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Abstract

Coated woven fabrics are used for large scale structures including airports and sports
stadia. Manufacturers produce a range of fabrics from which a single fabric is selected
by the structural engineer based on design criteria such as stiffness, weight, strength
and formability. Designs must therefore utilise a fabric with properties which may not
be optimal for that particular application. This thesis develops and tests a model that
allows a bespoke coated woven fabric to be designed with specified mechanical

properties such as tensile stiffness, Poison’s ratio and shear stiffness.

A method is developed to ‘invert’ an existing predictive mechanistic ‘unit cell’ model
using the derivatives of the equations defining the unit cell. The existing model is altered
to enable the prediction of shear characteristics in addition to tensile properties by the
inclusion of the coating using a finite element representation. The ‘inverse’ model is
shown to accurately design a fabric for specific and attainable targets of Young's
modulus, Poisson’s ratio, and shear stiffness which have been derived using the

predictive model for various fabric stress states.

The effect of variability in fabric parameters on the tensile response of a fabric is
considered using both Monte Carlo and FORM analysis. The sensitivity of the fabric
response to biaxial loading is calculated using the direction cosines defined in the FORM
methodology. The calculation of fabric sensitivity also enables a detailed investigation
of the sensitivity of fabric stress-strain behaviour to variation in individual fabric
parameters. A method is developed to design fabrics with mechanical properties which
are robust to changes in manufacturing parameters by altering the geometry of the

fabric.

The model is validated by comparing the inverse model output to unit cell model input
and also to biaxial test results. The inverse model shows excellent fidelity with results
calculated using the unit cell model, but fails to adequately reproduce the actual fabric
geometry when target stiffness values are based on biaxial test data. A method for the
removal of yarns from fabrics and tensile testing of coated fabric yarn specimens is also

developed.



It is common practice to use a plane stress formulation to approximate the stress-strain
response of a coated woven fabric. Comparison of the model output with biaxial test
results necessitated the creation of a method for the calculation of fabric tensile
stiffness at multiple stress states instead of a single set of elastic constants. This
approach takes into account the complex nonlinear behaviour of architectural fabrics by

considering the variation in stress-strain behaviour at different biaxial stress states.

The final inverse model provides a novel tool for the design of coated woven fabric with
prescribed mechanical responses at multiple stress states that is robust to variations in
its constituent parameters, with scope for future application in textile architecture,

medical textiles and industrial textiles.
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Nomenclature

Variable

MATLAB
Designation

Units

Description

Universal designations

X1,2

Where X is any variable: subscripts ‘1’ and
2" represent the Warp and Weft directions
respectively.

Where X is any variable: subscript ‘y’ refers
to a property of the yarn.

Xk

Where X is any variable: subscript ‘K’ refers
to a property of the coating.

Xc

Where X is any variable: subscript ‘c’ (in
some external sources referred to as ‘Z’)
refers to the compressive force between the
warp and weft directions.

Xs

Where X is any variable: subscript ‘s’ refers
to shear.

Xk

Where X is any variable: subscript F refers to
frictional forces, normally in relation to the
calculation of shear forces.

XI

Where X is any variable: the apostrophe
refers to a ‘prime’ value. This is the result
after one iteration. Two apostrophes refer
to a result obtained from a second iteration.

X1la

Where X is any variable, and 1 or 2 denote
warp and weft (in most cases): the following
letters such as ‘@’, ‘b’, ‘c’ etc. refer to
multiple calculations of the same variable.
This may be due to multiple calculations of
the same variable at the same point, or
multiple calculations of the same variable at
differing points.

X_note

Where X is any variable: the addition ‘note’
refers to any extra note attached to the
variable. E.g. ‘SavedData_Runl_NoShear’
would refer to some saved data in run 1
with no shear.

Forces and Strains

Fml, Fm2

kN/m

The stress acting on the fabric which is equal
to the force acting on the edge of a 1m
length of fabric

F1,F2

The force acting on the edge of a unit cell

Fx

Fk1, Fk2

The force acting on the coating

FY1, Fy2

22|12

The force acting on a single yarn

Fe

Fcl, Fc2

N

The force acting on the coating

el,e2

No units

Strains
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Variable | MATLAB Units Description
Designation
T Tor Shear stress acting on a unit cell
v Gamma Shear strain
M M Moment relating to the calculation of shear
forces
Yarn and Coating Geometry and Mechanical Properties
E12 El, E2or kN/m Yarn stiffness.
y(7), y(8)
Ex Ek or y(9) kN/m Coating stiffness.
Vk vk No units Coating Poisson’s ratio
S] Ph1l, Ph2 or rad Out of plane angle of the yarns.
y(1), v(2)
L L1, L2 or mm Quarter yarn wavelength.
y(3), y(4)
Y Y1, Y2 mm Half the length of a yarn in a unit cell
r rl, r2 or mm Yarn radius.
y(5), y(6)
w wil, w2 mm Half yarn width.
A1 Al, A2 mm Yarn amplitude.
Areai, Areal or mm? Yarn cross-sectional area.
Area2
61,2 dl,d2 mm Deflections in the plane of the fabric.
Spring and arm model
F F No units Load.
0 Be No units Initial angle between the bar and the x-axis
K K No units Spring constant
E E No units Spring constant (stiffness)
A A No units Spring constant (area)
Lyo Ly No units Initial length of the spring
Lo Lx No units Half the initial distance between the two
roller supports
6 No units | Displacement of the roller supports in the x-
direction
A Displacement of the pin joint in the y-
direction
Biaxial and shear response characteristics
E11,22 E11, E22 kN/m Fabric Young’s modulus
V12,21 v12,v21 No units Fabric Poisson’s ratio
G G Fabric shear stiffness
Other nomenclature used in this report
A_y - - Used to symbolise an iterative calculation
Ax
dy - - A full derivative
dx
dy - - A partial derivative
dx
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Variable MATLAB Units Description
Designation
N1,a - - The derivative of ‘N1’ with respect to ‘a’.
u - - Displacements of the isoparametric element
Vv - - parallel tox and y.
13 Eta - Axis for which an isoparametric element will
n Xi - appear rectangular.
Statistics

1 Mu - Population Mean

o] Std - Population standard deviation

Cv cov - Coefficient of Variation
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1. Introduction

1.1. Context

1.1.1. Background
For thousands of years fabrics have been used to produce shelters in the form of tents
or awnings. Animal skins or traditional fabrics such as wool were used until the advent
of modern industrial processes in the nineteenth century when the mass production of
fabric allowed for the creation of large spans such as circus tents using mass produced
linen or hemp canvas (Forster and Mollaert, 2004). It is only in the last hundred years
that modern doubly curved prestressed structures using modern architectural fabrics
have been constructed. Possibly the most famous early example of a tensioned doubly
curved structure is the cable net structure designed by Frei Otto in Munich for the 1972
Olympic games (Figure 1-1). Since the early examples of architectural fabric structures
numerous examples have been produced across the world. These merge the
requirement for shelter with distinct and unique architectural solutions that are organic
in their appearance, and are a step change away from traditional rectangular

construction.

Figure 1-1: Munich 1972 Olympic stadium roof (Tensinet, 2015)
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1. Introduction
Modern architectural fabrics are produced from a woven base cloth that is most often
plain-weave. This base cloth is coated with polymers such as PTFE
(Polytetrafluoroethylene) or PVC (Polyvinylchloride) which increases the fabric’s shear
resistance (Skelton and Freeston, 1971), stabilises the weave, and provides
waterproofing. The resultant architectural fabric resists loading entirely through tensile
and shear response in the plane of the fabric as the material has negligible bending and
compressive stiffness (Bridgens et al., 2004; Gosling et al., 2013). Unlike standard
construction materials which can resist loads through bending or compression the shape
of a fabric structure is crucial to its ability to resist loads. Doubly curved prestressed
surfaces allow for the transfer of both uplift and downward loads through the structure
whilst prestressing ensures that under all loaded conditions the fabric does not become

slack, or become wrinkled which results in stress concentrations in the wrinkles.

Three “fundamental forms” (Bridgens et al., 2009, p. 2) exist from which all doubly
curved shapes can be derived. These are the hypar (Figure 1-4), the barrel vault (Figure
1-3) and the conic which can be produced by manipulating the boundary conditions of

an initial flat fabric (Figure 1-2) (Bridgens et al., 2009).

Flat panel, with edge cables
(shown) or continuously
clamped edges

Introduce curvature to two
continuously clamped edges

Barrel vault
R =6.25m shown

Figure 1-2: The three principal anticlastic shapes. Reproduced from Bridgens et al. (2009)
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-

Figure 1-3: Dynamic Earth Centre (Edinburgh) (Tensinet, 2015)

Figure 1-4: De Montil NV (Belgium) (Tensinet, 2015)

Modern fabric structures are characterised by their anticlastic (doubly curved) surfaces,
light weight, and high strength to weight ratio in the plane of the fabric. They also

experience large deflections, large strains (up to ten percent) and large shear strains.
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Due to their low weight and the need for relatively little in the way of hard structural
supports fabric structures have a low environmental impact when compared to
traditional construction methods. Modern techniques also allow for limited recycling of
fabrics (Ferrari, 2014). In addition to anticlastic doubly curved fabric structures inflated
membrane structures also exhibit many similarities to architectural fabric structures.

These are however outside of the scope of this report (§1.4).

1.1.2. Fabric modelling

The first fabric material model was developed by Peirce (1937) in which plain weave
fabrics are described in terms of their weave geometry and material properties and the
equilibrium equations which are fundamental to further work are developed. In addition
to describing the fabric’s geometry the seminal work by Peirce (1937) also considers the
response of fabrics to biaxial loading. Since then considerable work has been carried out
with the aim to quantify the response of architectural fabrics to uniaxial, biaxial, and
shear loads (Peirce, 1937; Kawabata et al., 1973; Menges and Meffert, 1976; Wang, 2002;
Bridgens and Gosling, 2008; Colman et al., 2014).

The constitutive modelling of the fabric response can be broadly divided into two types;
predictive and representative modelling. Predictive models attempt to predict the load-
deformation of fabrics by considering their geometry and stiffness characteristics whilst
representative models aim to represent known fabric response and attempt to describe
this in terms of fitted equations or models. The important difference between these two
methods is that the representative model becomes unreliable beyond the initial data
set for which it has been calibrated. A predictive model should model all conditions for
which it has been designed though may become unreliable when used outside of the
range for which it has been checked. Material models can be split further to include
mechanical material models which describe the material’s weave and constituent
properties to calculate load-deformation response. Finite element methods model the
material using finite elements to represent yarns (Figure 1-6), filaments (Figure 1-5), or
coating. They can also be used to model fabric as a whole (Figure 1-7). The model shown
in Figure 1-5 considers the filaments that make up a yarn only. In summary Predictive

models should be more broadly applicable to new design situations.
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Figure 1-5: Finite element representation of filaments in shear (Durville, 2010)

Figure 1-6: “Three-dimensional rendering of yarns within a unit cell” used by Glaessgen et al. (1996)

Key:
Stress (kN/m)

1.200e+01
1.000e+01
8. 000e+00
6.000e+00
4 000e+00
2 000e+00
0.000e+00

Figure 1-7: Finite element model of a Hypar (initial form found configuration) (Pargana et al., 2010)

PAGE 6
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In addition to the constitutive models, fabric test data might be represented in a number
of ways. Current practice is to use the plane stress representation, describing a pair of
stiffness’s and Poisson’s ratios for the entire fabric response (Blum and Bogner, 2002).
These ‘fits’ can then be described as representative models, as they represent the data
from which they were formed, but may not represent other data sets. Though other
methods have been developed to represent fabric test data more accurately these have
not yet been incorporated into standard analysis software (Day, 1986; Minami, 2006).
Additionally Bartle et al. (2013) models fabric load-deformation response by using
Neural Networks, which utilise data from one or more fabrics to build a representative
model of behaviour, but then demonstrates the ability to predict the response of

different fabrics.
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1.2. Aims and Objectives

1.2.1. Aims
The aim of this research is to produce an inverse predictive material model for coated
woven fabrics that is robust with respect to variability in material properties to be used
to design bespoke architectural fabrics with specific properties at different loading

conditions.

1.2.2. Objectives

1. To complete a full and in depth review of the state of the art of fabric modelling,
design and analysis.

2. Formulate an inverse material model.

3. Incorporate variability of material parameters into the model and assess
sensitivity of the resultant design.

4. Develop a methodology to design a material that is robust with respect to
uncontrolled variations in parameters, such as manufacturing tolerance and
constituent material variability. This should produce statistics to give confidence
intervals for the likelihood of the attainment of the specified designed properties

5. Complete a validation study using biaxially tested samples of coated woven
fabric.

6. To carry out a structural design study using an FE simulation of a true structural

design case.
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1. Introduction
1.3.Motivation
The model developed in the following chapters might be used in the future to produce
real structures for specific responses using a bespoke fabric. To this end a qualitative
demonstration of how the method might be applied to a conic structure is detailed

below:

Conics are constructed with the warp direction aligned upwards, and the weft direction
aligned radially (Figure 1-8). This is done principally for aesthetic reasons. The structure
is then prestressed by application of load at the edge of the material (Figure 1-8), or by
the vertical displacement of the ring upwards. The loading in the warp direction induces

loads in the weft (radial) direction and the structure then finds its shape.

T Y

Figure 1-8: Standard Conic construction

This method of patterning the weft direction radially, whilst visually appealing, is not
optimal for the purpose of prestressing. The warp yarns will have relatively little crimp,
whilst the weft yarns will begin with a relatively large amount of crimp. Therefore
inducing load in the weft direction through crimp interchange by stressing the warp
yarns is inefficient. A more efficient method would be to pattern the warp yarn radially,

however, this would result in an unappealing visual effect.

The method developed in the following chapters could therefore be used to apply a
constraint on the initial response of the fabric at installation conditions. Namely that the
warp yarn be relatively crimped, whilst the weft yarn is relatively flat. This would lead to

a high stiffness in the weft direction with a lower stiffness in the warp direction.
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1. Introduction
Therefore a lower load in the warp direction would lead to crimp interchange with the
weft direction inducing higher stresses in that direction without initial high stress in the
warp direction. It is noted that this would require a higher deformation in the warp

direction.

At this point standard or nominally ‘normal’ response characteristics would be required
for the further analysis of the fabric under normal loads. Therefore two design targets
for the design of the fabric have been selected (Table 1-1). Other design requirements

might be considered as well.

Condition Ew Ex
Installation Low High
Normal operation Medium Medium
Snow High Medium
Uplift Medium High

Table 1-1: Loading conditions and required responses

Thus the design of the fabric might be carried out. Under installation the high stiffness
in the weft direction with respect to the warp direction should lead to lower prestress.
Under snow load a high warp stiffness would lead to reduced possibility of ponding at
corners or edges, whilst the radial stiffness should be less of a concern. Under wind

loading a high radial stiffness should reduce billowing outwards.

Once the design criteria are identified the inverse model developed in the following
chapters will then be run to produce a fabric that demonstrates the required mechanical
response at the specified loads. This could then be used to produce a response surface
for which response criteria could be identified for all loading scenarios similar to the
method suggested by Bridgens et al. (2004). However, utilising detailed design
information about a fabric is not currently possible with commercially available fabric

structure analysis software.

A second, quantitative, application of the model is also made using exercise three as set
out by Gosling et al. (2013) as the basis for the design of a hypar to be analysed. The
structure is analysed in Oasys GSA (Oasys, 2014) similarly to Gosling et al. (2013) which
utilises two fabric moduli and one Poisson’s Ratio for the fabric. The details of the

structure that was analysed are outlined below:
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Geometry: 6m x 6m square hypar with high points two meters above low
points. The warp direction runs between high points. The edges are
supported by cables.

Prestress: Warp = 3kN/m, Weft = 3kN/m, Cable prestress = 30kN

Material properties:

A PVC coated polyester fabric is used. The warp and weft moduli are
both 600kN/m, both Poisson’s ratios are 0.3 and the shear modulus
is 30kN/m. The cable is 12mm in diameter, with an elastic modulus
of 205GPa.

Loading:

2m

A wind uplift of 1kN/m? and a snow load of 0.6kN/m? are
considered.

o X SIDE ELEVATION

High 1 Low

PLAN

High

Figure 1-9: Hypar geometry (Gosling et al., 2013)

The structure was analysed and the maximum deflection due to the snow load

calculated to be 218mm (Figure 1-10 and Figure 1-11).
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Elem. Trans., Uz
Output axis: global

0.0 mm

-25.00 mm
-50.00 mm
-75.00 mm
-100.0 mm
-125.0 mm
-150.0 mm
-175.0 mm
-200.0 mm
-225.0 mm
-250.0 mm

Figure 1-10: Deformation of the Hypar under snow load (Plan)

Figure 1-11: Deformation of the hypar under snow load. Original (blue) and deformed geometry (grey)

At this stage the artificial constraint might be placed upon the model. For instance,
that the deflection under snow load must be reduced whilst maintaining the deflection
under wind load. This would in this case require an increase in stiffness in the warp
direction, that direction predominantly supporting the downwards load. Whilst
maintaining the stiffness in the weft direction. Alternatively it might be decided that at
a higher loading this deflection must be maintained with only a small increment of

additional deflection.

These cases would form the basis of the design of a fabric, from which a response
plane could be obtained. However, as current fabric design analysis software is unable

to incorporate more than one set of moduli or response planes into the analysis
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(Oasys, 2014) an analysis of any designed fabric for these conditions would be at the

very least, extremely difficult.

PAGE 13



1. Introduction
1.4. Outline method
Initially this research focusses on the derivation of a number of equations that describe
the biaxial response of a fabric. The constitutive model from which these equations are
derived is the sawtooth model as developed by Bridgens and Gosling (2008) (Figure
1-12). The equations are built up in stages with an initial proof of concept used to
demonstrate the applicability of the method. After the method’s validity has been
confirmed a simplified model and then the full model are considered from which

equations for the stiffness and the Poisson’s ratio of a fabric are derived.

Figure 1-12: Fundamental sawtooth unit cell (Bridgens and Gosling, 2008)

After the model equations are derived a method for the consideration of the effect of
variability in a fabric’s constitutive properties is proposed. From this a method for the
optimisation of a fabric’s robustness to changes in its constitutive properties is

produced.

Finally the various methodologies developed are compared to real test data from

biaxial tests carried out at Newcastle University.
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1.5.Scope
This thesis considers only the material model developed by Bridgens and Gosling (2008)
with some alterations, and the inclusion of a shear model developed by Page and Wang
(2000) and later Colman et al. (2014). This model was chosen because it reproduces
fabric load-deformation characteristics accurately for architectural fabrics, and is
presented in a fashion which should be applicable to the creation of an inverse material
model. Biaxial and shear modelling, with the inclusion of data from uniaxial testing is
therefore only considered in this thesis. Extensive testing of fabrics has been carried out
at Newcastle University and is not predicted to be necessary as these results are
available, and should be applicable. Manufacturing a bespoke fabric to corroborate the
results of theoretical testing is also outside of the scope of this project. Only plain weave
fabrics are considered in detail as they form the majority of architectural fabrics. Further;
only PVC coated Polyester, PTFE coated glass fibre, and Silicone coated glass fibre fabrics
are considered as test results and further specimens are available for these fabric types.
PTFE coated PTFE fibre, Cotton, and other fabrics are beyond the scope of this project.
Robust design of fabrics is carried out based on existing statistical data available at
Newcastle University, and produced by Colman (2014). In situ testing of the accuracy of
the robustness methodology is beyond the scope of this work. Linear yarn stiffness is
also used in the project to remove the need to independently calculate and verify
nonlinear yarn stiffness. As the tensile strength of fabrics and yarns is a field largely
unrelated to the prediction of fabric tensile stiffness this is excluded after a short review

of tensile strengths is made.
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1.6. Structure of Thesis

Chapter 1, Introduction: Introduces the research project.

Chapter 2, Literature review: Reviews the current state-of-the-art of fabric material
modelling and relevant information regarding the makeup and analysis of architectural
fabrics. Key topics include: The features of coated woven fabrics, the response to biaxial
load of fabrics, the modelling of fabrics, the determination of fabric properties through

testing, and current statistical and optimisation methods.

Chapter 3, A predictive model for the design of functional textiles: Includes the
formulation of the inverse material model based on the sawtooth model previously
developed. This is then implemented into a design methodology for the design of a

bespoke fabric.

Chapter 4, Variability and robustness: Discusses the Monte Carlo and FORM
methodologies for the analysis of fabric variability and applies these methodologies to
the design of a fabric’s properties for the reduction of sensitivity to variation in fabric

parameters.

Chapter 5, Validation: Attempts are made to design real fabrics based on a blind test in
which the model attempts to reproduce a fabric utilising only knowledge of the fabric’s
response to biaxial loads. In addition a real fabric is optimised for the reduction of its

sensitivity to variation in parameters, and a structural design study is proposed.

Chapter 6, Conclusions and recommendations for future work: An overview of the
conclusions of the work is presented and further work necessary for the improvement

of the model is set out.

Glossary: A list of terms relating to this thesis.

References: Have been listed alphabetically by author using the Harvard referencing

system as used at Newcastle University

Appendix: Further information relevant to the thesis, including: Published conference

paper, fabric data sheets, and further test data.
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1.7. Publications

e A Predictive Model for the Robust Design of Functional Textiles — Draft, awaiting

completion.

e |liffe CN, Bridgens BN, Gosling PD. (2013) ‘A Predictive Model for the Design of
Functional Textiles’, VI International Conference on Textile Composites and

Inflatable Structures. Munich, Germany. Pp 395-406.

1.8. Awards

Newcastle University Post Graduate Research Conference — Best Poster in

‘Infrastructure’ section 2012.
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2. Literature Review

2.1. Architectural fabrics

2.1.1. Need for this work
This research focusses entirely on the use of fabrics in architectural applications as a
load bearing component such as a roof or awning. These are normally prestressed by
the application of load during construction to avoid de-stretching which can lead to
fabrics that flap in the wind, or wrinkles. Wrinkles lead to stress concentrations in the
fabric which can lead to tears. Edge support, normally cables, and some solid support
structure, often steel work, provide the support conditions for the structure. The fabric
structure itself will be loaded entirely in tension and designed to remain in tension under

all loading conditions as the fabric itself will have negligible compressive strength.

The need for the research is typified in the following example: Conic structures are
designed to be installed with the warp yarns (down the fabric roll) aligned down the
structure (Figure 2-1) which gives a more aesthetic appearance than having them
aligned across the structure. The outside of the conic is tensioned after installation to
achieve the required prestress. This tensioning results in the tensioning of the weft yarns
(across the roll) due to the interaction between the yarns (Poisson’s ratio) which
tightens up the structure. However, as warp yarns are generally straighter than weft
yarns (§2.2.4) a large amount of stress may need to be applied to the warp direction to
achieve the required stress in the weft direction. It would be easier to align the fabric

the other way.

\

SNLLN

Figure 2-1: Tensioning of a conic structure
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Companies such as Ferrari have developed technologies to allow them to vary the
tension in the yarns during manufacture (and hence the ‘crimp’) which might help with
this problem (Ferrari, 2014), but there is currently little available information on what

level of crimp would be necessary. This research aims to change this.

2.1.2. Previous work
Only limited work has been carried out into the design of bespoke architectural fabrics,
and at this time “there is no standard or systematic design optimisation process” (Behera
and Muttagi, 2002, p. 315), though Behera and Muttagi (2002) describe how the current
design methodology for fabrics is based on iterative testing and experience. Behera and
Muttagi (2002) consider the use of an ‘Expert System’ which mimics the experience of
an experienced engineer by applying the same principles and experience to the problem
fabric design. However, these are described as complex IF, AND, OR statements that
generally work in conjunction with some objective to produce a solution based on
general rules. If the experience of the author were to be outside of the design situation
proposed the system would struggle to find an adequate solution. Also discussed are
neural networks, similar to those used by (Bartle et al., 2013). Artificial Neural Networks
mimic the behaviour of neurones by considering inputs in parallel to produce nonlinear
representations of the outputs. They can adapt to new information, and will become
more predictive the more information they receive. Work carried out in this field is very

promising, but still in its infancy.

2.1.3. Further architectural and structural applications
Sgrensen (2009, p. 1) discusses the design of wind turbines which are “traditionally
made of polymer matrix composite materials (laminates and sandwich structures)”. As
the laminate consists of a fibre matrix impregnated with a resin such as “glass
fibre/polyester [or] carbon fibre/epoxy” the design methodology for fabrics may be
applicable to the design of this laminate. Wind turbines fail in a number of ways, and
Sgrensen (2009, p. 2) identifies that “Reliable modelling tools must be developed for
modelling of the damage evolution in wind turbine blades”. It is hoped that future work
will demonstrate the applicability of this design method to the design of wind turbine
blades. However, it is predicted that architectural fabrics will demonstrate considerably
higher strains than solid composites, whilst solid composites will show a more complex

biaxial behaviour, and possibly higher stresses.
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Fabrics are also in use as permanent formwork. In this application the fabric cloth
remains part of the structure after the setting of restrained material, providing

permanent restraint to that material.

2.1.4. Medical applications
The “design of a textile composite bone plate” is relevant because of the large disparity
between bone mechanical properties and response and the properties of metal plates
(such as stainless steel) usually used in “fracture fixations” which are then removed later.
This disparity causes bones to heal differently, and can lead to refracture after the plate
is removed. Kharazi et al. (2010) produces a textile composite bone plate that aimed to,
and achieved, properties close to those of the “host material” |.e. the bone. This was
made more difficult as the “longitudinal mechanical properties of cortical bones are

higher than their transverse properties”.

Here it can be noted how a designed fabric might enable a greater compliance to the
host materials properties. The weft yarns might be orientated transversely, possibly with
high crimp, reducing the stiffness whilst stiff yarns might be used in the other direction.
In addition a designed fabric might be produced to generate a very high modulus at a
higher load, to restrict extension beyond a certain point that would not aid healing.
Lastly, unlike the standard bone plate the composite used is referred to as a “partially
resorbable” as it does not need to be removed through surgery though the glass fibres

remain in the body, having not been reabsorbed, the matrix is absorbed into the body.

“It is estimated that 20 million prosthetic meshes are implanted each year worldwide”,
these are used in hernia repair, catheters, and heart valve repair (Sanders and
Kingsnorth, 2012). However, the mechanical properties of the meshes (tensile and shear
stiffness) do not necessarily meet the needs of individual patients, leading to discomfort
and durability. Only limited work has been carried out on the optimisation of the
mechanical properties of medical meshes, including the example above. It is hoped that
further work will enable the use of this methodology in the design of woven mesh fabric
for medical applications (Scheidbach et al., 2004; Champault et al., 2009; Sergent et al.,
2009).
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2.2. Features of coated woven fabrics
How do the properties of the constituent components of a fabric affect the properties

of a fabric as a whole?

“Textile composites are composed of textile reinforcements combined with a binding
matrix (Long, 2005, p. xiii). This definition can include a wide array of “materials used for
load bearing applications”, however this report will focus on architectural fabrics thus:
The “textile reinforcement” considered here will be the regular woven pattern of yarns
produced when a textile is manufactured (§2.2.1, 2.2.4). The “binding matrix” will
generally be referred to as the coating used in the manufacture of architectural fabrics

(§2.2.3).

2.2.1. Fibre geometry and properties
Yarns are produced from fibres, which are defined as “textile raw material, generally
characterised by flexibility, fineness and [a] high ratio of length to thickness” (Lomov et
al., 2005, p. 1). Fibres are twisted together to form yarns and the twist of the yarn
produces friction between fibres which holds the yarn together (Lomov et al., 2005)
though other means can be used to create cohesion (Lawrence, 2003, p. 21). Multiple
yarns, or strands, can also be twisted together to produce a ply yarn (Lomov et al., 2005).
Cross-sections of fabrics show the individual fibres, and sometimes even the filaments

(Figure 2-2).

R .

T

PTFE-glass fibre fabric

Figure 2-2: PTFE-glass fibre image, in which the plys can be seen (Bridgens et al., 2004)
Yarns can be split into a number of subcategories, “Yarns containing only one fibre are
monofilaments. Untwisted, thick yarns are termed tows. Flat tows are called

rovings”(Long, 2005, p. 2). Yarns discussed as part of this work on architectural fabrics

will generally be continuous filament twisted ply yarns. The multiple strands that make
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up a ply yarn are visible above where three distinct sections can be seen in the yarn ends

(Figure 2-2).

The properties of a finished fabric are intrinsically linked to the properties of the yarns
that make up the fabric “transformed by the textile structure” (Lomov et al., 2005, p. 2)
and the strength of a coated fabric is mainly determined by the strength of the
constitutive yarns (Forster and Mollaert, 2004). As such the properties of the yarns must
be understood prior to the consideration of the fabric as a whole. The behaviour of yarns
is “non-linear and non-reversible owing to the fibrous nature and inter fibrous friction”
within the yarns (Lomov et al., 2005, p. 5). Whilst the internal fibrous friction produces
the non-linear response of the yarn “the frictional properties of fibres on the outside of
the yarn enable woven fabrics to maintain their weave pattern and structure” (Bridgens,

2005, p. 22). This is referred to as the dimensional stability of the fabric (Bridgens, 2005).

A number of yarns and fibres are used in the manufacture of fabrics. Glass and polyester
fibres are currently the most widely used yarns in the manufacture of architectural
fabrics. Other yarns used in fabrics include cotton, Polyamide 6.6 (Nylon), Aramid (Kevlar)
and more recently carbon fibres (Houtman and Orpana, 2000). Alagirusamy and Das
(2010) classify yarns using a flow chart (Figure 2-3) from which it can be seen that
artificial yarns tend to have a higher strength (Tenacity) than natural yarns though this

is highly generalised.

Raw
|
v L
Natural Artificial
Low tenacity High tenacity High tenacity Very high tenacity
Cotton Flax Nylon Carbon
Wool Ramie Polyester Aramid
Silk Hemp Polyethylene Glass
Jute Polypropylene

Figure 2-3: Classification of technical yarns according to raw material (Alagirusamy and Das, 2010)

PAGE 23



2. Literature Review
Cotton fibres were used by Frei Otto in his early garden show structures. Cotton is
seldom used nowadays except in limited applications because it is susceptible to fungal

attack and moisture due to its organic nature (Houtman and Orpana, 2000).

Polyamide 6.6 (Nylon) has poor resistance to UV (ultraviolet) light and “swells in length
when it gets wet” (Figure 2-4). It is used in the sailing industry due to its low weight and

high strength but is of little use as an architectural fabric (Houtman and Orpana, 2000,

p. 1).
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Figure 2-4: Symbolic representation of Polyamide 6.6. (Osswald and Menges, 1996)

Aramid fibres (Kevlar) are a class of thermoplastics referred to as liquid crystalline
polymers (Osswald and Menges, 1996). Aramid fibres have high tensile strength and are
chemically resistant. However, due to low elastic strain, poor UV resistance, poor
resistance to high temperatures, and cost the material is not widely used in architectural

fabric applications (Houtman and Orpana, 2000).

i Q i C
—N N—CllI |C|I—
O O

Figure 2-5: Symbolic representation of an Aramid (Osswald and Menges, 1996)

Carbon fibres are characterised by low density and high strength and stiffness. The
mechanical characteristics of carbon fibres do not deteriorate up to temperatures of
450°C. These fibres are used mainly in aerospace engineering, and automotive
engineering, or where exceptionally high temperatures are expected (Horrocks and
Kandola, 2005). Carbon fibres have also found use in the sailing industry. Future work

may therefore need to include carbon fibre fabrics.

Extruded PTFE fibres can also be used in architectural fabrics with a PTFE
(Polytetrafluoroethylene) coating. PTFE fibres have inferior mechanical properties in

comparison to polyester and glass fibres for most applications (Table 2-1). However PTFE
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is highly resistant to chemical corrosion and UV and IR (Infrared) radiation. PTFE coated
PTFE fabric also has good tear resistance (Houtman and Orpana, 2000; Forster and
Mollaert, 2004). PTFE coated PTFE fabrics are also more expensive than other

architectural fabrics, and difficult to weld (Bridgens, 2005).

Fibre Density Tensile Strength  Tensile Strain Elasticity
(g/cm3) (GPa) (%) (GPa)

Cotton 1.5-1.54 0.35-0.7 6-15 4.5-9

Polyamide 6.6 1.14 Until 1.0 15-20 5-6

(Nylon)

Polyester fibre* 1.38-1.41 1.0-1.3 10-18 10-15

Glass fibre 2.4-2.6 2-6 2.0-3.5 50-100

(E-glass)

Glass fibre 2.5 3.5 2.0-3.5 87

(S-glass)

Aramid fibres 1.45 Until 2.7 2-4 130-150

(Kevlar)

PTFE (Polytetra- 2.1-2.3 0.16-0.38 13-32 0.7-4.0

fluoroethylene)

Carbon fibres** 1.7-2.0 2.0-3.0 <1 200-500

Carbon fibres *** 1.5-2.0 1.5-7.0 <1 150-800

*Trevira, Teryiene, Dacron, Diolen **Celion, Carbolon, Sigrafil, Thornel *** Carbon and

graphite fibres

Table 2-1: Comparison of fibre properties, (Houtman and Orpana, 2000; Horrocks and Kandola, 2005)

Glass fibres are one of the two principal fibres used in architectural fabrics. Glass
filaments are supplied in various diameters, from 3 to 11 microns and the tensile
strength of these filaments is highly dependent on their diameter (Forster and Mollaert,
2004) with smaller diameters resulting in higher tensile strengths (Figure 2-6). Glass
fibres are incombustible, corrosion resistant, and have high strength at low densities.
They are also low cost thanks in part to the abundant nature of the raw materials
required for production (silicon) (Kostikov, 1995; Horrocks and Kandola, 2005). Whilst
there is a wide variation in components and additives all glass fibres primary component
is SiO2 (Wallenberg and Bingham, 2010). Glass fibres are largely unsusceptible to ageing;
however moisture will reduce the tensile strength of glass fibres (Houtman and Orpana,
2000). Further to this glass fibres are limited to small strains and demonstrate linear

stress strain relationships with abrupt failures (Horrocks and Kandola, 2005).

PAGE 25



2. Literature Review
Generally there are four distinct grades of glass fibre, E, S, R and C-glass fibres, of which
the types commonly used in fabrics are E and S-glass (Electrical resistant and High
Strength respectively) (Horrocks and Kandola, 2005). The generally more expensive S-
glass fibre has a higher tensile strength, and can be elongated more than the generally
cheaper E-glass before fracture (Wallenberg and Bingham, 2010). Glass fibres are drawn
from a glass melt which produces the variability in strength based on the diameter of
the fibre. The outside of the fibre will cool considerably faster than the inside, producing
internal tension and external compression. The variation in internal forces will be less in
lower diameter filaments (Forster and Mollaert, 2004) therefore producing a higher
tensile strength (Figure 2-6). The contents of the melt from which the filament is drawn

will also alter its properties.
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Figure 2-6: Effect of fibre diameter on tensile strength of fibre. Reproduced from Campbell (2010)

Polyester fibres are the other principal fibre used in architectural fabrics. Polyester fibres
are produced from Polyethylene-terephthalate (PET) (Figure 2-7) (MclIntyre, 2000). This
is the same polyester (a thermoplastic) that is used in drinks bottles, although the
forming process is different for the two applications (Margolis, 1985). “Polyester exhibits
good tensile strength, flexibility and significant elongation before yield” (Chilton and

Velasco, 2005, p. 426) differentiating it from glass fibres. Polyester fibre based fabrics
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are therefore more suited to errors during manufacturing of the yarn because the yarns
are more easily stretched to accommodate the manufacturing errors. Short or
misshaped yarns can be stretched without being damaged to incorporate manufacturing
errors. However, polyester fibres do demonstrate poor resistance to UV radiation.
Thermoplastics such as polyester are not “crosslinked” and therefore derive their
mechanical properties from the arrangement of the “monomer units that form high
molecular weight chains” (Jones, 1994). This means that as a bundle of polyester
molecules in chains extend they straighten out, resistance to which provides the fibres

tensile strength.
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Figure 2-7: Symbolic representation of Polyethylene-terephthalate (PET) (linear polyester) (Osswald and Menges,
1996)

Polyester yarns display highly nonlinear behaviour (Figure 2-8). Bridgens (2005)
compares two plots produced by (Forster and Mollaert, 2004) of this behaviour and
notes that both plots show significant differences due to the complexity of the
behaviour of PET yarns. This non-linearity is initially due to the ‘straightening’ of the
chains that make up the fibre, followed by their elastic extension, and finally their plastic
extension, and the failure of individual chains. The yarn’s long term non-linear behaviour

is due to the creep response of the yarn under sustained load (§2.2.5).
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Figure 2-8: Stress Strain responses for Glass fibres (Left) and Polyester fibres (right). Reproduced from Forster and
Mollaert (2004)

Polyester fibres are manufactured by melt spinning the polymer filaments which also
allows for the crystallisation and orientation of the macromolecular chains within the
yarns. This leads to a higher elastic modulus and tensile strength in the final yarn.
Engineering grades of PET are generally highly crystalline, whilst grades used in bottles
and other situations are generally amorphous. Macromolecular orientation and
crystallisation have a large effect on the final properties of a yarn (Margolis, 1985;
Forster and Mollaert, 2004). A higher degree of orientation means that more molecular
chains are aligned in the direction of the applied load, and thus more of the polyester is

‘available’ to resist tension in that direction.

The mechanical differences between the responses of glass-fibres and polyester fibres
is evident in the near linear response of glass fibres compared to the s-curved response
of the polyester fibres (Figure 2-8 and Table 2-1). Glass fibres exhibit good chemical and
environmental resistance, but have limited bending and strain characteristics when
compared to those of polyester fibres. However polyester fibres are less
environmentally resistant and more prone to damage due to repeat loading than glass
fibres. The choice of yarn type is therefore clearly dependant on the situation the yarn

will be employed in.
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2.2.2. Yarn geometry and properties
“..Second only to fibres from which yarns are made, yarns are the basic building blocks
of most textile fabrics. Many fabric properties will, in addition to the fibre properties and
the fabric structure, depend on the structure and properties of the constituent
yarns”(Lawrence, 2003, p. 21). Therefore understanding how the structure of the yarn

affects its properties is essential.

The yarns used in this project are formed by twisting together fibres (though non-twist
yarns also exist) which leads to tension and lateral forces in the yarn and the fibres are
consolidated by the friction generated in the twist (Lomov et al., 2005). Similarly several
yarns can be twisted together to form a ply yarn (Figure 2-9). Ply yarns can be seen in
Figure 2-2. The ply yarn shown in Figure 2-9 demonstrates how after the individual yarns
have been weaved together the fibres that made up the independent yarns become
aligned with the direction of load in the ply yarn. Yarns can be characterised by “their
dimensional, structural and constituent fibre parameters” (Alagirusamy and Das, 2010,

p. 26) along with their mechanical behaviour.

Ply yarn

Figure 2-9: Ply yarn. Reproduced from Alagirusamy and Das (2010)

Alagirusamy and Das (2010) characterise the properties of a yarn according to
dimensional, structural and constituent parameters (Table 2-2). In addition to these we
are also interested in the mechanical properties of the yarn or how the structure of the
yarn might affect the tensile strength; bending, tensile, and compressive stiffness of a

yarn.
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Parameters Characteristics

Dimensional Parameters Linear Density
Diameter

Structural Parameters Twist and its direction

Worap Density and its direction
Number of plies, ply twist, and twist combination
Core content, core-sheath ratio
Blend Constituents and blend ratio
Packing coefficient
Constituent fibre parameters Number of filaments in cross-section
Filament cross-sectional shape
Length
Linear density

Crimp cross-sectional shape
Table 2-2: Technical Yarn Characteristics (Alagirusamy and Das, 2010)

The linear density is the measure of the mass of yarn per unit length and its Sl value is
the Tex (1 tex = 1 g/km). This also acts as the unit of yarn count. The variation in Linear

density is the unevenness of the yarn (Lomov et al., 2005; Alagirusamy and Das, 2010).

Figure 2-10: Calculation of twist angle (Lomov et al., 2005; Alagirusamy and Das, 2010)

Assuming that the yarn is a cylinder and the fibre follows a helical pattern within the
yarn the twist of the yarn can be calculated (Equation 2-1) (Lomov et al., 2005). The twist

angle is “Indicative of the intensity of frictional interaction inside a yarn” (Lomov et al.,
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2005, p. 5) which is useful as a method of estimating the effective modulus of a fabric
yarn. The estimated stiffness of the yarn will be the original stiffness multiplied by cos(pB).
Further to this the yarn diameter will not always be easily available as yarns do not have
precise boundaries and as such the diameter must be estimated (Equation 2-2)
(Madhavan and Naik, 2000; Lomov et al., 2005; Alagirusamy and Das, 2010).

Td Equation 2-1
tanf = = ndK

Where B = twist angle, d= yarn diameter, h = length of the period of the twist, K= 1/h =

the twist of the yarn.

Equation 2-2
4T
d= = CVT

Where C = a coefficient for each yarn type, and T = the linear density, ps = fibre density,

Vs = the fibre volume.

Three further factors affect the calculation of twist and add to the complexity of defining
ayarn, resulting in deviations from the idealised geometry of a perfect helix in a cylinder.
Microbuckling and migration both contribute to deviation from this standard model. The
outer fibres of the yarn follow a longer path than the internal fibres. Given that the fibres
were all the same length at manufacture this creates an inward pressure from the
outermost fibres which are now more highly stressed and have the greatest curvature.
This radial force causes migration of the outermost fibres in towards the centre, and
those less stressed fibres move outwards. Microbuckling occurs in the centre of the fibre
where some twist is present in the central fibres. This effectively reduces the length of
those fibres and, by introducing further twist, reduces the stiffness of the yarn
(Madhavan and Naik, 2000). Migration can be accounted for in the numerical estimation

of ayarn’s properties by the introduction of a constant (Alagirusamy and Das, 2010).

PAGE 31



2. Literature Review

— Inward m_igrallon 3 -ﬁm
of outer filaments ! P!
N
[
)

Region of migration

Microbuckled central
filament

——m—— =i

Outward migration
of inner tilaments h

z .__-—-———_:_x‘\_

microbuckling

Idealised region without
migration [

]
Q
=
®
s
Q
(=]
3
L
5

0 A A

Inward migration Y
of outer tilaments . S = Sy

Figure 2-11: Microbuckling (right) and migration (left). Reproduced from Madhavan and Naik (2000)

Further complicating the calculation of the stiffness of a yarn is the possibility that some
fibres will be broken, not all fibres will have equal properties, and other damage (such

as ageing) may be present (Singh and Naik, 2001).

Crucially yarn properties are nonlinear due to their twist and the migration of fibres
within the yarn (in addition to the properties of the fibres). The number of additional
variables that would need to be considered to enable a complete modelling of the yarn
would be considerable, so utilising a nonlinear stiffness for yarns is therefore beyond

the scope of this project (§1.4).

Lomov et al. (2005, p. 5) states that the two “most important yarn deformation modes
[during manufacture] in determining the internal geometry of a fabric are bending [...]
and compression”, with bending allowing “for yarn interaction forces in the fabric, and
transverse compression which [...] define the shape of yarns in the fabric”. However,
bending is not often considered in the modelling of yarns and fabrics, although it is
regularly mentioned as an important deformation mechanism (§2.3.2). Testa et al. (1978,
p. 1028) states that bending is an important deformation mechanism but also states that

in their model “bending resistance of both coating and yarns is neglected”.

Testa et al. (1978) and Tan and Barnes (1984) list the deformation mechanisms of coated

fabrics, including for yarns specifically,:
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e Yarn rotations (or crimp interchange between warp and fill yarns)
e Bending and torsion of yarns
e Crushing (or flattening) of yarns at crossover point
e Yarn bending
e Yarn flattening
e Yarn extension
e Friction between filaments; friction between yarns at crossover
e Yarn nesting at crossover (the settling of one yarn into the other)
e Yarn swelling

e Yarn and fabric rupture

However Tan and Barnes (1984), in common with Testa et al. (1978) do not include
bending or yarn compression in their models (§2.3.2.2). Therefore whilst bending of the
yarns may be an important deformation mechanism when considering unwoven yarns
most models consider it unimportant for the calculation of fabric response. Contrary to
this Dimitrov and Schock (1986, p. 858) describe the bending stiffness of fibres as
influencing the Bedding-down effect which they state “will probably contribute

considerably to the load extension behaviour of fabrics”.

The compression of the yarns, or the change of the shape of yarns, is a predominant
yarn deformation mechanism, further to this Pargana et al. (2000, p. 2) suggests that
“particular attention has to be given to the modelling of the yarn crushing deformation
mechanism”. Therefore it is necessary to include some representation of yarn

deformation if accurate modelling of yarn behaviour is to be achieved.

Bridgens (2005) states that there are three mechanisms which may result in a change in

yarn radius, specifically:

e Initial bedding down (inelastic)
e Yarn crushing due to contact with orthogonal yarn (elastic or partially inelastic)
e Reduction in yarn radius due to tensile extension, i.e. Poisson’s effect (elastic or

partially elastic)

Dimitrov and Schock (1986) suggest the following factors will influence the bedding

down effect:
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e The slack in the yarn
e The coatings penetration into the yarn’s internal space
e Bending stiffness of the fibres
e Lateral compressibility of the fibres, stiffness

e Spinning characteristic of the yarn.

Yarns used in architectural fabrics vary in size in the range of approximately 0.1mm to
5mm. Versedag Duraskin PVC B4951 has a thickness of 0.6mm which means the yarn
diameter can be estimated to be approximately 0.3mm, whilst a PTFE coated glass fibre
fabric (B18059) has a thickness of 1.4mm (Verseidag, 2005). Comparing glass and
polyester yarns shows that the shape of the glass yarn might be described as a squashed
oval, whilst the PVC yarn might be more accurately described as a stretched oval (Figure
2-2 and Figure 2-12). Yarn dimension information will be essential in the design of
bespoke fabrics, where maxima and minima will need to be set to ensure viable fabric
properties are designed. It is also possible that discretisation may be necessary to allow
only viable yarns to be produced, however, given the wide range and variability of yarns

that are available this may not be necessary.

Figure 2-12: F1202 warp cross section (fill yarn) (Colman, 2013a)

2.2.3. Coating properties
Whilst the woven textile is the primary load-carrying component for roof structures the
coating (sometimes referred to as the fabric matrix, but referred to as the coating
throughout this thesis) protects the fabric from environmental effects and provides a
weather tight enclosure (Chilton and Velasco, 2005), the coating also acts as the
predominant method of shear resistance and stabilises the fabric weave. Impregnation
of the yarns (migration of coating in between yarn filaments) by the coating can also
affect the properties of the yarns. Farboodmanesh et al. (2005) demonstrate this by

adding a coagulant to a rubber coating for a PET fabric, thus stopping the penetration of
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the rubber into the yarns as the coagulant forces the rubber to “bond with itself”. This
non-impregnated fabric demonstrated reduced shear stiffness (Farboodmanesh et al.,
2005), even given that the coating was two to three times thicker in the non-
impregnated fabric than that of the comparison fabric. This paper shows that the
properties of the coating will have a large effect on the properties of the fabric
composite. However, as this is the only detailed study into this, and the materials used
are not those used in architectural fabrics it is only possible to draw general conclusions

from this work. No corroborating papers have been found to confirm this work.

Polyvinyl chloride (PVC) (Figure 2-13), is the most common coating used in conjunction
with polyester fabric (Chilton and Velasco, 2005). PVC is formulated with various
additives that alter its properties, and these must be selected for specific uses.
Plasticisers are used to increase the softness of the coating, pigments give the coating
its “lustre and beauty” and also “play an important role in the colour, UV stability and
opacity" of the fabric. In addition PVC is stabilised with “thermal stabilisers, oxidation

stabilisers and UV/light stabilisers” (Forster and Mollaert, 2004, p. 226).

Figure 2-13: Symbolic representation of PVC (Polyvinyl chloride) (Osswald and Menges, 1996)

PTFE (Polytetrafluoroethylene) (Figure 2-14) is under normal conditions non-flammable
and resistant to chemical attack. PTFE alone is a good electrical insulator, and also has
excellent chemical resistance making it resistant to environmental effects such as mould
growth and pollutants. In addition PTFE exhibits self-cleaning properties (repelling dirt)
and as it is hydrophobic helps defend glass-fibre yarns against water damage that would
otherwise reduce fabric strength. Finally PTFE is “totally resistant to UV and IR-radiation”

(Forster and Mollaert, 2004, p. 228).
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Figure 2-14: Symbolic representation of PTFE (Osswald and Menges, 1996)

Silicone (Figure 2-15) is used predominantly on glass fabric, gives a more flexible fabric,
and offers greater translucency than PTFE coatings (Chilton and Velasco, 2005). Silicone
coatings are based on silicone rubbers which are “obtained by cross-linking during

processing of silicone macromolecules” (Forster and Mollaert, 2004, p. 229).

Silicone coatings have good “elasticity and mechanical resistance”, however in
comparison to PTFE, silicone has poorer “seamability” and collects dirt faster (Forster
and Mollaert, 2004, p. 229). It is suggested that surface treatments in development at
the time of this reference may help “counterbalance these defects”. Bulut and Sular
(2013) are currently working on this, however, their full paper was not available at the

time of completion.

Figure 2-15: Symbolic representation of Silicon coating (Forster and Mollaert, 2004)

The properties of coatings can be examined using uniaxial bias tests in which no yarn
connects both loaded points of a sample (Colman, 2013b) (Table 2-3). Uniaxial tests are
carried out because the coating is difficult to remove to test independently, and any test
on a coating not in situ would not be representative of the coating in use. The coating
properties are heavily dependent on the type of coating and its thickness, with each

individual fabric generally possessing different set of coating properties.
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Mean Tensile Stiffness
(kN/m)
Ferrari PVC-polyester F702 33
Ferrari PVC-polyester F1202 37
Verseidag PTFE-glass fibreB18089 36
Verseidag PTFE-glass fibre B18059 54
ATEX Silicone-glass fibreATEX3000 12
ATEX Silicone-glass fibre ATEX 5000 21

Table 2-3: Some example coating properties (Colman, 2013b)

It is important to note that fabric stiffness is calculated in kN/m. The fabric’s thickness is
negated when considering the stress as no consideration of out-of-plane deformation is
made when considering fabric deformation, and the thickness is very small when

compared to the width.

PTFE PVC
Tensile Strength 25-36 10-25
(N/mm?)
Elongation at 350-550 170-400
break (%)
Modulus of 410 1000-3500
elasticity (N/mm?)

Table 2-4: PVC and PTFE coating properties (Osswald and Menges, 1996)

Farboodmanesh et al. (2005) describes how the coating thickness and impregnation,
mentioned above, can drastically effect a fabric’s properties although this specifically

relates to shear properties which will be discussed in more detail below (§2.2.7.4).

Pavlidou et al. (2003, p. 1301) describes how the “thickness of the coating should be kept
as small as possible to eliminate the possibility of reduction in composite strength and
modulus” and how a large coating thickness may lead to “Systematic decreases in
flexural strength”. Additives are included in coatings for a variety of reasons: to effect
flame retardation, to improve seamability or to alter the mechanical properties of

coatings (Forster and Mollaert, 2004).

Poisson’s ratio
Flexible PVC 0.3*
PTFE 0.46%3
Silicone 0.47 - 0.4%5

Table 2-5: Poison's ratios of coatings (O'Hara, 1983; Fillon and Glavatskih, 2008; McKeen, 2009; Ognedal et al., 2012;
AZO_Materials, 2014)

The Poisson’s ratios of the coatings were obtained from a number of sources. PVC used

in fabrics is flexible PVC which includes plasticisers. PTFE is a standard well known
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material and its properties are widely published. Lastly Silicone refers to Silicone rubber,
rather than the other forms of Silicone which are available and have widely varying
properties. There is some variation in the published properties of silicone coatings,

although all of these are in the range presented in the table.

2.2.4. Fabric Weaves
There exist a variety of different weaves available for use in architectural fabrics (Figure
2-16). Different sources suggest that different weave patterns are more or less common
than others: Bridgens (2005) suggests that plain weave fabrics are most common in
architectural fabrics, whilst the Tensinet Design Guide (Forster and Mollaert, 2004)
suggests that both plain weave and 2-2 basket weave (or panama) weaves are the most
common. However, Chilton and Velasco (2005) focus on the basket or Panama weaves.
Plain Weave fabrics are most commonly in use in architectural fabrics (all those
discussed in Table 2-3), with every fabric available for testing at the time of writing being
a plain weave fabric. As such all work within this report will focus exclusively on plain
weave fabrics, and not attempt to produce inverse models, or design, for other weave
types, these being outside of the scope of the project (§1.4). The weave of the fabric
impacts on the mechanical properties of the fabric by altering the force distribution on

the fibres and varying crimp interchange.
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Figure 2-16: Fabric weaves (BSI, 1971; WOO et al., 2002; Forster and Mollaert, 2004; Rao et al., 2008)

The plain weave has the simplest weave geometry, whilst the panama weave exhibits
less crimp in the yarns (Forster and Mollaert, 2004). Within a fabric two directions are
normally defined; the warp and weft. The warp direction refers to the yarn down the

length of the roll, whilst the weft yarn is across the roll (i.e. the shorter).

There also exists “multi-layered weaves” (Lomov et al., 2005, p. 18), however this work
is not concerned with these as they are used predominantly for “heavy apparel and

footwear” (Lomov et al., 2005, p. 18) which is beyond the scope of this work.

The testing for geometric properties of a fabric is carried out in accordance with
independent institute’s test methods. Alternatively national standards offer guidance
on methods to describe fabric geometry such as yarn count British Standards Institute

(BSI, 1984). As fabric testing is outside of the scope of this thesis no further discussion

will be carried out (§1.4).
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2.2.5. Creep and cyclic loading

Creep is the “Time-Dependant deformation under a constant load” (Gerdeen et al.,
2006), and this can be expressed as the creep strength, or the creep under constant load
(Figure 2-17 and Figure 2-18). Creep is the viscous (slow) deformation under constant
load. As time increases the stain under constant load increases (Figure 2-18). The creep
strength is dependent on time and ambient conditions, whilst the creep response can
be represented as a function of the strain and time given that “most creep curves reduce

to straight lines when plotted in a log-log graph” (Osswald and Menges, 1996, p. 271)
(Equation 2-3).

e(t) = M(o, T)tV Equation 2-3

where M and N are material dependant properties, and T and t represent temperature

and time respectively.
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Figure 2-17: Polymer creep responses under constant load: Reproduced from Osswald and Menges (1996)
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Figure 2-18: Creep Strength data for some polymers: Reproduced from Gerdeen et al. (2006)

Cyclic loading will damage fibres, reducing the residual strength of the composite (Jones,
1994) (Figure 2-19). This is referred to as the Load History of the fabric. “The time
dependence of the mechanical properties is especially evident in the creep failure of

polymers” (Gerdeen et al., 2006).
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Figure 2-19: Reduction in residual strength due to cyclic loading. Reproduced from Jones (1994)
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2.2.6. Fabric Manufacture
Yarns are woven on looms to form fabrics. The limiting factor to size in this process is
the width of the loom. The looms used by Verseidag are up to six meters wide (weft
direction) (Verseidag, 2011), however there is no limit to the length of the fabric in the
warp direction, other than the availability of yarns of the required length which can be

kilometres in length.

Figure 2-20: Fabric Manufacture, 6m wide Loom. Reproduced from Verseidag (2011)

Due to the tension in the yarns in the warp direction during manufacture there is
‘generally’ considerably more crimp in the weft direction due to manufacturing. This can
lead to complications in the calculation of the required prestress, and fabric response as
discussed above (§2.1). The crimp in the weft direction can be reduced to introduce
stress in the warp direction by applying tension (increasing its crimp). However, if this is
reversed, and the crimp in the warp direction is reduced to increase stress in the weft
direction considerably more stress will be required in the warp direction to induce the
required stress in the weft direction. Skelton and Freeston (1971) describe how
differential tensions can develop during the process of transferring fabric from roll to
roll which can lead to bowing in the weft direction yarns. Bowing in the weft yarns during

manufacture can result in non-orthogonal fabric geometry.
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Ferrari Précontraint is produced under warp and weft tension during coating (Ferrari,
2014) which should reduce any lack of stability in fabric properties due to weaving, or

loss of tension prior to coating. Published advantages are:

e Exceptional dimensional stability
e Long-term strength
e Greater coating thickness at the top of the yarns

e Exceptional flatness

2.2.7. Coated fabrics: Classification and response
A wide variety of fabrics types exist, and within each type there is a wide range of
different geometries available, leading to an extensive variety in the choice of fabric
properties. These are covered in a series of Standards and codes of practice, and
discussed below. Only certain fabric types will be prevalent in the discussion as these

are the most commonly used fabrics in architectural and structural applications.

2.2.7.1. Fabric types and properties

Yarns are combined with coatings in a weave to produce a “fabric composite material”
whose “mechanical response is truly different from the simple sum of the behaviour of
its two components” (Farboodmanesh et al., 2005, p. 198). The most common and their

general published properties are listed in the tables below (Table 2-6 and Table 2-7).

Polyester fabric Fibreglass fabric
Coating PVC PVC PVC PTFE Si
Top coating Acrylic :;\rlwfi-nation r:VeI::Ig:i-ng
ﬁ:;?rc‘:sd 8-10 years 12-15 years 12-15years | >30years >30 years
QESii;gannce Average Good Good Very good Very good
Self-cleaning | Average Good Good Very good Average
Transparency | Good Good Good Good Very good
Fire-retardant | Good Average Good Very good Very good
Foldable Very good Average Good Bad Average

Table 2-6: Properties of fabrics (Houtman and Orpana, 2000)
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Fabric/Coating | Weight Fire Tensile Tensile Tear Bending
retardant strength strain strength | capacity
Warp/weft | Warp/weft
[g/m’] [N/50mm] [%] [N]
Polyester/PVC B1 Very
Type 1 800 3000/3000 15/20 350 Good
Type 2 900 4400/3950 15/20 580
Type 3 1050 5750/5100 15/25 950
Type 4 1300 7450/6400 15/30 1400
Type 5 1450 9800/8300 20/30 1800
Fibreglass/PTFE 800 A2 3500/3000 7/10 300 Sufficient
1270 A2 6600/6000 7/10 570
Fibreglass/Si 800 A2 3500/3000 7/10 300 Good
1270 A2 6600/6000 7/10 570
Aramid/PVC 900 B1 7000/9000 5/6 700 Good
2020 B1 24500/24500 5/6 4450
PTFE/- 520 Non com- | 2000/2000 40/30 500 Very
bustible Good
Cotton- 350 B2 1700/1000 35/18 60 Very
Polyester/ - 520 B2 2500/2000 38/20 80 Good

Table 2-7: Mechanical properties of common fabrics (Houtman and Orpana, 2000) B1 - Difficult to ignite. A2 — 98%%
non-combustible.

Only two types of yarns which are commonly available and widely used will be
considered in this project; glass-fibres and polyester. In addition only three types of
coating will be considered; silicone, PTFE and PVC. Specifically PVC coated polyester,
PTFE coated glass-fibre and silicone coated glass-fibre fabrics will be utilised in this
project. These fabrics have been chosen as they represent the vast majority of fabrics
widely used in architectural applications and are available to be tested. With the
exception of Aramid /PVC and Cotton-polyester all the fabrics from Figure 2-6 are
represented in the testing selection. As has already been discussed (§2.2.1) cotton
fabrics are rarely used as architectural fabrics due to their limited longevity, and PTFE
yarns are less available than polyester and glass-fibre yarns. Finally, these fabrics all
share certain fundamental geometric properties that will allow for comparisons
between different fabric types. This should enable a fabric to be designed for a specific
situation with or without prior knowledge of what type of fabric would be preferred for
the solution. Polyester base cloth fabrics demonstrate higher strain than glass fibre
fabrics, but have a lower tensile strength and stiffness. Therefore, by considering

multiple fabric types the model should be more widely applicable.

A comparison between Table 2-6 and Table 2-8 shows that PVC coated polyester fabric

structures will be considered as having replaceable parts as their lives are limited to 15
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years, however, PTFE fabric structures will be considered as category 4, where the fabric

will be expected to last the lifetime of the structure.

Design Indicative Examples
Working life | design working
Category life (years)
1 10 Temporary structures ?
2 10-30 Replaceable structural parts e.g. gantry girders, bearings
3 15-25 Agricultural and similar structures
4 50 Building structures and other common structures, not
listed elsewhere in this table
6 120 Monumental building structures, highway and railway
bridges, and other civil engineering structures.
2 Structures or parts of structures that can be dismantled with a view of being re-used
should not be considered as temporary

Table 2-8: Indicative Design Working Life (Table NA.2.1.) (BSI, 2007)

Foldability is the ease with which fabric can be transported, glass fibres have a lower
flexibility than polyester fibres, and hence polyester fabrics are more foldable. In
addition, increased yarn flexibility generally results in reduced shear stiffness as yarns
are able to bend more (§2.2.7.4), allowing for the creation of more highly doubly curved

structures without wrinkling (Bridgens, 2005).

2.2.7.2. Fabric classification
The European Design Guide for Tensile Surface Structures (Forster and Mollaert, 2004)
classifies PVC coated polyester fabric into five categories and PTFE coated glass-fibre
fabric into the seven categories (Table 2-9 Table 2-10). Forster and Mollaert (2004)
suggest that for comparisons between fabrics the latter five classifications for PTFE
glass-fibre should be compared to the five categories for PVC coated polyester. However,
in addition to PTFE coated glass-fibre and PVC coated polyester fabrics, silicone coated
glass fibres fabrics will need to be considered, and the Tensinet Design Guide does not

offer any classifications for these or other fabric types that are occasionally used.
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Type 1 2 3 4 5

Surface weight (g/m2)

French design guide 720 1000 1200 1400 2000

WG Messe Frankfurt 800 900 1050 1300 1450

Tensile strength

warp/weft (kN/m)

French design guide 60/60 84/80 110/104 | 120/130 160/170

WG Messe Frankfurt 60/60 99/79 115/102 | 149/128 196/166

Trapezoidal tear

warp/weft (N)

WG Messe Frankfurt 310/350 | 520/580 | 800/950 | 1100/1400 1600/1800

Table 2-9: Classification of PVC coated polyester fabric (Forster and Mollaert, 2004)

Type G1 G2 G3 G4 G5 G6 G7
Tensile strength | 26/22 | 43/28 | 70/70 90/72 124/100 | 140/120 | 170/158
warp/weft (kN/m)
Surface  weight | 500 420 800 1000 1200 1500 1600
(8/m2)
Trapezoidal tear - - 300/300 | 300/300 | 400/400 | 500/500 | 450/450
warp/weft (N)

Table 2-10: Classification of PTFE coated glass-fibre fabric (Forster and Mollaert, 2004)
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PVC coated PTFE coated Silicone PTFE coated
polyester glass fabrics coated glass PTFE fabrics
fabrics fabrics
Tensile strength | 115/302 124/100 107/105 84/80
warp/weft (kN/m)
Fabric weight (g/m?) 1200 (type 3) 1200 (type G5) | 110 830
Trapezoidal tear | 800/950 400/400 960/700 925/925
warp/weft (N)
Visible light | 10-15 10-20 <80 19-38
transmission (%)
Flexibility/crease High Low High High
recovery
Fire reaction M2 (NFP 92 | M1 (NFP 92 | A (ASTM E-
503) 503) 108) no
B1(DIN 4102) |B1/A2  (DIN | toxicity of
4102) smokes
Cleaning Easier with top | Self-cleaning Self-cleaning Self-cleaning
coats
How to make the | By high | Thermally Vulcanisation | Stitching
seams frequency
Life span (years) >15-20 >25 >25
Cost Low High High

Table 2-11: General comparison of the properties of fabrics (Forster and Mollaert, 2004)

Some detail is available in the Tensinet design guide for silicone coated glass-fibre fabrics,

summarised above (Table 2-11) (Forster and Mollaert, 2004).

2.2.7.3. In-plane tensile response

“Fabric structures resist environmental loads as tensile stresses in the plane of the fabric”
(Bridgens and Gosling, 2004, p. 1913). The tensile response of textile composites is
highly non-linear due to the nonlinearity of the constituent material properties and the
effect of the weave geometry. The non-linear response can be seen in uniaxial tests
(Figure 2-22). The nonlinearity of the response is caused by both constituent material

property nonlinearity (§2.2.1, 0, 2.2.3), and as a result of the interaction between the

yarns and coating in the woven fabric.

Crimp interchange is the process by which fabrics alter their geometry prior to the
extension of the yarns due to their stiffness. A force applied in one yarn direction
straightens that yarn out, and forces the other direction to pull around it (Figure 2-21).

This in turn results in some reaction to the original force, and will produce a contraction
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of the unloaded direction. Due to the intricacies of this process it is possible to achieve
a higher contraction in the unloaded direction than the extension in the loaded direction,
and therefore Poisson’s ratios of more than 0.5 are possible, and will be shown in later

chapters.

Figure 2-21: Crimp interchange, reproduced from (Lomov et al., 2005)

At low loads the uniaxial tensile response is expected to have a shallower gradient
(lower tensile stiffness) than at high loads, as the geometry of the fabric deforms in
response to the load rather than the components extending (predominantly) by crimp
interchange. After a new equilibrium geometry is reached where the yarns in tension
have been (largely) straightened the yarns themselves will begin to deform under load.

This results in a higher stiffness response dominated by the yarn response (§2.2.1).

There will be some component of both of these deformation mechanisms at all times
during the deformation process in addition to the response of the coating at all loads.
However the problem is simplified by Kageyama et al. (1988) to suggest that

deformation followed by yarn extension is present in discrete response ‘zones’.
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Figure 2-22: Example of uniaxial response, reproduced from Testa et al. (1978). €1 and &; are the strains in the warp
and weft yarn respectively.

Biaxial response further complicates the uniaxial response by introducing stress in both
the warp and weft direction. The ratio between the loads in the different directions and
the magnitude of the loads will alter the fabric stiffness, with crimp interchange or yarn

extension remaining the dominant deformation mechanisms at different loads.

Applying a load in one direction will cause the yarns in that direction to straighten out
(Figure 2-21), leading to a positive strain in that direction and a negative strain in the
other direction. It then follows that if there was originally more crimp in the loaded
direction that a higher degree of crimp interchange will occur as the fabric settles into a
new equilibrium position. When the response of fabrics to biaxial load is visualised the
high degree of nonlinearity this generates in conjunction with other deformation

mechanisms becomes apparent (Figure 2-23 and Figure 2-24).

Crimp interchange was first noted by Peirce (1937) as being the principal deformation
mechanism of fabrics under biaxial load. In ‘as produced fabric’ (or virgin fabric) crimp
will generally be high in the weft direction with warp yarns demonstrating less crimp

due to manufacturing processes. This may be varied by manufacturing techniques (§0)
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PTFE fabric response Il Warp response surface
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Figure 2-23: Example of nonlinearity of biaxial response, PTFE response planes produced from biaxial tests carried
out on B18059 PTFE coated Glass-fibre fabric
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Figure 2-24: Biaxial stress-strain curves for PTFE fabric (Bridgens and Gosling, 2004)
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The key features of fabric response as described by Bridgens and Gosling (2004, p. 1914)
are: “sudden changes in gradient (a and c), gradient reversal (i.e. multiple values of stress

for a given strain) (a) and negative strain (band c) (Figure 2-24).

These characteristics cause difficulties in establishing a single function which can fit all
of the data and be developed into a response surface.” And as such numerous
descriptions of the surface (§2.3.1) and constitutive models of the fabric (§2.3.2) have

been developed to attempt to predict or represent the response of fabrics.

Fabrics also exhibit creep over time, time dependant hysteresis, and variability within

batches and between batches and rolls (§2.2.5).

The Poisson’s ratio is the contraction of a fabric in one direction due to an extension in
the other direction. Plane stress theory requires that Poisson’s ratio cannot exceed 0.5,
however tests carried out on multiple different fabrics have shown that it can in fact be
as high as “2.02” (PTFE glass G6 fabric) (Gosling and Bridgens, 2008). These higher values
are required to “model the high level of warp-fill interaction and large negative strains
which occur in woven fabrics under biaxial load” (Gosling and Bridgens, 2008, p. 216). It
is therefore possible that a contraction in say the warp direction might be greater than

the elongation it resulted from.

For a linear elastic materials the orthotropic constitutive model holds that the Young’s
moduli (Ew and Ef refer to warp and fill directions respectively) are related to the
Poisson’s ratios (vwt and vsy refer to the warp-fill and fill-warp ratios respectively)

(Equation 2-4).

wa _ Vfw Equation 2-4

E, E
Using this theory may not be consistent with fabric behaviour, as interactions between
the coating and yarns means that the complex fabric behaviour may not be adequately
represented by elastic constants in this fashion. Gosling and Bridgens (2008, p. 220)
state that as “coated woven fabrics are not homogenous materials” and therefore there
is no requirement for the reciprocal relationship to be held (Equation 2-4). They should

be considered to be more like mechanisms. To this end they offer an alternate
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calculation for the Poisson’s ratio (Equation 2-5) where ‘C’ is a constant related to the

fabric type.

Vs (Vfw> Equation 2-5

The value of Cis an empirical constant calculated from test data Gosling and Bridgens

(2008, p. 219) (PVC coated polyester = 1.51, PTFE coated glass fibre = 1.40).

If fabrics are considered more like mechanisms it is possible to consider how the linear

elastic relationship may hold for the yarns or coating, but not for the entire fabric.

2.2.7.4. Shear
“In-plane (or intra-ply) shear is generally considered to be the primary deformation
mechanism during forming [finding the form the structure will take]” so must be
considered for the design of a fabric (Boisse et al., 2005b, p. 63). The double curvature
in a fabric will be dependent on the supporting structure, but the amount that can be
achieved will be related to the shear the fabric can undergo However, calculating shear
forces in a fabric, and the effect of biaxial loading on shear forces is complex. Whilst
shear stiffness is known to be an important parameter in the analysis of doubly curved
fabric structures “shear behaviour remains absent from some analysis methodologies

used by industry” (Colman et al., 2014, p. 163).

Unlike the simple engineering shear used in the analysis of plates and laminas the shear
observed in woven fabrics is ‘pure shear’. The side lengths are considered constant
unlike in “simple or ‘engineering’ shear” where the area remains constant, and side
lengths are allowed to vary (Colman et al., 2014, p. 165) (Figure 2-25). Fabrics deforming
in this way deform in a “Trellis-like manner”, with yarns rotating relative to the fulcra at
the cross overs (Buckenham, 1997, p. 33). The importance of this can be demonstrated
by considering the yarns as inextensible members (Nguyen et al., 1999; Sun and Pan,
2005) and considering the large shear deformation often found in fabrics (typically up
to 15°) (Bridgens, 2005; Colman et al., 2014). In uncoated fabrics this can be even higher,
exceeding 50° (Colman et al., 2014), which suggests that the addition of a coating

reduces the observable shear by 35°, confirmed by an observation made by Gosling et
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al. (2013, p. 314): “The woven yarns provide tensile strength, whilst the coating stabilises

and protects the weave and provides waterproofing and shear stiffness”.

=
T

Figure 2-25: simple (right) and pure (left) shear reproduced fromColman et al. (2014)

Liu et al. (2004) consider three distinct states of (uncoated) fabric response to shearing
for “balanced plainweave” fabrics. The initial state determines the geometry of the
fabric which is then described as deforming in a “trellis shear” deformation mode. Two
shear resisting mechanisms are then considered: Intra yarn friction (Figure 2-26 region
1) is the result of the friction between yarns at cross over due to tension in the fabric
(and therefore a function of the out of plane force). Whilst yarn compaction occurs at
lock up (y. in Figure 2-26) and resists considerably more load than yarn friction. A
number of shear deformation mechanisms have been identified, some of which are

shown in Figure 2-26:

o fibre rotation (Nguyen et al., 1999)

o fibre slip (Nguyen et al., 1999)

e varn lock up (Nguyen et al., 1999)

e varn bending (Grosberg and Park, 1966)
e intrayarn friction (Liu et al., 2004)

e yarn compaction (Liu et al., 2004)

e coating shear resistance (Testa and Yu, 1987)
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Figure 2-26: Diagram of the load—shear angle curve reproduced from Liu et al. (2004)

A more detailed investigation of this, and use of the formulation supplied by Liu et al.

(2004) with its revision by Colman (2014) is made in the following chapter (§3.4.3).

Fibre slip is unlikely to occur in a coated fabric where the coating will restrain any lateral
movement of the yarn at the fulcra, meaning that it will be necessary to consider the
other deformation mechanisms. Matsudaira and Kawabata (1998) also model a gap
between silk yarns that they consider to have a “strong effect” on the shear response of
the fabric, but the applicability of this to coated fabrics would be limited as no gap can

be observed to exist (Figure 2-12).

Grosberg and Park (1966) established that for uncoated fabrics in the early stages of
deformation the response is predominantly due to yarn bending where no slippage has
occurred (at very low shear angles). Following this the yarns begin to slide (rotate) about
the fulcra (crossovers) producing friction between yarns and possibly elastic compaction
forces between adjacent yarns. Lastly jamming occurs leading to wrinkling (Buckenham,

1997; Page and Wang, 2000).

However, having noted the above deformation mechanisms for uncoated fabrics, Testa
and Yu (1987, p. 1636) state that “resistance to shear deformation arises almost entirely
from the coating”. This may be important, but considering the underlying fabric
architecture to have no input into the response of a fabric would seem to be an

oversimplification where coated fabrics are known to have complex nonlinear responses.
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It may be the case that the coating is principal in determining fabric response, but
consideration of yarn interaction should also be noted. This is discussed in detail in the
following chapter (§3.7.2), where the coating will be shown to be the principal method
by which fabrics resist shear deformation, however, the underlying fabric geometry also

affects the shear stiffness.

Woven fabrics may only shear to a limited degree after which further shear strain will
lead to increased shear stiffness and wrinkling (Liu et al., 2004; Gosling et al., 2013;
Colman et al., 2014). Wrinkling (fabric lock-up or yarn lock-up) (Jones and Pickett, 2005)
occurs when parallel yarns become ‘jammed’ against each other, and is characterised
by rapid increases in shearing force, which leads to wrinkling, though this may not be
entirely the case in coated fabrics (Nguyen et al., 1999). Wrinkling must be avoided in

construction as it is unsightly and leads to stress concentrations in the ridges.

Yarn lock-up would seem most readily applicable to finite element analysis where yarn
lock up is expected to occur, given the complex interaction between yarns, and this has
resulted in a number of FE methods that aim to quantify shear deformation in terms of
finite element modelling (Page and Wang, 2000; Boisse et al., 2005a; Badel et al., 2007).
These methods have the advantage of being able to calculate the frictional area
between perpendicular yarns and the area of resistance between perpendicular yarns
(Figure 2-27). However, these methods requires detailed knowledge of the yarn prior to
analysis so does not lend themselves to predictive calculations. Lastly, none of the FE

methods noted later (§2.3.2.4) consider coated fabrics.
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Figure 2-27: Test and prediction of in plane shear for a plain weave glass fabric using an FE method reproduced
from Boisse et al. (2005a)

Coated fabric shear response, similarly to tensile response is characterised by hysteresis

with the response curves shape being related to the stages of deformation discussed
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Figure 2-28: comparison between the response of coated and uncoated fabrics manufactured specifically for the
tests (Skelton and Freeston, 1971)

The shear stiffness of a coated fabric was found to be ten to a hundred times greater

than the uncoated substrate (Skelton and Freeston, 1971) (Figure 2-28).
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Farboodmanesh et al. (2005, p. 197) states that shear behaviour in rubber coated
fabrics is “governed by the interaction of its two components” in contrast to the earlier
statement by Testa and Yu (1987) who state that shear response is governed by the
coating. The work by Farboodmanesh et al. (2005) considers an altogether different type
of fabric where the coating is formed from a neoprene latex to those normally employed
in architectural structures. Whilst neoprene latex is not directly applicable to
architectural fabric this paper is the only available source that considers the thickness
of coating and impregnation of coating into the fabric base cloth with relation to shear
stiffness. This difference may result in the different conclusion, namely that coating
dominates the response at low shear angles with the fabric dominating at higher angles.
Further to this Farboodmanesh et al. (2005) demonstrates that increased thickness of
coating increases the load required for a particular shear angle. Whilst this is not
unexpected it is the only available clear demonstration of this through test data. Testa
and Yu (1987, p. 1636) consider coated fabrics and describe how that “for both Teflon
coated and silicone coated fabrics the shear response is elastic and nearly linear” though
this is for low shear angles it appears to be in contradiction to the response curves

presented by Colman et al. (2014).

Current best practice is to use the plane stress orthotropic equations (Equation 2-6)
(Colman et al., 2014). It is important to note that in the plane stress orthotropic
equations the shear response is entirely uncoupled from the tensile stiffnesses (Ew, Es).
The zero valuesin the cells [...]1,3, [...]2,3, [...]3,1, and [...]3,2 ensure that the in-plane tensile
response is not linked to the in-plane shear response. This is not confirmed by work by
Liu et al. (2004), who links the extension of yarns to an increased area of friction
between yarns, resulting in a higher shear stiffness. However, if Testa and Yu (1987) are
correct and the coating is only responsible for a fabric’s shear stiffness then this

assumption will be accurate.

i “Viw 0 ]
. E,, Ef -
w _ w
ol 5 oo
Ewr W f 1 Owf Equation 2-6
0 0 —_—
wa_
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Where ewswi are the warp, weft, and shear strains respectively. Ew s are the in-plane
tensile stiffnesses, vsw wt are the in-plane Poisson’s ratios, Gws is the shear modulus, and

Ow,fwf are the stresses.

2.2.7.5. Bending and compression
“Architectural fabrics have negligible [out-of-plane] bending and [in-plane] compression
stiffness” (Gosling et al., 2013, p. 314). As such, whilst the small scale consideration of
the bending of individual yarns in the case of shear has been dealt with in the previous
section (§2.2.7.4) no detailed discussion of fabric unit cell bending will be made in this
section. Fabrics are known to respond to loading by large deformations, biaxial tensile
response, and shearing. As such bending stiffness is never considered in the analysis of

a fabric.

Further to this fabrics have negligible in plane compressive stiffness in both of the

principal yarn directions, so this too will be given no further consideration.

2.2.7.6. Tensile strength
The strength of a fabric is an important characteristic of fabric’s, though may be difficult
to consider within a unit cell representation of a fabric (§2.3.2.2). A fabric’s strength is
determined by the strength of the yarns as part of the constituent material, and reduced
to less than the sum of the strength of the yarns by the interaction of each yarn with
perpendicular yarns (Forster and Mollaert, 2004). Whilst the yarns may have a tensile
strength when tested individually the deformations they undergo within a fabric will
alter this, reducing it as the yarns are bent around each other. Similarly Pan (1996, p.
313) notes that “the tensile behaviour of a fabric would be identical to that of its
constituent yarns if all yarns were uniform in their tensile properties, and if the
interactions between the two perpendicular yarn systems were negligible”. However,
given that this is not the case a method of calculating the strength of the material is then
proposed. Using the strength of the yarns excluding the interaction with the
perpendicular direction as an initial approximation Pan (1996) then calculates a ‘critical
length’, or effective length taking into account out of plane curvature, of a yarn for a
given maximum strength. The critical length is described as the equivalent yarn length
of a virgin (non-woven) yarn to that of a woven yarn and takes account of inter-yarn

interactions. This allows a virgin yarn’s properties to be used in strength calculations,
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whilst ignoring the inter-yarn interactions. This critical length can then be applied to the
original strength calculation based on non-interacting perpendicular yarns to give a
fabric strength. It is also noted that whilst this is the case for plane weave fabrics weave

structure will affect this value.

The procedure to determine fabric strength as published by the BSI (1998b) is to apply
a load along the axis of interest, measuring the extension and load of the sample until
break. The maximum load and maximum strain at break are recorded, and correspond
to the strength of the material. This is a uniaxial strip test, although biaxially tested fabric

exhibit lower values of tensile strength (Happold et al., 1987).

2.2.7.7. Tearing and Tear propagation
Fabric failure will often be due to an existing tear rather than loads exceeding fabric
strength. In tear propagation the “force which originally passed directly through [a tear]
before the tear existed, has now been “led around the tear” (Forster and Mollaert, 2004,
p. 239). This leads to a stress concentration at the pinnacle, or tip, of the tear, which if
large enough will continue to propagate the tear. Forster and Mollaert (2004) suggest
that an initial tear length (critical tear length) should be assumed and the fabric’s
resistance to this tear analysed, but do not specify what this should be. More generally
the tearing strength is approximately 16% of the tensile strength of a fabric when
analysed using a wide strip test (Happold et al., 1987). A wide strip test is a tensile load-
extension test performed in an Instron or similar test machine which measures the load-

extension characteristics of a wide strip of fabric, 400mm wide.

A number of test methods exist for the calculation of fabric tear resistance including the
Tongued (double-tear), the Trouser-shaped (single-tear), the trapezoidal method, and
by putting an initial cut into a uniaxial sample (BSI, 1982; BSI, 1998a; BSI, 2003; Forster
and Mollaert, 2004).

2.2.7.8. Environmental impact and Recyclability
“The recycling of PVC coated fabrics is possible using a process (patented by Solvay and
applied by Ferrari) which allows the separate recycling of the PVC resin and the polyester
fibres by selective chemical dissolving.” (Forster and Mollaert, 2004, p. 227). Whilst some
companies offer to repurpose fabrics after their return, for instance as floor coverings

(Verseidag, 2011) .
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The relatively low weight of fabric structures compared to other roofing solutions does
generally also result in a reduction of foundation mass and superstructure with a
resultant decrease in both cost and material. This in itself increases the environmental
performance of fabric structures as they require less embodied carbon in the

superstructure and foundations.

The final point of note with relation to the environmental impact of fabric is that the
fabric’s low mass leads to a high conductivity of external environment to internal
surfaces, and low insulation (Forster and Mollaert, 2004). It follows therefore that
heating and internal airflow must be carefully monitored for spaces enclosed by a fabric

structure.

The generally short life span of architectural fabrics, especially PVC coated polyester
fabrics means that they need to be replaced regularly in structures that are constructed
for a design life of more than 30 years. Where the fabrics are non-recyclable, the use of

architectural fabrics is therefore not sustainable.

2.2.8. Uncoated fabrics: Classification and response
Uncoated fabrics will not be tested or designed in this thesis, however, there is a great
body of work that has been carried out on uncoated fabrics, including work by Peirce
(1937), and Kawabata et al. (1973), Nguyen et al. (1999), Grosberg and Park (1966),
Testa and Yu (1987) to model uncoated fabrics. The difference between coated and

uncoated fabrics is the lack of any restraint provided by the coating on the yarns.

Fabrics are generally classified in terms of their tensile strength, linear density of fibres
(Tex or denier), weight and other relevant properties. Tex is “the unit of linear density,
equal to the mass in grams of 1000 meters of fiber, yarn, or other textile strand, that is

used in a direct yarn numbering system” (ASTM, 2013).
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2.3. Types of fabric model

Or how can a model be used to design fabrics, and what properties are needed?

This section reviews current methods for the modelling of fabrics, focussing on what is
needed to produce a fabric model and later how these might be used to produce an
inverse model. Pargana et al. (2007, p. 1323) states that “the accurate and reliable
modelling of fabrics is of paramount importance for the successful and realistic design
and analysis of these structures”. The accuracy of models to be used in the description
of plane weave fabrics will also be considered. Many models are available, all of which
consider different properties of the fabric and make different assumptions regarding its

geometry and how loads are distributed. These can be summarised as:

e Result modelling
o linearizing results
o curve fitting
o discretisation
e Yarn modelling
e Unit cell modelling
o Finite element models

o Physically based models

2.3.1. Biaxial and Uniaxial stress-strain behaviour representation
The representation of fabric test data has been attempted in a number of ways. Though
the complex nonlinear response of fabrics to uniaxial, biaxial, and shear loading means
numerous models have been developed to represent fabric response to tensile and

shear loads.

Bi-linear representations of fabric response have been widely used to represent test
data, the initial crimp interchange dominated response and the later yarn extension
dominated response are each represented by a linear relationship (Figure 2-29).
However, the linear relationships must be reset for each stress ratio (Testa et al., 1978;

Kageyama et al., 1988).
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Figure 2-29: Two zones that make up the Bi-linear model reproduced from Kageyama et al. (1988)

Modulus-strain curves, using the derivative of the stress strain curve, can also be used
to show fabric response, and can show more clearly small differences in mechanical
properties. This is often seen as distinct peaks rather than the slight steepening or
flattening often noted in stress-strain data. Lucas (1983) produces a fitted polynomial to
modulus-strain curves for yarns using the sum of three “modified Pearson VIl lines”
(Figure 2-30). The same modified curves are also used to predict force elongation
responses for yarns (Zimliki et al., 2000). The accuracy of this method in reproducing
initial moduli, whilst described as being “better” than previous models, is highly variable
with published percentage differences between measured and predicted response

being between 0.4 and 28%.

Chen et al. (1995) used “polynomial functions” to represent tensile and shear data to
enable the calculation of strain energy. Biaxial properties were represented by second
order polynomials and shear data represented by third order polynomials. The
advantage of this method is that the moduli (derivatives of each curve) could be found
quickly and in a single step. However, whilst the published r? values are high (greater
than 0.98) the data appears to fail to represent sharp changes in stiffness as crimp is

removed and yarn extension becomes the dominant deformation mechanism.

The problem with fitted curves which are not based on any physical model is that they

give no useful information about the response beyond the points for which test data is
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available. Though the data and its visualisation might be used for the range of results
already obtained. In particular the noting of the peaks in stiffness at certain strains might

be relevant in design (Figure 2-30).

10

P=3
o
]

[eN/tex)

Figure 2-30: measured (dots) and fitted (line) modulus strain curve. The curves from which the fit was made are
also shown (-----). Reproduced from (Lucas, 1983)

Strain energy functions produced from the “complementary strain energy function”
have also been used to represent fabric biaxial response (Testa and Yu, 1987). This
method requires the calibration of a number of parameters for any fabric found using
uniaxial tensile testing, whilst the model itself appears to show only limited success in

predicting response.

Current practice is to use the plane stress representation to represent fabric data with
“Fabric behaviour [] typically defined using elastic constants based on plane stress
assumptions” (Bridgens and Gosling, 2004, p. 1913). The plane stress representation
defines the fabric in terms of two Young’s moduli and Poisson’s ratios, reducing the
response to a simple representation, and largely ignoring the complex nonlinearity of

fabric response.

Three methods of presenting fabric stress-strain behaviour in this way are presented by
Bridgens et al. (2004): First is to represent the response in terms of two Young’s Moduli

and one Poisson’s ratio which “remain constant throughout the structural analysis”.
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Second is the “Use of elastic and interaction moduli” (Equation 2-7). The Poisson’s ratios

can also be determined (Equation 2-8).

[0'11] Ei111 E1122] [811]

022 Ez11  Ezz22]1€22

Equation 2-7
vy, = E1122
E1111
Uy = E2211
E2222
Equation 2-8

For which the subscripts 11 and 22 represent the warp and weft directions respectively.
o=stress, e=strain, v=Poisson’s ratio, and E = elastic modulus (Blum and Bbégner, 2002)
These equations (Equation 2-7 and Equation 2-8) are then solved by considering stresses
and strains as small increments at points of interest. “This procedure will be repeated for
every part of the load history. Thus we can get an impression of the elastic moduli over
the range of loading” (Blum and Bégner, 2002, p. 3).

Thirdly a method for the determination of elastic constants from response surfaces has
been developed by Minami et al. (1997, p. 598) which “employs multi step linearized
approximation” (Figure 2-31). In this method biaxial test data is discretised into a
number of surfaces for which the response characteristics can be calculated (Figure

2-31).

Figure 2-31: Biaxial response surface divided into discrete zones. Reproduced from Minami (2006)

Day (1986, p. 18) uses an alternate method to describe the fabric response based on soil

mechanics and “relating the mean and difference of the principal stresses, to the mean
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and difference of the principal strains”. The material is considered to be orthotropic as
“the shear stiffness of a typical woven fabric is low” and thus the principal stresses and
strains are taken to be the warp and weft stresses. The shear stress is derived separately.
Arbitrary stress strain curves are used in the relationships between stresses and strains
as polynomials proved unusable because of “discontinuities in the material”. When
comparing these equations to test data “systematic adjustments” are made to the
curves until the accuracy cannot be improved. And the material (and its nonlinearity)
can therefore be represented by two simultaneous equations.

Bridgens et al. (2004) suggests a new approach to the use of response surfaces: That a
surface should be fitted to fabric data and the stress-strain response surface used to
allow a “direct correlation between stresses and strains [ ] for structural analysis”. In the
suggested method “A ‘look-up’ table of warp and weft stresses and strains replaces
elastic constants in the analysis”. And therefore the stress at a given displacement would
not need to be recalculated, rather ‘looked up’ from the available test data,
“consequently, a differentiable surface function does not need to be defined” (Gosling

and Bridgens, 2008, p. 225). Splines are used to represent the fabric surface in later work.

2.3.2. Fabric modelling
A detailed discussion of fabric models has been made below. Special consideration is

given to mechanical models.

Mechanical models endeavour to represent the response of a fabric to loading by
considering a model that in some way represents the physical reality of the fabric, which
was first demonstrated by Peirce (1937). In this fashion the extrapolation of the model
beyond initial testing can be carried out by considering how the various properties of
the model physically change under new conditions. The properties of such models can
be modified easily and those that are representative require only minimal testing and
no calibration for the model properties to be changed. A detailed discussion of a number
of mechanical fabric models is made in this report (§2.3.2.3), though all of these models
consider a unit cell, the response of which can be used to represent the response of an

entire fabric (§2.3.2.2).

Parameters used in mechanical models include yarn geometry, yarn spacing, fabric

crimp, and coating and yarn moduli. These can be determined from uniaxial or biaxial
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testing and physical measurement. Where constants or calibrations from biaxial test
data are required the model must be considered to be representing the data set from
which these are derived, and cannot be used beyond that initial range as with a

predictive model (§2.3.2.3).

2.3.2.1. Yarn modelling

Numerous models exist that endeavour to predict the characteristics of yarns within
fabrics: Singh and Naik (2001) have produced a method which predicts the longitudinal
and transverse tensile strength of yarns with reference to (Hearle, 1969). Madhavan and
Naik (2000) have produced models which predict the elastic properties of yarns and
demonstrate how certain properties of yarns such as twist can affect the modulus of the
yarn as a whole. Yarn modulus “decreases substantially with increasing twist” in the
work by Madhavan and Naik (2000). Further work, including that discussed earlier
(§2.2.1), also attempts to classify yarn mechanical properties using yarn characteristics
and a great deal of work has been carried out in this area beyond the pieces discussed
above (Ghosh, 2005; Palaniswamy and Mohamed, 2005; Nurwaha and Wang, 2011;
Arain et al., 2012).

However most unit cell and predictive methods outlined below do not make use of
detailed yarn descriptions. Thus as the proposed work will be based on a unit cell model

a detailed discussion of various yarn models is not considered necessary.

It is possible that the inclusion of yarn models may become necessary in future work to
improve the reliability of the predictive model design. This is made more likely due to
the nonlinearity of response of certain yarns (Figure 2-8), where linear representations
of yarn properties may prove overly simplistic in the context of a complex nonlinear

response system.

2.3.2.2.  Unit cell modelling
In the modelling of fabrics a repeatable unit is almost always used to enable the
consideration of a small component of the fabric that can then be repeated or expanded
upon to give the response of an entire fabric. This principle is initially described by Peirce
(1937, p. 54) who describes the fabric assuming yarns are “flexible, circular cylinders
interwoven in a regularly recurring pattern”. This bears a great deal of semblance to later

descriptions. The unit cell most often used and described as “the smallest element that
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may be used to characterise the mechanical response of the fabric as a whole” (Pargana
etal., 2000, p. 4) is that of a half wavelength of each yarn centred at cross over (Figure
2-32). This representation allows for the small scale modelling of the interaction of the
yarns at crossover, whilst considering the extension of the cell in both warp and weft

directions. This can be extended to consider shear response.

Figure 2-32: Unit cell representation (Plain Weave)

The idealisation of the unit cell can vary depending upon the model employed, however,
in every case reviewed this cell is used as the basis of the model with the exception of

the work by Badel et al. (2007) which uses two unit cells (§2.3.2.4).

2.3.2.3. Predictive models
Fabric models are generally developed using one of two methodologies. Models are

developed to either represent biaxial data, or predict the biaxial stress-strain response.

Representative constitutive models utilise biaxial stress-strain response data to inform
variables in the descriptive equations that then ensure the modelled response is within
certain tolerances. Representative models are only reliable within the range of the data
the original variables were informed from, as beyond this the variables have not been
calibrated. This requires the testing of fabrics to obtain the data to calibrate the model
against. Models utilising this approach which will be discussed in more detail below
include: The model by Tan and Barnes (1984) which requires the “Calibration of the

material model”, the model by Kato et al. (1999) which requires biaxial data to identify
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“characteristic strains”. Pargana et al. (2000), and Uetani et al. (2002) both require that

“the constitutive parameters are obtained from bi-axial tests of membrane sheets”.

A truly predictive models would require no biaxial or uniaxial testing to calibrate or
calculate model parameters beyond those originally used to check the model, and
calculate the stiffness of the yarns. Predictive models should only utilise readily available
data about a fabric’s constitutive properties that will allow for prediction of response
beyond the original data sets for the different materials the model was tested against.
The parameters required will be the geometry of the fabric, and the response of yarns
and coating under load (such as young’s modulus of the yarns). This will be particularly
important for a model which is intended to be used to design fabrics which have not
been manufactured yet, as biaxial data with which the model could be calibrated will be

not be available.

A number of methods exist to describe the response of a fabric in terms of a unit cell or
mechanical model with each offering innovative or improved methods in comparison to
previous models. The methods used to describe fabric geometry and response in terms
of unit cell formulations all have their route in the work carried out be Peirce (1937) who
described a series of properties needed to compare fabrics or “Geometrical Similarity”
and produced a model that describes “The Geometry of the Plain Weave”. The relevant

geometrical properties introduced are listed below:

e “Crimp” is described as “the percentage excess of length of the yarn axis over the
cloth length”.

o “Weight”

o “The twist factor” describes “The angel of twist between surface fibres and yarn”
similar to the method used earlier (§2.2.1).

e “Breaking Length” gives the strength of the material.

“The Geometry of the Plain Weave” is described in terms of:

e “Diameter of thread, di >
e Spacing of thread, p1,2

e Maximum angle of the thread axis to plane of cloth, ¥1,
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e length of thread axis between planes containing the axes of consecutive cross
threads, I1,»

e  Maximum displacement of the thread axis, normal to the plane of the cloth, hi,>

e Crimp (fraction), c1,2”

(Peirce, 1937)

The geometrical properties identified can be used to accurately describe the geometry
of a plain weave fabric assuming circular yarns, and forms the basis of yarn description
methodologies used in this section (Figure 2-33). Similarly Peirce produces the first
examples of equations that relate these properties to each other which form the
foundation of the predictive models that will be used to design a fabric (Equation 2-9).
Peirce’s equations precede and inform the ‘equilibrium equations’ used by others

(Kawabata et al., 1973; Tan and Barnes, 1984; Wang, 2002; Bridgens and Gosling, 2008).

Fig. 1.

Figure 2-33: Geometry of circular yarns, reproduced from Peirce (1937)
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p, = (l4 —DO,) cos 6; + D; sin 6,
h, = (l; —D6;)sin6; + D(1 — cos 6,)
hy+h, =D
Reproduced from Peirce (1937)

Equation 2-9

The equation d; + d, = h; + h, requires that the sum of the yarn diameters is equal to
the sum of the out of plane dimension, this also partly describes crimp interchange.
Peirce also considers crimp interchange explicitly, and how the fabric might deform
when “ignoring any compression or extension of the threads themselves”. Peirce also
describes how the tension forces must be balanced at crossover (Equation 2-10). This is

the first demonstration of the need for the out of plane forces to be balanced.
Tl Sln 91 = TZ Sln 02
F1p1 tan 01 = F2p3 tan 92

Equation 2-10

(where T is the tension and F is the load/inch)

The flattening of yarns (“Compression of Threads”) and the elastic deformation of yarns
(“The Crimped Form of an Elastic Thread”) are also investigated. The threads are
considered to “have the form of an ellipse” although as Kemp (1957, p. 44) notes the
assumption of circular cross sections “is invalid except possibly for very open weaves”.
This leads to his suggestion of an improvement to the above work: The elliptical yarn is
also considered to be a “homogeneous elastic material” which, as has been shown
earlier (§2.2.1) is not necessarily the case. However Peirce does state that “it is not
seriously suggested that the assumption of perfectly elastic isotropic material describes
actual textiles”. The use of simplified properties allows for the computation of the

response of the complex system. Yarn elongation, and its effect on vertical forces are
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also included in Peirce’s model (Figure 2-34, Equation 2-11), after crimp interchange has

been considered without its inclusion.

Figure 2-34: Yarn elastic deformation, reproduced from Peirce (1937)

m
(F1P1 + 8p—;cos 91) tan 6, = (FZP2 +8
2

m,
2

Equation 2-11

cos 02> tan 6,

P1

(where m is the bending moment in the yarn)

An improvement on the circular cross section is suggested by Kemp who uses a
“racetrack section” in an attempt to improve the description of the yarn. The racetrack
section is described as being “obviously closer to the actual shape of the thread section”,
and makes use of the equations and notation developed by Peirce (Figure 2-35). The
racetrack formulation makes use of a compaction factor ‘e’ to describe the compaction

of threads similar to that used by Peirce.

e = b/a Equation 2-12
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For the development of a predictive model the use of factors such as the thread
flattening coefficient will be preferable to other methods of defining yarn compaction
at crossover (often referred to as “crushing” in literature) such as those requiring
constants or coefficients that have to be deduced from testing (Equation 2-12).
However, coefficients require some testing to obtain, therefore methods not utilising

coefficients will always be preferable.

Figure 2-35: Non circular yarn geometry reproduced from Kemp (1957)

In 1973 Kawabata et al. (1973) redefined the problem of how to represent fabric
geometry, and introduced a new way of visualising the geometry in terms of a centre
line running through the centre of the yarn (Figure 2-36). This included a new method
for considering yarn compaction at crossover, but no consideration of coating. This is
the first ‘sawtooth’ method, described this way because of its appearance. A simple
method similar to this will be used early in the next chapter (§3.3) to describe how the
design of a fabric can be achieved and prove the theory of the concept without the

inclusion of a number of more complex variables.
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I\ LR

Equi. Blocks

a) b) c)

Figure 2-36: The unit structure, a) unit structure, b) model, c) Notation for forces and deformation, reproduced
from Kawabata et al. (1973)

This method is different to the sawtooth method used in the next chapter as it includes
factors such as S (the crimp), n (ends/cm) and A (1+strain) where in later models this is

replaced by values that refer directly to the geometry of the fabric.

The extension and compaction of the yarns is modelled using the “blocks” A1, and B1,,.
The tensile properties of the warp and weft yarns are represented by a further function
(Equation 2-13) (Kawabata et al., 1973). This has the distinct advantage of not limiting
the response of the yarns to a single linear value, however, in terms of the design of a
fabric the use of a response formula creates certain problems. Were this method for the
calculation of yarn extension used for the design of a fabric some method of defining
the response surface for an unknown yarn would be needed. This could be overcome
with a large library of different yarn responses where each could be looked up for a
different design, but this would restrict the design to those responses already recorded.
Both these options would limit the intended predictive nature of the design process by
either limiting the design to areas where the yarn response surface has been defined
and calibrated or by limiting the response to known yarns where a response surface
exists. As such it would not be feasible for such a method to be used in the design

process.

— Equation 2-13
Friz _'glj(lyLZ) q

“Thus the functions gi and g» represent the mechanical properties of A1 and Az

respectively” (Kawabata et al., 1973, p. 25).

PAGE 73



2. Literature Review
The yarn compaction at crossover is defined as “merely that the thickness changes” due
to the out of plane force exerted between yarns at the point of contact (Kawabata et al.,
1973) (Figure 2-37). The property is measured experimentally using the “parallel-plate
method” (Figure 2-37). The decrease in thickness, §, is then used to calculate the change

in geometry.

Op12 = $12(F) Equation 2-14

&(Fe)

Fc

Cross-section of yarn

Figure 2-37: The compression of a yarn, reproduced from Kawabata et al. (1973)

The first true sawtooth model to be developed that includes both coating and yarn
deformation was produced by Menges and Meffert (1976, p. 12). The model “is
considered to be a load bearing structure consisting of deformable bars that lie in the
direction of the warp and woof [weft] axes” (Figure 2-38).The work focusses on PVC
coated polyester fabrics although this is extended to PTFE coated glass fibre fabrics by
Dimitrov and Schock (1986). Others such as Pargana et al. (2000) improving the unit cell
models with the addition of a yarn compaction at crossover mechanism, not included in

the work by Menges and Meffert (1976).
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A
Beschichtung .~

Kettrichtung

Figure 2-38: Model for calculating the biaxial strain characteristics, reproduced from Menges and Meffert (1976)

In this model however there is no consideration of yarn compaction at crossover. Yarn
coating properties are considered to be linear, and the value of the coating response
represented by the springs, C, is found to have little effect on the response. Such that
“If the value assumed for C varies by a factor of 10, the figures calculated for the strain
are changed by an amount of only 1%”. As such the author justifies the use of a single
value of coating constant. A single value would be useful in the design of a fabric as this

could be varied in the design and the value changed based on the type of coating chosen.

The author finds that it is the structure of the fabric which dominates the response to
load for instantaneous loads with “the amount contributed by individual components
varyling] to an extent depending on the type of loading and the stress level”. This is as

might be predicted given knowledge of fabrics response.

For the fabric tested the results given in the paper appear to show excellent agreement
to test data. However, only three sets of test results are presented for a single fabric and
at relatively favourable stress ratios (2:1 and 1:1), other stress ratios (4:1, 1:0) would
show less standard responses, and possibly negative strain. It is therefore unknown as
to how well the model would respond at stress ratios where there is less equality
between loading directions. Further to this the method is described as “cumbersome”
(Tan and Barnes, 1984), as such whilst it may offer a good basis for a design method it

would require the addition of a yarn deformation component and shear stiffness.
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Dimitrov and Schock (1986) describe the fabric response, and also extend the “Meffert
theory”, to include PTFE coated glass fibre fabrics. Initially the response characteristics
of a fabric are defined within each section of the response (Figure 2-39), although the
author admits that there will be some overlap, especially at the initial stages. Variations
to the model employed by Meffert include the use of a variable yarn stiffness with
“progressive stiffness at low loads, which is due to the initial stretch of the yarn until
fibres are in contact with each other”. A parabola is fitted to the data making this model
representative, and unlikely to be useable in the design of fabrics. Dimitrov and Schock

(1986, p. 858) also consider a “bedding down effect”.

The model is found to give “reasonable” results for what is described as the “natural
stress state” defined as the stress ratio “which causes no crimp interchange for a
particular fabric”. However, results are found to be “not so good” for other ratios. Such
descriptions of results offer no quantitative description of the quality of a model. Error
in the model is possibly due to the lack of inclusion of any true description of yarn
compaction at crossover in this model, which is significant at high loads experienced by
PTFE glass fibre fabrics. The discretisation and inclusion of a progressive fit to the yarn
response may also contribute to this error by reducing the effect of the yarn stiffness at
the point where the response is increasingly defined by the yarn extension rather than

crimp interchange or initial bedding down.

load P4 W

W...wanp (1)
f...fil1 or weft(2)

/ uncoated: ------

0-A crimp interchange
A-B : bedding down

B-C : yarn extension

coated:

0-D : coating stiffness and
crimp interchange

D-E : bedding down and
coating stiffness

E-C : yarn extension

o
[S)
>~

/ Al .
'AZ g /stralge

I
Gl it
|

Figure 2-39: Typical load extension diagram of coated and uncoated fabric, reproduced from Dimitrov and Schock
(1986)
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Testa et al. (1978) also considers a sawtooth model for plain weave fabrics, however, as
only “square fabrics” are used to reduce the number of parameters its applicability to
the design of a fabric is limited. Though Tan and Barnes (1984) do suggest that this could
be applied to other geometries “relatively” easily. The geometric constraints that ensure
“continuity” in this model relate to the equilibrium equations used in other models and

are (Equation 2-15):

e hy + h, = 2t (sum of yarn amplitudes is equal to the sum of yarn thicknesses)
. 11,22 - dl’zz = hl,zz (the triangle made up of the yarn amplitude, length and in

plane length is right-angled)

Equation 2-15

1d0
6\//'1 .
1,/2 7 /ttensmnln
tension in yarn 2 i 1 } yarn 1
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’ 2 > Y s —
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! d,/2 |/<,
« = 2 i —_y yarn2
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2 \a\’l
Q0 !
|

tension in yarn 1

Figure 2-40: Free body diagram of the model of yarns, reproduced from Testa et al. (1978)

The bilinear model as well as the work of Dimitrov and Schock (1986) demonstrates how
yarn properties might be obtained from tests, i.e. that the straight portion of the
response in a uniaxial test is a region where only yarn extension and coating need be
considered, and as such yarn mechanical properties can be derived from this section of

the curve.

Stubbs and Fluss (1980) also make use of a sawtooth formulation describing it as a
“space-truss” that can be used to investigate the “effect on the response due to
geometric and elastic parameters such as yarn geometry, rotations and elastic
parameters such as yarn geometry, rotations and crushing, as well as coating properties”.

This model, as with others restricts the loading to the orthogonal direction.
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The model developed by Stubbs and Fluss (1980, p. 52) utilises only linear elastic
properties, or rather that “all elements will be assumed to obey Hooke’s law and any
nonlinearities introduced in the overall response will be considered a consequence of
geometric nonlinearities”. This use of only linear elastic properties to represent the
nonlinear response is excellently suited to the process of designing a fabric, whereby the
nonlinearities known to be found in fabric response might be designed for. This would
allow a single parameter to be designed which in turn does not require the use of look-
up tables to identify a response, and thus limits the design to known variable responses.
This should lead to a more predictive design methodology, rather than a representative
model of fabrics known to already exist. The typical element (Figure 2-41 and Figure

2-42) epitomises most sawtooth methodologies.

%

Figure 2-42: Truss model of fabric element, reproduced from Stubbs and Fluss (1980)
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The continuous coating is only represented by the two elements 7 and 6 whilst the yarn
compaction at crossover is modelled by element 5 (Figure 2-42). Thus this method
includes all the components of the fabric generally considered to be necessary for
accurate modelling. However, the response of this element is based on the variation of
a value Ks/Ky (Ks is the yarn resistance to cross-section deformation, Ky is the yarn
stiffness) where a low value represents a low resistance to cross section deformation
and a high value a high resistance to cross section deformation. The method used by
Stubbs and Fluss (1980) involves carrying out uniaxial tests which inform the values Ky
and N, which then represent the elastic properties of the fabric. Whilst this may
accurately represent the response of a yarn’s compaction at crossover for a specific
fabric the use of only test data to find these values makes the model entirely
representative, and means that such a method could not be introduced into a design
methodology. However, were the bar element that represents the yarn interaction to
be replaced by some means of predicting the response other than a simple
representative relationship this method to predict the response of fabrics might be

applicable to the design of fabrics.

This method demonstrates a number of important principles that will be used during
the creation of the proposed method, and provides a basis for more advanced sawtooth
methods. Its accuracy appears similar to that of the model produced by Testa et al. (1978)
although higher accuracies are apparently seen in some cases there still appears to be
error around the point where the change from crimp interchange to yarn extension

occurs.

A further model similar to those above is also developed by Tan and Barnes (1984)
however, as it is described as “similar to that described by Testa and Stubbs” no detailed
discussion of it will be made here as it too is representative, requiring the “Calibration

of the material model”.

The final unit cell model to be reviewed takes an alternate view of the linearized model
by considering a “trapezoidal lattice model”. The model developed by Kato et al. (1999)
(Figure 2-43) has two principal components: A warp and weft yarn are represented by

two sets of elements each (A, AA, A and B, BB, B). Coating is represented by the elements

PAGE 79



2. Literature Review
C, D, E, and F in addition to the element Ri which represents the coating that has

permeated into the yarns and an element, ‘V’, which represents compression.

Figure 2-43: Trapezoidal lattice model (Kato et al., 1999)

The model is then used as a component in an FE method and also utilises a hysteresis
approximation to allow for the modelling of hysteresis. One problem with this is that the
model becomes representative, in that certain parameters are found using “trial and
error”. The model appears to show good correlation to test data however it requires

estimation of calibration properties so would be unsuitable for the design of a fabric.

Another less simple model is developed by Pargana et. al. (Pargana et al., 2000; Pargana
et al., 2007) where a number of nonlinear and rigid elements represent yarns, whilst
coating is modelled as an isotropic plate. No creep is included in the model and there is
no slip at yarn crossovers. Again the model requires calibration. Whilst the model
appears more ‘realistic’ in its formulation results do not appear to be as accurate as
might be expected, especially for unloading curves. Again the discussion does not
guantify the accuracy of the model, but states that the model “predicts realistically” the
response. Examination of the response curves presented does not necessarily hold this
to be the case. Of particular concern might is the 1:0 stress ratio, where the lowest weft

strain is underestimated by what appears to be approximately 50%.
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Figure 2-44: Unit cell representation of yarns (Pargana et al., 2007)
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Figure 2-45: 1:0 stress ratio comparing test (___) and model (- - - ) results (Pargana et al., 2007)

Yarn compaction models are used to represent the crushing behaviour of yarns, first

identified by Peirce (1937), which is important for the calculation of the fabric response
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(Testa et al., 1978; Skelton, 1980; Tan and Barnes, 1984; Dimitrov and Schock, 1986;
Bridgens and Gosling, 2008). A number of these methods are covered in the following
section (§2.3.2.4) as they relate to Finite Element modelling, and the model developed
by Bridgens and Gosling (2008) whilst discussed briefly below is discussed in more detail
in the following chapter (§3.4). “Considering that a yarn typically contains 12000 or more
filaments it is computationally efficient to consider the yarn as a continuum” (Glaessgen
et al., 1996, p. 44), as considering the crushing and movement of each individual
filament would require considerable computational outlay. As such most yarn

deformation at crossover models consider a simplification of the problem.

Dimitrov and Schock (1986, p. 856) consider a bedding down effect rather than yarn
crushing. Bedding down is described as described as “the removal of slack between the
yarns of opposite direction,” where “the associated lateral compression of the yarns will
probably contribute considerably to the load-extension behaviour of the fabrics”. They
however describe the “actual mode of behaviour” as being “rather complex” and opt for
a method to add an initial gap between the yarns, an assumption that is not borne out

in observations of real fabrics. They also list the following as affecting the bedding down:

e slack of yarn

e coating penetration into yarns internal space
e bending stiffness of fibres

e lateral compressibility

e spinning characteristics of yarn

Further to this it is also suggested that errors in the response surface might be improved
with the use of “a progressive spring” (Figure 2-39). Though no mention of how this
progressive spring might be implemented is made, nor how accurate a solution with a

“progressive spring” might be in comparison to the published results.

A crushing element is used by Pargana et. al. (Pargana et al., 2000; Pargana et al., 2007)
and is derived from the crushing force and crushing strain utilising yarn properties

(Figure 2-46).
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Figure 2-46: Response of crushing elements in the unit cell model produced by Pargana et al. (2007)

Additionally to the central yarn models presented above sinusoidal models have also
been presented as an alternate method of representing the geometry of the yarn unit
cell. Bridgens and Gosling (2008, p. 8) describes the sinusoidal representation as “a more
realistic representation than the ubiquitous sawtooth”. This can be readily appreciated
when diagrams of the model are considered (Figure 2-47) if compared to diagrams of

the sawtooth model (Figure 2-38, Figure 2-40).

Figure 2-47: Sinusoidal representation of yarn cross-section, reproduced from Bridgens and Gosling (2008)

Wang (2002) developed a model based on the sine curve that is described as having
“extremely good” agreement between calculated and measured curves. Sine curves are
used to represent the fabric geometry, yet the constitutive equations bare close relation
to the equations discussed above (Equation 2-9 and Equation 2-10). And the method still

relies on the equilibrium equation (Equation 2-16).
bo1 + by, = Ap1 + Ao Equation 2-16

b = yarn radius, A = yarn amplitude.
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The model presented by Wang (2002) appears to show good correlation to measured
data in the cases presented, however, in more than one case the “straight line model”
[sawtooth model] used appears to show better correlation to measured data.
Additionally both sets of data represent the shape of the measured response, and a
largest measured error from the tested result of 10% is not as accurate as other model
claim to be. Finally, whist the model does appear to show good correlation, although
not necessarily better than the “straight line model” it does not include a consideration

of coating response.

Bridgens and Gosling (2008, p. 8) finds that the “correlation of the simple sine curve [ ]
is extremely good” when compared to yarn geometry where “the mean deviation from
measured points is only 2.5%". In this model the yarn is modelled with a series of pinned

bars (Figure 2-48). The vertical forces are applied at each node.
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Figure 2-48: sinusoidal yarn model reproduced from Bridgens and Gosling (2008)

The sawtooth model is found to predict tested fabric strains more accurately than the
sinusoidal model with “the deviation of the sawtooth model from the mean of the
viscoelastic test data [being] 5.3 to 5.9% of the strain range”. However it is also noted
that the deviation between repeat tests is 3.0% of the strain range. Bridgens and Gosling
(2008, p. 13) state that the “model output is considerably more accurate than the
assumed material properties which are commonly used in industry”. Thus the model

appears to be of adequate accuracy to allow for the design of fabrics.
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At this stage it has been shown that a number of models exist that offer to varying
degrees a prediction of fabric response from initial geometry and constituent
mechanical properties, but that only one of these offer exactly what is required. What
is needed is a truly predictive model based on the geometry of a fabric rather than
parameters obtained from testing. It must also accurately predict the response of coated
fabrics and thus be useable as the basis of a method to design a fabric from the required

mechanical properties of the fabric rather than the known geometry.

These problems are resolved by Bridgens and Gosling (2008, p. 1) who proposes a
“Predictive model for membrane structure design”. The sawtooth model proposed in this
work utilises a unit cell as with many of those above and includes two principal

constraints, namely that:

1. “The sum of the yarn radii must equal the sum of the yarn wave form amplitudes”
which is drawn from Peirce (1937)

2. “Assuming negligible yarn bending stiffness, out-of-plane [due to vyarn
interaction] force must equal zero. For the sawtooth model these out of plane
forces are a component of the yarn tension at crossovers” (Bridgens and Gosling,

2008, p. 6)

Figure 2-49: Fundamental sawtooth unit cell, reproduced from Bridgens and Gosling (2008)
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The fundamental unit cell (Figure 2-49) is similar in many ways to those presented in
models above e.g. the model produced by (Menges and Meffert, 1976), however, at
crossover the yarn cross section is considered to be a rhombus with constant cross-
sectional area. This removes the need “to define the yarn crushing stiffness” and allows
“the yarn cross-section to be modelled such that it is consistent with the wave-form of
the orthogonal yarn”. The rhombus yarn cross-section is covered in more detail later
(83.5) where a full discussion of this sawtooth model is made and consideration given
to how the model can be used to design fabrics. At this it is possible to consider the
effect of constituent properties (yarn length, out of plane angle, yarn radius, yarn width,
loads and constituent component moduli) on a predictive model without the need for

representative simplifications to be made.

The application of this method to the design process is discussed in detail in the
following chapter (§3.5) where variations to the method are made to allow for non-

orthogonal yarns and shear response to be analysed and designed for.

2.3.2.4. Finite element models
Finite Element (FE) methods reproduce the fabric response by considering the
interaction of small elements that together represent the whole fabric or a unit cell. This
can be a computationally expensive process due to “their three dimensional structure,
textiles tend to be computationally expensive to model with finite elements” (Glaessgen
et al., 1996, p. 48). These models generally consider plain weave fabrics as part of a unit
cell (Glaessgen et al., 1996; Gasser et al., 2000; Tarfaoui et al., 2001; Badel et al., 2007),
although consideration of other weave geometries is also made (Bigaud and Hamelin,
1997; Durville, 2010). The unit cells used do not always correspond to the unit cell
described earlier and used in the majority of mechanical models (§2.3.2.3), Glaessgen et
al. (1996) for instance uses two crossing yarns as the basis of the unit cell (Figure 2-50).
Finite element methods still reduce the complexity of the relationships defining a
fabric’s response, but unlike the mechanical models detailed above (§2.3.2.3) these

allow for “internal details” of the response to be analysed (Glaessgen et al., 1996).
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Figure 2-50: “Three-dimensional rendering of yarns within a unit cell” used by Glaessgen et al. (1996)

Circular yarns as used by Peirce (1937) have been the basis for two models (Glaessgen
et al., 1996; Tarfaoui et al., 2001). Glaessgen et al. (1996) produces a model with a
circular yarn and constant cross-sectional area (although not shape) in which a penalty
function accounts for the changing shape of the yarn. This model requires eleven

geometric parameters, and the shape itself is the result of a number of individual steps.

Gasser et al. (2000) produced a model that predicted the response of a balanced plain
weave fabric at different load ratios, though when this was applied to unbalanced fabrics
the errors, especially in the direction of the larger yarn became far greater. The
correlation between test and model data is described as “good” giving no information
as to the actual accuracy of the process. In this model the yarn deformation at crossover
properties were calculated by comparison to biaxial data. The need for such calibrations
makes it difficult to foresee FE methods being used to design a fabric as the designed
fabric cannot be calibrated to any existing fabric, as biaxial test data for the fabric will
be unavailable. It is however possible that the model could be calibrated to the sawtooth
generated biaxial response data. This study does allow for the identification of the
distribution of out of plane forces, and the effect of the out-of-plane force on the
deformation of the yarn at crossover Whilst the yarn is uncoated such information may
prove useful in future work in the consideration of yarn friction for the purposes of shear
response identification. The yarn contact area is required in the model produced by Liu
et al. (2004) to calculate yarn friction. As such, detailed information about the yarn

contact area at different hear angles might improve the accuracy of the model.

Shear response is considered by Badel et al. (2007) in which yarns are considered “as a
continuous material”, ignoring the fibres that make them up. Again this method

considers only uncoated fabrics, which experience relatively high levels of shear at low
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loads when compared to coated fabrics. A lenticular yarn cross-section in two different
unit cells (Figure 2-51) is used with yarns which rotate and deform to allow the analysis
of shearing. Earlier (§2.2.7.4) it was noted that FE methods would allow better
consideration of yarn lock up, and with this model that becomes apparent. The
compaction forces at boundaries, and the areas of contact between yarns are more
readily calculable where the area of contact is apparent as the area where two yarns
meet (Figure 2-51). No quantifiable results are given for the accuracy of the method,
though the graph presented does suggest that the method under predicts shear stiffness

at low shear angles.

5
S
P LIS ==
AR RIS
s i e o e,

Figure 2-51: Deformed geometries for a shear angle of 54° demonstrating shear lock up (Badel et al., 2007)

Durville (2010, p. 1246) considers the problem from the perspective of the interaction
of the individual fibres of the yarn (Figure 2-52). Though the principle of the work is
similar to the larger scale representations. Penalties are applied at contacts to model
intra fibre friction, and an “averaged binding condition” is used to allow the fibres to

move within the ‘yarn’ whilst still applying a boundary condition at the edge.
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Figure 2-52: Initial configuration for the plain weave fabric (Durville, 2010)

Whilst the output of the model developed by Durville (2010, p. 1249) (Figure 2-52)
might appear impressive no details as to its accuracy in predicting fabric response to
biaxial load are given beyond saying that “the loading curves exhibit the usual J-shape
aspect at the beginning”. Therefore the accuracy of the method in fact remains

unproved. It is also noted that the yarns are untwisted, unlike in most structural fabrics.

The complexity of the creation of finite element models, the difficulty inherent in
changing the geometry, and the computational expense, whilst generally allowing a
more detailed inspection of intra yarn interactions does not lend itself to a design
process. Such a process will require multiple different geometries to be tested quickly
which would slow using FE models. The defining equations also do not lend themselves
to manipulation towards an inverse methodology (given their complexity) and therefore
a differing approach to design would be required. This might be an iterative process,
altering the yarn structure in stages to attain a specific stiffness. This, coupled with often
limited comparisons to actual test data means that at this stage the use of FE methods
for fabric biaxial response design would be premature. Future work may prove to offer

new insight at which point this should be re-examined.

2.3.3. Summary, review and discussion of models
In summary the models presented vary in complexity and accuracy, although the
accuracy of many of those presented is only described in abstract terms such as ‘good’.
Where such abstract definitions are used the presented figures sometimes appear to
contradict even this. The model used as the basis of the design method is required to

incorporate the coating’s response as well as the base cloth, and be as predictive as can
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reasonably be achieved. Because of this, many of the models presented above cannot
be considered for further use. Whilst FE models might conceivably be used in future to
accurately describe and design fabrics the lack of coating consideration and difficulty in
quickly modelling geometry during optimisation in current models means they are not
the best choice available. The difficulty in varying the geometry and the inherent

complexity of such models means that these have not been used in this work.

Sinusoidal models, whilst they appear to represent the geometry of a fabric more
accurately, have been shown to be less accurate than sawtooth models produced by the
same authors who proposed them (Bridgens and Gosling, 2008). However, should more
accurate sinusoid models become available in the future replacing the choice of model

made here with those might be advisable.

The last constraint on the choice of model to be used as the base for the fabric design
process is that the equations be differentiable, discussed in more detail in the following
chapter (§3.2). Therefore the model that best fulfils all these categories is the sawtooth
as described by Bridgens and Gosling (2008). Additionally it is presented in a fashion that

lends itself to the possibility of being differentiated.

An alternative to differentiating the defining equations might be to use a parametric
study of a material model, for instance a finite element model, varying its properties to
define relations between response to tensile or shear stress, and using these to design
a new material. This is similar to the Neural Networks employed by Bartle et al. (2013)
where the parallel optimisation of equations allows for the prediction of fabric

properties.
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2.4. Optimisation
How can the geometry of a fabric be optimised quickly and efficiently to give

accurate robust and reproducible results?

Optimisation is an exceptionally wide area of study, and here refers specifically to
numerical optimisation. In numerical optimisation we “first identify some objective, a
quantitative measure of the performance of the system” (Nocedal and Wright, 2006, p.
2) which may be constrained, that we can optimise for a set of variables, which may also
be constrained. The process of defining this objective, and the corresponding variables,
is known as modelling. Recognising whether a model has been minimised or maximised
is also important and this can often be found using optimality conditions. Numerical
optimisation can be split up to include: constrained and unconstrained optimisation,
continuous and discrete optimisation, global and local optimisation, and stochastic and

deterministic optimisation (Nocedal and Wright, 2006).

2.4.1. Stochastic and deterministic optimisation
Optimisation problems can be either stochastic or deterministic. Stochastic optimisation
allows the consideration of probability and differing scenarios in relation to the variables
or objective. Stochastic models allow the optimisation of the expected performance of
a model. It is therefore predicted that for the most part deterministic optimisation will

be used during the development of the predictive model.

Related to this is Chance-constrained optimisation which allows for the optimisation of
a given objective to some specified probability. And robust optimisation “in which
certain constraints are required to hold for all possible values of the uncertain data”

(Nocedal and Wright, 2006, p. 7).

2.4.2. Overview of optimisation
For the purpose of the design of a fabric the optimisation will be defined as the
minimisation of the difference between some target and the calculated response given
some constraints (i.e. the equilibrium equations). As part of this process tolerances are
generally included in optimisation routines. These are the limits on accuracy or more

generally “a threshold which, if crossed, stops the iterations of a solver”(MathWorks,
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2012a). Without tolerances a solver might continue in its search for an optimal solution

even though the solution has been found to an adequate number of decimal places.

Finding the solution to an optimisation problem requires the convergence of the answer
towards a single value. This single value will be influenced by the initial guess especially
where two or more solutions exist to the original problem. In this case, dependant on
the routine in use, the initial guess may lead to a steepest gradient being followed that
results in a non-optimal solution, or more generally it will normally lead to the closest
solution to the original ‘guess’ being found. In global searches (i.e. where the entire

population of results may be used to find a solution) this is more likely to occur.

Optimisation is typically carried out with design constraints defined as inequalities for
some parameter (x). A general optimisation might be defined as follows (Beyer and

Sendhoff, 2007) (Equation 2-17):

optimize: f (x), Equation 2-17
subject to: g;(x) < 0, i=1,..,1
h(x)=0, j=1,..,]

The posing of the objective function, f(x), is important. Should two functions need to be
optimised simultaneously, where the value of one is very large and the value of the other
very small, the large value can adversely affect the optimisation. Though both might be

equally important if the objective is poorly posed the solution may not be optimal.

Normalising values removes the inherent bias of an optimisation towards larger values.
When considering stress and strain the difference in values might be of the order of 10°,
therefore the strain might be ‘ignored’ by an optimisation where the values have not
been normalised to a single value range. This is often achieved by placing all values in

the range of 0 — 1.

2.4.2.1. Unconstrained optimisation
Unconstrained optimisation problems are those where no external constraints are
placed on the solution, where constraints can be safely ignored, or where constrained
problems are reformulated “in which the constraints are replaced by penalisation terms

added to the objective function” (Nocedal and Wright, 2006, p. 6). As such in an
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unconstrained problem the result relies on the original guess point, and direction of

search where more than one possible solution exists (MathWorks, 2014).

2.4.2.2. Constrained optimisation
Constraints might be simple inequalities (0 < x < 100), linear constraints or nonlinear
constraints (Nocedal and Wright, 2006). In the case of the design of a fabric a number
of constraints have been identified above, including the equilibrium constraint (§2.3.2).
It is also clear that no yarn can overlap, and so the sum of the yarn widths cannot be
greater than the sum of the in plane yarn lengths in the opposite direction. However,
these might also include the necessity that no yarn may occupy the same space as
another. The specifics of these choices will be reviewed in more depth in the following
chapters. In the case of programming with MATLAB it is possible to create complex
nonlinear constraints that in themselves contain optimisation routines (MathWorks,
2014). The ‘Fmincon’ routine discussed below offers the following constraint options for

the optimisation (Equation 2-18):

( c(x)<0 Equation 2-18
ceq =0
min f(x) such that A-x<bh
X
| Aeq - x = beq
L Ib<x<ub
Equation 2-18 describes two nonlinear inequalities, ‘c(x)’, and ‘ceq’ which are formed
from equations the result of which must be less than zero and zero respectively. The
following two inequalities are linear, with ‘A’, and ‘Aeq’ representing the gradient and

‘b’ and ‘beq’ representing eh y intercept. Finally the values ‘Ib’ and ‘ub’ are the upper

and lower bounds on the values of ‘x’.

2.4.2.3. Inverse Modelling
The inverse of a function can be used as an analogy for the inverse of a more complex
model. If a function f(x) is considered to accept input x and produce the output f(x)
then the inverse of the function will produce x from the input f(x) (Croft et al., 2001).
However, not all inverse functions produce unique answers. For instance, consider the

function tan(x):
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f(x) =tan(x) =0
One solution could be x = 0
tan(0) =0
However, if x = 180
tan(180) =0

Equation 2-19

This demonstrates an important principle, an inverse function will not necessarily
produce the original input if it is constrained in such a way as to limit the output. But if
these inverse functions are unconstrained, or else the result weighted in some fashion,
no output may be obtained. In the case of the inverse tan function there is an infinite
number of possible solutions to the inverse function tan~*(x) = 0. This would not be

the case if the function was constrained for instance to _7” <y< g

y=tan(x)
x
= .
5
_2_ .
-4 _
- _
1 1 1 ! 1 | ] 1 | 1
-15 -10 =5 0 5 10 15
X

Figure 2-53: y = tan(x) for -5m<x<5m

Combining and differentiating the equations that form the sawtooth model (§2.3.2.3)

provides firstly a direct equation for the calculation of the values of tensile stiffness and
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Poisson’s ratio. This enables the construction of an objective function f(x) that can be
minimised to find a solution for target value of f(x). Using one function removes the
necessity of iteratively considering multiple functions and normalising them, as was
donein the method employed by (Bridgens and Gosling, 2008). Secondly, demonstrating
that the equations can be differentiated means that direct solution methods may be
applicable to the equation, though this will be shown to not be the case in the next
chapter (§3.5). Thirdly using differentiable equations means that FORM (First Order
Reliability Method) methodologies can be employed to consider the statistical variance
of the objective function. FORM uses derivative calculations to calculate the most
probable failure point and therefore a probability of failure for an inequality. This is done
by calculating the shortest distance to the failure region from the origin, for a given

objective function, and is discussed in more detail in Chapter 4 (§4.8).

A number of inverse methodologies were reviewed with a view to ensuring that the
most efficient and accurate methodology for the optimisation of multiple variables is
used for the design of fabrics. In addition to this certain checks and balances needed in

inverse optimisation are identified.

Faurholdt (2000, p. 472) describes the inverse method as fitting “a mathematical model
to a set of experimentally obtained parameters”. In the case of the design of a fabric this
will be the sawtooth model, and fitting the fabric’s properties to required mechanical
properties for the fabric which match the user defined targets. A number of inverse

methods are proposed and discussed with relation to the design model:

Initially the response is approximated as a Taylor series from which the objective
function might be minimised in a single step (Equation 2-20), but as this would result in

a representative model this is passed over at this point.

9f

x}r{nm — x}c{‘ur _ H—1 5
Xk

Where H is the Hessian matrix

Equation 2-20
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Following this it is suggested that a steepest descent method might be used (Equation
2-21). This is the principle used in the methodology discussed in the following chapter
(83.5), although modified through the use of internal MATLAB routines.

min _ ..cur af Equation 2-21
=xg —a—

X
k axk
Where the objective is to minimise the least squares problem:

M]

fG) = ) [y =yl

i=1
Equation 2-22

How the gradient might be calculated this is reviewed later. The method specifies the
importance of the model being able to return to a given data set of design parameters
(i.e. that the output of the inverse model is the same as the variables for the non-inverse
model that would produce the input for the inverse model). This will initially be the
requirement placed on the inverse model for a set of known targets, ensuring that both

the inverse and non-inverse model ‘match’.

Gajewski and Garbowski (2014, p. 175) identify four requirements for the inverse model,
“(a) the description of geometry, (b) the boundary conditions, (c) the initial conditions,
(d) the properties of all the involved materials”. In the case of our model these will be

fulfilled by:

a) The geometry of the fabric components
b) The applied loads and equilibrium equations
c) Any prestress applied to a fabric

d) The properties of the coating and yarns

Whereas this method only solves for the variables in (d) our model will optimise for the
values in (a) and (d) which will affect the values in (b). Thus the situations are somewhat
different. In addition this model uses a “vector of residua R” which is used to minimise
the discrepancy between computed and experimental results. The value of ‘R’ is used to
bring the optimisation in line with the results that were expected. This would clearly be

impossible to implement in a model where the designed fabric does not exist, or where
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representative models are being avoided. A least squares methodology is then used by
Gajewski and Garbowski (2014, p. 175) to minimise the value of R “by adjusting the
constitutive parameters”. The method uses DIC (Digital Image Correlation) test data and

optimises constitutive parameters from this.

The method presented appears to converge well to the experimental results in few
iterations, but interestingly sensitivity of parameters are also investigated and
computed “using a calibrated FE model” however little specific detail is offered on this

process.

A medical application of an inverse modelling procedure has been developed that
attempts to characterise elastic properties from a point indentation, necessary where
not enough material was available to carry out strip tests. This model is then tested
against strip test data. The model is created using latex rubber, not directly comparable
to architectural fabrics, and an inverse FE method is used to calculate elastic properties
from known physical properties. This process involved minimising the error between the
model and test data by varying the constitutive parameters of the model. Again this

process is not directly applicable to the problem of fabric design. (Aernouts et al., 2010).

Multi objective optimisation will be the main problem associated with the design of a
bespoke fabric where multiple parameters (geometry) are to be optimised for multiple
targets (tensile stiffness at multiple stress states, Poison’s ratios at multiple stress states).
Yang and Xiao (2013) offer a method for the multi-objective optimisation of the
parameters of a pump-turbine: The method uses a genetic algorithm to solve the

optimisation problem (Equation 2-23).

miny = f(x) = (fi(®), (%), ..., (X))
subject to x = (x1,%3, ..., Xm) €X

andtoy = (¥1,¥Y2, -, Vm) €Y

Equation 2-23

Here X represents the “blade loading parameters and Y represents the hydraulic
efficiencies” which might be replaced by the yarn and coating properties and the shear

properties in a fabric model. The objective function being four performance parameters.
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The model integrates a number of codes together to enable the optimisation of the
turbine parameters for specific requirements. The design model is expected to function
in a similar fashion. The optimised pump is then compared to a baseline, where the

efficiency must be higher than the baseline.

The statistical variances can be considered in parallel with the model parameters
(Hendricks Franssen et al., 2009) and the covariance of the parameters also included.
However in inverse analysis these parameters must be estimated, given that there is no
prior knowledge of the parameters and their statistical distributions. The methods given
by Hendricks Franssen et al. (2009)principally relate to the inverse modelling of
hydrological flow in aquifers, but may be useful to reference to if variability is to be

modelled for unknown fabrics.

2.4.2.4. Review of MATLAB internal optimisation routines
Within MATLAB there exists a collection of pre-existing routines that can be used to
achieve constrained and unconstrained optimisation. Not all of the optimisation
functions available within MATLAB will be relevant to the project. A short review of
optimisation routines that are predicted to be relevant and how they perform the
optimisation is carried out here. For a full and complete review of optimisation in
MATLAB the MATLAB ‘help’ literature (MathWorks, 2014) should be consulted with

reference to published work on optimisation such as Nocedal and Wright (2006).

The following options allow a user to prescribe at what point an optimisation has
reached a satisfactory result. Not all are available in every optimisation routine

discussed below.

e ‘TolFun’ is the minimum change in the function value, or how close to zero the
function needs to be (Figure 2-54).
e ‘TolX’ relates to the size of the last step, or change in the position being

investigated (Figure 2-54).
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Iterations end when the last
step is smaller than TolX

TolX

Figure 2-54: Representation of TolX and TolFun. Reproduced from MathWorks (2012a)

e ‘Maxliter’ is the maximum number of iterations an optimisation routine will run
prior to termination.

e ‘MaxFunEvals’ is the maximum number of function evaluations an optimisation
routine will run prior to termination.

e ‘Tolcon’ is the tolerance of the optimisation for the violation of constraints.

e ‘ObjectiveLimit’ is the value that will be considered acceptably close to the
objective.

e ‘DiffMinChange’ is the minimum change that will be observed in a variable
below which an optimisation routine will terminate.

o ‘DiffMaxChange’ is the maximum change possible in a variable beyond which an

optimisation routine will terminate.

(MathWorks, 2012a)

Once the objective function is available for optimisation the above properties can then
be modified to ensure an accurate result. For instance, if ‘Objectivelimit’ is increased
the speed of the routine will be increased, but the accuracy of said routine may not be

as high as the original optimisation.

A selection of relevant routines is reviewed in the following sections (§2.4.2.5 and

§2.4.2.6):
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2.4.2.5. Unconstrained relevant MATLAB functions
The function ‘fsolve’ can be utilised to “solve a system of nonlinear equations” of the

form:
F(x)=0 Equation 2-24

“For x, where x is a vector and F(x) is a function that returns a vector value” (MathWorks,

2014)

This function allows the solution of multiple equations, such as those set out in the
sawtooth method (§2.3.2.3), to be found quickly and efficiently by iteratively optimising
them. This method is unconstrained, and as such the result is unbounded. The speed of
this method and, where multiple solutions are available, the solution found are highly
dependent on the start point given to the function by the user. If there exists multiple
possible solutions then the solution that is found will generally be the one closest to the

initial point.

The function ‘fzero’ can be utilised to “find [the] root of [a] continuous function of one
variable” . This function considers zeros “to be points where the function actually crosses,
not just touches, the x-axis”. The algorithm used is described as being “originated by T.
Dekker [and] uses a combination of bisection, secant, and inverse quadratic interpolation
methods”(MathWorks, 2012a). This means that no derivatives are numerically

calculated, but are calculated using interpolation methods.

2.4.2.6. Constrained relevant MATLAB functions

Constrained optimisation in MATLAB attempts to solve (Equation 2-25):
min f(x) subject to g(x) < 0,h(x) =0
X

Equation 2-25

Where f(x) is the function and g(x) and h(x) are the constraints.

This is represented as a solvable function using the Karush-Kuhn-Tucker (KKT) conditions
(Equation 2-27) (Nocedal and Wright, 2006; MathWorks, 2014) which describe “how the
first derivatives of f and the active constraints [ ] are related to each other at a

solution ”"(Nocedal and Wright, 2006, p. 330).
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LA = FO)+ ) 29:ig:0) + ) nihi(®)

Equation 2-26

The KKT conditions use the “auxiliary Lagrangian function” (Equation 2-26) were “the

vector A is [ ] the Lagrange multiplier vector”(MathWorks, 2014).
VL(x,A) =0,
Ag,igi(x) =0 Vl,

gx) <0
h(x) =0

2gi =0

Equation 2-27

Where these conditions are solved the gradient will be zero, however, this does not
necessarily mean that solution is at a minimum, the solution could be at either a
maximum, minimum or a plateau. As such the second order derivatives are calculated
to check the solution is at a minimum. In practice this is carried out using a gradient

approximation of the Hessian matrix (Equation 2-28).

H=VL = sz + z Ag,ivzgi(x) + Zlh,ivzhi(x)

Equation 2-28

(MathWorks, 2014)

The function ‘patternsearch’ uses a pattern search algorithm to find the minimum of a
function. The entire results spectrum is polled at intervals, and this information is used
to target a finer density of polls on the best function value. This function initially
considers the whole results spectrum, and stores the results of previous iterations to
inform future iterations. The actual method of polling will depend on the search method

employed.

This function can be constrained with bounds, inequalities, equalities, and nonlinear

constraints. (Kozola, 2009; MathWorks, 2012a)
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Possibly the most relevant routine will be ‘fmincon’ which is an internal function
designed to allow for the constrained minimisation of a function. This function can be
constrained with bounds, inequalities, equalities, and nonlinear constraints, and

minimises equations utilising one of a number of algorithms:

The interior point algorithm, which “handles large, sparse problems, as well as small
dense problems” (MathWorks, 2014) will be used as it is the recommended algorithm
for initial optimisations, being widely resilient to problems that might occur (infinite or
NaN, ‘Not-a-Number’, numbers). As each optimisation will generally be new, and in an
unknown space, this should ensure a methodology that is robust to poor choices of

initial point or errors in search direction.

(MathWorks, 2012a; Mathworks, 2012b; MathWorks, 2014)
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2.5. Statistical analysis and Robustness of Fabrics
How can fabric data be used to demonstrate the statistical distribution of fabric

properties and what is the effect of this on the robustness of fabrics?

Statistical analysis is the use of data about the distribution of a variable to inform
decisions made about the use of that variable, or information relating to it. Knowing a
fabric achieves an average tensile stiffness of 810kN/m is useful information, but
knowing that it will only achieve this 10% of the time to an accuracy of +/- 5% informs
the use of that information. As part of this correlation considers how well certain

functions agree with the fits that are applied to them.

A function may be considered to be robust if it is not susceptible to small changes in its
defining variables. Robustness analysis attempts to quantify this, and look for methods

to reduce the susceptibility of functions to these small changes.

2.5.1. Correlation
Correlation analysis is the process of inferring the strength of some relationship
between two variables (Ayyub and McCuen, 1997). The two methods of this analysis
discussed here are graphical analysis and the ‘coefficient of determination’. Graphical
analysis allows for a visual inspection of the available data and allows for the

identification of the following:

Degree of common variation or how much two variables are related
Range and distribution of data points
Presence of extreme events or outliers

Form of the relationship

ARSI A e

Type of relationship (Ayyub and McCuen, 1997)

It is generally assumed that where there is a “high degree of association” a causal
relationship exists, however, care should be taken to not assume this where no evidence
of interaction exists. Additionally it does not hold that where a relationship for a sample
exists that this relationship holds for an entire population. This is the basis of the
importance of the use of predictive models, that might represent the entire population
of a variable without prior knowledge of the distribution, rather than representative

models which represent the sampled data only.
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The total variation in a sample (TV) (Equation 2-29) can be described as the sum of the
variation that is explained by the variation in the second variable (EV) (Equation 2-30)
and the unexplained variation (UV) (Equation 2-31) which is summarised in Equation

2-32.

Equation 2-29

n
TV =) (i = 1)
i=1

y; = an observation

Y = the mean of the observations onY

n Equation 2-30
BV =) (39— V)’

i=1
y; = the value of Y estimated from the best relationship with X

Equation 2-31

n
uv = Z()’i - 9)?
i=1

TV = EV + UV Equation 2-32

A measure of correlation is the coefficient of determination or the ratio EV/TV. Given
that the relationship for UV holds then where the total variation is due only to the
explained variation the square of the coefficient of variation might be calculated
(Equation 2-34). As such where the variation is almost entirely unexplained the ratio will
approach zero and the correlation is “null”, whereas where all variation is explained the

coefficient will be one. (Ayyub and McCuen, 1997)

EV uv Equation 2-33
“TwTY
2 _ EV _ Z?:l(yi - )7)2 Equation 2-34

TV YR (- V)2
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2.5.2. Robustness
Any measure that characterises a distribution might be “said to be robust if slight

changes in distribution have a relatively small effect on their value” (Wilcox, 2005).

A comprehensive overview” of the state of the art of robust optimisation is carried out
by Beyer and Sendhoff (2007) who review the state of the art of robust optimisation in
a succinct manner. Given a standard optimisation for a function f(x), subject to certain
constraints gi(x)<0 and hj(x)=0 which are inequality constraints on ‘x’. Robust design
optimisation leads to “solutions and performance results [that] remain relatively

unchanged when exposed to uncertain conditions”.

Taguchi’s robust design methodology utilised a three point design process:

1. System design in which the basic performance and product parameters are
identified.

2. Parameter design, in which the design parameters are optimised to meet quality
requirements.

3. Tolerance design, or fine tuning of the second stage.

Two kinds of parameter are used, noise factors (§) and control parameters (x) which are
difficult to control and used to tune optimality respectively. These are then
encapsulated in a series of equations that allow for the calculation of the deviation from
some target value. Taguchi methods use design of Experiments (DOE) to evaluate

different designs rather than using any optimisation (Beyer and Sendhoff, 2007).

To complete the DOE method the parameters are systematically changed according to
a lattice, or “control array” with the noise factors varied at each point. Thus the best
point can be defined. The greatest problem with the Taguchi method is that all possible
(even bad) points are considered throughout the control array. Thus a high number of
dimensions leads to an exponential increase in time to compute an answer (Wu and Wu,

2000; Beyer and Sendhoff, 2007).

Three types of robustness can be defined; deterministic robustness “defines parameter
domains in which the uncertainties a,6, etc can vary” whilst probabilistic robustness

“defines probability measures describing the likelihood by which a certain event occurs”.
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The last type, possibilistic robustness, uses “fuzzy measures” to define some possibility,
membership, or grade (Beyer and Sendhoff, 2007). Further to this four different types
of uncertainty are considered: Environmental and operating conditions e.g. material
properties, angle of attack, or operating temperature. Production tolerances e.g. the
accuracy of the machinery, this might relate to the precision of a yarn area for instance.
System output uncertainty, which includes “all kinds of approximation errors due to the
use of models”. And lastly Feasibility uncertainties which take into account uncertainty
in the constraints, or whether they will be fulfilled (Beyer and Sendhoff, 2007). It is
therefore possible to conclude that whilst uncertainty in fabric design will probably be
due to production tolerances we will in all likelihood be unable to alter these. However,
we can alter design values (the first type of uncertainty) thus attempting to achieve

robustness through the alteration of the design.

An example of the application of robustness to a design problem is given by Kim et al.
(2010) who produce a robust design methodology for an electromagnetic device. The
method utilises a gradient index formulation which minimises the maximum gradient of
the objective function with respect to uncertain variables. The objective function and
gradient index (Gl) value are given below (Equation 2-35 And Equation 2-36) (Kim et al.,
2010).

Minimise f(x) Equation 2-35

<0 j=12,..m
X <x<xy

Subject to 9J

Gl = max|df/dv;|, i=12,..,N, u; €Ex Equation 2-36
L

The value uj is some uncertain value.
The gradient index is then minimised to produce a new optimum (Equation 2-37).
Minimise GIr = max;|df (x)/du;| i=12,..,N Equation 2-37

Subject to g;(x) + ¥ (gj(x)) <0,j=12,...m
fxy=M
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Here M is the target value of the objective function and ¥; is a penalty function added

to the constraints.

The results given for the method for multiple uncertain variables are excellent. The
sensitivity of each variable at the target is given to be considerably lower than a

“deterministic design” (Figure 2-55).

120 -
100 - [ Deterministic optimum
80 7777} Robust optimum
60 B
= 4t — m [
T ]
T 1754
2 150 -
c; o
2. 1251
:E 10.0-
Z ]
5 754
(7] ]
5.0
25 7 %
0.0 H—Z2, . S Y,
Rl D1 Hl1 R2 D2 H2 J1 J2
Uncertain variables

Figure 2-55: Sensitivity of individual variables before and after robustness optimisation. (Kim et al., 2010)

This would seem to be a good basis for a robust design methodology for a fabric.
Similarly to this the designed fabric will relate to a single target (mechanical property)
that is calculated using a number of variables. The reduction of the sensitivity of the

function to these variables will increase the robustness of the whole solution.

Gunawan and Azarm (2004a) consider a sensitivity region for robust optimisation for
multiple objectives based on their previous work (Gunawan and Azarm, 2004b). In this
method only a particular amount of variation is allowed in a function, f(x, p)i for which
the parameters may vary only the amount Ap. The allowable variation in ‘p’ is then
described as the sensitivity region. The advantage of this is that the new function value
will be close to the original. The sensitivity is then calculated by considering the
maximum amount of change in ‘p’ that can be accommodated for a given variation f(x,
p)i. The worst case value of Ap can then be used to give the sensitivity region. This

method’s consideration of a worst case however should result in an
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underrepresentation of the sensitivity, insensitivity to other parameters having not been

totally taken into account.
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3. Predictive model for the design of architectural fabrics
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3.1. Introduction

An architectural fabric’s mechanical properties vary depending on the properties of the
yarns, coating and weave geometry. Given these physical characteristics it is possible to
predict a fabric’s response to biaxial and shear loading (Peirce, 1937; Kawabata et al.,
1973; Menges and Meffert, 1976; Testa et al., 1978; Stubbs and Fluss, 1980; Tan and
Barnes, 1984; Pargana et al., 2000; Bridgens and Gosling, 2008). Various methods of
achieving this have been discussed in the literature review (§2.3) including finite
element, sinusoidal and sawtooth models. However as a simple method was needed for
which derivatives could be calculated and geometry easily varied a sawtooth model was
selected as the model for this work. Ensuring the model is differentiable allows for the
values of Young’s modulus and Poison’s ratio to be calculated directly which should
allow for quicker optimisation of geometry. This chapter lays out a method for the
design of a bespoke fabric with specific mechanical properties based on the inverse of

the sawtooth model.

Given that the sawtooth model provides a reasonable prediction of fabric behaviour
(Bridgens and Gosling, 2008) and thus allows for the calculation of the mechanical
properties of a fabric it follows that the opposite should be achievable. I.e. that a fabric’s
geometry might be determined from specified tensile stiffness characteristics
(mechanical properties). This model will be referred to in the following sections as the

‘inverse sawtooth’. Producing this inverse sawtooth model is the aim of this chapter.

The sawtooth model is defined by a number of equations that represent the load
elongation characteristics of a fabric (§3.4.1) and which once solved for a specific loading
condition give the fabric’s deformed geometry. From this the mechanical properties of
the fabric are then calculated. As the Young’s modulus (E11) can be defined as a change
in stress divided by a change in strain, E11 for a specific loading condition can be defined
as the gradient of the stress and strain curves or do/de. In other words Ei1 is equal to
the derivative of stress with respect to strain. Therefore the derivative of the equations
that define the sawtooth model with respect to stress and strain will reproduce E11 at a
specific load. This is the fundamental principle behind the requirement for the equations
to be differentiable, and this property allows for the creation of an inverse sawtooth

model by reversing the equations (Figure 3-1).
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Predictive model:
Measured Predicted
Physical > Mechanical
properties properties
Inverse model:
Designed Specified
Physical |€ Mechanical
properties properties

Figure 3-1: Inverse method

The response characteristics to be considered are the Young’s moduli in both warp and
weft directions (E11 and E3z), the Poisson’s ratios of the fabric (vi2 and v21) and the shear
modulus (G). Equations defining these responses at all loads (where the loads on a unit
cell are calculated as F1 and F,) are produced in this chapter. These are then utilised as
the objective function for a gradient based optimisation routine that is used to design a
fabric for specified tensile stiffnesses. Optimisation will be shown to be necessary to
solve situations where more than one, or zero, possible designs exists to solve the
equations. In this chapter the formulation, modelling and use of these equations will be

covered.

The methodology of inverting the model to enable it to be used for design is developed
and demonstrated in a simple situation before more complex calculations are made.
This is done to demonstrate that the method of differentiation is applicable to a series

of nonlinear equations.

Following the demonstration of the method of inversion the inverse sawtooth model

will be built up in parts. Only the effects of changes in unit cell geometry under load will
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be considered at first, ignoring the effects of the coating, yarn extensions and yarn
crushing forces. Once the principle has been demonstrated in this simple scenario the
full sawtooth model will be considered, and equations that determine the fabric
parameters which correspond to specific mechanical properties produced. The
sawtooth model developed by Bridgens and Gosling (2008) will be used as the basis for
the model with the additional inclusion of the consideration of the coating Poisson’s
ratio. This model was chosen because it is predictive, the importance of which has
already been covered (§2.3.3), the geometry can easily be varied (unlike finite element

models), and the equations are presented in a form that enables differentiation.

Finite difference calculations will be used to compare the inverse model to the predictive
sawtooth model from which it was originally derived, whilst comparisons to real fabric

responses should demonstrate the utility of the model.

The method of optimisation chosen is a gradient based solver from the available
MATLAB solvers (Mathworks, 2012b). Internal MATLAB functions were used to expedite
the model’s development, and were found to fulfil the requirements of the design
method. The modelling was carried out in MATLAB (Mathworks, 2012b) with MATLAB

functions used to perform optimisations and complex derivations (MathWorks, 2012a).

3.2. Aim
To create an inverse model of the sawtooth model developed by Bridgens (2005),

Kawabata et al. (1973), Menges and Meffert (1976) and Peirce (1937). This will lead to:

e Equations that define the material response based on the initial geometry and
mechanical properties of the yarns and coating, and the applied loads.

e A computationally efficient optimisation routine to produce a designed fabric.

e A methodology to produce a ‘designed fabric’ (bespoke fabric) for specified

elastic constants at multiple stress states.
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3.3. The simple spring and arm model

To demonstrate the feasibility of using the proposed method of differentiation to
calculate mechanical properties this method was first applied to a simple ‘spring and
arm’ system. This was used to ensure that possible problems with the principle of the
methodology were identified early on where known relationships could be used to
calculate stresses and strains. Unlike the sawtooth model which represents the complex
nonlinear behaviour of a fabric this system could be modelled using simple relationships
to demonstrate the accuracy of the results. The simple relationships necessary were the
load-extension response of a spring and the calculation of bar member loads. The source
of any errors identified could be more easily tracked to its source where the number of

variables was limited.

The simple spring and arm case consists of two inextensible bar members connected by
a frictionless pin joint (B), and supported by a spring at the pin joint. The spring is
connected to a fixed support (D) and can only deform downwards, the free ends of the
members are supported by rollers (A and C), and can only move in the x-direction. The
load applied is equal and opposite at both ends of the supports and acts in the x-

direction (Figure 3-2).
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(IR

a) Initial position

_____________ X
Lytan @
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|
|
1 | |
I 1 1
Lo Lo
_ Ftan®'
ok
L, tan 6
(Lo + &) tan 8’ o tan
Figure 3-2: Spring and arm case layout, a) prior to loading, b) deformed
Term Description
k The spring stiffness (constant)
Lo Half the distance between the two roller supports in the unloaded system
0 The angle between the X-axis and the member in the unloaded system
0’ The angle between the X-axis and the member in the loaded system
é The displacement of the roller supports from their original position
a4 The displacement of the pin-joint at which the members connect to the spring
F The force applied to the system (constant)

Table 3-1: ‘Spring and arm’ system nomenclature
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3.3.1. Modelling the spring and arm model
The ‘spring and arm’ model also represents the behaviour of a single inextensible yarn
where the response of the other yarn direction and the crushing of both yarns is
embodied in the spring’s load extension characteristics. In this simplification there is no
consideration of coating. As such the response of this system should inform the

formulation of further models.

The sawtooth model includes geometric and force equilibrium constraints (Kawabata et

al., 1973; Bridgens and Gosling, 2008), and these will be similarly found in this model:

Considering the deformation of triangle ABE (Figure 3-2) with inextensible members

gives:

LO LO + 6 Equation 3-1

cosf cos@’

Rearranging Equation 3-1, substituting in the equation for ‘k”’, and considering the
vertical resultant force at B (§A.6) gives the equations for F and 8’ (Equation 3-2 and

Equation 3-3).

0.5

k [/8+ Ly\*
- tan 0’ I( cos 0(’)) B Lozl — k(8 +Lo)

*Note all F = f(6',9)

Equation 3-2

R (Lo + 8) cos 6
Lo
Equation 3-3

Thus the Force (F) has been written in terms of § and 6’ such that F = f(6’,§)
(Equation 3-2). Similarly 8’ has been written in terms of § such that 8’ = f(§)
(Equation 3-3). At this point it is now possible to produce the full differential for F =
f(6',8). Croft et al. (2001) describes how all the partial derivatives of a differential

equation must be calculated prior to the calculation of a full derivative (Equation 3-4).
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It is necessary to find the derivative of force with relation to strain in the sawtooth model
to calculate the stiffness of the unit cell. In the sawtooth model the reaction is influenced
by a number of changes to the unit cell geometry (yarn extension, yarn crushing, and
changes in the yarn angle) and therefore the response needs to be calculated to include
these changes. Thus the solution is calculated as the full derivative with relation to a
number of partial derivatives. In this simple case the number of variables is less,
simplifying the process of finding the derivative. The full derivation is shown in the

appendix (§A.6).

The full derivative may be calculated by considering the partial derivatives of the

functions F = f(8',8), and 8’ = f(8) (Equation 3-2, Equation 3-3).

dF O0F O0F 06’ Equation 3-4
5 95 98 98

The full derivative of the force with respect to the deformation is:

dF_6F+6F 06"
ds 96 90’ 95

| k(tan?0' +1)-Q ksin®' (Lo + 6)? |
| oS 6 tan2 6’ - : 05 (|
[ l cos38'tanf' |1 — (—COSZG(LO +5)2> lJ
\ Ly? ) L k@L+20)
[L (1 — (cos20" (Lo + 5)z)>°'sl (2cos?6tan 6"+ Q
0 12
0
Equation 3-5

The validity of using the derived equations is demonstrated by solving the equations
within MATLAB (Mathworks, 2012b) and comparing the results to analytically calculated
values of dF/dd . The results showed excellent fidelity (§A.7), and in addition
demonstrated the need for all terms within the objective function to be considered. The

full validation is given in the appendix (§A.7).
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3.4. Sawtooth model inversion
Initially only a simplified model was used to further demonstrate the applicability of the
method (§3.4.2). Following this the full sawtooth model was considered, and this was
then modified to include the coating Poisson’s ratio (§3.4.3). Lastly a shear component
is developed. The equilibrium equations defining the sawtooth model (§3.4.1) are
necessary to calculate displacements of a specific geometry and this is briefly reviewed

before the inverse sawtooth is developed.

3.4.1. The sawtooth model
The sawtooth model as previously developed (Peirce, 1937; Kawabata et al., 1973;
Menges and Meffert, 1976; Bridgens and Gosling, 2008) is needed to calculate strains
which will be used later to calculate the accuracy of the inverse model using a central
finite difference method.. The justification for this choice of model has been briefly

reviewed (§3.1), but will be considered in more depth here.

Firstly a predictive unit cell model has been chosen as it allows for the input and variation
of geometry with relative ease, and considers only those properties that are obtainable
with standard tests. Were a finite element method to have been chosen the use of a
mesh would have made the variation of geometry difficult and computationally
expensive because each new geometry would require re-meshing. Representative
models naturally could not have been selected for the prediction of fabric tensile
response outside of their initial data set. Those models that require calibration would
also be unsuitable as the basis for the design of a bespoke architectural fabric as any

designed fabric may not exist for the model to be calibrated to.

The sawtooth model was chosen for the inverse modelling as it fulfilled the following

required criteria:

e |t is predictive, inclusive of designs that are outside of the data range the model
was originally tested in.

e |t is accurate (Bridgens and Gosling, 2008). The model will be used on a wide
variety of fabric types. In addition any inaccuracy in the initial model may be
compounded during the inversion, where the model moves further away from

the original data.
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e The model is ‘invertible’. The model is formulated such that its constitutive

equations can be differentiated and thus make it possible to produce equations
defining a fabrics tensile stiffness.

e The model represents plain-weave fabrics that are most often used as

architectural fabrics.

Having fulfilled these criteria the sawtooth model, as presented by Bridgens and Gosling
(2008), was chosen as the original model to be inverted (Figure 3-3). The sawtooth
model is a unit cell representation of two yarns where twice the value of ‘L’ is equivalent
to half the wavelength of a yarn (Figure 3-4). The unit cell is “the smallest element that
may be used to characterise the mechanical response of the fabric as a whole” (Pargana

et al., 2007, p. 1327).

o
c
=3
]
=4
°
)
>
)

Figure 3-3: Fundamentals of the full sawtooth model with springs representing the coating. Modified from Bridgens
and Gosling (2008)
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Figure 3-4: Unit cell position within the sawtooth representation

The equations needed to define the response of the sawtooth model as used by Bridgens

and Gosling (2008) are detailed below:
(7”1 + rz) = (Al + Az) Equation 3-6

Where r1,; are the yarn radii, and Ai,are the yarn amplitudes (crimp) in the warp and

weft directions respectively.

This will be referred to as the equilibrium equation and is based on the equation
produced by Peirce (1937). This ensures that there can never be any discrepancy
between the thickness of the fabric, calculated from the yarn thicknesses, and the
thickness of the fabric calculated from the yarn amplitudes. One result of this is that no
‘gap’ may exist between yarns, as suggested in some literature, though with the fabric

being coated and therefore the yarns restricted this is deemed unlikely to occur.
F.i=F, Equation 3-7

The out-of-plane forces must be equal (Fc1,2 are the compaction forces at the warp/weft

yarns respectively) (Equation 3-7).
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Fy128in60,; =Fcq Equation 3-8

The out-of-plane force (Fc) is produced by the interaction of the yarn tension force (Fy)

with the yarn in the other direction (Equation 3-8). The out-of-plane angle is 6.

Fi1o = 2ExL) 115 Equation 3-9
Where Fy is the force in the coating spring and Ex is the coating stiffness
*when using springs to represent the coating (Figure 3-3).

The coating response to load (Equation 3-9) is governed by a ‘spring representation of

the coatings deformation. This has previously used a linear value of coating stiffness.
! _ . )
Fy12€0807; + Fyrip = Fi Equation 3-10

The sum of the forces in the fabric must be equal to the applied load (Equation 3-10).

’1 o — L1, Equation 3-11

€12 =
’ L
1,2

The strain (€) is calculated using the original and deformed quarter yarn wavelength

(yarn in-plane length) (Equation 3-11).

P, Equation 3-12

F, =—2
1,2 2L2,1

The force (F) used is always considered in relation to the original geometry, L, ,,
(Equation 3-12) as within a stressed fabric the force applied to each unit cell will be in
relation to the original shape of the fabric. Unit cells do not disappear as the fabric is
stretched, and thus the force applied to each cell is presumed to remain the same, whilst
the load on the fabric might change. The stress in the fabric per metre (P) is also

considered constant.

F. 12 Equation 3-13
Y1”2 = Y1,2 Il + Yo

2Eyl,ZLIZ,l
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The extension of a yarn has also previously used a linear value of yarn stiffness. Linear
yarn stiffness’s, especially in polyester yarns may grossly under represent the response

of the yarn to load (§2.2.2).

A kite shaped yarn deformation mechanism as described by Bridgens and Gosling (2008)
is used during this project. In earlier work by Menges and Meffert (1976) and Dimitrov
and Schock (1986) springs are used to represent yarn deformation at the point of
crossover, which has the distinct disadvantage of requiring “precise knowledge of the
local geometry and associated elastic and viscous properties of the yarn and coating”
(Dimitrov and Schock, 1986, p. 858). This requirement for detailed knowledge regarding
the yarn properties does not lend itself to the design of a bespoke fabric for specific
mechanical properties. As such the kite shaped mechanism (Figure 3-5) is preferable,

and can is defined below (Equation 3-14, Equation 3-15 and Equation 3-16):

Areal,z Equation 3-14
N2=5. 71
2wy,
r Wiz ., Equation 3-15
W12 7 2,1
2,1
Area,, = 2wy 71 Equation 3-16

The kite shaped mechanism represents the deformation of the yarn at the point of
crossover due to compaction forces generated as a result of the tensile forces in the
yarns in both directions. These forces will deform the yarns to some extent, and this is
represented by the constant area kite. The kite deforms in proportion to the extension
of the orthogonal yarn, and therefore represents the deformation of the yarn cross-
section without the need for any detailed knowledge of the compaction stiffness of the
cross section. This therefore acts as a geometric constraint, which allows for the
consideration of yarn cross section deformation without any detailed analysis of the

actual yarn deformation mechanism.
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a) Unstrained unit cell
Q Rhombus yarn cross-section

P’/Q = P/Q

b) Strained unit cell
0'#0'
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c) High stress ratio
Constant area, kite shape
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P’/Q” =P/Q
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Figure 3-5: Kite Shape yarn cross section reproduced from Bridgens (2005)

The ‘kite shape yarn cross section’ can be defined as follows: “as yarn 1 extends the ratio
P:Q is kept constant [and] the width of yarn 2 increases as yarn 1 extends.” It is noted
that this is not “intended to model inter-yarn friction” and that accurately measuring the
actual yarn deformation is infeasible as this would “mean cutting the sample, which
would profoundly affect the state of stress and balance of forces in the fabric” (Bridgens,
2005, p. 229). It may be possible to measure this deformation, but this is outside of the
scope of this project. Further to this a decision has been made to limit the scale of the
work to the unit cell, and not to extend the model to the design of the constituent yarns
in and of themselves which would require considerable further work. The response of
the yarnsis discussed in the Literature review (§2.2.2), and relies on spinning mechanism,
angle of spin, inter filament friction and cohesion, and material type. Inclusion of all
these parameters would greatly increase the model complexity and require the addition

of a separate module to enable the design of the yarns.

PAGE 122



3. Predictive model
The sawtooth model is, in essence, an equilibrium problem that must be solved given
certain initial values of geometry to find the equilibrium state of the fabric after biaxial
force has been applied. The defining equations must all be solved simultaneously and
iteratively for the values of 0] , and Y; , (Equation 3-6, Equation 3-7, Equation 3-8 and
Equation 3-13). Once these values have been calculated it is possible to calculate the

strain and other properties of the fabric at its stressed state.

The ‘FSolve’ (MathWorks, 2012a) routine is used for the iterative solving of the
equations, and from this the deformations and hence strains can be calculated, which

are vital to the following stages.

3.4.2. Inverting a simplified sawtooth model
The concept of the ‘simple sawtooth’ was developed to refine the method used to find
the derivatives necessary to calculate the fabric’s response parameters. It is also used
to demonstrate that these can be used as the objective functions for an optimisation of
the fabric’s physical parameters towards a set of target moduli. Whilst the concept of
using derivatives to find the tensile stiffness has been shown to work in the sections

above (§3.3.2) it was also necessary to demonstrate feasibility in three dimensions.

3.4.2.1. Definition of the simple sawtooth
Whilst a true architectural fabric is a complex system made up of many components the
objective of this portion of the project is to demonstrate the utility of the method to be
used on more complex systems. This simple case (Figure 3-6) varies from the full

sawtooth in that it does not consider the following properties:

e No yarn extension — the yarns are considered rigid except at the joints (Y12 =
Y1,2)

e No yarn crushing — the yarn radii remain constant (r'1,2=r1,2)

e No coating — the coating provides no resistance in compression or tension (Fx =

0)

This model can be considered as a purely mechanical problem, similar to the proof of
concept. The evolution of the system from that initial problem allows for small errors to

be caught and modified prior to further more complex improvements.
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&

%warp

aued jo 1nQ

Out of plane . 12
Lv Warp/weft T e

Contact with other yarn

Figure 3-6: Fundamentals of the simple sawtooth model

3.4.2.2. Equations defining the response of the simple sawtooth
The equilibrium equations for the system state that the sum of the yarn radii must equal
the sum of the yarn amplitudes (Equation 3-17) and the out of plane forces must be
equal (Equation 3-18). Given that there can be no variation in yarn radius all deformation
occurs in the movement of the yarns through the change in the yarn angle. The

equilibrium equations are the base of all further equations shown.

(7"1 + TZ) — (Al + AZ) =0 Equation 3-17
Fqy—F,=0 Equation 3-18
Fy128in61, —Fc =0 Equation 3-19
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3. Predictive model

From the equations above it is possible to define the equations used to calculate the

derivatives below. The differential equations were produced in accordance with the

method of combining partial derivatives outlined in the ‘spring and arm’ model (§3.3.2).

dF, _0F,  OF 30"  OF,
de, 0e; 00"y, 0g Osy
de;, 0g 00, 0g 0s
dF, _0F,  OF 30"  OF,
de, 0de, 00"y, 0e, 0dg
dF, _0F,  0F, 06, 0F,
de, 0de, 060, 0, Oe

de,

d&;

de,

deq
de,

deg
de,

Equation 3-20

Equation 3-21

Equation 3-22

Equation 3-23

The derivatives of equations that relate to each partial derivative are required to

produce dF; ,/de; , and dF; ,/de, 1 (Equation 3-25, Equation 3-26, and Equation 3-27).

The derivations of the following equations are shown prior to the equation.

Displacement (6) is converted to strain in the following sections (Equation 3-24).

51,2 =€ L1y

Equation 3-24

The derivation of a single formula that relates the force applied (F) to the out of plane

angle (8" ;) and strain (&3,1) (Equation 3-25) is shown in the appendix (§A.8).

B F1((ry +12) — (L1,2 + (51,2 : L1,2)) tanf'; ;)

Fip=

(L2,1 + (82,1 ' L2,1)) tan 9’1'2

Equation 3-25

Once this has been achieved 6'; , can be defined in terms of only initial geometry and

strain, as shown below (Equation 3-26):
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(Ll’z + (81’2 ' Ll,Z)) CosS 01’2
Ll 2

’

9’1‘2 = cos~ = f(€1,2) Equation 3-26

And ¢, ; can be defined in terms of only initial geometry and &; , (Equation 3-27).

€21 =

e (ry+13)— (L1,2 + (31,2 : L1,2)) tan(9'1,2)
cos| sin I cosf0,,

cos0;,

Equation 3-27

With the above equations it is possible to produce the derivatives dF; ,/de; , and
dF, ,/de, 1, which can then be used to optimise a set of initial geometries for a set of

targets. The derivatives are shown below:

0 Fya(tan*8'; + 1) Fz(tan 6';+1)(r;+7r,—atan8'y)
dFl B COS U4 b tan 9' btan?2 9/ F,L,

dgl c b

Fyacos 6 cos@, (1, + 1, —atan6'y) = (rl +1, - Ly )

cos 0,
L,ch?etan 8’y
Equation 3-28
0 Fib(tan? ', + 1) Fl(tan 6',+1)(r,+r,—btan8',)
dF, _ cos b, atan6’, atan’8’, FiL,
d€2 d a
Fibcos 8 cos B, (r; +7, —btan8';) (r1 +1,— %)
L,da?ftan 8’
Equation 3-29
dF, "1 0501 €050, \T1 + 72 ~ 550, ~ FLy(ri+7r,—btanB’;) ~
de; L,ce a’tan0’,

2 2 !/
a cos 0, cos? 6, (Flb(tan 0’2 +1) Fl(tan 02 +1)(r,+7m, —btan® 2))(r 1, — L1C)

atan8'> atan? 8’5 cos 6,

1
L, cos 6, — Lze)2 2
cos 6,
L,*

cos? 6, (L2 —

L,%ce| 1—

Equation 3-30
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cos0,) Fioly(ri+7,—atan®';)
de, L,df b*tan 6’4

dF, F, cos 0, cos 0, (r1 +r, —

29’ 20’ _ /
cos? 0, cos 6, b <F2a(tan 0'1+1) N Fy(tan?6'1 +1)(ry + 7, —atanf 1)> (7‘1 oo L,d )

btanB'q btan2 0'; cos 6,

1
_Lycos6, — Llf)2 2

cos(Ph1)? (L1 05D
1

L2df|1-

L,*
Equation 3-31
Where the values a, b, ¢, d, e, and f are calculated separately (Equation 3-32, Equation
3-33, Equation 3-34, Equation 3-35, Equation 3-36, and Equation 3-37 respectively).
a=(L; + L&)
Equation 3-32

b= (LZ + L2€2)

1
a’cos? 0,\2
c=(1-——5—
Ly

Equation 3-33

Equation 3-34

Equation 3-35

Lic \*\?2
2 _ L
cos* 0, (rl +1, Zos 91)
e=|1- >
L,
Equation 3-36
e %
L,d 2
2 _ L2
P cos” 6, (rl +72 = Cos 92)

Equation 3-37

At this stage it becomes clear that the values of dF;,/de;, and dF,;,/de,; are not
suitable for use as engineering values, as they relate only to the unit cell (Figure 3-4).
Thus it is necessary to demonstrate how these values will relate to true engineering

values.

dF;,/de; , and dF; ,/de, 1 can be used to produce values for Ei1, E22, vi2 and v21 as

shown below:
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vi2 can be defined as the contraction in direction 2 due to extension in direction 1

(Equation 3-38).

dgtrans(z) _ de, Equation 3-38

v =
12 dgaxial(l) d€1
This can be used to show how the Poisson’s ratios can be derived (Equation 3-39) (Long,

2005).

T
) {’iﬁ; ’f“]{Z:}
" Eyp  Ep

Equation 3-39

de,
V12 _'_HEI
V12
——«E
E11°< 12
V12 (dFl)
(ﬂ) de;
deg

Using the definitions of E1 and Ea1 it is possible to show that E11 /E12=V12.

(?l_lg:i) de,dF;,  dg

(%%)__dqdﬂ__ de,

V1 1 Equation 3-40

PAGE 128



3. Predictive model

This is confirmed by Bridgens et al. (2004).

And to convert the derivatives between unit cell and fabric or global values it is

necessary to implement the following (Equation 3-41):
Fio=Pi;XLy; X2

Ellunit cell _ Ellglobal % L2 X 2

Elzunit cell — Elzglobal X LZ X 2

Ezzunit cell _ Ezzglobal X Ll X 2

E21umt cell — E21global % Ll X 2

Equation 3-41

Using these definitions it is now possible to allow input in terms of Poisson’s ratios and

Young’s moduli for a whole fabric rather than only a unit cell.

3.4.3. Full Sawtooth
The full sawtooth considers all the variables identified by Bridgens (2005); (Bridgens and
Gosling, 2008) as governing the behaviour of the fabric. This will be shown to allow the
design of a fabric for specific properties, including shear behaviour under biaxial loading,
where additional components are added (§3.4.3.3). Other deformation mechanisms
have been identified but the sawtooth model adequately predicts fabric biaxial stiffness

without specific inclusion of these. Those identified by other references include:

e Yarn bending (Tan and Barnes, 1984)
e Changes in filament geometry (Tan and Barnes, 1984)

e Friction between yarns (although this is considered separately in 3.4.3.4)

(Pargana et al., 2007)

3.4.3.1. Definition of the full sawtooth model

The primary deformation mechanisms that allow a fabric to be analysed are listed:

e Yarn extension — the yarns are considered to follow a linear elastic stress strain

relationship (Equation 3-10 and Equation 3-13).
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e Yarn cross-section deformation — the yarn radii can vary (Equation 3-14 to
Equation 3-16).

e Yarn friction — the friction between the yarns is considered to resist shear
deformation when the shear model is developed (Equation 3-74).

e Coating — Initially the coating was represented by two springs which resist
biaxial loads. Following this an isoparametric element is used to represent both
biaxial and shear loading (Figure 3-9). The isoparametric element will also

allow for the use of non-orthogonal yarns in future work.

Considering all of these response mechanisms within a single model will allow for the

design of a fabric through the use of the equations defined herein.

3.4.3.2. Equations defining the response of the full sawtooth
This section establishes the process that was used to produce E11, E22, vi2 and va1. The
coating is no longer represented by ‘spring’ coating equations used by Bridgens (2005).
These are replaced by a method utilising the Poisson’s ratios of the coating within a finite

element.

3 (F2,1 - sz,l) ((7”’1 +1'3) — L1,2(1 + 51,2) tan 9,1,2)
L2 L2,1(1 + 82,1) tan 6’y ,

k1,2

Equation 3-42

The equation defining the force in terms of the unit cell properties is produced in the
same fashion as for the simple sawtooth (§3.4.2.2) and combines the equations defining
the full sawtooth response (§3.4) (Equation 3-6, Equation 3-7, Equation 3-9 and Equation
3-10).

Following the method set out earlier (§3.4.2.2) it can be shown that the necessary

derivatives of F1,; are given below (Equation 3-43 and Equation 3-44):

dFLZ_aFLZ aFLZ 06,1‘2 aFLZ arll‘z aF1_2 arlz‘l aFLZ 682’1 aFLZ
d51,2_651,2 00'1, 0é&1, or'y, 0&, 0r'yy 08, 0&; 0&,; 0F,
0Fg,  O0F; 0F,
a51,2 aFk2,1 a<91,2

Equation 3-43
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dF,, O0F, O0F, 00'1, O0F, 0r'y, O0F, 0r'y; O0F, 0, O0F,
dey s - deyn 00", . 0€z,1 a7"1,2. 0€z1 ar,Z,l. 0ez1  0&1 . 021 O0Fy1,

_aFkl,Z 0Fy , _asz,l
0er1  0Fkp1 0&,

Equation 3-44

The equations for the derivatives can be used to produce E11, Ez2, vi2 and vz1 in this new

more complex case as per the method employed in the simple sawtooth (Equation 3-41).

Therefore, as was demonstrated for the simple sawtooth, to define E11 we must first
define all the partial derivatives detailed above (Equation 3-43 and Equation 3-44). The
first partial derivatives with respect to the load and strain can be calculated as follows

(Equation 3-45 and Equation 3-46):

aFl _ LI(FZ - sz) Equation 3-45
de;  Lp(ep + 1)
aFl _ (FZ - sz)(T’1 + rlz - L1 (81 + 1) tan 0’1) Equation 3-46
de, L,(e; + 1)?tan 6’y

Further partial derivatives relating to the load can also be calculated:

0F,  (F,— Fp)(tan? 8’y + 1)(r'y + 7', — Li(g; + Dtan6'y)

06', L,(&, + 1)2tan26’,

Li(F, — Fpp)(tan? 8’ + 1)(g; + 1)
L,(e; + 1) tan6’;

Equation 3-47

aFl _ aFl _ (FZ - sz) Equation 3-48
ar'y  0r', L,(s, +1)tan6’,

J0F; 1 Equation 3-49
0F
oF; r'y+r', —Li(e+1)tan b’ Equation 3-50
0F, L,(e, + 1)tan @',

The coating is no longer represented with springs, and is instead represented by the

isoparametric element to define the coating response, the biaxial extension of which
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includes the coating’s Poisson’s ration (Equation 3-51). The Isoparametric element is

connected to the sawtooth model at the midpoint nodes of the element (§3.4.3.3):

E, Equation 3-51
Fr12=2"Ly, (m) (31,2 + vk€2,1)(1 + E2,1)
-V

The derivatives of which then follow:

0Fi1,2 _ OFk12  OFk126854

681,2 681'2 682’1 6812
ZEkLZ,l 682 1

- v — 1 I 51 ((312 + Vkgzq) + vi(Ea0 + 1)) (21 +1)

Equation 3-52

OFk12  OFg1z | OFp120€1;

0,1 Oeyq Oy 8ep4
ZEkLZ 1

Se
l (<’312‘|‘17k521)—i

(30 + 1) = v (21 + 1)]

Equation 3-53

Similarly the yarn radius is considered (Equation 3-54):

r.o = "2 Equation 3-54
1,2 —
! ! (1 + 82’1)

! ) i
or 1,2 or 1,2 or 1,2 552_1 _ 582_1 LAW) Equation 3-55

681'2 631,2 632,1 631,2 681,2 (82 1 + 1)2

I .
0r'ys T1,2 Equation 3-56

0231 (g3, +1)°

And also the out of plane yarn angles:

(Fo1 = Fia1) )
0. — -1{ (1 0,1 — ' ’
2,1 = COS (1+ 82’1) 08521 <2E2,1L1,2(1 + 1)

Equation 3-57
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00';1 _ §0'21 6031081 60’31 6Fipq

a51,2 551,2 552.1 551,2 5Fk2,1 551,2
1

F,,—F 2
\/1 — (cos 0,1 (82,1 + 1) — 2E, 12L;ll 2(1’2; 2)>

2E, L 5
| I[vkzk_l,lz ((52,1 + vk£1,2) + % (1 + 81’2) + vk(l + 81’2)>
l 2E51L15(1+ &15)

_ (F2,1 - sz,l) _ 8¢ez
2E;1Lq1,(1+ 51,2)2 01,2

Equation 3-58

06';, _ §6'2,4 n 86’51 01, n 86'21 6Fz21

a<‘32,1 532,1 551,2 532,1 6Fk2,1 552,1
1

2
F,,—F
jl — <cos 021 (€21 + 1) — 2E, 121‘,12(1112-‘1512)>

2E L o
[ka—liz <62i ((82,1 +vpers) Fve(1+ 81'2)) + (14 31,2))

2E51L1,(1+ &15)

—

oY 1

55, (P21~ Fiza)
—cosb,, —— >

2E;1L15(1+ &15)

Equation 3-59
) . ((r’1 +7'3) =Ly, (1+&,4)tan 9’2,1>
9 1,2 = tan
Ly,(1+ &)

Equation 3-60
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69,1’2 _ 69,1’2 + 69,1’2 67"1,2 + 69,1,2 57"2,1 + 66’1‘2 682’1 69,1‘2 60,2‘1
0&1 7 g1,  Or'15 881, 614 B& 8ey1 881, 60'4 651
-1
2
(7”'1,2 +7r',1—Lytan6',, (1 + 82‘1)) \

=|L +1|(1+¢
" Lo2(1+15) (1+e12) /

p

Lys(tan? 0’1 +1)(ep1 + 1)

|
| >
(Fz 1~ Fi2 1) )
1-— 0 1+ — . :
k\J (COS O R TN (ET)

b&yq (F2,1 - Fk2,1)

—————

~cos B, +
8¢, o 25'2,1111,2(1 + 81'2)2
2E,L oe \
vkk 12 <(£21 +81217k) + 21(1 +512) +17k(1 +£12)> (T'1,2 +71'5, — Lytan 8’5, (1 +€2,1)) 0&yq
) cokT1,2 B —L,;,—=—tan @’
2E2,1L1'2(1 n 81'2) J (1 + 81'2) 2,1 o¢ 1 2,1
\
652’1
0&1, "2 72,1

- (1+ 82,1)2 - (1+e2)

J

Equation 3-61
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89,1’2 _ 59,1’2 n 59’1'2 681'2 n 59’1’2 67‘,1'2 n 6911’2 67‘,2'1 6911’2 6912'1
0ez1 B 8e,1  Oeyp 8ey1  O1'y, 8ey1 6751 8epq 86’51 8y,

2
(7"1,2 +7r'1,—tanf’;, (82,1 + 1))
=| L,

+1])(1+¢ \
L1,22(1 + 81,2)2 > ( 1’2)/
Lyq(tan? 6’51 +1)(e3, + 1)

(For = Fios) )2
1—(cosy, (1+65,) — —2 '
k_\/ <C°S 2 (1+22:) 2B, 1L1,(1 + £1,)

-1

2E, L o)
/ vkzk_l'i <52i ((32,1 +&1,0;) + v (1 + 31,2)) +(1+ 51.2)) 6812 (Fz 1 = Fiz,1) \ Ty
| cosf,,— ’ _|_ -
k ' 2E2,1L1,2(1 + 81,2) 2E2,1L1,2(1 + 81’2) (1 + 82,1)
)
1) 1)
52? 21 Silz(r12+r12—tan921(821+1))

v~

—L,,tan @’
(1 +£1‘2) (1+€1’2) 21tand ;4

Equation 3-62
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Using two different formulae for the out of plane angle ensures that the calculation of the
derivatives is not looped as happens below, but irreconcilably, with the calculation of the

derivatives of the strains (Equation 3-57 and Equation 3-60).

After extensive work it was found that §¢; , /8¢, ; could not be defined analytically. A circular
problem presents when the calculation of the analytical derivative is attempted (Figure 3-7).
To calculate the derivative other derivatives must first be known, the calculation of which

requires the partial derivative of the strains (Equation 3-63).

dr, do', dr, de, Equation 3-63

deg ' deg ’ deg ' de;
Given that these derivatives are themselves not independent they must be calculated from
other derivatives, the aim of which is to find a solution where independent variables form the
basis of the solution. This must be defined in terms of the dependant variables chosen to
define the model. Therefore it is shown that for the most part only dependant variables exist

within the formulation which cannot be refined down to the few independent calculations.

As part of an effort to find an entirely analytical solution the original equations were
repeatedly redefined and an effort was made to express the equilibrium equations
differently. However, where the equilibrium equations are defined in some form, necessary
for the definition of the sawtooth model, the interdependencies persists, and cannot be

resolved to an entirely analytical solution.

The problem of dependency only persists where yarns are considered extensible though as
this is intrinsic to the nature of fabrics, i.e. that the yarns extend under load, and that this is
the predominant deformation mechanism at higher loads, this mechanism cannot be ignored
for the full fabric design case. It is possible that a complete analytical derivative might be
formed for the initial fabric deformation, where yarn extension is considered to be minimal,
and thus might be ignored, but this would ignore an important portion of the response, and

thus be inappropriate for use in a design methodology.
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de,
de;

dr, do 4 dr 4 ae,
deq dey dey deg

o—]

dey

- - ..o d .
Figure 3-7: Flow chart demonstrating how the derivative d—iz cannot be defined
1

5 . . 5 . . ) .
6—21can be defined in terms ofa—izand reciprocally, but neither can be defined without the
2 1

requirement for another derivative to be calculated. The equations defining the response are

circularly interconnected, at some point a break has to be made in the circular

€21

. . . . .8 -
interdependency, and this was made at the partial derivative 5o This is then calculated

€1,2

21‘2, using the sawtooth model and a central finite
2,1

. . A
iteratively, and therefore referred to as n

difference calculation with a variable value of the force applied (Equation 3-64).
Where: F;, =0
increment, , = 0.001

Where: F;, # 0

increment, , = F1,2/ or 0.1% of Fy ,
, 1000 )

Equation 3-64
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dF.
Therefore - L2

— can be calculated (Equation 3-65).
1,2

dF; <(])(tan(cos_1 B)?+1)D L,(J)(tan(cos™*B)? + 1)(g; + 1))

d_sl L, tan(cos™1 B)? (g, + 1) L, tan(cos™ 1 B) (g, + 1)
Agz -1 AEZ
1 T . E +L2A—€1tan(cos C)+ A_elrl
L E? 1 (e1+ 1) (g + 1)2 (e, + 1) (&1 + D(ex + 1)?
"L (e + 1)?
AEZ
Ag, 2E; L, (g2 + &10) ZEkLlA_éH(gl D 2E Livi (e + 1)
as, ©05(62) )i S T U
Ly(tan(cos™1 €)2 + 1)(g, + 1) 1 + - k k
J1 = (02 2E,L 1 — (O)%(ey + 1)2 2E,L1\/1 — (0)2(e, + 1)
Ag,
B (51 + 1) Agl
AEZ
2Ly (e, + £113) +2E"L1A_51(£1 + 1) L 2Blive + D))
ka_ 1 ka_ 1 'Ukz— 1
2E;Ly(g1 + £,05) 4 2E;Lyv (e + 1) 3 2E;Ly(e5+ 1) 3 LD
72 —1 72 —1 72— 1 Ly(e, + 1) L, tan(cos 1 B) (&, + 1)
Ag, Ae,
() ae, 1) ae, D)

B Ly tan(cos 1 B) (g1 + 1)%(e, + 1) B L, tan(cos™ 1 B) (g, + 1)3 B L, tan(cos™1 B) (g5, + 1)?
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Where:

_ T ( ) )
A_(1+€2)+ 1+€1

/( _ ((15—) (&1 + vice2) 2L, (1 + sﬁ))

2E1L2(1 + 82)

B =] (1+¢)cos(6,) —

I
\
C =1 (1+&)cos(6,) — (
(

+ vpe)20,(1 + 31)>>

2E2L1(1 +&)

/ F1 - 1_—) (&1 + viey)20,(1 + 52)>>\\\I \
cos™ k(l + &) cos(6,) — |\ BT e) /| /| (g, + 1))

[

\

/(Fz - ((1 —EI‘:]RZ) (82 + vpe)2L, (1 + 51)))\)W \
cos™1| (1 + &) cos(6,) — / |/ (e, + 1) I
k

kfl L, tan

'\
1

\ 2E,L, (1 + &)
Ey

v

H=h - ((1

J=F - ((1 _Ek )(52 + vee)2L,(1 +£1)>

)(51 + vre)2L,(1 + 32))

Equation 3-65

At this point all necessary derivatives have been derived and can be used to design a
fabric’s geometry for the tensile stiffnesses and Poison’s ratios with respect to biaxial

load (§3.5).

3.4.3.3. Isoparametric formulation for coating
With the derivatives calculated it is possible to optimise a fabric’s geometry for the
response to biaxial load although not for response to shear loading. As has been
mentioned the ‘springs’ that were used to represent the coating stiffness in the model
used by Bridgens (2005) have been replaced by a finite element this is similar to the
method employed by Kato et al. (1999). The material properties used in the element
were taken from the literature review (§2.2.3). The practical effect of this thus far has
been to make a slight alteration to the calculation of the coating force, but this is to be

used to demonstrate how a fabric’s response to shear can also be designed.

Two types of finite elements were considered to replace the springs representing the
coating deformation in earlier models. The simpler ‘Plane Rectangular Bilinear Element’

and the more complex ‘Plane Bilinear Isoparametric Element’ (Figure 3-8). The
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advantage of the isoparametric formulation lies in its ability to represent non-
rectangular geometry, which may be useful if fabrics with fibres that are non-
perpendicular are to be considered in future work, or to have curved sides (Cook et al.,
1989). Whereas the ‘Plane Rectangular Bilinear Element’ will restrict any future

iterations of this work to standard rectangular geometries.

As such the Isoparametric formulation will be used to ensure the model can be used
with non-perpendicular fabric geometries. The element replaces the springs in the

structure (Figure 3-9).

® ® °

Plane Rectangular Bilinear Element Plane Bilinear Isoparametric Element
(Cook et al., 1989)

Figure 3-8: Plane Rectangular Bilinear Element and Plane Bilinear Isoparametric Element

aue|d jo1nQ

Figure 3-9: Fundamentals of the full sawtooth model with an Isoparametric Element representing the coating
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The construction of the Plane Bilinear Isoparametric formulation that will be used to

represent the coating is shown below:

1 n 1
AN
® : ®
4 1 3
: 1
1
1
[ —— - £
1
1 2

Plane Isoparametric Element in Xy space Plane Isoparametric Element in &n space

Figure 3-10: Plane Isoparametric Element in xy and §n space modified from Cook et al. (1989)

For the Plane Stress Isoparametric Element there are two fields, the displacements u

and v (Equation 3-66).

u=ZNiui, U=ZNL'UL'

*Displacements u and v are parallel to x and y NOT & and 0

Equation 3-66

The Shape functions are then calculated and their derivatives with relation to 1 and &

derived (Equation 3-67).

An alternate method of writing the derivatives is used below, such that the derivative of

N;with respect to §is written as Ny ¢ (Equation 3-67) (Cook et al., 2002).
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1-90—n) A+d—mn) A+HA+n)
N]_: ;N2: FN3: y V4
4 4 4

_a-H+n)
4
—1+n7 1- 1+n —1-n7
W= Meme Memmm N
—1+¢ —1-¢ 1+¢ 1-¢
1y = 7 , 2 = ” , N377=T’ N477=T

Equation 3-67

Once the shape functions have been calculated the strain-displacement relationship can

be derived, with the addition of the displacements (Equation 3-68 and Equation 3-69).

Uy
€x 10 0 17{4,
{e}={&¢=10 0 0 1 v,,f
Vxy 0 1 1 olf,
ry
Urx I17 iz 0 07 (ue
Ury — F21 F22 0 0 Uy
Vix 0 0 i ;| )V
Vry 0 0 [ Dpl\Ynm
Uz [Nl’f 0 N ¢ 0 N3¢ 0 Ny 0 1
tom =|N1"’ 0 Noy O Ny 0 Nay O |{d}
Uig l 0 N1,§ 0 Nz,f 0 N3:f 0 N4’EJ
Uiy 0 Ny, 0 Ny 0 Nay 0 Nuy
Equation 3-68
[I—v]: 1—'11 112]: ]—1:1 ]22 _]12]
I30 Iy J =21 i1
Jin iz Xe Ve ZNi'fxi zNi,in
n=[ 52l=I -
21 J22

x” y” E
y y
Nl’nxl
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ff [B]-t-dx-dy = f f [B]-t-]-dé-dn

Where J is the determinant of [J], [k] is the element stiffness matrix, [B] is the strain

displacement matrix, t is the element thickness, and [E] is the material properties

Equation 3-70

This is then integrated using nine point Gauss Quadrature (Equation 3-71 and Figure

3-11). As [k] is needed if the reactions, [r,], are to be computed.

25 40 64
—(01+03+07+ﬁ9)+ (192+194+196+198)+ 1

(Cook et al., 2002)

Where | is the integral, and 9, are the values at each node

Equation 3-71

Gauss point locations in a quadrilateral element using nine points

(order 3 rule)

Figure 3-11: Order three Gauss Point locations in a quadrilateral element: Reproduced from Cook et al. (1989)

The element is placed into the model (Figure 3-9), and the calculation of the shear stress

‘T’ is achieved using [€]and [E] (Equation 3-72).
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Equation 3-72

At this stage the shear stiffness of the fabric due to only the coatings deformation can
be predicted and included in the design of a fabric. However, as shown by Liu et al. (2004)
and other authors, the coating stiffness is not the only method by which fabrics respond
to shear. Though the effect of the coating may be principal to the shear response (Testa
and Yu, 1987) it has been deemed necessary to include other resistance mechanisms to
ensure accuracy and allow for the design of the fabric’s base cloth for shear. Therefore

shear resistance between yarns will also be taken into account.

3.4.3.4. Shear force calculation due to friction between fibres
In addition to the coating response to in-plane shear a method for the calculation of the
in-plane frictional forces between yarns, and its corresponding effect in resisting shear
deformation was developed by Liu et al. (2004). This model considered how yarn lateral
compaction and in-plane friction between yarns at cross-over can be used to calculate

shear forces in an uncoated fabric, with equal warp and weft dimensions (Figure 3-12).

The model considers the in-plane moments produced by the resistances to shear
deformation, and compares these to the in-plane shear forces that would produce a
moment of equal magnitude to the resistance moment (Equation 3-73). The model
developed by Liu et al. (2004) considers only a square fabric geometry. The method has

been modified by Colman (2014) to include.

Mg = My + Mg

Equation 3-73

Where Ms is the total moment resisting shear force, Mc is the moment due to yarn

compaction, M is the moment due to inter yarn friction
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- _ /) /

_ e \l,
7@ / !
/)
Square non-deformed Lateral Compaction of yarns Friction between yarns due to
fabric out of plane forces

Figure 3-12: Equal geometry uncoated fabric, yarn lateral compaction, and yarn friction (Liu et al., 2004)

However, as the fabrics to be considered are primarily coated fabrics we can surmise
that it is unlikely that lateral compaction as considered by Liu et al. (2004) will be a
principle resistance mechanism, once the coating is considered. For the purposes of this
model the lateral compaction of yarns is considered to be either non-existent, as yarns
are restrained by coating between them, or as having a minimal impact on shear
stiffness. Therefore only friction between yarns at cross over will be considered in

conjunction with the effect of the coating.

Liu et al. (2004) proposes formulae that can be used to calculate the moment due to
friction between yarns on a unit cell of uncoated square fabric, however, as many fabrics
to be considered will not have square geometry it is necessary to improve on these
formulations. This has been achieved by Colman (2014), who considers a similar model
to Liu et al. (2004), and refers to this methodology, but produces equations that can be

used with any yarn geometry.

The yarn friction is considered over the area of the contact between the two yarns, and
this is used to calculate the moment produced by the friction force. The area of
interaction between the yarns is split into four areas (Figure 3-13). The effect of the
friction in each of the areas is then considered, and its contribution to the moment

produced by the friction is then calculated (Equation 3-74).
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G
® Warp

//1{
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Figure 3-13: Moment due to inter yarn friction calculation (Colman, 2012)
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Equation 3-74
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3. Predictive model
Once the moment due to friction has been calculated the shear force on the edge of the
unit cell can also be calculated, and can then be used to calculate the shear stress over

the entire unit cell.

3.4.3.5. Shear force calculation
The resisting moments have been calculated, but these moments must be related to
shear stress and shear modulus. Shear stress is assumed to be equal across both sides
of the unit cell which allows for the calculation of the shear forces, even given any
variation of those forces on the unit cell. However, the moment due to the coating must

first be calculated (Equation 3-75).
M, = Fg, L cosy + Fg L, cosy
Fsko1 = Tk2L2,1’
M, = 14,2L,'L} cosy + 1, 2L,'L’, cos y
M, = 41, L,'L; cosy

Equation 3-75

And the moment due to the imposed shear force must also be calculated (Equation 3-76
and Figure 3-14). As such two causes of shear resistance are identified and related to

the point at which the resisting moment is acting (Figure 3-15).

Mg = Fg - (Ly") - cos(y) + Fsq - (Lp") - cos(y)

Equation 3-76
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Figure 3-14: Calculation of shear force for a non-square geometry (Liu et al., 2004) (Colman, 2014)

M M

My A NF ‘J M

L \V 1/ \_,)

2
()

E Mea N = o NV

€ <
—— .
L, L1|—| Moments considered Position of Plane Stress
oW Isoparametric element

Figure 3-15: Review of the positions of the elements that make up the shear model.

The shear force and shear stress acting on the unit cell can be calculated by considering
all of these moments. This is made more complex by the non-square geometry (Figure
3-16).

MS:MK+MF
E L’ = L’ E L’
sy 1 a1 o

L’ L

Gl = Gl | Ol

Figure 3-16: Calculation of the external shear force acting on the unit cell. Where Mg is the total moment resisting
shear force, M is the moment due to the coating, M is the moment due to inter yarn friction
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3. Predictive model
Referring back to the above assumption that shear stress is constant the shear stress is

then calculated (Equation 3-77). The full derivation is in the appendix (§A.9).

Fg1 Equation 3-77

s =or,

It is also necessary to calculate the shear modulus (Equation 3-78).

Ts Equation 3-78
GS = —
Vs

It was decided that the shear modulus would be the principal concern for an engineer
requiring a designed fabric, and thus this is the output of the model (or the target to

which a fabric should be designed).

Once all these equations have been derived all the pieces are in place to implement the

full optimisation routine (§3.5).
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3.5. Implementation
The implementation of the formulae described in the previous section into a useable

and complete optimisation routine is described in this section.

Initially the sawtooth model (not inverse) routine is quickly covered as this is the basis
of the modelling method used. It is also used to corroborate the results produced from

the optimisation routines through a finite difference check of the results obtained.

3.5.1. Sawtooth model
The following Equilibrium model is for the full sawtooth model with all deformation
methods. To convert this to the equilibrium model used for the simple sawtooth model

values of Y’ simply need to be replaced with the initial value, Y.

The angles (61,2") and the Yarn lengths (Y1,’) are the variables within the solver. These
are placed in the matrix ‘x’ (Equation 3-79). This allows the transfer of data between the
solver and the instigating function. The initial (guess) values of ‘x’ used are the values of
the unstrained geometry. This reduces computation time by initialising the solver with

an approximate solution.

x1 (61,\
X2 _ 6,
X3 - YII
X4 YZI

Equation 3-79

The ‘Fsolve’ (MathWorks, 2012a) routine is used to find the solution to the equilibrium
problem as defined by the equations and constraints (Figure 3-17). The calculations

performed within the ‘Fsolve’ routine are also shown (Figure 3-17).

‘Fsolve’ makes use of “Trust-Region Dogleg Method” (MathWorks, 2014) which “solves
a linear system of equations to find the search direction”. The principle being to “define
a region around the current iterate within which they trust the model to be an accurate
representation” (Nocedal and Wright, 2006, p. 66). At this point “a trial step ‘s’ is
computed by minimizing (or approximately minimizing) over N [the neighbourhood
around the current point]” (MathWorks, 2014). Should this new point be an

improvement on the previous one the current point is updated. The program
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documentation goes into great detail as to how exactly this is achieved, all of which is
not reproduced here. The “Trust-Region Dogleg” is implemented by solving a merit
function ‘m(d)’ for a step ‘d’ using “a convex combination of a Cauchy step (a step along
the steepest descent direction) and a Gauss-Newton step for f(x)”. This briefly comprises
approximating the function that is to be minimised at the current point with a new
function. This is then minimised within the ‘trust region’, within which the new function
is deemed to represent the original function to be minimised, and then the process is

begun again.
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Initial (reference) input:

Fi, F2, 11, 12, Y1, Yo, Ly, Lo, Eyg, Eya, Ex, L1, L2, O1, ©2, Wi, Wa, Vi

Y,1,2 * COS 6,1,2 - Yl,Z * COS 91’2

Calculate ¢, ,:

g =
12 Y, cosb;,
Calculate Fq :
Ek
Fr12=2"Ly, (m) (51,2 + Vk52,1)(1 + 52,1) <€
-V

v

Solve the three equations:
1. T1+T'2 :Al +A2
2. F,; + F,; = 0 *F, refers to out of plane forces

3. Y’1,2 - Y1,2 - [1 + L:I

2:Eyq12°Lh 4
Given:
° Fy1,2 = onzs_:llzlzz
b W{,z = % ’2,1
A

All three equations are solved
for current values?

Attempt to solve with new values of unstrained geometry ©1, r12, L1, Ey12, Ex

Output ‘x’:
x1 6,
X2\ _ 6,
x3 Y,
x4 \Yz’)

Figure 3-17: Overview of the process of solving the equilibrium sawtooth problem
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3. Predictive model
The result of the sawtooth model can then be used to calculate the strain in the unit cell,

and the mechanical properties of the fabric (§3.4.1).

3.5.2. Objective function
For the optimisation of the geometry for a designed fabric it was necessary to produce
a reliable objective function. As such two optimisation functions were considered for

use.

a
Obj = Z(Targeta — Calculation,)?
1

Equation 3-80
a . 2
) Calculation,
opj = Y (Celevdation, )
- Target,
Equation 3-81

Where Obj is the objective function, Target is the target of the optimisation at ‘a’, and

Calculation is the calculated value of Ei1, E23, vi2 or vo1 for the current geometry at ‘a’.

It is apparent calculating the objective function in the former manner (Equation 3-80),
whilst apparently the least computationally expensive of the two possible methods
shown will give poor results due to the difference in possible values of Poisson’s ratios
and Young’s moduli. This means that a 1% difference between a target Young’s modulus
and the calculated value might produce a result of approximately (101)? whilst the
same difference between calculated and target Poisson’s ratios might produce a result
of approximately (1073)2. Therefore a variable weighting factor would be needed to
ensure equal importance is given to each target. As such the second calculation method

was utilised (Equation 3-81).

The values of the comparison between calculation and target are squared to remove the
possibility of negative values affecting the minimisation, where a negative value might
be seen as preferable to the algorithms even though it represents a deviation from the
target. This introduces one further complication. The apparent error in the objective
function is a squared relationship and so objective function values less than one appear

to be a greater improvement than is actually the case.
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3.5.3. Simple sawtooth
The inverse simple sawtooth is not discussed at length in this section as the model of
particular interest is the full sawtooth, with which bespoke architectural fabrics for

particular mechanical stiffnesses will be designed.

The routine used to minimise a problem for a specific geometry has been discussed in
the Literature Review (§2.4.2.6), and was the ‘Fmincon’ (Kozola, 2009; Kozola, 2010;

MathWorks, 2012a; Mathworks, 2012b) optimisation routine.

3.5.3.1. Optimisation methodology
The optimisation methodology for this version of the sawtooth model is detailed as a
flow chart (Figure 3-18 and Figure 3-19). The method’s accuracy was compared to finite

difference calculations (§A.7).
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Initial guess geometry:
O12, 2, L12, Ey12, Ex

2

Reference input:
Fi, F2, €1, €2

2
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EllglobaI, EzngObal, VlngODaI, VZlgIobaI

Accuracy met
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Figure 3-18: Overview of the geometry optimisation for the unit cell minimisation (for a whole fabric)
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Initial (guess) of geometry: Initial Targets: E11, E22, v12,
v21 and Force (for whole
Ll,Z’ e1,2' EPY Ey1,2’ Ek fabric)

v v

Convert to values for unit cell model

Redefine unit cell
load and target ¢
geometry

Find values for strain in unit cell from
equilibrium model

A v

Optimise the geometry in unit cell for target values of E11, E22,
v12, v21 and load by minimising the function value:

& C alculation, z
Func = Z <— - 1)
- Target,

Where the variablesare: L. ., 0. _,r. _, E E

1,2 Y122 11,27 Sy1,27 “k

Redefine geometry as output of minimisation

Pass new geometry

to new run
i T
st Repeat
1 run
process to allow
comparison of
results
Convergence: Using square
Convergence

route of the sum of the squares of
the changes in strains and
geometry

criteria not met

Convergence
criteria met €
Recalculate values of Output geometry as
L 5| recalcun N but geometry
strain for final geometry results

Figure 3-19: Simple sawtooth optimisation process overview
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Many lessons were learned from the ‘inverse simple sawtooth’, and improvements were

made for to the planned full sawtooth methodology. These were as follows:

e The objective function was modified to remove the unwanted weighting that
occurred when both Poisson’s ratios and Young’s moduli were compared.

e The constraint functions were tested to ensure that the model was compliant.

e The need for multiple runs to determine accuracy was identified.

e The need to vary the step size when producing a numerical rather than analytical
derivative, or when comparing the analytical derivatives to central finite

difference calculations at the same point was noted and tested for.

3.5.3.2. Findings
This model produces the same results for any two equal ratios of load placed upon it.
This is found because the magnitude of the load does not produce any deformation in
the coating or the yarns. Therefore only the configuration of the model components

changes when loaded.

As such when a 10:10 load, or 100:100 load is applied the result is exactly the same, with
the simple model acting as a mechanical problem. This was not initially predicted, but
when it became apparent that this was the case the reasons for this behaviour were

evident.

3.5.4. Full sawtooth
The inverted full sawtooth model, or the predictive model for the design of fabrics, was
considerably more complex than the initial simple model. It included a number of

additional optimisation runs that allowed for the more complex optimisation problem.

3.5.4.1. Overview
The biggest change from the simple model, in terms of optimisation, was the inclusion
of an initial pattern search routine which is used to locate a probable zone for the result
to be located. This routine performs a number of searches, before locating the most
likely position of a solution (a local minimum). This addition reduced the number of false
starts in the optimisation routine, by focussing the following solver onto an area where

there was likely to be a solution.

PAGE 157



3. Predictive model
The gradient based solver could then focus on this ‘area’ without being drawn into local
minima. The pattern search will find a close approximation to the true minimum, and

then allow the gradient based solver to find the true minimum at this point.

the gradient based solver, if it began its search at point ‘A’ would find a ‘solution’ at one
of the local minima, however, if informed by the pattern search grid, would begin its

search at point ‘B’ and therefore find the true minima (Figure 3-20).

—|— Pattern Search Point

Area of solutions which satisfy constraints

+ + + 4+ + + +
+ +
+ +

+ + 4+
+ F + +
—~ +

_|_

Figure 3-20: Use of pattern search to inform gradient based optimisation

The second principal change is that the optimisation allows for an over constrained
search, or to put it another way, allows a solution to be found where no perfect solution
exists by allowing the targets to vary a little from their user defined positions. The
amount of allowable variation can be either chosen by a user or predefined within the

algorithm.

The hypothesis here is that where a low number of targets are chosen then a front of
possible solutions exists. For instance if only E11 at one load case was specified then a
number of possible fabrics might be able to produce the required response, and the
output result will be the one closest to the user defined initial search position (Xo).
However, if twenty five targets are chosen then it is possible (and likely) that within the

constraints placed on the function no possible solution can be found, and at this point
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the targets must be allowed to move to place the required response plane into an

achievable zone. How this works in practice is shown below (Figure 3-21).
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Input required values of E11, E2, vi2 and vai at five points:
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Figure 3-21: Overview of full sawtooth fabric design optimisation procedure
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3.6. Yarn strength

Yarn strength is the final fabric parameter that is likely to be required for the design of
a fabric. The sawtooth model cannot be used to predict fabric strength because it
includes no consideration of the yarn strength or of the yarn build up. Initially it was
hoped that a simple relationship between yarn tenacity and area might be found that
would allow an approximation of yarn strength to be made from parameters available
within the optimisation process. However, after some initial investigation it became
apparent that this is not the case. Published yarn strengths are presented in two
different ways (Figure 3-22 and Figure 3-23), with the yarn area calculated from
photographs of yarn cross sections.. However, even within the confines of only polyester

yarns it is apparent that no readily appreciable and easily accessible relationship exists,

i.e.in the form % & x where x is tensile strength.

It is however apparent that tenacity is very generally related to yarn area (Figure 3-22,
Figure 3-23, Figure 3-24 and Figure 3-25). When a larger number of yarn types are
considered it can be noted that whilst a general relationship appears apparent, no
specific linear or non-linear relationship can be interpreted from the data (Figure 3-24

and Figure 3-25).

Ferrari PVC coated polyester fabrics strengths
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o
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Figure 3-22: Published fabric strengths for Ferrari fabrics (Ferrari, 2013c; Ferrari, 2013a; Ferrari, 2013b)
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Figure 3-23: Inferred yarn strengths for Ferrari fabrics from published data (Ferrari, 2013c; Ferrari, 2013a; Ferrari,

2013b)
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Figure 3-24: Published fabric strengths for Ferrari, Verseidag and ATEX fabrics (Verseidag, 2010a; Verseidag, 2010b;

Atex, 2013a; Atex, 2013b; Ferrari, 2013c; Ferrari, 2013a; Ferrari, 2013b)
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Ferrari, Verseidag and ATEX fabric yarn strengths
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Figure 3-25: Inferred yarn strengths for Ferrari, Verseidag and ATEX fabrics from published data (Verseidag, 2010a;
Verseidag, 2010b; Atex, 2013a; Atex, 2013b; Ferrari, 2013c; Ferrari, 2013a; Ferrari, 2013b)

Investigation reveals that the problem of yarn and fabric strength is far more complex
than a simple relationship between material and yarn area. Ghosh (2005, p. 731) finds
that “yarn failure is strongly dependent on the yarn structure” specifically the
“configuration, alignment and packing of the constituent yarns”. Indeed it appears that
even in the consideration of uncoated (i.e. without the inclusion of coating penetration)
the problem is complex. Even where the tensile strength of a yarn might be predicted
“in actual practice, the yarns and fabric undergo stresses and strains that are
substantially different from those applied in the standard testing conditions” (Ghosh,
2005, p. 732). As such the prediction of the fabric tensile strength using yarn

characteristics may be unwise.

Bogdanovich (2008, p. 248) states that “obtaining full set of ultimate failure
characteristics for each practical textile composite is a big challenge on its own”,
resulting in high cost testing. The Hierachical “3-D Mosaic Analysis” presented by
Bogdanovich (2008, p. 248) again would not be directly applicable to the model

developed.

The “Longitudinal tensile strength of twisted impregnated yarns” can be described in
terms of the twist angle, lateral pressure, twist wavelength, and other parameters of the
yarn including its lateral compaction ratio and Poisson’s ratio (Singh and Naik, 2001, p.
350). Again, it can be seen from the required parameters that to describe tensile

strength even of a yarn prior to consideration as part of a fabric whole would require a
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3. Predictive model
step change in the level of complexity of the design process. This would include a series
of parameters that would need to be tested for or which do not lend themselves to the

design methodology as it stands.

Future work might extend the model developed to include yarn and fabric strength,
however, owing to the importance of parameters that are outside of the scale
considered, and which do not form a part of the model developed no further
consideration of yarn strength will be made. It is noted that this does present a limit to
the relevance of the model, though a design methodology for tensile strength might be

found to be a project of equal or greater length than this one.
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3.7. Model checking and initial validation
Three types of fabric are initially considered, a PVC polyester fabric, a PTFE glass-fibre
fabric and a silicone glass-fibre fabric. All three are analysed using the sawtooth model
to produce mechanical properties, and these results are then used to design the initial
fabric. The design process has no knowledge of the fabric from which the targets came

from except for the required mechanical properties (targets).

In addition to these tests the constraints and equilibrium equations are checked for the

designed model.

Additional validation is carried out in the following sections (§5.3), where real fabric
response parameters from biaxial test data are compared to fabrics designed to

reproduce these.

3.7.1. Results for known feasible biaxial targets
To demonstrate the functionality of both the method of optimisation and the validity of
the equations used an optimisation for a set of targets that were known to be feasible

was performed for three different fabric geometries.

e F1202 PVC coated polyester fabric (§A.1)
e B18089 PTFE glass-fibre fabric (§A.1)
e ATEX3000 Silicone coated glass-fibre fabric (§A.1)

The feasible targets were produced from the sawtooth equilibrium model using a central
finite difference method and recorded (Table 3-2). The resulting mechanical properties

were also recorded (Table 3-3).

The optimisation routine had no prior knowledge of the geometry from which the
targets were calculated. The initial ‘starting geometry’ was randomised. Randomising
the starting geometry creates an artificially difficult situation for the optimisation
routine. In most scenarios a ‘close approximation’ might originally be used to target the
result. However, starting from a randomised geometry helps to demonstrate the

model’s utility.
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F1202 PVC coated Polyester results for feasible targets:

3. Predictive model

Variable Geometry from which Optimised geometry
targets are calculated

©1 (Rad) 0.101 0.108
©2 (Rad) 0.180 0.177
L1 (mm) 0.645 0.691
L2 (mm) 1.082 1.166
r1(mm) 0.157 0.169
r2 (mm) 0.106 0.114
E1 (kN/m) 880 879
E2 (kN/m) 810 805
Ex (kN/m) 37 39
Az (mm) 0.066 0.075
Az (mm) 0.197 0.208
w1 (mm) 0.859 0.949
w2 (mm) 1.044 0.105
Vi 0.3 0.3

Table 3-2: Geometry used to find feasible targets and resultant optimised geometry for F1202 fabric

Point1 | Point2 | Point3 | Point4 | Point 5

Eix (target 1) (kN/m) 5435 | 691.1 | 632.1 | 403.5 | 806.1
E> (target 3) (kN/m) 501.7 628.3 578.2 625.8 547.9
v, (target 2) 0.419 | 0.276 | 0.331 | 0.309 | 0.250
V21 (target 4) 0.386 | 0.252 | 0.303 | 0.450 | 0.187
P1 (kN/m) 10 20 15 10 20
P2 (kN/m) 10 20 15 20 10
E1 (result 1) (kN/m) 543.1 691.3 632.1 403.4 806.2
E2; (result 3) (kN/m) 502.3 628.0 578.2 625.2 548.6
V12 (result 2) 0.419 | 0.277 | 0.331 | 0.309 | 0.250
V21 (result 4) 0.386 | 0.252 | 0.303 | 0.450 | 0.187

Table 3-3: Feasible targets found at the applied loads P1 and P2 and results for F1202 fabric

Optimisation function value: 8.22x10®

Equilibrium check: A1 + A2 — (r1 +r2) =4.4x10%¢ = 0

The results of this fabric design are as predicted, a near perfect solution is found quickly

(291 seconds) suggesting that the method works well. The equations therefore correlate

to the sawtooth method which is known to correlate well with the biaxial response of

real fabrics. It should be noted that the start point of the optimisation was not the

geometry used to find the targets; this ensured that the method was in fact finding a

solution, and not succeeding having been given the correct geometry as a start point.

The method used to renew the initial guess point was also demonstrated with four runs

having been attempted prior to a solution being found.
PAGE 166



900
800 |
E E
> 7007 w >
< o 3
— 600 o~
e N
w u
500
400 : : B
1 2 3 4 5
Target Point
0.45
041
0.35
o o
>
0.3f 2
x
0.25 *
02 . .
1 2 3 4 5

Target Point

3. Predictive model

650
S b
600
x
550
500 - - -
1 2 3 4 5
Target Point
0.45 Zuy
® Optimised Point
0.4)’ < Target Point
0351
5037 x
025 =
02f
0.15 - - -
1 2 3 4 5

Target Point

Figure 3-26: Results of the optimisation for the feasible solution of the F1202 PVC Polyester fabric

The optimisation for the feasible values of stiffness and Poisson’s ratio produces good

results (Figure 3-26). Target points 1 in the plots vi2 and vz1 results show some slight

deviation from the targets. In reality this error is small, whilst observable in the figure,

and equates to a difference of only 0.11%. This is as a result of the slight deviation from

the original geometry that was found. A higher accuracy requirement on the solver may

produce more accurate results, but would be more computationally expensive, taking

longer. The current accuracy requirement is deemed adequate for this optimisation.

B18089 PTFE coated glass-fibre results for feasible targets:

Variable Geometry from which Optimised geometry
targets are calculated

©1 (Rad) 0.227 0.227
©:2 (Rad) 0.328 0.328
L1 (mm) 0.500 1.265
L2 (mm) 0.423 1.071
r1(mm) 0.127 0.321
r2 (mm) 0.133 0.335
E1 (kN/m) 4270 4270
E2 (kN/m) 3970 3970
Ex (kN/m) 36 36

A1 (mm) 0.116 0.292
Az (mm) 0.144 0.364
w1 (mm) 0.373 0.945
w2 (mm) 0.573 1.451
Vk 0.3 0.3

Table 3-4: Geometry used to find feasible targets and resultant optimised geometry for B18089 fabric
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3. Predictive model

Point1 | Point2 | Point 3 | Point4 | Point5
E11 (target 1) (kN/m) | 332.22 | 555.90 | 446.97 | 292.54 | 774.90
Ex (target 3) (kN/m) | 276.77 | 503.23 | 393.39 | 766.73 | 223.60
V12 (target 2) 0.999 | 0.890 | 0.936 | 0.509 1.634
V21 (target 4) 0.833 | 0.809 0.826 1.394 | 0.452
P1 (kN/m) 10 20 15 10 20
P2 (kN/m) 10 20 15 20 10
Eu1 (result 1) (kN/m) 332.22 | 555.90 | 446.97 | 292.54 | 774.90
E2, (result 3) (kN/m) 0.999 | 0.890 | 0.936 | 0.509 1.634
vz (result 2) 276.77 | 503.23 | 393.39 | 766.73 | 223.60
Va1 (result 4) 0.833 | 0.809 0.826 1.394 | 0.452

Table 3-5: Feasible targets found at the applied loads P1 and P2 and results for B18089 fabric

Optimisation function value: 9.47 x10°%!

Equilibrium check: A1 + Ay — (r1 + r2) = 9.25x1012
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Figure 3-27: Results of the optimisation for the feasible solution of the B18089 PTFE glass-fibre fabric
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Figure 3-29: Optimised geometry of the B18089 PTFE glass-fibre fabric

A different solution for the targets produced for the B18089 fabric is found after the

design process. This is discussed in more detail below.
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B18089 PTFE coated glass-fibre results for feasible targets (with prior knowledge):

Variable Geometry from which Optimised geometry
targets are calculated

61 (Rad) 0.227 0.227

©: (Rad) 0.328 0.328

L1 (mm) 0.500 0.500

L2 (mm) 0.423 0.423

r1 (mm) 0.127 0.127

r2 (mm) 0.133 0.133

E1 (kN/m) 4270 4270

E2 (kN/m) 3970 3970

Ex (kN/m) 36 36

A1 (mm) 0.116 0.116

Az (mm) 0.144 0.144

w1 (mm) 0.373 0.373

w2 (mm) 0.573 0.390

Vi 0.3 0.3

Table 3-6: Geometry used to find feasible targets and resultant optimised geometry for B18089 fabric

Point1 | Point2 | Point3 | Point4 | Point 5

Eia (target 1) (kN/m) | 332.22 | 555.90 | 446.97 | 292.54 | 774.90

Ex (target 3) (kN/m) | 276.77 | 503.23 | 393.39 | 766.73 | 223.60

V12 (target 2) 0.999 | 0.890 | 0.936 | 0.509 | 1.634

V21 (target 4) 0.833 | 0.809 | 0.826 1.394 | 0.452

P1 (kN/m) 10 20 15 10 20

P2 (kN/m) 10 20 15 20 10

Eu (result 1) (kN/m) 332.23 | 555.90 | 446.97 | 292.54 | 774.90

E2> (result 3) (kN/m) 0.999 | 0.890 | 0.936 | 0.509 1.634

vz (result 2) 276.77 | 503.23 | 393.39 | 766.73 | 223.60

V21 (result 4) 0.833 | 0.809 | 0.826 | 1.394 | 0.452

Table 3-7: Feasible targets found at the applied loads P1 and P2 and results for B18089 fabric

Optimisation function value:

8.22 x10°®

Equilibrium check: A1 + Ay — (r1 +r2) =8.87 x101°= 0
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Figure 3-30: Results of the optimisation for the feasible solution of the B18089 PTFE glass-fibre fabric
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Figure 3-31: Optimised geometry of the B18089 PTFE glass-fibre fabric (Prior knowledge of original geometry)

The method does reproduce the initial geometry when it is given prior knowledge of the
geometry from which the targets were derived (i.e. an initial geometry close to that of
the original fabric is selected). This is probably because the steepest decent from the
initial point found by the pattern search method directs the result towards a different

solution. This is discussed in more detail below.
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ATEX3000 Silicone coated glass-fibre results for feasible targets:

Variable Geometry from which Optimised geometry
targets are calculated

©1 (Rad) 0.181 0.181

©2 (Rad) 0.184 0.183

L1 (mm) 0.451 1.557

L2 (mm) 0.391 1.353

ri(mm) 0.076 0.264

r2 (mm) 0.079 0.272

E1 (kN/m) 3120 3118.553877

E2 (kN/m) 3190 3187.954473

Ex (kN/m) 12 10.33580805

A1 (mm) 0.083 0.286

Az (mm) 0.073 0.250

w1 (mm) 0.408 1.426

w2 (mm) 0.434 1.483

Vk 0.3 0.3

Table 3-8: Geometry used to find feasible targets and resultant optimised geometry for ATEX3000 fabric
Point1 | Point2 | Point3 | Point 4 Point 5

Eu (target 1) (kN/m) | 531.98 | 899.56 | 729.56 | 499.95 | 1147.60
E, (target 3) (kN/m) 0.819 0.693 0.750 0.414 1.221
v12 (target 2) 531.61 | 906.02 | 732.56 | 1339.14 | 406.38
Va1 (target 4) 0.819 0.698 0.754 1.112 0.430
P1 (kN/m) 10 20 15 10 20
P2 (kN/m) 10 20 15 20 10
E11 (result 1) (kN/m) 531.42 | 900.12 | 729.66 | 499.03 | 1148.95
Ex (result 3) (kN/m) 0.819 0.692 0.750 0.413 1.222
v12 (result 2) 531.54 | 906.78 | 732.99 | 1340.71 | 405.81
V21 (result 4) 0.819 | 0.697 | 0.754 | 1.112 0.429

Table 3-9: Feasible targets found at the applied loads P1 and P2 and results for ATEX3000 fabric

Optimisation function value: 2.22x10°

Equilibrium check: A1 + A2 —(r1+1r2)=0
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Figure 3-32: Results of the optimisation for the feasible solution of the ATEX3000 Silicone glass-fibre fabric
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Figure 3-33: Original geometry of the ATEX3000 Silicone glass-fibre fabric
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Figure 3-34: Optimised geometry of the ATEX3000 Silicone glass-fibre fabric

Again the method finds an alternate solution.

ATEX3000 Silicone coated glass-fibre results for feasible targets (with prior knowledge):

Variable Geometry from which Optimised geometry
targets are calculated

©1 (Rad) 0.181 0.181
©: (Rad) 0.184 0.184
L1 (mm) 0.451 0.451
L2 (mm) 0.391 0.391
ri(mm) 0.076 0.076
r2 (mm) 0.079 0.079
E1 (kN/m) 3120 3120
E2 (kN/m) 3190 3190
Ex (kN/m) 12 12

A1 (mm) 0.083 0.083
Az (mm) 0.073 0.073
w1 (mm) 0.408 0.408
w2 (mm) 0.434 0.434
Vk 0.3 0.3

Table 3-10: Geometry used to find feasible targets and resultant optimised geometry for ATEX3000 fabric
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Point1 | Point2 | Point3 | Point4 Point 5
Eix (target 1) (kN/m) | 531.98 | 899.56 | 729.56 | 499.95 | 1147.60
E (target 3) (kN/m) | 0.819 | 0.693 | 0.750 | 0.414 1.221
v1, (target 2) 531.61 | 906.02 | 732.56 | 1339.14 | 406.38
V21 (target 4) 0.819 | 0.698 | 0.754 1.112 0.430
P1 (kN/m) 10 20 15 10 20
P2 (kN/m) 10 20 15 20 10
E11 (result 1) (kN/m) 531.98 | 899.56 | 729.56 | 499.95 | 1147.60
E (result 3) (kN/m) 0.819 | 0.693 | 0.750 0.414 1.221
v (result 2) 531.61 | 906.02 | 732.56 | 1339.14 | 406.38
Va1 (result 4) 0.819 | 0.698 | 0.754 1.112 0.430

Table 3-11:

Feasible targets found at the applied loads P1 and P2 and results for ATEX3000 fabric

Optimisation function value: 1.47x10713

Equilibrium check: A1 + A, — (r1 +r2) = 1.136°= 0
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Figure 3-35: Results of the optimisation for the feasible solution of the ATEX3000 Silicone glass-fibre fabric
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Figure 3-36: Optimised geometry of the ATEX300 Silicone glass-fibre fabric (Prior knowledge of original geometry)

The results for the PTFE glass-fibre fabric and Silicone glass-fibre fabric design process
demonstrate how for each set of yarn target mechanical properties it is possible that
more than one solution exists. For ‘original fabric geometries’ two sets of tests were
carried out. The first followed the same principle as the PVC coated polyester fabric
above, namely that the optimisation routine had no prior knowledge of the fabric
geometry. This results in a solution different to the original geometry, but which still
solves the equations produced earlier and thus will produce the required tensile stress-
strain response at the stated loads. This occurs because there exists more than one
solution within the bounds of the optimisation, and the starting point of the
optimisation, which is randomised, leads to the solutions shown rather than the original

geometry.

Next, to demonstrate that the solver can indeed find the original solution a starting point
close to the original geometry is used, and in this case the solver finds a solution to the

problems that matches the original geometry.

It is infeasible to attempt to find all possible solutions, where all possible starting points
or at least a grid of starting points of indefinite fineness would need to be tested for. As

such, it has been demonstrated that more than one solution to any problem may exist,

PAGE 176



3. Predictive model
and as will be discussed in following chapters (§4.5) reducing the number of targets will

increase the size of this volume of possible solutions.

It has been demonstrated that for feasible targets the solver produces results that
appear to be visually viable. Further discussion of the applicability of this to real fabric

biaxial test data follows in later chapters (§5.4).

Further results for optimisations were carried out and are summarised in Appendix 3

(8A.3).

3.7.2. Results for known feasible shear targets
The method for the calculation of the shear modulus was used in conjunction with data
from a F1202 PVC polyester fabric to show the method’s applicability. Similarly to the
methodology above (§3.5.4) the shear modulus was calculated for a geometry to give a
known feasible target. After this the optimisation routine was used to design a fabric for
which the target is achieved without any prior knowledge of the original geometry from

which the target was obtained.

Shear test data for a coated fabric demonstrating nonlinearity and hysteresis offers two
problems for the design of a fabric (Figure 3-37). The first is how to represent the
hysteresis? This is resolved by considering only the loading curve, as is done for plane
stress fits to biaxial test data. Therefore whilst the frictional resistance of the fabric to
unloading could be considered using this shear method this is not incorporated into the

model.
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Figure 3-37: Shear response of a F1202 fabric up to a 50 shear angle

The second problem associated with the use of this data is where to take the shear
modulus from? The MSAJ standard requires that the tip to tip displacements be used,
with the gradient of a line between the two calculated (Membrane Structures
Association of Japan, 1993; Colman et al., 2014). Different stress ratios therefore
produce different shear moduli, and as such “Accounting for shear at different biaxial
stress states should be considered for accurate prediction of material behaviour”
(Colman et al., 2014, p. 170). Therefore the shear modulus for comparison is calculated

as the gradient between the maximum and minimum points on the deformation.

A frictional coefficient of 0.3 as used by Liu et al. (2004) is used for all fabrics and weaves.
This is probably unrealistic, though extensive testing would be needed to derive the
coefficients for different fabric types and any associated variation within these. This is

outside of the scope of this project.

Initially a series of targets were defined as shown in Table 3-12 using the F1202 fabric
geometry. Two sets of target points were used corresponding to the load at which the

shear response was calculated. Other target points were left unused.
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Point 1 Point 2
Eix (target 1) (kN/m) 543 691
E,> (target 3) (kN/m) 502 628
v1; (target 2) 0.419 0.276
V2 (target 4) 0.386 0.252
G (target) (kN/m) 17.35 10.90
v (degrees) 3 5
P1 (kN/m) 10 20
P> (kN/m) 10 10
E11 (result 1) (kN/m) 545 690
E2 (result 3) (kN/m) 501 629
v (result 2) 0.419 0.277
Va1 (result 4) 0.387 0.252
G (result) (kN/m) 17.34 10.90

Table 3-12: Initial targets and results for the design of shear properties

3. Predictive model

The targets are chosen arbitrarily to demonstrate the applicability of the model to any

geometry or target set.

Variable Geometry from which Optimised geometry
targets are calculated
©1 (Rad) 0.101 0.146
6 (Rad) 0.180 0.141
L1 (mm) 0.645 1.049
L, (mm) 1.082 0.662
ri (mm) 0.157 0.088
r (mm) 0.106 0.160
E1 (kN/m) 880 892
E, (kN/m) 810 773
Ex (kN/m) 37 43
A (mm) 0.066 0.154
A; (mm) 0.197 0.094
w1 (mm) 0.859 0.619
w> (mm) 1.044 1.090
Vi 0.3 0.3

Table 3-13: Initial and optimised geometry for shear target optimisation

The design process (optimisation) resolves to a solution, though as with the sawtooth

only tests (§3.7.1) this has not found the original geometry from which the targets were

obtained. This is not a failure of the methodology but a demonstration of the multiple

possible solutions available for a single set of targets, which here are much reduced from

the larger more constraining sets above.

Lastly it now becomes apparent that the effect of the coating dominates the response

of the fabric to shear deformation (Figure 3-38) as predicted by Testa and Yu (1987, p.

1636) who state that “resistance to shear deformation arises almost entirely from the
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3. Predictive model
coating”. This presents a problem when considering the design of a fabric. Essentially
the method must choose a fabric coating almost entirely based on the shear

requirements.

green - full shear stress, red - coating shear stress
T T T T T

06 -

02 -

Shear stress

0.2 *

-04 *

08 1 1 1 1 1 1 1 1 |
-5 4 -3 2 -1 0 1 2 3 4 5

Shear angle

Figure 3-38: Comparison between coating only and coating and friction shear response (green-full shear response,
red-coating only)

As such by selecting a coating the approximate value of the shear modulus can be
defined using Equation 3-82. The problem with defining the coating in this fashion is that

one of the nine geometric variables can no longer vary to the same degree.

E

C=2aTw

Equation 3-82

Defining the shear characteristics therefore defines the shear stiffness.

3.7.3. Discussion of results
The model developed has been shown to work within the confines of a feasible solution.
This will be tested further, used to analyse the variability of a fabric’s response and its

effect on real fabrics and compared to real fabric response surfaces in later chapters

(§5.3).

The method developed offers close correlation between results for feasible targets. This

good fidelity was predicted, as the optimisation equations were developed using the
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sawtooth model, but demonstrates the utility of the method. The optimisation works by
finding the solutions available from all possible response planes of the sawtooth model,
and should eventually find a solution for targets that originally existed on this plane. This
does, importantly, show that the method being employed to find the targets is working

even if in some cases alternate solutions might be found.

Small amounts of error or inaccuracy between the produced and initial geometries in
the test cases can be accounted for by considering that there might be some ‘area’ of
viable solutions, however small, around the original solution. Alternatively increasing
the required accuracy of the solution might reduce the error present in the calculation.
Whilst the solution is found to a high degree of accuracy both the function value and the
constraint function are rarely found to be zero at the proffered solution. This is a result
of the use of an optimisation routine rather than finding an analytical solution. Where
an analytical solution would give an exact value at the point of solution the optimisation

routine only continues to the predefined tolerances.

The error in accuracy might have been predicted, but is, at this stage considered

acceptable and allowable within the confines of the feasible solutions presented.

The shear component of the sawtooth optimisation model is not used further in this
report because of the way using the shear design component largely selects the coating
stiffness. As the coating’s Poisson’s ratio is fixed only the coating’s Young’s modulus
affects the shear modulus significantly. Whilst how the component can be used has been

demonstrated the actual usefulness of the component is therefore limited.

Further to this only one value of p (the coefficient of friction between yarns at crossover)
is available to the designer. The design of the fabric takes no account of how this value
may vary for changing geometries, and work to account for this would be considerable
and time consuming, well beyond the scope of this report similar to how the nonlinearity

of yarn stiffness is overlooked (§3.5.4).

Lastly the shear stiffness generally used in industry is the gradient between the tips of
the shear stress-angle graph, not the point shear used in this method. The method’s use
of the shear characteristics at a point will be more accurate than the interpolation of a
line, however, such information could not be used in design and analysis packages.
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Overall it must be concluded that whilst the shear design methodology can be used to
design a fabric’s shear stiffness its utility in further analysis is severely hampered, and it

therefore will remain unused in further sections.
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3. Predictive model
Conclusions
Fabric mechanical properties can be accurately predicted from initial geometric
properties by taking the derivative of the defining equations. These derivatives
can then be used to design a bespoke architectural plane weave fabric for
specific mechanical properties at prescribed loads.
The accuracy of the optimisation method with regards to known feasible targets

derived from the sawtooth model is excellent.

Ae
L2 must be

The methodology is slower than hoped as the calculation of .
2,1

completed after each iteration. This also reduces the utility of the model by
making further derivative calculations difficult. These are necessary for the
development of the FORM methods discussed in the next chapter (§4).

It has been demonstrated that for some targets multiple solutions exist and thus
conversely it can be assumed that for other targets no solutions may exist
(§3.7.2). The latter will be demonstrated in following chapters.

Shear stiffness is dominated by the coating response (stiffness).
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4. Variability and Robustness of Fabric Geometry and

Constituent Parameters
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4.1. Introduction
It can be understood intuitively that when the geometry or properties of a fabric are
changed the response of the fabric to loads will also alter. This is seen in the different
responses of alternative fabric types, or observed in models, by changing the input
parameters. However, little investigation has been carried out into the effect of the

variation that exists in an individual fabric properties on its response (§2.5).

This chapter first describes the effect of variation of different properties by using both
Monte Carlo simulations and First Order Reliability Method (FORM) analysis. It also
demonstrates that multiple solutions exist for various targets, and shows that the effect
of varying different fabric properties is dependent on the property and the target
considered. These analyses are also used to show how the previously developed model
can be adapted to demonstrate the probability of a fabric’s response failing certain
performance criteria, i.e. that the fabric must respond to within 1% of a specified target
99% of the time. Lastly, the equations developed in the previous chapter (§3.4.3) are
used to show how FORM may be used to optimise a fabric geometry to minimise its

susceptibility to variation (or increase its robustness to variability).

4.2. Aim
To derive a method based on Monte Carlo simulations and FORM to simulate the effect
of variation in geometry on the tensile response of plain weave architectural fabrics to
inform a method to enable the design of fabrics that minimises sensitivities to variations

in their constituent properties.

4.3. Objectives

e Produce methodologies for the analysis of the effect of material variability on
the mechanical properties of a fabric using the FORM and Monte Carlo methods.

e Compare the FORM and Monte Carlo methodology results.

e Analyse how variation in fabric material properties affects the mechanical
properties of a fabric.

e Produce a methodology to maximise the robustness of a fabric with respect to
variation in its constituent parameters.

e Discuss the possible applications of the work to the design of fabric structures.
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4.4. Chapter overview

The variability and robustness of fabric mechanical properties due to variation in

geometry, yarn and coating stiffness are reviewed in this chapter. The chapter further

presents:

A methodology for the predictive simulation of the effect of variability on the
mechanical properties of a fabric using the FORM and Monte Carlo methods.

A discussion of how variation in a single property effects the mechanical
properties of the fabric.

A method to maximise the robustness of a fabric’s design by refining its geometry,
yarn, and coating properties.

Data on the variability of the geometry of fabrics, and how they can be
considered normally distributed.

Simulations of the variation in response of fabrics to changes in their constituent

properties.
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4.5. Initial Assumptions
Distributions for the uncertain variables 0, L;, 11, E1, E} (§3.4) are needed to

analyse the effect of variation in these properties on the tensile response of fabrics.

The coating Poisson’s ratio is not a design variable in the design process in the previous
chapter (§3.4) and is considered constant (fixed) in this chapter also. The difficulty in
specifying the Poisson’s ratio of a coating, or analysing it’s variation in test specimens,
puts a detailed analysis of this outside the scope of this thesis, as it is an entire
component of the field of material science. Only three values of Poisson’s ratio are
identified in the literature review (§2.2.7.3), and whilst it is possible that some change
in these may be possible with the addition of additives, no detailed information on how
this might be achieved has been identified. The Poisson’s ratio of a coating is defined at

the point the type of coating is selected.

Statistical data regarding the distribution of the variables is discussed in terms of the
mean, standard deviation, and coefficient of variation. The sample standard deviation
and mean (Equation 4-2) differ from the population standard deviation and mean
(Equation 4-1) in that they are derived from samples that have been subject to statistical

analysis, and do not consider the entire population of possible results.

.u91_2 ILI'LLZ ILI'TLZ ILI'ELZ HEk
06,,0L,; Or1, OE1,9E
o=Cu
Equation 4-1

where pu is the population mean, o is the population standard deviation, and C,, is the
coefficient of variation which relates the standard deviation to the mean. E.g. ug, defines
the population mean of the out-of-plane angle of the warp yarn from the plane of the

fabric.

61,2 L1,2 f1,2 E1,2 Ek
591,25L1,2 ST1,2 SE1,ZSEk

s =C,X

Equation 4-2

PAGE 187



4. Variability and robustness

where X is the sample mean, and s is the sample standard deviation.

Properties are considered to be normal and not skewed unless shown otherwise.
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4.6. Normally distributed data
The normal density function for a random variable x is given by Equation 4-3 and an

example of normally distributed data is shown in Figure 4-1 (Ayyub and McCuen, 1997):

£.00) 1 1x — pp? Equation 4-3
X) = exp(——[ ) —oo< x <o
x oV2m 2L o
Normally Distributed Data
Normal
700 , e 2000
fi N N 20000
o0 \
g
i A
500 / \
>
. Ay
2 f
o
w 300
200 {
100

(=]

14.0 175 21.0 245 28.0 315 35.0 38.5
Datal

Figure 4-1: Normal Distribution (Mean = 24.96, standard deviation = 3.010)

Data is considered to be ‘normally distributed” when it follows the normal distribution
(Equation 4-3). However the degree of fit can vary, and is often described in terms of
hypothesis testing in which an initial hypothesis as to a data set’s distribution is made
(i.e. normally distributed) which is then tested. The data used to produce Figure 4-1 can
be represented in a probability plot (Figure 4-2) and a hypothesis test carried out on it
to discover if it is indeed normally distributed. Two outer red lines denote a 95%
confidence interval for the data (very close together with this highly normal data set,
but clearly indicated in Figure 4-3) with the exact normal distribution for a data set
sitting on the middle red line. For this data set the P-value (probability) is greater than
0.05 (the limit) and as such the hypothesis that the data is normally distributed can be
accepted. Non-normal data can also be plotted in the same fashion, but will appear to

be nonlinear in a similar plot.
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Probability Plot of Data 1
Normal - 95% (I
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Figure 4-2: Probability plot of data used in Figure 4-1

To demonstrate the validity of using the normal distribution to represent fabric
geometric variability, statistical data from an F1202 PVC coated polyester fabric was
considered. The data was produced by Colman (2013) who measured the geometries of
a wide range of fabrics. The variation in the amplitude of the warp yarn (Figure 4-3), the
weft yarn thickness (Figure 4-4), and the warp out of plane angle (Figure 4-5) are shown
below. Other distributions of the fabric’s geometry can be found in the appendix (§A.4)
Whilst the fit to the normal distribution is not perfect the P-value is consistently greater
than 0.05, suggesting that the data can be considered normal. As such it is accepted that
generally an untested (designed or unknown) fabric’s geometric properties can be

considered to be normally distributed.

Properties that are found to be non-normal in the variation analysis could be

transformed to normal space using well understood and recognised transformations.

Whilst other fabrics may show better or worse fits a single assumption of a distribution,
i.e. normality, must be made at this stage to allow for the model to continue to be
predictive. It is impossible to analyse the distribution of the properties of a fabric that
is to be designed, or has not been created, although if required other distributions could

be used.
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Probability Plot of A1 F1202
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Figure 4-3: Probability plot of warp yarn amplitudes for an F1202 fabric

Probability Plot of t2 F1202
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Figure 4-4: Probability plot of weft yarn thicknesses for an F1202 fabric
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Probability Plot of Thetal F1202
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Figure 4-5: Probability plot of warp yarn out of plane angles for an F1202 fabric

The distributions show some variation away from the normal distribution as the data
presented in Figure 4-3, Figure 4-4, and Figure 4-5 is not perfectly linear. Some deviation
towards a linear distribution can be noted in the yarn thickness (t1) and yarn angle (A1)
plots (Figure 4-3 and Figure 4-4) although both plots are still considered normal as the
P-value is greater than 0.05. Linearly distributed data tested in this fashion appears as
an s-curve, shown in Figure 4-6 (which shows 200 artificially generated linearly
distributed data points between 0 and 1). Figure 4-6 also shows a situation where the

data cannot be considered normally distributed as the P-value is less than 0.05.

Probability Plot of Linear data (0-1)

Normal
999
Mean 05317
StDev  0.2999
22 N 200
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wm
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Linear data (0-1)

Figure 4-6: Linearly distributed data tested for normality (200 data points linearly distributed between 0 and 1)
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There exists a special case of the normal distribution where the mean is zero and the
standard deviation is one. This is referred to as the standard normal distribution and is
important in that it is used in many of the following sections as an invariant measure.
The use of invariant measures allows for the comparison of different data sets within a
single simulation where the mean, standard deviation, or both might be different.
Melchers (1999, p. 97) describes how a “lack of invariance” can occur where resistances
and loads vary between different situations or “because there are different ways in
which the relationships between resistances and loads may be defined”. As such it is
desirable for a measure to be ‘invariant’ such that comparisons can be drawn. The first
step to achieve this is “to transform all variables to their standard normal form N(0,1)”

(Melchers, 1999, p. 97).

The Hasofer-Lind transformation (Equation 4-4) can be used to convert normally
distributed data to standard normal space where “the joint probability density function
fily) is the standardised multivariate normal [...]; thus many well-known properties of
this distribution can be applied” (Melchers, 1999, p. 97). Melchers (1999) reproduces

the equation from the work of Hasofer and Lind (1974).

Xi — HUx; Equation 4-4
Y =——r

Ox,
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4.7. Monte Carlo Methodology:

“The Monte Carlo method provides approximate solutions to a variety of mathematical
problems by performing statistical sampling experiments” (Fishman, 1997, p. 1). The
accuracy of this approximation increases with the number of points sampled, and it is
also possible to vary the sampling methodology to increase the speed of the method by
attempting to focus the sampled area to the failure plane, i.e with the use of ‘importance
sampling’ (Melchers, 1999). However, the method used in this work is a ‘Coarse’ or
‘crude’ Monte Carlo method which is used to sample the entire space of the possible

results as advanced Monte Carlo methods are outside of the scope of this thesis.

Using a coarse method has a specific advantage in this instance: Once a Monte Carlo
analysis is completed, and the results of all the simulations have been obtained, the
function values can be interrogated repeatedly to analyse different inequalities.
Advanced (non-coarse) Monte Carlo simulations can only ever be used to interrogate

results for a single inequality.

4.7.1. Methodology
The method used is that set out by Melchers (1999), with some small modifications to

allow for its reproduction in MATLAB, and the use of fabric data.

For each variable two (linearly) randomly distributed numbers between 0 and 1 (r; and
r,) are selected. These are then used to create a “pair of ‘exact’ independent
standardised normal variates”, u1 and u; (Equation 4-5) (Box and Muller, 1958; Melchers,

1999, p. 68), such that,

r, =randomnumber1; 0<r, <1

r, = randomnumber 2; 0 <r, <1
u; = +/—2In(ry) sin 2nr,
u, = +/—2In(ry) cos 2mr,

Equation 4-5

These (Equation 4-5) are then be used to produce a pair of normally distributed data
points for any variable where the standard deviation and the mean are known (Equation

4-6), using,

PAGE 194



4. Variability and robustness

Xi =Upp " 0; + 1 Equation 4-6

Equation 4-6 is applied for each of the nine basic variables listed in Equation 4-1 to give

pairs of normal variates for each of the probabilistic variables considered in the unit cell.

Varying the nine basic variables (0, Ly, 1, E;, E}) produces a variation in the
mechanical properties of the fabric (E11, E22, vi2, and va1). It is therefore necessary to
describe an inequality to define within what bounds a fabric might be required to
perform, and to what extent the fabric might deviate from this. For instance 99% of a
particular batch of fabric might be required to respond to within 1% of its published

Young’s Modulus at a certain level of stress such that Equation 4-7 holds.

P(Ell,target 099 < Ell,result < Ell,target ' 1-01) > 0.99 Equation 4-7

Alternatively the probability of one of the mechanical properties might be needed

where no results can be less than 5% of the target (Equation 4-8):
P(Target - 0.95 < Result) = 1.0 Equation 4-8

The data from a crude Monte Carlo simulation can be repeatedly interrogated to give
the probability of a result satisfying different inequalities. The methodology used in the

Monte Carlo analysis is laid out in Figure 4-7.
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.

Initiate the Monte Carlo Analysis:

Y

For each variable create a pair Input:
of standard normal random variables:

012 L1271 E1 5 Ex
r; = random number 1

06,,0L,, Ory 9E,,9E
r, = random number 2

N = no.
uy =+ —2In(ry) sin 2wr, no. runs
o=C,u
u, = +/—2In(ry) cos 2nr, Y

For each variable:

] Xy = oy +X; fe——

Xiz = 0Oju, + Xi

For each pair:

Calculate: E11, E55, V12, V24 at each force ratio

Save these values

Repeat for N runs Run #N

Final run

Compare the saved values of the mechanical
properties to the required inequality e.g. (for 1%)

0.99-Target < E;4 <1.01-Target

Figure 4-7: Method for the comparison of results to the failure criteria 0.99-Target<E;;<1.01-Target
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The number of results required to meet a solution is checked by considering the
variation in the mean of the results as the simulations progress. Figure 4-8 shows how
the mean of the results varies as the number of iterations increases, whilst the mean
and standard deviation can also be examined at intervals (Figure 4-9 and Figure 4-10).
From these figures it is clear that the results for the test shown have converged to a
solution. This simulation used arbitrary values of the coefficient of variation for each
variable (CoV = 0.1), and calculated the probability that the resulting value of E11 would
be greater than 0.9xEiitarget. Therefore the probability of failure indicated is the

proportion of tests that did not satisfy this inequality.
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Figure 4-8: Convergence of Monte Carlo probabilityof failure
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In the results above both the mean and mean standard deviations of the data appear to
have approached asymptotes after 20000 iterations, split into batches of 200
calculations. The mean standard deviation of failure gives a measure of the average of
the standard deviations of failure at a point, looking at all the batches of 200 calculations.
The high value of the probability of failure (approximately 30%) is indicative of an
artificially high value of the coefficient of variation of each variable, when compared to

the inequality used in the simulations.

4.7.2. Constraint compliant Monte Carlo
Using independently generated variables causes constraint violation during the
simulation process. The randomly selected variables (amplitude, length, and radius) do
not necessarily satisfy the equilibrium constraint. The interdependence of the first six
variables causes error in the calculation of the probability of failure. In short, by allowing
all variables to independently vary the equilibrium constraints are not being satisfied,

leading to erroneous results. This led to the creation of the following statements:

e Anyyarn or coating stiffness may be chosen, these are independent with relation
to the equilibrium equation.

e Anythree dependant variables (01,2, L1,2, r1,2) can be chosen using their statistical
information and the normal distribution.

e Two further dependant variables (012, L1z, ri,2) might be chosen using their
statistical information and the normal distribution, but must be checked to
ensure they do not violate the equilibrium constraint. In this case only where
very large deviations from the mean are predicted is this necessary, but should
always be checked for.

e The final variable is defined by the others.

The Monte Carlo analysis as presented includes three truly random dependant variables,
01, 82, and Li. The two partially random dependant variables are Ly, and r1, and the fully
dependant variable is r;, to allow the Monte Carlo algorithm to calculate probabilities
whilst ensuring compliance with physical based constraints. However, the routine is

designed to allow for any choice of variables to be placed in each category.

Variables that must be checked for compliance rarely violate the equilibrium constraints.

This is because a very large variation from any originally valid fabric would be necessary
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to prevent these values following a normal distribution. As such a check is applied, and
where these variables do violate the equilibrium constraint the ‘simulation’ is
abandoned, as infeasible. In practice, using reasonable variability data such as that

produced from tests almost never generates such points.

Lastly, r; is defined as a function of the other variables (Equation 4-9), with its
distribution defined by the interaction of the other variables in the equilibrium equation,

where
r, =Litan6; + Lytan 0, — 1y Equation 4-9

This means that all the variables relating to the geometry of the fabric are related to
each other by the value of ry. ry is therefore a deterministic variable that can be
calculated by considering the variables 6, , L, , 1y, but does not appear within the

objective function.

The objective function is therefore redefined as:

f(O12 L1 Eq Ey)
Equation 4-10

The Monte Carlo routine was then carried out as described in Figure 4-11.
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.

Initiate the Monte Carlo Analysis:

A4 A4

For each variable create a pair Input:
of standard normal random variables:

012 L1271 Eq Ey
r, = random number 1
06,,9L1, Ory 9E,,0E
1, = random number 2

N = no.
Uy = +/—2In(ry) sin 2xr, no. runs

o=C,u
u, = +/—2In(r;) cos 2nr, v
For each eight variables including
the yarn and coating moduli:
Xi1 = ojuq + )?i <

Xi = 0Oju, +)?L

2
v

Calculate 9™ variable using the
equilibrium equation

Equilibrium held?

For each pair:
Calculate: E11, E55, V12, V24 at each force ratio

Save these values

Run #N

Repeat for N runs

Final run

Compare the saved values of the mechanical
properties to the required inequality e.g. (for 1%)

0.99 Target < E;4 <1.01:Target

Figure 4-11: Method of Monte Carlo implementation
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4.7.3. Analysis and discussion

The method presented (§4.7.1) allows for the analysis of both the probability a fabric
will not react as predicted given variation in the geometric properties, and the analysis
of how variation in a single variable affects a property. Within this section, assumed
values of variation are used to demonstrate the effect of altering properties. Using
assumed values of variation allows comparisons to be drawn between the effect of
different amounts of variation that might be experienced in a fabric property without
changing the fabric, and hence the relationship. Were only real values of fabric property
variation used the effect of altering the property distribution could not be analysed. In
the following discussion the geometry of a PVC coated polyester fabric (F1202) is used

to demonstrate the effect of varying fabric geometry.

The probability of failure against feasible targets was analysed using the Monte Carlo
method. This is carried out for a number of failure criteria detailed in Table 4-1 with
relation to the inequalities detailed below (Equation 4-11). Each Monte Carlo analysis
consists of 20,000 simulations, at the end of which six inequalities are tested for: that
E11 should be greater than 90% or 99% of the target for E11, that E11 should be less than
110% or 101% of the target for E11, and that E11 should be between 99% and 101% or
between 90% and 110% of the target value for E11. The results of the simulations are
tabulated in Table 4-1. Limiting variation to particular pairs of variables allows for the
inspection of the effect of varying a particular property such as the out of plane angle
on the value of E11. The out of plane angle was shown to have the greatest effect on E11

in the tests carried out in Table 4-1.

Inequality 1:
(1 =x)-Target < Ey;
Inequality 2:
(1—-x)-Target < E;; < (1 +x)-Target
Inequality 3:

Ei1 < +x)-Target
Equation 4-11

where ‘X’ is the allowable deviation from the target (i.e. x = 1%, 2%, 5%, 10%).
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Variation in unit cell Probability of not achieving inequality (Ps) of E1s
properties (Cv)

09- Etarget < Epq

0.9- Etarget <Ep <11-E
. target

11- Etarget > Eqq

01, Cv=0.1 0.040 0.059 0.099
L1, Cv=0.1 0.000 0.041 0.041
E12Cv=0.1 0.050 0.030 0.081
All variables, Cv=0.1 0.122 0.164 0.286
01, Cv=0.01 0.000 0.000 0.000
L1, Cv=0.01 0.000 0.000 0.000
E12. Cv=0.01 0.000 0.000 0.000
All variables, Cv =0.01 0.000 0.000 0.000

099 " Etarget < Ell

0.99- Etarget <En < 1.01: Eizrpet
. arge

101 " Etarget > El].

0,2, Cv=0.1 0.437 0.871 0.433
L,,Cv=0.1 0.408 0.828 0.420
E;,Cv=0.1 0.433 0.857 0.424
All variables, Cv=0.1 0.453 0.916 0.463
0., Cv=0.01 0.047 0.098 0.052
L, Cv=0.01 0.012 0.029 0.018
E1, Cv=0.01 0.036 0.072 0.036
All variables, Cv=0.01 0.141 0.291 0.150

Table 4-1: Monte Carlo predicted probability of failure at different failure criteria for feasible targets for an F1202
fabric (10000 runs = 20000 data sets)

As might be predicted where the failure criteria is higher a greater proportion of tests
‘pass’ reducing the probability of failure, and where the variation is lower the probability

of failure is correspondingly low.
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4. Variability and robustness
The line delineating failed and passed tests is found to be approximately straight (Figure
4-12, in which the red points are failed and the blue points have satisfied the inequality
0.95 Ertarget < E11). The gradient of the delineating line provides information on the
relative importance of the two different properties under consideration in determining
the point of failure. Were the line to be at 45 degrees to either axis each property would
have an equal effect on the point of failure. A curve would suggests that the effect is
changing as the variables values change. The variable to which a particular inequality is
most sensitive will be shown as the variable where the least variation in that variable

causes greatest change to the result.

It is possible to begin to consider the sensitivities of the unit cell variables with relation
to the Monte Carlo method. The change each variable causes with relation to a target
value is considered, and then graphically displayed (Figure 4-13 and Figure 4-14). Figure
4-13 and Figure 4-14 show the effect of variation in one or two geometric properties on
the value of Ei11. The ‘tests’ described on the x-axis relate to the variables that are
allowed to vary during a particular simulation. The variables varied in a ‘test’ can be
found by relating the test number to row and column in Table 4-2. For instance, ‘test 38’

considered the variation of r1 and E.

Test 0: 0, L; L, ri r2 E; E; Ex

@ | 1 | - | - | - - - - -] -

e, | 10 | 2 | - - - - - - -

L 11 18 3 - - - - - -

L 12 19 25 4 - - - - -

r 13 20 26 31 5 - - - -

ra 14 21 27 32 36 6 - - -

Ex 15 22 28 33 37 40 7 - -

E» 16 23 29 34 38 41 43 8 -

Ex 17 24 30 35 39 42 44 45 9
Table 4-2: Test definition for Figure 4-13 and Figure 4-14

From these simulations it is possible to observe the importance of changes in values,
and consider how a reduction in the variability of one particular value might improve

the robustness of an entire fabric. Additionally a variation in physical layout or geometry

PAGE 207



4. Variability and robustness
might affect and improve the sensitivity of the fabric. The variation noted in pairs of
tests 1 and 14, 2 and 21, 3 and 27 etc. is the same because the value of r, does not affect

the calculation of the stiffness being considered, as it is defined by the other properties.
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Influence of different tests on E,,
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Figure 4-13: Sensitivity of E1; to variation in unit cell parameters (Cv = 0.01) for ‘test’ description see Table 4-2
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Influence of different tests on E,,
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Figure 4-14: Sensitivity of E1; to variation in unit cell parameters (Cv = 0.1) for ‘test’ description see Table 4-2
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Figure 4-13 and Figure 4-14 are plotted on different scales to ensure comparisons
between ‘tests’ are possible. All the data in Figure 4-13 is normally distributed with the
mean centred on the target value of E11. The greatest variation in E11 is experienced
during test 22, which considers variation in Ey1 and 0,. Ey1 is regularly associated with
higher variation in E11 in the different simulations. The inclusion of r, does not produce

an increase in the sensitivity of E11.

Figure 4-14 continues to show that the mean of the calculated values of E11 is the target
for the value of Ei1 (tests carried out on the data set confirm this). However, it is
noticeable from the distributions that some of the simulations (using larger variations)
appear to be non-normal as the data points are not evenly distributed around the mean.
A number of the ‘tests’ are normal, such as ‘test 14’. However ‘test 3’ amongst others

shows non-normal distribution (Figure 4-15).

Histogram of E11 for variation of Phl

3-Parameter Lognormal

i Loc 4013
250 Scale 03170
k) Thresh 4877

Y N 2000
200 |

_“1""\-.._
T
M

Frequency

8
S

50

520 540 560 580 €00 620
E11

Figure 4-15: Histogram and Normal fit of 'test 3' data

The histogram (Figure 4-15) shows how the data is truncated at lower values of E11. The
introduction of the equilibrium equations to the Monte Carlo analysis may therefore be
restricting complete normal behaviour across the entire data set where larger variation
is present. This pattern is not repeated at lower values of variation. Real variation in the
values of fabric geometries varies between a coefficient of variation of 0.125 and 0.011
(F1202). This degree of variation is not common across all fabric types. The variation

observed in the B18089 fabric is at most 0.062. It is beyond the scope of this thesis to
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4. Variability and robustness
create a predictive model that can predict the distribution a Monte Carlo test will
produce at this time. A combination of normally distributed data should produce a
normally distributed result (Melchers, 1999). However, the constraints on the function
may be impairing this. A distribution must be selected without prior detailed knowledge
of the fabric property under consideration. Whilst it is necessary to consider the
implications of this it should not affect the usefulness of the method as a whole. The

data is, by visual inspection, close to normal.

Additionally a comparison of how variables affect each other can be made with the
Monte Carlo analysis, and demonstrate how the variation in one might be found to be
considerably more important to the value of the target being considered than another
for certain statistical distributions of properties. For example, it is readily apparent that
a variable that varies very little will cause less variation in a target than one that varies
more. However, what happens when two values of Cy are similar might not be readily
apparent. This can be considered to some extent graphically using Monte Carlo data
(Figure 4-16, Figure 4-17, Figure 4-18, Figure 4-19, and Figure 4-20). These figures show
how the response of the mechanical property under inspection varies with variation in
the unit cell properties. It is notable in Figure 4-18 that certain variables have a far larger
effect on the value of E11 than the corresponding variable shown. E11 would appear to
be approximately equally sensitive to L, and 81 (Figure 4-18) whilst it is considerably

more sensitive to the same variation in E,.
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varying E, and E,
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Figure 4-16: Effect of variation in E; with respect to E,; and Ei on the value of E;; where the Cv =0.01
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varying E1 and Ek
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Figure 4-17: Effect of variation in E; with respect to E,, and Ex on the value of E;; where the Cv=0.1
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varying Ph1 and L1
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Figure 4-18: Effect of variation in 8; with respect to other variables on the value of E;; where the Cv=10.1
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Figure 4-19: Effect of variation in 0; on the value of E;; where the Cv=0.1
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Figure 4-20: Effect of variation in L; on the value of E;; where the Cv=0.1

Lastly the method demonstrates that a front of possible solutions exists for certain sets
of targets. By considering the optimisation of a geometry for only one target (E11), and
allowing only two variables to vary (Ey1 and Ey) it is possible to demonstrate that

multiple solutions exist by setting the inequality to Equation 4-21 (Figure 4-12) :

Target < E{4
g Equation 4-12

As such, any point greater than the target will be identified, and any point on the failure
plane will equal the target, producing a visualisation of the possible solutions (Figure
4-12). This mostly serves to demonstrate the assumptions proposed earlier in this thesis
(83.7), and might also demonstrate how no solution exists were the target is set to some

unobtainable value.
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4.8. FORM Methodology:

The FORM (First Order Reliability Method) is an analytical approximation method used
to calculate the probability that an objective function does not produce a result within
a predefined limit state. The accuracy of the method depends on the linearity of the
limit state that is being approximated. The method computes the shortest distance to a
failure plane from the origin (mean) which is then assumed to be linear and
perpendicular to that point, thus allowing for the calculation of the approximate failure
probability (Melchers, 1999). This method allows for a far quicker analysis of the failure
probability, but importantly also includes the calculation of the sensitivities of the
objective function. Error is introduced into the method with increasing nonlinearity of
the limit state. Where the limit state is nonlinear the FORM method will likely provide
an approximation of the failure probability unlike the Monte Carlo method which

provides an exact probability if enough points are sampled.

The following methodology is used initially to verify the probability of failure of a fabric,
it is the ability of the method to calculate the sensitivity of the function to variations in
variables that is equally interesting. This leads to the proposition of a method to design

fabrics for robustness to variation in addition to mechanical response (§4.10).

4.8.1. Background
The method used is similar to that proposed by Melchers (1999). For two variables the

method is summarised as:

For two variables, using “well-known properties of the bivariate normal distribution the
marginal distribution is also normal’ (Melchers, 1999, p. 98), or the function of two
normal distributions is also normal (Figure 4-21, Figure 4-22, and Figure 4-23). Therefore
for a function, g(xq, x,) transformed into standard normal space g(y4,Y>) (Equation

4-4), the point y* (Figure 4-22) is calculated as the shortest distance to the failure plane

which equals B (Figure 4-21). B can then be used to calculate the probability of failure

using standard normal tables N(0,1).
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Figure 4-21: Marginal distribution in the space of the standardised normal variables (Melchers, 1999)
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Figure 4-22: Probability density function contours and original (non-linear) and linearized limit state surfaces in the
standard normal space (Melchers, 1999)
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Figure 4-23: Two random variable joint density function fRS (r, s ), marginal density functions fR and fS and failure
domain D (Melchers, 1999)
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4.8.2. Methodology

Eight variables (excluding r2) are considered during the proposed FORM method.

More generally it might be stated that:

n=8 1/2
g = min( ylz) = min(y” - y)1/?

i=1
Equation 4-13

Y" is considered to be the point of maximum likelihood for the failure plane (Figure 4-22),
or the point on the failure plane that is closest to the origin in standard normal space.
At this point the failure plane is perpendicular to the line intersecting the point of highest
probability and the origin. Once Equation 4-13 is satisfied the probability of failure can
be calculated using the value of B. The probability of failure can be calculated using the

following series of equations (Melchers, 1999):

The direction components ‘c’ of the outward normal ‘I’ are calculated from the partial

derivatives of ‘g’ with respect to each variable “y;’.

dg Equation 4-14

where A is an arbitrary constant.

The length of the outward normal (1) is calculated as the square route of the sum of the

squares of ¢; (Figure 4-22).

>1/2 Equation 4-15

The direction cosines a; can be calculated with respect to each variable ‘y;’. Each

direction cosine gives the sensitivity of the function to variable “y;’.

Ci Equation 4-16

Thus the distance to the point of maximum likelihood from the mean of each variable

can be calculated as y;’, which give the coordinates of the point of maximum likelihood:
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ylf" =—a;f Equation 4-17

This is shown in normal space for two variables in Figure 4-22. Finally the equation for

the linearized approximate failure plane might be written as:

Equation 4-18

g(}’)=ﬁ+zai3’i=0

A method for the application of the FORM method to fabric geometry is summarised in

12 steps below and in Figure 4-26:

1. Obtain statistical information about the parameters of the unit cell.
Write the equations for the mechanical properties of a fabric E11, E22, vi2, and va1
(§3.4.3)in terms of y; to transition to standard normal, N(0,1), space:

Xi - :uXi

Oy,

Vi

3. Write the mechanical property equations as inequalities to be solved where ‘D’
is the allowable deviation (%allowable deviation/100).
9(y) = Ey; — Targetg, D
4. Derive the partial derivatives of g(y) with respect to yi v;.

dg(y)
2y,

5. Choose an initial starting point y° at the mean values.
6. For y? calculate the strains and their numerical derivatives as required for the

predictive model (§3.4.3.2):

Ag; Ag,y

TRy el e
" Ae,  Agy

7. Calculate the values of the partial derivatives derived in ‘4’.
8. Compute g(y) at the current values of y; the outward normal (1), shortest distance

(B), and direction cosines (a).

9. Calculate the new values of y:

ittt =—a; (3 + @)
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10. Return to ‘6’ with new values of yi.
11. Where f stabilises to a value, and g(y) = 0 exit and output probability of failure

and point of highest probability.
pr=1-—@(p)
12. Convert the design point back to Xi space from standard normal space using:

X; = yi0x, + Ux,
Note that the probability of failure is not [3, as the shortest distance is calculated as the
distance from the mean. As such [ relates to the probability of success (Figure 4-24).
The probability of failure is calculated as one minus the probability found using 5 and

standard normal tables.

Figure 4-24: Distribution of safety margin Z = R — S (Melchers, 1999)

The analysis produces fewer outputs that can be visualised without comparison to
Monte Carlo simulations (§4.7). The value of the function g(y), can be compared to the
shortest distance S (Figure 4-25). Figure 4-25 shows the progress of the FORM method
for a data set to the inequality 0.95 - Target < E;; where the coefficients of variation
are all set to 0.1. After 20 iterations the function g(y) reaches zero, and the value of £3,
which has reached an asymptote, is approximately 1.5. Using standard normal tables

the probability of failure can be calculated as 0.066 (Equation 4-19).
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d(—p)=1—-d(B)=1-P(1.5) = 0.066 = Dr Equation 4-19

Realistic values of B are in the order of 3 — 4.5, when used in design (§4.11) however, as
partial factors and other sources of error are not being considered here values of the

reliability index other than these are expected.
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Figure 4-25: Comparison of the value of the shortest distance f and g(y) as an optimisation progresses for the inequality 0.95xTarget<E;; where Cv = 0.01 for all variables
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4.8.3. Constraint compliant FORM
As discussed above (§4.7.2) the interdependence of variables leads to problems in the
calculation of B. When all nine variables are allowed to vary independently a situation
arises within the FORM method that cannot occur in the unit cell where equilibrium
equations have to be complied with. The FORM method attempts to move each and
every variable towards the point of maximum likelihood for the inequality under
consideration. This results in noncompliance with the equilibrium equations as each

variable moves independently.

The proposed solution redefines r, as a dependent variable as was done in the Monte
Carlo method. Equation 4-9 as redefined in standard normal space can be produced

(Equation 4-20).

r; = (3’30L1 + llLl) tan()’1091 + llel) + (}’40L2 + lle) tan(}’ZUQZ + /492)
- (}’SUr + .url)

Equation 4-20

Once this has been achieved the other variables can be assumed to be independent, as
the dependence is encapsulated into a single variable. Therefore the solver now only

solves for eight variables.

Whilst dependence like this normally adds some level of complexity to a model Melchers
(1999, p. 27) suggests that where this is the case some “dependence structure between
dependant variables be known and expressed” which is achieved using Equation 4-20. It
should also be noted that this does limit the applicability of the method to some degree,
as the end user of the method can no longer observe the effect of changing the variation
associated with r, on the sensitivity of the function. The distribution of r, with relation
to variation in other parameters is still obtainable (Equation 4-21). The calculation of the
sensitivity of the objective function to the value of r; is unnecessary as the effect of
variation in r2 on the result is included within the response of the other variables, r2

having been removed from the objective function.
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The implicit sensitivities for r, could be calculated using Equation 4-21. The derivatives

in Equation 4-21 are independently obtainable, and only the derivative Z—g is not

T2

available, being deterministic. This is not explored further at this stage.
T'Z = f(Lll Lz, T'1, 91, 02) = Ll tan 91 + L2 tan 02 - T'1

dg 0dg 6L1+ dg 6L2+6g ar1+ dg 601+ dg 006,
dr, dL, or, 0L, dr, or, dr, 06, Or, 06, o,

Equation 4-21

The methodology as completed is presented in Figure 4-26.
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Initiate the FORM Analysis:

v
Input: 61'2 L1,2 f]_ E1,2 Ek 0-61,20-141,2 O-rl O-El,ZO-Ek
o= C,,Y
D = Target multiplier

7

Write E11 in terms of the variables , y, where:

Xi =yiox, + ux;, Vi

v
dFy
1 . . . _ d51 _ .
Find the partial derivatives of g(y)g,, = (XA Targg,, D
99(V)E,,
dy;
v
For ‘y’ calculate: &; &, Ae, Ae.
v
a
Calculate the value of the partial derivatives: —gggéﬂ
l
v
9 2
Calculate the total length of the outward normal: L = \] L (_gg;)'En)
L

Calculate the shortest distance to the origin: § = 2 ()?
0

Calculate the direction cosines: a; = %/L
dFq

. _ _ de .
Calculate g(y): g(v) = g()g,, = (VT;@) —Targg,, *D
v
Calculate the new value of y: y;,"*1 = —q; - (,8 + %)

no

Check if y has
converged

Output y* and

Figure 4-26: Method of FORM implementation
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4.8.4. Example Results

As with the Monte Carlo analysis the FORM analysis was carried out at different levels
of variation with respect to two tests (Equation 4-22) using the geometry of a PVC coated
polyester fabric (F1202), the results of which are detailed in the table below. A
comparison of these results with those of the Monte Carlo analysis is made in the
following section. All the results of simulations below converged to a solution with 100
iterations or where the change in g(y) was less than 1x10® between iterations. Direction
cosines were produced relating to the point of maximum likelihood as part of the
methodology. The value of B for each Probability of failure can be calculated using

Equation 4-19.

Inequality 1:
(1 —=x) - Target < Ey;
Inequality 2:

Ei1 < (@ +x)-Target
Equation 4-22

Where ‘x’ is the allowable deviation from the mean.

Variation in unit cell Probability of failure (Ps) of Eq;
properties (Cv)
0.9- Etarget <E 1.1 'Etarget > FEqq
0., Cv=0.1 0.041 0.059
L, Cv=0.1 0.000 0.023
E;»,Cv=0.1 0.050 0.030
All variables, Cv=0.1 0.046 0.081
©,,Cv=0.01 0.000 0.000
L1, Cv=0.01 0.000 0.000
E1, Cv=0.01 0.000 0.000
All variables, Cv=0.01 0.000 0.000
0.99- Etarget <En 1.01- Etarget > Eny
0,2,Cv=0.1 0.434 0.435
Li,Cv=0.1 0.406 0.411
E;,Cv=0.1 0.431 0.430
All variables, Cv=0.1 0.440 0.441
0., Cv=0.01 0.049 0.051
L, Cv=0.01 0.009 0.012
Ei» Cv=0.01 0.040 0.038
All variables, Cv=0.01 0.066 0.069

Table 4-3: FORM predicted probability of failure at different failure criteria for feasible targets for an F1202 fabric
(5000 runs = 10000 data sets)

Table 4-3 summarises the results of a number of FORM simulations. The results show
that larger values of variation, when compared to smaller allowable deviations from the

target, produce higher failure probabilities. Where the inequalities limit deviation from

PAGE 227



4. Variability and robustness
the target more, and large values of variation of constitutive property are used, the
probability of failure approaches 50% (as high as possible for a FORM method
considering a single sided inequality with Normally distributed data). This is because the
probability of failure as defined if the inequality were set to require all data to be greater
than the target would be equal to 50%, as half the normally distributed objective

function would be less than the target.

A comparison is made between the Monte Carlo results and the results of the FORM

method, discussed in detail below (§4.9).
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4.9. Comparison of failure points

To compare the point y* of the Monte Carlo analysis to the point produced in the FORM
analysis it is necessary to estimate the point of maximum likelihood from Monte Carlo
simulations where only two geometric properties are allowed to vary. Limiting the
analysis to two variables allows for the 2D visualisation of the response surface, and thus
the application of a fitted (quadratic polynomial) curve to the line delineating the passed
and failed points. The minimum distance to the origin from the line is then calculated
and the point on the curve that this relates to is noted as y* from the Monte Carlo

analysis. This is then compared to the output of a FORM simulation.
Considering the inequality:

Equation 4-23
0.95 X Target < Eq4

Whilst only varying the values of the out of plane angles (81,2) for an F1202 fabric is used
to demonstrate how this is achieved. First a FORM analysis is carried out, and the point

of maximum likelihood calculated (Table 4-4).

Value Direction Cosine
V%1 3.42E-01 -4.05E-01
Y2 7.73E-01 -9.14E-01

Table 4-4: Point of Maximum likelihood for an F1202 fabric compared to the inequality 0.95xTarget<E;; where Cv
=0.1for 0, only

Once the point of maximum likelihood has been calculated from the FORM method a
Monte Carlo analysis is carried out using the same properties as the FORM analysis. This

produces Figure 4-27 and Figure 4-28.
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Figure 4-27: Monte Carlo results showing 8, and 6, where only 8; and 0, are considered to vary with a coefficient of variation of 0.1 for the inequality 0.95Targ<E11 (red = failed, blue = success)
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Figure 4-28: Monte Carlo results showing y; and y, where only 8; and 0, are considered to vary with a coefficient of variation of 0.1 for the inequality 0.95Targ<E11 (red = failed, blue = success)
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Figure 4-28 is used to calculate a quadratic equation for the line delineating the failed
and passed points. Fitting a quadratic to manually selected points along the pass/fail

boundary leads to:
y, = 0.0006829y,2 + —0.4607y, — 0.9078 Equation 4-24

The script calculates the formula of the line, and calculates the point of maximum
probability as the point closest to the mean (0,0). This allows the planes of failure to be
visualised comparatively, demonstrating that both methods come to a similar
conclusion (Figure 4-29) and allows the points of maximum likelihood to be visually

compared (Figure 4-30).

Comparison of FORM and Monte Carlo generated failure points

Figure 4-29: Comparison of FORM and Monte Carlo generated failure points (approximate point of likely failure
Monte Carlo (green), and point of failure from FORM analysis (magenta))
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Comparison of FORM and Monte Carlo generated failure points
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Figure 4-30: Comparison of FORM and Monte Carlo generated failure points zoomed to failure point (approximate
point of likely failure Monte Carlo (green), and point of failure from FORM analysis (magenta)). Points of maximum
likelihood are shown as ‘+'.

The value of the coefficient of x2 compared to the other coefficients (Equation 4-24) and
the values of y1 and y2 being less than one (meaning that they become smaller when
squared) (Figure 4-30) suggests that the assumption of a linear failure plane for the joint
density function is acceptable. The value is small compared to the other coefficients,
and therefore affects the equation less. Figure 4-30 shows that the two points of
maximum likelihood are not at precisely the same point. This is due to both the
inaccuracy of the method of calculating the equation using a visual inspection of the
failure line, and the inaccuracy of the FORM method when compared to the Monte Carlo

method.

Comparing the points of maximum likelihood demonstrates the error that is

experienced (Table 4-5):
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FORM Monte Carlo Direction Cosine
(FORM)
Y1 0.342 0.345 -0.405
Y2 0.773 0.749 -0.914

Table 4-5: Comparison of point of Maximum likelihood for an F1202 fabric compared to the inequality
0.95xTarget<E;; where Cv = 0.1 for 0, only

The two methods confirm the point of maximum likelihood, and the two probabilities of

failure are also similar: 0.201 (Monte Carlo), 0.199 (FORM).

The difference between Monte Carlo and FORM results are summarised in Table 4-6 for
similar inequalities using the same initial geometry. Notably as more variation in the

variables (that make up the unit cell) is introduced the methods differ to a greater

degree.
Variation in unit cell Probability of failure (Ps) of E11
properties (C,) Absolute Absolute Absolute Absolute
difference Percentage difference Percentage
difference (%) difference (%)
0.9 - Etarger < E1q 1.1 Evarger > Eqq
©,,Cv=0.1 0.00 2.64 0.00 0.64
Li,2Cv=0.1 0.00 200.00 0.02 46.16
E1,Cv=0.1 0.00 1.15 0.00 2.42
All variables, Cv=0.1 0.08 91.87 0.08 66.98
0., Cv=0.01 0.00 0.00 0.00 0.00
L, Cv=0.01 0.00 0.00 0.00 0.00
Ei» Cv=0.01 0.00 0.00 0.00 0.00
All variables, Cv = 0.01 0.00 0.00 0.00 0.00
0.99 - Etarget < E1q 1.01- Etarget > E1q
0,2,Cv=0.1 0.00 0.67 0.00 0.43
Li,Cv=0.1 0.00 1.14 0.01 1.99
E1,Cv=0.1 0.00 0.42 0.01 1.24
All variables, Cv=0.1 0.01 2.92 0.02 4.74
0., Cv=0.01 0.00 5.65 0.00 1.46
L;> Cv=0.01 0.00 25.54 0.01 33.98
E1, Cv=0.01 0.00 6.59 0.00 6.92
All variables, Cv=0.01 0.08 74.37 0.08 72.65

Table 4-6: comparison of FORM and Monte Carlo failure probability to different failure criteria for feasible targets
for an F1202 fabric (5000 runs = 10000 data sets)

From the data in Table 4-6 most of the FORM tests appear to produce similar results to
the accurate Monte Carlo data. However, a number of tests display high percentage
differences, some of which are far higher than are hoped for. Of immediate concern is
the percentage difference of 200%. However, inspection of the results shows that this
error occurs with a very low absolute difference between the FORM and Monte Carlo

data. This is because of the high value of B at this point (5.89) resulting in a probability

PAGE 234



4. Variability and robustness
of failure of 1.86x10®. To obtain a result comparable to this the Monte Carlo analysis
has to run for a minimum of one hundred million simulations, to give an accuracy of
three decimal places. The Monte Carlo analysis concluded that the probability of failure
was zero. Therefore, whilst to five significant figures the result is accurate, a large
percentage difference is shown. A number of other errors result from similar situations,

however, it is clear that some do not.

A notable value of percentage difference of 6.59% between the FORM and Monte Carlo
results for an inequality of E11targetx0.99<E11 is also interesting. An analysis of the failure

points shows them to be very similar (Figure 4-31, Figure 4-32).

Comparison between FORM generated and Monte Carlo results
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Figure 4-31: Comparison of FORM and Monte Carlo generated failure points (approximate point of likely failure
Monte Carlo (green), and point of failure from FORM analysis (magenta))
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Comparison between FORM generated and Monte Carlo results
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Figure 4-32: Comparison of FORM and Monte Carlo generated failure points zoomed to failure point (approximate
point of likely failure Monte Carlo (green), and point of failure from FORM analysis (magenta)). Points of maximum

likelihood are shown as ‘¢”.

Further, a check on the normality of the results (Figure 4-33) shows them to be normal,
with some deviation at extreme values. It must therefore be the case that this small
deviation has caused the error in the calculation of the probability of failure in the FORM
method. Whilst the Monte Carlo method has accurately calculated the probability of

failure based on the points counted the FORM method has assumed perfectly normal

behaviour, and therefore slightly miscalculated the probability of failure.

Small errors in the FORM method when compared to the Monte Carlo method are to be

anticipated, as the FORM method does not perfectly reproduce a Monte Carlo

simulation.
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Figure 4-33: Normality test for the results of the Monte Carlo analysis for the inequality E11,targetX0.99<E11 , where
E; and E; varied only with a coefficient of variation of 0.01.

The cause of other errors, where the percentage difference is high, with a
correspondingly large value of actual absolute error is therefore due to the problem
encountered in §4.7.3. The interaction of the formulae under consideration, and the
truncation of the data due to the equilibrium constraint produces non-normal results.
In Figure 4-15 this was found to be 3 parameter lognormal. Non-normal, or slightly non-
normal results, which when compared to the FORM analysis which is considering
normally distributed data only (which is for the most case true) result in an error in the

calculation of the FORM probability of failure.

Without carrying out a Monte Carlo analysis for each fabric and each set of variation
parameters it is impossible to tell which fit will most accurately predict the response of
a fabric. Though the results should generally be normally distributed due to the
interaction of two normal curves. Therefore, to allow prediction of non-existent fabrics,
or the robustness (§4.10) of existing fabrics without considerable outlay in time, it is

necessary to assume normal distribution.
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4.10. Robust design of a fabric

Robustness is signified by “insensitivity to small deviations from the assumptions”
(Huber, 1981). It is desirable for fabrics to be robust to any small variations in fabric
parameters. Therefore a modified FORM methodology is developed to enhance the
robustness of designed fabrics by allowing small changes in fabric geometry to reduce
the overall sensitivity of the designed fabric. Robustness can be interpreted as an
attempt to find the minimum or maximum of a function with constraints on the
probability of failure such that the result may not be the global minimum, but will be
robust. The optimisation function might not be completely satisfied, but where the
additional lack of sensitivity outweighs this a robust solution may be considered to have
been found (Figure 4-34). Figure 4-34 shows how at point ‘B’, the global minimum, a
small deviation from the design variables would result in a large deviation from the
global minimum. However, at point ‘A’ very little change in the objective function would
occur for an equivalent change in the design variables. Point ‘A’ is therefore the robust
minimum, and preferential where the sensitivity of the objective function is more

important than finding the global minimum.

Objective function

A

Robust minimum (A)

Global minimum (B)

—

[
»

Design variable

Figure 4-34: Comparing robust and global optimisation

Erfani and Utyuzhnikov (2012, p. 247) put the problem succinctly: “In engineering design
optimisation, the designer may prefer a use of robust solution to a more optimal one...

Therefore a designer may demand a stable (or robust) configuration”. As such, whilst a
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robust and optimal solution may be desired, if it is unobtainable a robust solution or an
optimal solution or some combination of the two might be sought. In addition the
proposed method is able to predict the robustness of the designed fabric, unlike some
methods which require experimental results to form conclusions (Erfani and
Utyuzhnikov, 2012). A discussion on different methods of robust optimisation is made

in the literature review (§2.5.2).

Previous work has looked at multi-objective robust optimisation in a number of different
ways, like the work carried out by Kim et al. (2010, p. 3117) which optimises the
“maximum gradient of the objective function of interest with respect to uncertain
variables”. As such gradients are minimised, reducing the sensitivity of the overall design
to that particular uncertain variable. This method is similar to the one presented for the
robust design of fabrics except for a number of important distinctions. In the work by
Kim et al. (2010) the uncertain variables alter a design geometry, whilst in the presented
method the uncertain variables are considered to be the design variables. In addition
the objective function, g(y;), becomes the minimisation of the gradients, whilst
constrained by the design function, f(y;), and the system constraints, h(y;) and j(y,),
which relate closely to the equations produced by Beyer and Sendhoff (2007) (§2.5.2).

An overview of the method is presented below (Equation 4-25).

i faco = 2500

subjectto f(y;) =0, if targetis feasible

or Min f(y;), if targetinfeasible
h(y;) =0, equilibrium equations
j(y;) <0, overlap constraint
Min(y;) < y; < Max(y;)

Equation 4-25

The method summarised above (Equation 4-25) minimises the function g(x) to minimise

f(yl)
a

the value of the sensitivities defined as the RMS of the derivatives, . Reducing the
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RMS sum of the derivatives therefore reduces the effect that any change in a variable
has on the function f(y;) . Ensuring f(y;) is equal to zero, where f(y;) =
Y(calculated;/target; — 1), ensures that in the first instance the original targets of
mechanical properties are still met. The equilibrium equation ensures that during
optimisation the out-of-plane ‘amplitudes’ are equal to the sum of the yarn radii whilst

the overlap constraint checks that yarns do not overlap each other.

In practice where more than one variable is under consideration, g(x) becomes the
absolute value of the sum of more than one set of partial derivatives relating to each
target (E11, E22 etc). Unlike Taguchi’s method which use DOE (Design of Experiment)
methods (Beyer and Sendhoff, 2007) the optimisation routine used to calculate the
optimum robustness is based on the previously used optimisation routines (Fsolve,
PatternSearch, and Fmincon), a discussion of which was made in the literature review

(§2.4.2.4).

The sensitivities are calculated using the sensitivity calculations described above
(Equation 4-16). As such it is possible to change the sensitivities by altering the geometry.
This is achieved by minimising the square of the absolute sum of the sensitivity
calculations, whilst retaining the fabric in a condition that satisfies the targets, f(y;),
which are now considered constraints. Some allowable variation in targets can be
introduced, but in this demonstration of the method only two targets are considered
which are both feasible. This ensures that a minimum of one or more possible solutions
is possible, and that the sensitivity minimisation calculation is choosing the least
sensitive geometry available. This least sensitive (most robust) geometry will satisfy the

requirement that (y,) = 0.

The method can also constrain the amount of deviation from an original geometry that
is permitted by introducing the constraint Min(y;) < y; < Max(y;). This can limit the
number of standard deviations that each individual variable can move from the mean,

or original fabric.

As with all reviewed methods of robust optimisation the presented method minimises
a function with respect to some constraints (Beyer and Sendhoff, 2007; Schuéller and

Jenson, 2008; Kim et al., 2010) (Equation 4-26):
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Min F = {F;(x), F;(x), ... Fy(x), } Equation 4-26
Subject to g;(x) <0, j=12,..m

The method used to calculate the robust optimum solution is shown in detail below

(Figure 4-35).
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Initiate the Robustness optimisation:
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Figure 4-35: Methodology for robust design for a single target E1;
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Two tests are carried out to verify the method presented in Figure 4-35: The first checks
the robustness of an F1202 PVC coated polyester fabric when compared to two feasible
targets (targets produced using the sawtooth method (§3.4.3), and the second checks
the feasibility of an optimised fabric design other than that of the original fabric
geometry to two feasible targets. Two feasible targets are used to reduce the computing
time required for the considerably more complex and time consuming optimisation
process. In addition this ensures that more than one possible solution exists, thus
allowing for a more robust solution to be searched for whilst satisfying the target
constraint. The amount of computing power required to run a sensitivity optimisation
for a full set of twenty targets is currently unavailable. Two targets require between 4
and 8 hours to optimise, and the increase in time will not be linear. Therefore, to

demonstrate the feasibility of the method it is carried out for two targets only.

Robustness of existing fabric considering two targets

An existing F1202 fabric geometry is tested for its sensitivity to individual geometric
parameters (original), and then optimised for sensitivity to those parameters (robust

optimised).

A coefficient of variation from the original geometry of 0.1 was chosen (this represents
the variation that might be found in each property), and the allowable variation from
the original targets was set to a single standard deviation (—1 < y; < +1). This ensured
that the new fabric design would be constrained to approximately the same ‘space’ as
the original fabric geometry. Were the entire possible space of geometries to be
searched for the most robust solution possible the number of standard deviations away

from the mean geometry the model considers would have been set to infinity.

Before the robustness optimisation is carried out the original fabric geometry is
produced using the method detailed in earlier chapters (§3.5.4), to allow for
comparisons (Figure 4-36). A PVC coated polyester F1202 fabric geometry as described
in the previous chapter was used as the basis for the test. The design variables (Ph1, L1,
ri,2 E12 Ex) are then optimised to allow for the reduction of the fabric’s total sensitivity

to variation in them. The absolute sum of the original fabric sensitivities is 365.7.

The original geometry from which Figure 4-36 is created and the robustly optimised
geometry are detailed in Table 4-7.
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Fabric property Original (F1202) Robustly optimised
geometry geometry

01 (rad) 0.1014 0.1115
0, (rad) 0.1805 0.1903
L1 (mm) 0.6446 0.7090
L, (mm) 1.0817 0.9786
r. (mm) 0.1567 0.1411
r2 (mm) 0.1062 0.1267

Ey1 (kN/m) 880 955

Ey2 (kN/m) 810 876

Ex (kN/m) 37 34

Table 4-7: Original and robustly optimised geometry for F1202 fabric.
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Figure 4-36: Original fabric geometry (F1202 PVC coated polyester)
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Figure 4-37: Robustly optimised fabric geometry for two targets (F1202 PVC coated polyester E1; and E3;)
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Sensitivities at E., @ point 1
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Figure 4-38: Sensitivities of the variables to the E;; target
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In the individual sensitivity figures (Figure 4 38, Figure 4-39, Figure 4-42, and Figure 4-43)

the points on the x-axis relate to the geometry 61 to Ek respectively.

After the optimisation is carried out the new fabric’s sum of sensitivities was 284.0
demonstrating an improvement of 22% from the original layout. It should however be
noted that the fabric’s similarity to the original is guaranteed by the limit placed on how
much the geometry can vary (one standard deviation). Were a larger variation allowed
a less sensitive geometry might have been produced. However, the geometry may have

been less realistic.

The sensitivity of the targets to the individual unit cell properties are given in Figure 4-38

and Figure 4-39.A number of important points can be deduced from the figures:

e Firstly, the sensitivity to variation in the warp yarn out-of-plane angle (81) is
increased with respect to both Ei1 and Ex» compared to the previous value of
sensitivity, which leads to an overall reduction in the cumulative sensitivity by
allowing change in the geometry of other points. Thus, increasing the robustness
of the fabric as a whole has been achieved by increasing the fabric’s sensitivity
to the value of the out of plane angle. Increasing this sensitivity will allow for an
alternate geometry which, overall, is less sensitive to variation.

e The radius of the weft yarn’s sensitivity is zero in both instances. The sensitivity
of the radius is encapsulated by the response of the other geometric variables.

e Ei1is considerably more sensitive to the warp yarn stiffness than the weft yarn
stiffness, whilst Ez; is considerably more susceptible to variation in the weft yarn
stiffness. This concurs with the Monte Carlo data (§4.7) where the target relating
to E11 could be seen to be more sensitive to variation in Ey:. This also confirms
the instinctive assumption that it would be the warp and weft yarn stiffness’s
that most affect the value of E11 and E22 respectively.

e At low loads (10:10kN/m) the geometry is found to be the cause of most

sensitivity, confirming the observations of Dimitrov and Schock (1986).
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Robustness of designed fabric considering two targets

An existing F1202 fabric geometry is tested for its sensitivity to individual geometric
parameters (original), a fabric is then designed to reproduce its response (optimised),

and then optimised for sensitivity to those parameters (robust optimised).

A fabric designed to reproduce the response of the of the original F1202 fabric using the
method presented in the previous chapter (§3.5.4.1) is also tested, and the robustness
of this fabric design is then optimised. One solution that was found is detailed below

(Figure 4-40).The other variables in the test were the same as those set out above.

Fabric property Original (F1202) Optimised Robustly optimised
geometry geometry geometry

01 (rad) 0.1014 0.1728 0.1812
0, (rad) 0.1805 0.2347 0.2525
L; (mm) 0.6446 1.3969 1.4602
L2 (mm) 1.0817 1.1222 1.2299
r1 (mm) 0.1567 0.2719 0.2872
ra (mm) 0.1062 0.2402 0.2976

Ey1 (kN/m) 880 6945 7031

Ey2 (kN/m) 810 6945 7024

Ex (kN/m) 37 26 30

Table 4-8: Original and robustly optimised geometry for F1202 fabric.

The designed fabric has selected a very stiff (glass fibre type) yarn, but this is does not

interfere in the process of robustly optimising this new geometry.
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Figure 4-40: Designed fabric geometry for two targets (F1202 PVC coated polyester E;; and Ey;)
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Figure 4-41: Robustly optimised fabric geometry for two targets (Optimised designed geometry)
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Figure 4-42: Sensitivities of the variables to the E;; target
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Figure 4-43: Sensitivities of the variables to the E,; target
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Here the optimised geometry actually demonstrated a lower sensitivity to variation in
properties than the original geometry from which the targets were produced (249). The
principal improvement is the removal of the high sensitivity of E11 to ri. The new
geometries are far less sensitive to ri. A number of new properties show higher values
of sensitivity than the original fabric, which is then improved upon with the robust
optimisation, producing a fabric with a combined sensitivity of 196, a considerable
improvement on the original fabric. This has however been achieved by, for the most
part, reducing the sensitivity of the stiffness to the value of L, to which the design
appeared particularly sensitive. The function is actually more sensitive to some variables
than the original geometry was. However the overall effect is to drastically reduce the

fabric’s overall sensitivity to variation in the design variables.
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4.11. Discussion of application to the reliability index

The partial safety method derives the values of the partial factors and the ) factors in
one of two ways; either through the use of statistical data and methods, or calibration
of long standing tradition and knowledge (BSI, 2006). Where the former is used the
reliability index ‘B’ is stipulated to “ensure that no relevant limit state has been exceeded”
(BSI, 2006, p. 90). The reliability index is defined as the shortest distance to the limit
state (Figure 4-44), where the probability of failure can be calculated in accordance with

Equation 4-27.

Py = c])(—ﬁ) Equation 4-27

)

Sl

(S) failure boundaryg=R—-E =10
P design point

Figure 4-44: Design point and reliability index Baccording to the first order reliability method (FORM) for normally
distributed uncorrelated variables (BSI, 2006)

Eurocode BS EN 1990:2002 appendix C (BSI, 2006) requires that for different design
situations a different value of the reliability index is satisfied (Table 4-9). In the ultimate
design case this will normally be 3.8, and in design terms equates to the use of the

factors 1.35 (for permanent actions), 1.5 (for variable actions) and other factors.
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Limit State Target reliability index

1 year 50 years
Ultimate 4.7 3.8
Fatigue 1.5t03.8?
Serviceability (irreversible) 2.9 1.5

1) See Annex B

2) Depends on degree of inspectability, reparability and damage
tolerance.

Table 4-9: Target reliability index B for Class RC2 structural members ) (BSI, 2006)

The factors accompanying material properties are calculated for known variability in the
material. Concrete is found to be more variable in its constitutive properties than steel,
for instance, as the nature of in-situ casting reduces the surety of the finished product.
Similarly as discussed by Forster and Mollaert (2004) in the Tensinet Design Guide the
material factors applied to fabrics are very high. This is due to the high degree of

uncertainty regarding the performance of architectural fabric.

Increasing the factors used in material, loading, or other calculations during the design
process therefore creates a situation where “no relevant limit state has been exceeded”
(BSI, 2006, p. 90) . Or put another way the reliability index is restrained to a value greater
than 3.8. Where there is a high variability in a particular resistance or action that affects
the structures response it must be adequately factored to ensure that the reliability

index remains above 3.8.

Figure 4-45 (BSI, 2006) shows how the different actions and uncertainty in material
properties from the two factors yr (action and effect) and ym (material). Using detailed
data on the uncertainty of the fabric’s material properties it should therefore be possible
to reduce the value of ym, and similarly using detailed knowledge of how a fabric
responds should decrease the value of yrd4. The probability of the effect (E) exceeding

the design resistance can be calculated using Equation 4-28.

PAGE 255



4. Variability and robustness

Uncertainty in representative values ——
of actions %

Model uncertainty in actions and >
action effects }gd

Model uncertainty in structural resistance

A/ N/

Uncertainty in material properties .

Figure 4-45: relationship between individual partial factors (BSI, 2006)

Equation 4-28
P(E>Eq)= @ (+og))
P(R<Ry)= D (-0&p)

Where:
B is the target reliability index
oe and ag, with |a| < 1, are the values of the FORM sensitivity factors. The
value of a is negative for unfavourable actions and action effects, and positive
for resistances.

A full methodology for how this might be applied in practice is beyond the scope of this

project, however a discussion of how it can be applied is detailed below:

For a particular fabric the probability of success must result in a value of B>3.8. The
“uncertainty in representative values of actions” and the “uncertainty in actions” (BSI,
2006, p. 97) is fixed and defined BS EN 1991. Therefore the reduction in factors must be

achieved in the consideration of material properties and structural resistance.

The fabric coating and yarn property variability can be determined using testing (§4.7).
Therefore the variation in resistance (stiffness) remains to be calculated. This can be
achieved using Monte Carlo simulations (Figure 4-46) or the FORM method. Knowledge

of the distribution and variation in structural resistance is therefore available.

PAGE 256



4. Variability and robustness

Monte Carlo Results for Warp Modulus

Normal

Mean 5435
StDev 1292
N 2000

140 1

120

=]
=

80

Frequency

50 516 528 540 552 564 56 .
Warp Modulus (kN/m)

Figure 4-46: Probability density function from Monte Carlo data where r; and 6, were varied with Cv =0.1.

The method would briefly comprise:

e Information required: Mean and standard deviation of fabric yarn and coating
properties.

e Intermediate information: Mean and standard deviation of the objective
function (stiffness).

e Result: Value of B for the variation in fabric yarn and coating properties at

different load cases for required confidence interval.

The calculation of the value of B for the variation in fabric yarn and coating properties is
then modified by partial factors to ensure that a sufficient level of confidence is
maintained. In practice this will involve increasing the resistance of the fabric by
reducing its allowable load or extension. Once this has been achieved the value of B
should be greater than or equal to 3.8, i.e there is a 0.000723 probability of the fabric

not satisfying the design.

This should result in more efficient designs where lower safety factors are utilised in the
design and construction process. Reducing the sensitivity of the fabric to variation in the

model variables will further help reduce the necessary factors. However, it is
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conceivable that this could result in a higher safety factor if a fabric is unusually

susceptible to variation.
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4.12. Conclusions

This chapter has presented both a Monte Carlo and a FORM method for the predictive
simulation of the effect of variability on the mechanical properties of fabrics. Both the
methods produced required the calculation of one variable directly from the values of
the others to ensure the compliance with the equilibrium constraint. This process results
in the encapsulation of the variability of one variable into the response of the fabric
through the variation in the others. Ensuring the compliance of the simulations to the
constraints discussed in the previous chapter is necessary to ensure the model’s validity.
Without compliance with the constraint equations it is possible that yarns could exist in
the same space, overlapping, or that the yarns could become disassociated from each
other. Additionally, without compliance with these constraints, the derivatives that
allow for the calculation of the mechanical properties of a fabric can no longer be
expected to produce accurate results. The use of these equations presupposes that the
equilibrium constraints have been complied with. One problem with this method is that
the normal distributions of calculated mechanical properties when using higher values
of variation (Cv) cannot be guaranteed. However, to ensure a predictive method is
presented a distribution for the objective function must be assumed to allow the
calculation of the probability of failure in the FORM method. The Monte Carlo method,

however, does not require this information.

A comparison between the FORM and Monte Carlo methods shows considerable
variation between the results obtained from the two methods in some simulations. This
is due to the assumption of normality in the FORM method, where non-normal results
may be present. Without carrying out a Monte Carlo analysis for each fabric and each
set of variation parameters it is impossible to tell which fit will most accurately predict
the response of a fabric. Though the results should generally be normally distributed
due to the interaction of two normal curves. Therefore, to allow prediction of non-
existent fabrics, or the robustness (§4.10) of existing fabrics without considerable outlay

in time, it is necessary to assume normal distribution.

Variation in a single basic variable affects the mechanical properties of the whole fabric
to a greater or lesser extent depending on the property under consideration and the
basic variable being investigated. Monte Carlo tests (§4.7.3) showed that variation in the

output produced by individual basic variables could be visualised graphically (Figure 4-13)
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and that the effect of each variable on the result was not constant. The fabric was noted
to be more sensitive to variation in some variables than others, namely L1 and L,when
considering Ez;» and Ei1 respectively. The FORM methodology allowed for the
guantification of this sensitivity. Finally the robust optimisation method allows the
values of these sensitivities, and their effect on a fabric to be optimised to reduce the

overall effect the variables have on a fabric.

The method to maximise the robustness of a fabric’s design produces considerable
improvement in the sensitivity of a fabric to variation in its geometric properties and the
mechanical properties of the coating and yarns. This can result in the increasing of the
sensitivity of a fabric of a fabric to a particular variable, with a corresponding greater
improvement across other variables. The complex nonlinear behaviour of fabrics means
that without the method developed it would be impossible to optimise a fabric in such

a way using only Monte Carlo or FORM results.

Both the Monte Carlo and FORM methods rely on the use of data that is normally
distributed. Data on the variability of the geometry of fabrics, and how they can be
considered normally distributed was presented at the beginning of the chapter. Normal

distributions best fit the available data, demonstrated by the probabilities presented.
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5. Model Validation
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5.1. Model validation
The model validation is split into three distinct parts: First a discussion of testing
methodologies is made. This includes a discussion of uniaxial and biaxial testing, a review
of the method of processing biaxial data, the creation of a method for the testing of
individual yarns for elastic moduli, a review of the tensile strengths of fabrics, and a
method for the calculation of target values of elastic constants at multiple biaxial stress

states.

This is followed by comparisons of the model to results for known feasible targets
(targets which have been derived from sawtooth simulations of fabric biaxial stress-
strain response). This demonstrates how the model can find fabric geometries that
reproduce target values of Young’s Modulus and Poisson’s ratio which are not always
the same as the original geometry from which the targets are derived. However, it is
also demonstrated that the model, when sufficiently constrained, finds the original

geometry form which the targets were derived.

Following this a comparison of designed fabrics to real fabric geometry and biaxial
stress-strain response is made. Real target values of elastic constants at multiple biaxial
stress states are used as the input for the predictive design model, and real fabric
geometries are compared to the output. Unfortunately this is less successful than when
the model is compared to known feasible targets, and a discussion of the reasons for
this is also made. A real measured fabric geometry is also used as the input for the robust
fabric geometry optimisation method described in the previous chapter (§4.10).
Statistical data regarding the fabric geometry is also used rather than assumed values of

variation.
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5.2. Methodology for testing of fabrics

5.2.1. Uniaxial testing
Uniaxial testing (Figure 5-1) is used to test a fabric’s response under loading in only one
direction, normally along the warp yarns, along the weft yarns and at 45° to each in a
bias test (Colman, 2014). In this project uniaxial testing is used to measure the yarn
modulus by testing only one yarn direction at a time, and thus removing the crimp in
that yarn (Dimitrov and Schock, 1986). At this point the response of the fabric will be
largely that of the yarns in one direction only, and therefore the yarn modulus can be
calculated from the stress-strain response of the specimen (Figure 5-1). This works
because the stiffness of the coating is considerably less than that of the yarn. Uniaxial
testing was carried out by Colman (2014). Uniaxial tests often include multiple repeats
of loading and unloading, which produces hysteresis, as demonstrated below (Figure

5-1).

5 F1202 Warp uniaxial response data
T T T

35—

30—

Load (kN/m

Strain (%)

Figure 5-1: Uniaxial stress strain curve, showing hysteresis in the fabric response under repeated loading (F1202
Warp data (Colman, 2013b))
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Figure 5-2: Uniaxial testing equipment for stress-strain response reproduced from (Newcastle_University, 2012)

5.2.1.1. Uniaxial testing methodology
The following is the abbreviated methodology for the uniaxial testing of a fabric for the
calculation of uniaxial stiffness, not tensile strength (which is described in BS EN 1SO
1421 1998 Determination of tensile strength and elongation at break (BSI, 1998)) or
seam strength (which is described in BS 3424 Part 33 Method 36 - seam strength (BSl,
1996)).

The uniaxial test for stress-strain response uses a flat jaw with grooves to minimise
slippage of the sample (Figure 5-2). The sample (200mm in length) is tested in a constant
rate of extension testing machine (INSTROM) at a rate of 100mm/min, although this can
be varied (Figure 5-3). An LVDT (linear variable differential transformer — strain
measurement device) is placed along the centre line of the sample to give accurate

strain read outs. This method limits the amount of displacement that can be recorded
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to 35mm as the LVDT will not extend beyond this. The data in Figure 5-1 for instance

demonstrates uniaxial fabric hysteresis after the removal of initial fabric creep.

Warp test:
Movement of test machine
jaw (100mm/min)
I Clamping jaw
Fabric Weft test:
100mm initial 457
200mm —_
length of .
at test ength o Bias test:
extensometer
start
at test start

Clamping jaw

Restraint at bottom of

testing machine

Figure 5-3: Uniaxial test setup

Uniaxial testing has been used to calculate the yarn and coating stiffnesses used in

previous chapters.

5.2.2. Biaxial testing
Biaxial testing is used to produce a fabric’s stress-strain behaviour in both the warp and
weft directions. The advantage of Biaxial testing is that a more realistic response of the
fabric is obtained as “uniaxial tensile tests subject a material to loads that hardly ever
occur in practice”(Menges and Meffert, 1976, p. 12). Fabrics are almost always under
biaxial or biaxial and shear stress during normal operation, meaning that the response

to biaxial loading is more relevant to real world situations.

The biaxial test apparatus used at Newcastle University (Figure 5-4) tests “cruciform
specimens” which “are cut in line with the warp and fill yarns, not necessarily
orthogonally” (Bridgens and Gosling, 2008, p. 3). As fabrics resist loads in the direction

of the yarns this allows for the bowing of yarns to be taken into account (§2.2.6), and
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avoids the introduction of shear forces by ensuring that stress is acting only in the

direction of the yarns.

Figure 5-4: Biaxial test apparatus used at Newcastle University, reproduced from: (Bridgens and Gosling, 2008)

Test data used in this report uses a newer biaxial test rig than that pictured in Figure 5-4,

which includes automated controls.

5.2.2.1. Biaxial testing methodology
A test specimen is cut to the required dimensions for the testing rig to be used. In
Newcastle this involves a 300mm by 300mm test specimen cut to account for non-
orthotropic yarns with 300mm arms as shown in Figure 5-5. LVDTs are attached to
record the strain in the specimen; with one positioned in the warp direction, one in the
weft direction, and one at 45° to the other two. The sample is then installed in the
testing rig, with slack manually removed from the sample. A prestress is then applied to
the sample, and prior to each iteration a set of 1:1 loads are applied to remove any
conditioning from the sample (Membrane Structures Association of Japan, 1995;

Bridgens and Gosling, 2008).
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A standard test protocol can then be carried out (Figure 5-6). This procedure of applying
“prestress followed by mechanical conditioning provides repeatable stress-strain data
for medium to long term structural design” (Bridgens and Gosling, 2008, p. 4). The profile
used in this report runs three cycles of each of the following load ratios; 1:1, 2:1, 1:1,
1:2, 1:1, 1:0, 1:1, 0:1, 1:1 as described in the MSAJ testing method (Membrane
Structures Association of Japan, 1995, p. 2). Each load ratio is run three times as shown
in Figure 5-6. Other test profiles have also been developed such as the one shown in
Figure 5-7 from the Tensinet Design Guide (Forster and Mollaert, 2004), or the radial
load regime developed by Bridgens and Gosling (2008) which is designed to populate

the entire stress space with strain data (Figure 5-8).

The MSAJ test method returns the test sample to an original 1:1 ratio after each iteration
which ensures repeatability of results by beginning each test from a similar load history.
Load history has been shown to affect load response, as such it is important to control
this during testing with two load cycles required to settle the response (Jackson et al.,

2009).
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Figure 5-5: MSAJ cruciform specification (Membrane Structures Association of Japan, 1995)
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Biaxial load history
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Figure 5-6: Example biaxial response for F1202 fabric
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Figure 5-7: Characteristic load history, red = stress in warp direction, blue is the stress in the weft direction from
the Tensinet Design Guide (Forster and Mollaert, 2004)
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Figure 5-8: Radial load regime (Bridgens and Gosling, 2008, p. 4)

The slits in the arms (Figure 5-5) ensure that the stress developed at the centre of the
specimen is closer to that applied to the specimen. Without the slits deformation occurs
in the arms, resulting in only 72% of applied stress at the centre of the sample. With slits
in the arms this is increased to 92% (Membrane Structures Association of Japan, 1995).
Figure 5-9 shows a finite element representation of a cruciform specimen with and
without slits in the arms. When no slits are present some biaxial stress can be seen in
the arms of the sample, which results in deformation, resulting in decreased stress at

the centre of the sample.
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Figure 5-9: Finite element representation of stress distribution in the cruciform specimen (Membrane Structures
Association of Japan, 1995)

5.2.2.2. Determination of elastic constants from biaxial test data
Biaxial data is initially processed as follows and utilises a MatLab code produced at
Newcastle University to process biaxial data based on the MSAJ standard (Membrane

Structures Association of Japan, 1995):

e Initial low loads (i.e. manual loading) can be removed
e [nitial strains can be zeroed at the start of the profile

e Datais then trimmed to remove excessive data points at the end of the profile
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e Cycles are then identified automatically
e At this point response plots can be produced for individual cycles

e Elastic constants can then be calculated using strain or stress minimisation

Elastic constants are calculated using differential stress or strain minimisation to ‘fit’ a
plane stress representation to the biaxial data from which elastic constants are then
calculated. The method uses differential minimisation to find the best fit plane stress
representation of elastic constants to the biaxial response data. Conceptually both stress
and strain minimisation are similar as both minimise the difference between a plane
stress surface and test data to give a best fit surface. However, stress minimisation
minimises the error between a plane stress surface and measured stresses, whilst strain
minimisation minimises the error between the surface and the measured strains. The
different methods can have marked differences in outcome, as will be shown later
(Table 5-1). The methods consider both constrained and unconstrained formulations, i.e.
that the relationship in Equation 5-1 (Jones and Pickett, 2005) holds for constrained
minimisation, whilst it is not a requirement of the unconstrained minimisation.

V21 V12
E, E

Equation 5-1

where v,; and v;, are the Poisson’s ratios in the warp-weft, and weft-warp directions
respectively, and E, and E; are the fabric stiffnesses in the weft and warp directions

respectively.

The reciprocal relationship (Equation 5-1) does not necessarily hold for fabrics as they
are not a homogeneous material (§2.2.7.3) (Gosling and Bridgens, 2008) i.e. the
“interaction of warp and fill yarns and the behaviour of the twisted yarn structure mean
that [fabrics] are better described as a mechanism” (Gosling and Bridgens, 2008, p. 220).
It is possible with testing to show that the Poisson’s ratio can also be greater than 0.5,
not possible in simple homogeneous materials. As such the unconstrained minimisations
do not require that the reciprocal relationship is fulfilled. Loss of energy where the
reciprocal equation is not held can be accounted for in the friction between and within

yarns, and permanent deformation (Gosling and Bridgens, 2008).
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The equations for the unconstrained and constrained stress and strain minimisation can

be found in the appendix (§A.10).

The constrained differential strain minimisation calculates the inverse of ‘M’ (Equation
A-31) and multiplies this by ‘N’ (Equation A-32) to give the elastic constants (Equation
A-33).

The coefficient of determination or ‘R¥ value for the constrained differential strain
minimisation is then calculated using the methodology described in the literature review

(§2.5.1) (Ayyub and McCuen, 1997).

The unconstrained strain minimisation and constrained and unconstrained stress
minimisation routines are also described (Equation A-35 to Equation A-43) (Membrane

Structures Association of Japan, 1995).

In the minimisation equations E(1) etc. is the first value in the matrix E[...]. Exand Ey are
the warp and weft stiffnesses respectively, and €x and gy are the warp and weft strains

respectively.
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Examples of the results as calculated for a PVC coated polyester fabric (Ferrari
Precontraint F1202 PVC-polyester) (§A.1) are shown below (Table 5-1). From this the
difference between constrained and unconstrained minimisation becomes clearer. The
unconstrained minimisation generally produces a higher R? value although given that
the fit is less constrained this might be expected. There is also a marked variation in the
Poisson’s ratios which have a far greater variation in the unconstrained variation than
their constrained counterparts. Given the highly nonlinear nature of fabric response and
the non-homogeneity of the material it is possible that a ratio of greater than 0.5 might
be produced (Gosling and Bridgens, 2008). Mechanical interaction between warp and
weft yarns and crushing of yarns may result in a situation where the extension of one
yarn produces an equivalent contraction in the other direction that is larger than can be
accounted for if the Poisson’s ratio is limited to 0.5. There is also variation in the value
of Young’s modulus produced (up to 282kN/m in the warp direction), which again is due

to the type of optimisation carried out.

Analysis Ex Ey Vxy Vyx R?
(kN/m) | (kN/m)

Constrained, Differential Strain Min 894 788 0.483 | 0.426 | 0.877
Constrained, Differential Stress Min 602 873 0.534 | 0.368 | 0.833
Unconstrained, Differential Strain Min 792 889 0.255 | 0.675 | 0.902
Unconstrained, Differential Stress Min 651 875 0.291 | 0.580 | 0.918

Table 5-1: Example elastic constants calculated using a Plane Stress Representation (F1202 fabric)

Whilst the above plane stress equations can be used to calculate the elastic constants it
is necessary for the purposes of this project to find distinct values of elastic constants at
specific points on a response surface. For instance, the data shown in Table 5-1 makes
no distinction between the modulus at 10kN/m:10kN/m (Warp:Weft) and at
30kN/m:10kN/m. A visual inspection of the 3D graphical representation of the response
data shows that whilst the results for a plane stress representation may represent a best
fit to all the fabric data they do not necessarily represent the variation across the surface
(Figure 5-10 and Figure 5-11). The surface is clearly nonlinear, and the stiffness varies

across the surface.
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As a visual aid a four degree polynomial fit is applied to the test results (i.e. it follows
the form set out in Equation 5-2). To ensure the quality of interpolation between data
points of the stress-stress-strain surface a number of cuts are then taken through the
surface along the warp and weft directions with the points they intercept included in
the diagram to demonstrate that no unexpected variations in surface occur (Figure
5-12and Figure 5-13). Whilst the first subplot for both figures appears to show a lack of
data points at high loads this is because the cut runs parallel to one of the testing
directions, not crossing it. R? values are not used because the fit’s profile between data
points could not be controlled. The difference in R2 values between a third and fourth

order polynomial is discussed with relation to Figure 5-14 below.

Il Warp response surface F1202
* Biaxial test data point

[ \Weft response surface F1202
* Biaxial test data point

15
10 Warp Load (kN/m)

Weft Load (kN/m) 0 0

Figure 5-10: 3D representation of F1202 response data with biaxial data points which appear as the white lines in
the figure. The data was obtained using a biaxial testing machine at Newcastle University.
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I Warp F1202
I Weft F1202

10

Weft Load (kN/m) 0 0 Warp Load (kN/m)

Figure 5-11: 3D representation of F1202 response data without biaxial data points. The data was obtained using a
biaxial testing machine at Newcastle University.

f(x,¥) = Doo + P10X + P01V + D20X? + 11Xy + D02y + P30X® + p21x2y + p1oxy?
+ D03y + Daox* + 3103y + D2ax?y? + p13xy> + posy?

Equation 5-2
Where pyy is a constant coefficient
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Figure 5-12: F702 cut through the surface for surface fit checking along the weft direction
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Figure 5-13:F702 cut through the surface for surface fit checking along the warp direction

The elastic constants calculated for a PTFE B18089 PTFE coated glass fibres fabric (§A1)
show a different set of results to those for the PVC coated polyester fabric (Table 5-1).
The values of R? for differential stress minimisation are very poor (Table 5-2), and this is
discussed below. These results are clearly erroneous, and show that stress minimisation
is less reliable than the strain minimisation method. Figure 5-14 shows a 3D
representation of the data. The R? values for the fit in Figure 5-14 are 0.996 and 0.997
in the warp and weft direction respectively. This is reduced to 0.97 if a third order

polynomial is used, a small but appreciable difference.

Analysis Ex Ey Vxy Vyx R?
Constrained, Differential Strain Min 1448 997 1.137 | 0.783 0.099
Constrained, Differential Stress Min' 522 583 | -0.044 | -0.039 | 859017

Unconstrained, Differential Strain Min | 1397 | 1022 | 1.049 | 0.849 0.098

Unconstrained, Differential Stress Min | 549 560 | -0.110 | 0.015 | 858745

Table 5-2: Example elastic constants calculated using a Plane Stress Representation (B18089 fabric)
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Figure 5-14: 3D representation of B18089 response data without biaxial response data points shown in the figure

The PTFE glass-fibre fabric (Figure 5-14) is clearly less well represented by a plane stress
relationship, with the sharp downward curves at more extreme ratios of stress-stress
(1:0 for instance). A Plane stress relationship might adequately describe the stress —
stress-strain surface at the centre of the plot, but this would underestimate stiffness at

the edges.

A method was developed to calculate elastic constants at specific points on a surface to
allow for a comparison between biaxial test data and simulated designed fabric
response data. For this section a PVC coated polyester Ferrari Precontraint F702 (§A.1)
fabric will be used as the example fabric. As the response for this fabric fits the plane
stress formulation well this will demonstrate just how much variation can be found even
in fabrics where the fit is good. The F702 fabric produces a very flat response surface
Notably the R? value for the fabric (Table 5-3) is far higher than that shown earlier for
the F1202 fabric. There is also far less variation between different analysis methods (and

between different directions) in the values of the elastic constants.
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Analysis Ex Ey Vxy Vyx R?
(kN/m) | (kN/m)

Constrained, Differential Strain Min 572 575 0.323 | 0.325 | 0.962

Constrained, Differential Stress Min' 558 564 0.300 | 0.297 | 0.942

Unconstrained, Differential Strain Min 573 574 0.327 | 0.321 | 0.962

Unconstrained, Differential Stress Min 558 564 0.304 | 0.293 | 0.942

Table 5-3: Elastic constants calculated using a Plane Stress representation (F702 fabric)
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Figure 5-15: 3D representation of F702 response data without biaxial data points including the plane stress
representation of the surface using unconstrained strain minimisation elastic constants

Even where the R? value is high (0.962) the plane stress representation does not
perfectly represent the fabric response. The solution chosen to this was to create a
series of small planes for specific points on the surface, in the following example the
points are evenly spread across the range of loads, but there is no requirement for this
to be so. At the chosen point on the surface a small area of the surface is considered,
the size of which will be discussed below, for this small area an individual plane stress
representation is made. The small area is defined as a sample of the total biaxial data
for which mechanical properties can be found. The small area is populated with data
points (again the number of which is discussed below) and the plane stress formulation
applied to these data points. From this the elastic constants can be found as has been

shown below (Figure 5-17, Figure 5-16). Where more than one of these areas is used to
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calculate targets for fabric design the method will be referred to as the multiple point
target method.

Population of points on the small area on the biaxial response surface
3

B Warp response surface from biaxial test data (F702)

-Weﬂ response surface from biaxial test data (F702)
@ Warp population on small area
14

® Weft population on small area

4 .
2
Weft Load (kN/m)

10
5

Warp Load (kN/m)
Figure 5-16: Data points in relation to biaxial test response surface, showing how a smaller area of points fits to the
test data better than the larger are shown above

Population of points on the small area on the biaxial response surface

. iWarpp\ane.
- . . . o ®  Weft plane
. . . . .
C . ¢ . ¢ . ° . N .
. * . - . ¢ . ° . ¢ . ° “
. ° . . .
. . - L] . . . .
. . * ¢ . ° 5 . . . . . . .
. . . . ® . . L] .
. . . . ¢ . ° . . . .
1.5 . . . . . . . . N . -~ .
. .
o . 0 . . * ® ¢ . ° . ¢
.
—_ b P . 1 . ° ° °
2 1 . : .
= . * * y ’ .
505 o * . . . . * . . . . * . .
. . . . . . . . . .
. . . . . R . - . . . R . N .
* . 2 * . . * . . * .
0 . ® . 4 . 2 . . . * . . . . -
. - .
. . . . . - . - . .
. . L] . . . . . . . -
. . .
0.5 . . . . . . 4.4
11.8 . ., . .
1.6 - . L]
11.4 ¢
11.2
11
10.8
Weft Load (kN/m)

. 3.8
- 3.6

3.4
106 3.2

Warp Load (kN/m)

Figure 5-17: Data points produced to populate the small surface area to be represented by the plane stress surface
Initially each plane was created using all four differential minimisation methods,
however, it became apparent that the differential stress minimisation was not
producing accurate results, with clearly erroneous values of R? being produced. After an

investigation of the individual parameters of the calculation it was noted that det(M)
was approximately zero in the stress minimisation method. As such the matrix M was

singular, and therefore the inverse of M, M, was ill conditioned, and would be very
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sensitive to small errors, thus producing the erroneous results. This is problematic
because in the differential stress minimisation changes in the strain are exceptionally
small, especially in PTFE glass-fibre fabrics. This is because the total change in strain
(which may have only been in the order of 2.5% (0.025) to begin with) is distributed
across perhaps 1000 points (if a logging rate of 2s is used). Thus the change between
individual points may be in the order of 2.5x107. In PTFE fabrics the strain experienced
is less due to the stiffness of the glass fibre yarns, and the original flatter geometry. This
is particularly problematic when only a small area, as used to calculate point elastic
constants, is considered as less points of a smaller change are used. This is shown in
Figure 5-18, where the top two plots show how the strain minimisation results sit on top
of the biaxial test data. However, the bottom two plots show that the stress

minimisation results are distinct from biaxial test data that they should represent.

Biax data (blue) vs Constrained strain Biax data (blue) vs Unconstrained strain (red)
@ 3.76 (warp), 11.27 (weft) (kN/m) @ 3.76 (warp), 11.27 (weft) (kN/m)

strain
strain

Weft Load ) Warp Load Weft Load Warp Load
Biax data (blue) vs Constrained stress (red) Biax data (blue) vs Unconstrained stress (red)
@ 3.76 (warp), 11.27 (weft) (kN/m) @ 3.76 (warp), 11.27 (weft) (kN/m)

strain
strain

4

Weft Load Warp Load Weft Load ' Warp Load

Figure 5-18: Comparison of constrained and unconstrained differential strain and stress minimisation results. Blue—
fabric biaxial stress-stress-strain response surface points, red - constrained/unconstrained differential
stress/strain results. For a 702 fabric at 3.76kN/m (warp), 11.27kN/m (weft)

Therefore differential stress minimisation is only applicable where changes in strain are
observed to be comparatively large. The difference in magnitude between the
determinants of the stress and strain matrices for M is of the order 108, It is noted that
the stress minimisation becomes more accurate where there is a greater slope, normally

where the load ratio is 1:1.
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Because stress minimisation can produce erroneous results it was decided that only
differential strain minimisation will be used for further work on the ‘patch’ used to

calculate elastic constants.

The area and number of points that were needed to give accurate elastic constants was
derived from a variation study. The study looked at the ‘area’ the points inhabited
(range of loads in the warp and weft directions), the number of points, and the density
of the points used in the ‘patch’ (selection of biaxial data under consideration) and the
effect of varying these on the value of the elastic constants produced. Again a F702 PVC

polyester fabric is used in this section.

The results are shown below where the area of the ‘patch’ was found to be the most
important factor for the calculation of the elastic constants for the multiple point target
method, whilst the density appeared to show some correlation to the value of resultant
elastic constants the number of points showed no correlation. Examples of the results

are given below (Figure 5-19 through to Figure 5-25).

Variable Target Target Target Target Target
point 1 point 2 point 3 point 4 point 5
Px (kN/m) 3.8 3.8 7.5 11.2 11.2
Py (kN/m) 3.8 11.2 7.5 3.8 11.2
Ex (kN/m) 698 441 569 644 487
Ey (kN/m) 651 620 568 481 528
Vxy 0.585 0.122 0.325 0.460 0.233
Vyx 0.433 0.459 0.281 0.028 0.302

Table 5-4: Target values of elastic constants at specified stress states produced from the F702 fabric using

unconstrained differential strain minimisation
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Figure 5-19: Area of 'patch’ plotted against E at target point 1
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Figure 5-20: Area of 'patch’ plotted against E, at target point 4
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Figure 5-22: Density of 'patch’ plotted against E, at target point 4
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Figure 5-24: Number of points in the 'patch’ plotted against E, at target point 14
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The R? value is investigated with respect to the density (Figure 5-26). Logarithmic scales
were used to avoid clustering at small values, which also demonstrates how the value
of the elastic modulus changes with variation in area. A smaller area is found to generally
produce a less variable result, with the hypotenuse occurring at approximately
0.1(kN/m)? (the area being the area on stress-stress-strain response surface considered,
the axis of which are kN/m). Additionally the optimum density seems to consistently

occur at approximately 70 points/(kN/m)2.
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Figure 5-25: Area of 'patch’ plotted against E, at target point 1
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Figure 5-26: Sum of R2 plotted against the density of points for the plane stress representing the whole fabric

The maximum total R? value appears to occur at a lower density, however, this does not
necessarily mean that the lower densities will give improved results. In this instance a
reduced density reduces the number of points, thus allowing a better fit. For instance
the lowest possible density would have only four points to which a fit would need to be
made, whereby error might be reduced, whilst the interior of the “four points’ might
show, if investigated, a larger error. Thus the hypotenuse occurs at approximately 1x10?
(points/(kN/m)?) where R? appears to be stabilised. This value is similar to the 70 value

identified earlier, and solidifies the choice of density to be used.

The final result of the process is a series of graphs (Figure 5-27 and Figure 5-28) which
show how the value of stiffnesses changes with relation to the area of the patch being
considered, the number of points, and the density of points. There is some coupling
between the different tests, most obvious in Figure 5-23 where two distinct curves are
visible. This is because, whilst generally more points are better, the graph includes data
for increased numbers of points at different patch areas. Therefore, where the patches

are small to begin with, area (the least coupled response) is already low. This is similar
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in other figures, where the density is low in Figure 5-22, and Ex is already approximately

optimal, a small enough area is being considered to give the required value of E.

A set of target values for the elastic properties that can be used as the target properties
for fabric design are also produced. For this particular fabric these are given in Table 5-4

which includes the loads (P) as well as the elastic constants.

In addition a PTFE coated glass-fibre fabric is also considered (Figure 5-29 and Figure
5-30) with each plane shown at the target loads that have been spaced evenly on the
response surface. When the PVC coated polyester fabric’s response surfaces are
compared to the PTFE coated glass-fibre fabric’s surfaces it is easier to acknowledge why
a single plane stress representation does not adequately represent fabric response.
Whilst the PVC coated polyester fabric appears to be fairly well represented by the plane
stress representation the PTFE coated glass-fibre fabric shows considerably greater

variation in the position of the planes (Table 5-5).

A numerical comparison between the results of a plane stress representation and the
multiple point target generation is made using the data in Table 5-5. Considering only
the results of the stiffness in the warp (x) direction it is clear that the plane stress
representation overestimates stiffness at the 10kN:30kN loads by 93% and
underestimates it at targets 3 and 4 by 30 and 34% respectively. Further, the Poisson’s
ratios whilst higher than 0.5 as discussed earlier in this section (§5.2.2.2) and in the

literature review (§2.2.7.3) are in error by up to 200% (Target 4).

This clearly demonstrates how multiple targets are necessary for fabric design, and how
the use of single values from plane stress representations can give misleading results
because the expected stiffness might be up to 93% less than predicted using the plane
stress representation. Bridgens et al. (2009) considers how variation in stiffness might
affect the displacement of a hypar structure under different loading conditions. Using a
broad comparison to these results it is possible to see that where the height/side length
is 0.2 a difference of +500kN/m (target 3) might result in a reduced deflection of
approximately 100mm, and a difference of -1000kN/m might result in a difference in
predicted deflections of approximately 100mm. When ponding and serviceability

criteria are considered this might result in serious problems should this data be used to
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design a structure (an additional 100mm deflection might result in a clash between
supporting structure and the fabric). These multiple targets are used as the targets for
the design process for fabrics below (§5.3.2), allowing a fabric to be designed for
accurate fabric properties rather than the approximation offered by the plane stress

method.

It is important that accurate targets and high quality data are available to ensure the
design model is able to reproduce fabric geometries. Without multiple targets, and using
the plane stress representation, the model as developed (§3.3) will be unlikely to
reproduce fabric geometries, as the targets would not fully represent the stress-stress-

strain characteristics of the fabric under consideration.
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Method Analysis Ex Ey Vxy Vyx
(kN/m) | (kN/m)
Plane Constrained, Differential Strain
Stress Min 1706 969 1.27 | 0.72
Unconstrained, Differential Strain
Min' 1578 1016 1.07 | 0.84
Multiple Unconstrained, Target 1
targets Differential Strain Min | (10:10) 1380 952 0.80 | 0.72
Target 2
(10:30) 819 1556 0.14 | 1.29
Target 3
(20:20) 2261 1287 | 0.72 | 0.58
Target 4
(30:10) 2416 619 1.83 | 0.28
Target 5
(30:30) 1279 1115 | 0.63 | 0.87
Constrained, Target 1
Differential Strain Min | (10:10) 1570 879 1.05 | 0.59
Target 2
(10:30) 977 1191 0.74 | 0.91
Target 3
(20:20) 2646 1189 1.01 | 0.46
Target 4
(30:10) 1979 656 1.44 | 0.48
Target 5
(30:30) 1569 960 0.99 | 0.61

Table 5-5: Comparison of plane stress and multiple target representations of biaxial data (PTFE coated glass-fibre
— B18059). The values (10:10) etc. refer to the warp:weft load respectively in kN/m
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Figure 5-27: Plane stress response surfaces for each selected point on the surface for a PVC coated polyester fabric (F702) (using unconstrained strain minimisation) visualisation 1
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Figure 5-28: Plane stress response surfaces for each selected point on the surface for a PVC coated Polyester fabric (F702) (using unconstrained strain minimisation) visualisation 2
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Figure 5-29: Plane stress response surfaces for each selected point on the surface for a PTFE coated glass-fibre fabric (B18059) (using unconstrained strain minimisation) visualisation 1
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Figure 5-30: Plane stress response surfaces for each selected point on the surface for a PTFE coated glass-fibre fabric (B18059) (using unconstrained strain minimisation) visualisation 2
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5.2.3. Yarn mechanical properties
Testing of yarns to determine mechanical properties is necessary to produce the yarn
moduli that are used to carry out fabric design. There are numerous inherent problems

associated with the testing of yarns for stiffness values.

5.2.3.1. Yarn properties from uniaxial tests
A 200x50mm sample is tested using LVDT strain measurements at a rate of 100mm/min.
The yarn directions are aligned along and orthogonal to the loading direction
respectively, when preparing the sample the yarn directions need to be noted and the
edges of the sample aligned with the yarns (for a fabric with orthogonal yarns). LVDTs
are attached to the sample along its centre line using pins at a separation of 100mm.
Flat tensile jaws are used to clamp a 380x 50mm sample between a gauge length of
200mm. LVDTs cannot be used to record extension beyond 35mm and as such need to

be removed if extensions are required to go beyond this point.

After the test the stress-strain curves for the fabric are available such as those presented
earlier (§5.2.1) or in the literature review (§2.3.2.3) where Dimitrov and Schock (1986)
identify how the stress-strain curve can be used to identify yarn stiffness. The yarn
response can then be characterised in terms of kN/m or if necessary with knowledge of
the yarn spacing in terms of N/yarn or even kN/m? if the cross-sectional areas of yarns

are known.

There are specific advantages to using uniaxial testing for yarn properties. Yarns tested
in-situ (as part of a fabric) are being tested under the conditions that occur when
resisting loads in structural situations, with the same crushing or crimping factors.
However, given that there will always be some crimp in the tested fabric, and some
transfer of energy to friction between yarns it is also possible to see that this testing
method is not truly determining the actual yarn response. Of principal importance for
this report is the inability of the uniaxial test method to produce statistical distributions
of mechanical properties for individual yarns for use in the robustness optimisation
method (§5.4.4). This is because the contribution of an individual yarn within a fabric

cannot be distinguished from that of the other yarns in a strip test, and cannot therefore
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be measured. This means that any statistical distributions obtained from uniaxial tests

are not applicable to the individual yarns.

To calculate coating stiffness a bias-cut test (§5.2.1.1) can be carried out using the same
procedure as for a normal uniaxial test but the yarns are aligned at 45 degrees to the
loading direction, meaning that the cut is also carried out at 45 degrees to the yarn

direction.

This means that no two yarn ends of a single yarn are within the jaws, and the load is
therefore only carried by the coating. In this situation the coating stiffness can be

calculated.

5.2.3.2. Testing of single yarns
The testing of individual yarns for mechanical properties is necessary to provide a useful
comparison to the properties obtained through uniaxial testing and provide a second
source of input for modelling. Specifically relevant as mentioned above was the need for
accurate statistical information about the distributions of yarn moduli. The Robust
Fabric design method (§4.10) requires as its input data about the coefficients of variation
of individual unit cell properties. For geometric properties this has been achieved using
the results of photogrammetry, however, no distributions regarding individual yarns are

available.

Testing was carried out using the ASTM International standards (ASTM, 2014), with
references to British standards (BSI, 2014) and the Membrane Structures Association of
Japan (Membrane Structures Association of Japan, 1995). No standard has been found
relating specifically to the testing of yarns that have been removed from an architectural
fabric. The ASTM Standard Test Method for Tensile Properties of Yarns by the Single-
Strand Method is used as the basis for the testing procedure as “most yarns can be
tested by this test method” (ASTM, 2010, p. 2). Some variation is introduced that relates
specifically to the types of yarns tested and the data needed, for instance, whilst the
standard requires a time to break of 20 seconds a constant rate of extension will be used
that is consistent with uniaxial tests. This variation is used to allow useful comparisons
to be made to uniaxial test results. Varying the testing rate may have introduced or

reduced creep in the yarn, making comparisons of data less viable. This variation is
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allowed for within the standard which specifies that alternate speeds are provided for

within the standard (ASTM, 2010).

Initially a series of tests are carried out on a virgin yarn to identify errors and problems

with the methodology, after which tests are carried out on stripped yarns from fabrics:

A virgin (as manufactured) polyester yarn was tested in accordance with the testing
schedule laid out in the appendix (A.11 Table A-6). The test was performed to check the
accuracy of the testing method and to ensure that unexpected problems and procedural
errors were identified prior to the use of yarns stripped out of fabrics which are time
consuming to produce. The yarn tested was a ‘Tersuisse Multifils SA” PES (Polyester)
fibre from a spool available at the time of testing (Federation, 2014). It was chosen for
its immediate availability rather than any specific properties, with a large quantity

available multiple tests could be carried out quickly with only minimum preparation time.

The yarn has a linear mass density of 1100 dtex and a fibre count of 192.

A number of deviations from the standard were made:

e An extension rate of 100mm/min is used to allow a comparison to be made
between uniaxial test data and the yarn tests.

e Breakages at grips are not considered to be as detrimental to the test as specified
in the standard as the yarn extension characteristics are under investigation not
the breaking strength. The extension properties will be more accurately
investigated with flat jaws than capstans or other clamping methods as
extension within the capstan cannot be accurately accounted for and would
contribute to the apparent extension of the specimen within the gauge length.

e Flat faced jaws are constructed by using the toothed jaws used in the uniaxial
tests, and shown in Figure 5-2, with an intermediate PVC Polyester layer to give
cohesion to the jaws clamping the yarns and stop the yarns breaking due to the

jaw teeth.

The results of the virgin yarn test are shown in Figure 5-31.
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‘Tersuisse Multifils SA’ PES Extension vs Load
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Figure 5-31: Results of the virgin yarn (Tersuisse Multifils SA) tests with outliers removed

The tests used to produce Figure 5-31 used a 250kN load cell which gave a low resolution
on the relatively low loads the yarns were tested at, resulting in the poor quality curves
presented. The curves are consistent with the response shown in the literature review
(§2.2.2). Further to this, once redundant results had been removed, principally the two
results for yarns that failed at very low loads, responses appear to be repeatable. From
this it can be concluded that the testing procedure appears to work. However, the
further tests carried out on a 50kN load cell gave a far higher resolution resulting in a

smoother curve for all following results.

The yarns also failed across the length of the yarn, with some clustering towards the
jaws which suggested that whilst the jaws had an effect on the point of failure this was

only the case at high loads, and was not effecting the test prior to failure.

5.2.3.3. Yarn properties from stripped yarns
The method of yarn extraction (sometimes hereafter referred to as stripping or ravelling)
is based on ASTM (2012) D3883-04 and the detailed yarn testing methodology is covered
in the appendix (§A.11). Examples of the ravelling process are shown in Figure 5-32 and

Figure 5-33.
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Figure 5-32: Yarn ravelling on a sample of PVC coated polyester fabric
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Figure 5-33: Yarn ravelling on a sample of PTFE coated glass-fibre fabric
The testing equipment is shown in Figure 5-34, the yarns are aligned centrally, and

cohesion is maintained using the intermediate PVC layer, which cushions the yarn

against the pressure of the teeth.

Figure 5-34: Testing equipment including failed F1202 yarn
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Examples of the results produced are shown below. A minimum of 13 tests were carried
out in each direction (warp and weft) to ensure a sufficient sample. If any single yarn
slipped excessively during testing or failed at a low load more tests were carried out to
produce 13 data sets. Considerably more tests than are shown in the following figures

were carried out however for brevity these results are summarised in Table 5-7.

F702 - Warp direction yarn (250mm gauge length)
80
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Load (N)

—Sample 6

30
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0 5 10 15 20 25 30 35
Extension (mm)

Figure 5-35: Example result for PVC polyester fabric F702 in the warp direction

The polyester yarn (Figure 5-35) shows a similar response to the virgin yarn (as they are
both polyester) and to the initial uniaxial response (Figure 5-1). It is also similar to the
polyester force-extension curve shown in the literature review (§2.2.1). An initial higher
stiffness followed by a period of relatively low stiffness, returning to approximately the
original stiffness again prior to failure. This response posed some problems for the

calculation of a linear modulus, which is discussed below (Figure 5-38).
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B18089 - Warp direction yarn (250mm gauge length)
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Figure 5-36: Example results for PTFE glass-fibre fabric B18089 in the warp direction
ATEX3000 - Weft direction yarn (250mm gauge length)
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Figure 5-37: Example results for Silicone glass-fibre fabric ATEX3000 in the weft direction

The calculation of the modulus for the glass-fibre yarns is far simpler due to the linear

response of the yarn. A small amount of curvature in the load extension graph might be

noted (especially at high loads), this could be caused by the twist imparted to the
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filaments in the yarn. In the glass-fibre yarns a small degree of initial extension at almost
no load was always noted. This is caused by the crimp that remained in the yarn after it
was removed from the fabric increasing the length of the specimen slightly whilst no

initial load is placed on the yarn.

Repeatability was excellent with the calculated coefficients of variation for the data low
and in the order of 0.021 — 0.07. Visual inspection confirms the repeatability of the
results except where some outlier exists. Outliers generally occurred where the yarn
slipped in the jaws, or where the yarn failed prematurely, which may have been caused
by damage in the yarn, possibly occurring during ravelling. The one exception to this was

the consideration of the F1202 fabric yarns in the warp direction.

F702 Warp yarn Stress vs Strain

Stress (kN/m)

| 1 1 1 1 1 1 |
-10
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

strain (-)

Figure 5-38: Example of method of calculation of modulus for polyester yarns (F702 Warp) (blue = curve utilised for
calculation, green = available data, red = fitted curve)
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Specimen Point on Curve Calculated Modulus (kN/m)
3 Initial stiffness 732
Early low stiffness 153
Mid extension stiffness 606
Late stiffness 352
5 Initial stiffness 772
Early low stiffness 165
Mid extension stiffness 629
Late stiffness 384
6 Initial stiffness 769
Early low stiffness 161
Mid extension stiffness 600
Late stiffness 309
7 Initial stiffness 781
Early low stiffness 169
Mid extension stiffness 617
Late stiffness 368

Table 5-6: Comparison of yarn modulus for different curve segments for selected tests (tests 1, 2, and 4 were

removed as anomalous)

120 —

Stress (kN/m)

F702 Warp yarn (early) Stress vs Strain

0 0.02

0.04 0.06 0.08
strain (-)

0.1 0.12 0.14 0.16

Figure 5-39: Calculation of yarn modulus as calculated for the early response from F702 (warp) yarn response curve
(blue = curve utilised for calculation, green = available data, red = fitted curve)
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60 F702 Warp yarn (Low stiffness) Stress vs Strain

40—

30

Stress (kN/m)

10 I I I I I I I |
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
strain (-)

Figure 5-40: Calculation of yarn modulus as calculated for the low stiffness response from F702 (warp) yarn
response curve (blue = curve utilised for calculation, green = available data, red = fitted curve)

100 — F702 Warp yarn (Mid response) Stress vs Strain

Stress (kN/m)

I I I I I I I |
-20
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
strain (-)

Figure 5-41: Calculation of yarn modulus as calculated for the mid response from F702 (warp) yarn response curve
(blue = curve utilised for calculation, green = available data, red = fitted curve)
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o F702 Wapr yarn (Late) Stress vs Strain

Stress (kN/m)

1 1 1 1 1 1 1 |
-10
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

strain (-)
Figure 5-42: Calculation of yarn modulus as calculated for the late response from F702 (warp) yarn response curve
(blue = curve utilised for calculation, green = available data, red = fitted curve)

200 — ATEX3000 Weft yarn Stress vs Strain

— fitted line

0 0.01 0.02 0.03 0.04 0.05

0.06
strain (-)

Figure 5-43: Example of method of calculation of modulus for glass-fibre yarns (ATEX3000 weft) (blue = curve
utilised for calculation, green = available data, red = fitted curve)
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Fabric Type | Direction | Mean Standard | Variance | Coefficient | Number of
deviation of samples
variation used
ATEX3000 Warp 3222 67.6 4574 0.021 12
Weft 2875 116.1 13485 0.040 12
ATEX5000 | Warp 5525 215.8 46587 0.039 13
Weft 5149 273.7 74915 0.053 13
B18089 Warp 4438 327.6 107300 0.074 13
Weft 3705 238.9 57052 0.064 11
B18059 Warp 6812 227.9 51923 0.033 13
Weft 5302 195.3 38153 0.037 13
F702 Warp 444 9.1 84 0.021 9
Weft 382 14.2 202 0.037 13
F1202 Warp 729 50.7 2568 0.070 7
Weft 617 46.3 2142 0.075 14

Table 5-7: Yarn test summary; showing the calculated values of stiffness using the central portion of the response

Generally results showed low values of variation with coefficients of variation being
consistently less than or equal to 0.075 exemplified by the data used to calculate the
ATEX3000 yarn elastic properties (Figure 5-44). Visual inspections demonstrates that the
gradients appear similar, and the coefficient of variation found for the data bears this
out (0.021). Compare this with the results for the F1202 warp yarn and there is clearly a
difference in the repeatability of the tests (the tests were carried out under the same
conditions) (Figure 5-45). Firstly, the tests show failures at high loads due to slips of the
clamping equipment or partial failure of the specimen. After this was noted a further
seven repeats were carried out in an attempt to find a solution to this, but were
unsuccessful in doing so. The tests are therefore considered to have failed at the slip
point, with data beyond this being unused. Using teeth to stop slippage was shown to
cause failure at lower loads, whilst capstans were ruled out as they do not allow for the
accurate calculation of stiffness. Capstans spread the load of the yarn across a wider
area using a curved surface to spread the load in the yarn before it is clamped. This
means that extension across the surface of the capstan cannot be accurately determined,

rendering head displacements unusable.

The data in Figure 5-45 shows a high degree of spread, with a wide range of gradients.
The coefficient of variation of all these gradients with the exception of sample 6 was
actually found to be 0.20, which is unacceptable for use in this model as it suggests that

there is a 20% dispersion in the data. After the investigation of the data a second change
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in gradient mid curve was found in the data, and noted at around 15mm extension. It is
therefore hypothesised here that some further deformation mechanism is occurring in

those yarns not grouped with the steepest seven.

ATEX3000 Warp data (outliers removed)
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Figure 5-44: Example of repeatability of results from ATEX3000 warp data with outliers removed
F1202 warp yarn load vs. extension
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Figure 5-45: All data produced from the F1202 tests in the warp direction
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F1202 warp yarn load vs. extension
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Figure 5-46: A selection of samples of F1202 warp data with the second change in gradient visible

The F1202 warp yarn shows considerable discretisation of two plies once removed from
the fabric, which can also be seen in cross sections of the fabric in situ (Figure 5-47). The
second extension to failure after the initial failure is caused by the continued extension
of the second ply demonstrating that both plies are acting individually to some extent
(Figure 5-46 and Figure 5-45). Lastly, Figure 5-48 shows how the yarn has failed at two
distinct points, and how the yarn has split into its two constituent plies during the testing
(the red marks indicate the centre of the sample). Given this information it is concluded
that the high variation in the yarns response is likely to be due to the two plies of the
yarn becoming uncoupled and acting separately. This decrease in stiffness at
approximately 10-15mm extension, proceeded by an area of high repeatability up to
approximately 10mm extension, is therefore not typical of what would happen in a yarn
in-situ. Where the yarn is still restrained as part of a whole fabric this uncoupling would
not occur at these loads, as such only those tests where the uncoupling does not occur

were used in the calculation of the yarn extension characteristics.
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Figure 5-47: Cross section of F1202 warp yarn showing the two discrete plies (Colman, 2013a)

Figure 5-48: F1202 warp yarn after failure

F1202 warp yarn load vs extension (high stiffness cluster)
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Figure 5-49: Results used for calculation of F1202 (warp) mechanical properties

The results whilst clearly not as visually repeatable as those shown for the ATEX 3000
fabric are a clear improvement on the wide spread shown for all the data. As such it was

deemed reasonable to use this data in further calculations.
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A comparison to previously carried out uniaxial tests (Colman, 2014) was also made

(Table 5-8):
Fabric Direction Yarn test Upper yarn test | Lower yarn test | Uniaxial strip
Type result (kN/m) value (kN/m) value (kN/m) test result
(kN/m)
ATEX3000 | Warp 3222 3357 3087 3120
Weft 2875 3107 2643 3190
ATEX5000 | Warp 5525 5957 5093 4110
Weft 5149 5696 4601 6300
B18089 Warp 4438 5094 3783 4270
Weft 3705 4183 3228 3970
B18059 Warp 6812 7268 6356 4610
Weft 5302 5693 4911 4770
F702 Warp 444 462 426 485
Weft 382 a11 354 425
F1202 Warp 729 830 627 880
Weft 617 710 525 810

Table 5-8: Comparison of single yarn test results to previously carried out uniaxial tests for yarn modulus

The uniaxial data used in Table 5-8 was produced by Colman (2014) and was generated
using straight portion of the uniaxial response from uniaxial strip tests (§5.2.1) (similar

to Figure 5-41), and includes the coating response (i.e. it has not been removed).

The upper and lower values of the yarn test results are calculated as the 95% confidence
bounds, or two standard deviations up and down from the calculated mean. The yarn
tests for the PVC polyester fabric appear to underestimate the yarn stiffness if compared
to the uniaxial tests, whilst the glass fibre yarns both over and underestimate the value.
However, as discussed above the values calculated for individual yarns are likely to be
the true values of the stiffness of the yarns, whilst the results of the uniaxial tests will

be affected by other factors.

Firstly, if some crimp remains in the yarns under uniaxial testing then the calculated
value of stiffness may be underestimated as some portion of the extension is due to
further yarn straightening and the yarn length will in reality be longer than predicted.
Both these would reduce the value of the calculated stiffness. Further the yarn crushing
caused by the interaction between the yarns may affect the yarn, possibly causing
bending in the tested yarn, or inducing further stress. Coating and the transverse yarns

will also offer some resistance to extension in the alternate direction, and it is possible
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that in the case of the PVC coated fabrics this is more profound. A visual inspection of
PVC coated polyester fabric cross-sections, in comparison to other fabric cross sections,
does seem to show a higher degree of coating impregnation, which may result in the
coating having a greater effect on tensile strength. Yarns may have been damaged
during ravelling, reducing their stiffness, whilst this may have been more profound in

some fabrics, or directions than in others.

In short, it is difficult to prove whether either set of values are correct. The accuracy of

the resulting analysis from the results is the defining consideration.

5.2.4. Tensile strength
Tensile strength has not been measured for this report, but might be measured as per
BS EN ISO 1421:1998 (BSI, 1998). Tensile strength would be better measured using
capstans, where the clamping force should be spread more evenly reducing the number
of breaks at clamp, found to be generally between half and three quarters of tests for
elongation response above. The use of capstans however would not be applicable to

testing for elongation characteristics, as discussed above.
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5.3. Validation study

Comparisons of the model output using known feasible targets have been made in
previous chapters (§3.7), and a short review of those findings is made in this section
(§5.3.1). Further validation studies are then carried out using biaxial test data processed
using the method discussed earlier (§5.2.2.2). These compare the method’s output to
real test data, and demonstrate how the design methodology operates when posed with
test data. A fabric geometry is also robustly designed using statistical data collected on

the about the fabric’s properties.

5.3.1. Comparison to known feasible targets
The model was implemented with known feasible targets used as the input for the
optimisation in an earlier chapter (§3.7). Known feasible targets were derived from the
sawtooth equilibrium equations using a central finite difference method at target values
of stress, i.e. 10kN:10kN. Four targets (E11, E22, V12, v21) were calculated at each target
value of biaxial stress. These targets were then used as the input for the fabric design

(optimisation) method.

The output of the method demonstrated that the optimisation of the defining equations
was able to calculate a fabric geometry that reproduced the target values of stiffness
and Poisson’s ratio at the specified loads. However, the optimised geometry was not
always that of the original fabric from which the targets had been derived using the
central finite difference method. A new fabric was often designed that should
adequately reproduce the required targets at the specified loads. To check that the
model could also reproduce the original fabric from which the targets had been derived
a further optimisation was carried out where a geometry similar to that of the original
fabric was used as the initial guess point. In this situation the original fabric geometry
was reproduced by the model. It was hypothesised that multiple, or zero, solutions may
exist for any set of targets at specified loads, and this was shown to be the case in the

previous chapter (§4).

The reason the fabric design methodology selected a geometry other than that of the
original fabric from which the targets were derived is due to the optimisation method

employed following a steepest gradient approach. If a point is selected by the pattern

PAGE 311



5. Model validation
search method that appears to be a possible solution then the optimisation will use this
point as the initial start point and follow the steepest gradient to a solution. In this case

the steepest gradient leads not to the original geometry, but to another geometry.

The methodology for the design of a fabric was therefore shown to be adequately

designing fabric geometries for multiple targets at different loads.

5.3.2. Fabric design for five sets of targets
For the validation study three fabrics will be ‘designed’ using targets obtained using the
multiple point target method discussed earlier (§5.2.2.2). The method follows the

procedure laid out below:

1. Biaxial test data is imported and processed using the method described in
§5.2.2.2.

2. Plane Stress Elastic constants are derived from the data for reference

3. Point (plane stress) targets are produced using the method described earlier
(8§5.2.2.2) at equidistant intervals on the fabric’s surface to give five sets of four
targets.

4. An attempt is made to produce a fabric that would respond in the same way as
the fabric from which the original targets were obtained using the model.

5. Where the targets cannot be adequately met variation in the targets is allowed
using the best optimised geometry from the previous step.

6. Incremental steps in variation are allowed in targets, up to 75% variation from
the original targets.

7. If a solution is found at any point the solver will end and display the results

Initially test data for a F702 PVC coated polyester fabric is analysed using the method
described in 5.2.2.2 and the targets obtained from that analysis are shown in Table 5-9.
After the targets are calculated an attempt is made to design a fabric that satisfied the
targets, which it was found could not be achieved. This was repeated a number of times
from different initial start points to ensure that a local minima had not been found

during the optimisation process.
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Pointl | Point2 | Point3 | Point4 | Point5
Eix (target 1) (kN/m) 698 441 569 644 487
E> (target 3) (kN/m) 0.585 0.122 0.324 0.460 0.233
vy, (target 2) 651 620 568 481 528
vz (target 4) 0.433 0.459 0.281 0.028 0.302
P1 (kN/m) 3.76 3.76 7.51 11.27 11.27
P2 (kN/m) 3.76 11.27 7.51 3.76 11.27

Table 5-9: Targets from PVC coated Polyester fabric F702

The targets in Table 5-9 vary from those that would have been used if a single plane

stress representation had been used. The values for a standard plane stress

representation are given in Table 5-1. Most notable is the very low Poisson’s ratio (target

4 at point 4). This will be due to the specifics of the surface at this point, not captured

by the standard plane stress method which would have led to the use of a considerably

higher ratio.
800 700
700K 650
_ X B
£ 600 | = 600
z X <
'
500 ¢ 5 550
u w0 w
400 - 500
300 ' 450
1 3 4 5
Target Point
0.6 0.5
05F
% 0.4
04r
0.3
o~ e —
03 N
0.2
02F .
01F X 0.1
0

3
Target Point

3
Target Point

Figure 5-50: Results of fabric design without variation in targets for F702 targets (1)
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Figure 5-51: Results of fabric design without variation in targets for F702 targets (2)

The results for the initial design to the F702 fabric targets show poor correlation to the
biaxial test results with only one target being achieved in the second test (Figure 5-51)
at the fourth target point for E11. The solver is unable to find the original geometry nor
produce a geometry that satisfies the targets (Figure 5-51 and Figure 5-50). Shown are
two different results of the optimisation, using different initial guesses. As the method
continues to search for better solutions after a local minima has been found by
randomising its start point more than one local minima can be found. To test the entire
possible data space for a best local minima would take a large amount of computing
power or time as each of these sets of results required approximately four hours to find.
Testing the entire space would require a grid search of indefinite fineness to be used; if
only 10 values of each property were tested this would require 4x10° hrs. Whilst the
method would allow the user to carry this out if needed (computing power and memory
not withstanding) it is not considered to be viable where no perfect solution is found.
Both sets of results have similar objective function values (4.19 and 4.49 respectively),

with this being no real indication of the quality of the result.

Whilst the optimisation did not reproduce the original fabric this might be expected
given that the original model did not perfectly reproduce fabric response. This is

discussed in more detail later.
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After the initial optimisation the routine attempts to design a fabric that satisfies the
targets, given some quantity of allowable variation in the target values. In this example

the targets are allowed to vary in steps of 5% (steps of 10% are shown in Figure 5-52).
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Figure 5-52: Target (X) and designed fabric (.) stiffnesses at increasing values of allowable variation from original targets
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Figure 5-53: Target (X) and designed fabric (.) Poisson’s ratios at increasing values of allowable variation from original targets
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Figure 5-54: Target (X) and designed fabric (.) stiffnesses at increasing values of allowable variation from original targets
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Figure 5-55: Target (X) and designed fabric (.) Poisson’s ratios at increasing values of allowable variation from original targets
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5. Model validation
It has been observed that generally the limiting factor when optimising the geometry is
the worst initial estimate. As the geometry has already been optimised to try to achieve
the targets its value does change noticeably during this phase, however, targets move
towards the elastic constants of the designed fabric. This is shown in detail in Figure 5-52

to Figure 5-55.

Some targets are quickly met, whilst others prove more challenging. The optimised point
does on occasion move away from the target, demonstrating how the routine is
minimising error across the entire optimisation. In this case even after a variation in

target of 75% was allowed not all targets were met.

A visual inspection of the optimised geometry (designed geometry) shown suggests that
it does not appear to demonstrate a feasible fabric design (Figure 5-56). However, were
a very thin and flat yarn used in conjunction with a more normally sized yarn it might be
possible to recreate something similar to this. Some improvement to this is made in the
following sections where a fabric robust to variation is considered, but at this stage the
model might be considered to have failed to design a valid fabric. This is one reason the
robust optimisation is necessary. Further constraints on the yarn geometry might be
possible to reduce the possibility of unreproducible fabric designs occurring where
unrealistic fabric geometries are produced. What is, and is not, an unrealistic fabric
geometry is subjective, as the geometry produced fulfils all the criteria given to the
model (i.e. that the yarns are within the maximum and minimum thicknesses described
in the literature review (§2.2.2)). The geometry uses realistic thicknesses of yarns, but
combines them in a fashion that appears to show an inappropriate solution. It is possible
that with further study a relationship for realistic fabric geometry might be produced,
and this used to constrain the fabric design. However, this would further restrict and
constrain the design process, which may result in further reductions in the accuracy of

the optimisation to the biaxial targets.
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Figure 5-56: Geometry of the designed fabric (F702 targets)

The results for a B18059 PTFE coated glass-fibre fabric are now considered below.

Point1l | Point2 | Point3 | Point4 | Point5
Ei: (target 1) (kN/m) 1380 819 2261 2416 1279
Ey (target 3) (kN/m) 0.800 0.139 0.720 1.826 0.626
v, (target 2) 952 1556 1287 619 1115
vy1 (target 4) 0.719 1.288 0.576 0.279 0.868
P1 (kN/m) 10 10 20 30 30
P2 (kN/m) 10 30 20 10 30

Table 5-10: Targets from
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Figure 5-57: Results of fabric design without variation in targets for B18059 targets
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Figure 5-58: Target (X) and designed fabric (.) stiffnesses at increasing values of allowable variation from original targets
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Figure 5-60: Target (X) and designed fabric (.) stiffnesses at increasing values of allowable variation from original targets
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Figure 5-61: Target (X) and designed fabric (.) Poisson’s ratios at increasing values of allowable variation from original targets
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Figure 5-62: Geometry of the designed fabric (B18059 targets)

The results for the B18059 fabric are visually more appealing, and appear to more

accurately match the targets at lower levels of variation. This may be due to the more

linear response of the yarns in a glass fibre fabric, coupled with the higher values of

fabric stiffness. Higher values of fabric stiffness should lead to greater allowable

variation as the model allows targets to move by a fraction of the target.

The results for an ATEX 3000 are detailed below.

Pointl | Point2 | Point3 | Point4 | Point5
Eix (target 1) (kN/m) 617 365 1138 969 959
Ey (target 3) (kN/m) 1.061 0.320 0.586 2.246 0.898
v, (target 2) 409 804 816 209 662
vy1 (target 4) 0.630 1.266 0.564 0.227 0.561
P1 (kN/m) 3.76 3.76 7.52 11.28 11.28
P2 (kN/m) 3.76 11.28 7.52 3.76 11.28

Table 5-11

: Targets from Silicone coated glass-fibre fabric ATEX 3000
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Figure 5-63: Results of fabric design without variation in targets for ATEX3000 targets
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Figure 5-64: Target (X) and designed fabric (.) stiffnesses at increasing values of allowable variation from original targets
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Figure 5-65: Target (X) and designed fabric (.) Poisson’s ratios at increasing values of allowable variation from original targets
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Figure 5-66: Target (X) and designed fabric (.) stiffnesses at increasing values of allowable variation from original targets
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Figure 5-68: Geometry of the designed fabric (ATEX3000 targets)

Failure to reproduce the fabric geometry from which the targets were produced appears
to be endemic with neither the ‘zero variation’ nor ‘target variation allowed’
optimisation routines reproducing the original fabric geometry. In some ways this might
be expected as the original sawtooth model as produced by Bridgens and Gosling (2008)
did not perfectly reproduce fabric stiffnesses. Probable reasons for this and discussion
is made below (§5.3.4) however it should be noted that without any knowledge of the
original fabric the model does achieve in two of the above optimisations (ATEX 3000,

B18059) a possible fabric design. In this regard the model succeeds.

5.3.3. Reducing model constraint by reducing the number of targets:
It is possible to demonstrate that the model solves the optimisation problem in fewer
steps and with less variation when fewer targets are specified for the fabric to be
designed to. The fabric used in this section is a F1202 PVC coated polyester, from which
targets were derived from biaxial test data as specified above (§5.2.2.2). Four, eight and

twelve targets were all designed for.

Principally this demonstrates how additional targets further constrain the model,
leading to a considerably more over constrained situation where further variation in

targets has to be allowed for.

PAGE 332



5. Model validation

Pointl | Point2 | Point3 | Point4 | Point5
Eix (target 1) (kN/m) 944 413 1021 1151 801
E> (target 3) (kN/m) 1049 947 979 877 883
vi, (target 2) 0.45 0.16 0.28 0.40 0.21
vz (target 4) 0.58 0.90 0.23 0.05 0.39
P1 (kN/m) 7 7 14 21 21
P2 (kN/m) 7 21 14 7 21

Table 5-12: Targets for PVC coated polyester F1202 fabric

The test for four targets optimised to a result dissimilar to the original geometry after

an allowable variation of just five percent (Figure 5-69). However, a solution was found

that appears to be considerably more feasible (visually) than those found earlier (§5.3.2).
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Figure 5-69: Designed Geometry for four targets (F1202)
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Figure 5-71: Designed Geometry for twelve targets (F1202)

Whilst both the optimisation for eight and twelve targets resulted in a designed fabric

after an allowable variation of 25% none of the designed fabrics represented the original

fabric from which the targets were measured. Notably the fabric’s geometry becomes

less (visually) realistic as more targets are included, and in this case this may be in part
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5. Model validation
due to the very low value of warp stiffness required for the second set of targets
deforming the results. As the design becomes more over constrained it appears that the
results deviate further from feasible designs, a possible further limiting factor on the

methodology.

5.3.4. Discussion of designed fabrics
It has been demonstrated that whilst the model will accurately design a fabric that is
known to be feasible, i.e. the targets were produced from the sawtooth model using a
central finite difference method, it will fail to reproduce the geometry of a fabric using
the targets generated from biaxial testing of that fabric. A number of reasons for this

are discussed below:

Firstly the original sawtooth model did not perfectly predict the response of a fabric
under biaxial loads (Figure 5-72). The sawtooth model provides a reasonable prediction
of fabric behaviour with the model’s deviation from the mean of the strain range of a
real fabric being between 5.3 and 5.9% (Bridgens and Gosling, 2008) (Figure 5-72). This
presents a problem, namely that the fabric that is designed when targets are taken from
the biaxial data would not be represented perfectly by the sawtooth model. Whereas
upon visual inspection the surfaces in Figure 5-72 appear similar, and the response
appears to be adequately modelled the fabric design model is, in essence, attempting
to design a fabric that may not exist within any possible sawtooth response region. As
such the model deviates from the original targets attempting to find a solution in the
spectrum available to the sawtooth response, within the constraints presented by the

user.
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Figure 5-72: Response surfaces for the sawtooth model and measured response for one geometry (F1202)

Following this it is apparent that the model is over constrained at large numbers of
targets as the targets must vary to allow for a solution to be found. The model is over
constrained in two ways, firstly the number of targets prohibits the movement of the
response planes. This is in contrast to, say, where only one target exists the response
plane will perfectly satisfy the target. And the second source of constraint is the model
parameters, namely that the fabric must be flat (A1 + Az = r1 + r2) and the constraints on
the yarn width and loads. These must be maintained for the model to work, but
constrain the solution. The final form of constraint is on the model parameters. These
are greater than the value of the maximum and minimum values exhibited in testing,

but this does limit the solution.

Whilst the model may be over constrained it has been demonstrated that more than
one solution has been found for feasible targets generated from the sawtooth model. It
is therefore likely that the problems exist in the creation of targets from real fabrics that

are not truly represented by the sawtooth model.

To attempt to define this the following hypothesis is made; that a unique solution that

is not perfectly represented by a model cannot be found by the inverse of that model:
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The principle is that that a predictive model, when set to model a response, may not
perfectly reproduce that original behaviour, but may adequately reproduce it to some
tolerance. In this situation the model has knowledge of the original properties of the

system it is modelling. And as such approximately reproduces the behaviour.

However, if the inverse of the model is taken, and used to attempt to reproduce the
original situation that the predictive model was representing it cannot achieve a perfect
result because the model never perfectly represented the original behaviour. As such
the inverse model, if allowed, will attempt to find a solution in the ‘space’ of possible
solutions that it can interrogate. Therefore the inverse model will find the best fit to the
targets within the space the predictive model considers, and this may look nothing like

the original geometry, but satisfy the targets and constraints placed on the model.

For instance, as above, the sawtooth model reproduces the response of the fabric to an
adequate degree, however, when the inverse model is used it fails to reproduce the
original fabric. This is because the inverse model is attempting to find a solution to the
problem in the ‘space’ of results available to the sawtooth model, in which the original

targets may never have existed, and certainly didn’t exist for that geometry.

This problem may be specific to predictive models of this level of complexity, given that
non-predictive models use factors to increase the accuracy of the original model. As such
factors might ‘direct’ the model to a solution. Less complex models might have fewer
variables to begin with, or simply be more accurate, leading to more readily obtained

targets.

5.3.5. Robust fabric design
In this section an existing fabric is redesigned to improve its robustness to changes in its
constituent geometry. This aims to demonstrate the feasibility of applying the robust
design methodology to real, existing fabrics. If applicable this would allow small changes
to fabrics currently in use to be made in order to improve their robustness. The method
differs from that used earlier (§4.10) in that the original geometry used is measured
from an F702 fabric. The new, robustly designed, F702 fabric cannot be tested to
demonstrate its robustness characteristics as producing a bespoke fabric is beyond the

scope of this project. The fabricis not being redesigned as has been carried out in section
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5.3.2. However, it is being altered slightly (up to one standard deviation) from its existing

geometry.

Two targets (E11 and E2;) are used to demonstrate how the method can be applied. The
fabric’s geometric property variation and yarn and coating stiffness variation are defined

from test results (Table 5-13).

Mean Coefficient
value | of variation
0: (degrees) 0.102 0.108
0, (degrees) 0.125 0.078
L; (mm) 0.624 0.019
L2 (mm) 0.611 0.019
ri (mm) 0.079 0.033
r, (mm) 0.062 0.034
E; (kN/m) 444 0.021
E, (kN/m) 382 0.037
Ex (kN/m) 33 0.056

Table 5-13: Variation in geometry used in the robust optimisation of an F702 fabric

The results of the optimisation (the new robustly designed F702 fabric) are shown in
Table 5-14 and the individual sensitivities are shown in Figure 5-74 and Figure 5-75. An
improvement is made to the sum of the sensitivities from the original 108.9 to the
optimised 102.6, an improvement of 5.8%. This improvement is significant. The
geometry, due to the limit on the overall change that can be made to it, is similar to that
of the original fabric. The new fabric also appears to be reproducible upon a visual

inspection of Figure 5-73.

Result
0: (degrees) 0.098
0, (degrees) 0.135
L1 (mm) 0.630
L2 (mm) 0.606
r1 (mm) 0.080
r2 (mm) 0.065
E1 (kN/m) 438
E> (kN/m) 392
Ex (kN/m) 33.6

Table 5-14: F702 robustly optimised geometry
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Figure 5-73: Geometry of the robustly optimised F702 fabric
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5. Model validation
A number of the geometric properties have become more sensitive to variation,
however, as was shown in the previous chapter (§4.10), small increases in the
susceptibility of the stiffness to one geometric property can mean that the overall

sensitivity of the fabric to such variabilities is reduced.

5.3.5.1. Discussion
The suggested geometry cannot be tested to check that the reduction in sensitivity
described is actually achieved. It is evident that small changes to the geometry of a fabric
can reduce the sensitivity of that fabric to variation in those properties. It is also evident
that this can be achieved by increasing the sensitivity of the fabric to some parts of its
geometry, whilst the overall effect is to reduce the overall sensitivity of the fabric to
variation in its geometry. Information such as this may serve to allow for small
improvements to the robustness of fabrics currently in production whilst maintaining
their overall appearance and response. This could be a cost effective way to improve a

fabric without resorting to long term expensive testing of multiple samples.

Further work will need to be carried out on this method prior to its use in this field

however.
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6. Conclusions and Recommendations for future work
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6.1. Research Summary

This research has been primarily concerned with the creation of a methodology for the
design of bespoke architectural fabrics for particular loading conditions. A model has
been produced that is capable of designing a fabric for specific values of Young’s
modulus, Poison’s ratio and shear modulus. This necessitates the specification of the
loads at which the target values are required, and in the case of the shear stiffness the
angle to which the fabric will deform (§3.4.3). These have then been implemented
alongside a variability analysis to show how a fabric can be designed for not only

mechanical properties but also reliability characteristics (§4.10).

The literature review (§2.3) identified a number of models that might have been used
as the basis of an inverse model, but most of these were not used as the basis of the
inverse methodology due to their representative nature, the unquantified accuracy of
the model, or the lack of any coating consideration. The sawtooth model as previously
developed by Bridgens and Gosling (2008) was selected as the basis of the inverse
modelling process as it fit most closely to the stipulated requirements: It is predictive,
includes a consideration of coating, and is made up of equations that can be
differentiated. Most startling, and notable by absence, is the lack of any previous work
on the design of architectural fabrics using numerical methods other than those
discussed by Behera and Muttagi (2002) and Bartle et al. (2013) which focus on the use

of neural networks. This is an oversight this report has aimed to resolve.
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6.2. Conclusions

The aim of this research was to develop a predictive inverse material model for coated
woven fabrics that was robust with respect to variability in material properties and could
be used to design bespoke architectural fabrics with specific properties at different
loading conditions. This has been achieved with the creation of the inverse sawtooth
method (§3.4.3) for which a design methodology is developed which utilises the model
(§3.5.4) and the extension of this to incorporate robust design principles (§4.10). Each
objective is reviewed below, with a summary of the conclusions that have been drawn

from the relevant chapters.

To complete a full and in depth review of the state of the art of fabric modelling,
design and analysis:

The literature review identified the most relevant fabric type (plain-weave), which has
been the focus of this report, and the various components of a fabric composite were
identified. A yarn level unit cell model was chosen which was shown to give accurate
prediction of fabric stress-strain behaviour without the incorporation of the complex
detail required for fibre and filament modelling (§2.3.2.3). The sawtooth model was
chosen as the basis of the inverse model (§2.3.2.4) due its predictive nature and the
published accuracy of the model (Bridgens and Gosling, 2008, p. 13). In addition the
model included a method for the inclusion of coating properties, unlike a number of

reviewed models.

Formulate an inverse material model:

The inverse material model was successfully formulated (§3.4.3.2), and demonstrated
how the mechanical properties of a fabric can be calculated from the initial geometry
and loaded state of the fabric (§3.7.1). However a full and complete analytical model
was found to be unobtainable, meaning that the model retained a numerical component
(§3.4.3.2). The lack of completely analytical derivatives increases the complexity of the
model programme, and leads to considerable additional computing power being
required when a solution to the derived equations is calculated; up to four hours is
needed to run a fabric design. Further, calculating gradients slows the robust design
methodology such that only two mechanical properties can reasonably be robustly

optimised simultaneously (§4.10).
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The derived equations were initially compared to targets derived from a central finite
difference method using the sawtooth model from which they were formulated (§3.7.1).
This ensured that the fabric design methodology was initially attempting to design a
feasible fabric, i.e. one that could be modelled accurately with the sawtooth model. The
results of this were encouraging with the model finding solutions to fabric design
problems (§3.7.1). At this stage it also became apparent that for any individual set of
targets more than one possible fabric geometry might be applicable as a solution. This
was further confirmed using a Monte Carlo analysis to show that for one target,

considering only two variables, a plane of possible solutions can be identified (§4.7.3).

It has been reasoned that for an increasing number of targets the number of possible
solutions will decrease as the model becomes more constrained, while conversely for a
small number of targets the model will find a solution from a large number of possible
solutions (§5.3.4). The over constraint of the model becomes considerably more
apparent when real targets are designed for (§5.3.2). Where no solution could be found
the design method was programmed such that a relaxation in the required accuracy of

the solver might allow a less than optimal solution to be found (§3.5.4.1).

Incorporate variability of material parameters into the model and assess
sensitivity of the resultant design:

FORM (§4.8) and Monte Carlo (§4.7) methods were used to analyse how a fabric’s
mechanical properties respond to variability, whilst a sensitivity analysis was
incorporated into the design methodology (§4.10). The analysis of particular
components of the unit cell and how the sensitivity of the overall composite is affected
by variance in unit cell properties enabled the creation of a robust design methodology
(§4.10). The individual geometric properties of the fabric were shown to affect the
fabric’s mechanical responses to differing degrees, and for the first time the effect these
properties have on fabric response can be accurately quantified at any stress state for

geometry (§4.10).

The robust design methodology demonstrates how, for the first time, it is possible to
minimise the sum total of the sensitivities of a fabric’s mechanical properties to variation
in individual unit cell properties. Whilst the methods employed do not show exact

correlation to each other they demonstrate how individual property sensitivities can be
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reduced (or increased) whilst reducing the overall sensitivity of a fabric, producing a
more robust fabric design (§4.10). This can be used as a cheap alternative to extensive

testing when initially trying to design a robust fabric.

Complete a validation study:

A methodology for the ravelling and testing of individual yarns was developed to enable
the calculation of individual yarn stiffnesses from which statistical data regarding yarn
stiffnesses can be obtained (§5.2.3). A method to calculate plane stress constants at
discrete points on a fabric’s biaxial stress-stress-strain response surface was also devised
to enable multiple targets to be found at separate stress states (§5.2.2.2). With relation
to this the cause of the stress minimisation method’s inability to accurately describe
fabric plane stress constants for some fabrics was also identified (§5.2.2.2). Where the
strains experienced by a fabric are small det(M) approaches zero, and as such M

becomes singular, meaning that the inverse of M is ill-conditioned.

The validation studies demonstrate that the inverse sawtooth method for the design of
fabrics, whilst accurate when compared to material models, is unusable with regards to
the design of real fabrics (§5.3.2). The reason for this becomes apparent when the
methodology is considered: The fabric design method is excellent at designing a
‘sawtooth fabric’. This means that the method can perfectly design any fabric that exists
in the ‘space’ that the sawtooth model represents. However, the sawtooth model does
not perfectly represent the response of real fabrics (though it does it well) (Bridgens
and Gosling, 2008). The result of this is that the inaccuracy inherent in the predictive
model is translated to the design of the fabric. Or, to put it succinctly, the design
methodology is not actually designing a real fabric, but something very close. Therefore
given the complex nonlinear interactions that govern fabric response the result of the
design is visually considerably different to the fabric from which the biaxial test results

used as targets were obtained (§5.3.4).

In hindsight a considerably more accurate model may be necessary in future to
adequately allow for the prediction of real fabric response. Alternatively the equations
derived in this thesis (§3.4.3.2) could be used to produce fabric response surfaces, or as
part of neural network optimisations, possibly within the ‘knowledge base’ described by

(Behera and Muttagi, 2002, p. 318) (§2.1.2).
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Whilst the inability of the model to reproduce real fabrics detracts from its utility it is

hoped that future work might result in a solution to this being found (§6.3).

To attempt a structural design study using an FE simulation of a true
structural design case:

A structural design study using FE simulation will be necessary to demonstrate the
applicability of the methodologies developed. However, whilst a structural design study
was considered, the limitations of current finite element modelling software, which can
only utilise a single set of fabric properties (i.e. one set of plane stress constants) meant
that it was found to be unfeasible at this time (§1.3). Using separate FE simulations with
differing values of elastic constants was considered, but abandoned because the
deformation of the fabric prior to it reaching the load at which the constants become
relevant would be incorrect. This will be an important part of any future work if software

capable of carrying it out is available (§6.3).
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6.3. Recommendations for future work

Inclusion of a yarn model

The accuracy of the model might be improved by the inclusion of a constitutive yarn
model to replace the assumption of linear elastic yarn response, which has been shown
to only be the case for glass-fibre yarns (§2.2, 5.2.3.4). This would also enable the
designer to select particular yarn geometry and materials that could then be analysed
for response characteristics. The model developed by Madhavan and Naik (2000) might
form the basis of such a component. In addition the tear strength of fabrics might be
analysed in an integrated fashion by considering the tear strength of the yarns that make

up the fabric (Nurwaha and Wang, 2011).

Sinusoidal model

At the inception of this work it was initially hoped that a sinusoidal model might provide
the basis of the governing equations discussed in detail in the previous chapters (§3.4).
However, sinusoidal models available at the time were not presented in an appropriate
manner, nor had been shown to be accurate enough to be used in the presented work
(Wang, 2002; Bridgens and Gosling, 2008). Since that time the work by Colman (2014)
has produced a more complex and accurate model that might form the basis for a

considerable improvement to the presented work.

The inclusion of a geometry that is closer to that of real fabrics presents the possibility
of a more natural design process. The use of a more accurate model should remove (in
part) some of the inherent inaccuracy that became apparent in the presented model
when biaxial test data was considered. As the ground work governing how the defining
equations might be produced has been covered in detail in this thesis (§3.4) the
implementation of the sinusoidal model into this methodology should be a simpler

process.

Powerful computing

More powerful computing will be needed if the method presented is to become any
more complex than that presented in this report. Already the sensitivity calculation
requires considerable computing time (up to eight hours) due to the high number of

variables considered (§4.10). If this were to increase due to the inclusion of a yarn
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material model then the computing power of a standard desktop computer may not be

adequate for the task, and networked servers may be necessary.

Non-rectangular Geometry

Non-rectangular geometry has been eluded to in this report when the isoparametric
finite element was introduced (§3.4.3.3). However, no detailed consideration of non-
perpendicular unit cell geometry has been made in this thesis. This, and its effect on the

shear properties of a fabric are necessary in future work.

Non-plain weave fabrics

It should be possible to extend the model to non-plane weave geometries by using
formulae that define these geometries as the base for the derivatives calculated rather
than the sawtooth model. The application of other material geometries to the method
should enable the use of the inverse model in different industrial sectors, such as
clothing or sail design, and possibly in the design of rigid composites such as wind
turbine blades (Sgrensen, 2009). The latter might require significant alteration to the
presented model. Solid rigid composites, for instance, will undoubtedly have to take
account of out-of-plane deformations which this model makes no reference to, and

include higher stresses, with lower strains (§2.6.1).

Improvement to the shear model

Improvements to the shear model would enable more accurate modelling of fabric shear
response, and allow some uncoupling between shear stiffness and the coating stiffness.
At this time the coating dominates the shear response (§3.7.2), and this limits the
applicability of the model to the design of fabrics for shear stiffness to the selection of a
coating which will in turn decide the shear stiffness of the fabric. Future work like that
carried out by Liu et al. (2004) will hopefully allow for improvements in this area to be

made.

Use in a finite element program

Incorporation of the design methodology into a finite element model will enable the
design of a fabric for conditions required by a structural engineer (§5.4). For instance,
where an engineer might currently require a certain deflected shape, and have to

choose a fabric from those available from manufacturers, the program can offer
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suggestions as to the necessary geometry. Alternatively the program may design a fabric

that would perform as required within the finite element model.

Structural design case study

A structural design study using a working and operational methodology would be able
to demonstrate the applicability of future fabric models to use in the design
environment (§5.4). This would have to incorporate a finite element modelling program
that was able to consider multiple stiffnesses, or include the response surfaces that can
be produced using the sawtooth model. This could then be used to show how a designed
fabric could be utilised in construction to maximise crimp interchange at low
(installation) loads, but provide the correct response at higher loads, as suggested for a

conic structure (§1.3).
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All glossary entries refer to the TensiNet European Design Guide for Tensile Surface

Structures (Forster, Mollart, et al, 2004), the Oxford English Dictionary,

(Oxford_University_Press, 2004), or the ASTM standard terminology documents

(ASTM, 2012; ASTM, 2013).

Anticlastic

An Anticlastic surface has Gaussian
Curvature less than zero. Locally,
Anticlastic surfaces are Saddle shaped.
Most Boundary Tensioned Membrane
Structures are composed of Anticlastic

surfaces.

ASTM
American Society for Testing and

Materials.

Biaxial

In the context of Lightweight Structures
the term Biaxial is typically used in
connection with the elastic behaviour
of the Membrane surfaces. Biaxial
Membrane stresses are measured using
biaxial material tests. In some cases

uniaxial tests are also performed.

Boundary

The terms Boundary and Border are
synonymously used to refer to both the
complete Boundaries of Tensile surface
structural Components, as well as the

individual Boundary sections.

BSI

British Standards Institute.

Cable Net

Surface Structures composed of netting
fabricated from Cables. Cable Nets are
classified as being either regular or
irregular depending on their mesh
geometry. Early Cable Net structures
were usually regular and often
waterproofed by cladding with semi-
rigid materials. Currently Cable Nets are
typically used for zoo aviaries as well as
the reinforcement of Pneumatic

Cushions.

Cable

A flexible Tensile Component.

Catenary

The pure geometrically defined shape
of a Cable or chain hanging under self-
weight only. Sometimes the expression
is, loosely, used to describe any flexible

Boundary or Funicular shape.
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CRE
Continuous Rate of Extension —
normally relating to a tensile testing

machine.

Creep
Slow deformation when a fabric is
stressed resulting in semi-permanent

deformation.

Crimp
The bending of the yarns in a Textile.
Weft yarns typically have higher levels

of Crimp compared to the Warp.

Dimensional Stability
The maintenance of a fabric’s pattern

and weave structure.

Double Curvature
A surface with Gaussian Curvature not

equal to zero has Double Curvature.

Dynamic Relaxation

Popular method used for the Form
finding, Load Analysis and Cutting

Pattern Generation of Lightweight

Structures.

Fabric
In textiles, a planar structure consisting

of yarns or fibres.

7. Glossary

Fill
American name for the weft of a

textile.

Finite Element

A numerical solution method for
problems (Cook et al., 2002)m which
discretises these into solvable

elements.

Foil

Strictly the term Foil refers to a metallic
membrane. However, it is now the
most commonly used term for all
Isotropic structural Membranes

including the popular ETFE Films.

Form finding
The process of determining the Force-

Equilibrant Prestress shape.

Gaussian Curvature

The Gaussian Curvature K of a surface is
equal to the product of the two
principal curvatures ki and ky, K = k; -

k,.

Hydrophobic

Repels or is repelled by water.
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Isotropic

A material whose mechanical
properties are similar in all directions is
termed Isotropic. Conversely if the
material’s mechanical properties vary
with respect to loading orientation, it is
termed Anisotropic. The Coated
Textiles typically used for architectural
Membrane Structures are strongly
elastically Anisotropic, while ETFE Foils

are nearly Isotropic.

Linear density
The measure of the mass of yarn per

unit length.

Melt spinning
A method of rapid solidification of
liquids (i.e. glass) using a cooled

spinning drum or wheel.

Membrane
A Surface Structure with no bending
resistance and thereby capable of

resisting only tensile forces.

Mesh

Expression used during the
Computational

Modelling of structures to describe the

connected collection of Finite Elements

7. Glossary

representing the surfaces and other

structural Components.

MSA)
Membrane Structures Association of

Japan.

Orthotropic

A material is Orthotropic if it is
Anisotropic with the axes of Anisotropy
oriented normally. The woven Textiles
typically used for Textile architecture

have Orthotropic Anisotropy.

Ply Yarn
A yarn made up of more than one yarn

spun together.

Poisson’s ratio

Material constant relating the elastic
behaviour between orthogonal
directions. Sometimes used to model
the Crimp interchange behaviour of

Coated Textile.

Prestress
The Stress carried by a structure when
subject to no externally applied

loading.
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Prestress Ratio

The ratio between the Prestress levels
in the Warp and Weft directions of a
Textile Structure. More generally, the
ratio between the principal Prestress

values of a Membrane Structure.

PTFE
A synthetic polymer:

Polytetrafluoroethylene

PVC

A synthetic polymer: Polyvinyl chloride

Ravel

To remove a yarn from a fabric.

Soap Film

Physical Modelling technique used to
determine Constant Stress forms by
exploiting the energy minimising

behaviour of soap films.

Stiffness

In general engineering, the material
constant used to represent Stiffness is
Young’s Modulus E. E is defined as the
ratio between the Stress and Strain of
an elastically linear material. Due to the
complex microstructure of the Coated
Textile and rope materials typically

used for Tensile Architecture, Stiffness

7. Glossary

is more usually measured and specified
together with the cross sectional area.
The combination of the material
Stiffness constant E with the area A is
referred to as the EA Value. In the case
of Textile, EA values are specified for a

unit width.

Strain
Ratio of the extension under load of a
structural member to the unstressed

length.

Stress

The usual engineering definition for
Stress is force per unit area. Due to the
complex non-uniform nature of the
Coated Textile materials used for
tensile architecture, Textile Stresses are
usually expressed as force per unit

width.

Tenacity
The measure of the strength of a fibre

or yarn.

tex

Measure of linear density, (1 tex=1

g/km).
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Textile
Fabric material usually woven from

orthotropic oriented yarns.
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Technical properties

Precontraint® 702 T2 back PVDF

Standards

TERSUISSE

Yarn PES HT 1100 Dtex A
Weight 750 g/m? - 22 oz/sqyd EN ISO 2286-2
Width 178 cm (-1mm/+1mm)
Tensile strength (warp/weft) 300/280 daN/ 5 cm EN ISO 1421

340/330 Lbs ASTM D 751-00 Cut Strip Method
Tear resistance (warp/weft) 30/28 daN DIN 53.363

85/82 Lbs ASTM D 751-00 Trapezoid Tear Method
Adhesion 10 daN/5 cm EN ISO 2411

Flame retardancy

M2/NF P92-507 » B1/DIN 4102-1 « BS 7837 ¢ Test 2/NFPA 701
CSFM T19 e Group 1/AS/NZS 3837 ® ASTM E84  VKF 5.2/SN 198898

Surface treatment

Fluotop® T2 (High concentration PVDF)

Back side treatment

Weldable PVDF (for a better resistance to pollution of the back side of the fabric)

Product application

Static & permanent structures

702 T2 back capitalizes on the excellent PVDF weathering and without changing the making up process allows a better
PVDF +
aesthetical performance of the membrane under any shape and from any angle.

The technical data here above are average values with a +/- 5% tolerance.

Additional information

Coating thickness at the top of the yarns 240 p

Total thickness 0,56 mm

Light transmission 14% NFP 38-511

White index 82% CIE: International Light Commission
Thermal values ASHRAE standard 74-1988 EN ISO 410

Transmission Ts 9% Ts 10%

Reflexion Rs 76% Rs 79%

Absorption As 15% As 11%

Shading coefficient g 15% g 13%

Visible transmission - Tv 8%

Visible reflexion - Rv 88%

UV transmission T-UV 0% Eppley Solar & Sky U-V radiometer

Global thermal conductivity*

Vertical position: U = 5,6W/m? °C
Horizontal position: U = 6,4W/m? °C

Acoustical weakening index 14 dBA ISO 717
Extreme working temperatures - 30°C/+70°C in static position
Quality management system ISO 9001

* Those data are obtained by calculation through simulations of the average conditions of use, those values must be considered as approximation.

The buyer of our products is fully responsible for their application or their transformation concerning any possible third party. The buyer of our products is responsible for their implementation and
installation according to the standards, use and customs and safety rules of the countries where they are used. Concerning the contractual warranty, please refer to the text of our warranty.

The values here above mentionned are the results of tests performed in conformity with the use and customs in terms of studies, they are given as an indication in order to allow our customers to
make the best use of our products. Our products are subjects to evolutions due to technical progress, we remain entitied to modify the characteristics of our products at any time. The buyer of our
products is responsible to check that the here above data are still valid.

PRECONTRAINT
s @
= >
z el
< >
o r4
L4 -4
) m
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Précontraint Dimensional
Ferrari® stability

100% recyclable

Long life

maintenance

Sustainable development

Easy U\

resistant

T&{ LO? P

100%
recyclable textile

Guarantee
10 years

Specification Service

Ferrari® developed the Texyloop®
technology specifically for the recycling
of composite PVC membranes and
textiles. Through the management of its
end-of-life products Ferrari® is committed
to sustainable development.
www.texyloop.com

FERRARI

BP 54

& 38352 La-Tour-du-Pin Cedex
Tel: +33 (0)4 74 97 66 49
Fax: +33 (0)4 74 83 69 71

FERRARI SA - FRANCE

Ferrari® development is based on
strict adherance to good safety and
environmental practices, that include
an understanding of Life Cycle Analysis
(ACV), selection of the best materials,
and eco-design.

The Company obtained its first ISO
14001 certification in 20083.

STAMOID AG

A Ferrari Group Company

CH 8193 Eglisau - Switzerland
Tel: +41 (0)44 868 26 26
Fax: +41 (0)44 868 27 27

FERRARI TEXTILES CORP
Pompano Beach, FL, USA
Tel: (954) 942-3600
Fax: (954) 942-5555

The Ferrari® specification service is
available to inform you, advise you and
suggest innovative solutions for your
specific requirements.

To detail your project, fill in a form on:
www.ferrari-architecture.com

FERRARI CHINA OFFICE
Shanghai, China

Tel: 0086 21 62814886
Fax: 0086 21 62946165

PRECONTRAINT ' is a Ferrari® registered trademark.

Cover photo: Charles le Chauve College - France
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Precontraint® 1202 T2 back PVDF Standards

Technical properties

TERSUISSE

Yarn PES HT 1100 Dtex/1670 Dtex ©
Weight 1050 g/sgm - 31 oz/sqyd (1250 g/m?) EN ISO 2286-2
Width 178 cm (-1mm/+1mm)
Tensile strength (warp/weft) 560/560 daN/ 5 cm EN ISO 1421

565/565 Lbs ASTM D 751-00 Cut Strip Method
Tear resistance (warp/weft) 80/65 daN DIN 53.363

130/110 Lbs ASTM D 751-00 Trapezoid Tear Method
Adhesion 12 daN/ 5 cm EN ISO 2411

B1/DIN 4102-1 e BS 7837 e Test 2/NFPA 701
CSFM T19 e Group 2/AS/NZS 3837 ¢ VKF 5.2/SN 198898

Fluotop® T2 (High concentration PVDF)
Back side treatment Weldable PVDF (for a better resistance to pollution of the back side of the fabric)
Product application Static & permanent structures

1202T2bask capitalizes on the excellent PVDF weathering and without changing the making up process allows a better
aesthetical performance of the membrane under any shape and from any angle.

Flame retardancy

Surface treatment

The technical data here above are average values with a +/- 5% tolerance.

Additional information

Coating thickness at the top of the yarns 270 u

Total thickness 0,78 mm

Light transmission 10% NFP 38-511

White index 82% CIE: International Light Commission
Thermal values ASHRAE standard 74-1988 EN ISO 410

Transmission Ts 7% Ts 7%

Reflexion Rs 77% Rs 79%

Absorption As 16% As 14%

Shading coefficient g 13% g11%

Visible transmission - Tv 5%

Visible reflexion = Rv 87%

UV transmission T-UV 0% Eppley Solar & Sky U-V radiometer

Global thermal conductivity™ Vertical position: U = 5,6W/m? °C

Horizontal position: U = 6,4W/m? °C

Acoustical weakening index 15 dBA ISO 717
Extreme working temperatures - 30°C/+70°C in static position
Quality management system ISO 9001

* M2 only available on special order at 1250 g/m?.
** Those data are obtained by calculation through simulations of the average conditions of use, those values must be considered as approximation.

The buyer of our products is fully responsible for their application or their transformation concerning any possible third party. The buyer of our products is responsible for their implementation and ins-
tallation according to the standards, use and customs and safety rules of the countries where they are used. Concerning the contractual warranty, please refer to the text of our warranty.

The values here above mentionned are the results of tests performed in conformity with the use and customs in terms of studies, they are given as an indication in order to allow our customers to
make the best use of our products. Our products are subjects to evolutions due to technical progress, we remain entitled to modify the characteristics of our products at any time. The buyer of our
products is responsible to check that the here above data are still valid.
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Précontraint Dimensional Long life Easy u.Vv. Guarantee 100%
Ferrari® stability maintenance resistant 15 years recyclable textile

100% recyclable

Sustainable development

Specification Service

Ferrari® developed the Texyloop®
technology specifically for the recycling
of composite PVC membranes and
textiles. Through the management of its
end-of-life products Ferrari® is committed
to sustainable development.
www.texyloop.com

Ferrari® development is based on
strict adherance to good safety and
environmental practices, that include
an understanding of Life Cycle Analysis
(ACV), selection of the best materials,
and eco-design.

The Company obtained its first ISO
14001 certification in 2003.

The Ferrari® specification service is
available to inform you, advise you and
suggest innovative solutions for your
specific requirements.

To detail your project, fill in a form on:
www.ferrari-architecture.com

FERRARI SA - FRANCE

BP 54

38352 La-Tour-du-Pin Cedex
Tel: +33 (0)4 74 97 66 49
Fax: +33 (0)4 74 83 59 71

STAMOID AG

A Ferrari Group Company

CH 8193 Eglisau - Switzerland
Tel: +41 (0)44 868 26 26
Fax: +41 (0)44 868 27 27

FERRARI TEXTILES CORP
Pompano Beach, FL, USA
Tel: (954) 942-3600
Fax: (954) 942-5555

FERRARI
&

Shanghai, China

PRECONTRAINT ' is a Ferrari® registered trademark.

Cover photo: Royal Air Force Museum - Cosford - UK

FERRARI CHINA OFFICE

Tel: 0086 21 62814886
Fax: 0086 21 629461656

Jean Vasseur Communication - GB 1760 - October 07/V1.01
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PRECONTRAINT’

10028-120258-13028-15025- k¢

Technical recontraint® 1202 S Précontraint® 1302 S Précontraint® 1502 S Standards
properties back PVDF back PVDF back PVDF
Yarn 1100 Dtex PES HT 1100 /1670 Dtex PES HT 1100/2200 Dtex PES HT 1670/2200 Dtex PES HT
Weight 1050 g/m? / 31 oz/sqyd 1050 g/m? (1250 g/m?* / 31 oz/sqyd 1350 g/m?/ 40 oz/sayd 1500 g/m?/ 44 oz/sqyd EN ISO 2286-2
Width 180 cm 180 cm 180 cm 180 cm (-1mm/+1mm)
Tensile strength 420/400 daN/ 5 cm 560/560 daN/ 5 cm 800/700 daN/ 5 cm 1000/800 daN/ 5 cm ENISO 1421
(warp/weft)
Tear resistance 55/50 daN 80/65 daN 120/110 daN 160/140 daN DIN 53.363
(warp/weft)
Adhesion 12 daN/ 5 cm 12 daN/5 cm 13 daN/ 5 cm 15 daN/ 5 cm ENISO 2411
Flame retardancy M2/NF P 92-507 » B1/DIN 4102-1 B1/DIN 4102-1  BS 7837 B1/DIN 4102-1 « BS 7837 B1/DIN 4102-1 » BS 7837
BS 7837 » M2/UNE 23.727 CSFM T 19 « SITAC/SIS 650082 CSFMT 19 e SITAC/SINTEF/ETA/SIS 650082
SITAC/ETA/SIS 650082 VKF 5.2/SN 198898 SITAC/SINTEF/SIS 650082 Test 2/NFPA 701 « CSFM T 19
VKF 5.2/SN 198898  Test 2/NFPA 701 Test 2/NFPA 701 VKF 5.3/SN 198898
CSFM T19 » ASTM E84 Test 2/NFPA 701
Class C/ASTM E 108 B1/0ONORM B 3800-1
Surface treatment Formula S: calibrated PVDF alloy
Reverse side treatment Weldable PVDF (for better resistance to pollution on the reverse side of the fabric).

PVDF back treatment cashes in on the excellent anti-ageing qualities of fluoropolymer and, without modifying fabric making-up procedures,
enables better-looking finishes for all sorts of fabrics, seen from any angle

The figures in the above data-sheet are average values, with a tolerance of +/- 5%.

Additional informations

Coating thickness 350y 270p 300 p 300 p

at the top of the yarns

Total thickness 0,78 mm 0,78 mm 1,02 mm 1,14 mm

White index™ 82 % 82 % 82 % 82 % GIE: Comission Inemationale
de I'écairage

Light transmission** 75% 10 % 556 % 55 % NFP 38-511

Thermal values* ASHRAE 74 1988  ISO EN 410 ASHRAE 74 1988 SO EN 410 ASHRAE 74 1988 ISOEN410  ASHRAE 74 1988 ISO EN 410

Solar Transmission Ts 6% Ts 6% T 7% Ts 6% Ts 5% Ts 45 % Ts 5% Ts 4%

Solar Reflection Rs 78 % Rs 80 % Rs 77 % Rs 80 % Rs 78 % Rs 78 % Rs 78 % Rs 81 %

Solar Absorption As 16 % As 14 % As 16 % As 14 % As 17 % As 1756% As 17 % As 156%

Shading coefficient g12% g 10% g 13% g 10% g 11% g85% g11% g8%

Visible transmission TUV 0% T-UV 0% TUV 0% T-UV 0% Eppley Soar & Sky LV radiometer

Global thermal conductivity

Vertical position U= 5,6W/m2/°C U= 5,6W/m2/°C U= 5,6W/m2/°C U= 5,6W/m2/°C

Horizontal position U= 6,4W/m2/°C U= 6,4W/m2/°C U= 6,4W/m2/°C U= 6,4W/m2/°C

Acoustical weakening Rw: 15 dBA Rw: 15 dBA Rw: 16 dBA Rw: 17 dBA IS0 717

index Tolerence +/- 1 dBA

Extreme working temperatures - 30°C/+ 70°C - 30°C/+ 70°C - 30°C/+ 70°C - 30°C/+ 70°C In static position

Quality management system 1SO 9001

* M2 classffication is only available on request. Specially manufactured at 1250 g/sgm - ** White value 8126S only.
Those data are obtained by calculation through simulations of the average conditions of use, those values must be considered as approximation.

The buyer of our products is fully responsible for their application or their transformation concerning any possible third party. The buyer of our products is responsible for their implementation and ins-
tallation according to the standards, use and customs and safety rules of the countries where they are used.

Concerning the contractual warranty, please refer to the text of our warranty. The values here above mentionned are the resuits of tests performed in conformity with the use and customs in terms of
studies, they are given as an indication in order to allow our customers to make the best use of our products. Our products are subject to evolutions due to technical progress, we remain entitled to
modify the characteristics of our products at any time. The buyer of our products is responsible to check that the here above data are still valid.

100% recyclable

Sustainable development

Specification Service

=

Ferrari® developed the Texyloop® tech-
nology specifically for the recycling of
composite PVC membranes and textiles.
Through the management of its end-of-life
products Ferrari® is committed to sustai-
nable development.
www.texyloop.com

(

Ferrari® development is based on strict
adherance to good safety and environ-
mental practices, that include an
understanding of Life Cycle Analysis
(ACV), selection of the best materials,
and eco-design. The Company obtained
its first ISO 14001 certification in 2003.
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The Ferrari® specification service is
available to inform you, advise you and
suggest innovative solutions for your
specific requirements.

To detail your project, fill in a form under:

‘www.ferrari-architecture.com

FERRARI SA - FRANCE

BP 54

38352 La-Tour-du-Pin Cedex
Tel: +33 (0)4 74 97 41 33
Fax: +33 (0)4 74 83 59 71

STAMOID AG

A Ferrari Group Company

CH 8193 Eglisau - Switzerland
Tel: +41 (0)44 868 26 26
Fax: +41 (0)44 868 27 27

FERRARI TEXTILES CORP
Pompano Beach, FL, USA
Tel: +1(954) 942-3600
Fax: +1(954) 942-5555

FERRARI CHINA OFFICE
Shanghai, China

Tel: 0086 21 62814886
Fax: 0086 21 62946165

Jean Vasseur Communication - GB 1757 - November 07/V1.02

PRECONTRAINT 'is a Ferrari® registered trademark.

Cover photo: School playground, Wellington, New Zealand



' PRECONTRA INT Composite membranes for textiVIé buildings

1002S-1202S.13025-1502S. ks Main applications: temporary and permanent buildings.

m PVDEFE freatment — unique know-how

Ferrari® is a precursor in PVDF treatments for
architectural textile membranes. The technology
has been available for over 15 years and is
available in a very extensive range to meet
many performance requirements.

For PVDF to really come into its own as an
anti-ageing agent with anti-pollution adhesion
features a calibrated formulation concentration is
required. As Formule S is a weldable formulation
it is easier to fabricate, and comes in a wide
range of colours.

America's Cup China Team = Va/ence = A

m Formula S and back PVDF

* Maintenance and cleaning are easy because
Formula S contains a calibrated surface concen-
tration of PVDF fluoropolymer. Moreover, PVDF
treatment on the back of PVDF cashes in on the
excellent anti-ageing qualities of fluoropolymer and,
without modifying fabric making-up procedures,
enables better-looking finishes for both sides of
fabrics, seen from any angle.

* Welding performance: with simple HF welding,
assembled sections stand up to high temperatures
while bearing considerable tension.

e Colour range: Formula S back PVDF is possible
in the Précontraint® 502 range of colour shades
(except for aluminium and "metallic"). Other
colour shades upon request after studying the
UV behaviour.

e

Gymnasium - Espo - Finland

Hotel Al Shark - Doha - Qatar
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Weave of high-tenacity
polyester threads

Ferrari® Précontraint textiles respect
the weft yarn direction which stays
identical from one batch to the other.

Précontraint® textiles have very low
crimp, that is similar in both warp
and weft direction.

Précontraint® 702

e Longevity: because Ferrari® Précontraint mem-
branes have thicker coating at the top of the
yarns, they keep their qualities of mechanical
resistance for a long time—a key factor in the long
life of your installations.

% Residual tensile strength
100

An independent ENKA study
80 1 of three textiles (all the same
70 + material but with different
degrees of coating thickness at
the top of the yarns).

30 - Exposure to in natural conditions
20 + over a period of 10 years in
10+ ‘ ‘ Florida, USA.
4 132 5 4567 8 610

W 230 ym ™ 50um W 20 pm Years

Airbus hangar, 1982

Germany — Précontraint® 1302
Resistance to traction after 22 years:
Warp 97 % - Weft 84 %

Exhibition marquee, 1982

Port Saint Louis — Précontraint® 1302
Resistance to traction after 18 years:
Warp 86 % - Weft 76 %

1®

Worldwide patented Ferrari® Précontraint® technology consists of prestressing
Surface the textile base cloth both before and during all the coating operations. Unlike
traditional textiles Ferrari® Précontraint® membranes are subjected to regular,
balanced tension both warpwise and weftwise that results in similar elongation
characteristics in both directions.

This gives — very considerable dimensional stability — limited creep over time
— longer life — performance homogeneity from batch to batch.

Conventional coated textiles exhibit
serious deformation of the weft yarn
which in addition vary greatly from
one batch to the other.

Conventional coated textiles presents a
high level a crimp in the weft direction.

Type | classic coated textile

e Homogeneity: Major textile architectural pro-

jects or those that are targeting a level of stan-
dardization for industrial applications, are car-
ried out using modules or panels that are
reproduced in several units. It is therefore essential
that the compensation calculations and cutting
plans made from a set of values are reliable for
all the fabric batches used. The Précontraint®
technology guarantees this uniformity.

e Limited creep: The Précontraint® technology
controls the weft direction and significantly
reduces the creep phenomenon which appears
to be 3 to 4 times higher with conventional
fabrics. With Précontraint® textiles, the initial
shape of the membranes is therefore controlled
and maintained over time.

m Technical features PRECONTRAINT®

1002S-1202S-1302S-1502S- %6
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Précontraint®
Ferrari®
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100% recyclable

Dimensional
stability

Long life

12 year

textile guarantee

U.Vv. Flame Easy
resistant retardant maintenance






ontraint® 8126 S: standard products (in stock),
502 range of colours: production to order.
of welding parameters are necessary.




VERSEIDAG

COATING AND COMPOSITE

duraskin®

VERSEIDAG-INDUTEX GmbH
Deutschland

Industriestrasse 56, 47803 Krefeld
Postfach 1023 13, 47723 Krefeld
Phone +49 2151 876-0

Fax 4492151 876-291

e-mail duraskin@vsindutex.de

Office Shanghai

China

Room 1002, No.333 Jingang Road
Shanghai 201206, PR. China
Phone/Fax +86 21 5865 2805
Mobile +86 1350 168 5081
e-mail long@duraskin.cn

L

Membranen PTFE
Membranes PTFE
Membranes PTFE
Membranas PTFE

VERSEIDAG seemee (U.S.) Inc.
USA

4 Aspen Drive

Randolph, New Jersey 07869
Phone +1 973252 1189

Fax  +1 973252 1109

e-mail info@seemeeus.com

VERSEIDAG-INDUTEX GmbH-MENA
Jordan

1st Floor — Offices No. (101-103)
219-Al Madina Al Munawara Street

P.O. Box 1909, Amman 11941, Jordan
Phone +962 6 554 5981

Fax 4962 6554 5982

e-mail mbahsh@uvsindutex.jo

B 18059

VERSEIDAG seemee UK Ltd.
UK

Collingwood House, Alington Road
Eynesbury, St. Neots

PE19 6YH Cambridgeshire

Phone +44 1480 213700

Fax  +44 1480 213609

e-mail info@seemeeuk.com

www.vsindutex.de

Ay duraskin

The reliable protection
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DE Typ IV B 18059

Tragergewebe Glasfaser EC 3/4
Beschichtung PTFE - Polytetrafluorethylen
Flachengewicht (g/m?) DIN EN ISO 2286-2 1550

Breite (cm) DIN EN ISO 2286-1 470

Hochstzugkraft (N/5 cm) DIN 53354 Kette/Schuss 8000/7000

WeiterreiBkraft (N) DIN 53363 Kette/Schuss 500/500

Haftung (N/5 cm) DIN 53357 100

Transluzenz bei 550 nm (%) DIN 5036 11

Brandverhalten DIN 4102 B1*

Hinweis: Produkt ist nicht zu vernahen, sondern mit Heizbalken zu verschweiBen. “Weitere Zertifikate erhaltlich auf Anfrage. Anderungen, die dem technischen Fortschritt dienen,
behalten wir uns vor. Werte ohne Toleranzangaben sind Nennwerte mit einer Toleranz von £ 5%. Die Angaben entsprechen unserem heutigen Kenntnisstand und sollen ohne
Rechtsverbindlichkeit informieren. Transluzenz bezieht sich auf ausgebleichte Version.

UK Type IV B 18059

Base fabric Glass fibre EC 3/4

Coating PTFE - polytetrafluoroethylene
Total weight (g/m?) DIN EN ISO 2286-2 1550

Width (cm) DIN EN ISO 2286-1 470

Tensile strength (N/5 cm) DIN 53354 warp/weft 8000/7000

Tear resistance (N) DIN 53363 warp/weft 500/500

Adhesion (N/5 cm) DIN 53357 100

Translucency at 550 nm (%) DIN 5036 11

Flame retardancy DIN 4102 B1*

Note: Product must not be sewn, but hot-bar welded. *Additional certificates available on request. Subject to change regarding technical upgrades. Values indicated
without tolerance levels are nominal values with a tolerance range  5%. All data presented here is given to the best of our current knowledge for guidance purposes
and is not legally binding. Translucency refers to bleached version.

F Type IV B 18059

Tissu support Fibre de verre EC 3/4
Enduction de base PTFE - Polytétrafluoréthyléne
Poids total (g/m?) DIN EN ISO 2286-2 1550

Largeur (cm) DIN EN ISO 2286-1 470

Résistance a la eupture (N/5 cm) DIN 53354 chaine/trame 8000/7000

Résistance a la déchirure (N) DIN 53363 chaine/trame 500/500

Adhésion (N/5 cm) DIN 53357 100

Translucidité a 550 nm (%) DIN 5036 11

Réaction au feu DIN 4102 B1*

Remarque : le produit ne doit pas étre cousu mais soudé a l‘aide d‘une électrode chaude. “D‘autres certificats sont disponibles sur demande. Sous réserve de toutes modifications
dans le cadre d'améliorations techniques. Les valeurs mentionneés sans tolérance sont des valeurs nominales avec une tolérance de & 5%. Les indications correspondent a notre
savoir actuel et sont données a titre informatif sans obligation juridique. La translucidité se rapporte a la version blanchie.

ESP Tipo IV B 18059

Tejido base Fibra de vidrio EC 3/4
Revestimiento PTFE - Politetrafluoretileno
Peso total (g/m’) DIN EN ISO 2286-2 1550

Ancho (cm) DIN EN ISO 2286-1 470

Resistencia a la rotura (N/5 cm) DIN 53354 urdimbre/trama 8000/7000

Resistencia al desgarro (N) DIN 53363 urdimbre/trama 500/500

Adherencia (N/5 cm) DIN 53357 100

Translucidez en 550 nm (%) DIN 5036 11

Ignifugacion DIN 4102 B1*

Nota: El producto no debe ser cosido, sino soldado con barra caliente. *Otros certificados obtenibles previa peticion. Reservado el derecho a realizar modificaciones destinadas al
avance técnico. Los valores sin datos de tolerancias obedecen a valores nominales con una tolerancia de £ 5%. Los datos se corresponden con nuestro estado actual de conocimiento
y su finalidad es informar sin vinculacion legal. La translucidez hace referencia a la version blanqueada.

10_2010_Musterblatt_duraskin

duraskin® Germany
Phone +49 2151 876-0
Fax 4492151 876-291
e-mail duraskin@vsindutex.de
www.vsindutex.de

duraskin

Member of, Jj JAGENBERG Group The reliable protection



VERSEIDAG

COATING AND COMPOSITE

duraskin®

VERSEIDAG-INDUTEX GmbH
Deutschland

Industriestrasse 56, 47803 Krefeld

Postfach 1023 13, 47723 Krefeld
Phone +49 2151 876-0

Fax  +49 2151 876-291
e-mail duraskin@vsindutex.de

Office Shanghai
China

Room 1002, No.333 Jingang Road

Shanghai 201206, PR. China
Phone/Fax +86 21 5865 2805
Mobile +86 1350 168 5081
e-mail long@duraskin.cn

Membranen PTFE
Membranes PTFE
Membranes PTFE
Membranas PTFE

VERSEIDAG seemee (U.S.) Inc.
USA

4 Aspen Drive

Randolph, New Jersey 07869
Phone +1 973252 1189

Fax 41973252 1109

e-mail info@seemeeus.com

VERSEIDAG-INDUTEX GmbH-MENA
Jordan

1st Floor — Offices No. (101-103)
219-Al Madina Al Munawara Street

P.O. Box 1909, Amman 11941, Jordan
Phone +962 6 554 5981

Fax 4962 6554 5982

e-mail mbahsh@uvsindutex.jo

B 18089

VERSEIDAG seemee UK Ltd.
UK

Collingwood House, Alington Road
Eynesbury, St. Neots

PE19 6YH Cambridgeshire

Phone +44 1480 213700

Fax  +44 1480 213609

e-mail info@seemeeuk.com

www.vsindutex.de

Ay duraskin

The reliable protection
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DE Typ 1l B 18089

Tragergewebe Glasfaser EC 3/4
Beschichtung PTFE - Polytetrafluorethylen
Flachengewicht (g/m?) DIN EN ISO 2286-2 1150

Breite (cm) DIN EN ISO 2286-1 470

Hochstzugkraft (N/5 cm) DIN 53354 Kette/Schuss 7000/6000

WeiterreiBkraft (N) DIN 53363 Kette/Schuss 500/500

Haftung (N/5 cm) DIN 53357 80

Transluzenz bei 550 nm (%) DIN 5036 14

Brandverhalten DIN 4102 B1*

Hinweis: Produkt ist nicht zu vernahen, sondern mit Heizbalken zu verschweiBen. *Weitere Zertifikate erhaltlich auf Anfrage. Anderungen, die dem technischen Fortschritt dienen,
behalten wir uns vor. Werte ohne Toleranzangaben sind Nennwerte mit einer Toleranz von £ 5%. Die Angaben entsprechen unserem heutigen Kenntnisstand und sollen ohne
Rechtsverbindlichkeit informieren. Transluzenz bezieht sich auf ausgebleichte Version.

UK Type Il B 18089

Base fabric Glass fibre EC 3/4

Coating PTFE - polytetrafluoroethylene
Total weight (g/m?) DIN EN ISO 2286-2 1150

Width (cm) DIN EN ISO 2286-1 470

Tensile strength (N/5 cm) DIN 53354 warp/weft 7000/6000

Tear resistance (N) DIN 53363 warp/weft 500/500

Adhesion (N/5 cm) DIN 53357 80

Translucency at 550 nm (%) DIN 5036 14

Flame retardancy DIN 4102 B1*

Note: Product must not be sewn, but hot-bar welded. *Additional certificates available on request. Subject to change regarding technical upgrades. Values indicated
without tolerance levels are nominal values with a tolerance range  5%. All data presented here is given to the best of our current knowledge for guidance purposes
and is not legally binding. Translucency refers to bleached version.

F Type lll B 18089

Tissu support Fibre de verre EC 3/4
Enduction de base PTFE - Polytétrafluoréthyléne
Poids total (g/m?) DIN EN ISO 2286-2 1150

Largeur (cm) DIN EN ISO 2286-1 470

Résistance a la rupture (N/5 cm) DIN 53354 chaine/trame 7000/6000

Résistance a la déchirure (N) DIN 53363 chaine/trame 500/500

Adhésion (N/5 cm) DIN 53357 80

Translucidité a 550 nm (%) DIN 5036 14

Réaction au feu DIN 4102 B1*

Remarque : le produit ne doit pas étre cousu mais soudé a l‘aide d‘une électrode chaude. “D‘autres certificats sont disponibles sur demande. Sous réserve de toutes modifications
dans le cadre d'améliorations techniques. Les valeurs mentionneés sans tolérance sont des valeurs nominales avec une tolérance de & 5%. Les indications correspondent a notre
savoir actuel et sont données a titre informatif sans obligation juridique. La translucidité se rapporte a la version blanchie.

ESP Tipo Il B 18089

Tejido base Fibra de vidrio EC 3/4
Revestimiento PTFE - Politetrafluoretileno
Peso total (g/m’) DIN EN ISO 2286-2 1150

Ancho (cm) DIN EN ISO 2286-1 470

Resistencia a la rotura (N/5 cm) DIN 53354 urdimbre/trama 7000/6000

Resistencia al desgarro (N) DIN 53363 urdimbre/trama 500/500

Adherencia (N/5 cm) DIN 53357 80

Translucidez en 550 nm (%) DIN 5036 14

Ignifugacion DIN 4102 B1*

Nota: El producto no debe ser cosido, sino soldado con barra caliente. *Otros certificados obtenibles previa peticion. Reservado el derecho a realizar modificaciones destinadas al
avance técnico. Los valores sin datos de tolerancias obedecen a valores nominales con una tolerancia de £ 5%. Los datos se corresponden con nuestro estado actual de conocimiento
y su finalidad es informar sin vinculacion legal. La translucidez hace referencia a la version blanqueada.

duraskin® Germany
Phone +49 2151 876-0
Fax 4492151 876-291
e-mail duraskin@vsindutex.de
www.vsindutex.de

duraskin

Member of, Jj JAGENBERG Group The reliable protection
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Atex 3000 TRL

® TRL (translucent)

® Matt or gloss

® Unlimited colourrange

® Bi-colour / Metallic & blackout
® Perforated

® Aero coating

Highly translucent|up to41%
Blocks out harmful UV light
Fire resistant

Temperature range -50°C / +200°C

Long-life!span 25 years +
Weatherproof & hydrophaobic
Flexible & crease resistant
Non toxi¢ & PVEfree
Recyclable and sustainable

Think G£§e~

Rree i

Think Atex™

www.atex-membranes.com



Atex 3000 TRL

APPLICATIONS

BASE FABRIC
Yarn

Weight

Weave style

COATED FABRIC
Coating

Tensile strength

Trapezoidal tear

Crease resistance
Total weight
Thickness

Standard Widths

Bi-Axial Mechanical properties

Acoustic attenuation

OPTICAL VALUES
Transmission
Reflection
Absorption
FABRICATION

Sewing (PTFE yarn)
Welding (silicone tape)*

CHARACTERISTICS
Temperature Range
Capillary Rise

FIRE RATING

UK
DE

TYPE I

Atex 3000 TRL - A popular fabric for architects combining excellent tensile strength in
conjunction with high translucency for interior or external applications. Perfect for light
weight tensile membrane structures and shade sails.

Glass-fibre

WITH ANTI-WICK TREATMENT
Clear Silicone Elastomer

> 4000 (N/5cm)
> 3900 (N/5cm)

Tensile > 2000 (N/5cm)

with Anti-wick treatment

100%
340 (g/m?)

Plain

100%

80 (kN/m)
78 (kN/m)

> 190N
> 190N

>92%
605 (g/m?)
0.45 mm

2000/2500/3000 mm
Available on request

Available on request
Standard D65
41.0%

41.0%

18.0%

Peel 180° > 150 (N/5cm)

-50° to + 200°C
<5 (mm/24h)

* depending on equipment, must be in accordance with specified adhesive tape grade and coordinated parameters.
( Company may change these specifications from time to time subject to a programme of continous improvement.)

This data sheet is for guidance only.

Valmiera Glass UK Ltd

Sherborne, Dorset, DT9 3RB, England
Fax: +44 1935 811 822

Tel: +44 1935 813 722
www.atex-membranes.com

Regional Atex sales offices in: Germany, Italy, India, Australia, France, Brazil

Email: atex@valmiera-glass.com

DIN EN 5384

ISO 1421
ISO 1421

ASTM D4851

DIN EN 5384

DIN EN 410

DIN EN 410

DIN EN 410

DIN 53 925

BS 476:Part 6:1989,Part 7:1997
DIN 4102

VALMIERA GLASS®

2 INDUSTRIAL FABRICS
Tens}et IFAI Association International
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Atex 5000 TRL

® TRL (translucent)

® Matt or gloss

® Unlimited colourrange
® Bi-colour / Metallic

® Blackout

® Aero coating

Highly translucent up to21%
Blocks out harmful UV light

Fire resistant

Temperature range -50°C / +200°C
Long-life!span 25 years +
Weatherproof & hydrophaobic
Flexible & crease resistant

Non toxi¢ & PVEfree

Recyclable and sustainable
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Atex 5000 TRL

APPLICATIONS

BASE FABRIC
Yarn

Weight

Weave style
COATED FABRIC
Coating

Tensile strength

Trapezoidal tear

Crease resistance
Total weight
Thickness

Standard Widths

Bi-Axial Mechanical properties

Acoustic attenuation

OPTICAL VALUES
Transmission
Reflection
Absorption
FABRICATION

Sewing (PTFE yarn)
Welding (silicone tape)*

CHARACTERISTICS
Temperature Range
Capillary Rise

FIRE RATING

UK
DE

TYPE Il

Atex 5000 TRL - A high strength textile adapted for large scale tensile membrane
structures. This mid-weight fabric offers outstanding weather protection.

Glass-fibre

WITH ANTI-WICK TREATMENT
Clear Silicone Elastomer

> 6500 (N/5cm)
> 6000 (N/5cm)

Tensile > 4000 (N/5cm)

with Anti-wick treatment

100%

130 (kN/m)
120 (kN/m)

> 550N
> 550N

>99%

1165 (g/m?)

0.80 mm
2000/2500/3000 mm
Available on request

Available on request
Standard D65
21.0%

75.0%

4.0%

Peel 180° > 150 (N/5cm)

-50° to + 200°C
<5 (mm/24h)

Class 0
B1

* depending on equipment, must be in accordance with specified adhesive tape grade and coordinated parameters.
( Company may change these specifications from time to time subject to a programme of continous improvement.)

This data sheet is for guidance only.

Valmiera Glass UK Ltd

Sherborne, Dorset, DT9 3RB, England
Fax: +44 1935 811 822

Tel: +44 1935 813 722
www.atex-membranes.com

Regional Atex sales offices in: Germany, Italy, India, Australia, France, Brazil

Email: atex@valmiera-glass.com

DIN EN 5384

ISO 1421
ISO 1421

ASTM D4851

DIN EN 5384

DIN EN 410

DIN EN 410
DIN EN 410

DIN 53 925

BS 476:Part 6:1989,Part 7:1997

DIN 4102
v
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VALMIERA GLASS®
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Tens}et IFAI Association International
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A. Appendix

A.2. Appendix B: Conference Paper: A Predictive model for the
design of functional textiles
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VI International Conference on Textile Composites and Inflatable Structures
STRUCTURAL MEMBRANES 2013
K.-U.Bletzinger, B. Kroplin and E. Ofiate (Eds)

A PREDICTIVE MODEL FOR THE DESIGN OF FUNCTIONAL
TEXTILES

STRUCTURAL MEMBRANES 2013
C.N.ILIFFE ", B.N.BRIDGENS AND P.D.GOSLING "

“ School of Civil Engineering and Geosciences
University of Newcastle upon Tyne
Newcastle upon Tyne, NE1 7RU, UK
Email: ben.bridgens@ncl.ac.uk, web page: http://www.ncl.ac.uk/ceg/

Key words: Predictive model, material design, woven fabric, textile, biaxial, yarn geometry,
composite, fabric.

Summary: This report proposes a method for the design of a fabric for specified mechanical
properties at multiple biaxial-stress states.

1 INTRODUCTION

Functional textiles have a wide variety of uses including large scale roof structures ™,
medical applications [, and as reinforcement for composite materials. Functional textiles are
typically manufactured based on simplified engineering requirements (e.g. weight and
uniaxial strength), with other properties (such as detailed analysis of stiffness) determined
retrospectively through physical testing. The work presented here demonstrates a
methodology for the design of bespoke functional textiles to meet detailed engineering
requirements, with the focus on the biaxial response of flexible coated woven fabrics. The
method employed uses a semi-analytical optimisation routine to determine the optimum fabric
geometry and constituent material properties for detailed material stiffness requirements.

Previously developed mechanical ‘unit cell’ models have been shown to provide a good
prediction of the response of architectural plain-weave fabrics under biaxial load, and have
therefore formed the basis of the work ™ . The derivatives of the unit cell equilibrium
equations have been determined and this allows the fabric parameters to be optimised for a
detailed set of biaxial and shear stiffness requirements at different stress levels. Initial
validation using the model to design feasible, known fabrics has shown good results and
demonstrated the potential utility of this approach.

2 SCOPE AND METHODOLOGY

2.1 Biaxial response

Coated architectural fabrics are employed in biaxial stress states and have ‘“negligible
bending or compression stiffness” ! meaning loads are resisted through tension, and as such
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the model was required to work with biaxial input and output parameters. Therefore the
response characteristics under biaxial load are considered to be the Young’s moduli in both
warp and weft directions (E1; and E»;) and the Poisons ratios of the fabric (vi2 and va1).

Whilst shear response under biaxial load “is crucial in order to build double-curvature
tensioned structures”™ the shear modulus (G) is not considered in the current version of this
model as the response has been found to be dominated by the coating stiffness, currently
modelled as linear. It is proposed that later versions of this model will include a module for
the consideration of shear effects.

2.1 Sawtooth modelling

The sawtooth model developed by Menges and Meffert [”! and further developed and used
by Bridgens ©* “ was the basis of the work. It was chosen as it allowed for the possibility of
truly predictive design, as the equations contain no factors that need to be derived through
testing, and the equations themselves lend themselves to differentiation.

The method considers a unit cell of fabric as shown in Figure 3, and idealises this as a set
of two orthotropic yarns that are perpendicular, as shown in Figure 1 and Figure 2.

TOut of plane L, ¢ Fci Li,
Warp/weft

Figure 2: Further definitions within the unit cell
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Figure 3: Unit Cell representation (Plain Weave)?

Unlike the previously developed models the coating is represented by a single
Isoparametric Plane Stress element as described by Cook, Malkus and Plesha . This change
was made in preparation for the analysis of shear response and the possibility of non-
perpendicular geometry. The equations defining the response of the unit cell are therefore
published as:

)

E
_I; 2) (51,2 + Vk52,1)(1 + 52,1) ,
k

Fk1,2 =2 L2,1 <1

F, 1,2 ]
Y, =Y, 1+ =22,
1,2 1,2 [ 2Ey1‘2L2'1

Areal'z = 2W1‘2r1'2 B

o , i
Wiz = T Lyy
2,1
b Areaq ,
12 =5, Wi

[3.4

constrained by the following equations which ensure geometric continuity and force
equilibrium:

(n+mr)==U +4,) , 2
Fqy=F, ,

F,, = Fyy, cos 6'1_2 +Frio
[3.4]

where the subscripts 1 and 2 refer to the warp and weft directions respectively. The subscripts
k and y refer to the coating and yarn respectively. The apostrophe refers to a value after
deformation. Other terms included are the yarn radius (r), the yarn length (L) (1/4 the yarn
wavelength), force (F), yarn amplitudes (A), yarn widths (w) (1/2 the yarn width), the yarn
cross-sectional area (Area), Young’s Moduli (E), and yarn length (Y) (includes out-of plane
distance).
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3 RESULTS AND DISCUSSION

3.1 Construction of defining equations

Once the equations defining the unit cell are available it is possible to calculate the
response characteristics of the fabric numerically, employing a finite difference method.

However, numerical perturbation does not lend itself to optimisation, which is necessary to
design a bespoke fabric. To produce equations that can be used in conjunction with

optimisation routines it is necessary to find the derivatives % (for Ej12) and LEF (for
1,2

d€2,1
. .. dF .
Ei221). The derivative di refers to the Young’s modulus of the unit cell, and must be

€12

converted to the value for the whole fabric as shown in equation 3. The derivative 22 s

€2,1

needed to produce the Poisson’s ratios, as shown in equation 4.

E11,22unit cell _ E11,22gl0bal % L2,1 X 2 (3)
V1o 1 (4)

(11

To find the derivatives the applied force was determined in terms of the unit cell variables,
and strain as shown in equation 5. Equations 6 through 9 are then necessary to calculate
further derivatives.

_ (Fz,l - Fk2,1) ((7”1 +1'y) — L1,2(1 + 51,2) tan 9’1,2) ®)

= + F
12 Lz‘l(l + 52_1) tan @', , .2

E 6
Fri2=2La; (1_—’;2) (€12 +vice21) (1 + €2,1) ©
k

oo 2 )

b2 (1+¢&,)
8)

(For — Fe) ) (
6',, = -1 (1 0,,— : :
2,1 = COS (( + 52,1) cos b, <2E2'1L1,2(1 n 81'2)
9/1‘2 — tan_l <(7J1 + Trz) - Lz‘l(l + 82'1) tan 9’2'1) (9)
Li,(1+¢,)

To calculate the full derivatives it is necessary to find the partial derivatives for all the
variables. There are numerous variables that are inter-related with relation to the defining
equations expressed earlier (equations 1 and 2). As such equations 10 and 11 represent the
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calculation that needs to be performed to produce the required derivatives.

dF;, _ oF,, 0F, _09’1,2 oF, _67'1,2 oF, _67"2,1 oF, _052,1 0F, .aFkl,Z 0F, ) 0Fi21
de;, 0&, 00'1, 0&, 0r'y, 0&, 0r'y, 0&, 0&,; 0&, O0Fy, 0&, O0F,; 0&,

(10)
dFy, _ oF,, 0F, _09’1,2 oF, _67'1,2 oF, _67"2,1 oF,, _651,2 oF, .aFkl,Z 0F, ) 0Fi21

d52,1_652,1 00", 0&, 0r'y, 0&q O0r'y; 0&, 0&, 0&; 0Fy, 0&;1 0Fgp, 0&;
(11)

Unfortunately it can be shown that due to the interdependence of the variables it is not
possible to produce a fully analytical answer to equations 10 and 11. To produce useable
equations one value must be calculated iteratively, as shown in equation 12. This must be
calculated independently using the equilibrium model each time a new value is required.

5e1,  Aey (12)
8eyq  Aey,y

Whilst this is now a semi-analytical method the equations derived do still allow for
optimisation to be used to design a bespoke fabric.

3.2 The method of optimisation

MATLAB P! was used to produce an optimisation script for the minimisation of the
defining equations. Internal functions were used to optimise the equations for a set of targets
produced. The optimisation methodology is briefly summarised in Figure 4. The method
initially uses a pattern search algorithm to refine the search ‘area’, and then uses an internal
MATLAB search routine to find the “minimum of [a] constrained nonlinear multivariable
function” ™. If no perfect solution can be found then the script implements a gradually
varying allowance of variation from the targets to allow a solution to be found. This could be
changed to allow for accurate optimisation for some important targets, and ‘as close as
possible” optimisation for other targets of less significance to the designer.

Using a function that allows for multiple constraints is used to incorporate the constraint
equations (equations 2). If no perfect solution is found then bounds are placed on the targets,
and these are allowed to vary by a percentage. This allows the script to find results where no
realistic solution would be possible.

Five sets of targets are used in the current model to demonstrate how the method can be
used to design for multiple material properties for a single fabric at different loads. More
targets could be implemented, however the current number demonstrates the method’s utility
without making any solution too difficult, or computationally expensive to find. The ‘Shear
Module’ shown is currently in development.
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Input required values of Eq;, E;,, Vir and vy,
Point 1 Point 2 Point 3 Point 4 Point 5

E,, (target 1)
E,, (target 3)
vy, (target 2)
v, (target 4)

Fi

Fa
Input user constraints and bounds on: Future shear module
L,©.,r Ey E €

e Ny S—

I A Optimisation Component —for perfect solution I
€12 .
Calculate: €12 for points 1 -5 I
2,1 .. . .
I using the equilibrium model and an Ly] Minimise func“?ln value:
. 2
iterative calculation of 2212 _ Calculation, I
I Mg q Func = —_— 1
Target, I
I If Function is minimised EXIT €| Where the variablesare: L ,©, .1 ,E . E I
I optimisation, else retry for N attempts
e _ _ |
If a solution was found EXIT, and display N Display results if a solution has
results, else reduce accuracy been found
I e Optimisation Component — non-feasible solution
Calculate: Agi, &1, for points 1 -5 I
2,1 .. . -
I using the equilibrium model and an Ly Minimise func“?ln value:
; ; ; g1z Calculation z
I iterative calculation of v Func = Z ( a 1) I
- Target, I
If Function is minimised EXIT €| Where the variables are: Ll,z’ 91,2’ M2 Eyl,Z' Ek I
I optimisation, else increase X. and the targets can vary within +/- X%
I_____+______________I
Displav results if a solution has been found

Figure 4: Flow chart to describe the optimisation process

3.3 Results for known feasible targets

To demonstrate the functionality of both the method of optimisation and the validity of the
equations used an optimisation for a set of targets that were known to be feasible was
performed.
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The feasible targets were produced with the equilibrium model using a central finite
difference method from the geometry shown in Table 1. The results of this finite difference
method are shown in Table 2.

Table 1: Geometry used to find feasible targets and resultant optimised geometry

Variable Geometry from which Optimised geometry
targets are calculated
A; (mm) 0.069 0.071
A, (mm) 0.207 0.190
O, (Rad) 0.106 0.116
O, (Rad) 0.189 0.183
L; (mm) 0.645 0.605
L, (mm) 1.082 1.022
r; (mm) 0.162 0.152
r, (mm) 0.114 0.107
w; (mm) 0.786 0.824
w, (mm) 0.673 0.920
E; (KN/m) 860 859
E, (KN/m) 710 703
Ex (KN/m) 30 33
Vi 0.3 0.3

Table 2: Feasible targets found at the applied loads P1 and P2.

Point1 | Point2 | Point3 | Point4 | Point5
Ey, (target 1) (kN/m) | 514 662 602 377 777
E,, (target 3) (kN/m) | 444 554 510 551 484

vy, (target 2) 0434 | 0288 |0.344 |0317 |0.261
v, (target 4) 0374 | 0241 |0.291 |0431 |0.180
P, (kN/m) 10 20 15 10 20
P, (kN/m) 10 20 15 20 10

The results of this are as expected, a near perfect solution is found quickly suggesting the
equations appear to correlate well to the sawtooth method which is known to correlate well
with the response of real fabrics. It should be noted that the start point of the optimisation was
not the geometry used to find the targets; this ensured that the method was in fact finding a
solution, and not succeeding having been given the correct geometry.
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800 3 600
. * . bAD * L
£ 600 * 1 E
= 1 £ 500 * ]
— [} T
400 X
- * o450
200 : : : 400 : : .
1 2 3 4 5 1 2 3 4 5
Target Point Target Point
0_45’1( 0.5
+  Optimised Paint
0.4 ] 0-4, *  Target Point
-~ 035 * 1 = 03 *
* *
0.3 . 1 02 1
0.25 : : : f 0.1 : : :
1 2 3 4 5 1 2 3 4 A
Target Paint Target Point

Figure 5: Results of the optimisation for the feasible solution

The optimisation for the feasible values of stiffness and poisons ratio produces good results
(Figure 5). Target points 4 and 5 in the plot of E,, results show some slight deviation from the
targets. In reality this small error, whilst observable in the figure, equates to a difference of
0.89kN/m and 0.90kN/m respectively. This is as a result of the slight deviation from the
original geometry that was found. A higher accuracy requirement on the solver may produce
more accurate results, but would be more computationally expensive, taking longer.

3.4 Comparison with measured fabric parameters

Target values of stiffness and poisons ratio were calculated from biaxial test data produced
from a fabric with the geometry set out in Table 1. The targets are shown in Table 3, along
with the numerical results of the optimisation. The points to be analysed were chosen from
areas on the response surface that did not include flattening in one of the principle directions.
This flattening leads to unexpectedly large or small results when analytical or numerical
derivatives of the surface are calculated to give targets. Therefore similar targets to those used
in the previous test could not be used in this instance.
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Table 3: Measured targets found at the applied loads P1 and P2

Point1 | Point2 | Point3 | Point4 | Point5
Ei; (KN/m) | 700 799 794 668 596
Targets E, (KN/m) | 748 875 799 681 621
g V1o 0.218 0.170 0.197 0.114 0.138
Vo1 0.305 0.288 0.234 0.379 0.412
Ei; (KN/m) | 552 652 604 611 591
Results E,, (KN/m) | 676 811 746 837 829
Vi, 0.248 0.153 0.196 | 0.145 | 0.152
Vo1 0.331 0.203 0.261 0.204 0.220
Eix -21.1 -18.5 -24.0 -8.5 -0.8
. E,, -9.6 -7.3 -0.5 22.9 334
(0]
SClLE G e 139 |-101 |66 |270 |101
2 8.6 -29.7 11.6 -46.3 -46.5
. P, (kN/m) |10 20 14 12 10
Applied Load 17 =4 {7m) ™10 20 14 16 14
800 T - 900 :
?50 850 - 'r
= — 800 ) x
E 700 E
Z . £ 750 .
= 650 . &
ui- ©° W 700
600 . - 650
550 : 600 : : : [
1 2 3 4 5 1 2 3 4 5
Target Point Target Point
0.25 0.45 : :
*  Optimised Point | |
0.4 *  Target Point
0.2 . j
0.35
}ﬂ ® }E
0.3
0.15 . . *
0.25 :
0.1 : 0.2 - : .
1 2 3 4 5 1 2 3 4 5
Target Point Target Point

Figure 6: Results of the optimisation for the measured targets

No perfect solution could be found through the optimisation for the measured targets
(Figure 6). Although no perfect solution could be found Figure 6 does show how close the



C.N. lliffe, B.N. Bridgens and P.D.Gosling

solutions found were to the targets. Table 4 shows the geometric solution found against the
geometry of the original fabric.

Table 4: Optimised geometry for measured targets

Variable Geometry from which Optimised geometry
targets are calculated
A; (mm) 0.069 0.428
A, (mm) 0.207 1.861
O, (Rad) 0.106 0.316
O, (Rad) 0.189 0.130
L; (mm) 0.645 1.039
L, (mm) 1.082 0.210
r; (mm) 0.162 0.033
r, (mm) 0.114 0.334
w; (mm) 0.786 0.254
w, (mm) 0.673 1.021
E; (KN/m) 860 925
E, (kN/m) 710 946
Ex (KN/m) 30 19
Vi 0.3 0.3

The optimised geometry is clearly not the same as the geometry of the fabric from which
the targets were derived. The original set of targets may be unobtainable for the sawtooth
method with the constraints currently placed on the solution. The constraints (maximum and
minimum values of geometric properties, and the constraints on the deformation stated in
equation 2) currently being used are very broad to encompass extremes of realistic fabrics.
These would be further constrained for more specific and realistic designs.

When the targets are allowed to vary slightly (5%) from the initial input targets a far more
successful optimisation is performed.

6 DISCUSSION

The sawtooth model provides a reasonable prediction of fabric behaviour with the model’s
deviation from the mean of the strain range of a real fabric being between 5.3 and 5.9%*
(Figure 7).

The method developed offers close correlation between results for feasible targets. This
good fidelity was predicted, as the optimisation equations were developed using the sawtooth
model, but demonstrates the utility of the method. Therefore the optimisation works by
finding the solutions available from all possible response planes of the sawtooth model, and
should eventually find a solution for targets that originally existed on this plane. This does,
importantly, show that the method being employed to find the targets is working.

10
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The error found in the optimised geometry for the targets measured from biaxial data can
be explained by the difference in the response planes of the real fabric and the sawtooth’s
prediction of that fabric’s response. Figure 7 shows the difference in the response planes of
sawtooth and the real fabric when a sawtooth model is run using the geometry of the real
fabric. These two sets of response planes, whilst similar, are clearly not the same. Over and
under prediction of strain will also affect result.

It was unlikely at the outset that the solver would find a solution that perfectly matched the
real fabric’s geometry. It is also therefore possibly the case that no feasible solution exists for
the sawtooth model where the targets stated in Table 3 could be achieved within the
constraints placed on the model. Future work will be needed to demonstrate how much
inaccuracy is inherent in the process, and therefore must be expected when attempting to
design the geometry of ‘real’ fabrics.

[ warp surface (measured)
- Weft surface (measured)
/1 Warp surface (sawtooth)
- Weft surface (sawtooth)

Strain (creep removed) (%)

&

e
TN

% (11 rsrsis.
= Wity G

Weft Load (kN/m) Warp Load (kN/m)

Figure 7: Response surfaces for the sawtooth model and measured response for one geometry

5 CONCLUSIONS

e The accuracy of the optimisation method with regards to known feasible targets
derived from the sawtooth model is good.
e The methodology is slower than hoped as the calculation of % must be completed

€21
after each iteration.

11



C.N. lliffe, B.N. Bridgens and P.D.Gosling

e The accuracy of the optimisation method with regards measured targets derived
from real fabric data is acceptable at this stage of development. The actual accuracy
of the optimised geometry for the new targets is unknown as it is not currently
possible within the bounds of this work to produce a bespoke fabric to be tested.

e |t is possible that for some targets multiple solutions exist and that for others no
solutions exist. The latter has been shown through the results of the measured target
optimisation, but the former is as of yet unproven.

e Allowing small amounts of variation from the target may drastically improve the
model’s utility and allow for a Pareto front of possible solutions to be found.

6 FURTHER WORK

Further work is on-going to allow the optimum design of a fabric’s shear response
characteristics as well as biaxial response to loads. The inherent uncertainty in the
manufacturing process, and the discrete nature of some parameters, will also be considered
and methods for the calculation of the effect of such variability incorporated into future
models. In addition it is necessary to further check the inherent inaccuracy of the model when
compared to real results obtained through tests. Other possible implications of the model must
be further investigated. And the effect of varying one parameter on the optimised result will
also be investigated.
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A. Appendix

A. 3. Appendix C: Further results for optimisation to known
feasible targets (§3.7.1)

A.3.1. PVC coated Polyester

Variable Geometry from which Optimised geometry Optimised geometry
targets are calculated (without knowledge of (with knowledge of
original geometry) original geometry)
©1 (Rad) 0.102 0.102 0.102
©2 (Rad) 0.125 0.125 0.125
L1 (mm) 0.624 1.112 0.624
L2 (mm) 0.611 1.088 0.611
ri (mm) 0.079 0.140 0.079
r2 (mm) 0.062 0.111 0.062
E1 (kN/m) 485 485 485
E2 (kN/m) 425 425 425
Ex (kN/m) 33 33 33
A1 (mm) 0.064 0.114 0.064
Az (mm) 0.077 0.137 0.077
w1 (mm) 0.624 1.112 0.624
w2 (mm) 0.608 1.083 0.608
Vk 0.3 0.3 0.3

Table A-1: Geometry used to find feasible targets and resultant optimised geometry for F702 fabric

Pointl | Point2 | Point3 | Point4 | Point5

Eix (target 1) (kN/m) 403 465 441 393 479
E, (target 3) (kN/m) 362 414 394 426 352
v, (target 2) 0.26 0.18 0.21 0.18 0.19
v21 (target 4) 0.23 0.16 0.18 0.17 0.17
P1 (kN/m) 10 20 15 10 20
P2 (kN/m) 10 20 15 20 10

Results without prior knowledge of geometry
Eix (result 1) (kN/m) 403 465 441 393 479
E22 (result 3) (kN/m) 362 414 394 426 352
vz (result 2) 0.26 0.18 0.21 0.18 0.19
V71 (result 4) 0.23 0.16 0.18 0.17 0.17

Results with pri

or knowledge of geometry

Ex1 (result 1) (kN/m) 403 465 441 393 479
Ex2 (result 3) (kN/m) 362 414 394 426 352
Vi (result 2) 0.26 0.18 0.21 0.18 0.19
Va1 (result 4) 0.23 0.16 0.18 0.17 0.17

Table A-2: Targets and resultant properties of a designed F702 fabric
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A.3.2. PTFE coated glass-fibre

A. Appendix

Variable Geometry from which Optimised geometry Optimised geometry
targets are calculated (without knowledge of (with knowledge of
original geometry) original geometry)
©1 (Rad) 0.283 0.281 0.283
©2 (Rad) 0.364 0.366 0.364
L1 (mm) 0.724 1.203 0.724
L2 (mm) 0.575 0.962 0.575
ri (mm) 0.202 0.341 0.202
r2 (mm) 0.228 0.375 0.228
E1 (kN/m) 4610 4426 4610
E2 (kN/m) 4770 5008 4770
Ex (kN/m) 54 54 54
A1 (mm) 0.210 0.348 0.210
Az (mm) 0.219 0.369 0.219
w1 (mm) 0.529 0.889 0.529
w2 (mm) 0.784 1.300 0.784
Vk 0.3 0.3 0.3

Table A-3: Geometry used to find feasible targets and resultant optimised geometry for B18059 fabric

A.3.3. Silicon coated glass-fibre

Variable Geometry from which Optimised geometry Optimised geometry
targets are calculated (without knowledge of (with knowledge of
original geometry) original geometry)
©1 (Rad) 0.260 0.260 0.260
©2 (Rad) 0.233 0.232 0.233
L1 (mm) 0.682 1.187 0.682
L2 (mm) 0.595 1.037 0.595
ri (mm) 0.159 0.277 0.159
r2 (mm) 0.164 0.285 0.164
E1 (kN/m) 4110 4110 4110
E2 (kN/m) 6300 6300 6300
Ex (kN/m) 21 21 21
A1 (mm) 0.182 0.316 0.182
Az (mm) 0.141 0.246 0.141
w1 (mm) 0.671 1.169 0.671
w2 (mm) 0.614 1.070 0.614
Vk 0.3 0.3 0.3

Table A-4: Geometry used to find feasible targets and resultant optimised geometry for ATEX5000 fabric
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A.4. Appendix D: Additional distributions of fabric geometry
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Figure A-1: Probability plot of weft yarn amplitudes for an F1202 fabric
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Figure A-2: Probability plot of warp yarn half wavelengths for an F1202 fabric
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Probability Plot of 12 F1202
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Figure A-3: Probability plot of weft yarn half wavelengths for an F1202 fabric
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Figure A-4: Probability plot of warp yarn thicknesses for an F1202 fabric
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Figure A-5: Probability plot of weft yarn out of plane angles for an F1202 fabric
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Probability Plot of w1 F1202
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Figure A-6: Probability plot of warp yarn widths for an F1202 fabric
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Figure A-7: Probability plot of weft yarn widths for an F1202 fabric
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A. Appendix

A.5. Appendix E: Alternative visualisation of fabric design to
targets obtained from biaxial test results (§5.3.2)
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d)

e)

f)
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Figure A-8: Variable target optimisation for biaxial targets from a F702 fabric. a) 5% variation, b) 15% variation, c)
25% variation, d) 35% variation, e) 45% variation, f) 55% variation, g) 65% variation, h) 75% variation.
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A. 6. Appendix F: Spring and Arm case formula derivations

Considering the deformation of triangle ABE (Equation A-1) with inextensible members gives:

Lo Lo+ 6 Equation A-1

cosd cosf’
Original length BE is equal to the deformed length BE plus the change in length BE (A):

Lotan® = A+ (Lo + &) tan 6’ Equation A-2

By substituting in the equation for ‘k’ (Equation A-14), and considering the vertical resultant

force at B the deflection of the spring (A) can then be written as:

!

F tan
Lotan® = A+ (Lo +6) tan b’ = + (Lo + 8) tan 6’

Equation A-3

Fvertical at B Equation A-4

k
The displacement of the system to the load can now be calculated as follows:

A=

If a right angled triangle exists then Pythagoras holds.

The length of the hypotenuse is unchanged between the loaded and unloaded case. Thus for

the initial situation:

(L°+5)2— FLand’ | Ly +5) tane’ 2+ Lo)?

*Note all F = f(0',6)

Equation A-5

Hence:
2 0.5
ekl ]

Equation A-6

And it follows that:
Y <(L0 + &) cos 9)
Lo

Equation A-7

Thus the Derivatives can be calculated:
dF _ 0F OF 060’ Equation A-8

a5 35 Tag 98
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A. Appendix
Considering the partial derivative of F (Equation A-6) with respect to § gives:

0F k- (2Ly + 26) Equation A-9
98 2Q-cos26’-tan@’

And similarly the partial derivative of F (Equation A-10) with respect to 6'gives:

OF k-sing'-(Ly+6)?* k-Q-(tan”6'+1)
I Q -tan@’ tan? 0’

Equation A-10

Where ‘Q’ is equal to the square route of the ‘hypotenuse’ minus the ‘adjacent’ or the distance

BE (Equation A-11):
§+Lo\> 5
= —L
¢ (( cos ' ) 0

And similarly the partial derivative of 8’ (Equation A-12) with respect F to gives:

0.5 Equation A-11

06" (=) cos@
a5 0.5
2 2
Lo 1_<cos 0(L§+6) >
Lo

Equation A-12

Therefore the full derivative of the force with respect to the deformation is:

dF _OF OF 06" _
ds 95 ' 96’ 35

lcos @ k(tan?6' +1)-Q ksin®' (L, + 6)2 |
tan2 6’ 26(L, + 5Y? 0.5 |
I ' COS
cos3@'tanf'| 1 — <—§)
l Lo I kLo +26)
1 — (cos2 0’ (Ly + 6)2) 05 (2cos?20'tan @’ - Q
Ly 5
Ly
Equation A-13
I E-A Equation A-14
Ly

Where E and A are the spring constants and L, is the initial length of the spring between D
and B.
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A.7. Appendix G: Spring and Arm case method and validation

A.7.1. Spring and arm method
The validity of the method using the derived equation is demonstrated by solving the
equations within MATLAB (Mathworks, 2012b) for an initial geometry and comparing

calculated derivatives to results calculated using a central finite difference method

(Figure A-9).
Input properties of the system:
0,Lo,Lyo, E, A
Select load: F
Initialise finite _dlfference Initialise analytical calculation
calculation
Calculate equilibrium position Calculate equilibrium position
finding: 6'and & finding: 6'and &
Recalculate 68’ and & at small Analytically calculate aF using
(+/-) incremented values of F o ds.
L central point information
(central finite difference)

v

. AF
Numerically calculate v
using central finite difference

v v

Compare numerical and
analytical stiffnesses and
equilibrium positions

v

Save results

v

Output results

Figure A-9: Flow chart for validation of ‘spring and arm model’
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A. Appendix
The result obtained using this method are discussed below (§A.7.2). This methodology
is the foundation for the comparisons between the inverse model and sawtooth model
presented in this report where multiple stress states are compared using finite

difference calculations.

A.7.2. Spring and arm model validation
For the validation of the derivative arbitrary values were chosen for the initial geometry,
though the initial angle (8) and Length (Lo) which were chosen to allow for a sufficient
deflection to occur (1.5% of the original length). The maximum load was chosen after an
incremental increase in load was applied to the model for which the selected value
produced an accurate maximum displacement to three decimal places. One thousand
individual points were tested between the minimum and maximum load (giving 1002

points).

The analytical model’s calculation of dF/d§ shows excellent correlation with data

obtained numerically using the central finite difference calculation (Figure A-11).

Load increment = AF

A
,‘?3=F1-inc
-
-
’/

N
7

)

Figure A-10: Central Finite Difference method as used in the simple sawtooth

The accuracy of the derivative calculation dF/d8 (or the stiffness of the model) is
verified by comparison to the finite difference calculations (Figure A-11). The displacement
approaches an asymptote of 0.108 (Figure A-11-A) as can be predicted from the original length

and angle (Equation A-15):
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Ly Equation A-15

Omax = — Lo
cos 6

7.1079 — 7 = 0.108 = 8,45

This demonstrates that the model is accurately calculating the maximum displacement.

Percentage errors are low (order x104), however the error grows rapidly as the force
approaches the maximum (Figure A-11-B). At very high loads the increment used to
calculate the finite difference becomes far smaller in comparison to the force applied,
creating rounding errors and errors in the calculation of the numerically calculated
stiffness value. This is compounded by the very small displacements that are being
compared to very large forces introducing further errors (i.e. a very large number
divided by a very small number). This is an example of how this model has informed the
more complex models used later on, in future models calculations of finite difference
use a varying factor to ensure this does not occur. The error that occurs due to this
follows the same pattern as the percentage error, resulting in larger errors at high loads

(Figure A-11-D).

The linear y=x relationship demonstrates that the analytical and numerical calculations
of the stiffness are in fact equal (Figure A-11-C). The small percentage error is not

noticeable as a deviation from this relationship.

Initially it was hypothesised that the second term in the calculation of the full derivative
(0F /06" - 06'/d5) might have a minimal impact on the calculated result, and might
therefore be excluded from the final calculation of the stiffness. If this applied to ‘spring
and arm’ case model it may also have applied to the sawtooth model, and would have
meant that the calculation of the derivative would have been quicker, and less
computationally expensive. The results show that without the second term the
calculated derivative would be two orders of magnitude away from the correct value at
the highest applied load (Figure A-12). The maximum error is calculated to be 7.6x10°%7
and as such the hypothesis was disproved, and all partial terms will be investigated in

the inverse sawtooth modelling.
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4 Force vs Percentage error
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Figure A-11: Results of verification test on the ‘spring and arm’ case. A) Force vs Displacement with the asymptote
at 0.108. B) Force vs Percentage error. C) Comparison of derivatives. D) Error in derivative calculation
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Figure A-12: Comparison of the full derivative to the first term of the derivative
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Term Input value (no units) Description

Frmax 100000 The maximum value of force applied

Frmin 0 The minimum value of force applied

AF 0.01 The increment applied to F for finite
difference calculations

Points 1002 The number of values of force tested

e 100 The change in the force between test
points

k 1250 The spring constant

0 1'[/18° The angle between the bar and the x-
axis

Ly 7 Half the initial length between the two

rollers

Table A-5: Input data used to obtain the results in Figure A-11
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A. 8. Appendix H: Simple sawtooth derivations

The derivation of a single formula that relates the force applied (F) to the out of

plane angle (6'; ;) and strain (&, 1):

a)

b)

f)

h)

j)

k)

Fip = f(Foum72 Lig Lot €12, €21, 0'12)
(rm+mn)—(41+4,)=0

Ayp = (Lyy+6,,)tand'y,

Fei —F=0

Fe12 =Fptan6'y;

Substituting e) into d) and rearranging gives f).

F;tan @',
———— =tanb’

F, 2
Substituting b) into c) gives g).

t 0/ _ (rl + rZ) - (Ll + 61) tan 9’1
nreT Lz +65)

And substituting f) into g) gives a formulation for F12 including

no opposite yarn angle.

_ Fp((ry+ 1) — (Ly + 61) tan@'y)
(LZ + 52) Fltan 0’1

_ Fz((ﬁ +1,) —(Ly + ;) tan 9'1)
! (L, + 8,) tan 6,

012 =¢&12" L1y

Finally substituting the displacement for the strain gives k)

v Foi((ry+ 1) — (L1,2 + (12 L1,2)) tan 0’y ;) Equation A-16
b2 (Lyq + (e21 L)) tan 6’y
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Once this has been achieved it is necessary to show that 8'; , can be defined in terms of

only initial geometry and strain, as shown below (Equation A-17):
0'12 = f(L12 €1,2,612)

Ly, Li;+61,
Y, , = constant = = -
m) ’ cos b, cost'y,

Rearranging m) and replacing the displacement with the
strain (j) gives a definition of the new yarn angle in terms of

only the strain and original unit cell geometry.

(Ll,Z + (81,2 - Ll,Z)) COS 91,2
L1,2

0’1, = cos”

= f(&1,2)
Equation A-17
Finally it is necessary to show that ¢, ; can be defined in terms of only initial geometry

and &, , (Equation A-18).

The strain must be written as a function of original geometry and the
0) strain in the opposite direction.

€21 = f(L12,L21,€1,2,012,621)
Substituting c) into b) gives p).

L, + 6,)sin 6’
p) (Tl + Tz) — (Ll + 61) tan 9’1 = (LZ + 62)tan912 — ( 2 2) 2

cosb’',
And substituting m) into p) gives q).

q) L,sinf’',
—(L; +8)tanf'; = ——
(rp+1)—(Ly +6;)tan 8’y cos 0,

Rearranging q) gives:

r) ((r1 + 1) — (L; + ;) tan 9’1) cos 6,
L,

— !
=sinf’,

Which rearranged gives:
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- 2

4 (((7‘1 +73) — (Ly + 8;) tan 8’y ) cos 92> ,
sin I =0
2

And further rearranging the first two components of p) gives:

L,+ (e,-L,))cosB
R (CELCHE) KX
L,

t)

Making s) equal to t) and rearranging gives strain in terms of the original

geometry and the out of plane yarn angle.

€21 =
u)

_— (rp+12) — (L1,2 + (&2 L1,2)) tan(6'y,;)
cos| sin Io: cosf;,

Equation A-18

cos O,

With the above equations it is possible to produce the derivatives dF, ,/d¢; , and
dF; ,/de, 1, which can then be used to optimise a set of initial geometries for a set of

targets. The derivatives are shown below:

0 Fya(tan®0'; + 1) N Fy(tan*8'; + 1)(r; + 7, —atan0'y)
dF, _ cos &y btan 6’4 btan? 0’ F,L,

dgl C b

Lic )

li
F,a cos 8, cos 6, (Tl +7, —atanf 1) * (Tl 72~ s 0,

L,ch?etan 8’y
Equation A-19

c0s 0 Fib(tan”*8', + 1) N F,(tan’8', + 1)(r; + r, —btan0',)
2 atanf’, atan’ @', FiL,

dF,
dgz d B a

F,b cos 6, cos 0, (ry + 1, — btan 9'2) (r1 +r,— Lyd )

cos 0,
L,da?ftan®’,
Equation A-20
F,cos 8, cosb (r +7r —i) ’
dF, 1 1 2\ T2 T e0s6,)  Fily(ry+1,—btan8';)
de; L,ce B a’tan6’, B

PAGE 423



A. Appendix

Fib(tan? @'y +1) F,(tan?60'y +1)(r, + 1, — btan 8’
acos 6; cos? 6, | = ( Z )+ i 2+1)(n T2 2) (r1+r2— Lic )
atan 6, atanz @', cos 6,
1
L, cosO, — L,e\?\?
o [, coston (b -G
Lyce| 1— 5 2
L,
Equation A-21
F, cos 0, cos ( i)
dFl _ 2 cos 1 cos 2 rl + rz B CoS 92 FZLZ(Tl + Tz — a tan 9,1)
de; Lydf b*tan 6’y

29’ 2’ _ /
cos? 6, c0592b<F2a(tan 0'1 +1)+F2(tan 0'1+1)(r,+r,—atanf 1)) (7‘1+ - L,d )

btan6'y btanz 'y cos @,

1
_Mf ?

cos(Ph1)? (L1 05D
1

L2df|1-

L,*
Equation A-22
Where the values a, b, ¢, d, e, and f are calculated separately (Equation A-23, Equation
A-24, Equation A-25, Equation A-26, Equation A-27, and Equation A-28 respectively).
a=(L; + L&)
Equation A-23

b = (Lz + ngz)

1
a’cos? 0,\2
c={1-—5—
Ll

Equation A-24

Equation A-25

Equation A-26

1
Lic \*\2
2 _ 1
cos” 6, (r1 T Cos 91)
e=|1- 5
Ly
Equation A-27
5 %
L,d 2
2 )
cos* 0, (r1 +1, Cos 92)
f={1-

Equation A-28

PAGE 424



a)

b)

d)

f)

A. Appendix

A.9. Appendix I: Derivation of Shear Stress

MS = FSlLIZ COSY + FSZLll COS]/ = MK + MF
Dividing a) by the cosine of the shear angle gives:

Fs,L'; + Fgpl'y = MIZO;SVMF

Shear stress is constant on both edges:

Ty =Ty = Tg

And therefore can be rewritten in terms of shear force

o Fs
2L, 2L,

Rearranging the last two parts of d) produces e)

FSlL,1
F = —
52 L’Z

And the shear force in the opposite direction can be calculated by

rearranging b).

My + Mg
FSl = (LI N (L/1)2> cosy
i Fgq Equation A-29
ST,

Lastly it is necessary to calculate the shear modulus (Equation A-30).

Ts Equation A-30
GS = —
Vs
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A. 10. Appendix J: Stress and strain minimisation equations

Constrained strain minimisation:

2
X

- n
Z 20
i=1
n n
ZZJxay Z
i=1 i=1

0

(
n

N=<Zz

i

E =

X

Ey

ny =

Vyx =

R?=1
TV

=1
n
Z Zayey
i=1

uv

n
Z 20,0y 0
i=1

n
2(0,% + 0,%) 20,0,
i=1
n n
z 20,0, Z 20,°
i=1 i=1 :

n
Z 20,6y
i=1

(oxey + O'y{:‘x)

~~

M~1-N
1
T EQ)
1
TE®)
E(2)
CE(D
EQ2)
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Unconstrained strain minimisation:

- n n
Z 20,2 0 z 20,0y 0
i=1 i=1
n n
0 Z 20,2 0 2 20,0,
i=1 i=1
n n
Z 20,0y, 0 Z 20y2 0
i=1 i=1
n n
0 Z 20,0, 0 z 20,°
i=1 i=1 .

Equation A-35

Equation A-36

Equation A-37
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Constrained stress minimisation:

n
2¢,2 Z 2,8,
i=1
n
2,8, Z 2(e2 + &%)
i=1
n
0 Z 2ex8y
i=1
( n
Z 20,8,
i=1
n
N =4 Z 2(ex0y + £,0%)

i

=1
n
220 €
yey
\ =

E=M1-N

_E(Z)
T ED

_E(Q2)
" TE®)

V= (1 —vxyvyx)

E.,=E1)-V
E, = EQ3)-V
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Equation A-38

"

Equation A-39
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Unconstrained stress minimisation:

- n n

z 2&,2 0 z 2e,8y 0

i=1 i=1
n n

0 Z 2e,2 0 Z 2,y

i=1 i=1

n n

Z 26,8, 0 Z 2¢)° 0

i=1 i=1

E=M1-N
_EQ)
B
6
¥ T E(4)
V= (1= veyvyx)
E,=E1)-V
E, = E(4)-V
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A. 11. Appendix K: Yarn Test methodologies

Virgin yarn test methodology:

A. Appendix

Ref

Description

Notes

D2256/D2256M
9.3

Yarn preparation:

Yarn Stripping is unnecessary as yarn is from a spool.
Remove the initial 1000mm to ensure yarn is fresh
and unspoilt.

Cut yarn to length of 430mm (250mm + distance in
contact with clamps [2 x 90mm]).

length in clamps
calculated as
(380-200)/2

D2591-07

D2256/D2256M
—10.1.

Yarn linear density:
The yarn linear density is not needed as it is known.
The initial load is calculated in accordance with
D2256/D2256M — 10.1 and will be

1100 dtex = 110 tex

N
= 55cN = 0.55N

110 tex x

D2256/D2256M
4.2
6.1

10.-
9.21
9.2

111
12.-

12.2.2

124
7.-

13-18

Yarn testing for PES yarns:

1. Use Configuration A, Condition 1 (straight yarn
with moisture content equal to that in the
environment)

2. Set up the CRE (continuous rate of extension)
machine with reference to 6.1 (recording rate)
using clamps with flat faced jaws [Not capstan-,
drum-, or snubbing-type clamps].

3. Results are recorded from head displacements
and load recorded from load cells attached to the
upper jaw of the INSTROM CRE machine.

4. The test specimen is loaded as per 10.1 (the
specimen is handled to avoid damage or change
of twist to the sample).

5. The CRE is operated at 100mm/minute as an
alternative to a failure at 20s (9.2.1 and 9.1
respectively). As there is no need to compare
data to different machines or laboratories at this
time the justification for the use of a 20s to
failure rate of extension is less important.
100mm/min is used to compare results to uniaxial
tests.

6. Test conditions shall be as 11.1 (carried out in
ambient air).

7. Initially a test will be carried out with flat faced
jaws. If failure occurs repeatedly at jaws as
described in “12’. If 24% break at jaws as
described in 12.2.2 a new test method shall be
considered.

8. Yarn extension shall be measured to three
significant figures.

9. Yarns are marked at their contact with the jaws
and centre to allow for the observation of

Head
displacements
are used to give
yarn extensions.

NOTE 1
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D578/D578M
27.2

EN 13895:2003
5.2

movement within the jaws during the test. Thisis | NOTE 2

done using a red marker pen. This is not
considered to have had any effect on the test.

10.Repeats: 7.3 suggests that 3 specimens be taken
for each laboratory sample, however, as there is
only one sample available yarns will be taken
from both warp and weft directions. 10 useable
tests will be made in each direction. A useable
test will be a test where failure does not occur at
the jaws, and the sample does not slip.

11.Calculations of modulus shall be carried out as
per 2256/D2256M 13 — 18.

Note 1: it is possible that the test specimen
improvement method stated in D578/D578M 27.2
could be used to secure the yarns more satisfactorily
in flat jaws.

Note 2: This specification for testing monofilaments
also allows for the use of flat faced clamps where no
slippage occurs. (EN 13895:2003)

Table A-6: Method of testing virgin yarns (ASTM, 2007; ASTM, 2010; ASTM, 2013a; ASTM, 2013b)

Yarn ravelling methodology:

Ref

Description

Notes

D2256/D2256M
9.3

A fabric sample should be prepared of at least the
dimensions in warp/weft of the yarn required. In this
instance the dimension must be at least 430mm.

D3883-04

Place bench marks of the required length on the fabric,
then ravel several yarns from the cut edge, such that
they contain the bench marks. During ravelling the angle
between the ravelled yarn and the fabric is kept to the
minimum possible to pull the yarn loose, such that the
yarn is not damaged. Additionally an effort is made to
keep the twist in the yarn that existed prior to ravelling.
Pulling of the yarn is carried out with pliers. The section
that was gripped in the pliers is always considered to be
damaged and removed during cutting.

The sample is then cut to 430mm lengths within the
bench marks. Due to removal of crimp the yarn is longer
than the original bench marks after ravelling.

The samples are then secured in a tray, and the type
and direction of sample noted. Samples are kept
straight and unstrained, and secured using a small

No masking
tape ever
interacts
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guantity of masking tape at the extremities of the
sample.

with the
central
testing area.

Table A-7: Method of yarn ravelling

Ravelled yarn test methodology:

Ref Description Notes
Yarn Stripping:
D2256/D2256M | Cut fabric to length of 430mm (250mm + distance in Ref: length in
9.3 contact with clamps [2 x 90mm)]). clamps
Pull out yarns as per the methodology in Table A-7: calculated as
Method of yarn ravelling. Following the ravelling cut the | (380-200)/2
sample down again to allow for additional length due to
crimp.
D2591-07 Yarn Linear Density:
8.2 Precondition yarns for a minimum 4hrs
9.- Calculation method will be invalid with residual coating Linear density
on yarns, therefore a specimen of 430mm will be was not
weighed as per section 9.6. calculated as
9.6 Again given the variation expected in mass due to it was
9.7.1 coating there is expected to be a difference between the | deemed
expected nominal densities. Therefore four additional unnecessary
specimens will be measured and the Linear density for the
D2256/D2256M | calculated from the mean. This will be used to calculate purposes of
-10.1. the initial load used in D2256/D2256M — 10.1. this model
D2256/D2256M | Yarn testing for PET yarns:
4.2 1. Using Configuration A, Condition 1
6.1 2. Set up CRE machine with reference to 6.1 using
clamps with flat faced jaws [Not capstan-, drum-, or
snubbing-type clamps].
3. Results shall be recorded from head displacements Head
and load recorded from load cells attached to the displacements
jaws, or if unavailable from the INSTROM recorded and a 50kN
10.- load. load cell are
9.2.1 4. The test specimen shall be loaded as per 10.1. used
9.2 5. The CRE shall operate at 100mm/minute as an
alternative to a failure at 20s (9.2.1 and 9.1
respectively). As there is no need to compare data to
different machines or laboratories at this time the
11.1 justification for the use of a 20s to failure rate of
12.- extension is less important. 100mm/min is used to
compare results to uniaxial tests.
12.2.2 6. Test conditions shall be as 11.1
7. Initially a test will be carried out with flat faced jaws.
124 If failure occurs repeatedly at jaws as described in
7.- ‘12’, if 24% break at jaws as described in 12.2.2 a

new test method shall be considered.
8. Yarn extension shall be measured to three significant
figures.
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13-18

D578/D578M
27.2

EN 13895:2003
5.2

9. Yarns were marked at their contact with the jaws and
centre to allow for the observation of movement
within the jaws using a red marker pen. This is not
considered to have had any effect on the test.

10.Repeats: 7.3 suggests that 3 specimens be taken for
each laboratory sample, however, as there is only
one sample available yarns will be taken from both
warp and weft direction. 10 useable tests will be
made in each direction.

11.Calculations of modulus shall be carried out as per
2256/D2256M 13 — 18.

Note 1: it is possible that the test specimen
improvement method stated in D578/D578M 27.2 could
be used to secure the yarns more satisfactorily in flat
jaws.

Note 2: This specification for testing monofilaments also
allows for the use of flat faced clamps where no slippage
occurs. (EN 13895:2003)

NOTE 1

NOTE 2

D578/D578M

Yarn testing for Glass yarns:

1. After PET testing has been completed it will be
evident whether or not flat faced jaws can be used. If
this is the case the carry out the test as above, with
reference to D578/D578M.

2. If test slips in jaws where another method of
clamping has not been used then use the method
described in 27.2.

3. Otherwise follow the procedure above.

4. An effort should be made to limit the possibility of
inhaling or skin contact with glass-fibres, however, as
they are bound in a fibre bundle and impregnated
with coating the possible hazard is considered low.

Capstan clamps:
Will be unusable as slippage around the clamp will lead
to misleading extension characteristics.

Annex B

Bollard Clamps:
A bollard clamp such as that described in annex B may
be applicable to problems with clamping.

Table A-8: Method of yarn (BSI, 2003), (ASTM, 2010), (ASTM, 2007), (ASTM, 2013a), (ASTM, 2013b)
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