIRT1 and resveratrol. The 

preliminary data suggest that SIRT1 reduction may reduce CMA. A future experiment 

will be to induce SIRT1 activity (perhaps through the use of resveratrol) to see if this 

promotes CMA. The preservation of CMA could be used therapeutically to reduce 

protein build-up in age-related diseases, including Alzheimer’s disease, Parkinson’s 

disease and Huntington’s disease. Furthermore, we have shown that LAMP2 mRNA 

expression can be altered through DNA methylation. A second experiment would thus 

be to measure CMA following global DNA methylation. This would determine if CMA is 

also affected by DNA methylation changes. We believe DNA methylation changes found 

in ageing (Kwabi-Addo et al., 2007; Teschendorff et al., 2010; Lin et al., 2012) may be a 

causal factor of multiple cellular function changes linked to ageing, such as a reduction 

in autophagy.  
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7.4 Hypothesis 4 

The DNA methylation profile changes with ageing (Kwabi-Addo et al., 2007; 

Christensen et al., 2009; Javierre et al., 2010; Koch et al., 2011) and has been linked to 

specific age-related disorders. These include for example, prostate cancer where 

increased DNA methylation was observed in cancerous cells compared to normal 

prostate cells in prostate cancer related genes (RARbeta2 RASSF1A) (Kwabi-Addo et 

al., 2007). Changes to DNA methylation which in theory may be caused by changes in 

cell function related to age could trigger changes in gene expression, resulting in age-

related disease.  

Stem cells are specifically affected in ageing through chromatin modifications, which 

hinder their ability to differentiate successfully and/or stay in a stem like state (Brack 

and Rando, 2007; Bork et al., 2010; Beerman et al., 2013). Genes involved in stem cell 

differentiation (PCGTs) are silenced through chromatin modifications, like DNA 

methylation, by PRCs (Orlando, 2003; Kirmizis et al., 2004). It has also been shown that 

PCGT hypermethylation increases with age in mice and humans (Maegawa et al., 2010; 

Teschendorff et al., 2010). SIRT1 knockdown also caused changes in DNA methylation 

in Caco-2 cells and HuVECs that clustered to an extent greater than expected by chance 

at PCGTs (Wakeling et al., 2015). To investigate if this change in DNA methylation was 

mediated through the PRCs, which invoke epigenetic modifications including DNA 

methylation at PCGTs, we began by reducing SIRT1 using siRNA to determine if this had 

an effect on any of the components of the PRCs and also KDM2B (a protein that recruits 

PRC1 to non-methylated CpGs) and the genome wide DNA methyltransferases (DNMT 

1 and 3b), likely candidates for methylating CpG islands at PCGTs. SIRT1 reduction had 

no effect on the mRNAs of the components measured. We therefore concluded that the 

effect of SIRT1 on DNA methylation at PCGTs is unlikely to be through an effect of SIRT1 

on expression of the PRC components. However, it remains possible that SIRT1 affects 

PRC component expression at the protein level. We measured EZH2 protein by Western 

blotting and found no effect of SIRT1 knockdown. EZH2 can associate with DNMTs and 

has been previously shown to interact with SIRT1 in PRC4 in HeLa cells (Kuzmichev et 

al., 2005). Thus, of all the PRC components EZH2 in particular is a likely candidate for 

mediating the effects of SIRT1. However, it remains important that potential effects of 
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SIRT1 on the expression of other PRC components are measured at the protein level 

before excluding this as a mechanism through which SIRT1 effects DNA methylation at 

PCGTs. We next proposed that SIRT1 may have action on DNA methylation targeted to 

PCGTs through an intermolecular association with EZH2. However, SIRT1 and EZH2 did 

not co-immunoprecipitate in HuVECs or Caco-2 cells. Time constraints prevented 

further progress of this work, and there remains many lines of investigation to adopt to 

uncover the underlying mechanism. 
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One of the notable limitations in this project was the use of cell culture and specifically 

a cancer cell line (Caco-2 cells). Cancer cells are useful for cell culture as they tend to 

replicate more quickly than normal cells and as already mentioned Caco-2 cells 

differentiate in to an epithelial monolayer when they reach 100 % confluency 

generating a truer representation of the gut (Sambuy et al., 2005). However, cancer cell 

lines also have a high mutation rate and have even been shown to have increasing DNA 

methylation with progression and often genes expressed by the original tumour cells 

change when the cells are grown in culture (van Staveren et al., 2009). Gene expression 

may also alter between passage phases within cell culture and small differences in 

experimental technique, such as temperature change, could lead to gene expression 

changes. This is a limiting factor when collecting data and may account for 

discrepancies. For example, resveratrol reduced LAMP2 protein but had no effect on 

LAMP2 mRNA. This may be a true representation or simply due to these sorts of factors 

that can lead to variability in data. To minimise discrepancy and generate more reliable 

data it is important to use cells of the same passage between experimental repeats and 

also collect a sufficient number of experimental repeats to ensure a true representation 

of the gut (van Staveren et al., 2009).  

As explained a major objective of this whole project was to gather a body of data to be 

used in a system-level mathematical model of interactions between SIRT1, PARP, NAD⁺ 

and modifiers of these variables notably resveratrol. Due to the limitations in the data 

we were unable to construct a system-level mathematical model but Figure 7.4.1 below 

shows a schematic diagram linking the observations made to previous studies. 
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Key for Figure 7.4.1 

1 PARP inhibition by 3-aminobenzamide increased SIRT1 mRNA and 

SIRT1 knockdown by siRNA increased PARP activity in Caco-2 cells 

(current thesis) 

2 PARP2-/- mice had increased SIRT1 protein (Bai et al., 2011). 

3 PARP2 knockdown by siRNA in C2C12 myotubes increased SIRT1 mRNA 

(Bai et al., 2011). 

4 PARP1 is activated through acetylation; SIRT1-/- mice had higher 

PARP1 activity due to a decrease in deacetylation of PARP1 by SIRT1 

(Rajamohan et al., 2009b).  

5 Apigenin increased NAD⁺ and reduced SIRT1 mRNA and protein in Caco-

2 cells (current thesis).  

6 NAD⁺ is consumed by PARP1. PARP2 and SIRT1, the Km values for NAD⁺ 

are: PARP1 ~20-60 µM, PARP2 ~130 µM and SIRT1 ~150-200 µM 

(Houtkooper et al., 2010).  

7 

8 The NAD⁺ precursor NAM is salvaged and recycled to NAD⁺ following 

NAD⁺ consumption by SIRT1 and PARP1 (Burgos, 2011; Luna et al., 

2013). 

9 

10 NAM inhibits SIRT1 (Bitterman et al., 2002) and PARP1 (Hageman and 

Stierum, 2001). 

11 PARP1 can promote SIRT1 expression through promoting C-MYC 

expression, which increases SIRT1 expression (Simbulan-Rosenthal et 

al., 2003; Yuan et al., 2009; Marshall et al., 2011). 

12 SIRT1 recruits NMNAT1 to promoter regions to convert NMN to NAD⁺ 

(Zhang et al., 2009). 

13 NMNAT1 is recruits to the PARP1 polymer PAR and converts NMN to 
NAD⁺ to be utilised by PARP1 (Berger et al., 2007). 

14 A reduction in NAD⁺ by FK866 increased LAMP2 mRNA expression in 

Caco-2 cells (current thesis, chapter 3).  

15 SIRT1 reduction pharmaceutically and by siRNA decreased LAMP2 

mRNA at 24 h and 72 h respectively in Caco-2 cells (current thesis, 

chapter 3). 

16 Resveratrol increased LAMP2 mRNA but decreased LAMP2 protein at 48 

h in Caco-2 cells (current thesis, chapter 3) 17 

18 Resveratrol increased SIRT1 expression at 48 h in Caco-2 cells (current 

thesis, chapter 1). 
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Resveratrol increased SIRT1 mRNA expression in human ovarian, 

prostate and porcine adipocytes (Bai et al., 2008; Morita et al., 2012; Li 

et al., 2013). 

19 Resveratrol appears to increase NAD⁺ at 48 h in Caco-2 cells (current 

thesis, chapter 1). 

Resveratrol increased AMPK activity and NAD⁺ in C2C12 myotubes 

(Park et al., 2012). 

20 DNA hyper methylation of the genome decreased LAMP2 mRNA 

expression (current thesis, chapter 3). 

21 Preliminary data, SIRT1 reduction by siRNA reduced CMA (data needs 

clarification) (current thesis, chapter 3). 

22 SIRT1 knockdown by siRNA increased LAMP2 promoter DNA 

methylation at specific CpG sites (L. Wakeling and D. Ford personal 

communication).  

23 Resveratrol increases AMPK activity in mouse C2C12 myotubes (Chung 

et al., 2012; Park et al., 2012) 

24 AMPK increases NAMPT expression in mouse skeletal myoblast cells 

(Fulco et al., 2008). 

25 Resveratrol increased NAMPT activity in human primary hepatocytes 

but did not increase NAMPT mRNA expression (Schuster et al., 2014).  

26 SIRT1 knockdown and overexpression changed DNA methylation across 

the genome in Caco-2 cells and HuVECs (Wakeling et al., 2015). 

The work presented in Figure 7.4.1 has helped to pin point important areas for future 

work. In addition to the future work already mentioned, which would build on the data 

sets presented, other areas for investigation highlighted by this research include the 

following: 

 The effect of resveratrol on PARP activity. Our simple hypothesis predicts that 

resveratrol will reduce PARP activity by increasing SIRT1 expression, which in 

turn depletes intracellular NAD⁺.  
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 The effect of resveratrol on CMA. We predict that resveratrol will effect CMA 

through increasing SIRT1 expression.  

 The effect of PARP on CMA. Our simple hypothesis that PARP and SIRT1 have 

reciprocal co-inhibitory actions predicts that PARP activation would reduce 

CMA through a reduction in SIRT1. 

 An effect on LAMP2 promoter DNA methylation, is a plausible mechanism 

through which SIRT1 may affect LAMP2 expression in as much as reducing 

SIRT1 affects DNA methylation at this site and expression of the gene increases 

when DNA is demethylated. However, as with all similar observations, showing 

a direct causal link is challenging and is not yet established for this scenario. 

 We predict that resveratrol will have an effect on DNA methylation through its 

effects on SIRT1 expression. An informative experiment would be to carry out 

parallel analysis of effects genome wide as we reported here with respect to 

SIRT1 manipulation where we saw that changes in DNA methylation clustered 

at PCGTs. 

 As well as probing the mechanism behind DNA methylation changes at PGCTs 

elucidated by SIRT1, work is also required to determine if such DNA methylation 

changes may alter the expression of PCGTs.  

7.5 Conclusion 

To conclude, this project set out to explore further interactions of SIRT1 particularly 

relevant in the context of the ageing cell. We have obtained a body of data that will 

contribute to a system-level mathematical model to help us understand the 

relationships between SIRT1, PARP, NAD⁺, resveratrol and CMA. An underpinning 

hypothesis was that SIRT1and PARP compete for cellular NAD⁺ and therefore show 

reciprocal effects on activity. The balance in this relationship could have a fundamental 

effect on how a cell responds to stress including by CMA. Stressors themselves, such as 

oxidative stress, may change the balance of activity between SIRT1 and PARP. A system-

level mathematical model may highlight nodes for intervention to affect ageing and age-

related diseases in predictable ways.  
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8 Appendix A 

 

  

 Figure 7.5.1. Appendix A. pBlue-TOPO®. The SIRT1 promoter was inserted upstream to the LacZ gene. Upon 

promoter activity this then produced the enzyme β-galactosidase. The vector contains ampicillin resistance gene (50 

µg/ml). The (image sourced from https://www.lifetechnologies.com/order/catalog/product/K483101). 
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9 Appendix B 
  

GAGTCACAGTGTGCCAGAATTTCAGGGAGAGAGGAAAGTGGAAGGGCTTTCCACTAAGCCTTTTGA

ACTACTAGGTACCCCTCGTTTTACATCTGGTTATCTCATTTAAATCTATGACGTTTTAAAATACTT

ATTACCATTTAAGACATGAGAAAAATTAAGTTTAGAAACGGCTAGATAGCTCACGCTAGAAAGGAA

GGACTCCAAATTTTAACCAAGGGCAGATGTGCATGGAGGCCAAGTCATTTCCTTCCCATGCTCTCA

TACTGACCCAACAAACCCATTCTGCACGTGAGAAAACTGAGGCCCGGAGGAGGGAATTCACACACG

TTTGAAGCCAAGCTGGGGCCAGAAAGTAGATCGGCTGATCTCCAAACCTCCACGTCAAAGGTCTTC

CCAGGAGGACATATGCCTTCAAGGATTTTACAATGTATACCACCCTACAAGTGATGGGAGAGAGGG

GAAAAAAGCAACCGACTAAGGAGAAAAGCAAGGAGCAGAAAAAGGAGCAAAAGAGGAGCTGTCAGA

ACGGTGTGAGGAGAGTGGGAAAGGAGCCGCCTCCTTTTGCCTCTCTTCCTACTTATTAACAAAACA

GAACGACTATCCAACGTATTTCAGGGAGCTAAGTCTTAGCCAGCTTCAGCTGTGTTTTAACCCTTA

GCTAAATATAGACAAGGCTAAGGCAGGCCAGGTGTACACTTCAGGAAGACGTGGAAATTCCCAGGG

CGGACCAAAACTTGAGCTGTTCCGGCGGTAGTGATTTGAGGTCAGTTTGAAAGAGAAGTTGAGAAA

GCGGCCGAGGGGCGAATTTGGCTGCACTACACGCTCGCCACAAAGAGGAAGGGCCGCCGGCCGCCG

GGGCCGAGTGCGCTTCCAGCCCAGGCGGAGCGGTAGACGCAACAGCCTCCGCCCGCCACGTGACCC

GTAGTGTTGTGGTCTGGCCCGCGTGGGTGGCGGGAGCGCCGAGAGGGCGGGGGCGGCGATGGGGCG

GGTCACGTGATGGGGTTTAAATCTCCCGCAGCCGGAGCCGCGGGGGCGCCAGTGCCGCGCgtcgag

cgggagcagaggaggcgagggaggagggccagagaggcagttggaagatggcggacgaggcggccc

tcgcccttcagcccggcggctccccctcggcggcgggggccgacagggaggccgcgtcgtcccccg

ccggggagccgc 

 

-1050 

+100 

Figure 7.5.1. Appendix B. The SIRT1 promoter region used in the pBlue-TOPO® plasmid. A PCR product was 

previously generated using the forward primer highlighted in green and reverse primer highlighted in yellow. This 

product was cloned in to a pBlue-TOPO® plasmid. The black uppercase part of the sequence is the promoter region 

and the red lower case section of the sequence is the first exon. 
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10 Appendix C 
 

  

 

Figure 7.5.1. Appendix C. pPS-CFP2-N vector and multiple cloning site. A- pPS-CFP2-N vector (Evrogen) has the 

PS-CFP2 fluorescent tag at the N terminal of the multiple cloning site and a kanamycin resistance gene (30 µg/ml). B- 

HindIII (red) and EcoR1 (blue) were the chosen restriction enzyme sites for cloning. Vector map sourced from 

http://www.evrogen.com/products/vectors/pPS-CFP2-N/pPS-CFP2-N.shtml 

A 
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11 Appendix D 

 

  

Ribonuclease A DNA sequence: 

ATGGCTCTGAAGTCCCTGGTCCTGTTGTCGCTGTTGGTCCTGGTGCTGCTGCTGGTGCGGG

TCCAGCCTTCCCTGGGCAAGGAAACTGCAGCAGCCAAGTTTGAGCGGCAGCACATGGACTC

CAGCACTTCCGCTGCCAGCAGCTCCAACTACTGTAACCAGA 

Ribonuclease A protein sequence: 

MALKSLVLLSLLVLVLLLVRVQPSLGKETAAAKFERQHMDSSTSAASSSNYCNQ 

pPS-CFP2-N plasmid MCS containing insert sequence:  

G CTA GCG CTA CCG GAC TCA GAT CTC GAG CTC AAG CTT ATG GCT CTG AAG TCC 

CTG GTC CTG TTG TCG CTG TTG GTC CTG GTG CTG CTG CTG GTG CGG GTC CAG CCT 

TCC CTG GGC AAG GAA ACT GCA GCA GCC AAG TTT GAG CGG CAG CAC ATG GAC TCC 

AGC ACT TCC GCT GCC AGC AGC TCC AAC TAC TGT AAC CAG AGA ATT CTG CAG TCG 

ACG GTA CCG CGG GCC CGG GAT CCA CCG GTC GCC ACC ATG AGC AAG 

Figure 7.5.1. Appendix D. Bovine Ribonuclease A DNA sequence and protein sequence and multiple cloning 

site (MCS) of pPS-CFP2-N plasmid containing PCR product generated from Ribonuclease A. Green-KFERQ motif, 

yellow-MCS, pink-HindIII restriction site and blue- EcoR1 restriction site. Ribonuclease A DNA sequence is from 136-

298 bp. MCS located 591-671 bp in pPS-CFP2-N vector. 
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12 Appendix E   

 

1   2  3
~4850 bp
~4400 bp

Figure 7.5.1. Appendix E. Agarose gel electrophoresis of the product generated in a ligation reaction between 

the vector pPS-CFP2-N and the PCR product comprising of a region of the bovine ribonuclease A gene with 

the CMA target sequence. Lane 1 Hyperladder™III (Bioline), lane 2 ligation reaction, lane 3 ligation reaction after 

digestion with EcoR1 and HindIII. The smaller size of the product seen after digestion corresponds with the size of 

the vector only and confirms that the ligation reaction was successful. 
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13 Related publications. 
 

  

 

 

Figure 7.5.1. Related publications. A- contains data gathered on SIRT1 and polycomb group proteins 

shown in Chapter 4 of this thesis B- contains data gathered prior to this thesis gathered in a masters 

project, which lead up to the current work .Please note Escolme SM was my maiden name before July 

2015. 

A 
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