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Abstract 

The rapid development of biotechnologies in crop genetics has increased the prospects 

for more efficient crop improvement. In barley breeding programmes, marker assisted 

selection (MAS) approaches for quantitative trait loci (QTL) for yield and yield 

components is still developing as it requires a thorough understanding of the genetic 

architecture of complex traits. This project reports an investigation of QTL for yield and 

yield components in two-row winter barley using three QTL mapping experiments. First, 

a bi-parental mapping population from an elite cross identified 23 genetic factors 

involved in the control of complex traits, including a strong grain weight QTL on the 

short arm of chromosome 2H. Second, two genome wide association studies (GWAS) 

were used to explore the genetic diversity for agronomic traits in European variety panels 

used in the NUE-CROPS and the AGOUEB projects. The integration of QTL mapping 

results revealed clustering of significant effects as potential targets for MAS. A major 

QTL cluster identified on 2H suggests that the centromeric HvCEN candidate gene is 

strongly involved in controlling the phenology and number of grains per ear in two-row 

winter barley and has additional pleiotropic effects on several agronomic traits. Some 

QTL effects were further confirmed by a QTL validation experiment using near isogenic 

lines (NILs) developed from advanced breeding material alongside the mapping 

experiments. Most of the QTL clusters involving different yield components showed that 

allele effects mirrored phenotypic correlations and a few QTL clusters were identified 

that had unidirectional increasing effects on all traits, such as an important tillering locus 

on 4HL. The exploitation of comparative genomics with rice revealed that SNP 

haplotypes could be used for candidate gene discovery at barley QTL clusters. 

The complexity of the QTL clusters associated with yield and yield components highlight 

the challenges in identifying relevant targets for marker assisted breeding when 

accounting for pleiotropic effects of loci controlling phenology and correlated traits. The 

study provides insights into the genetic architecture of complex traits in small grain 

cereals and for the implementation of associated QTL in commercial barley breeding 

activities. 
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Introduction 

Agriculture has been central to human evolution and the expansion of farming based 

cultures and is now at the heart of food supply. Amongst main agriculture activities, the 

selection of crops has been a continuous process to adapt our food production to face 

changes in environmental conditions and in supply requirements across evolutionary 

times. About 10,000 years ago in the fertile crescent, the first barley crops were 

domesticated from a wild relative Hordeum spontaneum (Badr et al., 2000). 

Generations later, plant breeding is still the key activity to improve yield and agronomic 

traits of that widely grown cereal. This was illustrated by the research developments 

leading to remarkable step-change in the farm environment during the green revolution 

of the 1960s. The progress achieved unveiled the potential of plant genetics to 

significantly increase yields of cereal crops worldwide and address sustainability and 

stability of crop production. Subsequently, the development of biotechnology in modern 

plant breeding has been aimed at harnessing the potential of genes for crop 

improvement. Currently, plant breeders are faced with the challenge of exploiting and 

translating the genetic variation in crops to meet the goals of future global food security. 

 

This rapid development of biotechnology has given rise to new perspectives in plant 

breeding by providing access to an unprecedented depth of understanding of the plant 

genetic information contained in the DNA. The wider use of genetic markers especially 

the single nucleotide polymorphisms (SNP), enables characterisation of the genetic 

variation over entire genome with a high coverage to ultimately associate variation in 

genetic sequences with phenotypic variations. More importantly, the use of genetic 

markers coupled with statistical analysis provides an insight into understanding of the 

genetic architecture of traits controlled by multiple genes, commonly referred to as 

quantitative traits. To do so, the different genetic mapping methods of quantitative traits 

locus (QTL) work under the hypothesis of detecting significant correlations between 

segregating genetic alleles in mapping populations and phenotypic variation (Collard et 

al., 2005). QTL mapping experiments in plants have successfully been able to identify 

loci and genes involved in the control of qualitative and quantitative traits (Bernardo, 

2008). In barley, QTL for distinctness, uniformity and stability (DUS) traits, disease 

resistance and complex traits of grain quality and yield components have been 
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published (Aghnoum et al., 2009; Bezant et al., 1997; Cockram et al., 2010; Comadran 

et al., 2011b). Recently, the completion of the genome wide association study in the 

AGOUEB project (www.agoueb.org) has demonstrated the potential of using wider 

genetic diversity in barley QTL mapping studies to investigate trait variation available 

to breeders (Waugh et al., 2009). Plant breeders now have the ability to better 

understand the genetics of complex traits, and access to large amounts of genetic 

information, both of which should result in breeding progress. Nevertheless, it should be 

noted that the knowledge generated from research is only slowly implemented in 

breeding programmes (Bernardo, 2008; Rae et al., 2007) as plant breeders require 

validated and reliable effects at QTL targets. 

 

Grain yield and yield stability (i.e. constant yield over years and environments) are the 

major breeding targets to improve the sustainable production of small grains cereals 

such as barley and wheat. At a genetic level, yield is the most complex trait and the 

result of the whole crop cycle. Therefore breeding for high yield requires a 

comprehensive knowledge of the genetic architecture of traits and environmental factors 

responsible for variation (Abeledo et al., 2003; Mackay et al., 2011; Mackay et al., 

2009). To address yield architecture, barley yield can be divided into the sum of 

components consisting of the number of fertile tillers per plant, the number grains per 

ear and the grain weight. The genetic control of these traits results from the expression 

of additive effects and interact with the environment during the whole plant cycle (Xue 

et al., 2010). In particular, the plant adaptation to the environment that reflects 

physiology such as resource use efficiency and phenology are determinant factors for 

yield and yield component variation (Abeledo et al., 2003; Cockram et al., 2007). 

Therefore, breeding progress in yield is no more than the selection for the best 

combinations of alleles for a given environment. A better understanding of the genetic 

architecture can identify the alleles that are consistently favourable, thus increasing the 

possibility of generating these optimal allele combinations. Furthermore, once 

associations of genetic markers with trait have been validated, the markers can be used 

in marker assisted selection (MAS) strategies to increase the efficiency of selection in 

order to compile positive effects in improved varieties (Collard and Mackill, 2008). 

 

This research project focuses on the potential of using genetic marker applications to 

improve yield in two-row winter barley in an applied and commercial breeding 

programme. The main objective is to increase our understanding about the genetic 
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architecture of economically and agronomically relevant quantitative traits in two-row 

winter barley, and furthermore evaluate the potential for breeding applications. The 

project is an extension of the NUE-CROPs project which aimed at investigating the 

genetic potential in four main crops species to maintain current yields while reducing 

the environmental impact of industrial agriculture 

(http://research.ncl.ac.uk/nefg/nuecrops/page.php).  

The scope of the project is reviewed in Chapter 1 with an emphasis on the prospects of 

strategies for genetic progress of complex traits in a breeding context. The foundation of 

this study consists of three QTL mapping experiments using a range of genetic 

resources to identify consistent genetic factors (QTL) for yield and yield components in 

winter barley. Chapter 2 reports QTL mapping exercise using a bi-parental double-

haploid (DH) population from an elite cross between Saffron and Retriever. Chapter 3 

presents the genome wide association studies (GWAS) for yield and yield components 

and a range of agronomic traits including disease resistance and nitrogen use efficiency. 

A panel made of 226 European two-row winter barley varieties was used. The varieties 

were also included in the AGOUEB and NUE-CROPS projects where extensive 

genotype information from 9K SNP markers was generated. The evaluation and in-

depth analysis of the QTL mapping results integrated on a common genetic map are 

presented in Chapter 4. This enabled the identification of QTL clusters and a more 

comprehensible interpretation of the genetic architecture of yield, especially the 

influence of adaptive loci on yield variation. This allow for identification of the precise 

position of useful molecular markers to locate the genetic origin controlling trait 

variations. The genome collinearity with rice can then be used to propose candidate 

genes at relevant loci with the prospects of identifying diagnostic markers for precision 

breeding. Based on the QTL results obtained in previous chapters, Chapter 5 describes 

the implementation of a QTL validation strategy using Near Isogenic Lines (NILs) 

developed from advanced generation breeding material. Finally, the relevance of the 

loci of interests and prospects for marker applications for the selection of yield and yield 

components are discussed in Chapter 6 of this thesis. 

 

The work carried out during this project involved the acknowledged input of my 

supervisors and the help for a range of persons and institutes (see ii). The project work 

was divided as follow: All the trial management at KWS was carried out by the KWS-

UK trials team. The phenotyping the DH biparental mapping study (Chapter 2) was 

carried out at KWS-UK by me with the help of a temporary student. I carried out the 
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statistical and QTL analysis in the chapter. I managed the NUE-CROPs trials and 

phenotyping of those trials at both KWS-UK and location in Germany with the help 

temporary students. The James Hutton Institute (JHI) carried out the phenotyping of the 

NUE-CROPs trials in Dundee (Chapter 3). The JHI provided the genotype information 

for the NUE-CROPs panel of varieties. I carried out the statistical analysis on the 

phenotypes for the results reported in Chapter 3. The phenotype data relative to the 

AGOUEB project were collected by the AGOUEB consortium before this PhD project 

started. It was accessed by KWS-UK as a partner in the project. The JHI provided the 

genotype information for the AGOUEB panel of varieties. I carried out the GWAS for 

both the NUE-CROPs and AGOUEB dataset presented in that study. I carried out the 

work and analysis reported in Chapter 4 and Chapter 5. The JHI provided carried out 

the sequencing of the Ppd-H1 gene presented in Appendix 5. 4. 
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Chapter 1  

Literature review 

Plant breeding and crop science have been under continuous development over many 

years to improve crop production and agronomic performance amongst which yield, 

disease and pest resistances and production quality are the major targets (Heisey et al., 

2002; Muurinen et al., 2006; Rae et al., 2007; Zhang et al.). Amongst small grain 

cereals, barley has benefited from state-of-art breeding methods and technologies based 

on advanced genetic knowledge. The breeding community needs to encourage the use 

available resources and research tools in order to improve crop varieties, and more 

particularly the investigation of the genetic control of quantitative traits. This will be a 

leading theme throughout this PhD project. Chapter 1 sets the context of the project by 

referring to the recent advances in barley breeding, crop sciences and genetics that are 

leading to thriving developments in crop improvement. 

1.1 The cereal crop of winter barley. 

1.1.1 Biology and production of barley. 

Domesticated barley, Hordeum vulgare L. is a self-pollinating small grain cereal 

member of the Poaceae family. The genus Hordeum is composed of 32 species amongst 

which H. vulgare itself is divided into the domesticated and commonly cultivated H. 

vulgare ssps. vulgare, and a wild ancestor H. vulgare ssps. Spontaneum (Bastergue et 

al., 2006). The species domestication events are believed to originate from the Fertile 

Crescent around 10 000 years ago while further diversification occurred in Himalayan 

areas (Badr et al., 2000). The main trait which allowed domestication was the selection 

of non-shattering spikes to avoid seed dispersal at maturity detrimental for harvest. The 

barley spike is composed of an alternate succession of spikelets arranged in triplets 

along the rachis node. The two-row barley is characterized by having a single central 

spikelet fertile and side spikelets reduced or absent. The restored fertility of all spikelets 

in six-row barley is controlled by a multi allelic gene vrs1 (Komatsuda and Mano, 2002; 

Komatsuda et al., 2007). The three types of barley growth habits are winter, factultative 

and spring barleys. These habits characterize the physiological traits involved in 

sensitivity to vernalization, photoperiod, and cold tolerance. Unlike spring barley, the 

winter barley type requires to be exposed for a period under low temperature (8°C) 
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referred to as vernalization in order to initiate flowering (Szucs et al., 2007). Facultative 

barley is vernalization-insensitive and more tolerant to cold temperatures compared to 

spring barley. The sensing of photoperiod sensitivity affect plant response and 

flowering initiation under variable day length and participate to the geographical 

distribution and adaptation of different barley types across growing areas (Cockram et 

al., 2007; Laurie, 1997). 

 

In 2012, the world production of barley amounted to 132 Mt ranking as the fourth most 

produced cereal after maize, rice and wheat (faostat.fao.org). The main producers of 

barley are the Russian federation (13.9Mt), France (11.3Mt) and Germany (10.4Mt). 

Barley production in the United Kingdom was 5.5 Mt in 2012, the 2
nd

 most important 

cereal crop behind wheat (13.2 Mt) making the UK the 10
th

 barley producing country in 

the world. 

The use of barley depends on the grain quality required by end-user processes which 

would classify it for either food or feed product categories. In the quality barley, grains 

are used for the production of malt for the brewing and distilling industries and to a 

lesser extent for food. Alternatively barley unsuited for malt production due to higher 

protein content and lower grain quality is used as feed. In this category, the breeding 

efforts are entirely targeted to maximise the output of grain per land area, i.e. the grain 

yield, while maintaining and improving beneficial agronomic characteristics such as 

disease resistance. 

 

1.1.2 Barley genetics. 

Barley is a diploid species composed of 2n=14 chromosomes for a size of 5.1 Gb. The 

international barley genome sequencing project initiated by a North American and EU 

collaboration led to the assembly of barley genome sequence resources into a physical 

and genetic map framework in 2012 (Mayer et al., 2012). The barley genome is highly 

repetitive with 84% of the sequence data attributable to mobile elements or other repeat 

structures. The number of high confidence genes is estimated as 26,159 genes from the 

79,379 transcript clusters found (Mayer et al., 2012). This is half the number of 

predicted rice genes (Yu et al., 2002) and 3 times smaller than the wheat genome 

(Brenchley et al., 2012). By comparison, the human genome contains about 25,000 

genes for 2.9 Gb (IHGSC, 2004). International efforts of the barley research community 

have generated substantial genetic and genomic resources with thousands of genetic 
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markers available on genotyping platforms. These dynamic developments in plant 

genetics have allowed ambitious initiatives such as AGOUEB and Barley CAP to 

investigate the genetic diversity in the worldwide barley germplasm (Waugh et al., 

2009). Thousands of genetic markers are now available and routinely implemented in 

studies aiming at understanding the genetic control of complex traits ranging from 

disease resistances to quality and agronomic traits such as yield. 

 

The relationship of synteny between species based on genetic markers has been well 

described in the literature depicting the conservation of genome blocks across species 

(Gale and Devos, 1998; Salse and Feuillet, 2009). Rice and Brachypodium have initially 

been in the foreground of grass studies but the genome co-linearity of barley with other 

grass species is also an advantage of the species for small grains cereals research. 

Barley combines the advantages of diploid genetics, a short life cycle and a close 

genomic proximity with wheat (Triticum aestivum L.) to become a leading model crop 

species (Distelfeld et al., 2008). Already, the exploitation of the syntenic relationship 

between barley and maize has led to successful gene discovery and validation (Ramsay 

et al., 2011). Barley is a key crop to help understanding the genetic control of traits 

underpinning cereal crops performance in different environments.  

1.1.3 Barley breeding. 

Since early domestication of the species, barley breeders have used a range of methods 

to create improved varieties. The self-pollinating nature of the species implies that the 

combinations of favorable traits are created by manual crossing of carefully selected 

parental lines. The conventional breeding methods of pedigree breeding and single seed 

descent are commonly used for barley breeding. The more sophisticated method of 

double haploid production offers breeders the possibility to accelerate the breeding 

progress by reducing the time to reach complete homozygosity of the lines. Because of 

its spontaneous chromosome doubling barley lends itself well to this type of production 

(Touraev et al., 2009). More recently, the better understanding of the genetic control of 

cytoplasmic male sterility and restoration of fertility has opened up new possibilities for 

the development of hybrid barley varieties (Mühleisen et al., 2013). These continuous 

efforts in barley breeding have facilitated constant and sustained breeding progress 

resulting in a yield increase of 1% per annum from 1983 to 2004 for both winter and 

spring types in the UK (Rae et al., 2007). Amongst the recent high yielding UK feed 
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barley, varieties Saffron and Retriever have demonstrated a significant step forward in 

feed barley yields as presented by the HGCA recommended list 2010/11 (Table 1.1). 

The desirable traits under selection depend on the location and the strategy of the 

breeding programmes. They include yield, quality (feed or malting), disease and insect 

resistance, abiotic stress resistance and other agronomic traits. These multi-trait 

selections have largely contributed to the yield increases in the UK and proved to be 

necessary to overcome historical environmental changes and disease resistance 

breakdown (Mackay et al., 2011). Specific traits are maintained to meet the market 

demands. For example, the two-row and six-row types are conserved by selecting for 

specific allelic variant at the vrs1 and int-c genes involved in the control of fertility of 

lateral spikelets on the ears (Komatsuda et al., 2007). In the UK, the winter barley 

varieties are mainly grown for feed purposes (NIABtag, 2016) whereas the better grain 

quality obtained in spring barley (e.g. protein content) is aimed at satisfying malting, 

brewing and distilling markers demands. These different phenotypes have led 

commercial breeders to breed within separate gene pool although pre-breeding efforts 

are used to generate novel allelic combinations by crossing between them. This strategy 

is reinforced by the complexity of traits involved in malting quality for the brewing and 

distilling industries that requires breeders to work within adapted germplasm. 

Nowadays, changes in barley breeding are instigated by rapid developments in genetic 

research bringing with it innovative tools and methods.  The genetic markers and high 

throughput genotyping platform have encouraged initiatives to associate genetic 

polymorphisms with trait variation with the view of marker assisted selection (MAS) 

strategies (Close et al., 2009; Collard and Mackill, 2008; Waugh et al., 2009). More 

recently, the genomic selection (GS) prospects combining biotechnologies and 

biostatistics have been realised in barley breeding programmes and for other cereals 

(Reynolds et al., 2011; Varshney et al., 2005). With all these tools available to breeders, 

a practical understanding of the methods and their applications is required in order to 

realise their full potential and convert scientific progress into advances in yield, disease 

resistance, nutrient use efficiency or any traits with added value. 
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Table 1.1 Two-row feed winter barley varieties in HGCA recommended list 

2010/11.  
Table of agronomic performances and recommendations of winter barley varieties adapted from 

HGCA recommended list of varieties 2010/11. 

Source: HGCA (http://cereals.ahdb.org.uk/varieties/ahdb-recommended-lists.aspx) 

 

 

  

R
e
tr

ie
v
e
r

K
W

S
-C

a
s
s
ia

S
a
ff

ro
n

S
u

z
u

k
a

C
a
ra

t

A
v
e
ra

g
e
 L

S
D

 

(5
%

)

Variety type

Scope of recommendation UK UK UK UK Sp

UK treated yield as % control (8.6 t/ha) 107 107 103 101 97 2.6

Main market options

Year first listed 07 10 05 07 02

Grain quality

Specific weight (kg/hl) 66.6 70.8 70.3 69.5 71.6 0.9

Screenings % through 2.25 mm 4.8 1.9 1.9 2.4 0.8 2.0

Screenings % through 2.5 mm 16.8 6.2 7.4 7.3 2.6 5.7

Grain yield as % treated control

UK with fungicide (8.6 t/ha) 107.1 106.9 102.5 101.1 96.8 2.6

Dry (East) region  with fungicide (8.8 t/ha) 106 108 103 101 97 3.6

North region with fungicide (8.7 t/ha) 111 [106] 101 102 95 4.1

Wet (West) region with fungicide (8.2 t/ha) 106 [106] 103 101 98 4.6

Untreated grain yield (% treated control in comparable trials)

UK without fungicide 83 87 83 85 79 3.5

Agronomic features

Resistance to lodging 6.4 7.8 7.8 7.5 7.8 -

Straw height (cm) 84 89 88 90 82 3.0

Ripening (+/- Pearl, -ve = earlier) -1 -1 0 -2 -2 1.0

Winter hardiness # 6 - 5 6 6 1.0

Disease resistance

Mildew 6.0 4.6 2.8 5.7 6.6 1.1

Yellow rust 7.9 5.6 6.3 8.0 7.1 1.4

Brown rust 5.8 7.0 7.0 7.2 4.8 1.0

Rhynchosporium 8.0 4.2 4.0 8.1 5.3 1.7

Net blotch 6.3 7.5 7.9 7.0 5.9 0

BaYMV R R - R R

Annual yields as % treated control

2005 treated yield (8.5 t/ha) 109 - 101 101 98 3.7

2006 treated yield (8.7 t/ha) 106 - 102 101 95 3.0

2007 treated yield (8.3 t/ha) 106 108 103 101 96 4.7

2008 treated yield (8.8 t/ha) 107 106 102 101 99 5.1

2009 treated yield (8.8 t/ha) 109 107 103 101 95 3.7

Soil type (about 50% of trials are medium soils)

Light soils (8.3 t/ha) 109 107 102 102 96 4.3

Heavy soils (8.7 t/ha) 107 105 103 102 96 4.7

Agronomic characteristics

Lodging % without PGR 4 0 1 1 0

Lodging % with PGR 4 2 2 2 2

Two-row feed
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1.2 The current understanding of complex traits in barley. 

1.2.1 The genetic architecture of complex traits. 

Quantitative traits and Quantitative Trait Locus. 

The majority of traits under selection in crops, and barley in particular are quantitative. 

The phenotypic variation for quantitative traits follows the curve of a normal 

distribution in which the phenotype measured quantitatively can take any continuous 

value showing no clear discontinuity (e.g. yield, height). This quantitative distribution is 

the observed result of multiple gene effects that segregate in a Mendelian manner and 

can be resolved genetically in mapping experiments of segregating in populations 

(Lander and Botstein, 1989). Biometrical genetics aims at identifying and locating those 

genes responsible for part of the trait variation in order to gain a better understanding of 

the genetic control of the quantitative trait. It mainly revolves around the identification 

and analysis of quantitative trait locus which describe the association of a chromosome 

segment containing polymorphic markers with the phenotypic variation (Collard et al., 

2005). The developments of efficient genotyping technologies (SNP, multiplexed 

genotyping array) have made QTL mapping an accessible and reliable tool for plant 

genetic research and crop science (Bernardo, 2008; Mackay et al., 2009). A detailed 

description of QTL analysis will be made in paragraph 1.3. Although a better insight of 

the genetic basis of quantitative traits gained from QTL studies, most of the genetic 

architecture underpinning quantitative traits in barley, is yet to be uncovered (Bernardo, 

2008). 

Genetic architecture of complex traits. 

QTL mapping studies have enabled a greater insight into the genetic architecture of 

quantitative traits by identifying genes responsible for phenotypic variation, their 

number, location, allelic effects and interactions in particular genetic backgrounds and 

environmental conditions. The genetic complexity underlying quantitative traits 

revealed the strong influence of non-additive effects including epistasis, genotype by 

environment interactions and pleiotropy on phenotypic variation (Cooper et al., 2009). 

Such networks of interactions reduce the rate at which QTL results can be exploited and 

incorporated in breeding programmes, as in most cases the desired alleles at a QTL will 

be specific to a genetic background and environmental conditions. In a recent review, 

Mackay et al. (2009) pointed out that QTL studies have been successful in identifying a 

large number of gene polymorphisms with small effects on phenotype. The pleiotropic 
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effects, which refer to a particular allele (or gene) affecting more than one phenotypic 

trait, have been found to occur between traits not known to be functionally related. The 

role of epistatic interactions with background loci also needs to be considered in the 

genetic architecture of traits as they affect the detection and estimation of the QTL 

effects and increase the difficulty of selecting best alleles or combination of alleles in 

complex gene networks (Cheverud and Routman, 1995; von Korff et al., 2010). These 

QTL interactions and pleiotropic effects suggest that the genetic control of quantitative 

traits is substantially more complex than a simple additive model, and the attempts at 

QTL modelling, integration of QTL results and trait dissection, can provide additional 

insights on the genetic architecture of traits (Cooper et al., 2009; Emebiri, 2013; van 

Eeuwijk et al., 2010). Studies using high marker densities, accurate phenotypes and 

advanced QTL mapping methods also offer the prospects of describing genetic 

architecture and predicting the future evolution and variation of phenotypes (Mackay et 

al., 2009; van Eeuwijk et al., 2010). For example the association mapping method using 

a large population size has the ability to detect a large number of loci with small effects 

QTL that can help in fine tuning QTL position and give a better picture of the 

complexity of genetic control (Ingvarsson and Street, 2011).  

A first reduction of the level of complexity of the trait consists of looking at its 

underlying components expected to be under simpler genetic controls. In barley this 

approach showed that QTL for yield were often associated with the QTL of the 

components of yield: tillering, grains per ear and grain weight (Yin et al., 2002). The 

yield component QTL however identified additional locations on the genome that had 

not been associated with yield suggesting that trait dissection revealed increased 

complexity of yield control. Other strategies to link genes with phenotype involve the 

characterisation of mutagenized populations (mutant plants) or TILLING populations to 

screen for specific phenotypes generated by mutations have been developed in barley 

(Druka et al., 2010; Rossini et al., 2006). The extent of understanding of the genetic 

architecture of traits is limited by the ability to identify and delve into their multiple 

components and interactions. The physiological models and genotype by environment 

by management interactions have to be considered to evaluate QTL in a particular 

system (Cooper et al., 2009; van Eeuwijk et al., 2010). 

1.2.2 Yield and yield components. 

The main trait driving genetic progress in barley and other cereals is the harvested grain 

yield, a key trait in selection. This complex trait is the result of agronomical, structural 
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and physiological factors that will define the yield potential of the plant based on source 

and sink traits (Bingham et al., 2007b; Reynolds et al., 2011). In a more simplistic 

manner, yield can be described as the product of yield components which are the 

number of ears per land area, the final number of grains per ear and the average weight 

of a grain (Yin et al., 2002). 

QTL mapping studies for yield, yield components and agronomic traits are well 

documented in barley, using mapping populations made from selected parents differing 

in the traits of interest. An example is the double haploid (DH) population derived from 

the two-row/six-row barley cross Harrington/Morex that revealed the importance of the 

genes vrs1 and int-c in the control of inflorescence row type and other agronomic traits 

(Ayoub et al., 2002; Marquez-Cedillo et al., 2001). Bezant et al., (1997) reported QTL 

for agronomic and quality traits as well as plant responses to biotic and abiotic stresses 

in a study using a DH population derived from two two-row spring barleys (Blenheim x 

Kym). Other QTL studies for yield and yield components have been reported for 

multiple effects across the barley genome (Inostroza et al., 2009; Rae et al., 2007).  

The environmental conditions have a strong influence on the mapping precision and the 

estimation of QTL effects and need to be considered in the phase of interpretation 

(Cooper et al., 2009). For the yield and yield components, environmental variation can 

explain the low replicability of the QTL results between studies (Li et al., 2005; Saal et 

al., 2011; Schnaithmann and Pillen, 2013; Xue et al., 2010). Better consistency between 

QTL mapping results was found when effects were detected at major genes such as 

those controlling phenology and morphological traits, also reported as strong candidate 

QTL for yield (Comadran et al., 2011b; Cuesta-Marcos et al., 2009; Kraakman et al., 

2004). Nevertheless, very few reports of QTL for yield and yield components on elite 

material grown in optimal conditions have been presented and may not be reported by 

commercial breeding research. These QTL have a genuine value to breeders aiming at 

rapid genetic progress in environmental conditions similar to those of current crop 

production. 

Tillering. 

Tillering in small grain cereals is an essential yield component that affects the variation 

of number of ears/m
2 

and can provides compensatory mechanisms to overcome poor 

plant establishment. The trait is affected by tillering ability and tillering survival. The 

genetic control of branching in grass plants is made up of a complex network of 

regulatory pathways, hormones and structural genes that affect the activity of apical and 
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axillary meristems to set the basis of vegetative architecture (Doust, 2007; Kebrom et 

al., 2013). Studies on mutant barley lines have identified genes that could affect axillary 

meristem development that produce low tillering phenotypes: low number of tillers1 

(lnt1), absent lower laterals1 (als1), intermedium-b (int-b), uniculm2 (cul2), uniculm4 

(cul4), and uzu (Hussien et al., 2014). Transcriptome analysis suggests that Als1 

expression is required for secondary tiller development, linked to stress response and 

function independently to Lnt1 (Dabbert et al., 2009; Dabbert et al., 2010). Babb and 

Muehlbauer (2003) showed that the cul2 gene on barley chromosome 6H is necessary to 

initiate the development of axillary meristems. Other mutations repressing axillary 

meristem development have also been described and include densonidosum6 (den6), 

granum-a (gra-a), intermedium spike-m (int-m), and many noded dwarf1 (mnd1) 

(Dabbert et al., 2010). The location of tillering QTL also suggests the presence of strong 

pleiotropic effects from major genes acting on compensatory mechanisms such as 

changes in plant architecture (Comadran et al., 2011b; Hussien et al., 2014). 

Additionally, the genetic regulation of the duration of pre-anthesis developmental 

phases can modify the development of meristems and final tiller number (Borràs-

Gelonch et al., 2011). As a main yield component, tillering shows strong underlying 

complexity influenced by multiple interacting factors, both genetic and environmental. 

Grain number per ear. 

Despite the evident contribution of grain number per ear in the overall yield figure, 

especially in the six-row/two-row types, this yield component has received limited 

attention from the research community. The main factor affecting the grain number per 

ear in barley is the fertility of the lateral spikelets on an ear. The recessive allele at the 

gene vrs1 has been identified as responsible for the six-row spike morphology 

(Komatsuda et al., 2007). Detailed molecular analysis of the gene has revealed that vrs1 

is a HD-ZIP I-class homeobox gene located on chromosome 2H and expressed in 

spikelet primordia. Loss of function and homozygozity for the vrs1 gene is sufficient to 

give a complete six-row spike that was selected during domestication. Recently Ramsay 

et al., (2011) showed that allelic variation at int-c (intermedium-c), an ortholog of the 

maize domestication gene teosinte branched 1, could modify the phenotype of vrs1 by 

affecting lateral grain plumpness and fertility gradients. Many QTL mapping studies 

have been able to locate the strong effects of these two genes (Comadran et al., 2011b; 

Kjaer and Jensen, 1996). The loci for kernel number per spike showed strong 

pleiotropic effect on most agronomic traits in a population from a cross between two-
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row and six-row parents (Marquez-Cedillo et al., 2001). Other genes have been 

described with modification effects on the positioning and extent of fertility in the 

spikelets (Koppolu et al., 2013). 

Additional controls of inflorescence architecture has been observed in cereals where 

some of the control of meristem differentiations and branching structure are shared 

between species (Tanaka et al., 2014). These may be relevant to understand the genetic 

control of grain number per ear independently from genes involved in lateral floret 

fertility, by instead looking at the spike elongation within the two-row and six-row 

groups. Although this trait is less documented in barley, a higher number of grains per 

ear would come from the initiation of additional spikelets along the rachis. Such 

variation could correspond to QTL with smaller effects found in mapping analysis of 

grains per ear. It could be expected that the genetic control of meristem fate and 

development time would affect the spikelet number. In addition, comparable allele 

effects may be observed between two-row and six-row types leaving aside the effect of 

the genes for lateral spikelet fertility. 

Thousand grain weight. 

A third yield component and major contributor to yield and yield variation is the 

average weight of a grain that is often measured as thousand grain weight (TGW). It is a 

desirable trait in breeding in order to increase yield and seed viability. TGW is 

relatively simple to measure and can be further described by grain length, width and 

thickness which are under control of different genetic and physiological factors 

(Breseghello and Sorrells, 2006). The grain is a sink organ in the plant and high TGW 

potential depends also on the plant’s ability to achieve optimal grain shape and starch 

accumulation. Grain filling in small grain cereals occurs after anthesis when the starch 

granules accumulate within the protein matrix of the grain. In rice, QTL mapping 

studies have identified the loci controlling grain size traits. Fan et al. (2006) reported the 

locus for GS3 on chromosome 3 with a strong effect on grain length and weight. GW2 

on chromosome 2 was found to associate with significant variation in TGW (Oh et al., 

2010). Polymorphisms in the wheat ortholog candidate TaGW2 on chromosome 6A was 

associated with significantly wider grains and TGW (Su et al., 2011). Barley TGW QTL 

have been identified in various mapping populations (Li et al., 2005; Saal et al., 2011). 

Schmalenbach et al (2009) validated QTL for TGW on chromosomes 2H, 4H and 6H 

using a population of lines containing introgressed chromosome segments of wild 

barley. Understanding the gene effects on the traits will help in differentiating the 
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genuine alleles impacting on grain weight and the extent of pleiotropic effects from 

other loci. For instance, many association mapping studies have highlighted significant 

effects at the genes controlling ear morphology and phenology on TGW (Comadran et 

al., 2011b; Pasam et al., 2012). Phenology genes may affect the duration of 

photosynthetic activity and therefore the quantity of photosynthetates available for sink 

organs. In addition, the greater number of grains in six-row barley may increase the sink 

size. However the controlling gene vrs1 on 2H was associated with a reduction in grain 

size and TGW as lateral grains are generally smaller grains (Ayoub et al., 2002). 

Additionally, the control of the duration of the grain filling period can impact on TGW 

and consequently yield (Laurie, 1997). Delayed senescence has been put forward as a 

trait to maintain longer photosynthetic activity in source organs and lengthen the 

remobilisation period during grain filling (Gregersen et al., 2008; Parrott et al., 2010; 

Verma et al., 2004). Therefore, the investigation of candidates genes underlying TGW 

and other yield component QTL should consider physiological aspects such as 

photosynthesis, radiation use efficiency and nutrient use efficiency especially in 

(Reynolds et al., 2011). 

1.2.3 Genetic control of winter habit 

The control of growth habit and flowing time in barley provides plant adaptation and 

distribution across environments and farming practises (Cockram et al., 2007). The 

winter growth habit takes advantage of the autumn season to establish before winter and 

requires a period of cold (vernalization) to initiate the reproductive growth. The genetic 

control of growth habit in barley can be attributed to loci of major effects on 

photoperiod and vernalization responses (Laurie, 1997), some of them being 

homologous to other cereals (Faure et al., 2007; Griffiths et al., 2003).The winter 

growth habit is determined by the vernalization pathway involving three loci vrn-H1 

(5HL), vrn-H2 (4HL) and vrn-H3 (7H). The vrn-H1 gene is a MADS-box transcription 

factor that promotes the transition from the vegetative state to the reproductive state 

(Yan et al., 2003). Vrn-H2 gene is a zinc-finger CONSTANS, CO-like and TOC1 

(CCT)-domain protein that represses flowering in plants that have not been vernalized 

(Yan et al., 2004). The determination of vernalization sensitivity involve the gene x 

gene interaction (epistatic interaction) between vrn-H1 and vrn-H2 that is influenced by 

intron length variation in vrn-H1 (Szucs et al., 2007). 

The winter vernalization sensitive varieties are often associated with the sensitivity to 

photoperiod and the detection of long days that enable to adjust plant phenology. The 
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ppd-H1 gene (2HS) is a pseudo-response regulator 7 (prr7) that encode for a component 

of the circadian clock with a dominant allele that promotes flowering in both winter-and 

spring-sown plants (Turner et al., 2005). The gene is located at a chromosome segment 

homologous to a junction of rice chromosomes (Dunford et al., 2002). The ppd-H2 gene 

(1HL) is homologous to Arabidopsis FT and paralogue to vrn-H3 (Yan et al., 2006). It 

encodes for PEBP and promotes flowering under short days. The interconnection of 

both vernalization and photoperiod pathways has been shown as the Vrn-H2 is a 

repressor of ppd-H2 (Casao et al., 2011). Other loci involved in the genetic control of 

heading date have been identified in QTL mapping studies (Comadran et al., 2012; Ren 

et al., 2012) suggesting that the photoperiod genes ppd-H1 and ppd-H2 are not the only 

factors involved in providing environmental adaptation to winter barley. The genetic 

control of phenology is especially relevant as photoperiod and vernalization have 

frequently been associated to QTL for agronomic traits of yield and yield components 

(Cuesta-Marcos et al., 2009; Li et al., 2005; Schmalenbach et al., 2009; Wang et al., 

2010). 

1.2.4 Biotic and abiotic stresses. 

Specific environmental conditions can cause plant stresses that lead to a strongly 

negative impact on yield potential. However, the allelic make up of a variety can confer 

adaptations to environments and enable it to maximise the yield potential under 

conditions otherwise stressful for less adapted germplasm. Both biotic and abiotic 

stresses generate plant responses through the triggering of multiple genes acting in 

different metabolic pathways and interactions (Atkinson and Urwin, 2012). Many of 

these genes may well be influential yield-related genes in some environments. 

The negative impact of living organisms such as insects, fungi, viruses and bacteria on 

plants are referred to as biotic stress. In barley in the UK, biotic stresses are mainly 

observed in the context of diseases from fungal organisms that damage organs of the 

plant and impact resource capture. A number of resistance genes have been identified 

for powdery-mildew amongst which mlo and Mlg mediate plant resistances in a 

complete gene network (Aghnoum et al., 2009; Miklis et al., 2007). The allelic diversity 

found in landraces and wild barley can be exploited to introduce resistances to leaf rusts 

such as rynchosporium (Ellis et al., 2000; von Korff et al., 2005). Stein et al. (2005) 

identified diagnostic SNP polymorphisms in Hv-eIF4E that confer the resistances rym4 

and rym5 to barley yellow mosaic virus. These resistances are present and selected in 
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UK germplasm. Alternatively mutated material offers another source for identifying 

resistances that can be introgressed in breeding programmes (Druka et al., 2010).  

Crop performance is also affected by abiotic stresses such as nutrient stresses, 

waterlogging, drought, and harsh or toxic growing environments (Long et al., 2013; 

Passarella et al., 2005). Within species, genotypes vary in their ability to cope with or 

avoid abiotic stresses suggesting that allelic diversity is available for adaptation to 

environmental modifications such as the increase frequency in hotter and drier 

summers. For instance, the adjustment of plant phenology was shown to be an adaptive 

advantage in environments prone to drought (Faure et al., 2007; Foulkes et al., 2004) 

such as the eam6 locus on 2H which provide environmental adaptation to mediterranean 

growing conditions  and has pleiotropic effects on yield and yield components 

(Comadran et al., 2011b). Breeding for improved agronomics in stressful environments 

is possible as salt tolerance in barley was associated with a major effect QTL on the 

centromere region of 6H where a number of candidate genes involved in physiological 

pathways have been proposed (Long et al., 2013). Despite the rare occurrence of 

extreme stresses in the UK environment, the genetic progress for those traits should not 

be disregarded by breeding programmes and is needed for sustainable production of 

barley with maximal and consistent yields. 

1.2.5 Resource use efficiency. 

The challenge for breeding improved crop varieties is to maintain or increase current 

production while minimizing the impact on the environment. Although the specific 

analysis of traits for resource use efficiency is marginal in this project, it is a recurrent 

theme in studies on yield and yield components. Resource use efficiency, and in 

particular nitrogen (N) efficiency, has been identified as a main attribute of sustainable 

and high yielding crop production systems (Good et al., 2004; Raun and Johnson, 

1999). The limited availability of these nutrient resources can cause abiotic stresses and 

interact with the yield and yield components (see 1.2.4). Efficient management of 

resources in agricultural production is essential to maximize farm profitability and 

minimise environmental damage (Hirel et al., 2007; Raun et al., 2002; Sylvester-

Bradley and Kindred, 2009). For example, excessive levels of N can lead to ammonia 

volatilisation, denitrification, leaching, ammonium fixation, immobilisation and runoff 

which is detrimental to soil, air and water quality, while also increasing lodging which 

can reduce yield in cereal production. Sylvester-Bradley and Kindred (2009) proposed 

that the economic justification for nitrogen input is set by the value of an optimal N 
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input (N-opt) that takes into consideration the benefit for a grower of yield in an 

economic context of fertiliser costs and income from grain production. The study also 

highlighted that improving nitrogen use efficiency (NUE) in crops should be done with 

the aim of maintaining current yield levels and acknowledged that plant breeding is a 

method to deliver enhanced NUE in crops (Hirel et al., 2007; Muurinen et al., 2006). 

Therefore, the optimum use of fertiliser on cereal crops requires a rigorous management 

strategy determined by agronomic and economic factors. In the UK, the RB209 manual 

aims at guiding farmers for optimal crop fertilisation practices (DEFRA, 2010). 

NUE-CROPS project.  

With increasing concerns about issues related to food production and agricultural 

sustainability, nitrogen economy of crops has become a major field of investigation for 

academic and private institutions. A large scale European project NUE-CROPS was 

launched to investigate crop response to fertilization and genotypic variation in NUE, 

and promote a better transfer of research knowledge into commercial applications. Led 

by Newcastle University, this five year project was part of the FP-7 European 

framework and finished in 2014. It aimed at investigating NUE in five major cultivated 

crops: barley, wheat, maize, oilseed rape and potatoes. The project used cutting-edge 

technologies and worked directly with the crop breeding industry to identify tools to 

improve breeding for NUE and agronomic strategies to further enhance system-level 

NUE (http://research.ncl.ac.uk/nefg/nuecrops/page.php).  

This PhD project was set up in the context of NUE-CROPS Work package 1 that dealt 

with NUE in barley and wheat with a specific focus on barley. Barley was used as a 

model crop in an association genetics experiment carried out over two years, in five 

geographical locations and at three rates of nitrogen application. The project aimed at 

quantifying and describing the allelic variation in European germplasm underpinning 

NUE components, yield and yield components. Further details on that work package 

can be found in project reports (Thomas et al., 2013). 

Nitrogen use efficiency. 

NUE is a quantitative trait of increased interest in plant breeding. In a study on maize, 

Moll et al, (1982) identified two main components for NUE, the nitrogen capture or 

uptake efficiency (NupE= Ncrop/Na) and nitrogen conversion or utilization efficiency 

(NutE= Yld/Ncrop); where Yld is the total marketable crop yield (kg ha
-1

), Ncrop (kg 

ha
-1

) is the total crop nitrogen uptake at harvest and Na (kg ha
-1

) is the available 
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nitrogen during growth period. Additional components and adjustment can account for 

plant nitrogen loss, plant nitrogen content at different growth stages and nitrogen 

remobilization during the senescing period (Gregersen et al., 2008). Other approaches 

for describing NUE have been proposed excluding the productivity factor or uptake 

efficiency factor e.g. NUE= Ncrop-Nsoil/(Nfert) (Hirel et al., 2001; Raun et al., 2002). 

A possible consensus is the productive value of nitrogen defined by NUE= Yld/Na, 

which is also a scaling of yield. 

Genetic progress in crop NUE has been achieved by the exploitation of genetic variation 

for NupE and NutE within species (Abeledo et al., 2008; Muurinen et al., 2006). A large 

number of genes involved in regulatory mechanisms in nitrogen metabolism can play a 

role in the observed variation in NUE (Good et al., 2004; Kant et al., 2010). For 

example, variable expression of different glutamine synthetase isoenzymes was shown 

to affect kernel size and number in maize (Gallais and Hirel, 2004; Hirel et al., 2007). 

Differences in NUE, NupE and NutE have also been reported in barley (Beatty et al., 

2010; Le Gouis et al., 1999; Sylvester-Bradley and Kindred, 2009) with significant QTL 

× nitrogen interactions affecting yield and yield components (Saal et al., 2011). In a 

study on spring barley, Beatty et al., (2010) showed that the variation in NUE was 

mostly accounted for by variation in NutE suggesting that varieties differed in their 

ability to transfer leaf and stem nitrogen to the grain. In addition to the physiological 

aspects of NUE, it can be assumed that the variation in roots and canopy architecture 

play a leading role in the trait variation (Hirel et al., 2007). A breeding hypothesis 

suggests that the winter barley varieties Saffron and Retriever have contrasting abilities 

to cope with nitrogen stress which could be due to differences in both rooting abilities 

and physiology (David Harrap pers. comm.). Therefore, an improved genetic 

understanding of NUE and an estimation of the existing diversity would benefit 

breeding to tailor elite varieties to specific fertilisation regimes. 

1.3 The genetic mapping of quantitative traits. 

Recent advances in genetics and biotechnology have drastically increased progress in 

crops sciences and plant breeding methods. The development of genetic markers and 

high throughput genotyping platforms are now routinely used to characterise breeding 

material. One main application is the study of traits using QTL mapping to focus on 
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genomic regions with underlying genes and polymorphism in order to identify and track 

down any desired allelic variant for a faster varietal improvement. 

1.3.1 Molecular markers and genotyping technologies. 

Genetic markers. 

Genetic markers have become a major tool for plant sciences and breeding. A genetic 

marker refers to a polymorphism in the DNA sequence of individuals in the form of a 

different nucleotide or sequence of nucleotides that can be linked to a trait variation and 

is unaffected by the environment (Collard et al., 2005). The description of individual 

genotypes by marker alleles enables their fingerprinting. All genetic markers can be 

tested for linkage relationships and recombination frequency between alleles in 

segregating populations in order to create genetic maps using mapping functions (Zhao 

and Speed, 1996). 

The advantages and disadvantages of genetic markers depend on their proprieties that 

reflect high polymorphism, abundance in the genome, dominant or co-dominant 

inheritance, cost and the flexibility of assessments and assays (Collard et al., 2005). The 

types of genetic markers are described in reference to their method of detection and the 

sequence plolymorphism. Most genetic markers such as AFLP (amplified fragment 

length polymorphism), SSR (single sequence repeat or microsatellites) and SNP (single 

nucleotide polymorphism) are based on polymerase chain reaction (PCR). A SNP 

marker corresponds to a single base-pair change in the DNA sequence which generates 

two alleles. The extreme abundance of SNP in the genome and the possibility for 

multiplexing on high throughput arrays has driven the cost reduction and attractiveness 

of genotyping. SNP have greater scope to describe and locate allelic variation with QTL 

mapping (Close et al., 2009; Waugh et al., 2009), track further the desired alleles with 

MAS (Collard and Mackill, 2008) and develop advanced breeding methods of genomic 

selection (Jannink et al., 2010).  

Barley genotyping technology.  

The SNP multiplexing technology pioneered by Illumina in collaboration with the 

barley research community has enabled the development of genotyping platforms for 

barley that cover the genome with a high density of markers in a cost effective manner 

(Close et al., 2009). The Illumina beadXpress that contained 384 SNP from all seven 

barley chromosomes (Bx384) was commonly used in the breeding industry. The 

increased marker density was achieved with OPA1 and OPA2 SNP assays using a larger 
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scale platform with each chip containing 1536 SNP that covered the barley genome with 

an average resolution of 1 SNP per cM based on OPA consensus maps (Close et al., 

2009). More recently, the Illumina infinium genotyping assay comprises 9000 SNP of 

which 2832 are covered by OPA assays. This platform has already been used in barley 

mapping studies (Comadran et al., 2012) and was available as a genotyping resource for 

the NUE-CROPs project. The broader implementation of genotyping by sequencing 

technology (GBS) is also being considered for barley in order to combine low cost 

genotypes and high marker density (Mascher et al., 2013a) that can then be referenced 

to the barley physical and genetic map framework (Mayer et al., 2012). Other 

advantages for SNP markers are found in modern genotyping arrays and technologies. 

For example, the KBiosciences’ KASPar genotyping platform can be designed to target 

any individual SNP such as those available on other platforms or from DNA sequence 

information (www.lgcgenomics.com). This technology is now used routinely in barley 

breeding for MAS. The barley genetic resources generated from genotyping are 

accessible via public databases such as Germinate (ics.hutton.ac.uk/germinate), 

Graingenes (wheat.pw.usda.gov/GG2/index.shtml) and also Ensemble plants 

(plants.ensembl.org). 

1.3.2 Linkage QTL mapping. 

The mapping of QTL is a core activity used for understanding the genetic basis of 

quantitative phenotypic variation (Rae et al., 2007). The basic principle behind QTL 

mapping is a regression between phenotype and explanatory variables with the 

assumption that traits can be understood by linear additive models (Bernardo, 2008). It 

is a test for significant associations between the genotype marker classes and the 

phenotypic variation between groups of individuals partitioned according to marker 

classes (alleles) and the proportion of the variance accounted for by those classes 

(Collard et al., 2005). The underlying hypothesis is that a trait is controlled by multiple 

genes in linkage with classes of genetic predictors. The significant QTL is positioned on 

the chromosome at its highest result of association with a confidence interval assigned 

(support interval). 

The type of population used for mapping purposes varies depending on the trait’s 

complexity and the strategy adopted to investigate the trait. In cereals, and barley in 

particular, the large majority of studies have used DH populations derived from a bi-

parental cross of lines with contrasting phenotypes (Bezant et al., 1997; Borràs-Gelonch 

et al., 2011; Hayes et al., 1993; Xue et al., 2010). In most studies, the DH population 

http://wheat.pw.usda.gov/GG2/index.shtml
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size varies between 100 and 200 individuals. Alternatively, advanced backcross QTL 

mapping (AB-QTL mapping) has mainly been done to investigate the effects of 

chromosome introgressions from landraces and exotic material into elite lines (von 

Korff et al., 2010). The segregation obtained in recombinant inbred line (RIL) 

populations derived from the segregating lines is also used for mapping (Liu et al., 

2010). 

In order to position the association results on a genetic map, preliminary analysis of the 

recombination frequency between markers is used to identify linkage groups of genetic 

predictors (markers). The first QTL mapping methods were based on single marker 

analysis (SMA) to test the association of single marker alleles with the phenotypic 

distribution using statistical methods such as t-test, ANOVA, and linear regression 

(Collard et al., 2005). More elaborate mapping algorithms have been proposed to 

exploit linkage maps and the interval between markers pairs. Lander and Bostein (1989) 

introduced the simple interval mapping (SIM) method using RFLP markers and 

estimated genetic predictors in-between mapped markers. Composite interval mapping 

(CIM) combines the linear regression approach of interval mapping and inclusion of 

additional cofactors (markers) in the model which adds more precision in positioning 

the QTL and tests with adequacy for residual effects across the rest of the genome 

(Zeng, 1994). Both SIM and CIM are implemented in statistical packages such as R/qtl 

(www.rqtl.org/) and GenStat 14
th

 (Payne et al., 2009). 

It needs to be born in mind that QTL mapping based on a bi-parental population also 

has limitations such as the set number of alleles segregating in the population (Collard 

et al., 2005). The alleles segregating in the populations will be those of the crossing 

parents and may only represent a small proportion of the allelic diversity in an elite 

crossing programme. This diversity is also minimal in comparison to the range of alleles 

that can be accessed by breeders in the wider barley germplasm (Comadran et al., 2009; 

Ellis et al., 2000). The number of recombinations between chromosomes is another 

limiting factor associated with bi-parental mapping, especially for identifying precise 

QTL positions. An increase in population size (i.e. the amount of recombination events 

sampled) can help to narrow the QTL support interval. The cloning of vrs1 involved 

9,831 gametes to identify appropriate recombination events around the gene 

(Komatsuda et al., 2007). The downside of low QTL resolution is that markers in 

association with the trait span a significantly large chromosome segment that can 

contain numerous polymorphic gene candidates and can contribute to a linkage drag of 

undesired alleles with negative effects on crop performance. Nevertheless the bi-
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parental QTL mapping approach still has a value when considered in the context of 

large scale breeding programmes where large numbers of segregating families are 

generated from sets of common parents closely related (Würschum, 2012). 

1.3.3 Genome wide association mapping. 

The key principle in genome wide association studies (GWAS) is to use the linkage 

disequilibrium (LD) between a trait and the alleles of a genetic marker to map the 

significant effects of the trait along the chromosomes (Gupta et al., 2005). LD is the 

non-random association of alleles at separate loci on a chromosome that can be caused 

by structure in populations, genetic drift, relatedness between individuals and the 

selection process. Rapid LD decay is observed when there is only a short distance 

between pairs of markers in LD suggesting frequent recombination events in the 

population. In barley, the LD was shown to extend up to 10cM (Kraakman et al., 2004) 

but generally declined rapidly after 2.6 cM (Zhang et al., 2009). The breeding processes 

aim at maintaining favourable alleles in the germplasm and populations exploited by 

selecting positive alleles in LD with linked marker loci. This genotypic information can 

be used to gain mapping resolution compared to simple linkage analysis (1.3.2). Three 

main advantages of GWAS have been advanced: an increased resolution of mapping, 

the reduced research time and the greater diversity investigated (Zhu et al., 2008). With 

high throughput genotyping technologies and efficient statistical modelling, GWAS is a 

key method for studying genetic architecture of quantitative traits and identifying 

valuable polymorphisms in a panel of diverse individuals. 

One main obstacle to GWAS is describing and accounting for confounding effects 

caused by population structure present in the panel used. The geographical origins and 

relatedness of lines that compose the panel of individuals (e.g. varieties) tested in 

GWAS create stratification in the population that can be captured by genetic markers 

(Comadran et al., 2009). In a panel of 329 lines restricted to six-row winter barley, the 

hull and hulless traits were clearly separated using marker information (Berger et al., 

2012). This complex population structure causes Type-II errors (false negatives) in 

association tests which lead to significant marker-trait associations due to shared 

pedigree rather than true genetic linkage. To assess the population structure and adjust 

for it in GWAS scans, a range of statistical methods have been developed that exploit 

the random background genotypic information (Price et al., 2010). Structured 

association (SA), genomic control (GC), principal components (PC) and mixed linear 
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models (MLM) can be used to account for population structure and test for appropriate 

marker-trait (i.e on the residuals of phenotypes after structure correction). 

Structured association (SA) consists of inferring a population structure from the 

genotype information and a clustering statistical model implemented in the software 

STRUCTURE (Pritchard et al., 2000). This approach assigns individuals to populations 

(k parameter) by minimizing disequilibrium within them. The main output of 

STRUCTURE is a matrix Q with k vectors reporting the estimates of population 

membership for each individual. SA can be time consuming and inconsistent in some 

cases (Cockram et al., 2008). Devlin and Roeder (1999) proposed a population structure 

correction by genomic control (GC) in adjusting uniformly across the genome for the 

inflation of statistics caused by this structure. This method assumes that the structure 

has the same effect on all loci and tends to decrease the power of detection of 

associations. The principal component (PC) or EIGENSTRAT analysis is also used for 

estimating structure in GWAS. In general, the PCs are estimated from the genetic 

markers and the loadings of PCs included as covariate in the GWA models. These 

loadings can be interpreted as a proportion of subpopulation membership and tend to 

reflect family relatedness, long range LD and assay artefacts (Price et al., 2010). The 

flexibility found with MLM allows adequate accounting for multiple levels of 

relatedness in population structure in plants (Yu et al., 2006). In MLM, the genetic 

similarities between individuals can be included in the model as both fixed and random 

effects and the different combinations evaluated to better account for the levels of 

relatedness in mapping panels (Wang et al., 2012). A kinship matrix K computed from 

the marker data reports the degrees of covariance between pairs of individuals 

interpreted as population structure. The combination of different cofactors accounting 

for structure (e.g. Q+K) was shown to improve mapping power (Yu et al., 2006). In the 

case of autogamous species like wheat and barley, the appropriate K matrix may yield 

very acceptable results (Stich et al., 2008; Wang et al., 2012). MLM are nowadays 

computationally accessible thought web resources such as TASSEL (Bradbury et al., 

2007) and EMMAX (Kang et al., 2010). 

Barley has been a model species for GWAS in small grain cereal and was used in major 

projects such as AGOUEB and Barley-CAP (Waugh et al., 2009). Large diversity 

panels comprising commercial varieties and landraces have been assembled and 

exploited in GWAS (Close et al., 2009; Comadran et al., 2011a; Haseneyer et al., 2010). 

Cockram et al. (2008) showed that after correction for population structure, association 

mapping was able to detect the partitioning loci of vernalization genes vrn-H1 and vrn-
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H2 (Cockram et al., 2008). The interactions between genes involved in the control of 

phenology was also reported by GWAS (Stracke et al., 2009). Other barley GWAS 

reports have investigated agronomic traits involved in yield and yield stability 

(Comadran et al., 2011b; Kraakman et al., 2004; Rostoks et al., 2006), stress tolerance 

(Long et al., 2013; Visioni et al., 2013) and simplier morphological traits (Cockram et 

al., 2010). These positive results have shown the potential of GWAS to exploit genetic 

information for progress in breeding. 

1.4 Achieving genetic progress 

1.4.1 Phenotypes 

As genotypic information because more accessible, the current challenge for QTL 

discovery is the bottleneck of achieving sufficient and accurate phenotype information 

(Furbank and Tester, 2011). The large panel of accessions required for GWAS can 

result in phenotyping becoming a costly and time consuming process. This step cannot 

be overlooked since it has a much greater effect on the power of detection of 

associations than the number of data points from genetic markers (Ingvarsson and 

Street, 2011). Since the aim of GWAS is to investigate the genetic control of a trait, the 

ideal phenotyping approach should aim at maximising the proportion of the trait 

variance due to the genetic component while reducing experimental error and 

environmental variation. One main strategy is to include replication of accessions to 

better partition the component of variance in the phenotype in order to get a measure of 

the error variance and an accurate estimate or prediction of the mean value for the 

accessions. This is routinely implemented in plant breeding and variety testing with 

replicated trial networks under varied field conditions. The attractiveness of phenomic 

tools may also offer an alternative option for plant scientists to narrow down the 

distance between phenotypes and genotypes (Furbank and Tester, 2011). Furthermore, 

the adequate statistical analysis of phenotypic data collected in replicated trials and 

phenotyping experiments is essential to predict robust breeding values. Often, these are 

obtained using mixed model procedures which assign appropriate values to the 

components of variance (Piepho et al., 2008). Breeding values can then be used for 

selection purposes and included in the statistical models to test for marker-trait 

associations in a two-stage mapping approach (Stich et al., 2008) and is predominantly 

applied in barley and plant GWAS.  
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1.4.2 Marker assisted breeding 

Marker assisted selection 

The intention of marker assisted selection (MAS) is to use genetic markers as a tool in 

conventional selection in order to screen for alleles associated with a QTL for a trait of 

interest. In other words, MAS aims to increase the efficiency and effectiveness of 

breeding over conventional methods. Amongst its advantages, MAS allows the 

screening of a large panel of individuals in the early stages of the selection process, 

whilst reducing resources allocated to phenotyping activities (Collard and Mackill, 

2008). MAS is also unaffected by environmental conditions, reproducible over a range 

of material and years and has high heritability. Last but not least, it can be used to apply 

marker technology in order to describe genetic background. This is particularly useful in 

strategies of marker assisted backcrossing to select individuals containing both an 

introgressed allele at a QTL target and the maximal genetic background of the recurrent 

parent (Kandemir et al., 2000). 

It needs to be born in mind that the factors affecting QTL mapping accuracy such as the 

mapping methods, population size, nature of genetic markers and GxE interactions will 

affect the extent of the realized utility of the linkage between the markers and QTL 

(Asíns, 2002). These factors need to be considered for MAS applications and a marker 

development pipeline should be implemented from the QTL mapping experiment to the 

validation of QTL effects (Collard and Mackill, 2008). Indeed, the validation of marker-

trait associations is necessary to exclude rare events of double recombination and 

discrepancy between genetic and physical map distances. The QTL effects should also 

be confirmed in replicated experiments and both QTL and markers validated in relevant 

germplasm. A QTL in different genetic backgrounds may be subject to epistatic 

interactions. In some cases, the conversion of a marker on a different platform will 

speed up the screening process (e.g. KASPar technology). These steps downstream 

from the “QTL mapping” are necessary in order to integrate and exploit the results of 

molecular genetic research into conventional breeding by effective MAS. 

In breeding programmes, MAS can be applied to increase the breeding value of the lines 

that are continued and screen larger panels with more stringency in order to increase the 

frequency of desired alleles in the following generations. Pairs of flanking markers can 

be used to track chromosome segments containing the relevant QTL alleles. A 

combination of MAS and phenotype screening can increase the success rate of having 

the favourable alleles and also identify useful cases of recombination between marker 
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and phenotype. The ideal situation for MAS is a “perfect marker” or “diagnostic 

marker” that describes the sequence polymorphism responsible for the trait variation. 

Marker screenings for disease resistance alleles are perfect examples for the rarely 

reported MAS applications in plants, often because those are diagnostic markers (Miklis 

et al., 2007; Stein et al., 2005). This is the case for barley yellow mosaic virus for which 

the actual change in nucleotide sequence in the gene that causes the resistance is used as 

a marker (Rae et al., 2007). A sequence deletion in ant-2 can also be used as a marker to 

check the barley pigmentation (Cockram et al., 2010). In rice, some markers have been 

tagged to genes directly involved in yield and yield components variation (Yan et al., 

2009). In barley, QTL for complex traits are yet to be characterised and efforts are being 

made to find and locate the polymorphisms strongly associated with markers that can be 

implemented in MAS. 

QTL validation with near isogenic lines 

The validation of a QTL effect is required if one wants to exclude potential mapping 

errors and use markers for selection. The main validation step involves a test of the 

consistency of significant QTL effects in different environments and genetic 

backgrounds in the plant material which is expected to carry the desired alleles of the 

QTL. 

Near isogenic lines (NILs) have been advanced as a tool for QTL validation. NILs 

enable the reduction of the phenotypic variation caused by the environment and the 

genetic background so that the effect observed is principally due to the QTL (Kandemir 

et al., 2000; Navara and Smith, 2013). Ideally, NILs share an identical genome (i.e. 

identical alleles and genes) with the exception of a specific segment located at the 

putative QTL. When tested under the same conditions, phenotypic differences can 

provide strong evidence for a genuine QTL effect. NILs can also help to locate genomic 

regions involved in the control of agronomic traits without any assumptions about QTL 

(Venuprasad et al., 2011). Generally NILs can be obtained by backcrossing an allele of 

a QTL into a recurrent parent from the mapping study or into a conventional variety 

(Kandemir et al., 2000; Kongprakhon et al., 2009). 

The validation of a QTL using the original mapping population is also possible (Yun et 

al., 2006) although this approach limits the transferability of the QTL effect to a wider 

germplasm pool. Alternatively, the development of heterogeneous inbred families (HIF) 

can be used to test and validate QTL (Tuinstra et al., 1997). The material in the higher 

generations of breeding programmes has low heterozygosity but the residual 
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segregation at a QTL location can be exploited to identify lines from which HIF and 

NILs can be derived. This strategy has the double advantage of validating QTL and 

alleles in a genetic pool of direct relevance to commercial breeding purposes. Along 

with QTL validation, the markers segregating in the NILs in close linkage to the QTL 

can also be used for MAS. The need to describe the causal gene is less essential for that 

process. Ultimately, the better understanding of the genetic control of traits can only be 

achieved if the polymorphic genes are described and diagnostic markers identified. 

1.4.3 Finding the genes 

Even though the scientific approaches to characterise diagnostic markers seem easily 

accessible, the actual number of this type of markers used by breeders remains low. The 

diagnostic markers are essential for accurate MAS as they eliminate the risks of 

recombination between markers and the causal polymorphism. In addition, the 

description of the polymorphic gene by its gene sequence can help to elucidate both 

genetic and physiological pathways involved in the control of the trait. Only a few 

barley genes involved in the control of phenology, disease resistance and major 

morphological changes have been described at the sequence level (Miklis et al., 2007; 

Ramsay et al., 2011; Turner et al., 2005). Variation in gene sequence found in 

mutagenized populations and causing extreme phenotypes is also used to investigate the 

genetic architecture of traits and identify genes (Druka et al., 2010; Rossini et al., 2006). 

However, the description of genes involved in the genetic control of agronomic 

quantitative traits is rare due to variable effects observed in different backgrounds and 

the presence of QTL x environment interactions (Collard and Mackill, 2008). For 

example, the pleiotropic effects of the photoperiod gene Ppd-H1 may affect the final 

TGW indirectly by changing the adaptability of a plant to an environment, hence its 

potential to fill the grain (Kandemir et al., 2000; Wang et al., 2010).  

The identification of candidate genes is not simple as hundreds of genes can be present 

in the few centiMorgans delimited by the QTL support interval on a barley 

chromosome. Meta-analysis of QTL and studies across species can help reduce this 

interval and identify plausible biological pathways that may be involved (Swamy et al., 

2011). In addition, the synteny across species can also help to narrow down the number 

of candidate genes underlying a QTL (Mayer et al., 2011) and the sequencing 

information can also be used to find and clone a candidate gene (Cockram et al., 2010). 
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Comparative genomics 

Comparative genomics, also referred to as synteny, is the study of co-linearity of loci 

between genomes of related species. The genome sizes of grass species are very 

variable but the linear order of genes has remained well conserved over million years of 

evolution (Gale and Devos, 1998). Plant common ancestry helps to understand genome 

dynamics by revealing both ancient and recent segmental insertion and replication, 

polyploidy events, and genome altering processes that have translated into different 

genome structures, functions and biological effects (Bennetzen and Chen, 2008). 

Therefore comparative genomics is a powerful tool to exploit the genomes of fully 

sequenced model species such as rice or Brachypodium and infer candidate gene 

positions in related species such as barley and wheat. The ‘genome zipper’ between 

cereal species has helped to establish a linear order of genes for the barley genome 

(Mayer et al., 2011) and online resources such as Gramene (www.gramene.org) enable 

the visualization of the co-linearities of genomes. Comparative genomics can also be 

used in marker development to investigate the sequence of flanking putative genes to 

saturate a chromosome region with new markers. 

The macro-co-linearity of marker order at the genetic map level is distinguished to 

micro-co-linearity at the genomic sequence level (Bennetzen and Chen, 2008; 

Muehlbauer et al., 2009). Both can give better insight of genomic regions to understand 

the gene arrangement, function and sequence. The micro-co-linearity can be used to 

check for conservation of sequences at orthologous positions and can reflect the 

conservation of a gene with similar function across species. The barley flowering time 

gene Ppd-H1 was shown to be located at a position orthologous to a junction between 

chromosomes 4 and 7 of rice (Dunford et al., 2002; Turner et al., 2005). There is strong 

evidence for conserved full or partial control of some plant architecture traits and 

molecular pathways. For example, the gene involved in the variation of lateral spikelet 

fertility in barley Int-c is an ortholog of the maize domestication gene TEOSINTE 

BRANCHED 1 (TB1) (Ramsay et al., 2011). TB1 controls the fate of axillary 

meristems in maize and the development and expression of fertility in lateral spikelets 

of barley. Other gene candidates have been investigated using comparative genomics 

between rice, wheat and barley (Distelfeld et al., 2008; Muehlbauer et al., 2009; Stein et 

al., 2005). In some cases, the co-linearity between genomes is insufficient to resolve 

candidate genes as traits are not conserved across species or different pathways are 

involved (Muehlbauer et al., 2009; Ramsay et al., 2011). Griffiths et al. (2003) did not 
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confirm the QTL for rice flowering time at CONSTANS genes in orthologous barley 

genes. Nevertheless, the potential of comparative genomics in the search and validation 

of candidate genes is highly valued. 

Sequence information and diagnostic markers 

Once confidence has been established on the genetic location of the QTL, there is a 

benefit in acquiring the detailed genetic sequence information to potentially identify a 

diagnostic marker useful for MAS. Although this project will not delve into extensive 

sequencing experiments, it is necessary to mention the role of DNA sequencing in the 

characterisation of polymorphism at the genetic level as the sequence polymorphisms 

can be used to develop better or diagnostic markers for MAS. The sequencing of gene 

plays a key role to understand the changes in the DNA sequence at the origin of a 

modification in the function of a protein that can affect a whole physiological pathway 

and phenotype (Cockram et al., 2010; Szucs et al., 2007; Zitzewitz et al., 2005). A 

deletion in the ant-2 gene sequence was shown to be responsible for the expression of 

anthocyanin pigmentation in barley (Cockram et al., 2010). This extra level of 

resolution may be helped by the recent release of the partial barley genome sequence 

which identified 26,159 ‘high-confidence’ genes with homology support from other 

plant genomes (Mayer et al., 2012). The benefits are noteworthy as sequence 

information and across crops synteny could be exploited to identify candidate genes 

from QTL mapping the alleles to use in MAS. 

1.5 Research objectives 

The remarkable advances in crop science and barley research have placed the breeding 

industry in a position to diversify and improve their methods for improving crops. The 

QTL mapping studies are the initial stage to find associations between trait variation 

and genetic polymorphism. However these studies are the tip of the iceberg in 

understanding the genetic architecture of traits and identifying useful markers for MAS 

with validated effects (Chapter 1). Subsequent approaches of comparative genomics, 

QTL validation using NILs and characterisation of causal polymorphism at the DNA 

sequence level are all necessary steps to help defining and refining the most convincing 

targets (Collard and Mackill, 2008). Amongst the complex traits of interest for breeders, 

yield and yield components would greatly benefit from genomic research and increased 

marker applications. However, the current understanding of the genetic control of the 
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traits and their association with genetic markers as reviewed in Chapter 1 suggests that 

further exploration is needed to efficiently exploit genetic resources. 

 

This PhD project has been elaborated at the cutting edge of the current breeding and 

research activities in barley to investigate the genetic architecture of the highly valuable 

but not so well understood traits of yield and yield components.  

This project intends to deliver both the breeding industry and research community with 

enhanced knowledge on the genetic factors controlling complex agronomic traits which 

are targeted in elite winter barley breeding programmes, as well as exploitable results to 

enable a step-change in genetic progress. 

 

The main objectives of the project provide the framework for the different chapters in 

this thesis and each chapter is structured based on specific objectives as follow: 

 

- Carry out QTL mapping for yield and yield components using the bi-parental 

DH population from a cross between Saffron and Retriever (Chapter 2) 

o Collect and analyse phenotypes for a range of agronomic traits on the 

population grown in different environments and seasons. 

o Genotype the DH population and create the genetic map. 

o Carry out QTL x Environment analysis. 

o Identify genetic regions and QTL of interest to provide targets for further 

investigation of underlying polymorphic genes and alleles. 

 

- Carry out the Genome Wide Associations Studies using the two-row winter 

barley panel of varieties and phenotypes from the NUE-CROPs and AGOUEB 

projects (Chapter 3). 

o Collect the phenotypes for a range of agronomic traits including yield 

and yield components on the NUE-CROPS trials managed by KWS–UK. 

o Carry out the statistical analysis of phenotype data collected across five 

locations using mixed modelling. 

o Gather the phenotypes for the varieties of the AGOUEB panel.  

o Gather and analyse the genotypes on the 9000 SNP Infinium genotyping 

chip for all varieties included in the panels.  

o Analyse the population structure of the panels 
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o Carry out GWAS using appropriate statistical models (correction for 

population structure) and report on QTL discovery. 

 

- Combine the results from the three mapping experiments to enable direct 

comparison across studies and built up confidence on QTL targets (Chapter 4). 

o Establish a consensus map using common SNP across the three mapping 

studies described previously.  

o Position the QTL on the consensus map to understand the genetic 

architecture of traits and identify genetic factors involved in the control 

of traits within and across studies. 

o Inspect the pattern of significance and allele effects for the range of traits 

for the SNP at relevant clusters to suggest targets for MAS.  

o Use comparative genomics and synteny between rice and barley 

genomes to propose candidate genes involved in the control of traits for 

some promising genetic factor. 

 

- Validate QTL for agronomic traits by developing and testing Near Isogenic lines 

for agronomic traits (Chapter 5). 

o Identify breeding material segregating at QTL targets found in previous 

chapters to develop HIFs and NILs. 

o Use a panel of genome wide SNP to select and develop NILs with 

minimal background heterozygosity. 

o Carry out field trial testing and phenotyping for a range of agronomic 

traits on the NILs. 

o Interpret the effects and report on QTL validation between NILs. 

 

- Discuss the results and expand on the knowledge generated during the project in 

the context of a commercial barley breeding programme focusing on improving 

crop yield. (Chapter 6) 
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Chapter 2  

QTL mapping for yield and yield components in a bi-parental DH 

population of an elite winter barley cross. 

2.1 Introduction 

The challenges of sustainable food production are a main concern for agriculture which 

has to maintain high levels of production while reducing inputs as a key target for 

reaching sustainability. Plant breeding has had a major impact on food production. 

Improved varieties have been released to deliver greater benefits from producer to 

consumers, enhancing yields, quality requirements and sustainability (Abeledo et al., 

2008; Fufa et al., 2005; Le Gouis et al., 2000; Rae et al., 2007; Sanchez-Garcia et al., 

2013). The majority of traits of interest that are expressed quantitatively result from 

multiple factors or components controlled by a range of genes across the genome 

(Bernardo, 2008). In barley, the grain yield can be dissected into the yield components 

of tillering, grains per ear and grain weight (see 1.2.2). Therefore, the overall yield 

improvement in this crop comes from the combination of favourable genes and alleles 

controlling each one of these yield components. In order to select for positive alleles, 

plant breeders require a thorough understanding of the genetic architecture of yield and 

yield components so that the optimal allele combinations can be generated and 

maintained in segregating progenies. 

Genetic mapping of QTL helps researchers to understand the genetic control of traits 

and by associating genetic markers with phenotypic variation that can be exploited for 

marker assisted selection (MAS) (Collard et al., 2005). In barley, the double haploid 

(DH) populations are a valuable tool to exploit the segregation of alleles and investigate 

agronomic traits (see 1.3.2). QTL for yield and yield components have been described 

in mapping studies of bi-parental crosses (Backes et al., 1995; Bezant et al., 1997; 

Hayes et al., 1993; Yin et al., 2002). The recombinant inbred line (RIL) population from 

a cross between spring barley and wild barley revealed that both elite and wild parents 

carried positives alleles for yield, tillering and TGW with changes in magnitude of the 

effects attributable to QTL x E interactions (von Korff et al., 2006). Yield QTL with 

strong effects were associated with the known loci vrs1 and int-c controlling 

inflorescence structure in a mapping population from a cross between a two-row and 

six-row barley (Marquez-Cedillo et al., 2001). Similarly, loci involved in the control of 
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vernalization and photoperiod in barley were significantly associated with yield 

differences in crosses between spring and winter types (Cuesta-Marcos et al., 2009). In 

barley, different pool of germplasm can be identified based on genetic markers and 

clusters of varieties monomorphic for the alleles at loci controlling row type, 

vernalization and photoperiod (Comadran et al., 2009; Zhang et al., 2009). These pools 

are rarely crossed between each other in elite breeding programmes in order to avoid 

extreme segregation in progenies (David Harrap pers. comm.). Therefore the yield 

variation the within each pool originates another set of segregating alleles and genes.  

Bi-parental populations are continuously produced in the process of plant breeding and 

can be used for research purposes. An elite bi-parental DH population was generated at 

KWS-UK from the cross between two-row winter barley varieties Saffron and 

Retriever. This population provides an opportunity to understand the genetic 

architecture of yield and yield components in elite two-row winter barley material. The 

complementarity of the varieties in terms of agronomic characteristics had been spotted 

by the breeder willing to exploit their contrasting genetics (David Harrap pers. comm. 

and Table 1.1). Saffron and Retriever are known to differ in tillering ability and grain 

weight and have different yield responses under first and second cereal conditions 

affecting their yields and yield components. However, the magnitude of genetic main 

effect, pleiotropic effects and genotype x environment interactions for these traits and 

their interaction with other traits remains unclear. Barley was shown to have different 

yield response to nitrogen supply (Abeledo et al., 2003) and varying root architecture 

(Hargreaves et al., 2009). It is possible that Saffron and Retriever have contrasting soil 

scavenging abilities and responses to early nitrogen availability. The nitrogen economy 

may also impact on plant development and fate of above ground material associated to 

yield performance (Gregersen et al., 2008).  

A preliminary QTL mapping was carried out at KWS in 2009 using a single marker 

analysis (SMA) approach implemented as a routine programme in Excel with the raw 

phenotypes adjusted to the best fitting linear model. The SMA method identified a 

number of marker–trait associations for yield and yield components across the genome 

but did not estimate QTL × E interaction. Nevertheless, preliminary breeding trial 

results indicated that the S×R (Saffron × Retriever) DH population was a valuable tool 

to study the genetic control of agronomic and phenotypic traits in two-row winter barley 

(Cockram et al., 2010). Although the SMA results were encouraging for the number and 

magnitude of significant associations, a re-analysis of the data using composite interval 

mapping (CIM) (Zeng, 1994) was suggested. 
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This PhD project investigates the genetic architecture of yield and its underpinning 

yield components to provide breeders with relevant genetic targets for selection. 

Chapter 2 aims at providing a complete QTL analysis of the bi-parental DH population 

S×R in order to better understand the genetic architecture of yield for this elite two-row 

barley cross. The objectives of this study are: 1) to carry out QTL mapping using CIM 

on adjusted phenotypes collected on the DH population grown in yield trials at two 

sites, 2) to investigate and confirm the genetic control of traits using phenotypes from 

an additional experiment under untreated growing conditions, 3) to identify 

chromosome regions with candidate QTL involved in the control of agronomic traits 

that could potentially be targets for MAS approaches and investigated further to identify 

candidate genes. This study aims at generating a solid knowledge for the genetic control 

of yield and yield components in a cross of elite two-row winter barley and a working 

base for interpreting additional QTL mapping studies. 

2.2 Methods 

2.2.1 Plant material 

A double haploid two-row feed winter barley population of 530 DH lines from a cross 

between elite varieties Saffron and Retriever was developed in 2007 at KWS UK for 

both breeding and research purposes.  

Saffron is a KWS-UK bred variety and had the leading market share in the UK during 

the early 2000s. The variety exhibits very high yield potential in the high fertilisation 

regime of first cereal conditions where it develops large grains and numerous tillers. 

Retriever is a high yielding variety from Limagrain (Nickerson) with strong yield 

potential in second cereal conditions where it maintains its ability to tiller well and its 

grain filling. Breeder’s observations suggest that the variety is unable to benefit from 

higher fertilisation regimes under which it tends to over tiller and produces thin grains 

(David Harrap personal commu.). At maturity, the variety is prone to collapse of the 

straw above the last node which can also affect harvest conditions. 

2.2.2 Phenotypic evaluation 

2009 first and second cereal sites  

The population was grown in yield plots (6 m
2
, spacing between rows: 13.6 cm) at the 

sites of Fowlmere (Fowl09) and Elmdon (Elm09) in east Hertfordshire-UK. Fowl09 
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was characterised as a first cereal site with high residual soil nitrogen and high yielding 

potential where barley is grown at the beginning of the crop rotation. Elm09 was a 

second cereal site, with lower soil residual nitrogen as winter barley is sown following a 

first crop of winter wheat. At each site, a subset of the population (211 DH lines) was 

grown as single replicates in a block containing 7 to 8 plots of each of the control 

varieties: Saffron, Retriever, and Cassia. Phenotype data (Table 2.1) was collected for a 

range of traits on each plot at both sites. Field topography was also recorded as a 

potential factor in a covariate analysis on measured phenotypes (Appendix 2. 2). 

 

Table 2.1 List of phenotypes measured on the S×R DH population 

 

 

 

EE was recorded at growth stage 59 and Ht was recorded at growth stage 81 (Zadoks et 

al., 1974). The percentage of lodging (Ldg) was scored before harvest. Grab samples 

consisting of 30 random ears within a plot were taken at maturity (GS81). Ears were 

dried at 40ºC for 48 hours, threshed and weighed to calculate the thousand grain weight 

from the grab sample (TGW-GS) and the grains per ear (GE). The raw yield was 

obtained as the grain weight of a plot (Yld) and used to calculate fertile tillers (Til-cal) 

derived from Yld, TGW-GS and GE (Til-cal = Yld/TGW-GS/GE). An independent 

measure of TGW was made using a seed sample from the combined plot for which 

Trait measured Abbreviations Trait description

Ear emergence EE Date of 50% of the ears above flag leaf in a plot

Height Ht Height of the plot

Tillering measured Til-mes Tillering measured from plot drilled rows after harvest

Tillering calculated Til-cal Tillering calculated from yield components

Grains per ear GE Average number of grains per ear

Thousand grain weight TGW Weight of a thousand grains

TGW from grab sample TGW-GS Weight of a thousand grains from the grab samples

Yield Yld Marketable grain yield of the plot

Lodging Ldg Proportion of lodging in a plot, visual score

Hectoliter weight HLW Weight of an hectoliter of combine harvested grains

Grain protein GP Percentage of protein in ground grain

Grain sugars GS Percentage of soluble sugars in ground grain

Mildew Mil Susceptibility to mildew, visual score

Brown rust BR Susceptibility to brown rust, visual score

Stay green SG Proportion of  healthy plant tissues at ripening stage, visual score

Straw collapse SC Plant collapsing on itself, visual score

Straw degradation SD Degradation of the straw by disease at ripening stages, visual score

Ear glaucosity E_Glau Presence or absence of wax layer on the ear

Antocyanin colour Antho Colour of awn tips and grains

Aleurone colour Aleu Colour of aleurone layer in grain
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smaller grains should have been sieved out by the combine during harvest. This trait can 

be used as a validation trait for TGW-GS. In order to get an independent measure of 

fertile tillering, the cut tillers in stubble were counted on four segments of 50 cm in each 

plot and converted to an area (Til-mes). Bulked grains from combined yield plots were 

then analysed for HLW. In 2011, grains from each site were ground to flour to pass 

through a 0.5 mm mesh and analysed by NIR (Foss-5000 instrument) with 2 technical 

reps. Grain nitrogen and grain sugars (GS) were estimated using KWS-UK in-house 

NIR calibrations (Aunir-group 10). The grain proteins (GP) was calculated using the 

standard 6.25 nitrogen to protein conversion factor (Mariotti et al., 2008). 

2012 Population maintenance and additional phenotyping 

In 2012, the complete DH population of 530 DH lines was grown as single rep in a 

large block in untreated conditions at the Fowlmere site (Fowl12). The parental lines 

Saffron and Retriever were grown in 19 replicates each randomised within the 

population. All DH lines were grown as a pair of 1 meter long rows containing 25 plants 

each. A purity check was done between the seed stock from 2008 used for genotyping 

of the population and the seeds from the grab samples of Fowl09. The rogueing for off-

types and identification of mixed seed lots was done by comparing phenotypes and 

genetic marker information (e.g. anthocyanin pigmentation). At GS51, one plant of each 

DH line was bagged to avoid cross pollination and harvested to compose the definitive 

population. The entire population was phenotyped for EE and Ht, mildew (Mil) and 

brown rust (BR) during the grain filling stages. Grab samples of 25 ears were taken on 

each of the 530 DH lines and replicated controls and dried at 40ºC for 48 hours. The 

grains from threshed ears were counted to record GE and TGW-GS. Grains were milled 

to pass through a 0.8 mm mesh and the flour was analysed by NIR using the same 

calibration as for 2009 experiments. Straw characteristics of stay green (SG), straw 

degradation (SD) and straw collapse (SC) were scored at the start of ripening stage 

(GS89) on a 1 to 5 scale, a high score indicating that the character is visible to a large 

extent. In this study, SG was scored using a scale estimating the remaining areas of 

healthy straw and leaves. SC is a measure of the extent of weakness of the straw visible 

by straw twisting and bending on the last 2 internodes. This trait observed in the variety 

Retriever differs from a weak straw at the plant base which induces the lodging. SD was 

defined as an indicator of straw degradation due to senescence and diseases and is 

associated with SG. The variety Saffron tends to be good at SG while retriever is prone 

to SC and SD. 
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Estimation of adjusted means 

Experimental trials at Fowl09, Elm09 and Fowl12 produced highly unbalanced data sets 

due to single replication of DH lines and only two or three replicated control varieties. 

Therefore, adjusted means for all phenotypes were obtained by linear mixed model 

analysis implemented in REML algorithms in GenStat 14
th

 Edition (Payne et al., 2009). 

Raw phenotypes were initially screened to identify outliers at an arbitrary cut-off value 

of +/- 3 standard deviations in association with breeder’s notes on the quality of the 

plots. The genotypes were analysed as fixed term in the model. To account for 

environmental variation, blocking structures (row, column) and covariates (topography, 

lodging) were handled as random terms in the models (Ve). For each trait and DH line, 

the Best Linear Unbiased Estimates (BLUEs) were obtained by fitting the model 

minimising residual error (Appendix 2. 1). The final BLUEs were used for phenotypic 

and QTL mapping analysis in this study. 

An estimate of the heritability (h2) of traits was calculated from the replicated controls 

using the best REML models identified for each trait respectively. The variance 

components for each term of the models were obtained by setting all models terms as 

random effects so that h2=Vg/(Vg+Ve) where Vg represents the variance component of 

the genotype and Ve is the sum of variance components for environment, blocking and 

residual error variance. 

2.2.3 Genotyping information 

211 DH lines of the population were genotyped in 2009 using a set of 1536 SNP 

markers contained within the BOPA1 array, Illumina Golden gate technology on a 

Beadstation. 173 additional lines were genotyped using custom subset of 384 SNPs 

using the Illumina BeadXpress platform. SNP marker names were standardised using 

the BOPA_C nomenclature (e.g. 11_10022) and replacing “11_” by the letter A (e.g. 

A10022). Each SNP was associated with their expected chromosome from barley 

OPA2009 consensus map available at Graingenes 2.0 (wheat.pw.usda.gov/) to facilitate 

the linkage map construction (Close et al., 2009) (Supplementary data 1). Genotypes 

were transformed into ABH codes with A-Saffron, B-Retriever and H-Heterozygotes 

calls. Genetic map distances between markers were estimated using Mapdisto software 

v1.7. (Lorieux, 2012) with a LOD score of 3 and the Kosambi mapping function used to 

define initial linkage groups. The relevant linkages groups were associated to 

chromosomes based on the consensus chromosome position. Markers showing 

segregation distortion were kept throughout the process. Bootstrap and ripple order 
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functions were used in Mapdisto (Lorieux, 2012) along with published consensus map 

position to determine optimal marker order and distances. A skimmed map consisting of 

one unique SNP marker for each of the individual positions was kept for the subsequent 

QTL mapping analysis (Appendix 2. 3).  

2.2.4 QTL analysis 

Flapjack format files were used to carry out QTL mapping using GenStat14
th

 Edition 

(Milne et al., 2010; Payne et al., 2009). A simple interval mapping (SIM) procedure was 

first carried out and candidate QTL were defined as cofactors in a mixed model based 

Composite interval mapping (CIM) using a minimum cofactor proximity window of 30 

cM. A LOD score of 3 was defined as the threshold for detection of significant marker 

trait associations and putative QTL. For traits with no QTL detected initially, the 

threshold was lowered to a 2.9 LOD.  QTL support intervals were defined as the 

distance corresponding to a decrease of 2 LOD scores from the QTL peak position. The 

traits measured in more than one site/year combination were analysed in a multi-

environment QTL analysis. The traits measured only in 2009 were analysed in QTL × 

Env analysis using environments of Fowl09 and Elm09. Traits measured at Fowl09, 

Elm09 and Fowl12 were analysed in a QTL × Env analysis using the three 

environments. A single environment QTL analysis was done for traits measured only at 

Fowl12. 

Genetic predictors which are genotypic covariates that reflect the genotypic composition 

of a genotype at a specific chromosome location were set at every 2cM (Lynch & Walsh 

1998). The best variance covariance model for multi-environment QTL analysis was 

estimated for each trait based on Schwarz Information Criterion (SIC). Genome-wide 

QTL scans on multi-environment trials data was carried out in GenStat 14
th

 Edition 

(Payne et al., 2009) by fitting statistical model incorporated in the QMESTIMATE 

procedure (Malosetti et al., 2004). The detection model assumes environment as a fixed 

term and genotypes as a random term. 
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2.3 Results 

2.3.1 Phenotypic analysis 

2009 experiment 

Phenotypic variation was observed for all traits measured. The adjusted means for each 

DH line estimated as BLUEs were obtained by taking into account the effects of 

different environmental factors in the prediction models (Appendix 2. 1). Although not 

always significant, environmental factors included in the model made changes to 

predicted values and reduced the standard errors of estimates. At Fowl09, the field 

topography affected soil moisture and influenced the distribution of some traits. 

(Appendix 2. 2). Positive variance components were found for topography when 

estimating traits linked to plant development and productivity. The lodging affected the 

traits of Yld and the GE measured from combine samples, suggesting losses of grain 

during the combining process. At Elm09, the topography was less variable across the 

trial and only row or columns factors significantly captured environmental effects.  

Significant location effects were found for all the traits in 2009 (Table 2.2). Fowl09 

produced on average higher yields compared to Elm09. These higher yields were 

associated with higher tillering and grains per ear despite a lower TGW. Yld at both 

sites was positively correlated with both tillering and TGW although those two traits 

were negatively correlated with each other (Table 2.3). At Elm09 and Fowl09, Til-cal 

was negatively correlated with TGW and grains per ear (GE). However, the independent 

measure of tillering Til-mes only confirmed that negative correlation with TGW at 

Fowl09 (-0.38), highlighting the value of independent measurements of traits. GE was 

significantly positively correlated to Yld at Elm09 only. At both sites late EE appeared 

to have negative impact on Yld and yield components mainly associated with a drastic 

reduction of TGW suggesting that early lines produced bigger grains but lower yields. 
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Table 2.2 ANOVA of DH lines grown at three sites 
One way ANOVA on BLUE of the DH lines in the population grown at 3 sites in 2009 and 

2012. Traits have been abbreviated as follow: Yield (Yld), Thousand Grain weight (TGW), 

Thousand Grain weight from grab samples (TGW-GS), Tillering calculated (Til-cal), Tillering 

measured (Til-mes), Grain per ear (GE), Hectoliter weight (HLW), Ear emergence (EE), Height 

(Ht), Grain proteins (GP) and Grain sugars(GS). 

 

  

Trait

Source of 

variation d.f m.s. F pr. Elm09 Fowl09 Fowl12

average 

s.e.d

LSD 

(5%)

Yld Env 1 861 <.001 8.1 (0.1) 11.1 (0.1) 0.07 0.15

Residual 396 0.6

TGW Env 1 709 <.001 58.1 (0.2) 55.4 (0.2) 0.34 0.68

Residual 408 12.2

TGW-GS Env 2 17158 <.001 60.0 (0.3) 56.5 (0.3) 42.7 (0.3) 0.40 0.79

Residual 610 16.6

Til-cal Env 1 2781588 <.001 540 (4) 706 (4) 6.24 12.27

Residual 401 3925

Til-mes Env 1 4620741 <.001 656.64 (4.95) 869 (5) 7.01 13.78

Residual 407 5027

GE Env 2 293 <.001 26.2 (0.1) 27.6 (0.1) 28.6(0.1) 0.19 0.38

Residual 609 3.8

HLW Env 1 1660 <.001 68.6 (0.1) 64.6 (0.1) 0.12 0.23

Residual 408 1.4

EE Env 2 2041 <.001 19.9 (0.2) 16.7 (0.2) 23.1 (0.2) 0.28 0.54

Residual 610 7.8

Ht Env 2 43073 <.001 81 (0.4) 86 (0.4) 109 (0.4) 0.52 1.03

Residual 610 27.8

GP Env 2 16.5 <.001 10.3 (0.1) 9.8 (0.1) 10.9 (0.1) 0.06 0.11

Residual 609 0.3

GS Env 2 4.4 <.001 1.66 (0.02) 1.74 (0.02) 1.46 (0.02) 0.03 0.06

Residual 610 0.1

One way ANOVA Site Means (s.e.)
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Table 2.3 Correlation between traits at each experimental site 

Pearson correlation coefficient between different traits at a) Elmdon 2009, b) Fowlmere2009 

and c) Fowlmere 2012. Coefficients are significantly different at * p<0.05, ** p<0.01 and *** 

p<0.001.  

 

a) 

 

b) 

 
 

c) 

 
 

  

Elm 09 EE Ht Til-cal Til-mes GE TGW TGW-GS Yld HLW

Ht 0.12

Til-cal -0.15* -0.24***

Til-mes 0.01 0.03 0.28***

GE 0.26*** 0.23** -0.42*** -0.12

TGW -0.57*** 0.05 -0.3*** -0.08 -0.05

TGW-GS -0.54*** 0.04 -0.17* -0.06 -0.09 0.77***

Yld -0.31*** -0.07 0.46*** 0.13 0.17* 0.36*** 0.27***

HLW -0.09 -0.05 -0.03 -0.1 -0.09 0.3*** 0.34*** 0.11

GP 0.18* 0.02 -0.03 -0.09 -0.09 -0.22** -0.31*** -0.22** -0.17*

Fowl 09 EE Ht Til-cal Til-mes GE TGW TGW-GS Yld HLW

Ht 0.34***

Til-cal 0.06 0.3***

Til-mes 0.05 0.17* 0.54***

GE 0.11 0.15* -0.23** -0.08

TGW -0.51*** -0.2** -0.41*** -0.38*** -0.18*

TGW-GS -0.56*** -0.2** -0.25*** -0.27*** -0.18* 0.78***

Yld -0.29*** 0.15* 0.57*** 0.14 0.07 0.3*** 0.32***

HLW -0.05 -0.01 0.01 -0.11 -0.2** 0.38*** 0.33*** 0.33***

GP 0.4*** 0.55*** 0.29*** 0.21** 0.24*** -0.47*** -0.39*** -0.11 -0.16*

Fowl 12 EE Ht GE TGW-GS GP Ldg Mil BR SG SC

Ht -0.24***

GE 0.09 0.08

TGW-GS -0.42*** 0.31*** 0.18*

GP -0.04 0.16* 0.08 -0.12

Ldg -0.25*** 0.5*** -0.06 0.15* -0.05

Mil 0.02 0.12 0.24*** 0.26*** 0.08 0.09

BR -0.22** -0.09 0.1 0.19** -0.03 -0.04 0.28***

SG 0.29*** -0.05 0.17* 0 0.2** -0.27*** 0.1 0.05

SC -0.24*** 0.27*** -0.18* -0.08 -0.12 0.5*** 0.01 0.01 0.44***

SD -0.21** 0.29*** -0.1 -0.07 -0.14* 0.52*** 0.01 0.02 0.46*** 0.7***
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Table 2.4 Summary statistics on eleven agronomic traits 

Distribution of the DH population BLUEs for agronomic traits at both sites in 2009. Control 

means, control F probability, least significant difference (LSD) and heritability (h2) are reported 

from the REML analysis using the replicated control only. 

 

 

The replicated control varieties showed a response to site similar to the rest of the DH 

population (Table 2.4). The population distribution indicated transgressive segregation 

at both sites for all traits. Retriever had the lowest yield amongst the control varieties in 

the first cereal growing conditions at Fowl09 (10.8 t/ha) and achieved the highest 

control yield at the second cereal site of Elm09 (8.1 t/ha). Both Saffron and Cassia 

(pedigree: Saffron×(Eden×Carat)) had a reduction in yield at Elm09 but Cassia 

maintained significantly higher TGW compared to Saffron at that site. These yield 

variations observed between the controls also illustrate the correlations between yield 

components (Table 2.3) and confirm the breeder’s comment on the adaptation of both 

varieties to different fertility. Retriever has a substantial increase in TGW at Elm09 

where it matches Cassia’s. However, the variety has low TGW (53.2g) and HLW (62.9 

kg/hl) the first cereal site Fowl09 suggesting a varietal interaction with nitrogen 

availability. Retriever reaches GS61 four days earlier than Saffron and has high tillering 

Yld 

(t/ha)

TGW-

GS (g) TGW (g)

Til-cal 

(Tiller/m2)

Til-mes 

(Tiller/m2) GE

HLW 

(kg/hl)

EE (days 

of May) Ht (cm) GP (%) GS (%)

Fowl09

Min 8.1 47.1 43.7 501 671 23.4 60.5 9.4 71 8.2 1.0

1st Qu 10.6 53.9 53.3 658 816 26.4 65.8 14.5 83 9.3 1.5

Median 11.1 57.0 55.5 711 862 27.5 66.6 16.5 86 9.7 1.7

Mean 11.1 56.5 55.6 705 868 27.6 66.5 16.7 86 9.8 1.7

3rd Qu 11.7 59.5 58.4 758 934 28.6 67.4 18.9 90 10.2 1.9

Max 13.2 65.8 65.0 898 1118 32.0 69.2 24.2 99 11.9 2.4

Missing 9 - 1 4 2 1 8 - - 1 -

Cassia 11.70 59.62 59.28 731.40 869.60 26.33 66.66 16.02 91.64 10.47 2.04

Retriever 10.86 53.21 53.23 752.20 911.50 27.15 62.91 14.75 84.63 9.75 1.79

Saffron 11.42 58.37 57.91 688.20 861.80 27.45 66.33 18.06 90.03 10.38 2.04

av sed 0.19 1.32 0.93 17.83 28.44 0.57 0.34 0.47 2.19 0.27 0.09

F.pr 0.002  <0.001  <0.001 0.008 0.186 0.17  <0.001  <0.001 0.013 0.024 0.009

LSD (5%) 0.40 2.85 2.09 38.47 59.62 1.19 0.72 1.05 4.64 0.55 0.18

h2 0.18 0.37 0.23 0.17 0.03 0.05 0.40 0.22 0.18 0.28 0.36

Elmd09

Min 6.4 51.8 50.2 421 517 21.5 65.4 14.3 71 9.2 0.6

1st Qu 7.8 57.6 55.7 512 621 25.0 68.1 18.0 79 10.1 1.5

Median 8.2 60.0 58.6 538 660 26.0 68.7 19.1 82 10.3 1.7

Mean 8.1 60.0 58.1 540 657 26.1 68.6 19.9 81 10.4 1.7

3rd Qu 8.6 62.2 60.3 568 689 27.0 69.3 22.1 84 10.6 1.8

Max 9.5 68.0 65.1 669 809 30.5 70.6 27.0 90 11.4 2.3

Missing 3 2 - 3 - - - - 1 - -

Cassia 7.98 62.21 61.16 535.90 680.70 24.60 69.42 19.14 83.57 10.74 1.96

Retriever 8.42 62.37 61.55 529.00 681.60 25.76 68.54 16.94 80.33 9.70 1.67

Saffron 7.98 59.86 58.95 527.20 656.90 25.46 69.28 20.04 83.02 10.96 1.84

av sed 0.13 0.72 0.45 10.07 17.62 0.27 0.16 0.40 1.07 0.08 0.07

F.pr 0.024  <0.001 0.004 0.666 0.297 0.002  <0.001  <0.001 0.018  <0.001 0.003

LSD (5%) 0.34 1.52 1.00 21.93 37.02 0.62 0.35 0.84 2.26 0.18 0.15

h2 0.15 0.38 0.55 - 0.03 0.30 0.48 0.61 0.21 0.87 0.32

Control means

Control means
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and low TGW at Fowl09 with a GE equivalent to other controls. This trait balance 

suggests an increase in sink organs in high fertility conditions (Fowl09) that could affect 

the overall grain filling and TGW as suggested by the negative correlation between 

tillering and TGW in Table 2.3. Saffron and Cassia show a similar behaviour in tillering 

ability and yield at each site but Cassia is slightly earlier and maintains higher TGW in 

second cereal conditions. 

Significant differences between the control varieties were also observed for grain 

quality traits. Retriever had the lowest GP (9.7%) and GS at both sites. Saffron and 

Cassia maintained a higher GP even despite a substantial increase in Yld at Fowl09 

which could have led to nitrogen dilution effect in the grain. These results suggest 

different responses to nitrogen fertilisation between the two varieties Saffron and 

Retriever. GS is a measure of soluble sugar in ethanol in the ground grain. The value of 

this trait has not yet been established in KWS breeding programme but it seems that 

Saffron and Retriever are significantly different and show segregation in the DH 

population. These soluble sugars could potentially relate to potential malting qualities 

and enzyme activity under genetic control that it may be worth analysing.  

The heritability of the traits calculated for the controls ranged from 0.03 (tillering 

Eml09) to 0.87 (grain proteins Elm09). Low heritability values indicate that a large 

amount of the trait variation is attributable to error variance suggesting that 

interpretation of the results for these traits should be made with caution. Additionally, 

the large error variance can be due to the statistical models unable to account for 

undescribed environmental variation. 

2012 experiment  

After the verification of 552 DH lines for a match between genotype with phenotypes, 

515 lines were conserved for purity to complete the entire S×R DH population.  

The BLUEs approach was favoured for the analysis of phenotypes due to a limited 

number of controls and the non-replicated DH lines. Environmental effects of blocking 

structures were found significant for most traits (Appendix 2. 1). The GE, Ht and GP 

were higher at Fowl12 compared to Fowl09 and Elm09 whereas TGW was reduced 

(Table 2.2) suggesting different growing conditions. It needs to be borne in mind that 

due to the larger space between both the rows (23 cm) and the plants at Fowl12, plant 

tillering was increased in comparison to a yield plot which may affect the balance 

between yield components. 
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EE at Fowl12 was negatively correlated to Ht whereas these two traits were positively 

correlated in 2009. The correlation of EE and GP was not significant in 2012 (Table 

2.3). These observations support the differences between both sites and contrasting 

growing conditions of 2009 and 2012 (extremely wet season) but also the genuine 

differences between varieties. Similar trends were observed for EE and TGW 

confirming that early lines have significantly higher TGW. Untreated conditions at 

Fowl12 captured additional differences in straw characteristics and disease 

susceptibility. SD and SC were significantly positively correlated with Ht and 

negatively with EE and GP. Surprisingly, the susceptibility to mildew was significantly 

positively correlated with GE and TGW although an increase in disease is not expected 

to increase any of those two traits. A close proximity between the genetic controls of 

those traits may be possible. 

The significant differences between sites presented in Table 2.2 are illustrated by the 

phenotypic distributions for the traits measured across multiple sites (Table 2.4 Table 

2.5).  Fowl12 growing conditions produced larger differences between the controls for 

TGW, EE and Ht than either 2009 sites. Retriever was always the shortest with lower 

TGW compared to Saffron and was earlier to reach the flowering stage (GS61). GE was 

measured with lower precision from the grab samples at Fowl12 (heritability of 0.15) 

and Saffron had significantly lower GE than Retriever (P<0.04), not observed at 

Fowl09. GP was very stable and highly heritable for each variety across sites 

confirming the low protein values for the grain of Retriever. 

The disease resistance scores collected for the 515 lines suggested also that the genetic 

control of resistance was segregating within the population. Saffron was slightly more 

susceptible to brown rust (+1.1) and by +3.6 point more susceptible to mildew than 

Retriever. The straw characteristics of Retriever indicated a high susceptibility to 

collapse (SC) associated with lower SG and higher SD and Ldg. 
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Table 2.5 Summary statistics on 12 phenotypes collected in 2012 

Distribution of the phenotypic means (BLUEs) of the DH population for agronomic traits at 

Fowl12. Control means, Controls F probability, LSD and heritability are reported from the 

REML analysis using only replicated controls. For the following traits, the scoring scale was: 

stay green (SG): 1 green, 5 senesced; Brown rust (BR): 1 resistant, 9 susceptible; Mildew (Mil): 

1 resistant, 9 susceptible, Straw degradation (SD): 1 healthy, 5 highly degrading; Straw collapse 

(SC): 1 standing, 5 collapsed, Aleurone colour (Aleu): 1 white, 2 blue; Anthocyanin: 1 white, 2 

red; Ear glaucosity (E_Glau): 1 non glaucous or waxless, 2 glaucous or waxy. 

 

 

The two years of experiments clearly exposed the varietal differences between Saffron 

and Retriever for agronomic traits, especially yield components. Retriever performs 

better than Saffron in second cereal conditions (Elm09). Its development is less adapted 

to high fertility first cereal conditions where it tends to develop large numbers of tillers 

with low TGW. It is therefore apparent that the S×R DH population will be a useful 

research tool for the study of genetic control of yield and yield components in different 

growing conditions. The contrasting environment responses for each of the varieties are 

especially relevant in the context of cereal breeding and crop performance in rotation. 

The stability of the GP content across sites is remarkable and highlights strong genetic 

differences in nitrogen metabolisms between the varieties that could provide research 

leads in future studies. 

2.3.2 Genotypic analysis 

S×R genetic map 

The BOPA1 genotyping identified 309 polymorphic SNPs between the two parents. A 

total of 211 lines were used to create the genetic map including lines 139 and 192 

despite their large number of heterozygotes called markers. Genotype information for 

TGW_GS 

(g) GE

EE (days of 

May)

Ht 

(cm)

GP 

(%)

GS 

(%) SG BR Mil SD SC Ldg Aleu Antho E_Glau

Fowl12

Min 32.0 17.7 18 92 8.7 0.7 1.0 1.5 1.0 0.9 0.6 -0.9 1.0 1.0 1.0

1st Quartile 39.1 27.2 22 104 9.7 1.2 1.0 3.9 3.2 1.0 1.1 2.6

Average 42.6 28.5 23 109 10.1 1.5 3.2 5.1 4.6 2.6 3.0 4.3

Median 43.1 28.6 23 108 10.1 1.4 3.0 5.1 4.6 3.0 3.1 4.2

3rd 46.0 30.1 25 112 10.5 1.7 5.0 6.4 6.0 4.0 4.8 6.0

Max 53.5 34.1 28 122 12.1 2.5 5.0 9.1 8.5 5.1 5.1 9.9 2.0 2.0 2.0

Retriever 43.8 31.1 21 111 9.7 1.7 4.8 4.7 2.6 4.9 4.9 6.4 1.0 2.0 2.0

Saffron 48.0 30.5 24 117 10.6 1.7 1.1 5.8 6.4 1.3 1.5 3.6 2.0 1.0 1.0

sed 1.1 0.3 0.3 1 0.1 0.1 0.3 0.4 0.3 0.2 0.2 0.3

Saffron 

effect
4.2 -0.6 4 6 0.8 0.0 -3.6 1.1 3.8 -3.6 -3.4 -2.8

F statistic 13.4 4.7 111.6 55.0 56.9 0.0 172.1 7.7 195.8 310.6 209.2 110.7

d.d.f. 25 24 28 22 23 19 22 21 15 22 21 15

F pr 0.001 0.04  <0.001  <0.001  <0.001 0.864  <0.001 0.012  <0.001  <0.001  <0.001  <0.001

LSD (5%) 2.3 0.6 0.7 1.7 0.2 0.1 0.6 0.8 0.6 0.4 0.5 0.6

h2 0.36 0.15 0.86 0.68 0.67 - 0.91 0.23 0.87 0.95 0.92 0.60 1.00 1.00 1.00

Control means
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Saffron and Retriever from different sources was used to impute missing SNP alleles 

wrongly called as either missing or heterozygote. A preliminary genetic map was 

created using all 309 polymorphic markers (mapdisto 1.7.5b4 2007-all markers). The 

default settings produced nine linkage groups including more than three markers. 

A21141_5H did not show any significant linkage with any of the linkage groups and 

was excluded from the mapping set. The optimisation of the marker order using 

information from consensus map and the optimisation functions of Mapdisto produced a 

final genetic map of seven distinct linkage groups corresponding to the seven barley 

chromosomes (Appendix 2. 3). 

The total length of the final SR map is 896.4cM with chromosome length ranging from 

49.8cM (5H) to 192.6 cM (3H) (Appendix 2. 3). Lower recombination rates were found 

at centromeric regions with more co-segregating marker loci. The exclusion of co-

segregating marker loci produced a map with 174 different map positions (Figure 2.1). 

Although these co-segregating marker loci may have different consensus map positions, 

they did not show any recombination in the S×R population. 

For the analysis, the locus file created for QTL mapping analysis included all DH lines 

in trials with phenotypes. The lines with genotype information but no phenotypes were 

removed (14,100,177,206,207,216). 208 valid DH lines were used for QTL mapping in 

GenStat 14
th

 Edition (Payne et al., 2009).  

Genetic polymorphisms 

The S×R population genetic map showed unequal distribution of SNP polymorphisms 

and varied chromosome length (Appendix 2. 3). Chromosome 1H and 5H showed the 

lower polymorphism with only 9 polymorphic SNPs each. A higher number of 

polymorphic markers was observed on 3H (98 SNP) and 4H (61 SNP). The marker 

order on the genetic map mostly agreed with the order observed in consensus map OPA 

2009 (Graingene). The SNP array detected four large monomorphic chromosome 

segments between the two varieties on chromosomes 1H, 2H, 5H and 7H spanning 

respectively 91.7cM, 27.3cM, 111.6cM and 33.3cM based on consensus map distances 

(Figure 2.1). Those regions on 1H and 7H include the chromosome centromeres 

whereas the quasi entire length of chromosome 5H long arm appears to be 

monomorphic based on the marker results. Genotyping of the parental lines with 

increased numbers of marker such as the 9K SNP array may help to confirm these 

observations.  
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Figure 2.1: Alignment of S×R SNP genetic map with the OPA consensus 2009 distances. 
Representation of the map distortion and repartition of polymorphic SNP markers between the S×R DH population genetic map (Blue) (Appendix 2. 3) and barley 

OPA consensus map 2009 (red) (Close et al., 2009). 
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2.3.3 Quantitative Trait Loci 

Mapping results of QTL analyses for the traits are presented for individual experimental 

years in Table 2.6 (2009) and Table 2.7 (2012). The multi-environment QTL analysis 

for traits measured at all three sites is reported in Table 2.8. 

QTL were mapped on all the seven chromosomes and for all traits measured in 2009 

and 2012. For each trait, the QTL mapping identified from one to five QTL. Only a few 

QTL by Environment interactions (QTLxE) were detected showing different magnitude 

of the effects. However, in both Table 2.6 and Table 2.8, the majority of the QTL 

showed similar effect size between the sites. The QTL results had an average support 

interval for the mapped QTL was 22.6cM providing generally well defined QTL 

positions on the S×R genetic map although relatively large for targeting genes. 

Ear emergence 

Four different QTL locations were identified for EE across analysis with three of them 

showing QTLxE interactions (Table 2.6, Table 2.8). QTL EE.2_1 (3H) was only 

significant at Elm09 (Table 2.6) and was not detected in the three site analysis while 

QTL EE.3_3 (7H) was only significant at Fowl12 (Table 2.8). EE.3_1 and EE.3_2 were 

mapped in all sites with the Saffron allele associated with late ear emergence. EE.3_2 

had the highest effect on EE of 1.6 days difference (Elm09 and Fowl09) but its 

magnitude was reduced at Fowl12 (EE.1_2) to a non-significant effect of 1 day. 

Remarkably, EE.3_2 was mapped on the monomorphic chromosome segment of 5H. 

Although this QTL explains up to 32% of the trait variation at Elm09, the monomorphic 

segment was confirmed by additional genotyping. EE QTL on 5H was considered as an 

artefact of CIM method. A mapping of EE excluding 5H produced a unique QTL on 

chromosome 4HL corresponding to EE.3_1. 
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Table 2.6 QTL results of S×R mapping at Fowl09 and Elm09. 
Table of QTL detected in the Saffron×Retriever DH population in the 2009 experiments at 

Fowl09 and Elm09. The QTL distance (Dist) on the chromosome (Chr) and maximum 

likelihood scores (LOD) are reported from the multi-environment mapping analysis. A negative 

(-) effect corresponds to an increase of the traits by the Saffron allele and a positive (+) by the 

Retriever allele. Effects in italic are non-significant. A SNP marker with “*” indicate that the 

closest marker reported is not located within the QTL support interval. The QTL are named as 

“∆.2_▲” where ∆ is the trait abbreviation and ▲ the QTL number for that trait. 
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Table 2.7 QTL results of S×R mapping at Fowl12. 
Table of QTL detected in the S×R DH population in the untreated 2012 experiment at Fowl12. 

The QTL distance (Dist) on the chromosome (Chr) and maximum likelihood scores (LOD) are 

reported from the multi-environment mapping analysis. A negative (-) effect corresponds to an 

increase of the traits by the Saffron allele and a positive (+) by the Retriever allele. A SNP 

marker with “*” indicate that the closest marker reported is not located within the QTL support 

interval. The QTL mapped at Fowl12 only are named as “∆.1_▲” where ∆ is the trait 

abbreviation and ▲ the QTL number for that trait.  
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Height 

The genetic variation of height in that cross appeared to be significantly associated with 

a maximum of two controlling genetic factors. The QTL HT.3_1 on 4H was recurrently 

detected in all experiments and showed QTLxE interactions. The support interval of that 

QTL was also consistent between the different mapping experiments (84-109 cM). 

Ht.3_1 is located is the same region as EE.3_1 suggesting a common genetic control for 

the traits located in the distal region of 4HL. Retriever’s early type is also associated 

with a shorter straw length. Ht.3_2 was only observed in the multi-environment analysis 

but not in specific years separately (Table 2.8). 

Yield and yield components 

o Yield 

A unique QTL was found for yield on 3HL at 165 cM (Table 2.6). Yld.2_1 was detected 

with a LOD score of 3.09 and a significant positive effect from Saffron allele at Fowl09. 

Yld.2_1 did not overlap any other QTL on chromosome 3HL (Figure 2.2) despite the 

significant correlations to yield components and EE (Table 2.3). An attempt at QTL 

mapping of yield using a lower threshold of LOD=2 produced additional QTL: a QTL 

on 3H at 104.9cM with a LOD of 3.28 (Retriever main effect = 0.13), a QTL on 3H at 

165cM significant at Fowl09 only and corresponding to Yld.2_1 (LOD=3.30; Saffron 

positive effect 0.26), a QTL on 5H at 49.8 cM (LOD= 2.81; Retriever main effect of 

1.11) and a QTL on 6H at 5.8 cM (LOD= 2.88; Retriever main effect of 0.12). Although 

these QTL are not entirely comparable to the QTL detected at a LOD3 threshold, they 

could constitute putative Yld QTL and may be of interest for the interpretation of the 

genetic architecture of yield if confirmed by other components. For example, the 

Retriever yield QTL on 3H at 104.9cM is associated with the Retriever earliness effect 

of EE.2_1. 

o Thousand grain weight 

Five different QTL locations were significantly associated with TGW variation in the 

multisite analysis and explained up to 37.4% of the variance at Elm09 (Table 2.8). 

TGW-GS.3_1, TGW-GS.3_3 TGW-GS.3_4 were mapped in all experiments. TGW-

GS.3_2 was only significant at Fowl12. TGW-GS.3_5 was not detected at Fowl12 but 

significant as main effect in the multi-site analysis. Analysis of TGW combine sample 

(TGW) confirmed the grab sample QTL results (TGW-GS) on 2H, 3HL and 5H but did 

not capture any significant associations on 3HS and 7H. A major QTL TGW-GS.3_1 on 
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2HS explained from 10 to 20% of the trait variance depending on the site, Saffron 

giving a consistent 1.5 g advantage across sites. The strongest association is with the 

first polymorphic marker on 2H (A20394) located at 0cM on S×R genetic map and at 

27cM on the OPA1 consensus map (Figure 2.1). On chromosome 3H, TGW-GS.3_2 

accounted for 8% of the variance at Fowl12 only suggesting a strong site effect on that 

locus while all other loci showed reduced influence on the trait (Table 2.8). TGW-

GS.3_3 on 3HL overlapped with Yld.3_1 with both QTL showing Saffron as positive 

allele. However the QTLxE observed for Yld.3_1 was not observed at TGW-GS.3_3. 

Both TGW.2_3 and TGW-GS.3_4 were mapped in the monomorphic region of 5H at 

36.5 cM. These mapped QTL will be considered as spurious as was EE.3_2 in this study 

despite being the only position where these two highly correlated traits have 

overlapping QTL. TGW-GS.2_4 was mapped at 55cM on 7H in 2009 (Table 2.6) and a 

nearby hit of TGW-GS.3_5 was found at 83cM across all sites (Table 2.8). Similar 

effects, direction and overlapping support intervals for the two QTL suggest the that 

they are identifying the same genetic factor. The peak of TGW-GS.3_5 corresponds to 

the position of Ht.3_2 where Retriever carries the positive allele for both traits. 

The strong environment interactions detected for TGW-GS.3_2 suggest that the 

condition of 2012 benefited the grain filling for lines carrying the Saffron allele (Table 

2.5, Table 2.8). In addition, the independent measure of TGW by grab sample suggested 

that this phenotyping method captured additional variation in the trait (TGW-GS.3_5) 

which may relate to the small grains blown away during mechanical harvest. Both 

Retriever and Saffron had alleles contributing to increases in TGW and interact with 

sites conditions.  

o Grains per ear 

Five different QTL where found in the QTL analyses for GE (Table 2.6, Table 2.8). 

Saffron has a positive effect at GE.3_1 and GE.3_3. QTL GE.3_3 on 4H 83 cM showed 

QTLxE interactions in the multi-site analysis and explained a large proportion of the 

variance at Fowl12, less at Fowl9 and was not significant at Elm09. Despite this 

interaction, GE.3_3 was found as the unique common QTL for grains per ear between 

the site specific mapping analysis (GE.1_2, GE.2_2). It is a strong QTL candidate 

associated with EE and TGW QTL and despite the low heritability of the trait at Fowl12 

(0.15). GE.3_2 on 3H has the highest LOD score of 11.9. The Retriever allele 

contributes to an increase in 0.56 grains per ear and accounts for more than 10% of the 

variance of the trait at Fowl09 and Elm09 (Table 2.8). The negative correlation and 
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relationship of GE with Til-cal is also supported by the co-location and antagonist effect 

of GE.3_2 with Til-cal.2_3 QTL in the 2009 analysis. GE.2_3 was mapped in the 2009 

analysis (Table 2.6) whereas GE.3_4 in the multisite analysis only (Table 2.8). This 

approach points out the benefits of making both single site and multisite analysis in 

order to detect all putative QTL for a trait, as it seems to reveal QTL with small effects 

and lower contribution to the variance. None of the grain per ear QTL was co-located 

with a TGW or yield QTL in this study( Figure 2.2). 

o Tillering 

The tillering calculated from the yield components allowed the detection of four 

putative QTL whereas only two were found with the independent measure of tillering 

(Table 2.6). It needs to be borne in mind that tillering had the lowest heritability 

amongst the yield components. Til_mes.2_1 has a significant QTLxE interaction which 

could be related to the phenotypic variation observed between sites (Table 2.5). The 

overlapping support intervals of Til_mes.2_1 with Til_cal.2_1 on 2HS as well as 

Til_mes.2_2 with Til_cal.2_2 on 2HL suggests that these QTL represent the same two 

genetic factors controlling tillering on 2H (Figure 2.2). Til_cal.2_4 on 7H explained a 

maximum of 15.4% of variation at Elm09 and Til_mes.2_1 explained 10.6% of the 

variation at Fowl09. Til_mes.2_1 and Til_cal.2_1 are in the same location of TGW-

GS.3_1 and TGW.2_1 on the short arm of 2H where the Saffron allele gives high TGW 

while the Retriever allele increase tillers per m
2
. Despite the low heritability of tillering, 

the QTL mapping identified significant effects in genetic regions that carrying QTL for 

strongly negatively correlated traits. This association reinforces the importance of the 

2HS region as a candidate carrying alleles with a strong influence on yield components. 

This inter-relationship between the two traits is supported by the reduced effect size of 

Til_mes.2_1 at Elm09 showing an increasing TGW effect of Retriever haplotype. 

Til_mes.2_2 is in a region where QTL for straw collapse (SC.1_2) straw degradation 

(SD.1_2) and maturity (SG.1_2) have been identified in 2012 suggesting that 

Retriever’s higher tillering ability is associated with low straw quality. Increasing 

alleles for tillering from Saffron were only captured with the yield derived tillering 

measurements at Til_cal.2_3 and Til_cal.2_4. These QTL overlap with significant 

associations for GE and TGW-GS, two additional components of yield. On 3H, GE.3_2 

and Til_cal.2_3 have opposite positive haplotypes. Similarly, the suspicious Til_cal.2_4 

is mapped on a monomorphic chromosome segment of 7HS close to TGW-GS.2_4 

(Table 2.6) and could correspond to TGW-GS.3_5 (Table 2.8). Although different 
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interpretations of the co-location of QTL are possible, all tillering QTL are associated 

with QTL for other yield components as expected from the phenotypic correlations 

between those traits. 

o HLW 

Five QTL were found for HLW in the 2009 data set (Table 2.6). HLW.2_1, HLW.2_3 

and HLW.2_4 are main effect QTL whereas HLW.2_2 and HLW.2_5 are subject to 

QTLxE interaction. For HLW.2_2, the negative effect associated with the Saffron allele 

at Elm09 but a shift to a positive effect at Fowl09 albeit non-significant. This 

observation is supported by the QTL overlapping Til_mes.2_2 and Til_cal.2_2 for 

which Retriever has an increased tillering ability that could penalise the HLW under 

high fertility conditions at Fowl09. The possible relationship between grain quality QTL 

and HLW.2_3 is more difficult to establish. HLW.2_4 is the QTL accounting for the 

most variance of the trait with a high LOD and narrow interval that overlaps with 

GE.2_1. At this locus, the Saffron allele associates with an increase in HLW reduction 

in GE. 

Grain protein and sugar content 

Four QTL were mapped for the highly heritable trait of GP. At Elm09, the QTL 

described almost 50% of the trait variance highlighting with in particular locus GP.3_2 

on 2HL. Saffron alleles contributed to higher GP at GP.3_2, GP.3_3 and GP.3_4. The 

increasing effect on GP from Retriever at QTL GP.3_1 overlaps with Saffron increasing 

effect at GE.3_1 suggesting a potential dilution effect of nitrogen due to higher grain 

number. GP.3_2 was also mapped in a region of Til_cal.2_2 and SG.1_2. Two QTL for 

grain proteins were found on chromosome segment of 6H and 7H that contain no 

overlapping QTL of other traits. Although both GP.3_1 and GP.3_2 are main effect 

QTL significant in multisite analysis (Table 2.8), these loci were not detected by the 

2012 mapping alone. Instead, GP.1_1 was mapped on 1H at a locus of straw quality and 

grain soluble sugars QTL. Grain sugar was found with four small QTL of equivalent 

size effects. GS.3_4 mapped next to HLW.2_5 on 7H, GS.3_2 and GS.3_3 at the distal 

regions of 4HS and 6HS respectively had no overlap with other QTL. The trait may be 

associated with other aspects of the grain quality. 

Diseases and straw characteristics 

Four QTL were mapped for mildew resistance and one for brown rust. Mil.1_3 accounts 

for 24% of the trait variance and is located on 4H at around 59cM where the unique 
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brown rust QTL BR.1_1 was also mapped. The susceptible variety Saffron carries 

susceptibility alleles for Mil.1_3, Mil.1_1 and BR.1_1. Despite being more resistant, 

Retriever has susceptibility alleles at Mil.1_2 on 1H and Mil.1_4 on 5H, in a region 

where QTL effects have previously been described (Comadran et al., 2009).  

The strong correlations between straw aspect, degradation and stay green traits are also 

depicted by similar QTL positions on 1H, 4H and 6H. The bright and green straw of 

Saffron at maturity is largely controlled by the main locus SG.1_1 on 1H (23.9% of the 

variance explained). The same locus also describes 17.4% of the variance of SD (with 

an increasing allele from Retriever) and matches the QTL positions of mildew 

resistance (Mil.1_1) and low GP (GP.1_1) (Figure 2.2). The unique QTL for the DUS 

trait of ear glaucosity E_Glau.1_1 is also precisely mapped with high LOD at the 

extremity of 1HS and seems to coincide with the 1HS QTL cluster. The high tillering 

QTL on 2HL are associated with poorer straw characteristics namely SC (SC.1_2), and 

could potentially influence GP content at GP.3_2. A small effect QTL for lodging was 

also observed in the monomorphic segment on 5H with significant EE and TGW QTL. 

The lower replication of the Fowl12 experiment and its design may have impacted 

strongly on some scorings of straw health and collapse. Nevertheless, the genetic 

associations found for those traits suggest that they have to be considered for the 

interpretation of the genetic architecture of other quantitative traits such as grain quality. 
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Figure 2.2 QTL location in the S×R population. 
S×R QTL location for segregating traits collected from the multi-environment mapping 

experiments carried out in 2009 and 2012. The QTL bars represent 1 LOD and 2 LOD score 

decrease from the peak position. QTL with a positive additive effects from Saffron are in Blue 

and positive additive effect from Retriever in Red. Hatched QTL bars represent a QTL x E 

interaction with the colour given by the parent allele having the strongest significant effect. 

QTL from traits mapped in Elm09and Fowl09 are named by “∆.2_▲” where ∆ is the trait and 

▲ the QTL number for that trait. QTL mapped at Fowl12 only are named by “∆.1_▲” and the 

QTL from traits measured in the three sites (Fowl09 Elm09 and Fowl12) are named by 

“∆.3_▲”.Refer to Table 2.6, Table 2.7 and Table 2.8, for additional details on QTL. 
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Table 2.8 QTL of S×R population for traits measured in 2009 and 2012 
QTL x Environment results on phenotypes measured in 3 environments at Elm09, Fowl09 and Fowl12. The QTL from traits measured in the three sites (Fowl09 

Elm09 and Fowl12) are named by “∆.3_▲” where ∆ is the trait and ▲ the QTL number for that trait. QTL effects are phased on the retriever alleles: a positive 

effect indicates the increasing allele is from Retriever. Effects in italic are non-significant with pvalue >0.05. A SNP marker with * indicates that the closest marker 

reported in the table is not located in the confidence interval of 1 LOD decrease. 
 

 

 

Effect Effect Effect %Expl. %Expl. %Expl. 

Trait QTL Name Chrom Pos LOD -2 LOD -1 LOD +1 LOD +2 LOD F stat d.d.f. F prob Elm09 (S.e.) Fowl09 (S.e.) Fowl12 (S.e.) Elm09 Fowl09 Fowl12

GE GE.3_1 2H 32.9 7.80 A10818_2H 32.92 18.3 29.6 35.9 38.1 39.0 198.2  <0.001 -0.45 (0.08) -0.45 (0.08) -0.45 (0.08) 6.6 6.9 3.7 Main

GE.3_2 3H 132.1 11.89 A20527_3H 132.14 124.8 129.0 134.3 136.0 57.4 198.3  <0.001 0.56 (0.07) 0.56 (0.07) 0.56 (0.07) 10.5 10.9 5.8 Main

GE.3_3 4H 83.1 6.41 A10334_4H 91.65 72.8 76.5 97.5 97.9 11.6 269.8  <0.001 -0.18 (0.12) -0.43 (0.12) -0.79 (0.17) 1.1 6.3 11.5 QTLxE

GE.3_4 7H 6.4 3.15 A21443_7H 0.96 0.0 0.0 18.3 63.0 13.6 198.4  <0.001 0.3 (0.08) 0.3 (0.08) 0.3 (0.08) 3 3.1 1.7 Main

TGW_GS TGW_GS.3_1 2H 1.7 14.27 A20394_2H 0 0.0 0.0 9.1 10.0 76.3 198.5  <0.001 -1.55 (0.18) -1.55 (0.18) -1.55 (0.18) 20.2 16.1 10.4 Main

TGW_GS.3_2 3H 14.4 3.58 A21027_3H 14.35 4.5 10.2 27.4 29.2 8.6 271.9  <0.001 -0.2 (0.2) -0.15 (0.23) -1.36 (0.29) 0.3 0.1 8 QTLxE

TGW_GS.3_3 3H 157.1 4.15 A20952_U 157.1 142.3 149.3 163.5 167.8 20.3 198.5  <0.001 -0.63 (0.17) -0.63 (0.17) -0.63 (0.17) 3.3 2.7 1.7 Main

TGW_GS.3_4 5H 36.5 5.11 *A20096_5H 48.33 22.3 25.7 46.0 49.8 26.3 198.5  <0.001 1.02 (0.2) 1.02 (0.2) 1.02 (0.2) 8.7 6.9 4.5 Main

TGW_GS.3_5 7H 82.9 4.97 A10431_7H 82.9 38.7 45.9 88.0 91.3 20.2 198.5  <0.001 0.76 (0.17) 0.76 (0.17) 0.76 (0.17) 4.9 3.9 2.5 Main

EE EE.3_1 4H 83.1 7.79 A20454_4H 88.78 74.8 77.7 97.6 97.8 29.6 200.1  <0.001 -0.8 (0.1) -0.8 (0.1) -0.8 (0.1) 9 6.9 14.6 Main

EE.3_2 5H 36.5 9.93 *A20096_5H 48.33 26.6 29.6 42.3 46.7 21.9 198.7  <0.001 -1.6 (0.2) -1.6 (0.2) -1 (0.2) 32 24.2 19.3 QTLxE

EE.3_3 7H 11.8 3.57 A20755_7H 19.02 0.0 0.0 23.2 24.0 5.8 198.6  <0.001 0.2 (0.2) -0.1 (0.2) 0.5 (0.1) 0.4 0.2 4.7 QTLxE

HT Ht.3_1 4H 97.4 6.92 A10334_4H 91.65 85.6 90.1 103.6 107.2 10.2 273.1  <0.001 -0.6 (0.3) -2 (0.4) -1.6 (0.4) 2.4 12 7.2 QTLxE

Ht.3_2 7H 82.9 3.52 A10431_7H 82.9 67.8 68.6 86.7 90.1 14.2 200.8  <0.001 0.8 (0.2) 0.8 (0.2) 0.8 (0.2) 4.2 1.7 1.7 Main

GP GP.3_1 2H 36.8 8.26 A20781_2H 42.61 34.4 34.6 53.2 55.4 22.5 199.6  <0.001 0.13 (0.02) 0.13 (0.02) 0.13 (0.02) 10.2 3.3 4.4 Main

GP.3_2 2H 117.1 18.59 A10791_2H 118.73 113.1 115.0 118.8 119.4 95.9 199.6  <0.001 -0.18 (0.02) -0.18 (0.02) -0.18 (0.02) 20.9 6.7 8.9 Main

GP.3_3 6H 102.6 4.00 A20558_6H 102.6 96.0 99.1 109.4 112.6 8.1 270.5  <0.001 -0.09 (0.02) -0.01 (0.05) 0.05 (0.04) 4.9 0 0.7 QTLxE

GP.3_4 7H 111.1 12.32 A10563_7H 107.43 99.6 106.4 115.1 117.0 51.7 199.6  <0.001 -0.15 (0.02) -0.15 (0.02) -0.15 (0.02) 13.6 4.4 5.8 Main

GS GS.3_1 1H 5.3 8.90 A10419_1H 5.31 1.4 2.9 7.4 8.7 40.8 199.3  <0.001 -0.07 (0.01) -0.07 (0.01) -0.07 (0.01) 6.9 6.5 5.1 Main

GS.3_2 4H 4.8 4.73 A11345_4H 2.87 0.0 0.0 14.1 18.8 23.4 199.3  <0.001 0.06 (0.01) 0.06 (0.01) 0.06 (0.01) 4.3 4 3.1 Main

GS.3_3 6H 1.9 10.90 A20886_6H 0 0.0 0.0 4.7 6.1 48.4 199.3  <0.001 -0.08 (0.01) -0.08 (0.01) -0.08 (0.01) 8.5 8 6.2 Main

GS.3_4 7H 149.5 4.22 A21280_7H 144.01 133.9 138.5 162.6 162.8 21.5 199.3  <0.001 -0.06 (0.01) -0.06 (0.01) -0.06 (0.01) 4.4 4.1 3.2 Main

Confidence interval

closest marker (cM) QTLxE
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2.3.4 Identification of genetic factors  

The analysis of the QTL mapping results clearly shows that some QTL cluster at 

specific locations in the genome (Figure 2.2). In order to ease interpretation of the 

genetic control of traits, the QTL groups were identified as individual bins on 

chromosome segments. The sizes of the bins are delimited by the most extreme 

positions of the support intervals of the QTL associated with the cluster (Table 2.6, 

Table 2.7, Table 2.8). Each of these bin encompass a major QTL peak characterised by 

high LOD score and strong effect while other traits can be included in the cluster. 

However, some QTL intervals needed to be considered in more than one bin due to 

overlapping of support intervals. In total, 23 bins carrying putative genetic factors 

involved in the control of the traits measured in that study were identified across the 

genome and included QTL for one to six different traits (Table 2.9) 

 

Table 2.9 S×R Genetic factors location and their associated QTL. 
Location of the 23 bins containing putative genetic factors involved in the control of QTL 

identified in the S×R DH population in 2009 and 2012. The bin size and location is reported 

using S×R genetic map distances. 

 

 

The strong effects of TGW and tillering QTL detected on the short arm of chromosome 

2H (2HS) were associated with the same genetic factor on bin 2. Bins 2, 11 and 16 

contain the major genetic factors involved in the genetic control of yield components in 

the DH population. The closely mapped QTL EE.3_1, Ht.3_1 and GE.3_3 were all 

associated with bin 14 supporting the hypothesis of a common genetic control. The 

clusters of QTL tend to group traits phenotypically related or correlated such as yield 

components, disease susceptibility and grain and flour composition. Bins 13 and 18 

correspond to genetic factors that seem to affect disease resistance and plant health 

Genetic 

factor 

Bin 

chr

1 1H 0.0 - 27.5 GP.1_1 GP.1_1 GS.1_1 GS.2_1 GS.3_1 Mil.1_1 SC.1_1 SD.1_1 SG.1_1 E_Glau.1_1

2 2H 0.0 - 39.2 HLW.2_1 TGW.2_1 TGW_GS.2_1 TGW_GS.3_1 TGW-GS.1_1 Til_cal.2_1 Til_mes.2_1

3 2H 0.0 - 48.7 GE.3_1 GP.2_1 HLW.2_1 Til_cal.2_1 TGW-GS.1_1

4 2H 31.0 - 102.3 GP.2_1 GP.3_1 HLW.2_2 Antho.1_1

5 2H 52.3 - 124.1 HLW.2_2 SC.1_2 SD.1_2 SG.1_2 Til_cal.2_2 Til_mes.2_2

6 2H 95.6 - 124.1 GP.2_2 GP.3_2 SG.1_2 Til_cal.2_2 Til_mes.2_2

7 3H 4.5 - 29.2 TGW_GS.3_2 TGW-GS.1_2

8 3H 61.1 - 90.4 HLW.2_3

9 3H 81.7 - 114.6 EE.2_1 Mil.1_2 HLW.2_3

10 3H 120.7 - 141.8 GE.3_2 GE.2_1 HLW.2_4 Til_cal.2_3

11 3H 120.7 - 172.1 HLW.2_4 TGW.2_2 TGW_GS.2_2 TGW_GS.3_3 TGW-GS.1_3 Til_cal.2_3 Yld.2_1

12 4H 0.0 - 18.8 GS.2_2 GS.3_2

13 4H 41.2 - 64.4 BR.1_1 Mil.1_3 Aleu.1_1

14 4H 72.8 - 109.0 EE.1_1 EE.2_2 EE.3_1 GE.2_2 GE.2_2 GE.3_3 Ht.1_1 Ht.2_1 Ht.3_1

15 5H 0.0 - 43.6 Mil.1_4

16 5H 20.4 - 54.9 EE.1_2 Ldg.1_1 TGW.2_3 TGW_GS.2_3 TGW_GS.3_4 TGW-GS.1_4 (Mil.1_4)

17 6H 0.0 - 6.1 GS.2_3 GS.3_3

18 6H 18.9 - 63.7 SC.1_3 SD.1_3 SG.1_3

19 6H 95.2 - 134.3 GE.2_3 GP.2_3 GP.3_3

20 7H 0.0 - 63.0 EE.1_3 EE.3_3 GE.3_4

21 7H 38.7 - 91.3 Ht.3_2 TGW_GS.3_5

22 7H 99.6 - 123.9 GP.2_4 GP.3_4

23 7H 133.9 - 163.1 GS.2_4 GS.3_4 HLW.2_5

Bin interval 

(cM)
Clustered SxR QTL
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whereas bins 4, 6, 12 and 22 should be interpreted more in terms of the genetic control 

of grain quality. Some bins appear to make biological sense by grouping QTL for 

related traits that can help in the interpretation of the study. However, it needs to be 

born in mind that the large support intervals at QTL cluster describe only broadly the 

targets for investigating the genetic architecture of yield that can be used in association 

to additional mapping studies. (e.g. Chapter 4 on association genetics). In addition, the 

bins can be used to define the optimal contrasts of alleles and haplotypes that can be 

tested for validation of their effects using near isogenic lines.  

2.4 Discussion 

This QTL study uses phenotypes collected over different site and seasons that had a 

significant effect on the trait variation. The sites of higher fertility of Fowl09 and 

Fowl12 have been associated with increased tillering and grains sites per ear leading to 

larger sinks and poorer grain filling. In addition, the poor weather and untreated 

conditions in Fowl12 led to a significant increase in plant height, grains per ear, a drop 

of 14 g in TGW and delayed ear emergence. Therefore it was expected that the QTL 

mapping results would identify the different genetic controls that enable the parents 

Saffron and Retriever to better cope with their optimal environment. 

2.4.1 Saffron × Retriever DH population 

The genetic architecture of yield in current elite breeding material has been investigated 

in this project using a bi-parental mapping population of high breeding potential. The 

cross between Saffron and Retriever has produced the recommended line KWS-

Discovery (Renamed KWS-Tower) and progenies of the latter have already been 

entered in the National List Trial system. The same population was used to validate 

functional polymorphisms of the ant-2 gene involved in pigmentation of barley tissues 

that was detected initially in a mapping study of DUS characters (Cockram et al., 2010). 

These results are encouraging for the study of the yield components that may be 

controlled by alleles retained by selection in more recent varieties. 

Although the initial seed quantity available was a limiting factor to achieve optimal 

replication, more than 200 DH lines were used in the study in both experimental years 

to produce robust phenotypes. Despite visible environmental variation, high 

heritabilities were obtained for the traits measured. The population revealed that higher 

yields were mainly achieved through higher TGW but the strong correlation between 
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yield components confirmed the compensation mechanisms occurring at a plot and plant 

scale. Interestingly, ear emergence was highly negatively correlated with TGW in the 

population suggesting that the timing of flowering influences the grain filling period 

and TGW. Earliness was beneficial for high TGW in both growing seasons. However 

this negative correlation was not supported by the behaviour of the parental lines as 

Saffron, a late emerging and maturing parent, appears to achieve higher TGW under 

first cereal conditions. Retriever proves to be the better variety under second cereal 

conditions where resources at establishment are limited. The variety produced a high 

yield at Elm09 but suffered from lodging and straw issues under high fertilisation and 

untreated conditions. These observations suggest that disease resistance coupled with 

stiff straw and early maturity may have been beneficial for barley yields in the 

conditions of 2009 and 2012 experiments. Transgressive segregation for all measured 

traits was encouraging for further QTL mapping on yield components, phenology, grain 

and straw characteristics and demonstrates the high potential of the population for 

understanding the genetics of these traits. The different responses of the parents to the 

site growing conditions and fertilisation regimes also indicates that the population can 

be used to further investigate environment interactions. 

The extensive genotypic information collected on the population using the BOPA 1536 

SNP markers added real value to this study and will allow comparison of the results 

with larger scale projects using overlapping genetic marker sets on similar platforms. 

Despite relatively few polymorphic markers, the S×R genetic map generated covers all 

barley chromosomes and the marker distribution agrees with published consensus maps 

(Close et al., 2009). The monomorphic segments on chromosomes 1H, 2H, 5H and 7H, 

confirmed with the genotyping of the parents with the higher density 9K iSselect SNP 

chip suggested close common ancestry. All BOPA markers are covered by the 9K 

platform which represents an additional source of markers to potentially increase 

marker density on the population. This is particularly interesting in the context of fine 

mapping and QTL validation in order to look for more recombinants in chromosome 

regions where initial marker density from BOPA1 was low. 

2.4.2 Heading date and height 

The genetic control of heading date and height in the population appeared to be related 

to two loci, excluding the spurious QTL on 5H. The control of heading date is well 

studied in barley and is controlled by genes affecting photoperiod, vernalization and 

earliness. The genes Ppd-H1 (eam1, 2HS) and ppdH2 (eam8 or HvFT3, 1HL) control 
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the plant responses to photoperiod (Dunford et al., 2002; Faure et al., 2007; Griffiths et 

al., 2003). Three main loci vrn-H1 (sgh2, 5HL) and vrn-H2 (Sgh1, 4HL) and vrn-H3 

(HvFT1, 7H) determine vernalization response and the major differences between 

spring and winter types. Vrn-H2 is a ZCCT transcription factor located on chromosome 

4HL and is present in winter types (Dubcovsky et al., 2005). vrn-H2 represses 

flowering by reducing expression of vrn-H1 and ppdH2 under long days affecting the 

timing of transition of the apical meristem from vegetative to reproductive state (Casao 

et al., 2011; Zitzewitz et al., 2005). QTL EE.3_1, Ht.3_1 and GE.3_3 suggest that the 

alleles of Saffron at that locus associate with a late ear emergence, taller plants and 

increased number of grains per ear that could be interpreted as longer ears. However 

additional QTL are involved in the control of grains per ear with Retriever being the 

positive parent. QTL for heading date and grain weight have been previously reported in 

that distal region of 4H (Backes et al., 1995; Bezant et al., 1997; Faure et al., 2007; 

Hayes et al., 1993; Tinker et al., 1996). Despite the two varieties being winter types, an 

allelic variation at vrn-H2 locus could cause a change in onset of plant growth leading 

to variable growth rates and straw and ear lengths. However allele screening on a larger 

panel of winter varieties (NUE CROPS) revealed polymorphisms at vrn-H2 within the 

winter barley varieties but none between Saffron and Retriever (Allan Booth, pers. 

comm.). Moreover the positioning of vrn-H2 on GrainGenes consensus map next to 

12_20760 at 118.34 cM (Close et al., 2009) does not overlap the QTL EE.3_1, Ht.3_1 

and GE.3_3 significant SNPs A20454 and A10334, both mapped respectively at 101.62 

cM and 103.11 cM. Faure et al (2007) reported an FT-like gene HvFT5 co-segregating 

with the marker scsnp20989, close to A10611 but more than 15cM from A20454. 

Therefore although the biological interpretation of this particular cluster of QTL on 4H 

would strongly support a genetic factor involved in the control of phenology like vrn-

H2 and HvFT5, the QTL effect reported here appears to be distant enough to that locus 

to be associated with a novel genetic factor. This hypothesis will be investigated more 

closely by additional mapping and with increased marker density in Chapter 3 and 

Chapter 4. 

2.4.3 Yield and yield components 

Yield is the most important trait in barley breeding and results from the optimal 

expression of yield components in a given environment. The segregation for yield and 

yield components was partially explained by putative QTL detected on chromosomes 

2H, 3H, 4H, and 7H. The initial expectation was to find associations of yield component 
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QTL with yield QTL that would ease interpretation and make biological sense as well 

as underpin the environmental yield response of the parents. This expectation was 

fulfilled in most cases with overlapping support intervals of yield component QTL at 

loci with significant effects on more than one trait (Figure 2.2), which have been 

identified as genetic factors in bins (Table 2.9). 

Saffron yield potential on first cereal sites was supported by the unique yield QTL 

found on 3HL (Bin 11). This locus however does not include QTL for EE which has a 

strong genetic relationship with yield (Cuesta-Marcos et al., 2009; Li et al., 2005). 

Instead this positive yield effect appears to associate with a positive TGW effect. The 

SNP with the highest LOD for Yld.2_1 (A20952) maps 36cM away from the candidate 

TGW QTL mapped by Pansam et al (2012) (Barley OPA 2009 consensus (Close et al., 

2009)). However this QTL for Yld.2_1 mapped in a chromosome region of the dwarfing 

gene denso where yield QTL have been mapped in spring barley (Li et al., 2005; von 

Korff et al., 2006). Here the bin 11 did not contain any QTL for plant height suggesting 

that the denso gene may not be a strong candidate for that genetic factor. 

Unlike yield, the yield components were controlled by multiple loci with both parents 

contributing positive effects on these traits. At each genetic factor location, the direction 

of the QTL effect for the traits represented was in agreement with the correlations 

between the traits supporting a more plausible biological interdependence. Despite the 

poor growing conditions of 2012, the QTL results of 2009 were confirmed showing the 

consistency of the genetic control of those traits. The strong effect TGW QTL was 

mapped for the three mapping experiment on 2HS around 26cM on consensus OPA 

maps (Figure 2.1). At that locus, Retriever haplotype provides higher tillering but lower 

grain weight. This particular locus is located in the vicinity of the Ppd-H1 gene, a 

candidate gene that has been associated with QTL for yield and yield components 

coupled with heading date (Schmalenbach et al., 2009; von Korff et al., 2006). 

However, no QTL for heading date was identified at that particular locus in any of the 

sites. Ppd-H1 may still be a valid candidate gene as it is not excluded that a specific 

photoperiod response may affect more physiological pathways controlling tillering and 

TGW rather than phenology (Boden et al., 2015). For example, modifications of the 

tiller development in the early stages of growth and even grain filling in a later stage are 

plausible underlying mechanisms. The QTL candidate associated with genetic factor 2 

will be subject to further investigation in a later chapter. 

The Retriever haplotype alleles at the tillering QTL on 2HL around 100cM on S×R 

genetic map are associated with a strong increasing effect for straw collapse (SC.1_2) 
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and weaker positive effects on straw disease and stay green. A QTL for plant height has 

been described in that region in mapping studies (Hayes et al., 1993; Pasam et al., 2012) 

and Comadran et al., (2011b) detected a significant increase in heading date (A20366) 

associated with an increasing effect on harvest index at that location (A10376). 

However, no significant effects on plant height and heading date were reported in the 

present study. It is possible therefore that high tillering plants with weaker stems from 

the Retriever haplotype may well be more prone to straw collapse. The slight overlap 

with the confidence interval for the grain proteins QTL GP.3_2 brings only some 

evidence for associating these QTL in a single genetic factor hence the separation 

between 5 and 6 (Table 2.9). 

It might however be possible to break the linkage between these two genetic factors. 

Additional improvement of Retriever could be achieved by targeting the Saffron 

haplotypes on 3HL that combines QTL for increased TGW and tillering at the expense 

of grains per ear. Indeed, this tillering effect might result from a strong grain per ear 

QTL, a trait used to calculate tillering (Til_cal). Comadran et al., (2011b) mapped a 

QTL for harvest index at marker A10918 around 10cM proximal from GE.3_2 

(A20527) based on consensus map distances. The yield QTL Yld.2_1 is too distal on 

3HL to be directly associated with that marker and remains a valuable target for targeted 

breeding. The gene denso located in the vicinity could be considered as candidate 

although no significant plant height effect was observed. Other genes such as int1 and 

vrs4, als (Dabbert et al., 2009; Dabbert et al., 2010; Koppolu et al., 2013) that are also 

located on the 3HL chromosome may also be considered as candidates underlying these 

yield components QTL but the effects detected on 3HL appear to be novel.  

Although chromosome 7H contains QTL for GE and TGW, the low magnitude of their 

effects and large support interval suggest caution in interpreting the results and selecting 

a particular haplotype. The GE QTL GE.3_4 of 7H was associated with a QTLxE 

interaction for heading date in the region of HvFT1, a gene candidate for flowering time 

in barley orthologous to the rice gene OsFTL10 that has significant effects on heading 

date (Pasam et al., 2012). Low TGW effects were also detected in the centromeric 

region (TGW_GS.3_5). Chromosome 7H carries QTL with larger support intervals 

which impede a precise understanding of the location of the effects and the associated 

effects of the genetic factors. The fine mapping approach through association genetics 

could provide clearer patterns of the genetic control of those traits on 7H.  

It becomes apparent that delivering sensible markers for selection of yield and yield 

components by the single method of bi-parental mapping is possible but not optimal. 
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The study shows that QTL with strong effects and narrow intervals would be more 

reliable and so the putative QTL for TGW and tillering found on 2H should be 

prioritized for validation over those on 7H. Yield and yield component mapping tends 

to capture effects associated with genes relevant to environmental adaptations such as 

vernalization and photoperiod genes (Cuesta-Marcos et al., 2009) or major ear 

morphology differences affecting row number and therefore yield. Few studies have 

reported QTL for yield and yield component in elite material and associated with a 

candidate gene that does not affect phenology or inflorescence type. The bi-parental 

mapping of yield and yield components complemented by fine mapping experiments 

therefore should be a novel opportunity to identify new genes and alleles controlling 

those traits exclusively. 

2.4.4 QTL for grain quality 

This study showed that Retriever’s ability to produce high yields under low nitrogen 

regimes such as Elm09 was also associated with very low grain nitrogen compared to 

Saffron. The good mapping resolution on grain proteins QTL obtained and the small 

overlap with yield component QTL on 2HL favour the hypothesis of an independent 

control of the trait in that cross rather than the result of protein dilution effects in the 

grain. Strong genetic control of grain proteins was found on 2H (GP.2_1, GP.2_2, 

GP.3_1, GP.3_2) and 7H (GP.2_4, GP.3_4). GP.3_1 on 2HL mapped in the region of 

QTL6_CPC (Pasam et al., 2012) and QPc.nab-2H.1 (Marquez-Cedillo et al., 2001). 

Pasam et al (2012) also identified QTL8_CPC and QTL22_CPC at similar positions to 

GP.3_2 and GP.3_4 respectively based on barley OPA consensus map (Close et al., 

2009). GP.3_2 is in a region of straw quality QTL that may well be affecting 

mechanisms such as nitrogen transfer in senescing growth stages. However, straw 

characteristics were only measured in 2012 and additional experiments may be required 

to confirm that hypothesis. The smallest effect QTL GP.3_3 is mapped 50 cM away 

from the barley homologue of the wheat gene Gpc-B1 (Uauy et al., 2006) positioned on 

barley chromosome 6HS (Distelfeld et al., 2008; Jukanti and Fischer, 2008) and neither 

Mickelson et al., (2003) or Pasam et al. (2012) reported QTL effects this region. 

Retriever appears to have a rather unusual nitrogen metabolism by maintaining low 

grain proteins that could result from atypical nitrogen uptake or utilisation efficiency 

metabolism. The variety’s response under lower nitrogen conditions and its high 

tillering abilities suggest that it is able to benefit in early establishment stages by having 

better uptake efficiency and better scavenging capabilities. Differences in barley root 
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structures have been observed between varieties (Hargreaves et al., 2009) that can 

directly impact on resource uptake and grain yield (Bertholdsson and Kolodinska 

Brantestam, 2009; Chloupek et al., 2006; Svačina et al., 2014). The study suggests that 

underground differences may exist between Saffron and Retriever and may relate to the 

above ground performance of traits that are segregating in this population. In addition, 

the low nitrogen content of the grain in a crop with a comparable yield to Saffron 

suggests a lower nitrogen transfer and a low remobilisation to the grain which could be 

seen as better nitrogen utilisation. Therefore the QTL for grain proteins found in this 

population potentially represent an important insight in the context of studies on barley 

nitrogen use efficiency. 

2.4.5 QTL for disease resistance and straw characteristics 

The ability of the plant to complete its life cycle healthily by overcoming biotic and 

abiotic stress such as diseases and adverse environmental conditions is a key to 

maximising yield potential. Breeders strongly select for plant aspect and health at grain 

filling and senescence stages as these traits affect grain filling and the marketability of 

the variety (David Harrap pers. comm.). This mapping study suggest that Saffron bright 

and stiff straw is controlled by several genetic factors involved in disease resistance and 

straw quality traits scored in 2012. An important QTL cluster (Bin 1) distal on 

chromosome 1HS indicated that the Retriever alleles had a negative impact on plant 

health during the ripening stage. That QTL cluster contains the major effect for the DUS 

trait of ear glaucosity, mapped at SNP A21354 (E_Glau1_1, LOD of 88.1). The 

composition and structure of culticular wax has been advanced as a mechanisms for 

plants to impede the establishment of diseases (Serrano et al., 2014). In barley, the 

cuticle properties associated to wax crystals was shown to play a key role at the 

prepenetration stage of mildew spores (Zabka et al., 2008). The results of S×R strongly 

suggest that the wax crystals of Saffron provide a natural barrier to prevent the disease 

to establish well and therefore benefit the plant health until ripening. In addition, the 

extremely high significance of the QTL suggest that SNP A21354 is close the causal 

polymorphism and can be used as a selection tool in breeding programs. 

The straw collapse seen with Retriever as a twisting and bending of straw above the last 

node, has a negative impact on the crop harvest. The principal genetic control of straw 

collapse was found on 2HL in association with a tillering QTL. A higher tiller number 

may lead to a weaker straw structure also more inclined to twist as no association of 

straw collapse with height was found. 
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Because the 2009 yield trials were grown with fungicides, the disease QTL from the 

2012 phenotyping rarely match yield and yield components QTL. Mildew resistance is 

under the genetic control of a large number of genes and positive allelic variation has 

been observed in barley varieties of diverse geographical locations (Berger et al., 2012; 

Comadran et al., 2009; Dreiseitl and Krianová, 2012; Dreiseitl and Platz, 2012). Of the 

four QTL detected for mildew, two mapped in regions of known resistance genes. 

Berger et al, (2012) identified the Mla resistance cluster on chromosome 1HS where the 

SNP A21226 is associated with Mil.1_1. However, the co-location of Mil.1_1 with 

E_Glau.1_1 strongly suggests that the wax cuticule affect the plant escape mechanism 

to mildew in that cross. The main resistance locus of Retriever on 4H described by 

Mil.1_3 and BR.1_3, is mapped at the position of the known resistance gene Mlg 

(Aghnoum et al., 2009; Kurth et al., 2001) also linked to QTL for brown rust 

susceptibility (von Korff et al., 2005). Common resistance mechanisms for the two 

pathogens have yet to be established but it is possible that susceptibility to mildew may 

have affected plant response to rust pressure. This study identified a convincing mildew 

restisance QTL Mil.1_4 on 5HS. Comadran et al, (2009) detected a QTL for mildew 

resistance on the short arm of 5H in a similar region although no specific resistance 

genes supported that novel resistance locus.  

2.4.6 Taking the population forward  

The interesting QTL mapping results obtained for yield components and other 

agronomic traits revealed the potential of the population in understanding yield 

architecture. Despite frequent QTL publication, few studies report implementation of 

MAS for yield component QTL (Collard and Mackill, 2008). One reason might be the 

constraints of bi-parental mapping, limiting the mapping resolution and the evaluation 

of a range of alleles. For MAS, the identification of small haplotype blocks is an 

advantageous in order to focus on the genetic factor and avoid negative linkage drag. A 

more in depth analysis of the QTL is therefore necessary to validate reliable targets that 

could be used for MAS. The clustering of QTL delimited by bins of genetic factors has 

the potential to identify the precise location for a potential target. The bins, associated 

with SNP markers, are transferable to other mapping studies using the same SNPs. In 

order to increase the understanding on the QTL and the genetic architecture of yield in 

elite barley and also to provide confidence on QTL for marker assisted breeding, further 

research will be implemented to exploit the results of Chapter 2. The comparison of 

S×R QTL mapping experiment with GWAS using two diversity panels mapping made 
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of two-row winter barley varieties will be the focus of Chapter 4. A QTL validation 

experiment using near isogenic lines for a subset of genetic factors identified in S×R 

QTL mapping will be presented in Chapter 5. 
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Chapter 3  

Association genetics in European two-row winter barley. 

3.1 Introduction 

Plant breeding contributes to the genetic improvement of crops by creating new 

varieties with advantageous traits and characteristics to satisfy growers and user 

requirements. The release of varieties producing higher yields is the main objective of 

competitive commercial breeding programmes of feed barley, while other agronomic 

and quality traits are considered secondary. Breeding progress in UK yield of barley has 

been estimated at 1% per decade (Rae et al., 2007), a trend mirrored by TGW increase. 

However, the breeding efforts aim to maintain the positive contribution of other yield 

components on yield as well. The genetic variation for tillering, grain number and grain 

weight in barley germplasm and their response to environment contribute to the 

differences in grain yield between varieties. Therefore the understanding of the genetic 

control of these yield components can offer additional application and targets for marker 

assisted selection (MAS) strategies aimed at yield improvement and stability. In this 

study, the dissection of yield by its yield components is presented as an approach to 

obtain increased resolution in the architecture of the trait and potentially target its 

genetic control. 

 

Despite the increase in molecular marker and QTL studies in crops, MAS of 

quantitative traits has not had the expected success in commercial breeding programmes 

(Rae et al., 2007). One of the plausible reasons for this low technology transfer is the 

limitation of the common bi-parental mapping approach. With this method, allelic 

variation is restricted to the alleles of the two parents (Chapter 2) so that QTL effects 

are estimated in a set genetic background which does not describe the scale of diversity 

often handled in breeding programmes. In addition, the resolution of the mapping is 

limited by the number of lines, the marker density and particularly by the number of 

recombination events. The population size of most published barley mapping studies is 

around 200 genotypes (see 1.3.2). While these are ideal for demonstrating genetic 

variation and providing robust tests of the approximate map location of effects, the 

increased resolution can only be achieved by screening extremely large populations in 

order to assay a larger number of recombination events (Komatsuda et al., 2007). The 
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average support interval of QTL in the S×R population was 22.6 cM (Chapter 2). 

Despite identifying convincing QTL with strong effects over two years, such a genetic 

distance encompasses a chromosome segment containing many genes that could be 

undesired for selection, even if the positive allele in a nearby gene is retained. The 

scope of bi-parental mapping is therefore limited and refined mapping strategies are 

needed to achieve the resolution required to provide an effective breeding tool. 

 

Genome wide association studies (GWAS) have emerged in barley in parallel with the 

development of marker arrays containing the thousands of SNP necessary for high 

resolution mapping studies (Waugh et al., 2009). The method relies on the accumulated 

recombination events occurring over multiple rounds of meiosis during the previous 

generations of population development and selection. Linkage disequilibrium (LD) is 

the measure of the level of non-random assortment of polymorphisms for pairs of loci 

across the genome (Gupta et al., 2005). LD can be exploited to genetically map trait 

polymorphisms in association with genetic marker alleles. In the closely related 

population of barley cultivars, LD figures are quite high (about 10cM) whereas for the 

wider population of all UK material collected over the last 50 years the average LD is 

1.2 (Cockram et al., 2010). Comadran et al., (2011a) showed that almost 90 % of the 

illumine 9K chip makers could be mapped by LD within 5cM of their expected 

consensus position verifying the potential of LD for fine mapping of simple traits and 

QTL of strong additive effects. Compared to bi-parental mapping, GWAS offers the 

advantage of investigating allele effects over a wide genetic diversity by using panels of 

varieties with different origins. Panels commonly encountered in barley GWAS include 

different geographical origins, morphology and growth habit which have been selected 

apart over years to optimise environment adaptation and product quality. These 

relationships between varieties are responsible for population structure in GWAS 

mapping panels (Pasam et al., 2012; Wang et al., 2012) and the relatedness between 

lines can lead to false or misleading associations due to pedigree rather than true linkage 

(Price et al., 2010). The distinction of stratification due to major genes such as ppd-H1 

in spring barley can also provide a better control of population structure and increase 

mapping resolution (Alqudah et al., 2014). Generally, genetic markers can be used to 

capture some of the population structure in mapping models and be included in 

statistical models to account for it (see 1.3.3). Therefore, the selection of a panel of two-

row winter barley varieties that aims to limit population stratification is a strategy to 
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reduce extreme genetic variation due to major genes and focus on a closely related sub-

group of the crop. 

 

GWAS have been used to investigate yield as well as standard agronomical and 

morphological traits in barley (Comadran et al., 2011b; Inostroza et al., 2009). Recently, 

international resources have been pulled together to develop the base studies in barley 

association genetics with the creation of the AGOUEB (www.agoueb.org/) and Barley-

CAP projects (Waugh et al., 2009). In barley-CAP, 10 US breeding programmes have 

shared genotypic and phenotypic information to carry out association mapping studies 

(Wang et al., 2012). Berger et al, (2012) analysed the six-row winter barley breeding 

programme of Virginia Tech to identify marker trait associations with agronomic traits 

of interest. GWAS was successfully implemented in European barley material with the 

AGOUEB project (http:// www.agoueb.org/) that focused on analysis of genotypic and 

phenotypic data collected during variety registration procedures on UK material 

(Waugh et al., 2009). The project delivered substantial QTL mapping results to the 

barley community with genotypic and phenotypic data made available to breeders 

through the Germinate database. In AGOUEB, morphological DUS traits data has been 

used for tight mapping, leading to the characterisation of functional polymorphism in 

the gene Ant-2 responsible for differences in anthocyanin pigmentation in barley 

(Cockram et al., 2010). The project was used to help the characterisation of the locus for 

Int-c discovery (Ramsay et al., 2011). This successful targeting of functional genes 

makes the method attractive for the dissection of the genetic control of complex traits. 

 

Initiated in 2010, the NUE-CROPS project aimed at improving Nutrient efficiency on 

wheat, oilseed rape, potatoes and maize (see 1.2.5). It uses winter barley as a model 

crop for small grain cereal and the GWAS approach to identify candidate chromosome 

regions involved in the genetic control of important agronomic traits in wheat. The 

panel comprises 166 winter barley varieties selected to represent allelic diversity in 

European germplasm. The panel was grown in field conditions under different nitrogen 

regimes that included an optimal feed regime corresponding to a typical fertilisation 

regime for UK grown barley. The project produced robust estimates of standard 

agronomic traits of interest for breeders to be used in a GWAS (Thomas et al., 2013). 

This project provides a concrete opportunity to dissect yield related traits in order to 

investigate the genetic architecture and variation under optimal field growth conditions. 

In addition, the NUE-CROPS project takes advantage of the previous experience and 

http://www.agoueb.org/
http://www.agoueb.org/
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knowledge acquired during the AGOUEB project. Both projects share a core set of 

varieties as well as project specific two-row barley varieties from the range of European 

germplasm. More importantly, the project takes advantage from the recent advances in 

genotyping technology and the elaboration of Illumina’s 9K chip to increase marker 

density and mapping resolution (Comadran et al., 2012). This array contains the SNP of 

the Oligo Pools Assays (OPAs) (Close et al., 2009) used in AGOUEB and Barley-CAP, 

and for the genotyping platform in Chapter 2 so that common SNP can be used to 

bridge across multiple mapping studies. 

 

It has become apparent that MTA results from GWA studies represent an opportunity to 

overcome some of the limitations from bi-parental mapping by simultaneously 

providing increased mapping resolution and screening wider genetic variation. The 

focus on two-row winter barley suggests that the strong population structure commonly 

described in association mapping studies can be controlled voluntarily by designing 

adapted panels with reduced stratification. This chapter presents the second QTL 

mapping experiment carried out in the project for the investigation of genetic 

architecture of yield and yield components in winter barley. It focuses on two-row 

winter barley varieties from the NUE-CROPS and AGOUEB projects to carry out 

individual GWAS scans for a range of over 20 agronomic traits including yield and 

yield components. 

3.2 Material and methods 

3.2.1 NUE-CROPS project 

Germplasm 

The NUE-CROPS winter barley variety panel was composed of 166 including two-row 

and six-row types including most of the European winter barley diversity. 144 varieties 

were used in a first year of trial and 22 varieties were swapped for trials in the second 

year. Although the NUE-CROPS project collectively analysed all the 166 varieties as 

the association panel, this analysis will be focusing exclusively on the two-row barley 

subset of 126 varieties (Appendix 3. 1). The date of registration for all varieties 

recorded by the International Union for the Protection of New Varieties of Plants was 

collected and used as a trait in mapping (UPOV). 
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Genotyping 

All varieties were genotyped by the James Hutton Institute with the Illumina 9K SNP 

chip (Comadran et al., 2012) using seed sources from JHI and KWS. 9K markers were 

renamed so that SNP present in the BOPA1 and BOPA2 assay had a prefix letter A and 

B respectively while 9K specific marker had the prefix I (Supplementary data 1). 

Genotypes of NUE and AGOUEB sets were compared using additional genotyping on 

384 SNP for the 144 varieties grown in 2010. A dendrogram using all sources of 

genotypes available for the varieties was drawn using PAST (Hammer et al., 2001) and 

analysed so that mismatches between names and genotypes due to multiplication issues 

were corrected. The variety Hanna (NUE line 61) did not have available 9K genotype 

and was excluded. The genotype data of 166 varieties was processed by excluding 

markers with more than 50 % of missing values (4327 SNP remaining) and minor allele 

frequencies below 10% to produce genotypic information usable for GWAS scans 

(4255 SNP remaining). Heterozygotes and missing values were marked as “NA”. The 

exclusion of the six-row barley genotypes resulted in a final cleaned matrix GNUE for the 

two-row panel made of 125 varieties and 4041 SNP. Genotypes were coded at each 

SNP with their corresponding alleles for use in TASSEL and numerically transformed 

in a binary format 1 and 0 for association genetics scripts available in the statistical 

package R. The marker positions of the 9K SNP were provided by the JHI and based on 

map positions in the Morex × Barke RIL population together with LD mapping for 

additional SNP allowing allocation to map bin (Comadran et al., 2012). 

Phenotyping 

Phenotyping was carried out as part of the NUE-CROPS project. At each of the five 

trial sites, 144 varieties were grown in an incomplete split plot design with 48 genotypes 

replicated at each of the three fertilization regimes: “N1” had no nitrogen applied, “N3” 

was the optimal nitrogen rate for the site according to the fertiliser manual (RB209) 

(DEFRA, 2010) and “N2” corresponded to an intermediate rate for which the available 

N was set to one third of the optimal nitrogen rate (Sylvester-Bradley and Kindred, 

2009). The sites were classified as second cereal sites to minimise residual nitrogen and 

the nitrogen supply (N supply) for each site was calculated as the sum of residual soil 

nitrogen + added nitrogen. Trials were carried out in 2010 and 2011 at the JHI in 

Dundee (JHI10, JHI11) and KWS UK in Fowlmere (KWS10, KWS11) with an 

additional site in central Germany (Seligenstad) in 2011 (LOC11). Phenotyping of 

agronomic and yield data was collected (Thomas et al., 2013).  
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A measure of heading date (Hd)
1
 and height (Ht), the presence/absence of sterile 

spikelets and anthocyanin colour of the variety (Antho) were taken from the plots. Grab 

samples were taken on each plot at flowering (GS61) and maturity (GS87). At GS 61, a 

random sample of 10 to 20 plants was taken from the centre of each plot. The number of 

fertile tillers per plant was measured and the straw dried at 80°C for 48 hours and milled 

using a 0.3mm sieve for further NIR analysis. At GS87, plants were pulled out from 

60cm of a row and counted. The number of plants and fertile tillers per plants were 

counted to provide independent measures of tillering as tillers per plants (Stems) and 

tillers per meter square of plot (Till.GS)
1
. The number of grain per ear (Grains)

1
 and 

thousand grain weight (TGW-GS) were recorded from the grab sample. Straw and 

grains were dried at 80°C and 40°C for 48 hours respectively and weighted. Harvest 

index was calculated (HI). Grains were milled using a 0.5mm sieve and flour was 

analysed by NIR for nitrogen content (GrainN)
1
 using a Group10 calibration from Aunir 

(www.aunir.co.uk). The dried straw from GS61 was analysed by NIR to measure stem 

nitrogen (StemN). At maturity, the plots were harvested for yield (Yld) and straw yield 

(SYld) and Biomass yield (BYld) = Yld/HI calculated. The TGW was measured on the 

combine sample (TGW) and used with Grains trait to calculate the tiller number 

(Till.Yld
1
). Nitrogen economy traits were calculated: Nitrogen Use Efficiency (NUE) = 

Yld / N supply; Grain nitrogen yield (GNYld) = GrainN × Yld; Straw Nitrogen Yield 

(SNYld) = StemN × SYld; Total nitrogen yield (TotNYld)= SNYld + GNYld; Nitrogen 

Uptake efficiency (NUpE) = TotNYld / N supply; Nitrogen Utilisation efficiency total 

(NUtEt) = BYld / N supply and Nitrogen Utilisation efficiency in grain (NUtEg) = Yld / 

TotNYld. 

 

Although extensive phenotyping was carried out during the NUE-CROPS project, this 

study focuses particularly on phenotypes measured at the highest fertiliser rate (N3). 

This intend to provide a QTL study with results transferable to the farming practice and 

growing conditions of cereals in the UK. Indeed, the high fertilisation regime following 

guidelines of the fertiliser guide RB209 (DEFRA, 2010) is common practice for crop 

growing conditions in UK farming industry and in KWS-UK breeding trials . In 

addition, phenotypes collected on the higher fertilisation regime will best match the 

growing conditions utilised in the AGOUEB data set and the S×R QTL mapping study 

presented in Chapter 2. 

                                                 
1
 Different abbreviations for traits were used in this chapter and correspond to abbreviations in Chapter 2 

as follow: Grains = GE; Till.Yld = Til.cal; Till.GS = Til.mes; Hd= EE; GrainN = GP 

http://www.aunir.co.uk/
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Statistics  

All sites were analysed individually using the spatial REML analysis algorithms in 

GenStat 14
th

 Edition (Payne et al., 2009). Variety means were predicted at each site as 

Best Linear Unbiaised predictors (BLUPs) and presented in a project report by Thomas 

et al., (2013). A multisite REML analysis accounting for the most parsimonious spatial 

model at each site was carried out to calculate overall variety BLUPs and variety by 

fertiliser BLUPs. The variance components were calculated in a mixed model fitting 

fertiliser level as a fixed effect and all other components as random. The estimate of 

heritability was obtained as a percentage for all traits using variance components of 

random factors (Thomas et al., 2013). For the reasons stated previously, only the 

phenotypic means (BLUPs) calculated for the N3 fertilisation rate from the 5 

experimental sites were used in the association mapping exercise. 

3.2.2 AGOUEB two-row winter barley analysis 

Germplasm and genotyping 

The barley collection used in the AGOUEB project includes spring and winter barley 

lines entered in national list trials in the UK. 201 two- and six-row winter barley 

varieties were genotyped using DNA from seeds grown during the AGOUEB project 

and Illumina 9K chip (Comadran et al., 2012). 

The subset of two-row winter barley varieties from the larger AGOUEB panel was 

based on phenotypic DUS records and confirmed by the expected haplotypes at the vrs1 

and int-c loci involved in the control the two- and six-row phenotype. Four lines were 

excluded due to a mismatch between haplotype pattern and phenotypes recorded in 

AGOUEB dataset (Hurricane, Oleron, Sarah and Askanova). The final subset of 179 

two-row winter barley is referred as the AGOUEB panel in this project (Appendix 3. 1). 

The genotypes of varieties in the AGOUEB panel were processed using the procedure 

presented in paragraph 3.2.1, resulting in a matrix GAG of 3989 SNP.  

Phenotypes 

The phenotypes for agronomic traits and DUS for AGOUEB panel were downloaded 

from the Germinate database accessible to KWS-UK as an ex-consortium member 

(http://ics.hutton.ac.uk/germinate/). Agronomic traits recorded in national trialling 

system procedures were available as BLUPs from statistical models reported in 

AGOUEB. Traits available from treated trials were heading date (Hd); Straw length 
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(SL)
2
; straw strength (SS)

2
; Hectolitre weight (HLW); Thousand grain weight (TGW) 

(only yield component available); Yield (Yld); Grain Nitrogen content (GrainN); Hot 

water extract (HWE); Winter Hardiness (WintH); Brown rust (Puccinia hordei) (BR); 

Mildew (Blumeria graminis f. sp. hordei.) (Mil), Net blotch (Pyrenophora teres) (NB); 

Rynchosporium (R. secalis) (Ryncho); colour of aleurone layer (Aleu); Anthocyanin 

pigmentation (Antho); ear glaucosity (Ear-G)
2
; Ventral furrow hairs (VFH); lower leaf 

hairy leaf sheath (LLHLS); Sterile spikelets (StS). Some phenotypes were available 

from untreated trial data (identified by U). Since data used in the project was collected 

through the official national testing system it is unbalanced with the number of years for 

each variety varying with its success. In the statistical analysis for AGOUEB, BLUPs 

accounted for most of the environmental variation associated with sites and year effects 

(Wang et al., 2012) and were directly used as phenotypic information in the association 

mapping. 

3.2.3 Association mapping 

Population structure 

Both panels described in paragraph 3.2.1 and 3.2.2 were analysed independently to 

study their underlying population stratification using genotypic information. Let gNUE 

and gAG be the matrices genotypes characterized as 0, 1, NA for the two panels. Element 

gNUEij and gAGij being the genotype of variety i at marker j, where i = 1 to N (the number 

of varieties in the panel NAG and NNUE) and j = 1 to M (the number of informative 

markers associated with each panel determined by MAF>0.1, missing value < 50% and 

constrained for pairs of markers with r
2
<0.9; MNUE = 1639 and MAG = 1599). 

Dendrograms showing genetic distances were produced from g matrices using the 

cluster analysis function PAST with a paired group algorithm and Hamming similarity 

measures. Additional matrices XAG and XNUE of standardised genotypes were created by 

subtracting the column mean before dividing by its standard deviation for each variety 

in column j. The average relatedness of the lines or Kinship matrices KAG and KNUE of 

size NAG and NNUE, were computed from XAG and XNUE using the correlation function in 

the R statistical package (Team, 2013). Further Eigen decomposition of KAG and KNUE 

was performed with R (eigen function). The first 10 eigenvectors QAG and QNUE were 

regarded as 10 axis of variation capturing population structure to be used in PCA 

corrected association mapping models (Price et al., 2006). To analyse the overall 

                                                 
2
 Different abbreviations for traits were used in this chapter and correspond to abbreviations the following 

abbreviations in this document: SL = Ht; SS = Ldg; Ear_G = E_Glau 
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diversity for the 226 different varieties used in the study, the 1284 SNP in common 

between gAG and gNUE were pooled in matrix gAG + NUE in order to calculate the 

correlation matrix between the whole set of varieties. The latter was analysed by PCA 

using PAST software (Hammer et al., 2001) to identify distribution of varieties 

according to their panels or specific SNP allele. 

Statistical models comparison 

To carry out the GWAS, a collection of models and software calculating association 

tests accounting for different measures of population structure were investigated for the 

NUE-CROPS data. 

A generalised linear model (GLM) script in R (Team, 2013) was used to carry out a 

naïve approach (R-GLM_naive) using tests for association between raw phenotype and 

each individual marker. The correction by PCA was also implemented in GLM (R-

GLM_QAG or QNUE). The script predicts phenotypes and genotypes using the product of 

the Q matrices with the raw phenotype and normalised genotype matrices respectively.  

The predicted phenotypes and genotypes are then subtracted from the raw phenotypes 

and normalised genotypes respectively so that population structure has been accounted 

for. An F-test investigating the null hypothesis of no association between the phenotype 

residuals and marker residuals is carried out and –log10 (p-values) reported. The 

package EMMA (Efficient Mixed Model Association, 

http://mouse.cs.ucla.edu/emma/news.html) in R (Team, 2013) was also evaluated for a 

mixed linear model approach (MLM) to account for population relatedness (Yu et al., 

2006). The functions EMMA.ML.LRT and EMMA.REML.t were used to test 

associations on a naïve (R-MLM_naive) and Kinship correction for population structure 

(R-MLM_K) respectively. 

Additional analyses were performed with TASSEL 3.0 (http://www.maizegenetics.net), 

which offered GLM and MLM algorithms, together with quicker computing time, 

flexibility of data manipulation and the additional information on the test carried out 

(Bradbury et al., 2007). The naïve and PCA models using Q matrices were investigated 

(Tassel-GLM_naive; Tassel-GLM_Q). Additionally MLM was carried out with naïve 

(Tassel-MLM_naive), a Kinship (Tassel-MLM_K) and PCA and Kinship correction 

(Tassel-MLM_Q+K). Distributions of p-value obtained from the different models were 

compared to the expected distribution in a quantile-quantile plot (QQ-plot) to identify 

the best fitting model to minimize spurious QTL identification.  

http://mouse.cs.ucla.edu/emma/news.html
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QTL significance threshold 

A preliminary strategy to identify a suitable QTL significance threshold was used by 

calculating the False Discovery Rate (FDR) to control for the expected proportion of 

type I errors based on the number of independent tests (i.e. function of the number of 

independent markers). Similar to Pasam et al., (2012), the False discovery rate (FDR) 

calculated for each trait was found to be highly stringent and potentially could reject 

biologically real effects (Peter Werner pers. comm.). A more liberal approach could be 

taken by considering the bottom 0.1 percentile of the distribution of p-values. 

Limitations of this approach were identified when GWAS scans were carried out on the 

non-reduced genotypes matrices GNUE and GAG that included a large number of markers 

with identical p-values caused by high pairwise r
2
 and an identical or close mapping 

position. Pasam et al., (2012) used the distribution of p-value to identify a relevant 

threshold of –log10(0.03)=1.5 to declare MTA. In this study, a compromise was made 

to retain a moderate number of associations mindful of the risks of false positives while 

providing higher stringency to Pasam et al., (2012). For both NUE-CROPs and 

AGOUEB GWAS the significant MTA are defined at a threshold of -

log10(0.003)=2.523 which maintains a high stringency in defining a QTL. 

An arbitrary QTL support interval size was fixed at +/- 5cM from the highest significant 

marker (Bill Thomas pers. comm.). 

3.3 Results 

3.3.1 Phenotypes  

NUE-CROPS  

The detailed statistical analysis of the complete NUE-CROPS winter barley panel 

including six-row and two-row types is available in the publishable report of NUE-

CROPS WP1.1 (Thomas et al., 2013). Only the phenotypes (BLUP) of the two-row 

winter barley subset grown at high fertilisation regime were used for this study. The 

summarized statistics on BLUPs (Appendix 3. 2) show that the average yield of the 

panel was 6.94 t/ha with a maximum of 8.13 t/ha achieved by KWS-Glacier, 

comparable to current yields on farm. Retriever confirms its high yield potential under 

second cereal conditions with the second highest yield of 8.02t/ha while Saffron ranks 

11
th

. Substantial phenotypic variation was observed for the traits analysed within this 
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subset. A summarizing biplot including yield and yield components traits shows that 

76.7 % of the panel variation could be captured by the first two first principal 

components (Figure 3.1a). It is noticeable that the two yield components of tillering and 

grains per ear have loading in opposite directions (Appendix 3. 3a), mirroring the 

negative correlation between the traits. The biplot shows that increased yield 

performance seems to benefit from higher TGW and is barely affected by either Grains 

per ear or tillering. Varieties at the centre of the biplot would therefore tend to be 

average for all those traits, including yield whereas in extreme phenotypes the balances 

between yields components can be pulled out. Saffron and Retriever are located along 

the TGW axis, with Retriever showing greater TGW and yield than Saffron, typical 

from the variety response to second cereal growing conditions (see Chapter 2). Chicane 

and Finesse have high tillering abilities whereas Marinka and Aydanhanim have higher 

grains number per ear but low yields. The recently released varieties KWS Discovery 

and KWS Glacier have average tillering and Grains per ear but are capable of achieving 

higher TGW and therefore higher yields. The spread of varieties over the yield and yield 

component axis underpin the large phenotypic variation of the panel to be targeted in 

association mapping. The increased complexity of the biplot caused by adding traits 

reduces the variance accounted for by the two principal components to 59% (Figure 

3.1b) and increase the spread of varieties (e.g. deficiens varieties scattered across plot). 

The clear separation between yield components on the first two PC in Figure 3.1a) is 

now only captured through the first three PC in Figure 3.1b) (see also Appendix 3. 3b). 

The principal components loadings suggest that PC1 is attributable to the yielding 

potential ability of the varieties with Retriever, KWS Glacier and KWS Discovery being 

the highest yielding varieties of the panel associated with a better NUE (Appendix 3. 

3b). Tillering is negatively correlated to TGW and Grains on PC2, although those three 

traits are separated out by the third PC. 

The majority of nitrogen related traits are mainly positively correlated with yield with 

the exception of Grain Nitrogen which shows a strong negative correlation. The lower 

grain nitrogen associated with higher yields suggests a better utilisation of nitrogen 

resources for carbohydrates accumulation. Chicane and Finesse remain on the outside of 

the scatter with high tillering and short straw. Malta has very high grain nitrogen 

content and proved lower yielding in the field trials at all sites. The scatter of varieties 

overlaid over the traits in the biplot show that variation is substantial and well 

represented in the panel that is suited for further association mapping study. 
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a) 

  
 

Figure 3.1 Biplot of BLUPs for NUE-CROPS traits 
Principal component biplot presenting the distribution of 125 two-row winter barley varieties 

from NUE-CROPS for a) yield and yield components and b) (next page) an extended set of 

variables from the NUE-CROPS data set: (Grain Nitrogen, GrainN; Grains per ear, Grains; 

Harvest Index, HI; Heading date, Hd; Height, Ht; Stem Nitrogen: StemN; Stems per plant; 

Stems; TGW; TGW-Grab Samples, TGW-GS; tillering-Grab sample, Till-GS; tillering from 

yield, Till-Yld; Yield, Yld). The list of varieties is presented in b). The presence and absence 

of sterile spiklets is indicated as presence (▲) and absence (deficiens, ●). 
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Figure 3.1 b) 

 

 

1 Accrue 22 Clara 43 Frolic 64 Celebrity 85 Panda 106 Sevilla 3

2 Alpha 23 Clarine 44 Gaelic 65 Madrigal 86 Parasol 107 Tiffany

3 Amillis 24 Cobalt 45 Gleam 66 Magie 87 Pastoral 108 Torrent

4 Antigua 25 Coriolis 46 Halcyon 67 Malta 88 Pearl 109 Vanessa

5 Antonia 26 Diadem 47 Halifax 68 Malwinta 89 Pedigree 110 Vesuvius

6 Aquarelle 27 Diamond 48 Heligan 69 Marinka 90 Portrait 111 Vilna

7 Arda 28 Dolmen 49 Hermia 70 Maris Otter 91 Posaune 112 Vixen

8 Artist 29 Dolphin 50 Hurricane 71 Maris Trojan 92 Prelude 113 Willow

9 Asso 30 Duchess 51 Igri 72 Maritem 93 Puffin 114 Winner

10 Astrid 31 Duet 52 Intro 73 Masai 94 Retriever 115 Wintmalt

11 Avenue 32 Elmstead 53 Jessica 74 Medoc 95 Rifle 116 Babylone

12 Aydanhanim 33 Emeraude 54 Jewel 75 Melanie 96 Saffron 117 Cassata

13 Baraka 34 Emilia 55 Karisma 76 Molly 97 Sarah 118 Haka

14 Bronze 35 Epic 56 Kaskade 77 Murcie 98 Sevilla 119 KH Malko

15 Calcutta 36 Ethno 57 Kelibia 78 Musette 99 Sombrero 120 Cassia

16 Camion 37 Fahrenheit 58 Kestrel 79 Mystique 100 Sonja 121 Orchidea

17 Cannock 38 Fanfare 59 Kingston 80 Nectaria 101 Sprite 122 Rejane

18 Carat 39 Fighter 60 Kira 81 Saffron 2 102 Sumo 123 Tallica

19 Chestnut 40 Finesse 61 Labea 82 Nure 103 Sevilla 2 124 KWS Glacier

20 Chicane 41 Firefly 62 Leonie 83 Mortimer 104 SW Alison 125 KWS Discovery

21 Cinnamon 42 Flagon 63 Louise 84 Opal 105 Target

Varieties
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AGOUEB 

The BLUPs were sourced from the Germinate database available to breeders for 

mapping purposes. The range and summary statistics of the phenotypes recorded for the 

subset of the 179 two-row winter barley varieties is summarized in Table 3.1. In the 

official testing system, the only component of yield recorded is TGW. The measures of 

disease infection are extensively assessed. Substantial variation was observed for most 

traits, especially for disease resistance, which offer the possibility to enlarge the traits 

investigated in this study which were not present in the NUE CROPs experiment.  

 

 

Table 3.1 Summary statistics on BLUPS of AGOUEB panel. 
Summary statistics for the BLUPs of 20 traits of the subset of 179 varieties from the AGOUEB 

two-row winter barley panel. Traits were measured on treated conditions unless mentioned 

otherwise (U).The traits included were: heading date (Hd); Straw length (SL); straw strength 

(SS); Hectolitre weight (HLW); Thousand grain weight (TGW); Yield (Yld); Grain Nitrogen 

content (GrainN); Hot water extract (HWE); Winter Hardiness (Wint_Hard); Brown rust (BR); 

Midlew (Mil), Net blotch (NB); Rynchosporium (Ryncho); colour of aleurone layer (Aleu); 

Anthocyanin pigmentation (Antho); Ventral furrow hairs (VFH); lower leaf hairy leaf sheath 

(LLHLS); Sterile spikelets (StS).  

 

 

 

Saffron was the highest yielding variety of the AGOUEB panel with a mean yield of 8.5 

t/ha and was also one of the most recently released variety in that panel that was 

composed before NUE-CROPS. The distribution of disease resistance scores confirms 

the potential of the dataset for investigating disease resistance QTL. Because the official 

malting testing excluded feed barley varieties, traits related to malting such as HWE and 

GrainN have a higher number of missing values. This is potentially important when 

analysing those traits as it may impact on the allele frequency at some markers for the 

association tests. Similar to the NUE-CROPS results, grain nitrogen appears to be 

strongly negatively correlated to yield, supporting the effect of dilution mechanisms. 

The variety Willow had the highest GrainN and a yield of 7.28 t/ha ranked in the lower 

quartile. Additionally, a total of six DUS traits for two-row barleys was available in the 

Hd SL SL (U) SS  (U) HLW TGW Yld GrainN HWE
Wint 

Hard

BR 

(U)
Mil (U) NB (U)

Ryncho 

(U)
Aleu Antho Ear_G VFH LLHLS StS

Missing values 14 28 1 1 1 14 1 44 40 1 1 1 1 1 12 21 13 6 9 26

Mean 5 104 82 17 65 41.5 7.7 1.79 298 10 11.9 6.8 0.2 4.7 1.6 1.4 4.3 1.8 1.9 4.3

Minimum 1 88 62 4 61 32.1 7.0 1.68 286 9.4 7.5 0.8 -3.6 -0.7 1 1 1 1 1 1

Maximum 9 115 96 39 69 50.9 8.5 1.92 306 10.3 25.1 25.7 9.6 20.4 2 2 8 2 2 7

Range 8 27 33 36 8 18.9 1.5 0.23 20 0.9 17.6 24.9 13.1 21.1 1 1 7 1 1 6

Lower quartile 4 102 80 14 65 39.1 7.5 1.76 295 9.9 10.2 5.3 -0.7 2.3 1 1 3 2 2 4

Upper quartile 6 107 85 19 66 43.7 7.9 1.82 301 10.1 12.5 7.6 0.8 6.3 2 2 5 2 2 5

Standard deviation 1.8 4 5 5 1 3.4 0.3 0.04 4 0.2 3.0 3.1 2.0 3.5 0.5 0.5 1.7 0.4 0.3 1.6

Variance 3.4 16 23 26 2 11.5 0.1 0.00 19 0.02 8.8 9.5 4.2 11.9 0.2 0.2 2.8 0.2 0.1 2.5 Boxplot for mild_U
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AGOUEB dataset. Those were investigated in GWAS using a smaller genotyping 

platform of 1536 SNP on the entire AGOUEB variety panel (Cockram et al., 2010) but 

the 9K chip may help to achieve higher mapping resolution on traits such as VFH and 

LLHLS. 

3.3.2 Population structure in association mapping panels. 

NUE-CROPS two-row winter barley 

The genetic diversity of the NUE CROPS panel was captured with the correlation 

matrix based on 1639 SNP. The informative SNP of MNUE were visualised by a 

dendrogram (Figure 3.2). The major clusters of genotypes reflect some underlying 

structure in the genotype data and this should be accounted for in the association 

mapping. As expected, the recently released varieties B100 (KWS-Glacier) and B99 

(KWS-Discovery) are clustered close to their parental lines Saffron, Retriever and 

KWS-Cassia, which confirms the suitability of the marker information for capturing 

pedigree relationships. In Figure 3.2, B100 is genetically closer to its parent Retriever 

than its second KWS-Cassia. The varieties Sarah and Winner, both released in Europe 

in 1994, have a distinct allelic composition to the rest of the panel. Melanie and 

Orchidea have very similar genotypes suggesting that one of the varieties has been 

wrongly labelled in the project. 

The distribution of the deficiens type into clear groupings suggests that the trait has 

been brought in the germplasm through a limited number of lines and is slowly being 

integrated into different genetic backgrounds. Although two main groups of deficiens 

varieties are visible, the trait is also found in more distant varieties (Leonie, Nectaria). 
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Figure 3.2 Dendrogram of diversity in NUE-CROPs two-row winter barley. 
The dendrogram is based on a correlation matrix of the lines computed from MNUE. Varieties 

indicated in brown have ears with sterile spikelets. The varieties in blue are deficiens type (i.e. 

displaying an absence of sterile spikelets). 
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AGOUEB two-row winter barley 

A similar study of the population structure was carried out for the AGOUEB panel of 

varieties. After marker data processing, 1599 informative SNP were available for MAG. 

The PCA presented in Figure 3.3 does not distinguish any major structural grouping in 

either NUE CROPS or AGOUEB panels unlike observed in other mapping panels of 

barley for GWAS where strong stratification was present (Cockram et al., 2010; Pasam 

et al., 2012). In addition, the 75 varieties in common between the NUE-CROPS and 

AGOUEB project cover most of the genetic diversity investigated. The strategy of 

analysing exclusively the two-row winter barley varieties shows that the strong levels of 

stratification associated with the two/six-row and winter/spring pools can be avoided. It 

should facilitate the comparison between mapping studies of the same crop type and the 

transfers of results to breeding. Although it was not apparent in the dendrogram (Figure 

3.2), some of the oldest varieties (e.g. Malta and Alpha (1970’s)) are on the periphery of 

the PCA cluster. Similarly to the dendrogram, the PCA confirm the pedigree 

relationship between varieties and highlights genotypes containing alleles of lower 

frequency in the winter barley germplasm or of more distant geographic origin. The 

lowest value on PC1 illustrate the genetic diversity of the variety Puffin ((Athos×Maris-

Otter)×Igri) which has a quarter of its parentage from the French spring barley variety 

Athos. Puffin has thereafter been used as a parent in the pedigree of Opal and Pearl 

hence their close genotypic proximity (Figure 3.2, Figure 3.3). Nevertheless none of the 

lines appears to create a cluster significantly distant from the rest of the varieties.  
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Figure 3.3 PCA of genetic relationships between 226 winter barley two-row 

varieties 
The complete set of varieties used in the association panel is presented. For clarity, only a few 

varieties have been presented. The correlation based PCA uses a correlation matrix made from 

the 1284 common SNP markers between MAG and MNUE. The varieties represented by a blue dot 

are exclusive to AGOUEB winter barley two-row panel, in green to the NUE-CROPS panel and 

the red dots are varieties common to both panels. Axis are in Eigenvalue scale. 

3.3.3 Association analysis 

Models comparison 

Different models were tested primarily to establish the need for population structure 

correction and secondly to find the optimal correction approach. Figure 3.4 presents a 

Q-Q plot example based on the TGW-GS for the NUE-CROPS data. The Q-Q plot 

shows the variable reduction in the number of significant associations from using the 

range of population structure corrections models in R and TASSEL in GWAS scans 

(see 3.2.3). In both mapping software, the Kinship structure correction using KAG and 

KNUE (Tassel-MLM_K and R-MLM_K models) was associated with a better fit than the 

correction by Q matrices only (Tassel-GLM-Q and R-GLM-Q models) (Figure 3.4). 

Alternatively, the Tassel mixed model using both K and Q (Tassel-MLM_K+Q) 

provided the best fit to the expected normal distribution of p-values. Similar 

observations were made from the analysis of the other traits in both mapping panels. For 

all comparable models, TASSEL resulted in a better correction than R with p-values 
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closer to the normal distribution (expected –log10(p)). The ranking of the marker 

associations between models were comparable and hence correlations between models 

for the p-values exceeded 0.97. This result suggests that the higher p-values obtained 

with the R models may inflate the number of QTL being falsely accepted at the 

detection threshold retained for this study. The Tassel-MLM_K+Q model was only 

slightly better than Tassel-MLM_K and both accounted adequately for population 

structure. The MLM_K method was also shown to better control for false positive and 

statistical power over structure correction models in barley GWAS (Pasam et al., 2012; 

Wang et al., 2012). Similar analysis done using the AGOUEB dataset alone confirmed 

that the Tassel-MLM_K model was the most appropriate to account for population 

structure. TASSEL software also provides additional information on the marker and 

statistical tests carried out (Marker effects and marker r
2
) (Bradbury et al., 2007). 

Therefore, the GWAS scans for AGOUEB and NUE-CROPS presented in this study 

concentrate on the Tassel-MLM_K model.  

 

 

Figure 3.4 Quantile-quantile plots of p-values for the NUE-CROPS TGW-GS 

GWAS analysis using different population structure corrections. 
Expected vs. observed P values are plotted for the generalised linear model (GLM) and mixed 

linear models (MLM) model in R and TASSEL including correction for population structure 

based on Kinship (K) and Principal components (Q). The x = y line (solid) expected distribution 

is indicated. The QQplot of p-values was computed from the TGW-GS GWAS results for 4041 

SNP (GNUE).  
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NUE-CROPS: genome wide scans and QTL results 

Several significant marker trait associations were found on the genome for the traits 

analysed (Appendix 3. 5). Manhattan plots for yield components illustrate which 

regions of the genome were involved in the genetic control of those traits (Figure 3.5). 

Generally, the QTL peaks were identified with a large number of markers above the 

detection threshold which included some markers with identical allelic distribution 

within the panel, hence with the same –log10(p). These markers often had identical map 

position and therefore could not provide additional resolution at the QTL peaks 

suggesting that multiple best markers for a QTL can be considered. The markers within 

a 10 cM window and with similar level of significance to the peak QTL (i.e. identical 

allele frequency and distribution in the panel) were used to define the QTL support 

interval. 

 

The complete set of QTL identified in NUE-CROPS panel under standard fertilisation 

regime is summarised in Table 3.2 a) b) and c) and the genome wide results of tests of 

association are available as Supplementary data 2. The QTL detection threshold retained 

in that study (–log10(0.003)) enabled the reporting of up to 13 QTL depending on the 

trait analysed. NUE and GNYld have respectively 13 and 11 significant associations 

whereas StemN and Grains have only two distant significant associations. The range of 

higher significant markers (-log10(p)) was variable in the set of traits analysed and 

seemed to relate to their associated genetic complexity. For example, the DUS traits for 

presence-absence of pigmentation and sterile spikelets expected to be under the control 

of single genes ant-2 and vrs-1 respectively, were both mapped with a value for –

log10(p)> 15. Pigmentation was mapped at marker I195164 at 96.8cM and sterile 

spikelet at A10287 at 85.9cM both on 2H in their expected positions. As the causative 

polymorphism is known and maps close to the peak SNP markers, both traits have 

additional significant MTA mapped at other locations in the genome. These results 

suggest that residual associations are present in the dataset and can be mapped with the 

QTL detection threshold. It may be that the traits are not completely controlled by the 

known major genes or that inter-chromosome LD hasn’t been entirely accounted for by 

the Kinship structure correction. 
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Figure 3.5 Manhattan plots for yield and yield components  
Genome wide association scan for yield and yield components of the winter barley NUE-CROPS two-row varieties. 4041 SNP markers (GNUE) were analysed for 

marker-trait associations using the Tassel-MLM_K model. Markers above a detection threshold of –log10(0.003) (horizontal line) were reported as QTL. 
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Traits with increased complexity tended to have more QTL with lower level of 

significance and rare associations with –log10(p)>5 (Table 3.2 a, b, c). Yield QTL were 

mapped at nine locations on six of the seven chromosomes. Six QTL are with LOD 

scores above three and with marker effects of similar magnitude. The strongest effects 

of Yld_1 and Yld_3 are observed for markers with the lowest MAF amongst the QTL 

for that trait. Yield components also show different levels of genetic complexity, with 

TGW having more QTL and Grains only showing significant associations at two loci 

but with Grains_1 having the highest –log10(p) for all yield components QTL with a 

LOD of 7.2 (Chromosome 2H, 63.5cM). The QTL of TGW obtained from the grab 

samples were all associated with QTL for TGW obtained from the combine sample 

except one, TGW-GS_5. The TGW obtained from the combine sample also had three 

additional QTL on 2H, 4H and 5H all with lower significance. The different methods of 

measuring tillering also produced a variable number of QTL. Till.GS_1 and Till.GS_2 

however seem to be co localised with tillering from yield (Till.Yld_2; Till.Yld_3) and 

plant stems (Stems_2; Stems_3) suggesting that reliable markers could be identified to 

focus on the genetic control of the trait. However no outstanding large effects were 

observed for those QTL.  

Five QTL for heading date were mapped on 1H 2H and 5H, four of which with a 

significant peak marker above –log10(p)=3. The strongest effects and significance level 

identified Hd_3 and Hd_4 on 2H in the regions of genes known to be involved with 

flowering time. Heading date (Hd_4) and height (Ht_2) were associated with strong 

effects and peak markers mapped at the same position on 2H at 63.5 cM. Although the 

common location of Hd_4 and Ht_2 suggests the presence of a gene with pleiotropic 

effect for the traits, the strong Hd_3 effect on 2H was not associated with a height QTL 

neither was Ht_7 on 5H with an effect on heading date. This result indicates that both 

traits are also genetically controlled by factors independent from each other. 

Interestingly, a notable QTL UPOV_7 was found on 6H at 53 cM with a LOD of 4.21 

and an effect of nearly 8 years and co-locating with yield QTL Yld_7, suggesting that 

the selected changes of alleles at that locus have also supported the genetic progress in 

yield over years.  

All the traits corresponding to the plant nitrogen economy were found with significant 

associations. Thirteen QTL were found for NUE. The strongest –log10(p) score of 5.04 

corresponded to the nitrogen uptake efficiency QTL NUpE_2. The expected 

associations of QTL of derived traits with their components were observed as the 

majority of yield QTL were also found at the positions significant for NUE, calculated 
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as the product of yield and available nitrogen. However, NUE had more QTL overall 

suggesting that the trait may highlight other important genetic regions for the control of 

yield in relation to available nitrogen. The more robust QTL for N utilization efficiency 

in the grain (NUtEg_2) was mapped at the same position as a Grain Nitrogen QTL 

(GrainN_2) on 4H 92.4cM, the latter being associated with QTL for NUE, harvest 

index, tillering and yield. NUpE_2 on 5H co-mapped with QTL for Grain nitrogen 

yield, TGW and tillering. This co-mapping of QTL clearly indicates the genetic 

relationship between traits and shows that the understanding of plant nitrogen economy 

is intimately associated with yield and its components. The biological relationship 

behind such co-mapping should be taken into account in the future comparison of 

mapping studies to avoid the misinterpretation of multiple gene effects and functions. 
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Table 3.2 Significant marker traits associations (QTL) of NUE-CROPs GWAS. 
The table presents the significant QTL from the Tassel-MLM_K GWAS model on 20 

phenotypes for the NUE-CROPS two-row winter barley study. Each QTL is presented with its 

peak marker (most significant SNP) with the associated marker map position, –log10(p) 

resulting from the test for association, the proportion of the genetic variation (R
2
) of the 

association, the SNP alleles and their effects, identity of the minor allele (MA) and minor allele 

frequency (MAF) in the NUE-CROPS panel. A list of co-mapping SNP reported with identical 

association level at a particular QTL are presented in Appendix 3. 6.  

 

  

a)

Anthocyanin Antho_1 2 H A10326 6.45 2.64 0.09 G/A -0.34/0 A 0.18

color Antho_2 2 H I195164 96.80 16.27 0.98 C/T -1/0 T 0.48

Grain Nitrogen GNYld_1 1 H I154646 100.70 2.59 0.08 A/C 3.88/0 C 0.11

Yield GNYld_2 2 H I151535 52.47 3.39 0.11 G/A 4.39/0 A 0.14

GNYld_3 3 H I115045 39.45 2.56 0.08 G/A 2.85/0 A 0.30

GNYld_4 3 H I164290 120.59 3.52 0.11 T/C 4.37/0 C 0.14

GNYld_5 4 H A20482 59.37 3.50 0.11 G/A 4.63/0 A 0.15

GNYld_6 5 H A20553 2.81 4.06 0.13 A/G 4.15/0 G 0.20

GNYld_7 5 H A21508 60.74 4.88 0.17 A/G 5.46/0 G 0.11

GNYld_8 5 H A20236 80.61 2.61 0.08 C/A 2.9/0 A 0.26

GNYld_9 6 H I123065 1.34 2.69 0.08 C/T 3.66/0 T 0.13

GNYld_10 7 H I186187 14.96 2.65 0.08 T/G 3.07/0 G 0.22

GNYld_11 7 H I138457 34.82 3.04 0.09 C/A 3.18/0 A 0.22

Gain Nitrogen GrainN_1 2 H A20862 63.50 3.53 0.11 T/A 0.08/0 A 0.42

GrainN_2 4 H I168399 92.40 4.09 0.13 C/A -0.08/0 C 0.39

GrainN_3 5 H A21121 68.35 3.46 0.11 G/A -0.08/0 A 0.35

GrainN_4 6 H B30120 52.75 2.75 0.08 C/A -0.08/0 C 0.44

GrainN_5 7 H I138457 34.82 2.60 0.08 C/A -0.07/0 A 0.22

Grains Grains_1 2 H A20862 63.50 7.20 0.27 T/A -3.01/0 A 0.42

Grains_2 6 H I138716 88.90 2.83 0.09 G/A -1.74/0 A 0.43

Heading date Hd_1 1 H B30241 20.82 3.80 0.12 C/A 2.67/0 C 0.29

Hd_2 1 H A21384 135.56 3.02 0.09 A/G -2.19/0 G 0.27

Hd_3 2 H B30871 26.57 4.96 0.17 A/G 3.02/0 A 0.39

Hd_4 2 H A10191 63.53 4.56 0.15 C/A -4.09/0 A 0.14

Hd_5 5 H B30867 136.43 2.86 0.09 C/A -2.3/0 A 0.23

Harvest Index HI_1 2 H I10398 54.95 3.56 0.11 C/T -2.79/0 T 0.17

HI_2 3 H I204057 51.70 2.68 0.08 C/T 2.46/0 T 0.10

HI_3 3 H I103215 126.27 2.68 0.08 A/G 2.07/0 G 0.14

HI_4 4 H I129218 92.40 3.50 0.11 C/A 1.71/0 C 0.42

HI_5 5 H A21121 68.35 3.02 0.09 G/A 1.64/0 A 0.35

HI_6 5 H A10183 80.02 2.63 0.08 G/A -1.53/0 G 0.46

Height Ht_1 1 H A10338 117.80 2.66 0.08 C/A -4.32/0 A 0.21

Ht_2 2 H B30265 63.53 5.48 0.19 A/G -8.9/0 G 0.14

Ht_3 3 H A11016 58.64 4.08 0.13 G/C -6/0 C 0.17

Ht_4 3 H A21163 80.89 2.54 0.07 A/G -4.03/0 G 0.30

Ht_5 4 H I190401 48.72 3.41 0.11 A/G -4.81/0 G 0.32

Ht_6 5 H I4717 34.25 2.90 0.09 G/A -5.18/0 A 0.19

Ht_7 5 H B31257 48.11 5.40 0.19 A/T -8.56/0 T 0.14

Ht_8 6 H I129756 80.52 3.07 0.09 T/G -5.98/0 G 0.11

MAFAlleles-log10(p)Dist
SNP 

name
R

2 allele 

effects
MAQTL ChromTrait
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Table 3.2 cont. 

 

 

  

b)

Nitrogen Use NUE_1 1 H I154646 100.70 3.51 0.11 A/C 2.54/0 C 0.11

Efficiency NUE_2 2 H A21304 33.74 2.89 0.09 A/G -1.83/0 G 0.30

NUE_3 2 H A10358 59.21 2.87 0.09 C/A -1.65/0 A 0.41

NUE_4 3 H I204057 51.70 2.60 0.08 C/T 2.37/0 T 0.10

NUE_5 3 H B31242 69.60 2.67 0.08 A/C 1.79/0 A 0.28

NUE_6 3 H I103215 126.27 2.72 0.08 A/G 2.05/0 G 0.14

NUE_7 4 H I129218 92.40 3.40 0.11 C/A 1.65/0 C 0.42

NUE_8 5 H I231238 63.31 3.62 0.11 T/C 2.19/0 C 0.21

NUE_9 5 H B31427 90.84 2.58 0.08 G/C 1.51/0 C 0.30

NUE_10 5 H A10080 151.36 2.55 0.07 G/A 1.77/0 A 0.24

NUE_11 6 H I118381 54.60 2.58 0.08 C/T 1.62/0 C 0.47

NUE_12 7 H I186187 14.96 3.12 0.10 T/G 1.91/0 G 0.22

NUE_13 7 H I138457 34.82 4.14 0.14 C/A 2.1/0 A 0.22

Nitrogen NUpE_1 2 H A10733 54.95 2.58 0.08 G/C 0.02/0 C 0.14

Uptake Efficiency NUpE_2 5 H A20553 2.81 3.18 0.10 A/G 0.02/0 G 0.20

NUpE_3 5 H A21508 60.74 2.61 0.08 A/G 0.02/0 G 0.11

NUpE_4 5 H I160288 129.41 3.13 0.09 G/A 0.02/0 A 0.11

Nitrogen NUtEg_1 2 H A20862 63.50 4.19 0.14 T/A -2.53/0 A 0.42

Utilisation NUtEg_2 4 H I129218 92.40 5.04 0.17 C/A 2.51/0 C 0.42

Efficiency in Grain NUtEg_3 5 H I49958 68.35 3.44 0.12 A/G 2.21/0 G 0.38

NUtEg_4 6 H I124850 52.70 3.25 0.10 T/C 2.43/0 T 0.43

NUtEg_5 7 H I138457 34.82 3.33 0.10 C/A 2.22/0 A 0.22

NUtEg_6 7 H I14119 161.40 2.54 0.07 A/G 2.02/0 A 0.33

Nitrogen NUtEt_1 3 H I165444 99.89 2.68 0.08 A/G -1.74/0 G 0.44

Utilisation NUtEt_2 3 H I154449 155.90 3.26 0.10 A/C 2.15/0 C 0.29

Efficiency total NUtEt_3 5 H I160288 129.41 3.50 0.11 G/A 3.18/0 A 0.11

NUtEt_4 5 H I156273 176.62 3.15 0.12 A/G 2.62/0 G 0.19

Stem Nitrogen StemN_1 2 H I177375 63.50 3.88 0.13 C/T 0.01/0 T 0.24

StemN_2 5 H A21318 53.18 2.64 0.08 G/A -0.01/0 A 0.15

Stems Stems_1 1 H I182656 11.40 3.19 0.10 A/G -0.28/0 G 0.13

Stems_2 4 H I129218 92.40 3.71 0.12 C/A 0.22/0 C 0.42

Stems_3 5 H B30975 6.40 2.55 0.08 A/C -0.22/0 C 0.17

Stems_4 5 H I148402 135.72 2.57 0.08 G/A -0.2/0 A 0.25

Sterile StS_1  2H A10823 46.98 3.69 0.11 A/G 0.28/0 A 0.37

Spikelets StS_2  2H A10287 85.92 16.07 0.67 A/G 0.92/0 A 0.20

StS_3  5H A21480 89.38 3.89 0.11 G/A -0.37/0 A 0.26

StS_4  5H A10161 159.79 2.57 0.07 A/G 0.29/0 T 0.20

StS_5  6H I131992 81.88 3.78 0.11 A/G 0.31/0 A 0.42

allele 

effects
Chrom

SNP 

name
distTrait QTL -log10(p) allelesR

2 MAFMA
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Table 3.2 cont. 

 

  

c)

Thousand TGW_1 1 H I232660 18.05 3.24 0.12 C/T -2.75/0 C 0.36

Grain Weight TGW_2 1 H I128285 31.15 3.45 0.11 T/C -2.64/0 T 0.36

TGW_3 1 H A20810 52.46 3.56 0.11 A/G -2.76/0 A 0.46

TGW_4 2 H I146936 6.40 3.33 0.10 T/C -3.53/0 C 0.18

TGW_5 2 H A10733 54.95 4.33 0.14 G/C 4.03/0 C 0.14

TGW_6 2 H I195051 156.72 2.76 0.10 T/C 2.71/0 C 0.40

TGW_7 4 H B30427 53.50 2.61 0.08 T/A 2.45/0 A 0.25

TGW_8 5 H A20553 2.81 3.44 0.11 A/G 3.04/0 G 0.20

TGW_9 5 H I194030 166.63 2.83 0.08 A/G -2.62/0 A 0.38

Thousand TGW-GS_1 1 H I232660 18.05 3.42 0.13 C/T -3.25/0 C 0.36

Grain Weight TGW-GS_2 1 H I128285 31.15 3.19 0.10 T/C -2.88/0 T 0.36

from grab samples TGW-GS_3 1 H A20810 52.46 3.63 0.11 A/G -3.2/0 A 0.46

TGW-GS_4 2 H I213799 8.57 3.76 0.12 A/C -3.94/0 C 0.24

TGW-GS_5 2 H I143250 27.30 3.05 0.09 A/G 2.83/0 A 0.47

TGW-GS_6 2 H A10602 58.24 3.09 0.09 A/C -3.51/0 C 0.26

TGW-GS_7 5 H A20553 2.81 3.75 0.12 A/G 3.68/0 G 0.20

Tillering from Till.GS_1 4 H A20732 92.38 3.75 0.12 G/A 55.67/0 G 0.42

grab samples Till.GS_2 5 H B30975 6.40 3.59 0.11 A/C -66.86/0 C 0.17

Till.GS_3 5 H I147762 109.56 2.62 0.08 C/T -48.35/0 T 0.26

Till.GS_4 5 H I720 159.80 3.26 0.10 A/G 55.52/0 A 0.37

Till.GS_5 7 H A10550 143.68 2.63 0.08 G/A -51.15/0 A 0.25

Tillering from Till.Yld_1 4 H A21385 23.10 2.73 0.08 G/C -58.15/0 C 0.26

yield Till.Yld_2 4 H A20732 92.38 3.31 0.10 G/A 57.53/0 G 0.42

Till.Yld_3 5 H A20553 2.81 3.05 0.09 A/G -65.67/0 G 0.20

Till.Yld_4 6 H I4707 81.20 2.81 0.08 C/T 59.19/0 T 0.33

UPOV UPOV_1 2 H I195164 96.80 3.80 0.12 C/T -5.86/0 T 0.48

date of inscription UPOV_2 3 H A10767 172.42 2.93 0.09 G/A -4.93/0 A 0.32

UPOV_3 4 H I128723 54.98 2.66 0.08 A/G 5.98/0 G 0.18

UPOV_4 5 H I192396 19.40 2.96 0.09 T/A 5.93/0 T 0.46

UPOV_5 5 H I213753 64.00 2.98 0.09 C/A 5.45/0 A 0.25

UPOV_6 6 H I230959 4.90 3.12 0.10 G/T 5.89/0 T 0.23

UPOV_7 6 H I136897 53.29 4.21 0.14 A/G 7.92/0 G 0.23

UPOV_8 7 H A11222 4.90 3.12 0.10 G/C 5.89/0 C 0.23

Yield Yld_1 1 H I154646 100.70 3.49 0.11 A/C 0.53/0 C 0.11

treated Yld_2 2 H A21304 33.74 2.73 0.08 A/G -0.37/0 G 0.30

Yld_3 2 H I10398 54.95 3.33 0.10 C/T -0.54/0 T 0.17

Yld_4 4 H I182626 96.60 3.08 0.09 T/G 0.37/0 G 0.31

Yld_5 5 H I231238 63.31 3.55 0.11 T/C 0.45/0 C 0.21

Yld_6 5 H A20236 80.61 2.60 0.08 C/A 0.33/0 A 0.26

Yld_7 6 H I118381 54.60 2.69 0.08 C/T 0.34/0 C 0.47

Yld_8 7 H I186187 14.96 3.66 0.12 T/G 0.44/0 G 0.22

Yld_9 7 H I138457 34.82 3.94 0.13 C/A 0.43/0 A 0.22

allele 

effects
Trait QTL Chrom

SNP 

name
dist -log10(p) R

2 MAFMAalleles
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AGOUEB panel QTL results 

The AGOUEB data set proved to be informative and sufficiently variable to detect QTL 

for the traits available (Table 3.3). The additional DUS traits of ventral furrow hair, ear 

glaucosity, lower leaf hairy shealth (LLHS) and aleurone complemented the 

anthocyanin and sterile spikelet scored in the NUE. The strongest association was found 

for a marker A21087 on 4H indicating the position of the candidate gene controlling 

barley aleurone color (-log10(p) = 21.6). Both sterile spikelet and anthocyanin had 

similar highly significant QTL in the NUE-CROPS mapping. VFH had a noticeable 

QTL VFH_2 on 6H at 6.07 cM with –log10(p) = 12.5 suggesting proximity to the 

causal gene and the potential of the marker to be used by breeders to characterise 

germplasm for the DUS character. Despite having lower –log10(p) and effect of half the 

size of the LLHS variation, the QTL LLHS_1 and LLHS_2 had sufficiently strong 

significant markers to dissect the genetic control of that DUS trait. 

The AGOUEB Yield and TGW traits had six and five QTL respectively, neither 

reported with strong effects on the traits. Amongst them, Yld_T_3, Yld_T_6, TGW_3 

and TGW_5 (Table 3.3) appear to be the more significant QTL in that panel and may 

relate to QTL found in NUE-CROPS. Further investigation of those candidates will be 

carried out specifically in Chapter 4. The genetic control of heading date was localised 

in two positions on chromosome 2H with Hd_1 at 59cM and Hd_2 at 152 cM. Despite a 

high heritability and fewer genetic factors controlling this trait, the peak markers for the 

QTL were detected with –log10(p) around three. 

Straw traits were measured in treated and untreated conditions in the AGOUEB project. 

The three QTL for straw length (corresponding to height) in treated conditions are also 

detected under untreated conditions with SL_T_1 and SL_U_1 having the highest 

significance. The strongest effect is found on 5H at QTL SL_T_3 and SL_U_5 where 

the allele of SNP A10236 associated to height reduction is only shared by 14 % of the 

varieties in the panel. Three additional QTL for straw length were found under untreated 

conditions suggesting the involvement of additional genes in the control of plant height 

under untreated conditions. The association of the straw length and straw strength traits 

was not evident as only SL_U_1 and SS_U_2 were potentially co-mapping in the 

centromere of 2H. 

The mapping of disease resistance gave highly significant MTA which are promising 

for use in marker assisted breeding. A unique brown rust QTL was mapped on 2H at 

marker I146785 (70cM) with a –log10(p) value of 4.2. This location also has a 
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significant net blotch QTL NB(U)_1 potentially suggesting a common genetic factor 

involved in disease resistance. Net blotch had other two QTL, one with a strong effect 

on 6H NB(U)_3. The AGOUEB dataset also provided encouraging results with QTL 

associated with the resistance to Rynchosporium and mildew (Table 3.3). A key QTL 

ryncho(U)_1 was mapped on 2HL close to I129821 and two additional relevant QTL 

were mapped on 3H and 5H. QTL for mildew resistance were mapped at 6 locations. 

The main QTL mild-(U)_2 on 5H was mapped with a –log10(p) value of 5.21 and mild-

(U)_6 was also highly significant. 

These QTL from the AGOUEB GWAS may provide supporting evidence for the 

identification of candidate genes for disease resistance and yield related traits. 
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Table 3.3 Significant marker traits association for AGOUEB panel. 
The table presents the significant QTL from the Tassel-MLM_K GWAS model on 20 

phenotypes for the AGOUEB two-row winter barley study. Each QTL is presented with its peak 

marker (most significant SNP) with the associated marker map position, –log10(p) resulting 

from the test for association, the proportion of the genetic variation (R
2
) of the association, the 

SNP alleles and their effects, identity of the minor allele (MA) and minor allele frequency 

(MAF) in the AGOUEB panel. A list of co-mapping SNP reported with identical association 

level at a particular QTL are presented in Appendix 3. 7. 

 

 

  

a)

Aleurone Aleu_1 2 H I171032 83.82 2.87 0.07 G/A -0.28/0 A 0.28

Aleu_2 4 H A21087 62.10 21.61 0.79 G/A -0.93/0 G 0.41

Anthocyanin Antho_1 2 H A10823 46.98 3.15 0.08 G/A -0.34/0 A 0.29

Color Antho_2 2 H A10138 96.82 20.83 0.80 G/A -0.93/0 A 0.45

Brown Rust BR_1 2 H I146785 70.50 4.20 0.09 G/C 3.21/0 G 0.13

EAR-G_1 1 H I120059 0.75 3.01 0.07 T/C 1.05/0 T 0.30

EAR-G_2 5 H A10524 93.70 2.54 0.06 C/A 1.33/0 A 0.11

EAR-G_3 6 H B11455 42.36 2.69 0.06 G/A 1.08/0 A 0.40

EAR-G_4 7 H I1347 116.33 3.44 0.08 G/T 1.31/0 T 0.21

GrainN_1 2 H A11384 60.68 4.23 0.13 C/G 0.04/0 G 0.42

GrainN_2 4 H I149873 0.74 3.11 0.09 G/A -0.03/0 A 0.29

GrainN_3 4 H B31362 73.57 2.67 0.07 C/A 0.03/0 A 0.29

GrainN_4 5 H B30975 6.40 4.86 0.15 A/C 0.05/0 C 0.11

GrainN_5 5 H B30400 149.10 2.57 0.07 A/C 0.03/0 A 0.37

Heading date Hd_1 2 H B30042 59.21 2.70 0.06 A/G -1.48/0 G 0.20
Hd_2 2 H B10937 152.79 3.13 0.07 G/C -1.69/0 G 0.15

Hectoliter weight

HLW_1 6 H B30025 117.68 2.60 0.05 A/G -0.72/0 G 0.40

Hot Water HWE_1 1 H A10985 52.46 4.75 0.14 A/C 3.89/0 A 0.49

Extract HWE_2 1 H I165338 131.15 2.53 0.06 G/A 3.41/0 A 0.11

HWE_3 2 H I118168 9.28 2.67 0.07 A/T 2.84/0 T 0.50

LLHS LLHLS_1 4 H A10611 114.66 8.71 0.25 C/A 0.52/0 A 0.12

LLHLS_2 5 H A21355 153.50 6.53 0.17 A/G 0.44/0 G 0.11

LLHLS_3 7 H A20365 166.56 3.20 0.08 C/G 0.26/0 G 0.18

Mildew Mild-(U)_1 4 H I128147 86.27 2.56 0.05 T/C -1.7/0 C 0.32

Untreated Mild-(U)_2 5 H I108541 19.40 5.21 0.12 C/G -3.07/0 G 0.18

Mild-(U)_3 5 H I204494 51.30 2.74 0.06 C/A -2.36/0 A 0.13

Mild-(U)_4 6 H I147090 33.74 2.72 0.06 T/C -1.89/0 C 0.23

Mild-(U)_5 6 H I164156 90.15 2.82 0.06 T/C -1.8/0 C 0.39

Mild-(U)_6 7 H I163976 29.82 3.72 0.08 T/C -2.87/0 C 0.13

Net Blotch NB(U)_1 2 H I16024 71.12 2.95 0.06 C/T 1.19/0 C 0.48

Untreated NB(U)_2 4 H B10063 40.36 3.05 0.06 G/A -1.67/0 A 0.16

NB(U)_3 6 H I128460 45.40 5.01 0.12 T/C 1.79/0 C 0.30

Rynchosporium Ryncho(U)_1 2 H I129821 158.15 4.99 0.12 T/G -3.57/0 G 0.19

Untreated Ryncho(U)_2 3 H A20252 6.03 3.52 0.08 G/A -2.45/0 A 0.31

Ryncho(U)_3 5 H B30456 113.11 3.21 0.07 A/G 2.42/0 G 0.26

R
2Trait QTL Chrom

SNP 

name
Dist -log10(p) Alleles MA MAF

Ear Glaucosity

Grain Nitrogen

Allele 

effects
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Table 3.3 cont. 

 

  

b)

Straw Length SL_T_1 2 H I127347 63.53 4.07 0.11 T/C -3.74/0 C 0.28

Treated SL_T_2 5 H I136777 123.08 2.69 0.07 C/T 2.42/0 T 0.32

SL_T_3 5 H A10236 181.43 3.44 0.09 A/G -4.21/0 A 0.14

SL_U_1 2 H I177375 63.50 4.57 0.11 C/T -4.87/0 T 0.28

SL_U_2 4 H I129218 92.40 3.95 0.09 A/C 3.45/0 C 0.45

SL_U_3 5 H B30975 6.40 3.45 0.08 A/C 4.63/0 C 0.11

SL_U_4 5 H I136777 123.08 2.58 0.05 C/T 2.7/0 T 0.32

SL_U_5 5 H A10236 181.43 3.31 0.07 A/G -4.9/0 A 0.14

SL_U_6 6 H A20745 28.39 2.62 0.05 C/A -2.86/0 C 0.39

SS_U_1 1 H I3336 15.74 2.82 0.06 A/C -3.26/0 C 0.23

SS_U_2 2 H A10358 59.21 4.14 0.09 C/A -4.06/0 A 0.42

SS_U_3 3 H I155763 83.23 3.34 0.07 A/G 4.25/0 G 0.18

SS_U_4 4 H A21035 113.92 2.81 0.06 A/G -3.4/0 A 0.21

SS_U_5 7 H I138111 58.57 2.55 0.05 C/G -2.94/0 G 0.28

SS_U_6 7 H I150049 104.78 3.37 0.07 T/C -3.5/0 C 0.37

Sterile StS_1 1 H A21333 59.71 3.13 0.08 G/C -0.93/0 C 0.46

Spikelets StS_2 2 H A10823 46.98 3.60 0.09 G/A 1.25/0 A 0.29

StS_3 2 H A10287 85.92 13.98 0.48 G/A 3.23/0 A 0.17

StS_4 4 H A10319 8.25 2.68 0.06 A/G 0.87/0 G 0.24

StS_5 5 H A10236 181.43 2.59 0.06 A/G -1.25/0 A 0.14

StS_6 6 H I207933 4.41 2.76 0.07 C/G 0.83/0 C 0.32

StS_7 6 H I204148 60.23 2.72 0.07 T/C -0.97/0 C 0.28

Thousand TGW_1 1 H I184784 40.99 2.64 0.06 T/C -1.86/0 T 0.44

Grain Weight TGW_2 2 H I110647 31.00 2.58 0.06 T/C 2.23/0 C 0.18

TGW_3 2 H B30042 59.21 3.32 0.08 A/G 2.54/0 G 0.20

TGW_4 4 H I160461 103.10 2.68 0.06 T/C 1.77/0 C 0.46

TGW_5 5 H A20553 2.81 3.90 0.09 A/G 2.53/0 G 0.22

VFH_1 2 H I152485 101.78 2.61 0.05 G/A 0.23/0 A 0.27

VFH_2 6 H I194036 6.07 12.50 0.35 A/C 0.55/0 C 0.35

Winter WintH_1 2 H A21261 28.44 3.01 0.06 G/A 0.12/0 A 0.19

Hardiness WintH_2 4 H I110333 65.80 2.80 0.06 T/C 0.1/0 T 0.25

WintH_3 5 H I214760 18.72 2.93 0.06 G/A 0.08/0 A 0.42

WintH_4 6 H I114351 56.48 2.84 0.06 C/T -0.1/0 T 0.32

Yield Yld_T_1 4 H I150603 48.72 2.73 0.06 G/A 0.23/0 A 0.14

Treated Yld_T_2 4 H I129218 92.40 2.89 0.06 A/C -0.17/0 C 0.44

Yld_T_3 5 H I192396 19.40 4.17 0.09 A/T -0.23/0 A 0.29

Yld_T_4 5 H I205853 86.63 2.58 0.05 T/G -0.2/0 T 0.16

Yld_T_5 6 H I115369 55.90 2.73 0.06 T/C -0.2/0 C 0.45

Yld_T_6 7 H B30380 138.17 3.28 0.07 G/A 0.19/0 G 0.42

R
2
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Hairs
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3.4 Discussion 

3.4.1 Population structure of two-row barley 

The presence of population stratification in association mapping panels results from 

divergent selection and drift observed in material originating from different geographic 

regions which can lead to incorrect associations between markers and phenotype (Price 

et al., 2010). Most panels reported in barley association mapping studies include 

varieties with differential growth habit and number of row of grains (Comadran et al., 

2009; Pasam et al., 2012; Wang et al., 2012). These traits are controlled by known 

major genes responsible for plant adaptation and evolution. Two main genes vrs1 and 

int-c are involved in the partitioning between two- and six-row barley types (Komatsuda 

et al., 2007; Ramsay et al., 2011). Despite stringent population structure correction, the 

residual effects of those genes are sufficient to be mapped and associated with 

significant marker effects. In a GWAS on two and six-row spring barley varieties, the 

most significant MAT for grains per ear and tillering were found on SNP in close 

vicinity to vrs1 and int-c (Comadran et al., 2011b). Further, in a study on spring barley 

including different row types, QTL for row type overlapped QTL TGW and grain 

proteins (Pasam et al., 2012). In winter barley, the analysis of the NUE-CROPS panel of 

two- and six-row barley varieties showed that diagnostic markers responsible for strong 

morphological division are also associated with effects on other traits such as yield and 

yield components (Thomas et al., 2013). The vernalization genes that divide spring and 

winter sown barleys have also been precisely mapped and showed associations to yield 

and yield component variation (Cockram et al., 2008; Wang et al., 2010).These 

observations suggest that despite population structure correction, residual variation due 

to structure remains effecting multiple phenotypes. Similar observations were made in a 

panel of barley varieties originating from very diverse geographical origins (Comadran 

et al., 2008). Although these earlier mapping experiments were successful in identifying 

the importance of major genes, they show that the residual structure needs to be 

accounted for when interpreting QTL results. In addition, the allele effects at 

partitioning genes (e.g. vrs-1, int-c) have limited interest when the objectives of crop 

improvement and evaluation of allelic variation of a trait are constrained to a specific 

crop type (i.e. two-row winter barley). The voluntary restriction of the panels to two-

row winter barley in this study was associated with a reduction in apparent population 

structure whilst the genetic relationship could still be captured using the genetic marker 

data. Phenotypes from the high fertilisation regimes also had the advantage of 
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quantifying the effects of allelic variation directly available to breeders and expressed 

under conventional farming practices. As expected there was little evidence of gross 

population structure in either mapping panel with lines forming a single cluster (Figure 

3.3). Moreover, the GWAS results showed that neither vrs1 nor int-c loci were 

associated with significant effects on yield components. Vrs1 was only associated with 

the sterile spikelet trait (StS_2 in NUE-CROPS mapping results). Therefore, the 

reduction of population structure in the GWAS study presented should allow for more 

precision in the investigation of the allelic variation responsible for breeding progress 

and facilitate the transfer of results to the two-row winter barley breeders. 

The initial AGOUEB and NUE-CROPS variety panels were established to capture most 

of the allelic diversity in European two-row winter barley of the last 50 years (Thomas 

et al., 2013; Waugh et al., 2009). Although our study included only two-row winter 

barley types from those panels, the population structure mainly due to pedigree 

relationships had to be accounted for in GWAS. In order to best account for population 

structure in the panels, the correction using principal components and Kinship was 

investigated. Price et al, (2006) showed that principal components (Q) summarising a 

correlation matrix between lines obtained from genotypes could account for structure in 

GWAS models. Alternatively, Kinship matrix (K) of genetic correlation between lines 

can be included in mixed models for GWAS (Zhang et al., 2010). Here, the Q-Q plots 

investigating different GWAS models suggested that both K and K+Q correction were 

the most appropriate to account for structure in the AGOUEB and NUE-CROPS two-

row winter barley panels. In addition, the simple K correction causes less reduction in 

the statistical power of the test than a more complex K+Q (Wang et al., 2012) and was 

shown to efficiently account for population structure when used in previous barley 

GWAS (Cockram et al., 2010; Pasam et al., 2012). In this study, the Kinship (K) 

correction was therefore considered adequate to account for pedigree relationships in 

both AGOUEB and NUE-CROPS panels.  

3.4.2 Association mapping reveals known genes 

The second objective of the study was the mapping of quantitative traits in the NUE 

CROP and AGOUEB panel in order to put emphasis on the genetic regions that contain 

interesting gene candidates and functional polymorphisms.  

The simple DUS traits showing Mendelian segregation were used to validate the 

methodology. They were associated with highly significant MTA. The anthocyanin 

pigmentation gene ant-2 was precisely located as the most significant marker 



102 

 

associations in both AGOUEB and NUE-CROPS (A10138) was located 10 gene models 

away from the functional polymorphism (Cockram et al., 2010). Highly significant 

MTA for sterile spikelets (A10287, 2H, 13 gene models from vrs1), aleurone colour 

(A21087, 4H) and LLHS (A10611 4H) at chromosome locations previously described 

in the GWAS of a larger panel (Cockram et al., 2010) confirm that the markers can be 

used to characterise those DUS traits in winter barley varieties. In this study, the level of 

significance of associations was found to reduce with the increased number of 

significant loci for the traits as more genes with smaller effects come into play to 

control the variation of a phenotype. The five and two QTL for heading date in NUE-

CROPS and AGOUEB respectively indicate that the trait is only moderately complex 

given the strong selection for appropriate flowering time within the winter crop. The 

genetic control of heading in barley plays a crucial role in plant adaptation to 

geographical regions and its effects on yield responses (Cuesta-Marcos et al., 2009; 

Griffiths et al., 2003; Laurie, 1997). The NUE-CROPS panel detected a strong QTL 

effect for heading date at markers positioned in the gene sequence of the Ppd-H1 

(B30871) involved in the determination of flowering time in spring barley (Laurie, 

1997; Stracke et al., 2009). The GWAS in winter barley demonstrates that the allelic 

variation at Ppd-H1 is responsible to a moderate level for differences in heading date. 

The GWAS results confirm some other QTL positions that have been detected in larger 

barley variety collections (Pasam et al., 2012). The most significant, both in terms of 

effect size and significance of MTA is a QTL on the centromere of 2H that targets a 

locus previously identified as eam6. The locus carries HvCEN, an homolog of 

Antirrhinum CENTRORADIALIS gene. That gene induces variation in heading date in 

spring barley and is responsible for divergent selection between spring and winter types 

(Comadran et al., 2012). Here, up to four days delay in heading date were detected in 

the two-row winter barley germplasm and associated with the allele A at marker 

A10191 and a stronger effect than SNP in the Ppd-H1 gene. In addition, significant 

effects for Grain number, Yld, HI, TGW, Ht, Stem Nitrogen, Grain N, GrainNYld, 

NUE, NUtEg, NUpE were mapped in the same region with strong overlap of support 

intervals. With such a range of traits mapped at that cluster, the locus is a major 

contributor in the genetic variation of most traits in winter barley which can suggest a 

role in plant adaptation and fitness to geographical regions. Unlike vrs1 and int-c which 

cause major ear morphology changes and fundamental subpopulation division (two-row 

vs six-row barley), HvCEN is involved in the control of plant phenology and the barley 

SNP B30265 was found to be segregating with the early and late alleles (Comadran et 
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al., 2012) When mapped on the genetic diversity of the winter barley panels of NUE-

CROPS and AGOUEB, the alleles of B30265 reveal a cluster of varieties carrying the 

early allele within the overall winter barley diversity (Appendix 3. 8). It can be 

suspected that the two alleles are maintained in the winter barley germplasm as a result 

of selection over variable years and provide optimal adaptation for the range of seasons 

and environments. Nevertheless, the inclusion of a co-factor representing the SNP 

alleles in a GWAS can help to account for structure linked to phenology provide 

additional insight on the detection of smaller effects (Alqudah et al., 2014). Other NUE-

CROPS heading date QTL were associated with known vernalization and photoperiod 

genes. Hd_2 SNP A21384 on 1H at 135.5cM (homologous to Os05g50800) mapped 

close to the HvFT3 (Ppd-H2) locus proposed to be syntenic to Os05g44180 (Faure et al., 

2007). Hd_5 SNP B30867 at 136.4cM (Os03g54084) is eight gene models away from 

vrn-H1 gene (Os03g54160) on 5HL (Szucs et al., 2007). However, other QTL such as 

the NUE-CROPS QTL Hd_1 on 1H have the potential to provide novel sources of 

variation in the control heading date. While many associations remain to be validated, 

the study clearly identified a number of marker effects associated with genes known to 

be involved in the genetic control of the highly heritable traits. 

3.4.3 GWAS of yield and yield components 

Because yield is the product of yield components, its genetic architecture is expected to 

be characterised by higher genetic complexity resulting from a large number genes with 

small effects. The AGOUEB and NUE-CROPS GWAS detected five and nine QTL for 

yield respectively with rather low levels of significance and r
2
 values suggesting that a 

number of lower effects were not detected at the threshold of the GWAS. The statistical 

power of the investigation can relate to different parameters such as the panel 

composition and size, the amount of recombination, the phenotyping protocols and 

heritabilities of the traits (Ingvarsson and Street, 2011). Pasam et al. (2012) reported 

that the sensitivity and strength of the model used for structure corrected GWAS can 

also affect the level of detection. Also the effects of major gene involved partitioning 

the population can affect the power of detection of QTL with smaller effects (Alqudah 

et al., 2014). In addition, in both NUE-CROPS and AGOUEB studies, a large 

proportion of the trait’s variance was accounted for by the model for GxE interactions. 

In NUE-CROPS, the BLUPS were computed from 5 site and year environments 

(Thomas et al., 2013). Therefore the genetic variation captured in the BLUPs and used 

for the GWAS only summarises consistent main effects and the statistical approaches 
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used did not investigate epistatic interactions and GxE QTL effects. This may also 

explain the absence of significant effects at the Ppd-H1 locus in AGOUEB. Therefore, 

the genetic clustering of the effects for correlated phenotypes independently measured 

(e.g yield components) can bring additional confirmation and help in the interpretation 

for these types of less prominent associations. Other alternatives such as genomic 

selection can be envisaged to exploit the genetic resources for improving complex traits 

by seeking to include the small effects to be able to make useful predictions of the 

phenotype from the genotype (Bernardo and Yu, 2007; Jannink et al., 2010). 

Plant adaptation to the environment is critical in order to maximise yield. The 

interactions of the yield responses with environment have been partly described by QTL 

studies which identified polymorphic genes responsible for plant adaptation that 

maximise yield in different environments (Comadran et al., 2012; Snape et al., 2007). 

For example, the vernalization genes responsible for phenology differences have been 

identified as candidate genes for yield QTL in barley (Cuesta-Marcos et al., 2009). In 

the multi-site BLUP of the NUE-CROPS study, the effects of such genes were averaged 

out across the GxE components leaving only a small overall genetic effect to be 

mapped. Therefore the QTL from the NUE-CROPS capture genetic effects responsible 

for the genetic variation across the whole range of environments encountered in the five 

sites of the study. A highly significant yield QTL was mapped in AGOUEB on 

chromosome 5HS (I192396) that appears to co-localise with a winter hardiness and a 

UPOV QTL in NUE-CROPS. Interestingly, other QTL for yield Yld_5 on 5H and 

Yld_7 on 6H also overlapped with UPOV QTL. This trait captures alleles at markers 

under differential selection over time, and whilst it can relate to the mapping of the 

breeding progress, UPOV QTL may help in interpreting the traits and effects retained 

by selection. This initial observation on the co-mapping of QTL gives an insight on the 

complexity to consider for the biological interpretation of yield QTL so that they can be 

used effectively in yield improvement. 

 

Although the trait of grains per ear was only mapped in the NUE-CROPS panel, a 

noticeable MTA in the region of eam6 makes that candidate gene a primary target for 

the yield component. Polymorphism in the Cen gene family has been shown to affect 

the fate of terminal floral meristem in a range of species by regulating inflorescence 

development and the flowering time (Cremer et al., 2001; Foucher et al., 2003; Zhang et 

al., 2005). The barley homologue HvCEN was shown to be associated with heading 

date differences and the three major haplotypes are segregating in a winter barley 
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collection (Comadran et al., 2012). The NUE-CROPS findings confirm that both 

heading data and grains are controlled by HvCEN. In the NUE-CROPS panel, three 

main haplotypes at HvCEN (eam6) locus (2H centromere, 63 cM) were observed while 

segregating with a quasi-equal frequency within the only two haplotypes Ppd-H1 gene. 

Such observations suggest that both mechanisms of earliness control are being 

maintained in the winter barley population while only the late alleles at the genetic 

factor at eam6 may give an increase the number of grains per ear. On similar grounds, 

the second QTL for grains on 6H is located in a region homologue to rice chromosome 

2 where the most significant barley SNP (I138716) is close to a barley gene homologue 

to rice gene OsGRF1 (LOC_Os02g53690) a plant growth regulating factor involved in 

regulating vegetative growth in rice (Choi et al., 2004). The barley homologue may be a 

candidate gene to investigate for a potential role in the control of ear elongation and 

increase in the grain number per ear through the control of inflorescence architecture as 

indicated by the co-localisation of the sterile spikelets QTL StS_5. 

 

Increasing the number of sink organs per meter square by achieving a higher number of 

fertile tillers per plant is also a breeding strategy for increased yield. The ability of the 

plant to tiller is set in the early stages of development, when axillary meristems are 

being developed. Later, around GS31, developmental processes determine which of 

these tillers are converted into fertile ears (Sreenivasulu and Schnurbusch, 2012). The 

correlation between genetic pathways involved in the control of branching and tillering 

between species has been generally established (Kebrom et al., 2013). In barley, 

tillering mutant phenotypes have been used to describe the genes als and lnt1 on 3HL 

(Dabbert et al., 2009; Dabbert et al., 2010). The barley cul2 gene is involved in the 

control of inflorescence development and the transformation of axillary meristem into 

tillers (Babb and Muehlbauer, 2003). It has now been located in the centromeric region 

of 6H where unfortunately the level of recombination was insufficient to enable the 

gene to be cloned (Okagaki et al., 2013). Despite the low significance levels of the 

MAT for tillering found in the NUE-CROPS panel, the three independent methods of 

measuring tillering (see 3.2.1) identified a couple of convincing QTL on 4HL (Stems_2, 

Till.GS_1, Till.Yld_2) and 5HS (Stems_3, Till.GS_2, Till.Yld_3). The independent 

phenotype measurements give additional support to the validity of the genetic effects 

found. The tillering QTL locus on 4HL corresponds to a QTL for final tillering found 

on 4HL at 61.5cM in a bi-parental study by Borràs-Gelonch (2011). A significant MTA 

for tiller number was found 12cM away (A11500) from the Stems_2 best marker 
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I129218 that was also associated with a tillering QTL in a spring barley GWAS (Long 

et al., 2013). The corresponding rice chromosome region to this QTL cluster on 4HL is 

located on chromosome 3 in a region dense in genes and will require further 

investigation to identify candidate genes. The tillering QTL cluster on 5HS was also 

detected previously, associated with effects on harvest index and tillering (Comadran et 

al., 2011b). However, no previous QTL mapping results were found to support the 

tillering QTL on 7H. The candidate on 4H (Table 3.2) is the most robust tillering 

candidate identified in this two-row barley panel and offers a potential target for MAS 

and gene cloning. 

 

TGW is the resultant of many factors occurring during grain fill. It is the last yield 

component to develop, following tillering and the construction of the number of grains 

per ear (Sreenivasulu and Schnurbusch, 2012). These predetermine the potential sink 

size by setting the available grains per meter square (Bingham et al., 2007b). QTL for 

TGW have previously been mapped in bi-parental populations of two-row barley 

(Bezant et al., 1997; Tinker et al., 1996). Advanced backcross studies have shown that 

QTL for TGW often co-map with yield and other yield component QTL (von Korff et 

al., 2006) and were affected by environment and nitrogen interactions (Saal et al., 

2011). Research on the effects of introgressions from the wild H. v. spontaneum showed 

that the majority of exotic alleles reduced TGW (Li et al., 2005; Schmalenbach et al., 

2009; von Korff et al., 2006) suggesting that positive alleles and epistatic interactions 

have been selected and maintained in elite germplasm. The changes in spike 

morphology form another mechanism affecting the potential sink size of plant with 

strong effects on TGW (Pasam et al., 2012) although there relevance for crop 

improvement may be limited due to their association to different crop types. Comadran 

et al., (2011b) detected three QTL for TGW, two of which associated with genes 

controlling two/six-row spike morphology (vrs1 and int-c). The third QTL was 

confirmed by this study with a major effect at 58 cM on chromosome 2H (TGW_5 and 

TGW-GS_6). Although in the centromeric region of 2H, the close proximity to heading 

date QTL indicates that HvCEN is a plausible candidate gene for this effect. This can be 

associated with changes in the length of the construction phase and thus grains number 

in the ear affect the grain size (see Alqudah et al., 2014). At that stage, the variation 

cannot be attributed to a change of the sink size (ear) or plant adaptation (phenology). 

The independent measure of TGW gave higher confidence in the QTL detected as six 

QTL were confirmed by the two phenotypic scorings and co-mapped with other 
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agronomic traits. For example, the MTA on 5HS (TGW_8) coincided with a tillering 

QTL previously described (Comadran et al., 2011b) supporting the negative correlation 

between the two traits and the hypothesis that increased sink size via tillering at that 

locus penalises TGW. This biological interpretation should be borne in consideration 

when hypothesising the syntenic correspondence of candidate gene for that QTL with 

genes on rice chromosome 12. Here, the biological complexity and plasticity of TGW in 

two-row barley is revealed at the genetic level. Although interaction effects cannot be 

resolved, it becomes apparent that to fully understand the genetic architecture of TGW, 

it is required not only to have prior knowledge on the traits that contribute to its 

variation but also on the genetic architecture of those same traits. 

 

The QTL results from GWAS in AGOUEB and NUE-CROPS panel offer an 

opportunity to delve into the genetic architecture of agronomic traits of interest. 

Optimising the population structure correction has enabled the detection of important 

QTL for agronomic traits. Whilst some traits suggest simple genetic control such as 

grains per ear, the widespread genetic factors associated to TGW and other traits like 

yield means they remain highly complex and partially understood. Therefore, in order to 

use these QTL results in germplasm improvement using MAS, a biological 

interpretation of each QTL is necessary to distinguish favourable from unfavourable 

alleles and understand the function of potential candidate genes. An in-depth 

interpretation of selected candidate regions is the subject of Chapter 4 in which the 

comparison of the previous mapping studies will be presented. 
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Chapter 4  

Integration of QTL studies to target candidate genes 

4.1 Introduction 

QTL discovery has become a routine procedure to understand the genetic architecture of 

quantitative traits in barley (Cuesta-Marcos et al., 2009; Xue et al., 2010). These type of 

studies represent a necessary step to promote the efficient use of genomic information 

into breeding of improved varieties by the deployment of MAS (Rae et al., 2007). A 

range of QTL mapping methods have been proposed and developed along with the 

continuously developing technology (Bernardo, 2008). In Chapter 2, a bi-parental DH 

population of a cross between two elite lines Saffron and Retriever was used to map 

QTL for relevant agronomic traits. QTL for yield and yield components were found on 

most of the chromosomes and their location revealed that 23 regions were carrying 

genetic factors having effects on at least one trait. Particular attention was drawn to a 

region of chromosome 2HS at which highly significant QTL for the main effects of the 

yield components: tillering and TGW were detected. In that region, the Ppd-H1 gene 

involved in the control of heading date in barley (Laurie, 1997) was proposed as a 

candidate gene. However it was pointed out that further investigation and validation was 

required owing to the absence of effects on heading at that locus in the DH population.  

In Chapter 3, GWAS were conducted on the two-row winter barley varieties panels 

from a subset of NUE-CROPS (Thomas et al., 2013) and AGOUEB projects (Waugh et 

al., 2009). The GWAS approach offers improved resolution compared to bi-parental 

QTL mapping by exploiting the linkage disequilibrium between genetic markers 

segregating in panels of varieties (Gupta et al., 2005; Waugh et al., 2009). QTL for 

agronomic traits were found on all chromosomes in both panels, some of them showing 

consistent effects across studies. Amongst the strongest associations, the DUS traits of 

anthocyanin and aleurone
3

 colour captured with a remarkable precision the 

chromosomes regions known to carry the functional polymorphisms (Cockram et al., 

2010). A large number of traits had a significant association with a marker close to the 

centromere of 2H, in a region known to be associated with variation in heading date 

(Comadran et al., 2012). Generally, the complex traits such as yield and TGW also had 

large number of QTL detected with lower significance also associated to lower effects 

                                                 
3
 The gene controlling aleurone colour has not yet been cloned (Luke Ramsay pers. comm.) 
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and proportion of the genetic variation accounted for (r
2
). This illustrates the complexity 

of the traits, resulting from multiple gene effects and interactions. 

 

Despite an appreciable literature on barley QTL for yield and yield components, rather 

limited applications have been developed by the breeding industry (Bernardo, 2008; 

Rae et al., 2007). This reluctance to deploy MAS originates from the need for 

confidence in the presence and consistency of QTL effects, often obtained by QTL 

validation stages (Collard and Mackill, 2008). Therefore comparison of several 

independent studies may be a way to ascertain the true effect of the QTL. However this 

step may encounter difficulties because of differences in genotyping technology (i.e. 

different types of genetic markers or genotyping arrays) as well as varied experimental 

design and objectives in the published mapping studies. The Meta-QTL approach has 

been proposed to identify QTL of main effect from multiple mapping experiments and 

was applied to grass species using 15 mapping populations (Swamy et al., 2011). 

Although only three mapping experiments have been carried out in this study, similar 

principle can be applied to enhance the identification of consensus QTL. Indeed, bi-

parental population mapping gives high confidence that an effect is segregating but has 

limited resolution whereas GWAS can deliver high resolution at the expense of risks for 

false positive. The integration of QTL results from these different mapping approaches 

by alignment based on common genetic markers should enable a primary validation of 

the effects of genetic factors and their position. 

 

Popularised in the early 1990’s, comparative genomics applied to grass species has 

become a powerful tool to understand genetic resources in species with large genomes 

(Gale and Devos, 1998). The approach uses the genomic similarities between different 

species based on gene-based marker and sequencing data to define co-linearity or 

synteny between the genomes (Feuillet and Keller, 2002). Major chromosome 

rearrangements are frequent between grass species (Gale and Devos, 1998) and are the 

results of plant and genome evolution (Bennetzen and Chen, 2008). In the case of barley 

(H.vulgare), the many comparative studies involve rice (Oryza sativa) for which the 

genome has been fully sequenced and many genes characterised. Five of the barley 

chromosomes show large scale homology with more than one rice chromosome and 

two: 3H and 6H show good co-linearity with single rice chromosomes (rice 1 and rice 2 

respectively) (Mayer et al., 2011). The good genome homology of barley with rice and 

Brachipodium (Brachypodium distachyon) was also made from the flanking DNA 
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sequence of the SNPs contained in the Iselect 9K platform (Close et al., 2009). The 

resulting micro-co-linearity observed in small genome segments can subsequently be 

converted into more local analysis of the gene functions and evolution (Bennetzen and 

Chen, 2008) and used to enhance the connection of research results across several 

species in order to develop a candidate gene hypothesis (Swamy et al., 2011). Therefore 

the greater the resolution achieved by QTL mapping studies, the easier it is to focus on a 

small and manageable range of candidate genes homologous with other species and 

target the functional polymorphism. 

 

This chapter follows on the QTL mapping experiments from Chapter 2 and Chapter 3 

using both mapping experiments results to aim at the validation of QTL. The project 

will test the hypothesis that consistency and interpretation of agronomic QTL is 

achievable from a limited number of mapping studies which include a large number of 

traits. The possibility to obtain relevant candidate genes from mapping comparison and 

comparative genetics will be explored. The framework of the chapter is therefore 

defined by the following objectives: 1) to integrate the QTL results on a consensus map 

and identify consistent QTL effects across studies, 2) to characterise the complexity 

associated with identifying alleles associated with the control of agronomic traits as 

potential target in a MAS approach 3) to use comparative genomics with the rice 

genome to propose relevant candidate genes for loci of interest. 

4.2 Material and Methods 

4.2.1 QTL resources from association mapping and bi-parental studies 

NUE-CROPs 

The QTL mapping results of the NUE-CROPS two-row winter barley panel were 

sourced from Table 3.2 (page 93). For each of the QTL, the standard support intervals 

used the 5cM and 10cM distances from the most significant markers position. Any 

marker with a different map position but with identical allelic pattern within the panel 

(identical significance level in GWAS) was also interpreted as the most significant 

marker for the QTL, which can in some cases generate larger support intervals. Details 

on QTL associated with multiple SNP of similar allelic pattern but different map 

positions can be found in Appendix 3. 6.  
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In order to investigate the marker haplotype signature at the QTL locations, the size and 

direction of marker effects and their level of significance across the range of different 

traits were analysed. For the NUE-CROPS phenotypes, the results correspond to the 

tests of association from Tassel-MLM_K GWAS scans presented in Chapter 3 and 

available as Supplementary data 2. 

AGOUEB 

The QTL results for the two-row winter barley panel of AGOUEB were sourced from 

Table 3.3 (page 98). Similar to the NUE-CROPS dataset, standard support interval for 

each QTL were set at 5cM and 10cM from the most significant markers position. The 

list of the QTL mapped to several peak SNPs of similar allelic pattern but different map 

positions can be found in Appendix 3. 7. To compare marker effect across traits and 

haplotype signature, the size and direction of marker effects and level of significance 

were obtained from the AGOUEB Tassel-MLM_K GWAS scans. 

The bi-parental Saffron × Retriever DH population 

The QTL mapping results from the DH population Saffron × Retriever presented in 

Chapter 2 provide an additional dataset where significant genetic factors involved in the 

control of yield and yield components have been described. For the purposes of this 

chapter, each trait was considered once (e.g. only the TGW QTL from the QTL × 

Environment analysis using three sites Fowl09, Eld09 and Fowl12 are presented). The 

QTL information for traits measured exclusively in 2009 and 2012 were sourced from 

Table 2.6 and Table 2.7 respectively and QTL information for the traits measured on 

both years was obtained from Table 2.8 (see 2.3.3 page 59). Those specific QTL results 

were also presented in Figure 2.2. 

4.2.2 Integration of QTL on multiple SNP map 

The SNP map distances of the 9K iselect SNP chip used for GWAS scans in Chapter 2 

were used as reference to integrate the QTL from the three mapping studies on a 

common genetic map. The 9K SNP distances are based on LD mapping of each 

individual SNP and have been kindly provided by the JHI in the context of NUE-

CROPS project. The markers comprised in genotyping platforms BOPA1, BOPA2 and 

specific to 9K Illumina chip were identified by the prefix letter A, B and I respectively. 

The QTL from GWAS of NUE-CROPS and AGOUEB GWAS were positioned along 

the chromosomes based on peak marker positions and a standard support interval as 

described in 4.2.1. For each QTL of the bi-parental population, common SNP markers 
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between 9K Illumina array and BOPA1 were used as anchorage positions for the QTL 

and their support interval to give a realistic representation of the mapping resolution 

obtained in Chapter 2. Therefore, all 9K SNP (A, B and I) comprised in the bins of a 

BOPA1 marker that were mapped in a S×R QTL support interval were included in the 

adjusted support interval. This protocol was carried out to identify the 9K SNP markers 

corresponding to the decrease in magnitude of 1 LOD and 2 LOD scores from the QTL 

peak in the S×R dataset. 

4.2.3 Synteny relationships 

The genome co-linearity between the rice (O. sativa) and barley (H.vulgare) species 

was exploited to investigate putative candidate genes at the barley QTL position (Mayer 

et al., 2009). For each of the barley SNPs, the corresponding rice locus was obtained 

from the genome zipper available at http://mips.helmholtz-

muenchen.de/plant/barley/gz/index.jsp. The detailed genome zipper for the SNP 

markers used in GWAS of NUE-CROPs and AGOUEB is presented in Supplementary 

data 1. 

First, the pattern of significance of GWAS scans was analysed at each QTL cluster of 

interest by plotting the –log10(p) for barley SNP ordered by their homologous rice locus 

position. The patterns of significance enabled to define short chromosome segment 

bracketed by the most significant SNP. The homologous rice loci were then to identify 

and bracket a segment of the rice chromosome with putative rice gene models in 

physical order. The list of putative rice genes was screened for a preliminary 

identification of putative homologous candidate genes at the most relevant barley QTL 

clusters (http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/). 

4.3 Results 

4.3.1 Integrated QTL locations for three mapping experiments 

To visualise simultaneously QTL results from the three mapping experiments, a 

graphical display reporting their support interval along the chromosomes is presented in  

Figure 4.1. This offers the possibility to inspect on a chromosome basis the genetic 

regions associated with QTL for several traits rather than focusing on QTL for 

individual traits. The approach facilitates the biological interpretation of putative 

genetic factors underlying the clusters. The correspondence of the different 

http://mips.helmholtz-muenchen.de/plant/barley/gz/index.jsp
http://mips.helmholtz-muenchen.de/plant/barley/gz/index.jsp
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abbreviations used for the phenotypes analysed in previous chapter are mentioned in 

footnotes page 75 and 77. 

 

The distal region of chromosome 1HS (Figure 4.1a) shows the co-localisation of TGW 

and tillering and heading date QTL in the NUE-CROPS. This region contains also 

significant effects for QTL of S×R on straw traits and mildew susceptibility which do 

not appear to be correspond to any of the traits mapped in both AM panels. However the 

straw strength QTL in AGOUEB could potentially relate to stem number (Stems_1) and 

straw collapse (SC.1_1). Ear glaucosity (EAR-G_1) also associates with the narrow 

QTL cluster of S×R containing effect for straw health and the very highly significant 

S×R QTL for ear glaucosity: E_Glau.1. These results confirmed across mapping studies 

strongly suggest the presence of a gene controlling leaf wax deposition and an 

associated effect on disease susceptibility. For the rest of chromosome 1H, the co-

localisation between QTL from the different studies is rather limited; AGOUEB 

TGW_1 overlaps with a TGW effect of NUE (TGW_2); the quality trait HWE 

associates with TGW_3 and Hd_2 of NUE-CROPS. The yield derived traits NUE and 

GNYld also map at the same position in NUE-CROPS but do not seem to be associated 

with heading date or height in any of the mapping experiments. 

 

Chromosome 2H contains numerous QTL from NUE-CROPS and AGOUEB (Table 3.2 

Table 3.3) as well as S×R QTL with large effects (Chapter 2). The locations of QTL 

from NUE-CROPS suggest that at least five distinct chromosome regions are involved 

in the genetic control of the traits analysed and are mirrored by AGOUEB QTL 

positions. As expected, both QTL Antho_2 and StS_2 perfectly align with their 

causative genes ant-2 and vrs-1 which provides some validation of the analysis 

protocols used in both association panels. On 2HS, significant effect for TGW 

(TGW_4) and HWE (HWE_3) are found together in a chromosome segment 

monomorphic between Saffron and Retriever (precluding verification from this study as 

well). The main effect for the S×R TGW QTL on 2HS (Chapter 2) is reinforced by 

significant effects for TGW in both AGOUEB and NUE-CROPS but unlike the bi-

parental mapping results no tillering QTL were found at that QTL cluster in the GWAS. 

This region located at around 27cM has been shown to be carrying the photoperiod gene 

Ppd-H1, at the exact same position where the highly significant NUE-CROPS Hd_3 

QTL was reported. Although the QTL for heading date and TGW overlap, the 

comparison of experiments does not provide sufficient evidence in itself to confirm that 
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Ppd-H1 is the gene responsible for the TGW effects mapped but encourage additional 

investigation on the markers within that region. A considerable numbers of associations 

of QTL were found around 60cM both association mapping panels (Figure 4.1b) and in 

a region that was previously related to the flowering time locus eam6 (Chapter 2). This 

cluster contains QTL for yield and yield components, especially the strongest effects for 

grain number (Grains_1), as well as phenology and nitrogen metabolism related traits. 

In the NUE-CROPS experiment, two slightly distinct QTL clusters seem to be present 

despite overlapping support intervals. Those can be divided into a cluster containing 

NUE-CROPS Yld_3 from a cluster containing Grains_1. It suggests that correlations 

between traits and haplotypes could have generated these different clustering positions. 

Indeed, the direct relationship and correlation between traits like Yld and GNYld or 

GrainN and NUtEg (Appendix 3. 4) suggest the effect of a unique underlying major 

gene. Marker haplotypes analysis may give additional information in that region. More 

strikingly, the clusters of QTL associated to genetic factors 5 and 6 on 2HL in the S×R 

experiment (Table 2.9) did not correspond to any significant marker effects found in the 

GWAS. These S×R clusters were the basis of considerable interest in Chapter 2 where 

GP.3_2 and SC.1_2 QTL were precisely mapped with high significance and close to 

independent tillering effects. In the NUE-CROPS variety panel, the Retriever haplotype 

for the SNPs mapped at 150.7 cM which include the best marker for GP.3_2 (A10791) 

is only shared by 16 varieties. In a wider chromosome segment, the Retriever haplotype 

described by the 9K chip SNP mapped between 100.4 to 150.7 cM (Supplementary data 

1) and corresponding to the S×R genetic factors 5 and 6 ( Table 2.9) is unique within 

the NUE-CROPs variety panel. Therefore the absence of comparable effects between 

the biparental mapping and association mapping is likely to be due to novel effects 

found exclusively for the alleles carried by Retriever which in very low frequency in 

association mapping panel. This integration and comparison of QTL results shows 

benefits in enabling the detection of QTL effects of different magnitude and associated 

with haplotype of variable frequencies. These can provide additional insight in the 

genetic control of traits. 
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Figure 4.1 Integrated QTL results from NUE-CROPS, AGOUEB and S×R studies 

Diagram of representation of QTL mapped in bi-parental (Chapter 2) and association mapping 

studies (Chapter 2) on the seven chromosomes of barley (figs a-g). The QTL from the 

NUE-CROPS and AGOUEB two-row winter barley panels are presented in green and brown 

respectively. QTL of the bi-parental mapping experiment have been represented and correspond 

to results Chapter 2. Increasing allele effects from Saffron or Retriever are indicated in blue or 

red respectively while hatched QTL indicate significant QTL x Environment interaction. Only 

the polymorphic markers in the population S×R and known genes are presented at their 9K map 

position. Additional horizontal lines on chromosomes indicate markers used in association 

mapping. 
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Figure 4.1 cont  
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Figure 4.1 cont 
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Unlike genetic factors of 2H, the significant effects mapped on 3H are sparse and 

involved in fewer numbers of traits. Harvest index is associated with two of the QTL for 

NUE and shows strong overlap with GNYld_4. These traits are intimately related as HI 

is strongly correlated to yield and the derived traits NUE and GNYld. Interestingly, the 

straw strength QTL SS_U_3 in AGOUEB associates with a QTL for height (Ht_4) in 

NUE. Although no height QTL was directly associated with SS at that position in 

AGOUEB, the two effects could relate to a common genetic factor. The S×R QTL have 

on that chromosome low correspondence with AM results. The two genetic factors 

previously identified on 3HL in S×R map bins 10 and 11 (Table 2.9) overlap slightly 

with QTL from NUE-CROPS but none of the traits correspond. The NUtEt_2 QTL 

overlaps with significant effects found at Yld.2_1 and TGW-GS-3_3 in S×R suggesting 

that the Saffron haplotype is able to better utilise available nitrogen for the production 

of bigger grains and more yield. However neither yield nor TGW was significantly 

mapped together with the NUtEt_2 QTL in both AM panels. 

 

On 4H, the distribution of QTL along the genome differs between studies. Three regions 

are clearly identifiable in the NUE-CROPS study whereas the support intervals of 

significant effects mapped in AGOUEB encompass nearly the entire chromosome 4H. 

The region containing the major gene int-c associates with a tillering QTL in NUE-

CROPS only and not with effects on the grain characteristics. The gene int-c is 

functional in the determination of the two-row v. six-row characterisation (Ramsay et 

al., 2011), though the specifically design two-row barley panel studied here suggest that 

another candidate should be responsible for tillering effect. Around 54 cM, a cluster of 

QTL containing TGW_7, Ht_5, GNYld_5 and UPOV_3 is co-locating with Yld_T_1 of 

AGOUEB and disease QTL from S×R population. Although a direct relationship 

between the traits cannot be established at this position with the current data, the treated 

yield effect (Yld_T_1) may well be linked to the presence of disease 

resistance/susceptibility alleles. However only the AGOUEB Net-blotch disease QTL 

NB(U)_2 was co-located with this cluster and none of the brown rust or mildew QTL 

found in S×R were confirmed. Changes in allele frequency throughout the years of 

release can also be expected given the UPOV_3 QTL, although the pericentromeric 

region means that multiple genes may be driving this change. Additionally, variation in 

yield and TGW can also be linked to the differences in height of the plant (Ht_5). A 

notable second cluster of QTL at 96cM in NUE-CROPS and AGOUEB associates the 

yield QTL (Yld_4; Yld_T_2) with tillering, TGW and nitrogen related traits. Here the 
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three independent measures of tillering used in the NUE-CROPS mapping have 

substantial effects and are captured in a common location. Their association to QTL for 

yield and NUE gives this locus a high interest for understanding the genetic control of 

tillering and its impact on yield in two-row barley. Therefore further investigation is 

necessary to describe the genetic polymorphisms underpinning the effects on several 

traits at that locus. Despite a slight overlap of the S×R QTL in this position, there is 

little evidence for correspondence between the mapping results. 
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On chromosome 5H, highly monomorphic in S×R, two genetic factors located on the 

short arm co-locate with more than five traits measured in the NUE-CROPS. In the first 

10cM of the chromosome, significant effects for tillering and TGW were mapped in the 

AM panels. Variation in these traits may affect nitrogen related traits at NUpE_2, 

GNYld_6 and GrainN_4. The S×R Mil.1_4 QTL on 5HS was validated by the most 

significant mildew resistance QTL mild-(U)_2 detected in AGOUEB with a LOD score 

above 5. It suggests a strong resistance locus segregating in two-row winter barley. This 

QTL could relate to the mildew resistance effect recently reported in an Australian bi-

parental cross that maps closely to the leaf rust Rph20 locus (Hickey et al., 2012). 

Another well-defined cluster in the centromeric region shows significant effects for 

yield and nitrogen related traits. Mostly derived from the yield (Yld_5) and the nitrogen 

content figures, the strong correlation of the traits mapped at this cluster (Appendix 3. 

4) can explain part of the co-location and strongly suggests the presence of an attractive 

genetic factor for yield improvement. On the long arm, Yld_T_4 co-locates with Yld_6 

and NUE_9 of NUE-CROPS in an additional region of interest. In the remainder of 

5HL the QTL are spread out with QTL co-location between mapping studies only found 

between different traits. For example, the vernalization gene vrn-H1 (Szucs et al., 2007) 

associated with effects on heading date (Hd_5) and tillering (Stems_4) in NUE-CROPS 

was not detected in the AGOUEB panel. This may be due to differences in the 

phenotype data between the two panels suggesting that concurrently assessed phenotype 

is more accurate than the BLUP fitted data put together across seasons. In a more distal 

position on 5HL, AGOUEB straw length effects correspond to NUtEt_4 whereas the 

height QTL of NUE-CROPS (Ht_6; Ht_7) were mapped on 5HS. From the S×R results, 

only the mildew QTL was mirrored by AM results. No supporting evidence was found 

for the QTL cluster containing EE.3_2 which was considered as spurious in Chapter 2. 

 

Three distinct regions are associated with QTL clusters on 6H in NUE-CROPS. 

Significant effects in the centromere are found in common with AGOUEB, namely for 

yield (Yld_7; Yld_T_5). This cluster underlines once again the correlation between 

yield and its derived traits. Here, the winter hardiness effect (WintH_4) may be directly 

linked with the nitrogen economy of the plant and determinant for yield in the early 

stages of plant establishment. It is also notable that UPOV_7 was mapped in that region 

and can relate to a locus capturing yield improvement over years. As observed in 

chromosomes 1H 2H, 4H and 5H, QTL for StS of low significance were also found on 

6H where no ear-row number genes have been described which could potentially 
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indicate that residual variation associated with the newer varieties with deficiens 

character is not accounted for by the structure correction. Interestingly, the straw 

collapse QTL (SC.1_3) is overlapping a QTL for straw length while SD.1_3 and 

SG.1_3 are covering support intervals of markers significant for disease susceptibility, 

in particular net blotch (Table 3.3b). As observed on 2H, QTL co-location for grain 

number and height mapped on 6H at around 81cM suggests the existence of common 

genetic control for the two traits, possibly related to the control of meristem 

development (3.4.3). Finally on 6HS, the polymorphism for VFH trait is present in the 

panel due to recently released varieties (e.g. Saffron, B99, B100) which could explain 

its co-location with UPOV_6 although the trait in itself is of very little interest for 

varietal improvement. 

 

On 7HS, the two main associations of QTL concern yield and nitrogen related traits 

(Figure 4.1) which have been shown to be strongly correlated and frequently co-located 

on other chromosomes. The vernalization locus vrnH3 is co-located with a group of 

NUE-CROPS QTL and a tillering effect in S×R (Til.cal.2_2). This locus however was 

found to be monomorphic between Saffron and Retriever (Figure 2.2). On the 

remainder of 7H, QTL from the three studies do not match each other’s location. 

Despite a little overlap for some support intervals, there is no specific segment of the 

chromosome that can be confidently described as a strong candidate region for 

selection. 

 

The several associations of QTL within and between mapping experiments illustrated 

by Figure 4.1 suggest that convincing genetic factors can be targeted for further 

validation to get a better handle on the genetics of the traits. A striking example of 

multiple associations can be found on 2H at the eam6 locus where both NUE-CROPS 

and AGOUEB have strong effects mapped (See 3.4.3). Association between 

significantly correlated traits were also frequently observed such as yield and NUE 

traits, sometimes in clusters with QTL for the year of release as well. The two grain 

number QTL were found associated with height QTL in NUE-CROPS GWAS. 

Remarkably, the QTL from the bi-parental mapping were rarely found in the regions of 

major clusters but often in association with QTL of minor effects.  

Specific genetic factors are of interest for breeding either for of their significance level 

or for the number of traits involved in the cluster. A tillering effect was clearly 

identified on 4HL and the S×R TGW effect on 2H was partly confirmed in AM. 
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Multiple traits mapped over the eam6 locus underline its major influence in plant 

development. However, the conservative approach taken by defining a standard support 

interval for displaying GWAS QTL emphasises the difficulty in resolving the precise 

genetic origin of the effect. These QTL regions of interest could as well encompass 

several putative causal genes or a single functional polymorphism with pleiotropic 

effects. To investigate further these genetic factors, it is necessary to look at the 

direction and size of the effects as well as the pattern of association with the different 

alleles of the markers. 

4.3.2 Marker effects at QTL cluster position. 

Within a cluster of QTL, the marker effects defined by magnitude and allelic direction 

can help to give a more detailed interpretation of the overall effect of genetic factors and 

to potentially characterise underlying candidate genes. No specific line of the AM panel 

was identified as a reference genotype so that the direction of marker effects were based 

on allele frequency in the panel considered. If a particular polymorphism has pleiotropic 

effects or simply associates with correlated traits, the direction of effects at QTL of 

those traits should be reflected by the same significant alleles. In other words, the 

similar pattern of significance should be visible across a set of SNP for traits under a 

similar genetic control. A summary of the effects of best marker for yield and yield 

components QTL in NUE-CROPS is presented in Table 4.1 and similar information for 

all traits mapped NUE-CROPS and AGOUEB is reported in Appendix 4. 1. 

On 4HL, a convincing genetic factor was detected with significant QTL for yield, 

tillering and nitrogen related traits (Figure 4.1d). The best marker A20732 for Till.GS_1 

had an increasing tillering effect given by the allele G associated with significant effects 

on NUE and NUtEg and reduced GrainN (Table 4.1). Yld_4 which is also part of the 

same cluster has identical effect direction to Till.GS_1 across the rest of the traits but 

has a different best marker I182626. However alleles at this marker are not significantly 

associated with tillering under the QTL detection threshold. Interestingly most of the 

QTL at that location have a similar allele for their positive effects which is encouraging 

for selection in the case of positive correlation between them. Additional information 

was obtained in exploiting the synteny of the 9K markers based on unigenes to the rice 

gen genome (Figure 4.2b). 

The largest group of QTL was found in the centromere region of 2H and included the 

strongest effect for grain number (Grains_1) as well as strong heading date, yield and 

yield component effects. Allele T of A20862 at Grains_1 is associated with a reduction 
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of three grains per ear, significantly reduces Hd, Ht, NutEg and increases GrainN (Table 

4.1). Additional non-significant positive effects are seen for that allele on TGW and 

tillering. As they are closely linked and within overlapping support intervals, the 

significant marker effects of Yld_3 (I10398), TGW_5 (A10733) and TGW-GS_6 

(A10602) may be due to the effects of the same gene. The major alleles at these peak 

markers are all associated with a reduction in Hd and Grains but the direction of effect 

varies across the other traits (Appendix 4. 1). A10733 and A10602 have effects in the 

opposite direction for TGW and TGW-GS. The major alleles of A20862 and A10398 

correspond respectively to a reduction and increase in plant height. In addition to the 

relatively large genetic distance between those markers in the centromeric region of 2H 

(54.95-63.5cM), the direction of the effects across traits suggests that the polymorphism 

associated with grain number and heading date may be distinct to that that causes 

variation in Ht or TGW. Both Grains and Hd can be the main traits to consider in the 

region located around HvCEN candidate that is homologue of LOC_Os04g33570 

(Comadran et al., 2012), while effects on Ht and TGW need to be confirmed. Indeed, 

the analysis is complicated by the number of SNP describing the haplotypes in this 

chromosome region and the limitation of bi-allelic markers to resolve more contrasting 

haplotype. The investigation of significance patterns described by MTA for a set of 

traits over the QTL cluster could be a mean to identify the origin of the effects and the 

similarities between genetic controls. 

The more distal QTL cluster on 5H is involved in the control of tillering and TGW. The 

most significant marker for TGW_8, TGW-GS_7, Till.Yld_3 (A20553) was mapped 

4cM away from the best marker of Till.GS_2 (B30975). A20553 major allele (A) is 

associated with a significant reduction in tiller number (67 tillers/m
2
) and an increase in 

TGW, GNYld and NupE as well as a non-significant but sizeable increase in grain 

number. The direction of effects of B30975 alleles across traits mirrors A20553 

suggesting that the two markers capture the same effect and can be used to search for 

candidate genes in the rice genome. 

As expected from Figure 4.1, Table 4.1 and paragraph 3.3.3, none of the markers 

significant for the yield QTL were found significant for yield components but were for 

nitrogen related traits which are often yield derived traits. In addition, the direction of 

marker effects tended to reflect the correlations of yield with those traits with slight 

differences in magnitude or significance (Appendix 3. 4). Some yield QTL had non-

significant but sizeable effects of the same direction on yield components (e.g. Yld_2 

and TGW; Yld_3 and Grains and TGW; Yld_4 and tillering). Others like Yld_5 did not 
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match any sizeable effect on yield components suggesting that the effect identified are 

targeting polymorphism which have a main impact on yield or biomass rather than 

through differential effect on the yield components. 

 

This analysis of marker effects and the pattern of significance at nearby markers reveals 

the complexity of QTL comparisons and the necessity to account for a range of trais for 

interpretation. The better insight of QTL analysis using marker effects underlines the 

fact that although QTL are present in clusters, they may not relate to the same 

underlying functional polymorphism. The presence of different significantly associated 

markers at a QTL cluster and the variation in their allele effects in other traits highlights 

to the difficulty to identify of the choice for what can be considered as a positive allele 

and an optimal marker for MAS.  
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Table 4.1 Marker effects across traits at QTL locations for yield and yield components 

Effect size and direction on NUE-CROPS agronomic traits for the most significant SNP associated with QTL of yield and yield components. The negative effect of 

allele 1 for a yield or yield component QTL on another trait are highlighted in grey. Effects associated with a significant marker association (defined as –log10(p) of 

the SNP > –log10(0.003)) are in bold. A complete table reporting all NUE CROPS QTL is presented in Appendix 4. 1. 

 

 

1 2 MA Antho GNYld GrainN Grains Hd HI Ht NUE NupE NutEg NutEt StemN Stems StS TGW TGW-GS till.GS till.Yld UPOV Yld

Grains Grains_1 2 H A20862 63.5 7.20 T / A A 0.42 0.03 0.37 0.08 -3.01 -2.43 -1.35 -3.93 -1.52 0.00 -2.53 -1.68 0.01 0.07 0.13 0.66 0.60 33.72 46.37 0.87 -0.31

Grains_2 6 H I138716 88.9 2.83 G / A A 0.43 0.00 -1.27 0.04 -1.74 0.02 -0.85 -0.31 -0.90 0.00 -1.56 -0.41 0.01 0.06 -0.09 0.82 1.12 24.65 26.03 -1.48 -0.21

Thousand TGW_1 1 H I232660 18.05 3.24 C / T C 0.36 0.09 -1.43 -0.02 0.30 0.48 -0.32 0.87 -0.19 -0.01 0.15 0.13 0.00 0.15 0.06 -2.75 -3.25 30.18 24.80 1.35 -0.03

Grain Weight TGW_2 1 H I128285 31.15 3.45 T / C T 0.36 0.06 -1.26 -0.02 0.32 0.49 -0.24 0.38 -0.21 -0.01 0.17 0.08 0.00 0.10 0.06 -2.64 -2.88 22.25 20.90 0.73 -0.03

TGW_3 1 H A20810 52.46 3.56 A / G A 0.46 -0.02 -1.62 0.00 0.47 0.11 -0.29 1.00 -0.49 -0.01 -0.18 -0.54 0.00 0.09 0.08 -2.76 -3.20 17.85 8.64 -0.07 -0.11

TGW_4 2 H I146936 6.4 3.33 T / C C 0.18 0.11 -1.34 0.01 0.10 -0.09 0.02 -0.92 -0.71 0.00 -0.48 -1.07 0.00 0.13 -0.18 -3.53 -4.01 2.08 13.14 -0.69 -0.15

TGW_5 2 H A10733 54.95 4.33 G / C C 0.14 0.05 3.82 0.01 -1.60 -1.08 0.42 -3.72 0.86 0.02 -0.70 -0.02 0.01 -0.05 0.22 4.03 3.76 0.77 -1.81 -0.95 0.20

TGW_6 2 H I195051 156.72 2.76 T / C C 0.40 0.10 2.33 0.00 0.28 0.41 0.58 1.85 0.86 0.01 0.63 1.01 -0.01 -0.06 0.05 2.71 2.29 -11.73 -25.63 -0.96 0.16

TGW_7 4 H B30427 53.5 2.61 T / A A 0.25 0.15 0.86 0.00 -0.57 0.03 0.16 -1.08 0.46 0.01 -0.06 0.66 0.00 -0.05 0.14 2.45 2.46 -2.91 -19.02 1.59 0.08

TGW_8 5 H A20553 2.81 3.44 A / G G 0.20 0.02 4.15 0.01 1.07 -0.66 -0.15 2.66 1.17 0.02 -0.10 1.48 -0.01 -0.20 0.11 3.04 3.68 -62.83 -65.67 2.02 0.28

TGW_9 5 H I194030 166.63 2.83 A / G A 0.38 -0.17 -1.36 0.03 -0.55 0.44 -0.92 0.02 -1.20 0.00 -1.15 -0.69 0.00 0.13 0.03 -2.62 -2.61 26.24 27.98 -3.63 -0.24

Thousand TGW-GS_1 1 H I232660 18.05 3.42 C / T C 0.36 0.09 -1.43 -0.02 0.30 0.48 -0.32 0.87 -0.19 -0.01 0.15 0.13 0.00 0.15 0.06 -2.75 -3.25 30.18 24.80 1.35 -0.03

Grain Weight TGW-GS_2 1 H I128285 31.15 3.19 T / C T 0.36 0.06 -1.26 -0.02 0.32 0.49 -0.24 0.38 -0.21 -0.01 0.17 0.08 0.00 0.10 0.06 -2.64 -2.88 22.25 20.90 0.73 -0.03

from TGW-GS_3 1 H A20810 52.46 3.63 A / G A 0.46 -0.02 -1.62 0.00 0.47 0.11 -0.29 1.00 -0.49 -0.01 -0.18 -0.54 0.00 0.09 0.08 -2.76 -3.20 17.85 8.64 -0.07 -0.11

grab samples TGW-GS_4 2 H I213799 8.57 3.76 A / C C 0.24 0.10 -0.75 0.01 -0.77 0.62 -0.69 -2.05 -0.30 0.00 -0.54 -0.01 0.00 0.05 -0.06 -3.09 -3.94 33.59 48.61 -0.11 -0.12

TGW-GS_5 2 H I143250 27.3 3.05 A / G A 0.47 0.14 1.31 -0.01 0.46 0.03 0.19 1.77 0.61 0.00 0.52 0.56 -0.01 -0.10 0.03 2.16 2.83 -19.36 -23.52 3.30 0.12

TGW-GS_6 2 H A10602 58.24 3.09 A / C C 0.26 -0.29 -1.12 0.05 -0.14 -1.15 -1.02 -0.96 -0.79 0.00 -1.34 -0.72 0.00 0.10 -0.16 -2.92 -3.51 21.60 25.85 -2.06 -0.20

TGW-GS_7 5 H A20553 2.81 3.75 A / G G 0.20 0.02 4.15 0.01 1.07 -0.66 -0.15 2.66 1.17 0.02 -0.10 1.48 -0.01 -0.20 0.11 3.04 3.68 -62.83 -65.67 2.02 0.28

Tillering from till.GS_1 4 H A20732 92.38 3.75 G / A G 0.42 -0.03 0.31 -0.08 -0.51 0.65 1.45 -2.03 1.56 0.00 2.47 0.95 0.00 0.22 0.05 -0.86 -1.28 55.67 57.53 3.53 0.29

Grab samples till.GS_2 5 H B30975 6.4 3.59 A / C C 0.17 -0.03 3.56 0.04 1.41 -0.05 -0.69 3.59 0.53 0.02 -1.04 1.24 -0.01 -0.22 0.06 1.37 1.62 -66.86 -63.32 0.82 0.13

till.GS_3 5 H I147762 109.56 2.62 C / T T 0.26 -0.11 1.29 -0.03 1.36 1.13 0.43 2.00 0.95 0.01 1.16 1.29 -0.01 -0.11 0.06 1.68 1.87 -48.35 -45.97 0.78 0.18

till.GS_4 5 H I720 159.8 3.26 A / G A 0.37 -0.04 -0.58 0.01 -1.32 0.03 -0.88 -1.66 -0.33 0.00 -0.79 0.07 0.00 0.13 0.03 -1.30 -1.28 55.52 49.56 -1.91 -0.08

till.GS_5 7 H A10550 143.68 2.63 G / A A 0.25 -0.18 -0.03 0.02 0.70 0.66 -0.38 1.61 -0.61 0.00 -0.68 -0.24 0.00 -0.13 -0.05 0.05 0.24 -51.15 -40.98 -1.60 -0.12

Tillering from till.Yld_1 4 H A21385 23.1 2.73 G / C C 0.26 0.06 -0.46 -0.01 0.68 0.96 -0.37 1.99 -0.66 -0.01 -0.14 -0.71 -0.01 -0.09 0.00 0.69 0.52 -36.20 -58.15 -2.71 -0.12

yield till.Yld_2 4 H A20732 92.38 3.31 G / A G 0.42 -0.03 0.31 -0.08 -0.51 0.65 1.45 -2.03 1.56 0.00 2.47 0.95 0.00 0.22 0.05 -0.86 -1.28 55.67 57.53 3.53 0.29

till.Yld_3 5 H A20553 2.81 3.05 A / G G 0.20 0.02 4.15 0.01 1.07 -0.66 -0.15 2.66 1.17 0.02 -0.10 1.48 -0.01 -0.20 0.11 3.04 3.68 -62.83 -65.67 2.02 0.28

till.Yld_4 6 H I4707 81.2 2.81 C / T T 0.33 -0.19 -0.65 -0.02 -1.10 0.83 0.39 -2.00 0.10 0.00 0.52 -0.62 0.00 0.12 -0.07 -1.53 -1.48 41.69 59.19 -1.19 -0.03

Yield Yld_1 1 H I154646 100.7 3.49 A / C C 0.11 -0.30 3.88 -0.07 0.87 1.53 1.88 -0.27 2.54 0.01 2.23 2.14 0.00 0.08 -0.04 1.12 0.10 20.37 16.07 1.67 0.53

treated Yld_2 2 H A21304 33.74 2.73 A / G G 0.30 -0.08 -2.53 0.06 0.14 -0.22 -1.16 2.11 -1.83 -0.01 -1.84 -1.27 0.00 0.03 -0.11 -1.81 -2.01 2.65 -14.92 -3.94 -0.37

Yld_3 2 H I10398 54.95 3.33 C / T T 0.17 -0.27 -2.20 0.11 -0.99 -0.10 -2.79 2.79 -2.35 -0.01 -3.06 -0.98 -0.01 -0.06 -0.09 -1.90 -1.70 1.54 7.85 -1.73 -0.54

Yld_4 4 H I182626 96.6 3.08 T / G G 0.31 0.22 1.05 -0.08 -0.27 0.93 0.95 -3.04 1.88 0.01 1.65 1.65 0.00 0.16 0.16 0.02 -0.10 43.44 45.13 3.17 0.37

Yld_5 5 H I231238 63.31 3.55 T / C C 0.21 0.12 3.69 -0.05 0.30 -0.47 1.81 -2.80 2.19 0.01 1.71 1.53 0.00 0.01 0.08 1.40 0.72 8.69 1.25 5.10 0.45

Yld_6 5 H A20236 80.61 2.60 C / A A 0.26 -0.08 2.90 -0.04 0.51 -0.54 1.16 -0.59 1.45 0.01 1.24 0.57 0.00 -0.07 0.07 0.44 0.16 -7.50 -5.86 2.73 0.33

Yld_7 6 H I118381 54.6 2.69 C / T C 0.47 -0.01 1.20 -0.07 -0.37 0.58 1.00 -1.96 1.62 0.00 1.92 1.04 0.00 0.10 0.04 1.68 1.69 28.22 26.87 4.68 0.34

Yld_8 7 H I186187 14.96 3.66 T / G G 0.22 0.34 3.07 -0.07 0.73 0.27 1.57 -1.43 1.91 0.01 1.82 1.29 0.00 0.05 0.16 0.61 0.94 7.50 14.85 4.52 0.44

Yld_9 7 H I138457 34.82 3.94 C / A A 0.22 0.09 3.18 -0.07 -0.14 1.22 1.32 -2.82 2.10 0.01 2.22 1.83 0.00 0.04 0.00 0.83 1.00 6.77 26.61 2.58 0.43

-log10(p)
MAF

Effect of marker allele 1
Trait QTL Chorm Marker Dist

alleles
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4.3.3 Synteny and candidate genes 

The research concentrated on a subset of QTL clusters in order to search for candidate 

genes. The synteny with rice at each cluster was made by aligning the homologous rice 

loci to the significant GWAS SNP markers (Chapter 3) and their association test results 

(Figure 4.2). The putative rice genes encompassed by those homologous segments can 

be surveyed and the barley homologue considered as candidates with a putative 

polymorphism inducing variation in a trait of interest. 

The focus was on the 4HL QTL cluster with a clear and large effect on tillering. Here, 

the support interval included markers that were derived from genes homologous with 

various rice chromosomes but a majority of SNP homologous to rice chromosome 3 

(Figure 4.2b). A group of three SNPs correspond to QTL Till.GS_1, Till.Yld_2, 

Stems_2, HI_4, GrainN_2, NUtEg_2, NUE_7 and to a lesser extent to Yld_4 while the 

UPOV showed also a similar pattern of association, albeit non-significant. The 

homologous rice chromosome segment isolated from the best SNPs is comprised 

between LOC_Os03g09020 (I141214) and LOC_Os03g05430 (B30584) (Figure 4.2b) 

and all the homologous candidates genes in that interval reported in the rice genome 

database (http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/) can be examined as 

potential candidate genes. Similar association levels for the traits were found at the SNP 

I168399 in a gene homologous rice locus LOC_Os03g09150 suggesting that co-

linearity in gene order between barley and rice is not complete. On closer examination it 

is clear that for the region of interest on 4HL although largely syntenic with the short 

arm of rice chromosome 3 the co-linearity as presented is interrupted by a number of 

inversions. Using the information derived from the barley PopSeq map derived from 

next generation sequencing of lines from the Morex × Barke and Oregon × Wolfe 

mapping populations (Mascher et al., 2013b), there is a break in the co-linearity with 

synteny jumping from LOC_O3g09150 to LOC_O3g04960 in this region of 4H 

(Supplementary data 1). Indeed the break is confirmed by the delineation of markers 

BAC contigs with barley homologues of LOC_O3g04960 and LOC_03g_09070 – 

LOC_03g09150 on the same BAC contig (contig 44100) (IBGSC, 2012; 

http://pgsb.helmholtz-muenchen.de/cgi-bin/gb2/gbrowse/Barley_PhysMap/). This order 

of rice genes means that the three peaks evident in figure 4.2b relating to I129218, 

I168399 and I172072 collapse to a single peak. The most significant marker in that 

interval (I129218) across the traits corresponds to rice LOC_Os03g05280 identified as 

encoding a ‘ras-related protein’ (Figure 4.2b, Table 4.2b) a member of a GTPase family 

http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/
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(McCormick, 1995). The cluster interval considered also includes transcription factors 

as well as proteins with various functional domains; all putative candidates (Table 

4.2b). However it is clear that distal to the peak marker there is a gap in the genetic map 

(from 92.4 to 96.6 cM) meaning potential candidate genes could be present within this 

unresolved region.  

The same approach was carried out on the region of high interest for TGW and Hd QTL 

on 2HS which shows synteny with rice chromosome 7 (Figure 4.2a). The QTL mapped 

at that cluster were detected with low levels of significance except the Hd effects at six 

distinct gene based SNPs all homologous to LOC_Os07g49460 (Figure 4.2a, Table 

4.2a). These SNPs correspond to gene based SNPs diagnostic for early and later alleles 

of the barley Ppd-H1 gene (Faure et al., 2007). In Chapter 2 and Chapter 3, Ppd-H1 was 

cautiously suggested as a candidate gene underpinning effects on tillering and TGW in 

this cluster. The patterns of significance for the MTA for both heading date and TGW 

enable us to differentiate between the SNPs associated to heading date which were 

within the Ppd-H1 gene sequence and those associated to TGW. Indeed, the six most 

significant SNPs for heading date are not significantly associated to TGW effects 

suggesting different genetic controls for these two traits. The TGW effects can therefore 

be due to either polymorphism in a nearby gene or to additional alleles at ppd-H1 that 

have no effects heading and have not been captured by genic SNP (Figure 4.2a and 

Table 4.1a). Further sequencing of the 3’UTR of Ppd-H1 gene sequence in a range of 

varieties identified four different haplotypes within a set of winter barley varieties 

(Appendix 5. 4). These preliminary results indicate that additional haplotypes of the 

Ppd-H1 gene exist in winter barley and may share identical allele distribution with 

markers significantly associated to TGW QTL (e.g. SNPs I143250 of QTL TGW-GS_5 

and A20394 of TGW_GS_3.1 in S×R). 
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Figure 4.2 Patterns of marker trait associations at two QTL clusters identified from NUE-CROPS GWAS. 
a) Pattern of marker trait associations for all 20 traits mapped in the NUE-CROPs GWAS at the QTL cluster showing significant TGW and heading date effects on 

2HS at the Ppd-H1 gene locus (26-29cM). The X-axis plots barley SNP ordered according to the physical position of their homologous rice locus (e.g. SNP I190423 

is homologous of rice locus LOC_Os01g74600). The Y-axis indicates the magnitude of the association as –log10(p). SNP markers BK_12, BK14, BK_15, BK15, 

B30872 and B30871 are diagnostic markers to the barley gene Ppd-H1 homologous to rice gene 49460 on rice chromosome 7.  
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Figure 4.2 cont.  
b) Pattern of marker trait association for all 20 traits mapped in the NUE-CROPs GWAS at the QTL cluster showing significant tillering effects on 4HL (92-96cM). 

The X-axis plots barley SNP ordered according to the physical position of their homologous rice locus (e.g. SNP I188827 is homologous of rice locus 

LOC_Os01g04800 found at the rice gene 04800 on Os01). The Y-axis indicates the magnitude of the association.  
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Table 4.2 List of rice gene models homologous to the barley QTL clusters of 

interest on 2HS and 4HL. 
List of putative rice gene models homologous to the chromosome barley chromosome interval 

delimited by the best SNP markers (Figure 4.2) at a) the TGW and heading date QTL cluster on 

2HS (26.5-28.4 cM) and b) the QTL cluster of significant tillering effects on 4HL (91.8-92.4 

cM). The order of the list is based on the rice physical sequence ordering. The homologous 

barley SNP present on the 9K Illumina Iselect genotyping platform and their chromosome 

position are presented. 

 

a) 

 

 
  

Rice Locus Gene product name Barley SNP

Iselect 

cM

LOC_Os07g49000 DNAJ heat shock N-terminal domain-containing protein, putative, expressed

LOC_Os07g49010 TOPBP1B - Similar to DNA replication protein TOPBP1 from, expressed

LOC_Os07g49020 expressed protein

LOC_Os07g49030 PHD-finger family protein, expressed A21265 28.44

LOC_Os07g49040 protein phosphotase protein, putative, expressed A21261 28.44

LOC_Os07g49050 expressed protein

LOC_Os07g49070 expressed protein

LOC_Os07g49080 COBRA-like protein 7 precursor, putative, expressed

LOC_Os07g49090 WD-40 repeat family protein, putative, expressed

LOC_Os07g49100 pectinesterase, putative, expressed

LOC_Os07g49110 D-alanine--D-alanine ligase family, putative, expressed A21366 28.44

LOC_Os07g49114 wound-induced protein WI12, putative, expressed I115905 27.3

LOC_Os07g49120 sex determination protein tasselseed-2, putative, expressed

LOC_Os07g49140 expressed protein

LOC_Os07g49150 26S protease regulatory subunit 4, putative, expressed A10216 26.53

LOC_Os07g49200 membrane associated DUF588 domain containing protein, putative, expressed

LOC_Os07g49220 expressed protein A20394 27.29

LOC_Os07g49230 ubiquitin-activating enzyme, putative, expressed A21015 27.29

LOC_Os07g49240 MRH1, putative, expressed

LOC_Os07g49250 thiamine pyrophosphate enzyme, C-terminal TPP binding domain containing protein, expressed

LOC_Os07g49260 importin subunit beta, putative, expressed

LOC_Os07g49270 AMP deaminase, putative, expressed I186387 27.3

LOC_Os07g49280 PMR5, putative, expressed I143250 27.3

LOC_Os07g49290 PHD finger family protein, putative, expressed

LOC_Os07g49300 expressed protein

LOC_Os07g49310 omega-3 fatty acid desaturase, chloroplast precursor, putative, expressed

LOC_Os07g49320 HEAT repeat family protein, putative, expressed

LOC_Os07g49330 phospholipase C, putative, expressed

LOC_Os07g49350 expressed protein

LOC_Os07g49360 peroxidase precursor, putative, expressed

LOC_Os07g49370 glycosyltransferase family 43 protein, putative, expressed

LOC_Os07g49380 PWWP domain containing protein, expressed

LOC_Os07g49390 P-protein, putative, expressed

LOC_Os07g49400 OsAPx2 - Cytosolic Ascorbate Peroxidase encoding gene 4,5,6,8, expressed

LOC_Os07g49410 uncharacterized ACR, YagE family COG1723 containing protein, expressed

LOC_Os07g49460 response regulator receiver domain containing protein, expressed
B30870 

(ppdH1) 26.57

LOC_Os07g49470 protein kinase APK1B, chloroplast precursor, putative, expressed

LOC_Os07g49480 KIP1, putative, expressed

LOC_Os07g49510 expressed protein

LOC_Os07g49520 2-oxoglutarate dehydrogenase E1 component, mitochondrial precursor, putative, expressed

LOC_Os07g49530 MYB family transcription factor, putative, expressed

LOC_Os07g49540 expressed protein
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Table 4.2 cont. 

b) 
Barley homologues of LOC_Os03g09150 and LOC_Os03g04960 present on the same BAC 

contig (contig 44100) (IBGSC, 2012; http://pgsb.helmholtz-muenchen.de/cgi-

bin/gb2/gbrowse/Barley_PhysMap/) and highlighted in grey. 

 
  

Rice locus Gene product name

Barley 

SNP Iselect cM

LOC_Os03g09020  dehydrogenase, putative, expressed I141214 91.78

LOC_Os03g09030  expressed protein

LOC_Os03g09040  hypothetical protein

LOC_Os03g09060  prenyltransferase, putative, expressed

LOC_Os03g09070  leucine rich repeat domain containing protein, putative, expressed

LOC_Os03g09080  ubiquitin carboxyl-terminal hydrolase domain containing protein, expressed

LOC_Os03g09090  expressed protein

LOC_Os03g09100  calmodulin-binding transcription activator, putative, expressed

LOC_Os03g09110  mitochondrial carrier protein, putative, expressed

LOC_Os03g09120  expressed protein

LOC_Os03g09130  expressed protein

LOC_Os03g09140  ras-related protein, putative, expressed

LOC_Os03g09150  pumilio-family RNA binding repeat domain containing protein, expressed I168399 92.4

LOC_Os03g04960  cysteinyl-tRNA synthetase, putative, expressed A20732 92.38

LOC_Os03g04970  T-complex protein, putative, expressed

LOC_Os03g04980  PHD-finger domain containing protein, putative, expressed I107010 92.38

LOC_Os03g04990  expressed protein

LOC_Os03g05020  PIR, putative, expressed

LOC_Os03g05030  dirigent, putative, expressed

LOC_Os03g05040  expressed protein

LOC_Os03g05049  expressed protein

LOC_Os03g05060  exostosin family domain containing protein, expressed

LOC_Os03g05070  exostosin family domain containing protein, expressed

LOC_Os03g05080  expressed protein

LOC_Os03g05100  expressed protein

LOC_Os03g05110  xyloglucan galactosyltransferase KATAMARI1, putative, expressed

LOC_Os03g05120  expressed protein

LOC_Os03g05130  expressed protein

LOC_Os03g05140  receptor-like protein kinase 2 precursor, putative, expressed

LOC_Os03g05150  hypothetical protein

LOC_Os03g05160  GATA zinc finger domain containing protein, expressed

LOC_Os03g05170  expressed protein

LOC_Os03g05180  expressed protein

LOC_Os03g05200  DENN domain containing protein, expressed

LOC_Os03g05210  WD domain, G-beta repeat domain containing protein, expressed

LOC_Os03g05220  expressed protein

LOC_Os03g05225  expressed protein

LOC_Os03g05250  expressed protein

LOC_Os03g05260  ankyrin repeat domain containing protein, expressed

LOC_Os03g05270  RING finger and CHY zinc finger domain-containing protein 1, putative, expressed

LOC_Os03g05280  ras-related protein, putative, expressed I129218 92.4

LOC_Os03g05290  aquaporin protein, putative, expressed

LOC_Os03g05300  cyclin-dependent kinases regulatory subunit 1, putative, expressed

LOC_Os03g05310  pheophorbide a oxygenase, chloroplast precursor, putative, expressed

LOC_Os03g05320  expressed protein

LOC_Os03g05330  HEAT repeat family protein, putative, expressed

LOC_Os03g05334  expressed protein

LOC_Os03g05370  expressed protein

LOC_Os03g05380  expressed protein

LOC_Os03g05390  Citrate transporter protein, putative, expressed

LOC_Os03g05420  MT-A70 domain containing protein, expressed

LOC_Os03g05430  peptidase, putative, expressed B30584 96.59
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The homologous segment on the rice chromosome shows that the two most significant 

markers for TGW are actually located around 20 gene models away from Ppd-H1 at 

genes homologous to LOC_Os07g49220 (A20394) and LOC_Os07g49280 (I143250) 

respectively and these SNPs are not associated with heading date effect (Figure 4.2a). 

The allele distribution for the two SNPs is nearly identical within the panel except for 

three varieties and the minor alleles frequencies of A20394 and I143250 within groups 

defined by early and late alleles at ppd-H1 are 0.29 and 0.43 respectively. This 

distribution suggests that if an allele of Ppd-H1 is involved in the control of TGW, it is 

not associated with the major heading date difference and is captured by haplotypes 

made from adjacent markers. Alternatively, the TGW variation could originate from a 

polymorphism in a gene nearby Ppd-H1. Several candidate genes can be observed in the 

syntenic region of rice chromosome 7 including a sex determination protein Tassel 

Seed-2 at LOC_Os07g49120 and a Glycosyltransferase protein at LOC_Os07g49370 

(Table 4.2b). 

As shown with Ppd-H1, the genes of known function can be precisely located using the 

rice synteny. The unique significant SNP for Hd_5 QTL on 5HL (B30867-

LOC_Os03g54084) is seven rice gene models away from B30883, identified as the 

candidate gene for vrn-H1 (OSU_VRN_H1_BM5A_intron1_vc_80 and 

LOC_Os03g50416) (Appendix 4. 3). This particular SNP diagnostic for differences 

between winter and spring types of barley was indeed monomorphic in the winter barley 

panel of NUE-CROPS. Although only a single marker was significant given the 

threshold retained, it strongly suggests the presence of an additional allele for the vrn-

H1 gene that would affect heading date in winter barley. Interestingly the pattern of the 

MTA results for stems (Stems_4) highlighted two SNPs with unknown rice 

correspondence in the same region but no significant effect for B30867 (Appendix 4. 3), 

suggesting that the co-location of tillering and heading date at that locus is not due to a 

pleiotropic effect on the vrn-H1 gene. Other clusters of QTL such as the 2H centromeric 

cluster, highlight the need for investigating a wider chromosome segment to identify 

candidate gene location. In this example, the HvCEN gene homologous to 

LOC_Os03g33570 (Comadran et al., 2012) appears to be located in-between the best 

SNP for Grains (LOC_Os03g33220) and heading date (LOC_Os03g34080) and the 

overall support interval of the QTL cluster overlaps segments of rice chromosomes 3 

and 7 (Appendix 4. 4). While HvCEN belongs to rice chromosome 3, the TGW QTL 

cluster (including TGW_5) pinpoint a narrow segment of rice chromosome 7 that 

contains LOC_Os07g42970 identified as a UDP-glucoronosyl and UDP-glucosyl 
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transferase domain containing protein, involved in the starch synthase activity (Baroja-

Fernández et al., 2003; Singh et al., 1981). 

The QTL cluster of yield components on 5HS (Containing Till.GS_2, TGW-GS_7) 

targets a rice segment containing 10 gene models comprised between 

LOC_Os12g44240 (N-acetylglucosaminyltransferase) and LOC_Os12g44310 

(carotenoid cleavage dioxygenase). While on the centromeric region of 5H, the cluster 

containing the yield QTL Yld_5 and nitrogen related traits QTL (e.g. NUE_8) 

encompasses over 200 rice gene models based on the rice homologues of significant 

barley SNP suggesting that additional resolution is needed in order to suggest candidate 

genes. On 7H, the matching association patterns highlight a segment located between 

rice loci LOC_Os06g05880 and LOC_Os06g06090 (I138457) affecting yield and 

nitrogen related traits. This particular segment is located 21 rice gene models from the 

vrnH3 barley gene (HvFT1) for which the rice homologue is LOC_Os06g06300 

(Appendix 4. 5). However, none of the three barley SNPs that capture alleles of vrnH3 

(B30893, B30894, B30895) were significantly associated with any traits, including 

heading date despite being polymorphic in the panels. Because all varieties are winter 

barley, they are not expected to be polymorphic at the vernalization genes but the gene 

could still be considered as candidate for the QTL cluster. There may be another 

polymorphism in vrnH3 not described by the 9K SNP array that associates with 

I138457.  

The candidate genes for the corresponding effects on mildew resistance found on 5HS 

in S×R and AGOUEB were also investigated. The delimited segment from the GWAS 

scan is homologous to rice chromosome 12 and contain approximately 40 gene models 

located between LOC_Os12g43130 and LOC_Os12g43560 (Appendix 4. 6). Amongst 

them, different genes could be suggested to participate in the host response to mildew 

such as zinc finger protein, multiple copies of genes coding for thaumatin 

(LOC_Os12g43490) and an actin depolymerising factor (LOC_Os12g43340) 

(Appendix 4. 7). 

The improved resolution obtained from the GWAS can successfully capture effects at 

documented genes involved in known phenotypic variation (Ppd-H1, vrn-H1) and can 

be confirmed by synteny. Therefore, when a relevant chromosome segment has been 

bracketed from highly significant SNP at a QTL cluster and confirmed by the pattern of 

MTA significance, the survey of homologous genes in rice offers the possibility to 

identify homologous gene candidates. Here putative genes involved in the control of 

tillering (4H), grain number (2H), TGW (2H) and mildew resistance (5H) have been 
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proposed. Nevertheless this approach highlights some limits of the QTL comparison to 

resolve the exact origin of polymorphism and to distinguish at the haplotype level 

between either unrepresented alleles or genuine multiple close polymorphic genes. 

4.4 Discussion 

4.4.1 Comparison of mapping studies  

In breeding programmes, a substantial genetic diversity is maintained in the germplasm 

to enable selection for optimal allelic combinations for a range of environments. A large 

number of barley QTL studies published during the last few years have identified QTL 

with favourable alleles that can be selected in MAS (Chapter 1). In the case of bi-

parental mapping (Chapter 2), the restricted diversity and mapping resolution can be a 

limitation to the rapid implementation of mapping results in breeding (Rae et al., 2007). 

Therefore GWAS (Chapter 3) was proposed as an alternative QTL mapping approach to 

investigate more allelic diversity with greater resolution than bi-parental mapping 

(Rostoks et al., 2006). In barley, the GWAS have included diverse panel origins such as 

American germplasm (Berger et al., 2012), Mediterranean barley panels (Comadran et 

al., 2011b; Visioni et al., 2013) and well investigated European germplasm (Wang et al., 

2012). In this project both bi-parental and GWAS approaches were used on winter 

barley varieties from European germplasm (NUE-CROPS and AGOUEB). The genetic 

diversity in these panels is likely to represent the majority of that that can be 

encountered in UK two-row feed winter barley breeding programmes. This should 

enhance the transfer of the study results into breeding for improved varieties for the UK 

environment.  

Meta-analysis of QTL aims at capturing consensus QTL from independent mapping 

studies so that QTL are confirmed and identified with better resolution. In wheat, 30 

mapping studies were used to find meta-QTL for fusarium head blight (Loffler et al., 

2009). Meta-QTL analysis together with comparative genomics was also used to 

enhance the mapping resolution in rice and identify the most likely candidate gene 

models involved in the control of yield (Swamy et al., 2011). Because the only three 

mapping experiments carried out in this project used different mapping approaches and 

germplasm, a conventional QTL meta-analysis was not appropriate to efficiently 

integrate the datasets. Nevertheless, the projection of QTL along the chromosomes 

using common genetic markers for anchorage provided a mean to identify genetic 
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factors and QTL clusters involved in the control of agronomic traits. Most QTL were 

found to form clusters along chromosomes both within and between mapping studies, 

with better correspondence between the GWA studies. As expected, the traits within 

QTL cluster mirrored to some extent the correlation between traits and derived traits 

such as grain yield, GNYld, HI and NUE but also yield components TGW and tillering 

(Appendix 3. 4). Although the alleles of the parents from the bi-parental population 

were represented in both GWAS panels only few correspondences mapping studies 

were found (e.g. TGW on 2HS and mildew on 5HS). It shows that bi-parental mapping 

is very useful in revealing specific effects of smaller magnitude that may be associated 

with marker alleles at a lower frequency in a GWAS panel. 

One considerable QTL cluster was identified from the GWAS near the 2H centromere 

and also overlaps with the wide support interval of S×R QTL for grains per ear 

(GE.3_1) where Saffron and Retriever are monomorphic for the SNP implying that it 

was a phantom effect. This chromosome region was previously highlighted as 

containing the candidate gene HvCEN associated with adaptation to environmental 

conditions in the spring and winter barley germplasm (Comadran et al., 2012) and to 

affect the fate of floral meristems (Cremer et al., 2001) (see 3.4.2). With numerous traits 

included in the cluster, it is highly likely that alleles relevant for breeding are present at 

that locus and control variation in winter barley agronomic performance, including 

nitrogen traits and yield components. However it remains unclear to what extent 

correlations between traits and pleiotropic effects are responsible for the co-mapping of 

the QTL at that locus. A better understanding of winter alleles at that locus is necessary 

if one wants to use MAS is to be applied, in the selection for grain number, heading date 

and height. Other correspondences of QTL cluster between AM panels were found on 

chromosomes 4H, 5H and 6H highlighting these genomic segments to be considered for 

selection. It is indicative of partial QTL validation and shows that using both mapping 

methods could narrow down the QTL position and number of underlying candidate 

genes.  

When investigating candidate genes, it needs to be born in mind that the interpretation 

from QTL comparison remains partly subjective. In most cases, the QTL clusters have 

been defined based on the overlap of large QTL support intervals. This reflects the 

variation in the phenotypic data between traits and also the statistical error associated to 

the phenotypes. The comparison between GWAS is also affected by the allele 

frequencies of the SNP in each of the panels. These differences can be manifested by 

different peak markers within the support interval of a cluster of QTL and set of SNP to 
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capture the underlying haplotype patterns. In addition, the NUE-CROPS study confirms 

that complete QTL interpretation within a cluster can only be drawn when the 

phenotyping of multiple traits is included to allow independently assessed traits with 

common genetic control to be co-mapped. It is common that when QTL loci are 

suggested for MAS very little is mentioned on their effects on other apparently related 

or unrelated traits. The results presented here show that for most of situations of co-

mapping of tillering and TGW, the decreasing effect for tillering is associated with an 

increasing effect for TGW (e.g. NUE CROPs QTL TGW_8 and till.Yld_3 on 5HS). 

This underlines at the genetic level the well-established negative genetic correlation of 

these two traits. Only rare loci where no significant association of these critical yield 

components were found suggest an independent genetic control between those traits 

(e.g. NUE CROPs QTL TGW_5 on 2H). These hidden associations that are not always 

captured by studies may explain the reasons behind a delay in MAS implementation and 

the complexity of conventional selection as well. 

This project shows that the integration of QTL from few mapping studies is a valid 

alternative approach to meta-QTL analysis and enables the identification of conserved 

genetic factors for traits of interests. The association of both GWAS and bi-parental 

approaches provides confidence in the validity of an effect and a greater resolution on 

the QTL. The knowledge of several contrasting genotypes agronomic performance and 

morphological traits as well as an understanding of interconnected phenotypes can help 

in the biological interpretation for the putative function of candidate genes. These 

complementary approaches can reduce the number and size of chromosome segments to 

consider for functional polymorphism of candidate genes. 

4.4.2 From QTL clusters to candidate genes 

The QTL clusters were used to bracket specific chromosome segments worthy of further 

study for candidate genes. The different peak markers found for the different QTL in the 

same cluster reflect the phenotypic variation across genotypes and suggest that it is 

necessary to consider simultaneously multiple SNPs and multiple traits for 

interpretation. Haplotypes can be defined by the specific combination of alleles on a 

chromosome segment, co-segregating in sub-sets of genotypes owing to common 

descent. Haplotypes formed by the polymorphisms across several tightly linked loci are 

necessary to capture multi-allelic polymorphic gene loci (Stram et al., 2012). Several bi-

allelic SNP markers must be used in order to resolve all haplotypes (Stram et al., 2012). 

In barley haplotypes have been shown to associate with geographical adaptation  and 
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can describe alleles that confer adaptation to environment (Comadran et al., 2012; Jones 

et al., 2008). SNP based haplotypes have also been used to estimate the genetic diversity 

for genes involved in nitrogen metabolism (Matthies et al., 2013). In this study, the 

SNPs contained in the 9K chip have been designed from clustered sequence fragments 

(contigs) corresponding to different barley genes (Close et al., 2009; Rostoks et al., 

2005). This approach maximises the number of genes covered by the assay, but most 

SNP therefore represent only two alleles of a single gene. In this study, the similarities 

between patterns of associations of different traits observed over groups of SNPs were 

interpreted as the haplotype signatures on the effects. Indeed, the traits sharing the same 

genetic control at one locus would tend to show a similar pattern of association for the 

alleles represented by their haplotypes. Although this approach can detect multi-allelic 

effects it has limited resolution to disentangle the effect of two closely linked genes. For 

example the 2HS Ppd-H1 locus had significant heading date effects at the SNPs from 

the gene whereas the TGW effects were found associated with alleles from few closely 

linked SNPs. Although the data were insufficient to indicate the functional 

polymorphism causing the TGW difference, the pattern of associations did discriminate 

between markers linked to the functional heading date alleles and those linked to a 

TGW related locus. Technically the functional polymorphism for TGW could be from 

an additional allele of the Ppd-H1 or from a closely linked putative gene. In this case, 

supporting evidence from the bi-parental mapping confirms that the variation in TGW is 

not a consequence of the heading date polymorphism. Recent sequencing of the gene 

revealed that 40 polymorphisms were present in the sequence of Ppd-H1 in European 

landraces but very few were in complete association to heading date (Jones et al., 2008). 

Hence other sequence polymorphism of Ppd-H1 could be investigated across the panel 

for association to TGW before that gene can be excluded. Alternatively, an association 

analysis using haplotypes may offer additional power to the mapping experiment 

(Lorenz et al., 2010; Stram et al., 2012). This underlines that the ability to point at 

candidate genes depends on the alleles represented by the SNP tested in the array.  

The comparative genomics approach was used to give an insight on candidate genes. It 

uses the collinearity of the genomes to anchor genetic markers from different species 

onto a reference genome (Feuillet and Keller, 2002). Both rice and Brachypodium offer 

a well conserved synteny with barley with some variations depending on particular 

regions of the genome (Mayer et al., 2011). Homologous regions identified in grasses 

can also help to broaden the genetic studies available that describe the control of a trait 

and help the candidate genes identification (Swamy et al., 2011). Therefore, the results 
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of GWAS using genic SNP makers can be ordered based on the gene order of the 

reference species to target putative candidate genes. Comadran et al., (2012) used rice to 

target homologous genes of HvCEN. In NUE-CROPS and AGOUEB GWAS, the 

mapping results correctly located the genes involved in major phenotype differences. 

Ant-2 and vrs1 were precisely mapped by SNP to location within 30 gene models from 

the actual gene (Cockram et al., 2010). Diagnostic SNPs of Ppd-H1 identified by Turner 

et al, (2005) were also significant in the mapping of heading date. These results 

confirmed the working hypothesis that comparison of mapping experiments can better 

indicate the location of candidate genes. Within QTL clusters the majority of the barley 

genes that contained the SNPs had homology to a specific rice chromosome segment. 

The interval delimited by the best markers could be used to isolate in most cases less 

than a hundred gene models. Some homologies of barley SNP to several rice 

chromosomes were also noticeable suggesting micro rearrangement of the gene 

sequences between species in the form of duplications, deletions and inversions of gene 

sequences (Bennetzen and Chen, 2008; Feuillet and Keller, 2002), while others may be 

spurious. These types of rearrangements and breaks in colinearty were observed on 4HL 

which illustrated that the resolution achieved by the GWAS may be hampered by 

imprecision in the mapping of the barley SNPs.  The synteny of rice with barley is very 

good but it is likely that there will be some micro-synteny rearrangements. This means 

some of the spreading visible on the significant SNP associations can be a reflection of 

imprecision in the SNP ordering compared to the barley physical gene ordering. 

On 5HL, a heading date effect was detected at a peak SNP located seven gene models 

away from LOC_Os03g54160, a MADS-box family gene candidate for barley 

vernalization gene vrn-H1 (Szucs et al., 2007). Effect of vernalization on heading date 

and plant adaptation are well documented in barley (Cockram et al., 2008) and make 

vrn-H1 a convincing candidate gene for that cluster. It is therefore reasonable to propose 

that additional alleles of the vrn-H1 gene are present in the winter barley germplasm 

that do not correspond to the alleles partitioning major winter/spring difference but that 

are captured in this study in the form of haplotypes from closely mapped SNP of the 9K 

array. The patterns of associations also suggest that tillering effects found in that cluster 

correspond to a different haplotype to the one significant for heading date effects, a 

similar situation to the cluster with Ppd-H1 and TGW on 2HS. As in the latter, an 

independent control of both traits is plausible. Therefore, excluding genic Ppd-H1 

SNPs, other barley gene models homologous to the syntenic rice loci could be proposed 

as candidates for the control of TGW. These include a sex determination protein tassel 



140 

 

seed-2 (LOC_Os07g49120) which modifies inflorescence structure in maize (Irish, 

1997) is located five genes models from A20394. The involvement of homologous 

genes controlling the same trait in maize and barley was shown in a study on two-/six-

row barleys, where polymorphisms in the gene int-c, an ortholog of the plant 

architecture altering gene Teosinte Branched 1, affected barley lateral floret fertility and 

seed size (Ramsay et al., 2011). In addition to genes involved in the control of plant 

structure, genes controlling the metabolic pathways of starch and sugar should have 

primary consideration because of their potential influence on starch accumulation in 

grains and TGW (Tang et al., 2009). Therefore an alternative potential candidate gene 

could be the glycosyltransferase family 43 protein homologous to the linked rice gene 

(LOC_Os07g49370). Similar proteins influenced the rate of starch synthesis in 

Sorghum (Singh et al., 1981) while the proteins involved in the sugar metabolism can 

affect variation in TGW (Ishimaru et al., 2013). 

The barley and rice synteny at the 4HL tillering QTL cluster revealed that the three 

most significant barley SNPs bracket a homologous segment on rice chromosome 3 

showing a break of collinearity with barley genome sequence. The regions of 54 rice 

gene models between LOC_Os03g09020 and LOC_Os03g05430 could be analysed for 

putative candidates. A20732 was found to be the SNP most significant across traits and 

is homologous to LOC_Os03g04960 coding for a putative cysteinyl-tRNA synthetase. 

Comadran et al., (2011b) identified a QTL for grains per spike at A20732 and a 

significant effect for grain Nitrogen was found nearby (Pasam et al., 2012) while neither 

reported effects on tillering. Nearby, I129218 is homologous to a putative expressed 

ras-related protein (LOC_Os03g05280). When transformed in tobacco plants, a ras-

related gene rpg1 isolated from rice produced notable phenotype changes of reduction 

in apical dominance and increased tillering (Kamada et al., 1992). This protein was 

suggested to favour the signal transmission pathways and cell growth (Kamada et al., 

1992; McCormick, 1995) and is a realistic candidate gene that could explain changes in 

meristem growth leading to a variation of tiller number. However there are potentially 

other genes comprised in the homologous segment that need to be investigated as 

putative gene, some of them transcription factors containing functional domains like 

PHD-finger (LOC_Os03g04980), DENN (LOC_Os03g05200), RING finger 

(LOC_Os03g05270). In addition the micro-rearrangements of gene order between 

species should be considered as it may suggest additional candidates by taking into 

account the association at I168399 (LOC_Os03g09150) (Feuillet and Keller, 2002). 
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On 5HS, the tight correspondence of a mildew susceptibility QTL S×R Mil.1_4 QTL 

(Chapter 2) with the strong effects in AGOUEB GWAS suggested that high resolution 

could be achieved for candidate genes. This QTL locus corresponded to QTL observed 

in other barley mapping studies (Aghnoum et al., 2009; Comadran et al., 2009; Hickey 

et al., 2012). HvWIR1 coding for a glycine- and proline-rich protein of unknown 

function was proposed as a candidate gene responsible for the resistance (Douchkov et 

al., 2010), in a similar region of Rph20 (Hickey et al., 2012). The results of the present 

study pointed to an homologous rice segment with 40 gene model on chromosome 12 

(Appendix 4. 7), amongst which there is a complex of 7 genes coding for thaumatin 

proteins (LOC_Os12g43410) and an actin-depolymerizing factor (LOC_Os12g43340). 

The thaumatin-like genes have been described as ‘pathogenesis related proteins’ in 

multiple species. In barley, a thaumatin-like protein Hv1 was characterised after 

inoculation of an incompatible race of mildew (Bryngelsson and Green, 1989). The 

transformation of a wheat plant with a thaumatin gene increased significantly the 

resistance to mildew by delaying the development of the disease (Xing et al., 2008). 

Similar effects affecting mildew development were observed in grapes as the thaumatin 

gene VVTL1 was found to correlate with the inability of the mildew pathogen to initiate 

further infections (Tattersall et al., 1997). Given these associations between mildew 

resistance and thaumatin proteins, the putative complex of thaumatin genes on 5HS 

should be considered as convincing candidate genes for the resistance without excluding 

other candidates as evolution of resistance genes in populations is very dynamic 

(Meyers et al., 2005). Resistance to pathogens, especially mildew, can be partly 

dependent on cell cytoskeletal rearrangements that enable the plant to interfere with the 

fungal development (Miklis et al., 2007). Resistance pathways involving actin have 

been shown to be controlled by the MLO protein (Miklis et al., 2007). It is conceivable 

that a sequence polymorphism in the actin depolymerizing factor (LOC_Os12g43380) 

could modify the standard cytoskeleton rearrangements and affect plant response to 

mildew infection. It is worth noting however that the rapid evolution of specific disease 

resistance genes means that the comparison with rice may not be the optimal strategy 

for this trait. 

 

Candidate genes could be proposed for other QTL. The Grains_2 QTL on 6H was 

located in a rice homologous segment containing a growth regulator factor protein 

(LOC_Os02g53690). The gene models between LOC_Os06g05860 and 

LOC_Os06g06130 (glutamate receptor) can also be considered for the yield and 
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nitrogen derived traits QTL due to the number of significant positive effects associated 

with allele C of I138457 (LOC_Os06g06040). The results of comparative genomics 

highlight the potential to actively select desired alleles at those loci using SNP markers. 

However, despite narrowing the number of candidate genes based on homology, further 

research will be necessary in order to fully characterise the functional polymorphism. 

Increases in marker density may help to capture additional alleles of the gene candidates 

and thus refining the potential candidates but the diversity of the panels is probably the 

most limiting factor to further identify of variation in gene of quantitative traits. 

4.4.3 Challenges for yield component marker assisted breeding 

The successful implementation of MAS and genomic resources toward increasing crop 

performance in yield and yield components is the main objective for competitive 

breeding programmes. It seems however that the wider use of MAS anticipated a few 

years ago still remains in its early stages (Collard and Mackill, 2008). In barley, QTL 

and genes directly involved in major morphological differences inducing considerable 

yield effects have been described (Marquez-Cedillo et al., 2001; Ramsay et al., 2011). 

However within a crop type the relevance of such loci for concrete yield improvement is 

limited because this type of genetic variation is continuously under selection. In a 

specific crop type, the application of MAS for trait such as yield and yield components 

will benefit from a better understanding of the targeted polymorphism and the possible 

effects associated to alleles linked to the targets. In this study, a wide range of traits was 

investigated to reinforce the confidence in the putative genetic factors and facilitate 

biological interpretation. From the GWAS studies, the TQL clustering across the 

genome identified 26 genetic factors involved with single or multiple yield related traits. 

A number of yield QTL did not cluster with QTL for yield components suggesting that 

additional genetic control of yield is present and may be attributable to other traits such 

as resource use efficiency and biomass produced. 

The selection for yield also remains complex at the genetic marker level despite the high 

resolution of the GWAS. The patterns of marker-trait associations can help the 

identification of marker haplotypes and multiple alleles involved in the control of a set 

of traits and that can reflect independent and different genetic control of traits mapped 

in a QTL cluster. This was illustrated by the major QTL target for grains per ear 

(Grains_1) on 2H located at a junction between rice chromosome 4 and 7 (Mayer et al., 

2011) which partitioned the set of candidate genes into two groups of traits. On one 

hand a group containing Grains, Hd, Ht, StemN QTLs seemed to be capturing the same 
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allele associated genes homologous with rice chromosome 4 while yield derived traits 

(Yld, HI, NUE, NutEg) matched another haplotype. On the other hand, TGW effects 

also significantly associated to the cluster suggested the presence of a functional 

polymorphism in a gene nearby LOC_Os07g42924 and LOC_Os07g43040 on the 

homologous segment of rice chromosome 7 (Appendix 4. 4). LOC_Os07g42970 is a 

UDP-glucoronosyl and UDP-glucosyl transferase domain containing protein. UDP-

glucosyl transferase, also referred to as sucrose synthase, catalyses the conversion of 

ADP and sucrose into ADP-glucose necessary for starch production (Baroja-Fernández 

et al., 2003). In rice, the variation in activity of proteins involved in the sugar 

metabolism was shown to affect starch accumulation and the rate at which the grain is 

filled (Ishimaru et al., 2013; Tang et al., 2009). These results from studies on rice have 

not been confirmed in barley but it seems reasonable to assume that a gene with similar 

roles could cause differential grain filling in barley too. Based on the convergence of 

mapping results, the TGW increasing allele G of marker B10733 is located five rice 

gene models distant from LOC_Os07g42970 could be a potential target for MAS. 

Therefore it will be necessary to consider multiple SNP haplotypes to enable the 

characterisation of the allele or haplotype linked to the desired polymorphism until 

diagnostic markers can be identified. The haplotype analysis in association mapping can 

be used to distinguish relevant associations (Lorenz et al., 2010; Stram et al., 2012) 

although this approach was not investigated in this study.  

The clustering of QTL of correlated traits was also illustrated by the direction of the 

effects for the significant markers. The significant cluster on 5HS showed that alleles G 

or A of A20553 associated with an increase of tillering or TGW (TGW_8) respectively. 

Therefore the choice of the adequate allele for MAS will depend on additional 

information on the variety characteristics, especially the identification by the breeder of 

the traits that needs to be improved so that the increasing effects on one trait will need 

to consider the potential pleiotropic effects on correlated traits. The direction and 

intensity of allele effects at a marker can vary depending on the trait considered and also 

on non-allelic interactions. In breeding programmes, these loci carrying opposite allele 

effects in interaction with the environment and genetic background experience a 

push/pull selection pressure that reflects the favourable polymorphisms in a given 

season and environment. Therefore the better characterisation of breeding material for 

the alleles at those loci may be useful for optimising selected lines toward targeted 

environments. The GWAS on individual sites in the NUE-CROPS panel could provide 
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further evidence of the variability in QTL effects and highlight the stability of particular 

QTL cluster.  

 

The genetic complexity of yield components renders the quest for yield candidate genes 

and diagnostic markers even more challenging. The comparative genomic approach 

with rice is a primary attempt at investigating potential candidate genes underlying 

barley QTL clusters. Despite the study being able to identify rice segments with 

candidate homologous gene models, the broad diversity of gene models and families 

that could be involved in the genetic control of yield and yield components should be 

considered for candidate gene discovery. The most obvious are genes involved in 

critical adaptive traits influencing plant fitness to the environment and architecture such 

as major genes involved in the control of plant phenology and height as well as genes 

involved in the control of underpinning grain filling (e.g. starch metabolism) (Comadran 

et al., 2011b; Tang et al., 2009). However a large range of other physiological traits 

with individual genetic control participate in yield variation and therefore phenotyping 

methods for those traits have been used alongside QTL mapping to study and improve 

yield (Reynolds et al., 2011). For traditional breeding, the comparison of mapping 

studies and the SNP and haplotypes associated to the targets may be sufficient to 

acquire confidence on the presence of a genetic effect to select for by MAS. However 

the validation of the allele effects is essential to fully understand potential pleiotropic 

and antagonist effects associated to a polymorphism before enriching or maintaining 

favourable alleles in breeding programmes. 
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Chapter 5  

Validation of QTL using a Near Isogenic Lines approach 

5.1 Introduction 

The large number QTL described in cereal species would suggest that breeders have a 

concrete opportunity to develop material with improved traits by using efficiently 

genomic resources. However the actual implementation in breeding programmes of the 

results of genetic research has been little reported suggesting that crop improvement has 

not yet benefited from the genomics revolution to the expectations described in 

Bernardo (2008). One reason could be the lack of QTL validation studies reported in the 

literature which are necessary to give more reliability and accuracy of the QTL in order 

to make a decisive contribution in crop improvement (Asíns, 2002). Often disregarded, 

the QTL validation step is at the interface between QTL discovery and the MAS 

implementation (Collard and Mackill, 2008; Romagosa et al., 1999). While QTL 

validation confers additional support for allele effects and their associated genetic 

markers, it is also describes and assigns the breeding value of the QTL and its 

associated allele, or haplotype, in the context of a larger germplasm. Few validation 

studies in barley QTL have been reported and these have had only moderate success in 

validating traits. Cockram et al., (2010) used a complementation of GWAS and DH 

population mapping to validate a QTL for a DUS trait controlled by a single gene. The 

validation of QTL involved in quantitative traits such as grain yield, height, disease 

resistances have been reported (Navara and Smith, 2013; Spaner et al., 1999; Yun et al., 

2006). The lack of validation experiments for agronomic traits such as yield and yield 

components illustrates the missing link between the sustained description of QTL 

information and the real use of QTL and MAS in breeding. 

 

Single gene locus that are involved in quantitative traits are generally of relatively small 

magnitude. They can be difficult to resolve when traits have low heritability. Any 

efforts aiming at achieving accurate phenotyping through the careful design and control 

of environmental variation is therefore essential to better isolate target the genetic origin 

of the effect. Similarly, the control of background genetic variation segregating 

alongside a target QTL effect help at minimising undesired phenotypic variation in 

comparisons of lines. Therefore the validation of a genetic effect at a QTL or gene is 



146 

 

optimized by the reduction of all sources of additional variation whether these are 

genetic or environmental. Near Isogenic Lines (NILs) are individual genotypes that 

differ at a specific target locus and otherwise share an identical genetic background. 

When compared in a common environment, NILs are a powerful research tool to 

validate both the position and the magnitude of the QTL effect. QTL validation studies 

using comparisons between NILs can consist of the introgression of specific alleles or 

haplotypes into a recurrent genetic background using a backcross scheme (Kandemir et 

al., 2000; Kongprakhon et al., 2009) or by using advanced backcross strategy on 

material directly linked to the QTL mapping study (Yun et al., 2006). These validation 

studies often utilise material related to that used in the mapping studies which limits the 

estimation of the consistency of the effect over a larger range of genetic background 

often encountered in breeding programmes. Heterogeneous Inbred Family (HIF) has 

been presented as an alternative approach for developing NIL validation material 

(Tuinstra et al., 1997). With HIF, the NILs are developed from a founder line 

heterozygous at a locus of interest ( e.g. at a QTL) that is used to fix alleles in two 

opposite phases in sister lines produced in subsequent generations of self-fertilisation 

(Tuinstra et al., 1997) (Figure 5.1). HIF from multiple crosses can be generated to test 

allele effects associated with QTL in mapping studies. Hence it is possible to 

simultaneously utilise the material continuously generated in breeding programmes and 

test for allele effects in a relevant background (Pumphrey et al., 2007). 

 

In Chapter 2, a bi-parental mapping population resulted from a cross of elite winter 

barley varieties Saffron and Retriever was used to map QTL for yield and yield 

components. Within that cross, a promising QTL on chromosome 2HS had sizeable 

effects on both TGW and tillering. The QTL for other traits and the commercial success 

of the parents reinforced the scientific value of the population as it segregates for alleles 

that have been maintained in superior varieties. Consequently, it was recognised that the 

validation of some of the agronomic QTL found in that population would benefit winter 

barley breeding progress. Furthermore, a QTL validation experiment offered the 

possibility to complement the results of GWA mapping conducted simultaneously 

(Chapter 3). This association of mapping and validation experiments can be used to 

increase the resolution of some of the QTL targets (Navara and Smith, 2013) while the 

winter barley varieties used for validation can directly contribute as a source of 

beneficial alleles and haplotypes for the commercial breeding of elite lines. 
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This chapter reports a QTL validation experiment for that aims at identifying significant 

effects for agronomic traits attractive for the breeding industry and to implement in a 

MAS strategy. The validation project exploits QTL mapping results obtained in Chapter 

2 and late generation breeding material developed and genotyped at KWS UK. The 

principal objectives are to develop HIF of NILs using late generation breeding material 

identified for segregating at the relevant QTL target defined in Chapter 2 and to validate 

the effects of specific haplotypes and alleles of SNP markers on agronomic traits in a 

yield trial experiment. 

5.2 Material and methods 

5.2.1 Plant material 

The NIL development exploits existing plant material and genotypic resources available 

at KWS-UK winter barley breeding programme. The procedure consisted of identifying 

HIF founder lines in segregating breeding material, heterozygous at relevant loci in 

order to develop NILs with opposite alleles and maximised homozygous genetic 

background (Figure 5.1). The several residual segregating regions found in HIF 

founders can also be exploited to create additional NIL pair comparisons and test for 

effects at more than a single locus. Two batches of plant material with corresponding 

genotypic data were screened for HIF founder lines. 

 NILs batch-A 

Three validation populations of F4 Recombinant Inbred Lines (RILs) from crosses 06-

03×B88 (147 lines), Saffron×Retriever (49 lines) and (B78×Retriever)×B88 (181 lines) 

were made available with genotypic information from the custom subset of 384 SNPs 

using the Illumina BeadXpress platform (Bx384). The choice of target genetic factors 

and source genotypes for HIF founder were confined to those identified in Chapter 2. In 

autumn 2009, a total of nine F4 HIF founder lines were chosen for their residual 

heterozygosity at relevant loci while having minimal background heterozygosity. 

Between 12 and 24 F4:5 plants (F5 plants derived from a single F4 plant) for each F4 

founder were vernalized for seven weeks before being transplanted in the field as 

spaced plants to provide seeds in summer 2010. Each F5 was genotyped with Bx384 and 

bagged to prevent cross pollination. At that stage the aim was to select pairs of 

individual plants that were homozygous for opposite alleles at the target loci. However 

very poor correspondence of the F4 founder line genotype with the expected subsequent 
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F4:5 genotypes. This was later found to be caused by inaccuracies in the labelling of the 

HIF founder. Nevertheless, it was decided to continue with these F4:5 progenies of 

unknown pedigree and identify the segregating loci at alternative positions within the 

HIF and their haplotypes. These alternative targets were associated with QTL of lower 

initial interest or corresponded to haplotypes of unknown pedigree. The selected F4:5 

plants were harvested and oven dried at 40C for 48 hours in August 2010. The F4:6 NILs 

were sown as 1, 2, 6 or 12 ear rows in untreated field conditions for seed multiplication 

and harvested in August 2011. For most lines, residual background heterozygosity was 

present at more than one locus. Depending on the pertinence of the trait and effects 

associated with the novel candidate regions, additional F4:6 plants from a subset of F4:5 

were genotyped and screened to select for reduced background heterozygosity. The 

genotyped F4:6 plants were bagged and harvested as individual plants or ears while the 

F4:6 with no additional genotyping were harvested as row bulk. The F4:7 plants were 

grown in a replicated mini-plot experiment in 2011-12 (see 5.3.2). Two ear-rows of 

each of the lines were harvested to provide a bulk of F4:8 seeds for the 2013 replicated 

yield trial experiment (see 5.2.3). 

NILs batch-B 

In 2010, a set of F5 RILs from two crosses (Saffron×B78)×Retriever (28 lines) and 

Saffron×Retriever (15 lines) in pedigree breeding scheme was genotyped using the 

Bx384 array. The F5 HIF founder lines that contained heterozygous haplotype segments 

that co-localised with targeted genetic factors were selected for further self-pollination 

(Figure 5.1 stage C). From each F5, three ears were bagged to prevent cross pollination 

and harvested in summer 2010. Only five F5 lines (4187, 4042, 4188, 4190, 4045) 

contained heterozygous segments of chromosomes in the regions of the QTL of interest 

together with a reasonably homozygous genetic background. From the bagged ears of 

this subset, 12 or 24 F5:6 seedlings were genotyped and NILs that carried the contrasting 

homozygous haplotypes within the HIF were kept. A preliminary seed multiplication of 

selected F5:6 NIL plants was carried in pot sin the glasshouse during winter 2010-11. For 

each NIL, 22 F5:7 seeds were sown, vernalized for seven weeks and transplanted as 

spaced plants into the field in spring 2011. A further marker assisted background 

selection was carried out on a subset of the F5:7 plants issued from F5:6 plants 

homozygous at the QTL target but highly heterozygous in their background. F5:7 plants 

were harvested in autumn 2011 either individually if genotyped or as a bulk. The 
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resultant F5:8 NILs were included in the replicated mini-plot experiment with batch-A in 

2011-12 (see 5.2.3). 

 

 

 

 

Figure 5.1 Development scheme of Heterogeneous Inbred Families (HIF) from 

breeding material recombinant inbred lines. 
HIF and NIL development scheme is adapted from Tuinstra et al., (1997). 1) A cross 

segregating for alleles associated with a QTL undergoes early generations of self-pollinations 

until generations F4 and F5. 2) Heterogeneous lines or HIF founders are identified with 

heterozygous chromosome segments (in red) at the QTL-locus of interest in a panel F4 and F5 

plants (type-1 and type-3 lines) while lines homozygous for these regions are discarded (type-2 

lines). 3) Progenies of F4 and F5 derived plants are screened to identify homozygous lines for 

both alleles at the target to form a HIF. The type-3 lines with excess of residual background 

heterozygosity undergo an additional cycle of self-pollination. 4) Marker assisted screening in 

subsequent generations is used to identify novel NIL with increased background homogeneity. 
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5.2.2 NILs Genotyping 

Plant DNA was extracted from leaf material sampled from seedling or adult green 

plants. The genotypes of the NILs and HIF founder lines were obtained using custom 

subset of 384 SNP using the Illumina BeadXpress platform (Bx384) available at KWS-

UK. The SNP markers were ordered according to distances of the map used with the 

Illumina iSelect 9K chip (Comadran et al., 2012) used in Chapter 3 and Chapter 4 

(Supplementary data 1). The 384 SNP array allowed characterisation of haplotypes at 

the loci of interest and of the genetic background of NILs. Some genotype verification 

was done on a subset of the material in 2012 using KASP markers (LGC Genomics, 

UK) designed to some of the SNPs on the Bx384 available at KWS-UK. In 2013, the 

genotypes of NILs tested in yield trial experiment were verified with the Bx384 chip. 

5.2.3 Experimental trials and phenotyping 

Season 2012  

In season 2011-12, a preliminary collection of phenotypes was assessed using miniplots 

of NILs from 14 HIF (9 and 5 for batches A and B respectively). 4 to 13 NILs per HIF 

were grown in replicated miniplots blocked by families to minimize environmental 

variation between the NILs (Appendix 5. 1). The mini-plots were formed of 6 rows of 1 

metre length and were grown under untreated conditions. Date of heading (GS59) (Hd) 

was recorded as number of days from sowing. At maturity, five plants were sampled 

from two inside rows of each mini-plot and these were further handled as a grab sample 

bulk for phenotyping. The number of fertile tillers per plant (Till_GS) and grains per ear 

(Grains) were counted. The thousand grain weight (TGW) was computed from the total 

grains of each grab sample dried at 40°C for 48h. A subsample of grains was milled 

using a 0.8 mm sieve and the flour analysed by NIR to measure grain proteins (GP) and 

grain sugars (GS) following the procedure and calibrations described in 2.2.2. 

Season 2013 

In 2012-13, the phenotype data collected in 2012 and genotypes were used to identify a 

subset of NILs in the seven most promising HIF to test further testing in a replicated 

yield trial experiment. The yield trial was drilled on the 28
th

 October 2012. Plot size was 

4x1.6 metres and managed following the KWS standard input program for fertilisation 

(180 kgN/ha in three applications), plant growth regulators and fungicide. The 96 plots 

yield trial was formed of two replicates of randomised block structures characterising 
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each HIF. To further reduce environmental error, each of the NILs tested was replicated 

and randomised within its HIF block replicate (Appendix 5. 2). 

Date of heading (Hd) and plant height (Ht) were recorded during the growing season. At 

maturity, the grab samples were collected from entire plants were pulled from a 30 cm 

length of the 4
th

 row at one meter within the plot to avoid edge effects. The number of 

ears and grains was recorded from each sample and grains per ear calculated (Grains). 

The samples of grains were dried at 40°C for 48 hours, weighed and TGW computed 

Each plot was combined and the yield figures recorded at 15% moisture. The phenotype 

score of tillering (Till_yld) was derived from yield data and yield components TGW and 

Grains. A subsample of grains was milled using a 0.8 mm sieve and the flour analysed 

by NIR to measure grain proteins(GP) and grain sugars (GS) (see 3.2.1 Phenotyping). 

5.2.4 Statistical analysis 

The phenotypes collected in 2012 and 2013 were analysed with the ANOVA procedure 

in Genstat 14
th

 Edition (Payne et al., 2009). In both years, a two-step approach was 

carried out to identify significant differences in each of the phenotype measured first 

between HIF and then the NILs within HIF using appropriate error variance 

components. 

The first step consisted in obtaining a residual error for the whole trial while testing for 

significant differences between HIF and NILs within HIF. The phenotype means for 

each NIL could be obtained from the following model: 

(year 2012)  yi1= M1 + Fj1+ Lij1 + e1 

(year 2013)  yi1= M1 + B1 + Fj1+ Lij1+ Bbij1 + e1 

Where yi1 is the mean of a NIL i resulting from the constant M1, Fj the effect of family j, 

Lij the effect of line i in family j, B1 the block effect, Bbij the effect of block b on line i in 

family j and e1 the residual error. 

In order to identify subtle differences between NILs grown in close proximity, each HIF 

was analysed individually by ANOVA to estimate the NIL effect Lij, For each 

experimental year, the mean yi2 of NIL i was obtained from a constant M2, B2 the block 

effect, Li the NIL effect, Lbi2 the effect of block b on NIL i and e2j the residual error: 

(year 2012)  yij2= M2 + Li2 + e2 

(year 2013)  yij2= M2 + B2 + Li2 + Lbi2 + e2 

To test the significance of differences between the NILs within their families (Li2), the 

variance ratio was computed using the overall trial error e1 and appropriate degrees of 

freedom and the F probability calculated. The significant differences between NILs 
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were considered with a lower stringency at a threshold of p<0.1. Although it may cause 

type 1 errors, this enabled retention of most of the possible real effects that would be 

tested further. 

The HIF with significant differences between NILs in 2013 were then tested for 

significant association of phenotypes with the segregating haplotypes for the relevant 

trait. Within each HIF, the segregating chromosome segments for different haplotypes 

were identified. The SNPs with identical allele distribution within the HIF and mapped 

at a similar position were described as components to be used as a factor in further 

statistical analysis. For each HIF, a reference line was arbitrarily identified so that the 

alleles at each component could be associated to factor levels of -1, 0 and 1 

corresponding to alleles similar to the reference line, heterozygote or homozygous for 

opposite allele respectively. ANOVA was used to test for significance of the within 

family components (haplotypes) with the traits variation using the error variance 

calculated from the whole trial under the null hypothesis of no association between the 

factor level (i.e. alleles of a haplotype) and the NILs’ phenotypes. The optimal model 

and allelic effects were obtained with the REML procedure by fitting all possible 

haplotype factors of a HIF in a maximal model as fixed effects and dropping 

alternatively individual terms to exclude non-significant and redundant factors. This 

optimisation was limited by the experimental design which lacked orthogonality 

between some of the haplotype factors and was over parameterised (more contrasting 

factors than experimental units). Only the factors accounting for a significant proportion 

of the variance between lines were kept in the optimal model to validate the genetic 

effect of the loci. 

5.3 Results 

5.3.1 Development scheme for NIL pairs. 

The NIL development followed the scheme presented in Figure 5.1. It was primarily 

intended to test the effects of known alleles found to be segregating in breeding material 

at positions of QTL and genetic factors identified in the S×R DH population (Table 

5.1b). Therefore, the segregating breeding material was screened for potential HIF 

founders by genotyping and selecting for its relationship to the parents of DH 

population. For example, the cross (B78×Retriever)×B88 was considered for testing the 

Retriever allele effects in a genetic background different to Saffron. The study exploits 
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the SNP correspondence between genotyping platforms to associate BOPA1 markers at 

genetic factors in the S×R DH population with their equivalent on the Bx384 NILs 

genotypes. Despite the reduction in the number of SNP between the platforms, 184 

SNPs were polymorphic across the breeding material screened. 

The screening of genotypes (Figure 5.1 step 2) enabled the identification of nine and 

five HIF founder lines in batches A and B respectively with heterozygous chromosome 

segments at relevant locations of genetic factors or QTL (Table 5.1a). The genotypes 

observed for the lines involved in NIL creation (including the HIF founders and 

subsequent lines) can be found for chromosome 2H in Figure 5.2, and for other 

chromosomes the details are given in Appendix 5. 3. 

The haplotypes segregating in founder lines of batch A matched their expected pedigree 

while the B-4 and B-5 HIF founders showed haplotypes different to their expected 

Saffron × Retriever pedigree. Each of the founder lines carried between one to four 

heterozygous segments scattered along the genome. HIF founders A-1, A-6 and A-9 had 

a heterozygous segment associated with a single known target and very little residual 

heterozygosity and this material followed the type-1 NIL scheme (Figure 5.1 step 2). 

The founder line A-1 was heterozygous for five co-segregating SNPs associated with 

genetic factor 2 (Figure 5.2) also associated with the S×R QTL for tillering and TGW 

on 2HS (Table 5.1) while the remaining chromosome length has Saffron alleles. 

Founder lines A-4 and B-5 were heterozygous at multiple loci and chromosomes and 

the use of this material for NIL development was more complicated than founder A-1 

and involved an additional breeding generation (Figure 5.1 step 2, type-3 lines). In 

2010, the spaced plant experiment from seeds issued from self-pollination of the initial 

lines (Figure 5.1 step 3) showed discrepancies between the segregating haplotypes and 

the expectations from the haplotypes of initial founders in batch-A. This highlighted an 

error in seed identification for these families and genotyping discrepancies were also 

observed in some families such as A-3 for which the monomorphic segment on 2HS 

(SNPs A10525 to A11302) was found segregating subsequent generations (Figure 5.2). 

However, the unexpected A-3 HIF was found to segregate for markers associated to 

other genetic factors on chromosomes 1H, 3H 4H and 7H (Appendix 5. 3; Figure 5.3; 

Table 5.1a). Despite these unfortunate early results, the NILs development was 

continued. The unexpected segregating segments were analysed with regards to the 

positions of alternative genetic factors and the new targets identified for each new 

founder line planted in 2011 (Table 5.1a). The founder of HIF A2 was conserved to 

develop NILs targeting bin 13 while A-5 offered the potential insight into effects of bin 
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6 although substantial residual segregation was observed for other different genetic 

factors. The HIF from unexpected founder lines were kept despite unresolved pedigree 

and segregation at loci associated with for QTL targets of lower interest. Fortunately, 

the lines of batch B grown in 2012 (at stage 3 Figure 5.1) had a genotype matching the 

founder line (Figure 5.2). 

In 2011, each HIF of batch-A consisted of five to nine NILs with different allelic status 

at the segregating regions. The additional cycle of self-fertilisation benefited family A-8 

to fix a background segregating segment on 5H (stage 4 Figure 5.1) and enabled the 

creation of alternative segregating haplotypes at the interesting region of 2HS for family 

B-4. In B-4, the G and A alleles of SNP A10287 (vrs1 locus) were associated 

respectively with the presence of sterile spikelets in lines 4187F3/9 and 4187H3/4 and 

their absence in lines 4187F3/8 and 4187C3/1 (Figure 5.3). 

In 2012, all the HIF grown consisted of only the optimal NILs available that carried 

homozygous opposite alleles at the target loci and had minimal background segregation. 

The genotypic and phenotypic data collected on lines grown in 2012 was used to 

identify two to four lines for each of seven HIF that were then tested in replicated yield 

plots experiment in 2013 (Figure 5.2). The residual segregation in other families such as 

A-9 remained too large for further field testing (Appendix 5. 3). Four NILs of family A-

2 and B-4 were selected for their haplotypes at the genetic factor 2 for TGW-tillering 

(2HS). Due to the additional loci that are segregating in the background of the NILs, the 

combination of multiple NILs within a HIF may help in resolving cases of situations of 

multiple testing. In addition to A-2, the NILs development experiment retained HIF A-

3, A-5, A-8, B-2, B-3 and B-4 for testing haplotypes at different relevant genetic factors 

(Figure 5.1 and Figure 5.2). 
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Table 5.1 Details of the genetic factors and associated QTL co-located with the 

segregating haplotypes in the 14 founder lines of HIF tested in 2013. 
The genetic factors or bin numbers correspond to results presented in Chapter 2 (Table 2.9) 

 

a) Genetic factors co-located with the segregating haplotypes for each of the 

founder lines of 14 Homogenous Inbreed Families. 

 

 

 

b) Details on the QTL and traits corresponding to the genetic factor bins targeted 

in 2013 yield trial. 

 

 

  

A-1 2 15 21

A-2 18 2 13 18 2 8 13

A-3 18 10 2 10 13 18 20 21 13 21

A-4 1 5 12 20 18 19

A-5 21 4 5 3 4 5 6 8 13 18 21 5 6 13

A-6 6 13

A-7 10 21 13 18

A-8 8 13 10 11 10 11

A-9 13 10 11 13 18 20 21

B-1 2 18

B-2 7 12 12

B-3 18 21 18

B-4 2 3 2 3

B-5 5 6 13 21

Founder line New founder line 2013 yield trial

Bin or genetic factor
HIF 

Genetic 

factor 

Bin 

chr

2 2H 0.0 - 39.2 HLW.2_1 TGW.2_1 TGW_GS.2_1 TGW_GS.3_1 TGW-GS.1_1 Til_cal.2_1 Til_mes.2_1

3 2H 0.0 - 48.7 GE.3_1 GP.2_1 HLW.2_1 Til_cal.2_1 TGW-GS.1_1

5 2H 52.3 - 124.1 HLW.2_2 SC.1_2 SD.1_2 SG.1_2 Til_cal.2_2 Til_mes.2_2

6 2H 95.6 - 124.1 GP.2_2 GP.3_2 SG.1_2 Til_cal.2_2 Til_mes.2_2

8 3H 61.1 - 90.4 HLW.2_3

10 3H 120.7 - 141.8 GE.3_2 GE.2_1 HLW.2_4 Til_cal.2_3

11 3H 120.7 - 172.1 HLW.2_4 TGW.2_2 TGW_GS.2_2 TGW_GS.3_3 TGW-GS.1_3 Til_cal.2_3 Yld.2_1

12 4H 0.0 - 18.8 GS.2_2 GS.3_2

13 4H 41.2 - 64.4 BR.1_1 Mil.1_3 Aleu.1_1

18 6H 18.9 - 63.7 SC.1_3 SD.1_3 SG.1_3

21 7H 38.7 - 91.3 Ht.3_2 TGW_GS.3_5

Bin interval 

(cM)
Clustered SxR QTL
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Figure 5.2 HIF founders and NILs genotypes for chromosome 2H. 
SNP marker alleles on chromosome 2H for the 14 HIF including the founder lines, progenies 

grown in 2012 and NILs present in 2013 experiment. Only informative markers of the Bx384 

chip are presented (polymorphic across the whole set of HIF). Markers have been ordered from 

left to right based on the OPA1 consensus genetic distance. Genotype of NILs multiplied in 

hege row in 2011 and 2012 are presented as a consensus haplotype (homozygous haplotypes 

within HIF could also be present at these same multiplication stages). Heterozygous markers are 

highlighted in red. The genetic factor number (bin numbers) correspond to results presented in 

Table 2.9 and were associated with the Bx384 SNP based on their colocation with the OPA1 

SNP used for mapping in Chapter 2.  
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2 2 2 2 3 3 4 5 5 5 5 5 5 6 6 6 6

Saffron G A C A A A A A A G A G T G A A A G G A G G G G A C G

Retriever G A C G C C G C A A A G T G C C G A A G G C A A C A A

B78 A G C A A A A C G G A G T A C A G A A A C G G G A C G

B88 A A C A A A A C A G A G T G A A A A A A G - G A - C G

06-03 G A C A A A A C G G A G A G A A/CA/GA A A G G G G A C G

A-1 Founder line (SafxRet) 1 G A C A/GA/CA/CA/GA/CA A A G T G A A A G G A G G G G A C G

2011 hege rows 6 G A C A A A A C G G A G T G A A A A A A C G G A/GA C G

2012 hege rows 13(10) G A C A A A A C G G A G T G A A A A A A C G G A/GA C G

A-2 Founder line  (B78xRetxB88) 1 A A C A/GC C G - A - A G T G A A A A A A G G G A A C G

2011 hege rows 9 A A C A/GA/GA/GA/GC A A/GA G T G A A A A A A G G G A A C G

2012 hege rows 5 A A C A/GA/GA/GA/GC A A/GA G T G A A A A A A G G G A A C G

tested in 2013 1 B1041A10 A A C A A A A C A A A G T G A A A A A A G G G A A C G

tested in 2013 1 B1041C10 A A C G C C G C A A A G T G A A A A A A G G G A A C G

tested in 2013 1 B1041A11 A A C G C C G C A A A G T G A A A A A A G G G A A C G

tested in 2013 1 B1041B10 A A C A A A A C A A A G T G A A A A A A G G G A A C G

A-3 Founder line  (B78xRetxB88) 1 A G C A C C G - G - A G T A - A A/GA A A G - G A A C G

2011 hege rows 7 A G C A A/CA/CA/GC A/GG A G T A C A A/GA A A G G G A A C G

2012 hege rows 10(6) A G C A A/CA/CA/GC A/GG A G T A C A G A A A G G G A A C G

tested in 2013 1 B1041A12 A G C A A A A C G G A G T A C A G A A A G G G A A C G

tested in 2013 1 B1041H12 A G C A A A A C G G A G T A C A G A A A G G G A A C G

tested in 2013 1 B1041F12 A G C A A A A C G G A G T A C A G A A A G G G A A C G

A-4 Founder line (SafxRet) 1 G A C A C C G C A G A G T G A A G A/GA/GA/GG G G G A C A

2011 hege rows 7 G A C A A A A C A G A G A G A A A A A A G G G A A C G

2012 hege rows 7 G A C A A A A C A G A G A G A A A A A A G G G A A C G

A-5 Founder line  (B78xRetxB88) 1 A G C A C C G - A - A G T A/G- A G A A A/GG C/GA A - A A

2011 hege rows 7 A A/GC A C C G C A A/GA G T A/GA/CA A/GA A A/GG C/GA/GA A/CA/CA/G

2012 hege rows 4 A A/GC A C C G C A A/GA G T A/GA/CA A/GA A A/GG C/GA/GA A/CA/CA/G

tested in 2013 1 B1042E3 A A/GC A C C G C A A A G T A C A A A A A G G G A A C G

tested in 2013 1 B1042F3 A A C A C C G C A G A G T G A A A/GA A G G C A A C A G

tested in 2013 1 B1042H3 A G C A C C G C A G A G T A/G- A A A A A G G G A A C A/G

A-6 Founder line (SafxRet) 1 G A C G C C G - A A/GA G T G C A A G G A G C A/GA/GA/CA G

2011 hege rows 5 G A C A A A A C A G A G A/TG A A A A A A C G G G A C G

2012 hege rows 4(2) G A C A A A A C A G A G A/TG A A A A A A C G G G A C G

A-7 Founder line (SafxRet) 1 G A C G C C G C A A A G T G C A/CA G G A G G G G A C G

2011 hege rows 7 A A C A A A A C A/GG A G A G A A A A A A G G G A/GA C G

2011 hege rows 4 A A C A A A A C A/GG A G A G A A A A A A G G G A/GA C G

A-8 Founder line (SafxRet) 1 G A C G A A A A A G A G T G A A A G G A G G G G A C G

2011 hege rows 5 G A C A A A A C G G A G A/TG A A A A A A G G G A A - G

2012 hege rows 5(5) G A C A A A A C G G A G A G A A A A A A G G G A A - G

tested in 2013 1 B1042D8/1 G A C A A A A C G G A G A G A A A A A A G G G A A - G

tested in 2013 1 B1042F10/8 G A C A A A A C G G A G A G A A A A A A G G G A A - G

A-9 Founder line (06-03xB88) 1 A A C A A A A - A - A G A/TG A A A A A A G G G G A C G

2011 hege rows 6 A/GA C A A A A C A G A G A/TG A A A A A A G G G A/GA C G

2012 hege rows 6 A A C A A A A C A G A G A/TG A A A A A A G G G G A C G

B-1 Founder line (SafxB78XRet) 1 A/GA/GC G A/CA/CA/G- G - A G T G C A G A A A C G G G A C G

2012 hege row 4 A G C/GG A A A C G A A G T G C A G A A A C G G G A C G

B-2 Founder line (SafxRet) 1 G A C A A A A A A - A G T G C C A/GA A G G G G G A C G

2012 hege row 6(4) G A C A A A A A A A A G T G C A/CA/GA A G G G G G A - G

tested in 2013 1 4190A7 G A C A A A A A A A A G T G C C A/GA A G G G G G A - G

tested in 2013 1 4190A8 G A C A A A A A A A A G T G C A G A A G G G G G A - G

B-3 Founder line (SafxB78XRet) 1 G A C G C C G C G - A G T A C A G A A A C G G G A C G

2012 hege row 6(14) G A C G C C G C G G A G T A C A G A A A C G G G A - G

tested in 2013 1 4045H8 G A C G C C G C G G A G T A C A G A A A C G G G A - G

tested in 2013 1 4045E8/4 G A C G C C G C G G A G T A C A G A A A C G G G A - G

B-4 Founder line (Saf xRet) 1 A G C A/GA/CA/CA/GA/CA/G- A/GA/GA A A A A G G A G G G G A C G

2012 hege row 8(8) A G C A/GA/CA/CA/GA/CA/G- A/GA/GA A A A A G G A G G G G A - G

tested in 2013 1 4187C3/1 A G C G A A A A A G A G A A A A A G G A G G G G A - G

tested in 2013 1 4187F3/9 A G C A A A A A A G G A A A A A A G G A G G G G A - G

tested in 2013 1 4187F3/8 A G C A A A A A A G A G A A A A A G G A G G G G A - G

tested in 2013 1 4187H3/4 A G C G C C G C G A G A A A A A A G G A G G G G A - G

B-5 Founder line (SafxRet) 1 G A C A C A G A G - A/GA/GA/TA/GA A A G G A C/GG A/GA/GA/CA/CA/G

2012 hege row 5 G A C A C A G A G G A/GA/GA/TA/GA A A G G A C/GG A/GA/GA/C- A/G

HIF

Genetic factor bin number

Distance (cM)

SNP marker

Chromsome 2H
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5.3.2 2012 Preliminary phenotype analysis 

A preliminary analysis was done on the phenotypes for the 14 HIF multiplied in 2012. 

This experiment was not optimised for NIL testing as the 2012 phenotypes were 

obtained from mini-plots (field grown spaced plants) and therefore subject to a different 

macro-environment to the original full plot trials used to make the original S×R QTL 

map. The 2012 experiment was used as a first indication for possible differences 

between NILs to complement the NILs genotypes in selecting for a subset of NILs to 

test in 2013. These differences should in principle correspond to the traits associated to 

genetic factors segregating within the HIF (Table 5.1). The full trial ANOVA revealed 

that families and lines within families were significantly different for all traits but 

tillering (Table 5.2) (the genotypes corresponding to the line tested are labelled as ‘2012 

hege rows’ in Figure 5.2 and Appendix 5. 3). The within family test of the 14 HIF 

indicated that differences between NILs could be identified, suggesting significant 

effects in the segregating chromosome regions. The number of significant HIF varied 

for each traits and contrast with differences estimated with F pr. <0.2 are reported in 

Table 5.2. Significant differences for grain number per ear were found between NILs in 

7 out of 14 HIF while fewer significant comparisons were found for the other yield 

components. The significant difference between the control varieties Saffron and 

Retriever was observed for all traits which can be explained by the high replication over 

the whole multiplication experiment. Some families such as B-4 had significant 

differences between NILs for multiple traits suggesting genetic factors of major effect. 

It needs to be born in mind that Therefore  

 

The analysis of phenotypes was complemented with a genotype analysis to select the 

2013 testing subset. The additional generations of self-fertilisation made a reasonable 

reduction in the background segregation for most of the families (Figure 5.2, and 

Appendix 5. 3). However, residual segregation at two or more loci was still present 

between NILs within HIF (Figure 5.3). The material screened for families A-2 and A-5 

however did not generate sufficient optimal combinations of alleles to extract clear 

NILs comparisons and leaving instead lines within those families segregating at 10 or 

more loci. In the case of families A-4 and A-9 that were significantly different in the 

2012 experiment (Table 5.2), their residual background segregation was too important 

for adequate testing in 2013. In addition, the size and position of the segregating 

segments of families A-6 and B-1 did not capture the targeted genetic factors (Table 

5.1). The combination of phenotypic and genotypic data was used to select a total of 
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seven HIF to be tested in a replicated yield trial in 2013. The segregating regions of the 

seven HIF are presented in Figure 5.3. All HIF segregated for SNPs associated with 

target genetic factors (Table 5.1) or at loci where no effects were identified by the 

mapping experiment of Chapter 2. None of the families could be found with a unique 

locus segregating at a candidate position but a minimum of two (A-8, B-3), with a 

candidate genetic factor associated with a single locus only (Figure 5.3). The family B-2 

was only significant for tillering effects in 2012 despite some expected effects in grain 

sugars associated with genetic factor 12 (Table 5.1). The component 1 of family B-3 

contained SNPs associated with genetic factor 18 which was associated with the straw 

characteristics of stay green (SG), straw degradation (SD) and straw collapse (SC). 

Because NILs were obtained from a heterozygous chromosome segment of the founder 

line, different haplotypes occurred at the same segment in the subsequent generations 

due to recombinations. In B-4 the founder heterozygous segment between 27.3 and 87.3 

cM led by self-pollination to three components regions on chromosome 2H (Figure 5.2, 

Figure 5.3) that can be tested for effects relating to the genetic factors 2 and 3 (Table 

5.1) with expected TGW, tillering effects. 

Examples of component co-located with alleles for DUS traits can be found in families 

A-5 and B-4 segregating for anthocyanin pigment at component 4 and sterile spikelets 

at component 3 respectively (Figure 5.3). The allelic effect associated with the presence 

of sterile spikelets associated with allele G and A at SNP A10287 and A11533 

respectively (85.9-87.3cM 2H) can be estimated in an optimal NIL comparison 

involving the B-4 lines 4187F3/9 and 4187F3/8 which differ for component 3. This 

same comparison can also be used to investigate the effects of allelic differences in this 

region on other agronomic traits. Additionally, lines 4187C3/1 and 4187H3/4 from B-4 

contain alternative alleles at other components that can better describe effects of 

component 2 on 2H. It was observed that in some cases, the segregating components 

between NILs were made of a single SNP indicating some heterozygosity in a short 

chromosome fragment of the founder line (e.g. A-2 component 9) or contained missing 

information (e.g. A-3 component 7 Figure 5.3). It suggests that the choice of genotyping 

platform and its genome coverage used for the NIL development is critical to describe 

and interpret the effects between NILs and of their genetic background. Although a 

single SNP cannot be informative about the actual size of the segregating region, it 

cannot be excluded from the NILs description. In turn, one can overcome the missing 

genotype information around that SNP by additional genotyping.  
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Table 5.2 Summary of ANOVA for the 2012 HIF.  
The full trial ANOVA was carried out using the complete set of data to identify significant 

family.line effect and give an estimate of the trial residual error variance. The within family 

ANOVA utilises the residual error variance (residual m.s.) from full trial ANOVA to calculate 

variance ratio (v.r.) and F probability (F pr.). Only the HIF with an F pr.<0.2 are reported. 

 

 

Traits

Heading date Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

family 14 496.27 35.45 58.45 <.001 A-3 9 5.13 0.000

family.line 72 268.10 3.72 6.14 <.001 A-9 5 5.52 0.000

Residual 115 69.74 0.61   B-1 3 9.78 0.000

Total 201 834.10    B-4 7 11.41 0.000

  Cont 1 252.89 0.000

Height Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

family 14 3554.8 253.9 31.8 <.001 A-2 4 2.31 0.062

family.line 72 1412.0 19.6 2.5 <.001 A-9 5 2.35 0.045

Residual 115 918.1 8.0   B-4 7 2.99 0.006

Total 201 5884.9    Cont 1 100.36 0.000

TGW Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

family 14 1464.87 104.63 14.34 <.001 A-2 4 2.12 0.083

family.line 72 2139.01 29.71 4.07 <.001 A-4 6 2.39 0.032

Residual 115 838.83 7.29   A-8 4 1.83 0.127

Total 201 4442.71    A-9 5 3.31 0.008

B-3 5 2.50 0.035

B-4 7 1.90 0.075

Cont 1 183.68 0.000

Grains Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

family 14 369.79 26.41 20.13 <.001 A-3 9 2.54 0.011

family.line 72 281.47 3.91 2.98 <.001 A-5 3 6.40 0.000

Residual 114 149.62 1.31   A-6 3 4.87 0.003

Total 200 800.70    A-8 4 6.69 0.000

B-3 5 3.11 0.012

B-4 7 5.18 0.000

B-5 4 16.60 0.000

Cont 1 2.45 0.120

Tillering Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

family 14 250.80 17.91 2.72 0.002 A-4 6 1.62 0.149

family.line 71 538.18 7.58 1.15 0.248 A-5 3 2.57 0.058

Residual 114 749.81 6.58   A-8 4 2.17 0.077

Total 199 1533.20    B-2 3 2.76 0.046

  B-3 5 1.51 0.192

  B-4 6 10.26 0.000

Cont 1 6.49 0.012

Grain proteins Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

family 14 28.34 2.02 11.22 <.001 A-3 9 1.79 0.077

family.line 72 18.22 0.25 1.40 0.052 A-4 6 2.08 0.061

Residual 115 20.75 0.18   A-8 4 2.40 0.054

Total 201 67.31    A-9 5 2.53 0.032

Cont 1 33.46 0.000

Grain sugars Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

family 14 9.17 0.65 9.98 <.001 A-3 9 1.45 0.176

family.line 72 7.14 0.10 1.51 0.024 A-4 6 1.83 0.100

Residual 113 7.41 0.07   A-8 4 10.67 0.000

Total 199 23.69    A-9 5 1.94 0.094

B-1 3 2.33 0.078

B-4 7 1.73 0.110

Cont 1 10.89 0.001

Full trial ANOVA Within family ANOVA
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Figure 5.3 Segregating haplotypes at each component of the NILs and HIF grown in 2013 field experiment 
For each of the HIF, only the polymorphic markers from the Bx384 platform are presented. The genetic factor bin refers to the targeted regions identified in Chapter 

2 and segregating between NIL (Table 5.1). The components are defined by a set of nearby SNPs with a conserved allelic pattern across the NILs of a HIF. The 

component numbering is specific to each HIF. The colours describe each haplotype contained in the components based of SNP alleles. A colour coding is made in 

based on the alleles of SNP of a reference NIL in each family. The colour enable each components to be analysed as a multilevel factor: 1 (blue), -1 (red) and 0 

(heterozygous or “–“ missing value). The SNP alleles should be used for comparison of common markers between HIF. 
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5.3.3 2013 replicated yield trial 

As for 2012, the initial analysis of the trial focused on estimating the variance 

component attributable to the residual error from a full trial ANOVA with factors set as 

block, family, lines within family and block x lines within family (Table 5.3). The HIF 

were significantly different for most traits with the exception of yield which only 

approached the significance level (P=0.088) (Table 5.3). The significant differences 

illustrate the different genetic potential of the families attributable to the different 

founder lines. The overall significance differences between lines within their families 

(family.line term) was found significant for heading date, height and TGW. The 

closeness to the significance level obtained for grains (P=0.057) and yield (P=0.081) 

suggests that specific NIL pairs could be potentially significantly different. This may 

require increased replication. There were no significant differences found between lines 

within families for tillering or grain proteins. This partly confirms earlier observations 

made in 2012 where the two traits only approached the significance threshold (Table 

5.2). In order to identify the significant differences between lines within family, a one 

way ANOVA on individual families was carried out with a variance ratio using overall 

trial error (Table 5.3). None of the NILs were found significantly different for grain 

proteins or tillering, although the test did not include all alleles from Saffron and 

Retriever. The significant differences observed indicate that families B-4 and A-5 could 

potentially validate genetic factors for grains and yield respectively. The NILs in 

families A-2, A-3, A-5 and B-4 were found to have significant differences for heading 

date. This significant effect may benefit from high heritability in this trial. Remarkably, 

the NILs in family B-4 were found to be significantly different for a range of traits 

including Grains, TGW, Hd and yield. In B-4, lines 4187C3/1 and 4187H3/4 were 

found to have a recorded heading date 5 and 9.7 days later than 4187F3/8 or 4187F3/9, 

strongly supporting the presence of earliness alleles segregating with alleles at a 

component of B-4 (Figure 5.3). In addition to Hd, significant differences in yield were 

found between NILs of A-5 as well as for TGW and Ht between A-3 NILs. The NILs of 

B-3 confirmed 2012 differences for TGW with 4045E8/4 significantly higher than 

4045H8. This family also suggest a segregation of alleles for grain sugars. The 

remaining NILs in families A-8 and B-2 did not capture significant differences in the 

traits measured despite significant differences in the 2012 mini-plot experiment Table 

5.2.  
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Table 5.3 ANOVA table for phenotypes collected on the 2013 NILs trial 

experiment. 
The full trial ANOVA was carried out for each of the phenotypes using the complete set of data 

to give an estimate of the trial residual error variance. The within family ANOVA utilises the 

residual error variance (residual m.s.) from full trial ANOVA to calculate variance ratio (v.r.) 

and F probability (F pr.). 

 

  

Traits

Yield Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

block 1 1.83 1.83 10.43 0.002 A-2 3 0.86 0.467

family 7 2.35 0.34 1.91 0.088 A-3 2 0.35 0.705

family.line 16 4.76 0.30 1.69 0.081 A-5 2 4.44 0.017

block.family.line 23 4.12 0.18 1.02 0.461 A-8 1 0.17 0.682

Residual 48 8.43 0.18   B-2 1 0.12 0.727

Total 95 21.50    B-3 1 2.00 0.164

B-4 3 2.95 0.042

cont 3 1.27 0.294

Heading date Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

block 1 197.80 197.80 281.5 <.001 A-2 3 7.27 0.000

family 7 189.96 27.14 38.62 <.001 A-3 2 20.84 0.000

family.line 16 360.58 22.54 32.07 <.001 A-5 2 9.41 0.000

block.family.line 23 22.53 0.98 1.39 0.164 A-8 1 2.06 0.158

Residual 48 33.73 0.70   B-2 1 0.00 1.000

Total 95 804.60    B-3 1 0.09 0.769

B-4 3 124.41 0.000

cont 3 18.48 0.000

Height Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

block 1 693.38 693.38 118 <.001 A-2 3 0.16 0.925

family 7 532.04 76.01 12.94 <.001 A-3 2 3.63 0.034

family.line 16 605.92 37.87 6.45 <.001 A-5 2 0.00 1.000

block.family.line 23 115.63 5.03 0.86 0.650 A-8 1 0.00 1.000

Residual 48 282.00 5.88   B-2 1 0.09 0.772

Total 95 2228.96    B-3 1 0.09 0.772

B-4 3 12.41 0.000

cont 3 19.22 0.000

TGW Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

block 1 220.59 220.59 45.81 <.001 A-2 3 1.87 0.147

family 7 970.62 138.66 28.8 <.001 A-3 2 2.97 0.061

family.line 16 401.02 25.06 5.2 <.001 A-5 2 0.64 0.534

block.family.line 23 185.20 8.05 1.67 0.067 A-8 1 0.00 0.968

Residual 48 231.14 4.82   B-2 1 0.00 0.989

Total 95 2008.57    B-3 1 4.38 0.042

B-4 3 3.30 0.028

cont 3 18.74 0.000

Grains Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

block 1 0.77 0.77 0.34 0.564 A-2 3 0.37 0.775

family 7 165.88 23.70 10.47 <.001 A-3 2 1.95 0.153

family.line 16 65.77 4.11 1.82 0.057 A-5 2 0.50 0.611

block.family.line 23 30.65 1.33 0.59 0.915 A-8 1 1.14 0.292

Residual 48 108.66 2.26   B-2 1 0.59 0.447

Total 95 371.74    B-3 1 0.06 0.810

B-4 3 3.59 0.020

cont 3 3.50 0.022

Full trial ANOVA Within family ANOVA
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Table 5.3 cont. 

 

 

 

Traits

Tillering Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

block 1 50280 50280 4.75 0.034 A-2 3 0.24 0.865

family 7 335557 47937 4.53 <.001 A-3 2 0.86 0.428

family.line 16 86691 5418 0.51 0.928 A-5 2 0.28 0.760

block.family.line 23 186275 8099 0.77 0.753 A-8 1 1.51 0.225

Residual 48 507795 10579   B-2 1 0.18 0.672

Total 95 1166598    B-3 1 0.32 0.574

B-4 3 0.82 0.491

cont 3 0.24 0.868

Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

block 1 22.37 22.37 154.7 <.001 A-2 3 0.80 0.499

family 7 7.02 1.00 6.94 <.001 A-3 2 0.07 0.928

family.line 16 2.91 0.18 1.26 0.263 A-5 2 1.65 0.203

block.family.line 23 4.79 0.21 1.44 0.142 A-8 1 2.17 0.147

Residual 48 6.94 0.14   B-2 1 0.10 0.748

Total 95 44.04    B-3 1 1.11 0.297

B-4 3 1.90 0.142

cont 3 1.73 0.174

Source of variation d.f. s.s. m.s. v.r. F pr. Family ndf v.r. F pr.

block 1 0.00 0.00 0.01 0.906 A-2 3 2.04 0.121

family 7 2.43 0.35 7.61 <.001 A-3 2 0.89 0.417

family.line 16 1.77 0.11 2.41 0.01 A-5 2 1.02 0.368

block.family.line 23 1.34 0.06 1.27 0.236 A-8 1 0.75 0.390

Residual 48 2.19 0.05   B-2 1 0.30 0.589

Total 95 7.73    B-3 1 4.22 0.045

B-4 3 0.75 0.530

cont 3 7.06 0.001

Full trial ANOVA Within family ANOVA

Grain 

proteins

Grain 

sugars
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The project investigated further the significant effects associated with the segregating 

loci between NILs within HIF. The genetic components segregating between NILs 

(Figure 5.3) were tested in a one way ANOVA using the overall trial error. The 

additional degrees of freedom and hence more accurate estimate of the between plot 

error for the majority of the traits increased the significance of the component (Table 

5.4). The resolution of the experiment and the number of NILs tested in each HIF limits 

the number of components that could be included in a maximal model at a time (i.e. the 

number of alleles at components was generally equivalent or lower to the number of 

lines tested). Although significant components were considered in a maximal model for 

each trait, the optimal model was often simplified to contain a single most significant 

component accounting for most of the genetic variation between NILs.  

 

The main QTL targeted by the HIF family A-2 was the TGW and tillering genetic factor 

2 co-located with component 2 on 2HS for which NILs C10-A11 and A10-B10 had the 

Retriever and Saffron haplotypes respectively (Figure 5.3). A-2 is also segregating for 

genetic factors 1, 8, 13 and 18 which were not associated with yield or yield 

components effects but straw and disease traits (Table 5.1b). The 2013 experiment 

ANOVA on A-2 HIF of did not capture significant differences for TGW (F pr. = 0.147) 

but only for heading date (Table 5.3). This heading date effects was found to be 

significantly associated with component 2 (made of four SNP) with an effect 

approximating two days between the late allele carried by lines A10 and B10 and the 

early allele carried by lines C10 and A11 (Table 5.4). Based on prior knowledge and 

especially the location of the photoperiod gene Ppd-H1, component 2 of A-2 is the more 

plausible factor responsible for Hd difference but the small confounding (co-

segregating) fragments component 4 and component 8 on chromosomes 4H and 5H 

cannot be formally excluded. It is therefore possible that the haplotypes segregating in 

that family carry alleles with Hd that have been detected in the NUE-CROPS GWAS 

(Chapter 3) rather than effects found in the bi-parental population (Chapter 2). 

 

NILs of family A-3 aimed to test possible allele effects on tillering at genetic factor 10 

and TGW at genetic factor 21. The family was also segregating for SNP associated with 

genetic factors 1 and 13 (Figure 5.3). Significant differences between NILs were found 

for heading date, height and TGW (Table 5.3) despite neither heading date nor height 

being candidate QTLs expected to segregate in that family. The significant TGW effect 

was found to associate with component 5 (confounder with component 6) in a region on 
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7H where the S×R QTL TGW_GS.3_5 and Ht.3_2 were mapped. Here, the 

polymorphic markers of component 5 are located 10.4 cM away from the S×R peak 

QTL at SNP A10431 (Table 2.8, Supplementary data 1). Although these results agree 

with the location of S×R TGW effects, the haplotypes segregating between the NILs of 

A-3 do not correspond to Saffron or Retriever. The secondary hits and significant 

differences between NILs for Hd and Ht were found to associate with component 4 also 

confounded with component 7 (Table 5.4) despite none of them being associated to 

corresponding genetic factors form the bi-parental mapping. Although these 

components are represented by three alleles, the allele of line 2010ACF12 appear to be 

recessive and associated to a delay in Hd of 3 days and height increase of 4 cm 

compared to the heterozygotes state and homozygote opposite allele (Table 5.4). These 

effects may correspond to QTL identified in Chapter 3 where the mapping included a 

greater allelic diversity than the bi-parental mapping study.  

 

The HIF A-5 was retained to investigate effects at genetic factors 3 where grains per 

ear, tillering and TGW QTL were mapped in the bi-parental population (Table 2.9) and 

for genetic factors 5 and 6 also associated to tillering QTL (Til_cal.2_2 and 

Til_mes.2_2). A-5 NILs were also kept based on results from the 2012 experiment 

which showed strongly significant grains per ear (Table 5.2) which could have related to 

the segregating component 3 associated to genetic factor 3 and the associated S×R QTL 

GE_3.1. The complexity of the NILs of Family A-5 resides in the large segregating 

components associated to additional genetic factors 4, 8, 13, 18 and 21. In 2013, the 

NILs of HIF A- 5 validated significant differences for yield and heading date while the 

expected effects of grains per ear and tillering could not be confirmed (Table 5.3). The 

yield difference of 0.7 t/ha was found to be significant for alleles segregating in 

component 5 (confounded with 6, 12 and 17) (Table 5.4) associated to the tillering 

genetic factor 5 and 6. Retriever was found to have the increasing tillering alleles on 

2HL (Table 2.6). However in the A-5 NILs, the Retriever haplotype carried by 

2010AEF3 at component 5 and 6 (Figure 5.2) was associated with a reduction in tiller 

number (Table 5.4). Therefore the direct relationship between yield and tillering in 

association with the Retriever alleles at that locus cannot be established from that NIL 

contrast. 

The significantly delayed heading date of line 2010AEE3 of 2.2 days compared to 

2010AEF3 and 2010AEH3 was significantly associated with the allelic pattern of 

component 3 (confounding with components 8,9,13,14,15). None of these components 
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were associated with a genetic factor affecting Hd in Table 2.9 but could relate to QTL 

found in the association mapping of Chapter 3. 

 

The HIF A-8 was conserved in 2013 for its segregation at genetic factors 10 and 11 

associated to tillering and TGW QTL (Table 5.1b). In 2012, the NILs of A-8 were 

significantly different for grains per ear and grain sugars and close to being significant 

for tillering and TGW (Table 5.2). However, no significant differences between the 

NILs of this HIF for any of the phenotypes analysed was found in 2013. 

Similar, HIF B-2 offered an opportunity to investigate segregating alleles at the genetic 

factors 5 and 12 associated to QTL for tillering and grain sugars respectively (Table 

5.1b). Although a significant tillering effect was observed in 2012, the HIF grown in 

2013 did not enable the discrimination of significant effects for the phenotypes 

measured.  

 

HIF B-3 was developed with only two segregating haplotypes on chromosome 6H and 

7H. The 6H haplotype co-localise with genetic factor 18 describing the which straw 

strength and disease QTL were mapped in the original bi-parental analysis (Table 5.1b). 

The significant differences in TGW and grains per ear between the B-3 NILs in 2012 

suggested that the haplotypes segregating in that HIF could potentially validate effects 

for yield components (Table 5.2). In 2013, the testing revealed significant effects for 

TGW and grain sugars (Table 5.3). It should be noted that both Saffron and Retriever 

are monomorphic for the single SNP segregating at component 2 in B-3 (A10965). The 

NIL 4045E8/5 which carries the Saffron haplotype at component 1, was found to be 

associated with an increasing effect on TGW (+1.62g) confirming 2012 results. This 

same haplotype also associates with higher concentration of grain sugars. Although no 

yield components effects were detected in this region in the bi-parental study, the 

consistent TGW effects in both 2012 and 2013 experiments strongly support the 

presence of a genetic control of TGW on 6HS (9-24cM) or 7H (around SNP A10965 at 

29.8 cM). These components could potentially enable the selection of increased TGW 

independently from yield. 

 

The HIF B-4 targeted the genetic factors 2 and 3 in association with the strong effect 

TGW (TGW_GS.3_1) and tillering (Til_mes.2_1) QTL observed in the bi-parental 

mapping (Table 2.9)). The family was also segregating at single SNP loci on 5H and 6H 

but with no particular QTL effects expected. In 2012, B-4 NILs were significantly 
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different for Hd, Ht, Grains per ear and approximated significance for TGW (Table 5.2). 

The 2013 yield trial experiment confirmed significant effects for Hd, Ht and Grains per 

ear. In addition, the NILs showed differences in yield and TGW (Table 5.3). The model 

optimisation enabled to associate the NIL segregating allelic components to the trait 

variation. The component 1 at 27.3cM (confounded with component 4) explained most 

of the variation in TGW. The A allele of SNP A20394, also shared with Saffron, is 

associated to a TGW increase of 1.66 gr (s.e. 0.89). A20394 was found highly 

significant in Chapter 2 for yield components TGW and tillering included in genetic 

factor 2. It was also shown to be mapped proximal to the photoperiod gene Ppd-H1 

influencing heading date in barley. In this family, heading date appears to be 

significantly controlled by alleles at component 1 and component 2 simultaneously, 

both with allelic effects of similar size estimated around 2.5 days (s.e. 0.5) (Table 5.4). 

Such large effects on delayed heading were visible in the field conditions (Appendix 5. 

2). Although these two components did not correspond to the Hd QTL found in the bi-

parental DH mapping, the chromosome location suggests correspondence with 

significant loci identified in Chapter 3. Component 2 is particularly interesting as it was 

found with significant effects for Ht, Hd and grains per ear in a 2H region where similar 

QTL effect were observed in GWAS. In B-4, the delayed heading date was associated 

with taller plants, more grains per ear but lower yield. The yield differences between 

NILs was mapped to component 2 .The haplotypes described by component 3 

corresponded with the presence (NILs 4187H3/4 and 4187F3/9) and absence (4187C3/1 

and 4187F3/8) of the sterile spikelet (Sts) on barley ears. This simple DUS trait 

confirms the quality of the material developed to isolate and validate simple allelic 

effects. Component 3 however was not found to be significantly associated with any of 

the quantitative traits measured suggesting that the DUS trait of presence and absence of 

sterile spikelets is not relevant for improving yield and yield components in two-row 

winter barley. 
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Table 5.4 Modelling of best significant component and associated allelic effects for 

NILs differing significantly in agronomic traits of interest. 
Each component (Comp) of HIF found significant in Table 5.3 are tested by ANOVA for 

association with the trait variation. The confounded components are indicated in brackets. The 

REML optimal model retains the significant components that best explain explaining the 

variation between NILs within HIF. The effects of alleles of the significant components retained 

in the optimal model are reported. For each component, the SNP alleles corresponding to 

component level -1, 0 and 1 can be found in Figure 5.3. 

 

 

 
  

Constant rep rep s.e. allele
mean (s.e.) 1 2 rep -1 0 1 s.e.

Heading 

date B-4 Comp1 1 218 53.21 <.001 309.6 1.44E-22 42.84 (0.47) 1.44 -1.44 0.42 2.51 - -2.51 0.52

Comp2 1 195 33.61 <.001 277.80 1E-21 2.36 - -2.36 0.60

Comp3 1 24 1.27 0.281 34.17 4.3E-07

A-3 Comp1( 2,3) 1 9.75 3.69 0.087 13.88 0.001

Comp4 (7) 2 14.6 27.62 <.001 20.84 3.1E-07 36.43 (0.42) 1.78 -1.78 0.42 1.74 -1.56 -1.74 0.51

Comp5 (6) 1 5.13 1.63 0.234 7.31 0.009

A-2 Comp1 2 3.36 2.4 0.133 4.78 0.013

Comp2 (4,8) 1 15.2 23.79 <.001 21.65 0.000 37.18 (0.35) 1.98 -1.98 0.4 0.98 - -0.98 0.40

Comp3 (5,7) 1 5.07 3.57 0.081 7.22 0.010

Comp 6 (10) 1 5.07 3.57 0.081 7.22 0.010

Comp 9 1 0.06 0.03 0.855 0.09 0.768

A-5 Comp1 (2,4,10,16) 2 6.61 5.74 0.028 9.41 0.000

Comp3 (8,9,13,14,15)1 12.9 12.18 0.007 18.37 0.000 33.1 (0.47) 1.30 -1.30 0.59 -1.10 - 1.10 0.63

Comp 5 (6,12,17) 1 1.71 0.74 0.412 2.43 0.126

Comp 7 (9,11) 1 5.23 2.73 0.133 7.44 0.009

Height B-4 Comp1 (4) 1 90.3 8.19 0.013 15.36 0.000

Comp2 1 217 168.2 <.001 36.89 0.000 107.9 (0.63) 1.88 -1.88 0.57 4.25 - -4.25 0.66

Comp3 (5) 1 56.3 4.13 0.063 9.57 0.003

A-3 Comp1 (2,3) 1 10.7 0.71 0.423 1.82 0.184

Comp4 (7) 2 21.3 1.64 0.253 3.63 0.034 99.33 (1.04) 4.00 -4.00 2.08 2.00 -2.00 -2.00 2.55

Comp5 (6) 1 10.7 0.71 0.423 1.82 0.184

Grains B-4 Comp1 (4) 1 13.3 10.61 0.006 5.87 0.019

Comp2 1 16.4 16.14 0.001 7.24 0.010 25.93 (0.56) 0.01 -0.01 0.5 1.17 - -1.17 0.58

Comp3 (5) 1 0 0.001 0 0.00 0.983

B-4 Comp1 (4) 1 44.1 14 0.002 9.16 0.004 44.57 (0.44) -1.61 1.61 0.89 -1.66 - 1.66 0.89

Comp2 1 28.3 6.5 0.024 5.89 0.019

Comp3 (5) 1 1 0.15 0.7 0.21 0.650

B-3 Comp1 (2) 1 21.1 2.51 0.174 4.38 0.042 Const + rep + 

Comp1

45.1 (1.02) -0.65 0.65 2.05 1.62 - -1.62 2.05

A-3 Comp1 (2,3) 1 3 0.46 0.514 0.62 0.434

Comp4 (7) 2 14.3 3.48 0.082 2.97 0.061

Comp5 (6) 1 27.5 7.3 0.024 5.71 0.021 51.61 (0.59) -0.94 0.94 1.12 -1.61 - 1.61 1.19

Yield B-4 Comp1 (4) 1 0.57 2.77 0.12 3.27 0.077

Comp2 1 1.39 9.6 0.008 7.89 0.007 10.29 (0.21) -0.12 0.12 0.16 -0.34 - 0.34 0.22

Comp3 (5) 1 0.85 4.57 0.052 4.83 0.033

A-5 Comp1 (2,4,10,16) 2 0.78 4.87 0.041 4.44 0.017

Comp3 (8,9,13,14,15)1 1.05 5.3 0.047 5.99 0.018

Comp5 (6,12,17) 1 1.28 7.33 0.024 7.26 0.010 11.25 (0.24) -0.08 0.08 0.25 0.35 - -0.35 0.26

Comp7 (9,11) 1 0.01 0.03 0.858 0.06 0.807

Grain 

Sugars

B-3 Comp1 (2) 1 0.19 0.193 0.071 4.22 0.045 Constant + 

rep + Comp1

2.03 (0.12) -0.18 0.18 0.14 0.16 - -0.16 0.14

Const + rep + 

Comp1

Const + rep + 

Comp5

Const + rep + 

Comp2

Const + rep + 

Comp5

Thousand 

Grain 

Weight

Const + rep + 

Comp1 + 

Comp2

Trait HIF

Source of 

variation 

(Component)

df

With overall 

trial error Optimal model effects (REML)Optimal 

model Component level
ms v.r. F pr. v.r. F pr.

1 way ANOVA (within 

family error)

Constant + 

rep + Comp2

Const + rep + 

Comp4

Const+rep+C

omp2

Const + rep + 

Comp3

Const + rep + 

Comp2

Constant + 

rep + Comp4
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5.4 Discussion 

5.4.1 Breeding resources for QTL validation 

NILs development 

Currently the application of MAS for QTL is only cautiously implemented in plant 

breeding programmes because further steps for validating the QTL effects are required. 

Numerous QTL from mapping studies provide extensive information on genetic regions 

apparently with associated useful effects to breed in improved crop varieties (Bernardo, 

2008; Collins et al., 2008). Breeders therefore require effective and efficient tools to 

help with the validation of these QTL and transfer research results into progress. In this 

study NILs have been developed to test and validate the effect of alleles at specific 

chromosome locations. Optimal NILs should only differ for a single chromosome 

segment in order to exclude any other background genetic variation. However, methods 

for NIL development often lead to residual segregation which when minimised should 

still provide valuable contrasts. The continuously renewed breeding material can 

provide a efficient genetic resource for the validation of QTL and alleles effects relevant 

to elite breeding. This study shows that heterogeneous inbred families (HIF) made of 

near isogenic individuals is perhaps best suited to a direct application to a breeding 

programme (Pumphrey et al., 2007; Tuinstra et al., 1997). Indeed, barley lines in F4 and 

F5 generations following either a Pedigree or Single seed descent breeding schemes 

contain sufficient heterozygote regions that can be matched with QTL locations and 

targeted in what would become a HIF founder line. 

Here, the barley QTL identified in Chapter 2 and characterised as genetic factors 

constituted the set of target QTL used for screening founder lines for HIF. Populations 

of breeding material expected to segregate for alleles present in the DH mapping 

population were screened in order to identify sufficient HIF founders. In order to 

investigate the possibility of more than two alleles at a genetic factor, breeding material 

from crosses unrelated to Saffron or Retriever was also screened using the same 

genotyping array. This approach was successful as it was indeed possible to find 

potential HIF founder lines with different segregating haplotypes at the targeted genetic 

factors. This very speculative approach may identify effects of multiple alleles and 

haplotypes, especially if it is supported by the prior knowledge on the presence of 

effective factors. However in this case, the production of NILs was complicated by 

errors of seed tracking that may have happened between the plant genotyping at F4 and 
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the F5 seeds leading to an unfortunate discrepancy between the originally planned QTL 

targets for validation and subsequent genotypes. Nevertheless, the new HIF founder 

lines could be used for validating different targets and haplotypes by the introduction of 

different parental haplotypes to those mapped in the Chapter 2. These unknown 

haplotypes and genetic backgrounds do indeed present a limit to the interpretation of the 

potential effects as the phasing of the alleles cannot be referred to the mapped effects of 

haplotypes segregating in Chapter 2. The experiment generated a valuable resource of 

14 HIF containing each 8 to 24 NILs that could be used to validate different haplotypes 

at multiple genetic factors (Table 5.1). 

Number and size of haplotypes 

The concept of validating QTL effects by NILs resides in the comparison of haplotypes 

expected to carry the different alleles of a functional gene controlling the trait of 

interest. Haplotypes can be defined using a set of markers associated with the QTL 

interval but will vary in size depending on the original mapping accuracy, the number of 

markers available to define the region and the recombination events found and selected. 

In a NILs development approach, Oh et al., (2010) identified a set of 47 descendant 

lines with informative recombination breakpoints using six SSR markers and grouped 

them based on similar haplotypes. The haplotypes were then used in a substitution 

mapping approach identifying which recombination breakpoint was associated to the 

difference in grain weights. To validate the DON QTL in wheat, Navara and Smith 

(2013) defined two haplotypes with a limited number of markers in each of the NILs 

families so that each haplotype was represented one to seven times in a family. Both 

these approaches allow the haplotypes to be replicated within families in order to 

overcome the potential residual background effects. In this study, the small number of 

lines developed within each HIF restricted the choices for optimal comparison. 

Although lines for several of the candidate loci shared the same haplotype and could 

have formed larger polymorphic groups for testing, the genetic background information 

revealed that residual segregation was confounded with the targeted alleles. Therefore 

the confounding residual segregation in the background cannot be excluded to interact 

and modify an effect on the phenotypes that are expected to be controlled by the 

targeted regions. In cases of numerous segregating regions, an additional cycle of self-

pollination can be used to reduce the background polymorphism. Pumphrey et al. 

(2007) used a similar strategy to improve the validity of the NILs contrasts. Overall, the 
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NILs contrasts with homogenous background were favoured and a subset of seven HIF 

containing two to four NILs was retained for 2013 field testing. 

 

NIL development using HIF is not without practical issues as residual segregation needs 

to be accounted for to generate sufficient progenies in order to identify optimal NILs 

comparisons. In this study, the large residual segregation led a very limited number of 

acceptable NILs comparisons and did not entirely resolved the confounding background 

segregation. Such a situation generates over parameterized contrasts due to more 

haplotype combinations across the genome than available NILs in an HIF. Each NIL 

comparison is unique as segregating background could be associated with confounded 

effect. In order to improve the contrasts, it is suggested to consider a larger number of 

NILs within HIF to identify optimal contrasts (perfect NILs) or a group of NILs that 

contain replicated haplotypes at the target region in a randomised genetic background. 

This could be achieved by generating a larger number of inbred progenies from the HIF 

founder lines. The optimal approach would be to generate new NILs by crossing or 

backcrossing fairly homozygous NILs tested in 2013 and developing segregating 

populations. This extra cycle of crossing can make a more homozygous background 

andalso smaller haplotypes with recombination breakpoints around the target that can be 

in substitution mapping (Oh et al., 2010). 

5.4.2 Haplotype effects and QTL validation 

In order to test the hypothesis of an effect of the components segregating between NILs, 

a two-step approach was implemented. The comparisons of haplotypes segregating 

within families was favoured following the approach used by Navara and Smith (2013). 

However, this conservative approach in estimating effects reduces the statistical power 

that can be obtained if all HIF are included in the analysis but excludes potentially 

strong confounding background effect linked to the different pedigrees of the HIF. The 

test of SNP and haplotype effects using the whole set of NILs from different HIF would 

require a standardisation of the haplotypes based on a reference genotype. However, this 

approach would often produce comparisons of single SNP haplotypes from unrelated 

and highly structured lines which could generate false associations. Instead, the study 

focused on within HIF analysis to maximise the estimations of effects between 

contrasts. The HIFs with significant differences between NILs were first identified so 

that the segregating haplotypes within HIF between NILs could be tested and their 

effect measured. The subdivision of haplotypes into components enabled for some 
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contrasts to add replication while diluting the background effects and also fine map the 

effect to the component itself. Such approach is only effective for the HIF constituted of 

three NILs or more. 

 

The major QTL effect of TGW and tillering found on 2HS in Chapter 2 (genetic factor 

2) was one of the principal targets for validation in the NILs. HIF A-2 was developed to 

focus on validating this genetic factor by having NILs segregating for contrasting 

haplotypes at component 2 associated with the TGW/tillering genetic factor. In 2012, 

the A-2 HIF showed only limited significance for TGW differences. In 2013, the A-2 

NILs experiment did not capture significant differences for either TGW or tillering 

initially targeted by component 2 (confounder with 4 and 8) and therefore did not 

validate the genetic factor 2 QTL from the S×R mapping. However, the A-2 NILs were 

significantly different for heading date at component 2 suggesting that the NILs were 

validating effects that had not been mapped in the bi-parental population. This may be 

due to the different pedigree of the founder line and therefore the comparison of 

different alleles at the component 2 rather than the Saffron and Retriever alleles. 

Because the component 2 in A-2 was only described by four SNPs, the haplotypes of 

the NILs were a priori identical to either Saffron or Retriever haplotypes although the 

NIL pedigree suggests different origins. The heading date effects located at component 

2 agreed with the location of the photoperiod response gene Ppd-H1 (Turner et al., 

2005). Although the four SNPs in A-2 HIF component 2 were not significantly 

associated with heading date in the GWAS (Chapter 3), the allele effect direction was 

similar across the two experiments (Table 5.4 and Supplementary data 2) suggesting 

that Ppd-H1 is a strong candidate to explain the variation in heading in A-2 but the 

alleles do not have an effect on TGW variation in that particular experiment. However, 

it needs to be born in mind that the contrasts in HIF A-2 were insufficient to completely 

resolve the origin of the heading date effect as the confounder component 8 on 

chromosome 5HL was also located in a region where NUE-CROPS QTL Hd_5 was 

identified. The marker A10805 of component 8 (130.1 cM) is located 6cM from the 

peak SNP of Hd_5 close to the candidate gene vrn-H1. An increase in the number of 

NIL within that A-2 HIF as well as additional genotyping of NILs with the significant 

markers identified in GWAs (e.g Ppd-H1 SNP) would help to characterise further the 

haplotypes at those loci and to achieve greater resolution of the effects location. 
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The HIF A-3 validated in 2013 a significant TGW effects in the centromere region of 

chromosome 7H (component 5) which was in alignment with the location of TGW-

GS.3_5 QTL associated to genetic factor 21. In both S×R mapping and HIF A-3, the 

Retriever (G) allele for A11014 SNP is associated with an increasing effect on TGW. 

However the haplotypes segregating in that HIF do not correspond to the Saffron or 

Retriever. Although it is possible that alleles in the centromere of 7H are involved in 

controlling the variation of TGW in winter barley, these TGW effects were not 

confirmed by the GWAS of NUE-CROPS and AGOUEB. This may be due to the 

prevalence of the relevant alleles in these larger germplasm sets. Alternatively this NIL 

contrast appears to identify an effect expressed exclusively in this specific genetic 

background which may be due to non-allelic interactions (Bocianowski, 2014). Also, 

the height effect expected to map at that same genetic factor 21 on 7H was not 

confirmed by the NILs. Instead, significant differences between NILs for height and 

also heading date mapped with confounding components on 4HL (89.4cM) and 7HL 

(104.8cM). On 7HL, no QTL for relevant traits were mapped that would support the 

presence of a genetic factor affecting height. On 4HL, the relation of the effect to the 

height QTL Ht3_1 is unclear due to the significant distance between the QTL and 

component 4. In addition, the single SNP in that component A10588 is monomorphic 

between Saffron and Retriever. Although no height effect was found in GWAS on 4HL, 

component 4 is mapped in the region of a multiple QTL for tillering described in 

Chapter 3 and for which putative candidate genes have been proposed (see 4.3.3 and 

4.4.2). It may be worth investigating further the polymorphism on 4HL in A-3 by 

increasing the marker density and developing recombinants. 

 

The complexity of QTL validation using NILs and HIF was exemplified by HIF A-5. 

First the numerous co-segregating loci (components) were found over multiple loci 

targets despite a cycle of self-fertilisation. This situation provided limited and not sub-

optimal NIL contrasts within that HIF. Second, the inconsistency of significantly 

different phenotypes between the NILs illustrates the seasonal Genotype x Environment 

interaction. Indeed, the HIF A-5 was initially kept for the NILs with contrasting effects 

on grains per ear found in 2012 but these were found significant only for yield and 

heading date in 2013. Because of the confounding loci, the correspondence of the 

segregating factors with the QTL mapped in that study cannot be established with 

certainty. The components associated with both significant yield and heading date 

differences did not correspond to any effects observed in the mapping studies presented 
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in Chapter 2 and Chapter 3. These results suggest that the NILs of A-5 are identifying 

significant genetic factors for yield and heading date but the resolution of the HIF is 

insufficient to capture the exact location of the effects. The A-5 HIF could be developed 

further to optimise the contrasts (see 5.4.1). 

 

Genetically, the B-4 family extends the polymorphic region on 2HS beyond that seen in 

A-2 to include pericentric parts of the chromosome, up to the SNP A10287 associated 

with vrs1. The haplotypes at that chromosome section were dissected into three 

components (component 1, 2 and 3). Alleles at SNP A20394 of B-4 component 1 

matched direction of the significant heading effects found for A-2 component 2 with a 

stronger effect but did not validate the TGW and tillering effects seen in Chapter 2. 

Aided by the GWAS results (Chapter 3), the study suggests that allele A of A20394 

associates to alleles of earliness at Ppd-H1 in the B-4 NILs haplotype. However, the 

component 2 in B-4 was also significantly involved in the control of heading date in 

addition to height, grains per ear, TGW and yield. This particular component 2 location 

corresponds to a chromosome segment in 2H that has been found to carry a larger QTL 

cluster in the GWAS although not the S×R population. In winter barley, the locus was 

associated with three days difference in heading but also had an effect on height, grains 

per ear, TGW, yield and nitrogen related traits (Chapter 3). In spring barley, heading 

date effects in the centromeric region of 2H have been described and associated with the 

gene candidate HvCEN (Comadran et al., 2012). In a GWAS on spring barley Alqudah 

et al. (2014) showed that the alleles at HvCEN were associated with delaying effects on 

heading date within population groups defined by their alleles at ppd-H1. Here, the 

optimal modelling of components strongly suggests that the heading date is controlled 

by two additive genetic factors of equivalent size in this winter barley B-4 family. The 

modelling of component 2 untangles the genetic architecture of heading date in this HIF 

and is consistent with the segregation of HvCEN in this pericentric region of 2H and the 

observations of Alqudah et al. (2014). The combination of late alleles at both the 2H 

loci led to an impressive delay in heading date greater than 10 days (NIL 4187H3/4) 

compared to the combination of early alleles. Such material could be used to investigate 

the sequence polymorphisms in winter barley for HvCEN especially at the winter-spring 

SNP at intron-exon splicing site and P135A (Comadran et al., 2012).  

The B-4 component 2 effects reinforces the presence of strong pleiotropic effects 

associated with the genetic factor on 2H centromere and herein the difficulties in 

identifying an optimal allele to select for in breeding programmes. The lateness is 
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associated with taller and lower yielding plant type in 2013 but increased the number of 

grains per ear, a very valuable yield component. The effect on Grains was not expected 

in this area from the S×R data however the SNP and alleles effects at component 2 of B-

4 are in alignment with the position and direction of the GWA major QTL for Grains in 

two-row winter barley panel (Grains_1, Table 3.2) and with the co-located height QTL 

Ht_2. This increases the value of those NILs for QTL validation of the potential gene 

candidate affecting meristem elongation (Cremer et al., 2001) but also the multiple traits 

found associated with that locus in Chapter 3. Additional material development may be 

required to obtain full combination set of alleles at component 1 and component 2 to 

test hypotheses of an ideal combination of alleles favouring both yield components. 

This would aim to maintain the large number of grains at component 2 (late allele) with 

a reasonable TGW and earliness at component 1 (early allele). A cross could be carried 

out between 4187F3/9 and 4187H3/4 in order to find a recombination event on 2HS 

between component 1 and component 2 producing sufficient material to allow for both 

the fixation of the genetic background and a reduction in size of component 2. 

 

Although significant effects were validated with the segregating components of the NIL 

contrasts, the study was unsuccessful in validating QTL corresponding to the S×R 

population despite specifically targeting the relevant genetic factors. Inconsistency in 

the significance of effects has been frequently observed in QTL mapping experiments 

indicating the presence of non-additive genetic effects due to pleiotropy, QTL × genetic 

background and QTL × Environment interactions (Bernardo, 2008; Cooper et al., 2009; 

Romagosa et al., 1999). Epistatic effects can differentiate allele effects in different 

populations and lead to contrasting selection (Asíns, 2002). In this study, the low 

success of validation can partly be due to the material itself that did not only concentrate 

on the Saffron or Retriever alleles inherited in a Saffron or Retriever genetic 

background. Also, the Saffron and Retriever haplotypes found in a different genetic 

background of a HIF may not have expressed the same effect and phenotype due to non-

additive interactions. In most cases, the haplotypes at QTL targets were from an 

unknown pedigree reducing the potential to detect a corresponding effect at co-located 

S×R genetic factor. However the material enabled the mapping of unexpected effects 

for quantitative traits in chromosome regions that have been found associated with 

relevant QTL clusters and known genes. 

Moreover, the variability of the effects observed across years highlights the strong 

effects of seasonal G×E interactions to account for in validation experiments. This was 
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exemplified by the contrasting results of HIF in 2012 and 2013. HIF A-8 and B-2 did 

not confirm the significant NIL differences observed for yield components in the 2012 

experiment. QTL×E interactions have been observed in several QTL mapping studies 

(Emebiri, 2013; Hayes et al., 1993; Saal et al., 2011) and need to be considered in the 

investigation of genetic architecture of quantitative traits (Cooper et al., 2009). Here, the 

NILs results show that yield components are strongly affected by the extent of G×E 

associated with variable growing seasons and sites. The experiment describes the 

environment specific allele effects which may be used by breeders in MAS to optimise 

crop performance under specific environments which may be a limiting factor for 

commercial breeding. However the inconsistency in the effects imply that breeders 

aiming at targeting those alleles will have to first validate the effect in their targeted 

environment and second validate the allele effect in an elite genetic background. This 

strategy may be unrealistic in commercial breeding programmes. 
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Chapter 6  

General discussion 

Breeding for improved varieties relies first and foremost on the ability to select for 

favourable allele combinations associated with traits of interest, resulting in better 

agronomic and yield performance. From a commercial breeding perspective, a thorough 

understanding of the genetic control of traits results in increased breeding efficiency and 

reliability. The results obtained in this project illustrate that considerable genetic 

knowledge on quantitative traits such as yield and yield components can be collected 

using a range of complementary disciplines and offers real opportunities for achieving 

genetic progress. 

6.1 QTL mapping studies 

The foundations of this project consisted of large scale QTL mapping studies aimed at 

understanding the genetic architecture of yield and yield components, both 

quantitatively inherited traits. The success of any mapping approach relies largely on 

the quality of the phenotypic data of which the proportion explained by genetic 

variation is maximised by accounting appropriately for environmental variation or error 

variance (Bernardo, 2008; Piepho et al., 2008). To reach that goal, the strategy targeted 

optimal growing conditions to allow the full expression of the crop yield potential by 

minimising environmental stress using the best possible field conditions and agronomic 

practices. Furthermore, this experimental protocol designed for high input regimes 

relates directly to the majority of conventional breeding and farming practices in the UK 

(DEFRA, 2010), making the results more interpretable and comparable to commercial 

crop production. The choice for experimenting in optimal growth conditions also 

maximised trait heritability which helped the accuracy of phenotyping and may 

compensate for the reduced replication available (Chapter 2). The bi-parental mapping 

QTL analysis of multiple environment data, confirmed consistent QTL effects despite 

significant GxE and highlighted the presence of 23 genetic factors associated with one 

or more QTL across the genome. A similar reasoning was behind the NUE-CROPs 

GWA study (Chapter 3) to aim at maximising the transferability and application of the 

results into applied breeding. The reliability of the phenotypic data was also enhanced 

by the use of statistical mixed modelling. In GWAS, the phenotypes recorded as BLUPs 
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were mapped as they represent the best genetic value of the varieties (Piepho et al., 

2008). Therefore this phenotypic data obtained under optimal conditions should 

maximise the quality QTL of mapping, and ensure the relevance for conventional 

breeding and farming practices. 

 

The other aspect addressed in this study is related to the complementarity of different 

QTL mapping approaches. On one hand, the bi-parental population enables the mapping 

of QTL in a well understood and unstructured genetic environment. Because there is 

only a restricted set of alleles segregating in bi-parental QTL mapping populations, the 

choice of parental lines is critical to determine the relevance of alleles in a breeding 

germplasm and impact of the results. In barley, crosses between extreme phenotypes 

have been used to identify major genes involved in ear morphology and the control of 

phenology (Decousset et al., 2000; Turner et al., 2005; Xue et al., 2010). From a 

breeding perspective, the pleiotropic effects on agronomic traits attributed to these 

major genes (e.g vrs1) are hardly exploitable because the traits affected are essentially 

defining the crop type itself. Therefore studies that aim at avoiding the mapping of 

pleiotropic effects at major genes should be more attractive for a MAS approach in 

breeding (Rae et al., 2007). This project highlights the potential of DH populations 

created from elite parents (Saffron and Retriever) of the same crop type: two-row winter 

barley. It confirms the benefits of using breeding related material to carry out QTL 

mapping of direct relevance to the breeding activities (Würschum, 2012). The value of 

the Saffron×Retriever population was further increased by the UK registration and 

release of the elite variety KWS-Tower that came from the same cross, while its 

progeny KWS Orwell (pedigree: KWS-Tower×KWS-Salsa) was UK listed in 2014. 

This confirms that the beneficial alleles brought in from Saffron and Retriever have 

been important in subsequent breeding cycles. However certain limitations of the 

population were evident such as the monomorphic chromosome segments on 1H, 5H 

and 7H suggesting common ancestry and impeding the investigation of genes and 

alleles present in those regions. In addition, some QTL had wide confidence intervals 

indicating that markers associated with these QTL may be less precise for targeting the 

causal polymorphism or of lower interest for MAS. 

On the other hand, GWA mapping allows for screening marker-trait associations within 

a larger and more diverse set of alleles than bi-parental mapping and with increased 

mapping precision and including of rare alleles in the panel (Gupta et al., 2005). These 

alleles are likely dispersed throughout the breeding germplasm, segregating in mapping 
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populations and available for introgression into UK varieties. A major concern in 

association mapping is population structure which can lead to incorrect marker-trait 

associations (Comadran et al., 2009; Zhang et al., 2009). Although structure is 

accounted for by statistical models, major partitioning loci (e.g. vrs1) continue to have 

pleiotropic effects on a range of other agronomic traits and are detected in the QTL 

analysis (Cockram et al., 2008; Pasam et al., 2012). The approach followed in this 

project aimed at reducing the main structural components of the mapping panel by 

focusing exclusively on the two-row winter barley crop type (Chapter 3). The mixed 

model approach using a Kinship matrix based on genetic marker information 

theoretically accounted for the population structure present in the two-row winter barley 

panels investigated. This Kinship approach implemented in the study reduced 

significantly and appropriately cases of spurious associations as it was reported 

previously in barley GWAS (Pasam et al., 2012; Wang et al., 2012). It needs to be borne 

in mind that other correction methods should not be set aside and that even if they 

produce very comparable results, additional information can be gained by using 

multiple analyses (Cockram et al., 2010). 

 

This project addressed QTL mapping from a plant breeding perspective. First, the 

varieties selected for the mapping experiments were to be genetically close relevant to 

the germplasm used for breeding commercially two-row winter barley. Secondly the 

phenotypic data collected was similar to the data routinely generated in a breeding 

programme. This strategy intends to optimise the transferability of research results into 

commercial breeding with the aim of utilising the MTA discoveries in the selection 

process. Furthermore, the complementarities between mapping methodologies can be 

used to identify targets for further investigation. 

6.2 Detection of constitutive QTL 

The assets of this project were the extensive data collected from diverse genetic 

resources used in three main QTL mapping experiments. In order to identify relevant 

QTL and define the position of genetic targets with associated markers, the mapping 

results were gathered using the advantages of having common SNP markers across the 

genotyping platforms (Close et al., 2009). Unlike meta-QTL analysis which requires the 

statistical integration of multiple genetic maps (Swamy et al., 2011), the approach was 



180 

 

simplified by using an existing the reference map based on bi-parental and LD mapping 

(Comadran et al., 2012). The SNP markers were considered sufficient to anchor the 

QTL and their support intervals along chromosomes and allowed the clear identification 

of QTL clusters across studies. 

 

In general, the positions of QTL clusters showed more correspondence between 

AGOUEB and NUE-CROPS GWAS than with the bi-parental QTL. This can partly be 

explained by a considerable proportion of varieties overlapping between the GWA 

mapping panels implying a large proportion of shared alleles. Less cases of 

correspondence between GWAS and bi-parental mapping in this study were seen 

suggesting that these mapping approaches capture different genetic factors, even though 

Saffron and Retriever were present in the NUE-CROPs variety panels. In addition, both 

AGOUEB and NUE-CROPs panels were historic which could be seen by the mapping 

of QTL for date of variety date of inscription (UPOV). Therefore it is likely that some 

alleles in especially Retriever may be represented in minority in the GWAS analysis. 

The S×R results are particularly relevant to current varieties, especially those from 

KWS-UK breeding programme for which a considerable current elite germplasm 

originates from those two key varieties. Consistent effects across studies were however 

identified, especially for single traits such as the precise mapping of the anthocyanin 

trait for which the gene ant-2 was identified and cloned by Cockram et al, (2010). Also, 

the positon of a main mildew resistance QTL on 5HS in the S×R bi-parental population 

was also observed in the AGOUEB GWAS (Figure 4.1e). This evidence of 

correspondence between QTL of highly heritable traits across the three mapping studies 

supports the strategy followed in comparing mapping studies despite QTL 

correspondences for complex traits between studies more difficult to establish. 

 

Although the QTL alignment does not provide QTL validation as such, the confirmation 

between studies is a strong argument toward the presence of a genuine genetic factor. 

This is reinforced if common significant markers and the phase of these for specific 

genotypes are found. Some overlap between QTL of the mapping studies were found on 

all chromosomes (e.g TGW QTL on 2HS and 5HS). The most important QTL cluster 

between studies was found close to the centromere of chromosome 2H at the HvCEN 

locus. This flowering time locus was shown to have effects on multiple agronomic traits 

described in a panel of spring and winter barley varieties (Comadran et al., 2012). The 

NUE-CROPS and AGOUEB GWAS show that alleles at this candidate gene segregate 
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within the two-row winter barley germplasm. In addition, the range of traits represented 

in the QTL cluster emphasise the amplitude of the pleiotropic effects of that locus on 

major agronomic traits. The control of phenology is well known to play a large role in 

plant adaptation and agronomic trait variation in barley (Kandemir et al., 2000; Li et al., 

2005; Wang et al., 2010). In the present case of HvCEN, the alleles associated with 

early or late types may have been maintained in the elite genepool by breeders in the 

two-row winter barley germplasm to adapt to a range of seasonal variation. In addition, 

there was no evidence of major population structure in the European two-row winter 

barley panels used in this study to suggest that this locus was responsible for 

stratification. This was especially important as it could have affected further the GWAS 

QTL results. 

 

This project shows that the comparison of QTL studies can be an alternative method to 

meta-QTL analysis to identify constitutive QTL from various studies using 

complementing mapping methods sharing genetic markers. Further exploitation of the 

variety panels can also be envisaged to investigate specific alleles by developing 

material segregating for specific allelic combinations at the loci of interest. One 

possibility could be the development of a DH population designed to exclude 

segregation of major alleles such as the Saffron × Retriever population which was 

monomorphic at the HvCEN locus. Also, specific crosses could be made to generate 

recombination around the tillering locus on 4HL. Recently, the potential of Multiparent 

Advanced Generation Inter-Cross (MAGIC) populations has been demonstrated for 

quantitative trait research in cereals (Huang et al., 2012) though it includes segregation 

of major genes. This approach introduces segregation of multiple alleles while reducing 

the genetic population structure. A set of relevant parents from NUE-CROPs or 

AGOUEB panels could be identified for the creation of a two-row winter barley 

MAGIC population aimed at reducing the effects of major genes. This resource could 

also complement the present study in validating further the GWAS results and 

constitute a valuable breeding tool. However, the time and resources needed for the 

elaboration of such population restrain the more frequent development of this type of 

validation approach. 
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6.3 Yield and yield components 

QTL for yield and yield components were found on all chromosomes in the three 

mapping experiments reported in Chapter 2 and Chapter 3. In the two GWAS, six and 

nine yield QTL were identified with relatively small effects and low significance scores. 

Such results highlight the genetic complexity of this trait and the challenge to identify 

genetic markers associated with significant effects leading to improvement in yield. As 

expected, the locations of most yield QTL coincide often with those of correlated traits, 

either component of yield or derived traits (e.g. nitrogen related traits). This 

correspondence is similar to the findings in other studies investigating multiple 

agronomic traits (Comadran et al., 2011b; Pasam et al., 2012; Tong et al., 2010). 

Interestingly, the yield QTL also co-localised with QTL associated with the date of 

release of varieties which suggests that these alleles are among the genetic factors 

breeders have selected over the past 40 or 50 years. At the centromere of 6H, the 

composition of the cluster including UPOV_7 and Yld_7 QTL may correspond to a 

polymorphism relating to nitrogen related traits and winter hardiness. Moreover, the 

NUE-CROPs QTL Yld_2, Yld_3 and Yld_4 all coincided with yield component QTL. 

Yin et al, (2002) demonstrated that the dissection of yield into simpler yield 

components provides additional insights into the genetic architecture of the trait. In this 

study, the results show that the dissection of traits is required in order to correctly 

interpret the role of effective loci before embarking on MAS. Indeed, one of the main 

challenges in understanding the genetic control of a quantitative trait is to consider the 

influence of pleiotropic, environmental and epistasic effects on the trait variation 

(Mackay et al., 2009). Phenology is one of the most important traits conferring 

adaptability to the environment with substantial pleiotropic effects on yield. In wheat, 

the alteration of the photoperiod response by ppd-D1 gene was shown to affect the ratio 

between source and sink organs in the plant and yield components (Foulkes et al., 

2004). Unfortunately the large effects of such genes can hide a range of genes with 

smaller effects which could be of interest for breeding and impact directly on the 

significance of allelic differences at other genes working in related pathways (Alqudah 

et al., 2014). Indeed, Cuesta-Marcos et al. (2009) characterised novel yield QTL after 

identifying that different maturity groups were present in a mapping population. It could 

be therefore possible that the strong pleiotropic effects at the HvCEN locus affect 

indirectly the detection of secondary genetic factors for traits other than heading date. 

This may be investigated by further mapping by including HvCEN alleles as a co factor 
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in the mapping study or by enlarging and dividing the mapping panels so that the locus 

are kept monomorphic in each panel. Yield is not the only trait expected to have a 

complex genetic control. Components of yield are also prone to interactions and 

pleiotropic effects of adaptive loci that need to be considered in the interpretation of 

results. 

 

The number of fertile tillers per plant is a major contributor to yield. It is initiated 

during the foundation phase of plant development before any other yield component and 

is therefore less affected by compensatory mechanisms. However during the later 

growth stages, tillering may influence the balance of source and sink organs and impact 

on significant compensation mechanisms which can cause the correlation between traits 

(Sreenivasulu and Schnurbusch, 2012). For example, high tillering may increase the 

sink size and reduce the ability of the plant to fill the grains resulting in overall decline 

of grain quality and perhaps of yield. Consideration of this interdependence between 

traits is important in helping the interpretation of clustered QTL effects as the mapping 

showed that significantly correlated traits often had clustered QTL. This emphasises the 

need to carry out and include a complete range of phenotypes in mapping studies in 

order to sensitively interpret results from QTL studies. An example is provided by the 

initially appealing tillering QTL cluster on 5HS that suggested that SNP A20553 could 

be used to select for increased tillering. However, further analysis highlighted the 

significant negative effect of this QTL on TGW, indicating that the positive effect is 

balanced out by the decreasing effect of the other yield components (Table 4.1). This 

same locus and markers were identified with strong associations for tillering and height 

in a more diverse panel, supporting the evidence of a functional polymorphism present 

in two-row barley types (Comadran et al., 2011b). A similar observation of an allele 

with opposing effects on different yield components was made on chromosome 2HS for 

the tillering and TGW QTL described in Chapter 2. This highlights the recurrent 

dilemma faced by plant breeders when selecting appropriate QTL targets to be 

implemented in MAS. If perhaps observed solely as a TGW QTL, active selection could 

lead to disappointing results as low tillering selections continue to fail to improve in 

yield. However the project also revealed some promising candidate regions with QTL 

having unidirectional positive effect across traits. A tillering QTL cluster with no 

apparent negative effects on other yield components was identified on 4HL and should 

highly be considered as target for MAS. Associated with SNP A20732, it appeared 

independent to heading date and sufficiently distant from the phenology controlling 
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gene vrn-H2 (Dubcovsky et al., 2005). QTL for this trait has indeed previously been 

identified in the region but without any candidate genes being proposed (Borràs-

Gelonch et al., 2011; Long et al., 2013). These results confirm the importance on 4HL 

in the control of tillering, 

 

The major QTL found for number of grains per ear in two-row winter barley was a 

surprising outcome of the GWAS (Chapter 4). Because the panels were composed 

exclusively of two-row types, it was expected that the genetic control of this yield 

component would involve multiple loci however the results identified only one main 

QTL for grains per ear located at the 2H centromeric region and comapping with the 

HvCEN locus (3.4.2 and 3.4.3). The direction of allelic effects showed that delayed 

flowering was associated with an increase in the number of grains per ear. This 

contrasts with the observations made by Comadran et al. (2011b) who concluded the 

opposite effect in a two-row spring barley germplasm. These different interpretations 

may reflect differences in gene by environment interactions between the spring and 

winter germplasm in relation to plant adaptation and further emphasises the evidence for 

strong pleiotropic effects at that locus. The involvement of this gene in inflorescence 

architecture has been reported in other studies; the CENTRORADIALIS gene family was 

shown to be involved in the fate of floral meristems in snapdragon (Cremer et al., 2001) 

and, the overexpression of the gene in tobacco delayed the shift to flowering (Amaya et 

al., 1999). The CEN like gene MdCENa in apple trees was shown to be involved in the 

proliferation of tissues and able to complement the flowering time pathway of FT1 gene 

when transformed in Arabidopsis (Mimida et al., 2009). The observation of a QTL 

cluster at the HvCEN locus supports the hypothesis of a similar function for the gene in 

barley in controlling meristem behaviour during the ear development. Recently, Boden 

et al. (2015) showed that the wheat photoperiod gene Ppd-1 was involved in controlling 

floral architecture and the development of paired spikelets which reinforce the strong 

association between phenology and floral architecture found in the NUE-CROPS 

GWAS and the pleiotropic effects of such genes. Ultimately the gene affects the length 

of development phases and timing of heading date, which if manipulated carefully could 

result in increased grains per ear and a potential increase in overall yield (Alqudah et al., 

2014). 

It should be noted that another four QTL were found for grains per ear in the mapping 

experiment of Chapter 2 although none of them coincide with the GWAS results. These 

differences demonstrate the power of biparental mapping populations monomorphic for 
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major alleles, in characterising loci with smaller effects. Although the GWAS accounted 

for population structure, the adaptive role of HvCEN for the two experimental seasons 

may be reflected across the whole range of phenotypes, especially yield and yield 

components. Further QTL analysis accounting for the variation at the HvCEN locus 

could help in identifying loci independent from this major gene effects. 

 

TGW is the last yield component to be determined in the plant cycle after tillering and 

grains per ear. In this study, the genetic complexity of TGW was highlighted by the 

large number of QTL found for the trait which may relate to the high heritability of the 

trait. In fact, most TGW QTL coincided with QTL for other traits such as heading date, 

tillering, and grains per ear. These types of QTL associations between traits have also 

been observed in many other mapping studies analysing several yield components 

(Pasam et al., 2012; von Korff et al., 2006). On one hand, QTL clusters can be caused 

by the direct pleiotropic effects of the polymorphic candidate genes at those loci while 

on the other hand, the indirect effect of plant compensatory mechanisms influencing the 

balance between source and sink organs may partly explain the QTL clustering. The 

importance of phenology and plant adaptation in the final performance of sink organs 

was confirmed by the convincing associations between TGW and heading date QTL 

(e.g HvCEN cluster on 2H). The 5HS QTL cluster (Figure 4.1e) clearly suggests a 

strong relationship between tiller number and grain weight and an equivalent 

interpretation can be made at the HvCEN locus. This complex network of pleiotropic 

effects and interactions impede the process of isolating independent TGW effects and 

ideal QTL targets for a MAS approach in two-row winter barley. Nevertheless, results 

from rice studies have suggested that specific attention should be directed to genes 

involved in plant sugar metabolism (Ishimaru et al., 2013; Tang et al., 2009). The 

investigation of candidate genes in this project suggests that genetic control of this 

pathway may be involved at the small effect QTL found in NUE-CROPs on 

chromosome 1H. 

 

This study demonstrates that the strong relationship between yield components is also 

observed at the genetic level. The mechanisms of compensation between yield 

components and the GxE interactions for yield have been associated to QTL for yield 

suggesting that the identification of key traits are necessary to understand the 

physiological mechanisms in play and the genes involved (Slafer, 2003). Physiological 

models that attempt to understand yield analyse the yield architecture based on the 
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generation of yield components through the stages of plant development. The number of 

grain m
-2

 is initiated in the pre-anthesis phase of development and made of tiller m
-2

 and 

grains per ear (Slafer, 2003).The positive correlation of grain m
-2

 to yield and its role in 

establishing the yield potential is well recognized. During pre-anthesis period, the crop 

phenology impact on the control of stem elongation and plant growth at 20-30 days 

before anthesis and is critical to determine the yield potential set by grain m
-2

 (Borràs-

Gelonch et al., 2011). Indeed, phenology genes have a major influence on yield 

performance through plant adaptation to its environment in both barley and wheat, 

(Comadran et al., 2011b; Cuesta-Marcos et al., 2009; Foulkes et al., 2004). It was also 

confirmed by the key role of phenology controlling genes like HvCEN and Ppd-H1 in 

this study and their pleiotropic effects at QTL clusters. The alteration of phenology 

during the phases of yield potential establishment can modify the survival rate of tillers 

and florets that define grain m
-2

 and the timing of growth stages leading to seasonal 

adaptation as observed in the NIL experiments. The trait of grain m
-2

 was not 

investigated in this study and it may be used to complement and accommodate the 

negative correlations and give additional insight on QTL clusters and dissecting the 

genetic interactions responsible for the architecture of yield in barley. In physiological 

models, TGW is determined during post-anthesis and appears to be determined with 

little relationship to the components determining the number of grains m
-2

. This suggest 

that the negative relationship it has with grain number may not be due to feedback 

processes (Slafer, 2003). Other key traits such as the ratios of source and sink, the 

resource economy within the plant will affect the competition of grains for assimilate 

and individual grain weight (Bingham et al., 2007a; Bingham et al., 2007b; Reynolds et 

al., 2011). Therefore, the analysis of grains m
-2

 as an additional yield component would 

give a better understanding of the underlying effects at a QTL cluster and their role in 

phenotypic plasticity observed through relationships and pleiotropic effects on other 

traits such as TGW.  

The final interpretation of the QTL cluster relies mainly on a validation of candidate 

genes and candidate gene effects and therefore any simplification of the process 

involved in yield establishment should be considered. This project is a substantial step 

towards understanding the yield architecture of two-row winter barley and provides 

marker trait associations for most of the phenotypes that can be used to optimise allelic 

combinations in improved crops. However it brings into question the potential 

application of MAS for a complex trait independently of other traits such as phenology. 

Theoretically, a constitutive QTL effect independent from the environmental conditions 



187 

 

could offer consistent genetic progress however the reality implies that a more in-depth 

analysis of the plant physiology, epistatic interactions and gene × environment 

interactions may be necessary before implementation of MAS for complex traits 

(Romagosa et al., 1999). Genomic selection may also offer alternative approach to take 

into consideration minor and pleiotropic effect as well as gene × environment 

interactions in a commercial breeding context (Jannink et al., 2010). 

6.4 Insight on novel candidate genes 

Gene discovery and gene cloning in barley has mainly focused on major genes of highly 

heritable traits involved in the control of ear row number, response to photoperiod and 

monogenetic traits (Cockram et al., 2010; Ramsay et al., 2011). By definition, a QTL 

maps on a chromosome position where a sequence polymorphism causes the variation 

in a trait. In this project, the QTL results have confirmed the critical role of phenology 

genes in environmental adaptation and subsequent variation of yield and yield 

components. To take a step further to mapping, an attempt was made to identify 

potential candidate genes underpinning interesting QTL regions on 2HS, 4HL, 5HS and 

5HL (4.3.3) with putative genetic control of yield and yield components. These could 

give a real advantage to breeders in their goal to achieve consistent progress, especially 

if candidate genes could be diagnosed with a sequence polymorphism responsible for 

the trait variation. This approach was aided by the genomic collinearity between grass 

species. Comparative genomics has enabled the identification and cloning of candidate 

genes in barley and gives an insight into the gene function and the possible alteration 

effects of a sequence polymorphism (Comadran et al., 2012; Koppolu et al., 2013; 

Ramsay et al., 2011). The concept of the ‘genome zipper’ between barley and rice 

(Mayer et al., 2011) was used in an attempt to anchor the significant barley SNPs on 

rice chromosomes and bracket rice genes as potential homologous gene for candidates 

genes in barley. The number of homologous rice genes bracketed by the SNPs varied 

depending on the QTL and chromosome position. One reason could be the different 

gene density observed along chromosomes of grass species (Feuillet and Keller, 2002). 

Also the position of the barley QTL on the chromosome will affect the ratio between 

physical and genetic maps. In general, the gene models contained in the rice 

chromosome segments could not be associated with certainty to a trait variation and a 

greater understanding of gene function is necessary to further refine and use these 
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results. However, some more plausible genes were proposed as candidates for a subset 

of QTL. A ras-related protein known for its implication in the control of meristem 

growth (Kamada et al., 1992; McCormick, 1995) was proposed as the most convincing 

gene candidate for the tillering locus on 4HL. The analysis of the 5HS mildew QTL 

homed in on a rice gene cluster of seven thaumatin protein genes (LOC_Os12g43410) 

which have been shown to be involved in the control of development and resistance to 

mildew infections (Tattersall et al., 1997; Xing et al., 2008) although comparison of 

disease resistance genes between species is complicated by the speed and complexity of 

their evolution (Meyers et al., 2005). Keeping in mind that differences in copy number 

can be a source of polymorphism, the results indicate that the 5HS QTL could be an 

ideal candidate gene to investigate and may confirm similar observations of a resistance 

locus in barley (Aghnoum et al., 2009; Comadran et al., 2009)  

 

It is worth mentioning that the candidate genes proposed at the QTL targets are part of a 

non-exhaustive list of homologous rice genes. First, the delimitation of the homologous 

rice chromosome segment used only the best SNP of GWAS for each of the QTL rather 

than the whole QTL support interval. This approach therefore applies a high level of 

stringency to reduce the size of the homologous chromosome region investigated and 

may miss the causal gene. Secondly, for each QTL investigated, the list of homologous 

genes contains other potentially interesting candidates including transcription factors 

and gene coding for proteins with functional domains. Finally, although there is a strong 

homology between the barley and rice genomes (Mayer et al., 2011), one should bear in 

mind the probable cases of micro rearrangements of gene order, insertions and deletions 

but also differences in gene functions between the two species. In addition the study did 

not investigate the genome of Brachypodium distachyon which also a well conserved 

synteny which cereal species (Mayer et al., 2012; Mayer et al., 2011).Taken together, 

additional research into gene function and a wider screening including other cereal 

species should provide more opportunities to find and validate candidates genes. 

 

Interestingly, the barley-rice genome zipper and the pattern of marker traits associations 

gave additional perspective to the GWAS results and the understanding of QTL clusters. 

In the case of the clusters located over the Ppd-H1 and HvCEN candidate genes, the 

marker trait associations suggested different haplotype signatures for different traits. At 

Ppd-H1, the results of associations showed that approximately 20 rice gene models 

were separating the highly significant TGW SNP to the diagnostic SNP of Ppd-H1 
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(homologous to LOC_Os07g49460). Therefore either Ppd-H1 may contain additional 

alleles that do not affect heading date but only TGW or closely linked genes are 

controlling TGW (e.g glycosyltransferase protein, LOC_Os07g49370). Similar 

dissociation of TGW and heading date was found in a cluster overlapping the HvCEN 

gene. Although the QTL overlapped at the centromere, the haplotype signatures 

suggested that different genetic factors (or genes) rather than different alleles at the 

same gene are associated with the QTL. These results illustrate that despite being 

mapped in the same QTL cluster, an increased genetic resolution can help to separate 

out the different genetic controls. This resolution depends essentially on the 

composition of the SNP array used in genotyping the material and the alleles 

segregating in the population genotyped. For important QTL targets, both the rice gene 

models and barley sequence information (Mayer et al., 2012) can be used to develop 

additional markers and increase marker density in the region to screen the panel of 

varieties and increase the resolution of GWAS. 

6.5 QTL validation 

Validation of identified QTL is an essential step to confirm their potential for MAS, 

especially for complex quantitative traits such as yield and yield components (Collard 

and Mackill, 2008). Tuinstra et al., (1997) demonstrated that inbred lines of advanced 

generations could be used as founder lines to develop HIF made of NIL segregating for 

a chromosome segment matching a QTL position. This method was implemented in 

barley to validate a deoxynivalenol QTL previously mapped in a barley GWAS (Navara 

and Smith, 2013). Here we implemented the HIF approach in winter barley using 

breeding material at F5 generation and later which ideally shared alleles with parents 

used in a QTL mapping experiment in which target loci were identified (Chapter 2, 

Table 2.9). This approach has the advantage to validate the effects of alleles that are 

also undergoing selection in parallel breeding activities and can potentially become 

parental lines (Pumphrey et al., 2007). A good insight into the genetic background and 

the level of homozygosity was obtained by using a 384 SNP array. In addition, the 

genotyping platform revealed substantial residual heterozygous regions, even at the F5 

generation, which would not have been identified if a smaller array of SNP was used. 

Despite additional cycles of self-fertilisation to generate a more homozygous genetic 

background, some NIL pairs had residual background segregation at two or more loci. It 
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is therefore possible that those residual segregating loci contain potential sources of 

confounding effects to the targeted QTL when being tested (Pumphrey et al., 2007). 

More accurate pairs of NILs can be achieved by additional cycles of self-fertilisation 

and by increasing the number of the progeny from the HIF founders (Pumphrey et al., 

2007) while maintaining the use of good marker coverage of the genome. On the other 

hand, this extra cycle will increase the length of the validation process delaying the 

implementation of the results in the breeding programme. From a total of 14 initial HIF 

founder lines heterozygous for QTL targets that included the major 2HS QTL for TGW 

and tillering (Chapter 2, Table 2.6), a subset of seven HIF families were identified for a 

replicated field trial experiment in 2013. The results showed that a three year period was 

necessary to characterise HIF founders, multiply NILs and carry out replicated yield 

plot experiments. The process could be reduced to two years for replicated mini-plot 

experiments that would be sufficient for validating disease resistance QTL although it 

may compromise the homozygosity of the background. However, an additional year of 

testing should confirm the robustness of the effect across environments. Our results 

agree with Pumphrey et al, (2007) and show that NILs and HIF approach is attractive to 

breeders seeking to simultaneously utilise and validate the effects of alleles present in 

advanced breeding material. 

 

The traditional QTL validation by NILs often uses a restricted gene pool and backcross 

scheme of alleles in a well-defined genetic background which is often the other parent 

in the QTL mapping experiment (Kandemir et al., 2000; Yun et al., 2006). One aspect 

of this study was the use of diverse parents of the HIF founders compared to the parents 

used for the biparental QTL mapping. Therefore, the haplotypes and alleles tested in the 

NILs could differ from the expected results of the bi-parental mapping population. On 

one hand this gives the opportunity to test for effects of different alleles and haplotypes 

within HIF which can correspond to the allelic diversity in a breeding germplasm. On 

the other hand the multiples HIF are highly structured genetically which makes the 

alleles of individual SNP difficult to compare across HIF and as it would reduce the 

statistical power of the NILs comparisons (Tuinstra et al., 1997). Indeed it is not 

appropriate to compare individual SNP alleles across HIF due to strong effect 

attributable to drastically different genetic backgrounds. Consequently, the experiment 

was designed to minimise environmental variation between NILs within HIF and the 

statistical analysis focused on comparisons between contrasting haplotypes of NILs 

within HIF in a three step process. First, the whole experiment was analysed to estimate 
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error variance; secondly the significance of NILs contrasts were tested within HIF 

families using the error variance from the whole trial and finally the segregation of 

genetic factors between NILs within HIF was modelled using the markers to define 

haplotype components.  

 

Overall, the confirmation of the QTL effects in the replicated field trial was moderate 

with relatively low correspondence between the significant NILs differences in the two 

years of phenotyping. This may primarily be due to different growing conditions 

between untreated miniplots in 2012 and treated yield plots in 2013 which may account 

for a large proportion of GxE interactions in the phenotypic variation. The HIF A-5 

exemplified both the potential of the NILs to validate QTL effects but also the limit of 

this experiment in resolution and power. The NIL pair contrasting for anthocyanin 

pigmentation (component 4) and the literature information on the gene position 

(Cockram et al., 2010), validated polymorphism at component 4. However, the reduced 

HIF size with a high number of remaining segregating regions (components) caused 

very limited resolution and led to over parameterised QTL effect modelling. Further 

resolution on the origin of the variation amongst the components can be achieved by 

reducing background heterozygosity and increasing the allele replication by the number 

of NILs in a HIF. 

The positive results of HIF B4 confirmed the utility of the strategy undertaken by 

identifying the significant QTL effects expected from the GWAS of Chapter 3. Based 

on marker alleles at SNP A10287, optimal NIL contrasts could be made for the presence 

or absence of sterile spikelets at the vrs1 gene (Figure 5.3). Other contrasts were 

significant for heading date at components matching the locations of both Ppd-H1 and 

HvCEN. More importantly, the family confirmed the GWA results and the significant 

effect on HvCEN locus on height and number of grains per ear. These results strongly 

support the presence of pleiotropic effects of the polymorphism and the presence of a 

QTL hotspot with those traits at the centromere of 2H. It is also in agreement with 

previous QTL mapping results that identified a major effect on 2H centromere in spring 

germplasm (Comadran et al., 2011b; Pasam et al., 2012). The NILs comparison brings 

further evidence for an important polymorphism in 2H centromere responsible for 

significant variation in grain number, stem extension and heading date and yield. In 

fact, the haplotype associated with late heading at the 2H centromere significantly 

reduced yield despite increasing the number of grains. Most likely, the later heading 

resulted in a sub-optimal grain filling period in the 2013 season, which was reflected by 
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a lower TGW at harvest. Because of its association with heading date, HvCEN is a 

highly probable candidate genes for that locus (Comadran et al., 2012). Moreover the 

results obtained from the NILs suggest that the gene activity is initiated in the early 

stages of plant development and is directly or indirectly involved in pathways of 

meristem elongation (6.3). The delays observed in plant development have adirect effect 

on plant adaptation to its environment hence its yield performance. 

6.6 Project outlook 

The results produced in this project have strengthened our understanding of the genetic 

architecture of complex traits and suggested potential novel research. 

The mapping material used and generated is available to breeders to exploit allelic 

diversity, and carry out mapping and validation experiments. This can complement the 

different sources of allelic diversity found in genetically distant barley germplasm have 

been identified and can be targeted for introgressions in elite germplasm (Ellis et al., 

2000; Wang et al., 2010). However, the introgressions from un-adapted sources of 

diversity require subsequent cycles of selection to breed out negative linkage drag and 

retrieve the original plant fitness and adaptation. Therefore the material used in that 

study is more relevant to European breeders than distant diverse material. This study 

shows that QTL for quantitative traits and disease resistance are also present and 

segregating in recent and adapted European germplasm. These ought to be associated 

with near or fully diagnostic markers and used in efficient MAS routines. Further 

mapping studies using the NUE-CROPS winter barley panel in a non-fungicide treated 

experiment would add valuable information to the dataset created by the project. For 

example it could confirm the mildew QTL on 5HS as disease resistance QTL present a 

strong interest in breeding. In addition, an increase in both the size of the mapping panel 

marker coverage can be envisaged by adding in more recent varieties in order to reduce 

LD and increase mapping resolution. This project confirms that any future mapping of 

especially yield-related traits should collect a range of phenotypic data in order to 

capture trait correlations which will help in interpreting QTL clusters. 

 

A direct follow up to this project’s results should aim at fine mapping and validation of 

candidate genes. More priority should be given to targets of high potential such as 

HvCEN candidate gene on 2H centromere, the tillering QTL on 4HL and a mildew 
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resistance QTL on 5HS. In addition to the available NILs and mapping population, the 

design of novel fine mapping populations and validation material can be envisaged. The 

NILs generated can be used to test the combinations of earliness alleles at both Ppd-H1 

and HvCEN loci while additional crosses between these NILs would generate 

recombination at the targeted loci. The variety panels used for GWAS also presents a 

source for other relevant alleles and haplotypes to design fine mapping and validation 

tools such as MAGIC and NAM populations (Buckler et al., 2009; Huang et al., 2012). 

Furthermore, comparative genomics complemented by the barley genome sequence 

information can be used to identify and increase marker density around gene candidates, 

while bulk segregant analysis in F2 populations could be an alternative route to identify 

diagnostic markers (Mayer et al., 2012; Ramirez-Gonzalez et al., 2014). 

 

As QTL hotspots suggest strong pleiotropic effects, the prospect of increased MAS use 

in the breeding pipeline will certainly depend on the understanding of the roles of 

candidate genes and their impact of alleles in the multiple physiological pathways they 

are involved in. Based on other species, this project proposes a putative role of the 

candidate gene HvCEN in meristem development affecting development time of the ear 

and plant and thus increasing organ size and delayed heading date. 

 

Although the GWAS provided greater insight on the effect across traits at the Ppd-H1 

locus and the 2HS TGW and tillering QTL identified in the S×R mapping population, 

the results obtained were insufficient to draw a definite conclusion on the origin of the 

effects. Indeed, the Ppd-H1 SNP alleles associated with earliness in GWAS did not 

correspond to the significant SNP for TGW and the contrasting NILs pairs did not 

confirm the effect either. These results suggested the presence of a phenotypic variation 

under a different genetic control. Preliminary research was initiated to identify winter 

barley haplotypes by sequencing a segment of the Ppd-H1 gene. A thorough analysis of 

the diversity of Ppd-H1 haplotypes in winter barley panels of NUE CROPS and 

AGOUEB and NILs of HIF B4 and A-2 can also be envisaged to discriminate between 

significant alleles for both traits at that locus. Also, a simple marker assisted breeding 

strategy using Saffron, Retriever or related DH lines can be envisaged in a range of elite 

germplasm of varying genetic backgrounds.  

 

Last but not least, this barley project established a valuable resource to be used in wheat 

(Triticum aestivum L.) research. While significant progress has been made in 
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sequencing the wheat genome (IWGSC, 2014), barley has remained the European crop 

species of choice for genetic research in small grain cereals. The diploid genome of 

barley can be exploited for genome collinearity with the hexaploid genome of wheat. 

For example, Distelfeld et al., (2008) showed that polymorphisms at orthologous genes 

relates to similar phenotypic variation in grain proteins in both species. In addition, both 

wheat and barley follow similar breeding strategies for yield adaptability to the 

environment, better resource use efficiency, resistance to biotic and abiotic stresses, as 

well as quality traits. This makes the barley QTL and candidate genes presented in this 

project very promising targets to be followed up in wheat. SNP can be used as anchors 

on the wheat genome to zoom in putative regions where the effects are expected with 

higher probabilities.  
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6.7 Project main findings 

This project aimed at increasing the understanding of genetic architecture of yield and 

yield components in barley for potential implementation in commercial breeding. It was 

designed to contribute directly to breeding by using relevant QTL mapping material and 

in situ validation approaches as outlined in the research objectives in Chapter 1 

paragraph 1.5. The major research findings for this project are: 

 

 The QTL mapping experiment presented in Chapter 2 produced an in-depth 

understanding of the genetic architecture of yield, yield components and other 

agronomic traits in a cross between elite commercial varieties. 

- QTL for yield and yield components were mapped on five chromosomes. QTL 

clusterings were in agreement with the phenotypic correlations. 

- A major QTL with opposite effects for TGW and tillering was found on 

chromosome 2HS. At this locus, the gene Ppd-H1 involved in the control of 

photoperiod was advanced as a candidate gene for its effects phenology and plant 

adaptation. 

- The QTL results from the 2012 untreated experiment conditions confirmed a 

number of significant loci for yield components found in the 2009 experiment, 

especially the TGW effects on 2HS. The genotype by environment CIM identified 

constitutive QTL for most evaluated traits. 

- The disease resistance QTL for brown rust and mildew found on chromosomes 3H, 

4H and 5H present an opportunity for rapid implementation of MAS approach in 

related elite material. 

- A total of 23 genetic factors composed from either QTL clusters or single QTL 

were identified. They constitute potential targets for QTL validation and MAS 

approaches as well as chromosome segments of interest in comparative QTL 

studies. 

 

 The GWAS studies of NUE-CROPS and AGOUEB illustrated the extent of the 

genetic variation for complex agronomic traits in European two-row winter barley and 

available to breeders in adapted and readily usable germplasm (Chapter 3). 

- Based on genetic markers information, the population of European two-row winter 

barley showed no obvious stratification and could be used effectively in GWAS 

using a kinship matrix.  
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- The mapping results supported the presence of known genes involved in the control 

of phenology (Ppd-H1, eam6) and responsible for the variation of DUS traits (Ant-

2, vrs1). 

- In the NUE-CROPS GWAS, a total of nine QTL were mapped for yield. TGW 

appeared to be the yield component with a complex genetic architecture attributable 

to nine significant QTL. A few QTL were associated with increasing effects of 7% 

or more over the mean. Tillering was the second most complex yield component 

based on QTL number (up to five QTL depending on the method of phenotyping). 

The grains per ear appeared to be mainly controlled by two loci, on chromosome 

2H and 6H. 

- The major QTL for grains per ear in two-row winter barley was found in the 

centromeric region of 2H with an increasing allele effect of three grains and a LOD 

score of 7.2. This QTL is located at the HvCEN candidate gene locus, a gene 

involved in the control of phenology in barley. 

- A consistent QTL found for all tillering phenotypes was mapped on chromosome 

4HL in the vicinity of the vernalization gene vrn-H2. 

- In AGOUEB, six QTL were found for yield and five for TGW. The strongest QTL 

for TGW was found on the short arm of chromosome 5H. A remarkable QTL for 

mildew resistance also identified in the same vicinity on 5HS. Other QTL for 

brown rust and net blotch resistance were mapped and are of potential interest for 

breeding. 

 

 The integration of QTL results from diverse mapping studies gives additional 

insight into the genetic architecture of quantitative traits, especially the range of effects 

of the genetic factors. This approach enables breeders to characterise and identify 

chromosome regions as breeding targets for future MAS and fine mapping strategies 

(Chapter 4). 

- The QTL clusters within the individual mapping studies were more frequent than 

across studies and better correspondence was found between NUE-CROPS and 

AGOUEB than with the DH population mapping. Nevertheless, the co-location of 

TGW and mildew resistance between GWAS and the bi-parental mapping study 

confirmed the benefit of comparing mapping results from different studies to 

identify consistent effects. 

- The QTL clusters were composed of traits known to be correlated phenotypically. 

Most of the QTL for yield were found in clusters with derived traits measuring the 
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plant nitrogen economy such as NUE and GrainN. For clusters containing at least 

two yield components, the alleles associated with increasing effects were generally 

in opposition. 

- The genes involved in the control of phenology were found in association with 

QTL clusters. The HvCEN gene was identified at the main QTL cluster on 2H with 

potential pleiotropic effects on 13 other traits, including yield and yield 

components. Vernalization genes vrn-H1 on 5H and vrn-H3 on 7H were also 

associated with clusters of yield and yield components. 

- A detailed analysis of significance patterns of marker-trait association at the QTL 

clusters confirmed the presence of different genetic control between some traits. 

The TGW variation at the Ppd-H1 locus could not be directly related to the alleles 

responsible for variation in heading date. Similarly, a differential genetic control of 

TGW and grain per ear was suggested for at the HvCEN locus. 

- The comparative genomics with rice at the best barley SNP of QTL clusters could 

identify relevant candidate genes for investigation. On 5HS, a cluster of thaumatin-

like genes was proposed for candidate genes associated with the mildew resistance 

QTL. The implication of HvCEN and Ras-related genes in the control of meristem 

development was advanced for the grain per ear QTL on 2H and the tillering QTL 

on 4HL respectively. 

 

 The validation of QTL for agronomic traits can be carried out alongside 

breeding cycles to validate alleles under selection in advanced material (Chapter 5) 

- The residual heterozygosity of advanced barley breeding lines at the F5 generation 

can be exploited to develop HIF of NILs and validate agronomic traits such as yield 

in field conditions. 

- The NIL development protocol requires a genotyping platform offering good 

marker coverage to characterise the haplotypes and all residual background 

segregation. Alternatively, sufficient replication of the NILs within each HIF will 

increase the statistical power of the validation. After two cycles of self-fertilisation, 

the residual heterozygous loci between NILs detected by the whole genome 

genotyping ranged from two to 17 creating confounding segregating factors with 

the targeted QTL. 

- Significant heading date effects were detected for alleles at the Ppd-H1 and HvCEN 

loci. This confirmed the QTL results from GWAS. The additive effects of early 
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alleles at both loci reduced ear emergence by five days on average. These alleles 

are have a major influence in controlling winter barley seasonal adaptation. 

- The major effect on grains per ear was validated with the HIF B-4. The increasing 

grain number allele produced on average one more grain per ear. The increasing 

allele was also significantly associated with a delay in heading date and an increase 

in plant height. 

- Three HIF identified a segregating segment in association with TGW variation. 

Family B-4 confirmed that haplotypes at the early allele at the Ppd-H1 locus was 

associated with an increase of 1.7 g on TGW in the 2013 growing season. 
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Conclusion 

This project has contributed to the development of novel scientific resources and 

knowledge that have increased our understanding of the genetic architecture of 

agronomic traits in UK winter barley. The particular emphasis given to the yield and 

yield components QTL has enabled the characterisation of loci of interest for breeders 

who will be able to select for favourable alleles and haplotypes. Already, the genetic 

SNP markers at some of the QTL loci are used to characterise the genetic identity of 

elite germplasm in order to design appropriate combinations in novel crosses. In 

addition, the QTL obtained by screening for diversity of alleles in European germplasm 

in NUE-CROPS and AGOUEB GWAS confirmed the substantial prospects for 

improving agronomic traits using winter barley closely related to current UK elite 

varieties and thus more desirable for the breeders to cross with. 

 

However, this study also highlights the challenges faced by breeders using genetic 

markers to select for yield and yield components. While most attempts to explain 

complex traits are based on additive statistical models, it needs to be borne in mind that 

epistatic and environment interactions also contribute to the plasticity of the traits. 

When analysed individually, the mapping results showed that a large number of loci can 

be considered for yield improvement but this approach may lead to misinterpretation of 

the loci effects. Indeed, the complexity of the traits, relationship between yield 

components and pleiotropic effects observed at QTL clusters illustrate the real challenge 

of characterising and defining what would be a beneficial allele to select for. Amongst 

the different trait associations found in the clusters, this project identified key role of 

loci controlling phenology, in particular the HvCEN candidate gene at a major QTL 

cluster located at the 2H centromere. At that locus, the allele for earliness was 

associated with effects of opposite direction for yield and yield components, especially 

a major reduction effect on grains per ear. Thus selecting for increased grains per ear 

would also affect phenology which may modify the adaptation to a given environment 

and impact negatively on yield. In cases of QTL clusters independent from phenology, 

the direction of the effects for the yield components QTL also showed opposite allele 

effect. This was illustrated by co-localised TGW and tillering QTL on 2H and on 5HS 

suggesting that any attempt to improve one trait via any of these QTL would be done at 

the expense of the other trait. Such opposite effects on important selection traits may be 
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the main reason behind the delays in implementation of MAS approaches for 

quantitative traits other than disease resistance major phenology controlling genes in 

breeding programs. The resolution of the origin of pleiotropic effects at QTL clusters 

may also be achieved by a better description of the haplotypes and alleles associated 

with each QTL effects. Indeed, the GWAS results have shown that the patterns of 

significant SNP associations revealed different alleles involved in the genetic control of 

traits mapped at the same QTL clusters. The fine mapping strategies using increased 

marker density from exploiting genome sequence information, genome co-linearity and 

described functions of the gene models of sequenced grass species will enable breeders 

to identify the diagnostic alleles for MAS. 

 

Because they have a rather strong influence on yield, the genetic factors involved in fine 

tuning plant adaptation have been indirectly maintained by breeders as a consequence of 

environmental variation. From a MAS perspective, these factors represent limited 

interest for the long term improvement of crops, though they need to be maintained and 

highlight the need to be differentiated from the genetic factors controlling agronomic 

traits of interest independently of phenology. This study showed that these genetic 

factors are less frequent and consist of effects of lower magnitude therefore harder to 

detect compared to effects of major phenology controlling factors. However they are 

ideal targets for MAS and should generate consistent progress as their effect is 

perceived independently of environmental variation with no interference of genes for 

adaptation. The disease resistance QTL typically enter into this category of genetic 

factors. The brown rust QTL on 2H and the mildew resistance QTL on 5H found in 

AGOUEB could be accessible MAS targets. Similarly, the genetic factors for yield and 

yield components should only be suggested for MAS if they are dissociated from 

phenology factors. Once the genetic architecture of the traits in a crop is understood, the 

QTL mapping approaches can be designed to investigate the effects of specific loci. For 

example, the QTL mapping with a DH population offers the possibility to exclude the 

segregation of undesired alleles at major genes and to focus on genetic factors with 

lower effects for any traits which interact with an adaptive locus. In GWAS, 

comprehensive trait phenotyping can also identify relevant target loci, even with lower 

effects. The tillering and yield increasing locus identified on 4HL presents a concrete 

opportunity to improve both agronomic traits since no association with phenology at 

this locus was detected. The project results provide breeders with a range of other 

genetic targets associated with significant markers that can also be used to screen for 
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specific haplotypes in elite European germplasm. Naturally, these optimistic prospects 

should not dismiss the validation of the effects in diverse, yet relevant, genetic 

background which can be tackled by the development of NILs and HIF. This attractive 

approach for breeders to validate QTL effects in a timely manner can be further refined 

in order to evaluate allele comparisons with more precision and with sufficient 

statistical power. Eventually, the validated positive effects will be routinely selected to 

sustain breeding progress in future barley varieties.  
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Appendices 

Appendix 2. 1 Table of fixed and random terms used for computing S×R 

phenotype means (BLUE). 
Statistical REML models used to calculate the Best linear unbiased estimates of the phenotypes 

measured for the S×R DH population in the field experiments of 2009 and 2012 (see 2.2.2). The 

BLUE were used for QTL mapping.  

 

 

  

fixed terms random terms

Fowl09

EE Constant + Genotype row + topography

Ht Constant + Genotype column + topography

Til-cal Constant + Genotype row + column + topography

Til-mes Constant + Genotype topography

TGW Constant + Genotype row + topography + lodging

TGW_GS Constant + Genotype row + column + topography

GE Constant + Genotype column

Yld Constant + Genotype topography + lodging

HLW Constant + Genotype row + lodging

GP Constant + Genotype -

GS Constant + Genotype -

Elm09

EE Constant + Genotype row

Ht Constant + Genotype row

Til-cal Constant + Genotype row + column

Til-mes Constant + Genotype row

TGW Constant + Genotype row + column

TGW_GS Constant + Genotype row

GE Constant + Genotype row + column

Yld Constant + Genotype row + column

HLW Constant + Genotype row + column

GP Constant + Genotype row

GS Constant + Genotype row + column

Fowl12

EE Constant + Genotype Block

Ht Constant + Genotype column

TGW_GS Constant + Genotype smallblock

GE Constant + Genotype row

Mil Constant + Genotype row + column

BR Constant + Genotype smallblock

GP Constant + Genotype row

GS Constant + Genotype row + column

Ldg Constant + Genotype row + column

SC Constant + Genotype smallblock

SD Constant + Genotype row

SG Constant + Genotype smallblock

Trait
Prediction model terms
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Appendix 2. 2 Heatmap of field topograhy and lodging percentage at Fowl09. 

 

Heatmap of the field topography of the Fowlmere site in 2009 (Fowl09, see 2.2.2) and the 

percentage lodging per plots of the same trial. These factors have been included in statistical 

models for the estimations of BLUEs. 
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9
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6
3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 5 5 5 5 5 5 5 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5
2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4
1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4 4 45 75 90 90 85 85 20 75 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 4 4 4 4 4 4 4 4 90 95 85 95 90 95 90 80 97 95 8 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2
1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 0 0 5 10 25 0 20 30 60 80 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

field topography scores (1 field deep, 6 field top) Plot lodging scores (% of plot area)
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Appendix 2. 3 Genetic map of the Saffron × Retriever population. 
 

The genetic map was obtained using Mapdisto software (2.2.3) and the 309 polymorphic SNP 

markers from the BOPA1 genotyping platform across 211 DH lines. SNP names in italic 

correspond to markers mapped in S×R but unmapped in the 2009 consensus OPA genetic map 

(Close et al., 2009). 
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Appendix 3. 1 List of varieties included in NUE-CROPS and AGOUEB Two-row 

winter barley GWAS panels. 

 

Each GWAS panels was composed of varieties for which correct genetic marker information 

from the 9K Illumina chip was available. The NUE-CROPs panel contains 125 varieties and an 

AGOUEB panel contains 179 varieties. 

 

  

Variety name NUE CROPs Agoueb Variety name NUE CROPs Agoueb Variety name NUE CROPs Agoueb

Accrue x Cobalt x x Imogen x

Alpha x Concept x Intro x x

Amillis x Connoisseur x Jessica x x

Angora x Coriolis x x Jet x

Antelope x Credo x Jewel x x

Antigua x x Crescendo x Karisma x x

Antonia x x Cynthia x Kaskade x

Anvil x Cypress x Kelibia x

Aquarelle x Diadem x Kestrel x x

Archimedes x Diamond x x KH Malko x

Arda x Digby x Kingston x x

Artist x x Dolmen x Kira x x

Asso x Dolphin x x Kite x

Astrid x Druid x KWS Discovery x

Avenue x Duchess x KWS Glacier x

Aydanhanim x Duet x Labea x

Babylone x Eagle x Lambada x

Baraka x Electron x Lark x

Barcelona x Elmstead x x Laurel x

Baton x Emeraude x x Leonie x

Becket x Emilia x x Linnet x

Bistro x Epic x x Louise x x

Blythe x Ethno x x Madrigal x x

Boreale x Fahrenheit x x Magie x

Breeze x Fanfare x x Magnolia x

Bronze x x Faraday x Mahogany x

Calcutta x x Fighter x x Malta x

Calliope x Finesse x Malwinta x x

Camion x x Firefly x x Mariner x

Campion x Flagon x x Marinka x x

Candy x Flute x Maris Otter x

Cannock x x Frolic x x Maris Trojan x

Caption x Gaelic x x Maritem x x

Carat x Gazelle x Masai x x

Cassata x x Gleam x Masquerade x

Cassia x Glint x Mead x

Cathay x Goldmine x Medoc x x

Cedar x Goldrush x Melanie x x

Celebrity x x Gypsy x Melusine x

Cellina x Haka x x Merode x

Celsius x Halcyon x Milena x

Chamomile x Halifax x x Molly x x

Charleston x Hanna x Montage x

Chestnut x x Harland x Moonshine x

Chicane x x Heligan x x Mortimer x x

Chintz x Hermia x x Murcie x

Chord x Honey x Musette x x

Cinnamon x x Houston x Mystique x x

Clara x x Hurricane x Nectaria x x

Clarine x x Igri x Nocturne x

Mapping panel Mapping panel Mapping panel
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Appendix 3. 1 cont 

 

  

Variety name NUE CROPs Agoueb Variety name NUE CROPs Agoueb

Nure x Tabetha x

Opal x x Tallica x x

Orchidea x Target x x

Outlook x Tempo x

Panda x Thalia x

Parasol x x Tiffany x

Pastoral x x Tipster x

Pearl x x Toffee x

Pedigree x x Tokyo x

Peridot x Torrent x x

Perth x Tosca x

Pilot x Tucker x

Pipkin x Tudor x

Pippa x Turine x

Portrait x x Vanessa x

Posaune x x Vanilla x

Prelude x x Vesuvius x x

Puffin x x Vilna x x

Punch x Vivaldi x

Rattle x Vixen x

Ravel x Volley x

Regina x Weaver x

Rejane x Wigwam x

Retriever x Willow x x

Rhythm x Winner x x

Rifle x x Wintmalt x

Saffron x x Wizard x

Saffron 2 x Wombat x

Sapphire x Zulu x

Sarah x

Scylla x

Selection x

Sevilla x x

Sevilla 2 x

Sevilla 3 x

Silverstone x

Sombrero x x

Sonic x

Sonja x

Spectrum x

Spinner x

Spirit x

Sprite x

Steeple x

Sumo x x

Sunrise x

Surtees x

SW Alison x

Swallow x

Swift x

Mapping panel Mapping panel
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Appendix 3. 2 Summary statistics on BLUPs used for NUE-CROPs GWAS. 

 

The table of summarises statistics for the phenotypic means (BLUPs) obtained for panel of 

varieties of NUE-CROPs. (see 3.3.1). 

 

 

 

  

 

  

Antho GNYld GrainN Grains Hd HI Ht NUE NupE NupEg

Missing values 22 0 0 0 0 0 0 0 0 0

Mean 1.52 116 1.99 19.9 219 52.2 74 25.6 0.64 40.2

Standard deviation 0.50 4 0.10 2.3 3 2.2 6 2.2 0.02 2.6

Variance 0.25 17 0.01 5.2 8 5.0 31 4.8 0.0004 7.0

Minimum 1 101 1.72 15.9 210 45.8 65 20.1 0.58 32.7

Maximum 2 124 2.35 25.7 229 59.0 104 31.8 0.68 48.8

Range 1 22 0.63 9.8 19 13.3 39 11.7 0.09 16.2

Lower quartile 1 113 1.92 18.2 217 50.8 70 24.3 0.63 38.4

Upper quartile 2 119 2.05 21.3 221 53.5 76 27.1 0.65 41.8

NutEt StemN Stems StS TGW TGW_GS Till.GSTill.Yld UPOV Yld

Missing values 0 0 0 0 0 0 0 0 0 0

Mean 49.7 0.56 2.9 2.2 53.6 59.2 644 745 1994 6.94

Standard deviation 2.6 0.02 0.3 0.4 3.8 4.2 73 82 7 0.46

Variance 6.5 0.0003 0.1 0.2 14.3 17.4 5309 6735 54 0.21

Minimum 42.4 0.51 2.2 2 42.9 48.2 477 515 1966 5.80

Maximum 54.9 0.61 3.9 3 62.0 69.0 867 1029 2009 8.13

Range 12.5 0.09 1.7 1 19.1 20.7 390 514 43 2.33

Lower quartile 48.0 0.55 2.7 2 51.4 56.4 595 683 1990 6.67

Upper quartile 51.4 0.57 3.1 2 56.0 62.1 686 794 1999 7.22
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Appendix 3. 3 Descriptive statistics of principal component analysis of the 

agronomic traits measured in NUE-CROPs. 

 

a) Percentage of variation of accounted for by the main principal components and loadings of 

each trait for the principal component analysis presented in Figure 3.1 a). 

 

 

 

b) Percentage of variation of accounted for by the main principal components and loadings of 

each trait for the principal component analysis presented in Figure 3.1 b). 

 

 

 

Principal Component : 1 2 3 4 5 6 7

% Variance accouned for : 54.4% 22.3% 16.4% 3.2% 2.0% 1.1% 0.6%

Latent vectors Yld -0.07 0.34 -0.82 0.32 -0.16 0.26 0.12

(loadings) TGW -0.37 0.53 0.08 -0.18 0.12 0.08 -0.72

Grains -0.31 -0.42 -0.52 -0.35 0.32 -0.47 -0.12

Stems 0.46 0.13 -0.17 -0.71 -0.49 -0.01 -0.06

Till.Yld 0.47 0.25 -0.04 0.39 -0.01 -0.71 -0.24

Till.GS 0.46 0.24 -0.08 -0.19 0.79 0.22 0.14

TGW_GS -0.36 0.54 0.14 -0.21 0.00 -0.38 0.61

Principal Component : 1 2 3 4 5 6 7

% Variance accouned for : 34.8% 23.7% 17.7% 7.8% 5.3% 3.7% 2.2%

Latent vectors Yld 0.00 0.54 -0.05 0.07 -0.08 0.24 -0.47

(loadings) Hd 0.01 0.25 0.40 0.35 0.70 -0.30 0.23

Ht 0.29 -0.16 0.37 0.10 0.05 0.74 0.12

TGW 0.30 0.14 -0.46 0.31 0.10 0.16 0.13

GrainN 0.09 -0.52 -0.13 0.02 -0.05 -0.10 0.27

Grains 0.32 0.23 0.37 -0.28 -0.09 0.11 0.08

StemN -0.19 -0.05 -0.32 -0.60 0.64 0.29 -0.04

HI -0.06 0.50 -0.11 -0.32 -0.22 -0.11 0.55

Stems -0.44 0.05 0.06 0.08 -0.08 0.32 0.42

Till.Yld -0.45 0.00 -0.02 0.25 0.05 0.11 -0.26

Till.GS -0.45 0.03 -0.01 0.24 -0.11 0.18 0.18

TGW_GS 0.28 0.13 -0.47 0.31 0.10 0.11 0.17
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Appendix 3. 4 Table of correlations between agronomic and phenotypic trait means used in NUE-CROPs and AGOUEB GWAS.  

 

a) Pearson correlation coefficient between traits mapped in the NUE CROPs GWAS. The correlations were calculated using the R and significant correlation factor 

at the p<0.01level indicated in bold. The abbreviations of traits are: Yld: Yield; Till_GS and Till_Yld: the fertile tillers measured from grab samples and yield 

respectively, Stems: number of tillers, TGW: thousand grain weight, TGW-GS: thousand grain weight from grab samples, Grains: number of grains per ear, NUE 

nitrogen use efficiency, NUpE: nitrogen uptake efficiency, NutEg: nitrogen utilisation efficiency for grain, NutEt: the Nitrogen utilisation efficiency total, GrainN: 

Grain Nitrogen, StemsN: Nitrogen content of stems, GrainNYld: grain nitrogen yield, Hd: heading date, Ht: height, HI: harvest index, UPOV: year of release, Sts: 

sterile spikelets.  

 
   

Yld Till.GS Till.Yld Stems TGW TGW_GS Grains NUE NupE NutEt NupEg GrainN StemN GrainNYld Hd Ht HI UPOV Antho

Yld 1

Till.GS 0.06 1

Till.Yld 0.06 0.88 1

Stems 0.07 0.84 0.81 1

TGW 0.29 -0.43 -0.47 -0.53 1

TGW_GS 0.23 -0.43 -0.44 -0.51 0.95 1

Grains 0.3 -0.6 -0.69 -0.48 0.06 0.02 1

NUE 0.98 0.08 0.07 0.07 0.26 0.21 0.32 1

NupE 0.51 -0.15 -0.03 -0.17 0.38 0.3 0.07 0.48 1

NutEt 0.64 -0.04 0.04 -0.06 0.19 0.13 0.3 0.66 0.64 1

NupEg 0.79 0.16 0.1 0.18 0.02 0.01 0.35 0.82 -0.05 0.4 1

GrainN -0.75 -0.21 -0.17 -0.25 0.04 0.04 -0.3 -0.78 0.03 -0.45 -0.93 1

StemN -0.08 0.21 0.26 0.25 -0.06 -0.05 -0.39 -0.13 0.08 -0.35 -0.22 0.05 1

GrainNYld 0.68 -0.15 -0.1 -0.18 0.47 0.39 0.13 0.63 0.81 0.46 0.17 -0.05 -0.07 1

Hd 0.28 0 0.04 0.04 -0.14 -0.16 0.34 0.32 -0.04 0.43 0.43 -0.44 -0.27 -0.06 1

Ht -0.23 -0.48 -0.49 -0.41 0.02 -0.01 0.55 -0.23 0.06 0.21 -0.24 0.24 -0.39 -0.11 0.17 1

HI 0.7 0.11 0.03 0.16 0.14 0.13 0.23 0.7 0.03 0.01 0.79 -0.67 0.12 0.32 0.1 -0.42 1

UPOV 0.43 0.02 -0.04 0.01 0.22 0.24 0.15 0.44 0 0.21 0.51 -0.49 -0.11 0.14 0.11 -0.25 0.42 1

Antho 0.26 -0.14 -0.2 -0.03 0.17 0.12 0.24 0.24 0.07 0.15 0.22 -0.26 0.02 0.09 0.07 0.01 0.19 0.3 1

StS 0.24 -0.14 -0.24 -0.17 0.41 0.43 0.12 0.24 0.08 0.07 0.18 -0.1 -0.12 0.23 -0.03 -0.05 0.22 0.35 0.25
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Appendix 3. 4 Cont. 

 

b) Pearson correlation coefficient between traits mapped in the AGOUEB GWAS. The correlations were calculated using the GenStat 14
th
 Edition directive 

FCORRELATION and significant correlation at the p<0.001 level are in bold. The abbreviations of traits are: BR: Brown rust, Ear_Gl: ear wax layer, Hd: heading 

date, HWE: hot water extract, LLHS: lower leaf hairy sheath, GrainN: grain nitrogen, NB: net blotch, Ht: straw length treated, Ht_U: straw length untreated, SS_U, 

straw strength untreated, HLW: Hectoliter weight, TGW, thousand grain weight, VFH: ventral furrow hair, Wthd: winter hardiness, Yld: yield treated, Aleu: 

aleurone layer, Sts: sterile spikelets, Mildew, Ryncho, rynchosporium. 

 

 
 

 

Antho BR EAar_Gl Hd HWE LLHLS GrainN NB Ht Ht_U SS_U HLW TGW VFH WtHd Yld Aleu Sts Mildew

BR 0.06  -

Ear_Gl -0.09 -0.06  -

Hd -0.08 -0.40 0.02  -

HWE -0.04 -0.02 0.27 0.15  -

LLHLS -0.02 0.02 -0.05 0.17 0.35  -

GrainN -0.04 -0.02 -0.11 -0.09 -0.44 -0.15  -

NB 0.00 0.10 0.24 -0.14 0.21 0.11 -0.05  -

Ht 0.07 -0.22 -0.11 0.28 -0.12 -0.04 0.07 -0.03  -

Ht_U 0.07 -0.27 -0.03 0.30 -0.16 -0.07 0.18 0.03 0.86  -

SS_U -0.13 -0.09 0.04 0.29 0.14 0.15 -0.21 0.06 0.34 0.30  -

HLW 0.06 -0.12 0.29 -0.06 0.08 -0.09 0.23 -0.02 -0.08 -0.03 -0.15  -

TGW 0.09 0.03 -0.19 0.00 -0.21 0.10 0.35 -0.17 0.13 0.24 -0.35 0.03  -

VFH 0.18 0.13 -0.10 -0.17 -0.22 -0.09 0.07 -0.14 0.06 0.00 -0.03 -0.34 0.09  -

WtHd 0.17 0.07 -0.04 0.07 0.17 0.01 -0.02 0.15 -0.02 -0.09 0.11 0.06 -0.18 -0.17  -

Yld 0.18 -0.05 -0.14 -0.09 0.19 0.10 -0.31 -0.19 -0.06 -0.04 -0.28 -0.07 0.27 -0.02 -0.03  -

Aleurone 0.06 -0.17 0.02 -0.06 -0.02 -0.25 0.09 -0.06 0.03 0.07 0.10 0.15 -0.15 -0.14 -0.14 -0.01  -

Sts -0.16 0.04 0.30 -0.03 0.13 0.03 -0.13 0.11 -0.16 -0.17 0.23 -0.05 -0.41 0.04 -0.02 -0.26 -0.12  -

Mildew 0.04 0.42 -0.08 -0.14 -0.08 -0.15 -0.06 -0.18 -0.11 -0.15 0.11 0.13 -0.07 0.11 -0.02 -0.08 -0.03 -0.01  -

Ryncho 0.01 -0.20 0.11 0.01 -0.22 -0.12 0.09 -0.10 0.09 0.03 0.08 0.04 0.00 0.13 -0.17 -0.25 0.14 -0.07 -0.03
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Appendix 3. 5 Manhattan plots for the GWAS of NUE-CROPs for 20 traits.  
The plots represent the results of the tests for marker-traits associations from the genome wide 

association scans (4041 SNP) of the NUE-CROPs two-row winter barley experiment (3.3.3). 

The X-axis plots SNP ordered on their chromosomal position based on the consensus map used 

in this study. The Y-axis represents the logarithm of the p-values from the tests of association 

carried out by the GWAS after correction for population structure (Tassel-MLM_K model) 

(Supplementary data 2). Markers above a detection threshold of –log10(0.003) (horizontal line) 

were retained as belonging to a QTL. 
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Appendix 3. 5 cont. 
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Appendix 3. 6 List of additional significant peak SNP for NUE-CROPs QTL. 
The table lists the significant markers sharing identical map position and association test result 

across the variety panel with the peak marker reported at the NUE CROPs QTL in Table 3.2. 

The shared position are indicative of markers with identical allele distribution across the panel 

of varieties used for the mapping and can be illustrated by r
2
 between marker of 1. 

 

  

Trait QTL Chrom Main reported marker Other marker in complete R2

Anthocyanine color Antho_2 2 H I195164 A10138; A11307; A21175; B10649

Grain Nitrogen  Yield GNYld_1 1 H I154646 I236160

GNYld_4 3 H I164290 I193132; I151711

GNYld_8 5 H A20236 A21133

Grains Grains_2 6 H I138716 I147599

Heading date Hd_3 2 H B30871 B30872; BK_12; BK_14; BK_15; BK_16

Hd_4 2 H A10191 A20438; A21399

Harvest Index HI_2 3 H I204057 A10380

HI_3 3 H I103215 I165334 

Height Ht_3 3 H A11016 A10653; I114566

Ht_4 3 H A21163 I171062; I219894; I27417; I148020; I238157

Ht_8 6 H I129756 I144337

Nitrogen Use Efficiency NUE_1 1 H I154646 I236160

NUE_3 2 H A10358 A20251; A20631; A11384

NUE_4 3 H I204057 A10380

NUE_5 3 H B31242 I200508

NUE_6 3 H I103215 I165334

NUE_10 5 H A10080 B31109

Nitrogen NUpE_1 2 H A10733 B30259; I175065

Uptake Efficiency NUpE_4 5 H I160288 I230675

Nitrogen Utilisation Efficiency total NUtEt_3 5 H I160288 I230675

Stem Nitrogen StemN_1 2 H I177375 A10685; I127347; I1502; I222769; I4969

Stems Stems_3 5 H B30975 B30977

Stems Stems_4 5 H I148402 I237494

Sterile Spikelets StS_2  2H A10287 I91810; I196853; I88704; B30897; B30901; I160616; I179213; 

I211281; I211281; A10475; I138463; I156090; I159462; I160833; 

I172648; I180028; I185505; I188339; I198603; I235221; B10936; 

B31424; I157236; I174800; I176114; I182039; I211894; A21351; 

B10969; I155456162798; I237481; StS_5  6H I131992 I217187; I144862; I154582

Thousand Grain Weight TGW_3 1 H A20810 A21000; I170542

TGW_5 2 H A10733 B30259; I175065

Thousand Grain Weight from grab samples TGW-GS_3 1 H A20810 A21000; I170542

TGW-GS_6 2 H A10602 A10796

Tillering from Grab samples till.GS_1 4 H A20732 I107010; I172072

till.GS_2 5 H B30975 B30977

till.GS_5 7 H A10550 B31325

Tillering from yield till.Yld_1 4 H A21385 I188190

till.Yld_2 4 H A20732 I107010; I172072

UPOV date of inscription UPOV_1 2 H I195164 A10138; A11307; A21175; B10649

UPOV_3 4 H I128723 I155554

UPOV_5 5 H I213753 B30745

UPOV_7 6 H I136897 I182195

UPOV_8 7 H A11222 B31411; I175756; I230060; I230149

Yield treated Yld_1 1 H I154646 I236160

Yld_6 5 H A20236 A21133
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Appendix 3. 7 List of additional significant peak SNP for AGOUEB QTL. 
The table lists the significant markers sharing identical map position and association test result 

across the variety panel with the peak marker reported at the NUE CROPs QTL in Table 3.3. 

The shared position are indicative of markers with identical allele distribution across the panel 

of varieties used for the mapping and can be illustrated by r
2
 between marker of 1. 

 

 

  

Trait QTL Chrom Main reported marker Other marker in complete R2

Aleurone aleurone_2 4 H A21087 A20453; A21273; A21296

Brown Rust BR_1 2 H I146785 I145381

Ear Glaucosity EAR-G_1 1 H I120059 I120053; A10419

EAR-G_3 6 H B11455 B30783; I219061

Grain Nitrogen GrainN_4 5 H B30975 B30977

GrainN_5 5 H B30400 I198008; I208686

Hot Water Extract HWE_2 1 H I165338 I165476

LLHS LLHLS_2 5 H A21355 I152365

Mildew mild-(U)_1 4 H I128147 I152166

Net Blotch NB(U)_1 2 H I16024 I16995

NB(U)_3 6 H I128460 A20707; B30317; I146235; I238855

Straw Length Treated SL_T_3 5 H A10236 I167103; I195241

Straw Length Untreated SL_U_1 2 H I177375 A10685; I1502; I222769; I4969

SL_U_3 5 H B30975 B30977

SL_U_5 5 H A10236 I167103; I195241

Straw Strenght Untreated SS_U_2 2 H A10358 A20251; A20631

Sterile Spikelets StS_1 1 H A21333 I156506; I56976

StS_3 2 H A10287 I91810; I196853; I88704; B30897; B30901

StS_5 5 H A10236 I167103; I195241

Thousand Grain weight TGW_2 2 H I110647 I192657

Winter Hardiness WintHard_1 2 H A21261 A21265; A21366; I7026

WintHard_2 4 H I110333 I147712; I229658; I239145

Yield Treated Yld_T_1 4 H I150603 I157396
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Appendix 3. 8 Distribution of the allele of SNP B30265 (HvCEN) on the genetic 

diversity of NUE-CROPS and AGOUEB two-row winter barley panels. 
The complete set of varieties used in the association panel is presented. For clarity, only a few 

varieties have been presented. The correlation based PCA uses a correlation matrix made from 

the 1284 common SNP markers between MAG and MNUE. The varieties represented by a back 

dot carry the “Nure” late allele at B30265 co-segregating with HvCEN (Comadran et al., 2012). 

The varieties in grey dots carry the early allele at that same SNP. Axis are in Eigenvalue scale. 
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Appendix 4. 1 Effect size and direction of QTL peak marker effect across the set phenotypes in NUE-CROPs GWAS. 
Each QTL is presented with its peak marker (most significant SNP) with the associated marker map position, –log10(p) resulting from the test for association, the 

peak SNP alleles with its minor allele (MA) and minor allele frequency (MAF) in the NUE-CROPS panel. SNP effect size and direction are reported across the 20 

agronomic traits analysed. The negative effects of the allele 1 on another trait are highlighted in grey. The effects associated with a significant marker association for 

the trait considered (i.e. a QTL) are highlighted in bold (e.g. SNP I195164 of Antho_2 is a QTL for both traits Anthocyanin and UPOV). 

  

1 2 MA Antho GNYld GrainN Grains Hd HI Ht NUE NupE NutEg NutEt StemN Stems StS TGW TGW-GS till.GS till.Yld UPOV Yld

Anthocyanin Antho_1 2 H A10326 6.45 2.92 G / A A 0.18 -0.39 1.18 0.02 0.39 -0.17 -0.65 3.15 -0.08 0.01 -0.72 0.50 0.00 -0.14 0.02 1.12 0.88 -40.67 -36.64 0.59 0.00

color Antho_2 2 H I195164 96.8 15.80 C / T T 0.48 -1.04 -0.67 0.06 -0.17 0.01 -0.80 1.78 -1.00 0.00 -1.26 -0.65 0.00 -0.12 -0.14 -0.79 -0.98 -16.74 -4.80 -5.86 -0.21

Antho_3 7 H I174285 112.46 2.67 A / G A 0.11 -0.49 -1.16 0.01 -0.73 0.21 -0.24 0.95 -0.52 0.00 -0.55 -0.62 0.01 0.02 0.04 0.47 0.46 29.98 19.22 0.93 -0.12

Grain Nitrogen GNYld_1 1 H I154646 100.7 2.59 A / C C 0.11 -0.30 3.88 -0.07 0.87 1.53 1.88 -0.27 2.54 0.01 2.23 2.14 0.00 0.08 -0.04 1.12 0.10 20.37 16.07 1.67 0.53

Yield GNYld_2 2 H I151535 52.47 3.39 G / A A 0.14 0.04 4.39 0.00 -1.09 -0.95 0.59 -3.26 1.04 0.02 -0.38 -0.01 0.01 -0.03 0.19 3.43 3.10 0.79 -4.72 -0.36 0.26

GNYld_3 3 H I115045 39.45 2.56 G / A A 0.30 0.00 2.85 0.03 -0.44 -1.85 0.34 -0.22 0.39 0.01 -0.22 -0.45 0.00 0.04 0.22 0.93 0.76 7.43 -1.19 1.08 0.11

GNYld_4 3 H I164290 120.59 3.52 T / C C 0.14 -0.03 4.37 8.69 1.41 0.58 1.59 -0.88 1.28 0.01 0.79 0.16 0.00 -0.08 -0.03 0.53 -0.65 -7.22 -30.76 1.74 0.27

GNYld_5 4 H A20482 59.37 3.50 G / A A 0.15 0.15 4.63 -0.03 -0.22 0.55 1.14 -2.92 1.80 0.01 1.15 0.94 0.00 0.04 0.03 0.68 -0.14 9.05 24.28 4.73 0.40

GNYld_6 5 H A20553 2.81 4.06 A / G G 0.20 0.02 4.15 0.01 1.07 -0.66 -0.15 2.66 1.17 0.02 -0.10 1.48 -0.01 -0.20 0.11 3.04 3.68 -62.83 -65.67 2.02 0.28

GNYld_7 5 H A21508 60.74 4.88 A / G G 0.11 -0.09 5.46 -0.02 0.08 -0.32 1.40 -1.63 2.19 0.02 1.18 1.75 -0.01 0.06 -0.05 0.15 -0.44 9.84 19.72 4.57 0.47

GNYld_8 5 H A20236 80.61 2.61 C / A A 0.26 -0.08 2.90 -0.04 0.51 -0.54 1.16 -0.59 1.45 0.01 1.24 0.57 0.00 -0.07 0.07 0.44 0.16 -7.50 -5.86 2.73 0.33

GNYld_9 6 H I123065 1.34 2.69 C / T T 0.13 0.05 3.66 0.00 0.36 -0.31 0.29 -0.60 1.03 0.01 0.03 0.60 0.00 -0.16 0.10 0.80 0.64 -8.11 -28.92 -2.06 0.26

GNYld_10 7 H I186187 14.96 2.65 T / G G 0.22 0.34 3.07 -0.07 0.73 0.27 1.57 -1.43 1.91 0.01 1.82 1.29 0.00 0.05 0.16 0.61 0.94 7.50 14.85 4.52 0.44

GNYld_11 7 H I138457 34.82 3.04 C / A A 0.22 0.09 3.18 -0.07 -0.14 1.22 1.32 -2.82 2.10 0.01 2.22 1.83 0.00 0.04 0.00 0.83 1.00 6.77 26.61 2.58 0.43

Gain Nitrogen GrainN_1 2 H A20862 63.5 3.53 T / A A 0.42 0.03 0.37 0.08 -3.01 -2.43 -1.35 -3.93 -1.52 0.00 -2.53 -1.68 0.01 0.07 0.13 0.66 0.60 33.72 46.37 0.87 -0.31

GrainN_2 4 H I168399 92.4 4.09 C / A C 0.39 0.04 0.10 -0.08 -0.33 0.84 1.65 -1.36 1.46 0.00 2.52 0.79 0.00 0.20 0.07 -0.51 -0.83 45.48 49.82 3.97 0.28

GrainN_3 5 H A21121 68.35 3.46 G / A A 0.35 0.01 0.88 -0.08 0.05 -0.37 1.64 -0.95 1.46 0.00 2.09 0.64 0.00 0.06 0.02 0.88 0.56 16.41 15.74 5.05 0.30

GrainN_4 6 H B30120 52.75 2.75 C / A C 0.44 0.02 0.53 -0.08 -0.36 0.47 1.18 -2.85 1.47 0.00 2.26 0.70 0.00 0.12 0.04 1.27 1.34 29.06 24.34 4.69 0.32

GrainN_5 7 H I138457 34.82 2.60 C / A A 0.22 0.09 3.18 -0.07 -0.14 1.22 1.32 -2.82 2.10 0.01 2.22 1.83 0.00 0.04 0.00 0.83 1.00 6.77 26.61 2.58 0.43

Grains Grains_1 2 H A20862 63.5 7.20 T / A A 0.42 0.03 0.37 0.08 -3.01 -2.43 -1.35 -3.93 -1.52 0.00 -2.53 -1.68 0.01 0.07 0.13 0.66 0.60 33.72 46.37 0.87 -0.31

Grains_2 6 H I138716 88.9 2.83 G / A A 0.43 0.00 -1.27 0.04 -1.74 0.02 -0.85 -0.31 -0.90 0.00 -1.56 -0.41 0.01 0.06 -0.09 0.82 1.12 24.65 26.03 -1.48 -0.21

Heading date Hd_1 1 H B30241 20.82 3.80 C / A C 0.29 -0.01 -1.64 -0.02 0.25 2.67 0.17 1.28 -0.16 -0.01 0.70 -0.06 -0.01 0.13 -0.11 -1.59 -2.19 27.88 11.42 1.74 -0.06

Hd_2 1 H A21384 135.56 3.02 A / G G 0.27 -0.02 0.77 0.03 -0.54 -2.19 0.09 -1.64 -0.33 0.00 -0.71 -0.96 0.00 -0.01 0.15 0.43 1.06 -9.63 -4.00 1.39 -0.05

Hd_3 2 H B30871 26.57 4.96 A / G A 0.39 -0.21 -0.16 -0.02 0.49 3.02 -0.01 1.29 0.46 0.00 0.34 0.41 0.00 0.04 -0.04 -1.22 -1.78 10.90 6.68 -3.96 0.08

Hd_4 2 H A10191 63.53 4.56 C / A A 0.14 0.35 2.96 0.01 -2.80 -4.09 0.87 -8.18 0.12 0.01 -0.17 -1.46 0.01 0.15 0.06 1.75 1.64 48.67 40.69 4.67 0.08

Hd_5 5 H B30867 136.43 2.86 C / A A 0.23 -0.04 -0.40 0.01 0.17 -2.30 0.97 -0.13 -0.32 -0.01 -0.21 -1.58 0.00 -0.07 0.12 1.40 2.16 -30.42 -44.53 3.39 -0.03

Harvest Index HI_1 2 H I10398 54.95 3.56 C / T T 0.17 -0.27 -2.20 0.11 -0.99 -0.10 -2.79 2.79 -2.35 -0.01 -3.06 -0.98 -0.01 -0.06 -0.09 -1.90 -1.70 1.54 7.85 -1.73 -0.54

HI_2 3 H I204057 51.7 2.68 C / T T 0.10 0.32 2.67 -0.07 -0.19 -0.21 2.46 -5.52 2.37 0.01 2.18 0.19 0.01 0.04 0.00 1.46 2.82 -4.08 12.31 1.14 0.48

HI_3 3 H I103215 126.27 2.68 A / G G 0.14 0.04 3.61 -0.04 0.37 0.61 2.07 -4.46 2.05 0.01 1.92 0.46 0.00 0.02 0.03 0.65 0.04 40.00 8.18 2.77 0.41

HI_4 4 H I129218 92.4 3.50 C / A C 0.42 -0.01 0.46 -0.08 -0.29 0.93 1.71 -1.60 1.65 0.00 2.51 0.96 0.00 0.22 0.11 -0.54 -0.99 49.82 52.49 3.83 0.31

HI_5 5 H A21121 68.35 3.02 G / A A 0.35 0.01 0.88 -0.08 0.05 -0.37 1.64 -0.95 1.46 0.00 2.09 0.64 0.00 0.06 0.02 0.88 0.56 16.41 15.74 5.05 0.30

HI_6 5 H A10183 80.02 2.63 G / A G 0.46 0.11 -1.12 0.04 -0.26 0.78 -1.53 0.51 -0.87 0.00 -1.24 0.33 0.00 0.00 0.05 -0.68 -0.36 -4.81 1.75 -1.63 -0.22

Height Ht_1 1 H A10338 117.8 2.66 C / A A 0.21 0.12 1.47 -0.03 -0.50 -0.58 0.91 -4.32 0.87 0.01 0.99 0.53 0.00 0.02 -0.12 0.56 0.62 5.94 14.69 -1.22 0.16

Ht_2 2 H B30265 63.53 5.48 A / G G 0.14 0.35 3.31 0.01 -2.71 -3.69 0.82 -8.90 0.44 0.01 -0.11 -0.95 0.01 0.09 0.07 1.65 1.44 35.64 38.96 5.43 0.13

Ht_3 3 H A11016 58.64 4.08 G / C C 0.17 0.22 0.98 -0.05 -1.76 -0.45 1.27 -6.00 1.34 0.00 1.51 0.11 0.01 0.16 0.03 0.73 1.37 43.86 47.81 2.57 0.26

Ht_4 3 H A21163 80.89 2.54 A / G G 0.30 0.07 -0.26 -0.02 -1.47 -0.08 0.67 -4.03 0.07 -0.01 0.67 -0.68 -5.04 0.03 0.01 1.75 2.01 21.34 21.96 0.52 0.01

Ht_5 4 H I190401 48.72 3.41 A / G G 0.32 0.02 1.01 -0.01 -0.99 -0.19 0.56 -4.81 0.71 0.00 0.34 0.22 0.00 -0.02 -0.03 0.68 0.87 17.63 23.49 -0.74 0.13

Ht_6 5 H I4717 34.25 2.90 G / A A 0.19 0.21 0.66 -0.03 -1.11 -0.71 0.90 -5.18 0.85 0.00 0.78 0.11 0.00 0.10 -0.04 0.02 0.58 22.23 45.09 0.31 0.20

Ht_7 5 H B31257 48.11 5.40 A / T T 0.14 0.18 2.97 -0.05 -1.76 -1.59 1.89 -8.56 1.94 0.01 1.62 0.50 0.01 0.07 0.13 2.05 2.53 49.25 58.91 5.73 0.40

Ht_8 6 H I129756 80.52 3.07 T / G G 0.11 -0.04 2.66 -0.04 -0.78 -0.15 1.87 -5.98 1.65 0.01 1.27 -0.09 0.01 0.10 0.12 0.02 0.27 40.31 47.36 0.56 0.36

-log10(p)DistMarkerChormQTLTrait
MAF

Effect of marker allele 1alleles
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Appendix 4. 1 cont. 

 

  

1 2 MA Antho GNYld GrainN Grains Hd HI Ht NUE NupE NutEg NutEt StemN Stems StS TGW TGW-GS till.GS till.Yld UPOV Yld

Nitrogen Use NUE_1 1 H I154646 100.7 3.51 A / C C 0.11 -0.30 3.88 -0.07 0.87 1.53 1.88 -0.27 2.54 0.01 2.23 2.14 0.00 0.08 -0.04 1.12 0.10 20.37 16.07 1.67 0.53

Efficiency NUE_2 2 H A21304 33.74 2.89 A / G G 0.30 -0.08 -2.53 0.06 0.14 -0.22 -1.16 2.11 -1.83 -0.01 -1.84 -1.27 0.00 0.03 -0.11 -1.81 -2.01 2.65 -14.92 -3.94 -0.37

NUE_3 2 H A10358 59.21 2.87 C / A A 0.41 0.05 -0.30 0.08 -2.59 -1.84 -1.49 -2.20 -1.65 -3.58 -2.39 -1.50 0.01 0.04 0.12 0.91 0.93 26.15 33.05 1.66 -0.35

NUE_4 3 H I204057 51.7 2.60 C / T T 0.10 0.32 2.67 -0.07 -0.19 -0.21 2.46 -5.52 2.37 0.01 2.18 0.19 0.01 0.04 0.00 1.46 2.82 -4.08 12.31 1.14 0.48

NUE_5 3 H B31242 69.6 2.67 A / C A 0.28 0.02 0.98 -0.06 -0.06 0.24 0.84 -1.94 1.79 0.00 1.48 1.51 0.00 0.03 0.05 0.99 0.99 17.34 11.73 2.68 0.33

NUE_6 3 H I103215 126.27 2.72 A / G G 0.14 0.04 3.61 -0.04 0.37 0.61 2.07 -4.46 2.05 0.01 1.92 0.46 0.00 0.02 0.03 0.65 0.04 40.00 8.18 2.77 0.41

NUE_7 4 H I129218 92.4 3.40 C / A C 0.42 -0.01 0.46 -0.08 -0.29 0.93 1.71 -1.60 1.65 0.00 2.51 0.96 0.00 0.22 0.11 -0.54 -0.99 49.82 52.49 3.83 0.31

NUE_8 5 H I231238 63.31 3.62 T / C C 0.21 0.12 3.69 -0.05 0.30 -0.47 1.81 -2.80 2.19 0.01 1.71 1.53 0.00 0.01 0.08 1.40 0.72 8.69 1.25 5.10 0.45

NUE_9 5 H B31427 90.84 2.58 G / C C 0.30 0.18 1.68 -0.07 0.07 -0.92 1.37 -0.90 1.51 0.01 1.43 0.77 0.00 0.03 -0.01 0.86 1.38 7.60 6.94 3.40 0.30

NUE_10 5 H A10080 151.36 2.55 G / A A 0.24 0.11 2.43 -0.06 -0.69 0.07 1.44 -3.88 1.77 0.01 1.77 1.17 0.00 0.06 0.07 1.65 1.24 10.57 22.21 0.12 0.36

NUE_11 6 H I118381 54.6 2.58 C / T C 0.47 -0.01 1.20 -0.07 -0.37 0.58 1.00 -1.96 1.62 0.00 1.92 1.04 0.00 0.10 0.04 1.68 1.69 28.22 26.87 4.68 0.34

NUE_12 7 H I186187 14.96 3.12 T / G G 0.22 0.34 3.07 -0.07 0.73 0.27 1.57 -1.43 1.91 0.01 1.82 1.29 0.00 0.05 0.16 0.61 0.94 7.50 14.85 4.52 0.44

NUE_13 7 H I138457 34.82 4.14 C / A A 0.22 0.09 3.18 -0.07 -0.14 1.22 1.32 -2.82 2.10 0.01 2.22 1.83 0.00 0.04 0.00 0.83 1.00 6.77 26.61 2.58 0.43

Nitrogen NUpE_1 2 H A10733 54.95 2.58 G / C C 0.14 0.05 3.82 0.01 -1.60 -1.08 0.42 -3.72 0.86 0.02 -0.70 -0.02 0.01 -0.05 0.22 4.03 3.76 0.77 -1.81 -0.95 0.20

Uptake EfficiencyNUpE_2 5 H A20553 2.81 3.18 A / G G 0.20 0.02 4.15 0.01 1.07 -0.66 -0.15 2.66 1.17 0.02 -0.10 1.48 -0.01 -0.20 0.11 3.04 3.68 -62.83 -65.67 2.02 0.28

NUpE_3 5 H A21508 60.74 2.61 A / G G 0.11 -0.09 5.46 -0.02 0.08 -0.32 1.40 -1.63 2.19 0.02 1.18 1.75 -0.01 0.06 -0.05 0.15 -0.44 9.84 19.72 4.57 0.47

NUpE_4 5 H I160288 129.41 3.13 G / A A 0.11 0.08 3.55 -0.01 0.70 -0.15 0.05 1.66 2.12 0.02 0.75 3.18 -0.01 -0.09 0.18 1.97 2.24 -6.75 -1.34 2.04 0.37

Nitrogen NUtEg_1 2 H A20862 63.5 4.19 T / A A 0.42 0.03 0.37 0.08 -3.01 -2.43 -1.35 -3.93 -1.52 0.00 -2.53 -1.68 0.01 0.07 0.13 0.66 0.60 33.72 46.37 0.87 -0.31

Utilisation NUtEg_2 4 H I129218 92.4 5.04 C / A C 0.42 -0.01 0.46 -0.08 -0.29 0.93 1.71 -1.60 1.65 0.00 2.51 0.96 0.00 0.22 0.11 -0.54 -0.99 49.82 52.49 3.83 0.31

Efficiency NUtEg_3 5 H I49958 68.35 3.44 A / G G 0.38 0.09 1.06 -0.08 0.43 0.62 1.50 -0.20 1.59 0.00 2.21 1.18 0.00 -0.03 0.05 1.78 1.40 -4.13 -5.54 4.32 0.32

in Grain NUtEg_4 6 H I124850 52.7 3.25 T / C T 0.43 0.05 0.74 -0.08 -0.25 0.86 1.35 -2.56 1.62 0.00 2.43 0.73 -0.01 0.13 0.03 1.36 1.29 30.48 23.61 4.57 0.34

NUtEg_5 7 H I138457 34.82 3.33 C / A A 0.22 0.09 3.18 -0.07 -0.14 1.22 1.32 -2.82 2.10 0.01 2.22 1.83 0.00 0.04 0.00 0.83 1.00 6.77 26.61 2.58 0.43

NUtEg_6 7 H I14119 161.4 2.54 A / G A 0.33 0.02 1.39 -0.07 0.49 0.33 1.39 -1.09 1.32 0.00 2.02 0.70 0.00 -0.06 0.01 0.90 0.58 0.18 -3.03 2.24 0.26

Nitrogen NUtEt_1 3 H I165444 99.89 2.68 A / G G 0.44 -0.02 -1.73 0.02 -0.58 -0.60 0.18 -1.45 -1.09 -0.01 -0.48 -1.74 0.01 0.07 -0.01 -1.24 -0.64 1.53 10.18 0.53 -0.23

Utilisation NUtEt_2 3 H I154449 155.9 3.26 A / C C 0.29 -0.14 1.53 -0.02 1.19 1.24 0.20 2.13 1.28 0.01 1.03 2.15 -0.01 -0.10 -0.04 0.25 0.32 -17.82 -10.64 -1.88 0.22

Efficiency total NUtEt_3 5 H I160288 129.41 3.50 G / A A 0.11 0.08 3.55 -0.01 0.70 -0.15 0.05 1.66 2.12 0.02 0.75 3.18 -0.01 -0.09 0.18 1.97 2.24 -6.75 -1.34 2.04 0.37

NUtEt_4 5 H I156273 176.62 3.15 A / G G 0.19 0.16 2.17 -0.03 0.14 -0.55 -0.38 0.91 1.39 0.01 0.91 2.62 -0.01 -0.10 0.03 1.99 2.05 -14.23 -3.36 1.45 0.29

Stem Nitrogen StemN_1 2 H I177375 63.5 3.88 C / T T 0.24 0.20 2.24 0.05 -3.25 -2.84 -0.27 -6.23 -0.56 0.01 -1.59 -1.23 0.01 0.12 0.11 1.99 1.84 38.98 53.73 2.57 -0.06

StemN_2 5 H A21318 53.18 2.64 G / A A 0.15 0.02 0.63 0.02 0.66 1.79 -0.67 1.83 0.13 0.00 0.15 0.96 -0.01 -0.07 0.07 1.11 0.40 -18.91 -33.19 -0.79 -0.02

Stems Stems_1 1 H I182656 11.4 3.19 A / G G 0.13 0.26 2.32 -0.03 1.33 0.55 0.19 1.46 1.10 0.01 1.00 1.47 -0.01 -0.28 0.09 2.68 3.37 -40.23 -56.42 0.02 0.23

Stems_2 4 H I129218 92.4 3.71 C / A C 0.42 -0.01 0.46 -0.08 -0.29 0.93 1.71 -1.60 1.65 0.00 2.51 0.96 0.00 0.22 0.11 -0.54 -0.99 49.82 52.49 3.83 0.31

Stems_3 5 H B30975 6.4 2.55 A / C C 0.17 -0.03 3.56 0.04 1.41 -0.05 -0.69 3.59 0.53 0.02 -1.04 1.24 -0.01 -0.22 0.06 1.37 1.62 -66.86 -63.32 0.82 0.13

Stems_4 5 H I148402 135.72 2.57 G / A A 0.25 0.07 1.68 0.01 1.18 0.91 -0.22 2.62 0.18 0.00 0.08 0.80 -0.01 -0.20 0.08 1.46 1.63 -41.81 -50.02 1.64 0.04

Sterile StS_1 2 H A10823 46.98 3.78 A / G A 0.37 0.33 0.99 0.00 -0.78 -0.18 -0.04 -3.27 0.22 0.00 -0.03 0.20 0.00 0.03 0.30 0.91 0.70 -0.42 10.75 1.65 0.08

Spikelets StS_2 2 H A10287 85.92 16.51 A / G A 0.20 0.25 1.11 -0.04 0.21 -0.44 1.05 -2.16 0.86 0.00 1.22 -0.31 0.00 0.02 0.93 1.88 2.10 2.69 -19.36 5.69 0.16

StS_3 4 H I138835 87.5 3.15 G / A A 0.26 0.18 1.28 0.00 0.08 -0.07 0.76 -1.58 0.80 0.00 0.74 0.09 0.00 -0.05 0.28 1.51 1.58 -25.96 -24.45 1.13 0.13

StS_4 5 H I12887 89.4 2.79 C / T T 0.20 -0.11 -2.91 0.01 0.07 0.35 -0.33 2.05 -1.16 -0.01 -0.21 -1.01 0.00 0.10 -0.32 -1.38 -1.82 16.87 26.19 -2.73 -0.24

StS_5 6 H I131992 81.88 3.86 A / G A 0.42 0.10 0.37 -0.02 0.14 -0.92 0.27 -0.65 0.21 0.00 0.48 0.37 -3.95 -0.12 0.32 1.01 1.46 -18.08 -15.97 2.59 0.07

DistTrait QTL Chorm Marker -log10(p)
alleles

MAF

Effect of marker allele 1



233 

 

Appendix 4.1 cont. 

 

 

1 2 MA Antho GNYld GrainN Grains Hd HI Ht NUE NupE NutEg NutEt StemN Stems StS TGW TGW-GS till.GS till.Yld UPOV Yld

Thousand TGW_1 1 H I232660 18.05 3.24 C / T C 0.36 0.09 -1.43 -0.02 0.30 0.48 -0.32 0.87 -0.19 -0.01 0.15 0.13 0.00 0.15 0.06 -2.75 -3.25 30.18 24.80 1.35 -0.03

Grain Weight TGW_2 1 H I128285 31.15 3.45 T / C T 0.36 0.06 -1.26 -0.02 0.32 0.49 -0.24 0.38 -0.21 -0.01 0.17 0.08 0.00 0.10 0.06 -2.64 -2.88 22.25 20.90 0.73 -0.03

TGW_3 1 H A20810 52.46 3.56 A / G A 0.46 -0.02 -1.62 0.00 0.47 0.11 -0.29 1.00 -0.49 -0.01 -0.18 -0.54 0.00 0.09 0.08 -2.76 -3.20 17.85 8.64 -0.07 -0.11

TGW_4 2 H I146936 6.4 3.33 T / C C 0.18 0.11 -1.34 0.01 0.10 -0.09 0.02 -0.92 -0.71 0.00 -0.48 -1.07 0.00 0.13 -0.18 -3.53 -4.01 2.08 13.14 -0.69 -0.15

TGW_5 2 H A10733 54.95 4.33 G / C C 0.14 0.05 3.82 0.01 -1.60 -1.08 0.42 -3.72 0.86 0.02 -0.70 -0.02 0.01 -0.05 0.22 4.03 3.76 0.77 -1.81 -0.95 0.20

TGW_6 2 H I195051 156.72 2.76 T / C C 0.40 0.10 2.33 0.00 0.28 0.41 0.58 1.85 0.86 0.01 0.63 1.01 -0.01 -0.06 0.05 2.71 2.29 -11.73 -25.63 -0.96 0.16

TGW_7 4 H B30427 53.5 2.61 T / A A 0.25 0.15 0.86 0.00 -0.57 0.03 0.16 -1.08 0.46 0.01 -0.06 0.66 0.00 -0.05 0.14 2.45 2.46 -2.91 -19.02 1.59 0.08

TGW_8 5 H A20553 2.81 3.44 A / G G 0.20 0.02 4.15 0.01 1.07 -0.66 -0.15 2.66 1.17 0.02 -0.10 1.48 -0.01 -0.20 0.11 3.04 3.68 -62.83 -65.67 2.02 0.28

TGW_9 5 H I194030 166.63 2.83 A / G A 0.38 -0.17 -1.36 0.03 -0.55 0.44 -0.92 0.02 -1.20 0.00 -1.15 -0.69 0.00 0.13 0.03 -2.62 -2.61 26.24 27.98 -3.63 -0.24

Thousand TGW-GS_1 1 H I232660 18.05 3.42 C / T C 0.36 0.09 -1.43 -0.02 0.30 0.48 -0.32 0.87 -0.19 -0.01 0.15 0.13 0.00 0.15 0.06 -2.75 -3.25 30.18 24.80 1.35 -0.03

Grain Weight TGW-GS_2 1 H I128285 31.15 3.19 T / C T 0.36 0.06 -1.26 -0.02 0.32 0.49 -0.24 0.38 -0.21 -0.01 0.17 0.08 0.00 0.10 0.06 -2.64 -2.88 22.25 20.90 0.73 -0.03

from grab samplesTGW-GS_3 1 H A20810 52.46 3.63 A / G A 0.46 -0.02 -1.62 0.00 0.47 0.11 -0.29 1.00 -0.49 -0.01 -0.18 -0.54 0.00 0.09 0.08 -2.76 -3.20 17.85 8.64 -0.07 -0.11

TGW-GS_4 2 H I213799 8.57 3.76 A / C C 0.24 0.10 -0.75 0.01 -0.77 0.62 -0.69 -2.05 -0.30 0.00 -0.54 -0.01 0.00 0.05 -0.06 -3.09 -3.94 33.59 48.61 -0.11 -0.12

TGW-GS_5 2 H I143250 27.3 3.05 A / G A 0.47 0.14 1.31 -0.01 0.46 0.03 0.19 1.77 0.61 0.00 0.52 0.56 -0.01 -0.10 0.03 2.16 2.83 -19.36 -23.52 3.30 0.12

TGW-GS_6 2 H A10602 58.24 3.09 A / C C 0.26 -0.29 -1.12 0.05 -0.14 -1.15 -1.02 -0.96 -0.79 0.00 -1.34 -0.72 0.00 0.10 -0.16 -2.92 -3.51 21.60 25.85 -2.06 -0.20

TGW-GS_7 5 H A20553 2.81 3.75 A / G G 0.20 0.02 4.15 0.01 1.07 -0.66 -0.15 2.66 1.17 0.02 -0.10 1.48 -0.01 -0.20 0.11 3.04 3.68 -62.83 -65.67 2.02 0.28

Tillering from till.GS_1 4 H A20732 92.38 3.75 G / A G 0.42 -0.03 0.31 -0.08 -0.51 0.65 1.45 -2.03 1.56 0.00 2.47 0.95 0.00 0.22 0.05 -0.86 -1.28 55.67 57.53 3.53 0.29

Grab samples till.GS_2 5 H B30975 6.4 3.59 A / C C 0.17 -0.03 3.56 0.04 1.41 -0.05 -0.69 3.59 0.53 0.02 -1.04 1.24 -0.01 -0.22 0.06 1.37 1.62 -66.86 -63.32 0.82 0.13

till.GS_3 5 H I147762 109.56 2.62 C / T T 0.26 -0.11 1.29 -0.03 1.36 1.13 0.43 2.00 0.95 0.01 1.16 1.29 -0.01 -0.11 0.06 1.68 1.87 -48.35 -45.97 0.78 0.18

till.GS_4 5 H I720 159.8 3.26 A / G A 0.37 -0.04 -0.58 0.01 -1.32 0.03 -0.88 -1.66 -0.33 0.00 -0.79 0.07 0.00 0.13 0.03 -1.30 -1.28 55.52 49.56 -1.91 -0.08

till.GS_5 7 H A10550 143.68 2.63 G / A A 0.25 -0.18 -0.03 0.02 0.70 0.66 -0.38 1.61 -0.61 0.00 -0.68 -0.24 0.00 -0.13 -0.05 0.05 0.24 -51.15 -40.98 -1.60 -0.12

Tillering from till.Yld_1 4 H A21385 23.1 2.73 G / C C 0.26 0.06 -0.46 -0.01 0.68 0.96 -0.37 1.99 -0.66 -0.01 -0.14 -0.71 -0.01 -0.09 0.00 0.69 0.52 -36.20 -58.15 -2.71 -0.12

yield till.Yld_2 4 H A20732 92.38 3.31 G / A G 0.42 -0.03 0.31 -0.08 -0.51 0.65 1.45 -2.03 1.56 0.00 2.47 0.95 0.00 0.22 0.05 -0.86 -1.28 55.67 57.53 3.53 0.29

till.Yld_3 5 H A20553 2.81 3.05 A / G G 0.20 0.02 4.15 0.01 1.07 -0.66 -0.15 2.66 1.17 0.02 -0.10 1.48 -0.01 -0.20 0.11 3.04 3.68 -62.83 -65.67 2.02 0.28

till.Yld_4 6 H I4707 81.2 2.81 C / T T 0.33 -0.19 -0.65 -0.02 -1.10 0.83 0.39 -2.00 0.10 0.00 0.52 -0.62 0.00 0.12 -0.07 -1.53 -1.48 41.69 59.19 -1.19 -0.03

UPOV UPOV_1 2 H I195164 96.8 3.80 C / T T 0.48 -1.04 -0.67 0.06 -0.17 0.01 -0.80 1.78 -1.00 0.00 -1.26 -0.65 0.00 -0.12 -0.14 -0.79 -0.98 -16.74 -4.80 -5.86 -0.21

date of inscriptionUPOV_2 3 H A10767 172.42 2.93 G / A A 0.32 -0.14 -1.18 0.02 0.27 0.01 -0.80 3.01 -0.93 0.00 -0.84 -0.33 0.00 -0.02 -0.07 -1.26 -1.13 -14.42 -0.33 -4.93 -0.21

UPOV_3 4 H I128723 54.98 2.66 A / G G 0.18 0.24 0.54 -0.07 0.36 2.13 0.71 0.26 0.99 0.00 1.54 1.05 0.00 0.00 0.10 1.29 1.41 1.51 3.53 5.98 0.17

UPOV_4 5 H I192396 19.4 2.96 T / A T 0.46 0.30 1.15 -0.07 -0.13 -0.23 1.59 -2.98 1.41 0.00 1.99 0.07 0.00 0.04 0.02 0.55 0.27 25.76 15.74 5.93 0.31

UPOV_5 5 H I213753 64 2.98 C / A A 0.25 0.04 0.63 -0.04 -0.14 -0.80 0.87 -0.61 0.81 0.00 0.99 0.28 0.00 0.00 0.03 0.52 0.38 -3.70 -3.38 5.45 0.15

UPOV_6 6 H I230959 4.9 3.12 G / T T 0.23 0.26 1.28 -0.03 -0.06 0.76 0.60 -1.94 0.99 0.00 0.94 0.88 0.00 -0.09 0.11 2.00 2.01 -5.11 -5.74 5.89 0.19

UPOV_7 6 H I136897 53.29 4.21 A / G G 0.23 0.14 -0.48 -0.04 -0.10 0.78 0.78 -0.51 0.90 0.00 1.74 0.74 -0.01 0.07 0.01 1.15 1.34 18.80 13.85 7.92 0.14

UPOV_8 7 H A11222 4.9 3.12 G / C C 0.23 0.26 1.28 -0.03 -0.06 0.76 0.60 -1.94 0.99 0.00 0.94 0.88 0.00 -0.09 0.11 2.00 2.01 -5.11 -5.74 5.89 0.19

Yield Yld_1 1 H I154646 100.7 3.49 A / C C 0.11 -0.30 3.88 -0.07 0.87 1.53 1.88 -0.27 2.54 0.01 2.23 2.14 0.00 0.08 -0.04 1.12 0.10 20.37 16.07 1.67 0.53

treated Yld_2 2 H A21304 33.74 2.73 A / G G 0.30 -0.08 -2.53 0.06 0.14 -0.22 -1.16 2.11 -1.83 -0.01 -1.84 -1.27 0.00 0.03 -0.11 -1.81 -2.01 2.65 -14.92 -3.94 -0.37

Yld_3 2 H I10398 54.95 3.33 C / T T 0.17 -0.27 -2.20 0.11 -0.99 -0.10 -2.79 2.79 -2.35 -0.01 -3.06 -0.98 -0.01 -0.06 -0.09 -1.90 -1.70 1.54 7.85 -1.73 -0.54

Yld_4 4 H I182626 96.6 3.08 T / G G 0.31 0.22 1.05 -0.08 -0.27 0.93 0.95 -3.04 1.88 0.01 1.65 1.65 0.00 0.16 0.16 0.02 -0.10 43.44 45.13 3.17 0.37

Yld_5 5 H I231238 63.31 3.55 T / C C 0.21 0.12 3.69 -0.05 0.30 -0.47 1.81 -2.80 2.19 0.01 1.71 1.53 0.00 0.01 0.08 1.40 0.72 8.69 1.25 5.10 0.45

Yld_6 5 H A20236 80.61 2.60 C / A A 0.26 -0.08 2.90 -0.04 0.51 -0.54 1.16 -0.59 1.45 0.01 1.24 0.57 0.00 -0.07 0.07 0.44 0.16 -7.50 -5.86 2.73 0.33

Yld_7 6 H I118381 54.6 2.69 C / T C 0.47 -0.01 1.20 -0.07 -0.37 0.58 1.00 -1.96 1.62 0.00 1.92 1.04 0.00 0.10 0.04 1.68 1.69 28.22 26.87 4.68 0.34

Yld_8 7 H I186187 14.96 3.66 T / G G 0.22 0.34 3.07 -0.07 0.73 0.27 1.57 -1.43 1.91 0.01 1.82 1.29 0.00 0.05 0.16 0.61 0.94 7.50 14.85 4.52 0.44

Yld_9 7 H I138457 34.82 3.94 C / A A 0.22 0.09 3.18 -0.07 -0.14 1.22 1.32 -2.82 2.10 0.01 2.22 1.83 0.00 0.04 0.00 0.83 1.00 6.77 26.61 2.58 0.43

-log10(p)
Effect of marker allele 1

Trait QTL Chorm Marker Dist
alleles

MAF
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Appendix 4. 2 Effect size and direction of QTL peak marker effect across the set phenotypes in AGOUEB GWAS. 
Each QTL is presented with its peak marker (most significant SNP) with the associated marker map position, –log10(p) resulting from the test for association, the 

peak SNP alleles with its minor allele (MA) and minor allele frequency (MAF) in the AGOUEB panel. SNP effect size and direction are reported across the 20 

agronomic traits analysed. The negative effects of the allele 1 on another trait are highlighted in grey. The effects associated with a significant marker association for 

the trait considered (i.e. a QTL) are highlighted in bold (e.g. SNP A10823 of Antho_1 is a QTL for both traits Anthocyanin and sterile spikelets). 

  

1 2 aleurone Antho BR EAR-G Grain-N Hd HLW HWE LLHS mild NB ryncho SL_T SL_U SS_U StS TGW VFH WH Yld_T

Aleurone aleurone_1 2 H I171032 83.82 2.87 G / A A 0.28 -0.28 0.06 0.00 0.70 0.00 0.35 0.11 1.64 0.01 -0.12 0.33 -1.76 0.39 1.31 -1.11 -0.57 0.56 -0.04 0.00 0.14

aleurone_2 4 H A21087 62.10 21.61 G / A G 0.41 -0.93 0.05 0.23 0.09 0.00 0.13 -0.21 -0.04 0.10 -0.15 0.16 0.06 0.01 -0.29 -0.73 -0.15 0.11 -0.01 0.02 0.00

Anthocyanine Antho_1 2 H A10823 46.98 3.15 G / A A 0.29 -0.03 -0.34 -0.20 -0.45 0.00 0.14 -0.08 -0.22 0.01 0.20 0.30 1.48 0.81 0.57 1.79 1.25 -1.49 -0.10 -0.01 -0.15

Color Antho_2 2 H A10138 96.82 20.83 G / A A 0.45 -0.04 -0.93 -1.22 0.28 0.01 0.22 -0.07 -0.37 0.06 -0.85 0.03 0.44 0.74 1.14 -0.09 0.23 0.07 -0.12 -0.05 -0.06

Brown Rust BR_1 2 H I146785 70.50 4.20 G / C G 0.13 -0.13 -0.07 3.21 0.04 -7.94 -1.01 -0.01 -1.07 -0.05 -0.17 0.19 -1.14 -0.17 0.11 -0.04 -0.29 0.53 0.00 0.01 0.02

EAR-G_1 1 H I120059 0.75 3.01 T / C T 0.30 -0.02 0.03 -0.11 1.05 0.00 0.12 0.27 0.43 0.10 0.01 0.32 -0.24 0.63 0.97 0.46 0.26 0.05 -0.03 -0.04 -0.05

EAR-G_2 5 H A10524 93.70 2.54 C / A A 0.11 -0.09 0.02 -0.88 1.33 0.00 0.83 0.00 1.37 0.11 0.18 0.28 0.32 0.27 0.52 -1.17 -0.21 0.33 -0.04 0.03 0.11

EAR-G_3 6 H B11455 42.36 2.69 G / A A 0.40 0.12 -0.12 0.08 1.08 0.02 -0.48 0.01 -1.64 -0.02 0.37 0.63 -0.41 0.40 0.62 -0.80 0.06 0.83 0.12 -0.01 -0.09

EAR-G_4 7 H I1347 116.33 3.44 G / T T 0.21 -0.10 -0.12 -1.02 1.31 0.00 0.71 -0.08 0.37 0.10 -0.01 -0.12 -1.19 1.76 1.74 2.87 0.23 -0.56 -0.06 0.01 0.02

GrainN_1 2 H A11384 60.68 4.23 C / G G 0.42 0.03 0.03 0.55 -0.35 0.04 -0.72 0.52 -0.53 -0.03 0.63 -0.46 0.05 -1.78 -3.16 -4.08 -0.71 1.21 -0.09 0.03 0.02

GrainN_2 4 H I149873 0.74 3.11 G / A A 0.29 0.10 0.06 0.90 0.31 -0.03 -0.47 0.00 1.40 -0.04 -0.18 -0.02 -0.10 -1.03 -1.13 -0.96 -0.28 0.74 -0.02 0.02 0.16

GrainN_3 4 H B31362 73.57 2.67 C / A A 0.29 -0.14 -0.11 0.39 0.09 0.03 -0.10 0.44 -0.47 0.05 0.16 -0.17 -0.34 -1.32 0.07 -1.16 0.12 0.21 -0.06 0.01 0.08

GrainN_4 5 H B30975 6.40 4.86 A / C C 0.11 -0.03 -0.11 -0.42 -0.04 0.05 -0.07 0.52 -0.73 -0.01 -0.87 0.32 -0.89 3.09 4.63 -1.14 0.22 2.13 -0.07 0.06 0.06

GrainN_5 5 H B30400 149.10 2.57 A / C A 0.37 -0.03 -0.05 0.96 -0.07 0.03 -0.77 0.38 -0.55 -0.03 0.09 -0.05 -0.42 -0.24 -0.01 -1.83 -0.12 1.71 -0.01 0.03 -0.04

Heading date Hd_1 2 H B30042 59.21 2.70 A / G G 0.20 -0.06 -0.01 1.17 -0.06 0.03 -1.48 0.29 -0.07 -0.02 0.42 -0.37 -0.95 -3.60 -2.91 -2.97 0.02 2.54 -0.05 -0.01 0.02

Hd_2 2 H B10937 152.79 3.13 G / C G 0.15 0.00 0.12 1.37 0.38 -0.01 -1.69 0.24 -0.95 0.12 -0.06 0.31 0.65 -1.11 -1.77 -1.45 0.11 -0.08 -0.09 0.03 0.03

Hectoliter weight HLW_1 6 H B30025 117.68 2.60 A / G G 0.40 0.03 -0.02 0.53 -0.06 0.00 -0.47 -0.72 -0.05 0.06 -0.88 0.97 -0.05 -1.15 -1.11 -0.26 -0.02 -0.35 0.04 -0.03 -0.02

Hot Water HWE_1 1 H A10985 52.46 4.75 A / C A 0.49 0.03 0.05 0.48 0.11 -0.01 -0.40 0.15 3.89 0.06 -0.03 0.00 -0.43 0.71 0.75 -0.05 -0.32 -1.24 -0.01 0.04 0.03

Extract HWE_2 1 H I165338 131.15 2.53 G / A A 0.11 0.11 0.13 -0.23 -0.07 -0.01 -0.06 0.43 3.41 0.06 -0.30 -0.45 -0.34 0.25 1.27 0.28 -0.29 -0.59 -0.07 0.02 0.05

HWE_3 2 H I118168 9.28 2.67 A / T T 0.50 0.15 -0.04 0.30 0.02 -0.01 -0.35 -0.08 2.84 0.00 0.85 0.43 0.24 0.32 -0.38 -0.48 0.28 -1.08 0.08 0.02 -0.02

LLHS LLHLS_1 4 H A10611 114.66 8.71 C / A A 0.12 0.01 -0.05 0.29 0.37 -0.02 0.17 -0.11 2.23 0.52 0.10 0.18 0.80 -1.24 -1.40 2.48 0.44 -0.22 -0.06 0.02 -0.04

LLHLS_2 5 H A21355 153.50 6.53 A / G G 0.11 -0.16 -0.09 -0.07 0.28 -0.01 -0.23 -0.23 2.84 0.44 -0.55 0.32 -1.29 -0.24 -1.67 1.71 0.65 1.60 -0.09 0.00 -0.05

LLHLS_3 7 H A20365 166.56 3.20 C / G G 0.18 -0.05 0.13 -0.10 -0.35 0.00 -0.22 0.38 1.59 0.26 0.68 0.22 0.57 0.59 0.05 0.18 0.40 0.08 -0.18 -0.03 0.01

Mildew mild-(U)_1 4 H I128147 86.27 2.56 T / C C 0.32 -0.13 -0.02 -1.35 0.72 0.00 0.28 -0.30 0.69 0.03 -1.70 0.53 0.02 0.99 0.90 0.40 -0.02 0.00 0.00 -0.01 -0.05

Untreated mild-(U)_2 5 H I108541 19.40 5.21 C / G G 0.18 0.18 0.09 -1.00 -0.17 0.00 0.34 -0.26 0.40 0.03 -3.07 0.45 0.59 -1.12 -0.68 -0.93 0.36 -0.07 0.02 0.01 0.09

mild-(U)_3 5 H I204494 51.30 2.74 C / A A 0.13 -0.02 0.08 0.94 -0.01 -0.02 0.25 -0.41 0.98 -0.07 -2.36 0.31 -1.34 -0.06 0.08 -0.29 -0.21 -1.22 -0.04 0.09 0.03

mild-(U)_4 6 H I147090 33.74 2.72 T / C C 0.23 -0.08 0.04 -1.12 0.05 0.02 0.01 0.05 0.46 0.06 -1.89 0.13 -0.37 0.81 1.94 -0.03 0.04 -0.09 -0.17 0.00 0.06

mild-(U)_5 6 H I164156 90.15 2.82 T / C C 0.39 -0.09 -0.10 -0.40 -0.21 -0.01 -0.13 -0.27 -0.38 0.03 -1.80 0.22 0.53 -0.78 -0.04 -0.68 -0.03 -0.03 -0.01 0.00 0.08

mild-(U)_6 7 H I163976 29.82 3.72 T / C C 0.13 -0.14 0.23 0.57 -0.43 -0.01 0.04 -0.08 -0.82 0.06 -2.87 -0.45 -0.52 1.01 1.54 0.51 -0.14 -0.28 -0.01 0.06 0.01

Net Blotch NB(U)_1 2 H I16024 71.12 2.95 C / T C 0.48 0.01 0.04 0.30 -0.04 0.00 0.68 -0.32 -0.08 -0.07 -0.55 1.19 0.01 1.32 1.24 1.58 0.03 -1.11 -0.04 0.02 -0.09

Untreated NB(U)_2 4 H B10063 40.36 3.05 G / A A 0.16 0.06 -0.10 0.70 -0.29 -0.01 -0.30 -0.41 -1.44 0.02 0.69 -1.67 0.66 -0.07 -0.43 0.50 -0.11 0.07 0.16 -0.04 0.13

NB(U)_3 6 H I128460 45.40 5.01 T / C C 0.30 0.01 -0.05 0.72 0.20 0.00 -0.20 -0.05 -0.26 -0.08 -0.30 1.79 0.87 0.13 -0.70 -0.62 0.20 -0.85 0.10 0.04 -0.06

Rynchosporium ryncho(U)_1 2 H I129821 158.15 4.99 T / G G 0.19 -0.03 0.06 0.61 -0.33 -0.01 -0.30 -0.51 0.63 -0.03 0.99 0.02 -3.57 -1.01 -0.30 2.39 0.07 -0.92 0.01 0.01 -0.04

Untreated ryncho(U)_2 3 H A20252 6.03 3.52 G / A A 0.31 -0.02 -0.20 0.57 0.17 -0.01 0.27 -0.41 -0.13 -0.03 0.47 -0.24 -2.45 0.15 -0.14 -0.98 0.11 -0.16 -0.01 0.00 0.11

ryncho(U)_3 5 H B30456 113.11 3.21 A / G G 0.26 -0.10 0.05 -0.21 -0.23 0.00 -0.36 0.02 -0.94 -0.08 0.59 -0.06 2.42 -0.20 -1.28 -1.08 0.31 0.20 -0.02 0.06 -0.05

MA MAF
Effect of marker allele 1

Ear Glaucosity

Grain Nitrogen

-log10(p)
alleles

Trait QTL Chrom Marker Dist
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Appendix 4. 2 cont. 

 

1 2 aleurone Antho BR EAR-G Grain-N Hd HLW HWE LLHS mild NB ryncho SL_T SL_U SS_U StS TGW VFH WH Yld_T

Straw Length SL_T_1 2 H I127347 63.53 4.07 T / C C 0.28 -0.07 0.07 0.90 -0.21 0.03 -1.24 0.27 -0.42 -0.01 0.52 -0.54 0.39 -3.74 -4.45 -3.88 -0.26 2.26 -0.11 0.02 0.03

Treated SL_T_2 5 H I136777 123.08 2.69 C / T T 0.32 -0.07 -0.08 0.78 0.68 0.00 0.89 0.04 0.99 0.08 -0.08 0.39 -0.84 2.42 2.70 1.88 0.14 -0.48 0.03 -0.01 0.01

SL_T_3 5 H A10236 181.43 3.44 A / G A 0.14 -0.23 0.15 0.44 -0.24 -0.01 -0.58 -0.25 1.65 -0.04 0.21 0.82 0.26 -4.21 -4.90 -2.88 -1.25 0.61 -0.01 0.02 0.10

SL_U_1 2 H I177375 63.50 4.57 C / T T 0.28 -0.11 0.11 0.76 -0.27 0.03 -1.34 0.32 -0.05 0.00 0.53 -0.51 0.28 -3.68 -4.87 -4.04 -0.34 2.20 -0.07 0.03 0.04

SL_U_2 4 H I129218 92.40 3.95 A / C C 0.45 -0.02 -0.13 -0.46 0.47 0.00 0.07 0.47 -0.01 -0.05 -0.56 0.28 0.39 1.90 3.45 -0.74 0.03 1.34 -0.05 0.00 -0.17

SL_U_3 5 H B30975 6.40 3.45 A / C C 0.11 -0.03 -0.11 -0.42 -0.04 0.05 -0.07 0.52 -0.73 -0.01 -0.87 0.32 -0.89 3.09 4.63 -1.14 0.22 2.13 -0.07 0.06 0.06

SL_U_4 5 H I136777 123.08 2.58 C / T T 0.32 -0.07 -0.08 0.78 0.68 0.00 0.89 0.04 0.99 0.08 -0.08 0.39 -0.84 2.42 2.70 1.88 0.14 -0.48 0.03 -0.01 0.01

SL_U_5 5 H A10236 181.43 3.31 A / G A 0.14 -0.23 0.15 0.44 -0.24 -0.01 -0.58 -0.25 1.65 -0.04 0.21 0.82 0.26 -4.21 -4.90 -2.88 -1.25 0.61 -0.01 0.02 0.10

SL_U_6 6 H A20745 28.39 2.62 C / A C 0.39 0.03 0.00 0.79 0.12 0.00 -0.29 -0.12 0.92 0.08 0.55 -0.07 0.54 -1.57 -2.86 0.17 0.20 -0.38 0.10 -0.01 -0.05

SS_U_1 1 H I3336 15.74 2.82 A / C C 0.23 -0.10 -0.01 0.17 -0.11 -0.01 -0.09 -0.12 0.31 -0.01 -0.75 -0.23 0.26 -0.36 -0.34 -3.26 -0.10 -0.02 -0.03 -0.04 0.03

SS_U_2 2 H A10358 59.21 4.14 C / A A 0.42 0.02 0.02 0.57 -0.35 0.04 -0.79 0.50 -0.36 0.01 0.65 -0.45 0.16 -1.92 -3.30 -4.06 -0.58 1.17 -0.08 0.03 0.00

SS_U_3 3 H I155763 83.23 3.34 A / G G 0.18 -0.05 0.05 0.27 -0.08 -0.01 0.86 -0.30 2.35 0.20 -0.52 0.28 -1.28 0.66 0.68 4.25 -0.17 0.39 0.01 0.01 -0.04

SS_U_4 4 H A21035 113.92 2.81 A / G A 0.21 0.07 0.07 -0.38 -0.17 0.01 -0.24 -0.05 -0.24 -0.29 -0.25 0.31 -0.23 -1.38 -0.77 -3.40 -0.39 0.25 0.01 -0.02 0.03

SS_U_5 7 H I138111 58.57 2.55 C / G G 0.28 0.03 -0.06 -0.03 -0.15 -0.01 -0.30 0.07 -0.48 -0.03 -0.15 0.01 0.94 -1.11 -0.76 -2.94 -0.12 -0.25 0.02 0.04 0.06

SS_U_6 7 H I150049 104.78 3.37 T / C C 0.37 0.01 0.04 0.07 -0.22 -0.01 -0.02 -0.15 1.31 -0.07 -0.31 0.08 0.40 -1.02 -1.74 -3.50 0.18 0.14 0.03 0.02 0.06

Sterile StS_1 1 H A21333 59.71 3.13 G / C C 0.46 -0.08 0.13 -0.31 -0.12 0.01 0.26 -0.18 -1.13 -0.01 -0.52 -0.22 -0.50 -0.50 -0.20 -0.58 -0.93 1.06 0.04 0.01 0.08

Spikelets StS_2 2 H A10823 46.98 3.60 G / A A 0.29 -0.03 -0.34 -0.20 -0.45 0.00 0.14 -0.08 -0.22 0.01 0.20 0.30 1.48 0.81 0.57 1.79 1.25 -1.49 -0.10 -0.01 -0.15

StS_3 2 H A10287 85.92 13.98 G / A A 0.17 0.05 -0.27 -0.49 0.41 -0.01 0.52 -0.11 -0.57 0.04 -0.12 0.43 2.47 0.25 0.25 2.36 3.23 -0.80 0.02 -0.03 -0.21

StS_4 4 H A10319 8.25 2.68 A / G G 0.24 0.11 0.04 -0.55 -0.07 -0.01 0.40 -0.35 -0.30 0.05 -0.60 0.36 0.19 0.10 -0.12 1.89 0.87 -0.32 -0.08 0.04 -0.03

StS_5 5 H A10236 181.43 2.59 A / G A 0.14 -0.23 0.15 0.44 -0.24 -0.01 -0.58 -0.25 1.65 -0.04 0.21 0.82 0.26 -4.21 -4.90 -2.88 -1.25 0.61 -0.01 0.02 0.10

StS_6 6 H I207933 4.41 2.76 C / G C 0.32 0.09 -0.09 0.20 0.27 0.00 0.51 -0.12 0.71 -0.08 0.39 -0.08 0.27 0.09 0.42 0.00 0.83 -0.40 0.20 -0.03 -0.05

StS_7 6 H I204148 60.23 2.72 T / C C 0.28 -0.11 0.02 -0.63 -0.05 0.01 -0.16 0.50 0.44 -0.06 0.66 0.50 1.15 0.38 -0.19 -0.92 -0.97 0.15 -0.09 0.07 0.00

Thousand TGW_1 1 H I184784 40.99 2.64 T / C T 0.44 0.08 0.03 0.60 0.04 -0.01 -0.38 0.15 3.49 0.10 -0.38 0.32 -0.02 0.37 -0.27 0.08 0.06 -1.86 0.06 0.06 -0.01

Grain Weight TGW_2 2 H I110647 31.00 2.58 T / C C 0.18 -0.13 -0.12 -0.73 0.19 0.01 -0.23 -0.01 1.39 0.09 -0.35 0.63 -1.02 -0.84 -1.00 -1.39 -0.05 2.23 0.01 0.06 0.05

TGW_3 2 H B30042 59.21 3.32 A / G G 0.20 -0.06 -0.01 1.17 -0.06 0.03 -1.48 0.29 -0.07 -0.02 0.42 -0.37 -0.95 -3.60 -2.91 -2.97 0.02 2.54 -0.05 -0.01 0.02

TGW_4 4 H I160461 103.10 2.68 T / C C 0.46 0.04 0.01 -0.68 -0.29 0.01 0.31 0.20 -0.66 -0.07 -0.26 -0.62 0.34 0.13 0.93 -0.84 -0.07 1.77 -0.07 0.01 0.03

TGW_5 5 H A20553 2.81 3.90 A / G G 0.22 0.07 -0.01 0.30 -0.33 0.03 -0.50 0.29 -1.17 -0.12 0.38 -0.47 -0.91 1.76 2.01 -2.43 0.13 2.53 -0.04 0.03 0.09

VFH_1 2 H I152485 101.78 2.61 G / A A 0.27 -0.02 0.18 0.34 0.69 9.33 0.11 0.12 0.57 -0.04 1.39 0.54 0.23 0.60 -0.02 0.65 0.50 -0.20 0.23 0.06 -0.06

VFH_2 6 H I194036 6.07 12.50 A / C C 0.35 0.08 -0.01 0.45 -0.04 0.00 0.10 -0.58 0.34 -0.06 1.10 -0.14 0.08 1.36 0.97 1.49 0.56 0.27 0.55 0.01 -0.02

Winter WintHard_1 2 H A21261 28.44 3.01 G / A A 0.19 -0.18 -0.03 -0.76 -0.12 0.00 -0.14 0.13 0.66 0.16 0.73 0.61 -0.31 0.76 0.44 0.04 -0.35 1.46 -0.10 0.12 0.02

Hardiness (WH) WintHard_2 4 H I110333 65.80 2.80 T / C T 0.25 -0.08 -0.07 0.51 -0.51 0.00 0.65 -0.45 0.28 -0.08 0.72 -0.21 -1.74 0.25 0.25 -0.12 -0.20 1.07 -0.02 0.10 0.01

WintHard_3 5 H I214760 18.72 2.93 G / A A 0.42 -0.02 0.04 -0.81 -0.27 0.01 0.34 0.31 -1.18 -0.09 -0.04 0.19 -0.64 -0.55 -0.88 -1.30 -0.14 -0.02 -0.05 0.08 -0.01

WintHard_4 6 H I114351 56.48 2.84 C / T T 0.32 0.09 -0.03 0.97 0.25 0.01 0.03 -0.51 -1.32 -0.09 0.23 -0.02 -1.09 0.92 0.02 0.23 0.09 -0.43 0.02 -0.10 -0.05

Yield Yld_T_1 4 H I150603 48.72 2.73 G / A A 0.14 -0.29 0.11 -0.56 -0.44 -0.01 0.20 -0.74 -0.02 0.02 -0.81 -0.93 0.67 0.28 -0.09 -1.20 -0.24 -0.39 0.02 -0.01 0.23

Treated Yld_T_2 4 H I129218 92.40 2.89 A / C C 0.44 -0.02 -0.13 -0.46 0.47 0.00 0.07 0.47 -0.01 -0.05 -0.56 0.28 0.39 1.90 3.45 -0.74 0.03 1.34 -0.05 0.00 -0.17

Yld_T_3 5 H I192396 19.40 4.17 A / T A 0.29 -0.13 -0.13 1.67 0.27 0.01 -0.71 0.19 -0.38 -0.01 2.57 -0.36 -0.56 1.48 1.35 1.65 0.11 0.67 0.00 -0.02 -0.23

Yld_T_4 5 H I205853 86.63 2.58 T / G T 0.16 -0.03 0.00 0.46 -0.12 0.02 -0.21 0.30 -1.41 -0.13 -1.03 0.61 -0.44 -0.27 0.38 0.08 0.62 0.50 -0.07 -0.02 -0.20

Yld_T_5 6 H I115369 55.90 2.73 T / C C 0.45 0.12 -0.12 0.80 0.62 0.03 -0.19 0.02 -0.98 0.05 0.27 0.17 -0.48 1.58 2.04 1.53 0.20 -0.34 0.01 -0.03 -0.20

Yld_T_6 7 H B30380 138.17 3.28 G / A G 0.42 0.08 -0.02 0.18 -0.36 -0.01 0.11 -0.20 0.58 0.08 -0.58 0.06 0.47 0.14 0.48 -1.24 -0.19 0.23 -0.08 0.01 0.19

Effect of marker allele 1alleles
MAF

Straw Length Untreated

Straw Strenght 

Untreated

Ventral Furrow Hairs

-log10(p) MATrait QTL Chrom Marker Dist
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Appendix 4. 3 Patterns of MTA for the QTL cluster at vrn-H1 locus on chromosome 5HL identified from NUE-CROPs GWAS. 
Patterns of marker trait associations for all 20 traits of the NUE-CROPS GWAS at the QTL cluster identified on 5HL at the vrn-H1 candidate gene locus. The X-axis 

plots the barley SNP ordered according the physical position of their homologous rice locus. (e.g. SNP A11024 is homologous of rice locus LOC_Os01g67134 

found at the rice gene 67134 on Os01). The Y-axis indicates the magnitude of the association –log10(p). 
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Appendix 4. 4 Patterns of MTA for the QTL cluster at eam6 locus on the centromere of chromosome 2H identified from NUE-CROPs GWAS. 
Patterns of marker trait associations for all 20 traits of the NUE-CROPS GWAS at the QTL cluster identified on 2H centromere at the eam6 and HvCEN candidate 

gene locus. The X-axis plots the barley SNP ordered according the physical position of their homologous rice locus. (e.g. SNP A177375 is homologous of rice locus 

LOC_Os01g0113190 found at the rice gene 0113190 on Os01). The Y-axis indicates the magnitude of the association as –log10(p). 
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Appendix 4. 5 Patterns of MTA for the QTL cluster at the vrn-H3 locus on chromosome 7H identified from NUE-CROPs GWAS and the 

corresponding putative rice homologous genes. 
(a) Patterns of marker trait associations for all 20 traits of the NUE-CROPS GWAS at the QTL cluster identified on 7H at the vrn-H3 candidate gene locus. The X-

axis plots the barley SNP ordered according the physical position of their homologous rice locus. The Y-axis indicates the magnitude of the association. 

(b) List of the putative rice homologous genes within the chromosome segment delimited by the significant barley SNP of the cluster. 

 

a) 

 

b) 

 

RiceLocus Gene product name

Barley 

SNP SNP distance

LOC_Os06g05720  expressed protein I172087 29.82

LOC_Os06g05730  expressed protein

LOC_Os06g05740  expressed protein

LOC_Os06g05750  transferase family domain containing protein, expressed

LOC_Os06g05760  ubiquitin family protein, putative, expressed

LOC_Os06g05770  expressed protein

LOC_Os06g05790  transferase family domain containing protein, expressed

LOC_Os06g05800  RNA recognition motif containing protein, putative, expressed

LOC_Os06g05804  trafficking protein particle complex subunit 4, putative, expressed

LOC_Os06g05820  OsLonP2 - Putative Lon protease homologue, expressed

LOC_Os06g05830  protein kinase domain containing protein, expressed

LOC_Os06g05860  6-phosphofructokinase, putative, expressed I150517 34.82

LOC_Os06g05870  dual specificity protein phosphatase, putative, expressed

LOC_Os06g05880  profilin domain containing protein, expressed A20192 34.82

LOC_Os06g05890  B-box zinc finger family protein, putative, expressed I209500 34.8

LOC_Os06g05900  methyltransferase, putative, expressed

LOC_Os06g05910  methyltransferase domain containing protein, expressed

LOC_Os06g05920  Rf1, mitochondrial precursor, putative, expressed

LOC_Os06g05930  expressed protein

LOC_Os06g05940  DTA2, putative, expressed

LOC_Os06g05950  expressed protein

LOC_Os06g05960  expressed protein

LOC_Os06g05970  DUF581 domain containing protein, expressed

LOC_Os06g05980  transporter family protein, putative, expressed I236580 34.8

LOC_Os06g05990  zinc finger family protein, putative, expressed

LOC_Os06g06000  expressed protein

LOC_Os06g06014  expressed protein

LOC_Os06g06030  peptidase, T1 family, putative, expressed

LOC_Os06g06040  expressed protein I138457 34.82

LOC_Os06g06050  OsFBL27 - F-box domain and LRR containing protein, expressed

LOC_Os06g06080  serine esterase family protein, putative, expressed

LOC_Os06g06090  CGMC_MAPKCMGC_2_ERK.12 - CGMC includes CDA, MAPK, GSK3, and CLKC kinases, expressed B30083 34.82

LOC_Os06g06100  dihydroneopterin aldolase, putative, expressed

LOC_Os06g06115  expressed protein

LOC_Os06g06120  expressed protein

LOC_Os06g06130  glutamate receptor, putative, expressed

LOC_Os06g06140  hypothetical protein

LOC_Os06g06150  zinc finger, C3HC4 type domain containing protein, expressed

LOC_Os06g06160  IQ calmodulin-binding motif domain containing protein, expressed

LOC_Os06g06170  expressed protein

LOC_Os06g06180  transferase family protein, putative, expressed

LOC_Os06g06190  uncharacterized protein ycf45, putative, expressed

LOC_Os06g06210  expressed protein

LOC_Os06g06220  hypothetical protein

LOC_Os06g06230  GDSL-like lipase/acylhydrolase, putative, expressed

LOC_Os06g06240  hypothetical protein

LOC_Os06g06250  GDSL-like lipase/acylhydrolase, putative, expressed

LOC_Os06g06260  GDSL-like lipase/acylhydrolase, putative, expressed

LOC_Os06g06270  transcription elongation factor 1, putative, expressed

LOC_Os06g06280  galactosyltransferase family protein, putative, expressed

LOC_Os06g06290  GDSL-like lipase/acylhydrolase, putative, expressed B10218 39.04

LOC_Os06g06300  osFTL3 FT-Like3 homologous to Flowering Locus T gene%3B contains Pfam profile PF01161: 

Phosphatidylethanolamine-binding protein, expressed

B30893 37.55

LOC_Os06g06310  expressed protein

LOC_Os06g06320  osFTL2 FT-Like2 homologous to Flowering Locus T gene%3B contains Pfam profile PF01161: 

Phosphatidylethanolamine-binding protein, expressed
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Appendix 4. 6 Patterns of MTA for the QTL cluster on chromosome 5HS 

identified from AGOUEB GWAS. 
 

Patterns of marker trait associations for all 20 traits of the AGOUEB GWAS at the QTL cluster 

identified on 5H short arm with significant QTL for mildew (mild-(U)_2), yield (Yld_T_3), 

winter hardiness (WintH_3), straw length (SL_U_3) and Grain Nitrogen (GrainN_4) (see Table 

3.3 and Figure 4.1e)). The X-axis plots the barley SNP ordered according the physical position 

of their homologous rice locus. The Y-axis indicates the magnitude of the association. The 

homologous rice segment has been identified on chromosome 12.  
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Appendix 4. 7 List of putative homologous rice genes predicted as equivalent to the 

QTL cluster on chromosome 5HS identified from AGOUEB GWAS. 
List of putative rice gene models homologous to the barley chromosome segment comprised 

between SNP markers B30167 and A20553 including the QTL cluster presented in Appendix 4. 

6. This chromosome segment contains potential candidate genes involved in the mildew 

resistance. 

 

  

Rice Locus Gene product name Barley SNP SNP distance

LOC_Os12g43130  phytoene synthase, chloroplast precursor, putative, expressed B30167 26.28

LOC_Os12g43140  late embryogenesis abundant protein D-34, putative, expressed A21065 26.28

LOC_Os12g43150  expressed protein

LOC_Os12g43300  expressed protein

LOC_Os12g43310  hypothetical protein

LOC_Os12g43320  expressed protein

LOC_Os12g43330  expressed protein

LOC_Os12g43340  actin-depolymerizing factor, putative, expressed

LOC_Os12g43350  expressed protein

LOC_Os12g43363  fatty acid hydroxylase, putative, expressed

LOC_Os12g43370  peptidase, M24 family protein, putative, expressed

LOC_Os12g43380  thaumatin, putative, expressed I98293 19.40

LOC_Os12g43390  thaumatin, putative, expressed

LOC_Os12g43400  expressed protein

LOC_Os12g43410  thaumatin, putative, expressed

LOC_Os12g43430  thaumatin, putative, expressed

LOC_Os12g43440  thaumatin, putative, expressed

LOC_Os12g43450  thaumatin family domain containing protein, expressed

LOC_Os12g43490  thaumatin, putative, expressed

LOC_Os12g43500  expressed protein

LOC_Os12g43510  expressed protein

LOC_Os12g43520  cbbY protein-related, putative, expressed I192396 19.40

LOC_Os12g43530  no apical meristem protein, putative, expressed

LOC_Os12g43540  expressed protein

LOC_Os12g43550  ras-related protein, putative, expressed I108541 19.40

LOC_Os12g43560  zinc finger, putative, expressed I133600 19.40

LOC_Os12g43564  expressed protein

LOC_Os12g43570  expressed protein

LOC_Os12g43580  expressed protein

LOC_Os12g43590  FAD dependent oxidoreductase domain containing protein, expressed

LOC_Os12g43600  RNA recognition motif containing protein, expressed

LOC_Os12g43610  expressed protein

LOC_Os12g43620  helix-loop-helix DNA-binding domain containing protein, expressed

LOC_Os12g43630  lactate/malate dehydrogenase, putative, expressed

LOC_Os12g43640  receptor-like protein kinase HAIKU2 precursor, putative, expressed I114102 2.10

LOC_Os12g43660  receptor-like protein kinase HAIKU2 precursor, putative, expressed

LOC_Os12g43664  FGGY family of carbohydrate kinases, putative, expressed

LOC_Os12g43670  ergosterol biosynthetic protein 28, putative, expressed

LOC_Os12g43700  SCP-like extracellular protein, expressed

LOC_Os12g43710  expressed protein

LOC_Os12g43720  early-responsive to dehydration protein-related, putative, expressed I228061 7.48

LOC_Os12g43730  expressed protein

LOC_Os12g43740  oxidoreductase, short chain dehydrogenase/reductase family, putative, expressed

LOC_Os12g43750  expressed protein

LOC_Os12g43770  OsFBX465 - F-box domain containing protein, expressed

LOC_Os12g43780  expressed protein

LOC_Os12g43790  bZIP transcription factor domain containing protein, expressed

LOC_Os12g43810  expressed protein

LOC_Os12g43820  GCRP5 - Glycine and cysteine rich family protein precursor, expressed

LOC_Os12g43830  NUC189 domain containing protein, expressed

LOC_Os12g43840  ankyrin repeat domain-containing protein, putative, expressed

LOC_Os12g43870  expressed protein

LOC_Os12g43880  DNA binding protein, putative, expressed

LOC_Os12g43890  GNS1/SUR4 membrane family protein, putative, expressed

LOC_Os12g43930  zinc finger, C3HC4 type domain containing protein, expressed

LOC_Os12g43940  ankyrin repeat domain-containing protein, putative, expressed

LOC_Os12g43950  homeobox domain containing protein, expressed

LOC_Os12g43960  hypothetical protein

LOC_Os12g43970  hydrolase, alpha/beta fold family domain containing protein, expressed

LOC_Os12g43990  expressed protein

LOC_Os12g44000  ubiquitin-conjugating enzyme E2 W, putative, expressed

LOC_Os12g44010  purple acid phosphatase precursor, putative, expressed

LOC_Os12g44020  Ser/Thr protein phosphatase family protein, putative, expressed

LOC_Os12g44030  purple acid phosphatase precursor, putative, expressed

LOC_Os12g44050  purple acid phosphatase precursor, putative, expressed

LOC_Os12g44060  nodulin, putative, expressed

LOC_Os12g44070  nodulin, putative, expressed

LOC_Os12g44080  CHCH domain containing protein, expressed

LOC_Os12g44090  leucine-rich repeat family protein, putative, expressed I168359 5.70

LOC_Os12g44100  peptide transporter PTR2, putative, expressed

LOC_Os12g44110  ligA, putative, expressed

LOC_Os12g44130  expressed protein

LOC_Os12g44140  expressed protein

LOC_Os12g44150  plasma membrane ATPase, putative, expressed

LOC_Os12g44160  oxidoreductase, putative, expressed

LOC_Os12g44170  pentatricopeptide, putative, expressed

LOC_Os12g44180  nodulin, putative, expressed

LOC_Os12g44190  ATPase 3, putative, expressed

LOC_Os12g44210  ATPase, AAA family domain containing protein, expressed

LOC_Os12g44220  ATPase 2, putative, expressed

LOC_Os12g44230  expressed protein B31023 4.96

LOC_Os12g44240  N-acetylglucosaminyltransferase, putative, expressed B30975 6.40

LOC_Os12g44250  vesicle-associated membrane protein, putative, expressed

LOC_Os12g44260  heat shock protein DnaJ, putative, expressed

LOC_Os12g44270  glycine-rich protein, putative, expressed

LOC_Os12g44280  subtilase, putative, expressed

LOC_Os12g44290  cytochrome P450, putative, expressed

LOC_Os12g44300  CHX28, putative, expressed

LOC_Os12g44310  carotenoid cleavage dioxygenase, putative, expressed A20553 2.81

LOC_Os12g44320  carbohydrate binding protein, putative, expressed

LOC_Os12g44330  serine/threonine-protein kinase PRP4, putative, expressed

LOC_Os12g44340  ATMAP70 protein, putative, expressed

LOC_Os12g44350  actin, putative, expressed

LOC_Os12g44360  sodium/hydrogen exchanger 7, putative, expressed

LOC_Os12g44370  expressed protein

LOC_Os12g44380  sucrose transporter, putativ, expressed

LOC_Os12g44390  RecF/RecN/SMC N terminal domain containing protein, expressed
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Appendix 5. 1 Drilling plan of the 2012 NIL multiplication experiment. 
 

The NILs were grown as miniplots made of six rows of one meter long. Each bed was made of 

six miniplots. Plots were grown in untreated field conditions with standard fertilisation regime 

(see 5.3.2). 
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Appendix 5. 2 Experimental layout of the 2013 NIL yield plot experiment  
 

The replicated blocks are identified by a blue and red quadrat. The brown quadrats delineate the 

7 Heterogeneous Inbred Families (HIF) and 2 controls (Saffron and Retriever) within each of 

the blocks. Additional replication of the NILs was made within Rep. 

 

 

 

Photography of the 2013 field based NILs. For simplicity, only NILs of family B-4 of Rep 1 

have been detailed. The layout describe above correspond to the photography. In B-4, the late 

emergence of NILs 4187 H3/4 is clearly visible. 

 

  

B-4 F3/8 B-4 F3/9 B-4 H3/4 B-4 C3/1 B-3 E8/4 B-3 H8 A-8 D8/1 A-8 F10/8

B-4 C3/1 B-4 H3/4 B-4 F3/8 B-4 F3/9 B-3 H8 B-3 E8/4 A-8 F10/8 A-8 D8/1

A-3 A12 A-3 H12 A-3 F12 Saffron Retriever A-5 E3 A-5 H3 A-5 F3

A-3 F12 A-3 A12 A-3 H12 Retriever Saffron A-5 F3 A-5 E3 A-5 H3

A-2 A11 A-2 A10 A-2 B10 A-2 C10 Saffron Retriever B-2 A8 B-2 A7

A-2 B10 A-2 A10 A-2 C10 A-2 A11 Retriever Saffron B-2 A7 B-2 A8

Saffron Retriever A-3 A12 A-3 F12 A-3 H12 A-5 H3 A-5 F3 A-5 E3

Retriever Saffron A-3 F12 A-3 H12 A-3 A12 A-5 E3 A-5 H3 A-5 F3

B-3 E8/4 B-3 H8 A-2 A11 A-2 B10 A-2 A10 A-2 C10 Saffron Retriever

B-3 H8 B-3 E8/4 A-2 C10 A-2 A10 A-2 A11 A-2 B10 Retriever Saffron

B-2 A8 B-2 A7 B-4 F3/8 B-4 H3/4 B-4 F3/9 B-4 C3/1 A-8 D8/1 A-8 F10/8

B-2 A7 B-2 A8 B-4 F3/9 B-4 H3/4 B-4 C3/1 B-4 F3/8 A-8 F10/8 A-8 D8/1

Rep 2 

(block 2)

Rep 1 

(block 1)
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Appendix 5. 3 HIF founders and NILs genotypes for chromosomes 1H, 3H, 4H, 5H, 

6H and 7H. 

Only informative markers 

across the 14 HIF and their 

founder lines are presented 

(polymorphic markers of the 

Bx384 genotyping platform 

across the whole set of HIF). 

Markers have been ordered 

from left to right based on the 

OPA1 consensus genetic 

distance. Genotype of NILs 

multiplied in hege row in 2011 

and 2012 are presented as a 

consensus haplotype 

(homozygous haplotypes within 

HIF could also be present at 

these same multiplication 

stages). Heterozygous markers 

are highlighted in red. The 

genetic factor number (bin 

numbers) correspond to results 

presented in (Table 2.9) 

 

Table 2.9 and were associated 

with the Bx384 SNP based on 

their colocation with the OPA1 

SNP used for mapping in 

Chapter 2. 

 

SNP marker

A
2

1
3

5
4

A
1

0
4

1
9

A
2

1
2

2
6

A
1

0
7

6
0

A
2

0
6

0
9

A
2

1
4

3
1

A
2

1
3

9
2

A
1

0
6

4
4

A
1

0
7

8
2

A
1

0
5

9
0

distance (cM)

0
.8

3
.8

8
.8

3
4

.8

5
1

.9

6
4

.9

1
1

4
.8
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.1

1
3

1
.9

1
3

8
.3

Genetic factor 

bin 1 1 1

Saffron C A A G G A G A A G

Retriever G G G A G A A/GG A G

B78 G G G G A A G G G G

B88 G G A G G A G A/GA G

06-03 G G G A G A G A G G

A-1 Founder line (SafxRet) 1 G G G A G A/T- A/GA G

2011 hege rows 6 C A A G G A G A A G

2012 hege rows 13(10) C A A G G A G A A G

A-2 Founder line  (B78xRetxB88) 1 G G A A G A/TG A A G

2011 hege rows 9 G G A/GA G A A/GA A G

2012 hege rows 5 G G A/GA G A A/GA A G

tested in 2013 1 B1041A10 G G A/GA G A A/GA A G

tested in 2013 1 B1041C10 G G G A G A A/GA A G

tested in 2013 1 B1041A11 G G A/GA G A A/GA A G

tested in 2013 1 B1041B10 G G A A G A G A A G

A-3 Founder line  (B78xRetxB88) 1 G G A/GA A A/T- A A G

2011 hege rows 7 G G A/GA A A - A/GA G

2012 hege rows 10(6) G G A/GA A A - A/GA G

tested in 2013 1 B1041A12 G G G A A A - A A G

tested in 2013 1 B1041H12 G G A A A A - A A G

tested in 2013 1 B1041F12 G G G A A A - A A G

A-4 Founder line (SafxRet) 1 G A/GA/GA/GG A/T- G A G

2011 hege rows 7 G G A/GG G A G A A/GG

2012 hege rows 7 G G A/GG G A G A A/GG

A-5 Founder line  (B78xRetxB88) 1 G G G G A A/TA/GA A G

2011 hege rows 7 G G G G A/GA - A A G

2012 hege rows 4 G G G G A/GA - A A G

tested in 2013 1 B1042E3 G G G G A/GA - A A G

tested in 2013 1 B1042F3 G G G G G A - A A G

tested in 2013 1 B1042H3 G G G G A A - A A G

A-6 Founder line (SafxRet) 1 C A A G G A/T- G A G

2011 hege rows 5 G G A G G A G A A G

2012 hege rows 4(2) G G A G G A G A A G

A-7 Founder line (SafxRet) 1 G G G A G A - G A G

2011 hege rows 7 G A A G G A G G A G

2011 hege rows 4 G A A G G A G G A G

A-8 Founder line (SafxRet) 1 C A A G G A - A A G

2011 hege rows 5 C A A G G - G G A G

2012 hege rows 5(5) C A A G G - G G A G

tested in 2013 1 B1042D8/1 C A A G G - G G A G

tested in 2013 1 B1042F10/8 C A A G G - G G A G

A-9 Founder line (06-03xB88) 1 G G A A G A G A G G

2011 hege rows 6 G G A/GA G A G A A/GG

2012 hege rows 6 G G A/GA G A G A A/GG

B-1 Founder line (SafxB78XRet) 1 G - G G A - G G G G

2012 hege row 4 G G G G A A G G G G

B-2 Founder line (SafxRet) 1 C - A G G - A/GG A G

2012 hege row 6(4) C A A G G A - G A G

tested in 2013 1 4190A7 C A A G G A - G A G

tested in 2013 1 4190A8 C A A G G A - G A G

B-3 Founder line (SafxB78XRet) 1 C - A A/GA - G G A G

2012 hege row 6(14) C A A A/GA A - G A G

tested in 2013 1 4045H8 C A A A/GA A - G A G

tested in 2013 1 4045E8/4 C A A A A - G G A G

B-4 Founder line (Saf xRet) 1 C - A G A - G G A G

2012 hege row 8(8) C A A G A - G G A G

tested in 2013 1 4187C3/1 C A A G A - G G A G

tested in 2013 1 4187F3/9 C A A G A - G G A G

tested in 2013 1 4187F3/8 C A A G A - G G A G

tested in 2013 1 4187H3/4 C A A G A - G G A G

B-5 Founder line (SafxRet) 1 C - A A G - A/GG A G

2012 hege row 5 C A A A G A - G A G

NIL 

family

Chromosome 1H
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Appendix 5. 3 cont : Chromosome 3H 
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Genetic factor 

bin 7 7 8 8 8 8 8 8 8 8 8 8 8 9 9 1
0

1
0

1
0

1
9

1
0

1
0

1
1

1
1

Saffron A A G G A A A G A G A C A G G G T A G G G G G G G A G C A T A G G A

Retriever A G A A C G C A G A C A G A A A A A G G G G G A A G A A G A G G A C

B78 A A G G A A A G A A C A G G A G A G C A A A A A A G A A G A G G A C

B88 A A G G A A A G A G A A G A A G A G G G A A A G G A A C A T A - A C

06-03 A A G G A A A G A A C A G G A G A G C A A A A A A G A A G A G G G A

A-1 Founder line (SafxRet) 1 A A G G A A A G A G A C A G G G T A G G G G G A A G A C A T A G A/GA/C

2011 hege rows 6 A A G G A A A G A G A A G A A G A G G G A A A G G A A C A T A C A C

2012 hege rows 13(10) A A G G A A A G A G A A G A A G A G G G A A A G G A A C A T A C A C

A-2 Founder line  (B78xRetxB88) 1 A A G G A A A - A G A A G A A - A G C A A A A A A G A A G A G G A C

2011 hege rows 9 A A G G A A A G A A/GC A G A A G A G C A A A A A A G A A G A G G A C

2012 hege rows 5 A A G G A A A G A A/GC A G A A G A G C A A A A A A G A A G A G G A C

tested in 2013 1 B1041A10 A A G G A A A G A A C A G A A G A G C A A A A A A G A A G A G G A C

tested in 2013 1 B1041C10 A A G G A A A G A A C A G A A G A G C A A A A A A G A A G A G G A C

tested in 2013 1 B1041A11 A A G G A A A G A A C A G A A G A G C A A A A A A G A A G A G G A C

tested in 2013 1 B1041B10 A A G G A A A G A G A A G A A G A G C A A A A A A G A A G A G G A C

A-3 Founder line  (B78xRetxB88) 1 A A G A C G C - G A C A G A A - A A/GG G A/GA/GA/GA/GG A A C A T A C A C

2011 hege rows 7 A A G A C G C A G A C A G A A A A A G G A/GA/GA/GA/GG A A C A T A C A C

2012 hege rows 10(6) A A G A C G C A G A C A G A A A A A G G A/GA/GA/GA/GG A A C A T A C A C

tested in 2013 1 B1041A12 A A G A C G C A G A C A G A A A A A G G G G G G G A A C A T A C A C

tested in 2013 1 B1041H12 A A G A C G C A G A C A G A A A A A G G G G G A G A A C A T A C A C

tested in 2013 1 B1041F12 A A G A C G C A G A C A G A A A A A G G G G G G G A A C A T A C A C

A-4 Founder line (SafxRet) 1 A A G G C G C A/GG A C A G A G G T A G G G G G G G A G C A T A G A C

2011 hege rows 7 A A G G A A A G A A C A G G A G A G C A A A A A A G A A G A G G A C

2012 hege rows 7 A A G G A A A G A A C A G G A G A G C A A A A A A G A A G A G G A C

A-5 Founder line  (B78xRetxB88) 1 A A G G A A A - A G A A G G A - A A C A A A A G G A A C A T A C A C

2011 hege rows 7 A A G G A A A G A A/GA/CA G G A A A A C A A A A G G A A C A T A C A C

2012 hege rows 4 A A G G A A A G A A/GA/CA G G A A A A C A A A A G G A A C A T A C A C

tested in 2013 1 B1042E3 A A G G A A A G A A C A G G A A A A C A A A A G G A A C A T A C A C

tested in 2013 1 B1042F3 A A G G A A A G A G A A G G A A A A C A A A A G G A A C A T A C A C

tested in 2013 1 B1042H3 A A G G A A A G A G A A G G A A A A C A A A A G G A A C A T A C A C

A-6 Founder line (SafxRet) 1 A G A A C G C A/GG A C A G A A - A A G G G G G G G A G A G A G G A C

2011 hege rows 5 A A G G A A A G A G A A G A A G A G C A A A A A A G A A G A G C/GA C

2012 hege rows 4(2) A A G G A A A G A G A A G A A G A G C A A A A A A G A A G A G C/GA C

A-7 Founder line (SafxRet) 1 A A G G A A A G A G C A G A A A A A G G G G G A/GA/GA/GA A/CG A G G A C

2011 hege rows 7 A A G G A A A G A G A A G A A G A G G G A A A G G A A C A T A C A C

2011 hege rows 4 A A G G A A A G A G A A G A A G A G G G A A A G G A A C A T A C A C

A-8 Founder line (SafxRet) 1 A G A A A/CA/GA/CA/GA/GA/GA/CA/CA/GA/GA/GG T A G G G G G G A G A C G A G G A C

2011 hege rows 5 A A G G A A A G A G A C A G G G A G G G A A A G G A A A/CA/GA/TA/GG A C

2012 hege rows 5(5) A A G G A A A G A G A C A G G G A G G G A A A G G A A A/CA/GA/TA/GG A C

tested in 2013 1 B1042D8/1 A A G G A A A G A G A C A G G G A G G G A A A G G A A A G A G G A C

tested in 2013 1 B1042F10/8 A A G G A A A G A G A C A G G G A G G G A A A G G A A C A T A G A C

A-9 Founder line (06-03xB88) 1 A A G G A A A - A G A A G A A - A G G G A A A A A G A A G A G G A C

2011 hege rows 6 A A G G A A A G A G A A G A A G A G C/AA/GA A A A/GA/GG A A/CA/GA/TA/GC/GA C

2012 hege rows 6 A A G G A A A G A G A A G A A G A G G G A A A A/GA G A A G A G G A C

B-1 Founder line (SafxB78XRet) 1 - A G G A A A G A A C A G G - G A G C A A A A G G A A C A T A G G A

2012 hege row 4 A A G G A A A G A A C A G G A G A G C A A A A G G A A C A T A G G A

B-2 Founder line (SafxRet) 1 A A/GA/GA C G C A G A C A G A A A A A G G G G G A A G G A G A G G A C

2012 hege row 6(4) A A G A C G C A G A C A G A A N A A G G G G G A A G G A G A G G A C

tested in 2013 1 4190A7 A A G A C G C - G A C A G A A N A A G G G G G A A G G A G A G G A C

tested in 2013 1 4190A8 A A G A C G C - G A C A G A A A A A G G G G G A A G G A G A G G A C

B-3 Founder line (SafxB78XRet) 1 A A G G A A A G A A C A G G A A A A G G G G G A A G G A G A G G A C

2012 hege row 6(14) A A G G A A A - A A C A G G A A A A G G G G G A A G G A G A G G A C

tested in 2013 1 4045H8 A A G G A A A - A A C A G G A A A A G G G G G A A G G A G A G G A C

tested in 2013 1 4045E8/4 A A G G A A A G A A C A G G A A A A G G G G G A A G G A G A G G A C

B-4 Founder line (Saf xRet) 1 A G G A A G C A G A C A G G A G A G G G G G G G G A G A G A G C A A

2012 hege row 8(8) A G G A A G C A G A C A G G A G A G G G G G G G G A G A G A G C A A

tested in 2013 1 4187C3/1 A G G A A G C A G A C A G G A G A G G G G G G G G A G A G A G C A A

tested in 2013 1 4187F3/9 A G G A A G C A G A C A G G A G A G G G G G G G G A G A G A G C A A

tested in 2013 1 4187F3/8 A G G A A G C A G A C A G G A G A G G G G G G G G A G A G A G C A A

tested in 2013 1 4187H3/4 A G G A A G C A G A C A G G A G A G G G G G G G G A G A G A G C A A

B-5 Founder line (SafxRet) 1 A A/GG A A/CG C A G A C A G A A A A A G G G G G G G G G A G A G C/GA C

2012 hege row 5 A A/GG A A/CG C - G A C A G A A N A A G G G G G G G G G A G A G C/GA C

NIL 

family

Chromosome 3H
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Appendix 5. 3 cont : Chromosome 4H 
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Genetic factor 

bin 1
2

1
2

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
4

Saffron G A G C G A G A A A C A G A G G A G A A A C C G G G G

Retriever G G A G C G A G G G C A A A A A A G G G C C G A G A G

B78 G A G G G G A G G G C A A A G G C A G A C C C A G G G

B88 G A G G G A A A A A A G G G G G A G G A - C C G G A G

06-03 A A G G G G A G G G C A A A A A A G G G A G C G G G G

A-1 Founder line (SafxRet) 1 G A G C C G A G G G C A A A A A A G G G C C G A G A G

2011 hege rows 6 G A G G G G A A A A A G G G G G A G G A A C C G G A G

2012 hege rows 13(10) G A G G G G A A A A A G G G G G A G G A A C C G G A G

A-2 Founder line  (B78xRetxB88) 1 G A G G G A A G G G C A A A G G C A G A C C C A G A G

2011 hege rows 9 G A G G G A/GA G G G C A A A G G C A G A C C C A G A/GG

2012 hege rows 5 G A G G G A/GA G G G C A A A G G C A G A C C C A G A G

tested in 2013 1 B1041A10 G A G G G A A G G G C A A A G G C A G A C C C A G A G

tested in 2013 1 B1041C10 G A G G G G A G G G C A A A G G C A G A C C C A G A G

tested in 2013 1 B1041A11 G A G G G G A G G G C A A A G G C A G A C C C A G A G

tested in 2013 1 B1041B10 G A G G G A A G G G C A A A G G C A G A C C C A G A G

A-3 Founder line  (B78xRetxB88) 1 G A G G G A A A A A A G G G G G A G G A A C C G G A G

2011 hege rows 7 G A G G G A/GA G A/GA/GA/CA/GA/GG/AG G A/CA/GG A A/CC C A/GG A G

2012 hege rows 10(6) G A G G G A/GA G A/GA/GA/CA/GA/GG/AG G A/CA/GG A A/CC C A/GG A G

tested in 2013 1 B1041A12 G A G G G A/GA G G G C A A A G G C A G A C C C A G A G

tested in 2013 1 B1041H12 G A G G G A/GA G A A C A A A G G C A G A C C C A/GG A G

tested in 2013 1 B1041F12 G A G G G A/GA G G G C A A A G G C A G A C C C G G A G

A-4 Founder line (SafxRet) 1 G A/GA/GC G A A G G G C A A A A A A G G G C C G A G G G

2011 hege rows 7 G A G G G A/GA A A A C A A A A A A G G G A C C G G A G

2012 hege rows 7 G A G G G A/GA A A A C A A A A A A G G G A C C G G A G

A-5 Founder line  (B78xRetxB88) 1 G A G G G A A A A A A G G G G G A G G A A C C G G A G

2011 hege rows 7 G A G G G A/GA A/GA/GA/GA/CA/GA/GA/GG G A/CA/GG A A/C#C C G G A G

2012 hege rows 4 G A G G G A/GA A/GA/GA/GA/CA/GA/GA/GG G A/CA/GG A A/C#C C G G A G

tested in 2013 1 B1042E3 G A G G G G A G G G C A A A G G C A G A C C C G G A G

tested in 2013 1 B1042F3 G A G G G G A A/GA/G- A/CA/GA/GA/GG G C A G A - C C G G A G

tested in 2013 1 B1042H3 G A G G G A A A A A A G G G G G A G G A C C C G G A G

A-6 Founder line (SafxRet) 1 G A G G C G A G G G C A A A A A A G G G C C G A G A G

2011 hege rows 5 G A G G G G A A/GA/GA/GA/CA/GA A G G A G A/GA A C C G G A G

2012 hege rows 4(2) G A G G G G A A/GA/GA/GA/CA/GA A G G A G A/GA A C C G G A G

A-7 Founder line (SafxRet) 1 G G A G G A G A A A C A G A G G A G A A A C C G G G G

2011 hege rows 7 G A G G G A/GA A A A A G G A/GG G A G A/GA A C C G A A G

2011 hege rows 4 G A G G G A/GA A A A A G G A/GG G A G A/GA A C C G A A G

A-8 Founder line (SafxRet) 1 G G A G C G A/GA/GA/GA/GC A A/GA A/GA/GA G A/GA/GA/CC C/GA/GG A G

2011 hege rows 5 G A G G G G G G G G C A A A G G A G A A A C C G G A G

2012 hege rows 5(5) G A G G G G G G G G C A A A G G A G A A A C C G G A G

tested in 2013 1 B1042D8/1 G A G G G G G G G G C A A A G G A G A A A C C G G A G

tested in 2013 1 B1042F10/8 G A G G G G G G G G C A A A G G A G A A A C C G G A G

A-9 Founder line (06-03xB88) 1 G A G G G A/GA A/GA/GA/GA/CA/GA/GA/GA/GA/GA G G A/GA G C G G G G

2011 hege rows 6 G A G G G A/GA A/GA/GA/GA/CA/GA/GA/GA/GA/GA G G A/GA C/GC G G A/GG

2012 hege rows 6 G A G G G A/GA A/GA/GA/GA/CA/GA/GA/GA/GA/GA G G A/GA C/GC G G A/GG

B-1 Founder line (SafxB78XRet) 1 G A G G G G - - G G C A A A G G A G G G C C G A G A G

2012 hege row 4 G A G G G G A G G G C A A A G G A G G G C C G A G A G

B-2 Founder line (SafxRet) 1 G A/GA/GC/GC/GG A - G G C A A A A A A G G G C C G A G A G

2012 hege row 6(4) G A/GA/GC/GC/GG A G G G C A A A A A A G G G C C G A G A G

tested in 2013 1 4190A7 G A G C G G A G G G C A A A A A A G G G C C G A G A G

tested in 2013 1 4190A8 G G A G C G A G G G C A A A A A A G G G C C G A G A G

B-3 Founder line (SafxB78XRet) 1 G G A G G G G - G G C A A A A A A G G G C C G A G G G

2012 hege row 6(14) G G A G G G G G G G C A A A A A A G G G C C G A G G G

tested in 2013 1 4045H8 G G A G G G G G G G C A A A A A A G G G C C G A G G G

tested in 2013 1 4045E8/4 G G A G G G G G G G C A A A A A A G G G C C G A G G G

B-4 Founder line (Saf xRet) 1 G A - G G G G - G G C A A A A A A G G G A G C G G G G

2012 hege row 8(8) G A A G G G G G G G C A A A A A A G G G A G C G G G G

tested in 2013 1 4187C3/1 G A A G G G G G G G C A A A A A A G G G A G C G G G G

tested in 2013 1 4187F3/9 G A A G G G G G G G C A A A A A A G G G A G C G G G G

tested in 2013 1 4187F3/8 G A A G G G G G G G C A A A A A A G G G A G C G G G G

tested in 2013 1 4187H3/4 G A A G G G G G G G C A A A A A A G G G A G C G G G G

B-5 Founder line (SafxRet) 1 A/GA G C G G A - A/GA/GC A A/GA A/GA/GA G A/GA/GA C/GC G G G G

2012 hege row 5 A/GA G C G G A A/GA/GA/GC A A/GA A/GA/GA G A/GA/GA C/GC G G G G
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Appendix 5. 3 cont : Chromosome 5H 
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Genetic factor 

bin 1
5

1
5

Saffron A G A G G G G G A G A C A G A A A A G A G A

Retriever A G A A G A G G A G A C A G A A A A A A G A

B78 A G A A A A G A G G T A G G G C G G A G A G

B88 A - - A A A G G A G A C A G A A A A G A G A

06-03 A G A A A A A A G G A A G G G C G A A A G A

A-1 Founder line (SafxRet) 1 A - - G G G G G A G A C A G A A A - G A G A

2011 hege rows 6 A A/GA/GA G/AG/AG G A G A - A G A A A A G A G A

2012 hege rows 13(10) A A/GG A G/AG/AG G A G A - A G A A A A G A G A

A-2 Founder line  (B78xRetxB88) 1 A - - A A A G G A G A/T- - G A A A - A G A G

2011 hege rows 9 A A/GA A A/GA G A/GA/GG A/G- G G A A A A/GG A G A

2012 hege rows 5 A A/GA A A/GA G A/GA/GG A/G- G G A A A A/GG A G A

tested in 2013 1 B1041A10 A A/GA A G A G A G G T - G G A A A A/GG A G A

tested in 2013 1 B1041C10 A A/GA A A A G A G G A - A G A A A A/GA G A G

tested in 2013 1 B1041A11 A A/GA A A A G A G G A - A G A A A G A G A G

tested in 2013 1 B1041B10 A G A A A A G G A G T - G G A A A G G A G A

A-3 Founder line  (B78xRetxB88) 1 A - - A A A G A/GA/GG A - A G A A A - A A G A

2011 hege rows 7 A G A A A A G A/GA/GG A - A G A A A A A A G A

2012 hege rows 10(6) A G A A A A G A G G A - A G A A A A A A G A

tested in 2013 1 B1041A12 A G A A A A G A G G A - A G A A A A A A G A

tested in 2013 1 B1041H12 A G A A A A G A G G A - A G A A A A A A G A

tested in 2013 1 B1041F12 A G A A A A G A G G A - A G A A A A A A G A

A-4 Founder line (SafxRet) 1 A - - A G A G G A G A C A G A A A - G A G A

2011 hege rows 7 A G A A A A G G A G A - G G A/GA/CA/GA G A G A

2012 hege rows 7 A G A A A A G G A G A - G G A/GA/CA/GA G A G A

A-5 Founder line  (B78xRetxB88) 1 A - - A A A G G A G A - A G A A A - G A G A

2011 hege rows 7 A G A A A A G G A G A - A G A A A A G A G A

2012 hege rows 4 A G A A A A G G A G A - A G A A A A G A G A

tested in 2013 1 B1042E3 A G A A A A G G A G A - A G A A A A G A G A

tested in 2013 1 B1042F3 A G A A A A G G A G A - A G A A A A G A G A

tested in 2013 1 B1042H3 A G A A A A G G A G A - A G A A A A G A G A

A-6 Founder line (SafxRet) 1 A - - G G G G G A G A C A G A A A - G A G A

2011 hege rows 5 A - G A G G G G A G A - - G A A A A G A G A

2012 hege rows 4(2) A - G A G G G G A G A - - G A A A A G A G A

A-7 Founder line (SafxRet) 1 A - - A/GG G G G A G A C A G A A A - G A G A

2011 hege rows 7 A G A A A A G G A G A - G G A A A A G A G A

2011 hege rows 4 A G A A A A G G A G A - G G A A A A G A G A

A-8 Founder line (SafxRet) 1 A - - G G G G G A G A C A G A A A - A A G A

2011 hege rows 5 A A/GG A G G G G A G A C A G A A A A G A G A

2012 hege rows 5(5) A - G A G G G G A G A C A G A A A A G A G A

tested in 2013 1 B1042D8/1 A - G A G G G G A G A C A G A A A A G A G A

tested in 2013 1 B1042F10/8 A - G A G G G G A G A C A G A A A A G A G A

A-9 Founder line (06-03xB88) 1 A - - A A A G G A G A - G G G C G - A A G A

2011 hege rows 6 A G A/GA A A A/GA/GA/GG A - G G A/GA/CA/GA A/GA G A

2012 hege rows 6 A G A/GA A A A/GA/GA/GG A - G G G C G A A A G A

B-1 Founder line (SafxB78XRet) 1 A - A G G G G G A G T - G G A A A A A A G A

2012 hege row 4 A - A G G G G G A G T - G G A A A A A A G A

B-2 Founder line (SafxRet) 1 A - - A G A/GG G A G A - A G A A A A G A G A

2012 hege row 6(4) A - N A G A/GG G A G A - A G A A A A G A G A

tested in 2013 1 4190A7 A - N A G A G G A G A - A G A A A A G A G A

tested in 2013 1 4190A8 A - N A G G G G A G A - A G A A A A G A G A

B-3 Founder line (SafxB78XRet) 1 A - - A G G G G A G T - G G A A A A A A G A

2012 hege row 6(14) A - N A G G G G A G T A G G A A A A A A G A

tested in 2013 1 4045H8 A - N A G G G G A G T - G G A A A A A A G A

tested in 2013 1 4045E8/4 A - A G G G G A G T A G G A A A A A A G A

B-4 Founder line (Saf xRet) 1 A - A G G G G G A A/GA - A G A A A A A A G A

2012 hege row 8(8) A - A G G G G G A A/GA C A G A A A A A A G A

tested in 2013 1 4187C3/1 A - A G G G G G A A A C A G A A A A A A G A

tested in 2013 1 4187F3/9 A - A G G G G G A G A A G A A A A A A G A

tested in 2013 1 4187F3/8 A - A G G G G G A G A C A G A A A A A A G A

tested in 2013 1 4187H3/4 A - A G G G G G A A A C A G A A A A A A G A

B-5 Founder line (SafxRet) 1 A - A G G G G G A G A - A/GA/GA A A A G A G A

2012 hege row 5 A - A G G G G G A G A - A/GA/GA A A A G A G A
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Appendix 5. 3 cont: Cromosome 6H 
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1
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1
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1
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1
9

Saffron A A A A G C G G G A G T A A C A A G A A C G A C G A G A G A G A G G C G A A G

Retriever A A A T A G A A C A G T G C A A A G A A C A G G A A G A G G A G G A A G G G G

B78 A A A T A G A G G G C A G C A G G A G G G G A G A A G A G A G A A G A G G G G

B88 A C A A G C - - G A G T A A C A A G A A C G A C G A A G C A G - A/GA C C A G G

06-03 A A A A G C G G G G C A G C A G G A G G G G A G A A G A G A G A G G C G A A G

A-1 Founder line (SafxRet) 1 A A A A G C G G G A G T G C A A A G A A C A G G A C G A G G A G G A A G G G G

2011 hege rows 6 A C G T A G A G G G C A G C A G G A - A C G A G A - G A G A G A A G C C A G G

2012 hege rows 13(10) A C G T A G A G G G C A G C A G G A - A C G A G A - G A G A G A A G C C A G G

A-2 Founder line  (B78xRetxB88) 1 A C A A G C G G G A/GC/GA/TA/G- A/CA/GA/G- - G G G A G A C A G C A G G G A C C A G G

2011 hege rows 9 A C A A G C G G G A/GC/GA/TA/GA/CA/CA/GA/GA - G G G A G A C A/GA/GC/GA G G G A C C A G G

2012 hege rows 5 A C A A G C G G G A/GC/GA/TA/GA/CA/CG G A - G G G A G A C A/GA/GC/GA G G G A C C A G G

tested in 2013 1 B1041A10 A C A A G C G G G A G T A A C G G A - G G G A G A C G A G A G G G A C C A G G

tested in 2013 1 B1041C10 A C A A G C G G G G C A G C A G G A - G G G A G A C A G C A G G G A C C A G G

tested in 2013 1 B1041A11 A C A A G C G G G G C A G C A G G A - G G G A G A C A G C A G G G A C C A G G

tested in 2013 1 B1041B10 A C A A G C G G G G - A G C A G G A - G G G A G A C A G C A G G G A C C A G G

A-3 Founder line  (B78xRetxB88) 1 A - A T A G A - G G C A A/GA/CA/CA/GA/G- A A/GC/GG A C G C A G C A G - G A/GC G A A G

2011 hege rows 7 A A/CA T A G A G G G C A A/GA/CA/CA/GA/GA/GA A/GC/GG A C/GA/GC A/GA/GC/GA G A/GG A/GC C/GA A G

2012 hege rows 10(6) A A/CA T A G A G G G C A A/GA/CA/CA/GA/GA/GA A/GC/GG A C/GA/GC A/GA/GC/GA G A/GG A/GC C/GA A G

tested in 2013 1 B1041A12 A A A T A G A G G G C A A A C A A G A A C G A C G C A G C A G G G A C C A A G

tested in 2013 1 B1041H12 A A A T A G A G G G C A A A C A A G A A C G A C G C A G C A G G G A C C A A G

tested in 2013 1 B1041F12 A A A T A G A G G G C A A A C A A G A A C G A C G C A G C A G G G A C C A A G

A-4 Founder line (SafxRet) 1 A A A A/TA G A A C A G T G C A A A G A A C A G G A C G A G A G A/GG A/GA/CG A/GA G

2011 hege rows 7 A C A A G C G G G A/GC/GA/TA/GA/CA/CA/GA/GA/GA A/GC/GG A C/G- C A/GA/GC/GA G A/GG A/GC C/GA A/GG

2012 hege rows 7 A C A A G C G G G A/GC/GA/TA/GA/CA/CA/GA/GA/GA A/GC/GG A C/G- C A/GA/GC/GA G A/GG A/GC C/GA A/GG

A-5 Founder line  (B78xRetxB88) 1 A A A T G C G G G A G T A A C A A - A A C G A CG A C G A G A G A A G C G A A G

2011 hege rows 7 A A/CA A/TG C G G G A G T A A C A A G A A C G A C/GA/GC A/GA/GG A G A A G C G A A G

2012 hege rows 4 A A/CA A/TG C G G G A G T A A C A A G A A C G A C/GA/GC A/GA/GG A G A A G C G A A G

tested in 2013 1 B1042E3 A A A T G C G G G A G T A A C A A G A A C G A C/G- C A G G A G A A G C G A A G

tested in 2013 1 B1042F3 A C A A G C G G G A G T A A C A A G A A C G A G A C G A G A G A A G C G A A G

tested in 2013 1 B1042H3 A A A T G C G G G A G T A A C A A G A A C G A G A C G A G A G A A G C G A A G

A-6 Founder line (SafxRet) 1 A A A A A G A A C A G T G C A A A - A A C A G G A C G A G G A A G G C G A A G

2011 hege rows 5 A C A A G C G G G A G T A A C A A G A A C G A C G A/CA G C A G G G A C C A G G

2012 hege rows 4(2) A C A A G C G G G A G T A A C A A G A A C G A C G A/CA G C A G G G A C C A G G

A-7 Founder line (SafxRet) 1 A A A A G C G G G A G T G C A A A G A A C A G G A C G A G G A G G A A G G G G

2011 hege rows 7 A C A A G C G G G A/GC/GA/TG C A G G A - A C G A G A C A G C A G G G A C C A G G

2011 hege rows 4 A C A A G C G G G A/GC/GA/TG C A G G A - A C G A G A C A G C A G G G A C C A G G

A-8 Founder line (SafxRet) 1 A A A T A G A A C A G T G C A A A G A A C A G G A C G A G A G G G A A G G G G

2011 hege rows 5 A C G T A G A G G A G T A A C A A G A A C G A G A A/CG A/GC/GA G A A G A/CC A/GG G

2012 hege rows 5(5) A C G T A G A G G A G T A A C A A G A A C G A G A A/CG A G A G A A G C C A G G

tested in 2013 1 B1042D8/1 A C G T A G A G G A G T A A C A A G A A C G A G A A/CG A G A G A A G C C A G G

tested in 2013 1 B1042F10/8 A C G T A G A G G A G T A A C A A G A A C G A G A A/CG A G A G A A G C C A G G

A-9 Founder line (06-03xB88) 1 A A A A G C G G G G C A G A C G G - A A/GC/GG A C G C A G C A G G G A C C A G G

2011 hege rows 6 A A/CA A G C G G G G C A G A/CA/CA/GA/GA/GA A/GC/GG A C/GA/GC A G C A G G G A C C A G G

2012 hege rows 6 A A/CA A G C G G G G C A G A/CA/CA/GA/GA/GA A/GC/GG A C G C A G C A G G G A C C A G G

B-1 Founder line (SafxB78XRet) 1 A A A T A G A/GA C - G T A/G- A/CA A G - A C A/GA/GC G C G A G A G A/G- G A G G G G

2012 hege row 4 A A A T A G A A C A G T A A C A A G A A C A/GA/GC G C G A G A G A G G A G G G G

B-2 Founder line (SafxRet) 1 A A A T A G A A C - G T G - A A A G - A C A G G A C G A G G A G - A C G A A G

2012 hege row 6(4) A A A T A G A A C A G T G C A A A G A A C A G G A C G A G G A G G A C G A A G

tested in 2013 1 4190A7 A A A T A G A A C A G T G C A A A G A A C A G G A C G A G G A G G A C G A A G

tested in 2013 1 4190A8 A A A T A G A A C A G T G C A A A G A A C A G G A C G A G G A G G A C G A A G

B-3 Founder line (SafxB78XRet) 1 A A A A/TA/GC/GA/GG G - C A G - A G G A - G G G A G A C G A G A G A - G C G A A G

2012 hege row 6(14) A A A A/TA/GC/GA/GG G G C A G C A G G A N G G G A G A A/CG A G A G A A G C G A A G

tested in 2013 1 4045H8 A A A T A G A G G G C A G C A G G A N G G G A G A C G A G A G A A G C G A A G

tested in 2013 1 4045E8/4 A A A A G C G G G G C A G A G G A G G G G A G A A/CG A G A G A A G C G A A G

B-4 Founder line (Saf xRet) 1 A A A A G C G G G - G T A - C A A G - A C G A C G C A/GG C A G G - A C C G G A

2012 hege row 8(8) A A A A G G G G A G T A A C A A G A A C G A C G A/CA/GG C A G G G A C C G G A

tested in 2013 1 4187C3/1 A A A A G G G G A G T A A C A A G A A C G A C G A/CG G C A G G G A C C G G A

tested in 2013 1 4187F3/9 A A A A G G G G A G T A A C A A G A A C G A C G A/CA G C A G G G A C C G G A

tested in 2013 1 4187F3/8 A A A A G G G G A G T A A C A A G A A C G A C G A/CG G C A G G G A C C G G A

tested in 2013 1 4187H3/4 A A A A G G G G A G T A A C A A G A A C G A C G A/CA G C A G G G A C C G G A

B-5 Founder line (SafxRet) 1 A A A A G C G G G - G T A - C A A G - A C G A C G C G A G A G A - G C G A A A/G
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Appendix 5. 3 cont: Chromosome 7H 
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Saffron A A G A G A A A A G G G C A G G G C G A A C T C A G G A A A

Retriever G T A A G G G A A G G G C G A A A C G A A C T C A G A T G A

B78 A A G A C G G G G A G G C A G G A C A G G A A G G G G A A A

B88 A A G A G A A A A G G G A - G G G G A G - A T C A G G A A A

06-03 A A G A C G G A G G A A C A A A A C A G G A T C G G G A A A

A-1 Founder line (SafxRet) 1 A A G A G A A A A G G G C A G G G C G A A C T C A G A A - A

2011 hege rows 6 A A G A G A A A A G G G A/CA/GG G A/GG/CG/AG/AG/AG/AT C A G G A A A

2012 hege rows 13(10) A A G A G A A A A G G G A/CA/GG G A/GG/CG/AG/AG/AG/AT C A G G A A A

A-2 Founder line  (B78xRetxB88) 1 A A G G G A A A A G G G A G G G G G - G G A T C A G G A - A

2011 hege rows 9 A A G G/AG G/AG/AA A G G G A G G G G G - G G A T C A G G A A A

2012 hege rows 5 A A G G/AG G/AG/AA A G G G A G G G G G - G G A T C A G G A A A

tested in 2013 1 B1041A10 A A G G G A A A A G G G A G G G G G - G G A T C A G G A A A

tested in 2013 1 B1041C10 A A G G G A A A A G G G A G G G G G - G G A T C A G G A A A

tested in 2013 1 B1041A11 A A G G G A A A A G G G A G G G G G - G G A T C A G G A A A

tested in 2013 1 B1041B10 A A G G G A A A A G G G A G G G G G - G G A T C A G G A A A

A-3 Founder line  (B78xRetxB88) 1 A/G- A/GA G A A G G A G G C A G G A C A G - A A G A G A T G A

2011 hege rows 7 A/GA/TA/GA G A/GA/GA/GA/GA/GG G A/CA/GG G A/GC/GA G G A A/TC/GA G G A A A

2012 hege rows 10(6) A/GA/TA/GA G A/GA/GA/GA/GA/GG G A/CA/GG G A/GC/GA G G A A/TC/GA G G A A A

tested in 2013 1 B1041A12 G T A A G G G G G A G G C A G G A C/GA G G A A/T- A G G A A A

tested in 2013 1 B1041H12 G T A A G G G G G A G G A G G G A C A G G A A G A G G A A A

tested in 2013 1 B1041F12 G T A A G G G G G A G G C A G G A C/GA G G A T C A G G A A A

A-4 Founder line (SafxRet) 1 G T A A G A/GA/GA A G G G C A G G G C G A A C T C A G G A - A

2011 hege rows 7 A A G A G A A A G G A/CA/CC A A A A C - G G A T C G G G A A A

2012 hege rows 7 A A G A G A A A G G A/CA/CC A A A A C - G G A T C G G G A A A

A-5 Founder line  (B78xRetxB88) 1 G T A A C G G A A G G G - A/GG G A/GC/G- G G A A/TC/GA G G A - A

2011 hege rows 7 G T A A C G G A A G G G A/CA/GG G A/GC/G- G G A A/TC/GA/GG G A A A

2012 hege rows 4 G T A A C G G A A G G G A/CA/GG G A/GC/G- G G A A/TC/GA/GG G A A A

tested in 2013 1 B1042E3 G T A A C G G A A G G G A A G G A C - G G A A G A/GG G A A A

tested in 2013 1 B1042F3 G T A A C G G A A G G G A G G G G G - G G A T C A G G A A A

tested in 2013 1 B1042H3 G T A A C G G A A G G G A G G G G G - G G A A/T- A/GG G A A A

A-6 Founder line (SafxRet) 1 A A G A G A A A A G G G C G A A A C G A A C T C A G A T G A

2011 hege rows 5 A A G A G A A A A G G G A G G G G G - G G A T C A A G A A A

2012 hege rows 4(2) A A G A G A A A A G G G A G G G G G - G G A T C A A G A A A

A-7 Founder line (SafxRet) 1 A A G A G A A A A G G G C A A/GA/GA/GC G A A C T C A G A T G A

2011 hege rows 7 A A G G G A A A A G G G A G G G A C G A A C T C A G G A A A

2011 hege rows 4 A A G G G A A A A G G G A G G G A C G A A C T C A G G A A A

A-8 Founder line (SafxRet) 1 A A G A G A A A A G G G C A G G G C G A A C T C A G G A A A

2011 hege rows 5 A A - A G A A A A G G G A/CA/GG G A C G A A C A C/GA A/GG A A A

2012 hege rows 5(5) A A - A G A A A A G G G C A G G A C G A A C A C/GA A/GG A A A

tested in 2013 1 B1042D8/1 A A - A G A A A A G G G C A G G A C G A A C A G A A G A A A

tested in 2013 1 B1042F10/8 A A - A G A A A A G G G C A G G A C G A A C A C A G G A A A

A-9 Founder line (06-03xB88) 1 A A G A C G G A G G A A A G G G - - A/GG G A T C G G G A - A

2011 hege rows 6 A A G A C/GA/GA/GA A/GG A/GA/GA G G A/GA/GC/GA/GG G A T C A/GG G A A A

2012 hege rows 6 A A G A C/GA/GA/GA A/GG A/GA/GA G G A/GA/GC/GA/GG G A T C A/GG G A A A

B-1 Founder line (SafxB78XRet) 1 G - A A - G G G G A G G C G G G A - - G G A T C A G G A - A

2012 hege row 4 G T A A C G G G G A G G C G A G A C A G G A T C A/GG G A - A

B-2 Founder line (SafxRet) 1 G - A A - A A A A G G G C G A A A - - A A C T C A G A A - A

2012 hege row 6(4) G T A A G A A A A G G G C G A A A C G A A C T C A G A A N A

tested in 2013 1 4190A7 G T A A G A A A A G G G C G A A A C G A A C T C A G A A N A

tested in 2013 1 4190A8 G T A A G A A A A G G G C G A A A C G A A C T C A G A A N A

B-3 Founder line (SafxB78XRet) 1 G - A A - G G A/GA G G G C A/GA/GA/GA/G- - A A C T C G G A T G A

2012 hege row 6(14) G T A A G G G A/GA G G G C A/GA/GA/GA/GC G A A C T C G G A T G A

tested in 2013 1 4045H8 G T A A G G G G A G G G C G A A A C G A A C T C G G A T G A

tested in 2013 1 4045E8/4 G T - A G G G A A G G G C G A A A C G A A C T C G G A T G A

B-4 Founder line (Saf xRet) 1 A - G A - A A A A G G G C A G G G - - A A C T C G G G A - A

2012 hege row 8(8) A A - A G A A A A G G G C A G G G C G A A C T C G G G A A A

tested in 2013 1 4187C3/1 A A - A G A A A A G G G C A G G G C G A A C T C G G G A A A

tested in 2013 1 4187F3/9 A A - A G A A A A G G G C A G G G C G A A C T C G G G A A A

tested in 2013 1 4187F3/8 A A - A G A A A A G G G C A G G G C G A A C T C G G G A A A

tested in 2013 1 4187H3/4 A A - A G A A A A G G G C A G G G C G A A C T C G G G A A A

B-5 Founder line (SafxRet) 1 A - - A - G G A A G G G A G A/GA/GA/GA/G- A A C T C A G G T G A

2012 hege row 5 A T N A G G G A A G G G A G A/GA/GA/GC/GG A A C T C A G G T G A

NIL 

family

Chromosome 7H 
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Appendix 5. 4 Preliminary work on Ppd-H1 sequence polymorphisms in winter 

barley. 

Sequencing of barley Ppd-H1 

For Ppd-H1, the primer pair (Forward: PP04 CCGTTTTCATTCTTTGCAAGGT and 

reverse: PP05 AGGTTATCTCTCCACGGTCG) were developed and optimised to 

sequence a segment of 884 base pairs corresponding to the 3’UTR of the gene sequence. 

This segment overlaps the fragment amplified by primers HvF14 and HvR8 in Turner et 

al., (2005) in which specific SNP have been identified. The sequencing of Ppd-H1 was 

carried out by at the James Hutton Institute  

 

Ppd-H1 haplotypes in winter barley 

 

The variation of flowering time in temperate cereals is partly controlled by genes 

involved in photoperiod response (Cockram et al., 2007). In wheat, a deletion 2kb 

deletion on the in the Ppd gene sequence of D genome was associated with insensitivity 

to photoperiod (Beales et al., 2007). In barley the Ppd-H1 gene mapped on 2H (Laurie, 

1997) is coding for a protein member of the PPR family (Turner et al., 2005) has been 

characterised with different haplotypes that could be grouped to differentiate between 

the spring and winter types (Stracke et al., 2009; Turner et al., 2005). Turner et al., 

(2005) identified a SNP marker (SNP22) as causal mutation inducing a change in the 

coding sequence from Glycine to Tryptophan in the CCT domain of 8 exons gene 

structure. In the gene structure of 7 exons, the SNP22, monomorphic in winter barley is 

located in the 3’UTR region which would indicate that it is not translated but might 

influence the post transcriptional gene expression.  
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Figure Appendix 5.4.  SNP based haplotypes found in winter barley in the 3'UTR region of the Ppd-H1 gene (MLOC 81134). 

The SNP are identidied from the 907 bp long contig made of the sequences alignment of the 3’UTR of Ppd-H1 in a panel of winter barley varieties and NILs. 

The SNP position on the ensembl Hordeum vulgare reference sequence information is indicated as base pair number. The SNP markers (sequence variants) 

present in the Ensembl database are indicated as well as the reference to the SNP from Turner et al., (2005). Alleles of the SNP presented correspond to the 

forward stand. 
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An initial attempt to investigate the genetic diversity of Ppd-H1 in winter barley was 

done by sequencing the 3’ UTR sequence of the gene in nine two-row barley varieties. 

The sequence alignment enabled to retrieve 8 SNP identified by Turner et al., (2005) 

while additional ensemblplants variants were also identified (Figure Appendix 5. 4) 
4
.. 

The spring and winter haplotypes could easily be distinguished in the set of sequenced 

varieties by 3 SNP (19, 22, 23). In the winter varieties, 4 haplotypes were found and 

both Saffron and Carat showed atypical haplotypes. The winter barley Saffron and 

Retriever, parents of the DH population used for QTL mapping in Chapter 2, were 

monomorphic for the SNP 22 associated with the spring/winter alleles but they differed 

for 6 other the SNP 17bis, 18, 18bis, 20, 20.2 and 21.  

Based on the haplotype signature on marker traits association in GWAS (Chapter 

4,Figure 4.2 a) an independent control of heading date and TGW for the QTL cluster 

was suggested at that locus on 2HS. It could underpin the TGW and tillering effects 

found in Chapter 2. Because only subset of SNP belonging to the Ppd-H1 gene 

sequence were present on the 9K Illumina chip, any additional polymorphic SNP 

identified from the sequencing have not been tested for the GWAS scans of Chapter 3. 

They may correspond to the haplotypes observed in (Figure 4.2a) which could reinstate 

Ppd-H1 as a putative candidate gene for the all traits at that QTL cluster. It also needs to 

be pointed out that the gene was only partially sequenced and the haplotypes differences 

observed suggest that additional polymorphisms in the rest of the sequence. 

Further work 

The significant differences in heading date found in the NIL experiment (Chapter 5) and 

HIF A-2 and B-4 (Table 5.1 and Table 5.4) reinforced the presence of a genetic control 

of heading date in winter are associated with polymorphisms on 2H short arm. Indeed, 

the effects of A20394, a very close SNP to the Ppd-H1 gene, suggest that the 

photoperiod controlling gene is a strong candidate underpinning the trait variation in 

those NIL pairs. In addition, the locus was also significant for the variation in TGW in 

HIF B-4, although no significant effects were found in A-2. It would be interesting to 

analyse and compare the Ppd-H1 SNP haplotypes of the NILs with the set of winter 

barley varieties, especially Saffron and Retriever, in order to help to discriminate the 

genetic controls of photoperiod and TGW variation at that locus. The analysis can be 

extended to the whole diversity of haplotypes found in the GWAS panels at that 2HS 

locus.  

                                                 
4
 The sequence alignments suggest that SNP22 identified by Turner et al., (2005) is not included in the 

ensemblplants database despite its alleles were significantly associated with heading.  
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List of supplementary data 

The supplementary documents are available on the CD attached to the thesis. 

Supplementary data 1: Barley SNP markers information. 

The document presents the SNP markers available on the Illumina iSelect 9K chip 

(Comadran et al., 2012) and associated information when available: the corresponding 

oligo pool assay 1 name (OPA1); the barley OPA identification code (bOPA1 SNP id), the SNP 

name on the Illumina BeadXpress platform (Bx384); the corresponding SNP number in 

the GWAS of Pasam et al. (2012); the barley OPA 2009 consensus chromosome and 

position (Close et al., 2009); The distances of the S×R map (2.2.3); The map position 

based on Linkage disequilibrium mapping used by Comadran et al. (2012); the BLAST 

results of the barley Unigene35 library on the sorghum, rice and brachipodium genomes 

downloadable from http://pgsb.helmholtz-muenchen.de/plant/barley/ (Mayer et al., 

2009). 

 

Supplementary data 2: Genome wide association mapping scans of NUE CROPS 

and AGOUEB two-row winter barley varieties. 

The document is composed of two spreadsheets presenting the genome wide association 

results for NUE CROPS and AGOUEB two-row winter barley panels. For each 

experiment, the tests of association was carried out using the Tassel-MLM_K model for 

4319 SNPs in NUE-CROPs and 3982 SNPs in AGOUEB (see 3.3.3). The SNPs are the 

presented with chromosome and position, the alleles and distribution across the panel. 

For each of the traits analysed the Tassel-MLM_K results have been summarised to 

SNP effect, the test of association F and probability result p, the –log10(p) reported in 

the Manhattan plots, the error degree of freedom and the marker R square (markerR2). 

http://pgsb.helmholtz-muenchen.de/plant/barley/

