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ABSTRACT

The use of bioceramic materials for the repair and regeneration of injured or diseased parts of the
musculoskeletal system is a longstanding area of interest. However, the possibility to extend their
range of applications, particularly for load-bearing bone defects and shape them into custom-built

geometries is still an open challenge.

Beyond the state of the art, this research work focused on the processing and characterisation of
eight novel silicate, phosphate and borate glass formulations (coded as NCLx, where x=1 to 8),
containing different oxides and in diverse molar percentages. The glass frits were provided by GTS

Ltd (Sheffield, UK) along with apatite-wollastonite (AW), used as comparison material.

In the first part of the work glass powders were characterised in terms of physico-chemical and
biological properties. Subsequently, the glass powders were processed in form of dense bulk

materials, and their sintering and mechanical behaviour was evaluated.

On the basis of the biocompatibility data, assessed using rat osteoblasts, three formulations were
selected for further characterisation. In vitro bioactivity testing using simulated body fluid showed
that after 7 days of incubation the three materials, and NCL7 in particular, showed the formation
of globular shape apatite precursor precipitates, indicating the bioactive behaviour of these glasses.

In the last part of the study, 3D porous structures were manufactured via a binder jetting, powder-
based 3D printing technology. The sintered 3D printed parts exhibited architecture and mechanical
property values similar to those of AW. In addition, the in vitro biocompatibility indicated a
biological positive response with a cell viability comparable to AW after 7 days.

The research overall has processed and characterised a range of novel bioceramic formulations,
and demonstrated the potential and effectiveness of the 3DP strategy to manufacture highly

reproducible ceramic-based structures.
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Chapter 1.  Introduction

Annually, more than two million bone graft procedures are performed worldwide to repair bone
defects in orthopaedics, neurosurgery and dentistry (Van Lieshout et al., 2011). In 2013, the global
market for joint reconstruction and replacement was worth nearly €11.8 billion. In Europe the
market has been estimated to increase from €3.4 billion in 2013 up to €4 billion by 2018 (Joint
Reconstruction and Replacement: Materials, Technologies, and Global Markets, 2014).

Among the human tissues, bone has been considered one of the most transplanted, second only to
blood (Giannoudis et al., 2005). In addition to other important properties, bone possesses the
intrinsic capacity of self-healing in response to injury (Dimitriou et al., 2011). Hence, most of small
skeletal fractures heal spontaneously without the need of further treatments. However, in complex
clinical conditions (such as skeletal reconstruction of large load-bearing bone defects resulting
from trauma, infection, tumour resection and skeletal abnormalities), or cases in which the
regenerative process is compromised (like avascular necrosis, atrophic non-unions and
osteoporosis), the tissue cannot heal on its own, and therefore additional reconstructive surgical

interventions are required (Logeart-Avramoglou et al., 2005).

Since the first reported use of a calcium sulphate to fill bone defects in 1892 (Dressmann, 1892),
material-based strategies have seen remarkable progress, emerging as a promising alternative to

the more common autologous tissue-based approach (Salgado et al., 2004).

Particularly, in 1969 Prof. L. Hench proposed the first glass intended for bone tissue repair, later
commercially known as Bioglass® (Hench, 1991; Hench, 1998b). Hench’s studies represented the
fundamentals to launch the field of bioactive glasses, a class of biomaterials highly and still widely

investigated (Jones, 2013).

The most important feature of bioglasses is their ability to form a strong bond with soft as well as
hard host tissue, and to induce cell response resulting in osteoinductive behaviour (Hench et al.,
1971; Xynos et al., 2000b). More specifically, it has been demonstrated that when a bioglass is put
in contact with biological fluids, a layer of carbonated hydroxyapatite (HCA) develops on its
surface promoting material-tissue bonding (Gerhardt and Boccaccini, 2010; Chen et al., 2012). In
addition to the beneficial property to bond to bone, bioactive glasses degrade over time, releasing



soluble ions that promote cell proliferation, differentiation and activate gene expression (Xynos et
al., 2000a; Xynos et al., 2001; Kanczler and Oreffo, 2008; Hoppe et al., 2011)

After Bioglass® introduction, many new formulations in the silicate, phosphate and borate-based
system have been designed to meet a set of requirements that are both crucial and necessary for
optimised tissue-engineered substitutes (scaffolds). The purpose was to improve specific
properties, such as controlled degradation rate, biocompatibility and most importantly mechanical
strength (Kokubo et al., 2003; Rahaman et al., 2011; Will et al., 2012; Kaur et al., 2013). However,
the possibility to extend the range of bioactive glasses applications, particularly for load-bearing

bone defects, is still an open challenge.

In addition to material properties, design characteristics of bone-like substitutes are decisive
aspects in bone tissue repair field (Hollister et al., 2002). An accurate control on both microscopic
and macroscopic level is thus necessary during the scaffold fabrication process (Henkel et al.,
2013). In this direction, the advances in material processing using additive manufacturing (AM)
technologies are offering a promising opportunity to generate “smart”, custom-made, and
ultimately patient-specific devices for bone tissue repair applications (Melchels et al., 2012; Yoo,
2014; Mota et al., 2015). Furthermore, along with the possibility of tailoring the device geometry
according to patient needs, AM enables the fabrication of 3D implants with differences in spatial
distribution of porosities, pore sizes, mechanical and chemical properties over the large scale
(Henkel et al., 2013). Additionally, this approach overcame the limitations of conventional
techniques, and most importantly offered great benefit to the healthcare sector (Bose et al., 2013;
Arafat et al., 2014; Giannitelli et al., 2014).

Indirect powder-based 3D printing is a versatile technology (Bose et al., 2013), developed in the
early 1990s at MIT (Cambridge, MA), and is based on jetting of a binder solution onto a powder
bed, following a layer by layer procedure (Sachs et al., 1992). The advantages of this method, in
the field of bone tissue repair, derive from the flexibility in material usage and the possibility of
printing objects with defined geometry, controlled and interconnected structure without the use of
any toxic solvent (Utela et al., 2010; Butscher et al., 2011; Bose et al., 2013). After the success of
its application for the fabrication of bioceramics scaffolds (Lee et al., 2005; Leukers et al., 2005;
Irsen et al., 2006a; Utela et al., 2006b; VVorndran et al., 2008; Butscher et al., 2012; Cox et al.,
2015), the use of 3D printing technology for the production of bone-like substitutes is likely to



increase in the coming years, primarily focusing on the development of medical implants that can

be customised according to patient and clinical needs.

1.1 Aim and objectives of the work

Beyond the current state of the art and within the European RESTORATION (Resorbable Ceramic
Biocomposites for Orthopaedic and Maxillofacial Applications) project (EU FP7 280575), this
work focused on the processing and characterisation of eight novel silicate, phosphate and borate
glass formulations (coded as NCLx, where x=1 to 8), containing different oxides and in diverse
molar percentages, as potential biomaterials to support the repair and regeneration of load bearing

bone defects.
To achieve the aim, the following specific objectives were developed:

e OBI1: development of a series of novel glass compositions (later termed bioceramics)
containing specific doping agents;

e OB2: evaluation of the physico-chemical and biological properties of the glass powders;

e OB3: evaluation of the physico-chemical, mechanical and in vitro bioactive properties of
dense sintered bioceramic pellets;

e OB4: optimisation of the methodology for the fabrication of three dimensional (3D) porous
glass-derived substitutes;

e OBS5: evaluation of the physico-chemical, mechanical and biological properties of the

previously fabricated 3D porous sintered substitutes.



1.2 Thesis structure
In order to achieve the research objectives, the overall thesis is divided into nine chapters.

The current Chapter 1 provides an introduction to the work, highlighting the aim and the resulting

objectives, and illustrates how the overall manuscript is organised.

Chapter 2 starts with a brief overview about bone biology, covering human bone tissue function,
composition, structure and mechanical properties; and it concludes with an insight on bone

development, modelling and remodelling processes.

Chapter 3 presents the current state of the art on bone tissue repair and regeneration. It begins with
an introduction on the existing clinical approaches, followed by the recent progress on biomaterials
used for bone tissue substitution. Specifically, it focuses on the use of bioactive glasses and the
possibility to modify their compositions by adding specific and functional doping agents.
Furthermore, a relevant literature review on 3D porous structures fabrication methodology is
presented, along with an in-depth description of additive manufacturing technologies, in order to
frame the scope of the work.

According to the emerging clinical need of developing new biomaterials with tailored physico-
chemical and mechanical features, Chapter 4 reports the rationale for the design and development
of eight novel bioceramic formulations for bone tissue repair and regeneration, along with their

structure and molar composition.

Chapter 5 deals with the methodology adopted for the novel glasses production, processing (in
form of glass powders, bioceramic pellets and 3D porous scaffolds via 3DP technology), and

characterisation of their physico-chemical, biological and mechanical properties.

In Chapter 6 are reported the main achievements resulting from the experimental work, carried
out on the processing and characterisation of the as-synthesised glass powders and dense
bioceramic pellets. Chapter 7 instead presents the results deriving from the processing and

characterisation of 3D printed bioceramic substitutes.

In Chapter 8 a general discussion about the key findings resulting from the experimental work is
presented; and finally, the overall project conclusions with the limitations and potential future

developments are outlined in Chapter 9.



Chapter 2. Human bone tissue

2.1 Function and composition of human bone

Bone is a highly complex living tissue, characterised by its stiffness (typically in the range 0.1-
20GPa) and fracture toughness (typically between 0.1-12MPa-m*?) (Fu et al., 2011), repair and
regeneration ability that provides internal support for all higher vertebrates (Marks Jr and Popoff,
1988). Its basic functions include: i) mechanical support for muscular activity, ii) physical
protection of organs and soft tissue, and iii) significant flexibility without compromising the
mechanical strength. Together with its protective functions, bone tissue serves as a reservoir for
inorganic ions and a source of calcium necessary during the remodelling process which each bone
continuously undergoes during life (Marks Jr and Popoff, 1988; Marks Jr and Odgren, 2002;
Clarke, 2008).

Most biological tissues are frequently defined in terms of both structural and material properties
(Pal, 2014). Bone is a composite material based on 50 to 70% minerals (inorganic phase), 20 to
40% organic matrix, 5 to 10% water content, and < 3% lipids (Clarke, 2008). The bone extracellular
matrix (ECM) is composed of collagenous and non-collagenous proteins. Type | collagen is the
main constituent of bone organic phase (accounting for approximately 90%) along with smaller
amounts of type 111, V, X1 and XIII collagen. The remaining 10% of the ECM proteins weight is
composed of glycoproteins, proteoglycans and growth factors including bone morphogenetic
proteins (BMP), alkaline phosphatase (ALP), osteopontin, bone sialoprotein, osteocalcin,
cytokines and adhesion molecules, which contribute the matrix mineralisation process, bone cell
proliferation and bone cell activities (Velleman, 2000; Sommerfeldt and Rubin, 2001; Clarke,
2008; Gentili and Cancedda, 2009).

Regarding the mineral content, this is mainly made by hydroxyapatite [(Cai0(PO4)s(OH)2)] (85%)
with traces of calcium carbonate (10%), calcium fluoride (2-3%) and magnesium fluoride (2-3%)
(Polo-Corrales et al., 2014). Hydroxyapatite (HA) crystals, characterised by a plate shape, are the
smallest known biological crystals (30-50nm in length, 20-25nm wide, and 2-5nm thick) (Zipkin,
1970; Boskey, 2007; Palmer et al., 2008). Unlike geological HA [(Cas(PO4)3(OH).)] with a Ca/P
molar ratio equal to 1.67, Ca/P values in bone and dentin were found between 1.37 and 1.87 (Hing,



2004). This variation happens because bone is used by the human body as reservoir, maintaining
magnesium, calcium and phosphate ions homeostasis (Palmer et al., 2008).

From a material science prospective, the organic and inorganic bone components work together to
confer to bone its exclusive anisotropy characteristics. The amount of mineral content is correlated
to bone strength and stiffness degree, while the organic phase provides bone its flexibility.
Specifically, the collagen content gives the bone the ability to support tense loads instead the bone
mineral constituents give it the ability to support compressive loads (Rho et al., 1998; Tranquilli
Leali et al., 2009).

Regarding the cellular makeup of bone, it consists of four different types of cells: osteoblasts (bone-
forming), osteocytes (bone development), bone lining cells (bone protection), and osteoclasts
(bone-resorbing). A first difference among bone cells is based on their origin: osteoblasts,
osteocytes and bone lining cells originate from mesenchymal stem cells (MSCs), also known as
osteoprogenitor cells, whereas osteoclasts originate from hemopoietic stem cells. MSCs are
multipotent cells that arise from the mesenchyme during tissue development (Marion and Mao,
2006). Concerning the location, osteoblasts, osteoclasts and bone lining cells are located along the
bone surface whereas osteocytes are in the internal part of the bone (Figure 2.1) (Buckwalter et al.,
1996).
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Figure 2.1: Osteoblasts, osteoclasts, osteocytes and bone lining cells: origins and locations (Marks Jr
and Odgren, 2002).

Osteoblasts are mononucleated cells and originate from pluripotent mesenchymal stem cells of the
bone marrow stroma (Owen, 1988; Pittenger et al., 1999). They are functionally responsible for
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ECM production and the regulation of the mineralisation process (Clarke, 2008; Neve et al., 2011).
During osteogenesis (the process of formation of new bone), osteoblasts secrete an amorphous
matrix called osteoid predominantly consisting of type I collagen along with many non-collagenous
proteins of the bone matrix, such as bone sialoprotein, osteocalcin and osteopontin (Aubin and
Triffitt, 2002; Boskey, 2007; Heino and Hentunen, 2008).

Eventually, osteoblasts can become relatively inactive and form bone lining cells. Due to their
inactivity these cells have fewer cytoplasmic organelles than osteoblasts, even though it has been
hypothesised that bone lining cells can be osteoblast precursors (Franz-Odendaal et al., 2006). In
terms of morphology they are thin and elongated and cover most of bone surface in an adult
skeleton (Buckwalter et al., 1996; Marks Jr and Odgren, 2002).

In calcified cartilage and woven bone, mineralisation is initiated by the matrix vesicles that grow
from the plasma membrane of osteoblasts to create an environment for the concentration of calcium
and phosphate ions. In lamellar bone, the process is vesicle independent and seems to be started by
collagen molecule components (Landis et al., 1993). In both cases, collagen serves as template for
initiation and propagation of mineralisation process. The mineral deposition makes the matrix
impermeable. Osteoblasts surrounded by the bone matrix progress to their ultimate differentiation
stage, the osteocytes. It has been estimated that osteocytes make up more than 90% of the bone
cells in an adult skeleton bone. These cells are located within a space or lacuna and have long
cytoplasmic process through canaliculi in the matrix to contact processes of adjacent cells.
Osteocytes have the ability to communicate metabolically and electrically through gap junctions
(Sheng et al., 2014), which consist of arrays of intercellular channels made of integral membrane
proteins called connexions (Sosinsky and Nicholson, 2005). The cellular network can sense the
mechanical deformation that takes place in bone and contributes to bone formation and resorption
process (Kimmel, 1993). Responsible for the bone resorption process are another class of cells, the
osteoclasts. They derive from hematopoietic stem cells and the differentiation process requires cell-
cell interactions via either osteoblast or osteoblast precursor cells (Figure 2.2) (Aubin and Triffitt,
2002; Karaplis, 2002; Heino and Hentunen, 2008).
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Figure 2.2: Schematic representation of osteoblasts and osteoclasts pathway to bone formation (Kini
and Nandeesh, 2012).

A summary of bone cells location, origin and morphology can be found in Table 2.1.

Table 2.1: Bone cells type, location, origin and morphology.

Cell type Location Origin Morphology
Osteoblasts bone surface mesenc(r:wg/lrlzal stem cuboidal cells
Osteoclasts bone surface hemopoietic stem _glant and
cells multinucleated cells
Lining cells bone surface mesenchymal stem thin and elongated
cells cells

Osteocytes inner part of the bone mesenc?glrlzal stem star-shaped cells




2.2 Bone structure and mechanical properties

At the microscopic level, human bone is characterised by two different types: woven and lamellar
bone. Woven bone is considered primary and immature with a disoriented arrangement of collagen
fibres that turn into lamellar bone during adolescence. Lamellar bone is a highly organised structure

with collagen bundles oriented in the same direction (Hollinger et al., 2004; Ossification, 2004).

Macroscopically bone can be divided into trabecular (also known as spongy or cancellous) bone,
which forms the porous inner core, and cortical (also called compact) bone, which forms a dense
outer shell (Figure 2.3(a)). Their proportions usually differ at various locations in the skeleton, but
generally cortical bone accounts for 80% of the weight of the human skeleton and cancellous bone
for the remaining 20% (Rho et al., 1998). Considering a bone cross-section, the end of long bones
(i.e. tibia or femur) has a hard outer surface of dense compact bone and a porous internal structure,
whereas flat bones (skull, ilium and rib cage) have two thin layers of cortical bone with a variable

volume of cancellous bone embedded between them.

As it was previously stated, cortical bone is highly dense and consists of a hierarchical structure,
going from the solid material (> 3mm), to the osteons (10-500um) firstly (Figure 2.3(b)), then to
lamellae (3-20um), and finally to the collagen-mineral composite (60-600nm) (Figure 2.3(c))
(Lovell, 1990). The osteon, containing blood vessels and nerves in the centre, forms a cylindrical
structure of about 200-250um in diameter giving strength to cortical bone. The single lamella
consists of collagen fibrils (1um) and they are arranged concentrically around the central Haversian
canal. The thick and dense arrangement of the structure allows cortical bone to have a much higher
resistance to torsional and bending forces. In contrast, cancellous bone is highly porous, consisting
of a honeycomb-like network of branching bars, plates and rods, called trabeculae, interspersed in

the bone marrow compartment (Figure 2.3(a)).

The high surface area provided by the porous trabeculae permits the diffusion of nutrients and
circulation of growth factors. It has also been demonstrated that cancellous bone is metabolically
more active and is quicker in adapting to changes in mechanical loading and unloading than cortical
bone (Buckwalter et al., 1996; Rho et al., 1998).



Compact Bone

Figure 2.3: Hierarchical structure of bone, from macrostructure to sub-nanostructure (Nalla et al.,
2006).
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In addition, although the elemental composition and the materials are the same for both types of
bone (Downey and Siegel, 2006), the microstructure produced by cortical bone is characterised by
regular, cylindrically shaped lamellae. On the contrary, the microstructure of cancellous bone is
composed by irregular, sinuous convolutions of lamellae, which allows cancellous bone to have

greater resilience and better absorption of loads (Rho et al., 1998).

As result of the hierarchically organised architecture and the diverse orientation of bone
components, the mechanical properties of bone tissue at each anatomical level are different,
varying according to the loading direction. For these reasons, bone is considered an anisotropic and

heterogeneous material.

In particular, for cortical bone the mechanical properties depend mainly on the porosity (5-10%),
the mineralisation level and organisation of the solid matrix. For the cancellous bone the
mechanical properties are characterised by a wider range, as reported in Table 2.2, and they vary
considerably around the periphery, along the length and by a factor of 2-5 from bone to bone
(Downey and Siegel, 2006).

The structure-mechanical stresses relationship has been studied since 1982 in terms of Wolff’s law,
which states that bone and in particular long bones undergo adaptive changes during their growth
in response to external mechanical stimuli (Goodship, 1987; Clarke, 2008). Furthermore,
considering the heterogeneity of bone structure and the different mechanical functions, several
studies (Goldstein, 1987; Kokubo et al., 2003; Currey et al., 2007; Gerhardt and Boccaccini, 2010;
Fu et al., 2011) have reported that mechanical properties for both cortical and trabecular bone

should be stated in a range of rather single values, as indicated in the Table 2.2.
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Table 2.2: Mechanical properties of human cortical and trabecular bone.

Compressive Flexural Tensile Young’s Fracture Porasity
strength strength Modulus toughness Reference
strength (MPa) =\ 1pa) (MPa) (GPa)  (MPam?) (%)
(Evans, 1961; Reilly et
cortical al., 1974; Hench, 1991;
bone 130-200 135-193 50-151 7-25 2-12 5-10 Hall, 1992; Rho et al.,
1995; Hernandez et al.,
2001)
(Martin; Reilly et al.,
1974; Goldstein, 1987,
trabecular Hench, 1991; Hall,

bone 2-12 10-20 1-5 0.1-5 0.1-0.8 50-90 1992; Thompson and

Hcnch, 1998; Hernandez
et al., 2001; Currey et
al., 2007)
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2.3 Bone development, modelling and remodelling

As it was previously stated, bone plays a key role in a series of fundamental processes for the
human body, i.e. growth factor and cytokine depository, acid-base equilibrium and detoxification.
Additionally, given the capability of adapting its mass and morphology to functional needs, the
ability of being a mineral reservoir and the capacity of self-repairing, bone tissue has been
described as the ultimate “smart” material (Sommerfeldt and Rubin, 2001).

The formation of normal healthy bone takes approximately 4 to 6 months, and occurs by two
developmental pathways: intramembranous ossification and endochondral ossification (Marks Jr
and Odgren, 2002). Differentiation and proliferation of mesenchymal stem cells into osteoblasts
occur during both processes (Heino and Hentunen, 2008). The first one describes the direct
transformation of mesenchymal stem cells into osteoblasts and it is responsible for the formation
of craniofacial bone, skull and parts of the clavicle and mandible. Endochondral ossification
(Greek: endon, “within” and chondros, “cartilage”) arises mainly in long bones involving cartilage
tissue as a precursor. In this complex and multistep process, mesenchymal progenitor cells
condense and differentiate into chondrocytes, which are responsible for depositing cartilaginous

structures that serve as template for developing bones (Karaplis, 2002).

During life, human bone continually grows in both longitudinal and radial directions, modelling as
well as remodelling, through the collaborative action of osteoblasts, osteocytes, and osteoclasts
together with growth factors (Clarke, 2008; Seeman, 2009). Modelling is the process through which
bone changes its shapes subsequently to physiologic or mechanical stimuli and it occurs at a low
rate throughout life (Roberts et al., 2004). During this process, bone resorption and formation are
two uncoupled pathways and they happen on distinct surfaces (Clarke, 2008). In contrast
remodelling, which is more frequent than modelling in adults (Kobayashi et al., 2003), is the
process in which bone resorption precedes bone formation, occurring along specific sites on the
same bone surface, in particular at the interface with the hematopoietic bone marrow (Goodship,
1987; Seeman, 2009). This mechanism guarantees tissue turnover while maintaining bone strength
and mineral homeostasis in mature skeleton (Hadjidakis and Androulakis, 2006). During the
remodelling process old bone is continuously removed and replaced with new bone to prevent
microdamage accumulation (Turner, 1998). Furthermore, it is a lifelong process and its frequency

varies according to the demands of the body (Kini and Nandeesh, 2012). Bone remodelling starts
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with the differentiation of osteoclast precursors into mature multinucleated osteoclasts that are
attracted at the remodelling site and then activated for the resorption phase. This stage is followed
by a brief reversal phase during which the osteoblasts proliferate and differentiate into mature
osteoblasts to repair the resorption defects caused by osteoclasts. Afterwards, during the much
slower formation phase, some of the osteoblasts are incorporated into the bone matrix as bone-
lining cells or osteocytes. Figure 2.4 summarises the four sequential phases of the overall process:

activation, resorption, reversal and formation (Rucci, 2008).

Hematopoietic Mesenchymal
Stem Cell Stem Cell

‘/Osteoblastic @
Stromal Cell Osteoblast
/ Precursor

Figure 2.4:Schematic representation of bone remodelling process (Services., 2004).
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Chapter 3.  State of the art in bone repair and regeneration

3.1 Clinical need for bone repair and regeneration

Thanks to the intrinsic regenerative capacity of bone (Einhorn, 1998; Dawson et al., 2014),
particularly in young people, the majority of bone fractures heal well without scar formation and
with no need of further intervention (Gruber et al., 2006; Dimitriou et al., 2011; Dimitriou et al.,
2012; Oryan et al., 2015). However, in patients with defects two and half times bigger than the
bone radius (commonly called critical size bone defects) (Schroeder and Mosheiff, 2011), and
which are caused by trauma, bone tumour resections (Cancedda et al., 2007) or severe non-union
fractures (permanent failure of healing following a broken bone), osteoporosis and avascular
necrosis, bone regeneration is necessary in a quantity that goes beyond the normal potential for
self-repair (Bosch et al., 1998; Horner et al., 2010; Dimitriou et al., 2011).

The incidence of bone diseases such as arthritis, osteoporosis, tumours, trauma and their related
symptoms is growing worldwide, and it has been estimated to double by 2020 (Amini et al., 2012)
due to a variety of causes, such as the life expectancy increase and the growing needs of baby-
boomers. Furthermore, with the increase of the older UK population, of which 23% will be 65 and
over by 2035 (Figure 3.1), the obesity rates, and a lifestyle characterised by poor physical activity
(Office for National Statistics, 2012), bone tissue replacement and regeneration have become a
major clinical demand.

25
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Figure 3.1: Percentage of older people in the UK over the all population:1985, 2010 and 2035 (Office
for National Statistics, 2012).
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Bone is one of the most common transplanted tissues, the second only after blood (Liu et al., 2013;
Oryan et al., 2014). According to a new report from research and consulting firm GlobalData, the
global bone grafts and substitutes (BGS) market value will increase progressively over the coming
years, going from almost $2.1 billion in 2013 to approximately $2.7 billion by 2020, at a Compound
Annual Growth Rate (CAGR) of 3.8%.

Traditional treatments for large bone defects are based on transplant of a) autologous bone (from
the same patient), b) allogeneic bone (from a human cadaver), and c) xenogeneic bone (from an
animal) (Petite et al., 2000; Rose and Oreffo, 2002). Based on the use of autologous tissue,
autograft procedures are considered the ‘gold-standard’ in bone grafting, showing osteogenic,
osteoinductive (the process by which osteogenesis is induced) and osteoconductive (the process by
which bone growth is permitted on a material’s surface) properties with the best clinical outcomes
(Albrektsson and Johansson, 2001; De Long et al., 2007; Brydone et al., 2010). Nevertheless, their
use in medical practice is limited due to their short supply and to the high percentage of donor site
morbidity (Younger and Chapman, 1989). The use of allografts or xenografts could be an
alternative for their high availability and low cost. However, these approaches present also risks,
like infection transmission and adverse host immune response, resulting in poor outcomes (Galea
et al., 1998; Burg et al., 2000; Mankin et al., 2005; Khan et al., 2008). The limitations of current
treatments together with the impact on healthcare system costs encouraged interest in alternative

therapeutic solutions (De Long et al., 2007; Oryan et al., 2014).

From a biological perspective, cells, growth factors, extracellular matrix along with cell-matrix
interactions are crucial for the in vivo process of bone repair (Kanczler and Oreffo, 2008). However,
when a critical size bone defect develops, the cells cannot migrate from one side to the other,
requiring for this purpose a solid support (commonly known as scaffold) on which they can anchor
and build new bone (Schroeder and Mosheiff, 2011). Scaffolds, cells, and signalling molecules are
defined as basic pillars of bone tissue engineering (BTE) (Amini et al., 2012). The term “tissue
engineering” was introduced in the late 1980s (Nerem, 2006), although effective awareness of the
concept started a decade later with the publication of a paper by Langer and Vacanti (Langer and
Vacanti, 1993). They stated what is now recognised as the definition of TE: “an interdisciplinary
field that applies the principles of engineering and the life sciences toward the development of
biological substitutes that restore, maintain, or improve tissue functions or a whole organ” (Vacanti
and Vacanti, 2013).
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3.2 3D porous substitutes for bone restoration

3D porous constructs act as biological and mechanical support, which once implanted into the bone

defect should induce and direct the growth of new tissue and restore its function (Dvir et al., 2011).

Due to the complex internal and external structure, but also composition of human bone tissue,
scaffolds for bone tissue repair and regeneration are governed by many interdependent and also
conflicting essential prerequisites (Chen et al., 2008). Currently, as many scaffold-based
approaches are still experimental, there are no specific design criteria that define the properties of
the so-called “ideal scaffold” for bone repair (Fu et al., 2011). In 2004 Hutmacher stated: “It could
be argued that there is no ‘ideal scaffold’ design per se, instead each tissue requires a specific
matrix design with defined material properties” (Hutmacher et al., 2004). The choice of appropriate
materials, which is of crucial importance for scaffold-based solutions, will be investigated later in

this chapter.

Besides chemistry and material selection, it is also widely stated that a scaffold intended for
orthopaedic applications, should mimic the morphology, structure and function of bone tissue
(Hutmacher, 2000; Hollister et al., 2002; Salgado et al., 2004), enhancing cell adhesion,
proliferation and differentiation (Hutmacher, 2001; Stevens, 2008). According to the recent
literature, a set of desirable requirements for tissue engineered scaffolds is summarised in the Table
3.1
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Table 3.1: Desirable requirements for the design of bone tissue engineered scaffolds.

Requirement

Function

Biocompatibility

Ability to perform its function without exhibiting any immune response
in the host tissue (Hutmacher, 2000; Hutmacher, 2001)

Biodegradability

Tailoring rate of degradation according to the growth rate of the host tissue
(Reis and Romén, 2004)

Mechanical properties

The mechanical strength of the scaffold, which is given by the intrinsic
properties of the biomaterial together with the porous architecture itself,
should match the strength of natural bone even during the degradation and
remodelling processes (Yang et al.,, 2001; Wagoner Johnson and
Herschler, 2011)

Porosity and pore size

The scaffold should have an interconnected porous structure that can
allow fluid flow, cell migration, bone ingrowth and vascularization (Liu
et al., 2013). Pore dimensions in the range of 200 to 350 um have been
found to be ideal for bone tissue in-growth (Bose et al., 2012); if the pores
are too small, pore occlusion by cell migration can happen (Salgado et al.,
2004). Furthermore, while macroporosity (pore size > 50 um) plays an
important role for osteogenic outcomes, an adequate microporosity (pore
size <10um) is essential in order to allow capillary ingrowth. Porosity and
interconnectivity together are also essential for an accurate diffusion of
nutrients and for the removal of metabolic waste (Karageorgiou and
Kaplan, 2005). Additionally, the degree of porosity influences the scaffold
mechanical stability, therefore its value should be in the range of strength
and stiffness of the host tissue (Hutmacher, 2000; Karageorgiou and
Kaplan, 2005; Loh and Choong, 2013).

Surface properties

Appropriate surface chemistry is required to promote cell attachment,
differentiation and proliferation activities (Hsin and Yiwei, 2011; Mitra et
al., 2013)

Osteoinductivity

The scaffold should be able to induce new bone formation (osteogenesis)
through molecular signalling and the recruitment of osteoprogenitor cells
(Albrektsson and Johansson, 2001).

Osteoconductivity

Scaffold composition should let bone cells to adhere, proliferate and form
extracellular matrix on its surface and into the pores (Albrektsson and
Johansson, 2001).

Processing

The fabrication process should not affect the material properties and
subsequent clinical use of the scaffold (Leong et al., 2003).

Commercialisation

The processing conditions should be suitable for scaffold
commercialisation at reasonable costs (Thavornyutikarn et al., 2014).
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3.3 Biomaterials for bone tissue repair

Several materials with different compositions and microstructures have been adopted or
synthesised, and subsequently processed as 3D constructs for bone tissue repair and regeneration
(Bose et al., 2012).

The extracellular matrix of bone is a composite of biological materials, mainly based on ceramics
(i.e. hydroxyapatite), biological polymers (i.e. collagen matrix) and water. Therefore, synthetic
and/or naturally occurring ceramics, polymers and their composites are the materials mainly

investigated for the fabrication of bone-like substitutes (Rezwan et al., 2006; Raucci et al., 2012).

The next paragraphs will provide a review of the current state of art on biomaterials for bone repair,
where basic and advanced characteristics will be discussed, focusing primarily on bioceramic class

materials.

3.3.1 Natural and synthetic polymers

Biological polymers, such as hyaluronic acid, collagen, fibrin and chitosan have seen an increasing
use as promising candidates for bone repair applications (Griffith, 2000; Hutmacher, 2000; Seal et
al., 2001; Dalton et al., 2009). They are usually biocompatible and enzymatically biodegradable
materials. The main advantage from their use is the support of cell attachment, proliferation, and
differentiation through the use of biofunctional molecules (Narayan, 2009). Furthermore, they have
the potential to interact biologically with the host tissue, and have low immunogenic properties
(Salgado et al., 2004). However, depending upon the application, the rate of the previously
mentioned enzymatic degradation may not be easily controlled. Therefore, it may be difficult to

determine the lifespan of natural polymers in vivo.

Flexibility in processing, the ability to tailor their chemistry and their biodegradation rate are
additional advantages of synthetic polymers (Planell et al., 2009; Bose et al., 2012). The most
common biodegradable synthetic polymers used for 3D structures are: saturated poly-a-hydroxy
esters, including poly(lactic acid) (PLA) and their forms (L-PLA (PLLA), D-PLA (PDLA), and
mixture of D,L-PLA (PDLLA)), poly(glycolic acid) (PGA) as well as poly(lactic-co glycolide)
(PLGA) copolymers (Mano et al., 2004; Gentile et al., 2014).

The degradation products of certain polymers (PLA, PGA) are usually removed by the natural

physiological pathways. However, they may create a local acidic environment with the consequent
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adverse host tissue response (Chen et al., 2012). Additionally, the adoption of polymeric materials,
mainly natural polymers, for bone repair and regeneration is challenging, especially for their
limited abilities in achieving strong bonding with bone, and in some circumstances unsuitable

mechanical properties.

In particular, for the regeneration of load-bearing bones, these polymers exhibit low elastic moduli
(Griffith, 2000; Seal et al., 2001), and are prone to a deformation mechanism known as creep
(Lichte et al., 2011). Hence, to overcome the above mentioned drawbacks, proposed strategies are:
to i) reinforce polymers with other materials (i.e. bioceramics or metals) and use them as

composites (section 3.3.2) or ii) to use ceramics themselves as unique component (section 3.3.3).

3.3.2 Composites

Composites materials are those that combine two or more different materials in order to obtain
better resultant outcomes, mimicking the composite structure of natural bone tissue (Davis and
Leach, 2008). To improve specific properties such as fracture toughness, bioactivity and
biocompatibility, at least two phases are combined together: the matrix and the dispersed phase
(Wang, 2003). The matrix has the main function of filling the volume and transfer the stress to the
dispersed phase, instead this last one, which is harder and stiffer, is responsible for enhancing one

or more properties of the final composite (Dorozhkin, 2011).

Composite materials generally can be particle-reinforced, fibre reinforced and structural
composites. Specifically for bone tissue repair, composite materials are commonly made of
polymers that are used as a matrix, and then are combined with a ceramic phase (inorganic
component) in order to obtain biomaterials with improved mechanical and bioactive properties
(Dhandayuthapani et al., 2011) and enhanced degradation profiles (Gloria et al., 2010). Example
of composite structures developed for load bearing segmental bone defects are reported in the Table
3.2.
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Table 3.2: In vivo pre-clinical studies of load-bearing bone defects using composite scaffolds (adapted
from (Pilia et al., 2013)).

Length of the

Ceramic phase Polymeric phase  Defect area and size study Reference
. (Lickorish
TTCP and DCPA PLGA Wistar rf‘;r‘:f)m“r @3 5 weeks etal.,
2007)
New Zeland white
BCaP Collagen rabbit femur (20 18 weeks (Jegoux et
al., 2008)
mm)
CGH/Rnu rat femur (Rai et al.,
TCP PCL (8 mm) 3 weeks 2010)
i (Cao and
B-TCP PGA Sp;i%lqjﬁr[()gvﬂ% rat 12 weeks Kuboyama,
2010)
(Jayabalan
HA HT-PPFhm Rabbit femur (4 mm) 48 weeks etal.,
2010)
. Collagen- Sprague-Dawley rat Xu et al.,
Bioglass phosphatidylserine femur (3.5 mm) 6 weeks 2011)

3.3.3 Bioceramics

Referring to the definition of Hench, “bioceramics are those ceramics used for the repair and
reconstruction of diseased or damaged parts of the musculoskeletal system” (Hench, 1991). More
recently the definition of bioceramics have been extended to “a large class of specially designed
ceramics for the repair and reconstruction of diseased or damaged parts of the body” (Baino et al.,
2015).

Bioceramics, such as hydroxyapatite, calcium phosphates and bioactive glasses are the most
investigated biomaterials for orthopaedic and maxillofacial applications, as demonstrated by the

considerable amount of literature that has been published in this specific field (Figure 3.2).

The growing interest in the use of these materials is due to their versatile properties, which can be
tailored according to their composition, and their ability to form a direct physical bond to bone via
the formation of an apatite layer on the surface of the implant (Hench, 1998c; Ducheyne and Qiu,
1999; Kokubo et al., 2003).
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Figure 3.2: Literature published between 1990 and 2015 in the area of bioceramics (Source: Scopus).

Generally, the term bioceramic is used to cover a broad class of biomaterials, specifically: bioactive
glasses such as Bioglass®, glass-ceramics such as AW, and ceramics such as synthetic HA (Hench,
1999). Traditionally, bioceramics have been used very successfully within the human body for a
wide range of applications as shown in Figure 3.3. Specifically, orthopaedics and dentistry are the
favourite areas. Classic applications involve bone fillers and dental implants in form of dense or
porous substitute, injectable cement pastes and prosthesis surface coating (Hench, 1991; Hench,
1998a; Hench, 1998b).

Currently, this class of biomaterials are proposed for a broader range of clinical applications that
goes beyond bone tissue engineering field (i.e. otoryngological implants and keratoprostheses).
Miguez-Pacheco et al., reviewed the use of bioactive glasses for soft tissue repair, finding eight
different novel applications, from cardiac tissue and nerve regeneration to laryngeal and lung tissue
repair (Miguez-Pacheco et al., 2015). Ocular surgery is another clinical field where bioceramics

are playing an important role (Baino and Vitale-Brovarone, 2015).
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Figure 3.3: Clinical use of bioceramic materials (Hench and Wilson, 1993).

According to their biological behaviour and the interaction with the host tissue, bioceramics may
be effectively bioinert (alumina, zirconia), bioactive (Bioglass® and AW), and bioresorbable
(TCP) (Hench, 1998b; Baino et al., 2015).
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For the purpose of medical devices, the term bioinert refers to a material that, once implanted in
the host tissue, induces a minimal level of adverse response in the surrounding physiological

environment (Best et al., 2008).

In a general sense a bioactive material has been defined as a material able to induce a specific
biological activity (Williams, 2009). In 1990, Kokubo described the capacity of a material to
develop an HA-like layer on its surface, when immersed in a simulated body fluid (SBF) solution,
as indication of its bioactivity (Kokubo et al., 1990). More precisely, for the case of bone tissue, a
bioactive material is a material that, when in a biological environment, forms a carbonated
hydroxyapatite surface layer, leading to a strong bone-tissue bonding and eventually promoting the
natural bone regeneration (Kokubo and Takadama, 2006; Erol-Taygun et al., 2013).

Bioresorbable materials degrade over time and are intended to be replaced by the natural host tissue
(Stevens, 2008). The optimal material should adapt its degradation Kinetic to the living tissue
formation process, which usually is slower, and then be resorbed (Chen et al., 2012). This aspect
sometimes is a challenge during the design process, although recent works have shown the
possibility to tailor the degradation rate of bioceramics by manipulating their formulation, making
them an emerging research field within the medical device industry (Huang et al., 2006; Yao et al.,
2007; Fu et al., 2010a).

3.3.3.1 Calcium phosphates

Due to the similarity with the mineral component of human bone, calcium phosphate ceramics have
been extensively used as biomaterials for the repair and regeneration of bone tissue for the last 30

years (Barrére et al., 2006).

There are different forms of CaP ceramics available in nature, the most commonly investigated in
the field of BTE are: HA, B-tricalcium phosphate (B-TCP) and biphasic calcium phosphate (BCP)
(Best et al., 2008; Dorozhkin, 2010; Samavedi et al., 2013). A detailed list of CaP compounds,

their abbreviations, the chemical formula, and Ca/P molar ratio are reported in Table 3.3.
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Table 3.3: CaP-compounds with corresponding abbreviation, chemical formula and Ca/P molar ratio
(re-adapted from (Dorozhkin, 2010)).

Compound Abbreviation Chemical formula Ca/P ratio
Monocalcium phosphate MCPM Ca(H2P04)2-Hz0 0.5
monohydrate
Monocalcium phosphate MCPA or MCP Ca(H:POs)s 05
anhydrous
Dicalcium phosphate DCPD CaHPO4-2H,0 1.0
dihydrate
Dicalcium phosphate DCPA or DCP CaHPO, 1.0
anhydrous
Octacalcium phosphate OCP Cag(HPO4)2(PO4)4-5H,0 1.33
a-Tricalcium phosphate a-TCP a-Caz(PO4)2 15
B-Tricalcium phosphate B-TCP B-Cas(POas)2 15
i CaxHy(PO4),-nH20,
Amorphous calcium ACP Iy z'n 12 29
phosphates n=3-45
i _ T Calofx(HPO4) (PO4)67X(OH)27X
Calcium deflc_lent CDHA X 15 167
hydroxyapatite (0<x<1)

Hydroxyapatite HA or HAp Ca10(PO4)s(OH)2 1.67
Fluorapatite FA or FAp Ca1o(POa)eF2 1.67
Oxyapatite OA or OAp Ca10(P0O4)sO 1.67

Tetracalcium phosphate TTCP Cas(P0O4)20 2

HA is the most widely used CaP because it shares chemical similarities to inorganic component of
bone tissue (Yoshikawa and Myoui, 2005). Although it is not highly soluble, it supports nucleating
sites for the precipitation of apatite crystals in culture medium (Bohner and Lemaitre, 2009).

TCP is a biodegradable bioceramic with a Ca/P molar ratio of 1.5. It exists in two different phases,
which are a and . Both phases are less stable than HA and therefore more soluble in aqueous
environments. Despite their similarities in chemical composition, a-TCP is more soluble than -
TCP, but from a clinical perspective B-TCP is considered to be osteoconductive and osteoinductive,
and hence more widely used in bone regeneration than a-TCP (Barrere et al., 2006; Samavedi et

al., 2013). As previously stated, depending on the situation, it might be necessary for an implant to
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resorb slowly before being replaced by the host tissue. For this reason, a combination of HA and
TCP has been investigated, in which the higher TCP/HA ratio leads to a higher dissolution rate
(Best et al., 2008; Dorozhkin, 2010). CaP ceramics represent a class of tuneable biomaterials with
exclusive properties, they are used in different areas of the human skeleton (e.g. treatment of bone
defects, maxillofacial applications, spinal fusion and bone augmentation). However, how calcium
phosphate properties help osteoinductivity/osteoconductivity are still unanswered questions
(Samavedi et al., 2013), and for this reason they are a class of materials still actively being
researched (Jarcho, 1981; Matsumine et al., 2004; Saikia et al., 2008; Sun and Yang, 2015; Wang
etal., 2015).

3.3.3.2 Apatite — wollastonite

In the early 1970s Hench was developing the Bioglass® composition at University of Florida.
Around the same time in Japan Kokubo et al. were the first to develop a new bioceramic material,
known as apatite-wollastonite (AW) glass-ceramic (Kokubo et al., 1982; Magallanes-Perdomo et
al., 2011). AW is a formulation composed by small apatite particles and reinforced by wollastonite
crystalline phases in a glassy matrix (Best et al., 2008). The nominal composition (wt%) comprises
MgO (4.6%), CaO (44.7%), SiO2 (34%), P.Os (16.2%) and CaF2 (0.5%) (Kokubo, 2008).

This bioceramic possesses the highest mechanical properties in comparison to other bioactive
glasses and glass-ceramics, because of wollastonite and apatite crystals’ presence. Furthermore, its
exceptional ability to form strong chemical bonds with bone tissue has been widely demonstrated
(Kokubo and Takadama, 2006; Kokubo, 2008; Park and Ozturk, 2013).

AW has been adopted for a broad range of medical applications, either in a powder form as bone
filler, as porous structures or as a bulk material (Kokubo, 1999; Kokubo et al., 2003) and showed
excellent biocompatibility in vitro and in vivo (Ohsawa et al., 2004; Dyson et al., 2007; Lee et al.,
2015).

With regard to the mechanical properties of this material, Table 3.4 demonstrates that dense AW

has considerably higher compressive as well as bending strength than human cortical bone.
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Table 3.4: Mechanical properties of natural bone and AW glass-ceramic (Kokubo, 2008).

Natural bone AW glass-ceramic

Bending strength (MPa) 30-190 200-220
Compressive strength (MPa) 90-230 1000
Elastic modulus (GPa) 3.8-17 120

3.3.4 Bioactive glasses

Over the last four decades bioactive glasses for orthopaedic and maxillofacial applications have
attracted the interest of many researchers, playing an important role for bone tissue repair and
regeneration, thanks to their outstanding osteoconductive and osteoinductive properties, as well as
bioactivity and customable degradation rate (Hench, 1999; Rahaman et al., 2011; Jones, 2013).

Bioactive glasses represent the subset of biomaterials designed mainly for hard and soft bone tissue
repair and regeneration (Rahaman et al., 2011; Jones and Clare, 2012; Jones, 2013). So far different
methods have been adopted to process them, predominantly as 3D porous structures, and several
new strategies have been proposed to manipulate their compositions, and the parameters that affect
their performance in biomedical applications (i.e. chemistry, microstructure, thermal behaviour,
fabrication method, porosity, mechanical properties) (Lee et al., 2013; Bretcanu et al., 2014;
Rahaman et al., 2014; Brauer, 2015; Miguez-Pacheco et al., 2015).

As far as the glass production method is concerned, bioactive glasses are generally prepared via
sol-gel or melting-quenching process. The sol-gel route consists in the formation of a gel from a
solution containing the compositional precursors. Through a reaction at room temperature,
nanoparticles are assembled together to obtain a wet inorganic network, forming a gel, which is
subsequently dried and heated to form a glass (Hench and West, 1990). In the melt-derived route,
which is the production method selected for this study, the precursors are homogenised, and then
melted in a platinum crucible at high temperatures typically in the range 1200 - 1500 °C.
Afterwards, the molten glass is poured into moulds in order to obtain solid blocks or is quenched
in cold water or oil to obtain glass “frits”, ready to be further processed (O'Donnell, 2012). If the

cooling process is sufficiently quick, no crystallisation will occur and the result will be an
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amorphous structure, known as glass; otherwise a glass-ceramic, with a combination of a

crystalline phase and a residual glassy phase will form (Figure 3.4) (Tilley, 2013).

Figure 3.4: Structure of: a) crystalline silica and b) amorphous silica (Vogel, 2013).

Whether the resulting material will be a glass or a glass-ceramic, three different components are

generally associated to their structure:

1) the network formers, which are the basic and stand-alone pillars of the structure, and include
silicon dioxide (SiO2), phosphorous pentaoxide (P20s) and boron trioxide (B203). These oxides

represent the building unit of silicate, phosphate and borate-based glasses respectively;

ii) the network modifiers, which are usually oxides of alkali or alkaline-earth metals that break-up
the glass network, and modify the glass structure, as the name suggest, (i.e. sodium, calcium and
strontium);

iii) the intermediate oxides, which can help the glass formers or modifiers during the process (i.e.

aluminium and iron), but they do not form glasses by themselves (Vogel, 2013).
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3.3.4.1 Silicate-based glasses

Silicate-based glasses are by far the most common and most widely investigated bioactive glasses
for orthopaedic applications. They are based on the 3D glass-forming SiO2 network in which Si is

fourfold coordinate to O, as shown in Figure 3.5 (Rahaman et al., 2011).

Figure 3.5: Schematic representation of silica tethraedron (Jones and Clare, 2012).

Furthermore, these materials present an open structure that allows the arrangement of alkali and
alkali-earth cations (Na*, K*, Ca®*, etc.), which cause the breaking of the Si—-O-Si bonds and the
formation of non-bridging oxygen groups as network modifiers (Scholze, 2012).

The concentration of non-bridging groups is one of the crucial stage during the bioactive process,
since, as described by Hench, they are responsible of the dissolution of silica and the consequent
formation of silanol groups at the glass surface, which are considered the nucleation centres of the
apatite formation (Kokubo, 1990; Hench and Wilson, 1993). At this stage a silica-rich layer (~ 1-
2um thickness) is formed on the surface of the glass, followed by the nucleation of an amorphous
calcium phosphate (ACP) layer, which incorporates (OH) and (CO3)? from the solution and finally
crystallise as an HCA layer (Hench, 1991).

The most widely investigated bioglass for biomedical applications, with a composition in the Na>O-
Ca0-Si02-P.0s system, belongs to the silicate-based glass group. It was synthesised by Hench et
al. in the 1970s, designated as bioglass 45S5, and it is now commercially known as Bioglass®
(Hench, 1998b).

Bioglass® has been extensively studied because of its ability of forming an HCA layer on the glass

surface (known as bioactivity) when in contact with body fluids, through the mechanism that will
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be detailed described in paragraph 3.3.5. The bioactive behaviour of Bioglass® is accomplished by:
i) the low amount of SiO> (less than 60mol%), if compared to more chemically stable silicate

glasses;
ii) the high content of NaOz and CaO;
and iii) the high CaO/P20s ratio (wt%) (Hench, 1998b).

The development of this glass revolutionised the definition of biomaterial, moving the perspective
from inert to a material that, interacting with the human body, is capable to elicit a specific
biological response (Hench et al., 1971). Additionally, the osteoconductive as well as the
osteoinductive behaviour of 45S5 bioglass has long been established, as it does not only support
the regeneration at bone-implant interface, but also far away from that region (Kaur et al., 2013).

Furthermore, 45S5 bioglass® has been used in clinical practice since 1985 in the form of particulate
for dental applications (Perioglas®, Novabone, USA), and afterwards as dense material or in form

of granules for bone defect filling (Baino and Vitale-Brovarone, 2011).

However, although Bioglass® was demonstrated to be an excellent material, considered for long
time the gold standard for bone tissue regeneration, it suffers from several drawbacks. Specifically,
the difficulties are related to the material processing in form of 3D porous scaffolds, due to the
limited ability of this glass in sintering. This aspect arises because 45S5 bioglass® tends to
crystallise above 1000 °C, leading to poor densification of the structure with the consequent weaker
and less interconnected structure, accompanied by the formation of micro-cracks and poor
mechanical strength (Gerhardt and Boccaccini, 2010). Furthermore, the 45S5® glass devitrifies
during the sintering process, which has the effect of reducing the rate of HA precipitation. (Brink,
1997; Chen et al., 2006; Yao et al., 2007). Additionally, other weaknesses in the use of Bioglass®
include: its slow degradation kinetic with the consequent difficulties to match the formation rate of
new tissue, and the abrupt pH variations of the biological microenvironment, due to the increase in
the concentration of ions such as Na*and Ca?*, especially in the short term when the degradation
is faster (Huang et al., 2006; Rahaman et al., 2011; Fu et al., 2012).

Two decades after Bioglass® discovery, a new silicate-based glass was developed to overcome its
processing limitations. The new composition, termed 13-93 glass, is based on the 45S5 Bioglass®
composition, but has higher silica content (53wt%) and K>O and MgO as additional network

modifiers (see Table 3.5 for the detailed composition). This glass showed an enhanced viscous
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flow behaviour, less tendency to crystallize, and in the form of porous scaffold it exhibited porosity
content and mechanical properties comparable to those of cancellous bone (Brink, 1997; Fu et al.,
2007).

The bioactive behaviour of the 13-93 glass was demonstrated by the formation of an HA layer on
the surface of 13-93-derived scaffold surface, in less than 7 days of immersion in SBF, indicating
its potential of bonding to bone (Fu et al., 2007). Furthermore, in vivo studies demonstrated the
ability of the 13-93 formulation in supporting tissue ingrowth (Fu et al., 2010b). As XRD
investigations confirmed, this glass remained amorphous even after the sintering treatment (Fu et
al., 2007). Table 3.5 reports the composition of some silicate bioactive glasses mainly investigated
in the literature.

Table 3.5: Composition of various silicate glasses developed over the years (Silver et al., 2001;
Rahaman et al., 2011; Jones, 2013).

Composition (wt%) 45S5  13-93 58S 70S30C 77S 13-93B1
SiO; 45 53 58.2 714 80 34.4
K20 0 12 0 0 0 11.7
Na20O 245 6 0 0 0 5.8
MgO 0 5 0 0 0 4.9
P20s 6 4 9.2 0 4 3.8
B20s 0 0 0 0 0 19.9
CaO 245 20 32.6 28.6 16 19.5

Worldwide many researchers have used the SiO2-Na20-CaO-P.Os system and particularly its
ancestor (the 45S5 bioactive glass), as template materials to develop new silica-based formulations
(Krishnan and Lakshmi, 2013). Nevertheless, the possibility to tailor the glass properties, altering
the main formulation by using different oxides, is currently an open challenge for the design of

more complex compositional systems (Jones, 2013).
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3.3.4.2 Borate-based glasses

Recent studies have shown the possibility to control the degradation rate of bioactive glasses by
tailoring their composition (Deliormanli, 2013). Specifically, by partially or totally replacing the
SiO2 in 45S5 and 13-93 with B20s3, the glass degradation rate can cover a wider range, and in this
way the bone regeneration can be easily attained (Huang et al., 2006; Yao et al., 2007). In 1990
Brink et al. proposed the first borosilicate glass for biomedical applications, in which various
proportions of B2Os were used (Brink, 1997). Borate-based glasses are very reactive materials with
low chemical durability; hence, they degrade faster and convert more completely to HA than
silicate-based, such as 45S5 and 13-93 glass (Huang et al., 2006).

In a study conducted by Huang et al., the gradual replacement of SiO, with B>Oz in the parental
glass resulted in a substantial increase of HA conversion in diluted phosphate solutions.
Furthermore, unlike silicate glasses, borate-based materials form an HCA layer directly on the
surface of the underlying unreacted glass, without the formation of a borate-rich layer as
intermediate stage (schematically shown in Figure 3.6) (Huang et al., 2006).

Na’, BOs*,
ouT
Borate glass
(38)
PO
IN
Na‘, Si04"
ouT SiO,-rich
3 layer
Silicate glass
(o) —_
45S5
PO Na-depleted
IN core
Initial glass Final product

Figure 3.6: Schematic representation of the conversion mechanisms of a borate (3B) and 45S5 silicate
(OB) glass to HA in a diluted phosphate solution (Huang et al., 2006).
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According to the amount of silica replaced, the bioactive process and thus the conversion rate to
HA of the resulting B.O3 composition can be controlled within a wide range (from hours to months)
(Baino and Vitale-Brovarone, 2011). Moreover, from a material processing perspective, some
borate-containing glasses exhibited a more controllable sintering behaviour than Bioglass®,

becoming very promising candidates for scaffold production (Liang et al., 2008).

The first borate-based scaffolds were produced in 2005 by soft pressing of the glass powders
(Rahaman et al., 2005). More recently Fu et al. used the polymer foam replication method to
successfully produce 13-93B2 (22mol% CaO, 6mol% Na2O, 8mol% MgO, 8mol% K-0, 18mol%
Si0O2, 36mol% B0z, and 2mol%P»0s) 3D porous borate-derived scaffolds, which showed a
microstructure and mechanical properties similar to trabecular bone (see Figure 3.7) (Fu et al.,
2009). However, Liu et al. demonstrated that the degradation process significantly influenced the
mechanical properties of 13-93B2 scaffolds. In fact, after 15 days of immersion in phosphate
solution, the scaffold mechanical strength decreased from 6.2 to 2.8MPa (Liu et al., 2009; Xin et
al., 2010).

B20s-based compositions support cell proliferation in vitro and enhance tissue formation in vivo.
However, the leaching out phenomena of certain level of boron (> 0.65mM) from the glass
exhibited a toxic effect during static in vitro cell culture (Fu et al., 2009). This cytotoxic effect was
not observed in vivo, where borate bioactive glasses regenerated tissue as effectively as silicate-
based glasses (Jung et al., 2013), and they also produced a level of boron in the blood much lower
than the toxic threshold (Liu et al., 2010). The main reason of this different behaviour was ascribed
to the fact that during the in vivo study, being a fully dynamic system, the fluids were continuously
replaced and the pH values were closer to the environment (Jones and Clare, 2012).

Conclusively, i) the easier processing route, with respect to silicate-derived scaffolds, ii) the
possibility to tailor their degradation according to tissue regeneration rate, iii) the more controllable
conversion rate to HA, and iv) the microarchitecture similarity to human trabecular bone make
B20s-based glasses promising materials for clinical applications as bone substitutes. Additionally,
the potential of borate-based compositions has been exploited as carriers for the release of
elemental ions essential for bone repair and regeneration (Liang et al., 2008; Xiao et al., 2009; Liu
etal., 2010; Hoppe et al., 2011). Currently, the main issue related to the use of borate-based glasses

is the toxicity of boron released in solution. Brown et al. performed an in vitro study in static
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conditions and found that boron concentration higher than 2.5mM produced a significant inhibition
of MC3T3 cell proliferation (more than 50%) (Brown et al., 2009). Furthermore, it has been
reported that boron content >250-350mg (per kg of mass) caused adverse toxic disorders during in
vivo trials on rabbit models (Nielsen). A partial answer to the potential negative effect of boron
release has been found in the dilution of phosphorous pentoxide to contain the toxicity of the
medium (Huang et al., 2006; Ning et al., 2007; Yao et al., 2007; Jung et al., 2013).

Figure 3.7: SEM micrograph showing (a) human trabecular bone, and (b) 13-93B2 glass scaffold
prepared using a polymer foam replication technique (Fu et al., 2009).

3.3.4.3 Phosphate-based glasses

The growing need of designing new biomaterials capable to resorb once they have attained their
function, and with no adverse effects for the human body, led to the development of a novel class
of bioactive glasses (Knowles, 2003). As the name suggests, phosphate glasses are based on the
P.>Os as glass former, and the [PO4] tetrahedron, for which a phosphorous atom is surrounded by
four oxygen atoms (Figure 3.8 (a)), and that represents the basic unit in their structure. The
asymmetric nature of the [PO4] unit is considered to be the reason of the low durability of these
glasses. Furthermore, in the P-O-P bond (Figure 3.8 (b)), three of the four oxygen atoms are free,
conferring them more flexibility in the orientation of the tetrahedral (Kaur et al., 2013). Hence, the
higher number of free oxygen atoms in phosphate glasses, with respect to silicate glasses, offers a

wider range of possible bond formation (Hoppe, 1996).
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Figure 3.8: Schematic representation of: a) phosphate tethraedron and b) P-O-P bond.

P20s-containing glasses in the CaO—Na>O-P20s system have been demonstrated to have distinctive
dissolution properties in aqueous-based fluids, which can be tailored and predicted by adding
appropriate oxides into the main composition (Abou Neel et al., 2009b). Besides, depending on
their composition, their solubility can vary from hours to weeks, and in general it rises by increasing
the P20s content (Abou Neel et al., 2009b; Jones and Clare, 2012). Furthermore, the use of CaO
and Na20 as network modifiers makes the composition of phosphate-based glasses very similar to
the mineral phase of bone, conferring them additional clinical potential as synthetic bone grafts
(Knowles, 2003). In addition, this class of bioactive glasses have been considered very smart
materials, since they can be synthesised and doped with specific ions such as zinc, strontium,
copper or fluoride, which are elements able to induce a precise biological response and enhance
their biocompatibility (Baino and Vitale-Brovarone, 2011; Kaur et al., 2013).

Phosphate bioactive glasses have been used for different biomedical applications, going from soft
to hard bone tissue, in form of bulk or powders, and in combination with polymers (Navarro et al.,
2004; Leonardi et al., 2010; Novajra et al., 2011; Bretcanu et al., 2014; Sun and Yang, 2015;
Tarafder et al., 2015), as fibres for nerve repair (Jeans et al., 2007), and also as antimicrobial
delivery devices (Abou Neel et al., 2005; Neel et al., 2005; Valappil et al., 2007). At present only
few phosphate-based compositions have been used to produce 3D porous scaffolds for bone repair

and regeneration, in comparison to the most common silica-containing glasses.

In 2004, Navarro et al. processed phosphate glass powders by H>O, foaming method, and the result
was a 3D scaffold with a microstructure very similar to trabecular bone (Navarro et al., 2004).
Later on, Abou Neel and her research group produced strontium-doped phosphate based glasses
using different amount of SrO (from 0 to 5mol%). The substitution of Na>O with SrO in the original
composition affected considerably the properties of the glass, increasing its density, transition

temperature and degradation rate (Abou Neel et al., 2009a). Additionally, another research group,
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affiliated at Politecnico di Torino (Turin, Italy), exploited phosphate glasses properties for bone
tissue applications. They developed a new bioactive glass (GC-ICEL2) and processed it as
phosphate-derived scaffolds (see Figure 3.9) (Vitale-Brovarone et al., 2009). GC-ICEL?2 scaffolds
enhanced the proliferation and differentiation of bone marrow stromal cells, and they were found
to be bioactive and bioresorbable after soaking in different media, exhibiting an architecture similar
to trabecular bone (Vitale-Brovarone et al., 2009; Vitale-Brovarone et al., 2011; Bretcanu et al.,
2014). More recently, the same research group produced bone-like scaffolds by co-sintering silicate
and phosphate-based glasses. The resulting 3D structures revealed to be a promising strategy to

customise osteoinductivity, dissolution rate and bioactive properties (Novajra et al., 2015).

Figure 3.9: GC-ICEL2 scaffold produced by foam replication method (Vitale-Brovarone et al., 2009).
3.3.4.4 Selection of trace ions

Over the last four decades, a significant amount of research work has been carried out on bioactive
glasses as promising materials for producing scaffolds intended for bone repair and regeneration
(Hench, 1999; Jones et al., 2006; Rahaman et al., 2011; Jones, 2013; Brauer, 2015). Figure 3.10
describes the biological response to ionic dissolution products of bioactive glasses through a

schematic overview, according to the evidences reported in the literature (Hoppe et al., 2011).

The main potential of this class of bioceramics is the possibility of customising their properties by
doping the main composition with network modifiers and/or intermediate oxides (Murphy et al.,
2009; Fu et al., 2010a; Fu et al., 2010c; Murphy et al., 2010; Pan et al., 2010; Hoppe et al., 2011;
Baino et al., 2013; Kaur et al., 2013). To this extent, it has been demonstrated that slight changes
in the glass formulation can substantially affect the material behaviour, particularly the physico-
chemical and mechanical properties, dissolution rate, bioactivity and bioresorbability (Franks et
al., 2000; Huang et al., 2006; Fu et al., 2010a; Murphy et al., 2010; Sharma et al., 2012; Wu et al.,
2013).
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Figure 3.10: Biological response to ionic dissolution products from bioactive glass surface (Hoppe et
al., 2011).

Furthermore, several studies investigated how the release of specific ions from the glass network
(i.e. Cu, Zn, Fe, Cr, Sr, Al, Ag, and Mg) can promote cell proliferation and differentiation, activate
gene expression, and in some cases exhibit antibacterial properties (Bellantone et al., 2002; Branda
et al., 2002; Singh et al., 2009). Additionally, Table 3.6 reports some of the most important
elements that are vital constituents of human body, and at the present also considered potential
glass network modifiers, with their main function on bone tissue metabolism, regeneration and
mineralisation (Murphy et al., 2009; Murphy et al., 2010; Hoppe et al., 2011).

Trace ions like V, Mo, Bi Al, Cr, Y, and La have been recently used as dopants, since they are
known to be involved in the bone metabolism, and also because they play a physiological role in

angiogenesis, growth and mineralisation of bone tissue (Demling, 2009; Chellan and Sadler, 2015).

At present, an extensive literature have been published describing the ion incorporation as network
modifiers, and their effect on SiO2, P.Os, and B20s-based glass compositions (Murphy et al., 2009;
Fuetal., 2010a; Fu et al., 2010c; Murphy et al., 2010; Pan et al., 2010; Hoppe et al., 2011). Most

of the existing studies have investigated the effect of doped bioglasses on the bioactive properties
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and HA formation (Li et al., 1992; Branda et al., 2002; Rahaman et al., 2005; Yao et al., 2005;
Zhang et al., 2009; Zhao et al., 2010; Oudadesse et al., 2011; Deliormanli, 2013; Zhang et al.,
2013; Macon et al., 2015). Furthermore, the influence of network modifiers on the mechanical
properties and biocompatibility have been also widely examined (Eslami et al., 2010; Balagna et
al., 2011; Novajra et al., 2011; Zheng et al., 2012; Tarafder et al., 2015). Additionally, Mourino et
al., considered the use of metallic ions as therapeutic agents and the need to design strategies for
controlling their release (Mourino et al., 2012).
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Table 3.6: Role of elemental ions on bone repair and regeneration.

ELEMENT

ROLE

REFERENCE

Magnesium (Mg)

It plays a key role in bone metabolism,
mineralisation of calcified tissues, directly
stimulating osteoblast proliferation; it is an also
active component of several enzymes.

(Tsuboi et al., 1994;
Rude et al., 2003)

Essential for hematologic and neurologic systems,

(Finney et al., 2009;

Copper (Cu) helps in iron absorption, important in maintaining Josko, 2011,

PP bone matrix and bone density, and plays a significant Hordyjewska et al.,
role in angiogenesis. 2014)

. ) o . Chachami et al.

It stimulates angiogenesis via regulation of the ( , ’

Cobalt (Co) hypoxia-inducible factor 1 (HIF-1). 3883) Wan et al,

Essential in cellular metabolism and cofactor in
Zinc (Zn) metabolism of vitamins, DNA synthesis and cell (Demling, 2009;

division, as well as tissue repair and wound healing
process.

Josko, 2011)

Manganese (Mn)

It activates several important enzyme systems and it
is involved in the synthesis of proteoglycans in
cartilage.

(Soetan et al., 2010)

Strontium (Sr)

It plays stimulatory effect on bone formation.
Helpful in calcification of bones and teeth, bone
healing, bone resorption.

(Marie et al., 2001;
Marie, 2010)

(Chellan and Sadler,

Silver (Ag) It shows antibacterial and antimicrobial properties. 2015)
. It prevents dental caries and increases bone (Soetan et al., 2010;
Fluorine (F) mechanical properties Chellan and Sadler,
' 2015)
Essential in bone mineralisation, component of (Carlisle, 1970;
Silicon (Si) connective tissuqs, stimyla}tes c_ol!agen I formz_yltion R(_affitt et al., 2003;
and osteoblast differentiation; it is also associated Nielsen and Poellot,
with the formation and calcification of hard tissue 2004)
Confstitue_nt of bone_zs and _teqth, favours osteoblast (Heaney 2008
Calcium (Ca) Pr:?r:éf%:?;;??o,n. differentiation and ECM Soetan et al., 2010)
. i - (Boskey, 2003;
Essential for calcium phosphate deposition and .
Phosphorus (P) extracellular matrix mineralisation. Boskey, 2007; Soetan
et al., 2010)
(Beard, 2001; Gaston
Iron (Fe) It enhances bone metabolism, particularly osteoblast and Simpson, 2007;
proliferation, differentiation, and calcification. Yamasaki and
Hagiwara, 2009)
It helps in bone formation and stimulates RNA (Dzondo-Gadet et al.;
Boron (B)

synthesis in fibroblast cells.

Uysal et al., 2009)

Selenium (Se)

Essential nutrient for the body, protects the organism
from harmful free radicals.

(Lee, 2010)
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In 1994, Vrouwenvelder et al. showed how modifying the basic 45S5 glass network with small
substitutions or additions of certain ions like iron, titanium, fluorine or boron affected the bioactive
behaviour of the resulting formulations. Specifically, the incorporation of CoO, ZnO, and MgO
delayed the HA formation, while the use of titanium increased proliferation and osteoblast
expression. Furthermore, the addition of boron, iron and fluorine lowered the osteoblast activity
with respect to the un-doped formulation (Vrouwenvelder et al., 1994). Singh et al. doped
borosilicate glasses with specific amounts of iron (5, 10 and 15wt%), and evaluated the bioactive
properties by immersion in SBF solution. After 36 days of soaking, only the compositions with a
percentage of iron between 10 and 15% showed the formation of an apatite layer (Singh and
Bahadur, 1999). Later on, the same research group investigated the structural and bioactive effects
of Al, Cr, Y and La on calcium borosilicate glasses. In particular, Y203 and Cr.03 containing
glasses formed an HA layer after 25 days of immersion in SBF, whereas no signs of apatite crystals
were detected for Al,O3 and La2O3 doped glasses, which instead exhibited higher dissolution rate,
proving that modifying the glass composition, the durability and bioactive properties were affected
(Singh et al., 2009).

Bioactive glasses doped using ZnO have also been widely investigated. Oudadesse et al. studied
the effect of Zn on the bioactive and cytotoxic behaviour of a silicate-based glass. According to the
obtained results, the Zn-doped glass slowed down the Ca and P ionic release in SBF, and thus the
chemical reactivity. However, the release of Zn?* did not influence directly the cell viability, which
was more affected by particle size and release rate (Oudadesse et al., 2011). Another study has
shown that the incorporation of Zn (5mol%) in a sol-gel based bioglass produced a positive effect
on cell attachment and pH balance in SBF solution. Furthermore, in the same work, it has
demonstrated that Zn addition increased ALP activity and osteoblast proliferation (Balamurugan
et al., 2007).

Recently, trace elements of SiO, and ZnO in conjunction with a 3D printed technology were used
to produce 3D porous B-TCP scaffolds. The use of silica and zinc oxide improved B-TCP
osteoinductivity by modulating collagen | and osteocalcin production. Furthermore, it was found
that neovascularization increased up to three times in the doped material with respect to the pure
B-TCP, used as control. Overall, this research findings indicated the addition of SiO, and ZnO as a
possible alternative to introduce osteoinductive properties to CaPs, avoiding the use of biological
or pharmacological agents (Fielding and Bose, 2013).
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Vitale-Brovarone research group investigated the effects of different ion-doped bioactive glasses.
Specifically, they demonstrated how the addition of different amounts (0, 2.5 and 5mol%) of TiO-
to a phosphate-based glass showed reduced solubility and improved in vitro biocompatibility
(Novajra et al., 2011). Furthermore, they evaluated the biocompatibility and antibacterial response
of a silver-doped bioactive glass in the system SiO,-CaO-CaF2-Na,O-K;0-P20s-MgO. The
produced Ag-containing scaffolds were able to inhibit bacteria adhesion and proliferation, however
they showed a negative effect on osteoblast cell-like viability, making necessary the optimisation
of Ag content (Balagna et al., 2011). Moreover, the same research group investigated the in vitro
behaviour of SiO2-Ca0-Na,O-K,0-P>0s-MgO glass introducing two different amounts of
manganese oxide (0.25 and 0.5mol%). The presence of Mn for both compositions seemed to delay
the bioactive process with respect to the parental glass. However, no cytotoxic effect was found,
and interestingly the addition of Mn promoted osteoblast proliferation and ALP expression (Miola
etal., 2014).

As stated above, a broad range of biomedical applications based on the release of therapeutic ions
integrated in an organic matrix have been proposed (Hum and Boccaccini, 2012; Vallet et al., 2012;
Cordero-Avrias et al., 2015; Stahli et al., 2015). Metallic ions such as Cu?*, Sr?* and Co?* are being
considered cost-effective and safer alternatives for enhancing the biological impact of bioglasses,
if compared to growth factors and gene therapies. Furthermore, they can be easily processed, are

stable at high temperatures and have a tuneable release kinetic (Mourino et al., 2012).

At present, there is a large volume of published studies on the ability of copper to stimulate
angiogenesis and proliferation of endothelial cells during in vitro culture (Hu, 1998; Finney et al.,
2009; Gerard et al., 2010; Wu et al., 2013). Furthermore, the use of copper, as network modifier,
has also shown an osteogenic effect in enhancing the differentiation of MSCs into osteoblast cells
(Rodriguez et al., 2002; Wu et al., 2013).

Different inorganic matrixes, including silicate (Wu et al., 2013; Stahli et al., 2015), borate (Erol
et al., 2012; Wang et al., 2014; Zhao et al., 2015) and phosphate glasses (Neel et al., 2005; Stahli
et al., 2013) have been used in order to incorporate Cu ions, whose effects on bone tissue repair
and regeneration were examined. In 2013, 45S5 glass scaffold were produced via foam replication
method and doped using different CuO percentages (0.1, 1 and 2.5wt%). In vitro experiments in

SBF solution were performed on the Cu-containing samples, which revealed high bioreactivity as
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confirmed by the fast formation of HCA layer on their surface. Furthermore, the possibility to tailor
the Cu degradation of the novel designed Cu-doped bioglasses, according to the culture conditions,
make them promising candidate materials for regenerative medicine and mainly for bone tissue
healing (Hoppe et al., 2013).

Later on, Wang et al. evaluated the ionic release effects of Cu-doped (0 — 3wt%) borate-based
glasses in vitro and in vivo. The nucleation of HA tested in SBF solution decreased slowly with the
increase of Cu in the glass, whereas the Cu ions leaching in solution increased with the increase of
copper amount. These findings were promising in predicting that borate-based scaffolds could act

as carrier systems for the controlled release of Cu ions (Wang et al., 2014).

Furthermore, the Cu-derived scaffolds showed no detrimental effects on human MSCs viability,
and they further enhanced ALP activity by increasing culture time and Cu content. Most
interestingly, Wang et al. found that after in vivo implant in rat calvarial defects, the scaffolds with
the highest Cu content (3wt%) exhibited superior ability to stimulate bone regeneration and
angiogenesis with respect to the undoped borate scaffolds used as control (Wang et al., 2014).

Strontium-containing bioactive glasses are another class of doped bioglasses that have been broadly
considered in the literature (Marie et al., 2001; Meunier et al., 2002; Pan et al., 2010; Zhao et al.,
2010; Vickers, 2013). Particularly, strontium has been shown to have a beneficial effect when
treating osteoporosis-affected patients, as it has the ability to stimulate new bone deposition in
osteoblasts and to inhibit osteoclasts and thus bone resorption (Bonnelye et al., 2008). Gentleman
et al. proved that Sr-doped silicate glasses enhanced bone cell activity. In particular, replacing the
amount of calcium in the system SiO2-P20s-Na>,O-CaO with strontium (up to 100%), the osteoblast
activity was improved and the osteoclast differentiation inhibited (Gentleman et al., 2010).
Hesaraki et al. using a Sr-containing bioactive glass concluded that strontium addition enhanced
ALP activity and increased proliferation of rat calvaria osteoblast cells (Hesaraki et al., 2010).
Recently, Sr-doped AW scaffolds have been produced using different mol% of SrO. The
formulation having 6.2mol% of strontium showed better performance in terms of bioactivity and

osteogenic differentiation of human mesenchymal stem cells (MSCs) (Vickers, 2013).

Lately, the adoption of cobalt-doped bioactive glasses for bone tissue applications have been
considered as well. Melt-derived 13-93 glass compositions were prepared by Hoppe et al. using

1wt% and 5wt% of CoO. The Co-containing bioactive scaffolds were tested in SBF solution;
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interestingly, the kinetic of CaP layer formation was similar for both the doped compositions.
However, for the samples with higher amount of Co an amorphous CaP layer was formed on the
top of their surface after 7 days in immersion, whereas a mixed Ca-P-Si rich layer with HCA
characteristics, and similarly to the un-doped 13-93 glass, was detected on the samples with less
Co content. Furthermore, according to the degradation test results, the Co concentration after 21
days was within a therapeutic range (~2ppm), making them a potential platform for controlled Co
release (Hoppe et al., 2014). In the same year Vyas et al. tested the bioactive properties of Co-
doped silicate glasses, where the original SiO. content (45wt%) was partially replaced with cobalt
(0.5, 1, 1.5 and 2wt% respectively). It was concluded, partially conversely with Hoppe et al.
findings (Hoppe et al., 2014), that the increasing of cobalt amount positively affected the bioactive

behaviour of the glass (Vyas et al., 2015).

Additionally, cobalt ions have been known to induce hypoxia conditions and thus stimulate
angiogenesis via regulation of the hypoxia-inducible factor 1 (HIF-1), whose role has been
identified crucial for angiogenesis and skeleton regeneration (Chachami et al., 2004; Emans et al.,
2007; Wan et al., 2008). Moving from these consideration, Hoppe et al. used the same Co-
containing glasses, analysed in their previous study (Hoppe et al., 2014), to evaluate the
biocompatibility of cobalt-derived glass particulates and 3D porous scaffolds in culture with
osteoblast-like cells and human dermal micro endothelial cells. The formulation with 1 wt % of
CoO exhibited better in vitro biocompatibility with respect to 5 wt % CoO-containing glass, which
showed a cytotoxic effect during in vitro culture; in addition, the glass doped with less cobalt

content slightly enhanced mitochondria activity.

Similar outcomes were obtained using human endothelial cells, leading to conclude that 1 wt %
Co-containing glass can be considered a promising candidate as hypoxia mimicking material in the
field of bone tissue applications; instead, the increase in cobalt amount showed a negative effect
on physiological fluids, assuming that it may outreach the acceptable threshold (Hoppe et al.,
2015).
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3.3.5 In vitro bioactivity of bioceramics

Bioactivity and bone bonding mechanisms have been widely investigated. As previously
mentioned, bioactivity is the ability of a material to bond to the host tissue through the formation
of an HA-like layer (Kokubo and Takadama, 2006). According to the literature, bioceramics were
the first class of materials to display bioactive behaviour (Hench, 1998b). Specifically, the concept
was introduced by Hench at the beginning of 70°s, when he described the bonding process of 45S5
bioglass to bone as a process based on the formation of a carbonated hydroxyapatite (HCA) layer

on the surface of the material in contact with the host tissue (Hench, 1991).

The sequence of reaction events involved during the bond formation between bone and a bioactive
glass, initially proposed by Hench and subsequently modified by Gerhardt and Boccaccini (Hench,
1998b; Gerhardt and Boccaccini, 2010), is reported in the Figure 3.11 below.

Surface of bioactive glass

Exchange of alkali ions with hydrogen ions from body fluids

Network dissolution and formation of silanol (SiOH) bonds
Silica-gel polymerization: SiOH + SiOH —» Si—0O-Si

Chemisorption of amorphous Ca + PQy + CO;
Crystallization of the HCA layer

1

ok W

(=)}

Biochemical adsorption of growth factors on HCA layer

Log time [hours]

20 10 2

Action of macrophages

Attachment of stem cells

100

9 Differentiation of stem cells

10 Generation of matrix

Surface reaction stages
-1
-

11  Crystallization of matrix

12 Proliferation and growth of bone

Figure 3.11: Sequence of reactions on the surface of a bioactive glass implant (from (Gerhardt and
Boccaccini, 2010)).

Later on, Kokubo discovered that also AW glass-ceramic showed bioactive behaviour, bonding to
bone in vivo (Kokubo, 1990), and in 1991 he stated that “the essential requirement for an artificial
material to bond to living bone is the formation of bone-like apatite on its surface when implanted
in the living body, and that this in vivo apatite formation can be reproduced in a simulated body

fluid” (Navarro et al., 2008). This was the origin of in vitro bioactivity tests.
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The solution proposed by Kokubo was an a-cellular fluid with an ionic concentration almost equal
to human blood plasma (Table 3.7). Since Kokubo protocol development, the in vitro apatite
formation on the surface of a material, when immersed in SBF, has been considered a useful
method of assessing potential in vivo bioactivity of a new material (Kokubo et al., 1990; Kokubo
and Takadama, 2006).

Table 3.7: lon concentrations (mM) of human blood plasma and SBF solution (Kokubo and
Takadama, 2006).

Na* K* Mg*  Ca?* Cl HCOs~ HPO,*~ SO+

Human blood plasma 1420 5.0 1.5 2.5 103.0 27.0 1.0 0.5

SBF 1420 50 1.5 2.5 148.8 4.2 1.0 0

Although a large number of studies for the bioactivity evaluation are based on the protocol
proposed by Kokubo (Wu and Xiao, 2009), the strength of this test method for the assessment of
bone-bonding ability has not been scientifically demonstrated. Furthermore, numerous
modifications of both ion concentration as well as test method conditions have been suggested to

investigate the bioactive behaviour of new implants (Salinas and Vallet-Regi, 2013):

1) the refresh of the solution at set time points;

i) the renewal of the solution through a dynamic system;

iii) the use of a different buffer and the reaching of a physiological carbonate ions concentration;
iv) the modification of SBF solution by adding plasma proteins such as albumin.

More recently, a new unified method for the assessment of the apatite-forming ability of bioactive
glasses has been proposed. The aim of the study was to provide a valid protocol, in particular for
bioactive glass samples with high surface area, and to verify its reproducibility over a wide number
of research groups. Based on the modification of the 1ISO standard 23317:2012, which fixes the
surface area to solution volume ratio when comparing samples, and is performed in static
conditions, the new proposed method uses fixed mass per solution volume ratio and agitated
solution. Furthermore, the method involved 10 laboratories of 8 different countries and it was

validated through a round robin test (Macon et al., 2015).
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3.4 Scaffold fabrication technologies

As described in paragraph 3.2, in bone tissue engineering 3D porous scaffolds are essential pillars
to guide tissue growth and regeneration. Hence, after the selection of an adequate bone matrix-like
biomaterial, which depends on the biological and mechanical properties of the anatomic site that
needs to be replaced, another important aspect of TE approach is the selection of an appropriate
processing technology to fulfil the scaffold requirements.

Polymer foam replication is the most widely exploited technique to produce bioactive glass and
glass-ceramic scaffolds (Renghini et al., 2009; Fu et al., 2010a; Baino et al., 2013). In addition to
this method, a variety of different technologies have been developed through the years to produce
3D porous glass and glass-ceramic scaffolds, including sol-gel (Bielby et al., 2002; Sepulveda et
al., 2002; Jones and Hench, 2003a; Rainer et al., 2008; Correia et al., 2015), organic phase burning-
out (Brovarone et al., 2006; Fu et al., 2007; Vitale-Brovarone et al., 2008), thermally induced phase
separation (TIPS) (Yin et al., 2003; Fabbri et al., 2010), and freeze casting (Zhang et al., 2005;
Deville et al., 2006b; Song et al., 2006; Mozafari and Moztarzadeh, 2014). An overview of these
so-called conventional techniques together with their main advantages and disadvantages is
reported in Table 3.8 (Rezwan et al., 2006; Baino and Vitale-Brovarone, 2011; Fu et al., 2011;
Rahaman et al., 2011; Jones, 2013; Lu et al., 2013; Gao et al., 2014). All the above mentioned
methods bring to scaffolds with different morphologies, structures and properties.

Specifically, polymer burning-out was the technique used to produce the first example of
bioceramic scaffold for bone regeneration (Bellucci et al., 2011). In this case, the ceramic powder
is mixed with an organic pore former (porogen) that is subsequently removed during a thermal
treatment necessary to consolidate the inorganic phase. Generally, the scaffold produced with this
method are characterised by low porosity and limited interconnectivity (Brovarone et al., 2006).
Foam replication method was introduced for the first time in 2006 by Chen et al. (Chen et al.,
2006), and it has been widely investigated since then. It is a relatively inexpensive processing
technique, based on the use of a polymeric sponge, which is impregnated in a bioceramic-based
slurry. Afterwards, during a heat treatment, the polymeric template is burned out and the ceramic
phase is sintered. This technique leads to the production of scaffolds with controllable pore size,
high porosity (> 80%) and better interconnectivity than polymer burning-out method (Bretcanu et

al., 2008; Vitale-Brovarone et al., 2011). However, the greater porosity is associated to high
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brittleness and low mechanical properties, which represent the main drawbacks of this technique.
For this reason, Bellucci et al. considered the development of alternative strategies highly
necessary. Specifically, whereas in the original method the exceeding slurry was removed by
squeezing the sample, and the green bodies (un-sintered specimens) were left to dry before the
sintering process, in the new protocol the samples were kept entirely loaded of slurry, which was
previously mixed with PE particles and that led to an increased and more controlled final porosity
(Bellucci et al., 2011).

Sol-gel phase separation, TIPS and freeze casting also belong to the class of conventional

techniques for scaffold production.

Sol—gel scaffold fabrication is a versatile method based on the preparation of a sol-gel glass of
desired composition, and consequent foaming of the sol by the addition of a surfactant, followed
by condensation and gelation reactions. The obtained foamed solutions are then cast into moulds,
and after a drying process, they are sintered to produce consolidated structures (Jones et al., 2004;
Rainer et al., 2008). Through this technique it is possible to obtain glass or glass-ceramics in
different forms, including hierarchical porous architectures, ultra-fine or spherical-shaped
powders, ceramic fibres, thin-film coatings and microporous inorganic membranes (Raucci et al.,
2010; Chen, 2011). The peculiarity of this method is related to the nanopores (2-50nm) resulting
from the sol-gel process and the interconnected macropores (10-500um) deriving from the foaming
process. However, because of the resulting nanopores, which lead to a higher surface area, the
scaffolds undergo a fast degradation process (Sepulveda et al., 2002; Fu et al., 2011). Furthermore,
the sol-gel-derived scaffolds have low strength, therefore they are not suitable for load-bearing

applications (Jones et al., 2006).

The phase separation route involves the use of a polymer that is dissolved in an organic solvent.
Once a homogeneous polymer-based solution is formed, glass or glass-ceramic powders are added
and a mixture is obtained. To induce phase separation, the polymer solution is cooled rapidly, and
a porous structure is produced after evaporation of the solvent via sublimation and following
stabilisation (Boccaccini and Maquet, 2003). The large number of variables on which the
methodology is based (including polymer and solvent selection, concentration of polymer, and

phase separation temperature) allows tailoring of the properties of the final porous structures
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(Molladavoodi et al., 2013). However, the possibility of solvent residue and the sensitivity of the
method to slight changes in the parameters, limit the use of this technique (Cao et al., 2006).

Regarding the freeze casting method, this is based on the rapid freezing of a colloidal suspension,
using an organic solvent (i.e. water, camphene or camphene mixture), and the casting of the
solution in a non-porous mould. After sublimation of the solvent and a drying process, the 3D
constructs are sintered to consolidate their structures (Deville, 2008). The main advantage of this
method lies in the preparation process, which is easy and does not require expensive equipment
(Sofie and Dogan, 2001; Thavornyutikarn et al., 2014). Furthermore, this technique allows to
control the directionality of the porosity by the solidification conditions yielding porous ceramics
with a specific macro-porosity (Deville et al., 2006a; Deville et al., 2006b; Fu et al., 2010b).
However, as for the TIPS technique, also for this method the solvent residue present in the structure
can be harmful to biological tissues (Sachlos et al., 2003; Zhu and Chen, 2013).

Despite the fact that conventional fabrication methods have been widely used over the last three
decades to produce promising scaffolds for medical applications (Morsi et al., 2008), most of the
scaffold requirements (i.e. pore geometry, pore size, shape and interconnectivity) cannot be fully
controlled with many of them. Moreover, depending on the fabrication method used, the 3D
scaffold also lacks of the mechanical strength necessary to withstand stress and forces of the living
tissues (i.e. sol-gel method) (Jones et al., 2006). In addition, some of these processing techniques
use organic solvents, and the presence of their toxic residues can cause severe inflammatory
response (i.e. TIPS and freeze casting). Furthermore, most of these methods are manual, resulting
in poor reproducibility over the large scale and inconsistent outcomes (Leong et al., 2003; Sachlos
et al., 2003; Zhu and Chen, 2013).

Based on these observations scaffold fabrication for bone repair and regeneration remains a
research challenge. Therefore, the emerging need for novel 3D constructs with tailored physico-
chemical and mechanical features has led to the development of new manufacturing technologies
(Utela et al., 2008; Melchels et al., 2012; Thavornyutikarn et al., 2014; Mota et al., 2015). The aim
of next section is to describe and review the state of the art of additive manufacturing (AM)

techniques, for the design and fabrication of scaffolds for bone tissue repair.
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Table 3.8: Conventional techniques for the production of bone tissue substitutes.

METHOD

DESCRIPTION

ADVANTAGES

DISADVANTAGES

Organic
phase
burning-out

Foam
replication

Sol-gel

Thermally
induced phase
separation
(TIPS)

Freeze casting

A blend is obtained by
mixing glass particles and
organic phase, after they
are thermally treated to
remove the organic phase
and sinter the glass.

Impregnation of a
polymeric sponge
template in a glass-based
slurry followed by a
thermal treatment to
remove the organic phase
and sinter the glass.

A solution of metal
alkoxides leads to the
formation of the sol
phase, made by solid
particles that then will
condense in gel-like
materials. After a drying
process the so obtained
material is treated at high
temperature.

A polymer mixed
with/without glass
particles, is dissolved in a
solvent and a liquid-liquid
or solid-liquid phase
separation is obtained by
lowering the temperature.
The solvent is removed by
sublimation to give a
porous structure.

The method involves the
rapid freezing of
colloidally-stable
suspension of particles in
a nonporous mold. The
frozen solvent is removed
by sublimation to avoid
cracking prior to
sintering.

- No organic solvents

- No organic solvents
- Control of porosity
and pore size

- Hierarchical pore
structure

- Interconnected
macropores

- Nanoporous texture

- Incorporation of
biologically active
molecules

- High porosity

- Oriented
microstructure

- High mechanical
strength in the

direction of orientation

- Residual of porogens
- Low porosity (<60%)
and limited
interconnectivity

- Possibility of an
inhomogeneous coating of
the foam

- Low mechanical strength
(2-20MPa)

- Many variables affect
the final morphology (i.e.
glass particles, surfactant,
gelation time)

- Low mechanical strength
(0.3-2.3MPa)

- Slight changes in the
parameters (i.e. type of
polymer, glass particles,
and solvent used) affect
the morphology of the
scaffold

- Possibility of solvent
residues

- Small pore size (10—
40pm)

- Possibility of solvent
residues




3.4.1 Overview of additive manufacturing techniques

The use of AM, or also called solid free form fabrication (SFF), rapid prototyping (RP) or more
recently 3D printing processes, to produce custom-made devices with well-designed architecture,
has become a fast-developing research field in the last few years (Thavornyutikarn et al., 2014;
Mota et al., 2015). The concept of AM was introduced for the first time by Chuck Hull in 1986 via
his patented stereolithography (SLA) process (Hull, 1986). Since its launch, many applications
advanced from the outstanding and time-saving capabilities of its production method (Arafat et al.,
2014; Giannitelli et al., 2014; Yoo, 2014). According to ASTM F2792, AM is defined as “the
process of joining materials to make objects from three-dimensional model data usually layer upon
layer” (F2792, 2012). Conversely to the conventional fabrication methods that remove material
from a bulk, using AM techniques 3D objects are built through a layer-by-layer approach via the
processing of solid filament, liquid or powder stock materials (Hutmacher et al., 2004; Bartolo et
al., 2009). AM provides exclusive methods to produce accurate (macro-architecture as well as
microstructure) and consistent (mechanical properties, porosity and interconnectivity) bone-like
substitutes matching patient’s defects (Sun et al., 2004). The above mentioned advances have led
to a growing interest in the development of novel scaffolds with a tailored architecture and
customable properties as well as enhanced in vitro behaviour. Leong et al. (2003) reported the
common steps of AM techniques in a flowchart (Figure 3.12).

Medical imaging
(CT, MRI, etc.)
l 2D image data

3D solid model creation in CAD
(pro/engineer [PTC])
l STL data

SFF system computer

(generation of slice data)
l 2D slice data
SFF fabrication
(SLA, SLS, FDM)

l 3D part

Post processing

(finishing and cleaning)

Figure 3.12: Common process steps for all AM technigues-based approach (re-printed by (Leong et al.,
2003)).
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In summary, medical images of the anatomic site are acquired by computer tomography (CT) or
magnetic resonance imaging (MRI). The 2D image data are then treated by computer-aided design
(CAD) software, and afterward the obtained 3D model is converted into a standard tessellation
language (STL) file. Subsequently the .stl file is sliced into layers and loaded in the AM machine.
According to the fabrication process, the 3D build parts can need further finishing and cleaning
work. At present, different AM techniques have been widely explored for TE scaffold fabrication,
although none of those proposed has been acknowledged as a gold standard approach. The four
techniques represented in the Figure 3.13 have been recognised as the most commonly used

strategies for the production of TE substitutes (Melchels et al., 2012), namely they are:

a) Stereolitography, b) Selective laser sintering, ¢) Fused deposition modelling and d) Powder-

based three dimensional printing.

a) Stereolitography (SLA) b) Selective laser sintering (SLS)
Laser
o~ Laser - Scanner system N
-3 N . /s;:;'::r Excess Build \ .
-s chamber -~ ( Laser Recoat

Laser beam roller

Photopolymer

Recoat

blade
Scaffold Construction
platform

c) Fused deposition modelling (FDM) d) Powder-based three dimensional printing (3DP)
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supply coils \ Liquid adhesive cartridges
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Drive wheels ™ Multi-channel

: Heated extrusion 5~ "inijet head
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Heated extrusion nozzle
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Construction chambel
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Figure 3.13: The four most common and commercially available AM techniques that are used for

tissue engineering scaffold fabrication (adapted from (Mota et al., 2015)).
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3.4.1.1 Stereolithography

Stereolithography (SLA) is the oldest AM technology (Hull, 1986). The process, as schematically
described in Figure 3.13, uses ultraviolet (UV) light or laser to polymerise layer-by-layer a
photosensitive polymer. Once one layer is completed, the construction platform is vertically
lowered to a given distance and a new uniform layer of resin is placed on the top of the previous
solidified one. The process is repeated until the 3D object is completed. Further actions include the
removal of non-polymerised resin and the post-curing of the printed 3D part under UV light
(Thavornyutikarn et al., 2014; Mota et al., 2015). This approach has been applied to fabricate 3D
scaffolds from polymers, bioceramics and composite materials (Chu et al., 2002; Cooke et al.,
2003; Melchels et al., 2009; Arcaute et al., 2010). SLA technology can also be used to produce
hydrogel/polymer scaffolds in combination with cells for soft tissue engineered applications. The
success of cell encapsulation is determined by several elements, such as UV light intensity,
exposure time and free radical formation (Lu et al., 2006; Park et al., 2011). However, considerable
shortcomings (for example the shrinkage of the structure during the production process, the

necessity of a support and the presence of a toxic resin) limit the use of this technique.
3.4.1.2  Select laser sintering

Select laser sintering (SLS) process is based on the use of a high intensity laser beam such as CO>
that selectively sinters regions of powder-based material placed in a powder bed until the formation
of a powder layer. After the generation of the first layer, the powder bed is vertically lowered by
one layer thickness and the new layer of powder is spread mechanically by a roller on the top of
the previous one. In this technology the non-sintered powder serves as support for the build-up of
the next layers. The process is iteratively repeated until the 3D structure is finalised
(Thavornyutikarn et al., 2014; Mota et al., 2015). TE constructs based on polymers, ceramics and
metals have been produced using the SLS technique. In 2005 Ciardelli et al. developed a select
laser sintered scaffold of PCL and a polysaccharide (starch, gellan and dextran), finding a
promising and easy method to improve PCL biocompatibility (Ciardelli et al., 2005). Usually, TE
scaffolds produced via SLS technique show low mechanical properties, however Goodridge et al.
(2007), using a SLS method, fabricated an apatite-mullite glass-ceramic with good surface finish
and mechanical properties (flexural strength around 16 MPa) in the range of cancellous bone

(Goodridge et al., 2007). Very recently, Lee et al. used SLS to produce 3D porous AW scaffolds.
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MSC-seeded and unseeded AW scaffolds were tested in vivo using MF1 nude mice. Osteoid
formation and tissue in-growth were observed after 4 weeks and without the need for osteogenic
pre induction, demonstrating that SLS custom-designed scaffolds enhance in vivo biocompatibility
and osteoconductive capacity of AW glass ceramics (Lee et al., 2015). Furthermore, the use of SLS
technology has been extended to polymer/ceramic composites; however, despite the advantages of
this method, the performance of 3D porous constructs depends on the combination of the above

described process parameters (Thavornyutikarn et al., 2014).
3.4.1.3  Fused deposition modelling

Fused deposition modelling (FDM) was developed and commercialised by Stratasys Inc. in 1992.
It is based on the melting and extrusion of material (usually a thermoplastic polymer) onto a
platform. The filament of material is provided by two rotating rollers to a mobile nozzle, which
moves in x and y direction, as shown in the Figure 3.13. Through an orifice in the extruder head
the material can be deposited on a platform. After fabrication of the first layer and when the
material is solidified, the platform moves downwards in z-direction and the process is repeated
layer-by-layer until the 3D object is completed (Thavornyutikarn et al., 2014; Mota et al., 2015).

Although a variety of material can be used to produce FDM scaffolds, polymer or composite-based
scaffolds are the most investigated. A PCL-HA composite was the first scaffold produced using
the FDM technique by Hutmacher et al. (Hutmacher, 2000). Later on, different scaffolds were
printed using PCL, and in 2009, PCL scaffolds fabricated via FDM were approved by FDA for
craniofacial applications (Low et al., 2009). In addition, in 2010 PCL and PCL-TCP bi-layered
constructs were investigated for the repair and regeneration of osteochondral defects (Ho et al.,
2010).

The use of FDM technique allows the manufacture of interconnected porous scaffolds with an
extremely reproducible architecture, with no need of solvents, and at a quite low maintenance costs
(Kalita et al., 2003). However, the major limitations of this strategy are: i) the use of materials in
the form of filament with specific diameters, and ii) the effect that the high operating temperatures
(sometimes up to 280°C) can have on the raw material properties (Sung-Hoon et al., 2002;
Thavornyutikarn et al., 2014; Carneiro et al., 2015).
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3.4.1.4 Powder-based three-dimensional printing

Three-dimensional printing (3DP) is an ink-jet printing technology, developed at MIT (Cambridge,
MA) in 1989 (Sachs et al., 1992). It is used to produce complex 3D solid objects by jetting a liquid-
based binder onto a bed of loose powder. 3DP technology has been largely used to create 3D tissue

substitutes from a wide range of materials (Bose et al., 2013).

Although the first published study using this technique was about the use of a mixture of PLGA
and NaCl (Kim et al., 1998), bioceramics such as HA, bioactive glasses, TCP, but also polymers
and hydrogels have been then processed using 3DP technology (Leukers et al., 2005; Seitz et al.,
2005; Butscher et al., 2011). Among the different AM methodology, 3DP has been considered a
versatile technique, which became popular for the production of scaffolds for bone tissue

engineering applications (Bose et al., 2013).

For the manufacture of medical devices the main advantages of this technology derive from the
possibility to fabricate 3D custom substitutes with defined design, controlled and interconnected
porosity, with a wide range of materials, and also without the contamination problems related to
the use of toxic solvents (Leukers et al., 2005; Detsch et al., 2011; Bose et al., 2013). However,
process parameter optimisation, appropriate binder selection, and removal of the loose powder after
printing are important features that need to be considered for the final success of the printed parts
(Butscher et al., 2012). All these parameters will be analysed in major detail in the next section
(3.4.2).

The key parameters together with advantages and disadvantages of the AM techniques mostly used
for TE scaffold fabrication are summarised in the Table 3.9. Indirect 3DP was adopted in this
research project as a method to process bioceramic powders to create 3D structures, and it is

described in greater detail in the next paragraph (3.4.2.1).
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Table 3.9: The four most commonly used AM technologies for the production of bone tissue substitutes

with their advantages (+) and disadvantages (-).

ADVANTAGES (+)/
TECHNIQUE PARAMETERS DISADVANTAGES (-) REFERENCE
(Melchels et al.,
+ High accuracy and good surface finish; 2009: Melchels et
Layer thickness: 25-100 possibility of cell encapsulation; al.. 2010:
SLA um - support structure needed,; Butscher et al
. i utscher et al.,
Resolution: 14-150 um pho_topolymfer nee_ded, p0_55|ble use_of
toxic resins; possible shrinkage during 2011: Mota et al.,
polymerisation.
2015)
(Dalton et al.,
+ No support structure needed; solvent 2009; Swift and
Layer thickness: 75-150 free; fast process; Booker, 2013:
SLS Hm _ - heat transfer generated by the laser; Thayornyutikarn
Resolution; 50-1000 um difficulties to remove trapped powder;
poor surface finish. etal., 2014; Mota
etal., 2015)
(Zein et al., 2002;
Kalita et al.,
+ No support structure needed; no 2003;Leong et
Layer thickness: 50-750 material trapped; solvent free; al., 2003; Swift
FDM Hm - high temperature needed; mechanical  and Booker,
Resolution: 100-500 um anisotropy;  thermoplastic ~ polymers
needed; filament preparation necessary. 2013;
Thavornyutikarn
et al., 2014)
(Utela et al.,
+ Wide material range; no support )
structure needed; cost-effective; fast 2008; Butscher et
Layer thickness: 50-150 g(r)?\c/::rs]fm(;(.) min for 20 scaffolds); al., 2011;
3DP Hm ’ Melchels et al.,

Resolution: 50-300 um

- poor surface finish; low green body
strength to handle the samples;
depowdering process necessary; powder
can be trapped in the pores.

2012; Bose et al.,
2013; Mota et al.,
2015)
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3.4.2 Indirect powder-based 3DP for bone repair applications

3DP is a powder-based methodology, whose working stages are schematically represented in
Figure 3.14. During the process a liquid binder (usually a water-based solution) is jetted, using an
ink-jet print-head, onto a powder bed of loose material. The particles are then bonded together and

the first 3D layer is produced.

After the printing of this first layer, the powder bed is lowered in the z-direction and a new layer
of loose powder is spread on the top of the previous one in the x-y plane. As in the case of SLS,
also in this process the powder bed acts as a physical support for the printed part. Following a layer-
by-layer approach, each step is repeated until the predesigned object is concluded. The 3D printed
part, technically called a green body or unfinished part, needs then the removal of the loose powder
and depending on the material (i.e. HA, TCP or AW)(Seitz et al., 2005; Santos et al., 2012; Alharbi,
2015) the consolidation of the structure by thermal treatment (Butscher et al., 2011).

It is important to note that before starting the process, and after the material selection, thorough
optimisation of the printing parameters, e.g. layer thickness, powder packing density, powder
wettability, powder flowability as well as binder drop volume, is necessary to obtain a good
outcome (Bose et al., 2013). For any new powder-based material the optimisation process may

require long time; this can be considered one of the major shortcomings of 3DP technique.

Once the material has been chosen, the preparation of the powder (in terms of particle size and
distribution) is a crucial step for the quality of the final 3D printed part, as it will affect the
sinterability, pore dimension, surface area and surface finish (Cima and Cima, 1996; Sachs, 2000).
The powder formulation is the first stage of the 3DP process, followed by the selection of the binder
and possible additives (Utela et al., 2008).

There are different ways of binding the powder; among these the most commonly used are organic
(i.e. polyvinyl) or inorganic (i.e. colloidal silica) liquids and in-bed adhesives (i.e. maltodextrin
(MD) or sucrose) (Cima et al., 1995; Bredt and Anderson, 1999; Feenstra, 2005; Suwanprateeb
and Chumnanklang, 2006). Liquid binders are the most versatile methods as they work with almost
any material (Bredt et al., 2003). However, in the case of organic binders, they can dry in the
printhead, causing the obstruction of the nozzle (Greil, 2000). The use of an in-bed binder is an
alternative method: a powder-based component is added to the starting formulation and it binds the

particles after interaction with a sprayed liquid (Irsen et al., 2006a). Even though, it is a time
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consuming process, as it requires the further step of mixing two materials any time a new powder
IS processed, it reaches higher green body strengths if compared to liquid binders (Utela et al.,
2010).

Figure 3.14: 3D printing iterative phases. (1) The process starts with the spreading of a first thin layer
of powder in the built area (2) and the formation of a supportive powder bed. (3) The ink-jet print-head
sprays droplets of a liquid binder on the powder bed and hence the powder particles start to bond one to

each other, until all the layers of the predesigned CAD file is printed. (4) The roller places the second

layer of powder onto the built area and the process is repeated until the 3D structure is completed and

the extra powder is removed.

Additives are generally added to the raw material to influence the post-processing behaviour and
the resulting properties of the sintered parts (Bose et al., 2002). Particularly, a ceramic powder can
be mixed together with polymeric grains, with the same or different particle sizes (Utela et al.,
2010). The addition of polymeric material, which will burn out during the heat treatment, will
produce a ceramic structure with a degree of porosity and a level of interconnectivity that depends
on the percentage as well as grain dimensions of the porogen (Seitz et al., 2005; Vorndran et al.,
2008).
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Regarding the printing parameters, the layer thickness, which depends partially on the material
particle size, should be a compromise value to avoid i) binder penetration and over spreading (in
the case of very thin layers), and ii) high saturation and difficulties for the powders to bond with
possibility of displacement (in the case of too thick layers) (Tarafder et al., 2013). The powder
packing density is the density of powder that the roller spreads in the powder bed. If the resulting
layer is not homogenous, specimen resolution and shape of the geometry can be compromised
(Gibson et al., 2014). The flowability of the powder plays a crucial role during the spreading phase,
as it defines the spreading capability of the material (Schulze, 1995), but also during the
depowdering process, which will be clarified later on in this paragraph (Butscher et al., 2011). As
the final resolution is usually at least twice the dimension of the powder particle size (Vacanti et
al., 2001), using fine powder is convenient to achieve high resolutions. However, dry and fine
particles tend to agglomerate causing poor flowability, hence, a compromise between flowability

and resolution is necessary (Butscher et al., 2011).

Furthermore, another important aspect for the printing accuracy is the powder wettability. This
parameter is generally related to surface energy and chemistry of the particles (Spori et al., 2008).
In particular, low wettability generates brittle binder-powder composites, resulting in low green
body strength, whereas high wettability causes widespread of binder limiting the printing resolution
(Hogekamp and Pohl, 2004; Butscher et al., 2012). The green strength is another essential
requirement of printed objects. It defines the mechanical properties immediately after the printing
process and before the sintering treatment. An appropriate green strength is important to maintain
handle ability, and to meet the final mechanical properties of the 3D printed part, since it influences
the strength after the sintering treatment (Cox et al., 2015). The depowdering process, which can
be either manual or mechanical, is the last step of the printing procedure, and it is carried out to

remove the loose powder from the printed specimens (Butscher et al., 2011).

Subsequently, a heat treatment needs to be performed on the green bodies to burn out the binder
and any additives used, and consolidate the structure. Sintering is the most important post-
processing step, which provides an increased mechanical strength to the 3D printed object. Every
material has specific sintering temperature, usually defined as the temperature where the maximal
densification rate is being reached (Palmour et al., 2013), although many factors such as grain size,

specimen dimensions, heating rate, phase transformations, liquid phase formation and porosity can
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affect the sintering properties of a material and its densification behaviour (Muralithran and
Ramesh, 2000; Dorozhkin, 2010).

Additionally, during the sintering process the composition (i.e. phase changes), mechanical and
structural properties of a material are also influenced (Butscher et al., 2011). In most cases, heat
treatment allows a structure to retain its shape, even though the process can cause a significant
degree of sample shrinkage (Dorozhkin, 2010). This phenomenon can be compensated by scaling
the initial CAD model according to a pre-determined correction factor (Shanjani et al., 2010).
Figure 3.15 shows the particles distribution before and during the sintering treatment and the

resulting shrinkage behaviour.

Figure 3.15: Schematic representation of the sintering mechanism: a) particles free flowing, b) neck
formations and c) voids shrinkage (reprinted by (Dorozhkin, 2010)).

3.4.2.1 3D printed ceramic-based scaffolds

The use of 3DP technology has been widely documented for BTE applications, mainly processing
bioactive ceramics, such as tricalcium phosphates, bioactive glasses and HA (Leukers et al., 2005;
Seitz et al., 2005; Tarafder et al., 2013; Cox et al., 2015).

In recent years, several composite materials have been investigated for 3DP scaffold production
using the combination of different ceramics or ceramics and polymers (Gbureck et al., 2007;
Khalyfa et al., 2007; Will et al., 2008). In 2005 Seitz et al. stated the applicability of 3DP
methodology for the fabrication of a porous HA scaffold with internal channels between 450 and
570um (Seitz et al., 2005).

In 2010, Warnke et al. evaluated the biocompatibility of HA 3D printed scaffold and their ability
to promote and support human osteoblast proliferation. Interestingly, their results found the
superior biocompatibility of HA scaffold compared to the commercial available Geistlich BioOss®,
a bone substitute material derived from the mineral portion of bovine bone. (Warnke et al., 2010).
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Later on, Tarafder et al. developed a 3D printed and microwave sintered B-TCP, with a high degree
of interconnectivity along the structure (Figure 3.16) (Tarafder et al., 2013). In another study,
conducted in 2015 by Tarafder et al., the properties of B-TCP scaffolds were improved, doping the
main composition with SrO and MgO. A significant increase in mechanical strength was achieved
as well as higher osteoid, bone and haversian canal formation, which are essential conditions for

early wound healing and mineralisation in vivo (Tarafder et al., 2015).

1000 um 750 um 500 m

4

2488

470 pm 350 pm 230
R

Figure 3.16: 3D printed TCP scaffolds sintered at 1250 °C using a microwave furnace and the resulting

surface morphology (inset) (Tarafder et al., 2013).

In addition to in vitro experiments, Habibovic et al. demonstrated how 3D printed brushite
(dicalcium phosphate dihydrate) and monetite (dicalcium phosphate anhydrous) cements, with a

controlled open porosity, enhance in vivo osteoconduction (Habibovic et al., 2008).

More recently, Inzana et al. fabricated a 3D printed collagen-calcium phosphate composite via
inkjet printing, and afterwards they assessed the healing performance using a critically sized murine
femoral defect. After 9 weeks of implant the bone substitutes confirmed their osteoconductive
properties (Inzana et al., 2014). Furthermore, according to in vivo studies, 3D printed ceramic
scaffolds hold great potential for bone tissue repair, showing invaluable biocompatibility and
osteoconductivity (Habibovic et al., 2008; Will et al., 2008; Inzana et al., 2014).

In Table 3.10 is reported a summary of mechanical and biological properties of the most

investigated 3D printed ceramic-based substitutes intended for bone tissue applications.

In conclusion, despite the disadvantages of powder-based 3DP mentioned in this paragraph, and

also described in Table 3.10, the broad range of biomaterials and the variety of designs that are
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achievable with this technology makes it a promising and versatile approach for custom medical

device production.

Table 3.10: Mechanical and biological properties of some ceramic-based 3D printed scaffolds.

: Sinterin Mechanical . . .
Material ring . Biological properties Reference
condition properties
Cells were seeded on the scaffolds
compressive strength: ~ and cultivated under static and (Leukersetal,
HA 1250°C/2h  21.2+2.2 MPa (dense  dynamic setups. This last method 2005; Seitz et
part) showed better results with a deep cell al., 2005)
proliferation into the HA structure.
compressive strength: ~ Cell viability tests showed superior  (Seitz et al.,
HA 1250°C/2h  21.2+2.2 MPa (dense  biocompatibility of HA scaffolds to  2005; Warnke
part) BioOss® etal., 2010)
compressive strength: | vitro cytotoxic assays showed a
. i i Santos et al.,
B-TCP 1400°C 8.66+ 0.11 MPa good _ceII scaffold interaction, thusl (
(% porosity revealing the scaffolds 2012)
46.0748.52) biocompatibility
B-TCP/ L000°C bending strength: (Bergmann et
Bioglass 14.9 + 3.6 MPa B al., 2010)
bending strength: In vitro tests showed that osteoblast
l300°C/3n  35:22:656Mpa  Cells attach and attain normal (Suwanprateeb
HAJAW . morphology on the surface of the 3D et al., 2009)
(% porosity inted scaffold
30.00+1.50) printed scaffolds.
Brushite ] bending strength: (Habibovic et
5.2 MPa L . .
In vivo implantation of both brushite al., 2008;
and rponetl'Fe scaffolc_Js showed their Klammert et
bending strength: osteoinductive potential.
Monetite  134°C/2h 9 strend al., 2010)
3.9MPa
; . MC3T3-El-cells grew on the
compressive strength:
TTCP/p- 1200°C/6h pl 340 1MPa J scaffolds as adherent cell showing the
TCP 1400°C/6h e increase in ALP activity over the 3
3.9+0.1MPa weeks in culture. (Khalyfa et al.,
2007)
TTCP/ . compressive strength:
CaSO, 1000°C/6h 0.1+0.01MPa i
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Chapter 4.  Novel material design

4.1 Development and rationale of novel bioglass formulations

Bioactive glasses are one of the last glass subgroups that have been explored, revealing as
promising materials for the production of 3D structures for bone tissue repair (Hench, 1999; Jones,
2013; Krishnan and Lakshmi, 2013).

However, since their discovery in 1969 by Hench, there are still several criticisms related to the
clinical use of this class of biomaterials (Hench and Jones, 2015). Firstly, whether or not glass
dissolution products have a positive effect on adult stem cells is still an open debate; secondly, they
have often resulted inadequate when used in load-bearing bone defects, due to their low tensile
strength and fracture toughness. Ultimately, there are no large-scale porous bioactive glasses on
the market, thus their commercial success is limited (Rahaman et al., 2011; Hench and Jones,
2015).

Based on the current state of the art, eight novel silicate, phosphate and borate glass formulations
(coded as NCLx, where x=1,...,8), containing different oxides and in diverse molar percentages,
were initially proposed for this research. Specifically, ions such as Ca, Na, K and Mg were
incorporated in all the glass compositions as they are essential elements for all living organisms,

and they stimulate the cellular and sub-cellular processes of bone formation (Bracci et al., 2009).

Furthermore, trace ions like Sr, Cu, Co or Zn are recognised for their anabolic effects in bone
metabolism (Nielsen, 1990; Saltman and Strause, 1993; Meunier et al., 2002; Pan et al., 2010).
AQ20 was selected since it is known to provide antibacterial effects if used as doping agent (Luo
et al., 2010; Balagna et al., 2011). Sr, which can accumulate in bone due to its chemical similarity
to Ca, has been widely investigated for its therapeutic potential in bone metabolism, and also for
its property of reducing the incidence of fractures in osteoporotic patients (Gentleman et al., 2010;
Wu et al., 2011; Tarafder et al., 2015). Cu and/or Zn ions were incorporated for the importance of
these elements in maintaining the bone matrix and bone density (Cousins, 1998); additionally, Cu
helps collagen formation and plays an important role during angiogenesis, and Zn shows anti-
inflammatory effects (Hu, 1998; Rodriguez et al., 2002; Lai and Yamaguchi, 2005; Lang et al.,
2007; Finney et al., 2009; Gerard et al., 2010; Wu et al., 2013). CaF> has been considered a

promising network modifier since it has been demonstrated that F-doped bioactive glasses enhance
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the formation of fluorapatite, which is chemically more stable than biological HA (Brauer et al.,
2010). Finally, Al and Fe were selected in order to increase the mechanical strength of the glasses
(Hoppe et al., 2011; Sharma et al., 2012).

The molar compositions, along with the rationale and innovative characteristics of the novel

materials with respect to previously developed glass formulations, are reported in Table 4.1.
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Table 4.1: Molar composition and rationale of the novel glass formulations.

CODE COMPOSITION (mol%o) RATIONALE REFERENCE
Aim: to develop a material with osteogenic properties, mainly determined by ~ (Yamaguchi, 1998;
the presence of a high amount of silica. Silver et al., 2001;
Network former: SiO». Xynos et al., 2001
40Si0, - 5P;0s - BNa,0 - “clecteddopants - _ Zreiqat et al., 2002;
10Ca0 81,0 EMAO Caand P: main components of biological apatite; Dietrich et al. 2009:
NCL1 - T g - Na, K and Mg: essential elements for all living organisms, which stimulate the etneh etat., '
5Mn0O2 - 5Zn0 - 10SrO - 1CuO  cellular and sub-cellular processes of bone formation; Gentleman et al.,
- 1Bi,05 - 1TeO, - 1V,0s (Zn + Mn + Cu): enhance the osteointegration of the material; 2010: Wu et al.,
SrO reduce the incidence of fractures in osteoporotic patients; 2011: Sansone et al.,
V: benef|C|aI effects during the normal development and metabolism of the 2013: Tarafder et al.,
skeleton;
(Te + Bi): improve the sinterability of the material. 2015)
Aim: intended to develop a load-bearing material with osteogenic properties
and tailored degradétion rate. (Abou Neel et al,
) Network former: SiOs.. y
45510, - 5P,0s - 2B.0Os; - Selected dopants 2005; Demling,
4N2;0 - 15Ca0 - 3K:0-8Mg0  p, . B,0, MgO, and MnO;: regulate the degradation process of the glass; ~ 2009; Hoppe etal.,
NCLZ2 - 2MnO: - 5Al:0s - 2CaF. - B,0;, CaO, CaF,, Na,O and P,Os: help the acellular bioactivity; 2011; Chenetal,,
5Fe;03 - 1Li,O - 1MoQO; - Caand P: as for composition NCL1; 2012; Sharma et al.,
1Se0; - 1Cr,03 Na, K: as for composition NCL1; 2012; Whitney and
Al, Fe and F: increase the mechanical properties; Rolfes, 2013)

Se: improve the healing process;
Li, Mo, Cr: known as trace elements in the human body.
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CODE  COMPOSITION (mol%o) RATIONALE REFERENCE
Aim: to develop a material with improved degradation rate and appropriate level
of bioactivity as well as mechanical properties.
Network former: B,Oa. (Carlisle, 1970;
25Si0; - 2P:0s - 35B;03 - Selected dopants Carlisle, 1981;
6Na;O - 7Ca0 - 5K,0 - 5MgO  Si: essential for metabolic process, bone tissue formation and calcification Singh and Bahadur,
NCL3 - 2Al,0; - 3TiO; - 5Fe,0; - C@&andP:as for composition NCL1; 1999: Singh and
1Li;0 - 1BaO — 1C00 - 1V,0, & K and Mg: as for composition NCLL; Srinivasan, 2010;
V: beneficial effects during the normal development and metabolism of the
- 1Cr,03 skeleton: Hoppe et al., 2011;
Co: influences the thermal stability, sinterability and microstructure Vyas et al., 2015)
(Al + Fe + Li + Ti): responsible for the material strength;
Ba and Cr: known as trace elements in the human body.
(Yamaguchi, 1998;
Aim: to develop a material with tailored degradation rate and osteogenic effects.  p1arion et al., 2005:
Network former: B,Os. Lang et al., 2007:
. Selected dopants
20Si0O, - 5P,05 - 40B,0;s - Si: as for composition NCL3: Bonnelye et al.,
NCL4 5Na,0 - 5Ca0 - 5K;0 - 5MgO Ca and P: as for composition NCL1; 2008; Liang et al.,

-5Zn0 - 5Sr0 - 2CaF; - 1CuO
- IMoQO;3 - 1Se02

Na, K and Mg: as for composition NCL1; 2008; Fuetal.,

Zn: plays anti-inflammatory role and helps bone formation; 2010c; Gentleman
Sr: as for composition NCL1; et al., 2010; Pan et
CaO, CaF;, Na;O and P,Os: help the acellular bioactivity; al., 2010; Hoppe et

Cu, Mo and Se: known as trace elements in the human body. al., 2011)
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CODE

COMPOSITION (mol%)

RATIONALE

REFERENCE

NCL5

45P,0s - 7Na,O - 10CaO -
6K.O0 - 10MgO - 5ZnO -
5MnO; - 10SrO - 1TiO;
1Sh20s

Aim: to develop a resorbable glass with controlled degradation rate.
Network former: P.Os.
Selected dopants

Ca: involved in bone metabolism, enhances osteoblast proliferation,
differentiation and ECM mineralisation;

Na, K and Mg: essential elements for all living organisms, which
stimulate the cellular and sub-cellular processes of bone formation;

(MgO, TiO2, MnO; and SrO): regulate the degradation rate of the
glass

Zn: as for composition NCL4;
Sr: as for composition NCL1.

(YYamaguchi, 1998;
Maeno et al., 2005;

Barrére et al., 2006; Lang

et al., 2007; Bonnelye et
al., 2008; Abou Neel et
al., 2009a; Gentleman et
al., 2010; Leonardi et al.,
2010; Hoppe et al., 2011;

Novajra et al., 2011,

Vitale-Brovarone et al.

2011; Lakhkar et al.,
2013)

NCL6

8Si0; - 50P,0s - 10B;0s -
8Na,O - 10CaO - 3K;O -
10MgO - 2MnO; - 2CaF; -
1CuO - 1Co0 - 1Cr,05

Aim: to develop a resorbable glass with controlled degradation rate,
and improved mechanical strength.

Network former: P2Os.
Selected dopants
Si: as for composition NCL3;

B: stimulates bone formation; also, B>Os helps the bioresorbability of
the glass;

Ca: as for composition NCL5;

Na, K and Mg: as for composition NCL5;

(Mg + F): improve the microhardness of the glass;
(Cu + Co +Cr): enhance the sintering ability.

(Saranti et al., 2006; Sun
et al., 2010; Hoppe et al.,

2011; Mourino et al.,
2012)
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CODE COMPOSITION (mol%o) RATIONALE REFERENCE
Aim: intended to develop a material with antibacterial properties, mainly
determined by the presence of silver oxide, and a good level of
bioactivity.
Network former: SiO.. (Vrouwenvelder et al.,
50SiO, - 5P,0s - 15Na,O - Selected dopants 1994; Valappil et al.,
NCL7  15Ca0 - 2Kz0 - 3MgO - 5Ag0  Ca and P: main component of biological apatite; 2007; Luo et al., 2010;
- 2TiO; - 2Fe;03 - 1Cu0 Na, K and Mg: essential elements for all living organisms, which  Balagna et al., 2011,
stimulate the cellular and sub-cellular processes of bone formation;
o ) Hoppe et al., 2011)
Ag: exhibits inhibitory effects on bacteria growth;
Ti, Fe and Cu: enhance osteoblast proliferation and activity;
(Ti + Fe): increase the mechanical properties of the material.
Aim: intended to develop a material with osteogenic properties and
45Si02 - 5P:0s - 2B:0s - tailored degradation rate for non-load bearing applications.
’ g e g ) g.app (Murphy et al., 2010;
10Na,O - 15Ca0 - 5K,O - Network former: SiO..
Hoppe et al., 2011;
5MgO - 5MnO, - 1ZnO - Selected dopants
NCLS8 Chen et al., 2012;

1Fe, O3 - 1SrO - 2.5CaF; -
0.5CuO - 0.5C00 - 0.5M00s -
0.5Se0; - 0.5Cr,03

P.0s, B,O3, MgO, and MnO.: as for composition NCL2;
B.0s;, Ca0, CaF,, Na;O and P,0s: as for composition NCL2;
Na, K, Mg: as for composition NCL1

Zn, Sr, Cu, Co, Mo, Se and Cr: known as trace elements in the human
body.

Whitney and Rolfes,
2013)
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Chapter 5.  Experimental methods

5.1 Research approach

In order to obtain gradual confirmation of the feasibility of the main aim of this study, the overall

research project was developed through three sequential stages:

1) glass powders preparation and characterisation;

i) bioceramic pellets preparation and characterisation (dense materials);

iii) 3D printed bioceramic structures preparation and characterisation (porous materials).

An overview of the experimental work carried out during each phase is reported in Table 5.1.

Starting with the production of the new glasses (described in paragraph 5.2), this chapter deals with
the material processing (reported in paragraph 5.3), and the characterisation methods performed

during each stage (presented in paragraph 5.4).

5.2 Material production

The novel glasses were produced and supplied by Glass Technology Service (GTS) Ltd (Sheffield,
UK) along with AW that will be used as comparison material. Briefly, the individual components
(reported in Table 4.1) of each formulation were weighed out and then mixed together to obtain a
uniform blend ready to be processed. Subsequently, the glass mixtures were melted in platinum

crucibles for times and temperatures, which varied according to the composition.
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Table 5.1: Overview of the experimental work performed on: glass powders, bioceramic pellets and 3D printed bioceramic structures.

MATERIAL EXPERIMENTAL WORK COMMENTS CHAPTER

Crystallinity (XRD)

Morphological characterisation (SEM)
Thermal properties (HSM)

pH variation in dH,0O

lonic release (ICP-OES)

In vitro cytotoxicity assessment

During the first stage of the work the
processing and characterisation of all the 6
novel glass formulations were performed.

Glass powders

Sintering condition optimisation

Morphological characterisation (SEM) In the second stage the processing to

bioceramic pellets and the subsequent

Bioceramic pellets Shrinkage evaluation characterisation of the sintered dense 6
Crystallinity (XRD) structures was carried out.
Mechanical properties assessment
On the basis of the physico-chemical,
: . . L mechanical and biological characterisation
Bioceramic pellets In vitro bioactivity tests (SBF) results, only three formulations were 6
selected for bioactivity tests.
Sintering condition optimisation
Morphological characterisation (SEM)
Shrinkage evaluation fln theI I?_st part of_the IWorkl, trtwedthree
3D printed bioceramic Porosity and micro-architecture (microCT) prgégél;e% |t%n; (?rfl:/sI%uS grsiﬁtztc:j zca\:‘\:%rlzls v
scaffolds evaluation (via a powder-based 3DP technology), and
Mechanical properties assessment subsequently characterised.

In vitro cytotoxicity assessment
In vitro antibacterial tests
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5.3 Material processing

5.3.1 Glass powders

Glass frits of all the materials were ground in a one-bowl zirconia ball milling machine (Planetary
Mono Mill Pulverisette 6, Fritsch GmbH, Germany) using a rotational speed of 400rpm for 30 min
(10 min each repetition). The obtained powders were then sieved using a mechanical sieve shaker
(Impact Test Equipment Ltd, UK) to have a final particle size about 20um and below 53um
(Boccaccini et al., 2007).

5.3.2 Bioceramic pellets

Dense bioceramic pellets were processed from fine glass powders, previously sieved as described
in section 5.3.1. Firstly the raw material (0.35+0.01g) was carefully mixed together with
isopropanol solution (Sigma-Aldrich, UK) in the proportion 3:1 (w/w), until the particles bound
together and a paste-like texture was formed. Then it was left to dry for about 40s at room
temperature. Afterwards, the mixture was placed into a 10mm cylindrical die and cold pressed
using an automatic hydraulic press (Specac-Atlas™ 8T, Specac Ltd., UK) for 2 minutes under a

load of 1 tonne (Figure 5.1).

Figure 5.1: Specac Atlas 8T automatic hydraulic press (http://www.specac.com/).

Subsequently, the pressed pellets, also called green bodies, were treated through a sintering process
to consolidate their structure. As reported in chapter 2, the sintering temperature is usually defined
as the temperature where the maximal densification rate is being reached (Palmour et al., 2013).
Hence, the pressed green bodies were placed in a furnace (Carbolite 1200 CWF, Carbolite GmbH,
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Germany) and heat treated according to the results derived from the hot stage microscopy analysis

that will be described in section 5.4.2.

5.3.3 Indirect 3D printed bioceramic substitutes

Figure 5.2 schematically represents the three different phases of the entire 3D printing fabrication

process: i) pre-processing, ii) processing and iii) post-processing, which are described in detail in

the following paragraphs.

GLASS GRINDING

SIEVING
(PARTICLES <53 um)

MALTODEXTRIN
GRINDING

SIEVING
(PARTICLES <53 um)

POWDERS MIXING

3D PRINTING

CAD FILE

LIQUID BINDER

GREEN PARTS

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

DEPOWDERING

SINTERING

PHYSICO-CHEMICAL
CHARACTERISATION

MECHANICAL
CHARACTERISATION

BIOLOGICAL
CHARACTERISATION

Figure 5.2: Flow chart describing the three stages of the 3D printed scaffold fabrication: pre-

processing (yellow), processing (blue) and post-processing (green).
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5.3.3.1 Powder blend preparation

Once received from GTS Ltd., the starting materials were processed to glass powders according to
the procedure reported in the paragraph 5.3.1. As the particle size affects the printing results as
well as the properties of the final parts (Sachs et al., 1992; Bredt et al., 2003; Utela et al., 2008;
Bergmann et al., 2010; Butscher et al., 2012; Farzadi et al., 2015), for this study the range of

particle diameters was chosen between 0 and 53pum.

Subsequently, each powder formulation was mixed together with MD (Oneon, Bristol, UK) in the
same range of particle size. Before the printing process, to achieve a homogeneous mixture, the
two base materials (70wt.% of glass powders and 30wt.% of MD) were blended for 1h using a
roller mixer (Stuart, SRT6) (Figure 5.3).

Figure 5.3: Powder blend preparation using a roller mixer.

MD was used as an in-bed and solid binder to improve the printing behaviour of the powder, and
to react with the jetted liquid binder, enhancing the adhesion between the glass particles but also

leading to a porous final structure.

The liquid binder (zb®60), which consists of a water-based solution, was purchased from EMCO
Education Ltd, UK.

5.3.3.2 Design of 3D structures

Two different geometries were drawn using Autodesk Inventor® (Autodesk, USA): a cylindrically
shape with height of 2.25mm and 10.35in diameter, and a bar shape with height 5mm, width 6mm
and length 40mm, as reported in Figure 5.4.

The CAD files were then saved in .stl format, and processed by the ZCorp 310 software, prior to
printing.
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10,35 mm

Figure 5.4: CAD design of the 3DP: a) cylindrical and b) bar shape structures.
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5.3.3.3 Indirect powder-based 3D printing: the process

A commercial ZPrinter® 310 Plus 3D printer (Z Corporation, USA), illustrated with all its main
components in Figure 5.5, was used to print all the samples of this research study. Before starting
the process, the blended powder was poured into the build area and pressed to get a firm layer.
Once a flat and compact surface was obtained, the feed piston was moved up to the same level as

the build piston.

Binder Bottle (on
the Top Cover)

Gantry

Build Piston
- —

: Control Panel |
I Overflow Bin
Waste Bottle
L ]
= o

Figure 5.5: Commercial ZPrinter® 310 Plus 3D printer (Z Corporation, USA) and its main components

(www.zcorp.com).

The printing parameters were adjustable through the Z310 Plus software (graphic interface is
shown in Figure 5.6). They were selected on the basis of the optimisation process developed and
described by Alharbi (Alharbi, 2015), and maintained the same for all the powder blends (see Table
5.2).
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Figure 5.6: Graphic interface of ZPrint 7.10 software.

Table 5.2: Powder blend settings for ZPrinter® 310 Plus 3D printer.

Layer thickness (mm) Saturation level Binder/volume ratio Bleed compensation
Shell Core Shell Core X Y z
0.1
100% 100% 0.21 0.10 Off Off Off

After the printing process was completed, which usually took approximately 10min to print 20
cylindrical scaffolds and 12min to print 10 bars (see CAD model in Figure 5.4), the green parts
were left to dry overnight before being removed from the build area. Once taken out, any loose
powder still present on the specimens was cleaned out using an air blower. The green bodies, with
a relatively weak and delicate structure were thermally post-processed through a sintering
treatment, using the same equipment described in section 5.3.2. A number of different heat
treatments, according to the results derived from the hot stage microscopy (section 5.4.2), were
evaluated to burn out the organic binder from the green bodies and to sinter the glass powders,
obtaining mechanically competent porous structures.
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5.4 Characterisation methods

Various techniques were applied to characterise firstly the glass powders, then the bioceramic
pellets and finally the 3D printed structures. These include: hot stage microscopy (HSM) to
evaluate the sintering parameters, scanning electron microscopy (SEM) to assess particles and
structure morphology, and X-ray diffraction (XRD) to investigate the crystalline composition.
Tests in simulated body fluid (SBF) were also performed to assess the bioactive behaviour of the
new materials. Furthermore, pH variation analysis as well as ionic release in different liquid
solutions and at specific time points were measured. Additionally, the mechanical and biological
properties in different conditions were evaluated. Details of these techniques and their experimental
settings are given in the following sections.

5.4.1 X-ray diffraction analysis

To investigate the presence of crystalline phases in the novel materials, XRD analysis was
performed using a PANalytical X'Pert Pro MPD, powered by a Philips PW3040/60 X-ray generator
fitted with an X'Celerator detector. Diffraction data was acquired by exposing powder samples to
Cu-K, X-ray radiation, which has a characteristic wavelength (A) of 1.5418A. X-rays were

generated from a Cu anode supplied with 40kV and a current of 40mA.

The data were collected over a 28 range between 5-80° 260, with a step size equal to 0.0334°, a
counting time per step of 200 seconds using the scanning X’Celerator detector. Fixed anti-scatter
and divergence slits of 1° were used together with a beam mask of 10mm. All scans were carried

out in ‘continuous’ mode.

Phase identification was carried out by means of the PANalytical X'Pert HighScore Plus©
software, in conjunction with the ICDD Powder Diffraction File 2 Database (2004), ICDD Powder
Diffraction File 4 - Minerals (2014) and the Crystallography Open Database (February 2013;

www.crystallography.net).

5.4.2 Hot stage microscopy

The sintering ability of the novel glass powders was determined by using hot stage microscopy
(Misura®, Expert System Solutions, Italy). This technique allowed the quantification of the
sintering interval by measuring the variation of the sample dimensions during the heating treatment
(Bretcanu et al., 2009).
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The test was performed in air to approximate the conditions inside the furnace chamber during the
heating process, which develops with a rate of 10°C/min up to 1200°C. The samples for HSM
analysis were prepared by manually pressing the glass powders into a small cylindrical die
(2x3mm) and placed on a 10x15x1 mm alumina support. During the process the specimens were
observed by a video camera and images of the changing sample profile were acquired up to 1450°C.
Afterwards, the shrinkage—temperature curves were analysed and the shrinkage at different
temperatures was calculated from the reduction of the sample dimensions, using the following
formula:

Ao —Ar

100
4,

shrinkage (%) =

where A, (mm?) is the area of the sample at instant (t — 1) and Ay (mm?) is the area at instant
t.

5.4.3 Morphological and microstructural characterisation
5.4.3.1 Scanning electron microscopy

To assess the glass particle morphology and the bioceramic pellet surface, microstructural
observations were determined by scanning electron microscope, (Philips XL30 ESEM FEG, which
is fitted with a Rontec Quantax system for the EDS analysis). Furthermore, morphological analysis
were conducted before and after the sintering process of the specimens to determine if the heat
treatment had any detrimental effect on bulk structure. The formation of neck struts and appropriate

densification level were examined.

Before the imaging acquisition, the specimens were sputtered with a thin layer of gold
(approximately 10nm, sputter time 40s at 40mA), and afterward analysed. All the images were

taken at an operation voltage of 20 kV, and working distance between 5 and 10mm.
5.4.3.2 X-ray microtomography

Scaffold architecture and structural interconnectivity was also investigated by micro-computed
tomography (micro-CT; XRadia/Zeiss VersaXRM-410). The scanner was set at a voltage between
60 and 80kV and a current of 248A, and the samples were scanned with an isotropic voxel size of
2.4um by approximately 1600 slices covering the sample height. Afterward, the scanned 2D slices
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were reconstructed to give 3D views of the entire structure using Avizo Fire software (Durham
University, UK).

5.4.3.3 Analysis of the porosity

The open porosity of the samples, which represent the percentage of pores that are penetrated by
an immersion liquid or that are connected with the atmosphere, was measured according to the BS
EN 623-2:1993 using Archimedes method with the following formula:

(my; — ml) X
(my; — m3)

Samples were weighed by means of a density determination kit in an analytical balance (Kern

Open porosity (%) =

ABT220-5DM). The dry weight of the samples was recorded as m. Then, they were immersed in
distilled water to force the liquid to fill the pores of the samples until no bubbles emerged from the
water baker and the submerged mass (m3) was measured. Afterward, the specimens were taken

out and re-weighed to calculate the wet mass (m,) in air.

Five specimens for each group were tested to calculate the average porosity. The results were

expressed as mean + standard error of the mean (SE).

The total porosity, given by the sum of the close and open porosity, was measured according to the
formula:

ms

x 100
p Vs

Total porosity (%) =1 —

where mg is the dry mass of the sample, p is the density of the material and V; is the volume of the
sample. Five specimens for each group were tested to calculate the average porosity. The results

were expressed as mean * standard error of the mean.

The density of the material in turn was calculated through the pycnometer method (ISO 1183-
1:2004), using the formula reported below:

m;

p=pl(m1+ my; — ms)

where p; is the density of the liquid, m;is the mass of the liquid in the pycnometer filled completely
with liquid, m, is the mass of the sample material and m5 is the mass of the sample and liquid

together in the pycnometer. The average of five specimens for each composition was considered.
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5.4.4 pH variation

A pH meter (Mettler Toledo Ltd., UK) was used to measure the effect induced by the novel glass
compositions on the pH variation. The meter was calibrated with standard solutions (at pH 4 and
7) every time before use. Specifically, the pH values induced by raw glass powder, considered the
most critical scenario, were measured daily up to 7 days to verify its confinement within a
“‘physiological range’’. Un-sintered glass powders with a concentration of 10 mg/ml were
immersed in deionised water (\Veolia Water Technologies, UK) and incubated under an atmosphere
of 5% CO. and 95% air at 37°C. Two different tests were performed: i) an extreme condition,
without changing the solution, and ii) a more realistic one to simulate the physiological fluids

exchange, refreshing the solution every 48h.

5.4.5 lon leaching evaluation

In order to evaluate the ionic release potential of each composition, raw glass powders were
immersed in deionised water (Veolia Water Technologies, UK) at a concentration of 10 mg/ml and
stored in static condition at 37°C. After each storage period, the specimens were removed via

filtration, and filtrates retained for ionic content analysis.

The ion concentration was measured using an inductively coupled plasma optical emission
spectrometer (ICP-OES) Specto-Ciros-Vision (Sheffield University, UK), which allows
simultaneous multi-element analysis following the calibration of the instrument by introduction of

standards of known concentrations of the elements of interest.

5.4.6 Shrinkage evaluation

In most cases, heating treatments cause the shrinkage of ceramic samples. Specifically, the
structure retains its shape producing a significant degree of reduction of its dimensions. Hence,
dimensional changes of the sintered specimens were carefully evaluated. The following formula
was applied to calculate the volumetric shrinkage that occurred during the sintering treatment of

bioceramic pellets and 3D printed structures:

V2

Volumetric shrinkage (%) = x100
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where V; (mm?3) is the volume of the sample before sintering and V, (mm?3) is the volume of the
sample after sintering. To measure the dimensions of the specimens a digital caliper (accuracy of
+0.02mm) was used (Mitutoyo Ltd, UK).

5.4.7Mechanical characterisation
5.4.7.1 Compressive test

The mechanical properties of the sintered pellets were measured using a Tinius Olsen, universal
testing machine (Figure 5.7). In this study, cylindrical samples were prepared with diameters of

about 8.5+0.5 mm and a thickness of about 2.5+0.3mm.

Five pellets for each composition were evaluated at room temperature and in dry conditions,
according to previous work (Prakasam et al., 2015). For all the experimental tests, the machine was
equipped with a 25 kN load cell and the cross-head speed was set at 1mm/min. Since the specimens
were too hard, they did not reach the failure point, hence the stress (oc) after the 20% of the initial
deformation (ec) was calculated rather than the compressive strength of the dense pellets. The
compressive modulus (E,) was determined as the slope of the initial linear part of the stress-strain

curve (C773, 1988). All the results were expressed as mean = SE.

b .125KS

Figure 5.7: Compressive test performed using a Tinius Olsen universal testing machine; inset shows

the specimen before the test.
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5.4.7.2 Three-point bending test

Regarding the mechanical properties of the 3D printed structures, flexural strength and flexural
modulus were determined by a three-point bending test, using an INSTRON 5567 testing machine
(Figure 5.8).

Figure 5.8: Three-point bending test determined by an INSTRON 5567 universal testing machine.

The conditions of the test were performed according to the ASTM C1161 — 13 standard. Beam
shaped specimens with dimensions of 40x4x3mm were produced; the cross-head speed of the

machine was set at 1mm/min, and the support span length at 20mm. A load cell of 1kN was used,

Ik

specimen

A A

+ >

L= support span

and five replicates were tested (Figure 5.9).

Figure 5.9: Schematic representation of the three-point bending test conditions.
The flexural strength (o) was calculated according to the following equation:

_ 3PL
"~ 2bd?
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where P represents the applied load (N), L (mm) is the support span length, b (mm) is the sample
width and d is the depth (mm). The flexural modulus (E) was calculated according to the
following equation:

L*m
5 = tha

where L (mm) represents the support span length, m (N/mm) is the gradient (i.e. slope) of the initial
linear part of the load deflection, b (mm) is the sample width, and d (mm) is the sample depth. All

the results were expressed as mean + SE.

5.4.8 In vitro bioactivity evaluation

In order to assess the bioactive potential of the novel materials, raw glass powders were processed
as sintered pellets (following the procedure described in section 5.3.2) and then soaked in 10 ml of
a simulated body fluid (SBF) solution prepared according to Kokubo’s protocol (Kokubo and
Takadama, 2006).

The specimens were incubated at constant temperature (37°C) for various time points (1, 3, 7, 14
and 28 days), refreshing the solution every 2 days. At the end of each time interval the specimens
were removed from SBF, then abundantly rinsed with deionised water (Veolia Water Technologies,
UK) and dried at room temperature. The pH of the solutions was measured using the equipment
reported in paragraph 5.4.4 and the ion leaching was evaluated according to the procedure
described in paragraph 5.4.5. Furthermore, the structural characteristics and chemical composition
of the upper surface of the samples were investigated by SEM/EDS (experimental set-up described
in section 5.4.3.1). Moreover, the sample solubility was quantitatively assessed by measuring the
weight loss of the immersed pellets after 1, 3, 7, 14 and 28 days of soaking, using an analytical
balance (Kern ABT220-5DM), according to the following formula

My, — M
Weight loss (%) = mM—“fxmo
bi

where My, is the mass of the sample before the immersion and M, is the mass of the sample after

the immersion.

Additionally, to quantitatively evaluate the composition of the precipitates, X-ray photoelectron
spectroscopy (XPS) was performed using Theta Probe (Thermo Scientific, East Grinstead, UK),
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with a micro-focused AlKa X-ray source (1486.6eV), operated with a 400um spot size (100W
power). Survey spectra were collected at a pass energy of 200eV, with the spectrometer operated
in standard (not angle-resolved) lens mode. The results were expressed as the average of three

points of each sample surface.

5.4.9 Biological characterisation

The in vitro cytotoxicity of the novel glass formulations was evaluated via metabolic activity using
the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) colorimetric assay
according to 1ISO 10993-5 (Standard, 2009), firstly on the glass powders and afterward on the 3D

printed scaffolds.
5.4.9.1 Cell culture

Rat calvaria osteoblast (OB) cells at early passages (Figure 5.10), provided by Institute of Cellular
Medicine (Medical School, Newcastle University, UK), were cultured in T75 flasks at 37°C in a
humidified incubator with 5% CO,, using Dulbecco’s Modified Eagle Medium (D-MEM, Gibco®)
supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin and 1% glutamine
(Gibco®). When 70-80% confluent, the flasks were washed twice with 5mL of phosphate buffered
solution (PBS, Lonza) and afterward trypsinised using 1.5mL of trypsin-EDTA (Gibco®) and
incubated for 5 minutes at 37°C, 5% CO». The detachment of the cells from the flasks was
monitored using light microscopy. When the cells were detached, 8.5mL of fresh D-MEM was
added to neutralise the trypsin. The cell suspension was placed in a tube and centrifuged for 5min
at 1200rpm. The supernatant was carefully removed and the cell pellet was re-suspended in an

appropriate amount of media for cell counting using a haemocytometer.

100 pm

Figure 5.10: Morphology of rat osteoblast cells.
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5.4.9.2 Glass powder cytotoxicity

Cells were seeded at a density of 1x10%cells/well in 96-well plates and incubated at 37°C for 24
hours. The glass powders were firstly sterilised using 100% ethanol solution, and then
preconditioned for 24h in D-MEM at three different concentrations (0.1, 1 and 10mg/ml), in order
to stabilise the pH variation due to the ionic exchange process between the powder surface and
medium. The cells seeded on cell culture plate (0 mg/ml) were used as controls. Each condition
was set up in triplicate. After 24 hours of incubation for the cells, two different experiments were

performed:

1) direct method, according to which the pre-conditioned DMEM solutions with the glass powders
were directly added to each well without filtering, diluting or buffering;

ii) indirect method, in which case after 24h of immersion in DMEM, the pre-conditioned glass
powders were filtrated using a 0.22um microbiological filter. The filtrated solutions were then

added to each well for indirect cytotoxicity testing.

The plates were then incubated for other 24h and the cytotoxic effect was measured exposing each
well to MTT solubilisation. The MTT (Sigma—Aldrich, UK) substrate was prepared in a D-MEM
solution at a final concentration of 0.5mg/ml. After each time point, 100 pl of MTT solution was
added to each well and incubated at 37°C for another 4 h. MTT was taken up only by active cells
and reduced in their mitochondria to insoluble purple formazan granules. The medium was then
removed and 100ul of dimethyl sulfoxide (DMSO) was added to dissolve the precipitated
formazan. The absorbance of the solution was evaluated spectrophotometrically at a wavelength of

570nm, and acquired using a Sunrise microplate reader (Tecan Group Ltd., Switzerland).

The absorbance values from three replicates were averaged and statistically analysed using two—
way analysis of variance (ANOVA) followed by Bonferroni post hoc analysis. P-values < 0.05 (*)
were considered statistically significant, whereas P-values < 0.001 (**) were considered very

significant.
5.4.9.3 Invitro evaluation of 3D printed scaffolds

For the in vitro biological characterisation, bioceramic 3D printed scaffolds (8mm diameter and
2mm height) were firstly sterilised in autoclave (10 min at 121°C), and then, similarly to the glass

powders, they were preconditioned for 24h in D-MEM. After the preconditioning time, rat OB cells
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were seeded at a density of 50x10°cells/ml onto the top surface of the scaffolds placed in a 24-well
plate. Once the cells were seeded, they were left undisturbed in an incubator at 37 °C for 1 h to
allow their attachment. Then, an additional 1ml of culture medium was added to each well in order

to provide the right amount of nutrients to the cells. Fresh medium was replaced every 2 days.

The MTT solution was prepared according to the experimental procedure described in section
5.4.9.2. After 1, 3 and 7 days of culture, 1 ml of MTT solution was added to each well and incubated
at 37°C for another 4 h. The medium was then removed and 500ul of DMSO was added to dissolve
the precipitated formazan. Each time point of the assay was carried out in triplicate for both direct
and indirect methods and six samples were tested for each of the two methods. The cells seeded on
the polystyrene standard culture microplate were used as a conventional 2-D control. Also in this
case, the absorbance of the solution was evaluated spectrophotometrically at a wavelength of

570nm, and acquired using the Sunrise microplate reader (Tecan Group Ltd., Switzerland).

The results were reported as the averaged absorbance levels of six replicates. A two—way analysis
of variance (ANOVA) followed by Bonferroni post hoc analysis was performed to determine the
statistical significance of the differences in the absorbance values. P-values < 0.05(*) were

considered statistically significant whereas P-values < 0.001(**) were considered very significant.

Additionally, in order to evaluate the effect of the 3D printed scaffolds on the culture conditions,
the pH of the medium as well as the resulting ionic release, determined by means of ICP-OES,

were measured up to 7 days in culture.
5.4.9.4 Antibacterial tests

The antibacterial potential of NCL7 formulation was assessed through the inhibition zone test (or
also called agar diffusion test) (‘Performance Standards for Antimicrobial Disk Susceptibility
Tests; Approved Standard—Eleventh Edition ', 2012) in collaboration with the Dental School of
Newcastle University (Oral Biology Dpt.), using Staphylococcus aureus provided by Cramlington
Hospital (UK) from an infected joint. The test was performed on: i) glass powder solutions (particle
size 0-53um), prepared using deionised water (concentration 10mg/l), ii) sintered bioceramic
pellets, and iii) sintered 3D printed porous bioceramic scaffolds. For this purpose, a Trypticase Soy
Broth (TSB) was prepared dissolving S. aureus disk in 20ml of TSB, and incubated at 37°C in
order to allow the bacterial colonies to growth. After 24 hours of incubation, 100ul of the

suspension was spread on a pre-dried Trypticase Soy Agar (TSA) plate. Before performing the test,
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all the samples were sterilised in autoclave (121°C for 10min). Afterwards, the following steps

were performed:

i) 10ul of glass powder solutions were added on the top of sterile paper discs, previously placed
aseptically on the bottom half of the TSA plate (Figure 5.11(a));

i) bioceramic pellets were aseptically placed on the top half of the TSA plate (Figure 5.11(a));

iii) 3D printed porous bioceramic scaffolds were aseptically placed on another TSA plate (Figure
5.11(b)).

Once the specimens were positioned, the TSA plates were incubated at 37°C. After 24 hours, the
inhibition zones, if present, were observed as a halo around the samples where bacteria had not
grown. 10ul Erythromycin solution (40mg/ml) was used as a positive control and AW as

comparison material like for all the other experiments of this study. All tests were performed in

triplicate.
AW pellet NCL7 scaffold
AW scaffold
NCL7 pellet 7 b)
X
/)
NCL7 glass AW glass
powder

powder
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AW glass
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Figure 5.11: Staphylococcus aureus cultivation on TSA plates: (a) glass powders (bottom), bioceramic

pellets (top) and (b) 3D porous scaffolds (top).

86



Chapter 6.  Results: raw glass powders and bioceramic

pellets preparation and characterisation

In this chapter the results obtained from the experimental study conducted on the novel raw glass

powders and on dense bioceramic pellets are presented.

6.1 Glass production

Once the individual components (reported in Table 4.1) of each formulation were mixed, they were
melted in platinum crucibles for times and temperatures shown in Table 6.1. Afterwards, the glass
melts were quenched in water, and glass frits (Figure 6.1) were obtained as last stage of the

industrial process.

Table 6.1: Production parameters for the new glass compositions.

Melting Melting Casting
Glass code ) Comments
temperature time temperature (°C)
Very fluid glass could be melted at
0
NCL1 1450°C 2 hours 1425 lower fusion temperature
NCL2 1450° C 2 hours 1495 Very fluid glass could be melted at

lower fusion temperature

1450° C reduced to

(0]
1400° C after 30 Extremely fluid at 1450° C, melting

NCL3 ar;ig;thaenf?rtlhi‘?oosg 2 hours 1350 reduced to 1350° C to cast, still fluid
min
Extremely fluid at 1450° C, melting
1450° C reduced to reduced to 1300° C to cast, still very
NCL4  1300° C after 30 2 hours 1300 fluid.
min High level of evaporation noted and
damage to crucible
NCL5 1500°C 4 hours n/a :g/r(r)lgledratﬁc:(te form a glass at this
NCL6 1450° C 2 hours 1495 Very fluid glass could be melted at

lower fusion temperature
NCL7 1450° C 2 hours 1425 Fluid at 1450° C

Very fluid glass at 1450° C could be

NCL8 1450° C 2 hours 1425 .
melted at lower fusion temperature
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Figure 6.1: Representative image of the as-produced glass frits.

As reported in Table 6.1, during the synthesis process the composition NCL5 could not form a
glass at 1500°C, which was the highest temperature reached by the furnace, so that the number of

glass formulations was reduced to seven.

6.2 Glass powder preparation

The glass frits (Figure 6.2(a)), ground using a zirconia ball mill (Figure 6.2(b)), were sieved to

obtain fine powder in the range 0-53um as shown in Figure 6.2(c).

s Jhans
N = / e

Figure 6.2: a) glass frits, b) ground using a ball milling machine, and then c) sieved to obtain fine glass
powder.

6.2.1 X-ray diffraction analysis

The XRD patterns of the raw materials are reported in Figure 6.3. For NCL1, NCL2, NCL3, NCL4,
and NCL8 the presence of a broad peak, common for glass samples, indicated the completely
amorphous nature of these compositions. The amorphous peak was detected at 26 values between
25° and 30°, and confirmed that NCL1, NCL2, NCL3, NCL4 and NCL8 formulations were free

from any detectable crystalline phase.

Different patterns were detected for NCL6 formulation, which showed a glass-ceramic nature with
a crystalline phase identified as calcium sodium phosphate (ICDD ref. code 01-074-1950).
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Moreover, for the NCL7 composition a silver crystalline phase (ICDD ref. code 04-003-1425) was
detected. Regarding the as-poured AW composition, the presence of hydroxylapatite phase (ICDD
ref. code 01-080-6260) proved the glass-ceramic nature of this material, in agreement with the
material investigation provided by GTS Ltd. Furthermore, a less intense B-wollastonite phase

(ICDD ref. code 04-010-0710) was also observed in this composition.

AW

Intensity (a.u.)

\/\‘ NCL3
\//\ - NCL2
NCL1

10 20 30 40 50 60 70
26 (°)

Figure 6.3: XRD patterns of as-synthesised glass powders (A hydroxylapatite, m g-wollastonite, ¢ silver

® calcium sodium phosphate).

6.2.2 Glass powders microstructure

SEM analysis was performed in order to investigate the raw material microstructures. All the
specimens were firstly gold-coated, and then analysed at an accelerating voltage of 20kV and
working distance about 8.5mm. Figure 6.4(a-h) show the morphology of as-synthesised glass
powders: where non-spherical and irregular shape particles can be observed. All the compositions
were characterised by sharp edge particles. Furthermore, it can be seen that for all the glasses most
of the particles were very fine, (ranging from 20um to 53um), with the presence also of grains

smaller than 10um, which tended to compact producing aggregates.
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Figure 6.4: SEM analysis (magnification 1500x) showing the glass powders morphology: a) NLC1, b)
NCL2, ¢) NCL3, d) NCL4, e) NCLS6, f) NCL7, g) NCL8, and h) AW.
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6.2.3 Hot stage microscopy

Table 6.2 and Table 6.3 summarise the morphological information and inferred thermal properties
from the HSM. The experiments started at room temperature (Tr) with heating rate of 10°C/min
up to 1450°C. All the specimens maintained their initial rectangular shape before the first shrinkage
temperature (Trs), which varied between 550°C and 1225°C (see Figure 6.5(a-h)). For temperatures
higher than the corresponding Trs, the samples started to shrink until the temperature of maximum
shrinkage (Twms).

The alterations of sample dimensions during the sintering process are reported in Figure 6.5(a-h).
Figure 6.5(a-b, f-g) reveal also how the silicate-based specimens (NCL1, NCL2, NCL7 and NCLS8),
before reaching the melting status at complete melting temperature (Tcwm), started to expand up to
their temperature of maximum volume (Twmv). Furthermore, these silicate-based glasses showed a
similar thermal profile, whereas the phosphate-based (NCL6) had a thermal curve (Figure 6.5(¢))
more comparable to the borate-based glasses (NCL3 and NCL4) (Figure 6.5(c-d)).

91



Table 6.2: HSM results and resulting thermal parameters for NCL1, NCL2, NCL3 and NCL4.

COMPOSITION

Trs

Twms

Tmv

Tewm

I. ;

NCL1 .
25°C 575°C 785°C 875°C 1025°C
NCL2 .
25°C 600°C 730°C 1050°C 1175°C
NCL3
25°C 555°C 625°C 760°C
NCL4

25°C

550°C

650°C

F

782°C
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Table 6.3: HSM results and resulting thermal parameters for NCL6, NCL7, NCL8 and AW.

COMPOSITION

Trs

Twms

Tmv

Tewm

1

o - -
25°C 580°C 775°C 912°C

NCL7
25°C 575°C 785°C 975°C 1025°C

NCL8 _ .
25°C 500°C 730°C 875°C 1020°C

AW I

25°C

800°C

1225°C

F

1330°C
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Figure 6.5: Shrinkage profile derived from hot stage microscopy as function of temperature for: a)
NCL1, b) NCL2, c)NCL3, d) NCL4, e) NCLS6, f) NCL7, g) NCL8 and h) AW.
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6.2.4 pH variation

The pH changes of the pre-sintered glasses, measured in deionised water at 37 °C and for a
concentration of 20mg/ml, are shown in Figure 6.6. The pH varied between 8.5 and 11.3 for both
refreshed (Figure 6.6(a)) and non-refreshed solutions (Figure 6.6(b)). For the condition with
refresh, the solution was changed every two days, whereas for the non-refreshed condition the
solution remained the same for all the experiment durations, and it reached pH saturation values

after 3 days.
a) 115 |
105 |
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95 | —a—NCL1
T BT NCLZ
& 85 | —a—NCL3
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75 F
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10.5 Sep e A —— e == .—:-—--r--:‘-_—i === AW
——NCL1
9.5 -~ * a i A o
il P weeeeees NCL 2
= D S —+—NCL3
o 35 - *
~<--NCL4
7.5 —e— NCL 6
—+—NCL7
6.5 ~-a=-NCL8
5.5
0 1 2 3 4 5 6 7

Time (day)

Figure 6.6: pH changes induced by the pre-sintered glass powder immersed in deionised water at 37

°C: a) with refresh and b) without refreshing the solution.
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6.2.5 lon leaching evaluation

Figure 6.7 shows the results of ion release from NCL1 glass powders, soaked in deionised water

up to 28 days, and quantified using an ICP-OES. Specifically:

the release of Si constantly increased up to 14 days, where it reached a plateau with
135mgl/l;

P, Mn, Zn, Bi and Cu concentrations all dropped significantly over the first 7 days, and
showed similar kinetic profiles over the 28 days, whereas

Mg release dropped from 1.99 to 0.08 mg/I after 28 days in immersion;

K, Na, Te, and Va concentrations all rose steadily over the first 14 days;

Ca concentration increased during the first days of immersion, reaching a peak after 7 days
with 22.5mg/l, whereas Sr release constantly rose until the end of the immersion time,

varying beetwen 6.85mg/l and 25.9 mg/I.

Regarding NCL2 composition (silicate-based glass with 45mol% of SiO.), according to the results

reported in Figure 6.8, the following considerations can be taken:

similarly to NCL1 composition, Si concentration increased constantly during the 28 days
of immersion, although in this case the maximum value reached was 85.9mg/I after the last
time point;

P, Ca, Mg, Mn, Al and Fe all showed a decrease in the ion concentration levels in the initial
stages, followed by a sudden growth after 14 days of soaking;

K, Na, B, Cr, Mo, Li and Se concentrations were characterised by a gradual increase during

the overall period.

Figure 6.9 and Figure 6.10 report the ionic release trends for NCL3 composition, which is a borate-

based glass (35mol% of B20s3). In this case:

the release of boron presented a constant increase reaching 590mg/l after 28 days in
immersion, whereas Si and P concentrations showed no significant variations over the
entire period;

Ca, Mg, K, Na (Figure 6.9), Li and Va (Figure 6.10) all showed an increment going from 1
to 28 days of soaking;
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Mn displayed a decrease in the ion concentration levels in the initial stages, followed by a

sudden growth after 14 days of soaking, whereas Al, Fe, Co, and Ti were characterised by

a jagged kinetic profiles (Figure 6.10);
Cr and Ba release showed similar slightly curved profiles over the 28 days.
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Figure 6.7: lonic release concentrations deriving from NCL1 raw glass powders after 28 days of

soaking in deionised water.
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Figure 6.8: lonic release concentrations deriving from NCL2 raw glass powders after 28 days of

soaking in deionised water.
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Figure 6.9: lonic release concentrations deriving from NCL3 raw glass powders after 28 days of

soaking in deionised water.
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Figure 6.10: lonic release concentrations deriving from NCL3 raw glass powders after 28 days of
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NCL4 is a borate-based glass with a higher content of boron (40mol% of B>O3) compared to NCL3

composition (35mol% of B20s). As reported in Figure 6.11:

boron concentration rose quickly over the first 14 days, reaching 800mg/I after 28 days;
phosphorous release profile was characterised by a progressive decrease during the 28 days;
silicon concentration showed a gradual increment during the initial 7 days, followed by a
slow decrease;

Ca, Mg, K and Na release reached a plateau after 14 days;

Mo, Se and Sr all rose gradually up to 28 days;

Zn and Cu both displayed very low levels after 28 days of immersion.

As NCL5 composition was not synthesised, NCL6 (50mol% of P.Os) was the only phosphate-

based glass out of the 8 initial proposed. According to the results reported in

Figure 6.12 the following considerations can be taken:

phosphorous release profile had a continuous increase going from 52.7mg/l at day 1 to
130mg/I at day 28;

the kinetic profiles of Si, K, Na, Co and B were quite comparable, and particularly they
were characterised by a drop in their levels after 14 days;

Ca and Mn concentrations decreased gradually over the all interval,

Mg ionic release rose steadily over the 28 days, whereas Cr concentration was almost
constant;

a zigzag profile arose from Cu release.

In Figure 6.13 are reported the ionic release profiles for composition NCL7. This formulation is

the silicate-based glass with the highest silicon content (50mol% of SiOy). For this glass:

the Si concentration increased very rapidly during the first 7 days and then almost steadly
up to 28 days;

P, Ca, Mg and Cu concentrations slightly dropped over the first 7 days and afterward they
restarted to rise;

Fe and Ti were subjected to a drop in their concentration levels already after the first 7 days

in immersion, where small amount could be detected. A similar drop was showed by silver
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release, which instead after 7 days and up to 28 days in immersion maintaiend values above
zero.

e Kand Na concentrations were described by very similar profiles, which gradually increased
over the 28 days of immersion.
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Figure 6.11: lonic release concentrations deriving from NCL4 raw glass powders after 28 days of

soaking in deionised water.
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Figure 6.12: lonic release concentrations deriving from NCL6 raw glass powders after 28 days of

soaking in deionised water.
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Figure 6.13: lonic release concentrations deriving from NCL7 raw glass powders after 28 days of

soaking in deionised water.
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The last composition that will be presented is a silicate-based glass with the same silicon content
of NCL2 (45mol% of SiO). As shown in Figure 6.14 and Figure 6.15:

silicon was characterised by a gradual increase, reaching 167mg/l at day 28;

the release profiles of K, Na, B, Cr, Mo and Se, similarly to Si, steadily rose up to the end
of the considered interval;

Mg, Mn, Zn, Fe, Cu and Co all dropped significantly over the first 7 days;

the level of Sr reached a peak at day 7 and then started to progressively decrease;

P and Ca profiles were characterised by a similar trend of NCL7 composition, with a
significant drop after the first 7 days in immersion, followed by rapid increase up to 28

days.

As comparison, Figure 6.16 reports the ionic release profiles deriving from AW glass-ceramic. In

this case:

silicon release reached a peak at day 14 with 85mg/l, and afterward started gradually to
decrease arriving at 68.1mg/l at day 28;

P and Ca elements had quite comparable profiles, showing a minimum in the concentration
values at day 7, followed by a gradual growth up to day 28;

the Mg ionic release varied over the period showing no clear trend.
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Figure 6.14: lonic release concentration deriving from NCL8 raw glass powder after 28 days of

soaking in deionised water.
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Figure 6.15: lonic release concentration deriving from NCL8 raw glass powder after 28 days of
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Figure 6.16: lonic release concentration deriving from AW raw glass powder after 28 days of soaking

in deionised water.

From the results obtained through the ICP analysis, it was possible to draw the following general
considerations:

e for NCL1 and NCL7 compositions, which are both silicate-based glasses, the release of
silicon followed the same trend over the 28 days, characterised by a steadly increase over
the first 14 days and then remained nearly constant;

e NCL2 and NCL8 compositions showed a different silicon release profile with respect to

NCL1 and NCL7 formulations. In the first case, most likely the presence of boron in the

109



glass matrix contributed to gradually rise up silicon release until the end of the considered
interval. Furthermore, silicon and boron in these compositions displayed the same trend,;
as network former, boron was released very quickly in comparison to silicon and
phosphorous, and it displayed a progressive increase all over the interval either for NCL3
and NCL4 compositions;

the presence of boron in the glass formulation, even as intermediate oxide, ehanched the
release of other elements in the composition (i.e. vanadium and phosphorous from NCL3
glass with respect to their release from NCL1 composition);

silicon release from borate-based glasses was more correlated to the amount of boron rather
than its content in the glass matrix, as the results from NCL3 and NCL4 demonstrated,;

as main network former, phosphorous in NCL6 composition was released more slowly than
boron from NCL3 and NCL4 formulations.
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6.2.6 In vitro cytotoxicity

In order to evaluate the cytotoxicity effect on rat osteoblast cells, all the novel powder-based
biomaterials at different concentrations were tested through MTT assay, after one and seven days

in culture. As described in paragraph 5.4.9.2, two different test conditions were assessed:
1) the direct contact of the cells with the raw glass powders and
i) the indirect contact based on the filtering of the glass powders eluate.

Figure 6.17 highlights the effect of NCL1 composition. According to the results reported in Figure
6.17(a), for direct condition over the 7 days culture period, the cell viability was fairly constant for
concentrations of 0.1 and 1mg/l of glass powder in media, but concentrations of 10mg/I of glass in
media had a clear detrimental effect on viability.

Regarding indirect condition (Figure 6.17(b)), no harmful outcomes were detected for
concentration of 0.1 and 1mg/I of glass powder in media, whilst concentrations of 10mg/l of glass
in media had a detrimental effect on cell viability after 7 days in culture; condition B, no harmful
outcomes were detected up to 1 mg/l. However, the negative effect of NCL1 glass powders on cells
mitochondrial activity arose significantly going from 1 to 10 mg/l in both tested conditions with

absorbance values close to zero.

=2

a) %
0.4- kk

x *

*

o
iy

o
w

Absorbance (-)
o
N
Absorbance (-)
o o
i T

= — am 1d

*_ *
—
-
T
T -I 0.0']| T T T
N & N o

.
-
o
hd

o
o
I

T
N N N Q

Concentration (mg/ml) Concentration (mg/ml)

Figure 6.17: Effect of NCL1 glass powders (measured in triplicate) on formazan formation after (a)
direct and (b) indirect contact with rat osteoblast cells, evaluated through MTT assay after 1 day and 7

days in culture. Error bars represent the standard error of the mean (p < 0.05(*) and p < 0.001(**)).
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Regarding composition NCL2, whose effects on rat OB cells are reported in Figure 6.18, the
following considerations can be taken: for the direct condition (Figure 6.18(a)) the cell viability
was fairly constant for concentrations of 0.1 and 1mg/I of glass powder in media over the 7 days
culture, but concentrations of 10mg/I of glass in media had a clear detrimental effect on viability.
Overall, this formulation showed no detrimental influence on rat osteoblast mitochondrial activity
by indirect contact (Figure 6.18(b)), either after 1 and 7 days in culture.
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Figure 6.18: Effect of NCL2 glass powders (measured in triplicate) on formazan formation after (a)
direct and (b) indirect contact with rat osteoblast cells, evaluated through MTT assay after 1 day and 7

days in culture. Error bars represent the standard error of the mean (p < 0.05(*) and p < 0.001(**)).

Consequences of NCL3 composition on rat osteoblasts mitochondrial activity are displayed in
Figure 6.19. Although for indirect condition the material did not show any significant negative
effect on cells activity after 1 day in culture and at low concentrations (Figure 6.19(b)), for both
conditions a significant detrimental behaviour was found at the highest concentration tested (10
mg/l) with respect to the control (0 mg/l) after 7 days in culture.

Figure 6.20 shows the MTT assay results for NCL4 formulation, which highlights a decrease in the
cell mitochondrial activity after 7 days in culture, detected for both tested methods. No significant

negative effects associated to the use of this glass powder were observed for the indirect method.

112



a) \ b) .
0.4 " L "
*
_ N *k = 0.4 - *
g T * e  0.3- 7d
(1]
8 0.2- " 2
= 6 0.2 L -
<] )
2 -1
< 0.1 < 0.1
-
0.0' T T T T
D.D' T T T
[\ N N O
o o N 2 Q- N
Concentration (mg/ml) Concentration (mg/ml)

Figure 6.19: Effect of NCL3 glass powders (measured in triplicate) on formazan formation after (a)
direct and (b) indirect contact with rat osteoblast cells, evaluated through MTT assay after 1 day and 7

days in culture. Error bars represent the standard error of the mean (p < 0.05(*) and p < 0.001(**)).
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Figure 6.20: Effect of NCL4 glass powders (measured in triplicate) on formazan formation after (a)
direct and (b) indirect contact with rat osteoblast cells, evaluated through MTT assay after 1 day and 7

days in culture. Error bars represent the standard error of the mean (p < 0.05(*) and p < 0.001(**)).

Concerning glass composition NCL6, as reported in Figure 6.21, no remarkable effects were
showed after 1 day in culture for both test set-up, although for the direct method (Figure 6.22 (a))
the cell mitochondrial activity was approximately constant for concentrations of 0.1 and 1mg/l of
glass powder in media over the 7 days culture period, but by increasing the concentrations up to
10mg/l an evident cytotoxic effect on viability was observed with absorbance values very close to
zero. For the indirect method (Figure 6.22 (b)), the cells mitochondrial activity decreased by
increasing the amount of glass powders in media, after both 1 and 7 days in culture, showing a
detrimental effect for rat OB mitochondrial activity.
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Figure 6.21: Effect of NCL6 glass powders (measured in triplicate) on formazan formation after (a)
direct and (b) indirect contact with rat osteoblast cells, evaluated through MTT assay after 1 day and 7

days in culture. Error bars represent the standard error of the mean (p < 0.05(*) and p < 0.001(**)).

Figure 6.22 shows the effect of NCL7 glass powder on cell mitochondrial activity. As can be
observed, the presence of glass powders in direct contact, and at high concentrations, slightly
affected rat OB mitochondrial activity (Figure 6.22 (a)). Tests performed according to indirect

method revealed no cytotoxic effect and a positive influence of NCL7 composition on rat OB cell
viability, which increased over the 7 days in culture.
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Figure 6.22: Effect of NCL7 glass powders (measured in triplicate) on formazan formation after (a)
direct and (b) indirect contact with rat osteoblast cells, evaluated through MTT assay after 1 day and 7

days in culture. Error bars represent the standard error of the mean (p < 0.05(*) and p < 0.001(**)).

The last of the novel compositions, NCLS8 silicate-based glass, showed a cytotoxic effect on cell
viability after both 1 and 7 days in culture tested by direct contact. For the indirect method a

decrease of rat OB activity was found particularly after 7 days in culture, and by increasing the
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glass powder concentration (Figure 6.23), proving the harmful influence of this formulation on rat
OB viability.
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Figure 6.23: Effect of NCL8 glass powders (measured in triplicate) on formazan formation after (a)
direct and (b) indirect contact with rat osteoblast cells, evaluated through MTT assay after 1 day and 7
days in culture. Error bars represent the standard error of the mean (p < 0.05(*) and p < 0.001(**)).

Ultimately, Figure 6.24 reports the data for AW glass powder. Similarly to composition NCL7,
also in this case glass powder in direct contact with cells, and at high concentrations slightly
compromised their mitochondrial activity (Figure 6.24 (a)).

However, indirect test condition (Figure 6.24(b)) showed that nevertheless an initial drop after the

first 24 hours in culture, rat osteoblast mitochondrial activity improved after the longer time point.
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Figure 6.24: Effect of AW glass powders (measured in triplicate) on formazan formation after (a) direct
and (b) indirect contact with rat osteoblast cells, evaluated through MTT assay after 1 day and 7 days in

culture. Error bars represent the standard error of the mean (p < 0.05(*) and p < 0.001(**)).
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In light of the MTT assay results, performed on raw glass powders, the following consideration

can be taken:

e NCL1, NCL3, NCL6 and NCL8 formulations showed a detrimental effect on cell
mitochnodrial activity at all the concentrations tested, and either for direct and indirect
contact test;

e NCL2, NCL4 and NCL7 compositions showed similar outcomes of AW glass-ceramic;
specifically, these compositions influenced negatively cell viability following a direct
contact test with high concentrations of glass powders in media, wherease they showed high
cell mitochondrial activity for the indirect condition and after 7 days in culture;

e Dbased on the in vitro text findings, given the high number of doping agent in each
formulation, no significant correlations can be drawn between the in vitro glass behaviour

and their structure.
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6.3 Bioceramic pellets

This section presents the results of the experimental work conducted on bulk dense structures and
prepared following the procedure described in paragraph 5.3.2. Once the pellets were pressed, they
were placed in a chamber furnace. In order to assess their sintering behaviour, several thermal
treatments were performed in the range 550-850°C for 1 hour (heating rate 10°C/min), according
to HSM results.

6.3.1 Morphological analysis

SEM investigations were performed onto bioceramic pellet surfaces to evaluate the effect of
different heating treatments on sample morphology, and to further assess their sintering level.
Figure 6.25 to Figure 6.32 report the pellet surface of each composition after two of the several
heating treatments that were investigated. Micrographs (a) of Figure 6.25 to Figure 6.32 show a
poor sintering level for all the formulations, where glass particles started to aggregate, but they
were not properly sintered. The microstructures reported in micrographs (b) of Figure 6.25 to
Figure 6.32 demonstrate how an increase in the heating temperatures leads to an appropriate
densification status, as a result of increased liquid phase. Particularly for NCL1, NCL3, NCLS6,
NCL7, NCL8 and AW compositions the formation of sintering necks (red arrows in the figures)

became evident.

Figure 6.25: SEM micrograph (magnification 2500x) of NCL1 pellet surface at (a) low (575°C), and (b)
appropriate sintering level (625°C).
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Figure 6.26: SEM micrograph (magnification 2500x) of NCL2 pellet surface at (a) low (650°C), and (b)
appropriate sintering level (700°C).

Figure 6.27: SEM micrograph (magnification 2500x) of NCL3 pellet surface at (a) low (550°C), and (b)

appropriate sintering level (625°C); red arrows indicate necking formation.

Figure 6.28: SEM micrograph (magnification 2500x) of NCL4 pellet surface at (a) low (600°C), and (b)
appropriate sintering level (625°C).
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Figure 6.29: SEM: micrograph (magnification 2500x) of NCL6 pellet surface at (a) low (700°C), and

(b) appropriate sintering level (725°C); red arrow indicates necking formation.

Ll

Figure 6.30: SEM micrograph (magnification 2500x) of NCL7 pellet surface at (a) low (600°C), and (b)
appropriate sintering level (625°C); red arrows indicate necking formation.

Figure 6.31: SEM micrograph (magnification 2500x) of NCL8 pellet surface at (a) low (575°C), and (b)
appropriate sintering level (625°C).
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Figure 6.32: SEM micrograph (magnification 2500x) of AW pellet surface at (a) low (830°C), and (b)
appropriate sintering level (850°C); red arrow indicates necking formation.
6.3.2 Bioceramic pellets sintering conditions

In light of the SEM microstructural observations, and after a thorough qualitative analysis, the
heating treatment temperatures that provided the best densification degree of the bioceramic

pellets, and hence mechanically competent structures are shown in Table 6.4 below.

Table 6.4: Bioceramic pellets sintering temperatures.

CODE COMPOSITION SINTERING
TEMPERATURE (°C)
NCL1 Silicate-based 625
NCL2 Silicate-based 700
NCL3 Borate-based 625
NCL4 Borate-based 625
NCL6 Phosphate-based 725
NCL7 Silicate-based 625
NCL8 Silicate-based 625
AW Silicate-based 850
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6.3.3 X-ray diffraction analysis before and after sintering

XRD spectra for all 7 compositions and AW, before and after sintering, are reported in Figure 6.33
to Figure 6.40. NCL1, NCL3, NCL4, and NCL8 formulations maintained the same amorphous
status also after the sintering treatment (see Figure 6.33, Figure 6.35, Figure 6.36 and Figure 6.39).
Crystalline phases developed during the sintering treatments of NCL2 formulation (Figure 6.34)
were identified as diopside phase (ICDD ref. code 01-073-6374).
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Figure 6.33: XRD patterns of NCL1 composition: (a) glass powder and (b) pellet sintered at 625°C.
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Figure 6.34: XRD patterns of NCL2 composition: (a) glass powder and (b) pellet sintered at 700°C (e
diopside).
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Figure 6.35: XRD patterns of NCL3 composition: (a) glass powder and (b) pellet sintered at 625°C.
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Figure 6.36: XRD patterns of NCL4 composition: (a) glass powder and (b) pellet sintered at 625°C.

NCL6 sample was not completely amorphous before sintering. Peaks corresponding to calcium

sodium phosphate were detected on NCL6 glass powder (Figure 6.37(a)).
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Figure 6.37: XRD patterns of NCL6 composition: (a) glass powder and (b) pellet sintered at 725°C, (e

calcium sodium phosphate and ® sodium calcium magnesium phosphate).
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The heat treatment contributed to the further development of a crystalline phase, as shown in Figure
6.37(b), with the growth of a sodium calcium magnesium phosphate phase (ICDD ref. code 00-
045-0136).

Figure 6.38 displays the XRD pattern of the NCL7 formulation. This glass was almost amorphous,
as a very low amount of Ag was detected before the sintering treatment. The intensity of Ag peaks
(ICDD ref. code 04-003-1425) increased after sintering.
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Figure 6.38: XRD patterns of NCL7 composition: (a) glass powder and (b) pellet sintered at 625 C, (¢

silver).
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Figure 6.39: XRD patterns of NCL8 composition: (a) glass powder and (b) pellet sintered at 625°C.

Figure 6.40 shows the XRD results of the glass powder and sintered A-W pellet. Although the
crystalline phases remained the same (hydroxylapatite and B-wollastonite), after the sintering process
the sintered material showed more intense peaks (Figure 6.40(b)) with respect to the raw glass-

powder (Figure 6.40(a)), confirming the glass-ceramic nature of this formulation.
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Figure 6.40: XRD patterns of AW composition: (a) glass powder and (b) pellet sintered at 850°C,
(A hydroxylapatite, m g-wollastonite).

6.3.4 Sintering behaviour

Figure 6.41 reports the volumetric shrinkage (%) of the novel bioceramic pellets calculated
according to the formula described in paragraph 5.4.6, and following the sintering conditions

reported in Table 6.4. For all materials the volumetric shrinkage was between 29% and 36%.
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Figure 6.41: Average volumetric shrinkage (%) for sintered pellets (n=5). Error bars represent the

standard error of the mean.
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6.3.5 Mechanical properties

A representative stress-strain curve of the sintered bioceramic pellets, assessed in compression
using a Tinius Olsen universal testing machine, is reported in Figure 6.42. The curve indicated that

the stress increased linearly with increasing compressive strain.
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Figure 6.42: Representative stress-strain curve obtained during compression tests performed on the

sintered bioceramic pellets.

The averaged compressive stress at 20% (o20) of the strain, and compressive modulus (Ec) data are
shown in Figure 6.43. All the seven bioceramic pellets had a 20 higher than the one of AW, with
NCLS8 showing the highest value (286+11MPa). According to the results obtained (Figure 6.43(a)),
a part from composition NCL7, the silicate-based glasses (NCL1, NCL2 and NCLS8) showed a
small but significant increase for both E¢ and 20 compared to AW. No significant differences were

found for phosphate and borate-based formulations.

Regarding the compressive modulus (Figure 6.43(b)), very significant differences (p < 0.001) were
observed for the NCL1 and NCL8 compositions, and significant differences (p <0.05) for NCL2
and NCL3 compositions in comparison to AW glass-ceramic. However, all the glasses showed 29

values in excess of 150MPa, and modulus values in excess of 1.2GPa.
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Figure 6.43: a) Averaged compressive stress (for &.=20%) and b) compressive modulus values of dry
bioceramic pellets (n=5). Error bars represent the standard error of the mean (p<0.05(*) and

p<0.001(**)).
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6.4 Selection of glass compositions as potential bone tissue-like substitutes

Considering the stringent criteria necessary for the design of 3D bone-like substitutes (previously
presented in Table 3.1), the development of novel biomaterials for bone tissue repair remains a
highly challenging task. However, those set of requirements can be considered an essential
guideline for accepting or improving a material response according to specific clinical situation
demands. Along with appropriate physico-chemical properties necessary to match the
characteristics of the host tissue (i.e. degradation rate, surface chemistry) (Reis and Roman, 2004;
Mitra et al., 2013), a crucial aspect for the effective success of bone substitutes for load-bearing
applications is a good balance between porosity of the structure and its mechanical proprieties (Chu
et al., 2002; Hsin and Yiwei, 2011; Loh and Choong, 2013). As described in Table 3.1, a highly
interconnected porous structure is essential to enable fluid flow, cell migration, bone ingrowth and
vascularization (Liu et al., 2013). However, porosity affects the mechanical behaviour of the
structure, since strength and stiffness gradually decrease when the volume fraction of pores
increases (Vitale-Brovarone et al., 2010).

In light of the results presented in paragraph 6.3.5, which showed the mechanical performance of
the new formulations in form of dense bioceramic pellets, similar properties were found with
respect to the widely applied AW glass-ceramic (Kokubo, 2008), particularly for NCL4, NCL6 and
NCL7 compositions. Hence, all the formulations could be considered potential biomaterials for
bone repair applications. However, since a biomaterial should perform its function without
exhibiting any immune response in the host tissue, another important aspect, that it is worth to
consider, concerns the in vitro biocompatibility (Hutmacher, 2000; Hutmacher, 2001). Particularly,
the cytotoxicity of novel developed biomaterials is a key issue that should be addressed prior to
pre-clinical trials (Hollinger, 2011). In paragraph 6.2.6 the in vitro cytotoxicity data resulting from
raw glass powders were presented. The results of the tests revealed that for the direct method, and
high concentration of glass powder (10mg/l), cell mitochondrial activity was significantly affected
by the presence of the glass particles. On the other hand, the indirect method indicated that after 7
days in culture and at the highest concentration tested NCL2, NCL4 and NCL7 showed no
significant differences with respect to the control (similarly to AW glass-ceramic behaviour). On
the basis of the MTT results, and considering the assumption according to which the
biocompatibility of new materials is a key concern for the following clinical application, only

NCL2, NCL4 and NCL7 formulations were selected for further characterisation.
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6.5 Bioactivity evaluation

This paragraph presents the results obtained from SBF testing on selected bioceramic pellets
(NCL2, NCL4, NCL7 and AW).

The SEM micrographs and EDS analysis of the top surface of NCL2 dense pellets before
immersion in SBF solution and after 7 days of soaking are shown in Figure 6.44(a-b) and Figure
6.44(c-d) respectively. No signs of precipitate formation were detected on the sample surface after

7 days of soaking.
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Figure 6.44: a) morphological (5Kx mag) and b) compositional analysis of the marked region of NCL2
bioceramic pellet before the immersion in SBF. c) morphological (5Kx mag) and d) compositional

analysis (at %) of the marked region of NCL2 bioceramic pellet after 7 days of immersion in SBF.

However, after 28 days in immersion, NCL2 specimens developed a homogeneous rough layer on
their surface (Figure 6.45(a-b)), even though no HCA formation was detected (see EDS spectra in
Figure 6.45(c)).
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Figure 6.45: a) morphological (5Kx mag) analysis with b) higher magnification inset (20Kx mag), and

¢) compositional analysis (at %) of the marked precipitates observed on NCL2 bioceramic pellet after 28

days of soaking in SBF.

Regarding NCL4 composition, Figure 6.46 shows the SEM micrographs and EDS compositional
analysis of the top surface, before (Figure 6.46(a-b)) and after 7 days (Figure 6.46(c-d)) of soaking
in SBF solution. As suggested by the SEM analysis and EDS spectra, globular shaped agglomerates
rich in calcium and phosphorous (Ca/P=0.76) (Figure 6.46(d)) precipitated on the sample surface,
during the 7 days of immersion.
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Figure 6.46: a) morphological (5Kx mag) and b) compositional analysis of the marked region of NCL4
bioceramic pellet before the immersion in SBF. ¢) morphological (5Kx mag) and d) compositional
analysis (at %) of the marked region of NCL4 bioceramic pellet after 7 days of immersion in SBF.
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After 28 days of immersion, more granular structures (see white arrows in Figure 6.47(b)) were
observed on the NCL4 pellets surface, with the Ca/P ratio that moved from 0.76 at day 7 to 1.08 at
day 28 (see spectra in Figure 6.47(c)).
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kev

Figure 6.47: a) morphological (5Kx mag) analysis with b) higher magnification inset (20Kx mag), and
¢) compositional analysis (at %) of the marked precipitates observed on NCL4 bioceramic pellet after 28

days of soaking in SBF (white arrows indicate the granular structures developed on the pellet surface).

The top surface SEM imaging and the corresponding EDS spectra for NCL7 bioceramic pellets,
before and after 7 days of soaking in SBF, are reported in Figure 6.48(a-b) and Figure 6.48(c-d)
respectively. Also in this case no apatite formation was detected after 7 days. Although, similarly
to NCL4 composition, globular shaped agglomerates were identified on the sample surface, with a
Ca/P ratio of 1.10, as reported in the EDS analysis (see Figure 6.48(d)). However, Figure 6.48(c)
documents the formation of micro-cracks (indicated by the red arrows in the figure), and the
presence of a thin silica-rich layer, which usually forms during the first steps of the bioactivity

process.

In fact, after 28 days of immersion in SBF, the micro-cracks development on the pellets surface
(see Figure 6.49(a)) became more pronounced. Calcium phosphate agglomerates with a
cauliflower-like shape precipitated on the NCL7 sample surface, as can be observed in Figure
6.49(b). In addition, the Ca/P ratio of the precipitates increased from 1.1 at day 7 to 1.4 at day 28
(Figure 6.49(c)), which may be considered an HA precursor, thus indicating the potential bioactive

behaviour of NCL7 composition.
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Figure 6.48: a) morphological (5Kx mag) and b) compositional analysis of the marked region of NCL7
bioceramic pellet before the immersion in SBF. ¢) morphological (5Kx mag) and d) compositional
analysis (at %) of the marked region of NCL7 bioceramic pellet after 7 days of immersion in SBF (the

red arrows indicate the micro-cracks formation on the pellet surface).

Figure 6.49: a) morphological (5Kx mag) analysis with b) higher magnification inset (20Kx mag), and
c¢) compositional analysis (at %) of the marked precipitates observed on NCL7 bioceramic pellet after 28
days of soaking in SBF (the red arrows indicate the micro-cracks formation on the pellet surface).
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Regarding AW composition (Figure 6.50), the upper surface of the pellets after one week of
immersion (see Figure 6.50(c)) was homogenously covered by a thin layer of apatite enriched in

Caand P (see Figure 6.50(d)), proving the quick bioactive process that characterised this material.
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Figure 6.50: a) morphological (5Kx mag) and b) compositional analysis of the marked region of AW
bioceramic pellet before the immersion in SBF. ¢) morphological (5Kx mag) and d) compositional
analysis (at %) of the marked region of AW bioceramic pellet after 7 days of immersion in SBF (the red

arrows indicate the micro-cracks formation on the pellet surface).

SEM analysis together with the EDS spectra of AW after 28 days in SBF immersion are shown in
Figure 6.51. The high bioactive potential of AW glass-ceramic has already been widely
investigated in the literature (Magallanes-Perdomo et al., 2011; Park and Ozturk, 2013). However,
in this study the extensively documented bioactive properties of AW formulation, were proved by:
i) the precipitation of a homogeneous needle-like layer rich in Ca and P (see Figure 6.51(a)), ii) the
micro-cracks formation (Figure 6.51(b)), and iii) most importantly by the Ca/P ratio of around 1.62
(Figure 6.51(c)) that is nearly equal to the composition of human bone hydroxyapatite (Ca/P=1.67)
(Palmer et al., 2008).
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Figure 6.51: a) morphological (5Kx mag) analysis with b) higher magnification inset (20 Kx mag), and
¢) compositional analysis (at %) of the marked precipitates observed on NCL7 bioceramic pellet after 28

days of soaking in SBF (the red arrows indicate the micro-cracks formation on the pellet surface).

In addition to the semi-quantitative analysis performed, a quantitative elemental characterisation
of the sample surfaces before and after soaking in SBF was assessed by XPS, in order to evaluate
the atomic concentration of the main elements (Si, Ca and P) potentially involved in the bioactivity
process. The XPS analysis evidenced that after 28 days of soaking in SBF, silicon content
decreased for all the investigated compositions (Figure 6.52 and Figure 6.53). Conversely, the
atomic concentration of calcium and phosphorous slightly increased for all the pellets, as
consequence of the formation of CaP precipitates on their top surface. Specifically, for NCL2
phosphorous (at.%) remained almost steady (~9.5 after 28 days in immersion), while for the other

compositions it reached values above 40%. The concentration of calcium instead increased beyond
30% for all the formulations.
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Figure 6.52: Atomic concentration of Si, Ca and P on the upper surface of a) NCL2 and b) NCL4

bioceramic pellets after immersion in SBF at different time points.
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Figure 6.53 : Atomic concentration of Si, Ca and P on the upper surface of a) NCL7 and b) AW

bioceramic pellets after immersion in SBF at different time points.

lon leaching variation of Si, Ca, and P from bioceramic pellets, soaked in SBF solution at different
time intervals, was evaluated using ICP — OES analysis. As evidenced in Figure 6.54(a), for NCL2
the concentration of Ca and P released in solution was almost constant for the all immersion time
points; instead Si increased gradually up to day 14 and then started to decrease slowly. For NCL4
bioceramic pellets (see Figure 6.54(b)) the release of Ca increased rapidly during the early stage of
immersion and then remained around 110mg/l until the end of the soaking time, whereas P
concentration decreased rapidly from 100mg/l to 25mg/l after 1 day of soaking, and then
maintained a level around this value up to 28 days of soaking in SBF. Si release increased up to 3

days in immersion, then after a steady profile between day 3 and 7, it showed a “zig-zag” variation
up to day 28.
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Figure 6.54: Release profiles of Si, Ca and P ions for a)NCL2 and b) NCL4 bioceramic pellets
immersed in SBF solution at different time intervals.
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Figure 6.55 reports the results for composition NCL7 and AW formulations. The variation of Ca

and P for NCL7 samples had a quite specular profile as well as a similar range of values. The

release of silicon from NCL7 composition in SBF solution showed a gradual increase from 0 to 28
days. For AW composition (Figure 6.55(b)) Ca content decreased rapidly during the early stage,
and then fluctuated around 22mg/l with the increasing immersion time. P reached 116mg/l after 24

hours in immersion, and then declined slowly to 96.5mg/I at day 28. After a slow growth with a
peak at day 7 (36.8mg/l), silicon dropped to almost zero at day 28.
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Figure 6.55: Release profiles of Si, Ca and P ions for a)NCL7 and b) AW bioceramic pellets immersed

in SBF solution at different time intervals.

The in vitro biodegradation behaviour of the fabricated pellets was further studied by measuring

the weight loss of the samples, up to 28 days in SBF immersion, as function of the storage time

(Figure 6.56).
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Figure 6.56: Averaged weight loss (+SE) of NCL2, NCL4, NCL7 and AW pellets after soaking in SBF

solution.
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As expected, the weight loss for NCL4 samples was higher with respect to the other specimens,
confirming that borate-based glasses have a faster dissolution rate, in accordance with the literature
(Yao et al., 2007; Liu et al., 2010; Deliormanli, 2013; Wang et al., 2014). NCL7 and AW showed
a similar trend all over the considered interval, with a mass loss around 12% and 14% respectively,
after 28 days of soaking, whereas no marked sign of degradation was found for NCL2 formulation.
The degradation process of a bioactive glass takes place by ionic exchange of soluble ions, which,
depending on the glass composition, influence the pH of the surrounding media (Rahaman et al.,
2011). In order to evaluate the hydrolytical stability of the bioceramic pellets after immersion in

SBF, the pH changes during the 28 days of immersion were assessed.

Figure 6.57 reports the pH values measured during 28 days of immersion. As it can be observed,
all the compositions were characterised by a low pH variation over the period, which ranged
between 7.44 and 7.74.
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Figure 6.57: Averaged pH value (xSE) of SBF solution for NCL2, NCL4, NCL7 and AW samples.
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Chapter 7. Results: manufacturing of 3D porous glass-

derived substitutes

7.1 Introduction

The use of AM technology for the production of bone-like substitutes has been predicted to increase
in the coming years, primarily focusing on the development of medical implants that can be
customised according to patient and clinical needs. Among the different computer-aided fabrication
techniques, indirect powder-based 3D printing is such a versatile technology that has been widely
used to produce scaffolds from a broad variety of materials (Bose et al., 2013). The advantages of
this method, in the field of bone tissue engineering, derive from i) the flexibility in material usage
and ii) the possibility of printing objects with defined geometry, controlled and interconnected
structure without the use of any toxic solvent (Utela et al., 2010; Butscher et al., 2011; Bose et al.,
2013). Several studies in the literature investigated the potential of powder-based 3DP technology
to process ceramic-based materials alone or in combination with other blended compounds for
bone tissue applications, however the lack of appropriate mechanical properties is still their major
limitation (Lee et al., 2005; Leukers et al., 2005; Irsen et al., 2006b; Utela et al., 2006a; VVorndran
et al., 2008; Butscher et al., 2012; Cox et al., 2015).

The main objectives of the last part of this work are:

i) to manufacture 3D porous glass-derived substitutes via powder-based 3DP technology, using the
three novel glass formulations that showed appropriate mechanical and biological properties during
the first two stages of the study,

ii) to characterise them in terms of physico-chemical, mechanical and biological performance.

For powder-based 3D printing systems, grain size and grain size distribution of the starting
materials are crucial factors for the physical characteristics of the final 3D printed parts.
Specifically, they must be taken into account during the manufacturing of porous tissue substitutes,
since they directly influence porosity, which in turn has been seen to impact cell attachment,
proliferation and differentiation, and equally importantly the resulting mechanical properties of the
implant (Spath et al., 2015).
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In the current study, a ZCorp 310 3D printer was used as processing route to create 3D bone-like
substitutes based on blends of glass powder - MD (70:30 w/w) as precursor materials. The particle
range (between 0 and 53 um) of the raw materials was chosen according to the work performed by
Alharbi, where different blend of AW-MD were used to investigate the feasibility of powder-based
3DP technology, and its potential utility for bone tissue engineering applications (Alharbi, 2015).

7.2 Indirect 3D printed bioceramic substitutes

Figure 7.1 displays the microstructures of NCL2, NCL4, NCL7 and AW green bodies resulting from
the indirect 3D printing process. As can be observed from Figure 7.1(b), composition NCL4 showed

a very brittle and less compact structure with respect to the other formulations and resulted not

suitable for further processing and characterisation.

Figure 7.1: SEM micrographs of 3D printed green bodies: a) NCL2, b) NCL4, ¢) NCL7 and d) AW
samples.
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7.2.1 Sintering optimisation

Once the green bodies were printed, the indirect stage of the process started. Different thermal
treatments were performed and optimised on both NCL2 and NCL7 compositions in order to obtain
mechanically competent 3D porous parts with appropriate structural integrity. Figure 7.2 displays
the three sintering profiles evaluated for NCL2 3D printed green bodies. The heat treatment 1 was
a one-step treatment, on the basis of the results obtained from the HSM, and already evaluated for
the sintering of dense bioceramic pellets. For the heat treatment 2, an intermediate step at 400°C
was investigated to allow a better nucleation of the glass particles; however, many micro-cracks

developed in the structures during the sintering process.
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Figure 7.2: Heat treatments and corresponding profiles that were investigated for NCL2 3D printed

green bodies.
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Hence, considering the presence of the polymer-based binder, the thermal cycle was modified to
remove completely the sacrificial porogen without losing the sample integrity. A third and longer
(5°C/min) step was added to the previous heat treatment in order to permit the burning-out of the
binder and the gradual consolidation of the bioceramic structure. Similar considerations were
adopted for composition NCL7, for which the corresponding heating profiles are illustrated in
Figure 7.3. The maximum heating temperature, in this case was 625°C. In the end, the heat
treatment 3 in Figure 7.2 and in Figure 7.3 was selected as the more appropriate for the sintering
of NCL2 and NCL7 3D printed green parts respectively.
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Figure 7.3: Heat treatments and corresponding profiles that were investigated for NCL7 3D printed

green bodies.

140



For all the heat treatments each step consisted of heating the green bodies (with specific heating
rate) up to desired temperature, followed by dwelling for 1 hour. At the end of each treatment the

samples were left to cool down in the furnace chamber.

The sintering conditions of AW were selected on the basis of previous studies, and are reported in
Figure 7.4 below (Xiao et al., 2008).
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Figure 7.4: Heat treatment and corresponding profile for AW 3D printed green bodies.

7.2.2 Morphological evaluation
7.2.2.1 Macrostructural observation

Figure 7.5, Figure 7.6 and Figure 7.7 display NCL2, NCL7 and AW 3D printed structures
respectively before (micrograph(a)) and after (micrograph(b)) the sintering. This qualitative
comparison highlights that the green bodies showed a good level of integrity already after the
printing process, and that the post-processing phase led to a more connected and harder structures

with no shape distortion.

Figure 7.5: NCL2 3D printed samples: a) before and b) after the sintering process.
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Figure 7.7: AW 3D printed samples: a) before and b) after the sintering process.

As expected, the thermal treatments, during which the liquid and solid binders were burned off,
produced a reduction of the sample dimensions between 49% and 57%. However, no significant

differences were measured for the shrinkage values of the two compositions in comparison to AW
scaffolds (Figure 7.8).
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5

Figure 7.8: Average volumetric shrinkage (%) for sintered NCL2, NCL7 and AW 3D printed samples.
Error bars represent the standard error of the mean.
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7.2,.2.2  Microstructural observation

SEM analysis was performed on NCL2, NCL7 and AW 3D printed structures to evaluate the effect
of sintering treatment on samples morphology. Figure 7.9 shows the top surface (micrograph(a))
and cross section (micrograph(b)) of NCL2 3D printed structure, following the heat treatment 3
described previously in Figure 7.2. Figure 7.9 reveals that thermal treatment led to neck formation
(see red arrows), driven by the mix of small and big particles, and to a diffuse strut roughness,
which was enhanced by the presence of many micro-particles, as demonstrated by surface

morphology of the green body (see Figure 7.1 (c)).

Figure 7.9: SEM micrographs of a) upper surface and b) cross section of NCL2 3D printed structure

after sintering (red arrows indicate necking formation).

The upper surface and internal structure of NCL7 3D printed scaffold, after sintering, are shown in
Figure 7.10.

Figure 7.10: SEM micrographs of a) top surface and b) cross section of NCL7 3D printed structure

after sintering (red arrows indicate necking formation).
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If compared to the green body, the sintered structure exhibited a very high degree of densification,
demonstrating that a good level of sintering was achieved, since it was impossible to identify the
original sharp grain boundaries of the glass powders. Furthermore, the resulting morphology

consisted in a smooth and also interconnected 3D network.

Figure 7.11 reports the surface and internal morphology of sintered 3D printed AW sample. The
thermal treatment led to a consolidate structure, characterised by a rough and dense surface with
fine crystalline grains. Figure 7.11(b) highlights the presence of a distributed micropore-based

network (pore size about 20um).

Figure 7.11: SEM micrographs of a) top surface and b) cross section of AW 3D printed structure after

sintering (red arrows indicate necking formation).

7.2.3 Porosity and microarchitecture of the scaffolds

On the basis of the results reported in Figure 7.12, which compare open and total porosity of NCL2,
NCL7 and AW 3D printed parts after sintering, open porosity values varied between 15% and 23%,
while total porosity values were found to vary from 28% to 38%. Significant differences were
observed for NCL2 open porosity values in comparison to those of NCL7 3D printed scaffolds. No
significant differences were found for the new compositions with respect to AW glass-ceramic;
even though, NCL2 showed the lowest porosity and AW the highest, whereas NCL7 sintered

samples exhibited an intermediate porosity level.
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Figure 7.12: Averaged open and total porosity values for sintered NCL2, NCL7 and AW 3D printed
parts. Error bars represent the standard error of the mean (p < 0.05(*)).

These outcomes were confirmed by the micro-CT analysis, performed to evaluate the
microarchitecture of the 3D printed sintered scaffolds. 3D reconstructions together with the
representation of three spatial views (XY, XZ and YZ) of the bioceramic-derived structures are

shown in Figure 7.13, Figure 7.14 and Figure 7.15 for NCL2, NCL7 and AW scaffolds
respectively.

Both porosity and interconnectivity are known to be desirable requirements of engineered

scaffolds, necessary for the proper diffusion of nutrients and for metabolic waste removal (Salgado
etal., 2004).

Although the same glass powder/maltodextrin ratio was used to make all the bioceramic samples,
composition NCL2 exhibited lower micro-porosity, showing a heterogeneous distribution of the

pores. Additionally, in Figure 7.13(c-d) the presence of macro-channels, which crossed the
structure, can be observed.
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Figure 7.13: NCL2 scaffold: (a) 3D reconstruction and (b), (c) and (d) spatial views (XY, XZ and YZ)

obtained through micro-CT analysis.

Conversely, NCL7 micro-CT data (Figure 7.14) revealed an architecture characterised by a
homogeneous widespread network of micro and macro-pores, which presence is crucial for fluid
flow, cell migration, bone ingrowth and vascularisation. According to the different spatial views
represented in Figure 7.14(b-c-d), a good level of interconnectivity throughout the structure was

achieved.

3D representation of NCL7 was found highly similar to AW-based structure. In good agreement
with previous studies (Alharbi, 2015), AW samples were successfully sintered showing a
homogeneous distribution of micro and macro pores along with an interconnected architecture
(Figure 7.15(b-c-d)).
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Figure 7.14: NCL7 scaffold: (a) 3D reconstruction and (b), (c) and (d) spatial views (XY, XZ and YZ)
obtained through micro-CT analysis.

Figure 7.15: AW scaffold: (a) 3D reconstruction and (b), (c) and (d) spatial views (XY, XZ and YZ)

obtained through micro-CT analysis.
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7.2.4 Mechanical properties

In order to assess the mechanical characteristics of the NCL2, NCL7 and AW 3D printed
bioceramic structures, a three-point bending test was performed (Figure 7.16), according to the
ASTM C1161 — 13 standard, using an INSTRON 5567 testing machine.

Figure 7.16: Illustrative images of 3D sintered bars after the three-point bending test.

The mechanical property values of the printed samples were evaluated from the stress-strain curves,

resulting from the bending test (Figure 7.17).
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Figure 7.17: Representative stress-strain curve for 3D printed porous ceramic bars, resulting from the

three-point bending test (red arrows indicate the cracking phenomena during the test).
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The stress-strain curves presented similar trends, characterised by an almost linear profile with
some stress oscillation (see red arrows in Figure 7.17), likely due to pore collpsing or either porous

structure cracking during the test.

Figure 7.18 reports the flexural strength and modulus values calculated for NCL2, NCL7 and AW
structures. NCL2 was characterised by the highest mechanical properties. However, no significant
differences were found for the novel 3D printed scaffolds in comparison to AW, whereas NCL2

scaffolds showed flexural strength values significantly higher than NCL7 bars.
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Figure 7.18: Average flexural strength and flexural modulus for NCL2, NCL7 and AW 3D printed
scaffolds evaluated through three-point bending test. Error bars represent standard error of the mean

(p < 0.05(*)).

A summary of the mechanical properties values for NCL2, NCL7 and AW printed bars is reported
in Table 7.1. According to these data, even though the starting materials were different, it can be
concluded that using the same glass powder-porogen ratio, 3D printed structures with comparable

mechanical properties can be obtained.

Table 7.1: Summary of the mechanical properties (meanSE) for 3D printed NCL2, NCL7 and AW

porous scaffolds assessed by three-point bending test.

FLEXURAL FLEXURAL
SAMPLE
STRENGTH (MPa)  MODULUS (GPa)
NCL2 35.84+2.5 13.47+1.7
NCL7 26.08+2.1 11.20+0.9
AW 28.64+3.2 10.86+1.1
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7.2.5 In vitro cellular tests

Figure 7.19 reports the effect of 3D printed scaffolds on rat OB mitochondrial activity tested by

MTT colorimetric assay up to 7 days in culture.

According to the absorbance values shown in Figure 7.19, no significant differences were detected
for the novel 3D printed scaffolds in comparison to 3D printed AW after each considered time

point.

Furthermore, it can be highlighted that, although NCL2 showed a slightly increase of absorbance
values after 7 days in culture, compared to those after 3 days, the absorbance values for NCL2
scaffolds after 7 days were significantly lower (p<0.001) than those measured for the control
sample (CTRL), represented by the polysterene culture plate, and 3D printed NCL7 scaffolds.

0201 == B CTRL

N @ NCL2

0.157 = O NCL7
I 0 AW

Absorbance (-)

24 hours 3 days 7 days

Figure 7.19: Effect on formazan formation by NCL2, NCL7 and AW 3D printed scaffolds (n=6),
evaluated through MTT assay after 24 hours, 3 days and 7 days in culture. Error bars represent the
standard error of the mean (p < 0.05(*), p < 0.001(**)).

Additionally, Table 7.2 displays the pH values of the conditioning media and the results obtained
from the ICP analysis, considering the common elements of the three compositions (Si, P, Ca and
Mg) after 7 days of immersion in DMEM solution. Acellular DMEM solution alone was used as

control.
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Table 7.2: pH values and ionic concentrations of the different DMEM extracts obtained from NCL2,

NCL7 and AW specimens at specific time points.

NCL2 NCL7 AW DMEM
24h 3d 7d |24h 3d 7d |24h 3d 7d |24h 3d 7d
pH(mg/l) 817 799 796 |827 805 7.88 |819 808 799 |716 710 7.05
Si(mg/l) 549 211 159 |22 168 341 [149 1315 1685|025 025 0.25
P (mg/l) 37 25 27 |52 82 105 |46 05 26 |[295 295 295
Ca(mg/l)y 48 23 46 |26 97 229 [104 178 288 |[651 651 651
Mg(mg/l) 21 08 07 |21 08 4 22 22 2 198 198 1938

Novel 3D printed scaffolds, immersed in DMEM (having an initial pH of 7), produced a pH

increase, in particular after 24 hours of soaking. The pH values, whose variation is commonly

caused by the ion exchange phenomena between the samples and DMEM solution, started to

decrease slowly after 3 days in culture for both NCL2 and NCL7. However, the pH values ranged

between 7.88 and 7.96 after seven days, similarly to AW glass-ceramic.

According to Table 7.2, which reports the ionic concentration of the pure extracts, calculated by

subtracting the DMEM ionic content, there are no remarkable correlations between incubation time

and concentration of ions released in DMEM solution. However, NCL7 resulted in the highest

values for silicon and phosphorous values release in DMEM solution, while AW produced the

highest released of calcium ions.
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7.2.6 Antibacterial test

In order to evaluate the possible antibacterial properties of NCL7 composition, due to the presence

of silver in its formulation, an inhibition zone test was performed on raw powders, sintered pellets
and 3D printed scaffolds using S. aureus.
As reported in Figure 7.20, no inhibition zone for bacterial growth was detected for raw powders

and bioceramic pellets after 24h in incubation.

AW pellet

NCL7 pellet

NCL7 glass AW glass
powder powder

Figure 7.20: Illustrative image of the zone inhibition test after 24 h incubation, performed on: NCL7
and AW glass powders (bottom) and bioceramic pellets (top) using S. aureus.

According to the qualitative analysis performed on the agar plate containing the porous samples
(Figure 7.21(a)), also no antibacterial activity was revealed by AW specimens (see inset Figure

7.21(b)), since no antibacterial agents were present in the AW main composition.
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Surprisingly, a different behaviour was found for the porous NCL7 scaffolds, when compared to
the dense bioceramic pellets. As shown in Figure 7.21(b), only NCL7 3D printed samples were
able to create a zone where the bacterial growth was slightly inhibited. Although the halo was
limited with respect to the positive control, the test revealed the potential antibacterial activity of

porous NCL7-derived scaffolds, presumably due to silver ions diffusion in the area close to the

sample.
AW
scaffold
NCL7
scaffold
NCL7 glass
powder

AW glass
powder

+ Control

Inhibition
Zone

Figure 7.21: Inhibition halo test by using S. aureus strain to evaluate the antibacterial effect of NCL7
and AW 3D printed scaffold: a) general view of the agar plate, b) magnification of AW sample and c)
magnification of NCL7 sample showing the inhibition zone that limited bacterial growth.
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Chapter 8. Discussion

8.1 Introduction
In this research project eight new bioceramic formulations were developed using:

i) silicon dioxide, phosphorous pentoxide and boron trioxide as network formers due to their
widely demonstrated bioactive potential (Hench, 1998a; Hench, 1998b), distinctive resorbable
properties (Knowles, 2003; Abou Neel et al., 2009b), and tailorable degradation rate (Huang et al.,
2006; Yao et al., 2007);

i) a range of different doping agents (i.e. MgO, MnO2, Al>03, CaF2, 5Fe203, ZnO, CuO, Cr203)
to tailor the properties of the main formulation (Dietrich et al., 2009; Fielding and Bose, 2013;
Miola et al., 2014; St&hli et al., 2015; Tarafder et al., 2015; Vyas et al., 2015; Zhao et al., 2015).

The aim of the study was the processing and characterisation of these novel developed glass
formulations as potential biomaterials for bone tissue repair and regeneration, according to the

following objectives:
OBL1.: development of a series of novel glass compositions containing specific doping agents;
OB2: evaluation of the physico-chemical and biological properties of the glass powders;

OB3: evaluation of the physico-chemical, mechanical and in vitro bioactive properties of dense

sintered bioceramic pellets;
OB4: optimisation of the methodology for the fabrication of 3D porous glass-derived substitutes;

OBS5: evaluation of the physico-chemical, mechanical and biological properties of the 3D porous
sintered substitutes.

These objectives were all achieved, however limitations in the properties meant that not all the

glass formulations were carried through to the later stages.
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Table 8.1 provides a summary of the key outcomes, which will be discussed in more detail in the

following sections.

Table 8.1: Summary of the key outcomes deriving from the processing and characterisation of the novel

glass formulations.

CODE

RATIONALE

COMMENTS

NCL1
(SiO.-based)

Osteogenic properties, mainly determined

by the presence of a high amount of silica.

Cytotoxic.

NCL2
(SiO2-based)

Osteogenic properties and tailored
degradation rate, mainly for load bearing
applications.

Good mechanical properties. Slow
dissolution rate.

NCL3
(B20s-based)

Improved degradation rate and
appropriate level of bioactivity as well as
mechanical properties.

Cytotoxic.

NCL4
(B20s-based)

Tailored degradation rate and osteogenic
effects.

Good mechanical properties as dense
material. Quick degradation rate.

NCL5
(P20s-based)

Resorbable properties with controlled
degradation rate.

Did not form melt at 1500 °C.

NCL6
(P20s-based)

Resorbable properties with controlled
degradation rate, and improved
mechanical strength.

Cytotoxic.

NCL7
(SiO2-based)

Antibacterial properties, mainly
determined by the presence of silver
oxide, and a good level of bioactivity.

Good mechanical properties and
bioactive potential. Scaffolds
inhibited bacterial growth.

NCLS8
(SiO-based)

Osteogenic properties and tailored
degradation rate for non-load bearing
applications.

Cytotoxic.
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8.2 Glass melting behaviour

The NCL5 phosphate-based formulation did not form a liquid at 1500°C, therefore the process was
terminated and this composition was not pursued. The high melting temperature required was in
contrast with other studies, which stated that phosphate—based glasses can be prepared at relatively
low temperatures (Abou Neel et al., 2009b). It is considered that the complexity of NCL5
composition (10 oxides in total), in comparison to other phosphate-based formulations developed
in the literature (typically 6 oxides) (Navarro et al., 2004; Leonardi et al., 2010; Novajra et al.,
2011; Vitale-Brovarone et al., 2011), might have increased the melting point of NCL5 glass.

8.3 Sintering temperature selection and sintering behaviour

The selection of the appropriate sintering temperature, usually defined as the temperature where
the maximal densification rate is reached (Venturelli, 2011; Bretcanu et al., 2014), is a key step
during the manufacturing process to consolidate ceramic-based structures (Dorozhkin, 2010;
Palmour et al., 2013).

A summary of the potential sintering temperature ranges, derived from HSM analysis, and the
optimal sintering temperatures selected for dense pellets and porous scaffolds is reported in Table
8.2. The silicate-based and phosphate-based glasses showed larger sintering intervals when
compared to borate-based glasses. However, no specific correlations were found among the
different compositions. This might be due to the complex structure of the novel glasses, containing

different network formers in diverse molar percentages.

Table 8.2: Glass formulations sintering intervals obtained by HSM, and optimal sintering temperatures

for dense pellets and porous scaffolds.

NCL1 NCL2 NCL3 NCL4 NCL6 NCL7 NCLS3 AW

HSM sintering 575-785 600-730 555-625 550-650 580-775 575-785 500-730 800-1225
interval (°C)

Optimal sintering
temperature (°C)
(dense pellets)

625 700 625 625 725 625 625 850

Optimal sintering
temperature (°C) - 700 - - - 625 - 1150
(porous scaffolds)
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From a qualitative point of view, the HSM thermographs (reported in paragraph 6.2.3 and obtained
under the same heating conditions) revealed that silicate-based glasses (specifically, NCL1, NCL2,
NCL7 and NCLB8) displayed a similar thermal profile, characterised by an increase in the samples
dimensions after the maximum shrinkage temperature. These results are in good agreement with
the findings reported by Baino et al., which found that a silicate-based glass after a first
densification step exhibited a significant volumetric expansion (Baino et al., 2013). Similar
shrinkage profiles were observed for borate-based glasses (NCL3 and NCL4) and the AW
composition, which showed an “elbow” in their curves, as reported in Figure 6.5. These findings
support the work published by Arstila et. al, who suggested that the elbow indicated the possible
sintering interval of the analysed compound (Arstila et al., 2005; Arstila et al., 2008). Regarding
the NCL6 phosphate-based glass, although this composition has a network former content similar
to another glass reported in the literature (45% P.Os, 3% SiOz, 26% CaO, 7% MgO, 15% Na2O
and 4% K:0) (Bretcanu et al., 2014), its shrinkage profile was more comparable to those of the
novel borate-based compositions. This is tentatively attributed to the presence of the network

modifiers in the formulation.

Appropriate sintering temperatures can be selected only by a thorough post-processing evaluation,
which includes: i) the production of sintered structures using different thermal treatments and ii)
subsequent morphological characterisation using SEM or micro-CT analyses (Baino and Vitale-
Brovarone, 2011; Vivanco et al., 2011; Bretcanu et al., 2014).

On the basis of the data obtained from the HSM analysis, different thermal treatments were
investigated and optimised to increase the liquid phase of the dense pellets and improve their
densification status. It is interesting to note that, although an optimisation process was needed, the
outcomes from the heating microscopy were a very useful guide in predicting the optimal sintering
temperatures of bioceramic pellets: the temperatures that led to optimal consolidated structures

were all in the range of sintering temperatures provided by the HSM.

Moving from compact bioceramic pellets to 3D porous scaffolds, the sintering conditions required
a further optimisation process (Baino et al., 2013; Bretcanu et al., 2014). As 3D porous scaffolds
have a different internal structures, if compared to dense pellets, it was necessary to burn-out the
solid binder, which entails further shrinkage of the structure and thus a major reduction of the final

volume. The optimal sintering temperatures for NCL2 and NCL?7 scaffolds were consistent with

157



those applied for the sintering of dense bioceramic pellets. However, as reported in Chapter 7, a
gradual adjustment of porous structure sintering conditions needed to be performed. Specifically,
following the same heating treatments as implemented on the NCL2 and NCL?7 bioceramic pellets,
the solid binder was not completely burnt off. Therefore, a 2 steps sintering treatment was
developed. However, also in this case the 3D printed parts were poorly consolidated, showing weak
structural integrity. A 3 steps heat treatment for both NCL2 and NCL7 scaffolds was necessary in
order to obtain mechanically competent 3D porous parts with appropriate densification degree.
Particularly, during the first step of the treatment (up to 200°C) the temperature was increased to
remove completely the sacrificial porogen. The second step was added in order to allow the gradual
consolidation of the bioceramic structure, and finally the last step was required to reach the optimal

sintering of the bioceramic structures.

Additionally, observing the sintering behaviour of AW glass-ceramic, the data in Table 8.2 show
how moving from dense to porous structures the sintering conditions of the material were affected.
Specifically, the optimal sintering temperature of dense AW was 850°C, in agreement with the
HSM data presented by Faeghi-Nia (Faeghi-Nia et al., 2009), while the 3D porous AW required
an increase of the optimal sintering conditions up to 1150°C, based on the protocol developed by
Xiao and subsequently applied by Alharbi (Xiao et al., 2008; Alharbi, 2015). Comparing the heat
treatments of NCL2 and NCL7 scaffolds with respect to AW (3 steps vs 2 steps), a further stage
during the sintering process was necessary in order to reach a satisfactory densification of the novel
bioceramic-based samples. Hence, it can be concluded that the best sintering conditions, assessed
by a thorough post-processing analysis, are significantly influenced by the glass composition
(Novajra et al., 2015).

8.4 Crystal structure evolution

XRD analysis indicated that only NCL6 and NCL7 (as raw materials) showed a glass-ceramic
behaviour, whereas the other formulations produced XRD patterns characterised by a broad peak
detected at 20 values between 25° and 30° (Figure 6.3), typical of completely amorphous bioglasses
(Boccaccini et al., 2007).

Comparing the XRD patterns of the glass powders with those of the sintered bioceramic pellets,
few considerations can be drawn. First of all, the XRD analysis confirmed the amorphous nature
of NCL1, NCL2, NCL3, NCL4 and NCL8 compositions even after sintering; the thermal process
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did not affect the crystallinity of NCL7 glass-ceramic, which still showed a crystalline phase
corresponding to pure silver. The post sintering XRD pattern for NCL2 silicate-based glass
revealed the presence of a crystalline phase identified as diopside. Diopside is a Mg-containing
compound, which have already been investigated as biomaterials for bone repair in form of powder
and dense bulk ceramic (Nonami and Tsutsumi, 1999). Furthermore, diopside-derived scaffolds
were found to possess good and stable mechanical properties upon immersion in physiological
solution due to their low degradation rate (Wu et al., 2010). Additionally, the sintering process
increased the crystallinity of NCL6 glass sample; in fact, as the XRD pattern reported (see Figure
6.37), the initial calcium sodium phosphate phase was complemented by a sodium calcium
magnesium phosphate phase after NCL6 thermal treatment. As presented in chapter 2, the use of
calcium phosphates is a longstanding area of interest for bone tissue applications due to their high

similarity with human bone (Dorozhkin, 2010).

The XRD patterns of AW glass-ceramic revealed the same crystalline phases (hydroxylapatite
complemented with B-wollastonite) before and after the sintering process (Xiao et al., 2008).
However, the sintered material showed more intense peaks (Figure 6.40(b)) with respect to the raw
glass-powder (Figure 6.40(a)), confirming the glass-ceramic nature of this formulation. These
results are different from those of Magallanes-Perdomo et al., who worked with raw AW powder
which was completely amorphous, and showed that thermal treatment of the powders at 1100°C
for 1 hour produced two crystalline phases, apatite and wollastonite respectively. It is thought that
differences in the glass production method will have affected the crystallisation behaviour of the
compound. Hence, it can be concluded that through a careful optimisation of the post-processing
conditions, it is possible to consolidate AW powder which is completely amorphous and AW

powder that is partially crystalline, with similar phase composition in the sintered material.

8.5 Morphological analysis

The morphology of the starting glass powders was evaluated through SEM analysis, after the
grinding and sieving processes. Glass particles were found to have an average size of 20um and
less than 53um, and the tendency to agglomerate. From a qualitative perspective, the raw powders
showed a microstructure very similar to AW glass-ceramic and also to other glasses produced by

the melting route (Baino et al., 2013). Moving from glass powders to dense materials, SEM
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observations showed homogenous and microporous structures of compact sintered pellets with no

internal cracks.

The microstructures achieved from the processing by indirect 3D printing of NCL2 and NCL7 were
porous with different topographies, but with high surface roughness similar to AW-based scaffolds
obtained by the same processing route. Additionally, micro-CT investigations offered a more
accurate assessment of 3D printed glass-derived scaffolds. 3D reconstructions of NCL2, NCL7 and
AW printed bioceramic structures are shown in Figure 7.13, Figure 7.14 and Figure 7.15
respectively. Although the same glass powder/maltodextrin ratio was used, the NCL2 composition
exhibited lower micro-porosity with a heterogeneous distribution of the pores. NCL7 micro-CT
images revealed an interconnected architecture very similar to 3D printed AW, and characterised
by a homogeneous widespread network of micro (~20um) and macro-pores (~150um), which are
fundamental for fluid flow, cell migration, bone ingrowth and vascularisation (Liu et al., 2007; Loh
and Choong, 2013). Overall, the NCL7 and AW scaffolds showed the most promising structures
for clinical application.

8.6 lon release potential and cytotoxicity evaluation

The ionic release ability of the novel formulations was assessed by immersing the raw glass
powders (10 mg/l) in deionised water. A summary of the ion release concentrations for Si, P, B,
Ca and Mg, which are the common elements present in almost all the formulations, and derived
from the ion release data presented in Chapter 6, is reported in Figure 8.1. It is interesting to observe
that, except for NCL2 composition, the amount of silicon released in solution after 28 days of
soaking, was proportional to the molar content present in the main formulation. Furthermore, boron
was released much quicker than silicon for NCL3, NCL4 and NCL6 composition, in accordance
with the findings reported by previous researchers (Huang et al., 2006). The data reported in Figure
8.1 further demonstrate the widely proved reactive nature of B2Os-based glasses. Moreover, it was
found that phosphorus concentration (Figure 8.1) did not increase with immersion time for all the

glasses, except for NCL6 phosphate-based formulation.
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Figure 8.1: lonic concentrations of Si, P, B, Ca and Mg released into deionised water from all the

formulations, without refreshing the solutions and at different time points (1, 7, 14 and 28 days).

Additionally, concerning the pH of the solutions, it is well-known that changes in pH values can
cause severe damage to OB cells, which prefer a more physiological environment (pH ~ 7.5) (El-
Ghannam et al., 1997). The pH values resulting from the immersion of the raw glass powders in

deionised water were monitored up to 28 days. All the glasses, even with refreshes of the media,
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showed pH levels above 8.5, which can be considered a severe condition for cell viability.
However, the values were comparable to those of AW, therefore the pH rise might be due to the
high reactivity of glass powders. These results are consistent with the work of other researchers,
which found that fine Bioglass® powders (average particle size ~2um), immersed in different
solutions, produced a rapid increase in pH already after 6 hours of soaking; in particular, the pH of
deionised water solution reached a value of 10 after the first 30 seconds of immersion (Cerruti et
al., 2005)

Following these considerations and looking at the overall data reported in Figure 8.1, no
meaningful correlations between the cytotoxic effect of the novel formulations and their ionic
release potential of Si, P, B, Ca and Mg can be derived. Cell viability was significantly affected by
the presence of the glass powders in the media in particular at high concentrations. These findings
are consistent with the results obtained by Santocildes-Romero et al., who found that the addition
of Sr-doped bioactive glass powders (> 6.7mg/ml) to culture medium, significantly reduced MSCs
viability. However, for NCL1, NCL3, NCL6 and NCL8 compositions the cell mitochondrial
activity was inhibited even for the indirect method for all three concentrations tested. Considering

that no remarkable variation in pH values up to 7 days were detected, it can be stated:

e for NCL1 and NCL3 glass formulations, considering the low concentrations of the majority
of the doping agents, it is most likely that the release of vanadium from both these
compositions might have had a negative effect on cell mitochondrial activity(Sakai et al.,
2002);

e for NCL6 composition, since not many dopants were present in this formulation, and
because the release of Co, Cu and Cr after 28 days in immersion was quite low, it is most
likely that the high level of phosphorus and boron concentration was the cause of the
detrimental effect of this glass;

e considering the doping agents of NCL8 formulation and comparing their effect with those
of the other compositions, no clear reasons for the toxicity of this glass were found; hence,
the negative effect might be due to the combination of the different oxides present in the
main formulation;

e for NCL2 composition the slow release of the doping agents seems to positively influence
the cell viability; conversely, the high reactive nature of NCL4 borate-based glass helped

the release of strontium at higher level (in comparison to NCL1 glass), which has been
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demonstrated to increase proliferation as well as differentiation of osteoblast cells
(Gentleman et al., 2010; Hesaraki et al., 2010)
o the positive effect of the NCL7 formulation seems to derive from the combined effect of
titanium, iron and copper, which enhance OB proliferation and activity(Mourino et al.,
2012).
According to the results of the MTT assay performed on 3D porous structures, no obvious reason
for the differences in behaviour can be derived from the formulations alone, but the AW and NCL7
materials showed the best results for apatite formation in SBF, which will be discussed in the next
section, and this bioactive response might have influenced cellular behaviour (Dyson et al., 2007;
Alharbi, 2015; Lee et al., 2015).

8.7 Apatite-forming ability

No apatite needle-like precipitates were visible on the surface of the three novel compositions, after
immersion in SBF. On the contrary, AW glass-ceramic was completely covered after 7 days in
immersion, demonstrating its widely proved bioactive behaviour (Zhang et al., 2009; Magallanes-
Perdomo et al., 2011; Park and Ozturk, 2013). However, globular shaped aggregates were found
on the surface of NCL4 and NCL7 bioceramic pellets after 7 days in immersion, which particularly
for the NCL7 composition increased after 28 days. Furthermore, for NCL7 pellets the Ca/P ratio
changed from 1.1 at day 7 up to 1.4 at day 28, as demonstrated by EDS and XPS analysis. These
precipitates might be considered HCA precursors (octacalcium phosphate) (Dorozhkin, 2010), and
therefore suggest the capability of NCL7 composition to induce bioactivity.

Fu et al. suggested that the morphology of sample surfaces, after immersion in SBF, changed from
needle-like for silicate-based scaffolds to approximately globular shape for borate-based scaffolds
(Fu et al., 2010a). On the basis of the SBF testing results conducted in this study, NCL4 and AW
compositions can therefore be said to have behaved as expected. Conversely, the cauliflower shape
of NCL7 precipitates was not in accordance with the findings reported by previous studies (Huang
et al., 2006; Magallanes-Perdomo et al., 2011; Deliormanli, 2013). A possible explanation for this
might be the presence of iron in the NCL7 main formulation, which could have affected the
morphology of the precipitates (Zhang et al., 2013). If this was the case, it would mean that the
differences in precipitate morphology, after immersion in SBF solution, are composition

dependent.
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The Ca/P ratio of NCL7 precipitates after 28 days in immersion was lower than the one for AW,
but the formation of micro-cracks on NCL7 surface was more pronounced than the AW-derived
pellets (see Figure 8.2). Crack development is usually a common morphological feature due to the
dual reaction of formation of a silica-rich film and growth of the calcium-phosphate HCA layer,
which is typical of bioactive materials (Hench, 1991). This suggests that the NCL7 formulation
may be considered a bioactive material.

Figure 8.2: (a) NCL7 and (b) AW bioceramic pellet after soaking in SBF for 28 days (the red arrows

indicate the micro-cracks formation on the pellet surface).

Regarding NCL2 bioceramic pellets, no structural changes were detected, apart from that after 28
days of soaking in SBF the surface appeared homogeneously covered by a thin white layer rich in

calcium.

According to the literature, the structure of a glass plays a crucial role in determining its bioactivity
(Goel et al., 2012). Specifically, the incorporation of intermediate oxides and the reduction of P20s
content in the glass network can reduce bioactive behaviour (Groh et al., 2014). Hence, the complex
formulation of NCL2 glass may explain the absence of even HA precursors. However, it has been
also demonstrated that bioactivity tests in vitro, using SBF solution, can lead to false positive and
false negative results when compared to in vivo trials (Bohner and Lemaitre, 2009), and so no

strong conclusion can be drawn.

Another aspect that needs to be considered when a biomaterial is immersed in SBF solution is its
biodegradation rate. Usually glass-based structures undergo degradation process at a rate defined
by the kind of network former (Fu et al., 2010a). In good agreement with the literature, and as
anticipated by the ion leaching phenomena, after 28 days of immersion in SBF borate-based

samples were characterised by comparatively greater weight loss (Yao et al., 2007; Xin et al.,
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2010). Silicate-derived structures showed the lowest degradation rate (Huang et al., 2006).
Particularly, for NCL2 the negligible weight loss is consistent with the low degradation rate showed
by its diopside crystalline phase upon immersion in physiological fluids, as previous studies
demonstrated (Wu et al., 2010). These findings indicate that NCL2-based structures, with their
high mechanical strength and slower degradation rate (compared to traditional bioactive ceramics)
could potentially be used for bone-tissue repair where a controlled slow degradation is desirable.

Additionally, the pH variation of the NCL2, NCL4 and NCL7 compositions during bioactivity tests
in SBF solution was monitored up to 28 days. Conversely to the pH trends resulting from the
immersion of the raw glass powders in deionised water, it was observed that the pH varied between
7.4 and 7.7. These values are considered optimal for in vitro cell culture (EI-Ghannam et al., 1997),
and are consistent with those of Vitale-Brovarone et. al., who evaluated pH variation of dense
silicate-based glasses in SBF solution, and reported pH levels around 7.75 (Vitale-Brovarone et
al., 2008).

8.8 Novel glass formulations printability

When processed by ZCorp 310 3D printer, the NCL2 and NCL7-based green parts resulted in stable
structures similar to AW. On the contrary, NCL4-based green bodies were very weak and powdery,
and difficult to handle. A possible explanation for this might be related to the poor flowability of
NCL4-based blend, which as stated by Cox et al. directly affects the material printability (Cox et
al., 2015). The poor printability of NCL4 formulation, in comparison to the other compositions,
was qualitatively observed during the spreading phase of the printing process. NCL4 blend particles

tended to agglomerate resulting in a non-homogenous powder layer.

8.9 Mechanical properties

Table 8.3 shows that the moduli of the dense bioceramics were close to that of dense AW. However,
porosity and interconnectivity are known to be desirable requirements of tissue engineered
structures, necessary for correct diffusion of nutrients and for the removal of metabolic waste
(Salgado et al., 2004; Polo-Corrales et al., 2014). Total porosity values for 3D printed NCL2,
NCL7 and AW scaffolds are reported in Table 8.4 in comparison to human cortical and trabecular
bone. All the 3D printed structures had porosity levels higher than cortical bone and lower than

trabecular bone (Goldstein, 1987; Keaveny and Hayes, 1993), with no significant differences

165



between the three materials. However, depending on the clinical need, it might be possible to reach
a porosity level closer to cortical or trabecular bone simply redesigning the precursor characteristics
(i.e. particle size and powder/binder ratio) (Goldstein, 1987; Keaveny and Hayes, 1993; Jones and
Hench, 2003b). Furthermore, using a 3D printing approach, it has been shown that combined

macro- and micro-porous structures can be created (Dyson et al., 2007; Alharbi, 2015).

Table 8.3: Compressive modulus (meanzSE) of AW and dense bioceramic pellets.

Compressive

Modulus (GPa) Forosity (%)

AW 129 +0.03 <2%
NCL1  154+001 <2%
NCL2 1434003 <2%
NCL3 153004 <2%
NCL4 1374002 <2%
NCL6  1.24+001 <2%
NCL7  1.32+0.06 <2%
NCL8  1.68+001 <2%

Table 8.4: Total porosity values (vol %) of 3D printed scaffolds (n=5) compared to human bone. The
data represent the mean + SE (* (Goldstein, 1987)).

NCL2 NCL7 AW Cortical bone  Trabecular bone

28.7£1.5 35.3¥2.0  38.4+3.7 5-10* 50-90*
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It has been considered that for powder-based 3D printing systems, grain size and relative
distribution of the starting materials are crucial factors for the physical characteristics of the final
3D printed parts. Particularly, these parameters directly influence porosity, which in turn has been
seen to impact cell behaviour (attachment, proliferation and differentiation), as well as the resulting
mechanical properties of the implant (Spath et al., 2015). However, one of the major critical aspects
in developing load-bearing scaffolds for bone tissue is the conflicting balance between porosity

and mechanical properties.

Considering the data reported in Table 8.5, the scaffolds fabricated in the current work had flexural
strength higher than trabecular bone (10-20MPa) and lower than human cortical bone (135-
193MPa) (Fu et al., 2011). Furthermore, the NCL2 and NCL7 3D printed scaffolds showed similar
properties to AW scaffolds (Table 8.5). It is of value to highlight that, using a powder-based indirect
3DP technology and novel glass formulations, porous bone-like substitutes with load-bearing

capability and tailorable porosity have been manufactured.

8.10 NCL7 antibacterial properties

The results of the antibacterial tests performed on NCL?7 silver-doped composition were presented
in the last part of Chapter 7. The porous 3D printed NCL7 scaffolds were able to create a zone
where the bacterial growth was slightly inhibited, which was absent for the dense bioceramic
pellets. A possible explanation of this effect might be the higher surface area that the porous
materials offered with respect to the dense pellets, and presumably the greater release of Ag ions
(Sepulveda et al., 2002; Fu et al., 2011; Kolmas et al., 2014). However, the resulting halo, assessed
qualitatively via the inhibition test, was limited in comparison to the positive control. As Kolmas
stated, the method of material synthesis plays a crucial role during the release of doping ions
(Kolmas et al., 2014). Specifically, they found that the direct incorporation of Ag ions into the
structure of HA lowered their release. Furthermore, dose dependent antibacterial activity was
observed for silver-substituted HA, for which higher levels of silver (1.1wt%) led to a more
effective bactericidal response (Lim et al., 2013). Hence, it is possible that the antibacterial
properties of NCL7 formulation would also be enhanced by increasing the Ag content.
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Table 8.5: Mechanical properties (mean+SE) of 3D printed scaffolds via powder-based indirect 3DP.

] Sintering  Total porosity Flexural
Material o Reference
conditions (vol%o) strength (MPa)
NCL2 700°C/1h 28.7+1.5 35.9+2.5 -
NCL7 625°C/1h 35.3+2.0 26.1+2.1 -
AW 1150°C/1h 38.4+3.7 28.6%3.2 -
AW 1150°C/1h 35.3¢1.9 35.6+4.7 (Alharbi, 2015)
] (Bergmann et al.,
B-TCP/Bioglass 1000°C - 14.9+£3.6
2010)
HA/AW 1200°C/3h 51.5+£1.2 21.0£0.1 (Suwanprateeb et al.,
1300°C/3h 2.540.1 76.8+4.3 2009)
HA 1200°C/2h 21.2+2.2 (Seitz et al., 2005)
(Klammert et al.,
TCP 134°C/2h 28-35% 3.9-5.2
2010)
8.11 Summary

Over the last four decades, considerable progress has been made to develop load-bearing substitutes
for diseased, injured or missing bone. Particularly, the science of glass and glass-ceramic together
with the last developments in additive manufacturing technology have greatly contributed to
address some of the current open problems, mainly poor reproducibility of the grafts, degree of
performance needed and strategy for a cost-effective manufacturing process (Ventola, 2014).

However, although numerous research efforts have been made “the design of advance bioactive
biomaterials that can share load with host bone, transmit the load to the cells, and then degrade
as the bone repairs” is a frontier that need to be crossed (Hench and Jones, 2015).

168



Taken all together, the results of this research work indicated the possibility to design novel
bioceramic formulations by adding specific and functional doping agents in order to tailor their
properties towards a specific mechanical and biological response. Particularly, ICP analysis proved
the high reactive nature of borate-based glass, and the quicker release of boron in comparison to
silicon and phosphorous. Furthermore, the data obtained from the HSM represented a useful
preliminary guide in the selection of the appropriate sintering temperature for glass-derived
structures. Finally, this study demonstrated the excellent capabilities of powder-based 3DP
technology to produce 3D bioceramic substitutes, which feature similar properties, such as surface
roughness, porosity, interconnectivity, mechanical properties. Moreover in vitro biocompatibility
of 3D printed bioceramic-derived structures, by using different ceramic-based precursors, has been
investigated. Additionally, the use of a binder jetting 3DP technology for the manufacturing of
porous structures as potential bone-like substitutes, led to establish that the glass composition
significantly impacts the printability of powdered materials, as demonstrated by NCL4
formulation. Hence, a thorough optimisation process is required before the manufacturing phase

starts.
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Chapter 9. Conclusion and future work

9.1 Conclusions

Eight innovative glass compositions, based on silicate, phosphate and borate network formers, were

initially proposed for this research work and three of these (NCL2, NCL4 and NCL7 compositions)

are considered to have promise in load bearing musculoskeletal applications:

NCL2 has good mechanical properties and slow degradation rate;

NCL4 has the highest biodegradation rate of the three, however, NCL4 glass composition
significantly influenced the printability of the powder-based precursors;

NCL7 was more able to form HCA precursors than NCL2 and NCL4-derived pellets, and

in the form of a porous scaffold inhibited bacterial growth.

According to the main findings of whole research project, the following conclusions can be drawn:

the NCL6, NCL7 and AW compositions were glass-ceramic in nature, whilst the NCL1,
NCL2, NCL3, NCL4 and NCL8 formulations were completely amorphous;

the sintering treatment contributed to the development of diopside crystalline phase for
NCL2 composition, modifying the nature of the material from glass to glass-ceramic after
the sintering;

hot stage microscopy provides an effective and informative method to support the
development of new material sintering conditions;

the borate-based formulations showed the fastest ion release and degradation rates, with the
silicate-based compositions showing the lowest degradation rate;

all the formulations, processed as dense bioceramic structures, showed mechanical
properties comparable to those of dense AW glass-ceramic;

the NCL7-based bioceramic structures showed a better ability to form HCA precursors than
NCL2 and NCL4-based materials;

binder removal as part of a sintering cycle can be best achieved through the use of a multi-
step sintering treatment.

indirect powder-based 3DP offers an effective route for the production of porous

bioceramic scaffolds.
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Overall, this research work demonstrated:

1) the potential of NCL2 and NCL7 glass formulations as smart materials in the field of bone tissue
repair and regeneration, with surface roughness, porosity and interconnectivity, mechanical

properties and in vitro biocompatibility similar to 3D printed AW-derived structures.

i) the possibility to process glass powder blends by using a versatile and cost-effective additive
manufacturing technology for the production of customised “off-shelf” bone tissue engineered

substitutes.

9.2 Future work

The findings of the present study complemented those of previous researchers, and contributed to
extend the knowledge on the use of ceramic materials with tailorable properties for orthopaedic
applications. Nevertheless, future research work that will be valuable to perform is suggested

below.

e Biodegradation rate:

the degradation rate of bioglass formulations depends not only on their compositions but
also on surface area, geometry of the specimens and pH of the environment (Fu et al.,
2010a) (Huang et al., 2006). Therefore, a set of new experimental conditions, based on
different geometries (both rectangular and cylindrical shape), level of porosity, and initial
pH values of the solution might be useful to be explored in static and dynamic conditions
(Pilia et al., 2013). Furthermore, additional studies need to be performed to prove the
potential of NCL2 and NCL4 formulations as controlled drug delivery systems.

e Bioactivity:
bioactivity tests in SBF using 3D printed structures should be carried out to establish the

potential bone-bonding behaviour of 3D porous materials.

e Printability:
the effects of processing parameters (such as precursor particle distribution, layer thickness
and binder saturation level) on mechanical properties of 3D printed structures before and
after sintering could be further investigated. Additionally, the printability of the NCL4

formulation, as function of different processing parameters, needs to be further assessed.
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e Antibacterial properties:
i) further tests, based on the quantitative evaluation of Ag released during the

antibacterial test need to be performed;

i) in order to deeply investigate the efficiency of the antibacterial activity of the NCL7

composition different types of bacteria need to be carried out;

iii) development and characterisation of new glass compositions with different Ag

content could be further evaluated.

e Invivo tests:
since in vitro tests cannot replicate the complex environment of the human body, animal

studies to assess whether or not the novel materials are suitable for bone tissue repair and

regeneration applications should be performed.
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