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Abstract 

Coated woven fabrics are used for large scale structures including airports and sports 

stadia. Manufacturers produce a range of fabrics from which a single fabric is selected 

by the structural engineer based on design criteria such as stiffness, weight, strength 

and formability. Designs must therefore utilise a fabric with properties which may not 

be optimal for that particular application. This thesis develops and tests a model that 

allows a bespoke coated woven fabric to be designed with specified mechanical 

properties such as tensile stiffness, Poison’s ratio and shear stiffness. 

 

A method is developed to ‘invert’ an existing predictive mechanistic ‘unit cell’ model 

using the derivatives of the equations defining the unit cell. The existing model is altered 

to enable the prediction of shear characteristics in addition to tensile properties by the 

inclusion of the coating using a finite element representation. The ‘inverse’ model is 

shown to accurately design a fabric for specific and attainable targets of Young’s 

modulus, Poisson’s ratio, and shear stiffness which have been derived using the 

predictive model for various fabric stress states. 

 

The effect of variability in fabric parameters on the tensile response of a fabric is 

considered using both Monte Carlo and FORM analysis. The sensitivity of the fabric 

response to biaxial loading is calculated using the direction cosines defined in the FORM 

methodology. The calculation of fabric sensitivity also enables a detailed investigation 

of the sensitivity of fabric stress-strain behaviour to variation in individual fabric 

parameters. A method is developed to design fabrics with mechanical properties which 

are robust to changes in manufacturing parameters by altering the geometry of the 

fabric. 

 

The model is validated by comparing the inverse model output to unit cell model input 

and also to biaxial test results. The inverse model shows excellent fidelity with results 

calculated using the unit cell model, but fails to adequately reproduce the actual fabric 

geometry when target stiffness values are based on biaxial test data. A method for the 

removal of yarns from fabrics and tensile testing of coated fabric yarn specimens is also 

developed. 
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It is common practice to use a plane stress formulation to approximate the stress-strain 

response of a coated woven fabric. Comparison of the model output with biaxial test 

results necessitated the creation of a method for the calculation of fabric tensile 

stiffness at multiple stress states instead of a single set of elastic constants. This 

approach takes into account the complex nonlinear behaviour of architectural fabrics by 

considering the variation in stress-strain behaviour at different biaxial stress states. 

 

The final inverse model provides a novel tool for the design of coated woven fabric with 

prescribed mechanical responses at multiple stress states that is robust to variations in 

its constituent parameters, with scope for future application in textile architecture, 

medical textiles and industrial textiles. 
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Nomenclature 

Variable MATLAB 
Designation 

Units Description 

Universal designations 

X1,2 - - Where X is any variable: subscripts ‘1’ and 
‘2’  represent the Warp and Weft directions 

respectively. 

Xy - - Where X is any variable: subscript ‘y’ refers 
to a property of the yarn. 

Xk - - Where X is any variable: subscript ‘K’ refers 
to a property of the coating. 

Xc - - Where X is any variable: subscript ‘c’ (in 
some external sources referred to as ‘z’) 

refers to the compressive force between the 
warp and weft directions. 

Xs - - Where X is any variable: subscript ‘s’ refers 
to shear. 

XF - - Where X is any variable: subscript F refers to 
frictional forces, normally in relation to the 

calculation of shear forces. 

X’ -  - Where X is any variable: the apostrophe 
refers to a ‘prime’ value. This is the result 
after one iteration. Two apostrophes refer 

to a result obtained from a second iteration. 

- X1a - Where X is any variable, and 1 or 2 denote 
warp and weft (in most cases): the following 

letters such as ‘a’, ‘b’, ‘c’ etc. refer to 
multiple calculations of the same variable. 
This may be due to multiple calculations of 

the same variable at the same point, or 
multiple calculations of the same variable at 

differing points. 

- X_note  Where X is any variable: the addition ‘note’ 
refers to any extra note attached to the 

variable. E.g. ‘SavedData_Run1_NoShear’ 
would refer to some saved data in run 1 

with no shear. 

Forces and Strains 

P Fm1 , Fm2 kN/m The stress acting on the fabric which is equal 
to the force acting on the edge of a 1m 

length of fabric 

F F1 , F2 N The force acting on the edge of a unit cell 

Fk Fk1 , Fk2 N The force acting on the coating 

Fy FY1 , Fy2 N The force acting on a single yarn 

Fc Fc1 , Fc2 N The force acting on the coating 

ε e1 , e2 No units Strains 
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Variable MATLAB 
Designation 

Units Description 

τ Tor  Shear stress acting on a unit cell 

γ Gamma  Shear strain 

M M  Moment relating to the calculation of shear 
forces 

Yarn and Coating Geometry and Mechanical Properties 

E1,2 E1 , E2 or 
y(7), y(8) 

kN/m Yarn stiffness. 

Ek Ek or y(9) kN/m Coating stiffness. 

νk vk No units Coating Poisson’s ratio 

ϴ Ph1 , Ph2 or 
y(1), y(2) 

rad Out of plane angle of the yarns. 

L L1, L2 or 
y(3), y(4) 

mm Quarter yarn wavelength. 

Y Y1, Y2 mm Half the length of a yarn in a unit cell 

r r1, r2 or 
y(5), y(6) 

mm Yarn radius. 

w w1, w2 mm Half yarn width. 

A1,2 A1 , A2 mm Yarn amplitude. 

Area1,2 Area1 or 
Area2 

mm2 Yarn cross-sectional area. 

δ1,2 d1 , d2 mm Deflections in the plane of the fabric. 

Spring and arm model 

F F No units Load. 

θ Be No units Initial angle between the bar and the x-axis 

K K No units Spring constant 

E E No units Spring constant (stiffness) 

A A No units Spring constant (area) 

Ly0 Ly No units Initial length of the spring 

L0 Lx No units Half the initial distance between the two 
roller supports 

δ  No units Displacement of the roller supports in the x-
direction 

Δ   Displacement of the pin joint in the y-
direction 

Biaxial and shear response characteristics 

E11,22 E11 , E22 kN/m Fabric Young’s modulus 

ν12,21 v12 , v21 No units Fabric Poisson’s ratio 

G G  Fabric shear stiffness 

Other nomenclature used in this report 
Δ𝑦

Δ𝑥
 

- - Used to symbolise an iterative calculation 

𝑑𝑦

𝑑𝑥
 

- - A full derivative 

𝜕𝑦

𝜕𝑥
 

- - A partial derivative 

  



PAGE xxix 

Variable MATLAB 
Designation 

Units Description 

    

N1,a - - The derivative of ‘N1’ with respect to ‘a’. 

u - - Displacements of the isoparametric element 
parallel to x and y.  v - - 

ξ Eta - Axis for which an isoparametric element will 
appear rectangular. η xi - 

Statistics 

μ Mu - Population Mean 

σ Std - Population standard deviation 

Cv cov - Coefficient of Variation 
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1.1. Context 

1.1.1. Background 

For thousands of years fabrics have been used to produce shelters in the form of tents 

or awnings. Animal skins or traditional fabrics such as wool were used until the advent 

of modern industrial processes in the nineteenth century when the mass production of 

fabric allowed for the creation  of large spans such as circus tents using mass produced 

linen or hemp canvas (Forster and Mollaert, 2004).  It is only in the last hundred years 

that modern doubly curved prestressed structures using modern architectural fabrics 

have been constructed. Possibly the most famous early example of a tensioned doubly 

curved structure is the cable net structure designed by Frei Otto in Munich for the 1972 

Olympic games (Figure 1-1). Since the early examples of architectural fabric structures 

numerous examples have been produced across the world. These merge the 

requirement for shelter with distinct and unique architectural solutions that are organic 

in their appearance, and are a step change away from traditional rectangular 

construction. 

 

Figure 1-1: Munich 1972 Olympic stadium roof (Tensinet, 2015) 
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Modern architectural fabrics are produced from a woven base cloth that is most often 

plain-weave. This base cloth is coated with polymers such as PTFE  

(Polytetrafluoroethylene) or PVC (Polyvinylchloride) which increases the fabric’s shear 

resistance (Skelton and Freeston, 1971), stabilises the weave, and provides 

waterproofing. The resultant architectural fabric resists loading entirely through tensile 

and shear response in the plane of the fabric as the material has negligible bending and 

compressive stiffness (Bridgens et al., 2004; Gosling et al., 2013).  Unlike standard 

construction materials which can resist loads through bending or compression the shape 

of a fabric structure is crucial to its ability to resist loads. Doubly curved prestressed 

surfaces allow for the transfer of both uplift and downward loads through the structure 

whilst prestressing ensures that under all loaded conditions the fabric does not become 

slack, or become wrinkled which results in stress concentrations in the wrinkles. 

Three “fundamental forms” (Bridgens et al., 2009, p. 2) exist from which all doubly 

curved shapes can be derived. These are the hypar (Figure 1-4), the barrel vault (Figure 

1-3) and the conic which can be produced by manipulating the boundary conditions of 

an initial flat fabric (Figure 1-2)  (Bridgens et al., 2009). 

 

Figure 1-2: The three principal anticlastic shapes. Reproduced from Bridgens et al. (2009) 
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Figure 1-3: Dynamic Earth Centre (Edinburgh) (Tensinet, 2015) 

 

Figure 1-4: De Montil NV (Belgium) (Tensinet, 2015) 

Modern fabric structures are characterised by their anticlastic (doubly curved) surfaces, 

light weight, and high strength to weight ratio in the plane of the fabric. They also 

experience large deflections, large strains (up to ten percent) and large shear strains. 
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Due to their low weight and the need for relatively little in the way of hard structural 

supports fabric structures have a low environmental impact when compared to 

traditional construction methods. Modern techniques also allow for limited recycling of 

fabrics (Ferrari, 2014). In addition to anticlastic doubly curved fabric structures inflated 

membrane structures also exhibit many similarities to architectural fabric structures. 

These are however outside of the scope of this report (§1.4). 

1.1.2. Fabric modelling 

The first fabric material model was developed by Peirce (1937) in which plain weave 

fabrics are described in terms of their weave geometry and material properties and the 

equilibrium equations which are fundamental to further work are developed. In addition 

to describing the fabric’s geometry the seminal work by Peirce (1937) also considers the 

response of fabrics to biaxial loading. Since then considerable work has been carried out 

with the aim to quantify the response of architectural fabrics to uniaxial, biaxial, and 

shear loads (Peirce, 1937; Kawabata et al., 1973; Menges and Meffert, 1976; Wang, 2002; 

Bridgens and Gosling, 2008; Colman et al., 2014). 

The constitutive modelling of the fabric response can be broadly divided into two types; 

predictive and representative modelling. Predictive models attempt to predict the load-

deformation of fabrics by considering their geometry and stiffness characteristics whilst 

representative models aim to represent known fabric response and attempt to describe 

this in terms of fitted equations or models. The important difference between these two 

methods is that the representative model becomes unreliable beyond the initial data 

set for which it has been calibrated. A predictive model should model all conditions for 

which it has been designed though may become unreliable when used outside of the 

range for which it has been checked. Material models can be split further to include 

mechanical material models which describe the material’s weave and constituent 

properties to calculate load-deformation response. Finite element methods model the 

material using finite elements to represent yarns (Figure 1-6), filaments (Figure 1-5), or 

coating. They can also be used to model fabric as a whole (Figure 1-7).  The model shown 

in Figure 1-5 considers the filaments that make up a yarn only. In summary Predictive 

models should be more broadly applicable to new design situations. 
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Figure 1-5: Finite element representation of filaments in shear (Durville, 2010) 

 

Figure 1-6: “Three-dimensional rendering of yarns within a unit cell” used by Glaessgen et al. (1996) 

 

 

Figure 1-7: Finite element model of a Hypar (initial form found configuration) (Pargana et al., 2010) 
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In addition to the constitutive models, fabric test data might be represented in a number 

of ways. Current practice is to use the plane stress representation, describing a pair of 

stiffness’s and Poisson’s ratios for the entire fabric response (Blum and Bögner, 2002).  

These ‘fits’ can then be described as representative models, as they represent the data 

from which they were formed, but may not represent other data sets. Though other 

methods have been developed to represent fabric test data more accurately these have 

not yet been incorporated into standard analysis software (Day, 1986; Minami, 2006).  

Additionally Bartle et al. (2013) models fabric load-deformation response by using 

Neural Networks, which utilise data from one or more fabrics to build a representative  

model of behaviour, but then demonstrates the ability to predict the response of 

different fabrics. 
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1.2. Aims and Objectives 

1.2.1. Aims 

The aim of this research is to produce an inverse predictive material model for coated 

woven fabrics that is robust with respect to variability in material properties to be used 

to design bespoke architectural fabrics with specific properties at different loading 

conditions. 

1.2.2. Objectives 

1. To complete a full and in depth review of the state of the art of fabric modelling, 

design and analysis. 

2. Formulate an inverse material model. 

3. Incorporate variability of material parameters into the model and assess 

sensitivity of the resultant design. 

4. Develop a methodology to design a material that is robust with respect to 

uncontrolled variations in parameters, such as manufacturing tolerance and 

constituent material variability. This should produce statistics to give confidence 

intervals for the likelihood of the attainment of the specified designed properties 

5. Complete a validation study using biaxially tested samples of coated woven 

fabric. 

6. To carry out a structural design study using an FE simulation of a true structural 

design case. 
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1.3. Motivation 

The model developed in the following chapters might be used in the future to produce 

real structures for specific responses using a bespoke fabric. To this end a qualitative 

demonstration of how the method might be applied to a conic structure is detailed 

below: 

Conics are constructed with the warp direction aligned upwards, and the weft direction 

aligned radially (Figure 1-8). This is done principally for aesthetic reasons. The structure 

is then prestressed by application of load at the edge of the material (Figure 1-8), or by 

the vertical displacement of the ring upwards. The loading in the warp direction induces 

loads in the weft (radial) direction and the structure then finds its shape. 

 

Figure 1-8: Standard Conic construction 

This method of patterning the weft direction radially, whilst visually appealing, is not 

optimal for the purpose of prestressing. The warp yarns will have relatively little crimp, 

whilst the weft yarns will begin with a relatively large amount of crimp. Therefore 

inducing load in the weft direction through crimp interchange by stressing the warp 

yarns is inefficient. A more efficient method would be to pattern the warp yarn radially, 

however, this would result in an unappealing visual effect. 

The method developed in the following chapters could therefore be used to apply a 

constraint on the initial response of the fabric at installation conditions. Namely that the 

warp yarn be relatively crimped, whilst the weft yarn is relatively flat. This would lead to 

a high stiffness in the weft direction with a lower stiffness in the warp direction. 
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Therefore a lower load in the warp direction would lead to crimp interchange with the 

weft direction inducing higher stresses in that direction without initial high stress in the 

warp direction. It is noted that this would require a higher deformation in the warp 

direction. 

At this point standard or nominally ‘normal’ response characteristics would be required 

for the further analysis of the fabric under normal loads. Therefore two design targets 

for the design of the fabric have been selected (Table 1-1). Other design requirements 

might be considered as well. 

Condition E11 E22 

Installation Low High 

Normal operation Medium Medium 

Snow High Medium 

Uplift Medium High 
Table 1-1: Loading conditions and required responses 

Thus the design of the fabric might be carried out. Under installation the high stiffness 

in the weft direction with respect to the warp direction should lead to lower prestress. 

Under snow load a high warp stiffness would lead to reduced possibility of ponding at 

corners or edges, whilst the radial stiffness should be less of a concern. Under wind 

loading a high radial stiffness should reduce billowing outwards. 

Once the design criteria are identified the inverse model developed in the following 

chapters will then be run to produce a fabric that demonstrates the required mechanical 

response at the specified loads. This could then be used to produce a response surface 

for which response criteria could be identified for all loading scenarios similar to the 

method suggested by Bridgens et al. (2004). However, utilising detailed design 

information about a fabric is not currently possible with commercially available fabric 

structure analysis software. 

A second, quantitative, application of the model is also made using exercise three as set 

out by Gosling et al. (2013) as the basis for the design of a hypar to be analysed. The 

structure is analysed in Oasys GSA (Oasys, 2014) similarly to Gosling et al. (2013) which 

utilises two fabric moduli and one Poisson’s Ratio for the fabric. The details of the 

structure that was analysed are outlined below: 
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Geometry: 6m x 6m square hypar with high points two meters above low 
points. The warp direction runs between high points. The edges are 
supported by cables. 
 

Prestress: 
 

Warp = 3kN/m, Weft = 3kN/m, Cable prestress = 30kN 
 

Material properties: 
 

A PVC coated polyester fabric is used. The warp and weft moduli are 
both 600kN/m, both Poisson’s ratios are 0.3 and the shear modulus 
is 30kN/m. The cable is 12mm in diameter, with an elastic modulus 
of 205GPa. 
 

Loading: 
 

A wind uplift of 1kN/m2 and a snow load of 0.6kN/m2 are 
considered. 

 

 

Figure 1-9: Hypar geometry (Gosling et al., 2013) 

The structure was analysed and the maximum deflection due to the snow load 

calculated to be 218mm (Figure 1-10 and Figure 1-11).  
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Figure 1-10: Deformation of the Hypar under snow load (Plan) 

 

Figure 1-11: Deformation of the hypar under snow load. Original (blue) and deformed geometry (grey) 

At this stage the artificial constraint might be placed upon the model. For instance, 

that the deflection under snow load must be reduced whilst maintaining the deflection 

under wind load. This would in this case require an increase in stiffness in the warp 

direction, that direction predominantly supporting the downwards load. Whilst 

maintaining the stiffness in the weft direction. Alternatively it might be decided that at 

a higher loading this deflection must be maintained with only a small increment of 

additional deflection. 

These cases would form the basis of the design of a fabric, from which a response 

plane could be obtained. However, as current fabric design analysis software is unable 

to incorporate more than one set of moduli or response planes into the analysis 
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(Oasys, 2014) an analysis of any designed fabric for these conditions would be at the 

very least, extremely difficult. 
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1.4. Outline method 

Initially this research focusses on the derivation of a number of equations that describe 

the biaxial response of a fabric. The constitutive model from which these equations are 

derived is the sawtooth model as developed by Bridgens and Gosling (2008) (Figure 

1-12). The equations are built up in stages with an initial proof of concept used to 

demonstrate the applicability of the method. After the method’s validity has been 

confirmed a simplified model and then the full model are considered from which 

equations for the stiffness and the Poisson’s ratio of a fabric are derived.  

 

Figure 1-12: Fundamental sawtooth unit cell (Bridgens and Gosling, 2008) 

After the model equations are derived a method for the consideration of the effect of 

variability in a fabric’s constitutive properties is proposed. From this a method for the 

optimisation of a fabric’s robustness to changes in its constitutive properties is 

produced. 

Finally the various methodologies developed are compared to real test data from 

biaxial tests carried out at Newcastle University. 

  



1. Introduction 

PAGE 15 

1.5. Scope 

This thesis considers only the material model developed by Bridgens and Gosling (2008) 

with some alterations, and the inclusion of a shear model developed by Page and Wang 

(2000) and later Colman et al. (2014). This model was chosen because it reproduces 

fabric load-deformation characteristics accurately for architectural fabrics, and is 

presented in a fashion which should be applicable to the creation of an inverse material 

model. Biaxial and shear modelling, with the inclusion of data from uniaxial testing is 

therefore only considered in this thesis. Extensive testing of fabrics has been carried out 

at Newcastle University and is not predicted to be necessary as these results are 

available, and should be applicable. Manufacturing a bespoke fabric to corroborate the 

results of theoretical testing is also outside of the scope of this project. Only plain weave 

fabrics are considered in detail as they form the majority of architectural fabrics. Further; 

only PVC coated Polyester, PTFE coated glass fibre, and Silicone coated glass fibre fabrics 

are considered as test results and further specimens are available for these fabric types. 

PTFE coated PTFE fibre, Cotton, and other fabrics are beyond the scope of this project. 

Robust design of fabrics is carried out based on existing statistical data available at 

Newcastle University, and produced by Colman (2014). In situ testing of the accuracy of 

the robustness methodology is beyond the scope of this work. Linear yarn stiffness is 

also used in the project to remove the need to independently calculate and verify 

nonlinear yarn stiffness. As the tensile strength of fabrics and yarns is a field largely 

unrelated to the prediction of fabric tensile stiffness this is excluded after a short review 

of tensile strengths is made.  
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1.6. Structure of Thesis 

Chapter 1, Introduction: Introduces the research project. 

Chapter 2, Literature review: Reviews the current state-of-the-art of fabric material 

modelling and relevant information regarding the makeup and analysis of architectural 

fabrics. Key topics include: The features of coated woven fabrics, the response to biaxial 

load of fabrics, the modelling of fabrics, the determination of fabric properties through 

testing, and current statistical and optimisation methods. 

Chapter 3, A predictive model for the design of functional textiles: Includes the 

formulation of the inverse material model based on the sawtooth model previously 

developed. This is then implemented into a design methodology for the design of a 

bespoke fabric. 

Chapter 4, Variability and robustness: Discusses the Monte Carlo and FORM 

methodologies for the analysis of fabric variability and applies these methodologies to 

the design of a fabric’s properties for the reduction of sensitivity to variation in fabric 

parameters. 

Chapter 5, Validation: Attempts are made to design real fabrics based on a blind test in 

which the model attempts to reproduce a fabric utilising only knowledge of the fabric’s 

response to biaxial loads. In addition a real fabric is optimised for the reduction of its 

sensitivity to variation in parameters, and a structural design study is proposed. 

Chapter 6, Conclusions and recommendations for future work: An overview of the 

conclusions of the work is presented and further work necessary for the improvement 

of the model is set out. 

Glossary: A list of terms relating to this thesis. 

References: Have been listed alphabetically by author using the Harvard referencing 

system as used at Newcastle University 

Appendix: Further information relevant to the thesis, including: Published conference 

paper, fabric data sheets, and further test data. 



1. Introduction 

PAGE 17 
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  2. Literature Review 

 
PAGE 18 

2. Literature Review 
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2.1. Architectural fabrics 

2.1.1. Need for this work 

This research focusses entirely on the use of fabrics in architectural applications as a 

load bearing component such as a roof or awning. These are normally prestressed by 

the application of load during construction to avoid de-stretching which can lead to 

fabrics that flap in the wind, or wrinkles. Wrinkles lead to stress concentrations in the 

fabric which can lead to tears. Edge support, normally cables, and some solid support 

structure, often steel work, provide the support conditions for the structure. The fabric 

structure itself will be loaded entirely in tension and designed to remain in tension under 

all loading conditions as the fabric itself will have negligible compressive strength. 

The need for the research is typified in the following example: Conic structures are 

designed to be installed with the warp yarns (down the fabric roll) aligned down the 

structure (Figure 2-1) which gives a more aesthetic appearance than having them 

aligned across the structure. The outside of the conic is tensioned after installation to 

achieve the required prestress. This tensioning results in the tensioning of the weft yarns 

(across the roll) due to the interaction between the yarns (Poisson’s ratio) which 

tightens up the structure. However, as warp yarns are generally straighter than weft 

yarns (§2.2.4) a large amount of stress may need to be applied to the warp direction to 

achieve the required stress in the weft direction. It would be easier to align the fabric 

the other way. 

 

Figure 2-1: Tensioning of a conic structure 
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Companies such as Ferrari have developed technologies to allow them to vary the 

tension in the yarns during manufacture (and hence the ‘crimp’) which might help with 

this problem (Ferrari, 2014), but there is currently little available information on what 

level of crimp would be necessary. This research aims to change this.  

2.1.2. Previous work 

Only limited work has been carried out into the design of bespoke architectural fabrics, 

and at this time “there is no standard or systematic design optimisation process” (Behera 

and Muttagi, 2002, p. 315), though Behera and Muttagi (2002)  describe how the current 

design methodology for fabrics is based on iterative testing and experience.  Behera and 

Muttagi (2002) consider the use of an ‘Expert System’ which mimics the experience of 

an experienced engineer by applying the same principles and experience to the problem 

fabric design. However, these are described as complex IF, AND, OR statements that 

generally work in conjunction with some objective to produce a solution based on 

general rules. If the experience of the author were to be outside of the design situation 

proposed the system would struggle to find an adequate solution. Also discussed are 

neural networks, similar to those used by (Bartle et al., 2013). Artificial Neural Networks 

mimic the behaviour of neurones by considering inputs in parallel to produce nonlinear 

representations of the outputs. They can adapt to new information, and will become 

more predictive the more information they receive. Work carried out in this field is very 

promising, but still in its infancy. 

2.1.3. Further architectural and structural applications 

Sørensen (2009, p. 1) discusses the design of wind turbines which are “traditionally 

made of polymer matrix composite materials (laminates and sandwich structures)”. As 

the laminate consists of a fibre matrix impregnated with a resin such as “glass 

fibre/polyester [or] carbon fibre/epoxy” the design methodology for fabrics may be 

applicable to the design of this laminate. Wind turbines fail in a number of ways, and 

Sørensen (2009, p. 2) identifies that “Reliable modelling tools must be developed for 

modelling of the damage evolution in wind turbine blades”. It is hoped that future work 

will demonstrate the applicability of this design method to the design of wind turbine 

blades. However, it is predicted that architectural fabrics will demonstrate considerably 

higher strains than solid composites, whilst solid composites will show a more complex 

biaxial behaviour, and possibly higher stresses. 
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Fabrics are also in use as permanent formwork. In this application the fabric cloth 

remains part of the structure after the setting of restrained material, providing 

permanent restraint to that material. 

2.1.4. Medical applications 

The “design of a textile composite bone plate” is relevant because of the large disparity 

between bone mechanical properties and response and the properties of metal plates 

(such as stainless steel) usually used in “fracture fixations” which are then removed later. 

This disparity causes bones to heal differently, and can lead to refracture after the plate 

is removed.  Kharazi et al. (2010) produces a textile composite bone plate that aimed to, 

and achieved, properties close to those of the “host material” I.e. the bone. This was 

made more difficult as the “longitudinal mechanical properties of cortical bones are 

higher than their transverse properties”. 

Here it can be noted how a designed fabric might enable a greater compliance to the 

host materials properties. The weft yarns might be orientated transversely, possibly with 

high crimp, reducing the stiffness whilst stiff yarns might be used in the other direction. 

In addition a designed fabric might be produced to generate a very high modulus at a 

higher load, to restrict extension beyond a certain point that would not aid healing. 

Lastly, unlike the standard bone plate the composite used is referred to as a “partially 

resorbable” as it does not need to be removed through surgery though the glass fibres 

remain in the body, having not been reabsorbed, the matrix is absorbed into the body. 

“It is estimated that 20 million prosthetic meshes are implanted each year worldwide”, 

these are used in hernia repair, catheters, and heart valve repair (Sanders and 

Kingsnorth, 2012). However, the mechanical properties of the meshes (tensile and shear 

stiffness) do not necessarily meet the needs of individual patients, leading to discomfort 

and durability. Only limited work has been carried out on the optimisation of the 

mechanical properties of medical meshes, including the example above. It is hoped that 

further work will enable the use of this methodology in the design of woven mesh fabric 

for medical applications (Scheidbach et al., 2004; Champault et al., 2009; Sergent et al., 

2009).  
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2.2. Features of coated woven fabrics 

How do the properties of the constituent components of a fabric affect the properties 

of a fabric as a whole? 

“Textile composites are composed of textile reinforcements combined with a binding 

matrix (Long, 2005, p. xiii). This definition can include a wide array of “materials used for 

load bearing applications”, however this report will focus on architectural fabrics thus: 

The “textile reinforcement” considered here will be the regular woven pattern of yarns 

produced when a textile is manufactured (§2.2.1, 2.2.4). The “binding matrix” will 

generally be referred to as the coating used in the manufacture of architectural fabrics 

(§2.2.3). 

2.2.1. Fibre geometry and properties 

Yarns are produced from fibres, which are defined as “textile raw material, generally 

characterised by flexibility, fineness and [a] high ratio of length to thickness” (Lomov et 

al., 2005, p. 1).  Fibres are twisted together to form yarns and the twist of the yarn 

produces friction between fibres which holds the yarn together (Lomov et al., 2005) 

though other means can be used to create cohesion (Lawrence, 2003, p. 21). Multiple 

yarns, or strands, can also be twisted together to produce a ply yarn (Lomov et al., 2005). 

Cross-sections of fabrics show the individual fibres, and sometimes even the filaments 

(Figure 2-2).  

 

Figure 2-2: PTFE-glass fibre image, in which the plys can be seen (Bridgens et al., 2004) 

Yarns can be split into a number of subcategories, “Yarns containing only one fibre are 

monofilaments. Untwisted, thick yarns are termed tows. Flat tows are called 

rovings”(Long, 2005, p. 2). Yarns discussed as part of this work on architectural fabrics 

will generally be continuous filament twisted ply yarns. The multiple strands that make 
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up a ply yarn are visible above where three distinct sections can be seen in the yarn ends 

(Figure 2-2).  

The properties of a finished fabric are intrinsically linked to the properties of the yarns 

that make up the fabric “transformed by the textile structure” (Lomov et al., 2005, p. 2) 

and the strength of a coated fabric is mainly determined by the strength of the 

constitutive yarns (Forster and Mollaert, 2004). As such the properties of the yarns must 

be understood prior to the consideration of the fabric as a whole. The behaviour of yarns 

is “non-linear and non-reversible owing to the fibrous nature and inter fibrous friction” 

within the yarns (Lomov et al., 2005, p. 5). Whilst the internal fibrous friction produces 

the non-linear response of the yarn “the frictional properties of fibres on the outside of 

the yarn enable woven fabrics to maintain their weave pattern and structure” (Bridgens, 

2005, p. 22). This is referred to as the dimensional stability of the fabric (Bridgens, 2005). 

A number of yarns and fibres are used in the manufacture of fabrics. Glass and polyester 

fibres are currently the most widely used yarns in the manufacture of architectural 

fabrics. Other yarns used in fabrics include cotton, Polyamide 6.6 (Nylon), Aramid (Kevlar) 

and more recently carbon fibres (Houtman and Orpana, 2000). Alagirusamy and Das 

(2010) classify yarns using a flow chart (Figure 2-3) from which it can be seen that 

artificial yarns tend to have a higher strength (Tenacity) than natural yarns though this 

is highly generalised. 

 

Figure 2-3: Classification of technical yarns according to raw material (Alagirusamy and Das, 2010) 

Natural 

Raw 

Artificial 

High tenacity 

Flax 
Ramie 
Hemp 

Low tenacity 

Cotton 
Wool 
Silk 
Jute 

High tenacity 

Nylon 
Polyester 
Polyethylene 
Polypropylene 
 

Very high tenacity 

Carbon 
Aramid 
Glass 
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Cotton fibres were used by Frei Otto in his early garden show structures. Cotton is 

seldom used nowadays except in limited applications because it is susceptible to fungal 

attack and moisture due to its organic nature (Houtman and Orpana, 2000). 

Polyamide 6.6 (Nylon) has poor resistance to UV (ultraviolet) light and “swells in length 

when it gets wet” (Figure 2-4). It is used in the sailing industry due to its low weight and 

high strength but is of little use as an architectural fabric (Houtman and Orpana, 2000, 

p. 1). 
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Figure 2-4: Symbolic representation of Polyamide 6.6. (Osswald and Menges, 1996) 

Aramid fibres (Kevlar) are a class of thermoplastics referred to as liquid crystalline 

polymers (Osswald and Menges, 1996). Aramid fibres have high tensile strength and are 

chemically resistant. However, due to low elastic strain, poor UV resistance, poor 

resistance to high temperatures, and cost the material is not widely used in architectural 

fabric applications (Houtman and Orpana, 2000). 
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Figure 2-5: Symbolic representation of an Aramid (Osswald and Menges, 1996) 

Carbon fibres are characterised by low density and high strength and stiffness. The 

mechanical characteristics of carbon fibres do not deteriorate up to temperatures of 

450oC. These fibres are used mainly in aerospace engineering, and automotive 

engineering, or where exceptionally high temperatures are expected (Horrocks and 

Kandola, 2005). Carbon fibres have also found use in the sailing industry. Future work 

may therefore need to include carbon fibre fabrics. 

Extruded PTFE fibres can also be used in architectural fabrics with a PTFE 

(Polytetrafluoroethylene) coating. PTFE fibres have inferior mechanical properties in 

comparison to polyester and glass fibres for most applications (Table 2-1). However PTFE 
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is highly resistant to chemical corrosion and UV and IR (Infrared) radiation. PTFE coated 

PTFE fabric also has good tear resistance (Houtman and Orpana, 2000; Forster and 

Mollaert, 2004). PTFE coated PTFE fabrics are also more expensive than other 

architectural fabrics, and difficult to weld (Bridgens, 2005). 

Fibre Density 
(g/cm3) 

Tensile Strength 
(GPa) 

Tensile Strain 
(%) 

Elasticity 
(GPa) 

Cotton 
 

1.5-1.54 0.35-0.7 6-15 4.5-9 

Polyamide 6.6 
(Nylon) 

1.14 Until 1.0 15-20 5-6 

Polyester fibre* 
 

1.38-1.41 1.0-1.3 10-18 10-15 

Glass fibre 
(E-glass) 

2.4-2.6 2-6 2.0-3.5 50-100 

Glass fibre 
(S-glass) 

2.5 3.5 2.0-3.5 87 

Aramid fibres 
(Kevlar) 

1.45 Until 2.7 2-4 130-150 

PTFE (Polytetra-
fluoroethylene) 

2.1-2.3 0.16-0.38 13-32 0.7-4.0 

Carbon fibres** 
 

1.7-2.0 2.0-3.0 <1 200-500 

Carbon fibres *** 
 

1.5-2.0 1.5-7.0 <1 150-800 

*Trevira, Teryiene, Dacron, Diolen **Celion, Carbolon, Sigrafil, Thornel *** Carbon and 

graphite fibres 

Table 2-1: Comparison of fibre properties, (Houtman and Orpana, 2000; Horrocks and Kandola, 2005) 

Glass fibres are one of the two principal fibres used in architectural fabrics. Glass 

filaments are supplied in various diameters, from 3 to 11 microns and the tensile 

strength of these filaments is highly dependent on their diameter (Forster and Mollaert, 

2004) with smaller diameters resulting in higher tensile strengths (Figure 2-6).  Glass 

fibres are incombustible, corrosion resistant, and have high strength at low densities. 

They are also low cost thanks in part to the abundant nature of the raw materials 

required for production (silicon) (Kostikov, 1995; Horrocks and Kandola, 2005).  Whilst 

there is a wide variation in components and additives all glass fibres primary component 

is SiO2 (Wallenberg and Bingham, 2010). Glass fibres are largely unsusceptible to ageing; 

however moisture will reduce the tensile strength of  glass fibres (Houtman and Orpana, 

2000). Further to this glass fibres are limited to small strains and demonstrate linear 

stress strain relationships with abrupt failures  (Horrocks and Kandola, 2005). 
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Generally there are four distinct grades of glass fibre, E, S, R and C-glass fibres, of which 

the types commonly used in fabrics are E and S-glass (Electrical resistant and High 

Strength respectively) (Horrocks and Kandola, 2005).  The generally more expensive S-

glass fibre has a higher tensile strength, and can be elongated more than the generally 

cheaper E-glass before fracture (Wallenberg and Bingham, 2010). Glass fibres are drawn 

from a glass melt which produces the variability in strength based on the diameter of 

the fibre. The outside of the fibre will cool considerably faster than the inside, producing 

internal tension and external compression. The variation in internal forces will be less in 

lower diameter filaments (Forster and Mollaert, 2004) therefore producing a higher 

tensile strength (Figure 2-6). The contents of the melt from which the filament is drawn 

will also alter its properties.  

 

Figure 2-6: Effect of fibre diameter on tensile strength of fibre. Reproduced from Campbell (2010) 

Polyester fibres are the other principal fibre used in architectural fabrics. Polyester fibres 

are produced from Polyethylene-terephthalate (PET) (Figure 2-7) (McIntyre, 2000). This 

is the same polyester (a thermoplastic) that is used in drinks bottles, although the 

forming process is different for the two applications (Margolis, 1985). “Polyester exhibits 

good tensile strength, flexibility and significant elongation before yield” (Chilton and 

Velasco, 2005, p. 426) differentiating it from glass fibres. Polyester fibre based fabrics 
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are therefore more suited to errors during manufacturing of the yarn because the yarns 

are more easily stretched to accommodate the manufacturing errors. Short or 

misshaped yarns can be stretched without being damaged to incorporate manufacturing 

errors. However, polyester fibres do demonstrate poor resistance to UV radiation. 

Thermoplastics such as polyester are not “crosslinked” and therefore derive their 

mechanical properties from the arrangement of the “monomer units that form high 

molecular weight chains” (Jones, 1994). This means that as a bundle of polyester 

molecules in chains extend they straighten out, resistance to which provides the fibres 

tensile strength. 
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Figure 2-7: Symbolic representation of Polyethylene-terephthalate (PET) (linear polyester) (Osswald and Menges, 
1996) 

Polyester yarns display highly nonlinear behaviour (Figure 2-8). Bridgens (2005) 

compares two plots produced by (Forster and Mollaert, 2004) of this behaviour and 

notes that both plots show significant differences due to the complexity of the 

behaviour of PET yarns. This non-linearity is initially due to the ‘straightening’ of the 

chains that make up the fibre, followed by their elastic extension, and finally their plastic 

extension, and the failure of individual chains. The yarn’s long term non-linear behaviour 

is due to the creep response of the yarn under sustained load (§2.2.5).  
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Figure 2-8: Stress Strain responses for Glass fibres (Left) and Polyester fibres (right). Reproduced from Forster and 
Mollaert (2004) 

Polyester fibres are manufactured by melt spinning the polymer filaments which also 

allows for the crystallisation and orientation of the macromolecular chains within the 

yarns. This leads to a higher elastic modulus and tensile strength in the final yarn. 

Engineering grades of PET are generally highly crystalline, whilst grades used in bottles 

and other situations are generally amorphous. Macromolecular orientation and 

crystallisation have a large effect on the final properties of a yarn (Margolis, 1985; 

Forster and Mollaert, 2004). A higher degree of orientation means that more molecular 

chains are aligned in the direction of the applied load, and thus more of the polyester is 

‘available’ to resist tension in that direction. 

The mechanical differences between the responses of glass-fibres and polyester fibres 

is evident in the near linear response of glass fibres compared to the s-curved response 

of the polyester fibres (Figure 2-8 and Table 2-1). Glass fibres exhibit good chemical and 

environmental resistance, but have limited bending and strain characteristics when 

compared to those of polyester fibres. However polyester fibres are less 

environmentally resistant and more prone to damage due to repeat loading than glass 

fibres. The choice of yarn type is therefore clearly dependant on the situation the yarn 

will be employed in. 

  



  2. Literature Review 

 
PAGE 29 

2.2.2. Yarn geometry and properties 

 “…Second only to fibres from which yarns are made, yarns are the basic building blocks 

of most textile fabrics. Many fabric properties will, in addition to the fibre properties and 

the fabric structure, depend on the structure and properties of the constituent 

yarns”(Lawrence, 2003, p. 21). Therefore understanding how the structure of the yarn 

affects its properties is essential.  

The yarns used in this project are formed by twisting together fibres (though non-twist 

yarns also exist) which leads to tension and lateral forces in the yarn and the fibres are 

consolidated by the friction generated in the twist (Lomov et al., 2005). Similarly several 

yarns can be twisted together to form a ply yarn (Figure 2-9). Ply yarns can be seen in 

Figure 2-2. The ply yarn shown in Figure 2-9 demonstrates how after the individual yarns 

have been weaved together the fibres that made up the independent yarns become 

aligned with the direction of load in the ply yarn. Yarns can be characterised by “their 

dimensional, structural and constituent fibre parameters” (Alagirusamy and Das, 2010, 

p. 26) along with their mechanical behaviour. 

 

Figure 2-9: Ply yarn. Reproduced from Alagirusamy and Das (2010) 

Alagirusamy and Das (2010) characterise the properties of a yarn according to 

dimensional, structural and constituent parameters (Table 2-2). In addition to these we 

are also interested in the mechanical properties of the yarn or how the structure of the 

yarn might affect the tensile strength; bending, tensile, and compressive stiffness of a 

yarn. 
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Parameters Characteristics 

Dimensional Parameters Linear Density 
 Diameter 
Structural Parameters Twist and its direction 
 Wrap Density and its direction 
 Number of plies, ply twist, and twist combination 
 Core content, core-sheath ratio 
 Blend Constituents and blend ratio 
 Packing coefficient 
Constituent fibre parameters Number of filaments in cross-section 
 Filament cross-sectional shape 
 Length 
 Linear density 
 Crimp cross-sectional shape 

Table 2-2: Technical Yarn Characteristics (Alagirusamy and Das, 2010) 

The linear density is the measure of the mass of yarn per unit length and its SI value is 

the Tex (1 tex = 1 g/km). This also acts as the unit of yarn count. The variation in Linear 

density is the unevenness of the yarn (Lomov et al., 2005; Alagirusamy and Das, 2010). 

 

Figure 2-10: Calculation of twist angle (Lomov et al., 2005; Alagirusamy and Das, 2010) 

Assuming that the yarn is a cylinder and the fibre follows a helical pattern within the 

yarn the twist of the yarn can be calculated (Equation 2-1) (Lomov et al., 2005). The twist 

angle is “Indicative of the intensity of frictional interaction inside a yarn” (Lomov et al., 
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2005, p. 5) which is useful as a method of estimating the effective modulus of a fabric 

yarn. The estimated stiffness of the yarn will be the original stiffness multiplied by cos(β). 

Further to this the yarn diameter will not always be easily available as yarns do not have 

precise boundaries and as such the diameter must be estimated (Equation 2-2) 

(Madhavan and Naik, 2000; Lomov et al., 2005; Alagirusamy and Das, 2010). 

tan𝛽 =
𝜋𝑑

ℎ
= 𝜋𝑑𝐾 

Equation 2-1 

 

Where β = twist angle, d= yarn diameter, h = length of the period of the twist, K = 1/h = 

the twist of the yarn. 

𝑑 = √
4𝑇

𝜋𝜌𝑓𝑉𝑓
= 𝐶√𝑇 

Equation 2-2 

 

Where C = a coefficient for each yarn type, and T = the linear density, ρf = fibre density, 

Vf = the fibre volume. 

Three further factors affect the calculation of twist and add to the complexity of defining 

a yarn, resulting in deviations from the idealised geometry of a perfect helix in a cylinder. 

Microbuckling and migration both contribute to deviation from this standard model. The 

outer fibres of the yarn follow a longer path than the internal fibres. Given that the fibres 

were all the same length at manufacture this creates an inward pressure from the 

outermost fibres which are now more highly stressed and have the greatest curvature. 

This radial force causes migration of the outermost fibres in towards the centre, and 

those less stressed fibres move outwards. Microbuckling occurs in the centre of the fibre 

where some twist is present in the central fibres. This effectively reduces the length of 

those fibres and, by introducing further twist, reduces the stiffness of the yarn 

(Madhavan and Naik, 2000). Migration can be accounted for in the numerical estimation 

of a yarn’s properties by the introduction of a constant (Alagirusamy and Das, 2010). 
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Figure 2-11: Microbuckling (right) and migration (left). Reproduced from Madhavan and Naik (2000) 

Further complicating the calculation of the stiffness of a yarn is the possibility that some 

fibres will be broken, not all fibres will have equal properties, and other damage (such 

as ageing) may be present (Singh and Naik, 2001). 

Crucially yarn properties are nonlinear due to their twist and the migration of fibres 

within the yarn (in addition to the properties of the fibres). The number of additional 

variables that would need to be considered to enable a complete modelling of the yarn 

would be considerable, so utilising a nonlinear stiffness for yarns is therefore beyond 

the scope of this project (§1.4). 

Lomov et al. (2005, p. 5) states that the two “most important yarn deformation modes 

[during manufacture] in determining the internal geometry of a fabric are bending […] 

and compression”, with bending allowing “for yarn interaction forces in the fabric, and 

transverse compression which […] define the shape of yarns in the fabric”. However, 

bending is not often considered in the modelling of yarns and fabrics, although it is 

regularly mentioned as an important deformation mechanism (§2.3.2). Testa et al. (1978, 

p. 1028) states that bending is an important deformation mechanism but also states that 

in their model “bending resistance of both coating and yarns is neglected”. 

Testa et al. (1978) and Tan and Barnes (1984) list the deformation mechanisms of coated 

fabrics, including for yarns specifically,: 
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 Yarn rotations (or crimp interchange between warp and fill yarns) 

 Bending and torsion of yarns 

 Crushing (or flattening) of yarns at crossover point 

 Yarn bending 

 Yarn flattening 

 Yarn extension 

 Friction between filaments; friction between yarns at crossover 

 Yarn nesting at crossover (the settling of one yarn into the other) 

 Yarn swelling 

 Yarn and fabric rupture 

However Tan and Barnes (1984), in common with Testa et al. (1978) do not include 

bending or yarn compression in their models (§2.3.2.2). Therefore whilst bending of the 

yarns may be an important deformation mechanism when considering unwoven yarns 

most models consider it unimportant for the calculation of fabric response. Contrary to 

this Dimitrov and Schock (1986, p. 858) describe the bending stiffness of fibres as 

influencing the Bedding-down effect which they state “will probably contribute 

considerably to the load extension behaviour of fabrics”. 

The compression of the yarns, or the change of the shape of yarns, is a predominant 

yarn deformation mechanism, further to this Pargana et al. (2000, p. 2) suggests that 

“particular attention has to be given to the modelling of the yarn crushing deformation 

mechanism”. Therefore it is necessary to include some representation of yarn 

deformation if accurate modelling of yarn behaviour is to be achieved. 

Bridgens (2005) states that there are three mechanisms which may result in a change in 

yarn radius, specifically: 

 Initial bedding down (inelastic) 

 Yarn crushing due to contact with orthogonal yarn (elastic or partially inelastic) 

 Reduction in yarn radius due to tensile extension, i.e. Poisson’s effect (elastic or 

partially elastic) 

Dimitrov and Schock (1986) suggest the following factors will influence the bedding 

down effect: 
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 The slack in the yarn 

 The coatings penetration into the yarn’s internal space 

 Bending stiffness of the fibres 

 Lateral compressibility of the fibres, stiffness 

 Spinning characteristic of the yarn. 

Yarns used in architectural fabrics vary in size in the range of approximately 0.1mm to 

5mm. Versedag Duraskin PVC B4951 has a thickness of 0.6mm which means the yarn 

diameter can be estimated to be approximately 0.3mm, whilst a PTFE coated glass fibre 

fabric (B18059) has a thickness of 1.4mm (Verseidag, 2005). Comparing glass and 

polyester yarns shows that the shape of the glass yarn might be described as a squashed 

oval, whilst the PVC yarn might be more accurately described as a stretched oval (Figure 

2-2 and Figure 2-12). Yarn dimension information will be essential in the design of 

bespoke fabrics, where maxima and minima will need to be set to ensure viable fabric 

properties are designed. It is also possible that discretisation may be necessary to allow 

only viable yarns to be produced, however, given the wide range and variability of yarns 

that are available this may not be necessary. 

 

Figure 2-12: F1202 warp cross section (fill yarn) (Colman, 2013a) 

2.2.3. Coating properties 

Whilst the woven textile is the primary load-carrying component for roof structures the 

coating (sometimes referred to as the fabric matrix, but referred to as the coating 

throughout this thesis) protects the fabric from environmental effects and provides a 

weather tight enclosure (Chilton and Velasco, 2005), the coating also acts as the 

predominant method of shear resistance and stabilises the fabric weave. Impregnation 

of the yarns (migration of coating in between yarn filaments) by the coating can also 

affect the properties of the yarns. Farboodmanesh et al. (2005) demonstrate this by 

adding a coagulant to a rubber coating for a PET fabric, thus stopping the penetration of 
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the rubber into the yarns as the coagulant forces the rubber to “bond with itself”. This 

non-impregnated fabric demonstrated reduced shear stiffness (Farboodmanesh et al., 

2005), even given that the coating was two to three times thicker in the non-

impregnated fabric than that of the comparison fabric. This paper shows that the 

properties of the coating will have a large effect on the properties of the fabric 

composite. However, as this is the only detailed study into this, and the materials used 

are not those used in architectural fabrics it is only possible to draw general conclusions 

from this work. No corroborating papers have been found to confirm this work. 

Polyvinyl chloride (PVC) (Figure 2-13), is the most common coating used in conjunction 

with polyester fabric (Chilton and Velasco, 2005). PVC is formulated with various 

additives that alter its properties, and these must be selected for specific uses. 

Plasticisers are used to increase the softness of the coating, pigments give the coating 

its “lustre and beauty” and also “play an important role in the colour, UV stability and 

opacity" of the fabric. In addition PVC is stabilised with “thermal stabilisers, oxidation 

stabilisers and UV/light stabilisers” (Forster and Mollaert, 2004, p. 226).  
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Figure 2-13: Symbolic representation of PVC (Polyvinyl chloride) (Osswald and Menges, 1996) 

PTFE (Polytetrafluoroethylene) (Figure 2-14) is under normal conditions non-flammable 

and resistant to chemical attack. PTFE alone is a good electrical insulator, and also has 

excellent chemical resistance making it resistant to environmental effects such as mould 

growth and pollutants. In addition PTFE exhibits self-cleaning properties (repelling dirt) 

and as it is hydrophobic helps defend glass-fibre yarns against water damage that would 

otherwise reduce fabric strength. Finally PTFE is “totally resistant to UV and IR-radiation” 

(Forster and Mollaert, 2004, p. 228). 
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Figure 2-14: Symbolic representation of PTFE (Osswald and Menges, 1996) 

Silicone (Figure 2-15) is used predominantly on glass fabric, gives a more flexible fabric, 

and offers greater translucency than PTFE coatings (Chilton and Velasco, 2005).  Silicone 

coatings are based on silicone rubbers which are “obtained by cross-linking during 

processing of silicone macromolecules” (Forster and Mollaert, 2004, p. 229).  

Silicone coatings have good “elasticity and mechanical resistance”, however in 

comparison to PTFE, silicone has poorer “seamability” and collects dirt faster (Forster 

and Mollaert, 2004, p. 229). It is suggested that surface treatments in development at 

the time of this reference may help “counterbalance these defects”. Bulut and Sular 

(2013) are currently working on this, however, their full paper was not available at the 

time of completion. 
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Figure 2-15: Symbolic representation of Silicon coating (Forster and Mollaert, 2004) 

The properties of coatings can be examined using uniaxial bias tests in which no yarn 

connects both loaded points of a sample (Colman, 2013b) (Table 2-3). Uniaxial tests are 

carried out because the coating is difficult to remove to test independently, and any test 

on a coating not in situ would not be representative of the coating in use. The coating 

properties are heavily dependent on the type of coating and its thickness, with each 

individual fabric generally possessing different set of coating properties.  
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 Mean Tensile Stiffness 
(kN/m) 

Ferrari PVC-polyester F702 33 

Ferrari PVC-polyester F1202 37 

Verseidag PTFE-glass fibreB18089 36 

Verseidag PTFE-glass fibre B18059 54 

ATEX Silicone-glass fibreATEX3000 12 

ATEX Silicone-glass fibre ATEX 5000 21 
Table 2-3: Some example coating properties (Colman, 2013b) 

It is important to note that fabric stiffness is calculated in kN/m. The fabric’s thickness is 

negated when considering the stress as no consideration of out-of-plane deformation is 

made when considering fabric deformation, and the thickness is very small when 

compared to the width. 

 PTFE PVC 

Tensile Strength 
(N/mm2) 

25-36 10-25 

Elongation at 
break (%) 

350-550 170-400 

Modulus of 
elasticity (N/mm2) 

410 1000-3500 

Table 2-4: PVC and PTFE coating properties (Osswald and Menges, 1996) 

Farboodmanesh et al. (2005) describes how the coating thickness and impregnation, 

mentioned above, can drastically effect a fabric’s properties although this specifically 

relates to shear properties which will be discussed in more detail below (§2.2.7.4).  

Pavlidou et al. (2003, p. 1301) describes how the “thickness of the coating should be kept 

as small as possible to eliminate the possibility of reduction in composite strength and 

modulus” and how a large coating thickness may lead to “Systematic decreases in 

flexural strength”. Additives are included in coatings for a variety of reasons: to effect 

flame retardation, to improve seamability or to alter the mechanical properties of 

coatings (Forster and Mollaert, 2004).  

 Poisson’s ratio 

Flexible PVC 0.34 

PTFE 0.462,3 

Silicone  0.47 - 0.41,5 

Table 2-5: Poison's ratios of coatings (O'Hara, 1983; Fillon and Glavatskih, 2008; McKeen, 2009; Ognedal et al., 2012; 
AZO_Materials, 2014) 

The Poisson’s ratios of the coatings were obtained from a number of sources. PVC used 

in fabrics is flexible PVC which includes plasticisers. PTFE is a standard well known 
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material and its properties are widely published. Lastly Silicone refers to Silicone rubber, 

rather than the other forms of Silicone which are available and have widely varying 

properties. There is some variation in the published properties of silicone coatings, 

although all of these are in the range presented in the table. 

2.2.4. Fabric Weaves 

There exist a variety of different weaves available for use in architectural fabrics (Figure 

2-16). Different sources suggest that different weave patterns are more or less common 

than others: Bridgens (2005) suggests that plain weave fabrics are most common in 

architectural fabrics, whilst the Tensinet Design Guide (Forster and Mollaert, 2004) 

suggests that both plain weave and 2-2 basket weave (or panama) weaves are the most 

common. However, Chilton and Velasco (2005) focus on the basket or Panama weaves. 

Plain Weave fabrics are most commonly in use in architectural fabrics (all those 

discussed in Table 2-3), with every fabric available for testing at the time of writing being 

a plain weave fabric. As such all work within this report will focus exclusively on plain 

weave fabrics, and not attempt to produce inverse models, or design, for other weave 

types, these being outside of the scope of the project (§1.4). The weave of the fabric 

impacts on the mechanical properties of the fabric by altering the force distribution on 

the fibres and varying crimp interchange.  
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Plain weave Basket weave 

 
 

Twilled weave 4 Harness Satin weave 
Figure 2-16: Fabric weaves (BSI, 1971; WOO et al., 2002; Forster and Mollaert, 2004; Rao et al., 2008) 

The plain weave has the simplest weave geometry, whilst the panama weave exhibits 

less crimp in the yarns (Forster and Mollaert, 2004). Within a fabric two directions are 

normally defined; the warp and weft. The warp direction refers to the yarn down the 

length of the roll, whilst the weft yarn is across the roll (i.e. the shorter). 

There also exists “multi-layered weaves” (Lomov et al., 2005, p. 18), however this work 

is not concerned with these as they are used predominantly for “heavy apparel and 

footwear” (Lomov et al., 2005, p. 18) which is beyond the scope of this work. 

The testing for geometric properties of a fabric is carried out in accordance with 

independent institute’s test methods. Alternatively national standards offer guidance 

on methods to describe fabric geometry such as yarn count British Standards Institute 

(BSI, 1984). As fabric testing is outside of the scope of this thesis no further discussion 

will be carried out (§1.4). 
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2.2.5. Creep and cyclic loading 

Creep is the “Time-Dependant deformation under a constant load” (Gerdeen et al., 

2006), and this can be expressed as the creep strength, or the creep under constant load 

(Figure 2-17 and Figure 2-18). Creep is the viscous (slow) deformation under constant 

load. As time increases the  stain under constant load increases (Figure 2-18). The creep 

strength is dependent on time and ambient conditions, whilst the creep response can 

be represented as a function of the strain and time given that “most creep curves reduce 

to straight lines when plotted in a log-log graph” (Osswald and Menges, 1996, p. 271) 

(Equation 2-3).  

𝜀(𝑡) = 𝑀(𝜎, 𝑇)𝑡𝑁 Equation 2-3  

where M and N are material dependant properties, and T and t represent temperature 

and time respectively. 

 

 

 

Figure 2-17: Polymer creep responses under constant load: Reproduced from Osswald and Menges (1996) 
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Figure 2-18: Creep Strength data for some polymers: Reproduced from Gerdeen et al. (2006) 

Cyclic loading will damage fibres, reducing the residual strength of the composite (Jones, 

1994) (Figure 2-19). This is referred to as the Load History of the fabric. “The time 

dependence of the mechanical properties is especially evident in the creep failure of 

polymers” (Gerdeen et al., 2006).  

 

Figure 2-19: Reduction in residual strength due to cyclic loading. Reproduced from Jones (1994)  
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2.2.6. Fabric Manufacture 

Yarns are woven on looms to form fabrics. The limiting factor to size in this process is 

the width of the loom. The looms used by Verseidag are up to six meters wide (weft 

direction) (Verseidag, 2011), however there is no limit to the length of the fabric in the 

warp direction, other than the availability of yarns of the required length which can be 

kilometres in length. 

 

Figure 2-20: Fabric Manufacture, 6m wide Loom. Reproduced from Verseidag (2011) 

Due to the tension in the yarns in the warp direction during manufacture there is 

‘generally’ considerably more crimp in the weft direction due to manufacturing. This can 

lead to complications in the calculation of the required prestress, and fabric response as 

discussed above (§2.1).  The crimp in the weft direction can be reduced to introduce 

stress in the warp direction by applying tension (increasing its crimp). However, if this is 

reversed, and the crimp in the warp direction is reduced to increase stress in the weft 

direction considerably more stress will be required in the warp direction to induce the 

required stress in the weft direction. Skelton and Freeston (1971) describe how 

differential tensions can develop during the process of transferring fabric from roll to 

roll which can lead to bowing in the weft direction yarns. Bowing in the weft yarns during 

manufacture can result in non-orthogonal fabric geometry. 
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Ferrari Précontraint is produced under warp and weft tension during coating (Ferrari, 

2014) which should reduce any lack of stability in fabric properties due to weaving, or 

loss of tension prior to coating. Published advantages are:  

 Exceptional dimensional stability 

 Long-term strength 

 Greater coating thickness at the top of the yarns 

 Exceptional flatness 

2.2.7. Coated fabrics: Classification and response 

A wide variety of fabrics types exist, and within each type there is a wide range of 

different geometries available, leading to an extensive variety in the choice of fabric 

properties. These are covered in a series of Standards and codes of practice, and 

discussed below. Only certain fabric types will be prevalent in the discussion as these 

are the most commonly used fabrics in architectural and structural applications. 

2.2.7.1. Fabric types and properties 

Yarns are combined with coatings in a weave to produce a “fabric composite material” 

whose “mechanical response is truly different from the simple sum of the behaviour of 

its two components” (Farboodmanesh et al., 2005, p. 198). The most common and their 

general published properties are listed in the tables below (Table 2-6 and Table 2-7). 

 Polyester fabric Fibreglass fabric 

Coating PVC PVC PVC PTFE Si 

Top coating Acrylic 
PVF-
lamination 

PVDF-
merging 

  

Expected 
lifetime 

8-10 years 12-15 years 12-15 years >30 years >30 years 

Ageing 
Resistance 

Average Good Good Very good Very good 

Self-cleaning Average Good Good Very good Average 

Transparency Good Good Good Good Very good 

Fire-retardant Good Average Good Very good Very good 

Foldable Very good Average Good Bad Average 

Table 2-6: Properties of fabrics (Houtman and Orpana, 2000) 
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Fabric/Coating Weight 
 
 

[g/m2] 

Fire 
retardant 

Tensile 
strength 

Warp/weft 
[N/50mm] 

Tensile 
strain 

Warp/weft 
[%] 

Tear 
strength 

 
[N] 

Bending 
capacity 

Polyester/PVC 
Type 1 
Type 2 
Type 3 
Type 4 
Type 5 

 
800 
900 

1050 
1300 
1450 

B1  
3000/3000 
4400/3950 
5750/5100 
7450/6400 
9800/8300 

 
15/20 
15/20 
15/25 
15/30 
20/30 

 
350 
580 
950 

1400 
1800 

Very 
Good 

Fibreglass/PTFE 800 
1270 

A2 
A2 

3500/3000 
6600/6000 

7/10 
7/10 

300 
570 

Sufficient 

Fibreglass/Si 800 
1270 

A2 
A2 

3500/3000 
6600/6000 

7/10 
7/10 

300 
570 

Good 

Aramid/PVC 900 
2020 

B1 
B1 

7000/9000 
24500/24500 

5/6 
5/6 

700 
4450 

Good 

PTFE/- 520 Non com-
bustible 

2000/2000 40/30 500 Very 
Good 

Cotton- 
Polyester/ - 

350 
520 

B2 
B2 

1700/1000 
2500/2000 

35/18 
38/20 

60 
80 

Very 
Good 

Table 2-7: Mechanical properties of common fabrics (Houtman and Orpana, 2000) B1 – Difficult to ignite. A2 – 98%% 
non-combustible. 

Only two types of yarns which are commonly available and widely used will be 

considered in this project; glass-fibres and polyester. In addition only three types of 

coating will be considered; silicone, PTFE and PVC. Specifically PVC coated polyester, 

PTFE coated glass-fibre and silicone coated glass-fibre fabrics will be utilised in this 

project. These fabrics have been chosen as they represent the vast majority of fabrics 

widely used in architectural applications and are available to be tested. With the 

exception of Aramid /PVC and Cotton-polyester all the fabrics from Figure 2-6 are 

represented in the testing selection. As has already been discussed (§2.2.1) cotton 

fabrics are rarely used as architectural fabrics due to their limited longevity, and PTFE 

yarns are less available than polyester and glass-fibre yarns. Finally, these fabrics all 

share certain fundamental geometric properties that will allow for comparisons 

between different fabric types. This should enable a fabric to be designed for a specific 

situation with or without prior knowledge of what type of fabric would be preferred for 

the solution. Polyester base cloth fabrics demonstrate higher strain than glass fibre 

fabrics, but have a lower tensile strength and stiffness. Therefore, by considering 

multiple fabric types the model should be more widely applicable.  

A comparison between Table 2-6 and Table 2-8 shows that PVC coated polyester fabric 

structures will be considered as having replaceable parts as their lives are limited to 15 
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years, however, PTFE fabric structures will be considered as category 4, where the fabric 

will be expected to last the lifetime of the structure. 

Design 
Working life 

Category 

Indicative 
design working 

life (years) 

Examples 

1 10 Temporary structures a 

2 10-30 Replaceable structural parts e.g. gantry girders, bearings 

3 15-25 Agricultural and similar structures 

4 50 Building structures and other common structures, not 
listed elsewhere in this table 

6 120 Monumental building structures, highway and railway 
bridges, and other civil engineering structures. 

a Structures or parts of structures that can be dismantled with a view of being re-used 
should not be considered as temporary 

Table 2-8: Indicative Design Working Life (Table NA.2.1.) (BSI, 2007) 

Foldability is the ease with which fabric can be transported, glass fibres have a lower 

flexibility than polyester fibres, and hence polyester fabrics are more foldable. In 

addition, increased yarn flexibility generally results in reduced shear stiffness as yarns 

are able to bend more (§2.2.7.4), allowing for the creation of more highly doubly curved 

structures without wrinkling (Bridgens, 2005).  

2.2.7.2. Fabric classification 

The European Design Guide for Tensile Surface Structures (Forster and Mollaert, 2004) 

classifies PVC coated polyester fabric into five categories and PTFE coated glass-fibre 

fabric into the seven categories (Table 2-9 Table 2-10). Forster and Mollaert (2004) 

suggest that for comparisons between fabrics the latter five classifications for PTFE 

glass-fibre should be compared to the five categories for PVC coated polyester. However, 

in addition to PTFE coated glass-fibre and PVC coated polyester fabrics, silicone coated 

glass fibres fabrics will need to be considered, and the Tensinet Design Guide does not 

offer any classifications for these or other fabric types that are occasionally used.  
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Type 1 2 3 4 5 

Surface weight (g/m2)      

French design guide 720 1000 1200 1400 2000 

WG Messe Frankfurt 800 900 1050 1300 1450 

Tensile strength 
warp/weft (kN/m) 

     

French design guide 60/60 84/80 110/104 120/130 160/170 

WG Messe Frankfurt 60/60 99/79 115/102 149/128 196/166 

Trapezoidal tear 
warp/weft (N) 

     

WG Messe Frankfurt 310/350 520/580 800/950 1100/1400 1600/1800 

Table 2-9: Classification of PVC coated polyester fabric (Forster and Mollaert, 2004) 

Type G1 G2 G3 G4 G5 G6 G7 

Tensile strength 
warp/weft (kN/m) 

26/22 43/28 70/70 90/72 124/100 140/120 170/158 

Surface weight 
(g/m2) 

500 420 800 1000 1200 1500 1600 

Trapezoidal tear 
warp/weft (N) 

- - 300/300 300/300 400/400 500/500 450/450 

Table 2-10: Classification of PTFE coated glass-fibre fabric (Forster and Mollaert, 2004) 
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 PVC coated 
polyester 

fabrics 

PTFE coated 
glass fabrics 

Silicone 
coated glass 

fabrics 

PTFE coated 
PTFE fabrics 

Tensile strength 
warp/weft (kN/m) 

115/302 124/100 107/105 84/80 

Fabric weight (g/m2) 1200 (type 3) 1200 (type G5) 110 830 

Trapezoidal tear 
warp/weft (N) 

800/950 400/400 960/700 925/925 

Visible light 
transmission (%) 

10-15 10-20 <80 19-38 

Flexibility/crease 
recovery 

High Low High High 

Fire reaction 

 

M2 (NFP 92 
503)  
B1 (DIN 4102) 

M1 (NFP 92 
503)  
B1/A2 (DIN 
4102)  

A (ASTM E-
108) no 
toxicity of 
smokes 

 

Cleaning Easier with top 
coats 

Self-cleaning Self-cleaning Self-cleaning 

How to make the 
seams 

By high 
frequency 

Thermally Vulcanisation Stitching 

Life span (years) >15-20 >25 >25  

Cost Low High High  

Table 2-11: General comparison of the properties of fabrics (Forster and Mollaert, 2004) 

Some detail is available in the Tensinet design guide for silicone coated glass-fibre fabrics, 

summarised above (Table 2-11) (Forster and Mollaert, 2004). 

2.2.7.3. In-plane tensile response 

“Fabric structures resist environmental loads as tensile stresses in the plane of the fabric” 

(Bridgens and Gosling, 2004, p. 1913). The tensile response of textile composites is 

highly non-linear due to the nonlinearity of the constituent material properties and the 

effect of the weave geometry. The non-linear response can be seen in uniaxial tests 

(Figure 2-22). The nonlinearity of the response is caused by both constituent material 

property nonlinearity (§2.2.1, 0, 2.2.3), and as a result of the interaction between the 

yarns and coating in the woven fabric. 

Crimp interchange is the process by which fabrics alter their geometry prior to the 

extension of the yarns due to their stiffness. A force applied in one yarn direction 

straightens that yarn out, and forces the other direction to pull around it (Figure 2-21). 

This in turn results in some reaction to the original force, and will produce a contraction 
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of the unloaded direction. Due to the intricacies of this process it is possible to achieve 

a higher contraction in the unloaded direction than the extension in the loaded direction, 

and therefore Poisson’s ratios of more than 0.5 are possible, and will be shown in later 

chapters. 

 

Figure 2-21: Crimp interchange, reproduced from (Lomov et al., 2005) 

At low loads the uniaxial tensile response is expected to have a shallower gradient 

(lower tensile stiffness) than at high loads, as the geometry of the fabric deforms in 

response to the load rather than the components extending (predominantly) by crimp 

interchange. After a new equilibrium geometry is reached where the yarns in tension 

have been (largely) straightened the yarns themselves will begin to deform under load. 

This results in a higher stiffness response dominated by the yarn response (§2.2.1). 

There will be some component of both of these deformation mechanisms at all times 

during the deformation process in addition to the response of the coating at all loads. 

However the problem is simplified by Kageyama et al. (1988) to suggest that 

deformation followed by yarn extension is present in discrete response ‘zones’. 
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Figure 2-22: Example of uniaxial response, reproduced from Testa et al. (1978). ε1 and ε2 are the strains in the warp 
and weft yarn respectively. 

Biaxial response further complicates the uniaxial response by introducing stress in both 

the warp and weft direction. The ratio between the loads in the different directions and 

the magnitude of the loads will alter the fabric stiffness, with crimp interchange or yarn 

extension remaining the dominant deformation mechanisms at different loads. 

Applying a load in one direction will cause the yarns in that direction to straighten out 

(Figure 2-21), leading to a positive strain in that direction and a negative strain in the 

other direction. It then follows that if there was originally more crimp in the loaded 

direction that a higher degree of crimp interchange will occur as the fabric settles into a 

new equilibrium position. When the response of fabrics to biaxial load is visualised the 

high degree of nonlinearity this generates in conjunction with other deformation 

mechanisms becomes apparent (Figure 2-23 and Figure 2-24).  

Crimp interchange was first noted by Peirce (1937) as being the principal deformation 

mechanism of fabrics under biaxial load. In ‘as produced fabric’ (or virgin fabric) crimp 

will generally be high in the weft direction with warp yarns demonstrating less crimp 

due to manufacturing processes. This may be varied by manufacturing techniques (§0) 
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Figure 2-23: Example of nonlinearity of biaxial response, PTFE response planes produced from biaxial tests carried 
out on B18059 PTFE coated Glass-fibre fabric 

 

Figure 2-24: Biaxial stress-strain curves for PTFE fabric (Bridgens and Gosling, 2004)  
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The key features of fabric response as described by Bridgens and Gosling (2004, p. 1914) 

are: “sudden changes in gradient (a and c), gradient reversal (i.e. multiple values of stress 

for a given strain) (a) and negative strain (band c) (Figure 2-24). 

These characteristics cause difficulties in establishing a single function which can fit all 

of the data and be developed into a response surface.” And as such numerous 

descriptions of the surface (§2.3.1) and constitutive models of the fabric (§2.3.2) have 

been developed to attempt to predict or represent the response of fabrics.  

Fabrics also exhibit creep over time, time dependant hysteresis, and variability within 

batches and between batches and rolls (§2.2.5). 

The Poisson’s ratio is the contraction of a fabric in one direction due to an extension in 

the other direction. Plane stress theory requires that Poisson’s ratio cannot exceed 0.5, 

however tests carried out on multiple different fabrics have shown that it can in fact be 

as high as “2.02” (PTFE glass G6 fabric) (Gosling and Bridgens, 2008). These higher values 

are required to “model the high level of warp-fill interaction and large negative strains 

which occur in woven fabrics under biaxial load” (Gosling and Bridgens, 2008, p. 216). It 

is therefore possible that a contraction in say the warp direction might be greater than 

the elongation it resulted from. 

For a linear elastic materials the orthotropic constitutive model holds that the Young’s 

moduli (Ew and Ef refer to warp and fill directions respectively) are related to the 

Poisson’s ratios (νwf and νfw refer to the warp-fill and fill-warp ratios respectively) 

(Equation 2-4).  

𝜈𝑤𝑓

𝐸𝑤
=
𝜈𝑓𝑤

𝐸𝑓
 

Equation 2-4 

Using this theory may not be consistent with fabric behaviour, as interactions between 

the coating and yarns means that the complex fabric behaviour may not be adequately 

represented by elastic constants in this fashion. Gosling and Bridgens (2008, p. 220) 

state that as “coated woven fabrics are not homogenous materials” and therefore there 

is no requirement for the reciprocal relationship to be held (Equation 2-4). They should 

be considered to be more like mechanisms.  To this end they offer an alternate 
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calculation for the Poisson’s ratio (Equation 2-5) where ‘C’ is a constant related to the 

fabric type. 

𝜈𝑤𝑓

𝐸𝑤
= 𝐶 (

𝜈𝑓𝑤

𝐸𝑓
) 

Equation 2-5 

The value of C is an empirical constant calculated from test data Gosling and Bridgens 

(2008, p. 219) (PVC coated polyester = 1.51, PTFE coated glass fibre = 1.40). 

If fabrics are considered more like mechanisms it is possible to consider how the linear 

elastic relationship may hold for the yarns or coating, but not for the entire fabric.  

2.2.7.4. Shear 

“In-plane (or intra-ply) shear is generally considered to be the primary deformation 

mechanism during forming [finding the form the structure will take]” so must be 

considered for the design of a fabric (Boisse et al., 2005b, p. 63). The double curvature 

in a fabric will be dependent on the supporting structure, but the amount that can be 

achieved will be related to the shear the fabric can undergo However, calculating shear 

forces in a fabric, and the effect of biaxial loading on shear forces is complex. Whilst 

shear stiffness is known to be an important parameter in the analysis of doubly curved 

fabric structures “shear behaviour remains absent from some analysis methodologies 

used by industry” (Colman et al., 2014, p. 163).  

Unlike the simple engineering shear used in the analysis of plates and laminas the shear 

observed in woven fabrics is ‘pure shear’. The side lengths are considered constant 

unlike in “simple or ‘engineering’ shear” where the area remains constant, and side 

lengths are allowed to vary (Colman et al., 2014, p. 165) (Figure 2-25). Fabrics deforming 

in this way deform in a “Trellis-like manner”, with yarns rotating relative to the fulcra at 

the cross overs (Buckenham, 1997, p. 33). The importance of this can be demonstrated 

by considering the yarns as inextensible members (Nguyen et al., 1999; Sun and Pan, 

2005) and considering the large shear deformation often found in fabrics (typically up 

to 15o) (Bridgens, 2005; Colman et al., 2014). In uncoated fabrics this can be even higher, 

exceeding 50o (Colman et al., 2014), which suggests that the addition of a coating 

reduces the observable shear by 35o, confirmed by an observation made by Gosling et 
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al. (2013, p. 314): “The woven yarns provide tensile strength, whilst the coating stabilises 

and protects the weave and provides waterproofing and shear stiffness”. 

 
Figure 2-25: simple (right) and pure (left) shear reproduced fromColman et al. (2014) 

Liu et al. (2004) consider three distinct states of (uncoated) fabric response to shearing 

for “balanced plainweave” fabrics. The initial state determines the geometry of the 

fabric which is then described as deforming in a “trellis shear” deformation mode. Two 

shear resisting mechanisms are then considered: Intra yarn friction (Figure 2-26 region 

1) is the result of the friction between yarns at cross over due to tension in the fabric 

(and therefore a function of the out of plane force). Whilst yarn compaction occurs at 

lock up (γL in Figure 2-26) and resists considerably more load than yarn friction. A 

number of shear deformation mechanisms have been identified, some of which are 

shown in Figure 2-26:  

 fibre rotation (Nguyen et al., 1999) 

 fibre slip (Nguyen et al., 1999) 

 yarn lock up (Nguyen et al., 1999) 

 yarn bending (Grosberg and Park, 1966) 

 intra yarn friction (Liu et al., 2004) 

 yarn compaction (Liu et al., 2004)  

 coating shear resistance (Testa and Yu, 1987) 
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Figure 2-26: Diagram of the load–shear angle curve reproduced from Liu et al. (2004) 

A more detailed investigation of this, and use of the formulation supplied by Liu et al. 

(2004) with its revision by Colman (2014) is made in the following chapter (§3.4.3). 

Fibre slip is unlikely to occur in a coated fabric where the coating will restrain any lateral 

movement of the yarn at the fulcra, meaning that it will be necessary to consider the 

other deformation mechanisms. Matsudaira and Kawabata (1998) also model a gap 

between silk yarns that they consider to have a “strong effect” on the shear response of 

the fabric, but the applicability of this to coated fabrics would be limited as no gap can 

be observed to exist (Figure 2-12). 

Grosberg and Park (1966) established that for uncoated fabrics in the early stages of 

deformation the response is predominantly due to yarn bending where no slippage has 

occurred (at very low shear angles). Following this the yarns begin to slide (rotate) about 

the fulcra (crossovers) producing friction between yarns and possibly elastic compaction 

forces between adjacent yarns. Lastly jamming occurs leading to wrinkling (Buckenham, 

1997; Page and Wang, 2000). 

However, having noted the above deformation mechanisms for uncoated fabrics, Testa 

and Yu (1987, p. 1636) state that “resistance to shear deformation arises almost entirely 

from the coating”. This may be important, but considering the underlying fabric 

architecture to have no input into the response of a fabric would seem to be an 

oversimplification where coated fabrics are known to have complex nonlinear responses. 
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It may be the case that the coating is principal in determining fabric response, but 

consideration of yarn interaction should also be noted. This is discussed in detail in the 

following chapter (§3.7.2), where the coating will be shown to be the principal method 

by which fabrics resist shear deformation, however, the underlying fabric geometry also 

affects the shear stiffness. 

Woven fabrics may only shear to a  limited degree after which further shear strain will 

lead to increased shear stiffness and wrinkling (Liu et al., 2004; Gosling et al., 2013; 

Colman et al., 2014). Wrinkling (fabric lock-up or yarn lock-up) (Jones and Pickett, 2005) 

occurs when parallel yarns become ‘jammed’ against each other, and is characterised 

by rapid increases in shearing force, which leads to wrinkling, though this may not be 

entirely the case in coated fabrics (Nguyen et al., 1999). Wrinkling must be avoided in 

construction as it is unsightly and leads to stress concentrations in the ridges. 

Yarn lock-up would seem most readily applicable to finite element analysis where yarn 

lock up is expected to occur, given the complex interaction between yarns, and this has 

resulted in a number of FE methods that aim to quantify shear deformation in terms of 

finite element modelling (Page and Wang, 2000; Boisse et al., 2005a; Badel et al., 2007). 

These methods have the advantage of being able to calculate the frictional area 

between perpendicular yarns and the area of resistance between perpendicular yarns 

(Figure 2-27). However, these methods requires detailed knowledge of the yarn prior to 

analysis so does not lend themselves to predictive calculations. Lastly, none of the FE 

methods noted later (§2.3.2.4) consider coated fabrics.  
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Figure 2-27: Test and prediction of in plane shear for a plain weave glass fabric using an FE method reproduced 
from Boisse et al. (2005a) 

Coated fabric shear response, similarly to tensile response is characterised by hysteresis 

with the response curves shape being related to the stages of deformation discussed 

above. 

 

 

Figure 2-28: comparison between the response of coated and uncoated fabrics manufactured specifically for the 
tests (Skelton and Freeston, 1971)  

The shear stiffness of a coated fabric was found to be ten to a hundred times greater 

than the uncoated substrate (Skelton and Freeston, 1971) (Figure 2-28). 



  2. Literature Review 

 
PAGE 57 

Farboodmanesh et al. (2005, p. 197)  states that shear behaviour in rubber coated 

fabrics is “governed by the interaction of its two components” in contrast to the earlier 

statement by Testa and Yu (1987) who state that shear response is governed by the 

coating. The work by Farboodmanesh et al. (2005) considers an altogether different type 

of fabric  where the coating is formed from a neoprene latex to those normally employed 

in architectural structures. Whilst neoprene latex is not directly applicable to 

architectural fabric this paper is the only available source that considers the thickness 

of coating and impregnation of coating into the fabric base cloth with relation to shear 

stiffness. This difference may result in the different conclusion, namely that coating 

dominates the response at low shear angles with the fabric dominating at higher angles. 

Further to this  Farboodmanesh et al. (2005) demonstrates that increased thickness of 

coating increases the load required for a particular shear angle. Whilst this is not 

unexpected it is the only available clear demonstration of this through test data. Testa 

and Yu (1987, p. 1636) consider coated fabrics and describe how that “for both Teflon 

coated and silicone coated fabrics the shear response is elastic and nearly linear” though 

this is for low shear angles it appears to be in contradiction to the response curves 

presented by Colman et al. (2014).  

Current best practice is to use the plane stress orthotropic equations (Equation 2-6) 

(Colman et al., 2014). It is important to note that in the plane stress orthotropic 

equations the shear response is entirely uncoupled from the tensile stiffnesses (Ew, Ef). 

The zero values in the cells […]1,3, […]2,3, […]3,1, and […]3,2 ensure that the in-plane tensile 

response is not linked to the in-plane shear response. This is not confirmed by work by 

Liu et al. (2004), who links the extension of yarns to an increased area of friction 

between yarns, resulting in a higher shear stiffness. However, if Testa and Yu (1987) are 

correct and the coating is only responsible for a fabric’s shear stiffness then this 

assumption will be accurate. 

{

𝜀𝑤
𝜀𝑓
𝜀𝑤𝑓

} =

[
 
 
 
 
 
 
1

𝐸𝑤

−𝜈𝑓𝑤

𝐸𝑓
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−𝜈𝑤𝑓
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𝐸𝑓
0

0 0
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𝐺𝑤𝑓]
 
 
 
 
 
 

∙ {

𝜎𝑤
𝜎𝑓
𝜎𝑤𝑓

} 

Equation 2-6 
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Where εw,f,wf are the warp, weft, and shear strains respectively. Ew,f are the in-plane 

tensile stiffnesses, νfw,wf are the in-plane Poisson’s ratios, Gwf is the shear modulus, and 

σw,f,wf are the stresses. 

2.2.7.5. Bending and compression 

“Architectural fabrics have negligible [out-of-plane] bending and [in-plane] compression 

stiffness” (Gosling et al., 2013, p. 314). As such, whilst the small scale consideration of 

the bending of individual yarns in the case of shear has been dealt with in the previous 

section (§2.2.7.4) no detailed discussion of fabric unit cell bending will be made in this 

section. Fabrics are known to respond to loading by large deformations, biaxial tensile 

response, and shearing. As such bending stiffness is never considered in the analysis of 

a fabric. 

Further to this fabrics have negligible in plane compressive stiffness in both of the 

principal yarn directions, so this too will be given no further consideration. 

2.2.7.6. Tensile strength 

The strength of a fabric is an important characteristic of fabric’s, though may be difficult 

to consider within a unit cell representation of a fabric (§2.3.2.2). A fabric’s strength is 

determined by the strength of the yarns as part of the constituent material, and reduced 

to less than the sum of the strength of the yarns by the interaction of each yarn with 

perpendicular yarns (Forster and Mollaert, 2004).  Whilst the yarns may have a tensile 

strength when tested individually the deformations they undergo within a fabric will 

alter this, reducing it as the yarns are bent around each other. Similarly Pan (1996, p. 

313) notes that “the tensile behaviour of a fabric would be identical to that of its 

constituent yarns if all yarns were uniform in their tensile properties, and if the 

interactions between the two perpendicular yarn systems were negligible”. However, 

given that this is not the case a method of calculating the strength of the material is then 

proposed. Using the strength of the yarns excluding the interaction with the 

perpendicular direction as an initial approximation Pan (1996) then calculates a ‘critical 

length’, or effective length taking into account out of plane curvature, of a yarn for a 

given maximum strength. The critical length is described as the equivalent yarn length 

of a virgin (non-woven) yarn to that of a woven yarn and takes account of inter-yarn 

interactions. This allows a virgin yarn’s properties to be used in strength calculations, 
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whilst ignoring the inter-yarn interactions. This critical length can then be applied to the 

original strength calculation based on non-interacting perpendicular yarns to give a 

fabric strength. It is also noted that whilst this is the case for plane weave fabrics weave 

structure will affect this value. 

The procedure to determine fabric strength as published by the BSI (1998b) is to apply 

a load along the axis of interest, measuring the extension and load of the sample until 

break. The maximum load and maximum strain at break are recorded, and correspond 

to the strength of the material. This is a uniaxial strip test, although biaxially tested fabric 

exhibit lower values of tensile strength (Happold et al., 1987). 

2.2.7.7. Tearing and Tear propagation 

Fabric failure will often be due to an existing tear rather than loads exceeding fabric 

strength. In tear propagation the “force which originally passed directly through [a tear] 

before the tear existed, has now been “led around the tear” (Forster and Mollaert, 2004, 

p. 239). This leads to a stress concentration at the pinnacle, or tip, of the tear, which if 

large enough will continue to propagate the tear. Forster and Mollaert (2004) suggest 

that an initial tear length (critical tear length) should be assumed and the fabric’s 

resistance to this tear analysed, but do not specify what this should be. More generally 

the tearing strength is approximately 16% of the tensile strength of a fabric when 

analysed using a wide strip test (Happold et al., 1987). A wide strip test is a tensile load-

extension test performed in an Instron or similar test machine which measures the load-

extension characteristics of a wide strip of fabric, 400mm wide.  

A number of test methods exist for the calculation of fabric tear resistance including the 

Tongued (double-tear), the Trouser-shaped (single-tear), the trapezoidal method, and 

by putting an initial cut into a uniaxial sample (BSI, 1982; BSI, 1998a; BSI, 2003; Forster 

and Mollaert, 2004). 

2.2.7.8. Environmental impact and Recyclability 

 “The recycling of PVC coated fabrics is possible using a process (patented by Solvay and 

applied by Ferrari) which allows the separate recycling of the PVC resin and the polyester 

fibres by selective chemical dissolving.” (Forster and Mollaert, 2004, p. 227). Whilst some 

companies offer to repurpose fabrics after their return, for instance as floor coverings 

(Verseidag, 2011) .  
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The relatively low weight of fabric structures compared to other roofing solutions does 

generally also result in a reduction of foundation mass and superstructure with a 

resultant decrease in both cost and material. This in itself increases the environmental 

performance of fabric structures as they require less embodied carbon in the 

superstructure and foundations. 

The final point of note with relation to the environmental impact of fabric is that the 

fabric’s low mass leads to a high conductivity of external environment to internal 

surfaces, and low insulation (Forster and Mollaert, 2004). It follows therefore that 

heating and internal airflow must be carefully monitored for spaces enclosed by a fabric 

structure.  

The generally short life span of architectural fabrics, especially PVC coated polyester 

fabrics means that they need to be replaced regularly in structures that are constructed 

for a design life of more than 30 years. Where the fabrics are non-recyclable, the use of 

architectural fabrics is therefore not sustainable. 

2.2.8. Uncoated fabrics: Classification and response 

Uncoated fabrics will not be tested or designed in this thesis, however, there is a great 

body of work that has been carried out on uncoated fabrics, including work by Peirce 

(1937), and Kawabata et al. (1973), Nguyen et al. (1999), Grosberg and Park (1966), 

Testa and Yu (1987)  to model uncoated fabrics. The difference between coated and 

uncoated fabrics is the lack of any restraint provided by the coating on the yarns. 

Fabrics are generally classified in terms of their tensile strength, linear density of fibres 

(Tex or denier), weight and other relevant properties. Tex is “the unit of linear density, 

equal to the mass in grams of 1000 meters of fiber, yarn, or other textile strand, that is 

used in a direct yarn numbering system” (ASTM, 2013).  
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2.3. Types of fabric model 

Or how can a model be used to design fabrics, and what properties are needed? 

This section reviews current methods for the modelling of fabrics, focussing on what is 

needed to produce a fabric model and later how these might be used to produce an 

inverse model. Pargana et al. (2007, p. 1323) states that “the accurate and reliable 

modelling of fabrics is of paramount importance for the successful and realistic design 

and analysis of these structures”. The accuracy of models to be used in the description 

of plane weave fabrics will also be considered. Many models are available, all of which 

consider different properties of the fabric and make different assumptions regarding its 

geometry and how loads are distributed. These can be summarised as: 

 Result modelling 

o linearizing results 

o curve fitting 

o discretisation 

 Yarn modelling 

 Unit cell modelling 

o Finite element models 

o Physically based models 

2.3.1. Biaxial and Uniaxial stress-strain behaviour representation 

The representation of fabric test data has been attempted in a number of ways. Though 

the complex nonlinear response of fabrics to uniaxial, biaxial, and shear loading means 

numerous models have been developed to represent fabric response to tensile and 

shear loads.  

Bi-linear representations of fabric response have been widely used to represent test 

data, the initial crimp interchange dominated response and the later yarn extension 

dominated response are each represented by a linear relationship (Figure 2-29). 

However, the linear relationships must be reset for each stress ratio (Testa et al., 1978; 

Kageyama et al., 1988). 
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Figure 2-29: Two zones that make up the Bi-linear model reproduced from Kageyama et al. (1988) 

Modulus-strain curves, using the derivative of the stress strain curve, can also be used 

to show fabric response, and can show more clearly small differences in mechanical 

properties. This is often seen as distinct peaks rather than the slight steepening or 

flattening often noted in stress-strain data. Lucas (1983) produces a fitted polynomial to 

modulus-strain curves for yarns using the sum of three “modified Pearson VII lines” 

(Figure 2-30). The same modified curves are also used to predict force elongation 

responses for yarns (Zimliki et al., 2000). The accuracy of this method in reproducing 

initial moduli, whilst described as being “better” than previous models, is highly variable 

with published percentage differences between measured and predicted response 

being between 0.4 and 28%. 

Chen et al. (1995) used “polynomial functions” to represent tensile and shear data to 

enable the calculation of strain energy. Biaxial properties were represented by second 

order polynomials and shear data represented by third order polynomials. The 

advantage of this method is that the moduli (derivatives of each curve) could be found 

quickly and in a single step. However, whilst the published r2 values are high (greater 

than 0.98) the data appears to fail to represent sharp changes in stiffness as crimp is 

removed and yarn extension becomes the dominant deformation mechanism. 

The problem with fitted curves which are not based on any physical model is that they 

give no useful information about the response beyond the points for which test data is 
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available. Though the data and its visualisation might be used for the range of results 

already obtained. In particular the noting of the peaks in stiffness at certain strains might 

be relevant in design (Figure 2-30).  

 

Figure 2-30: measured (dots) and fitted (line) modulus strain curve. The curves from which the fit was made are 
also shown (-----). Reproduced from (Lucas, 1983) 

Strain energy functions produced from the “complementary strain energy function” 

have also been used to represent fabric biaxial response (Testa and Yu, 1987). This 

method requires the calibration of a number of parameters for any fabric found using 

uniaxial tensile testing, whilst the model itself appears to show only limited success in 

predicting response. 

Current practice is to use the plane stress representation to represent fabric data with 

“Fabric behaviour [] typically defined using elastic constants based on plane stress 

assumptions” (Bridgens and Gosling, 2004, p. 1913). The plane stress representation 

defines the fabric in terms of two Young’s moduli and Poisson’s ratios, reducing the 

response to a simple representation, and largely ignoring the complex nonlinearity of 

fabric response.  

Three methods of presenting fabric stress-strain behaviour in this way are presented by 

Bridgens et al. (2004): First is to represent the response in terms of two Young’s Moduli 

and one Poisson’s ratio which “remain constant throughout the structural analysis”.  
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Second is the “Use of elastic and interaction moduli” (Equation 2-7). The Poisson’s ratios 

can also be determined (Equation 2-8). 

 

[
𝜎11
𝜎22

] = [
𝐸1111 𝐸1122
𝐸2211 𝐸2222

] [
𝜀11
𝜀22
] 

 

Equation 2-7 

𝜐12 =
𝐸1122
𝐸1111

 

𝜐21 =
𝐸2211
𝐸2222

 

Equation 2-8 

For which the subscripts 11 and 22 represent the warp and weft directions respectively. 

σ=stress, ε=strain, ν=Poisson’s ratio, and E = elastic modulus (Blum and Bögner, 2002) 

These equations (Equation 2-7 and Equation 2-8) are then solved by considering stresses 

and strains as small increments at points of interest. “This procedure will be repeated for 

every part of the load history. Thus we can get an impression of the elastic moduli over 

the range of loading” (Blum and Bögner, 2002, p. 3).  

Thirdly a method for the determination of elastic constants from response surfaces has 

been developed by Minami et al. (1997, p. 598) which “employs multi step linearized 

approximation” (Figure 2-31). In this method biaxial test data is discretised into a 

number of surfaces for which the response characteristics can be calculated (Figure 

2-31). 

 

Figure 2-31: Biaxial response surface divided into discrete zones. Reproduced from Minami (2006) 

Day (1986, p. 18) uses an alternate method to describe the fabric response based on soil 

mechanics and “relating the mean and difference of the principal stresses, to the mean 
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and difference of the principal strains”. The material is considered to be orthotropic as 

“the shear stiffness of a typical woven fabric is low” and thus the principal stresses and 

strains are taken to be the warp and weft stresses. The shear stress is derived separately. 

Arbitrary stress strain curves are used in the relationships between stresses and strains 

as polynomials proved unusable because of “discontinuities in the material”. When 

comparing these equations to test data “systematic adjustments” are made to the 

curves until the accuracy cannot be improved. And the material (and its nonlinearity) 

can therefore be represented by two simultaneous equations. 

Bridgens et al. (2004) suggests a new approach to the use of response surfaces: That a 

surface should be fitted to fabric data and the stress-strain response surface used to 

allow a “direct correlation between stresses and strains [ ] for structural analysis”. In the 

suggested method “A ‘look-up’ table of warp and weft stresses and strains replaces 

elastic constants in the analysis”. And therefore the stress at a given displacement would 

not need to be recalculated, rather ‘looked up’ from the available test data, 

“consequently, a differentiable surface function does not need to be defined” (Gosling 

and Bridgens, 2008, p. 225). Splines are used to represent the fabric surface in later work. 

2.3.2. Fabric modelling 

A detailed discussion of fabric models has been made below. Special consideration is 

given to mechanical models. 

Mechanical models endeavour to represent the response of a fabric to loading by 

considering a model that in some way represents the physical reality of the fabric, which 

was first demonstrated by Peirce (1937). In this fashion the extrapolation of the model 

beyond initial testing can be carried out by considering how the various properties of 

the model physically change under new conditions. The properties of such models can 

be modified easily and those that are representative require only minimal testing and 

no calibration for the model properties to be changed. A detailed discussion of a number 

of mechanical fabric models is made in this report (§2.3.2.3), though all of these models 

consider a unit cell, the response of which can be used to represent the response of an 

entire fabric (§2.3.2.2). 

Parameters used in mechanical models include yarn geometry, yarn spacing, fabric 

crimp, and coating and yarn moduli. These can be determined from uniaxial or biaxial 
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testing and physical measurement. Where constants or calibrations from biaxial test 

data are required the model must be considered to be representing the data set from 

which these are derived, and cannot be used beyond that initial range as with a  

predictive model (§2.3.2.3). 

2.3.2.1. Yarn modelling 

Numerous models exist that endeavour to predict the characteristics of yarns within 

fabrics: Singh and Naik (2001) have produced a method which predicts the longitudinal 

and transverse tensile strength of yarns with reference to (Hearle, 1969). Madhavan and 

Naik (2000) have produced models which predict the elastic properties of yarns and 

demonstrate how certain properties of yarns such as twist can affect the modulus of the 

yarn as a whole. Yarn modulus “decreases substantially with increasing twist” in the 

work by Madhavan and Naik (2000). Further work, including that discussed earlier 

(§2.2.1), also attempts to classify yarn mechanical properties using yarn characteristics 

and a great deal of work has been carried out in this area beyond the pieces discussed 

above (Ghosh, 2005; Palaniswamy and Mohamed, 2005; Nurwaha and Wang, 2011; 

Arain et al., 2012). 

However most unit cell and predictive methods outlined below do not make use of 

detailed yarn descriptions. Thus as the proposed work will be based on a unit cell model 

a detailed discussion of various yarn models is not considered necessary. 

It is possible that the inclusion of yarn models may become necessary in future work to 

improve the reliability of the predictive model design. This is made more likely due to 

the nonlinearity of response of certain yarns (Figure 2-8), where linear representations 

of yarn properties may prove overly simplistic in the context of a complex nonlinear 

response system. 

2.3.2.2. Unit cell modelling 

In the modelling of fabrics a repeatable unit is almost always used to enable the 

consideration of a small component of the fabric that can then be repeated or expanded 

upon to give the response of an entire fabric. This principle is initially described by Peirce 

(1937, p. 54) who describes the fabric assuming yarns are “flexible, circular cylinders 

interwoven in a regularly recurring pattern”. This bears a great deal of semblance to later 

descriptions. The unit cell most often used and described as “the smallest element that 



  2. Literature Review 

 
PAGE 67 

may be used to characterise the mechanical response of the fabric as a whole” (Pargana 

et al., 2000, p. 4)  is that of a half wavelength of each yarn centred at cross over (Figure 

2-32). This representation allows for the small scale modelling of the interaction of the 

yarns at crossover, whilst considering the extension of the cell in both warp and weft 

directions. This can be extended to consider shear response. 

 

Figure 2-32: Unit cell representation (Plain Weave) 

The idealisation of the unit cell can vary depending upon the model employed, however, 

in every case  reviewed this cell is used as the basis of the model with the exception of 

the work by Badel et al. (2007) which uses two unit cells (§2.3.2.4).  

2.3.2.3. Predictive models 

Fabric models are generally developed using one of two methodologies. Models are 

developed to either represent biaxial data, or predict the biaxial stress-strain response. 

Representative constitutive models utilise biaxial stress-strain response data to inform 

variables in the descriptive equations that then ensure the modelled response is within 

certain tolerances. Representative models are only reliable within the range of the data 

the original variables were informed from, as beyond this the variables have not been 

calibrated. This requires the testing of fabrics to obtain the data to calibrate the model 

against. Models utilising this approach which will be discussed in more detail below 

include: The model by Tan and Barnes (1984) which requires the “Calibration of the 

material model”, the model by Kato et al. (1999) which requires biaxial data to identify 

Unit cell 



  2. Literature Review 

 
PAGE 68 

“characteristic strains”. Pargana et al. (2000), and Uetani et al. (2002) both require that 

“the constitutive parameters are obtained from bi-axial tests of membrane sheets”. 

A truly predictive models would require no biaxial or uniaxial testing to calibrate or 

calculate model parameters beyond those originally used to check the model, and 

calculate the stiffness of the yarns. Predictive models should only utilise readily available 

data about a fabric’s constitutive properties that will allow for prediction of response 

beyond the original data sets for the different materials the model was tested against. 

The parameters required will be the geometry of the fabric, and the response of yarns 

and coating under load (such as young’s modulus of the yarns). This will be particularly 

important for a model which is intended to be used to design fabrics which have not 

been manufactured yet, as biaxial data with which the model could be calibrated will be 

not be available. 

A number of methods exist to describe the response of a fabric in terms of a unit cell or 

mechanical model with each offering innovative or improved methods in comparison to 

previous models. The methods used to describe fabric geometry and response in terms 

of unit cell formulations all have their route in the work carried out be Peirce (1937) who 

described a series of properties needed to compare fabrics or “Geometrical Similarity” 

and produced a model that describes “The Geometry of the Plain Weave”. The relevant 

geometrical properties introduced are listed below: 

 “Crimp” is described as “the percentage excess of length of the yarn axis over the 

cloth length”.  

 “Weight” 

 “The twist factor” describes “The angel of twist between surface fibres and yarn” 

similar to the method used earlier (§2.2.1). 

 “Breaking Length” gives the strength of the material. 

“The Geometry of the Plain Weave” is described in terms of: 

 “Diameter of thread, d1,2 

 Spacing of thread, p1,2 

 Maximum angle of the thread axis to plane of cloth, θ1,2 
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 Length of thread axis between planes containing the axes of consecutive cross 

threads, l1,2  

 Maximum displacement of the thread axis, normal to the plane of the cloth, h1,2 

 Crimp (fraction), c1,2” 

(Peirce, 1937) 

The geometrical properties identified can be used to accurately describe the geometry 

of a plain weave fabric assuming circular yarns, and forms the basis of yarn description 

methodologies used in this section (Figure 2-33). Similarly Peirce produces the first 

examples of equations that relate these properties to each other which form the 

foundation of the predictive models that will be used to design a fabric (Equation 2-9). 

Peirce’s equations precede and inform the ‘equilibrium equations’ used by others 

(Kawabata et al., 1973; Tan and Barnes, 1984; Wang, 2002; Bridgens and Gosling, 2008). 

 

Figure 2-33: Geometry of circular yarns, reproduced from Peirce (1937) 
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𝐷 = 𝑑1 + 𝑑2 

𝑐1 =
𝑙1
𝑝2
− 1 

𝑝2 = (𝑙1 − 𝐷𝜃1) cos 𝜃1 + 𝐷1 sin 𝜃1 

ℎ1 = (𝑙1 −𝐷𝜃1) sin 𝜃1 +𝐷(1 − cos 𝜃1) 

ℎ1 + ℎ2 = 𝐷 

Reproduced from Peirce (1937) 

Equation 2-9 

The equation 𝑑1 + 𝑑2 = ℎ1 + ℎ2 requires that the sum of the yarn diameters is equal to 

the sum of the out of plane dimension, this also partly describes crimp interchange. 

Peirce also considers crimp interchange explicitly, and how the fabric might deform 

when “ignoring any compression or extension of the threads themselves”. Peirce also 

describes how the tension forces must be balanced at crossover (Equation 2-10). This is 

the first demonstration of the need for the out of plane forces to be balanced. 

𝑇1 sin 𝜃1 = 𝑇2 sin 𝜃2 

𝐹1𝑝1 tan 𝜃1 = 𝐹2𝑝3 tan 𝜃2 

Equation 2-10 

(where T is the tension and F is the load/inch) 

The flattening of yarns (“Compression of Threads”) and the elastic deformation of yarns 

(“The Crimped Form of an Elastic Thread”) are also investigated. The threads are 

considered to “have the form of an ellipse” although as Kemp (1957, p. 44) notes the 

assumption of circular cross sections “is invalid except possibly for very open weaves”. 

This leads to his suggestion of an improvement to the above work: The elliptical yarn is 

also considered to be a “homogeneous elastic material” which, as has been shown 

earlier (§2.2.1) is not necessarily the case. However Peirce does state that “it is not 

seriously suggested that the assumption of perfectly elastic isotropic material describes 

actual textiles”. The use of simplified properties allows for the computation of the 

response of the complex system. Yarn elongation, and its effect on vertical forces are 
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also included in Peirce’s model (Figure 2-34, Equation 2-11), after crimp interchange has 

been considered without its inclusion. 

 

Figure 2-34: Yarn elastic deformation, reproduced from Peirce (1937) 

 

(𝐹1𝑃1 + 8
𝑚1

𝑝22
cos 𝜃1) tan 𝜃1 = (𝐹2𝑃2 + 8

𝑚2

𝑝12
cos 𝜃2) tan 𝜃2 

Equation 2-11 

(where m is the bending moment in the yarn) 

An improvement on the circular cross section is suggested by Kemp who uses a 

“racetrack section” in an attempt to improve the description of the yarn. The racetrack 

section is described as being “obviously closer to the actual shape of the thread section”, 

and makes use of the equations and notation developed by Peirce (Figure 2-35). The 

racetrack formulation makes use of a compaction factor ‘e’ to describe the compaction 

of threads similar to that used by Peirce.  

𝑒 = 𝑏/𝑎 Equation 2-12 
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For the development of a predictive model the use of factors such as the thread 

flattening coefficient will be preferable to other methods of defining yarn compaction 

at crossover (often referred to as “crushing” in literature) such as those requiring 

constants or coefficients that have to be deduced from testing (Equation 2-12).  

However, coefficients require some testing to obtain, therefore methods not utilising 

coefficients will always be preferable. 

  

Figure 2-35: Non circular yarn geometry reproduced from Kemp (1957) 

In 1973 Kawabata et al. (1973) redefined the problem of how to represent fabric 

geometry, and introduced a new way of visualising the geometry in terms of a centre 

line running through the centre of the yarn (Figure 2-36). This included a new method 

for considering yarn compaction at crossover, but no consideration of coating. This is 

the first ‘sawtooth’ method, described this way because of its appearance. A simple 

method similar to this will be used early in the next chapter (§3.3) to describe how the 

design of a fabric can be achieved and prove the theory of the concept without the 

inclusion of a number of more complex variables. 
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a) b) c) 

Figure 2-36: The unit structure, a) unit structure, b) model, c) Notation for forces and deformation, reproduced 
from Kawabata et al. (1973) 

This method is different to the sawtooth method used in the next chapter as it includes 

factors such as S (the crimp), n (ends/cm) and λ (1+strain) where in later models this is 

replaced by values that refer directly to the geometry of the fabric. 

The extension and compaction of the yarns is modelled using the “blocks” A1,2 and B1,2. 

The tensile properties of the warp and weft yarns are represented by a further function 

(Equation 2-13) (Kawabata et al., 1973). This has the distinct advantage of not limiting 

the response of the yarns to a single linear value, however, in terms of the design of a 

fabric the use of a response formula creates certain problems. Were this method for the 

calculation of yarn extension used for the design of a fabric some method of defining 

the response surface for an unknown yarn would be needed. This could be overcome 

with a large library of different yarn responses where each could be looked up for a 

different design, but this would restrict the design to those responses already recorded. 

Both these options would limit the intended predictive nature of the design process by 

either limiting the design to areas where the yarn response surface has been defined 

and calibrated or by limiting the response to known yarns where a response surface 

exists. As such it would not be feasible for such a method to be used in the design 

process. 

𝐹𝑇1,2 = 𝑔1,2(𝜆𝑦1,2) 
Equation 2-13 

 “Thus the functions g1 and g2 represent the mechanical properties of A1 and A2 

respectively” (Kawabata et al., 1973, p. 25). 
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The yarn compaction at crossover is defined as “merely that the thickness changes” due 

to the out of plane force exerted between yarns at the point of contact (Kawabata et al., 

1973) (Figure 2-37). The property is measured experimentally using the “parallel-plate 

method” (Figure 2-37). The decrease in thickness, δ, is then used to calculate the change 

in geometry. 

𝛿𝐷1,2 = 𝜙1,2(𝐹𝑐) Equation 2-14 

 

 

Figure 2-37: The compression of a yarn, reproduced from Kawabata et al. (1973) 

The first true sawtooth model to be developed that includes both coating and yarn 

deformation was produced by Menges and Meffert (1976, p. 12). The model “is 

considered to be a load bearing structure consisting of deformable bars that lie in the 

direction of the warp and woof [weft] axes” (Figure 2-38).The work focusses on PVC 

coated polyester fabrics although this is extended to PTFE coated glass fibre fabrics by 

Dimitrov and Schock (1986). Others such as Pargana et al. (2000) improving the unit cell 

models with the addition of a yarn compaction at crossover mechanism, not included in 

the work by  Menges and Meffert (1976).  
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Figure 2-38: Model for calculating the biaxial strain characteristics, reproduced from Menges and Meffert (1976) 

In this model however there is no consideration of yarn compaction at crossover. Yarn 

coating properties are considered to be linear, and the value of the coating response 

represented by the springs, C, is found to have little effect on the response. Such that 

“If the value assumed for C varies by a factor of 10, the figures calculated for the strain 

are changed by an amount of only 1%”. As such the author justifies the use of a single 

value of coating constant. A single value would be useful in the design of a fabric as this 

could be varied in the design and the value changed based on the type of coating chosen. 

The author finds that it is the structure of the fabric which dominates the response to 

load for instantaneous loads with “the amount contributed by individual components 

vary[ing] to an extent depending on the type of loading and the stress level”. This is as 

might be predicted given knowledge of fabrics response. 

For the fabric tested the results given in the paper appear to show excellent agreement 

to test data. However, only three sets of test results are presented for a single fabric and 

at relatively favourable stress ratios (2:1 and 1:1), other stress ratios (4:1, 1:0) would 

show less standard responses, and possibly negative strain. It is therefore unknown as 

to how well the model would respond at stress ratios where there is less equality 

between loading directions. Further to this the method is described as “cumbersome” 

(Tan and Barnes, 1984), as such whilst it may offer a good basis for a design method it 

would require the addition of  a yarn deformation component  and shear stiffness. 
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Dimitrov and Schock (1986) describe the fabric response, and also extend the “Meffert 

theory”, to include PTFE coated glass fibre fabrics.  Initially the response characteristics 

of a fabric are defined within each section of the response (Figure 2-39), although the 

author admits that there will be some overlap, especially at the initial stages. Variations 

to the model employed by Meffert include the use of a variable yarn stiffness with 

“progressive stiffness at low loads, which is due to the initial stretch of the yarn until 

fibres are in contact with each other”. A parabola is fitted to the data making this model 

representative, and unlikely to be useable in the design of fabrics. Dimitrov and Schock 

(1986, p. 858) also consider a “bedding down effect”. 

The model is found to give “reasonable” results for what is described as the “natural 

stress state” defined as the stress ratio “which causes no crimp interchange for a 

particular fabric”. However, results are found to be “not so good” for other ratios. Such 

descriptions of results offer no quantitative description of the quality of a model. Error 

in the model is possibly due to the lack of inclusion of any true description of yarn 

compaction at crossover in this model, which is significant at high loads experienced by 

PTFE glass fibre fabrics. The discretisation and inclusion of a progressive fit to the yarn 

response may also contribute to this error by reducing the effect of the yarn stiffness at 

the point where the response is increasingly defined by the yarn extension rather than 

crimp interchange or initial bedding down. 

 

Figure 2-39: Typical load extension diagram of coated and uncoated fabric, reproduced from Dimitrov and Schock 
(1986) 
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Testa et al. (1978) also considers a sawtooth model for plain weave fabrics, however, as 

only “square fabrics” are used to reduce the number of parameters its applicability to 

the design of a fabric is limited. Though Tan and Barnes (1984) do suggest that this could 

be applied to other geometries “relatively” easily. The geometric constraints that ensure 

“continuity” in this model relate to the equilibrium equations used in other models and 

are (Equation 2-15): 

 ℎ1 + ℎ2 = 2𝑡 (sum of yarn amplitudes is equal to the sum of yarn thicknesses) 

 𝑙1,2
2 − 𝑑1,2

2 = ℎ1,2
2 (the triangle made up of the yarn amplitude, length and in 

plane length is right-angled) 

Equation 2-15 

 

Figure 2-40: Free body diagram of the model of yarns, reproduced from Testa et al. (1978) 

The bilinear model as well as the work of Dimitrov and Schock (1986) demonstrates how 

yarn properties might be obtained from tests, i.e. that the straight portion of the 

response in a uniaxial test is a region where only yarn extension and coating need be 

considered, and as such yarn mechanical properties can be derived from this section of 

the curve. 

Stubbs and Fluss (1980) also make use of a sawtooth formulation describing it as a 

“space-truss” that can be used to investigate the “effect on the response due to 

geometric and elastic parameters such as yarn geometry, rotations and elastic 

parameters such as yarn geometry, rotations and crushing, as well as coating properties”. 

This model, as with others restricts the loading to the orthogonal direction. 
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The model developed by Stubbs and Fluss (1980, p. 52) utilises only linear elastic 

properties, or rather that “all elements will be assumed to obey Hooke’s law and any 

nonlinearities introduced in the overall response will be considered a consequence of 

geometric nonlinearities”. This use of only linear elastic properties to represent the 

nonlinear response is excellently suited to the process of designing a fabric, whereby the 

nonlinearities known to be found in fabric response might be designed for. This would 

allow a single parameter to be designed which in turn does not require the use of look-

up tables to identify a response, and thus limits the design to known variable responses. 

This should lead to a more predictive design methodology, rather than a representative 

model of fabrics known to already exist. The typical element (Figure 2-41 and Figure 

2-42) epitomises most sawtooth methodologies. 

 

Figure 2-41: Typical fabric element (Stubbs and Fluss, 1980) 

 

Figure 2-42: Truss model of fabric element, reproduced from Stubbs and Fluss (1980) 
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The continuous coating is only represented by the two elements 7 and 6 whilst the yarn 

compaction at crossover is modelled by element 5 (Figure 2-42). Thus this method 

includes all the components of the fabric generally considered to be necessary for 

accurate modelling. However, the response of this element is based on the variation of 

a value K5/Ky (K5 is the yarn resistance to cross-section deformation, Ky is the yarn 

stiffness) where a low value represents a low resistance to cross section deformation 

and a high value a high resistance to cross section deformation. The method used by 

Stubbs and Fluss (1980) involves carrying out uniaxial tests which inform the values Ky 

and N, which then represent the elastic properties of the fabric. Whilst this may 

accurately represent the response of a yarn’s compaction at crossover for a specific 

fabric the use of only test data to find these values makes the model entirely 

representative, and means that such a method could not be introduced into a design 

methodology. However, were the bar element that represents the yarn interaction to 

be replaced by some means of predicting the response other than a simple 

representative relationship this method to predict the response of fabrics might be 

applicable to the design of fabrics. 

This method demonstrates a number of important principles that will be used during 

the creation of the proposed method, and provides a basis for more advanced sawtooth 

methods. Its accuracy appears similar to that of the model produced by Testa et al. (1978) 

although higher accuracies are apparently seen in some cases there still appears to be 

error around the point where the change from crimp interchange to yarn extension 

occurs. 

A further model similar to those above is also developed by Tan and Barnes (1984) 

however, as it is described as “similar to that described by Testa and Stubbs” no detailed 

discussion of it will be made here as it too is representative, requiring the “Calibration 

of the material model”. 

The final unit cell model to be reviewed takes an alternate view of the linearized model 

by considering a “trapezoidal lattice model”. The model developed by Kato et al. (1999) 

(Figure 2-43) has two principal components: A warp and weft yarn are represented by 

two sets of elements each (A, AA, A and B, BB, B). Coating is represented by the elements 
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C, D, E, and F in addition to the element R1 which represents the coating that has 

permeated into the yarns and an element, ‘V’, which represents compression. 

 

Figure 2-43: Trapezoidal lattice model (Kato et al., 1999) 

The model is then used as a component in an FE method and also utilises a hysteresis 

approximation to allow for the modelling of hysteresis. One problem with this is that the 

model becomes representative, in that certain parameters are found using “trial and 

error”. The model appears to show good correlation to test data however it requires 

estimation of calibration properties so would be unsuitable for the design of a fabric. 

Another less simple model is developed by Pargana et. al. (Pargana et al., 2000; Pargana 

et al., 2007) where a number of nonlinear and rigid elements represent yarns, whilst 

coating is modelled as an isotropic plate. No creep is included in the model and there is 

no slip at yarn crossovers. Again the model requires calibration. Whilst the model 

appears more ‘realistic’ in its formulation results do not appear to be as accurate as 

might be expected, especially for unloading curves. Again the discussion does not 

quantify the accuracy of the model, but states that the model “predicts realistically” the 

response. Examination of the response curves presented does not necessarily hold this 

to be the case. Of particular concern might is the 1:0 stress ratio, where the lowest weft 

strain is underestimated by what appears to be approximately 50%. 
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Figure 2-44: Unit cell representation of yarns (Pargana et al., 2007) 

 

 
Figure 2-45: 1:0 stress ratio comparing test (___) and model (- - - ) results (Pargana et al., 2007) 

Yarn compaction models are used to represent the crushing behaviour of yarns, first 

identified by Peirce (1937), which is important for the calculation of the fabric response 
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(Testa et al., 1978; Skelton, 1980; Tan and Barnes, 1984; Dimitrov and Schock, 1986; 

Bridgens and Gosling, 2008). A number of these methods are covered in the following 

section (§2.3.2.4) as they relate to Finite Element modelling, and the model developed 

by Bridgens and Gosling (2008) whilst discussed briefly below is discussed in more detail 

in the following chapter (§3.4). “Considering that a yarn typically contains 12000 or more 

filaments it is computationally efficient to consider the yarn as a continuum” (Glaessgen 

et al., 1996, p. 44), as considering the crushing and movement of each individual 

filament would require considerable computational outlay. As such most yarn 

deformation at crossover models consider a simplification of the problem. 

Dimitrov and Schock (1986, p. 856) consider a bedding down effect rather than yarn 

crushing. Bedding down is described as described as “the removal of slack between the 

yarns of opposite direction,” where “the associated lateral compression of the yarns will 

probably contribute considerably to the load-extension behaviour of the fabrics”. They 

however describe the “actual mode of behaviour” as being “rather complex” and opt for 

a method to add an initial gap between the yarns, an assumption that is not borne out 

in observations of real fabrics. They also list the following as affecting the bedding down: 

 slack of yarn 

 coating penetration into yarns internal space 

 bending stiffness of fibres 

 lateral compressibility 

 spinning characteristics of yarn 

Further to this it is also suggested that errors in the response surface might be improved 

with the use of “a progressive spring” (Figure 2-39). Though no mention of how this 

progressive spring might be implemented is made, nor how accurate a solution with a 

“progressive spring” might be in comparison to the published results. 

A crushing element is used by Pargana et. al. (Pargana et al., 2000; Pargana et al., 2007) 

and is derived from the crushing force and crushing strain utilising yarn properties 

(Figure 2-46). 
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Figure 2-46: Response of crushing elements in the unit cell model produced by Pargana et al. (2007) 

Additionally to the central yarn models presented above sinusoidal models have also 

been presented as an alternate method of representing the geometry of the yarn unit 

cell. Bridgens and Gosling (2008, p. 8) describes the sinusoidal representation as “a more 

realistic representation than the ubiquitous sawtooth”. This can be readily appreciated 

when diagrams of the model are considered (Figure 2-47) if compared to diagrams of 

the sawtooth model (Figure 2-38, Figure 2-40). 

 

Figure 2-47: Sinusoidal representation of yarn cross-section, reproduced from Bridgens and Gosling (2008) 

Wang (2002) developed a model based on the sine curve that is described as having 

“extremely good” agreement between calculated and measured curves. Sine curves are 

used to represent the fabric geometry, yet the constitutive equations bare close relation 

to the equations discussed above (Equation 2-9 and Equation 2-10). And the method still 

relies on the equilibrium equation (Equation 2-16). 

𝑏01 + 𝑏02 = 𝐴01 + 𝐴02 Equation 2-16 

b = yarn radius, A = yarn amplitude.  
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The model presented by Wang (2002) appears to show good correlation to measured 

data in the cases presented, however, in more than one case the “straight line model” 

[sawtooth model] used appears to show better correlation to measured data. 

Additionally both sets of data represent the shape of the measured response, and a 

largest measured error from the tested result of 10% is not as accurate as other model 

claim to be. Finally, whist the model does appear to show good correlation, although 

not necessarily better than the “straight line model” it does not include a consideration 

of coating response. 

Bridgens and Gosling (2008, p. 8) finds that the “correlation of the simple sine curve [ ] 

is extremely good” when compared to yarn geometry where “the mean deviation from 

measured points is only 2.5%”. In this model the yarn is modelled with a series of pinned 

bars (Figure 2-48). The vertical forces are applied at each node. 

 
Figure 2-48: sinusoidal yarn model reproduced from Bridgens and Gosling (2008) 

The sawtooth model is found to predict tested fabric strains more accurately than the 

sinusoidal model with “the deviation of the sawtooth model from the mean of the 

viscoelastic test data [being] 5.3 to 5.9% of the strain range”. However it is also noted 

that the deviation between repeat tests is 3.0% of the strain range. Bridgens and Gosling 

(2008, p. 13) state that the “model output is considerably more accurate than the 

assumed material properties which are commonly used in industry”. Thus the model 

appears to be of adequate accuracy to allow for the design of fabrics. 
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At this stage it has been shown that a number of models exist that offer to varying 

degrees a prediction of fabric response from initial geometry and constituent 

mechanical properties, but that only one of these offer exactly what is required. What 

is needed is a truly predictive model based on the geometry of a fabric rather than 

parameters obtained from testing. It must also accurately predict the response of coated 

fabrics and thus be useable as the basis of a method to design a fabric from the required 

mechanical properties of the fabric rather than the known geometry. 

These problems are resolved by Bridgens and Gosling (2008, p. 1) who proposes a 

“Predictive model for membrane structure design”. The sawtooth model proposed in this 

work utilises a unit cell as with many of those above and includes two principal 

constraints, namely that: 

1. “The sum of the yarn radii must equal the sum of the yarn wave form amplitudes” 

which is drawn from Peirce (1937) 

2. “Assuming negligible yarn bending stiffness, out-of-plane [due to yarn 

interaction] force must equal zero. For the sawtooth model these out of plane 

forces are a component of the yarn tension at crossovers” (Bridgens and Gosling, 

2008, p. 6) 

 

Figure 2-49: Fundamental sawtooth unit cell, reproduced from Bridgens and Gosling (2008) 
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The fundamental unit cell (Figure 2-49) is similar in many ways to those presented in 

models above e.g. the model produced by (Menges and Meffert, 1976), however, at 

crossover the yarn cross section is considered to be a rhombus with constant cross-

sectional area. This removes the need “to define the yarn crushing stiffness” and allows 

“the yarn cross-section to be modelled such that it is consistent with the wave-form of 

the orthogonal yarn”. The rhombus yarn cross-section is covered in more detail later 

(§3.5) where a full discussion of this sawtooth model is made and consideration given 

to how the model can be used to design fabrics. At this it is possible to consider the 

effect of constituent properties (yarn length, out of plane angle, yarn radius, yarn width, 

loads and constituent component moduli) on a predictive model without the need for 

representative simplifications to be made. 

The application of this method to the design process is discussed in detail in the 

following chapter (§3.5) where variations to the method are made to allow for non-

orthogonal yarns and shear response to be analysed and designed for. 

2.3.2.4. Finite element models 

Finite Element (FE) methods reproduce the fabric response by considering the 

interaction of small elements that together represent the whole fabric or a unit cell. This 

can be a computationally expensive process due to “their three dimensional structure, 

textiles tend to be computationally expensive to model with finite elements” (Glaessgen 

et al., 1996, p. 48). These models generally consider plain weave fabrics as part of a unit 

cell (Glaessgen et al., 1996; Gasser et al., 2000; Tarfaoui et al., 2001; Badel et al., 2007),  

although consideration of other weave geometries is also made (Bigaud and Hamelin, 

1997; Durville, 2010). The unit cells used do not always correspond to the unit cell 

described earlier and used in the majority of mechanical models (§2.3.2.3), Glaessgen et 

al. (1996) for instance uses two crossing yarns as the basis of the unit cell (Figure 2-50). 

Finite element methods still reduce the complexity of the relationships defining a 

fabric’s response, but unlike the mechanical models detailed above (§2.3.2.3) these 

allow for “internal details” of the response to be analysed (Glaessgen et al., 1996).  
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Figure 2-50: “Three-dimensional rendering of yarns within a unit cell” used by Glaessgen et al. (1996) 

Circular yarns as used by Peirce (1937) have been the basis for two models (Glaessgen 

et al., 1996; Tarfaoui et al., 2001). Glaessgen et al. (1996) produces a model with a 

circular yarn and constant cross-sectional area (although not shape) in which a penalty 

function accounts for the changing shape of the yarn. This model requires eleven 

geometric parameters, and the shape itself is the result of a number of individual steps. 

Gasser et al. (2000) produced a model that predicted the response of a balanced plain 

weave fabric at different load ratios, though when this was applied to unbalanced fabrics 

the errors, especially in the direction of the larger yarn became far greater. The 

correlation between test and model data is described as “good” giving no information 

as to the actual accuracy of the process. In this model the yarn deformation at crossover 

properties were calculated by comparison to biaxial data. The need for such calibrations 

makes it difficult to foresee FE methods being used to design a fabric as the designed 

fabric cannot be calibrated to any existing fabric, as biaxial test data for the fabric will 

be unavailable. It is however possible that the model could be calibrated to the sawtooth 

generated biaxial response data. This study does allow for the identification of the 

distribution of out of plane forces, and the effect of the out-of-plane force on the 

deformation of the yarn at crossover Whilst the yarn is uncoated such information may 

prove useful in future work in the consideration of yarn friction for the purposes of shear 

response identification. The yarn contact area is required in the model produced by Liu 

et al. (2004) to calculate yarn friction. As such, detailed information about the yarn 

contact area at different hear angles might improve the accuracy of the model. 

Shear response is considered by Badel et al. (2007) in which yarns are considered “as a 

continuous material”, ignoring the fibres that make them up. Again this method 

considers only uncoated fabrics, which experience relatively high levels of shear at low 
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loads when compared to coated fabrics. A lenticular yarn cross-section in two different 

unit cells (Figure 2-51) is used with yarns which rotate and deform to allow the analysis 

of shearing. Earlier (§2.2.7.4) it was noted that FE methods would allow better 

consideration of yarn lock up, and with this model that becomes apparent. The 

compaction forces at boundaries, and the areas of contact between yarns are more 

readily calculable where the area of contact is apparent as the area where two yarns 

meet (Figure 2-51). No quantifiable results are given for the accuracy of the method, 

though the graph presented does suggest that the method under predicts shear stiffness 

at low shear angles.  

 

Figure 2-51: Deformed geometries for a shear angle of 54o demonstrating shear lock up (Badel et al., 2007) 

Durville (2010, p. 1246) considers the problem from the perspective of the interaction 

of the individual fibres of the yarn (Figure 2-52). Though the principle of the work is 

similar to the larger scale representations. Penalties are applied at contacts to model 

intra fibre friction, and an “averaged binding condition” is used to allow the fibres to 

move within the ‘yarn’ whilst still applying a boundary condition at the edge. 
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Figure 2-52: Initial configuration for the plain weave fabric (Durville, 2010) 

Whilst the output of the model developed by  Durville (2010, p. 1249) (Figure 2-52) 

might appear impressive no details as to its accuracy in predicting fabric response to 

biaxial load are given beyond saying that “the loading curves exhibit the usual J-shape 

aspect at the beginning”. Therefore the accuracy of the method in fact remains 

unproved. It is also noted that the yarns are untwisted, unlike in most structural fabrics. 

The complexity of the creation of finite element models, the difficulty inherent in 

changing the geometry, and the computational expense, whilst generally allowing a 

more detailed inspection of intra yarn interactions does not lend itself to a design 

process. Such a process will require multiple different geometries to be tested quickly 

which would slow using FE models. The defining equations also do not lend themselves 

to manipulation towards an inverse methodology (given their complexity) and therefore 

a differing approach to design would be required. This might be an iterative process, 

altering the yarn structure in stages to attain a specific stiffness. This, coupled with often 

limited comparisons to actual test data means that at this stage the use of FE methods 

for fabric biaxial response design would be premature. Future work may prove to offer 

new insight at which point this should be re-examined.  

2.3.3. Summary, review and discussion of models 

In summary the models presented vary in complexity and accuracy, although the 

accuracy of many of those presented is only described in abstract terms such as ‘good’. 

Where such abstract definitions are used the presented figures sometimes appear to 

contradict even this. The model used as the basis of the design method is required to 

incorporate the coating’s response as well as the base cloth, and be as predictive as can 
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reasonably be achieved. Because of this, many of the models presented above cannot 

be considered for further use. Whilst FE models might conceivably be used in future to 

accurately describe and design fabrics the lack of coating consideration and difficulty in 

quickly modelling geometry during optimisation in current models means they are not 

the best choice available. The difficulty in varying the geometry and the inherent 

complexity of such models means that these have not been used in this work. 

Sinusoidal models, whilst they appear to represent the geometry of a fabric more 

accurately, have been shown to be less accurate than sawtooth models produced by the 

same authors who proposed them (Bridgens and Gosling, 2008). However, should more 

accurate sinusoid models become available in the future replacing the choice of model 

made here with those might be advisable. 

The last constraint on the choice of model to be used as the base for the fabric design 

process is that the equations be differentiable, discussed in more detail in the following 

chapter (§3.2). Therefore the model that best fulfils all these categories is the sawtooth 

as described by Bridgens and Gosling (2008). Additionally it is presented in a fashion that 

lends itself to the possibility of being differentiated.  

An alternative to differentiating the defining equations might be to use a parametric 

study of a material model, for instance a finite element model, varying its properties to 

define relations between response to tensile or shear stress, and using these to design 

a new material. This is similar to the Neural Networks employed by Bartle et al. (2013) 

where the parallel optimisation of equations allows for the prediction of fabric 

properties. 
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2.4. Optimisation 

How can the geometry of a fabric be optimised quickly and efficiently to give 

accurate robust and reproducible results? 

Optimisation is an exceptionally wide area of study, and here refers specifically to 

numerical optimisation. In numerical optimisation we “first identify some objective, a 

quantitative measure of the performance of the system” (Nocedal and Wright, 2006, p. 

2) which may be constrained, that we can optimise for a set of variables, which may also 

be constrained. The process of defining this objective, and the corresponding variables, 

is known as modelling. Recognising whether a model has been minimised or maximised 

is also important and this can often be found using optimality conditions. Numerical 

optimisation can be split up to include: constrained and unconstrained optimisation, 

continuous and discrete optimisation, global and local optimisation, and stochastic and 

deterministic optimisation (Nocedal and Wright, 2006). 

2.4.1. Stochastic and deterministic optimisation 

Optimisation problems can be either stochastic or deterministic. Stochastic optimisation 

allows the consideration of probability and differing scenarios in relation to the variables 

or objective. Stochastic models allow the optimisation of the expected performance of 

a model. It is therefore predicted that for the most part deterministic optimisation will 

be used during the development of the predictive model. 

Related to this is Chance-constrained optimisation which allows for the optimisation of 

a given objective to some specified probability. And robust optimisation “in which 

certain constraints are required to hold for all possible values of the uncertain data”  

(Nocedal and Wright, 2006, p. 7). 

2.4.2. Overview of optimisation  

For the purpose of the design of a fabric the optimisation will be defined as the 

minimisation of the difference between some target and the calculated response given 

some constraints (i.e. the equilibrium equations). As part of this process tolerances are 

generally included in optimisation routines. These are the limits on accuracy or more 

generally “a threshold which, if crossed, stops the iterations of a solver”(MathWorks, 
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2012a). Without tolerances a solver might continue in its search for an optimal solution 

even though the solution has been found to an adequate number of decimal places. 

Finding the solution to an optimisation problem requires the convergence of the answer 

towards a single value. This single value will be influenced by the initial guess especially 

where two or more solutions exist to the original problem. In this case, dependant on 

the routine in use, the initial guess may lead to a steepest gradient being followed that 

results in a non-optimal solution, or more generally it will normally lead to the closest 

solution to the original ‘guess’ being found. In global searches (i.e. where the entire 

population of results may be used to find a solution) this is more likely to occur. 

Optimisation is typically carried out with design constraints defined as inequalities for 

some parameter (x). A general optimisation might be defined as follows (Beyer and 

Sendhoff, 2007) (Equation 2-17): 

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒: 𝑓(𝒙),                                 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑔𝑖(𝒙) ≤ 0, 𝑖 = 1,… , 𝐼

                       ℎ𝑗(𝒙) = 0, 𝑗 = 1,… , 𝐽
} 

Equation 2-17 

The posing of the objective function, f(x), is important. Should two functions need to be 

optimised simultaneously, where the value of one is very large and the value of the other 

very small, the large value can adversely affect the optimisation. Though both might be 

equally important if the objective is poorly posed the solution may not be optimal. 

Normalising values removes the inherent bias of an optimisation towards larger values. 

When considering stress and strain the difference in values might be of the order of 105, 

therefore the strain might be ‘ignored’ by an optimisation where the values have not 

been normalised to a single value range. This is often achieved by placing all values in 

the range of 0 – 1.  

2.4.2.1. Unconstrained optimisation 

Unconstrained optimisation problems are those where no external constraints are 

placed on the solution, where constraints can be safely ignored, or where constrained 

problems are reformulated “in which the constraints are replaced by penalisation terms 

added to the objective function” (Nocedal and Wright, 2006, p. 6). As such in an 
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unconstrained problem the result relies on the original guess point, and direction of 

search where more than one possible solution exists (MathWorks, 2014). 

2.4.2.2. Constrained optimisation 

Constraints might be simple inequalities (0 < x < 100), linear constraints or nonlinear 

constraints (Nocedal and Wright, 2006). In the case of the design of a fabric a number 

of constraints have been identified above, including the equilibrium constraint (§2.3.2). 

It is also clear that no yarn can overlap, and so the sum of the yarn widths cannot be 

greater than the sum of the in plane yarn lengths in the opposite direction. However, 

these might also include the necessity that no yarn may occupy the same space as 

another. The specifics of these choices will be reviewed in more depth in the following 

chapters. In the case of programming with MATLAB it is possible to create complex 

nonlinear constraints that in themselves contain optimisation routines (MathWorks, 

2014). The ‘Fmincon’ routine discussed below offers the following constraint options for 

the optimisation (Equation 2-18): 

min
𝑥
𝑓(𝑥)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

{
 
 

 
 

𝑐(𝑥) ≤ 0
𝑐𝑒𝑞 = 0
𝐴 ∙ 𝑥 ≤ 𝑏

𝐴𝑒𝑞 ∙ 𝑥 = 𝑏𝑒𝑞
𝑙𝑏 ≤ 𝑥 ≤ 𝑢𝑏

 

Equation 2-18 

 

Equation 2-18 describes two nonlinear inequalities, ‘c(x)’, and ‘ceq’ which are formed 

from equations the result of which must be less than zero and zero respectively. The 

following two inequalities are linear, with ‘A’, and ‘Aeq’ representing the gradient and 

‘b’ and ‘beq’ representing eh y intercept.  Finally the values ‘lb’ and ‘ub’ are the upper 

and lower bounds on the values of ‘x’. 

2.4.2.3. Inverse Modelling 

The inverse of a function can be used as an analogy for the inverse of a more complex 

model. If a function 𝑓(𝑥) is considered to accept input 𝑥 and produce the output 𝑓(𝑥) 

then the inverse of the function will produce 𝑥 from the input 𝑓(𝑥) (Croft et al., 2001). 

However, not all inverse functions produce unique answers. For instance, consider the 

function tan(x): 

 



  2. Literature Review 

 
PAGE 94 

𝑓(𝑥) = tan(𝑥) = 0 

One solution could be 𝑥 = 0 

tan(0) = 0 

However, if 𝑥 = 180 

tan(180) = 0 

Equation 2-19 

This demonstrates an important principle, an inverse function will not necessarily 

produce the original input if it is constrained in such a way as to limit the output. But if 

these inverse functions are unconstrained, or else the result weighted in some fashion, 

no output may be obtained. In the case of the inverse tan function there is an infinite 

number of possible solutions to the inverse function tan−1(𝑥) = 0. This would not be 

the case if the function was constrained for instance to 
−𝜋

2
< 𝑦 <

𝜋

2
. 

 

Figure 2-53: y = tan(x) for -5π < x < 5 π 

Combining and differentiating the equations that form the sawtooth model (§2.3.2.3) 

provides firstly a direct equation for the calculation of the values of tensile stiffness and 
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Poisson’s ratio. This enables the construction of an objective function f(x) that can be 

minimised to find a solution for target value of f(x). Using one function removes the 

necessity of iteratively considering multiple functions and normalising them, as was 

done in the method employed by (Bridgens and Gosling, 2008). Secondly, demonstrating 

that the equations can be differentiated means that direct solution methods may be 

applicable to the equation, though this will be shown to not be the case in the next 

chapter (§3.5). Thirdly using differentiable equations means that FORM (First Order 

Reliability Method) methodologies can be employed to consider the statistical variance 

of the objective function. FORM uses derivative calculations to calculate the most 

probable failure point and therefore a probability of failure for an inequality. This is done 

by calculating the shortest distance to the failure region from the origin, for a given 

objective function, and is discussed in more detail in Chapter 4 (§4.8).  

A number of inverse methodologies were reviewed with a view to ensuring that the 

most efficient and accurate methodology for the optimisation of multiple variables is 

used for the design of fabrics. In addition to this certain checks and balances needed in 

inverse optimisation are identified. 

Faurholdt (2000, p. 472) describes the inverse method as fitting “a mathematical model 

to a set of experimentally obtained parameters”. In the case of the design of a fabric this 

will be the sawtooth model, and fitting the fabric’s properties to required mechanical 

properties for the fabric which match the user defined targets. A number of inverse 

methods are proposed and discussed with relation to the design model: 

Initially the response is approximated as a Taylor series from which the objective 

function might be minimised in a single step (Equation 2-20), but as this would result in 

a representative model this is passed over at this point. 

𝑥𝑘
𝑚𝑖𝑛 = 𝑥𝑘

𝑐𝑢𝑟 −𝑯−𝟏
𝜕𝑓

𝜕𝑥𝑘
 

Where H is the Hessian matrix 

Equation 2-20 
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Following this it is suggested that a steepest descent method might be used (Equation 

2-21). This is the principle used in the methodology discussed in the following chapter 

(§3.5), although modified through the use of internal MATLAB routines. 

𝑥𝑘
𝑚𝑖𝑛 = 𝑥𝑘

𝑐𝑢𝑟 − 𝛼
𝜕𝑓

𝜕𝑥𝑘
 

Equation 2-21 

Where the objective is to minimise the least squares problem: 

𝑓(𝑥𝑘) =∑[𝑦𝑖 − 𝑦(𝑥𝑘)]
2

𝑀𝐽

𝑖=1

 

Equation 2-22 

How the gradient might be calculated this is reviewed later. The method specifies the 

importance of the model being able to return to a given data set of design parameters 

(i.e. that the output of the inverse model is the same as the variables for the non-inverse 

model that would produce the input for the inverse model). This will initially be the 

requirement placed on the inverse model for a set of known targets, ensuring that both 

the inverse and non-inverse model ‘match’. 

Gajewski and Garbowski (2014, p. 175) identify four requirements for the inverse model, 

“(a) the description of geometry, (b) the boundary conditions, (c) the initial conditions, 

(d) the properties of all the involved materials”. In the case of our model these will be 

fulfilled by: 

a) The geometry of the fabric components 

b) The applied loads and equilibrium equations 

c) Any prestress applied to a fabric 

d) The properties of the coating and  yarns 

Whereas this method only solves for the variables in (d) our model will optimise for the 

values in (a) and (d) which will affect the values in (b). Thus the situations are somewhat 

different. In addition this model uses a “vector of residua R” which is used to minimise 

the discrepancy between computed and experimental results. The value of ‘R’ is used to 

bring the optimisation in line with the results that were expected. This would clearly be 

impossible to implement in a model where the designed fabric does not exist, or where 
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representative models are being avoided. A least squares methodology is then used by 

Gajewski and Garbowski (2014, p. 175) to minimise the value of R “by adjusting the 

constitutive parameters”. The method uses DIC (Digital Image Correlation) test data and 

optimises constitutive parameters from this. 

The method presented appears to converge well to the experimental results in few 

iterations, but interestingly sensitivity of parameters are also investigated and 

computed “using a calibrated FE model” however little specific detail is offered on this 

process. 

A medical application of an inverse modelling procedure has been developed that 

attempts to characterise elastic properties from a point indentation, necessary where 

not enough material was available to carry out strip tests. This model is then tested 

against strip test data. The model is created using latex rubber, not directly comparable 

to architectural fabrics, and an inverse FE method is used to calculate elastic properties 

from known physical properties. This process involved minimising the error between the 

model and test data by varying the constitutive parameters of the model. Again this 

process is not directly applicable to the problem of fabric design. (Aernouts et al., 2010).  

Multi objective optimisation will be the main problem associated with the design of a 

bespoke fabric where multiple parameters (geometry) are to be optimised for multiple 

targets (tensile stiffness at multiple stress states, Poison’s ratios at multiple stress states). 

Yang and Xiao (2013) offer a method for the multi-objective optimisation of the 

parameters of a pump-turbine: The method uses a genetic algorithm  to solve the 

optimisation problem (Equation 2-23). 

min 𝑦 = 𝑓(𝒙) = (𝑓1(𝒙), 𝑓2(𝒙),… , 𝑓𝑛(𝒙)) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑚)  ∈ 𝑋 

𝑎𝑛𝑑 𝑡𝑜 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑚)  ∈ 𝑌 

Equation 2-23 

Here X represents the “blade loading parameters and Y represents the hydraulic 

efficiencies” which might be replaced by the yarn and coating properties and the shear 

properties in a fabric model. The objective function being four performance parameters. 
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The model integrates a number of codes together to enable the optimisation of the 

turbine parameters for specific requirements. The design model is expected to function 

in a similar fashion. The optimised pump is then compared to a baseline, where the 

efficiency must be higher than the baseline. 

The statistical variances can be considered in parallel with the model parameters 

(Hendricks Franssen et al., 2009) and the covariance of the parameters also included. 

However in inverse analysis these parameters must be estimated, given that there is no 

prior knowledge of the parameters and their statistical distributions. The methods given 

by Hendricks Franssen et al. (2009)principally relate to the inverse modelling of 

hydrological flow in aquifers, but may be useful to reference to if variability is to be 

modelled for unknown fabrics. 

2.4.2.4. Review of MATLAB internal optimisation routines 

Within MATLAB there exists a collection of pre-existing routines that can be used to 

achieve constrained and unconstrained optimisation. Not all of the optimisation 

functions available within MATLAB will be relevant to the project. A short review of 

optimisation routines that are predicted to be relevant and how they perform the 

optimisation is carried out here. For a full and complete review of optimisation in 

MATLAB the MATLAB ‘help’ literature (MathWorks, 2014) should be consulted with 

reference to published work on optimisation such as Nocedal and Wright (2006).  

The following options allow a user to prescribe at what point an optimisation has 

reached a satisfactory result. Not all are available in every optimisation routine 

discussed below. 

 ‘TolFun’ is the minimum change in the function value, or how close to zero the 

function needs to be (Figure 2-54). 

 ‘TolX’ relates to the size of the last step, or change in the position being 

investigated (Figure 2-54). 
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Figure 2-54: Representation of TolX and TolFun. Reproduced from MathWorks (2012a) 

 ‘MaxIter’ is the maximum number of iterations an optimisation routine will run 

prior to termination. 

 ‘MaxFunEvals’ is the maximum number of function evaluations an optimisation 

routine will run prior to termination. 

 ‘Tolcon’ is the tolerance of the optimisation for the violation of constraints. 

 ‘ObjectiveLimit’ is the value that will be considered acceptably close to the 

objective. 

  ‘DiffMinChange’ is the minimum change that will be observed in a variable 

below which an optimisation routine will terminate. 

 ‘DiffMaxChange’ is the maximum change possible in a variable beyond which an 

optimisation routine will terminate. 

(MathWorks, 2012a) 

Once the objective function is available for optimisation the above properties can then 

be modified to ensure an accurate result. For instance, if ‘ObjectiveLimit’ is increased 

the speed of the routine will be increased, but the accuracy of said routine may not be 

as high as the original optimisation. 

A selection of relevant routines is reviewed in the following sections (§2.4.2.5 and 

§2.4.2.6): 
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2.4.2.5. Unconstrained relevant MATLAB functions 

The function ‘fsolve’ can be utilised to “solve a system of nonlinear equations” of the 

form: 

𝐹(𝒙) = 0 Equation 2-24 

 “For x, where x is a vector and F(x) is a function that returns a vector value” (MathWorks, 

2014) 

This function allows the solution of multiple equations, such as those set out in the 

sawtooth method (§2.3.2.3), to be found quickly and efficiently by iteratively optimising 

them. This method is unconstrained, and as such the result is unbounded. The speed of 

this method and, where multiple solutions are available, the solution found are highly 

dependent on the start point given to the function by the user. If there exists multiple 

possible solutions then the solution that is found will generally be the one closest to the 

initial point. 

The function ‘fzero’ can be utilised to “find [the] root of [a] continuous function of one 

variable”. This function considers zeros “to be points where the function actually crosses, 

not just touches, the x-axis”. The algorithm used is described as being “originated by T. 

Dekker [and] uses a combination of bisection, secant, and inverse quadratic interpolation 

methods”(MathWorks, 2012a). This means that no derivatives are numerically 

calculated, but are calculated using interpolation methods. 

2.4.2.6. Constrained relevant MATLAB functions 

Constrained optimisation in MATLAB attempts to solve (Equation 2-25): 

min
𝑥
𝑓(𝑥)  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔(𝑥) ≤ 0, ℎ(𝑥) = 0 

Equation 2-25 

Where f(x) is the function and g(x) and h(x) are the constraints.  

This is represented as a solvable function using the Karush-Kuhn-Tucker (KKT) conditions 

(Equation 2-27) (Nocedal and Wright, 2006; MathWorks, 2014) which describe “how the 

first derivatives of f and the active constraints [ ] are related to each other at a 

solution ”(Nocedal and Wright, 2006, p. 330). 
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𝐿(𝑥, 𝜆) = 𝑓(𝑥) +∑𝜆𝑔,𝑖𝑔𝑖(𝑥) +∑𝜆ℎ,𝑖ℎ𝑖(𝑥) 

Equation 2-26 

The KKT conditions use the “auxiliary Lagrangian function” (Equation 2-26) were “the 

vector λ is [ ] the Lagrange multiplier vector”(MathWorks, 2014).  

∇𝐿(𝑥, 𝜆) = 0, 

𝜆𝑔,𝑖𝑔𝑖(𝑥) = 0 ∀𝑖, 

{

𝑔(𝑥) ≤ 0

ℎ(𝑥) = 0
𝜆𝑔,𝑖 ≥ 0

 

Equation 2-27 

Where these conditions are solved the gradient will be zero, however, this does not 

necessarily mean that solution is at a minimum, the solution could be at either a 

maximum, minimum or a plateau. As such the second order derivatives are calculated 

to check the solution is at a minimum. In practice this is carried out using a gradient 

approximation of the Hessian matrix (Equation 2-28). 

𝐻 = ∇2𝐿 = ∇2𝑓 +∑𝜆𝑔,𝑖∇
2𝑔𝑖(𝑥) +∑𝜆ℎ,𝑖∇

2ℎ𝑖(𝑥) 

Equation 2-28 

(MathWorks, 2014) 

The function ‘patternsearch’ uses a pattern search algorithm to find the minimum of a 

function. The entire results spectrum is polled at intervals, and this information is used 

to target a finer density of polls on the best function value. This function initially 

considers the whole results spectrum, and stores the results of previous iterations to 

inform future iterations. The actual method of polling will depend on the search method 

employed. 

This function can be constrained with bounds, inequalities, equalities, and nonlinear 

constraints. (Kozola, 2009; MathWorks, 2012a) 
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Possibly the most relevant routine will be ‘fmincon’ which is an internal function 

designed to allow for the constrained minimisation of a function. This function can be 

constrained with bounds, inequalities, equalities, and nonlinear constraints, and 

minimises equations utilising one of a number of algorithms: 

The interior point algorithm, which “handles large, sparse problems, as well as small 

dense problems” (MathWorks, 2014) will be used as it is the recommended algorithm 

for initial optimisations, being widely resilient to problems that might occur (infinite or 

NaN, ‘Not-a-Number’, numbers). As each optimisation will generally be new, and in an 

unknown space, this should ensure a methodology that is robust to poor choices of 

initial point or errors in search direction. 

(MathWorks, 2012a; Mathworks, 2012b; MathWorks, 2014) 
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2.5. Statistical analysis and Robustness of Fabrics 

How can fabric data be used to demonstrate the statistical distribution of fabric 

properties and what is the effect of this on the robustness of fabrics? 

Statistical analysis is the use of data about the distribution of a variable to inform 

decisions made about the use of that variable, or information relating to it. Knowing a 

fabric achieves an average tensile stiffness of 810kN/m is useful information, but 

knowing that it will only achieve this 10% of the time to an accuracy of +/- 5% informs 

the use of that information. As part of this correlation considers how well certain 

functions agree with the fits that are applied to them.  

A function may be considered to be robust if it is not susceptible to small changes in its 

defining variables. Robustness analysis attempts to quantify this, and look for methods 

to reduce the susceptibility of functions to these small changes. 

2.5.1. Correlation 

Correlation analysis is the process of inferring the strength of some relationship 

between two variables (Ayyub and McCuen, 1997). The two methods of this analysis 

discussed here are graphical analysis and the ‘coefficient of determination’. Graphical 

analysis allows for a visual inspection of the available data and allows for the 

identification of the following: 

1. Degree of common variation or how much two variables are related 

2. Range and distribution of data points 

3. Presence of extreme events or outliers 

4. Form of the relationship 

5. Type of relationship (Ayyub and McCuen, 1997) 

It is generally assumed that where there is a “high degree of association” a causal 

relationship exists, however, care should be taken to not assume this where no evidence 

of interaction exists. Additionally it does not hold that where a relationship for a sample 

exists that this relationship holds for an entire population. This is the basis of the 

importance of the use of predictive models, that might represent the entire population 

of a variable without prior knowledge of the distribution, rather than representative 

models which represent the sampled data only.  



  2. Literature Review 

 
PAGE 104 

The total variation in a sample (TV) (Equation 2-29) can be described as the sum of the 

variation that is explained by the variation in the second variable (EV) (Equation 2-30) 

and the unexplained variation (UV) (Equation 2-31) which is summarised in Equation 

2-32.  

𝑇𝑉 =∑(𝑦𝑖 − 𝑌̅)
2

𝑛

𝑖=1

 

Equation 2-29 

𝑦𝑖 =  𝑎𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 

𝑌̅ = 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑌 

𝐸𝑉 =∑(𝑦̂𝑖 − 𝑌̅)
2

𝑛

𝑖=1

 

Equation 2-30 

 

𝑦̂𝑖 =  𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑌 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑤𝑖𝑡ℎ 𝑋 

𝑈𝑉 =∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑛

𝑖=1

 

Equation 2-31 

𝑇𝑉 = 𝐸𝑉 + 𝑈𝑉 Equation 2-32 

 

A measure of correlation is the coefficient of determination or the ratio EV/TV. Given 

that the relationship for UV holds then where the total variation is due only to the 

explained variation the square of the coefficient of variation might be calculated 

(Equation 2-34). As such where the variation is almost entirely unexplained the ratio will 

approach zero and the correlation is “null”, whereas where all variation is explained the 

coefficient will be one. (Ayyub and McCuen, 1997) 

1 =
𝐸𝑉

𝑇𝑉
+
𝑈𝑉

𝑇𝑉
 

Equation 2-33 

𝑅2 =
𝐸𝑉

𝑇𝑉
=
∑ (𝑦̂𝑖 − 𝑌̅)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑌̅)2
𝑛
𝑖=1

 
Equation 2-34 

 



  2. Literature Review 

 
PAGE 105 

2.5.2. Robustness 

Any measure that characterises a distribution might be “said to be robust if slight 

changes in distribution have a relatively small effect on their value” (Wilcox, 2005).  

A comprehensive overview” of the state of the art of robust optimisation is carried out 

by Beyer and Sendhoff (2007) who review the state of the art of robust optimisation in 

a succinct manner. Given a standard optimisation for a function f(x), subject to certain 

constraints gi(x)≤0 and hj(x)=0 which are inequality constraints on ‘x’. Robust design 

optimisation leads to “solutions and performance results [that] remain relatively 

unchanged when exposed to uncertain conditions”.  

Taguchi’s robust design methodology utilised a three point design process: 

1. System design in which the basic performance and product parameters are 

identified. 

2. Parameter design, in which the design parameters are optimised to meet quality 

requirements.  

3. Tolerance design, or fine tuning of the second stage. 

Two kinds of parameter are used, noise factors (ξ) and control parameters (x) which are 

difficult to control and used to tune optimality respectively. These are then 

encapsulated in a series of equations that allow for the calculation of the deviation from 

some target value. Taguchi methods use design of Experiments (DOE) to evaluate 

different designs rather than using any optimisation (Beyer and Sendhoff, 2007). 

To complete the DOE method the parameters are systematically changed according to 

a lattice, or “control array” with the noise factors varied at each point. Thus the best 

point can be defined. The greatest problem with the Taguchi method is that all possible 

(even bad) points are considered throughout the control array. Thus a high number of 

dimensions leads to an exponential increase in time to compute an answer (Wu and Wu, 

2000; Beyer and Sendhoff, 2007). 

Three types of robustness can be defined; deterministic robustness “defines parameter 

domains in which the uncertainties α,δ, etc can vary” whilst probabilistic robustness 

“defines probability measures describing the likelihood by which a certain event occurs”. 
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The last type, possibilistic robustness, uses “fuzzy measures” to define some possibility, 

membership, or grade (Beyer and Sendhoff, 2007). Further to this four different types 

of uncertainty are considered: Environmental and operating conditions e.g. material 

properties, angle of attack, or operating temperature. Production tolerances e.g. the 

accuracy of the machinery, this might relate to the precision of a yarn area for instance. 

System output uncertainty, which includes “all kinds of approximation errors due to the 

use of models”. And lastly Feasibility uncertainties which take into account uncertainty 

in the constraints, or whether they will be fulfilled (Beyer and Sendhoff, 2007). It is 

therefore possible to conclude that whilst uncertainty in fabric design will probably be 

due to production tolerances we will in all likelihood be unable to alter these. However, 

we can alter design values (the first type of uncertainty) thus attempting to achieve 

robustness through the alteration of the design. 

An example of the application of robustness to a design problem is given by Kim et al. 

(2010) who produce a robust design methodology for an electromagnetic device. The 

method utilises a gradient index formulation which minimises the maximum gradient of 

the objective function with respect to uncertain variables. The objective function and 

gradient index (GI) value are given below (Equation 2-35 And Equation 2-36) (Kim et al., 

2010). 

 

 Minimise 𝑓(𝑥) 

Subject to 

                       
𝒈𝒋 ≤ 𝟎,   𝒋 = 𝟏, 𝟐,… ,𝒎

       𝒙𝑳 ≤ 𝒙 ≤ 𝒙𝑼
 

Equation 2-35 

𝐺𝐼 =  max
𝑖
|𝑑𝑓/𝑑𝑢𝑖| ,        𝑖 = 1,2, … ,𝑁,   𝑢𝑖 ∈ 𝑥 Equation 2-36 

The value ui is some uncertain value. 

The gradient index is then minimised to produce a new optimum (Equation 2-37). 

 Minimise 𝐺𝐼𝑓 = max𝑖|𝑑𝑓(𝑥)/𝑑𝑢𝑖|         𝑖 = 1,2, … ,𝑁 

Subject to 

 

𝑔𝑗(𝑥) + Ψ𝑗 (𝑔𝑗(𝑥)) ≤ 0, 𝑗 = 1,2, … ,𝑚

𝑓(𝑥) ≅ 𝑀
 

Equation 2-37 
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Here M is the target value of the objective function and Ψ𝑗 is a penalty function added 

to the constraints.  

The results given for the method for multiple uncertain variables are excellent. The 

sensitivity of each variable at the target is given to be considerably lower than a 

“deterministic design” (Figure 2-55). 

 

Figure 2-55: Sensitivity of individual variables before and after robustness optimisation. (Kim et al., 2010) 

This would seem to be a good basis for a robust design methodology for a fabric. 

Similarly to this the designed fabric will relate to a single target (mechanical property) 

that is calculated using a number of variables. The reduction of the sensitivity of the 

function to these variables will increase the robustness of the whole solution. 

Gunawan and Azarm (2004a) consider a sensitivity region for robust optimisation for 

multiple objectives based on their previous work (Gunawan and Azarm, 2004b). In this 

method only a particular amount of variation is allowed in a function, f(x, p)i for which 

the parameters may vary only the amount Δp. The allowable variation in ‘p’ is then 

described as the sensitivity region. The advantage of this is that the new function value 

will be close to the original. The sensitivity is then calculated by considering the 

maximum amount of change in ‘p’ that can be accommodated for a given variation f(x, 

p)i. The worst case value of Δp can then be used to give the sensitivity region. This 

method’s consideration of a worst case however should result in an 
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underrepresentation of the sensitivity, insensitivity to other parameters having not been 

totally taken into account.  
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3. Predictive model for the design of architectural fabrics 
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3.1. Introduction 

An architectural fabric’s mechanical properties vary depending on the properties of the 

yarns, coating and weave geometry. Given these physical characteristics it is possible to 

predict a fabric’s response to biaxial and shear loading (Peirce, 1937; Kawabata et al., 

1973; Menges and Meffert, 1976; Testa et al., 1978; Stubbs and Fluss, 1980; Tan and 

Barnes, 1984; Pargana et al., 2000; Bridgens and Gosling, 2008).  Various methods of 

achieving this have been discussed in the literature review (§2.3) including finite 

element, sinusoidal and sawtooth models. However as a simple method was needed for 

which derivatives could be calculated and geometry easily varied a sawtooth model was 

selected as the model for this work. Ensuring the model is differentiable allows for the 

values of Young’s modulus and Poison’s ratio to be calculated directly which should 

allow for quicker optimisation of geometry.  This chapter lays out a method for the 

design of a bespoke fabric with specific mechanical properties based on the inverse of 

the sawtooth model. 

Given that the sawtooth model provides a reasonable prediction of fabric behaviour 

(Bridgens and Gosling, 2008) and thus allows for the calculation of the mechanical 

properties of a fabric it follows that the opposite should be achievable. I.e. that a fabric’s 

geometry might be determined from specified tensile stiffness characteristics 

(mechanical properties). This model will be referred to in the following sections as the 

‘inverse sawtooth’. Producing this inverse sawtooth model is the aim of this chapter. 

The sawtooth model is defined by a number of equations that represent the load 

elongation characteristics of a fabric (§3.4.1) and which once solved for a specific loading 

condition give the fabric’s deformed geometry. From this the mechanical properties of 

the fabric are then calculated. As the Young’s modulus (E11) can be defined as a change 

in stress divided by a change in strain, E11 for a specific loading condition can be defined 

as the gradient of the stress and strain curves or 𝑑𝜎/𝑑𝜀. In other words E11 is equal to 

the derivative of stress with respect to strain. Therefore the derivative of the equations 

that define the sawtooth model with respect to stress and strain will reproduce E11 at a 

specific load. This is the fundamental principle behind the requirement for the equations 

to be differentiable, and this property allows for the creation of an inverse sawtooth 

model by reversing the equations (Figure 3-1). 
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Figure 3-1: Inverse method 

The response characteristics to be considered are the Young’s moduli in both warp and 

weft directions (E11 and E22), the Poisson’s ratios of the fabric (ν12 and ν21) and the shear 

modulus (G). Equations defining these responses at all loads (where the loads on a unit 

cell are calculated as F1 and F2) are produced in this chapter. These are then utilised as 

the objective function for a gradient based optimisation routine that is used to design a 

fabric for specified tensile stiffnesses. Optimisation will be shown to be necessary to 

solve situations where more than one, or zero, possible designs exists to solve the 

equations. In this chapter the formulation, modelling and use of these equations will be 

covered. 

The methodology of inverting the model to enable it to be used for design is developed 

and demonstrated in a simple situation before more complex calculations are made. 

This is done to demonstrate that the method of differentiation is applicable to a series 

of nonlinear equations.  

Following the demonstration of the method of inversion the inverse sawtooth model 

will be built up in parts. Only the effects of changes in unit cell geometry under load will 

Measured 
Physical 

properties 

Predicted 
Mechanical 
properties 

Designed 
Physical 

properties 

Specified 
Mechanical 
properties 

Predictive model: 

Inverse model: 
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be considered at first, ignoring the effects of the coating, yarn extensions and yarn 

crushing forces. Once the principle has been demonstrated in this simple scenario the 

full sawtooth model will be considered, and equations that determine the fabric 

parameters which correspond to specific mechanical properties produced. The 

sawtooth model developed by Bridgens and Gosling (2008) will be used as the basis for 

the model with the additional inclusion of the consideration of the coating Poisson’s 

ratio. This model was chosen because it is predictive, the importance of which has 

already been covered (§2.3.3), the geometry can easily be varied (unlike finite element 

models), and the equations are presented in a form that enables differentiation.  

Finite difference calculations will be used to compare the inverse model to the predictive 

sawtooth model from which it was originally derived, whilst comparisons to real fabric 

responses should demonstrate the utility of the model. 

The method of optimisation chosen is a gradient based solver from the available 

MATLAB solvers (Mathworks, 2012b). Internal MATLAB functions were used to expedite 

the model’s development, and were found to fulfil the requirements of the design 

method. The modelling was carried out in MATLAB (Mathworks, 2012b) with MATLAB 

functions used to perform optimisations and complex derivations (MathWorks, 2012a).  

3.2. Aim 

To create an inverse model of the sawtooth model developed by Bridgens (2005), 

Kawabata et al. (1973), Menges and Meffert (1976) and Peirce (1937). This will lead to: 

 Equations that define the material response based on the initial geometry and 

mechanical properties of the yarns and coating, and the applied loads. 

 A computationally efficient optimisation routine to produce a designed fabric. 

 A methodology to produce a ‘designed fabric’ (bespoke fabric) for specified 

elastic constants at multiple stress states. 
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3.3. The simple spring and arm model 

To demonstrate the feasibility of using the proposed method of differentiation to 

calculate mechanical properties this method was first applied to a simple ‘spring and 

arm’ system. This was used to ensure that possible problems with the principle of the 

methodology were identified early on where known relationships could be used to 

calculate stresses and strains. Unlike the sawtooth model which represents the complex 

nonlinear behaviour of a fabric this system could be modelled using simple relationships 

to demonstrate the accuracy of the results. The simple relationships necessary were the 

load-extension response of a spring and the calculation of bar member loads. The source 

of any errors identified could be more easily tracked to its source where the number of 

variables was limited. 

The simple spring and arm case consists of two inextensible bar members connected by 

a frictionless pin joint (B), and supported by a spring at the pin joint. The spring is 

connected to a fixed support (D) and can only deform downwards, the free ends of the 

members are supported by rollers (A and C), and can only move in the x-direction. The 

load applied is equal and opposite at both ends of the supports and acts in the x-

direction (Figure 3-2). 
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Figure 3-2: Spring and arm case layout, a) prior to loading, b) deformed 

Term Description 

k The spring stiffness (constant) 

L0 Half the distance between the two roller supports in the unloaded system 

𝛉 The angle between the X-axis and the member in the unloaded system 

𝛉′ The angle between the X-axis and the member in the loaded system 

𝜹 The displacement of the roller supports from their original position 

𝜟 The displacement of the pin-joint at which the members connect to the spring 

F The force applied to the system (constant) 

Table 3-1: ‘Spring and arm’ system nomenclature 
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3.3.1. Modelling the spring and arm model 

The ‘spring and arm’ model also represents the behaviour of a single inextensible yarn 

where the response of the other yarn direction and the crushing of both yarns is 

embodied in the spring’s load extension characteristics. In this simplification there is no 

consideration of coating. As such the response of this system should inform the 

formulation of further models. 

The sawtooth model includes geometric and force equilibrium constraints (Kawabata et 

al., 1973; Bridgens and Gosling, 2008), and these will be similarly found in this model: 

Considering the deformation of triangle ABE (Figure 3-2) with inextensible members 

gives: 

𝐿0
cos 𝜃

=
𝐿0 + 𝛿

cos 𝜃′
 

Equation 3-1 

Rearranging Equation 3-1, substituting in the equation for ‘k’’, and considering the 

vertical resultant force at B (§A.6) gives the equations for F and 𝜃′ (Equation 3-2 and 

Equation 3-3).     

𝐹 =
𝑘

𝑡𝑎𝑛 𝜃′
[(
𝛿 + 𝐿0
𝑐𝑜𝑠 𝜃′

)
2

− 𝐿0
2]

0.5

− 𝑘(𝛿 + 𝐿0) 

*Note all 𝐹 = 𝑓(𝜃′, 𝛿) 

Equation 3-2 

𝜃′ = 𝑐𝑜𝑠−1 (
(𝐿0 + 𝛿) 𝑐𝑜𝑠 𝜃

𝐿0
) 

Equation 3-3 

Thus the Force (F) has been written in terms of 𝛿  and 𝜃′  such that 𝐹 = 𝑓(𝜃′, 𝛿) 

(Equation 3-2). Similarly 𝜃′  has been written in terms of 𝛿  such that 𝜃′ = 𝑓(𝛿) 

(Equation 3-3). At this point it is now possible to produce the full differential for 𝐹 =

𝑓(𝜃′, 𝛿). Croft et al. (2001) describes how all the partial derivatives of a differential 

equation must be calculated prior to the calculation of a full derivative (Equation 3-4). 
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It is necessary to find the derivative of force with relation to strain in the sawtooth model 

to calculate the stiffness of the unit cell. In the sawtooth model the reaction is influenced 

by a number of changes to the unit cell geometry (yarn extension, yarn crushing, and 

changes in the yarn angle) and therefore the response needs to be calculated to include 

these changes. Thus the solution is calculated as the full derivative with relation to a 

number of partial derivatives. In this simple case the number of variables is less, 

simplifying the process of finding the derivative. The full derivation is shown in the 

appendix (§A.6). 

The full derivative may be calculated by considering the partial derivatives of the 

functions 𝐹 = 𝑓(𝜃′, 𝛿), and 𝜃′ = 𝑓(𝛿) (Equation 3-2, Equation 3-3). 

𝑑𝐹

𝑑𝛿
=
𝜕𝐹

𝜕𝛿
+
𝜕𝐹

𝜕𝜃′
∙
𝜕𝜃′

𝜕𝛿
 

Equation 3-4 

The full derivative of the force with respect to the deformation is: 

𝑑𝐹

𝑑𝛿
=
𝜕𝐹

𝜕𝛿
+
𝜕𝐹

𝜕𝜃′
∙
𝜕𝜃′

𝜕𝛿
= 

[
 
 
 
 
 

cos𝜽

{
 
 

 
 

𝑘(tan2 𝜃′ + 1) ∙ 𝑄
tan2 𝜃′

−
𝑘 sin 𝜃′ (𝐿0 + 𝛿)2

cos3 𝜃′ tan 𝜃′ (1 − (
cos2 𝜽 (𝐿0 + 𝛿)

2

𝐿0
2 ))

0.5

}
 
 

 
 

]
 
 
 
 
 

[𝐿0 (
1 − (cos2 𝜃′ (𝐿0 + 𝛿)

2)

𝐿0
2 )

0.5

]

+
𝑘(2𝐿0 + 2𝛿)

(2 cos2 𝜃′ tan 𝜃′ ∙ 𝑄
− 𝑘 

Equation 3-5 

The validity of using the derived equations is demonstrated by solving the equations 

within MATLAB (Mathworks, 2012b) and comparing the results to analytically calculated 

values of dF/dδ . The results showed excellent fidelity (§A.7), and in addition 

demonstrated the need for all terms within the objective function to be considered. The 

full validation is given in the appendix (§A.7). 
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3.4. Sawtooth model inversion 

Initially only a simplified model was used to further demonstrate the applicability of the 

method (§3.4.2). Following this the full sawtooth model was considered, and this was 

then modified to include the coating Poisson’s ratio (§3.4.3). Lastly a shear component 

is developed. The equilibrium equations defining the sawtooth model (§3.4.1) are 

necessary to calculate displacements of a specific geometry and this is briefly reviewed 

before the inverse sawtooth is developed.  

3.4.1. The sawtooth model 

The sawtooth model as previously developed (Peirce, 1937; Kawabata et al., 1973; 

Menges and Meffert, 1976; Bridgens and Gosling, 2008) is needed to calculate strains 

which will be used later to calculate the accuracy of the inverse model using a central 

finite difference method.. The justification for this choice of model has been briefly 

reviewed (§3.1), but will be considered in more depth here. 

Firstly a predictive unit cell model has been chosen as it allows for the input and variation 

of geometry with relative ease, and considers only those properties that are obtainable 

with standard tests. Were a finite element method to have been chosen the use of a 

mesh would have made the variation of geometry difficult and computationally 

expensive because each new geometry would require re-meshing. Representative 

models naturally could not have been selected for the prediction of fabric tensile 

response outside of their initial data set. Those models that require calibration would 

also be unsuitable as the basis for the design of a bespoke architectural fabric as any 

designed fabric may not exist for the model to be calibrated to. 

The sawtooth model was chosen for the inverse modelling as it fulfilled the following 

required criteria: 

 It is predictive, inclusive of designs that are outside of the data range the model 

was originally tested in. 

 It is accurate (Bridgens and Gosling, 2008). The model will be used on a wide 

variety of fabric types. In addition any inaccuracy in the initial model may be 

compounded during the inversion, where the model moves further away from 

the original data. 
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 The model is ‘invertible’. The model is formulated such that its constitutive 

equations can be differentiated and thus make it possible to produce equations 

defining a fabrics tensile stiffness. 

 The model represents plain-weave fabrics that are most often used as 

architectural fabrics. 

Having fulfilled these criteria the sawtooth model, as presented by Bridgens and Gosling 

(2008), was chosen as the original model to be inverted (Figure 3-3). The sawtooth 

model is a unit cell representation of two yarns where twice the value of ‘L’ is equivalent 

to half the wavelength of a yarn (Figure 3-4). The unit cell is “the smallest element that 

may be used to characterise the mechanical response of the fabric as a whole”(Pargana 

et al., 2007, p. 1327). 

 

Figure 3-3: Fundamentals of the full sawtooth model with springs representing the coating. Modified from Bridgens 
and Gosling (2008) 
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Figure 3-4: Unit cell position within the sawtooth representation 

The equations needed to define the response of the sawtooth model as used by Bridgens 

and Gosling (2008) are detailed below: 

(𝑟1 + 𝑟2) = (𝐴1 + 𝐴2) Equation 3-6 

Where r1,2 are the yarn radii, and A1,2are the yarn amplitudes (crimp) in the warp and 

weft directions respectively. 

This will be referred to as the equilibrium equation and is based on the equation 

produced by Peirce (1937). This ensures that there can never be any discrepancy 

between the thickness of the fabric, calculated from the yarn thicknesses, and the 

thickness of the fabric calculated from the yarn amplitudes. One result of this is that no 

‘gap’ may exist between yarns, as suggested in some literature, though with the fabric 

being coated and therefore the yarns restricted this is deemed unlikely to occur. 

𝐹𝑐1 = 𝐹𝑐2 Equation 3-7 

The out-of-plane forces must be equal (Fc1,2 are the compaction forces at the warp/weft 

yarns respectively) (Equation 3-7). 
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Fy1,2 sin θ1,2 = Fc1,2 Equation 3-8 

The out-of-plane force (Fc) is produced by the interaction of the yarn tension force (Fy) 

with the yarn in the other direction (Equation 3-8). The out-of-plane angle is θ. 

𝐹𝑘1,2 = 2𝐸𝑘𝐿2,1
′ 𝜀1,2 Equation 3-9 

Where Fk is the force in the coating spring and Ek is the coating stiffness 

*when using springs to represent the coating (Figure 3-3). 

The coating response to load (Equation 3-9) is governed by a ‘spring representation of 

the coatings deformation. This has previously used a linear value of coating stiffness. 

Fy1,2 cos θ1,2
′ + Fk1,2 = 𝐹1,2 Equation 3-10 

The sum of the forces in the fabric must be equal to the applied load (Equation 3-10). 

𝜀1,2 =
𝐿1,2
′ − 𝐿1,2
𝐿1,2

 
Equation 3-11 

The strain (ε) is calculated using the original and deformed quarter yarn wavelength 

(yarn in-plane length) (Equation 3-11). 

𝐹1,2 =
𝑃1,2
2𝐿2,1

 
Equation 3-12 

The force (F) used is always considered in relation to the original geometry, 𝐿2,1 , 

(Equation 3-12) as within a stressed fabric the force applied to each unit cell will be in 

relation to the original shape of the fabric. Unit cells do not disappear as the fabric is 

stretched, and thus the force applied to each cell is presumed to remain the same, whilst 

the load on the fabric might change. The stress in the fabric per metre (P) is also 

considered constant. 

𝑌1,2
′ = 𝑌1,2 [1 +

𝐹𝑦1,2

2𝐸𝑦1,2𝐿2,1
′ ] 

Equation 3-13 
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The extension of a yarn has also previously used a linear value of yarn stiffness. Linear 

yarn stiffness’s, especially in polyester yarns may grossly under represent the response 

of the yarn to load (§2.2.2). 

A kite shaped yarn deformation mechanism as described by Bridgens and Gosling (2008) 

is used during this project. In earlier work by Menges and Meffert (1976) and Dimitrov 

and Schock (1986) springs are used to represent yarn deformation at the point of 

crossover, which has the distinct disadvantage of requiring “precise knowledge of the 

local geometry and associated elastic and viscous properties of the yarn and coating” 

(Dimitrov and Schock, 1986, p. 858). This requirement for detailed knowledge regarding 

the yarn properties does not lend itself to the design of a bespoke fabric for specific 

mechanical properties. As such the kite shaped mechanism (Figure 3-5) is preferable, 

and can is defined below (Equation 3-14, Equation 3-15 and Equation 3-16):  

𝑟1,2
′ =

𝐴𝑟𝑒𝑎1,2
2 ∗ 𝑤1,2′

 
Equation 3-14 

𝑤1,2
′ =

𝑤1,2
𝐿2,1

𝐿2,1
′  

Equation 3-15 

𝐴𝑟𝑒𝑎1,2 = 2𝑤1,2𝑟1,2 Equation 3-16 

The kite shaped mechanism represents the deformation of the yarn at the point of 

crossover due to compaction forces generated as a result of the tensile forces in the 

yarns in both directions. These forces will deform the yarns to some extent, and this is 

represented by the constant area kite. The kite deforms in proportion to the extension 

of the orthogonal yarn, and therefore represents the deformation of the yarn cross-

section without the need for any detailed knowledge of the compaction stiffness of the 

cross section. This therefore acts as a geometric constraint, which allows for the 

consideration of yarn cross section deformation without any detailed analysis of the 

actual yarn deformation mechanism. 
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Figure 3-5: Kite Shape yarn cross section reproduced from Bridgens (2005) 

The ‘kite shape yarn cross section’ can be defined as follows: “as yarn 1 extends the ratio 

P:Q is kept constant [and] the width of yarn 2 increases as yarn 1 extends.” It is noted 

that this is not “intended to model inter-yarn friction” and that accurately measuring the 

actual yarn deformation is infeasible as this would “mean cutting the sample, which 

would profoundly affect the state of stress and balance of forces in the fabric”(Bridgens, 

2005, p. 229). It may be possible to measure this deformation, but this is outside of the 

scope of this project. Further to this a decision has been made to limit the scale of the 

work to the unit cell, and not to extend the model to the design of the constituent yarns 

in and of themselves which would require considerable further work. The response of 

the yarns is discussed in the Literature review (§2.2.2), and relies on spinning mechanism, 

angle of spin, inter filament friction and cohesion, and material type. Inclusion of all 

these parameters would greatly increase the model complexity and require the addition 

of a separate module to enable the design of the yarns. 
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The sawtooth model is, in essence, an equilibrium problem that must be solved given 

certain initial values of geometry to find the equilibrium state of the fabric after biaxial 

force has been applied. The defining equations must all be solved simultaneously and 

iteratively for the values of θ1,2
′  and Y1,2

′  (Equation 3-6, Equation 3-7, Equation 3-8 and 

Equation 3-13). Once these values have been calculated it is possible to calculate the 

strain and other properties of the fabric at its stressed state. 

The ‘FSolve’ (MathWorks, 2012a) routine is used for the iterative solving of the 

equations, and from this the deformations and hence strains can be calculated, which 

are vital to the following stages. 

3.4.2. Inverting a simplified sawtooth model 

The concept of the ‘simple sawtooth’ was developed to refine the method used to find 

the derivatives necessary to calculate the fabric’s response parameters. It is also used 

to demonstrate that these can be used as the objective functions for an optimisation of 

the fabric’s physical parameters towards a set of target moduli. Whilst the concept of 

using derivatives to find the tensile stiffness has been shown to work in the sections 

above (§3.3.2) it was also necessary to demonstrate feasibility in three dimensions. 

3.4.2.1. Definition of the simple sawtooth 

Whilst a true architectural fabric is a complex system made up of many components the 

objective of this portion of the project is to demonstrate the utility of the method to be 

used on more complex systems. This simple case (Figure 3-6) varies from the full 

sawtooth in that it does not consider the following properties: 

 No yarn extension – the yarns are considered rigid except at the joints (Y’1,2 = 

Y1,2) 

 No yarn crushing – the yarn radii remain constant (r’1,2=r1,2) 

 No coating – the coating provides no resistance in compression or tension (Fk = 

0) 

This model can be considered as a purely mechanical problem, similar to the proof of 

concept. The evolution of the system from that initial problem allows for small errors to 

be caught and modified prior to further more complex improvements.  
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Figure 3-6: Fundamentals of the simple sawtooth model 

3.4.2.2. Equations defining the response of the simple sawtooth 

The equilibrium equations for the system state that the sum of the yarn radii must equal 

the sum of the yarn amplitudes (Equation 3-17) and the out of plane forces must be 

equal (Equation 3-18). Given that there can be no variation in yarn radius all deformation 

occurs in the movement of the yarns through the change in the yarn angle. The 

equilibrium equations are the base of all further equations shown. 

(𝑟1 + 𝑟2) − (𝐴1 + 𝐴2) = 0 Equation 3-17 

𝐹𝑐1 − 𝐹𝑐2 = 0 Equation 3-18 

Fy1,2 sin θ1,2 − Fc1,2 = 0 Equation 3-19 

warp 
L1 

L2 

ϴ2 

r1 

r2 

O
u

t o
f p

lan
e

 

ϴ1 F1/2 

F2/2 

F1/2 

F2/2 

Warp/weft 

L
1,2

 

r
1,2

 

Out of plane 

ϴ
1,2

 F
1,2

 F
1,2

 

L
1,2

 

A
1,2

 

Fc
1,2

 

δ
1,2

 δ
1,2

 
Contact with other yarn 

Area
1,2

 



3. Predictive model 

PAGE 125 
 

From the equations above it is possible to define the equations used to calculate the 

derivatives below. The differential equations were produced in accordance with the 

method of combining partial derivatives outlined in the ‘spring and arm’ model (§3.3.2).  

𝑑𝐹1
𝑑𝜀1

=
𝜕𝐹1
𝜕𝜀1

+
𝜕𝐹1
𝜕𝜃′1

∙
𝜕𝜃′1
𝜕𝜀1

+
𝜕𝐹1
𝜕𝜀2

∙
𝜕𝜀2
𝜕𝜀1

 

Equation 3-20 

𝑑𝐹2
𝑑𝜀1

=
𝜕𝐹2
𝜕𝜀1

+
𝜕𝐹2
𝜕𝜃′2

∙
𝜕𝜃′2
𝜕𝜀1

+
𝜕𝐹2
𝜕𝜀2

∙
𝜕𝜀2
𝜕𝜀1

 

Equation 3-21 

𝑑𝐹1
𝑑𝜀2

=
𝜕𝐹1
𝜕𝜀2

+
𝜕𝐹1
𝜕𝜃′1

∙
𝜕𝜃′1
𝜕𝜀2

+
𝜕𝐹1
𝜕𝜀1

∙
𝜕𝜀1
𝜕𝜀2

 

Equation 3-22 

𝑑𝐹2
𝑑𝜀2

=
𝜕𝐹2
𝜕𝜀2

+
𝜕𝐹2
𝜕𝜃′2

∙
𝜕𝜃′2
𝜕𝜀2

+
𝜕𝐹2
𝜕𝜀1

∙
𝜕𝜀1
𝜕𝜀2

 

Equation 3-23 

The derivatives of equations that relate to each partial derivative are required to 

produce 𝑑𝐹1,2/𝑑𝜀1,2 and 𝑑𝐹1,2/𝑑𝜀2,1 (Equation 3-25, Equation 3-26, and Equation 3-27). 

The derivations of the following equations are shown prior to the equation. 

Displacement (δ) is converted to strain in the following sections (Equation 3-24). 

𝛿1,2 = 𝜀1,2 ∙ 𝐿1,2 Equation 3-24 

The derivation of a single formula that relates the force applied (F) to the out of plane 

angle (𝜃′1,2) and strain (𝜀2,1) (Equation 3-25) is shown in the appendix (§A.8).  

𝐹1,2 =
𝐹2,1((𝑟1 + 𝑟2) − (𝐿1,2 + (𝜀1,2 ∙ 𝐿1,2)) tan 𝜃

′
1,2)

(𝐿2,1 + (𝜀2,1 ∙ 𝐿2,1)) tan 𝜃′1,2
 

 

 

Equation 3-25 

Once this has been achieved 𝜃′1,2 can be defined in terms of only initial geometry and 

strain, as shown below (Equation 3-26): 
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𝜃′1,2 = cos
−1(

(𝐿1,2 + (𝜀1,2 ∙ 𝐿1,2)) cos 𝜃1,2

𝐿1,2
) = 𝑓(𝜀1,2) 

 

Equation 3-26 

And 𝜀2,1 can be defined in terms of only initial geometry and 𝜀1,2 (Equation 3-27). 

𝜺𝟐,𝟏 = 

𝐜𝐨𝐬(𝐬𝐢𝐧−𝟏((
(𝒓𝟏 + 𝒓𝟐) − (𝑳𝟏,𝟐 + (𝜺𝟏,𝟐 ∙ 𝑳𝟏,𝟐)) 𝐭𝐚𝐧(𝜽

′
𝟏,𝟐)

𝑳𝟐,𝟏
)𝐜𝐨𝐬𝜽𝟏,𝟐))

𝐜𝐨𝐬𝜽𝟐,𝟏
− 𝟏 

 

 

 

 

 

Equation 3-27 

With the above equations it is possible to produce the derivatives 𝑑𝐹1,2/𝑑𝜀1,2  and 

𝑑𝐹1,2/𝑑𝜀2,1, which can then be used to optimise a set of initial geometries for a set of 

targets. The derivatives are shown below:    

𝑑𝐹1
𝑑𝜀1

=
cos 𝜃1 (

𝐹2𝑎(tan
2 𝜃′1 + 1)

𝑏 tan𝜃′1
+
𝐹2(tan

2 𝜃′1 + 1)(𝑟1 + 𝑟2 − 𝑎 tan 𝜃
′
1)

𝑏tan2 𝜃′1
)

𝑐
−
𝐹2𝐿1

𝑏
+ 

𝐹2𝑎 cos 𝜃1 cos 𝜃2 (𝑟1 + 𝑟2 − 𝑎 tan𝜃′1) ∗ (𝑟1 + 𝑟2 −
𝐿1𝑐
cos 𝜃1

)

𝐿2𝑐𝑏
2𝑒 tan𝜃′1

 

Equation 3-28 

𝑑𝐹2
𝑑𝜀2

=
cos 𝜃2 (

𝐹1𝑏(tan
2 𝜃′2 + 1)

𝑎 tan𝜃′2
+
𝐹1(tan

2 𝜃′2 + 1)(𝑟1 + 𝑟2 − 𝑏 tan 𝜃
′
2)

𝑎 tan2 𝜃′2
)

𝑑
−
𝐹1𝐿2

𝑎
+ 

𝐹1𝑏 cos 𝜃1 cos 𝜃2 (𝑟1 + 𝑟2 − 𝑏 tan𝜃′2) (𝑟1 + 𝑟2 −
𝐿2𝑑
cos 𝜃2

)

𝐿1𝑑𝑎
2𝑓 tan𝜃′2

 

Equation 3-29 

𝑑𝐹2
𝑑𝜀1

=
𝐹1 cos 𝜃1 cos 𝜃2 (𝑟1 + 𝑟2 −

𝐿1𝑐

cos 𝜃1
)

𝐿2𝑐𝑒
−
𝐹1𝐿1(𝑟1 + 𝑟2 − 𝑏 tan 𝜃

′
2)

𝑎2 tan𝜃′2
− 

 

𝑎 cos 𝜃1 cos
2 𝜃2 (

𝐹1𝑏(tan
2 𝜃′2 + 1)

𝑎 tan𝜃′2
+
𝐹1(tan

2 𝜃′2 + 1)(𝑟1 + 𝑟2 − 𝑏 tan𝜃′2)
𝑎 tan2 𝜃′2

) (𝑟1 + 𝑟2 −
𝐿1𝑐
cos 𝜃1

)

𝐿2
2𝑐𝑒 (1 −

cos2 𝜃2 (𝐿2  −
𝐿2 cos 𝜃2 − 𝐿2𝑒

cos 𝜃2
)
2

𝐿2
2 )

1
2

 

Equation 3-30 
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𝑑𝐹1
𝑑𝜀2

=
𝐹2 cos 𝜃1 cos 𝜃2 (𝑟1 + 𝑟2 −

𝐿2𝑑

cos 𝜃2
)

𝐿1𝑑𝑓
−
𝐹2𝐿2(𝑟1 + 𝑟2 − 𝑎 tan𝜃′1)

𝑏2 tan𝜃′1
− 

 

cos2 𝜃1 cos 𝜃2 𝑏 (
𝐹2𝑎(tan

2 𝜃′1 + 1)
𝑏 tan𝜃′1

+
𝐹2(tan

2 𝜃′1 + 1)(𝑟1 + 𝑟2 − 𝑎 tan𝜃′1)
𝑏 tan2 𝜃′1

) (𝑟1 + 𝑟2 −
𝐿2𝑑
cos 𝜃2

)

𝐿1
2𝑑𝑓 (1 −

cos(𝑃ℎ1)2 (𝐿1 −
𝐿1 cos 𝜃1 − 𝐿1𝑓

cos 𝜃1
)
2

𝐿1
2 )

1
2

 

Equation 3-31 

Where the values a, b, c, d, e, and f are calculated separately (Equation 3-32, Equation 

3-33, Equation 3-34, Equation 3-35, Equation 3-36, and Equation 3-37 respectively). 

𝑎 = (𝐿1  +  𝐿1𝜀1)  
Equation 3-32 

𝑏 = (𝐿2  +  𝐿2𝜀2) 
Equation 3-33 

𝑐 = (1 −
𝑎2𝑐𝑜𝑠2 𝜃1

𝐿1
2 )

1
2

 

Equation 3-34 

𝑑 = (1 −
𝑏2𝑐𝑜𝑠2 𝜃2

𝐿2
2 )

1
2

 

Equation 3-35 

𝑒 = (1 −
𝑐𝑜𝑠2 𝜃2 (𝑟1 + 𝑟2 −

𝐿1𝑐
𝑐𝑜𝑠 𝜃1

)
2

𝐿2
2 )

1
2

 

Equation 3-36 

𝑓 = (1 −
𝑐𝑜𝑠2 𝜃1 (𝑟1 + 𝑟2 −

𝐿2𝑑
𝑐𝑜𝑠 𝜃2

)
2

𝐿1
2 )

1
2

 

Equation 3-37 

At this stage it becomes clear that the values of  𝑑𝐹1,2/𝑑𝜀1,2 and 𝑑𝐹1,2/𝑑𝜀2,1   are not 

suitable for use as engineering values, as they relate only to the unit cell (Figure 3-4). 

Thus it is necessary to demonstrate how these values will relate to true engineering 

values. 

𝑑𝐹1,2/𝑑𝜀1,2 and 𝑑𝐹1,2/𝑑𝜀2,1  can be used to produce values for E11, E22, ν12 and ν21 as 

shown below: 
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v12 can be defined as the contraction in direction 2 due to extension in direction 1 

(Equation 3-38). 

𝑣12 = −
𝑑𝜀𝑡𝑟𝑎𝑛𝑠(2)

𝑑𝜀𝑎𝑥𝑖𝑎𝑙(1)
= −

𝑑𝜀2
𝑑𝜀1

 
Equation 3-38 

This can be used to show how the Poisson’s ratios can be derived (Equation 3-39) (Long, 

2005). 

{
𝜀1
𝜀2
} =

[
 
 
 
1

𝐸11
−
𝑣12
𝐸11

−
𝑣21
𝐸22

1

𝐸22 ]
 
 
 

{
𝜎1
𝜎2
} 

Equation 3-39 

𝐸11,22 =
𝑑𝐹1,2
𝑑𝜀1,2

 

𝑣12 = −
𝑑𝜀2
𝑑𝜀1

 

−
𝑣12
𝐸11

∝ 𝐸12 

−
𝑣12

(
𝑑𝐹1
𝑑𝜀1

)
∝ (

𝑑𝐹1
𝑑𝜀2

) 

Using the definitions of E12 and E11 it is possible to show that E11 /E12=ν12. 

−
(
𝑑𝐹1
𝑑𝜀1

)

(
𝑑𝐹1
𝑑𝜀2

)
= −

𝑑𝜀2𝑑𝐹1
𝑑𝜀1𝑑𝐹1

= −
𝑑𝜀2
𝑑𝜀1

 

 

−
𝑣12
𝐸11

=
1

𝐸12
 

 

Equation 3-40 
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This is confirmed by Bridgens et al. (2004). 

And to convert the derivatives between unit cell and fabric or global values it is 

necessary to implement the following (Equation 3-41): 

𝐹1,2 = 𝑃1,2 × 𝐿2,1 × 2 

𝐸11
𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 = 𝐸11

𝑔𝑙𝑜𝑏𝑎𝑙 × 𝐿2 × 2 

𝐸12
𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 = 𝐸12

𝑔𝑙𝑜𝑏𝑎𝑙 × 𝐿2 × 2 

𝐸22
𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 = 𝐸22

𝑔𝑙𝑜𝑏𝑎𝑙 × 𝐿1 × 2 

𝐸21
𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙 = 𝐸21

𝑔𝑙𝑜𝑏𝑎𝑙 × 𝐿1 × 2 

Equation 3-41 

Using these definitions it is now possible to allow input in terms of Poisson’s ratios and 

Young’s moduli for a whole fabric rather than only a unit cell. 

3.4.3. Full Sawtooth  

The full sawtooth considers all the variables identified by Bridgens (2005); (Bridgens and 

Gosling, 2008) as governing the behaviour of the fabric. This will be shown to allow the 

design of a fabric for specific properties, including shear behaviour under biaxial loading, 

where additional components are added (§3.4.3.3). Other deformation mechanisms 

have been identified but the sawtooth model adequately predicts fabric biaxial stiffness 

without specific inclusion of these. Those identified by other references include: 

 Yarn bending (Tan and Barnes, 1984) 

 Changes in filament geometry (Tan and Barnes, 1984) 

 Friction between yarns (although this is considered separately in 3.4.3.4) 

(Pargana et al., 2007) 

3.4.3.1. Definition of the full sawtooth model 

The primary deformation mechanisms that allow a fabric to be analysed are listed: 

 Yarn extension – the yarns are considered to follow a linear elastic stress strain 

relationship (Equation 3-10 and Equation 3-13). 
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 Yarn cross-section deformation – the yarn radii can vary (Equation 3-14 to 

Equation 3-16). 

 Yarn friction – the friction between the yarns is considered to resist shear 

deformation when the shear model is developed (Equation 3-74). 

 Coating – Initially the coating was represented by two springs which resist 

biaxial loads. Following this an isoparametric element is used to represent both 

biaxial and shear loading (Figure 3-9). The isoparametric element will also 

allow for the use of non-orthogonal yarns in future work. 

Considering all of these response mechanisms within a single model will allow for the 

design of a fabric through the use of the equations defined herein. 

3.4.3.2. Equations defining the response of the full sawtooth 

This section establishes the process that was used to produce E11, E22, ν12 and ν21. The 

coating is no longer represented by ‘spring’ coating equations used by Bridgens (2005). 

These are replaced by a method utilising the Poisson’s ratios of the coating within a finite 

element. 

𝐹1,2 =
(𝐹2,1 − 𝐹𝑘2,1) ((𝑟′1 + 𝑟′2) − 𝐿1,2(1 + 𝜀1,2) tan 𝜃′1,2)

𝐿2,1(1 + 𝜀2,1) tan 𝜃′1,2
+ 𝐹𝑘1,2 

Equation 3-42 

The equation defining the force in terms of the unit cell properties is produced in the 

same fashion as for the simple sawtooth (§3.4.2.2) and combines the equations defining 

the full sawtooth response (§3.4) (Equation 3-6, Equation 3-7, Equation 3-9 and Equation 

3-10).  

Following the method set out earlier (§3.4.2.2) it can be shown that the necessary 

derivatives of F1,2 are given below (Equation 3-43 and Equation 3-44): 

𝑑𝐹1,2
𝑑𝜀1,2

=
𝜕𝐹1,2
𝜕𝜀1,2

+
𝜕𝐹1,2
𝜕𝜃′1,2

∙
𝜕𝜃′1,2
𝜕𝜀1,2

+
𝜕𝐹1,2
𝜕𝑟′1,2

∙
𝜕𝑟′1,2
𝜕𝜀1,2

+
𝜕𝐹1,2
𝜕𝑟′2,1

∙
𝜕𝑟′2,1
𝜕𝜀1,2

+
𝜕𝐹1,2
𝜕𝜀2,1

∙
𝜕𝜀2,1
𝜕𝜀1,2

+
𝜕𝐹1,2
𝜕𝐹𝑘1,2

∙
𝜕𝐹𝑘1,2
𝜕𝜀1,2

+
𝜕𝐹1,2
𝜕𝐹𝑘2,1

∙
𝜕𝐹𝑘2,1
𝜕𝜀1,2

 

Equation 3-43 
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𝑑𝐹1,2
𝑑𝜀2,1

=
𝜕𝐹1,2
𝜕𝜀2,1

+
𝜕𝐹1,2
𝜕𝜃′1,2

∙
𝜕𝜃′1,2
𝜕𝜀2,1

+
𝜕𝐹1,2
𝜕𝑟′1,2

∙
𝜕𝑟′1,2
𝜕𝜀2,1

+
𝜕𝐹1,2
𝜕𝑟′2,1

∙
𝜕𝑟′2,1
𝜕𝜀2,1

+
𝜕𝐹1,2
𝜕𝜀1,2

∙
𝜕𝜀1,2
𝜕𝜀2,1

+
𝜕𝐹1,2
𝜕𝐹𝑘1,2

∙
𝜕𝐹𝑘1,2
𝜕𝜀2,1

+
𝜕𝐹1,2
𝜕𝐹𝑘2,1

∙
𝜕𝐹𝑘2,1
𝜕𝜀2,1

 

Equation 3-44 

The equations for the derivatives can be used to produce E11, E22, ν12 and ν21 in this new 

more complex case as per the method employed in the simple sawtooth (Equation 3-41).  

Therefore, as was demonstrated for the simple sawtooth, to define E11 we must first 

define all the partial derivatives detailed above (Equation 3-43 and Equation 3-44). The 

first partial derivatives with respect to the load and strain can be calculated as follows 

(Equation 3-45 and Equation 3-46): 

𝜕𝐹1
𝜕𝜀1

= −
𝐿1(𝐹2 − 𝐹𝑘2)

𝐿2(𝜀2 + 1)
 

Equation 3-45 

𝜕𝐹1
𝜕𝜀2

= −
(𝐹2 − 𝐹𝑘2)(𝑟′1 + 𝑟′2 − 𝐿1(𝜀1 + 1) tan 𝜃′1)

𝐿2(𝜀2 + 1)2 tan 𝜃′1
 

Equation 3-46 

Further partial derivatives relating to the load can also be calculated: 

𝜕𝐹1
𝜕𝜃′1

= −
(𝐹2 − 𝐹𝑘2)(tan

2 𝜃′1 + 1)(𝑟
′
1 + 𝑟

′
2 − 𝐿1(𝜀1 + 1) tan 𝜃

′
1)

𝐿2(𝜀2 + 1)2 tan2 𝜃′1

−
𝐿1(𝐹2 − 𝐹𝑘2)(tan

2 𝜃′1 + 1)(𝜀1 + 1)

𝐿2(𝜀2 + 1) tan 𝜃′1
 

Equation 3-47 

𝜕𝐹1
𝜕𝑟′1

=
𝜕𝐹1
𝜕𝑟′2

=
(𝐹2 − 𝐹𝑘2)

𝐿2(𝜀2 + 1) tan 𝜃′1
 

Equation 3-48 

𝜕𝐹1
𝜕𝐹𝑘1

= 1 
Equation 3-49 

𝜕𝐹1
𝜕𝐹𝑘2

= −
𝑟′1 + 𝑟

′
2 − 𝐿1(𝜀1 + 1) tan 𝜃

′
1

𝐿2(𝜀2 + 1) tan 𝜃′1
 

Equation 3-50 

 

The coating is no longer represented with springs, and is instead represented by the 

isoparametric element to define the coating response, the biaxial extension of which 
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includes the coating’s Poisson’s ration (Equation 3-51). The Isoparametric element is 

connected to the sawtooth model at the midpoint nodes of the element (§3.4.3.3): 

𝐹𝑘1,2 = 2 ∙ 𝐿2,1 (
𝐸𝑘

1 − 𝑣𝑘
2
) (𝜀1,2 + 𝑣𝑘𝜀2,1)(1 + 𝜀2,1) 

Equation 3-51 

The derivatives of which then follow: 

𝜕𝐹𝑘1,2
𝜕𝜀1,2

=
𝛿𝐹𝑘1,2
𝛿𝜀1,2

+
𝛿𝐹𝑘1,2
𝛿𝜀2,1

𝛿𝜀2,1
𝛿𝜀1,2

=
2𝐸𝑘𝐿2,1
𝑣𝑘

2 − 1
[−
𝛿𝜀2,1
𝛿𝜀1,2

((𝜀1,2 + 𝑣𝑘𝜀2,1) + 𝑣𝑘(𝜀2,1 + 1)) − (𝜀2,1 + 1)] 

 
Equation 3-52 

𝜕𝐹𝑘1,2
𝜕𝜀2,1

=
𝛿𝐹𝑘1,2
𝛿𝜀2,1

+
𝛿𝐹𝑘1,2
𝛿𝜀1,2

𝛿𝜀1,2
𝛿𝜀2,1

=
2𝐸𝑘𝐿2,1
𝑣𝑘

2 − 1
[−(𝜀1,2 + 𝑣𝑘𝜀2,1) −

𝛿𝜀1,2
𝛿𝜀2,1

(𝜀2,1 + 1) − 𝑣𝑘(𝜀2,1 + 1)] 

 

Equation 3-53 

Similarly the yarn radius is considered (Equation 3-54): 

𝑟′1,2 =
𝑟1,2

(1 + 𝜀2,1)
 

Equation 3-54 

𝜕𝑟′1,2
𝜕𝜀1,2

=
𝛿𝑟′1,2
𝛿𝜀1,2

+
𝛿𝑟′1,2
𝛿𝜀2,1

𝛿𝜀2,1
𝛿𝜀1,2

= −
𝛿𝜀2,1
𝛿𝜀1,2

𝑟1,2

(𝜀2,1 + 1)
2 

Equation 3-55 

 

𝜕𝑟′1,2
𝜕𝜀2,1

= −
𝑟1,2

(𝜀2,1 + 1)
2 

Equation 3-56 

 

And also the out of plane yarn angles: 

𝜃′2,1 = cos
−1((1 + 𝜀2,1) cos 𝜃2,1 − (

(𝐹2,1 − 𝐹𝑘2,1)

2𝐸2,1𝐿1,2(1 + 𝜀1,2)
)) 

Equation 3-57 
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𝜕𝜃′2,1
𝜕𝜀1,2

=
𝛿𝜃′2,1
𝛿𝜀1,2

+
𝛿𝜃′2,1
𝛿𝜀2,1

𝛿𝜀2,1
𝛿𝜀1,2

+
𝛿𝜃′2,1
𝛿𝐹𝑘2,1

𝛿𝐹𝑘2,1
𝛿𝜀1,2

=
1

√1 − (cos 𝜃2,1 (𝜀2,1 + 1) −
𝐹2,1 − 𝐹𝑘2,1

2𝐸2,1𝐿1,2(1 + 𝜀1,2)
)

2

∙

[
 
 
 
 
2𝐸𝑘𝐿1,2
𝑣𝑘

2 − 1
((𝜀2,1 + 𝑣𝑘𝜀1,2) +

𝛿𝜀2,1
𝛿𝜀1,2

(1 + 𝜀1,2) + 𝑣𝑘(1 + 𝜀1,2))

2𝐸2,1𝐿1,2(1 + 𝜀1,2)

−
(𝐹2,1 − 𝐹𝑘2,1)

2𝐸2,1𝐿1,2(1 + 𝜀1,2)
2 −

𝛿𝜀2,1
𝛿𝜀1,2

cos 𝜃2,1

]
 
 
 
 

 

Equation 3-58 

𝜕𝜃′2,1
𝜕𝜀2,1

=
𝛿𝜃′2,1
𝛿𝜀2,1

+
𝛿𝜃′2,1
𝛿𝜀1,2

𝛿𝜀1,2
𝛿𝜀2,1

+
𝛿𝜃′2,1
𝛿𝐹𝑘2,1

𝛿𝐹𝑘2,1
𝛿𝜀2,1

=
1

√1 − (cos 𝜃2,1 (𝜀2,1 + 1) −
𝐹2,1 − 𝐹𝑘2,1

2𝐸2,1𝐿1,2(1 + 𝜀1,2)
)

2

∙

[
 
 
 
 
2𝐸𝑘𝐿1,2
𝑣𝑘

2 − 1
(
𝛿𝜀1,2
𝛿𝜀2,1

((𝜀2,1 + 𝑣𝑘𝜀1,2) + 𝑣𝑘(1 + 𝜀1,2)) + (1 + 𝜀1,2))

2𝐸2,1𝐿1,2(1 + 𝜀1,2)

− cos 𝜃2,1 −

𝛿𝜀1,2
𝛿𝜀2,1

(𝐹2,1 − 𝐹𝑘2,1)

2𝐸2,1𝐿1,2(1 + 𝜀1,2)
2

]
 
 
 
 

 

Equation 3-59 

𝜃′1,2 = tan
−1 (

(𝑟′1 + 𝑟′2) − 𝐿2,1(1 + 𝜀2,1) tan 𝜃′2,1

𝐿1,2(1 + 𝜀1,2)
) 

Equation 3-60 



3. Predictive model 

PAGE 134 
 

𝜕𝜃′1,2
𝜕𝜀1,2

=
𝛿𝜃′1,2
𝛿𝜀1,2

+
𝛿𝜃′1,2
𝛿𝑟′1,2

𝛿𝑟′1,2
𝛿𝜀1,2

+
𝛿𝜃′1,2
𝛿𝑟′2,1

𝛿𝑟′2,1
𝛿𝜀1,2

+
𝛿𝜃′1,2
𝛿𝜀2,1

𝛿𝜀2,1
𝛿𝜀1,2

+
𝛿𝜃′1,2
𝛿𝜃′2,1

𝛿𝜃′2,1
𝛿𝜀1,2

=

(

 𝐿1,2(
(𝑟′1,2 + 𝑟

′
2,1 − 𝐿2 tan 𝜃

′
2,1 (1 + 𝜀2,1))

2

𝐿1,2
2(1 + 𝜀1,2)

2 + 1) (1 + 𝜀1,2)

)

 

−1

 

{
 
 

 
 

(

 
 
 

𝐿2,1(tan
2 𝜃′2,1 + 1)(𝜀2,1 + 1)

√1 − (cos 𝜃2,1 (1 + 𝜀2,1) −
(𝐹2,1 − 𝐹𝑘2,1)

2𝐸2,1𝐿1,2(1 + 𝜀1,2)
)

2

[
 
 
 
 
𝛿𝜀2,1
𝛿𝜀1,2

cos 𝜃2,1 +
(𝐹2,1 − 𝐹𝑘2,1)

2𝐸2,1𝐿1,2(1 + 𝜀1,2)
2

−

2𝐸𝑘𝐿1,2
𝑣𝑘2 − 1

((𝜀2,1 + 𝜀1,2𝑣𝑘) +
𝛿𝜀2,1
𝛿𝜀1,2

(1 + 𝜀1,2) + 𝑣𝑘(1 + 𝜀1,2))

2𝐸2,1𝐿1,2(1 + 𝜀1,2)

]
 
 
 
 

)

 
 
 

−
(𝑟′1,2 + 𝑟

′
2,1 − 𝐿2 tan 𝜃

′
2,1 (1 + 𝜀2,1))

(1 + 𝜀1,2)
− 𝐿2,1

𝛿𝜀2,1
𝛿𝜀1,2

tan 𝜃′2,1

−

𝛿𝜀2,1
𝛿𝜀1,2

𝑟1,2

(1 + 𝜀2,1)
2 −

𝑟2,1

(1 + 𝜀1,2)

}
 
 

 
 

 

Equation 3-61 
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𝜕𝜃′1,2
𝜕𝜀2,1

=
𝛿𝜃′1,2
𝛿𝜀2,1

+
𝛿𝜃′1,2
𝛿𝜀1,2

𝛿𝜀1,2
𝛿𝜀2,1

+
𝛿𝜃′1,2
𝛿𝑟′1,2

𝛿𝑟′1,2
𝛿𝜀2,1

+
𝛿𝜃′1,2
𝛿𝑟′2,1

𝛿𝑟′2,1
𝛿𝜀2,1

+
𝛿𝜃′1,2
𝛿𝜃′2,1

𝛿𝜃′2,1
𝛿𝜀2,1

=

(

 𝐿1,2(
(𝑟′1,2 + 𝑟

′
1,2 − tan𝜃

′
2,1 (𝜀2,1 + 1))

2

𝐿1,2
2(1 + 𝜀1,2)

2 + 1) (1 + 𝜀1,2)

)

 

−1

∙

{
 
 

 
 

[
 
 
 
 
 

𝐿2,1(tan
2 𝜃′2,1 + 1)(𝜀2,1 + 1)

√1 − (cos 𝜃2,1 (1 + 𝜀2,1) −
(𝐹2,1 − 𝐹𝑘2,1)

2𝐸2,1𝐿1,2(1 + 𝜀1,2)
)

2

∙

(

 
 
cos 𝜃2,1−

2𝐸𝑘𝐿1,2
𝑣𝑘2 − 1

(
𝛿𝜀1,2
𝛿𝜀2,1

((𝜀2,1 + 𝜀1,2𝑣𝑘) + 𝑣𝑘(1 + 𝜀1,2)) + (1 + 𝜀1,2))

2𝐸2,1𝐿1,2(1 + 𝜀1,2)
+

𝛿𝜀1,2
𝛿𝜀2,1

(𝐹2,1 − 𝐹𝑘2,1)

2𝐸2,1𝐿1,2(1 + 𝜀1,2)
2

)

 
 

]
 
 
 
 
 

−
𝑟1,2

(1 + 𝜀2,1)
2

−

𝛿𝜀1,2
𝛿𝜀2,1

𝑟2,1

(1 + 𝜀1,2)
2 −

𝛿𝜀1,2
𝛿𝜀2,1

(𝑟′1,2 + 𝑟
′
1,2 − tan𝜃

′
2,1 (𝜀2,1 + 1))

(1 + 𝜀1,2)
− 𝐿2,1 tan 𝜃

′
2,1

}
 
 

 
 

 

Equation 3-62 



3. Predictive model 

PAGE 136 
 

Using two different formulae for the out of plane angle ensures that the calculation of the 

derivatives is not looped as happens below, but irreconcilably, with the calculation of the 

derivatives of the strains (Equation 3-57 and Equation 3-60). 

After extensive work it was found that 𝛿𝜀1,2/𝛿𝜀2,1  could not be defined analytically. A circular 

problem presents when the calculation of the analytical derivative is attempted (Figure 3-7). 

To calculate the derivative other derivatives must first be known, the calculation of which 

requires the partial derivative of the strains (Equation 3-63). 

𝑑𝑟′2

𝑑𝜀1
,
𝑑𝜃′1

𝑑𝜀1
,
𝑑𝑟′1

𝑑𝜀1
,
𝑑𝜃′2

𝑑𝜀1
 

Equation 3-63 

Given that these derivatives are themselves not independent they must be calculated from 

other derivatives, the aim of which is to find a solution where independent variables form the 

basis of the solution. This must be defined in terms of the dependant variables chosen to 

define the model. Therefore it is shown that for the most part only dependant variables exist 

within the formulation which cannot be refined down to the few independent calculations. 

As part of an effort to find an entirely analytical solution the original equations were 

repeatedly redefined and an effort was made to express the equilibrium equations 

differently. However, where the equilibrium equations are defined in some form, necessary 

for the definition of the sawtooth model, the interdependencies persists, and cannot be 

resolved to an entirely analytical solution. 

The problem of dependency only persists where yarns are considered extensible though as 

this is intrinsic to the nature of fabrics, i.e. that the yarns extend under load, and that this is 

the predominant deformation mechanism at higher loads, this mechanism cannot be ignored 

for the full fabric design case. It is possible that a complete analytical derivative might be 

formed for the initial fabric deformation, where yarn extension is considered to be minimal, 

and thus might be ignored, but this would ignore an important portion of the response, and 

thus be inappropriate for use in a design methodology. 
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Figure 3-7: Flow chart demonstrating how the derivative 
𝒅𝜺𝟐

𝒅𝜺𝟏
 cannot be defined 

 
𝛿𝜀1

𝛿𝜀2
 can be defined in terms of 

𝛿𝜀2

𝛿𝜀1
 and reciprocally, but neither can be defined without the 

requirement for another derivative to be calculated. The equations defining the response are 

circularly interconnected, at some point a break has to be made in the circular 

interdependency, and this was made at the partial derivative 
𝛿𝜀2,1

𝛿𝜀1,2
. This is then calculated 

iteratively, and therefore referred to as 
Δ𝜀1,2

Δ𝜀2,1
, using the sawtooth model and a central finite 

difference calculation with a variable value of the force applied (Equation 3-64).  

Where: 𝐹1,2 = 0 

𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡1,2 = 0.001 

Where: 𝐹1,2 ≠ 0 

𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡1,2 =
𝐹1,2

1000
⁄  𝑜𝑟 0.1% 𝑜𝑓 𝐹1,2 

Equation 3-64 

𝑑𝜀2

𝑑𝜀1
 

𝑑𝜃′2

𝑑𝜀1
 

  

𝑑𝑟′1

𝑑𝜀1
 

𝑑𝑟′2

𝑑𝜀1
 

  

𝑑𝜃′1

𝑑𝜀1
 

𝑑𝐹𝑘1

𝑑𝜀1
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Therefore 
𝑑𝐹1,2

𝑑𝜀1,2
 can be calculated (Equation 3-65). 

𝑑𝐹1
𝑑𝜀1

=  (
(𝐽)(tan(cos−1 𝐵)2 + 1)𝐷

𝐿2 tan(cos
−1 𝐵)2 (𝜀2 + 1)

+
𝐿1(𝐽)(tan(cos

−1 𝐵)2 + 1)(𝜀1 + 1)

𝐿2 tan(cos
−1 𝐵) (𝜀2 + 1)

)

∙

(

 
 
 
 
 
 
 
 
 

1

𝐿1 (
𝐸2

𝐿1
2(𝜀1 +  1)

2
+  1)

(

 
 
 
 
 
 
 
 
 

𝑟2
(𝜀1 +  1)

3 +
𝐸

(𝜀1 +  1)
2 +

𝐿2
Δ𝜀2
Δ𝜀1

tan(cos−1 𝐶)

(𝜀1 +  1)
+

Δ𝜀2
Δ𝜀1

𝑟1

(𝜀1 +  1)(𝜀2 +  1)
2

−

𝐿2(tan(cos
−1 𝐶)2 +  1)(𝜀2 +  1)

(

  
 
Δ𝜀2
Δ𝜀1

cos(𝛳2)

√1 − (𝐶)2
+

𝐽

2𝛦2𝐿1√1 − (𝐶)
2(𝜀1 +  1)

2
−

2𝐸𝑘𝐿1(𝜀2 + 𝜀1𝑣𝑘)
𝑣𝑘

2 −  1
+
2𝐸𝑘𝐿1

Δ𝜀2
Δ𝜀1

(𝜀1 +  1)

𝑣𝑘
2 −  1

+
2𝐸𝑘𝐿1𝑣𝑘(𝜀1 +  1)

𝑣𝑘
2 −  1

2𝛦2𝐿1√1 − (𝐶)
2(𝜀1 +  1)

)

  
 

(𝜀1 +  1)

)

 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

− 
Δ𝜀2
Δ𝜀1

∙ (
2𝐸𝑘𝐿2(𝜀1 + 𝜀2𝑣𝑘)

𝑣𝑘
2 − 1

+
2𝐸𝑘𝐿2𝑣𝑘(𝜀2 +  1)

𝑣𝑘
2 − 1

) −
2𝐸𝑘𝐿2(𝜀2 +  1)

𝑣𝑘
2 −  1

−
𝐿1(𝐽)

𝐿2(𝜀2 +  1)
+

(
2𝐸𝑘𝐿1(𝜀2 + 𝜀1𝑣𝑘)

𝑣𝑘
2 −  1

+
2𝐸𝑘𝐿1

Δ𝜀2
Δ𝜀1

(𝜀1 +  1)

𝑣𝑘
2 −  1

+
2𝐸𝑘𝐿1𝑣𝑘(𝜀1 +  1)

𝑣𝑘
2 −  1

)𝐷

𝐿2 tan(cos
−1 𝐵) (𝜀2 +  1)

−
𝑟2(𝐽)

𝐿2 tan(cos
−1 𝐵) (𝜀1 +  1)

2(𝜀2 +  1)
−

Δ𝜀2
Δ𝜀1

𝑟1(𝐽)

𝐿2 tan(cos
−1 𝐵) (𝜀2 +  1)

3 −

Δ𝜀2
Δ𝜀1

(𝐽)(𝐷)

𝐿2 tan(cos
−1 𝐵) (𝜀2 +  1)

2 
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Where: 

𝐴 = (
𝑟1

1 + 𝜀2
) + (

𝑟2
1 + 𝜀1

) 

𝐵 =

(

 
 
 

(1 + 𝜀1) cos(𝛳1) −

(

  
 
(𝐹1 − ((

𝐸𝑘
1 − 𝑣𝑘

2) (𝜀1 + 𝑣𝑘𝜀2)2𝐿2(1 + 𝜀2)))

2𝛦1𝐿2(1 + 𝜀2)

)

  
 

)

 
 
 

 

𝐶 =

(

 
 
 

(1 + 𝜀2) cos(𝛳2) −

(

  
 
(𝐹2 − ((

𝐸𝑘
1 − 𝑣𝑘

2) (𝜀2 + 𝑣𝑘𝜀1)2𝐿1(1 + 𝜀1)))

2𝛦2𝐿1(1 + 𝜀1)

)

  
 

)

 
 
 

 

𝐷 =

(

 
 
 
 

𝐴 – 𝐿1 tan

(

 
 
 
cos−1

(

 
 
 

(1 + 𝜀1) cos(𝛳1) −

(

  
 
(𝐹1 − ((

𝐸𝑘
1 − 𝑣𝑘

2) (𝜀1 + 𝑣𝑘𝜀2)2𝐿2(1 + 𝜀2)))

2𝛦1𝐿2(1 + 𝜀2)

)

  
 

)

 
 
 

)

 
 
 
(𝜀1  +  1)

)

 
 
 
 

 

𝐸 =

(

 
 
 
 

𝐴 − 𝐿2 𝑡𝑎𝑛

(

 
 
 
𝑐𝑜𝑠−1

(

 
 
 

(1 + 𝜀2) 𝑐𝑜𝑠(𝛳2) −

(

  
 
(𝐹2 − ((

𝐸𝑘
1 − 𝑣𝑘

2) (𝜀2 + 𝑣𝑘𝜀1)2𝐿1(1 + 𝜀1)))

2𝛦2𝐿1(1 + 𝜀1)

)

  
 

)

 
 
 

)

 
 
 
(𝜀2  +  1)

)

 
 
 
 

 

𝐻 = 𝐹1  −  ((
𝐸𝑘

1 − 𝑣𝑘
2
) (𝜀1  +  𝑣𝑘𝜀2)2𝐿2(1 + 𝜀2)) 

𝐽 = 𝐹2  −  ((
𝐸𝑘

1 − 𝑣𝑘
2) (𝜀2  +  𝑣𝑘𝜀1)2𝐿1(1 + 𝜀1)) 

Equation 3-65 

At this point all necessary derivatives have been derived and can be used to design a 

fabric’s geometry for the tensile stiffnesses and Poison’s ratios with respect to biaxial 

load (§3.5). 

3.4.3.3. Isoparametric formulation for coating 

With the derivatives calculated it is possible to optimise a fabric’s geometry for the 

response to biaxial load although not for response to shear loading. As has been 

mentioned the ‘springs’ that were used to represent the coating stiffness in the model 

used by Bridgens (2005) have been replaced by a finite element this is similar to the 

method employed by Kato et al. (1999). The material properties used in the element 

were taken from the literature review (§2.2.3). The practical effect of this thus far has 

been to make a slight alteration to the calculation of the coating force, but this is to be 

used to demonstrate how a fabric’s response to shear can also be designed. 

Two types of finite elements were considered to replace the springs representing the 

coating deformation in earlier models. The simpler ‘Plane Rectangular Bilinear Element’ 

and the more complex ‘Plane Bilinear Isoparametric Element’ (Figure 3-8). The 
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advantage of the isoparametric formulation lies in its ability to represent non-

rectangular geometry, which may be useful if fabrics with fibres that are non-

perpendicular are to be considered in future work, or to have curved sides (Cook et al., 

1989). Whereas the ‘Plane Rectangular Bilinear Element’ will restrict any future 

iterations of this work to standard rectangular geometries. 

As such the Isoparametric formulation will be used to ensure the model can be used 

with non-perpendicular fabric geometries. The element replaces the springs in the 

structure (Figure 3-9). 

  

Plane Rectangular Bilinear Element Plane Bilinear Isoparametric Element 

(Cook et al., 1989)  

Figure 3-8: Plane Rectangular Bilinear Element and Plane Bilinear Isoparametric Element 

 

Figure 3-9: Fundamentals of the full sawtooth model with an Isoparametric Element representing the coating 
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The construction of the Plane Bilinear Isoparametric formulation that will be used to 

represent the coating is shown below: 

  

Plane Isoparametric Element in xy space Plane Isoparametric Element in ξη space 

  

Figure 3-10: Plane Isoparametric Element in xy and ξη space modified from Cook et al. (1989) 

For the Plane Stress Isoparametric Element there are two fields, the displacements u 

and v (Equation 3-66). 

𝑢 =  ∑𝑁𝑖𝑢𝑖 , 𝑣 =  ∑𝑁𝑖𝑣𝑖  

*Displacements u and v are parallel to x and y NOT ξ and η  

Equation 3-66 

The Shape functions are then calculated and their derivatives with relation to 𝜂 and 𝜉 

derived (Equation 3-67). 

An alternate method of writing the derivatives is used below, such that the derivative of 

𝑁1with respect to 𝜉is written as 𝑁1,𝜉 (Equation 3-67) (Cook et al., 2002). 

  

 

1 
2 
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3 

ξ 

η 
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𝑁1 =
(1 − 𝜉)(1 − 𝜂)

4
, 𝑁2 =

(1 + 𝜉)(1 − 𝜂)

4
, 𝑁3 =

(1 + 𝜉)(1 + 𝜂)

4
, 𝑁4

=
(1 − 𝜉)(1 + 𝜂)

4
 

𝑁1,𝜉 =
−1 + 𝜂

4
, 𝑁2,𝜉 =

1 − 𝜂

4
, 𝑁3,𝜉 =

1 + 𝜂

4
, 𝑁4,𝜉 =

−1 − 𝜂

4
 

𝑁1,𝜂 =
−1 + 𝜉

4
, 𝑁2,𝜂 =

−1 − 𝜉

4
, 𝑁3,𝜂 =

1 + 𝜉

4
, 𝑁4,𝜂 =

1 − 𝜉

4
 

Equation 3-67 

Once the shape functions have been calculated the strain-displacement relationship can 

be derived, with the addition of the displacements (Equation 3-68 and Equation 3-69). 

{𝜺} = {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} = [

1 0 0 1
0 0 0 1
0 1 1 0

] {

𝑢′𝑥
𝑢′𝑦
𝑣′𝑥
𝑣′𝑦

} 

{

𝑢′𝑥
𝑢′𝑦
𝑣′𝑥
𝑣′𝑦

} = [

𝛤11 𝛤12 0 0
𝛤21 𝛤22 0 0
0 0 𝛤11 𝛤12
0 0 𝛤21 𝛤22

]{

𝑢′𝜉
𝑢′𝜂
𝑣′𝜉
𝑣′𝜂

} 

{

𝑢′𝜉
𝑢′𝜂
𝑣′𝜉
𝑣′𝜂

} =

[
 
 
 
 
𝑁1,𝜉 0 𝑁2,𝜉 0 𝑁3,𝜉 0 𝑁4,𝜉 0

𝑁1,𝜂 0 𝑁2,𝜂 0 𝑁3,𝜂 0 𝑁4,𝜂 0

0 𝑁1,𝜉 0 𝑁2,𝜉 0 𝑁3,𝜉 0 𝑁4,𝜉
0 𝑁1,𝜂 0 𝑁2,𝜂 0 𝑁3,𝜂 0 𝑁4,𝜂]

 
 
 
 

{𝒅} 

Equation 3-68 

[𝛤] = [
𝛤11 𝛤12
𝛤21 𝛤22

] = [𝐽]−1 =
1

𝐽
[
𝐽22 −𝐽12
−𝐽21 𝐽11

] 

[𝐽] = [
𝐽11 𝐽12
𝐽21 𝐽22

] = [
𝑥,𝜉 𝑦,𝜉
𝑥,𝜂 𝑦,𝜂

] = [
∑𝑁𝑖,𝜉𝑥𝑖 ∑𝑁𝑖,𝜉𝑦𝑖

∑𝑁𝑖,𝜂𝑥𝑖 ∑𝑁𝑖,𝜂𝑦𝑖

] 

Equation 3-69 
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[𝒌] = ∫∫[𝑩]𝑇 ∙ [𝑬] ∙ [𝑩] ∙ 𝑡 ∙ 𝑑𝑥 ∙ 𝑑𝑦 = ∫ ∫ [𝑩]𝑇 ∙ [𝑬] ∙ [𝑩] ∙ 𝑡 ∙ 𝐽 ∙ 𝑑𝜉 ∙ 𝑑𝜂
1

−1

1

−1

 

Where J is the determinant of [J], [k] is the element stiffness matrix, [B] is the strain 

displacement matrix, t is the element thickness, and [E] is the material properties 

Equation 3-70 

This is then integrated using nine point Gauss Quadrature (Equation 3-71 and Figure 

3-11). As [𝒌] is needed if the reactions, [𝒓𝒆], are to be computed. 

 𝐼 ≈
25

81
(𝜗1 + 𝜗3 + 𝜗7 + 𝜗9) +

40

81
(𝜗2 + 𝜗4 + 𝜗6 + 𝜗8) +

64

81
𝜗5 

(Cook et al., 2002) 

Where I is the integral, and 𝜗1 are the values at each node 

Equation 3-71 

 

Gauss point locations in a quadrilateral element using nine points 

(order 3 rule) 

Figure 3-11: Order three Gauss Point locations in a quadrilateral element: Reproduced from Cook et al. (1989) 

The element is placed into the model (Figure 3-9), and the calculation of the shear stress 

‘τ’ is achieved using [𝜺]and [𝑬] (Equation 3-72).  

1 7 
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 [𝜺] = [𝑩][𝒅] 

[𝝈] = [𝑬][𝜺] 

Equation 3-72 

At this stage the shear stiffness of the fabric due to only the coatings deformation can 

be predicted and included in the design of a fabric. However, as shown by Liu et al. (2004) 

and other authors, the coating stiffness is not the only method by which fabrics respond 

to shear. Though the effect of the coating may be principal to the shear response (Testa 

and Yu, 1987) it has been deemed necessary to include other resistance mechanisms to 

ensure accuracy and allow for the design of the fabric’s base cloth for shear. Therefore 

shear resistance between yarns will also be taken into account.  

3.4.3.4. Shear force calculation due to friction between fibres 

In addition to the coating response to in-plane shear a method for the calculation of the 

in-plane frictional forces between yarns, and its corresponding effect in resisting shear 

deformation was developed by Liu et al. (2004). This model considered how yarn lateral 

compaction and in-plane friction between yarns at cross-over can be used to calculate 

shear forces in an uncoated fabric, with equal warp and weft dimensions (Figure 3-12). 

The model considers the in-plane moments produced by the resistances to shear 

deformation, and compares these to the in-plane shear forces that would produce a 

moment of equal magnitude to the resistance moment (Equation 3-73). The model 

developed  by Liu et al. (2004) considers only a square fabric geometry. The method has 

been modified by Colman (2014) to include.  

𝑀𝑠 = 𝑀𝐶 +𝑀𝐹 

Equation 3-73 

Where MS is the total moment resisting shear force, MC is the moment due to yarn 

compaction, MF is the moment due to inter yarn friction 



3. Predictive model 

PAGE 145 
 

 

Figure 3-12: Equal geometry uncoated fabric, yarn lateral compaction, and yarn friction (Liu et al., 2004) 

However, as the fabrics to be considered are primarily coated fabrics we can surmise 

that it is unlikely that lateral compaction as considered by Liu et al. (2004) will be a 

principle resistance mechanism, once the coating is considered. For the purposes of this 

model the lateral compaction of yarns is considered to be either non-existent, as yarns 

are restrained by coating between them, or as having a minimal impact on shear 

stiffness. Therefore only friction between yarns at cross over will be considered in 

conjunction with the effect of the coating. 

Liu et al. (2004) proposes formulae that can be used to calculate the moment due to 

friction between yarns on a unit cell of uncoated square fabric, however, as many fabrics 

to be considered will not have square geometry it is necessary to improve on these 

formulations. This has been achieved by Colman (2014), who considers a similar model 

to Liu et al. (2004), and refers to this methodology, but produces equations that can be 

used with any yarn geometry. 

The yarn friction is considered over the area of the contact between the two yarns, and 

this is used to calculate the moment produced by the friction force. The area of 

interaction between the yarns is split into four areas (Figure 3-13). The effect of the 

friction in each of the areas is then considered, and its contribution to the moment 

produced by the friction is then calculated (Equation 3-74). 

Square non-deformed 
fabric 

Lateral Compaction of yarns Friction between yarns due to 
out of plane forces 
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Figure 3-13: Moment due to inter yarn friction calculation (Colman, 2012) 

 𝑀𝐹 = 2∫ ∫ 𝐹𝑓𝑅
2𝑑𝑅𝑑𝜙

𝐷𝐴 sin(𝛼𝐴)

2 sin(𝛼𝐴+𝜙)

0

𝜙𝐴

0
+ 2∫ ∫ 𝐹𝑓𝑅

2𝑑𝑅𝑑𝜙

𝐷𝐴 sin(𝛼𝐵)

2 sin(𝛼𝐵+𝜙)

0

𝜙𝐵

0
 

= 2∫ 𝐹𝑓

𝜙𝐴

0

[
1

3
𝑅3]

0

𝐷𝐴 sin(𝛼𝐴)
2 sin(𝛼𝐴+𝜙)

𝑑𝜙 + 2∫ 𝐹𝑓 [
1

3
𝑅3]

0

𝐷𝐴 sin(𝛼𝐵)
2 sin(𝛼𝐵+𝜙)

𝜙𝐵

0

𝑑𝜙 

=
1

12
𝐹𝑓𝐷𝐴

3𝑠𝑖𝑛3(𝛼𝐴)∫
𝑑𝜙

𝑠𝑖𝑛3(𝛼𝐴 + 𝜙)
 

𝜙𝐴

0

+
1

12
𝐹𝑓𝐷𝐴

3𝑠𝑖𝑛3(𝛼𝐵)∫
𝑑𝜙

𝑠𝑖𝑛(𝛼𝐵 + 𝜙)
 

𝜙𝐵

0

 

𝜙𝐴,𝐵 = 𝑐𝑜𝑠−1 (
𝐷𝐴

2 + 𝐷𝐵
2 − 4𝑐1,2

2

2𝐷𝐴𝐷𝐵
) 

𝛼𝐴,𝐵 = 𝑐𝑜𝑠−1 (
𝑐1,2

2 + 𝐷𝐴
2 − 2𝑐2,1

2

2𝑐1,2𝐷𝐴
) 

𝐷𝐴 = √𝑐12 + 𝑐22 − 2𝑐1𝑐2𝑐𝑜𝑠(𝜃 + 𝛾) 

𝐷𝐵 = √𝑐12 + 𝑐22 − 2𝑐1𝑐2𝑐𝑜𝑠(𝜃 − 𝛾) 

(Colman, 2014) 

Equation 3-74 

ϴ-γ 

ϴ+γ 

 

φ 

C2 

C1 

DA/2 
DB/2 

C1,2  

α 

Warp 

Weft 
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Once the moment due to friction has been calculated the shear force on the edge of the 

unit cell can also be calculated, and can then be used to calculate the shear stress over 

the entire unit cell. 

3.4.3.5. Shear force calculation 

The resisting moments have been calculated, but these moments must be related to 

shear stress and shear modulus. Shear stress is assumed to be equal across both sides 

of the unit cell which allows for the calculation of the shear forces, even given any 

variation of those forces on the unit cell. However, the moment due to the coating must 

first be calculated (Equation 3-75). 

𝑀𝑘 = 𝐹𝑠𝑘2𝐿1
′ cos 𝛾 + 𝐹𝑠𝑘1𝐿2

′ cos 𝛾 

𝐹𝑠𝑘2,1 = 𝜏𝑘2𝐿2,1′ 

𝑀𝑘 = 𝜏𝑘2𝐿2′𝐿1
′ cos 𝛾 + 𝜏𝑘2𝐿1′𝐿2

′ cos 𝛾 

𝑀𝑘 = 4𝜏𝑘𝐿2′𝐿1
′ cos 𝛾 

Equation 3-75 

And the moment due to the imposed shear force must also be calculated (Equation 3-76 

and Figure 3-14). As such two causes of shear resistance are identified and related to 

the point at which the resisting moment is acting (Figure 3-15).  

𝑀𝑆 = 𝐹𝑆2 ∙ (𝐿1′) ∙ cos(𝛾) + 𝐹𝑆1 ∙ (𝐿2′) ∙ cos(𝛾) 

Equation 3-76 
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Figure 3-14: Calculation of shear force for a non-square geometry (Liu et al., 2004) (Colman, 2014) 

 
 

 
Figure 3-15: Review of the positions of the elements that make up the shear model. 

The shear force and shear stress acting on the unit cell can be calculated by considering 

all of these moments. This is made more complex by the non-square geometry (Figure 

3-16). 

 

Figure 3-16: Calculation of the external shear force acting on the unit cell. Where MS is the total moment resisting 
shear force, MK is the moment due to the coating, MF is the moment due to inter yarn friction 
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Referring back to the above assumption that shear stress is constant the shear stress is 

then calculated (Equation 3-77). The full derivation is in the appendix (§A.9). 

𝜏𝑆 =
𝐹𝑆1
2𝐿′2

 
Equation 3-77 

 

 

It is also necessary to calculate the shear modulus (Equation 3-78). 

𝐺𝑆 =
𝜏𝑆
𝛾𝑆

 
Equation 3-78 

It was decided that the shear modulus would be the principal concern for an engineer 

requiring a designed fabric, and thus this is the output of the model (or the target to 

which a fabric should be designed). 

Once all these equations have been derived all the pieces are in place to implement the 

full optimisation routine (§3.5). 
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3.5. Implementation 

The implementation of the formulae described in the previous section into a useable 

and complete optimisation routine is described in this section. 

Initially the sawtooth model (not inverse) routine is quickly covered as this is the basis 

of the modelling method used. It is also used to corroborate the results produced from 

the optimisation routines through a finite difference check of the results obtained.  

3.5.1. Sawtooth model 

The following Equilibrium model is for the full sawtooth model with all deformation 

methods. To convert this to the equilibrium model used for the simple sawtooth model 

values of Y’ simply need to be replaced with the initial value, Y. 

The angles (𝜃1,2’) and the Yarn lengths (Y1,2’) are the variables within the solver. These 

are placed in the matrix ‘x’ (Equation 3-79). This allows the transfer of data between the 

solver and the instigating function. The initial (guess) values of ‘x’ used are the values of 

the unstrained geometry. This reduces computation time by initialising the solver with 

an approximate solution. 

{

𝑥1
𝑥2
𝑥3
𝑥4

} =

{
 

 
𝜃1′

𝜃2′

𝑌1′

𝑌2′}
 

 

 

Equation 3-79 

The ‘Fsolve’ (MathWorks, 2012a) routine is used to find the solution to the equilibrium 

problem as defined by the equations and constraints (Figure 3-17). The calculations 

performed within the ‘Fsolve’ routine are also shown (Figure 3-17). 

‘Fsolve’ makes use of “Trust-Region Dogleg Method” (MathWorks, 2014) which “solves 

a linear system of equations to find the search direction”. The principle being to “define 

a region around the current iterate within which they trust the model to be an accurate 

representation” (Nocedal and Wright, 2006, p. 66). At this point “a trial step ‘s’ is 

computed by minimizing (or approximately minimizing) over N [the neighbourhood 

around the current point]” (MathWorks, 2014). Should this new point be an 

improvement on the previous one the current point is updated. The program 
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documentation goes into great detail as to how exactly this is achieved, all of which is 

not reproduced here. The “Trust-Region Dogleg” is implemented by solving a merit 

function ‘m(d)’ for a step ‘d’ using “a convex combination of a Cauchy step (a step along 

the steepest descent direction) and a Gauss-Newton step for f(x)”. This briefly comprises 

approximating the function that is to be minimised at the current point with a new 

function. This is then minimised within the ‘trust region’, within which the new function 

is deemed to represent the original function to be minimised, and then the process is 

begun again.  
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Figure 3-17: Overview of the process of solving the equilibrium sawtooth problem 
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The result of the sawtooth model can then be used to calculate the strain in the unit cell, 

and the mechanical properties of the fabric (§3.4.1). 

3.5.2. Objective function 

For the optimisation of the geometry for a designed fabric it was necessary to produce 

a reliable objective function. As such two optimisation functions were considered for 

use.  

𝑂𝑏𝑗 =∑(𝑇𝑎𝑟𝑔𝑒𝑡𝑎 − 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑎)
2

𝑎

1

 

Equation 3-80 

𝑂𝑏𝑗 =∑(
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑎
𝑇𝑎𝑟𝑔𝑒𝑡𝑎

− 1)
2𝑎

1

 

Equation 3-81 

Where Obj is the objective function, Target is the target of the optimisation at ‘a’, and 

Calculation is the calculated value of E11, E22, v12 or v21 for the current geometry at ‘a’.  

It is apparent  calculating the objective function in the former manner (Equation 3-80), 

whilst apparently the least computationally expensive of the two possible methods 

shown will give poor results due to the difference in possible values of Poisson’s ratios 

and Young’s moduli. This means that a 1% difference between a target Young’s modulus 

and the calculated value might produce a result of approximately (101)2 whilst the 

same difference between calculated and target Poisson’s ratios might produce a result 

of approximately (10−3)2. Therefore a variable weighting factor would be needed to 

ensure equal importance is given to each target. As such the second calculation method 

was utilised (Equation 3-81).  

The values of the comparison between calculation and target are squared to remove the 

possibility of negative values affecting the minimisation, where a negative value might 

be seen as preferable to the algorithms even though it represents a deviation from the 

target. This introduces one further complication. The apparent error in the objective 

function is a squared relationship and so objective function values less than one appear 

to be a greater improvement than is actually the case. 
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3.5.3. Simple sawtooth 

The inverse simple sawtooth is not discussed at length in this section as the model of 

particular interest is the full sawtooth, with which bespoke architectural fabrics for 

particular mechanical stiffnesses will be designed. 

The routine used to minimise a problem for a specific geometry has been discussed in 

the Literature Review (§2.4.2.6), and was the ‘Fmincon’ (Kozola, 2009; Kozola, 2010; 

MathWorks, 2012a; Mathworks, 2012b) optimisation routine. 

3.5.3.1. Optimisation methodology 

The optimisation methodology for this version of the sawtooth model is detailed as a 

flow chart (Figure 3-18 and Figure 3-19). The method’s accuracy was compared to finite 

difference calculations (§A.7). 
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Figure 3-18: Overview of the geometry optimisation for the unit cell minimisation (for a whole fabric)  
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Figure 3-19: Simple sawtooth optimisation process overview 
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Many lessons were learned from the ‘inverse simple sawtooth’, and improvements were 

made for to the planned full sawtooth methodology. These were as follows: 

 The objective function was modified to remove the unwanted weighting that 

occurred when both Poisson’s ratios and Young’s moduli were compared. 

 The constraint functions were tested to ensure that the model was compliant. 

 The need for multiple runs to determine accuracy was identified. 

 The need to vary the step size when producing a numerical rather than analytical 

derivative, or when comparing the analytical derivatives to central finite 

difference calculations at the same point was noted and tested for. 

3.5.3.2. Findings 

This model produces the same results for any two equal ratios of load placed upon it. 

This is found because the magnitude of the load does not produce any deformation in 

the coating or the yarns. Therefore only the configuration of the model components 

changes when loaded.  

As such when a 10:10 load, or 100:100 load is applied the result is exactly the same, with 

the simple model acting as a mechanical problem. This was not initially predicted, but 

when it became apparent that this was the case the reasons for this behaviour were 

evident. 

3.5.4. Full sawtooth 

The inverted full sawtooth model, or the predictive model for the design of fabrics, was 

considerably more complex than the initial simple model. It included a number of 

additional optimisation runs that allowed for the more complex optimisation problem. 

3.5.4.1. Overview 

The biggest change from the simple model, in terms of optimisation, was the inclusion 

of an initial pattern search routine which is used to locate a probable zone for the result 

to be located. This routine performs a number of searches, before locating the most 

likely position of a solution (a local minimum). This addition reduced the number of false 

starts in the optimisation routine, by focussing the following solver onto an area where 

there was likely to be a solution. 
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The gradient based solver could then focus on this ‘area’ without being drawn into local 

minima. The pattern search will find a close approximation to the true minimum, and 

then allow the gradient based solver to find the true minimum at this point. 

the gradient based solver, if it began its search at point ‘A’ would find a ‘solution’ at one 

of the local minima, however, if informed by the pattern search grid, would begin its 

search at point ‘B’ and therefore find the true minima (Figure 3-20). 

 

Figure 3-20: Use of pattern search to inform gradient based optimisation 

The second principal change is that the optimisation allows for an over constrained 

search, or to put it another way, allows a solution to be found where no perfect solution 

exists by allowing the targets to vary a little from their user defined positions. The 

amount of allowable variation can be either chosen by a user or predefined within the 

algorithm. 

The hypothesis here is that where a low number of targets are chosen then a front of 

possible solutions exists. For instance if only E11 at one load case was specified then a 

number of possible fabrics might be able to produce the required response, and the 

output result will be the one closest to the user defined initial search position (X0). 

However, if twenty five targets are chosen then it is possible (and likely) that within the 

constraints placed on the function no possible solution can be found, and at this point 
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the targets must be allowed to move to place the required response plane into an 

achievable zone. How this works in practice is shown below (Figure 3-21 ).  
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Figure 3-21: Overview of full sawtooth fabric design optimisation procedure

  

Input required values of E11, E22, v12 and v21 at five points: 

 Point 1 Point 2 Point 3 Point 4 Point 5 

E11 (target 1)      

E22 (target 3)      

v12 (target 2)      

v21 (target 4)      

F1      

F2      

G      
γ      

 

Input user constraints and bounds on: 
L

1,2
, ϴ

1,2
, r

1,2
, E

y1,2
, E

k
 

 

Minimise function value: 

𝐹𝑢𝑛𝑐 =∑(
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑎
𝑇𝑎𝑟𝑔𝑒𝑡𝑎

− 1)
2𝑎

1

 

 

Where the variables are: L
1,2

, ϴ
1,2

, r
1,2

, E
y1,2

, E
k
 

 
  

Calculate: 
∆𝜀1,2

∆𝜀2,1
, 𝜀1,2 for points 1 – 5 

using the equilibrium model and an 

iterative calculation of 
∆𝜀1,2

∆𝜀2,1
 

 

Shear module: 

Given: 
Ek, vk, L1,2, ϴ1,2, r1,2, Fy1,2 

 

Calculate G: 
Using a Plane 
isoparametric Element, 
and the equilibrium of 
moments of the shear 
force and friction force. 
 

Optimisation Component –under constrained  

If Function is minimised EXIT 
optimisation, else retry for N attempts 
 

If a solution was found EXIT, and display 
results, else reduce accuracy 
requirement 

Display results if a solution has 
been found 
 

Minimise function value: 

𝐹𝑢𝑛𝑐 =∑(
𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑎
𝑇𝑎𝑟𝑔𝑒𝑡𝑎

− 1)
2𝑎

1

 

 

Where the variables are: L
1,2

, ϴ
1,2

, r
1,2

, E
y1,2

, E
k
 

and the targets can vary within +/- X% 

  

Calculate: 
∆𝜀1,2

∆𝜀2,1
, 𝜀1,2 for points 1 – 5 

using the equilibrium model and an 

iterative calculation of 
∆𝜀1,2

∆𝜀2,1
 

 

Optimisation Component – over constrained 

If Function is minimised EXIT 

optimisation, else increase X. 
  

Display results if a solution has been found 
 

𝑀𝑆 = 𝐹𝑆1𝐿
′
2 cos 𝛾 + 𝐹𝑆2𝐿

′
1 cos 𝛾 



3. Predictive model 

PAGE 161 
 

3.6. Yarn strength 

Yarn strength is the final fabric parameter that is likely to be required for the design of 

a fabric. The sawtooth model cannot be used to predict fabric strength because it 

includes no consideration of the yarn strength or of the yarn build up. Initially it was 

hoped that a simple relationship between yarn tenacity and area might be found that 

would allow an approximation of yarn strength to be made from parameters available 

within the optimisation process. However, after some initial investigation it became 

apparent that this is not the case. Published yarn strengths are presented in two 

different ways (Figure 3-22 and Figure 3-23), with the yarn area calculated from 

photographs of yarn cross sections.. However, even within the confines of only polyester 

yarns it is apparent that no readily appreciable and easily accessible relationship exists, 

i.e. in the form 
𝐴

𝐿
∝ 𝑥 where x is tensile strength. 

It is however apparent that tenacity is very generally related to yarn area (Figure 3-22, 

Figure 3-23, Figure 3-24 and Figure 3-25). When a larger number of yarn types are 

considered it can be noted that whilst a general relationship appears apparent, no 

specific linear or non-linear relationship can be interpreted from the data (Figure 3-24 

and Figure 3-25). 

 

Figure 3-22: Published fabric strengths for Ferrari fabrics (Ferrari, 2013c; Ferrari, 2013a; Ferrari, 2013b) 
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Figure 3-23: Inferred yarn strengths for Ferrari fabrics from published data (Ferrari, 2013c; Ferrari, 2013a; Ferrari, 
2013b) 

 

Figure 3-24: Published fabric strengths for Ferrari, Verseidag and ATEX fabrics (Verseidag, 2010a; Verseidag, 2010b; 
Atex, 2013a; Atex, 2013b; Ferrari, 2013c; Ferrari, 2013a; Ferrari, 2013b) 
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Figure 3-25: Inferred yarn strengths for Ferrari, Verseidag and ATEX fabrics from published data (Verseidag, 2010a; 
Verseidag, 2010b; Atex, 2013a; Atex, 2013b; Ferrari, 2013c; Ferrari, 2013a; Ferrari, 2013b) 
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step change in the level of complexity of the design process. This would include a series 

of parameters that would need to be tested for or which do not lend themselves to the 

design methodology as it stands. 

Future work might extend the model developed to include yarn and fabric strength, 

however, owing to the importance of parameters that are outside of the scale 

considered, and which do not form a part of the model developed no further 

consideration of yarn strength will be made. It is noted that this does present a limit to 

the relevance of the model, though a design methodology for tensile strength might be 

found to be a project of equal or greater length than this one. 
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3.7. Model checking and initial validation 

Three types of fabric are initially considered, a PVC polyester fabric, a PTFE glass-fibre 

fabric and a silicone glass-fibre fabric. All three are analysed using the sawtooth model 

to produce mechanical properties, and these results are then used to design the initial 

fabric. The design process has no knowledge of the fabric from which the targets came 

from except for the required mechanical properties (targets). 

In addition to these tests the constraints and equilibrium equations are checked for the 

designed model.  

Additional validation is carried out in the following sections (§5.3), where real fabric 

response parameters from biaxial test data are compared to fabrics designed to 

reproduce these. 

3.7.1. Results for known feasible biaxial targets 

To demonstrate the functionality of both the method of optimisation and the validity of 

the equations used an optimisation for a set of targets that were known to be feasible 

was performed for three different fabric geometries. 

 F1202 PVC coated polyester fabric (§A.1) 

 B18089 PTFE glass-fibre fabric (§A.1) 

 ATEX3000 Silicone coated glass-fibre fabric (§A.1) 

The feasible targets were produced from the sawtooth equilibrium model using a central 

finite difference method and recorded (Table 3-2). The resulting mechanical properties 

were also recorded (Table 3-3).  

The optimisation routine had no prior knowledge of the geometry from which the 

targets were calculated. The initial ‘starting geometry’ was randomised. Randomising 

the starting geometry creates an artificially difficult situation for the optimisation 

routine. In most scenarios a ‘close approximation’ might originally be used to target the 

result. However, starting from a randomised geometry helps to demonstrate the 

model’s utility. 
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F1202 PVC coated Polyester results for feasible targets: 

Variable Geometry from which 
targets are calculated 

Optimised geometry 

ϴ1 (Rad) 0.101 0.108 
ϴ2 (Rad) 0.180 0.177 
L1 (mm) 0.645 0.691 
L2 (mm) 1.082 1.166 
r1 (mm) 0.157 0.169 
r2 (mm) 0.106 0.114 
E1 (kN/m) 880 879 
E2 (kN/m) 810 805 
Ek (kN/m) 37 39 
A1 (mm) 0.066 0.075 
A2 (mm) 0.197 0.208 
w1 (mm) 0.859 0.949 
w2 (mm) 1.044 0.105 
vk 0.3 0.3 

Table 3-2: Geometry used to find feasible targets and resultant optimised geometry for F1202 fabric 

 Point 1 Point 2 Point 3 Point 4 Point 5 

E11 (target 1) (kN/m) 543.5 691.1 632.1 403.5 806.1 
E22 (target 3) (kN/m) 501.7 628.3 578.2 625.8 547.9 
v12 (target 2) 0.419 0.276 0.331 0.309 0.250 
v21 (target 4) 0.386 0.252 0.303 0.450 0.187 
P1 (kN/m) 10 20 15 10 20 
P2 (kN/m) 10 20 15 20 10 
E11 (result 1) (kN/m) 543.1 691.3 632.1 403.4 806.2 
E22 (result 3) (kN/m) 502.3 628.0 578.2 625.2 548.6 
v12 (result 2) 0.419 0.277 0.331 0.309 0.250 
v21 (result 4) 0.386 0.252 0.303 0.450 0.187 

Table 3-3: Feasible targets found at the applied loads P1 and P2 and results for F1202 fabric 

Optimisation function value: 8.22x10-6 

Equilibrium check: A1 + A2 – (r1 + r2) = 4.4x10-16 ≈ 0 

The results of this fabric design are as predicted, a near perfect solution is found quickly 

(291 seconds) suggesting that the method works well. The equations therefore correlate 

to the sawtooth method which is known to correlate well with the biaxial response of 

real fabrics. It should be noted that the start point of the optimisation was not the 

geometry used to find the targets; this ensured that the method was in fact finding a 

solution, and not succeeding having been given the correct geometry as a start point. 

The method used to renew the initial guess point was also demonstrated with four runs 

having been attempted prior to a solution being found. 
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Figure 3-26: Results of the optimisation for the feasible solution of the F1202 PVC Polyester fabric 

The optimisation for the feasible values of stiffness and Poisson’s ratio produces good 

results (Figure 3-26). Target points 1 in the plots v12 and v21 results show some slight 

deviation from the targets. In reality this error is small, whilst observable in the figure, 

and equates to a difference of only 0.11%. This is as a result of the slight deviation from 

the original geometry that was found. A higher accuracy requirement on the solver may 

produce more accurate results, but would be more computationally expensive, taking 

longer. The current accuracy requirement is deemed adequate for this optimisation. 

B18089 PTFE coated glass-fibre results for feasible targets: 

Variable Geometry from which 
targets are calculated 

Optimised geometry 

ϴ1 (Rad) 0.227 0.227 
ϴ2 (Rad) 0.328 0.328 
L1 (mm) 0.500 1.265 
L2 (mm) 0.423 1.071 
r1 (mm) 0.127 0.321 
r2 (mm) 0.133 0.335 
E1 (kN/m) 4270 4270 
E2 (kN/m) 3970 3970 
Ek (kN/m) 36 36 
A1 (mm) 0.116 0.292 
A2 (mm) 0.144 0.364 
w1 (mm) 0.373 0.945 
w2 (mm) 0.573 1.451 
vk 0.3 0.3 

Table 3-4: Geometry used to find feasible targets and resultant optimised geometry for B18089 fabric 



3. Predictive model 

PAGE 168 
 

 Point 1 Point 2 Point 3 Point 4 Point 5 

E11 (target 1) (kN/m) 332.22 555.90 446.97 292.54 774.90 
E22 (target 3) (kN/m) 276.77 503.23 393.39 766.73 223.60 
v12 (target 2) 0.999 0.890 0.936 0.509 1.634 
v21 (target 4) 0.833 0.809 0.826 1.394 0.452 
P1 (kN/m) 10 20 15 10 20 
P2 (kN/m) 10 20 15 20 10 
E11 (result 1) (kN/m) 332.22 555.90 446.97 292.54 774.90 
E22 (result 3) (kN/m) 0.999 0.890 0.936 0.509 1.634 
v12 (result 2) 276.77 503.23 393.39 766.73 223.60 
v21 (result 4) 0.833 0.809 0.826 1.394 0.452 

Table 3-5: Feasible targets found at the applied loads P1 and P2 and results for B18089 fabric 

Optimisation function value:  9.47 x10-11 

Equilibrium check: A1 + A2 – (r1 + r2) = 9.25x10-12 

 

Figure 3-27: Results of the optimisation for the feasible solution of the B18089 PTFE glass-fibre fabric 
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Figure 3-28: Original geometry of the B18089 PTFE glass-fibre fabric 

 

Figure 3-29: Optimised geometry of the B18089 PTFE glass-fibre fabric 

A different solution for the targets produced for the B18089 fabric is found after the 

design process. This is discussed in more detail below. 
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B18089 PTFE coated glass-fibre results for feasible targets (with prior knowledge): 

Variable Geometry from which 
targets are calculated 

Optimised geometry 

ϴ1 (Rad) 0.227 0.227 
ϴ2 (Rad) 0.328 0.328 
L1 (mm) 0.500 0.500 
L2 (mm) 0.423 0.423 
r1 (mm) 0.127 0.127 
r2 (mm) 0.133 0.133 
E1 (kN/m) 4270 4270 
E2 (kN/m) 3970 3970 
Ek (kN/m) 36 36 
A1 (mm) 0.116 0.116 
A2 (mm) 0.144 0.144 
w1 (mm) 0.373 0.373 
w2 (mm) 0.573 0.390 
vk 0.3 0.3 

Table 3-6: Geometry used to find feasible targets and resultant optimised geometry for B18089 fabric 

 Point 1 Point 2 Point 3 Point 4 Point 5 

E11 (target 1) (kN/m) 332.22 555.90 446.97 292.54 774.90 
E22 (target 3) (kN/m) 276.77 503.23 393.39 766.73 223.60 
v12 (target 2) 0.999 0.890 0.936 0.509 1.634 
v21 (target 4) 0.833 0.809 0.826 1.394 0.452 
P1 (kN/m) 10 20 15 10 20 
P2 (kN/m) 10 20 15 20 10 
E11 (result 1) (kN/m) 332.23 555.90 446.97 292.54 774.90 
E22 (result 3) (kN/m) 0.999 0.890 0.936 0.509 1.634 
v12 (result 2) 276.77 503.23 393.39 766.73 223.60 
v21 (result 4) 0.833 0.809 0.826 1.394 0.452 

Table 3-7: Feasible targets found at the applied loads P1 and P2 and results for B18089 fabric 

Optimisation function value:  8.22 x10-6 

Equilibrium check: A1 + A2 – (r1 + r2) = 8.87 x10-10 ≈ 0 
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Figure 3-30: Results of the optimisation for the feasible solution of the B18089 PTFE glass-fibre fabric 

 

Figure 3-31: Optimised geometry of the B18089 PTFE glass-fibre fabric (Prior knowledge of original geometry) 

The method does reproduce the initial geometry when it is given prior knowledge of the 

geometry from which the targets were derived (i.e. an initial geometry close to that of 

the original fabric is selected). This is probably because the steepest decent from the 

initial point found by the pattern search method directs the result towards a different 

solution. This is discussed in more detail below. 
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ATEX3000 Silicone coated glass-fibre results for feasible targets: 

Variable Geometry from which 
targets are calculated 

Optimised geometry 

ϴ1 (Rad) 0.181 0.181 
ϴ2 (Rad) 0.184 0.183 
L1 (mm) 0.451 1.557 
L2 (mm) 0.391 1.353 
r1 (mm) 0.076 0.264 
r2 (mm) 0.079 0.272 
E1 (kN/m) 3120 3118.553877 
E2 (kN/m) 3190 3187.954473 
Ek (kN/m) 12 10.33580805 
A1 (mm) 0.083 0.286 
A2 (mm) 0.073 0.250 
w1 (mm) 0.408 1.426 
w2 (mm) 0.434 1.483 
vk 0.3 0.3 

Table 3-8: Geometry used to find feasible targets and resultant optimised geometry for ATEX3000 fabric 

 Point 1 Point 2 Point 3 Point 4 Point 5 

E11 (target 1) (kN/m) 531.98 899.56 729.56 499.95 1147.60 
E22 (target 3) (kN/m) 0.819 0.693 0.750 0.414 1.221 
v12 (target 2) 531.61 906.02 732.56 1339.14 406.38 
v21 (target 4) 0.819 0.698 0.754 1.112 0.430 
P1 (kN/m) 10 20 15 10 20 
P2 (kN/m) 10 20 15 20 10 
E11 (result 1) (kN/m) 531.42 900.12 729.66 499.03 1148.95 
E22 (result 3) (kN/m) 0.819 0.692 0.750 0.413 1.222 
v12 (result 2) 531.54 906.78 732.99 1340.71 405.81 
v21 (result 4) 0.819 0.697 0.754 1.112 0.429 

Table 3-9: Feasible targets found at the applied loads P1 and P2 and results for ATEX3000 fabric 

Optimisation function value:  2.22x10-5 

Equilibrium check: A1 + A2 – (r1 + r2) = 0 
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Figure 3-32: Results of the optimisation for the feasible solution of the ATEX3000 Silicone glass-fibre fabric 

 

Figure 3-33: Original geometry of the ATEX3000 Silicone glass-fibre fabric 
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Figure 3-34: Optimised geometry of the ATEX3000 Silicone glass-fibre fabric 

Again the method finds an alternate solution. 

ATEX3000 Silicone coated glass-fibre results for feasible targets (with prior knowledge): 

Variable Geometry from which 
targets are calculated 

Optimised geometry 

ϴ1 (Rad) 0.181 0.181 
ϴ2 (Rad) 0.184 0.184 
L1 (mm) 0.451 0.451 
L2 (mm) 0.391 0.391 
r1 (mm) 0.076 0.076 
r2 (mm) 0.079 0.079 
E1 (kN/m) 3120 3120 
E2 (kN/m) 3190 3190 
Ek (kN/m) 12 12 
A1 (mm) 0.083 0.083 
A2 (mm) 0.073 0.073 
w1 (mm) 0.408 0.408 
w2 (mm) 0.434 0.434 
vk 0.3 0.3 

Table 3-10: Geometry used to find feasible targets and resultant optimised geometry for ATEX3000 fabric 
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 Point 1 Point 2 Point 3 Point 4 Point 5 

E11 (target 1) (kN/m) 531.98 899.56 729.56 499.95 1147.60 
E22 (target 3) (kN/m) 0.819 0.693 0.750 0.414 1.221 
v12 (target 2) 531.61 906.02 732.56 1339.14 406.38 
v21 (target 4) 0.819 0.698 0.754 1.112 0.430 
P1 (kN/m) 10 20 15 10 20 
P2 (kN/m) 10 20 15 20 10 
E11 (result 1) (kN/m) 531.98 899.56 729.56 499.95 1147.60 
E22 (result 3) (kN/m) 0.819 0.693 0.750 0.414 1.221 
v12 (result 2) 531.61 906.02 732.56 1339.14 406.38 
v21 (result 4) 0.819 0.698 0.754 1.112 0.430 

Table 3-11: Feasible targets found at the applied loads P1 and P2 and results for ATEX3000 fabric 

Optimisation function value:  1.47x10-13 

Equilibrium check: A1 + A2 – (r1 + r2) = 1.136-10 ≈ 0 

 

Figure 3-35: Results of the optimisation for the feasible solution of the ATEX3000 Silicone glass-fibre fabric 
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Figure 3-36: Optimised geometry of the ATEX300 Silicone glass-fibre fabric (Prior knowledge of original geometry) 

The results for the PTFE glass-fibre fabric and Silicone glass-fibre fabric design process 

demonstrate how for each set of yarn target mechanical properties it is possible that 

more than one solution exists. For ‘original fabric geometries’ two sets of tests were 

carried out. The first followed the same principle as the PVC coated polyester fabric 

above, namely that the optimisation routine had no prior knowledge of the fabric 

geometry. This results in a solution different to the original geometry, but which still 

solves the equations produced earlier and thus will produce the required tensile stress-

strain response at the stated loads. This occurs because there exists more than one 

solution within the bounds of the optimisation, and the starting point of the 

optimisation, which is randomised, leads to the solutions shown rather than the original 

geometry. 

Next, to demonstrate that the solver can indeed find the original solution a starting point 

close to the original geometry is used, and in this case the solver finds a solution to the 

problems that matches the original geometry. 

It is infeasible to attempt to find all possible solutions, where all possible starting points 

or at least a grid of starting points of indefinite fineness would need to be tested for. As 

such, it has been demonstrated that more than one solution to any problem may exist, 
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and as will be discussed in following chapters (§4.5) reducing the number of targets will 

increase the size of this volume of possible solutions. 

It has been demonstrated that for feasible targets the solver produces results that 

appear to be visually viable. Further discussion of the applicability of this to real fabric 

biaxial test data follows in later chapters (§5.4). 

Further results for optimisations were carried out and are summarised in Appendix 3 

(§A.3). 

3.7.2. Results for known feasible shear targets 

The method for the calculation of the shear modulus was used in conjunction with data 

from a F1202 PVC polyester fabric to show the method’s applicability. Similarly to the 

methodology above (§3.5.4) the shear modulus was calculated for a geometry to give a 

known feasible target. After this the optimisation routine was used to design a fabric for 

which the target is achieved without any prior knowledge of the original geometry from 

which the target was obtained.  

Shear test data for a coated fabric demonstrating nonlinearity and hysteresis offers two 

problems for the design of a fabric (Figure 3-37). The first is how to represent the 

hysteresis? This is resolved by considering only the loading curve, as is done for plane 

stress fits to biaxial test data. Therefore whilst the frictional resistance of the fabric to 

unloading could be considered using this shear method this is not incorporated into the 

model. 
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Figure 3-37: Shear response of a F1202 fabric up to a 5o shear angle 

The second problem associated with the use of this data is where to take the shear 

modulus from? The MSAJ standard requires that the tip to tip displacements be used, 

with the gradient of a line between the two calculated (Membrane Structures 

Association of Japan, 1993; Colman et al., 2014). Different stress ratios therefore 

produce different shear moduli, and as such “Accounting for shear at different biaxial 

stress states should be considered for accurate prediction of material behaviour” 

(Colman et al., 2014, p. 170). Therefore the shear modulus for comparison is calculated 

as the gradient between the maximum and minimum points on the deformation. 

A frictional coefficient of 0.3 as used by Liu et al. (2004) is used for all fabrics and weaves. 

This is probably unrealistic, though extensive testing would be needed to derive the 

coefficients for different fabric types and any associated variation within these. This is 

outside of the scope of this project. 

Initially a series of targets were defined as shown in Table 3-12 using the F1202 fabric 

geometry. Two sets of target points were used corresponding to the load at which the 

shear response was calculated. Other target points were left unused. 
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 Point 1 Point 2 

E11 (target 1) (kN/m) 543 691 

E22 (target 3) (kN/m) 502 628 

v12 (target 2) 0.419 0.276 

v21 (target 4) 0.386 0.252 

G (target) (kN/m) 17.35 10.90 

γ (degrees) 3 5 

P1 (kN/m) 10 20 

P2 (kN/m) 10 10 

E11 (result 1) (kN/m) 545 690 

E22 (result 3) (kN/m) 501 629 

v12 (result 2) 0.419 0.277 

v21 (result 4) 0.387 0.252 

G (result) (kN/m) 17.34 10.90 
Table 3-12: Initial targets and results for the design of shear properties 

The targets are chosen arbitrarily to demonstrate the applicability of the model to any 

geometry or target set. 

Variable Geometry from which 
targets are calculated 

Optimised geometry 

ϴ1 (Rad) 0.101 0.146 

ϴ2 (Rad) 0.180 0.141 

L1 (mm) 0.645 1.049 

L2 (mm) 1.082 0.662 

r1 (mm) 0.157 0.088 

r2 (mm) 0.106 0.160 

E1 (kN/m) 880 892 

E2 (kN/m) 810 773 

Ek (kN/m) 37 43 

A1 (mm) 0.066 0.154 

A2 (mm) 0.197 0.094 

w1 (mm) 0.859 0.619 

w2 (mm) 1.044 1.090 

vk 0.3 0.3 
Table 3-13: Initial and optimised geometry for shear target optimisation 

The design process (optimisation) resolves to a solution, though as with the sawtooth 

only tests (§3.7.1) this has not found the original geometry from which the targets were 

obtained. This is not a failure of the methodology but a demonstration of the multiple 

possible solutions available for a single set of targets, which here are much reduced from 

the larger more constraining sets above. 

Lastly it now becomes apparent that the effect of the coating dominates the response 

of the fabric to shear deformation (Figure 3-38) as predicted by Testa and Yu (1987, p. 

1636) who state that “resistance to shear deformation arises almost entirely from the 
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coating”. This presents a problem when considering the design of a fabric. Essentially 

the method must choose a fabric coating almost entirely based on the shear 

requirements. 

 

Figure 3-38: Comparison between coating only and coating and friction shear response (green-full shear response, 
red-coating only) 

As such by selecting a coating the approximate value of the shear modulus can be 

defined using Equation 3-82. The problem with defining the coating in this fashion is that 

one of the nine geometric variables can no longer vary to the same degree. 

𝐺 =
𝐸

2(1 + 𝜐)
 

Equation 3-82 

Defining the shear characteristics therefore defines the shear stiffness. 

3.7.3. Discussion of results 

The model developed has been shown to work within the confines of a feasible solution. 

This will be tested further, used to analyse the variability of a fabric’s response and its 

effect on real fabrics and compared to real fabric response surfaces in later chapters 

(§5.3). 

The method developed offers close correlation between results for feasible targets. This 

good fidelity was predicted, as the optimisation equations were developed using the 
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sawtooth model, but demonstrates the utility of the method. The optimisation works by 

finding the solutions available from all possible response planes of the sawtooth model, 

and should eventually find a solution for targets that originally existed on this plane. This 

does, importantly, show that the method being employed to find the targets is working 

even if in some cases alternate solutions might be found. 

Small amounts of error or inaccuracy between the produced and initial geometries in 

the test cases can be accounted for by considering that there might be some ‘area’ of 

viable solutions, however small, around the original solution. Alternatively increasing 

the required accuracy of the solution might reduce the error present in the calculation. 

Whilst the solution is found to a high degree of accuracy both the function value and the 

constraint function are rarely found to be zero at the proffered solution. This is a result 

of the use of an optimisation routine rather than finding an analytical solution. Where 

an analytical solution would give an exact value at the point of solution the optimisation 

routine only continues to the predefined tolerances. 

The error in accuracy might have been predicted, but is, at this stage considered 

acceptable and allowable within the confines of the feasible solutions presented. 

The shear component of the sawtooth optimisation model is not used further in this 

report because of the way using the shear design component largely selects the coating 

stiffness. As the coating’s Poisson’s ratio is fixed only the coating’s Young’s modulus 

affects the shear modulus significantly. Whilst how the component can be used has been 

demonstrated the actual usefulness of the component is therefore limited. 

Further to this only one value of μ (the coefficient of friction between yarns at crossover) 

is available to the designer. The design of the fabric takes no account of how this value 

may vary for changing geometries, and work to account for this would be considerable 

and time consuming, well beyond the scope of this report similar to how the nonlinearity 

of yarn stiffness is overlooked (§3.5.4).  

Lastly the shear stiffness generally used in industry is the gradient between the tips of 

the shear stress-angle graph, not the point shear used in this method. The method’s use 

of the shear characteristics at a point will be more accurate than the interpolation of a 

line, however, such information could not be used in design and analysis packages. 
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Overall it must be concluded that whilst the shear design methodology can be used to 

design a fabric’s shear stiffness its utility in further analysis is severely hampered, and it 

therefore will remain unused in further sections. 
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3.8. Conclusions 

 Fabric mechanical properties can be accurately predicted from initial geometric 

properties by taking the derivative of the defining equations. These derivatives 

can then be used to design a bespoke architectural plane weave fabric for 

specific mechanical properties at prescribed loads. 

 The accuracy of the optimisation method with regards to known feasible targets 

derived from the sawtooth model is excellent. 

 The methodology is slower than hoped as the calculation of 
Δε1,2

Δε2,1
 must be 

completed after each iteration. This also reduces the utility of the model by 

making further derivative calculations difficult. These are necessary for the 

development of the FORM methods discussed in the next chapter (§4). 

 It has been demonstrated that for some targets multiple solutions exist and thus 

conversely it can be assumed that for other targets no solutions may exist 

(§3.7.2). The latter will be demonstrated in following chapters. 

 Shear stiffness is dominated by the coating response (stiffness). 
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4. Variability and Robustness of Fabric Geometry and 

Constituent Parameters 
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4.1. Introduction 

It can be understood intuitively that when the geometry or properties of a fabric are 

changed the response of the fabric to loads will also alter. This is seen in the different 

responses of alternative fabric types, or observed in models, by changing the input 

parameters. However, little investigation has been carried out into the effect of the 

variation that exists in an individual fabric properties on its response (§2.5). 

This chapter first describes the effect of variation of different properties by using both 

Monte Carlo simulations and First Order Reliability Method (FORM) analysis. It also 

demonstrates that multiple solutions exist for various targets, and shows that the effect 

of varying different fabric properties is dependent on the property and the target 

considered. These analyses are also used to show how the previously developed model 

can be adapted to demonstrate the probability of a fabric’s response failing certain 

performance criteria, i.e. that the fabric must respond to within 1% of a specified target 

99% of the time. Lastly, the equations developed in the previous chapter (§3.4.3) are 

used to show how FORM may be used to optimise a fabric geometry to minimise its 

susceptibility to variation (or increase its robustness to variability). 

4.2. Aim 

To derive a method based on Monte Carlo simulations and FORM to simulate the effect 

of variation in geometry on the tensile response of plain weave architectural fabrics to 

inform a method to enable the design of fabrics that minimises sensitivities to variations 

in their constituent properties.  

4.3. Objectives 

 Produce methodologies for the analysis of the effect of material variability on 

the mechanical properties of a fabric using the FORM and Monte Carlo methods. 

 Compare the FORM and Monte Carlo methodology results. 

 Analyse how variation in fabric material properties affects the mechanical 

properties of a fabric. 

 Produce a methodology to maximise the robustness of a fabric with respect to 

variation in its constituent parameters. 

 Discuss the possible applications of the work to the design of fabric structures. 
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4.4. Chapter overview 

The variability and robustness of fabric mechanical properties due to variation in 

geometry, yarn and coating stiffness are reviewed in this chapter. The chapter further 

presents: 

 A methodology for the predictive simulation of the effect of variability on the 

mechanical properties of a fabric using the FORM and Monte Carlo methods. 

 A discussion of how variation in a single property effects the mechanical 

properties of the fabric. 

 A method to maximise the robustness of a fabric’s design by refining its geometry, 

yarn, and coating properties. 

 Data on the variability of the geometry of fabrics, and how they can be 

considered normally distributed. 

 Simulations of the variation in response of fabrics to changes in their constituent 

properties. 
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4.5. Initial Assumptions 

Distributions for the uncertain variables 𝛳1,2 𝐿1,2 𝑟1,2 𝐸1,2 𝐸𝑘  (§3.4) are needed to 

analyse the effect of variation in these properties on the tensile response of fabrics. 

The coating Poisson’s ratio is not a design variable in the design process in the previous 

chapter (§3.4) and is considered constant (fixed) in this chapter also. The difficulty in 

specifying the Poisson’s ratio of a coating, or analysing it’s variation in test specimens, 

puts a detailed analysis of this outside the scope of this thesis, as it is an entire 

component of the field of material science. Only three values of Poisson’s ratio are 

identified in the literature review (§2.2.7.3), and whilst it is possible that some change 

in these may be possible with the addition of additives, no detailed information on how 

this might be achieved has been identified. The Poisson’s ratio of a coating is defined at 

the point the type of coating is selected.  

Statistical data regarding the distribution of the variables is discussed in terms of the 

mean, standard deviation, and coefficient of variation. The sample standard deviation 

and mean (Equation 4-2) differ from the population standard deviation and mean 

(Equation 4-1) in that they are derived from samples that have been subject to statistical 

analysis, and do not consider the entire population of possible results. 

𝜇𝜃1,2  𝜇𝐿1,2  𝜇𝑟1,2  𝜇𝐸1,2  𝜇𝐸𝑘
  

𝜎𝛳1,2
𝜎𝐿1,2  𝜎𝑟1,2   𝜎𝐸1,2𝜎𝐸𝑘

 

𝜎 = 𝐶𝑣𝜇 

Equation 4-1 

where 𝜇 is the population mean, 𝜎 is the population standard deviation, and 𝐶𝑣 is the 

coefficient of variation which relates the standard deviation to the mean. E.g. 𝜇𝜃1defines 

the population mean of the out-of-plane angle of the warp yarn from the plane of the 

fabric. 

𝛳̅1,2 𝐿̅1,2 𝑟̅1,2 𝐸̅1,2 𝐸̅𝑘  

𝑠𝛳1,2
𝑠𝐿1,2  𝑠𝑟1,2   𝑠𝐸1,2𝑠𝐸𝑘

 

𝑠 = 𝐶𝑣𝑋̅ 

Equation 4-2 
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where 𝑋̅ is the sample mean, and 𝑠 is the sample standard deviation. 

Properties are considered to be normal and not skewed unless shown otherwise.  
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4.6. Normally distributed data 

The normal density function for a random variable x is given by Equation 4-3 and an 

example of normally distributed data is shown in Figure 4-1 (Ayyub and McCuen, 1997): 

𝑓𝑥(𝑥) =
1

𝜎√2𝜋
𝑒𝑥𝑝 (−

1

2
[
𝑥 − 𝜇

𝜎
]
2

)    − ∞ < 𝑥 < ∞ 
Equation 4-3 

 

 

Figure 4-1: Normal Distribution (Mean = 24.96, standard deviation = 3.010)  

Data is considered to be ‘normally distributed’ when it follows the normal distribution 

(Equation 4-3). However the degree of fit can vary, and is often described in terms of 

hypothesis testing in which an initial hypothesis as to a data set’s distribution is made 

(i.e. normally distributed) which is then tested. The data used to produce Figure 4-1 can 

be represented in a probability plot (Figure 4-2) and a hypothesis test carried out on it 

to discover if it is indeed normally distributed. Two outer red lines denote a 95% 

confidence interval for the data (very close together with this highly normal data set, 

but clearly indicated in Figure 4-3) with the exact normal distribution for a data set 

sitting on the middle red line. For this data set the P-value (probability) is greater than 

0.05 (the limit) and as such the hypothesis that the data is normally distributed can be 

accepted. Non-normal data can also be plotted in the same fashion, but will appear to 

be nonlinear in a similar plot. 
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Figure 4-2: Probability plot of data used in Figure 4-1 

To demonstrate the validity of using the normal distribution to represent fabric 

geometric variability, statistical data from an F1202 PVC coated polyester fabric was 

considered. The data was produced by Colman (2013) who measured the geometries of 

a wide range of fabrics. The variation in the amplitude of the warp yarn (Figure 4-3), the 

weft yarn thickness (Figure 4-4), and the warp out of plane angle (Figure 4-5) are shown 

below. Other distributions of the fabric’s geometry can be found in the appendix (§A.4) 

Whilst the fit to the normal distribution is not perfect the P-value is consistently greater 

than 0.05, suggesting that the data can be considered normal. As such it is accepted that 

generally an untested (designed or unknown) fabric’s geometric properties can be 

considered to be normally distributed. 

Properties that are found to be non-normal in the variation analysis could be 

transformed to normal space using well understood and recognised transformations. 

Whilst other fabrics may show better or worse fits a single assumption of a distribution, 

i.e. normality, must be made at this stage to allow for the model to continue to be 

predictive.  It is impossible to analyse the distribution of the properties of a fabric that 

is to be designed, or has not been created, although if required other distributions could 

be used.  
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Figure 4-3: Probability plot of warp yarn amplitudes for an F1202 fabric 

 

Figure 4-4: Probability plot of weft yarn thicknesses for an F1202 fabric 
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Figure 4-5: Probability plot of warp yarn out of plane angles for an F1202 fabric 

The distributions show some variation away from the normal distribution as the data 

presented in Figure 4-3, Figure 4-4, and Figure 4-5 is not perfectly linear. Some deviation 

towards a linear distribution can be noted in the yarn thickness (t1) and yarn angle (A1) 

plots (Figure 4-3 and Figure 4-4) although both plots are still considered normal as the 

P-value is greater than 0.05. Linearly distributed data tested in this fashion appears as 

an s-curve, shown in Figure 4-6 (which shows 200 artificially generated linearly 

distributed data points between 0 and 1). Figure 4-6 also shows a situation where the 

data cannot be considered normally distributed as the P-value is less than 0.05. 

 

Figure 4-6: Linearly distributed data tested for normality (200 data points linearly distributed between 0 and 1) 
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There exists a special case of the normal distribution where the mean is zero and the 

standard deviation is one. This is referred to as the standard normal distribution and is 

important in that it is used in many of the following sections as an invariant measure. 

The use of invariant measures allows for the comparison of different data sets within a 

single simulation where the mean, standard deviation, or both might be different. 

Melchers (1999, p. 97) describes how a “lack of invariance” can occur where resistances 

and loads vary between different situations or “because there are different ways in 

which the relationships between resistances and loads may be defined”. As such it is 

desirable for a measure to be ‘invariant’ such that comparisons can be drawn. The first 

step to achieve this is “to transform all variables to their standard normal form N(0,1)” 

(Melchers, 1999, p. 97).  

The Hasofer-Lind transformation (Equation 4-4) can be used to convert normally 

distributed data to standard normal space where “the joint probability density function 

fy(y) is the standardised multivariate normal […]; thus many well-known properties of 

this distribution can be applied” (Melchers, 1999, p. 97). Melchers (1999) reproduces 

the equation from the work of Hasofer and Lind (1974). 

𝑌𝑖 =
𝑋𝑖 − 𝜇𝑋𝑖

𝜎𝑋𝑖

 
Equation 4-4 
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4.7. Monte Carlo Methodology: 

“The Monte Carlo method provides approximate solutions to a variety of mathematical 

problems by performing statistical sampling experiments” (Fishman, 1997, p. 1). The 

accuracy of this approximation increases with the number of points sampled, and it is 

also possible to vary the sampling methodology to increase the speed of the method by 

attempting to focus the sampled area to the failure plane, i.e with the use of ‘importance 

sampling’ (Melchers, 1999). However, the method used in this work is a ‘Coarse’ or 

‘crude’ Monte Carlo method which is used to sample the entire space of the possible 

results as advanced Monte Carlo methods are outside of the scope of this thesis. 

Using a coarse method has a specific advantage in this instance: Once a Monte Carlo 

analysis is completed, and the results of all the simulations have been obtained, the 

function values can be interrogated repeatedly to analyse different inequalities. 

Advanced (non-coarse) Monte Carlo simulations can only ever be used to interrogate 

results for a single inequality. 

4.7.1. Methodology 

The method used is that set out by Melchers (1999), with some small modifications to 

allow for its reproduction in MATLAB, and the use of fabric data. 

For each variable two (linearly) randomly distributed numbers between 0 and 1 (r1 and 

r2) are selected. These are then used to create a “pair of ‘exact’ independent 

standardised normal variates”, u1 and u2 (Equation 4-5) (Box and Muller, 1958; Melchers, 

1999, p. 68), such that, 

𝑟1 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 1;   0 ≤ 𝑟1 ≤ 1 

𝑟2 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 2;   0 ≤ 𝑟2 ≤ 1 

𝑢1 = √−2𝑙𝑛(𝑟1) sin 2𝜋𝑟2 

𝑢2 = √−2𝑙𝑛(𝑟1) cos 2𝜋𝑟2 

Equation 4-5 

These (Equation 4-5) are then be used to produce a pair of normally distributed data 

points for any variable where the standard deviation and the mean are known (Equation 

4-6), using, 
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𝑥𝑖 = 𝑢1,2 ∙ 𝜎𝑖 + 𝜇𝑖 Equation 4-6 

Equation 4-6 is applied for each of the nine basic variables listed in Equation 4-1 to give 

pairs of normal variates for each of the probabilistic variables considered in the unit cell. 

Varying the nine basic variables (𝛳1,2 𝐿1,2 𝑟1,2 𝐸1,2 𝐸𝑘 ) produces a variation in the 

mechanical properties of the fabric (E11, E22, ν12, and ν21). It is therefore necessary to 

describe an inequality to define within what bounds a fabric might be required to 

perform, and to what extent the fabric might deviate from this. For instance 99% of a 

particular batch of fabric might be required to respond to within 1% of its published 

Young’s Modulus at a certain level of stress such that Equation 4-7 holds. 

𝑃(𝐸11,𝑡𝑎𝑟𝑔𝑒𝑡 ∙ 0.99 < 𝐸11,𝑟𝑒𝑠𝑢𝑙𝑡 < 𝐸11,𝑡𝑎𝑟𝑔𝑒𝑡 ∙ 1.01) > 0.99 Equation 4-7 

 

Alternatively the probability of one of the mechanical properties might be needed 

where no results can be less than 5% of the target (Equation 4-8): 

𝑃(𝑇𝑎𝑟𝑔𝑒𝑡 ∙ 0.95 < 𝑅𝑒𝑠𝑢𝑙𝑡) = 1.0 Equation 4-8 

The data from a crude Monte Carlo simulation can be repeatedly interrogated to give 

the probability of a result satisfying different inequalities. The methodology used in the 

Monte Carlo analysis is laid out in Figure 4-7. 
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Figure 4-7: Method for the comparison of results to the failure criteria 0.99∙Target<E11<1.01∙Target 

  

Input: 

𝛳̅1,2 𝐿̅1,2 𝑟̅1 𝐸̅1,2 𝐸̅𝑘   

𝜎𝛳1,2
𝜎𝐿1,2  𝜎𝑟1   𝜎𝐸1,2𝜎𝐸𝑘

 

N = no. runs 

𝜎 = 𝐶𝑣𝜇 

 

For each variable: 

𝑋𝑖1
= 𝜎𝑖𝑢1 + 𝑋̅𝑖 

𝑋𝑖2
= 𝜎𝑖𝑢2 + 𝑋̅𝑖 

For each variable create a pair  
of standard normal random variables: 
 

𝑟1 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 1 

𝑟2 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 2 

𝑢1 = √−2𝑙𝑛(𝑟1) sin2𝜋𝑟2 

𝑢2 = √−2𝑙𝑛(𝑟1) cos2𝜋𝑟2 

For each pair: 

Calculate: 𝐸11, 𝐸22, 𝜈12, 𝜈21 at each force ratio 

Save these values 

Initiate the Monte Carlo Analysis: 

Repeat for N runs 

Compare the saved values of the mechanical 
properties to the required inequality e.g. (for 1%) 

0.99 ∙ 𝑇𝑎𝑟𝑔𝑒𝑡 < 𝐸11 < 1.01 ∙ 𝑇𝑎𝑟𝑔𝑒𝑡 

Final run 

Run ≠ N 
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The number of results required to meet a solution is checked by considering the 

variation in the mean of the results as the simulations progress. Figure 4-8 shows how 

the mean of the results varies as the number of iterations increases, whilst the mean 

and standard deviation can also be examined at intervals (Figure 4-9 and Figure 4-10). 

From these figures it is clear that the results for the test shown have converged to a 

solution. This simulation used arbitrary values of the coefficient of variation for each 

variable (CoV = 0.1), and calculated the probability that the resulting value of E11 would 

be greater than 0.9xE11,Target. Therefore the probability of failure indicated is the 

proportion of tests that did not satisfy this inequality. 
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Figure 4-8: Convergence of Monte Carlo probabilityof failure 
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Figure 4-9: Mean probability of failure at increasing intervals 
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Figure 4-10: Mean standard deviation of failure at increasing intervals 
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In the results above both the mean and mean standard deviations of the data appear to 

have approached asymptotes after 20000 iterations, split into batches of 200 

calculations. The mean standard deviation of failure gives a measure of the average of 

the standard deviations of failure at a point, looking at all the batches of 200 calculations. 

The high value of the probability of failure (approximately 30%) is indicative of an 

artificially high value of the coefficient of variation of each variable, when compared to 

the inequality used in the simulations. 

4.7.2. Constraint compliant Monte Carlo 

Using independently generated variables causes constraint violation during the 

simulation process. The randomly selected variables (amplitude, length, and radius) do 

not necessarily satisfy the equilibrium constraint. The interdependence of the first six 

variables causes error in the calculation of the probability of failure. In short, by allowing 

all variables to independently vary the equilibrium constraints are not being satisfied, 

leading to erroneous results. This led to the creation of the following statements: 

 Any yarn or coating stiffness may be chosen, these are independent with relation 

to the equilibrium equation. 

 Any three dependant variables (θ1,2, L1,2, r1,2) can be chosen using their statistical 

information and the normal distribution. 

 Two further dependant variables (θ1,2, L1,2, r1,2) might be chosen using their 

statistical information and the normal distribution, but must be checked to 

ensure they do not violate the equilibrium constraint. In this case only where 

very large deviations from the mean are predicted is this necessary, but should 

always be checked for. 

 The final variable is defined by the others. 

The Monte Carlo analysis as presented includes three truly random dependant variables, 

θ1, θ2, and L1. The two partially random dependant variables are L2, and r1, and the fully 

dependant variable is r2, to allow the Monte Carlo algorithm to calculate probabilities 

whilst ensuring compliance with physical based constraints. However, the routine is 

designed to allow for any choice of variables to be placed in each category. 

Variables that must be checked for compliance rarely violate the equilibrium constraints. 

This is because a very large variation from any originally valid fabric would be necessary 
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to prevent these values following a normal distribution. As such a check is applied, and 

where these variables do violate the equilibrium constraint the ‘simulation’ is 

abandoned, as infeasible. In practice, using reasonable variability data such as that 

produced from tests almost never generates such points. 

Lastly, r2 is defined as a function of the other variables (Equation 4-9), with its 

distribution defined by the interaction of the other variables in the equilibrium equation, 

where 

𝑟2 = 𝐿1 tan 𝜃1 + 𝐿2 tan 𝜃2 − 𝑟1 Equation 4-9 

This means that all the variables relating to the geometry of the fabric are related to 

each other by the value of r2. r2 is therefore a deterministic variable that can be 

calculated by considering the variables 𝛳1,2 𝐿1,2 𝑟1 , but does not appear within the 

objective function. 

The objective function is therefore redefined as: 

𝑓(𝛳1,2 𝐿1,2 𝑟1 𝐸1,2 𝐸𝑘) 

Equation 4-10 

The Monte Carlo routine was then carried out as described in Figure 4-11. 
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Figure 4-11: Method of Monte Carlo implementation 

Input: 

𝛳̅1,2 𝐿̅1,2 𝑟̅1 𝐸̅1,2 𝐸̅𝑘   

𝜎𝛳1,2
𝜎𝐿1,2  𝜎𝑟1   𝜎𝐸1,2𝜎𝐸𝑘

 

N = no. runs 

𝜎 = 𝐶𝑣𝜇 

 

For each variable create a pair  
of standard normal random variables: 
 

𝑟1 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 1 

𝑟2 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 2 

𝑢1 = √−2𝑙𝑛(𝑟1) sin2𝜋𝑟2 

𝑢2 = √−2𝑙𝑛(𝑟1) cos2𝜋𝑟2 

For each pair: 

Calculate: 𝐸11, 𝐸22, 𝜈12, 𝜈21 at each force ratio 

Save these values 

Initiate the Monte Carlo Analysis: 

Repeat for N runs 

Compare the saved values of the mechanical 
properties to the required inequality e.g. (for 1%) 

0.99 ∙ 𝑇𝑎𝑟𝑔𝑒𝑡 < 𝐸11 < 1.01 ∙ 𝑇𝑎𝑟𝑔𝑒𝑡 

Final run 

Run ≠ N 

For each eight variables including 
the yarn and coating moduli: 

𝑋𝑖1
= 𝜎𝑖𝑢1 + 𝑋̅𝑖  

𝑋𝑖2
= 𝜎𝑖𝑢2 + 𝑋̅𝑖  

Equilibrium held? 

Calculate 9th variable using the 
equilibrium equation 
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4.7.3. Analysis and discussion 

The method presented (§4.7.1) allows for the analysis of both the probability a fabric 

will not react as predicted given variation in the geometric properties, and the analysis 

of how variation in a single variable affects a property. Within this section, assumed 

values of variation are used to demonstrate the effect of altering properties. Using 

assumed values of variation allows comparisons to be drawn between the effect of 

different amounts of variation that might be experienced in a fabric property without 

changing the fabric, and hence the relationship. Were only real values of fabric property 

variation used the effect of altering the property distribution could not be analysed. In 

the following discussion the geometry of a PVC coated polyester fabric (F1202) is used 

to demonstrate the effect of varying fabric geometry. 

The probability of failure against feasible targets was analysed using the Monte Carlo 

method. This is carried out for a number of failure criteria detailed in Table 4-1 with 

relation to the inequalities detailed below (Equation 4-11). Each Monte Carlo analysis 

consists of 20,000 simulations, at the end of which six inequalities are tested for: that 

E11 should be greater than 90% or 99% of the target for E11, that E11 should be less than 

110% or 101% of the target for E11, and that E11 should be between 99% and 101% or 

between 90% and 110% of the target value for E11. The results of the simulations are 

tabulated in Table 4-1. Limiting variation to particular pairs of variables allows for the 

inspection of the effect of varying a particular property such as the out of plane angle 

on the value of E11. The out of plane angle was shown to have the greatest effect on E11 

in the tests carried out in Table 4-1. 

Inequality 1: 
(1 − 𝑥) ∙ 𝑇𝑎𝑟𝑔𝑒𝑡 < 𝐸11 

Inequality 2: 
(1 − 𝑥) ∙ 𝑇𝑎𝑟𝑔𝑒𝑡 < 𝐸11 < (1 + 𝑥) ∙ 𝑇𝑎𝑟𝑔𝑒𝑡 

Inequality 3: 
𝐸11 < (1 + 𝑥) ∙ 𝑇𝑎𝑟𝑔𝑒𝑡 

Equation 4-11 

where ‘x’ is the allowable deviation from the target (i.e. x = 1%, 2%, 5%, 10%).  



4. Variability and robustness 

PAGE 205 

Variation in unit cell 
properties (Cv) 

Probability of not achieving inequality (Pf) of E11 

 0.9 ∙ 𝐸target < 𝐸11 
0.9 ∙ 𝐸target < 𝐸11
< 1.1 ∙ 𝐸target 

1.1 ∙ 𝐸target > 𝐸11 

Θ1,2 Cv = 0.1 0.040 0.059 0.099 

L1,2 Cv = 0.1 0.000 0.041 0.041 

E1,2 Cv = 0.1 0.050 0.030 0.081 

All variables, Cv = 0.1 0.122 0.164 0.286 

Θ1,2 Cv = 0.01 0.000 0.000 0.000 

L1,2 Cv = 0.01 0.000 0.000 0.000 

E1,2 Cv = 0.01 0.000 0.000 0.000 

All variables, Cv = 0.01 0.000 0.000 0.000 

 0.99 ∙ 𝐸target < 𝐸11 
0.99 ∙ 𝐸target < 𝐸11
< 1.01 ∙ 𝐸target 

1.01 ∙ 𝐸target > 𝐸11 

Θ1,2 Cv = 0.1 0.437 0.871 0.433 

L1,2 Cv = 0.1 0.408 0.828 0.420 

E1,2 Cv = 0.1 0.433 0.857 0.424 

All variables, Cv = 0.1 0.453 0.916 0.463 

Θ1,2 Cv = 0.01 0.047 0.098 0.052 

L1,2 Cv = 0.01 0.012 0.029 0.018 

E1,2 Cv = 0.01 0.036 0.072 0.036 

All variables, Cv = 0.01 0.141 0.291 0.150 
Table 4-1: Monte Carlo predicted probability of failure at different failure criteria for feasible targets for an F1202 
fabric (10000 runs = 20000 data sets) 

As might be predicted where the failure criteria is higher a greater proportion of tests 

‘pass’ reducing the probability of failure, and where the variation is lower the probability 

of failure is correspondingly low. 
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Figure 4-12: Monte Carlo results where only Ey1 and Ey2 are considered to vary with a coefficient of variation of 0.1 for the inequality 0.95Targ<E11 (red = failed, blue = success) 
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The line delineating failed and passed tests is found to be approximately straight (Figure 

4-12, in which the red points are failed and the blue points have satisfied the inequality 

0.95 ETarget < E11). The gradient of the delineating line provides information on the 

relative importance of the two different properties under consideration in determining 

the point of failure. Were the line to be at 45 degrees to either axis each property would 

have an equal effect on the point of failure. A curve would suggests that the effect is 

changing as the variables values change. The variable to which a particular inequality is 

most sensitive will be shown as the variable where the least variation in that variable 

causes greatest change to the result. 

It is possible to begin to consider the sensitivities of the unit cell variables with relation 

to the Monte Carlo method. The change each variable causes with relation to a target 

value is considered, and then graphically displayed (Figure 4-13 and Figure 4-14). Figure 

4-13 and Figure 4-14 show the effect of variation in one or two geometric properties on 

the value of E11. The ‘tests’ described on the x-axis relate to the variables that are 

allowed to vary during a particular simulation. The variables varied in a ‘test’ can be 

found by relating the test number to row and column in Table 4-2. For instance, ‘test 38’ 

considered the variation of r1 and E2. 

Test  θ1 θ2 L1 L2 r1 r2 E1 E2 Ek 

θ1 1 - - - - - - - - 

θ2 10 2 - - - - - - - 

L1 11 18 3 - - - - - - 

L2 12 19 25 4 - - - - - 

r1 13 20 26 31 5 - - - - 

r2 14 21 27 32 36 6 - - - 

E1 15 22 28 33 37 40 7 - - 

E2 16 23 29 34 38 41 43 8 - 

Ek 17 24 30 35 39 42 44 45 9 

Table 4-2: Test definition for Figure 4-13 and Figure 4-14 

From these simulations it is possible to observe the importance of changes in values, 

and consider how a reduction in the variability of one particular value might improve 

the robustness of an entire fabric. Additionally a variation in physical layout or geometry 
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might affect and improve the sensitivity of the fabric. The variation noted in pairs of 

tests 1 and 14, 2 and 21, 3 and 27 etc. is the same because the value of r2 does not affect 

the calculation of the stiffness being considered, as it is defined by the other properties.
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Figure 4-13: Sensitivity of E11 to variation in unit cell parameters (Cv = 0.01) for ‘test’ description see Table 4-2 
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Figure 4-14: Sensitivity of E11 to variation in unit cell parameters (Cv = 0.1) for ‘test’ description see Table 4-2 
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Figure 4-13 and Figure 4-14 are plotted on different scales to ensure comparisons 

between ‘tests’ are possible. All the data in Figure 4-13 is normally distributed with the 

mean centred on the target value of E11. The greatest variation in E11 is experienced 

during test 22, which considers variation in Ey1 and θ2. Ey1 is regularly associated with 

higher variation in E11 in the different simulations. The inclusion of r2 does not produce 

an increase in the sensitivity of E11.  

Figure 4-14 continues to show that the mean of the calculated values of E11 is the target 

for the value of E11 (tests carried out on the data set confirm this). However, it is 

noticeable from the distributions that some of the simulations (using larger variations) 

appear to be non-normal as the data points are not evenly distributed around the mean. 

A number of the ‘tests’ are normal, such as ‘test 14’. However ‘test 3’ amongst others 

shows non-normal distribution (Figure 4-15).  

 

Figure 4-15: Histogram and Normal fit of 'test 3' data 

The histogram (Figure 4-15) shows how the data is truncated at lower values of E11. The 

introduction of the equilibrium equations to the Monte Carlo analysis may therefore be 

restricting complete normal behaviour across the entire data set where larger variation 

is present. This pattern is not repeated at lower values of variation. Real variation in the 

values of fabric geometries varies between a coefficient of variation of 0.125 and 0.011 

(F1202). This degree of variation is not common across all fabric types. The variation 

observed in the B18089 fabric is at most 0.062. It is beyond the scope of this thesis to 
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create a predictive model that can predict the distribution a Monte Carlo test will 

produce at this time. A combination of normally distributed data should produce a 

normally distributed result (Melchers, 1999). However, the constraints on the function 

may be impairing this. A distribution must be selected without prior detailed knowledge 

of the fabric property under consideration. Whilst it is necessary to consider the 

implications of this it should not affect the usefulness of the method as a whole. The 

data is, by visual inspection, close to normal.  

Additionally a comparison of how variables affect each other can be made with the 

Monte Carlo analysis, and demonstrate how the variation in one might be found to be 

considerably more important to the value of the target being considered than another 

for certain statistical distributions of properties. For example, it is readily apparent that 

a variable that varies very little will cause less variation in a target than one that varies 

more. However, what happens when two values of CV are similar might not be readily 

apparent. This can be considered to some extent graphically using Monte Carlo data 

(Figure 4-16, Figure 4-17, Figure 4-18, Figure 4-19, and Figure 4-20). These figures show 

how the response of the mechanical property under inspection varies with variation in 

the unit cell properties. It is notable in Figure 4-18 that certain variables have a far larger 

effect on the value of E11 than the corresponding variable shown. E11 would appear to 

be approximately equally sensitive to L2 and θ1 (Figure 4-18) whilst it is considerably 

more sensitive to the same variation in E2. 
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Figure 4-16: Effect of variation in Ey1 with respect to Ey2 and Ek on the value of E11 where the Cv = 0.01 
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Figure 4-17: Effect of variation in Ey1 with respect to Ey2 and Ek on the value of E11 where the Cv = 0.1 
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Figure 4-18: Effect of variation in θ1 with respect to other variables on the value of E11 where the Cv = 0.1 

 

Figure 4-19: Effect of variation in θ1 on the value of E11 where the Cv = 0.1 
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Figure 4-20: Effect of variation in L2 on the value of E11 where the Cv = 0.1 

Lastly the method demonstrates that a front of possible solutions exists for certain sets 

of targets. By considering the optimisation of a geometry for only one target (E11), and 

allowing only two variables to vary (Ey1 and Ey2) it is possible to demonstrate that 

multiple solutions exist by setting the inequality to Equation 4-21 (Figure 4-12) : 

𝑇𝑎𝑟𝑔𝑒𝑡 < 𝐸11 
 

Equation 4-12 

As such, any point greater than the target will be identified, and any point on the failure 

plane will equal the target, producing a visualisation of the possible solutions (Figure 

4-12). This mostly serves to demonstrate the assumptions proposed earlier in this thesis 

(§3.7), and might also demonstrate how no solution exists were the target is set to some 

unobtainable value. 
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4.8. FORM Methodology: 

The FORM (First Order Reliability Method) is an analytical approximation method used 

to calculate the probability that an objective function does not produce a result within 

a predefined limit state. The accuracy of the method depends on the linearity of the 

limit state that is being approximated. The method computes the shortest distance to a 

failure plane from the origin (mean) which is then assumed to be linear and 

perpendicular to that point, thus allowing for the calculation of the approximate failure 

probability (Melchers, 1999). This method allows for a far quicker analysis of the failure 

probability, but importantly also includes the calculation of the sensitivities of the 

objective function. Error is introduced into the method with increasing nonlinearity of 

the limit state. Where the limit state is nonlinear the FORM method will likely provide 

an approximation of the failure probability unlike the Monte Carlo method which 

provides an exact probability if enough points are sampled.  

The following methodology is used initially to verify the probability of failure of a fabric, 

it is the ability of the method to calculate the sensitivity of the function to variations in 

variables that is equally interesting. This leads to the proposition of a method to design 

fabrics for robustness to variation in addition to mechanical response (§4.10). 

4.8.1. Background 

The method used is similar to that proposed by Melchers (1999). For two variables the 

method is summarised as: 

For two variables, using “well-known properties of the bivariate normal distribution the 

marginal distribution is also normal’ (Melchers, 1999, p. 98), or the function of two 

normal distributions is also normal (Figure 4-21, Figure 4-22, and Figure 4-23). Therefore 

for a function, 𝑔(𝑥1, 𝑥2) transformed into standard normal space 𝑔(𝑦1, 𝑦2) (Equation 

4-4), the point  𝒚∗ (Figure 4-22) is calculated as the shortest distance to the failure plane 

which equals β (Figure 4-21). β can then be used to calculate the probability of failure 

using standard normal tables N(0,1). 
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Figure 4-21: Marginal distribution in the space of the standardised normal variables (Melchers, 1999) 

 

Figure 4-22: Probability density function contours and original (non-linear) and linearized limit state surfaces in the 
standard normal space (Melchers, 1999) 

 

Figure 4-23: Two random variable joint density function fRS (r, s ), marginal density functions fR and fS and failure 
domain D (Melchers, 1999) 
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4.8.2. Methodology 

Eight variables (excluding r2) are considered during the proposed FORM method.  

More generally it might be stated that: 

𝛽 = 𝑚𝑖𝑛 (∑𝑦
𝑖
2

𝑛=8

𝑖=1

)

1/2

= 𝑚𝑖𝑛(𝒚𝑇 ∙ 𝒚)1/2 

Equation 4-13 

Y* is considered to be the point of maximum likelihood for the failure plane (Figure 4-22), 

or the point on the failure plane that is closest to the origin in standard normal space. 

At this point the failure plane is perpendicular to the line intersecting the point of highest 

probability and the origin. Once Equation 4-13 is satisfied the probability of failure can 

be calculated using the value of β. The probability of failure can be calculated using the 

following series of equations (Melchers, 1999): 

The direction components ‘c’ of the outward normal ‘𝑙’ are calculated from the partial 

derivatives of ‘g’ with respect to each variable ‘𝑦𝑖’. 

𝑐𝑖 = 𝜆
𝜕𝑔

𝜕𝑦𝑖
 

Equation 4-14 

where 𝜆 is an arbitrary constant. 

The length of the outward normal (𝑙) is calculated as the square route of the sum of the 

squares of 𝑐𝑖 (Figure 4-22).  

𝑙 = (∑𝑐𝑖
2

𝑖

)

1/2

 

Equation 4-15 

The direction cosines 𝛼𝑖  can be calculated with respect to each variable ‘𝑦𝑖 ’. Each 

direction cosine gives the sensitivity of the function to variable ‘𝑦𝑖’. 

𝛼𝑖 =
𝑐𝑖
𝑙

 
Equation 4-16 

Thus the distance to the point of maximum likelihood from the mean of each variable 

can be calculated as 𝑦𝑖
∗, which give the coordinates of the point of maximum likelihood: 



4. Variability and robustness 

PAGE 220 

𝑦𝑖
∗ = −𝛼𝑖𝛽 Equation 4-17 

This is shown in normal space for two variables in Figure 4-22. Finally the equation for 

the linearized approximate failure plane might be written as: 

𝑔(𝑦) = 𝛽 +∑𝛼𝑖𝑦𝑖

𝑛

𝑖=1

= 0 

Equation 4-18 

A method for the application of the FORM method to fabric geometry is summarised in 

12 steps below and in Figure 4-26:  

1. Obtain statistical information about the parameters of the unit cell. 

2. Write the equations for the mechanical properties of a fabric E11, E22, ν12, and ν21 

(§3.4.3)in terms of yi to transition to standard normal, N(0,1), space: 

𝑦𝑖 =
𝑋𝑖 − 𝜇𝑋𝑖

𝜎𝑋𝑖

 

3. Write the mechanical property equations as inequalities to be solved where ‘D’ 

is the allowable deviation (%allowable deviation/100). 

𝑔(𝑦)  =  𝐸11  −  𝑇𝑎𝑟𝑔𝑒𝑡𝐸11 ∙ 𝐷 

4. Derive the partial derivatives of g(y) with respect to yi ∀𝑖. 

𝜕𝑔(𝑦)

𝜕𝑦𝑖
 

5. Choose an initial starting point yi
0 at the mean values. 

6. For yi
0 calculate the strains and their numerical derivatives as required for the 

predictive model (§3.4.3.2): 

𝜀1, 𝜀2,
Δ𝜀1
Δ𝜀2

,
Δ𝜀2
Δ𝜀1

 

7. Calculate the values of the partial derivatives derived in ‘4’. 

8. Compute g(y) at the current values of yi the outward normal (𝑙), shortest distance 

(𝛽), and direction cosines (𝛼). 

9. Calculate the new values of y: 

𝑦𝑖
𝑛+1 = −𝛼𝑖 ∙ (𝛽 +

𝑔(𝑦)

𝐿
) 
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10. Return to ‘6’ with new values of yi. 

11. Where 𝛽 stabilises to a value, and g(y) = 0 exit and output probability of failure 

and point of highest probability. 

𝑝𝑓 = 1 − Φ(𝛽) 

12. Convert the design point back to Xi space from standard normal space using: 

𝑋𝑖 = 𝑦𝑖𝜎𝑋𝑖
+ 𝜇𝑋𝑖

 

Note that the probability of failure is not 𝛽, as the shortest distance is calculated as the 

distance from the mean. As such 𝛽 relates to the probability of success (Figure 4-24). 

The probability of failure is calculated as one minus the probability found using 𝛽 and 

standard normal tables. 

 

Figure 4-24: Distribution of safety margin Z = R – S (Melchers, 1999) 

The analysis produces fewer outputs that can be visualised without comparison to 

Monte Carlo simulations (§4.7). The value of the function g(y), can be compared to the 

shortest distance 𝛽 (Figure 4-25). Figure 4-25 shows the progress of the FORM method 

for a data set to the inequality  0.95 ∙ 𝑇𝑎𝑟𝑔𝑒𝑡 < 𝐸11 where the coefficients of variation 

are all set to 0.1. After 20 iterations the function g(y) reaches zero, and the value of 𝛽, 

which has reached an asymptote, is approximately 1.5. Using standard normal tables 

the probability of failure can be calculated as 0.066 (Equation 4-19). 
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Φ(−𝛽) = 1 − Φ(𝛽) = 1 − Φ(1.5) = 0.066 = 𝑝𝑓 Equation 4-19 

Realistic values of β are in the order of 3 – 4.5, when used in design (§4.11) however, as 

partial factors and other sources of error are not being considered here values of the 

reliability index other than these are expected. 
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Figure 4-25: Comparison of the value of the shortest distance 𝜷 and g(y) as an optimisation progresses for the inequality 0.95xTarget<E11 where Cv = 0.01 for all variables 
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4.8.3. Constraint compliant FORM  

As discussed above (§4.7.2) the interdependence of variables leads to problems in the 

calculation of β. When all nine variables are allowed to vary independently a situation 

arises within the FORM method that cannot occur in the unit cell where equilibrium 

equations have to be complied with. The FORM method attempts to move each and 

every variable towards the point of maximum likelihood for the inequality under 

consideration. This results in noncompliance with the equilibrium equations as each 

variable moves independently.  

The proposed solution redefines r2 as a dependent variable as was done in the Monte 

Carlo method. Equation 4-9 as redefined in standard normal space can be produced 

(Equation 4-20). 

𝑟2 = (𝑦3𝜎𝐿1 + 𝜇𝐿1) tan(𝑦1𝜎𝜃1 + 𝜇𝜃1) + (𝑦4𝜎𝐿2 + 𝜇𝐿2) tan(𝑦2𝜎𝜃2 + 𝜇𝜃2)

− (𝑦5𝜎𝑟 + 𝜇𝑟1) 

Equation 4-20 

Once this has been achieved the other variables can be assumed to be independent, as 

the dependence is encapsulated into a single variable. Therefore the solver now only 

solves for eight variables. 

Whilst dependence like this normally adds some level of complexity to a model Melchers 

(1999, p. 27) suggests that where this is the case some “dependence structure between 

dependant variables be known and expressed” which is achieved using Equation 4-20. It 

should also be noted that this does limit the applicability of the method to some degree, 

as the end user of the method can no longer observe the effect of changing the variation 

associated with r2 on the sensitivity of the function. The distribution of r2 with relation 

to variation in other parameters is still obtainable (Equation 4-21). The calculation of the 

sensitivity of the objective function to the value of r2 is unnecessary as the effect of 

variation in r2 on the result is included within the response of the other variables, r2 

having been removed from the objective function. 
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The implicit sensitivities for r2 could be calculated using Equation 4-21. The derivatives 

in Equation 4-21 are independently obtainable, and only the derivative 
𝑑𝑔

𝑑𝑟2
 is not 

available, being deterministic. This is not explored further at this stage. 

𝑟2 = 𝑓(𝐿1, 𝐿2, 𝑟1, 𝜃1, 𝜃2) = 𝐿1 tan 𝜃1 + 𝐿2 tan 𝜃2 − 𝑟1 

𝑑𝑔

𝑑𝑟2
=

𝜕𝑔

𝜕𝐿1
∙
𝜕𝐿1
𝜕𝑟2

+
𝜕𝑔

𝜕𝐿2
∙
𝜕𝐿2
𝜕𝑟2

+
𝜕𝑔

𝜕𝑟1
∙
𝜕𝑟1
𝜕𝑟2

+
𝜕𝑔

𝜕𝜃1
∙
𝜕𝜃1
𝜕𝑟2

+
𝜕𝑔

𝜕𝜃2
∙
𝜕𝜃2
𝜕𝑟2

 

Equation 4-21 

The methodology as completed is presented in Figure 4-26. 
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Figure 4-26: Method of FORM implementation 

yes 

Input: 𝛳̅1,2 𝐿̅1,2 𝑟̅1 𝐸̅1,2 𝐸̅𝑘 𝜎𝛳1,2
𝜎𝐿1,2  𝜎𝑟1   𝜎𝐸1,2𝜎𝐸𝑘

  

𝜎 = 𝐶𝑣𝑋 

𝐷 = 𝑇𝑎𝑟𝑔𝑒𝑡 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 

 

For ‘y’ calculate: 𝜀1 𝜀2  
Δ𝜀1

Δ𝜀2
 
Δ𝜀2

Δ𝜀1
 

Initiate the FORM Analysis: 

Write E11 in terms of the variables , y, where: 

𝑋𝑖 = 𝑦𝑖𝜎𝑋𝑖
+ 𝜇𝑋𝑖

     ∀𝑖 

Find the partial derivatives of 𝑔(𝑦)𝐸11 =

𝑑𝐹1
𝑑𝜀1

(𝑦4𝑠𝐿2+𝐿̅2)
− 𝑇𝑎𝑟𝑔𝐸11 ∙ 𝐷 

𝜕𝑔(𝑦)𝐸11
𝜕𝑦𝑖

     ∀𝑖 

Calculate the value of the partial derivatives: 
𝜕𝑔(𝑦)𝐸11

𝜕𝑦𝑖
 

Calculate the total length of the outward normal: 𝐿 =    
𝜕𝑔(𝑦)𝐸11

𝜕𝑦𝑖
 
2

9
𝑖=1  

Calculate the shortest distance to the origin: 𝛽 =   (𝑦𝑖)
29

𝑖=1  

Calculate the direction cosines: 𝛼𝑖 =
𝜕𝑔(𝑦)𝐸11

𝜕𝑦𝑖
𝐿  

Calculate g(y): 𝑔(𝑦) = 𝑔(𝑦)𝐸11 =

𝑑𝐹1
𝑑𝜀1

(𝑦4𝑠𝐿2+𝐿̅2)
− 𝑇𝑎𝑟𝑔𝐸11 ∙ 𝐷 

Calculate the new value of y: 𝑦𝑖
𝑛+1 = −𝛼𝑖 ∙  𝛽 +

𝑔(𝑦)𝐸11
𝐿

  

 
Check if y has 

converged 
Output y* and 

α 

no 
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4.8.4. Example Results 

As with the Monte Carlo analysis the FORM analysis was carried out at different levels 

of variation with respect to two tests (Equation 4-22) using the geometry of a PVC coated 

polyester fabric (F1202), the results of which are detailed in the table below. A 

comparison of these results with those of the Monte Carlo analysis is made in the 

following section. All the results of simulations below converged to a solution with 100 

iterations or where the change in g(y) was less than 1x10-8 between iterations. Direction 

cosines were produced relating to the point of maximum likelihood as part of the 

methodology. The value of β for each Probability of failure can be calculated using 

Equation 4-19. 

Inequality 1: 
(1 − 𝑥) ∙ 𝑇𝑎𝑟𝑔𝑒𝑡 < 𝐸11 

Inequality 2: 
𝐸11 < (1 + 𝑥) ∙ 𝑇𝑎𝑟𝑔𝑒𝑡 

Equation 4-22 

Where ‘x’ is the allowable deviation from the mean. 

Variation in unit cell 
properties (Cv) 

Probability of failure (Pf) of E11 
 

 0.9 ∙ 𝐸target < 𝐸11 1.1 ∙ 𝐸target > 𝐸11 

Θ1,2 Cv = 0.1 0.041  0.059 

L1,2 Cv = 0.1 0.000 0.023 

E1,2 Cv = 0.1 0.050 0.030 

All variables, Cv = 0.1 0.046 0.081 

Θ1,2 Cv = 0.01 0.000 0.000 

L1,2 Cv = 0.01 0.000 0.000 

E1,2 Cv = 0.01 0.000 0.000 

All variables, Cv = 0.01 0.000 0.000 

 0.99 ∙ 𝐸target < 𝐸11 1.01 ∙ 𝐸target > 𝐸11 

Θ1,2 Cv = 0.1 0.434 0.435 

L1,2 Cv = 0.1 0.406 0.411 

E1,2 Cv = 0.1 0.431 0.430 

All variables, Cv = 0.1 0.440 0.441 

Θ1,2 Cv = 0.01 0.049 0.051 

L1,2 Cv = 0.01 0.009 0.012 

E1,2 Cv = 0.01 0.040 0.038 

All variables, Cv = 0.01 0.066 0.069 
Table 4-3: FORM predicted probability of failure at different failure criteria for feasible targets for an F1202 fabric 
(5000 runs = 10000 data sets) 

Table 4-3 summarises the results of a number of FORM simulations. The results show 

that larger values of variation, when compared to smaller allowable deviations from the 

target, produce higher failure probabilities. Where the inequalities limit deviation from 
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the target more, and large values of variation of constitutive property are used, the 

probability of failure approaches 50% (as high as possible for a FORM method 

considering a single sided inequality with Normally distributed data). This is because the 

probability of failure as defined if the inequality were set to require all data to be greater 

than the target would be equal to 50%, as half the normally distributed objective 

function would be less than the target. 

A comparison is made between the Monte Carlo results and the results of the FORM 

method, discussed in detail below (§4.9). 
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4.9. Comparison of failure points 

To compare the point y* of the Monte Carlo analysis to the point produced in the FORM 

analysis it is necessary to estimate the point of maximum likelihood from Monte Carlo 

simulations where only two geometric properties are allowed to vary. Limiting the 

analysis to two variables allows for the 2D visualisation of the response surface, and thus 

the application of a fitted (quadratic polynomial) curve to the line delineating the passed 

and failed points. The minimum distance to the origin from the line is then calculated 

and the point on the curve that this relates to is noted as y* from the Monte Carlo 

analysis. This is then compared to the output of a FORM simulation. 

Considering the inequality: 

0.95 × 𝑇𝑎𝑟𝑔𝑒𝑡 < 𝐸11 
Equation 4-23 

Whilst only varying the values of the out of plane angles (θ1,2) for an F1202 fabric is used 

to demonstrate how this is achieved. First a FORM analysis is carried out, and the point 

of maximum likelihood calculated (Table 4-4). 

 Value Direction Cosine 

y1 3.42E-01 -4.05E-01 

y2 7.73E-01 -9.14E-01 
Table 4-4: Point of Maximum likelihood for an F1202 fabric compared to the inequality 0.95xTarget<E11 where Cv 
= 0.1 for θ1,2 only 

Once the point of maximum likelihood has been calculated from the FORM method a 

Monte Carlo analysis is carried out using the same properties as the FORM analysis. This 

produces Figure 4-27 and Figure 4-28.
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Figure 4-27: Monte Carlo results showing θ1 and θ2 where only θ1 and θ2 are considered to vary with a coefficient of variation of 0.1 for the inequality 0.95Targ<E11 (red = failed, blue = success) 
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Figure 4-28: Monte Carlo results showing y1 and y2 where only θ1 and θ2 are considered to vary with a coefficient of variation of 0.1 for the inequality 0.95Targ<E11 (red = failed, blue = success) 
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Figure 4-28 is used to calculate a quadratic equation for the line delineating the failed 

and passed points. Fitting a quadratic to manually selected points along the pass/fail 

boundary leads to:  

𝑦2 = 0.0006829𝑦1
2 +−0.4607𝑦1 − 0.9078 Equation 4-24 

The script calculates the formula of the line, and calculates the point of maximum 

probability as the point closest to the mean (0,0). This allows the planes of failure to be 

visualised comparatively, demonstrating that both methods come to a similar 

conclusion (Figure 4-29) and allows the points of maximum likelihood to be visually 

compared (Figure 4-30). 

 

Figure 4-29: Comparison of FORM and Monte Carlo generated failure points (approximate point of likely failure 
Monte Carlo (green), and point of failure from FORM analysis (magenta)) 
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Figure 4-30: Comparison of FORM and Monte Carlo generated failure points zoomed to failure point (approximate 
point of likely failure Monte Carlo (green), and point of failure from FORM analysis (magenta)). Points of maximum 
likelihood are shown as ‘+’. 

The value of the coefficient of x2 compared to the other coefficients (Equation 4-24) and 

the values of y1 and y2 being less than one (meaning that they become smaller when 

squared) (Figure 4-30) suggests that the assumption of a linear failure plane for the joint 

density function is acceptable. The value is small compared to the other coefficients, 

and therefore affects the equation less. Figure 4-30 shows that the two points of 

maximum likelihood are not at precisely the same point. This is due to both the 

inaccuracy of the method of calculating the equation using a visual inspection of the 

failure line, and the inaccuracy of the FORM method when compared to the Monte Carlo 

method. 

Comparing the points of maximum likelihood demonstrates the error that is 

experienced (Table 4-5): 
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 FORM Monte Carlo Direction Cosine 
(FORM) 

y1 0.342 0.345 -0.405 

y2 0.773 0.749 -0.914 
Table 4-5: Comparison of point of Maximum likelihood for an F1202 fabric compared to the inequality 
0.95xTarget<E11 where Cv = 0.1 for θ1,2 only 

The two methods confirm the point of maximum likelihood, and the two probabilities of 

failure are also similar: 0.201 (Monte Carlo), 0.199 (FORM). 

The difference between Monte Carlo and FORM results are summarised in Table 4-6 for 

similar inequalities using the same initial geometry. Notably as more variation in the 

variables (that make up the unit cell) is introduced the methods differ to a greater 

degree. 

Variation in unit cell 
properties (Cv) 

Probability of failure (Pf) of E11 

Absolute 
difference 

Absolute 
Percentage 

difference (%) 

Absolute 
difference 

Absolute 
Percentage 

difference (%) 

 0.9 ∙ 𝐸target < 𝐸11 1.1 ∙ 𝐸target > 𝐸11 

Θ1,2 Cv = 0.1 0.00 2.64 0.00 0.64 

L1,2 Cv = 0.1 0.00 200.00 0.02 46.16 

E1,2 Cv = 0.1 0.00 1.15 0.00 2.42 

All variables, Cv = 0.1 0.08 91.87 0.08 66.98 

Θ1,2 Cv = 0.01 0.00 0.00 0.00 0.00 

L1,2 Cv = 0.01 0.00 0.00 0.00 0.00 

E1,2 Cv = 0.01 0.00 0.00 0.00 0.00 

All variables, Cv = 0.01 0.00 0.00 0.00 0.00 

 0.99 ∙ 𝐸target < 𝐸11 1.01 ∙ 𝐸target > 𝐸11 

Θ1,2 Cv = 0.1 0.00 0.67 0.00 0.43 

L1,2 Cv = 0.1 0.00 1.14 0.01 1.99 

E1,2 Cv = 0.1 0.00 0.42 0.01 1.24 

All variables, Cv = 0.1 0.01 2.92 0.02 4.74 

Θ1,2 Cv = 0.01 0.00 5.65 0.00 1.46 

L1,2 Cv = 0.01 0.00 25.54 0.01 33.98 

E1,2 Cv = 0.01 0.00 6.59 0.00 6.92 

All variables, Cv = 0.01 0.08 74.37 0.08 72.65 
Table 4-6: comparison of FORM and Monte Carlo failure probability to different failure criteria for feasible targets 
for an F1202 fabric (5000 runs = 10000 data sets) 

From the data in Table 4-6 most of the FORM tests appear to produce similar results to 

the accurate Monte Carlo data. However, a number of tests display high percentage 

differences, some of which are far higher than are hoped for. Of immediate concern is 

the percentage difference of 200%. However, inspection of the results shows that this 

error occurs with a very low absolute difference between the FORM and Monte Carlo 

data. This is because of the high value of β at this point (5.89) resulting in a probability 
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of failure of 1.86x10-6. To obtain a result comparable to this the Monte Carlo analysis 

has to run for a minimum of one hundred million simulations, to give an accuracy of 

three decimal places.  The Monte Carlo analysis concluded that the probability of failure 

was zero. Therefore, whilst to five significant figures the result is accurate, a large 

percentage difference is shown. A number of other errors result from similar situations, 

however, it is clear that some do not. 

A notable value of percentage difference of 6.59% between the FORM and Monte Carlo 

results for an inequality of E11,targetx0.99<E11 is also interesting. An analysis of the failure 

points shows them to be very similar (Figure 4-31, Figure 4-32).  

 

Figure 4-31: Comparison of FORM and Monte Carlo generated failure points (approximate point of likely failure 
Monte Carlo (green), and point of failure from FORM analysis (magenta)) 
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Figure 4-32: Comparison of FORM and Monte Carlo generated failure points zoomed to failure point (approximate 
point of likely failure Monte Carlo (green), and point of failure from FORM analysis (magenta)). Points of maximum 

likelihood are shown as ‘◊’. 

Further, a check on the normality of the results (Figure 4-33) shows them to be normal, 

with some deviation at extreme values. It must therefore be the case that this small 

deviation has caused the error in the calculation of the probability of failure in the FORM 

method. Whilst the Monte Carlo method has accurately calculated the probability of 

failure based on the points counted the FORM method has assumed perfectly normal 

behaviour, and therefore slightly miscalculated the probability of failure.  

Small errors in the FORM method when compared to the Monte Carlo method are to be 

anticipated, as the FORM method does not perfectly reproduce a Monte Carlo 

simulation.  
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Figure 4-33: Normality test for the results of the Monte Carlo analysis for the inequality E11,targetx0.99<E11 , where 
E1 and E2 varied only with a coefficient of variation of 0.01. 

The cause of other errors, where the percentage difference is high, with a 

correspondingly large value of actual absolute error is therefore due to the problem 

encountered in §4.7.3. The interaction of the formulae under consideration, and the 

truncation of the data due to the equilibrium constraint produces non-normal results.  

In Figure 4-15 this was found to be 3 parameter lognormal. Non-normal, or slightly non-

normal results, which when compared to the FORM analysis which is considering 

normally distributed data only (which is for the most case true) result in an error in the 

calculation of the FORM probability of failure. 

Without carrying out a Monte Carlo analysis for each fabric and each set of variation 

parameters it is impossible to tell which fit will most accurately predict the response of 

a fabric. Though the results should generally be normally distributed due to the 

interaction of two normal curves. Therefore, to allow prediction of non-existent fabrics, 

or the robustness (§4.10) of existing fabrics without considerable outlay in time, it is 

necessary to assume normal distribution. 
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4.10. Robust design of a fabric 

Robustness is signified by “insensitivity to small deviations from the assumptions” 

(Huber, 1981). It is desirable for fabrics to be robust to any small variations in fabric 

parameters. Therefore a modified FORM methodology is developed to enhance the 

robustness of designed fabrics by allowing small changes in fabric geometry to reduce 

the overall sensitivity of the designed fabric. Robustness can be interpreted as an 

attempt to find the minimum or maximum of a function with constraints on the 

probability of failure such that the result may not be the global minimum, but will be 

robust. The optimisation function might not be completely satisfied, but where the 

additional lack of sensitivity outweighs this a robust solution may be considered to have 

been found (Figure 4-34). Figure 4-34 shows how at point ‘B’, the global minimum, a 

small deviation from the design variables would result in a large deviation from the 

global minimum. However, at point ‘A’ very little change in the objective function would 

occur for an equivalent change in the design variables. Point ‘A’ is therefore the robust 

minimum, and preferential where the sensitivity of the objective function is more 

important than finding the global minimum. 

 

Figure 4-34: Comparing robust and global optimisation  

Erfani and Utyuzhnikov (2012, p. 247) put the problem succinctly: “In engineering design 

optimisation, the designer may prefer a use of robust solution to a more optimal one… 

Therefore a designer may demand a stable (or robust) configuration”. As such, whilst a 

Design variable 

Objective function 

Global minimum (B) 

Robust minimum (A) 
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robust and optimal solution may be desired, if it is unobtainable a robust solution or an 

optimal solution or some combination of the two might be sought. In addition the 

proposed method is able to predict the robustness of the designed fabric, unlike some 

methods which require experimental results to form conclusions (Erfani and 

Utyuzhnikov, 2012). A discussion on different methods of robust optimisation is made 

in the literature review (§2.5.2). 

Previous work has looked at multi-objective robust optimisation in a number of different 

ways, like the work carried out by Kim et al. (2010, p. 3117) which optimises the 

“maximum gradient of the objective function of interest with respect to uncertain 

variables”. As such gradients are minimised, reducing the sensitivity of the overall design 

to that particular uncertain variable. This method is similar to the one presented for the 

robust design of fabrics except for a number of important distinctions. In the work by 

Kim et al. (2010) the uncertain variables alter a design geometry, whilst in the presented 

method the uncertain variables are considered to be the design variables. In addition 

the objective function, 𝑔(𝑦𝑖) , becomes the minimisation of the gradients, whilst 

constrained by the design function, 𝑓(𝑦𝑖), and the system constraints, ℎ(𝑦𝑖)  and 𝑗(𝑦𝑖), 

which relate closely to the equations produced by Beyer and Sendhoff (2007) (§2.5.2). 

An overview of the method is presented below (Equation 4-25). 

𝑀𝑖𝑛   [𝑔(𝑥) = ∑|
𝜕𝑓(𝑦𝑖)

𝜕𝑦𝑖
|

𝑛

𝑖=1

] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑓(𝑦𝑖) = 0,        𝑖𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 

𝑜𝑟  𝑀𝑖𝑛 𝑓(𝑦𝑖),        𝑖𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 

ℎ(𝑦𝑖) = 0,        𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 

𝑗(𝑦𝑖) ≤ 0,        𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

𝑀𝑖𝑛(𝑦𝑖) ≤ 𝑦𝑖 ≤ 𝑀𝑎𝑥(𝑦𝑖) 

Equation 4-25 

The method summarised above (Equation 4-25) minimises the function g(x) to minimise 

the value of the sensitivities defined as the RMS of the derivatives, 
𝜕𝑓(𝑦𝑖)

𝜕𝑦𝑖
. Reducing the 
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RMS sum of the derivatives therefore reduces the effect that any change in a variable 

has on the function  𝑓(𝑦𝑖) . Ensuring 𝑓(𝑦𝑖)  is equal to zero, where 𝑓(𝑦𝑖) =

Σ(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑖 𝑡𝑎𝑟𝑔𝑒𝑡𝑖 − 1)⁄ , ensures that in the first instance the original targets of 

mechanical properties are still met. The equilibrium equation ensures that during 

optimisation the out-of-plane ‘amplitudes’ are equal to the sum of the yarn radii whilst 

the overlap constraint checks that yarns do not overlap each other. 

In practice where more than one variable is under consideration, g(x) becomes the 

absolute value of the sum of more than one set of partial derivatives relating to each 

target (E11, E22 etc). Unlike Taguchi’s method which use DOE (Design of Experiment) 

methods (Beyer and Sendhoff, 2007) the optimisation routine used to calculate the 

optimum robustness is based on the previously used optimisation routines (Fsolve, 

PatternSearch, and Fmincon), a discussion of which was made in the literature review 

(§2.4.2.4). 

The sensitivities are calculated using the sensitivity calculations described above 

(Equation 4-16). As such it is possible to change the sensitivities by altering the geometry. 

This is achieved by minimising the square of the absolute sum of the sensitivity 

calculations, whilst retaining the fabric in a condition that satisfies the targets, 𝑓(𝑦𝑖), 

which are now considered constraints. Some allowable variation in targets can be 

introduced, but in this demonstration of the method only two targets are considered 

which are both feasible. This ensures that a minimum of one or more possible solutions 

is possible, and that the sensitivity minimisation calculation is choosing the least 

sensitive geometry available. This least sensitive (most robust) geometry will satisfy the 

requirement that  𝑦𝑖 =0 . 

The method can also constrain the amount of deviation from an original geometry that 

is permitted by introducing the constraint 𝑀𝑖𝑛(𝑦𝑖) ≤ 𝑦𝑖 ≤ 𝑀𝑎𝑥(𝑦𝑖). This can limit the 

number of standard deviations that each individual variable can move from the mean, 

or original fabric. 

As with all reviewed methods of robust optimisation the presented method minimises 

a function with respect to some constraints (Beyer and Sendhoff, 2007; Schuëller and 

Jenson, 2008; Kim et al., 2010) (Equation 4-26): 



4. Variability and robustness 

PAGE 241 

 

𝑀𝑖𝑛 𝐹 = {𝐹1(𝑥), 𝐹2(𝑥), …𝐹𝑛(𝑥), } 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑗(𝑥) ≤ 0, 𝑗 = 1,2, …𝑚 

Equation 4-26 

The method used to calculate the robust optimum solution is shown in detail below 

(Figure 4-35). 
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Figure 4-35: Methodology for robust design for a single target E11 
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Two tests are carried out to verify the method presented in Figure 4-35: The first checks 

the robustness of an F1202 PVC coated polyester fabric when compared to two feasible 

targets (targets produced using the sawtooth method (§3.4.3), and the second checks 

the feasibility of an optimised fabric design other than that of the original fabric 

geometry to two feasible targets. Two feasible targets are used to reduce the computing 

time required for the considerably more complex and time consuming optimisation 

process. In addition this ensures that more than one possible solution exists, thus 

allowing for a more robust solution to be searched for whilst satisfying the target 

constraint. The amount of computing power required to run a sensitivity optimisation 

for a full set of twenty targets is currently unavailable. Two targets require between 4 

and 8 hours to optimise, and the increase in time will not be linear. Therefore, to 

demonstrate the feasibility of the method it is carried out for two targets only. 

Robustness of existing fabric considering two targets 

An existing F1202 fabric geometry is tested for its sensitivity to individual geometric 

parameters (original), and then optimised for sensitivity to those parameters (robust 

optimised). 

A coefficient of variation from the original geometry of 0.1 was chosen (this represents 

the variation that might be found in each property), and the allowable variation from 

the original targets was set to a single standard deviation (−1 ≤ 𝑦𝑖 ≤ +1). This ensured 

that the new fabric design would be constrained to approximately the same ‘space’ as 

the original fabric geometry. Were the entire possible space of geometries to be 

searched for the most robust solution possible the number of standard deviations away 

from the mean geometry the model considers would have been set to infinity. 

Before the robustness optimisation is carried out the original fabric geometry is 

produced using the method detailed in earlier chapters (§3.5.4), to allow for 

comparisons (Figure 4-36). A PVC coated polyester F1202 fabric geometry as described 

in the previous chapter was used as the basis for the test. The design variables (Ph1,2 L1,2 

r1,2 E1,2 Ek) are then optimised to allow for the reduction of the fabric’s total sensitivity 

to variation in them.  The absolute sum of the original fabric sensitivities is 365.7. 

The original geometry from which Figure 4-36 is created and the robustly optimised 

geometry are detailed in Table 4-7. 
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Fabric property Original (F1202) 
geometry 

Robustly optimised 
geometry 

θ1 (rad) 0.1014 0.1115 

θ2 (rad) 0.1805 0.1903 

L1 (mm) 0.6446 0.7090 

L2 (mm) 1.0817 0.9786 

r1 (mm) 0.1567 0.1411 

r2 (mm) 0.1062 0.1267 

Ey1 (kN/m) 880 955 

Ey2 (kN/m) 810 876 

Ek (kN/m) 37 34 
Table 4-7: Original and robustly optimised geometry for F1202 fabric. 

 

Figure 4-36: Original fabric geometry (F1202 PVC coated polyester) 
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Figure 4-37: Robustly optimised fabric geometry for two targets (F1202 PVC coated polyester E11 and E22) 
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Figure 4-38: Sensitivities of the variables to the E11 target 
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Figure 4-39: Sensitivities of the variables to the E22 target 
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In the individual sensitivity figures (Figure 4 38, Figure 4-39, Figure 4-42, and Figure 4-43) 

the points on the x-axis relate to the geometry θ1 to Ek respectively. 

After the optimisation is carried out the new fabric’s sum of sensitivities was 284.0 

demonstrating an improvement of 22% from the original layout. It should however be 

noted that the fabric’s similarity to the original is guaranteed by the limit placed on how 

much the geometry can vary (one standard deviation). Were a larger variation allowed 

a less sensitive geometry might have been produced. However, the geometry may have 

been less realistic.  

The sensitivity of the targets to the individual unit cell properties are given in Figure 4-38 

and Figure 4-39.A number of important points can be deduced from the figures: 

 Firstly, the sensitivity to variation in the warp yarn out-of-plane angle (θ1) is 

increased with respect to both E11 and E22 compared to the previous value of 

sensitivity, which leads to an overall reduction in the cumulative sensitivity by 

allowing change in the geometry of other points. Thus, increasing the robustness 

of the fabric as a whole has been achieved by increasing the fabric’s sensitivity 

to the value of the out of plane angle. Increasing this sensitivity will allow for an 

alternate geometry which, overall, is less sensitive to variation. 

 The radius of the weft yarn’s sensitivity is zero in both instances. The sensitivity 

of the radius is encapsulated by the response of the other geometric variables. 

 E11 is considerably more sensitive to the warp yarn stiffness than the weft yarn 

stiffness, whilst E22 is considerably more susceptible to variation in the weft yarn 

stiffness. This concurs with the Monte Carlo data (§4.7) where the target relating 

to E11 could be seen to be more sensitive to variation in Ey1. This also confirms 

the instinctive assumption that it would be the warp and weft yarn stiffness’s 

that most affect the value of E11 and E22 respectively. 

 At low loads (10:10kN/m) the geometry is found to be the cause of most 

sensitivity, confirming the observations of Dimitrov and Schock (1986). 
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Robustness of designed fabric considering two targets 

An existing F1202 fabric geometry is tested for its sensitivity to individual geometric 

parameters (original), a fabric is then designed to reproduce its response (optimised), 

and then optimised for sensitivity to those parameters (robust optimised). 

A fabric designed to reproduce the response of the of the original F1202 fabric using the 

method presented in the previous chapter (§3.5.4.1) is also tested, and the robustness 

of this fabric design is then optimised. One solution that was found is detailed below 

(Figure 4-40).The other variables in the test were the same as those set out above. 

Fabric property Original (F1202) 
geometry 

Optimised 
geometry 

Robustly optimised 
geometry 

θ1 (rad) 0.1014 0.1728 0.1812 

θ2 (rad) 0.1805 0.2347 0.2525 

L1 (mm) 0.6446 1.3969 1.4602 

L2 (mm) 1.0817 1.1222 1.2299 

r1 (mm) 0.1567 0.2719 0.2872 

r2 (mm) 0.1062 0.2402 0.2976 

Ey1 (kN/m) 880 6945 7031 

Ey2 (kN/m) 810 6945 7024 

Ek (kN/m) 37 26 30 
Table 4-8: Original and robustly optimised geometry for F1202 fabric. 

The designed fabric has selected a very stiff (glass fibre type) yarn, but this is does not 

interfere in the process of robustly optimising this new geometry. 

 

Figure 4-40: Designed fabric geometry for two targets (F1202 PVC coated polyester E11 and E22) 
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Figure 4-41: Robustly optimised fabric geometry for two targets (Optimised designed geometry) 
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Figure 4-42: Sensitivities of the variables to the E11 target 
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Figure 4-43: Sensitivities of the variables to the E22 target 
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Here the optimised geometry actually demonstrated a lower sensitivity to variation in 

properties than the original geometry from which the targets were produced (249). The 

principal improvement is the removal of the high sensitivity of E11 to r1. The new 

geometries are far less sensitive to r1.  A number of new properties show higher values 

of sensitivity than the original fabric, which is then improved upon with the robust 

optimisation, producing a fabric with a combined sensitivity of 196, a considerable 

improvement on the original fabric. This has however been achieved by, for the most 

part, reducing the sensitivity of the stiffness to the value of L2 to which the design 

appeared particularly sensitive. The function is actually more sensitive to some variables 

than the original geometry was. However the overall effect is to drastically reduce the 

fabric’s overall sensitivity to variation in the design variables. 
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4.11. Discussion of application to the reliability index 

The partial safety method derives the values of the partial factors and the 𝜓 factors in 

one of two ways; either through the use of statistical data and methods, or calibration 

of long standing tradition and knowledge (BSI, 2006). Where the former is used the 

reliability index ‘β’ is stipulated to “ensure that no relevant limit state has been exceeded” 

(BSI, 2006, p. 90). The reliability index is defined as the shortest distance to the limit 

state (Figure 4-44), where the probability of failure can be calculated in accordance with 

Equation 4-27. 

𝑝𝑓 = Φ(−𝛽) Equation 4-27 

 

 

 

Figure 4-44: Design point and reliability index βaccording to the first order reliability method (FORM) for normally 
distributed uncorrelated variables (BSI, 2006) 

Eurocode BS EN 1990:2002 appendix C (BSI, 2006) requires that for different design 

situations a different value of the reliability index is satisfied (Table 4-9). In the ultimate 

design case this will normally be 3.8, and in design terms equates to the use of the 

factors 1.35 (for permanent actions), 1.5 (for variable actions) and other factors. 
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Limit State Target reliability index 

1 year 50 years 

Ultimate 4.7 3.8 

Fatigue  1.5 to 3.8 2) 

Serviceability (irreversible) 2.9 1.5 

1) See Annex B 
2) Depends on degree of inspectability, reparability and damage 
tolerance. 

Table 4-9: Target reliability index β for Class RC2 structural members 1) (BSI, 2006) 

The factors accompanying material properties are calculated for known variability in the 

material. Concrete is found to be more variable in its constitutive properties than steel, 

for instance, as the nature of in-situ casting reduces the surety of the finished product. 

Similarly as discussed by Forster and Mollaert (2004) in the Tensinet Design Guide the 

material factors applied to fabrics are very high. This is due to the high degree of 

uncertainty regarding the performance of architectural fabric. 

Increasing the factors used in material, loading, or other calculations during the design 

process therefore creates a situation where “no relevant limit state has been exceeded” 

(BSI, 2006, p. 90) . Or put another way the reliability index is restrained to a value greater 

than 3.8. Where there is a high variability in a particular resistance or action that affects 

the structures response it must be adequately factored to ensure that the reliability 

index remains above 3.8. 

Figure 4-45 (BSI, 2006) shows how the different actions and uncertainty in material 

properties from the two factors γF (action and effect) and γM (material). Using detailed 

data on the uncertainty of the fabric’s material properties it should therefore be possible 

to reduce the value of γm, and similarly using detailed knowledge of how a fabric 

responds should decrease the value of γRd. The probability of the effect (E) exceeding 

the design resistance can be calculated using Equation 4-28. 
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Figure 4-45: relationship between individual partial factors (BSI, 2006) 

 

Equation 4-28 

Where: 
 β is the target reliability index 

 αE and αR, with |𝛼| ≤ 1, are the values of the FORM sensitivity factors. The 
value of α is negative for unfavourable actions and action effects, and positive 
for resistances. 

A full methodology for how this might be applied in practice is beyond the scope of this 

project, however a discussion of how it can be applied is detailed below: 

For a particular fabric the probability of success must result in a value of β≥3.8. The 

“uncertainty in representative values of actions” and the “uncertainty in actions” (BSI, 

2006, p. 97) is fixed and defined BS EN 1991. Therefore the reduction in factors must be 

achieved in the consideration of material properties and structural resistance. 

The fabric coating and yarn property variability can be determined using testing (§4.7). 

Therefore the variation in resistance (stiffness) remains to be calculated. This can be 

achieved using Monte Carlo simulations (Figure 4-46) or the FORM method. Knowledge 

of the distribution and variation in structural resistance is therefore available.  
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Figure 4-46: Probability density function from Monte Carlo data where r2 and θ1 were varied with Cv = 0.1. 

The method would briefly comprise: 

 Information required: Mean and standard deviation of fabric yarn and coating 

properties. 

 Intermediate information: Mean and standard deviation of the objective 

function (stiffness). 

 Result: Value of β for the variation in fabric yarn and coating properties at 

different load cases for required confidence interval. 

The calculation of the value of β for the variation in fabric yarn and coating properties is 

then modified by partial factors to ensure that a sufficient level of confidence is 

maintained. In practice this will involve increasing the resistance of the fabric by 

reducing its allowable load or extension. Once this has been achieved the value of β 

should be greater than or equal to 3.8, i.e there is a 0.000723 probability of the fabric 

not satisfying the design. 

This should result in more efficient designs where lower safety factors are utilised in the 

design and construction process. Reducing the sensitivity of the fabric to variation in the 

model variables will further help reduce the necessary factors. However, it is 
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conceivable that this could result in a higher safety factor if a fabric is unusually 

susceptible to variation. 
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4.12. Conclusions 

This chapter has presented both a Monte Carlo and a FORM method for the predictive 

simulation of the effect of variability on the mechanical properties of fabrics. Both the 

methods produced required the calculation of one variable directly from the values of 

the others to ensure the compliance with the equilibrium constraint. This process results 

in the encapsulation of the variability of one variable into the response of the fabric 

through the variation in the others. Ensuring the compliance of the simulations to the 

constraints discussed in the previous chapter is necessary to ensure the model’s validity. 

Without compliance with the constraint equations it is possible that yarns could exist in 

the same space, overlapping, or that the yarns could become disassociated from each 

other. Additionally, without compliance with these constraints, the derivatives that 

allow for the calculation of the mechanical properties of a fabric can no longer be 

expected to produce accurate results. The use of these equations presupposes that the 

equilibrium constraints have been complied with. One problem with this method is that 

the normal distributions of calculated mechanical properties when using higher values 

of variation (Cv) cannot be guaranteed. However, to ensure a predictive method is 

presented a distribution for the objective function must be assumed to allow the 

calculation of the probability of failure in the FORM method. The Monte Carlo method, 

however, does not require this information. 

A comparison between the FORM and Monte Carlo methods shows considerable 

variation between the results obtained from the two methods in some simulations. This 

is due to the assumption of normality in the FORM method, where non-normal results 

may be present. Without carrying out a Monte Carlo analysis for each fabric and each 

set of variation parameters it is impossible to tell which fit will most accurately predict 

the response of a fabric. Though the results should generally be normally distributed 

due to the interaction of two normal curves. Therefore, to allow prediction of non-

existent fabrics, or the robustness (§4.10) of existing fabrics without considerable outlay 

in time, it is necessary to assume normal distribution. 

Variation in a single basic variable affects the mechanical properties of the whole fabric 

to a greater or lesser extent depending on the property under consideration and the 

basic variable being investigated. Monte Carlo tests (§4.7.3) showed that variation in the 

output produced by individual basic variables could be visualised graphically (Figure 4-13) 
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and that the effect of each variable on the result was not constant. The fabric was noted 

to be more sensitive to variation in some variables than others, namely L1 and L2when 

considering E22 and E11 respectively. The FORM methodology allowed for the 

quantification of this sensitivity. Finally the robust optimisation method allows the 

values of these sensitivities, and their effect on a fabric to be optimised to reduce the 

overall effect the variables have on a fabric. 

The method to maximise the robustness of a fabric’s design produces considerable 

improvement in the sensitivity of a fabric to variation in its geometric properties and the 

mechanical properties of the coating and yarns. This can result in the increasing of the 

sensitivity of a fabric of a fabric to a particular variable, with a corresponding greater 

improvement across other variables. The complex nonlinear behaviour of fabrics means 

that without the method developed it would be impossible to optimise a fabric in such 

a way using only Monte Carlo or FORM results.   

Both the Monte Carlo and FORM methods rely on the use of data that is normally 

distributed. Data on the variability of the geometry of fabrics, and how they can be 

considered normally distributed was presented at the beginning of the chapter. Normal 

distributions best fit the available data, demonstrated by the probabilities presented. 
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5. Model Validation 
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5.1. Model validation 

The model validation is split into three distinct parts: First a discussion of testing 

methodologies is made. This includes a discussion of uniaxial and biaxial testing, a review 

of the method of processing biaxial data, the creation of a method for the testing of 

individual yarns for elastic moduli, a review of the tensile strengths of fabrics, and a 

method for the calculation of target values of elastic constants at multiple biaxial stress 

states. 

This is followed by comparisons of the model to results for known feasible targets 

(targets which have been derived from sawtooth simulations of fabric biaxial stress-

strain response). This demonstrates how the model can find fabric geometries that 

reproduce target values of Young’s Modulus and Poisson’s ratio which are not always 

the same as the original geometry from which the targets are derived. However, it is 

also demonstrated that the model, when sufficiently constrained, finds the original 

geometry form which the targets were derived. 

Following this a comparison of designed fabrics to real fabric geometry and biaxial 

stress-strain response is made. Real target values of elastic constants at multiple biaxial 

stress states are used as the input for the predictive design model, and real fabric 

geometries are compared to the output. Unfortunately this is less successful than when 

the model is compared to known feasible targets, and a discussion of the reasons for 

this is also made. A real measured fabric geometry is also used as the input for the robust 

fabric geometry optimisation method described in the previous chapter (§4.10). 

Statistical data regarding the fabric geometry is also used rather than assumed values of 

variation. 
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5.2. Methodology for testing of fabrics 

5.2.1. Uniaxial testing 

Uniaxial testing (Figure 5-1) is used to test a fabric’s response under loading in only one 

direction, normally along the warp yarns, along the weft yarns and at 45o to each in a 

bias test (Colman, 2014). In this project uniaxial testing is used to measure the yarn 

modulus by testing only one yarn direction at a time, and thus removing the crimp in 

that yarn (Dimitrov and Schock, 1986). At this point the response of the fabric will be 

largely that of the yarns in one direction only, and therefore the yarn modulus can be 

calculated from the stress-strain response of the specimen (Figure 5-1). This works 

because the stiffness of the coating is considerably less than that of the yarn. Uniaxial 

testing was carried out by Colman (2014). Uniaxial tests often include multiple repeats 

of loading and unloading, which produces hysteresis, as demonstrated below (Figure 

5-1). 

 

Figure 5-1: Uniaxial stress strain curve, showing hysteresis in the fabric response under repeated loading (F1202 
Warp data (Colman, 2013b))  
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Figure 5-2: Uniaxial testing equipment for stress-strain response reproduced from (Newcastle_University, 2012) 

5.2.1.1. Uniaxial testing methodology 

The following is the abbreviated methodology for the uniaxial testing of a fabric for the 

calculation of uniaxial stiffness, not tensile strength (which is described in BS EN ISO 

1421 1998 Determination of tensile strength and elongation at break (BSI, 1998)) or 

seam strength (which is described in BS 3424 Part 33 Method 36 - seam strength (BSI, 

1996)). 

The uniaxial test for stress-strain response uses a flat jaw with grooves to minimise 

slippage of the sample (Figure 5-2). The sample (200mm in length) is tested in a constant 

rate of extension testing machine (INSTROM) at a rate of 100mm/min, although this can 

be varied (Figure 5-3). An LVDT (linear variable differential transformer – strain 

measurement device) is placed along the centre line of the sample to give accurate 

strain read outs. This method limits the amount of displacement that can be recorded 
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to 35mm as the LVDT will not extend beyond this. The data in Figure 5-1 for instance 

demonstrates uniaxial fabric hysteresis after the removal of initial fabric creep.  

 

Figure 5-3: Uniaxial test setup 

Uniaxial testing has been used to calculate the yarn and coating stiffnesses used in 

previous chapters. 

5.2.2. Biaxial testing 

Biaxial testing is used to produce a fabric’s stress-strain behaviour in both the warp and 

weft directions. The advantage of Biaxial testing is that a more realistic response of the 

fabric is obtained as “uniaxial tensile tests subject a material to loads that hardly ever 

occur in practice”(Menges and Meffert, 1976, p. 12). Fabrics are almost always under 

biaxial or biaxial and shear stress during normal operation, meaning that the response 

to biaxial loading is more relevant to real world situations. 

The biaxial test apparatus used at Newcastle University (Figure 5-4) tests “cruciform 

specimens” which “are cut in line with the warp and fill yarns, not necessarily 

orthogonally”(Bridgens and Gosling, 2008, p. 3). As fabrics resist loads in the direction 

of the yarns this allows for the bowing of yarns to be taken into account (§2.2.6), and 
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avoids the introduction of shear forces by ensuring that stress is acting only in the 

direction of the yarns. 

 

Figure 5-4: Biaxial test apparatus used at Newcastle University, reproduced from:  (Bridgens and Gosling, 2008) 

Test data used in this report uses a newer biaxial test rig than that pictured in Figure 5-4, 

which includes automated controls. 

5.2.2.1. Biaxial testing methodology 

A test specimen is cut to the required dimensions for the testing rig to be used. In 

Newcastle this involves a 300mm by 300mm test specimen cut to account for non-

orthotropic yarns with 300mm arms as shown in Figure 5-5. LVDTs are attached to 

record the strain in the specimen; with one positioned in the warp direction, one in the 

weft direction, and one at 45o to the other two. The sample is then installed in the 

testing rig, with slack manually removed from the sample. A prestress is then applied to 

the sample, and prior to each iteration a set of 1:1 loads are applied to remove any 

conditioning from the sample (Membrane Structures Association of Japan, 1995; 

Bridgens and Gosling, 2008). 
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A standard test protocol can then be carried out (Figure 5-6). This procedure of applying 

“prestress followed by mechanical conditioning provides repeatable stress-strain data 

for medium to long term structural design” (Bridgens and Gosling, 2008, p. 4). The profile 

used in this report runs three cycles of each of the following load ratios; 1:1, 2:1, 1:1, 

1:2, 1:1, 1:0, 1:1, 0:1, 1:1 as described in the MSAJ testing method (Membrane 

Structures Association of Japan, 1995, p. 2). Each load ratio is run three times as shown 

in Figure 5-6. Other test profiles have also been developed such as the one shown in 

Figure 5-7 from the Tensinet Design Guide (Forster and Mollaert, 2004), or the radial 

load regime developed by  Bridgens and Gosling (2008) which is designed to populate 

the entire stress space with strain data (Figure 5-8). 

The MSAJ test method returns the test sample to an original 1:1 ratio after each iteration 

which ensures repeatability of results by beginning each test from a similar load history. 

Load history has been shown to affect load response, as such it is important to control 

this during testing with two load cycles required to settle the response (Jackson et al., 

2009). 

 

Figure 5-5: MSAJ cruciform specification (Membrane Structures Association of Japan, 1995) 
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Figure 5-6: Example biaxial response for F1202 fabric 

 

Figure 5-7: Characteristic load history, red = stress in warp direction, blue is the stress in the weft direction from 
the Tensinet Design Guide (Forster and Mollaert, 2004) 
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Figure 5-8: Radial load regime (Bridgens and Gosling, 2008, p. 4) 

The slits in the arms (Figure 5-5) ensure that the stress developed at the centre of the 

specimen is closer to that applied to the specimen. Without the slits deformation occurs 

in the arms, resulting in only 72% of applied stress at the centre of the sample. With slits 

in the arms this is increased to 92% (Membrane Structures Association of Japan, 1995). 

Figure 5-9 shows a finite element representation of a cruciform specimen with and 

without slits in the arms. When no slits are present some biaxial stress can be seen in 

the arms of the sample, which results in deformation, resulting in decreased stress at 

the centre of the sample.  
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Figure 5-9: Finite element representation of stress distribution in the cruciform specimen (Membrane Structures 
Association of Japan, 1995) 

5.2.2.2. Determination of elastic constants from biaxial test data 

Biaxial data is initially processed as follows and utilises a MatLab code produced at 

Newcastle University to process biaxial data based on the MSAJ standard (Membrane 

Structures Association of Japan, 1995): 

 Initial low loads (i.e. manual loading) can be removed 

 Initial strains can be zeroed at the start of the profile 

 Data is then trimmed to remove excessive data points at the end of the profile 
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 Cycles are then identified automatically 

 At this point response plots can be produced for individual cycles 

 Elastic constants can then be calculated using strain or stress minimisation 

Elastic constants are calculated using differential stress or strain minimisation to ‘fit’ a 

plane stress representation to the biaxial data from which elastic constants are then 

calculated. The method uses differential minimisation to find the best fit plane stress 

representation of elastic constants to the biaxial response data. Conceptually both stress 

and strain minimisation are similar as both minimise the difference between a plane 

stress surface and test data to give a best fit surface. However, stress minimisation 

minimises the error between a plane stress surface and measured stresses, whilst strain 

minimisation minimises the error between the surface and the measured strains. The 

different methods can have marked differences in outcome, as will be shown later 

(Table 5-1). The methods consider both constrained and unconstrained formulations, i.e. 

that the relationship in Equation 5-1 (Jones and Pickett, 2005) holds for constrained 

minimisation, whilst it is not a requirement of the unconstrained minimisation. 

𝜈21
𝐸2

=
𝜈12
𝐸1

 

Equation 5-1 

where 𝜈21 and 𝜈12 are the Poisson’s ratios in the warp-weft, and weft-warp directions 

respectively, and 𝐸2 and 𝐸1 are the fabric stiffnesses in the weft and warp directions 

respectively. 

The reciprocal relationship (Equation 5-1) does not necessarily hold for fabrics as they 

are not a homogeneous material (§2.2.7.3) (Gosling and Bridgens, 2008) i.e. the 

“interaction of warp and fill yarns and the behaviour of the twisted yarn structure mean 

that [fabrics] are better described as a mechanism” (Gosling and Bridgens, 2008, p. 220). 

It is possible with testing to show that the Poisson’s ratio can also be greater than 0.5, 

not possible in simple homogeneous materials. As such the unconstrained minimisations 

do not require that the reciprocal relationship is fulfilled. Loss of energy where the 

reciprocal equation is not held can be accounted for in the friction between and within 

yarns, and permanent deformation (Gosling and Bridgens, 2008).  
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The equations for the unconstrained and constrained stress and strain minimisation can 

be found in the appendix (§A.10). 

The constrained differential strain minimisation calculates the inverse of ‘M’ (Equation 

A-31) and multiplies this by ‘N’ (Equation A-32) to give the elastic constants (Equation 

A-33). 

The coefficient of determination or ‘R2’ value for the constrained differential strain 

minimisation is then calculated using the methodology described in the literature review 

(§2.5.1) (Ayyub and McCuen, 1997). 

The unconstrained strain minimisation and constrained and unconstrained stress 

minimisation routines are also described (Equation A-35 to Equation A-43) (Membrane 

Structures Association of Japan, 1995). 

In the minimisation equations E(1) etc. is the first value in the matrix E[…]. Ex and Ey are 

the warp and weft stiffnesses respectively, and εx and εy are the warp and weft strains 

respectively.  
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Examples of the results as calculated for a PVC coated polyester fabric (Ferrari 

Precontraint F1202 PVC-polyester) (§A.1) are shown below (Table 5-1). From this the 

difference between constrained and unconstrained minimisation becomes clearer. The 

unconstrained minimisation generally produces a higher R2 value although given that 

the fit is less constrained this might be expected. There is also a marked variation in the 

Poisson’s ratios which have a far greater variation in the unconstrained variation than 

their constrained counterparts. Given the highly nonlinear nature of fabric response and 

the non-homogeneity of the material it is possible that a ratio of greater than 0.5 might 

be produced (Gosling and Bridgens, 2008). Mechanical interaction between warp and 

weft yarns and crushing of yarns may result in a situation where the extension of one 

yarn produces an equivalent contraction in the other direction that is larger than can be 

accounted for if the Poisson’s ratio is limited to 0.5. There is also variation in the value 

of Young’s modulus produced (up to 282kN/m in the warp direction), which again is due 

to the type of optimisation carried out.  

Analysis Ex 
(kN/m) 

Ey 

(kN/m) 

νxy νyx R2 

Constrained, Differential Strain Min 894 788 0.483 0.426 0.877 

Constrained, Differential Stress Min 602 873 0.534 0.368 0.833 

Unconstrained, Differential Strain Min 792 889 0.255 0.675 0.902 

Unconstrained, Differential Stress Min 651 875 0.291 0.580 0.918 

Table 5-1: Example elastic constants calculated using a Plane Stress Representation (F1202 fabric) 

Whilst the above plane stress equations can be used to calculate the elastic constants it 

is necessary for the purposes of this project to find distinct values of elastic constants at 

specific points on a response surface. For instance, the data shown in Table 5-1 makes 

no distinction between the modulus at 10kN/m:10kN/m (Warp:Weft) and at 

30kN/m:10kN/m. A visual inspection of the 3D graphical representation of the response 

data shows that whilst the results for a plane stress representation may represent a best 

fit to all the fabric data they do not necessarily represent the variation across the surface 

(Figure 5-10 and Figure 5-11). The surface is clearly nonlinear, and the stiffness varies 

across the surface. 
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As a visual aid a four degree polynomial fit is applied to the test results (i.e. it follows 

the form set out in Equation 5-2). To ensure the quality of interpolation between data 

points of the stress-stress-strain surface a number of cuts are then taken through the 

surface along the warp and weft directions with the points they intercept included in 

the diagram to demonstrate that no unexpected variations in surface occur (Figure 

5-12and Figure 5-13). Whilst the first subplot for both figures appears to show a lack of 

data points at high loads this is because the cut runs parallel to one of the testing 

directions, not crossing it. R2 values are not used because the fit’s profile between data 

points could not be controlled. The difference in R2 values between a third and fourth 

order polynomial is discussed with relation to Figure 5-14 below. 

 

Figure 5-10: 3D representation of F1202 response data with biaxial data points which appear as the white lines in 
the figure. The data was obtained using a biaxial testing machine at Newcastle University. 
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Figure 5-11: 3D representation of F1202 response data without biaxial data points. The data was obtained using a 
biaxial testing machine at Newcastle University. 

𝑓(𝑥, 𝑦) = 𝑝00 + 𝑝10𝑥 + 𝑝01𝑦 + 𝑝20𝑥
2 + 𝑝11𝑥𝑦 + 𝑝02𝑦

2 + 𝑝30𝑥
3 + 𝑝21𝑥

2𝑦 + 𝑝12𝑥𝑦
2

+ 𝑝03𝑦
3 + 𝑝40𝑥

4 + 𝑝31𝑥
3𝑦 + 𝑝22𝑥

2𝑦2 + 𝑝13𝑥𝑦
3 + 𝑝04𝑦

4 

Equation 5-2 

Where pxy is a constant coefficient  

 

Figure 5-12: F702 cut through the surface for surface fit checking along the weft direction 
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Figure 5-13:F702 cut through the surface for surface fit checking along the warp direction 

The elastic constants calculated for a PTFE B18089 PTFE coated glass fibres fabric (§A1) 

show a different set of results to those for the PVC coated polyester fabric (Table 5-1). 

The values of R2 for differential stress minimisation are very poor (Table 5-2), and this is 

discussed below. These results are clearly erroneous, and show that stress minimisation 

is less reliable than the strain minimisation method. Figure 5-14 shows a 3D 

representation of the data. The R2 values for the fit in Figure 5-14 are 0.996 and 0.997 

in the warp and weft direction respectively. This is reduced to 0.97 if a third order 

polynomial is used, a small but appreciable difference. 

Analysis Ex Ey νxy νyx R2 

Constrained, Differential Strain Min 1448 997 1.137 0.783 0.099 

Constrained, Differential Stress Min' 522 583 -0.044 -0.039 859017 

Unconstrained, Differential Strain Min 1397 1022 1.049 0.849 0.098 

Unconstrained, Differential Stress Min 549 560 -0.110 0.015 858745 

Table 5-2: Example elastic constants calculated using a Plane Stress Representation (B18089 fabric) 
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Figure 5-14: 3D representation of B18089 response data without biaxial response data points shown in the figure 

The PTFE glass-fibre fabric (Figure 5-14) is clearly less well represented by a plane stress 

relationship, with the sharp downward curves at more extreme ratios of stress-stress 

(1:0 for instance). A Plane stress relationship might adequately describe the stress –

stress-strain surface at the centre of the plot, but this would underestimate stiffness at 

the edges. 

A method was developed to calculate elastic constants at specific points on a surface to 

allow for a comparison between biaxial test data and simulated designed fabric 

response data. For this section a PVC coated polyester Ferrari Precontraint F702 (§A.1) 

fabric will be used as the example fabric. As the response for this fabric fits the plane 

stress formulation well this will demonstrate just how much variation can be found even 

in fabrics where the fit is good. The F702 fabric produces a very flat response surface 

Notably the R2 value for the fabric (Table 5-3) is far higher than that shown earlier for 

the F1202 fabric. There is also far less variation between different analysis methods (and 

between different directions) in the values of the elastic constants. 
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Analysis Ex 
(kN/m) 

Ey 
(kN/m) 

νxy νyx R2 

Constrained, Differential Strain Min 572 575 0.323 0.325 0.962 

Constrained, Differential Stress Min' 558 564 0.300 0.297 0.942 

Unconstrained, Differential Strain Min 573 574 0.327 0.321 0.962 

Unconstrained, Differential Stress Min 558 564 0.304 0.293 0.942 

Table 5-3: Elastic constants calculated using a Plane Stress representation (F702 fabric) 

 

Figure 5-15: 3D representation of F702 response data without biaxial data points including the plane stress 
representation of the surface using unconstrained strain minimisation elastic constants 

Even where the R2 value is high (0.962) the plane stress representation does not 

perfectly represent the fabric response. The solution chosen to this was to create a 

series of small planes for specific points on the surface, in the following example the 

points are evenly spread across the range of loads, but there is no requirement for this 

to be so. At the chosen point on the surface a small area of the surface is considered, 

the size of which will be discussed below, for this small area an individual plane stress 

representation is made. The small area is defined as a sample of the total biaxial data 

for which mechanical properties can be found. The small area is populated with data 

points (again the number of which is discussed below) and the plane stress formulation 

applied to these data points. From this the elastic constants can be found as has been 

shown below (Figure 5-17, Figure 5-16). Where more than one of these areas is used to 
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calculate targets for fabric design the method will be referred to as the multiple point 

target method. 

 

Figure 5-16: Data points in relation to biaxial test response surface, showing how a smaller area of points fits to the 
test data better than the larger are shown above 

 

Figure 5-17: Data points produced to populate the small surface area to be represented by the plane stress surface 

Initially each plane was created using all four differential minimisation methods, 

however, it became apparent that the differential stress minimisation was not 

producing accurate results, with clearly erroneous values of R2 being produced. After an 

investigation of the individual parameters of the calculation it was noted that det(M) 

was approximately zero in the stress minimisation method. As such the matrix M was 

singular, and therefore the inverse of M, M-1, was ill conditioned, and would be very 
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sensitive to small errors, thus producing the erroneous results. This is problematic 

because in the differential stress minimisation changes in the strain are exceptionally 

small, especially in PTFE glass-fibre fabrics. This is because the total change in strain 

(which may have only been in the order of 2.5% (0.025) to begin with) is distributed 

across perhaps 1000 points (if a logging rate of 2s is used). Thus the change between 

individual points may be in the order of 2.5x10-5. In PTFE fabrics the strain experienced 

is less due to the stiffness of the glass fibre yarns, and the original flatter geometry. This 

is particularly problematic when only a small area, as used to calculate point elastic 

constants, is considered as less points of a smaller change are used. This is shown in 

Figure 5-18, where the top two plots show how the strain minimisation results sit on top 

of the biaxial test data. However, the bottom two plots show that the stress 

minimisation results are distinct from biaxial test data that they should represent. 

 

Figure 5-18: Comparison of constrained and unconstrained differential strain and stress minimisation results. Blue– 
fabric biaxial stress-stress-strain response surface points, red – constrained/unconstrained differential 
stress/strain results. For a f702 fabric at 3.76kN/m (warp), 11.27kN/m (weft) 

Therefore differential stress minimisation is only applicable where changes in strain are 

observed to be comparatively large. The difference in magnitude between the 

determinants of the stress and strain matrices for M is of the order 1018. It is noted that 

the stress minimisation becomes more accurate where there is a greater slope, normally 

where the load ratio is 1:1. 
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Because stress minimisation can produce erroneous results it was decided that only 

differential strain minimisation will be used for further work on the ‘patch’ used to 

calculate elastic constants. 

The area and number of points that were needed to give accurate elastic constants was 

derived from a variation study.  The study looked at the ‘area’ the points inhabited 

(range of loads in the warp and weft directions), the number of points, and the density 

of the points used in the ‘patch’ (selection of biaxial data under consideration) and the 

effect of varying these on the value of the elastic constants produced. Again a F702 PVC 

polyester fabric is used in this section. 

The results are shown below where the area of the ‘patch’ was found to be the most 

important factor for the calculation of the elastic constants for the multiple point target 

method, whilst the density appeared to show some correlation to the value of resultant 

elastic constants the number of points showed no correlation. Examples of the results 

are given below (Figure 5-19 through to Figure 5-25). 

Variable Target 
point 1 

Target 
point 2 

Target 
point 3 

Target 
point 4 

Target 
point 5 

Px (kN/m) 3.8 3.8 7.5 11.2 11.2 

Py (kN/m) 3.8 11.2 7.5 3.8 11.2 

Ex (kN/m) 698 441 569 644 487 

Ey (kN/m) 651 620 568 481 528 

νxy 0.585 0.122 0.325 0.460 0.233 

νyx 0.433 0.459 0.281 0.028 0.302 

Table 5-4: Target values of elastic constants at specified stress states produced from the F702 fabric using 
unconstrained differential strain minimisation 
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Figure 5-19: Area of 'patch' plotted against Ex at target point 1  

 

Figure 5-20: Area of 'patch' plotted against Ex at target point 4  
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Figure 5-21: Density of 'patch' plotted against Ex at target point 1  

 

Figure 5-22: Density of 'patch' plotted against Ex at target point 4  
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Figure 5-23: Number of points in the 'patch' plotted against Ex at target point 1  

 

Figure 5-24: Number of points in the 'patch' plotted against Ex at target point 14 
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The R2 value is investigated with respect to the density (Figure 5-26). Logarithmic scales 

were used to avoid clustering at small values, which also demonstrates how the value 

of the elastic modulus changes with variation in area. A smaller area is found to generally 

produce a less variable result, with the hypotenuse occurring at approximately 

0.1(kN/m)2 (the area being the area on stress-stress-strain response surface considered, 

the axis of which are kN/m). Additionally the optimum density seems to consistently 

occur at approximately 70 points/(kN/m)2.  

 

Figure 5-25: Area of 'patch' plotted against Ey at target point 1  
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Figure 5-26: Sum of R2 plotted against the density of points for the plane stress representing the whole fabric 

The maximum total R2 value appears to occur at a lower density, however, this does not 

necessarily mean that the lower densities will give improved results. In this instance a 

reduced density reduces the number of points, thus allowing a better fit. For instance 

the lowest possible density would have only four points to which a fit would need to be 

made, whereby error might be reduced, whilst the interior of the ‘four points’ might 

show, if investigated, a larger error. Thus the hypotenuse occurs at approximately 1x102 

(points/(kN/m)2) where R2 appears to be stabilised. This value is similar to the 70 value 

identified earlier, and solidifies the choice of density to be used. 

The final result of the process is a series of graphs (Figure 5-27 and Figure 5-28) which 

show how the value of stiffnesses changes with relation to the area of the patch being 

considered, the number of points, and the density of points. There is some coupling 

between the different tests, most obvious in Figure 5-23 where two distinct curves are 

visible. This is because, whilst generally more points are better, the graph includes data 

for increased numbers of points at different patch areas. Therefore, where the patches 

are small to begin with, area (the least coupled response) is already low. This is similar 
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in other figures, where the density is low in Figure 5-22, and Ex is already approximately 

optimal, a small enough area is being considered to give the required value of Ex. 

A set of target values for the elastic properties that can be used as the target properties 

for fabric design are also produced. For this particular fabric these are given in Table 5-4 

which includes the loads (P) as well as the elastic constants. 

In addition a PTFE coated glass-fibre fabric is also considered (Figure 5-29 and Figure 

5-30) with each plane shown at the target loads that have been spaced evenly on the 

response surface. When the PVC coated polyester fabric’s response surfaces are 

compared to the PTFE coated glass-fibre fabric‘s surfaces it is easier to acknowledge why 

a single plane stress representation does not adequately represent fabric response. 

Whilst the PVC coated polyester fabric appears to be fairly well represented by the plane 

stress representation the PTFE coated glass-fibre fabric shows considerably greater 

variation in the position of the planes (Table 5-5). 

A numerical comparison between the results of a plane stress representation and the 

multiple point target generation is made using the data in Table 5-5. Considering only 

the results of the stiffness in the warp (x) direction it is clear that the plane stress 

representation overestimates stiffness at the 10kN:30kN loads by 93% and 

underestimates it at targets 3 and 4 by 30 and 34% respectively.  Further, the Poisson’s 

ratios whilst higher than 0.5 as discussed earlier in this section (§5.2.2.2) and in the 

literature review (§2.2.7.3) are in error by up to 200% (Target 4). 

This clearly demonstrates how multiple targets are necessary for fabric design, and how 

the use of single values from plane stress representations can give misleading results 

because the expected stiffness might be up to 93% less than predicted using the plane 

stress representation. Bridgens et al. (2009) considers how variation in stiffness might 

affect the displacement of a hypar structure under different loading conditions. Using a 

broad comparison to these results it is possible to see that where the height/side length 

is 0.2 a difference of +500kN/m (target 3) might result in a reduced deflection of 

approximately 100mm, and a difference of -1000kN/m might result in a difference in 

predicted deflections of approximately 100mm. When ponding and serviceability 

criteria are considered this might result in serious problems should this data be used to 
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design a structure (an additional 100mm deflection might result in a clash between 

supporting structure and the fabric). These multiple targets are used as the targets for 

the design process for fabrics below (§5.3.2), allowing a fabric to be designed for 

accurate fabric properties rather than the approximation offered by the plane stress 

method. 

It is important that accurate targets and high quality data are available to ensure the 

design model is able to reproduce fabric geometries. Without multiple targets, and using 

the plane stress representation, the model as developed (§3.3) will be unlikely to 

reproduce fabric geometries, as the targets would not fully represent the stress-stress-

strain characteristics of the fabric under consideration. 
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Method Analysis Ex 
(kN/m) 

Ey 
(kN/m) 

νxy νyx 

Plane 
Stress 

Constrained, Differential Strain 
Min 1706 969 1.27 0.72 

Unconstrained, Differential Strain 
Min' 1578 1016 1.07 0.84 

Multiple 
targets 

Unconstrained, 
Differential Strain Min 

Target 1 
(10:10) 1380 952 0.80 0.72 

Target 2 
(10:30) 819 1556 0.14 1.29 

Target 3 
(20:20) 2261 1287 0.72 0.58 

Target 4 
(30:10) 2416 619 1.83 0.28 

Target 5 
(30:30) 1279 1115 0.63 0.87 

Constrained, 
Differential Strain Min 

Target 1 
(10:10) 1570 879 1.05 0.59 

Target 2 
(10:30) 977 1191 0.74 0.91 

Target 3 
(20:20) 2646 1189 1.01 0.46 

Target 4 
(30:10) 1979 656 1.44 0.48 

Target 5 
(30:30) 1569 960 0.99 0.61 

Table 5-5: Comparison of plane stress and multiple target representations of biaxial data (PTFE coated glass-fibre 
– B18059). The values (10:10) etc. refer to the warp:weft load respectively in kN/m 
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Figure 5-27: Plane stress response surfaces for each selected point on the surface for a PVC coated polyester fabric (F702) (using unconstrained strain minimisation) visualisation 1 
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Figure 5-28: Plane stress response surfaces for each selected point on the surface for a PVC coated Polyester fabric (F702) (using unconstrained strain minimisation) visualisation 2 
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Figure 5-29: Plane stress response surfaces for each selected point on the surface for a PTFE coated glass-fibre fabric (B18059) (using unconstrained strain minimisation) visualisation 1 
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Figure 5-30: Plane stress response surfaces for each selected point on the surface for a PTFE coated glass-fibre fabric (B18059) (using unconstrained strain minimisation) visualisation 2  



  5. Model validation 

 
PAGE 294 

 

5.2.3. Yarn mechanical properties 

Testing of yarns to determine mechanical properties is necessary to produce the yarn 

moduli that are used to carry out fabric design. There are numerous inherent problems 

associated with the testing of yarns for stiffness values.  

5.2.3.1. Yarn properties from uniaxial tests 

A 200x50mm sample is tested using LVDT strain measurements at a rate of 100mm/min. 

The yarn directions are aligned along and orthogonal to the loading direction 

respectively, when preparing the sample the yarn directions need to be noted and the 

edges of the sample aligned with the yarns (for a fabric with orthogonal yarns).  LVDTs 

are attached to the sample along its centre line using pins at a separation of 100mm. 

Flat tensile jaws are used to clamp a 380x 50mm sample between a gauge length of 

200mm. LVDTs cannot be used to record extension beyond 35mm and as such need to 

be removed if extensions are required to go beyond this point. 

After the test the stress-strain curves for the fabric are available such as those presented 

earlier (§5.2.1) or in the literature review (§2.3.2.3) where Dimitrov and Schock (1986) 

identify how the stress-strain curve can be used to identify yarn stiffness. The yarn 

response can then be characterised in terms of kN/m or if necessary with knowledge of 

the yarn spacing in terms of N/yarn or even kN/m2 if the cross-sectional areas of yarns 

are known. 

There are specific advantages to using uniaxial testing for yarn properties. Yarns tested 

in-situ (as part of a fabric) are being tested under the conditions that occur when 

resisting loads in structural situations, with the same crushing or crimping factors. 

However, given that there will always be some crimp in the tested fabric, and some 

transfer of energy to friction between yarns it is also possible to see that this testing 

method is not truly determining the actual yarn response. Of principal importance for 

this report is the inability of the uniaxial test method to produce statistical distributions 

of mechanical properties for individual yarns for use in the robustness optimisation 

method (§5.4.4). This is because the contribution of an individual yarn within a fabric 

cannot be distinguished from that of the other yarns in a strip test, and cannot therefore 
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be measured. This means that any statistical distributions obtained from uniaxial tests 

are not applicable to the individual yarns. 

To calculate coating stiffness a bias-cut test (§5.2.1.1) can be carried out using the same 

procedure as for a normal uniaxial test but the yarns are aligned at 45 degrees to the 

loading direction, meaning that the cut is also carried out at 45 degrees to the yarn 

direction. 

This means that no two yarn ends of a single yarn are within the jaws, and the load is 

therefore only carried by the coating. In this situation the coating stiffness can be 

calculated. 

5.2.3.2. Testing of single yarns 

The testing of individual yarns for mechanical properties is necessary to provide a useful 

comparison to the properties obtained through uniaxial testing and provide a second 

source of input for modelling. Specifically relevant as mentioned above was the need for 

accurate statistical information about the distributions of yarn moduli. The Robust 

Fabric design method (§4.10) requires as its input data about the coefficients of variation 

of individual unit cell properties. For geometric properties this has been achieved using 

the results of photogrammetry, however, no distributions regarding individual yarns are 

available. 

Testing was carried out using the ASTM International standards (ASTM, 2014), with 

references to British standards (BSI, 2014) and the Membrane Structures Association of 

Japan (Membrane Structures Association of Japan, 1995). No standard has been found 

relating specifically to the testing of yarns that have been removed from an architectural 

fabric. The ASTM Standard Test Method for Tensile Properties of Yarns by the Single-

Strand Method  is used as the basis for the testing procedure as “most yarns can be 

tested by this test method” (ASTM, 2010, p. 2). Some variation is introduced that relates 

specifically to the types of yarns tested and the data needed, for instance, whilst the 

standard requires a time to break of 20 seconds a constant rate of extension will be used 

that is consistent with uniaxial tests. This variation is used to allow useful comparisons 

to be made to uniaxial test results. Varying the testing rate may have introduced or 

reduced creep in the yarn, making comparisons of data less viable. This variation is 
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allowed for within the standard which specifies that alternate speeds are provided for 

within the standard (ASTM, 2010). 

Initially a series of tests are carried out on a virgin yarn to identify errors and problems 

with the methodology, after which tests are carried out on stripped yarns from fabrics: 

A virgin (as manufactured) polyester yarn was tested in accordance with the testing 

schedule laid out in the appendix (A.11 Table A-6). The test was performed to check the 

accuracy of the testing method and to ensure that unexpected problems and procedural 

errors were identified prior to the use of yarns stripped out of fabrics which are time 

consuming to produce. The yarn tested was a ‘Tersuisse Multifils SA’ PES (Polyester) 

fibre from a spool available at the time of testing (Federation, 2014). It was chosen for 

its immediate availability rather than any specific properties, with a large quantity 

available multiple tests could be carried out quickly with only minimum preparation time. 

The yarn has a linear mass density of 1100 dtex and a fibre count of 192. 

A number of deviations from the standard were made: 

 An extension rate of 100mm/min is used to allow a comparison to be made 

between uniaxial test data and the yarn tests. 

 Breakages at grips are not considered to be as detrimental to the test as specified 

in the standard as the yarn extension characteristics are under investigation not 

the breaking strength. The extension properties will be more accurately 

investigated with flat jaws than capstans or other clamping methods as 

extension within the capstan cannot be accurately accounted for and would 

contribute to the apparent extension of the specimen within the gauge length. 

 Flat faced jaws are constructed by using the toothed jaws used in the uniaxial 

tests, and shown in Figure 5-2, with an intermediate PVC Polyester layer to give 

cohesion to the jaws clamping the yarns and stop the yarns breaking due to the 

jaw teeth. 

The results of the virgin yarn test are shown in Figure 5-31. 
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Figure 5-31: Results of the virgin yarn (Tersuisse Multifils SA) tests with outliers removed 

The tests used to produce Figure 5-31 used a 250kN load cell which gave a low resolution 

on the relatively low loads the yarns were tested at, resulting in the poor quality curves 

presented. The curves are consistent with the response shown in the literature review 

(§2.2.2). Further to this, once redundant results had been removed, principally the two 

results for yarns that failed at very low loads, responses appear to be repeatable. From 

this it can be concluded that the testing procedure appears to work. However, the 

further tests carried out on a 50kN load cell gave a far higher resolution resulting in a 

smoother curve for all following results. 

The yarns also failed across the length of the yarn, with some clustering towards the 

jaws which suggested that whilst the jaws had an effect on the point of failure this was 

only the case at high loads, and was not effecting the test prior to failure.  

5.2.3.3. Yarn properties from stripped yarns 

The method of yarn extraction (sometimes hereafter referred to as stripping or ravelling) 

is based on ASTM (2012) D3883-04 and the detailed yarn testing methodology is covered 

in the appendix (§A.11). Examples of the ravelling process are shown in Figure 5-32 and 

Figure 5-33. 
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Figure 5-32: Yarn ravelling on a sample of PVC coated polyester fabric 

 

Figure 5-33: Yarn ravelling on a sample of PTFE coated glass-fibre fabric 

The testing equipment is shown in Figure 5-34, the yarns are aligned centrally, and 

cohesion is maintained using the intermediate PVC layer, which cushions the yarn 

against the pressure of the teeth. 

 

Figure 5-34: Testing equipment including failed F1202 yarn 
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Examples of the results produced are shown below. A minimum of 13 tests were carried 

out in each direction (warp and weft) to ensure a sufficient sample. If any single yarn 

slipped excessively during testing or failed at a low load more tests were carried out to 

produce 13 data sets. Considerably more tests than are shown in the following figures 

were carried out however for brevity these results are summarised in Table 5-7. 

 

Figure 5-35: Example result for PVC polyester fabric F702 in the warp direction 

The polyester yarn (Figure 5-35) shows a similar response to the virgin yarn (as they are 

both polyester) and to the initial uniaxial response (Figure 5-1). It is also similar to the 

polyester force-extension curve shown in the literature review (§2.2.1). An initial higher 

stiffness followed by a period of relatively low stiffness, returning to approximately the 

original stiffness again prior to failure. This response posed some problems for the 

calculation of a linear modulus, which is discussed below (Figure 5-38). 
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Figure 5-36: Example results for PTFE glass-fibre fabric B18089 in the warp direction 

 

Figure 5-37: Example results for Silicone glass-fibre fabric ATEX3000 in the weft direction 

The calculation of the modulus for the glass-fibre yarns is far simpler due to the linear 

response of the yarn. A small amount of curvature in the load extension graph might be 

noted (especially at high loads), this could be caused by the twist imparted to the 
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filaments in the yarn. In the glass-fibre yarns a small degree of initial extension at almost 

no load was always noted. This is caused by the crimp that remained in the yarn after it 

was removed from the fabric increasing the length of the specimen slightly whilst no 

initial load is placed on the yarn.  

Repeatability was excellent with the calculated coefficients of variation for the data low 

and in the order of 0.021 – 0.07. Visual inspection confirms the repeatability of the 

results except where some outlier exists. Outliers generally occurred where the yarn 

slipped in the jaws, or where the yarn failed prematurely, which may have been caused 

by damage in the yarn, possibly occurring during ravelling. The one exception to this was 

the consideration of the F1202 fabric yarns in the warp direction. 

 

Figure 5-38: Example of method of calculation of modulus for polyester yarns (F702 Warp) (blue = curve utilised for 
calculation, green = available data, red = fitted curve) 

  



  5. Model validation 

 
PAGE 302 

 

Specimen Point on Curve Calculated Modulus (kN/m) 

3 Initial stiffness 732 

Early low stiffness 153 

Mid extension stiffness 606 

Late stiffness 352 

5 Initial stiffness 772 

Early low stiffness 165 

Mid extension stiffness 629 

Late stiffness 384 

6 Initial stiffness 769 

Early low stiffness 161 

Mid extension stiffness 600 

Late stiffness 309 

7 Initial stiffness 781 

Early low stiffness 169 

Mid extension stiffness 617 

Late stiffness 368 
Table 5-6: Comparison of yarn modulus for different curve segments for selected tests (tests 1, 2, and 4 were 
removed as anomalous) 

  

Figure 5-39: Calculation of yarn modulus as calculated for the early response from F702 (warp) yarn response curve 
(blue = curve utilised for calculation, green = available data, red = fitted curve) 
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Figure 5-40: Calculation of yarn modulus as calculated for the low stiffness response from F702 (warp) yarn 
response curve (blue = curve utilised for calculation, green = available data, red = fitted curve) 

 

Figure 5-41: Calculation of yarn modulus as calculated for the mid response from F702 (warp) yarn response curve 
(blue = curve utilised for calculation, green = available data, red = fitted curve) 
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Figure 5-42: Calculation of yarn modulus as calculated for the late response from F702 (warp) yarn response curve 
(blue = curve utilised for calculation, green = available data, red = fitted curve) 

 

Figure 5-43: Example of method of calculation of modulus for glass-fibre yarns (ATEX3000 weft) (blue = curve 
utilised for calculation, green = available data, red = fitted curve) 
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Fabric Type Direction Mean Standard 
deviation 

Variance Coefficient 
of 

variation 

Number of 
samples 

used 

ATEX3000 Warp 3222 67.6 4574 0.021 12 

Weft 2875 116.1 13485 0.040 12 

ATEX5000 Warp 5525 215.8 46587 0.039 13 

Weft 5149 273.7 74915 0.053 13 

B18089 Warp 4438 327.6 107300 0.074 13 

Weft 3705 238.9 57052 0.064 11 

B18059 Warp 6812 227.9 51923 0.033 13 

Weft 5302 195.3 38153 0.037 13 

F702 Warp 444 9.1 84 0.021 9 

Weft 382 14.2 202 0.037 13 

F1202 Warp 729 50.7 2568 0.070 7 

Weft 617 46.3 2142 0.075 14 
Table 5-7: Yarn test summary; showing the calculated values of stiffness using the central portion of the response 

Generally results showed low values of variation with coefficients of variation being 

consistently less than or equal to 0.075 exemplified by the data used to calculate the 

ATEX3000 yarn elastic properties (Figure 5-44). Visual inspections demonstrates that the 

gradients appear similar, and the coefficient of variation found for the data bears this 

out (0.021). Compare this with the results for the F1202 warp yarn and there is clearly a 

difference in the repeatability of the tests (the tests were carried out under the same 

conditions) (Figure 5-45). Firstly, the tests show failures at high loads due to slips of the 

clamping equipment or partial failure of the specimen. After this was noted a further 

seven repeats were carried out in an attempt to find a solution to this, but were 

unsuccessful in doing so. The tests are therefore considered to have failed at the slip 

point, with data beyond this being unused. Using teeth to stop slippage was shown to 

cause failure at lower loads, whilst capstans were ruled out as they do not allow for the 

accurate calculation of stiffness. Capstans spread the load of the yarn across a wider 

area using a curved surface to spread the load in the yarn before it is clamped. This 

means that extension across the surface of the capstan cannot be accurately determined, 

rendering head displacements unusable.  

The data in Figure 5-45 shows a high degree of spread, with a wide range of gradients. 

The coefficient of variation of all these gradients with the exception of sample 6 was 

actually found to be 0.20, which is unacceptable for use in this model as it suggests that 

there is a 20% dispersion in the data. After the investigation of the data a second change 
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in gradient mid curve was found in the data, and noted at around 15mm extension. It is 

therefore hypothesised here that some further deformation mechanism is occurring in 

those yarns not grouped with the steepest seven. 

 

Figure 5-44: Example of repeatability of results from ATEX3000 warp data with outliers removed 

 

Figure 5-45: All data produced from the F1202 tests in the warp direction 



  5. Model validation 

 
PAGE 307 

 

 

Figure 5-46: A selection of samples of F1202 warp data with the second change in gradient visible 

The F1202 warp yarn shows considerable discretisation of two plies once removed from 

the fabric, which can also be seen in cross sections of the fabric in situ (Figure 5-47). The 

second extension to failure after the initial failure is caused by the continued extension 

of the second ply demonstrating that both plies are acting individually to some extent 

(Figure 5-46 and Figure 5-45). Lastly, Figure 5-48 shows how the yarn has failed at two 

distinct points, and how the yarn has split into its two constituent plies during the testing 

(the red marks indicate the centre of the sample). Given this information it is concluded 

that the high variation in the yarns response is likely to be due to the two plies of the 

yarn becoming uncoupled and acting separately. This decrease in stiffness at 

approximately 10-15mm extension, proceeded by an area of high repeatability up to 

approximately 10mm extension, is therefore not typical of what would happen in a yarn 

in-situ. Where the yarn is still restrained as part of a whole fabric this uncoupling would 

not occur at these loads, as such only those tests where the uncoupling does not occur 

were used in the calculation of the yarn extension characteristics. 
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Figure 5-47: Cross section of F1202 warp yarn showing the two discrete plies (Colman, 2013a) 

 

Figure 5-48: F1202 warp yarn after failure 

 

Figure 5-49: Results used for calculation of F1202 (warp) mechanical properties 

The results whilst clearly not as visually repeatable as those shown for the ATEX 3000 

fabric are a clear improvement on the wide spread shown for all the data. As such it was 

deemed reasonable to use this data in further calculations. 
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A comparison to previously carried out uniaxial tests (Colman, 2014) was also made 

(Table 5-8): 

Fabric 
Type 

Direction Yarn test 
result (kN/m) 

Upper yarn test 
value (kN/m) 

Lower yarn test 
value (kN/m) 

Uniaxial strip 
test result 

(kN/m) 

ATEX3000 Warp 3222 3357 3087 3120 

Weft 2875 3107 2643 3190 

ATEX5000 Warp 5525 5957 5093 4110 

Weft 5149 5696 4601 6300 

B18089 Warp 4438 5094 3783 4270 

Weft 3705 4183 3228 3970 

B18059 Warp 6812 7268 6356 4610 

Weft 5302 5693 4911 4770 

F702 Warp 444 462 426 485 

Weft 382 411 354 425 

F1202 Warp 729 830 627 880 

Weft 617 710 525 810 
Table 5-8: Comparison of single yarn test results to previously carried out uniaxial tests for yarn modulus 

The uniaxial data used in Table 5-8 was produced by Colman (2014) and was generated 

using straight portion of the uniaxial response from uniaxial strip tests (§5.2.1) (similar 

to Figure 5-41), and includes the coating response (i.e. it has not been removed). 

The upper and lower values of the yarn test results are calculated as the 95% confidence 

bounds, or two standard deviations up and down from the calculated mean. The yarn 

tests for the PVC polyester fabric appear to underestimate the yarn stiffness if compared 

to the uniaxial tests, whilst the glass fibre yarns both over and underestimate the value. 

However, as discussed above the values calculated for individual yarns are likely to be 

the true values of the stiffness of the yarns, whilst the results of the uniaxial tests will 

be affected by other factors. 

Firstly, if some crimp remains in the yarns under uniaxial testing then the calculated 

value of stiffness may be underestimated as some portion of the extension is due to 

further yarn straightening and the yarn length will in reality be longer than predicted. 

Both these would reduce the value of the calculated stiffness. Further the yarn crushing 

caused by the interaction between the yarns may affect the yarn, possibly causing 

bending in the tested yarn, or inducing further stress. Coating and the transverse yarns 

will also offer some resistance to extension in the alternate direction, and it is possible 
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that in the case of the PVC coated fabrics this is more profound. A visual inspection of 

PVC coated polyester fabric cross-sections, in comparison to other fabric cross sections, 

does seem to show a higher degree of coating impregnation, which may result in the 

coating having a greater effect on tensile strength. Yarns may have been damaged 

during ravelling, reducing their stiffness, whilst this may have been more profound in 

some fabrics, or directions than in others. 

In short, it is difficult to prove whether either set of values are correct. The accuracy of 

the resulting analysis from the results is the defining consideration. 

5.2.4. Tensile strength 

Tensile strength has not been measured for this report, but might be measured as per 

BS EN ISO 1421:1998 (BSI, 1998). Tensile strength would be better measured using 

capstans, where the clamping force should be spread more evenly reducing the number 

of breaks at clamp, found to be generally between half and three quarters of tests for 

elongation response above. The use of capstans however would not be applicable to 

testing for elongation characteristics, as discussed above. 
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5.3. Validation study 

Comparisons of the model output using known feasible targets have been made in 

previous chapters (§3.7), and a short review of those findings is made in this section 

(§5.3.1). Further validation studies are then carried out using biaxial test data processed 

using the method discussed earlier (§5.2.2.2). These compare the method’s output to 

real test data, and demonstrate how the design methodology operates when posed with 

test data. A fabric geometry is also robustly designed using statistical data collected on 

the about the fabric’s properties. 

5.3.1. Comparison to known feasible targets 

The model was implemented with known feasible targets used as the input for the 

optimisation in an earlier chapter (§3.7). Known feasible targets were derived from the 

sawtooth equilibrium equations using a central finite difference method at target values 

of stress, i.e. 10kN:10kN. Four targets (E11, E22, ν12, ν21) were calculated at each target 

value of biaxial stress. These targets were then used as the input for the fabric design 

(optimisation) method. 

The output of the method demonstrated that the optimisation of the defining equations 

was able to calculate a fabric geometry that reproduced the target values of stiffness 

and Poisson’s ratio at the specified loads.  However, the optimised geometry was not 

always that of the original fabric from which the targets had been derived using the 

central finite difference method. A new fabric was often designed that should 

adequately reproduce the required targets at the specified loads. To check that the 

model could also reproduce the original fabric from which the targets had been derived 

a further optimisation was carried out where a geometry similar to that of the original 

fabric was used as the initial guess point. In this situation the original fabric geometry 

was reproduced by the model. It was hypothesised that multiple, or zero, solutions may 

exist for any set of targets at specified loads, and this was shown to be the case in the 

previous chapter (§4). 

The reason the fabric design methodology selected a geometry other than that of the 

original fabric from which the targets were derived is due to the optimisation method 

employed following a steepest gradient approach. If a point is selected by the pattern 
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search method that appears to be a possible solution then the optimisation will use this 

point as the initial start point and follow the steepest gradient to a solution. In this case 

the steepest gradient leads not to the original geometry, but to another geometry. 

The methodology for the design of a fabric was therefore shown to be adequately 

designing fabric geometries for multiple targets at different loads. 

5.3.2. Fabric design for five sets of targets 

For the validation study three fabrics will be ‘designed’ using targets obtained using the 

multiple point target method discussed earlier (§5.2.2.2). The method follows the 

procedure laid out below: 

1. Biaxial test data is imported and processed using the method described in 

§5.2.2.2. 

2. Plane Stress Elastic constants are derived from the data for reference 

3. Point (plane stress) targets are produced using the method described earlier 

(§5.2.2.2) at equidistant intervals on the fabric’s surface to give five sets of four 

targets. 

4. An attempt is made to produce a fabric that would respond in the same way as 

the fabric from which the original targets were obtained using the model. 

5. Where the targets cannot be adequately met variation in the targets is allowed 

using the best optimised geometry from the previous step. 

6. Incremental steps in variation are allowed in targets, up to 75% variation from 

the original targets. 

7. If a solution is found at any point the solver will end and display the results 

Initially test data for a F702 PVC coated polyester fabric is analysed using the method 

described in 5.2.2.2 and the targets obtained from that analysis are shown in Table 5-9. 

After the targets are calculated an attempt is made to design a fabric that satisfied the 

targets, which it was found could not be achieved. This was repeated a number of times 

from different initial start points to ensure that a local minima had not been found 

during the optimisation process. 
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 Point 1 Point 2 Point 3 Point 4 Point 5 

E11 (target 1) (kN/m) 698 441 569 644 487 
E22 (target 3) (kN/m) 0.585 0.122 0.324 0.460 0.233 
v12 (target 2) 651 620 568 481 528 
v21 (target 4) 0.433 0.459 0.281 0.028 0.302 
P1 (kN/m) 3.76 3.76 7.51 11.27 11.27 
P2 (kN/m) 3.76 11.27 7.51 3.76 11.27 

Table 5-9: Targets from PVC coated Polyester fabric F702 

The targets in Table 5-9 vary from those that would have been used if a single plane 

stress representation had been used. The values for a standard plane stress 

representation are given in Table 5-1. Most notable is the very low Poisson’s ratio (target 

4 at point 4). This will be due to the specifics of the surface at this point, not captured 

by the standard plane stress method which would have led to the use of a considerably 

higher ratio. 

 

Figure 5-50: Results of fabric design without variation in targets for F702 targets (1) 
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Figure 5-51: Results of fabric design without variation in targets for F702 targets (2) 

The results for the initial design to the F702 fabric targets show poor correlation to the 

biaxial test results with only one target being achieved in the second test (Figure 5-51) 

at the fourth target point for E11. The solver is unable to find the original geometry nor 

produce a geometry that satisfies the targets (Figure 5-51 and Figure 5-50). Shown are 

two different results of the optimisation, using different initial guesses. As the method 

continues to search for better solutions after a local minima has been found by 

randomising its start point more than one local minima can be found. To test the entire 

possible data space for a best local minima would take a large amount of computing 

power or time as each of these sets of results required approximately four hours to find. 

Testing the entire space would require a grid search of indefinite fineness to be used; if 

only 10 values of each property were tested this would require 4x109 hrs. Whilst the 

method would allow the user to carry this out if needed (computing power and memory 

not withstanding) it is not considered to be viable where no perfect solution is found. 

Both sets of results have similar objective function values (4.19 and 4.49 respectively), 

with this being no real indication of the quality of the result. 

Whilst the optimisation did not reproduce the original fabric this might be expected 

given that the original model did not perfectly reproduce fabric response. This is 

discussed in more detail later.  
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After the initial optimisation the routine attempts to design a fabric that satisfies the 

targets, given some quantity of allowable variation in the target values. In this example 

the targets are allowed to vary in steps of 5% (steps of 10% are shown in Figure 5-52).  
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Figure 5-52: Target (X) and designed fabric (.) stiffnesses at increasing values of allowable variation from original targets 
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Figure 5-53: Target (X) and designed fabric (.) Poisson’s ratios at increasing values of allowable variation from original targets 
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Figure 5-54: Target (X) and designed fabric (.) stiffnesses at increasing values of allowable variation from original targets 
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Figure 5-55: Target (X) and designed fabric (.) Poisson’s ratios at increasing values of allowable variation from original targets 
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It has been observed that generally the limiting factor when optimising the geometry is 

the worst initial estimate. As the geometry has already been optimised to try to achieve 

the targets its value does change noticeably during this phase, however, targets move 

towards the elastic constants of the designed fabric. This is shown in detail in Figure 5-52 

to Figure 5-55. 

Some targets are quickly met, whilst others prove more challenging. The optimised point 

does on occasion move away from the target, demonstrating how the routine is 

minimising error across the entire optimisation. In this case even after a variation in 

target of 75% was allowed not all targets were met. 

A visual inspection of the optimised geometry (designed geometry) shown suggests that 

it does not appear to demonstrate a feasible fabric design (Figure 5-56). However, were 

a very thin and flat yarn used in conjunction with a more normally sized yarn it might be 

possible to recreate something similar to this. Some improvement to this is made in the 

following sections where a fabric robust to variation is considered, but at this stage the 

model might be considered to have failed to design a valid fabric. This is one reason the 

robust optimisation is necessary. Further constraints on the yarn geometry might be 

possible to reduce the possibility of unreproducible fabric designs occurring where 

unrealistic fabric geometries are produced. What is, and is not, an unrealistic fabric 

geometry is subjective, as the geometry produced fulfils all the criteria given to the 

model (i.e. that the yarns are within the maximum and minimum thicknesses described 

in the literature review (§2.2.2)). The geometry uses realistic thicknesses of yarns, but 

combines them in a fashion that appears to show an inappropriate solution. It is possible 

that with further study a relationship for realistic fabric geometry might be produced, 

and this used to constrain the fabric design. However, this would further restrict and 

constrain the design process, which may result in further reductions in the accuracy of 

the optimisation to the biaxial targets.  
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Figure 5-56: Geometry of the designed fabric (F702 targets) 

The results for a B18059 PTFE coated glass-fibre fabric are now considered below. 

 Point 1 Point 2 Point 3 Point 4 Point 5 

E11 (target 1) (kN/m) 1380 819 2261 2416 1279 
E22 (target 3) (kN/m) 0.800 0.139 0.720 1.826 0.626 
v12 (target 2) 952 1556 1287 619 1115 
v21 (target 4) 0.719 1.288 0.576 0.279 0.868 
P1 (kN/m) 10 10 20 30 30 
P2 (kN/m) 10 30 20 10 30 

Table 5-10: Targets from PTFE coated glass-fibre fabric B18059 

 

Figure 5-57: Results of fabric design without variation in targets for B18059 targets 
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Figure 5-58: Target (X) and designed fabric (.) stiffnesses at increasing values of allowable variation from original targets 
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Figure 5-59: Target (X) and designed fabric (.) Poisson’s ratios at increasing values of allowable variation from original targets 
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Figure 5-60: Target (X) and designed fabric (.) stiffnesses at increasing values of allowable variation from original targets 
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Figure 5-61: Target (X) and designed fabric (.) Poisson’s ratios at increasing values of allowable variation from original targets 
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Figure 5-62: Geometry of the designed fabric (B18059 targets) 

The results for the B18059 fabric are visually more appealing, and appear to more 

accurately match the targets at lower levels of variation. This may be due to the more 

linear response of the yarns in a glass fibre fabric, coupled with the higher values of 

fabric stiffness. Higher values of fabric stiffness should lead to greater allowable 

variation as the model allows targets to move by a fraction of the target. 

The results for an ATEX 3000 are detailed below. 

 Point 1 Point 2 Point 3 Point 4 Point 5 

E11 (target 1) (kN/m) 617 365 1138 969 959 
E22 (target 3) (kN/m) 1.061 0.320 0.586 2.246 0.898 
v12 (target 2) 409 804 816 209 662 
v21 (target 4) 0.630 1.266 0.564 0.227 0.561 
P1 (kN/m) 3.76 3.76 7.52 11.28 11.28 
P2 (kN/m) 3.76 11.28 7.52 3.76 11.28 

Table 5-11: Targets from Silicone coated glass-fibre fabric ATEX 3000 
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Figure 5-63: Results of fabric design without variation in targets for ATEX3000 targets 
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Figure 5-64: Target (X) and designed fabric (.) stiffnesses at increasing values of allowable variation from original targets 
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Figure 5-65: Target (X) and designed fabric (.) Poisson’s ratios at increasing values of allowable variation from original targets 
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Figure 5-66: Target (X) and designed fabric (.) stiffnesses at increasing values of allowable variation from original targets 



  5. Model validation 

 
PAGE 331 

 

 

Figure 5-67: Target (X) and designed fabric (.) Poisson’s ratios at increasing values of allowable variation from original targets
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Figure 5-68: Geometry of the designed fabric (ATEX3000 targets) 

Failure to reproduce the fabric geometry from which the targets were produced appears 

to be endemic with neither the ‘zero variation’ nor ‘target variation allowed’ 

optimisation routines reproducing the original fabric geometry. In some ways this might 

be expected as the original sawtooth model as produced by Bridgens and Gosling (2008) 

did not perfectly reproduce fabric stiffnesses. Probable reasons for this and discussion 

is made below (§5.3.4) however it should be noted that without any knowledge of the 

original fabric the model does achieve in two of the above optimisations (ATEX 3000, 

B18059) a possible fabric design. In this regard the model succeeds. 

5.3.3. Reducing model constraint by reducing the number of targets: 

It is possible to demonstrate that the model solves the optimisation problem in fewer 

steps and with less variation when fewer targets are specified for the fabric to be 

designed to. The fabric used in this section is a F1202 PVC coated polyester, from which 

targets were derived from biaxial test data as specified above (§5.2.2.2). Four, eight and 

twelve targets were all designed for. 

Principally this demonstrates how additional targets further constrain the model, 

leading to a considerably more over constrained situation where further variation in 

targets has to be allowed for. 



  5. Model validation 

 
PAGE 333 

 

 Point 1 Point 2 Point 3 Point 4 Point 5 

E11 (target 1) (kN/m) 944 413 1021 1151 801 
E22 (target 3) (kN/m) 1049 947 979 877 883 
v12 (target 2) 0.45 0.16 0.28 0.40 0.21 
v21 (target 4) 0.58 0.90 0.23 0.05 0.39 
P1 (kN/m) 7 7 14 21 21 
P2 (kN/m) 7 21 14 7 21 

 

Table 5-12: Targets for PVC coated polyester F1202 fabric 

The test for four targets optimised to a result dissimilar to the original geometry after 

an allowable variation of just five percent (Figure 5-69). However, a solution was found 

that appears to be considerably more feasible (visually) than those found earlier (§5.3.2). 

 

Figure 5-69: Designed Geometry for four targets (F1202) 
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Figure 5-70: Designed Geometry for eight targets (F1202) 

 

Figure 5-71: Designed Geometry for twelve targets (F1202) 

Whilst both the optimisation for eight and twelve targets resulted in a designed fabric 

after an allowable variation of 25% none of the designed fabrics represented the original 

fabric from which the targets were measured. Notably the fabric’s geometry becomes 

less (visually) realistic as more targets are included, and in this case this may be in part 
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due to the very low value of warp stiffness required for the second set of targets 

deforming the results. As the design becomes more over constrained it appears that the 

results deviate further from feasible designs, a possible further limiting factor on the 

methodology. 

5.3.4. Discussion of designed fabrics 

It has been demonstrated that whilst the model will accurately design a fabric that is 

known to be feasible, i.e. the targets were produced from the sawtooth model using a 

central finite difference method, it will fail to reproduce the geometry of a fabric using 

the targets generated from biaxial testing of that fabric. A number of reasons for this 

are discussed below: 

Firstly the original sawtooth model did not perfectly predict the response of a fabric 

under biaxial loads (Figure 5-72). The sawtooth model provides a reasonable prediction 

of fabric behaviour with the model’s deviation from the mean of the strain range of a 

real fabric being between 5.3 and 5.9% (Bridgens and Gosling, 2008) (Figure 5-72).  This 

presents a problem, namely that the fabric that is designed when targets are taken from 

the biaxial data would not be represented perfectly by the sawtooth model. Whereas 

upon visual inspection the surfaces in Figure 5-72 appear similar, and the response 

appears to be adequately modelled the fabric design model is, in essence, attempting 

to design a fabric that may not exist within any possible sawtooth response region. As 

such the model deviates from the original targets attempting to find a solution in the 

spectrum available to the sawtooth response, within the constraints presented by the 

user. 
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Figure 5-72: Response surfaces for the sawtooth model and measured response for one geometry (F1202) 

Following this it is apparent that the model is over constrained at large numbers of 

targets as the targets must vary to allow for a solution to be found. The model is over 

constrained in two ways, firstly the number of targets prohibits the movement of the 

response planes. This is in contrast to, say, where only one target exists the response 

plane will perfectly satisfy the target. And the second source of constraint is the model 

parameters, namely that the fabric must be flat (A1 + A2 = r1 + r2) and the constraints on 

the yarn width and loads. These must be maintained for the model to work, but 

constrain the solution. The final form of constraint is on the model parameters. These 

are greater than the value of the maximum and minimum values exhibited in testing, 

but this does limit the solution. 

Whilst the model may be over constrained it has been demonstrated that more than 

one solution has been found for feasible targets generated from the sawtooth model. It 

is therefore likely that the problems exist in the creation of targets from real fabrics that 

are not truly represented by the sawtooth model. 

To attempt to define this the following hypothesis is made; that a unique solution that 

is not perfectly represented by a model cannot be found by the inverse of that model: 
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The principle is that that a predictive model, when set to model a response, may not 

perfectly reproduce that original behaviour, but may adequately reproduce it to some 

tolerance. In this situation the model has knowledge of the original properties of the 

system it is modelling. And as such approximately reproduces the behaviour. 

However, if the inverse of the model is taken, and used to attempt to reproduce the 

original situation that the predictive model was representing it cannot achieve a perfect 

result because the model never perfectly represented the original behaviour. As such 

the inverse model, if allowed, will attempt to find a solution in the ‘space’ of possible 

solutions that it can interrogate. Therefore the inverse model will find the best fit to the 

targets within the space the predictive model considers, and this may look nothing like 

the original geometry, but satisfy the targets and constraints placed on the model. 

For instance, as above, the sawtooth model reproduces the response of the fabric to an 

adequate degree, however, when the inverse model is used it fails to reproduce the 

original fabric. This is because the inverse model is attempting to find a solution to the 

problem in the ‘space’ of results available to the sawtooth model, in which the original 

targets may never have existed, and certainly didn’t exist for that geometry. 

This problem may be specific to predictive models of this level of complexity, given that 

non-predictive models use factors to increase the accuracy of the original model. As such 

factors might ‘direct’ the model to a solution. Less complex models might have fewer 

variables to begin with, or simply be more accurate, leading to more readily obtained 

targets. 

5.3.5. Robust fabric design 

In this section an existing fabric is redesigned to improve its robustness to changes in its 

constituent geometry. This aims to demonstrate the feasibility of applying the robust 

design methodology to real, existing fabrics. If applicable this would allow small changes 

to fabrics currently in use to be made in order to improve their robustness. The method 

differs from that used earlier (§4.10) in that the original geometry used is measured 

from an F702 fabric. The new, robustly designed, F702 fabric cannot be tested to 

demonstrate its robustness characteristics as producing a bespoke fabric is beyond the 

scope of this project. The fabric is not being redesigned as has been carried out in section 
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5.3.2. However, it is being altered slightly (up to one standard deviation) from its existing 

geometry. 

Two targets (E11 and E22) are used to demonstrate how the method can be applied. The 

fabric’s geometric property variation and yarn and coating stiffness variation are defined 

from test results (Table 5-13). 

 Mean 
value 

Coefficient 
of variation 

θ1 (degrees) 0.102 0.108 
θ2 (degrees) 0.125 0.078 
L1 (mm) 0.624 0.019 
L2 (mm) 0.611 0.019 
r1 (mm) 0.079 0.033 
r2 (mm) 0.062 0.034 
E1 (kN/m) 444 0.021 
E2 (kN/m) 382 0.037 
Ek (kN/m) 33 0.056 

Table 5-13: Variation in geometry used in the robust optimisation of an F702 fabric 

The results of the optimisation (the new robustly designed F702 fabric) are shown in 

Table 5-14 and the individual sensitivities are shown in Figure 5-74 and Figure 5-75. An 

improvement is made to the sum of the sensitivities from the original 108.9 to the 

optimised 102.6, an improvement of 5.8%. This improvement is significant. The 

geometry, due to the limit on the overall change that can be made to it, is similar to that 

of the original fabric. The new fabric also appears to be reproducible upon a visual 

inspection of Figure 5-73. 

 Result 

θ1 (degrees) 0.098 
θ2 (degrees) 0.135 
L1 (mm) 0.630 
L2 (mm) 0.606 
r1 (mm) 0.080 
r2 (mm) 0.065 
E1 (kN/m) 438 
E2 (kN/m) 392 
Ek (kN/m) 33.6 

Table 5-14: F702 robustly optimised geometry 
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Figure 5-73: Geometry of the robustly optimised F702 fabric 
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Figure 5-74: Comparison of original F702 and robustly optimised fabric sensitivities to E11 
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Figure 5-75: Comparison of original F702 and robustly optimised fabric sensitivities to E22 
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A number of the geometric properties have become more sensitive to variation, 

however, as was shown in the previous chapter (§4.10), small increases in the 

susceptibility of the stiffness to one geometric property can mean that the overall 

sensitivity of the fabric to such variabilities is reduced. 

5.3.5.1. Discussion 

The suggested geometry cannot be tested to check that the reduction in sensitivity 

described is actually achieved. It is evident that small changes to the geometry of a fabric 

can reduce the sensitivity of that fabric to variation in those properties. It is also evident 

that this can be achieved by increasing the sensitivity of the fabric to some parts of its 

geometry, whilst the overall effect is to reduce the overall sensitivity of the fabric to 

variation in its geometry. Information such as this may serve to allow for small 

improvements to the robustness of fabrics currently in production whilst maintaining 

their overall appearance and response. This could be a cost effective way to improve a 

fabric without resorting to long term expensive testing of multiple samples. 

Further work will need to be carried out on this method prior to its use in this field 

however. 

  



6. Conclusions and recommendations 

PAGE 343 

6. Conclusions and Recommendations for future work 

  



6. Conclusions and recommendations 

PAGE 344 

6.1. Research Summary 

This research has been primarily concerned with the creation of a methodology for the 

design of bespoke architectural fabrics for particular loading conditions. A model has 

been produced that is capable of designing a fabric for specific values of Young’s 

modulus, Poison’s ratio and shear modulus. This necessitates the specification of the 

loads at which the target values are required, and in the case of the shear stiffness the 

angle to which the fabric will deform (§3.4.3). These have then been implemented 

alongside a variability analysis to show how a fabric can be designed for not only 

mechanical properties but also reliability characteristics (§4.10). 

The literature review (§2.3) identified a number of models that might have been used 

as the basis of an inverse model, but most of these were not used as the basis of the 

inverse methodology due to their representative nature, the unquantified accuracy of 

the model, or the lack of any coating consideration. The sawtooth model as previously 

developed by Bridgens and Gosling (2008) was selected as the basis of the inverse 

modelling process as it fit most closely to the stipulated requirements: It is predictive, 

includes a consideration of coating, and is made up of equations that can be 

differentiated. Most startling, and notable by absence, is the lack of any previous work 

on the design of architectural fabrics using numerical methods other than those 

discussed by Behera and Muttagi (2002) and Bartle et al. (2013) which focus on the use 

of neural networks. This is an oversight this report has aimed to resolve. 

  



6. Conclusions and recommendations 

PAGE 345 

6.2. Conclusions 

The aim of this research was to develop a predictive inverse material model for coated 

woven fabrics that was robust with respect to variability in material properties and could 

be used to  design  bespoke  architectural  fabrics  with  specific  properties  at  different  

loading conditions. This has been achieved with the creation of the inverse sawtooth 

method (§3.4.3) for which a design methodology is developed which utilises the model 

(§3.5.4) and the extension of this to incorporate robust design principles (§4.10). Each 

objective is reviewed below, with a summary of the conclusions that have been drawn 

from the relevant chapters. 

To complete a full and in depth review of the state of the art of fabric modelling, 

design and analysis: 

The literature review identified the most relevant fabric type (plain-weave), which has 

been the focus of this report, and the various components of a fabric composite were 

identified. A yarn level unit cell model was chosen which was shown to give accurate 

prediction of fabric stress-strain behaviour without the incorporation of the complex 

detail required for fibre and filament modelling (§2.3.2.3). The sawtooth model was 

chosen as the basis of the inverse model (§2.3.2.4) due its predictive nature and the 

published accuracy of the model (Bridgens and Gosling, 2008, p. 13). In addition the 

model included a method for the inclusion of coating properties, unlike a number of 

reviewed models. 

Formulate an inverse material model: 

The inverse material model was successfully formulated (§3.4.3.2), and demonstrated 

how the mechanical properties of a fabric can be calculated from the initial geometry 

and loaded state of the fabric (§3.7.1). However a full and complete analytical model 

was found to be unobtainable, meaning that the model retained a numerical component 

(§3.4.3.2). The lack of completely analytical derivatives increases the complexity of the 

model programme, and leads to considerable additional computing power being 

required when a solution to the derived equations is calculated; up to four hours is 

needed to run a fabric design. Further, calculating gradients slows the robust design 

methodology such that only two mechanical properties can reasonably be robustly 

optimised simultaneously (§4.10).  
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The derived equations were initially compared to targets derived from a central finite 

difference method using the sawtooth model from which they were formulated (§3.7.1). 

This ensured that the fabric design methodology was initially attempting to design a 

feasible fabric, i.e. one that could be modelled accurately with the sawtooth model. The 

results of this were encouraging with the model finding solutions to fabric design 

problems (§3.7.1). At this stage it also became apparent that for any individual set of 

targets more than one possible fabric geometry might be applicable as a solution. This 

was further confirmed using a Monte Carlo analysis to show that for one target, 

considering only two variables, a plane of possible solutions can be identified (§4.7.3). 

It has been reasoned that for an increasing number of targets the number of possible 

solutions will decrease as the model becomes more constrained, while conversely for a 

small number of targets the model will find a solution from a large number of possible 

solutions (§5.3.4). The over constraint of the model becomes considerably more 

apparent when real targets are designed for (§5.3.2). Where no solution could be found 

the design method was programmed such that a relaxation in the required accuracy of 

the solver might allow a less than optimal solution to be found (§3.5.4.1). 

Incorporate variability of material parameters into the model and assess 

sensitivity of the resultant design: 

FORM (§4.8) and Monte Carlo (§4.7) methods were used to analyse how a fabric’s 

mechanical properties respond to variability, whilst a sensitivity analysis was 

incorporated into the design methodology (§4.10). The analysis of particular 

components of the unit cell and how the sensitivity of the overall composite is affected 

by variance in unit cell properties enabled the creation of a robust design methodology 

(§4.10). The individual geometric properties of the fabric were shown to affect the 

fabric’s mechanical responses to differing degrees, and for the first time the effect these 

properties have on fabric response can be accurately quantified at any stress state for 

geometry (§4.10).  

The robust design methodology demonstrates how, for the first time, it is possible to 

minimise the sum total of the sensitivities of a fabric’s mechanical properties to variation 

in individual unit cell properties. Whilst the methods employed do not show exact 

correlation to each other they demonstrate how individual property sensitivities can be 
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reduced (or increased) whilst reducing the overall sensitivity of a fabric, producing a 

more robust fabric design (§4.10). This can be used as a cheap alternative to extensive 

testing when initially trying to design a robust fabric. 

Complete a validation study: 

A methodology for the ravelling and testing of individual yarns was developed to enable 

the calculation of individual yarn stiffnesses from which statistical data regarding yarn 

stiffnesses can be obtained (§5.2.3). A method to calculate plane stress constants at 

discrete points on a fabric’s biaxial stress-stress-strain response surface was also devised 

to enable multiple targets to be found at separate stress states (§5.2.2.2). With relation 

to this the cause of the stress minimisation method’s inability to accurately describe 

fabric plane stress constants for some fabrics was also identified (§5.2.2.2). Where the 

strains experienced by a fabric are small det(M) approaches zero, and as such M 

becomes singular, meaning that the inverse of M is ill-conditioned. 

The validation studies demonstrate that the inverse sawtooth method for the design of 

fabrics, whilst accurate when compared to material models, is unusable with regards to 

the design of real fabrics (§5.3.2). The reason for this becomes apparent when the 

methodology is considered: The fabric design method is excellent at designing a 

‘sawtooth fabric’. This means that the method can perfectly design any fabric that exists 

in the ‘space’ that the sawtooth model represents. However, the sawtooth model does 

not perfectly represent the response of real fabrics (though it does it well)  (Bridgens 

and Gosling, 2008). The result of this is that the inaccuracy inherent in the predictive 

model is translated to the design of the fabric. Or, to put it succinctly, the design 

methodology is not actually designing a real fabric, but something very close. Therefore 

given the complex nonlinear interactions that govern fabric response the result of the 

design is visually considerably different to the fabric from which the biaxial test results 

used as targets were obtained (§5.3.4).  

In hindsight a considerably more accurate model may be necessary in future to 

adequately allow for the prediction of real fabric response. Alternatively the equations 

derived in this thesis (§3.4.3.2) could be used to produce fabric response surfaces, or as 

part of neural network optimisations, possibly within the ‘knowledge base’ described by 

(Behera and Muttagi, 2002, p. 318) (§2.1.2). 



6. Conclusions and recommendations 

PAGE 348 

Whilst the inability of the model to reproduce real fabrics detracts from its utility it is 

hoped that future work might result in a solution to this being found (§6.3). 

To attempt a structural design study using an FE simulation of a true 

structural design case: 

A structural design study using FE simulation will be necessary to demonstrate the 

applicability of the methodologies developed. However, whilst a structural design study 

was considered, the limitations of current finite element modelling software, which can 

only utilise a single set of fabric properties (i.e. one set of plane stress constants) meant 

that it was found to be unfeasible at this time (§1.3). Using separate FE simulations with 

differing values of elastic constants was considered, but abandoned because the 

deformation of the fabric prior to it reaching the load at which the constants become 

relevant would be incorrect. This will be an important part of any future work if software 

capable of carrying it out is available (§6.3). 
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6.3. Recommendations for future work 

Inclusion of a yarn model 

The accuracy of the model might be improved by the inclusion of a constitutive yarn 

model to replace the assumption of linear elastic yarn response, which has been shown 

to only be the case for glass-fibre yarns (§2.2, 5.2.3.4). This would also enable the 

designer to select particular yarn geometry and materials that could then be analysed 

for response characteristics. The model developed by Madhavan and Naik (2000) might 

form the basis of such a component. In addition the tear strength of fabrics might be 

analysed in an integrated fashion by considering the tear strength of the yarns that make 

up the fabric (Nurwaha and Wang, 2011). 

Sinusoidal model 

At the inception of this work it was initially hoped that a sinusoidal model might provide 

the basis of the governing equations discussed in detail in the previous chapters (§3.4). 

However, sinusoidal models available at the time were not presented in an appropriate 

manner, nor had been shown to be accurate enough to be used in the presented work 

(Wang, 2002; Bridgens and Gosling, 2008). Since that time the work by Colman (2014) 

has produced a more complex and accurate model that might form the basis for a 

considerable improvement to the presented work. 

The inclusion of a geometry that is closer to that of real fabrics presents the possibility 

of a more natural design process. The use of a more accurate model should remove (in 

part) some of the inherent inaccuracy that became apparent in the presented model 

when biaxial test data was considered. As the ground work governing how the defining 

equations might be produced has been covered in detail in this thesis (§3.4) the 

implementation of the sinusoidal model into this methodology should be a simpler 

process. 

Powerful computing 

More powerful computing will be needed if the method presented is to become any 

more complex than that presented in this report. Already the sensitivity calculation 

requires considerable computing time (up to eight hours) due to the high number of 

variables considered (§4.10). If this were to increase due to the inclusion of a yarn 
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material model then the computing power of a standard desktop computer may not be 

adequate for the task, and networked servers may be necessary. 

Non-rectangular Geometry 

Non-rectangular geometry has been eluded to in this report when the isoparametric 

finite element was introduced (§3.4.3.3). However, no detailed consideration of non-

perpendicular unit cell geometry has been made in this thesis. This, and its effect on the 

shear properties of a fabric are necessary in future work. 

Non-plain weave fabrics 

It should be possible to extend the model to non-plane weave geometries by using 

formulae that define these geometries as the base for the derivatives calculated rather 

than the sawtooth model. The application of other material geometries to the method 

should enable the use of the inverse model in different industrial sectors, such as 

clothing or sail design, and possibly in the design of rigid composites such as wind 

turbine blades (Sørensen, 2009). The latter might require significant alteration to the 

presented model. Solid rigid composites, for instance, will undoubtedly have to take 

account of out-of-plane deformations which this model makes no reference to, and 

include higher stresses, with lower strains (§2.6.1). 

Improvement to the shear model 

Improvements to the shear model would enable more accurate modelling of fabric shear 

response, and allow some uncoupling between shear stiffness and the coating stiffness. 

At this time the coating dominates the shear response (§3.7.2), and this limits the 

applicability of the model to the design of fabrics for shear stiffness to the selection of a 

coating which will in turn decide the shear stiffness of the fabric. Future work like that 

carried out by Liu et al. (2004) will hopefully allow for improvements in this area to be 

made. 

Use in a finite element program 

Incorporation of the design methodology into a finite element model will enable the 

design of a fabric for conditions required by a structural engineer (§5.4). For instance, 

where an engineer might currently require a certain deflected shape, and have to 

choose a fabric from those available from manufacturers, the program can offer 
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suggestions as to the necessary geometry. Alternatively the program may design a fabric 

that would perform as required within the finite element model.  

Structural design case study 

A structural design study using a working and operational methodology would be able 

to demonstrate the applicability of future fabric models to use in the design 

environment (§5.4). This would have to incorporate a finite element modelling program 

that was able to consider multiple stiffnesses, or include the response surfaces that can 

be produced using the sawtooth model. This could then be used to show how a designed 

fabric could be utilised in construction to maximise crimp interchange at low 

(installation) loads, but provide the correct response at higher loads, as suggested for a 

conic structure (§1.3).  
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All glossary entries refer to the TensiNet European Design Guide for Tensile Surface 

Structures (Forster, Mollart, et al, 2004), the Oxford English Dictionary, 

(Oxford_University_Press, 2004),  or the ASTM standard terminology documents 

(ASTM, 2012; ASTM, 2013). 

 

Anticlastic 

An Anticlastic surface has Gaussian 

Curvature less than zero. Locally, 

Anticlastic surfaces are Saddle shaped. 

Most Boundary Tensioned Membrane 

Structures are composed of Anticlastic 

surfaces. 

 

ASTM 

American Society for Testing and 

Materials. 

 

Biaxial 

In the context of Lightweight Structures 

the term Biaxial is typically used in 

connection with the elastic behaviour 

of the Membrane surfaces. Biaxial 

Membrane stresses are measured using 

biaxial material tests. In some cases 

uniaxial tests are also performed. 

 

Boundary  

The terms Boundary and Border are 

synonymously used to refer to both the 

complete Boundaries of Tensile surface 

structural Components, as well as the 

individual Boundary sections. 

BSI 

British Standards Institute. 

 

Cable Net 

Surface Structures composed of netting 

fabricated from Cables. Cable Nets are 

classified as being either regular or 

irregular depending on their mesh 

geometry. Early Cable Net structures 

were usually regular and often 

waterproofed by cladding with semi-

rigid materials. Currently Cable Nets are 

typically used for zoo aviaries as well as 

the reinforcement of Pneumatic 

Cushions. 

 

Cable 

A flexible Tensile Component. 

 

Catenary 

The pure geometrically defined shape 

of a Cable or chain hanging under self-

weight only. Sometimes the expression 

is, loosely, used to describe any flexible 

Boundary or Funicular shape. 
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CRE 

Continuous Rate of Extension – 

normally relating to a tensile testing 

machine. 

 

Creep 

Slow deformation when a fabric is 

stressed resulting in semi-permanent 

deformation. 

 

Crimp 

The bending of the yarns in a Textile. 

Weft yarns typically have higher levels 

of Crimp compared to the Warp.  

 

Dimensional Stability 

The maintenance of a fabric’s pattern 

and weave structure. 

 

Double Curvature 

A surface with Gaussian Curvature not 

equal to zero has Double Curvature. 

 

Dynamic Relaxation 

Popular method used for the Form 

finding, Load Analysis and Cutting 

Pattern Generation of Lightweight 

Structures. 

 

Fabric 

In textiles, a planar structure consisting 

of yarns or fibres. 

Fill 

American name for the weft of a 

textile. 

 

Finite Element 

A numerical solution method for 

problems (Cook et al., 2002)m which 

discretises these into solvable 

elements. 

 

Foil 

Strictly the term Foil refers to a metallic 

membrane. However, it is now the 

most commonly used term for all 

Isotropic structural Membranes 

including the popular ETFE Films. 

 

Form finding 

The process of determining the Force-

Equilibrant Prestress shape. 

 

Gaussian Curvature 

The Gaussian Curvature K of a surface is 

equal to the product of the two 

principal curvatures k1 and k2, 𝐾 = 𝑘1 ∙

𝑘2. 

 

Hydrophobic 

Repels or is repelled by water. 
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Isotropic 

A material whose mechanical 

properties are similar in all directions is 

termed Isotropic. Conversely if the 

material’s mechanical properties vary 

with respect to loading orientation, it is 

termed Anisotropic. The Coated 

Textiles typically used for architectural 

Membrane Structures are strongly 

elastically Anisotropic, while ETFE Foils 

are nearly Isotropic. 

 

Linear density 

The measure of the mass of yarn per 

unit length. 

 

Melt spinning  

A method of rapid solidification of 

liquids (i.e. glass) using a cooled 

spinning drum or wheel.  

 

Membrane 

A Surface Structure with no bending 

resistance and thereby capable of 

resisting only tensile forces. 

 

Mesh 

Expression used during the 

Computational 

Modelling of structures to describe the 

connected collection of Finite Elements 

representing the surfaces and other 

structural Components. 

 

MSAJ 

Membrane Structures Association of 

Japan. 

 

Orthotropic 

A material is Orthotropic if it is 

Anisotropic with the axes of Anisotropy 

oriented normally. The woven Textiles 

typically used for Textile architecture 

have Orthotropic Anisotropy. 

 

Ply Yarn 

A yarn made up of more than one yarn 

spun together. 

 

Poisson’s ratio 

Material constant relating the elastic 

behaviour between orthogonal 

directions. Sometimes used to model 

the Crimp interchange behaviour of 

Coated Textile. 

 

Prestress 

The Stress carried by a structure when 

subject to no externally applied 

loading. 
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Prestress Ratio 

The ratio between the Prestress levels 

in the Warp and Weft directions of a 

Textile Structure. More generally, the 

ratio between the principal Prestress 

values of a Membrane Structure. 

 

PTFE 

A synthetic polymer: 

Polytetrafluoroethylene 

 

PVC 

A synthetic polymer: Polyvinyl chloride 

 

Ravel 

To remove a yarn from a fabric. 

 

Soap Film 

Physical Modelling technique used to 

determine Constant Stress forms by 

exploiting the energy minimising 

behaviour of soap films. 

 

Stiffness 

In general engineering, the material 

constant used to represent Stiffness is 

Young’s Modulus E. E is defined as the 

ratio between the Stress and Strain of 

an elastically linear material. Due to the 

complex microstructure of the Coated 

Textile and rope materials typically 

used for Tensile Architecture, Stiffness 

is more usually measured and specified 

together with the cross sectional area. 

The combination of the material 

Stiffness constant E with the area A is 

referred to as the EA Value. In the case 

of Textile, EA values are specified for a 

unit width. 

 

Strain 

Ratio of the extension under load of a 

structural member to the unstressed 

length. 

 

Stress 

The usual engineering definition for 

Stress is force per unit area. Due to the 

complex non-uniform nature of the 

Coated Textile materials used for 

tensile architecture, Textile Stresses are 

usually expressed as force per unit 

width. 

 

Tenacity 

The measure of the strength of a fibre 

or yarn. 

 

tex 

Measure of linear density, (1 tex = 1 

g/km). 
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Textile 

Fabric material usually woven from 

orthotropic oriented yarns.
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DE	 Typ IV	 B 18059

Trägergewebe		  Glasfaser EC 3/4
Beschichtung		  PTFE – Polytetrafluorethylen
Flächengewicht (g/m2)	 DIN EN ISO 2286-2	 1550
Breite (cm)	 DIN EN ISO 2286-1	 470
Höchstzugkraft (N/5 cm)	 DIN 53354	 Kette/Schuss	 8000/7000
Weiterreißkraft (N)	 DIN 53363	 Kette/Schuss	 500/500
Haftung (N/5 cm)	 DIN 53357	 100
Transluzenz bei 550 nm (%)	 DIN 5036	 11
Brandverhalten	 DIN 4102	 B1*
Hinweis: Produkt ist nicht zu vernähen, sondern mit Heizbalken zu verschweißen. * Weitere Zertifikate erhältlich auf Anfrage. Änderungen, die dem technischen Fortschritt dienen, 
behalten wir uns vor. Werte ohne Toleranzangaben sind Nennwerte mit einer Toleranz von ± 5 %. Die Angaben entsprechen unserem heutigen Kenntnisstand und sollen ohne 
Rechtsverbindlichkeit informieren. Transluzenz bezieht sich auf ausgebleichte Version.

UK	 Type IV	 B 18059

Base fabric		  Glass fibre EC 3/4
Coating		  PTFE – polytetrafluoroethylene
Total weight (g/m2)	 DIN EN ISO 2286-2	 1550
Width (cm)	 DIN EN ISO 2286-1	 470
Tensile strength (N/5 cm)	 DIN 53354	 warp/weft	 8000/7000
Tear resistance (N)	 DIN 53363	 warp/weft	 500/500
Adhesion (N/5 cm)	 DIN 53357	 100
Translucency at 550 nm (%)	 DIN 5036	 11
Flame retardancy	 DIN 4102	 B1*
Note: Product must not be sewn, but hot-bar welded. * Additional certificates available on request. Subject to change regarding technical upgrades. Values indicated  
without tolerance levels are nominal values with a tolerance range ± 5 %. All data presented here is given to the best of our current knowledge for guidance purposes  
and is not legally binding. Translucency refers to bleached version.

F	 Type IV	 B 18059

Tissu support		  Fibre de verre EC 3/4
Enduction de base		  PTFE – Polytétrafluoréthylène
Poids total (g/m2)	 DIN EN ISO 2286-2	 1550
Largeur (cm)	 DIN EN ISO 2286-1	 470
Résistance à la eupture (N/5 cm)	 DIN 53354	 chaîne/trame	 8000/7000
Résistance à la déchirure (N)	 DIN 53363	 chaîne/trame 	 500/500
Adhésion (N/5 cm)	 DIN 53357	 100
Translucidité à 550 nm (%)	 DIN 5036	 11
Réaction au feu	 DIN 4102	 B1*
Remarque : le produit ne doit pas être cousu mais soudé à l‘aide d‘une électrode chaude. * D‘autres certificats sont disponibles sur demande. Sous réserve de toutes modifications 
dans le cadre d’améliorations techniques. Les valeurs mentionneés sans tolérance sont des valeurs nominales avec une tolérance de ± 5 %. Les indications correspondent à notre 
savoir actuel et sont données à titre informatif sans obligation juridique. La translucidité se rapporte à la version blanchie.

ESP	 Tipo IV	 B 18059

Tejido base		  Fibra de vidrio EC 3/4
Revestimiento		  PTFE – Politetrafluoretileno
Peso total (g/m2)	 DIN EN ISO 2286-2	 1550
Ancho (cm)	 DIN EN ISO 2286-1	 470
Resistencia a la rotura (N/5 cm)	 DIN 53354	 urdimbre/trama	 8000/7000
Resistencia al desgarro (N)	 DIN 53363	 urdimbre/trama 	 500/500
Adherencia (N/5 cm)	 DIN 53357	 100
Translucidez en 550 nm (%)	 DIN 5036	 11
Ignifugación	 DIN 4102	 B1*
Nota: El producto no debe ser cosido, sino soldado con barra caliente. * Otros certificados obtenibles previa petición. Reservado el derecho a realizar modificaciones destinadas al 
avance técnico. Los valores sin datos de tolerancias obedecen a valores nominales con una tolerancia de ± 5 %. Los datos se corresponden con nuestro estado actual de conocimiento 
y su finalidad es informar sin vinculación legal. La translucidez hace referencia a la versión blanqueada.
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DE	 Typ III	 B 18089

Trägergewebe		  Glasfaser EC 3/4
Beschichtung		  PTFE – Polytetrafluorethylen
Flächengewicht (g/m2)	 DIN EN ISO 2286-2	 1150
Breite (cm)	 DIN EN ISO 2286-1	 470
Höchstzugkraft (N/5 cm)	 DIN 53354	 Kette/Schuss	 7000/6000
Weiterreißkraft (N)	 DIN 53363	 Kette/Schuss	 500/500
Haftung (N/5 cm)	 DIN 53357	 80
Transluzenz bei 550 nm (%)	 DIN 5036	 14
Brandverhalten	 DIN 4102	 B1*
Hinweis: Produkt ist nicht zu vernähen, sondern mit Heizbalken zu verschweißen. * Weitere Zertifikate erhältlich auf Anfrage. Änderungen, die dem technischen Fortschritt dienen, 
behalten wir uns vor. Werte ohne Toleranzangaben sind Nennwerte mit einer Toleranz von ± 5 %. Die Angaben entsprechen unserem heutigen Kenntnisstand und sollen ohne 
Rechtsverbindlichkeit informieren. Transluzenz bezieht sich auf ausgebleichte Version.

UK	 Type III	 B 18089

Base fabric		  Glass fibre EC 3/4
Coating		  PTFE – polytetrafluoroethylene
Total weight (g/m2)	 DIN EN ISO 2286-2	 1150
Width (cm)	 DIN EN ISO 2286-1	 470
Tensile strength (N/5 cm)	 DIN 53354	 warp/weft	 7000/6000
Tear resistance (N)	 DIN 53363	 warp/weft	 500/500
Adhesion (N/5 cm)	 DIN 53357	 80
Translucency at 550 nm (%)	 DIN 5036	 14
Flame retardancy	 DIN 4102	 B1*
Note: Product must not be sewn, but hot-bar welded. * Additional certificates available on request. Subject to change regarding technical upgrades. Values indicated  
without tolerance levels are nominal values with a tolerance range ± 5 %. All data presented here is given to the best of our current knowledge for guidance purposes  
and is not legally binding. Translucency refers to bleached version.

F	 Type III	 B 18089

Tissu support		  Fibre de verre EC 3/4
Enduction de base		  PTFE – Polytétrafluoréthylène
Poids total (g/m2)	 DIN EN ISO 2286-2	 1150
Largeur (cm)	 DIN EN ISO 2286-1	 470
Résistance à la rupture (N/5 cm)	 DIN 53354	 chaîne/trame	 7000/6000
Résistance à la déchirure (N)	 DIN 53363	 chaîne/trame 	 500/500
Adhésion (N/5 cm)	 DIN 53357	 80
Translucidité à 550 nm (%)	 DIN 5036	 14
Réaction au feu	 DIN 4102	 B1*
Remarque : le produit ne doit pas être cousu mais soudé à l‘aide d‘une électrode chaude. * D‘autres certificats sont disponibles sur demande. Sous réserve de toutes modifications 
dans le cadre d’améliorations techniques. Les valeurs mentionneés sans tolérance sont des valeurs nominales avec une tolérance de ± 5 %. Les indications correspondent à notre 
savoir actuel et sont données à titre informatif sans obligation juridique. La translucidité se rapporte à la version blanchie.

ESP	 Tipo III	 B 18089

Tejido base		  Fibra de vidrio EC 3/4
Revestimiento		  PTFE – Politetrafluoretileno
Peso total (g/m2)	 DIN EN ISO 2286-2	 1150
Ancho (cm)	 DIN EN ISO 2286-1	 470
Resistencia a la rotura (N/5 cm)	 DIN 53354	 urdimbre/trama	 7000/6000
Resistencia al desgarro (N)	 DIN 53363	 urdimbre/trama 	 500/500
Adherencia (N/5 cm)	 DIN 53357	 80
Translucidez en 550 nm (%)	 DIN 5036	 14
Ignifugación	 DIN 4102	 B1*
Nota: El producto no debe ser cosido, sino soldado con barra caliente. * Otros certificados obtenibles previa petición. Reservado el derecho a realizar modificaciones destinadas al 
avance técnico. Los valores sin datos de tolerancias obedecen a valores nominales con una tolerancia de ± 5 %. Los datos se corresponden con nuestro estado actual de conocimiento 
y su finalidad es informar sin vinculación legal. La translucidez hace referencia a la versión blanqueada.
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Atex 3000 TRL ®

• TRL (translucent)

• Matt or gloss

• Unlimited colour range

• Bi-colour / Metallic & blackout

• Perforated

• Aero coating

• Highly translucent up to 41%

• Blocks out harmful UV light

• Fire resistant

• Temperature range -50˚C / +200˚C

• Long life span 25 years +

• Weatherproof & hydrophobic

• Flexible & crease resistant

• Non toxic & PVC free

• Recyclable and sustainable

Think Green

Think Atex www.atex-membranes.com



Atex 3000 TRL

Valmiera glass UK Ltd
Sherborne, Dorset, DT9 3RB, England
Tel: +44 1935 813 722     Fax: +44 1935 811 822     email: atex@valmiera-glass.com
www.atex-membranes.com        

Regional Atex sales offices in: germany, italy, india, Australia, France, Brazil

APPLiCATioNs TyPe i

Atex 3000 TRL - A popular fabric for architects combining excellent tensile strength in 
conjunction with high translucency for interior or external applications. Perfect for light 
weight tensile membrane structures and shade sails.

BAse FABRiC

Yarn Glass-fibre 100%

Weight 340 (g/m2) DIN EN 5384

Weave style Plain

CoATed FABRiC WITh ANTI-WIck TREATmENT

coating clear Silicone Elastomer 100%

Tensile strength                 Warp > 4000 (N/5cm) 80 (kN/m) ISO 1421
Weft  > 3900 (N/5cm) 78 (kN/m) ISO 1421

Trapezoidal tear              Warp > 190N
Weft  > 190N

crease resistance > 92% ASTm D4851

Total weight 605 (g/m2) DIN EN 5384

Thickness 0.45 mm

Standard Widths 2000/2500/3000 mm

Bi-Axial mechanical properties Available on request

Acoustic attenuation Available on request

oPTiCAL VALUes Solar Standard D65

Transmission 38.0% 41.0% DIN EN 410

Reflection 44.0% 41.0% DIN EN 410

Absorption 17.0% 18.0% DIN EN 410

FABRiCATioN

Sewing (PTFE yarn)
Welding (silicone tape)* Tensile > 2000 (N/5cm) Peel 180° > 150 (N/5cm)

CHARACTeRisTiCs

Temperature Range -50° to + 200°c

capillary Rise with Anti-wick treatment <5 (mm/24h) DIN 53 925

FiRe RATiNg

Uk class 0 BS 476:Part 6:1989,Part 7:1997
DE B1 DIN 4102

* depending on equipment, must be in accordance with specified adhesive tape grade and coordinated parameters. 
(P-D Interglas may change these specifications from time to time subject to a programme of continous improvement.)
This data sheet is for guidance only.
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Atex 5000 TRL ®

• TRL (translucent)

• Matt or gloss

• Unlimited colour range

• Bi-colour / Metallic

• Blackout

• Aero coating

• Highly translucent up to 21%

• Blocks out harmful UV light

• Fire resistant

• Temperature range -50˚C / +200˚C

• Long life span 25 years +

• Weatherproof & hydrophobic

• Flexible & crease resistant

• Non toxic & PVC free

• Recyclable and sustainable

Think Green

Think Atex www.atex-membranes.com



Atex 5000 TRL

Valmiera glass UK Ltd
Sherborne, Dorset, DT9 3RB, England
Tel: +44 1935 813 722     Fax: +44 1935 811 822     email: atex@valmiera-glass.com
www.atex-membranes.com        

Regional Atex sales offices in: germany, italy, india, Australia, France, Brazil

APPLiCATioNs TyPe iii

Atex 5000 TRL - A high strength textile adapted for large scale tensile membrane 
structures. This mid-weight fabric offers outstanding weather protection.

BAse FABRiC

Yarn Glass-fibre 100%

Weight 685 (g/m2) DIN EN 5384

Weave style Plain

CoATed FABRiC WITh ANTI-WIck TREATmENT

coating clear Silicone Elastomer 100%

Tensile strength                 Warp > 6500 (N/5cm) 130 (kN/m) ISO 1421
Weft  > 6000 (N/5cm) 120 (kN/m) ISO 1421

Trapezoidal tear              Warp > 550N
Weft > 550N

crease resistance > 99% ASTm D4851

Total weight 1165 (g/m2) DIN EN 5384

Thickness 0.80 mm

Standard Widths 2000/2500/3000 mm

Bi-Axial mechanical properties Available on request

Acoustic attenuation Available on request

oPTiCAL VALUes Solar Standard D65

Transmission 18.5% 21.0% DIN EN 410

Reflection 68.5% 75.0% DIN EN 410

Absorption 13.0% 4.0% DIN EN 410

FABRiCATioN

Sewing (PTFE yarn)
Welding (silicone tape)* Tensile > 4000 (N/5cm) Peel 180° > 150 (N/5cm)

CHARACTeRisTiCs

Temperature Range -50° to + 200°c

capillary Rise with Anti-wick treatment <5 (mm/24h) DIN 53 925

FiRe RATiNg

Uk class 0 BS 476:Part 6:1989,Part 7:1997
DE B1 DIN 4102

* depending on equipment, must be in accordance with specified adhesive tape grade and coordinated parameters. 
(P-D Interglas may change these specifications from time to time subject to a programme of continous improvement.)
This data sheet is for guidance only.
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A. 2. Appendix B: Conference Paper: A Predictive model for the 

design of functional textiles 
 



VI International Conference on Textile Composites and Inflatable Structures  

STRUCTURAL MEMBRANES 2013 

K.-U.Bletzinger, B. Kröplin and E. Oñate (Eds) 
 

 

A PREDICTIVE MODEL FOR THE DESIGN OF FUNCTIONAL 

TEXTILES  

STRUCTURAL MEMBRANES 2013 

C.N.ILIFFE
*
, B.N.BRIDGENS

*
 AND P.D.GOSLING

*
 

*
 School of Civil Engineering and Geosciences 

University of Newcastle upon Tyne 

Newcastle upon Tyne, NE1 7RU, UK 

Email: ben.bridgens@ncl.ac.uk, web page: http://www.ncl.ac.uk/ceg/ 

Key words: Predictive model, material design, woven fabric, textile, biaxial, yarn geometry, 

composite, fabric. 

Summary: This report proposes a method for the design of a fabric for specified mechanical 

properties at multiple biaxial-stress states.  

 

1 INTRODUCTION 

Functional textiles have a wide variety of uses including large scale roof structures 
[1]

, 

medical applications 
[2]

, and as reinforcement for composite materials. Functional textiles are 

typically manufactured based on simplified engineering requirements (e.g. weight and 

uniaxial strength), with other properties (such as detailed analysis of stiffness) determined 

retrospectively through physical testing. The work presented here demonstrates a 

methodology for the design of bespoke functional textiles to meet detailed engineering 

requirements, with the focus on the biaxial response of flexible coated woven fabrics. The 

method employed uses a semi-analytical optimisation routine to determine the optimum fabric 

geometry and constituent material properties for detailed material stiffness requirements.  

 

Previously developed mechanical ‘unit cell’ models have been shown to provide a good 

prediction of the response of architectural plain-weave fabrics under biaxial load, and have 

therefore formed the basis of the work 
[3, 4]

. The derivatives of the unit cell equilibrium 

equations have been determined and this allows the fabric parameters to be optimised for a 

detailed set of biaxial and shear stiffness requirements at different stress levels. Initial 

validation using the model to design feasible, known fabrics has shown good results and 

demonstrated the potential utility of this approach. 

 

2 SCOPE AND METHODOLOGY 

2.1 Biaxial response 

Coated architectural fabrics are employed in biaxial stress states and have “negligible 

bending or compression stiffness” 
[5]

 meaning loads are resisted through tension, and as such 
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the model was required to work with biaxial input and output parameters. Therefore the 

response characteristics under biaxial load are considered to be the Young’s moduli in both 

warp and weft directions (E11 and E22) and the Poisons ratios of the fabric (ν12 and ν21). 

 

Whilst shear response under biaxial load “is crucial in order to build double-curvature 

tensioned structures”
[6]

 the shear modulus (G) is not considered in the current version of this 

model as the response has been found to be dominated by the coating stiffness, currently 

modelled as linear. It is proposed that later versions of this model will include a module for 

the consideration of shear effects. 

2.1 Sawtooth modelling 

The sawtooth model developed by Menges and Meffert 
[7]

 and further developed and used 

by Bridgens 
[3, 4]

 was the basis of the work. It was chosen as it allowed for the possibility of 

truly predictive design, as the equations contain no factors that need to be derived through 

testing, and the equations themselves lend themselves to differentiation. 

 

The method considers a unit cell of fabric as shown in Figure 3, and idealises this as a set 

of two orthotropic yarns that are perpendicular, as shown in Figure 1 and Figure 2. 

 

 

Figure 1: Fundamentals of the full sawtooth model with an Isoparametric Element representing the coating   

 

Figure 2: Further definitions within the unit cell  
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Figure 3: Unit Cell representation (Plain Weave)
[3, 4]

 

Unlike the previously developed models the coating is represented by a single 

Isoparametric Plane Stress element as described by Cook, Malkus and Plesha 
[8]

. This change 

was made in preparation for the analysis of shear response and the possibility of non-

perpendicular geometry. The equations defining the response of the unit cell are therefore 

published as: 
  

            (
  

    
 
) (           )(      )      

 

    
      [  

     

          
 ]      

 
                       

 

    
  

    

    

    
       

 

    
  

       

       
      

[3, 4]
 

(1) 

  

constrained by the following equations which ensure geometric continuity and force 

equilibrium: 
  

(     )  (     )      
 

             
 

                 
             

[3, 4]
 

(2) 

  

where the subscripts 1 and 2 refer to the warp and weft directions respectively. The subscripts 

k and y refer to the coating and yarn respectively. The apostrophe refers to a value after 

deformation. Other terms included are the yarn radius (r), the yarn length (L) (1/4 the yarn 

wavelength), force (F), yarn amplitudes (A), yarn widths (w) (1/2 the yarn width), the yarn 

cross-sectional area (Area), Young’s Moduli (E), and yarn length (Y) (includes out-of plane 

distance). 

Unit cell 
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3 RESULTS AND DISCUSSION 

3.1 Construction of defining equations 

Once the equations defining the unit cell are available it is possible to calculate the 

response characteristics of the fabric numerically, employing a finite difference method. 

 

However, numerical perturbation does not lend itself to optimisation, which is necessary to 

design a bespoke fabric. To produce equations that can be used in conjunction with 

optimisation routines it is necessary to find the derivatives 
     

     
 (for E11,22) and 

     

     
 (for 

E12,21). The derivative 
     

     
 refers to the Young’s modulus of the unit cell, and must be 

converted to the value for the whole fabric as shown in equation 3. The derivative 
     

     
 is 

needed to produce the Poisson’s ratios, as shown in equation 4. 
 

      
                

              

 

(3) 

   

 
   

   

 
 

   

 

 
[1]

 

(4) 

 

To find the derivatives the applied force was determined in terms of the unit cell variables, 

and strain as shown in equation 5. Equations 6 through 9 are then necessary to calculate 

further derivatives. 
  

     
(          ) ((       )      (      )         )
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           (
(       )      (      )         

    (      )
) 

(9) 

   

To calculate the full derivatives it is necessary to find the partial derivatives for all the 

variables. There are numerous variables that are inter-related with relation to the defining 

equations expressed earlier (equations 1 and 2). As such equations 10 and 11 represent the 
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calculation that needs to be performed to produce the required derivatives.  
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(11) 
 

Unfortunately it can be shown that due to the interdependence of the variables it is not 

possible to produce a fully analytical answer to equations 10 and 11. To produce useable 

equations one value must be calculated iteratively, as shown in equation 12. This must be 

calculated independently using the equilibrium model each time a new value is required. 
 

     

     

 
     

     

 
(12) 

   

Whilst this is now a semi-analytical method the equations derived do still allow for 

optimisation to be used to design a bespoke fabric. 

3.2 The method of optimisation 

MATLAB 
[9]

 was used to produce an optimisation script for the minimisation of the 

defining equations. Internal functions were used to optimise the equations for a set of targets 

produced. The optimisation methodology is briefly summarised in Figure 4. The method 

initially uses a pattern search algorithm to refine the search ‘area’, and then uses an internal 

MATLAB search routine to find the “minimum of [a] constrained nonlinear multivariable 

function” 
[10]

. If no perfect solution can be found then the script implements a gradually 

varying allowance of variation from the targets to allow a solution to be found. This could be 

changed to allow for accurate optimisation for some important targets, and ‘as close as 

possible’ optimisation for other targets of less significance to the designer. 

 

Using a function that allows for multiple constraints is used to incorporate the constraint 

equations (equations 2). If no perfect solution is found then bounds are placed on the targets, 

and these are allowed to vary by a percentage. This allows the script to find results where no 

realistic solution would be possible. 

 

Five sets of targets are used in the current model to demonstrate how the method can be 

used to design for multiple material properties for a single fabric at different loads. More 

targets could be implemented, however the current number demonstrates the method’s utility 

without making any solution too difficult, or computationally expensive to find. The ‘Shear 

Module’ shown is currently in development. 
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Figure 4: Flow chart to describe the optimisation process 

3.3 Results for known feasible targets 

To demonstrate the functionality of both the method of optimisation and the validity of the 

equations used an optimisation for a set of targets that were known to be feasible was 

performed. 

Input required values of E11, E22, v12 and v21 
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Minimise function value: 

 

Where the variables are: L
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, E
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and the targets can vary within +/- X% 

  

Calculate: 
∆𝜀   

∆𝜀   
 𝜀    for points 1 – 5 

using the equilibrium model and an 

iterative calculation of 
∆𝜀   

∆𝜀   
 

 

Optimisation Component – non-feasible solution 

If Function is minimised EXIT 

optimisation, else increase X. 
  

Display results if a solution has been found 
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The feasible targets were produced with the equilibrium model using a central finite 

difference method from the geometry shown in Table 1. The results of this finite difference 

method are shown in Table 2.  

 
Table 1: Geometry used to find feasible targets and resultant optimised geometry 

Variable Geometry from which 

targets are calculated 

Optimised geometry 

A1 (mm) 0.069 0.071 

A2 (mm) 0.207 0.190 

ϴ1 (Rad) 0.106 0.116  

ϴ2 (Rad) 0.189 0.183  

L1 (mm) 0.645 0.605  

L2 (mm) 1.082 1.022  

r1 (mm) 0.162 0.152  

r2 (mm) 0.114 0.107  

w1 (mm) 0.786 0.824  

w2 (mm) 0.673 0.920  

E1 (kN/m) 860 859 

E2 (kN/m) 710 703 

Ek (kN/m) 30 33 

vk 0.3 0.3 

 
Table 2: Feasible targets found at the applied loads P1 and P2. 

 Point 1 Point 2 Point 3 Point 4 Point 5 

E11 (target 1) (kN/m) 514 662 602 377 777 

E22 (target 3) (kN/m) 444 554 510 551 484 

v12 (target 2) 0.434 0.288 0.344 0.317 0.261 

v21 (target 4) 0.374 0.241 0.291 0.431 0.180 

P1 (kN/m) 10 20 15 10 20 

P2 (kN/m) 10 20 15 20 10 

 

The results of this are as expected, a near perfect solution is found quickly suggesting the 

equations appear to correlate well to the sawtooth method which is known to correlate well 

with the response of real fabrics. It should be noted that the start point of the optimisation was 

not the geometry used to find the targets; this ensured that the method was in fact finding a 

solution, and not succeeding having been given the correct geometry. 
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Figure 5: Results of the optimisation for the feasible solution 

The optimisation for the feasible values of stiffness and poisons ratio produces good results 

(Figure 5). Target points 4 and 5 in the plot of E22 results show some slight deviation from the 

targets. In reality this small error, whilst observable in the figure, equates to a difference of 

0.89kN/m and 0.90kN/m respectively. This is as a result of the slight deviation from the 

original geometry that was found. A higher accuracy requirement on the solver may produce 

more accurate results, but would be more computationally expensive, taking longer.  

3.4 Comparison with measured fabric parameters 

Target values of stiffness and poisons ratio were calculated from biaxial test data produced 

from a fabric with the geometry set out in Table 1. The targets are shown in Table 3, along 

with the numerical results of the optimisation. The points to be analysed were chosen from 

areas on the response surface that did not include flattening in one of the principle directions. 

This flattening leads to unexpectedly large or small results when analytical or numerical 

derivatives of the surface are calculated to give targets. Therefore similar targets to those used 

in the previous test could not be used in this instance. 
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Table 3: Measured targets found at the applied loads P1 and P2 

  Point 1 Point 2 Point 3 Point 4 Point 5 

Targets 

E11 (kN/m) 700 799 794 668 596 

E22 (kN/m) 748 875 799 681 621 

v12  0.218 0.170 0.197 0.114 0.138 

v21  0.305 0.288 0.234 0.379 0.412 

Results 

E11 (kN/m) 552 652 604 611 591 

E22 (kN/m) 676 811 746 837 829 

v12 0.248 0.153 0.196 0.145 0.152 

v21 0.331 0.203 0.261 0.204 0.220 

% differences 

E11  -21.1 -18.5 -24.0 -8.5 -0.8 

E22  -9.6 -7.3 -0.5 22.9 33.4 

v12  13.9 -10.1 -6.6 27.0 10.1 

v21  8.6 -29.7 11.6 -46.3 -46.5 

Applied Load 
P1 (kN/m) 10 20 14 12 10 

P2 (kN/m) 10 20 14 16 14 

 

 

Figure 6: Results of the optimisation for the measured targets 

No perfect solution could be found through the optimisation for the measured targets 

(Figure 6). Although no perfect solution could be found Figure 6 does show how close the 
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solutions found were to the targets. Table 4 shows the geometric solution found against the 

geometry of the original fabric. 

 
Table 4: Optimised geometry for measured targets 

Variable Geometry from which 

targets are calculated 

Optimised geometry 

A1 (mm) 0.069 0.428 

A2 (mm) 0.207 1.861 

ϴ1 (Rad) 0.106 0.316 

ϴ2 (Rad) 0.189 0.130 

L1 (mm) 0.645 1.039 

L2 (mm) 1.082 0.210 

r1 (mm) 0.162 0.033 

r2 (mm) 0.114 0.334 

w1 (mm) 0.786 0.254 

w2 (mm) 0.673 1.021 

E1 (kN/m) 860 925 

E2 (kN/m) 710 946 

Ek (kN/m) 30 19 

vk 0.3 0.3 

 

The optimised geometry is clearly not the same as the geometry of the fabric from which 

the targets were derived. The original set of targets may be unobtainable for the sawtooth 

method with the constraints currently placed on the solution. The constraints (maximum and 

minimum values of geometric properties, and the constraints on the deformation stated in 

equation 2) currently being used are very broad to encompass extremes of realistic fabrics. 

These would be further constrained for more specific and realistic designs. 

 

When the targets are allowed to vary slightly (5%) from the initial input targets a far more 

successful optimisation is performed. 

 

6 DISCUSSION 

The sawtooth model provides a reasonable prediction of fabric behaviour with the model’s 

deviation from the mean of the strain range of a real fabric being between 5.3 and 5.9%
[4]

 

(Figure 7). 

 

The method developed offers close correlation between results for feasible targets. This 

good fidelity was predicted, as the optimisation equations were developed using the sawtooth 

model, but demonstrates the utility of the method. Therefore the optimisation works by 

finding the solutions available from all possible response planes of the sawtooth model, and 

should eventually find a solution for targets that originally existed on this plane. This does, 

importantly, show that the method being employed to find the targets is working. 
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The error found in the optimised geometry for the targets measured from biaxial data can 

be explained by the difference in the response planes of the real fabric and the sawtooth’s 

prediction of that fabric’s response. Figure 7 shows the difference in the response planes of 

sawtooth and the real fabric when a sawtooth model is run using the geometry of the real 

fabric. These two sets of response planes, whilst similar, are clearly not the same. Over and 

under prediction of strain will also affect result. 

 

It was unlikely at the outset that the solver would find a solution that perfectly matched the 

real fabric’s geometry. It is also therefore possibly the case that no feasible solution exists for 

the sawtooth model where the targets stated in Table 3 could be achieved within the 

constraints placed on the model. Future work will be needed to demonstrate how much 

inaccuracy is inherent in the process, and therefore must be expected when attempting to 

design the geometry of ‘real’ fabrics. 

 

 

Figure 7: Response surfaces for the sawtooth model and measured response for one geometry 

5 CONCLUSIONS 

 The accuracy of the optimisation method with regards to known feasible targets 

derived from the sawtooth model is good. 

 The methodology is slower than hoped as the calculation of 
     

     
 must be completed 

after each iteration. 
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 The accuracy of the optimisation method with regards measured targets derived 

from real fabric data is acceptable at this stage of development. The actual accuracy 

of the optimised geometry for the new targets is unknown as it is not currently 

possible within the bounds of this work to produce a bespoke fabric to be tested. 

 It is possible that for some targets multiple solutions exist and that for others no 

solutions exist. The latter has been shown through the results of the measured target 

optimisation, but the former is as of yet unproven. 

 Allowing small amounts of variation from the target may drastically improve the 

model’s utility and allow for a Pareto front of possible solutions to be found. 

 

6 FURTHER WORK 

Further work is on-going to allow the optimum design of a fabric’s shear response 

characteristics as well as biaxial response to loads. The inherent uncertainty in the 

manufacturing process, and the discrete nature of some parameters, will also be considered 

and methods for the calculation of the effect of such variability incorporated into future 

models. In addition it is necessary to further check the inherent inaccuracy of the model when 

compared to real results obtained through tests. Other possible implications of the model must 

be further investigated. And the effect of varying one parameter on the optimised result will 

also be investigated. 
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A. 3. Appendix C: Further results for optimisation to known 

feasible targets (§3.7.1) 
 

A.3.1. PVC coated Polyester 

Variable Geometry from which 
targets are calculated 

Optimised geometry 
(without knowledge of 

original geometry) 

Optimised geometry 
(with knowledge of 
original geometry) 

ϴ1 (Rad) 0.102 0.102 0.102 
ϴ2 (Rad) 0.125 0.125 0.125 
L1 (mm) 0.624 1.112 0.624 
L2 (mm) 0.611 1.088 0.611 
r1 (mm) 0.079 0.140 0.079 
r2 (mm) 0.062 0.111 0.062 
E1 (kN/m) 485 485 485 
E2 (kN/m) 425 425 425 
Ek (kN/m) 33 33 33 
A1 (mm) 0.064 0.114 0.064 
A2 (mm) 0.077 0.137 0.077 
w1 (mm) 0.624 1.112 0.624 
w2 (mm) 0.608 1.083 0.608 
vk 0.3 0.3 0.3 

Table A-1: Geometry used to find feasible targets and resultant optimised geometry for F702 fabric 

 Point 1 Point 2 Point 3 Point 4 Point 5 

E11 (target 1) (kN/m) 403 465 441 393 479 

E22 (target 3) (kN/m) 362 414 394 426 352 

v12 (target 2) 0.26 0.18 0.21 0.18 0.19 

v21 (target 4) 0.23 0.16 0.18 0.17 0.17 

P1 (kN/m) 10 20 15 10 20 

P2 (kN/m) 10 20 15 20 10 

 Results without prior knowledge of geometry 

E11 (result 1) (kN/m) 403 465 441 393 479 

E22 (result 3) (kN/m) 362 414 394 426 352 

v12 (result 2) 0.26 0.18 0.21 0.18 0.19 

v21 (result 4) 0.23 0.16 0.18 0.17 0.17 

 Results with prior knowledge of geometry 

E11 (result 1) (kN/m) 403 465 441 393 479 

E22 (result 3) (kN/m) 362 414 394 426 352 

v12 (result 2) 0.26 0.18 0.21 0.18 0.19 

v21 (result 4) 0.23 0.16 0.18 0.17 0.17 
Table A-2: Targets and resultant properties of a designed F702 fabric 
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A.3.2. PTFE coated glass-fibre 

Variable Geometry from which 
targets are calculated 

Optimised geometry 
(without knowledge of 

original geometry) 

Optimised geometry 
(with knowledge of 
original geometry) 

ϴ1 (Rad) 0.283 0.281 0.283 
ϴ2 (Rad) 0.364 0.366 0.364 
L1 (mm) 0.724 1.203 0.724 
L2 (mm) 0.575 0.962 0.575 
r1 (mm) 0.202 0.341 0.202 
r2 (mm) 0.228 0.375 0.228 
E1 (kN/m) 4610 4426 4610 
E2 (kN/m) 4770 5008 4770 
Ek (kN/m) 54 54 54 
A1 (mm) 0.210 0.348 0.210 
A2 (mm) 0.219 0.369 0.219 
w1 (mm) 0.529 0.889 0.529 
w2 (mm) 0.784 1.300 0.784 
vk 0.3 0.3 0.3 

Table A-3: Geometry used to find feasible targets and resultant optimised geometry for B18059 fabric 

A.3.3. Silicon coated glass-fibre 

Variable Geometry from which 
targets are calculated 

Optimised geometry 
(without knowledge of 

original geometry) 

Optimised geometry 
(with knowledge of 
original geometry) 

ϴ1 (Rad) 0.260 0.260 0.260 
ϴ2 (Rad) 0.233 0.232 0.233 
L1 (mm) 0.682 1.187 0.682 
L2 (mm) 0.595 1.037 0.595 
r1 (mm) 0.159 0.277 0.159 
r2 (mm) 0.164 0.285 0.164 
E1 (kN/m) 4110 4110 4110 
E2 (kN/m) 6300 6300 6300 
Ek (kN/m) 21 21 21 
A1 (mm) 0.182 0.316 0.182 
A2 (mm) 0.141 0.246 0.141 
w1 (mm) 0.671 1.169 0.671 
w2 (mm) 0.614 1.070 0.614 
vk 0.3 0.3 0.3 

Table A-4: Geometry used to find feasible targets and resultant optimised geometry for ATEX5000 fabric 
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A. 4. Appendix D: Additional distributions of fabric geometry 
 

 

Figure A-1: Probability plot of weft yarn amplitudes for an F1202 fabric 

 

Figure A-2: Probability plot of warp yarn half wavelengths for an F1202 fabric 
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Figure A-3: Probability plot of weft yarn half wavelengths for an F1202 fabric 

 

Figure A-4: Probability plot of warp yarn thicknesses for an F1202 fabric 

 

Figure A-5: Probability plot of weft yarn out of plane angles for an F1202 fabric 
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Figure A-6: Probability plot of warp yarn widths for an F1202 fabric 

 

Figure A-7: Probability plot of weft yarn widths for an F1202 fabric 
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A. 5. Appendix E: Alternative visualisation of fabric design to 

targets obtained from biaxial test results (§5.3.2) 
a) 

 

b) 

 

c) 
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d) 

 

e) 

 

f) 
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g) 

 

h) 

 

Figure A-8: Variable target optimisation for biaxial targets from a F702 fabric. a) 5% variation, b) 15% variation, c) 
25% variation, d) 35% variation, e) 45% variation, f) 55% variation, g) 65% variation, h) 75% variation. 
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A. 6. Appendix F: Spring and Arm case formula derivations 
 

Considering the deformation of triangle ABE (Equation A-1) with inextensible members gives: 

𝐿0
cos𝜃

=
𝐿0 + 𝛿

cos 𝜃′
 

Equation A-1 

Original length BE is equal to the deformed length BE plus the change in length BE (Δ): 

 

𝐿0 𝑡𝑎𝑛 𝜃 = 𝛥 + (𝐿0 + 𝛿) 𝑡𝑎𝑛 𝜃
′ Equation A-2 

By substituting in the equation for ‘k’ (Equation A-14), and considering the vertical resultant 

force at B the deflection of the spring (Δ) can then be written as: 

𝐿0 𝑡𝑎𝑛 𝜃 = 𝛥 + (𝐿0 + 𝛿) 𝑡𝑎𝑛 𝜃
′ =

𝐹 𝑡𝑎𝑛 𝜃′

𝑘
+ (𝐿0 + 𝛿) 𝑡𝑎𝑛 𝜃

′ 

Equation A-3 

𝛥 =
𝐹𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑡 𝐵

𝑘
 

Equation A-4 

The displacement of the system to the load can now be calculated as follows: 

If a right angled triangle exists then Pythagoras holds. 

The length of the hypotenuse is unchanged between the loaded and unloaded case. Thus for 

the initial situation: 

 (
𝐿0 + 𝛿

𝑐𝑜𝑠 𝜃′
)
2

= (
𝐹 𝑡𝑎𝑛 𝜃′

𝑘
+ (𝐿0 + 𝛿) 𝑡𝑎𝑛 𝜃

′)

2

+ (𝐿0)
2 

*Note all 𝐹 = 𝑓(𝜃′, 𝛿) 

Equation A-5 

Hence:         

𝐹 =
𝑘

𝑡𝑎𝑛 𝜃′
[(
𝛿 + 𝐿0
𝑐𝑜𝑠 𝜃′

)
2

− 𝐿0
2]

0.5

− 𝑘(𝛿 + 𝐿0) 

Equation A-6 

And it follows that: 

𝜃′ = 𝑐𝑜𝑠−1 (
(𝐿0 + 𝛿) 𝑐𝑜𝑠 𝜃

𝐿0
) 

Equation A-7 

Thus the Derivatives can be calculated: 

 

𝑑𝐹

𝑑𝛿
=
𝜕𝐹

𝜕𝛿
+
𝜕𝐹

𝜕𝜃′
∙
𝜕𝜃′

𝜕𝛿
 

Equation A-8 
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Considering the partial derivative of F (Equation A-6) with respect to δ gives: 

𝜕𝐹

𝜕𝛿
=

𝑘 ∙ (2𝐿0 + 2𝛿)

2𝑄 ∙ cos2 𝜃′ ∙ tan 𝜃′
 

 

Equation A-9 

And similarly the partial derivative of F (Equation A-10) with respect to 𝜃′gives: 

𝜕𝐹

𝜕𝜃′
=
𝑘 ∙ sin𝜃′ ∙ (𝐿0+ 𝛿)2

𝑄 ∙ tan𝜃′
−
𝑘 ∙ 𝑄 ∙ (tan2 𝜃′ + 1)

tan2 𝜃′
 

Equation A-10 

Where ‘Q’ is equal to the square route of the ‘hypotenuse’ minus the ‘adjacent’ or the distance 

BE (Equation A-11): 

𝑄 = ((
𝛿 + 𝐿0
cos 𝜃′

)
2

− 𝐿0
2)

0.5

 

Equation A-11 

 
 

And similarly the partial derivative of 𝜃′ (Equation A-12) with respect F to gives: 

𝜕𝜃′

𝜕𝛿
=

(−) cos𝜽

𝐿0(1− (
cos2 𝜽 (𝐿0 + 𝛿)

2

𝐿0
2 ))

0.5
 

Equation A-12 

Therefore the full derivative of the force with respect to the deformation is: 

𝑑𝐹

𝑑𝛿
=
𝜕𝐹

𝜕𝛿
+
𝜕𝐹

𝜕𝜃′
∙
𝜕𝜃′

𝜕𝛿
= 

[
 
 
 
 
 

cos𝜽

{
 
 

 
 

𝑘(tan2 𝜃′ + 1) ∙ 𝑄
tan2 𝜃′

−
𝑘 sin 𝜃′ (𝐿0 + 𝛿)2

cos3 𝜃′ tan 𝜃′ (1 − (
cos2 𝜽 (𝐿0 + 𝛿)

2

𝐿0
2 ))

0.5

}
 
 

 
 

]
 
 
 
 
 

[𝐿0 (
1 − (cos2 𝜃′ (𝐿0 + 𝛿)

2)

𝐿0
2 )

0.5

]

+
𝑘(2𝐿0 + 2𝛿)

(2 cos2 𝜃′ tan 𝜃′ ∙ 𝑄
− 𝑘 

Equation A-13 

𝑘 =
𝐸 ∙ 𝐴

𝐿𝑦0
 

Equation A-14 

 

Where E and A are the spring constants and 𝐿𝑦0 is the initial length of the spring between D 

and B. 
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A. 7. Appendix G: Spring and Arm case method and validation 
 

A.7.1. Spring and arm method 

The validity of the method using the derived equation  is demonstrated by solving the 

equations within MATLAB (Mathworks, 2012b) for an initial geometry and comparing 

calculated derivatives to results calculated using a central finite difference method 

(Figure A-9). 

 

Figure A-9: Flow chart for validation of ‘spring and arm model’ 

Input properties of the system: 

𝜃, 𝐿0, 𝐿𝑦0, 𝐸, 𝐴  

Initialise finite difference 

calculation 
Initialise analytical calculation 

Calculate equilibrium position 

finding: 𝜃′and 𝛿 

Recalculate 𝜃′ and 𝛿 at small 

(+/-) incremented values of F 

(central  finite difference) 

Numerically calculate 
Δ𝐹

Δ𝛿
 

using central finite difference 

Analytically calculate 
d𝐹

d𝛿
 using 

central point information 

Compare numerical and 

analytical stiffnesses and 

equilibrium positions 

Select load: F 

Save results 

Output results 

Calculate equilibrium position 

finding: 𝜃′and 𝛿 
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The result obtained using this method are discussed below (§A.7.2). This methodology 

is the foundation for the comparisons between the inverse model and sawtooth model 

presented in this report where multiple stress states are compared using finite 

difference calculations. 

A.7.2. Spring and arm model validation 

For the validation of the derivative arbitrary values were chosen for the initial geometry, 

though the initial angle (θ) and Length (L0) which were chosen to allow for a sufficient 

deflection to occur (1.5% of the original length). The maximum load was chosen after an 

incremental increase in load was applied to the model for which the selected value 

produced an accurate maximum displacement to three decimal places. One thousand 

individual points were tested between the minimum and maximum load (giving 1002 

points). 

The analytical model’s calculation of dF/dδ  shows excellent correlation with data 

obtained numerically using the central finite difference calculation (Figure A-11). 

 

Figure A-10: Central Finite Difference method as used in the simple sawtooth 

The accuracy of the derivative calculation dF/dδ  (or the stiffness of the model) is 

verified by comparison to the finite difference calculations (Figure A-11). The displacement 

approaches an asymptote of 0.108 (Figure A-11-A) as can be predicted from the original length 

and angle (Equation A-15): 

𝛿 

ϴ’ 

F1  

F2 = F1 + inc 

F3 = F1 - inc 

∆𝜃′

∆𝛿
 

Load increment = ΔF 



A. Appendix 

PAGE 418 

𝛿𝑚𝑎𝑥 =
𝐿0

cos 𝜃
− 𝐿0 

7.1079 − 7 ≈ 0.108 = 𝛿𝑚𝑎𝑥 

Equation A-15 

 

This demonstrates that the model is accurately calculating the maximum displacement. 

Percentage errors are low (order x10-4), however the error grows rapidly as the force 

approaches the maximum (Figure A-11-B). At very high loads the increment used to 

calculate the finite difference becomes far smaller in comparison to the force applied, 

creating rounding errors and errors in the calculation of the numerically calculated 

stiffness value. This is compounded by the very small displacements that are being 

compared to very large forces introducing further errors (i.e. a very large number 

divided by a very small number). This is an example of how this model has informed the 

more complex models used later on, in future models calculations of finite difference 

use a varying factor to ensure this does not occur. The error that occurs due to this 

follows the same pattern as the percentage error, resulting in larger errors at high loads 

(Figure A-11-D). 

The linear y=x relationship demonstrates that the analytical and numerical calculations 

of the stiffness are in fact equal (Figure A-11-C). The small percentage error is not 

noticeable as a deviation from this relationship. 

Initially it was hypothesised that the second term in the calculation of the full derivative 

(𝜕𝐹/𝜕𝜃′ ∙ 𝜕𝜃′/𝜕𝛿) might have a minimal impact on the calculated result, and might 

therefore be excluded from the final calculation of the stiffness. If this applied to ‘spring 

and arm’ case model it may also have applied to the sawtooth model, and would have 

meant that the calculation of the derivative would have been quicker, and less 

computationally expensive. The results show that without the second term the 

calculated derivative would be two orders of magnitude away from the correct value at 

the highest applied load (Figure A-12). The maximum error is calculated to be 7.6x1007 

and as such the hypothesis was disproved, and all partial terms will be investigated in 

the inverse sawtooth modelling. 
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Figure A-11: Results of verification test on the ‘spring and arm’ case. A) Force vs Displacement with the asymptote 
at 0.108. B) Force vs Percentage error. C) Comparison of derivatives. D) Error in derivative calculation 

 

Figure A-12: Comparison of the full derivative to the first term of the derivative 
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Term Input value (no units) Description 

Fmax 100000 The maximum value of force applied 

Fmin 0 The minimum value of force applied 

ΔF 0.01 The increment applied to F for finite 
difference calculations 

Points 1002 The number of values of force tested 

Finc 100 The change in the force between test 
points 

k 1250 The spring constant 

𝛉 π
18⁄

c The angle between the bar and the x-
axis 

𝑳𝟎 7 Half the initial length between the two 
rollers 

Table A-5: Input data used to obtain the results in Figure A-11 
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A. 8. Appendix H: Simple sawtooth derivations 
 

The derivation of a single formula that relates the force applied (F) to the out of 

plane angle (𝜽′𝟏,𝟐) and strain (𝜺𝟐,𝟏): 

a) 
𝐹1,2 = 𝑓(𝐹2,1, 𝑟1, 𝑟2, 𝐿1,2, 𝐿2,1, 𝜀1,2, 𝜀2,1, 𝜃′1,2)  

b) 
(𝑟1 + 𝑟2) − (𝐴1 + 𝐴2) = 0  

c) 
𝐴1,2 = (𝐿1,2 + 𝛿1,2) tan 𝜃′1,2  

d) 
𝐹𝑐1 − 𝐹𝑐2 = 0  

e) 
𝐹𝑐1,2 = 𝐹1,2 tan 𝜃′1,2  

f) 

Substituting e) into d) and rearranging gives f). 

𝐹1 tan 𝜃′1
𝐹2

= tan𝜃′2 

 

g) 

Substituting b) into c) gives g). 

tan 𝜃′2 =
(𝑟1 + 𝑟2) − (𝐿1 + 𝛿1) tan 𝜃′1

(𝐿2 + 𝛿2)
 

 

h) 

And substituting f) into g) gives a formulation for F1,2 including 

no opposite yarn angle. 

1 =
𝐹2((𝑟1 + 𝑟2) − (𝐿1 + 𝛿1) tan 𝜃′1)

(𝐿2 + 𝛿2) F1tan 𝜃′1
 

 

i) 
F1 =

𝐹2((𝑟1 + 𝑟2) − (𝐿1 + 𝛿1) tan 𝜃′1)

(𝐿2 + 𝛿2) tan 𝜃′1
 

 

j) 
𝛿1,2 = 𝜀1,2 ∙ 𝐿1,2  

k) 

Finally substituting the displacement for the strain gives k) 

𝐹1,2 =
𝐹2,1((𝑟1 + 𝑟2) − (𝐿1,2 + (𝜀1,2 ∙ 𝐿1,2)) tan 𝜃

′
1,2)

(𝐿2,1 + (𝜀2,1 ∙ 𝐿2,1)) tan 𝜃′1,2
 

 

 

Equation A-16 
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Once this has been achieved it is necessary to show that 𝜃′1,2 can be defined in terms of 

only initial geometry and strain, as shown below (Equation A-17): 

l) 
𝜃′1,2 = 𝑓(𝐿1,2, 𝜀1,2, 𝜃1,2)  

m) 
𝑌1,2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =

𝐿1,2
cos 𝜃1,2

=
𝐿1,2 + 𝛿1,2
cos 𝜃′1,2

 
 

n) 

Rearranging m) and replacing the displacement with the 

strain (j) gives a definition of the new yarn angle in terms of 

only the strain and original unit cell geometry. 

𝜃′1,2 = cos
−1(

(𝐿1,2 + (𝜀1,2 ∙ 𝐿1,2)) cos 𝜃1,2

𝐿1,2
) = 𝑓(𝜀1,2) 

 

 

 

 

Equation A-17 

Finally it is necessary to show that 𝜀2,1 can be defined in terms of only initial geometry 

and 𝜀1,2 (Equation A-18). 

o) 

The strain must be written as a function of original geometry and the 

strain in the opposite direction. 

𝜀2,1 = 𝑓(𝐿1,2, 𝐿2,1, 𝜀1,2, 𝜃1,2, 𝜃2,1) 

 

p) 

Substituting c) into b) gives p). 

(𝑟1 + 𝑟2) − (𝐿1 + 𝛿1) tan 𝜃
′
1= (𝐿2 + 𝛿2)tan𝜃

′
2 =

(𝐿2 + 𝛿2) sin 𝜃
′
2

cos 𝜃′2
 

q) 

And substituting m) into p) gives q). 

(𝑟1 + 𝑟2) − (𝐿1 + 𝛿1) tan 𝜃
′
1 =

𝐿2 sin 𝜃
′
2

cos 𝜃2
 

 

 

 

r) 

Rearranging q) gives:  

((𝑟1 + 𝑟2) − (𝐿1 + 𝛿1) tan 𝜃
′
1) cos 𝜃2

𝐿2
= sin 𝜃′2 

 

s) 
Which rearranged gives:  
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sin−1 (
((𝑟1 + 𝑟2) − (𝐿1 + 𝛿1) tan 𝜃

′
1) cos 𝜃2

𝐿2
) = 𝜃′2 

 
 
 
 
 
 
t) 

And further rearranging the first two components of p) gives: 

𝜃′2 = cos−1 (
(𝐿2 + (𝜀2 ∙ 𝐿2)) cos 𝜃2

𝐿2
) 

 

u) 

Making s) equal to t) and rearranging gives strain in terms of the original 

geometry and the out of plane yarn angle. 

𝜺𝟐,𝟏 = 

cos(sin−1((
(𝑟1 + 𝑟2) − (𝐿1,2 + (𝜀1,2 ∙ 𝐿1,2)) tan(𝜃

′
1,2)

𝐿2,1
)cos𝜃1,2))

cos𝜃2,1
− 1 

 

 

 

 

 

Equation A-18 

With the above equations it is possible to produce the derivatives 𝑑𝐹1,2/𝑑𝜀1,2  and 

𝑑𝐹1,2/𝑑𝜀2,1, which can then be used to optimise a set of initial geometries for a set of 

targets. The derivatives are shown below:    

𝑑𝐹1
𝑑𝜀1

=
cos 𝜃1 (

𝐹2𝑎(tan
2 𝜃′1 + 1)

𝑏 tan𝜃′1
+
𝐹2(tan

2 𝜃′1 + 1)(𝑟1 + 𝑟2 − 𝑎 tan𝜃
′
1)

𝑏tan2 𝜃′1
)

𝑐
−
𝐹2𝐿1

𝑏
+ 

𝐹2𝑎 cos 𝜃1 cos 𝜃2 (𝑟1 + 𝑟2 − 𝑎 tan𝜃′1) ∗ (𝑟1 + 𝑟2 −
𝐿1𝑐
cos 𝜃1

)

𝐿2𝑐𝑏
2𝑒 tan𝜃′1

 

Equation A-19 

𝑑𝐹2
𝑑𝜀2

=
cos 𝜃2 (

𝐹1𝑏(tan
2 𝜃′2 + 1)

𝑎 tan𝜃′2
+
𝐹1(tan

2 𝜃′2 + 1)(𝑟1 + 𝑟2 − 𝑏 tan𝜃
′
2)

𝑎 tan2 𝜃′2
)

𝑑
−
𝐹1𝐿2

𝑎
+ 

𝐹1𝑏 cos 𝜃1 cos 𝜃2 (𝑟1 + 𝑟2 − 𝑏 tan𝜃′2) (𝑟1 + 𝑟2 −
𝐿2𝑑
cos 𝜃2

)

𝐿1𝑑𝑎
2𝑓 tan𝜃′2

 

Equation A-20 

𝑑𝐹2
𝑑𝜀1

=
𝐹1 cos 𝜃1 cos 𝜃2 (𝑟1 + 𝑟2 −

𝐿1𝑐

cos 𝜃1
)

𝐿2𝑐𝑒
−
𝐹1𝐿1(𝑟1 + 𝑟2 − 𝑏 tan𝜃

′
2)

𝑎2 tan𝜃′2
− 

 



A. Appendix 

PAGE 424 

𝑎 cos 𝜃1 cos
2 𝜃2 (

𝐹1𝑏(tan
2 𝜃′2 + 1)

𝑎 tan𝜃′2
+
𝐹1(tan

2 𝜃′2 + 1)(𝑟1 + 𝑟2 − 𝑏 tan𝜃′2)
𝑎 tan2 𝜃′2

) (𝑟1 + 𝑟2 −
𝐿1𝑐
cos 𝜃1

)

𝐿2
2𝑐𝑒 (1 −

cos2 𝜃2 (𝐿2  −
𝐿2 cos 𝜃2 − 𝐿2𝑒

cos 𝜃2
)
2

𝐿2
2 )

1
2

 

Equation A-21 

𝑑𝐹1
𝑑𝜀2

=
𝐹2 cos 𝜃1 cos 𝜃2 (𝑟1 + 𝑟2 −

𝐿2𝑑

cos 𝜃2
)

𝐿1𝑑𝑓
−
𝐹2𝐿2(𝑟1 + 𝑟2 − 𝑎 tan 𝜃′1)

𝑏2 tan𝜃′1
− 

 

cos2 𝜃1 cos 𝜃2 𝑏 (
𝐹2𝑎(tan

2 𝜃′1 + 1)
𝑏 tan𝜃′1

+
𝐹2(tan

2 𝜃′1 + 1)(𝑟1 + 𝑟2 − 𝑎 tan𝜃′1)
𝑏 tan2 𝜃′1

) (𝑟1 + 𝑟2 −
𝐿2𝑑
cos 𝜃2

)

𝐿1
2𝑑𝑓 (1 −

cos(𝑃ℎ1)2 (𝐿1 −
𝐿1 cos 𝜃1 − 𝐿1𝑓

cos 𝜃1
)
2

𝐿1
2 )

1
2

 

Equation A-22 

Where the values a, b, c, d, e, and f are calculated separately (Equation A-23, Equation 

A-24, Equation A-25, Equation A-26, Equation A-27, and Equation A-28 respectively). 

𝑎 = (𝐿1  +  𝐿1𝜀1)  
Equation A-23 

𝑏 = (𝐿2  +  𝐿2𝜀2) 
Equation A-24 

𝑐 = (1 −
𝑎2𝑐𝑜𝑠2 𝜃1

𝐿1
2 )

1
2

 

Equation A-25 

𝑑 = (1 −
𝑏2𝑐𝑜𝑠2 𝜃2

𝐿2
2 )

1
2

 

Equation A-26 

𝑒 = (1 −
𝑐𝑜𝑠2 𝜃2 (𝑟1 + 𝑟2 −

𝐿1𝑐
𝑐𝑜𝑠 𝜃1

)
2

𝐿2
2 )

1
2

 

Equation A-27 

𝑓 = (1 −
𝑐𝑜𝑠2 𝜃1 (𝑟1 + 𝑟2 −

𝐿2𝑑
𝑐𝑜𝑠 𝜃2

)
2

𝐿1
2 )

1
2

 

Equation A-28 
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A. 9. Appendix I: Derivation of Shear Stress 
 

a) 𝑀𝑆 = 𝐹𝑆1𝐿
′
2 cos 𝛾 + 𝐹𝑆2𝐿

′
1 cos 𝛾 = 𝑀𝐾 +𝑀𝐹  

b) 

Dividing a) by the cosine of the shear angle gives: 

𝐹𝑆1𝐿
′
2 + 𝐹𝑆2𝐿

′
1 =

𝑀𝐾 +𝑀𝐹

cos 𝛾
 

 

c) 
Shear stress is constant on both edges: 

𝜏1 = 𝜏2 = 𝜏𝑆 

 

d) 

And therefore can be rewritten in terms of shear force 

𝜏 =
𝐹𝑆1
2𝐿′2

=
𝐹𝑆2
2𝐿′1

 

 

e) 

Rearranging the last two parts of d) produces e) 

𝐹𝑆2 =
𝐹𝑆1𝐿

′
1

𝐿′2
 

 

f) 

And the shear force in the opposite direction can be calculated by 

rearranging b). 

𝐹𝑆1 =
𝑀𝐾 +𝑀𝐹

(𝐿′2 +
(𝐿′1)2

𝐿′2
) cos 𝛾

 

 

g) 𝜏𝑆 =
𝐹𝑆1
2𝐿′2

 
Equation A-29 

 

 

Lastly it is necessary to calculate the shear modulus (Equation A-30). 

𝐺𝑆 =
𝜏𝑆
𝛾𝑆

 
Equation A-30 
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A. 10. Appendix J: Stress and strain minimisation equations 
 

Constrained strain minimisation: 

𝑀 =

[
 
 
 
 
 
 
 
 ∑2𝜎𝑥

2

𝑛

𝑖=1

∑2𝜎𝑥𝜎𝑦

𝑛

𝑖=1

0

∑2𝜎𝑥𝜎𝑦

𝑛

𝑖=1

∑2(𝜎𝑥
2 + 𝜎𝑥

2)

𝑛

𝑖=1

∑2𝜎𝑥𝜎𝑦

𝑛

𝑖=1

0 ∑2𝜎𝑥𝜎𝑦

𝑛

𝑖=1

∑2𝜎𝑦
2

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 

 

Equation A-31 

𝑁 =

{
 
 
 
 

 
 
 
 ∑2𝜎𝑥𝜀𝑥

𝑛

𝑖=1

∑2(𝜎𝑥𝜀𝑦 + 𝜎𝑦𝜀𝑥)

𝑛

𝑖=1

∑2𝜎𝑦𝜀𝑦

𝑛

𝑖=1 }
 
 
 
 

 
 
 
 

 

Equation A-32 

𝑬 = 𝑴−1 ∙ 𝑵 

𝐸𝑥 =
1

𝑬(1)
 

𝐸𝑦 =
1

𝑬(3)
 

𝜈𝑥𝑦 = −
𝑬(2)

𝑬(1)
 

𝜈𝑦𝑥 = −
𝑬(2)

𝑬(3)
 

Equation A-33 

𝑅2 = 1 −
𝑈𝑉

𝑇𝑉
=
∑ (𝜀𝑖 − 𝜀𝑖̂)

2𝑛
𝑖=1

∑ (𝜀𝑖 − 𝜀)̅
2𝑛

𝑖=1

 

Equation A-34 
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Unconstrained strain minimisation: 

𝑀 =

[
 
 
 
 
 
 
 
 
 
 
 ∑2𝜎𝑥

2

𝑛

𝑖=1

      0      ∑2𝜎𝑥𝜎𝑦

𝑛

𝑖=1

      0      

      0      ∑2𝜎𝑥
2

𝑛

𝑖=1

      0      ∑2𝜎𝑥𝜎𝑦

𝑛

𝑖=1

∑2𝜎𝑥𝜎𝑦

𝑛

𝑖=1

      0      ∑2𝜎𝑦
2

𝑛

𝑖=1

      0      

      0      ∑2𝜎𝑥𝜎𝑦

𝑛

𝑖=1

      0      ∑2𝜎𝑦
2

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 

 

Equation A-35 

𝑁 =

{
 
 
 
 
 

 
 
 
 
 ∑2𝜎𝑥𝜀𝑥

𝑛

𝑖=1

∑2𝜎𝑥𝜀𝑦

𝑛

𝑖=1

∑2𝜎𝑦𝜀𝑥

𝑛

𝑖=1

∑2𝜎𝑦𝜀𝑦

𝑛

𝑖=1 }
 
 
 
 
 

 
 
 
 
 

 

Equation A-36 

𝑬 = 𝑴−1 ∙ 𝑵 

𝐸𝑥 =
1

𝑬(1)
 

𝐸𝑦 =
1

𝑬(4)
 

𝜈𝑥𝑦 = −
𝑬(2)

𝐸𝑥
 

𝜈𝑦𝑥 = −
𝑬(2)

𝐸𝑦
 

Equation A-37 
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Constrained stress minimisation: 

𝑀 =

[
 
 
 
 
 
 
 
 ∑2𝜀𝑥

2

𝑛

𝑖=1

∑2𝜀𝑥𝜀𝑦

𝑛

𝑖=1

0

∑2𝜀𝑥𝜀𝑦

𝑛

𝑖=1

∑2(𝜀𝑥
2 + 𝜀𝑥

2)

𝑛

𝑖=1

∑2𝜀𝑥𝜀𝑦

𝑛

𝑖=1

0 ∑2𝜀𝑥𝜀𝑦

𝑛

𝑖=1

∑2𝜀𝑦
2

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 

 

Equation A-38 

𝑁 =

{
 
 
 
 

 
 
 
 ∑2𝜎𝑥𝜀𝑥

𝑛

𝑖=1

∑2(𝜀𝑥𝜎𝑦 + 𝜀𝑦𝜎𝑥)

𝑛

𝑖=1

∑2𝜎𝑦𝜀𝑦

𝑛

𝑖=1 }
 
 
 
 

 
 
 
 

 

Equation A-39 

𝑬 = 𝑴−1 ∙ 𝑵 

𝜈𝑥𝑦 =
𝑬(2)

𝑬(1)
 

𝜈𝑦𝑥 =
𝑬(2)

𝑬(3)
 

𝑉 = (1 − 𝜈𝑥𝑦𝜈𝑦𝑥) 

𝐸𝑥 = 𝑬(1) ∙ 𝑉 

𝐸𝑦 = 𝑬(3) ∙ 𝑉 

Equation A-40 
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Unconstrained stress minimisation: 

𝑀 =

[
 
 
 
 
 
 
 
 
 
 
 ∑2𝜀𝑥

2

𝑛

𝑖=1

      0      ∑2𝜀𝑥𝜀𝑦

𝑛

𝑖=1

      0      

      0      ∑2𝜀𝑥
2

𝑛

𝑖=1

      0      ∑2𝜀𝑥𝜀𝑦

𝑛

𝑖=1

∑2𝜀𝑥𝜀𝑦

𝑛

𝑖=1

      0      ∑2𝜀𝑦
2

𝑛

𝑖=1

      0      

      0      ∑2𝜀𝑥𝜀𝑦

𝑛

𝑖=1
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2

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 
 
 
 

 

Equation A-41 

𝑁 =

{
 
 
 
 
 

 
 
 
 
 ∑2𝜎𝑥𝜀𝑥

𝑛

𝑖=1

∑2𝜎𝑦𝜀𝑥

𝑛

𝑖=1

∑2𝜎𝑥𝜀𝑦

𝑛

𝑖=1

∑2𝜎𝑦𝜀𝑦

𝑛

𝑖=1 }
 
 
 
 
 

 
 
 
 
 

 

Equation A-42 

𝑬 = 𝑴−1 ∙ 𝑵 

𝜈𝑥𝑦 =
𝑬(2)

𝑬(1)
 

𝜈𝑦𝑥 =
𝑬(3)

𝑬(4)
 

𝑉 = (1 − 𝜈𝑥𝑦𝜈𝑦𝑥) 

𝐸𝑥 = 𝑬(1) ∙ 𝑉 

𝐸𝑦 = 𝑬(4) ∙ 𝑉 

Equation A-43 
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A. 11. Appendix K: Yarn Test methodologies 
 

Virgin yarn test methodology: 

Ref Description Notes 

 
D2256/D2256M 
9.3 

Yarn preparation: 
Yarn Stripping is unnecessary as yarn is from a spool. 
Remove the initial 1000mm to ensure yarn is fresh 
and unspoilt. 
Cut yarn to length of 430mm (250mm + distance in 
contact with clamps [2 x 90mm]). 
 

 
length in clamps 
calculated as 
(380-200)/2 

D2591-07 
 
D2256/D2256M 
– 10.1. 

Yarn linear density: 
The yarn linear density is not needed as it is known. 
The initial load is calculated in accordance with 
D2256/D2256M – 10.1 and will be 

1100 𝑑𝑡𝑒𝑥 = 110 𝑡𝑒𝑥 

110 𝑡𝑒𝑥 ×
0.5𝑐𝑁

𝑡𝑒𝑥
= 55𝑐𝑁 = 0.55𝑁 

 

 

D2256/D2256M 
4.2 
6.1 
 
 
 
 
 
10.- 
9.2.1 
9.2 
 
 
 
11.1 
12.- 
 
12.2.2 
 
12.4 
7.- 
 
 
 
13 – 18 
 
 
 
 
 
 
 
 

Yarn testing for PES yarns: 
1. Use Configuration A, Condition 1 (straight yarn 

with moisture content equal to that in the 
environment) 

2. Set up the CRE (continuous rate of extension) 
machine with reference to 6.1 (recording rate) 
using clamps with flat faced jaws [Not capstan-, 
drum-, or snubbing-type clamps]. 

3. Results are recorded from head displacements 
and load recorded from load cells attached to the 
upper jaw of the INSTROM CRE machine.  

4. The test specimen is loaded as per 10.1 (the 
specimen is handled to avoid damage or change 
of twist to the sample). 

5. The CRE is operated at 100mm/minute as an 
alternative to a failure at 20s (9.2.1 and 9.1 
respectively). As there is no need to compare 
data to different machines or laboratories at this 
time the justification for the use of a 20s to 
failure rate of extension is less important. 
100mm/min is used to compare results to uniaxial 
tests. 

6. Test conditions shall be as 11.1 (carried out in 
ambient air). 

7. Initially a test will be carried out with flat faced 
jaws. If failure occurs repeatedly at jaws as 
described in ‘12’. If 24% break at jaws as 
described in 12.2.2 a new test method shall be 
considered. 

8. Yarn extension shall be measured to three 
significant figures. 

9. Yarns are marked at their contact with the jaws 
and centre to allow for the observation of 

 
 
 
 
 
Head 
displacements 
are used to give 
yarn extensions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTE 1 
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D578/D578M 
27.2  
EN 13895:2003 
5.2 
 

movement within the jaws during the test. This is 
done using a red marker pen. This is not 
considered to have had any effect on the test. 

10. Repeats: 7.3 suggests that 3 specimens be taken 
for each laboratory sample, however, as there is 
only one sample available yarns will be taken 
from both warp and weft directions. 10 useable 
tests will be made in each direction. A useable 
test will be a test where failure does not occur at 
the jaws, and the sample does not slip.  

11. Calculations of modulus shall be carried out as 
per 2256/D2256M 13 – 18. 

 
 
 
 
 
 
 
Note 1: it is possible that the test specimen 
improvement method stated in D578/D578M 27.2 
could be used to secure the yarns more satisfactorily 
in flat jaws. 
Note 2: This specification for testing monofilaments 
also allows for the use of flat faced clamps where no 
slippage occurs. (EN 13895:2003) 
 

NOTE 2 

Table A-6: Method of testing virgin yarns (ASTM, 2007; ASTM, 2010; ASTM, 2013a; ASTM, 2013b) 

 

Yarn ravelling methodology: 

Ref Description Notes 

D2256/D2256M 
9.3 

A fabric sample should be prepared of at least the 
dimensions in warp/weft of the yarn required. In this 
instance the dimension must be at least 430mm.  
 

 

D3883-04 Place bench marks of the required length on the fabric, 
then ravel several yarns from the cut edge, such that 
they contain the bench marks. During ravelling the angle 
between the ravelled yarn and the fabric is kept to the 
minimum possible to pull the yarn loose, such that the 
yarn is not damaged. Additionally an effort is made to 
keep the twist in the yarn that existed prior to ravelling. 
Pulling of the yarn is carried out with pliers. The section 
that was gripped in the pliers is always considered to be 
damaged and removed during cutting. 
The sample is then cut to 430mm lengths within the 
bench marks. Due to removal of crimp the yarn is longer 
than the original bench marks after ravelling. 

 

 The samples are then secured in a tray, and the type 
and direction of sample noted. Samples are kept 
straight and unstrained, and secured using a small 

No masking 
tape ever 
interacts 
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quantity of masking tape at the extremities of the 
sample. 

with the 
central 
testing area. 

Table A-7: Method of yarn ravelling 

 

Ravelled yarn test methodology: 

Ref Description Notes 

 
D2256/D2256M 
9.3 

Yarn Stripping: 
Cut fabric to length of 430mm (250mm + distance in 
contact with clamps [2 x 90mm]). 
Pull out yarns as per the methodology in Table A-7: 
Method of yarn ravelling. Following the ravelling cut the 
sample down again to allow for additional length due to 
crimp. 
 

 
Ref: length in 
clamps 
calculated as 
(380-200)/2 

D2591-07 
8.2 
9.- 
 
 
9.6 
9.7.1 
 
 
D2256/D2256M 
– 10.1. 

Yarn Linear Density: 
Precondition yarns for a minimum 4hrs 
Calculation method will be invalid with residual coating 
on yarns, therefore a specimen of 430mm will be 
weighed as per section 9.6.  
Again given the variation expected in mass due to 
coating there is expected to be a difference between the 
expected nominal densities. Therefore four additional 
specimens will be measured and the Linear density 
calculated from the mean. This will be used to calculate 
the initial load used in D2256/D2256M – 10.1. 
 

 
 
Linear density 
was not 
calculated as 
it was 
deemed 
unnecessary 
for the 
purposes of 
this model  

D2256/D2256M 
4.2 
6.1 
 
 
 
 
 
10.- 
9.2.1 
9.2 
 
 
 
11.1 
12.- 
 
12.2.2 
 
12.4 
7.- 
 
 
 

Yarn testing for PET yarns: 
1. Using Configuration A, Condition 1 
2. Set up CRE machine with reference to 6.1 using 

clamps with flat faced jaws [Not capstan-, drum-, or 
snubbing-type clamps]. 

3. Results shall be recorded from head displacements 
and load recorded from load cells attached to the 
jaws, or if unavailable from the INSTROM recorded 
load.  

4. The test specimen shall be loaded as per 10.1. 
5. The CRE shall operate at 100mm/minute as an 

alternative to a failure at 20s (9.2.1 and 9.1 
respectively). As there is no need to compare data to 
different machines or laboratories at this time the 
justification for the use of a 20s to failure rate of 
extension is less important. 100mm/min is used to 
compare results to uniaxial tests.  

6. Test conditions shall be as 11.1 
7. Initially a test will be carried out with flat faced jaws. 

If failure occurs repeatedly at jaws as described in 
‘12’, if 24% break at jaws as described in 12.2.2 a 
new test method shall be considered. 

8. Yarn extension shall be measured to three significant 
figures. 

 
 
 
 
 
Head 
displacements 
and a 50kN 
load cell are 
used 
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13 – 18 
 
 
 
 
 
 
 
 
D578/D578M 
27.2  
EN 13895:2003 
5.2 
 

9. Yarns were marked at their contact with the jaws and 
centre to allow for the observation of movement 
within the jaws using a red marker pen. This is not 
considered to have had any effect on the test. 

10. Repeats: 7.3 suggests that 3 specimens be taken for 
each laboratory sample, however, as there is only 
one sample available yarns will be taken from both 
warp and weft direction. 10 useable tests will be 
made in each direction. 

11. Calculations of modulus shall be carried out as per 
2256/D2256M 13 – 18. 

 
Note 1: it is possible that the test specimen 
improvement method stated in D578/D578M 27.2 could 
be used to secure the yarns more satisfactorily in flat 
jaws. 
Note 2: This specification for testing monofilaments also 
allows for the use of flat faced clamps where no slippage 
occurs. (EN 13895:2003) 

 
 
 
 
 
 
 
 
 
NOTE 1 
 
NOTE 2 

D578/D578M Yarn testing for Glass yarns: 
1. After PET testing has been completed it will be 

evident whether or not flat faced jaws can be used. If 
this is the case the carry out the test as above, with 
reference to D578/D578M. 

2. If test slips in jaws where another method of 
clamping has not been used then use the method 
described in 27.2. 

3. Otherwise follow the procedure above. 
4. An effort should be made to limit the possibility of 

inhaling or skin contact with glass-fibres, however, as 
they are bound in a fibre bundle and impregnated 
with coating the possible hazard is considered low. 

 

 

 Capstan clamps: 
Will be unusable as slippage around the clamp will lead 
to misleading extension characteristics. 

 

Annex B Bollard Clamps: 
A bollard clamp such as that described in annex B may 
be applicable to problems with clamping. 

 

Table A-8: Method of yarn (BSI, 2003), (ASTM, 2010), (ASTM, 2007), (ASTM, 2013a), (ASTM, 2013b) 
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