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Abstract 

The microbial enzymes that depolymerize complex carbohydrates are of industrial significance 
particularly in the biofuels and biorefinery sectors. In the human large bowel glycan utilization plays a 
critical role in defining the composition of the human gut microbial community (microbiota) which, in 
turn, has a significant impact on health. A central feature of these processes is the specificity of the 
enzymes and the non-catalytic carbohydrate binding modules (CBMs) that contribute to glycan 
degradation. This thesis describes research designed to understand the mechanisms by which CBMs 
and glycoside hydrolases contribute to glycan degradation and how this impacts on the structure of 
the microbiota.  

The first results chapter describes the biochemical properties and structural basis for the specificity 
displayed by two CBMs appended to the glucanase of a rumen bacterium. The sequence of the two 
CBMs are >75% identical and display essentially identical ligand specificities. Isothermal titration 
calorimetry revealed that the two proteins bound to a range of β1,4-glucans (cellulose) and, β1,3-
β1,4-mixed linked glucans, displaying highest affinity for xyloglucan, a β1,4-glucan decorated with 
α1,6-xylose residues. The structures of the two CBMs reveal a β-sandwich fold. The ligand binding 
site comprises the β-sheet that forms the concave surface of the proteins. Binding to the backbone 
chains of β-glucans is mediated primarily by five aromatic residues that also make hydrophobic 
interactions with the xylose side chains of xyloglucan, conferring the distinctive specificity of the CBMs 
for the decorated polysaccharide. Significantly, and in contrast to other CBMs that recognize β-
glucans, CBM65A utilizes different polar residues to bind cellulose and mixed linked glucans. Thus, 
Gln106 is central to cellulose recognition, but is not required for binding to mixed linked glucans. This 
chapter reveals the mechanism by which β-glucan-specific CBMs can distinguish between linear and 
mixed linked glucans, and show how these CBMs can exploit an extensive hydrophobic platform to 
target the side chains of decorated β-glucans.  

In the second chapter the enzymes that contribute to the degradation of α-mannan, a prominent 
component of yeast cell walls, were studied. These enzymes were derived from Bacteroides 
thetaiotaomicron, a member of the microbiota. The data showed that the GH76 endo-α1,6-
mannanases presented on the bacterial surface displayed significantly less activity against small 
mannooligosaccharides compared to the equivalent periplasmic enzymes. All the endo-α1,6-
mannanases were only active on the linear backbone of a-mannan, the enzymes were unable to 
accommodate any side chains. These decorations were partially removed by a poorly expressed and 
slow acting surface GH92 α-mannosidase. In contrast, in the periplasm a highly active GH38 α-
mannosidase rapidly debranched the imported yeast mannan oligosaccharides. The 
manooligosaccharides generated by the GH76 enzymes were then depolymerized into mannose by a 
pair of periplasmic exo-acting α1,6-mannosidases that contained only two substrate binding subsites. 
The biochemical characterization of these enzymes led to the selfish hypothesis in which B. 
thetaiotaomicron maximises deconstruction of yeast mannan in the periplasm, ensuring that the 
mannose generated will not be available to other organisms in the microbiota. This hypothesis were 
verified by showing that B. thetaiotaomicron was unable to support the growth of other Bacteroides 
sp. (that were able to grow on mannose and, in the case of B. xylanisolvens, also on debranched α-
mannan) on yeast α-mannan.  

In the final results chapter the mechanism by which B. thetaiotaomicron utilized β1,6-glucan, a 
component of the yeast wall, was analysed. Transcriptomic analysis identified a Polysaccharide 
Utilization Locus (PUL) that was transcribed in response to β1,6-glucan. The PUL encoded two 
enzymes and two surface glycan binding proteins (SGBPs), one of which was a SusD homologue. 
The two SGBPs displayed tight specificity for β1,6-glucan over other β-glucans, displaying a 
preference for ligands that contained >3 glucose units. The surface GH30 enzyme, BT3312, was 
shown to be an endo-β1,6-glucanase, while the periplasmic GH3 exo-acting β-glucosidase displayed 
a preference for β1,6-linkages. B. thetaiotaomicron accumulated β1,6-glucobiose, which was due to 
the low activity of the GH3 enzyme against the disaccharide and poor expression of the β-
glucosidase. The crystal structure of BT3312 revealed a deep pocket that mirrored the U-shaped 
typology of β1,6-glucan, revealing the mechanism of substrate specificity. Finally the catalytic amino 
acids of both the GH30 and GH76 enzymes were identified by site-directed mutagenesis.  
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Chapter 1: Introduction  
 

Carbohydrates, consisting of carbon, oxygen and hydrogen, are extremely diverse 

molecules, the existence of which is absolutely vital to life and a number of biological 

processes. Carbohydrates possess hydroxyl groups and an aldehyde or ketone group. 

Individual monosaccharides (single sugars), can adopt a ring conformation, which 

usually consists of a carbon chain of five or above atoms, existing as a six membered 

or five membered ring. These cyclic conformations are known as pyranose and 

furanose respectively. Individual monosaccharides can be connected by glycosidic 

linkages via the anomeric carbon to the hydroxyl group of another monosaccharide, 

forming oligosaccharides with varying degrees of polymerisation. Extensive 

polymerisation of monosaccharides results in polysaccharides - large molecules, the 

composition, structure and stereochemistry of which can be highly complex.  

The eluded to biological roles that carbohydrates facilitate include cell metabolism and 

cell signalling, as well as acting as potential energy stores. Indeed, the innate 

biophysical properties of many polysaccharides endow the polysaccharide with 

functional characteristics, and so polysaccharides are often observed  fulfilling a 

structural role in nature, such as in the cell walls of plants, bacterial cells and 

eukaryotes. 

In addition to biological roles, carbohydrates also have extensive industrial 

applications and are exploited in a number of key processes and industries 

(pharmaceutical and food). Indeed, cellulose, the major constituent of the plant cell 

wall, is the most abundant source of hydrocarbons on the planet. The saccharification 

of cellulose is therefore of extreme relevance to the biofuel sector. Despite the 

recalcitrance of cellulose to enzymatic degradation, a number of bacteria exploit 
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cellulose as an energy source and encode for enzymes capable of deconstructing the 

polysaccharide.  

The aforementioned example emphasises that the acquiring of knowledge of microbial 

exploitation of carbohydrates, mediated by the enzymes they encode, can be of 

extreme industrial and health (see Section 1.4.4) importance. 

1.1 Glycoside Hydrolases 

Glycoside hydrolases catalyse the hydrolysis of the glycosidic bonds linking 

saccharide residues or glyco-conjugates. The hydrolysis of glycosides results in the 

generation of a saccharide hemiacetal or hemiketal as well as the appropriate aglycon. 

Glycoside hydrolases possess the ability to catalyse glycosidic bonds where the 

linking atom is generally oxygen.  

Glycoside hydrolases are often assigned a prefix of exo or endo, reflecting their ability 

to  cleave terminal (most often at the non-reducing end) or internal  glycosidic linkages, 

respectively.  Substrate binding within the glycosidase active site is described using 

sub-sites, with the site of enzymatic cleavage as a reference point. Catalytic sub-sites 

accommodating sugar moieties in the direction of the non-reducing end (from the point 

of enzymatic cleavage) are denoted by sequential negative numbers (-1, -2, -3, etc.), 

with the active site located at -1 and the scissle bond between sugars located at -1 

and +1 (Davies and Henrissat, 1995). Sub-sites of the enzyme interacting with glycan 

residues towards the reducing end are indicated with a positive number (+1, +2, +3, 

etc.).  

1.1.1 Catalytic mechanisms  

 The hydrolysis of glycosidic linkages, catalysed by glycoside hydrolases, most 

commonly proceeds via a single or double displacement acid-base assisted 
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mechanism. Reactions which proceed with a single displacement mechanism results 

in a net inversion of anomeric configuration at C1 post-catalysis, at the site of bond 

cleavage. Conversely, bond cleavage which operates via a double displacement mode 

of catalysis results in an overall net retention of anomeric configuration. Glycoside 

hydrolases which operate with either a single or double displacement mechanism are 

therefore deemed ‘inverting’ or ‘retaining’ enzymes respectively. Irrespective of the 

mechanism, both modes of catalysis require two carboxylate amino acids for 

hydrolysis, an acid/acid-base and a base/nucleophile respectively. In inverting 

glycoside hydrolases the two catalytic residues, the general acid and general base, 

are generally aspartate and/or glutamate and are situated 6 – 11 Ǻ apart (McCarter 

and Withers, 1994). The reaction proceeds via an oxocarbenium ion-like transition 

state. Hydrolysis by retaining glycoside hydrolases, occurring via a two-step, double 

displacement mechanism, involves a covalent glycosyl-enzyme intermediate, 

proceeding via oxocarbenium ion-like transition states. Acid/base and nucleophile 

assistance is given by two amino acid side chains (glutamate or aspartate) which are 

typically situated 5.5 Ǻ apart. Phase one of the retaining process of catalysis is referred 

to as the glycosylation step. The catalytic nucleophile displaces the aglycon by 

attacking the anomeric centre. A glycosyl enzyme intermediate is thereby formed. The 

acid/base residue acts as an acid and provides protonic assistance by protonating the 

glycosidic oxygen encouraging leaving group departure. Phase two entails a 

deglycosylation step, whereby the glycosyl-enzyme is hydrolysed by a water molecule 

which is deprotonated by the acid/base amino acid now functioning as a general base 

(Rye and Withers, 2000; Zechel and Withers, 2000). A schematic of both the inverting 

and retaining mechanisms of hydrolysis is shown in Figure 1.1.  
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1.1.2 Glycoside Hydrolase sequence based families 

Glycoside hydrolases (GHs) are classified into sequence based families (defined as 

GHXX where XX is a number) in the CAZy database (www.cazy.org) (Cantarel et al., 

2009).  Family members display the same fold, catalytic mechanism and catalytic 

apparatus (an exception to this general rule occurs in GH97). Such classification 

provides predicted activities of respective hypothetical glycoside hydrolases. There 

are currently 135 families of glycoside hydrolases on the CAZy database (as of 

January 2016). Members of the same glycoside hydrolase family can display the same 

Figure 1.1. Catalytic mechanisms of (A) single displacement, inverting mechanism 

and (B) double displacement, retaining mechanism. The transition state of the 

reactions is highlighted in brackets. Taken from Rye and Withers, 2010.  
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specificity, however, this is not always the case although the stereochemistry of the 

target glycosidic bond is conserved (Henrissat and Davies, 1997). GH families can be 

grouped into larger groups, known as clans. Clans possess extensive similarities in 

protein structure, catalytic residues and mechanism and help to provide structural and 

functional assignments to GHs. 

The exo/endo mode of action of glycoside hydrolases is complementary to the 

topology of the active site of the enzyme. Three topologies are consistently observed 

in glycoside hydrolases. The open cleft topology accommodates the internal regions 

of the substrate and is indicative of an endo-mode of hydrolysis, cleaving sugar 

polymers internally. The pocket topology usually accommodates single saccharide 

residues (usually at the non-reducing end) and liberates monosaccharides from 

oligosaccharides/polysaccharides. Tunnel topology is most prevalent in exo-

processive enzymes, where the polysaccharide/oligosaccharide is transported 

through the ‘tunnel’ of the enzyme, and subsequently cleaved in an exo-acting 

manner, liberating disaccharides (Davies and Henrissat, 1995)  

1.1.3 GH families which target α-mannan  

1.1.3.1 α-mannosidases  

α-mannosidases are glycoside hydrolases which liberate mannose from 

polysaccharides/oligosaccharides containing accessible α-mannosidic linkages in an 

exo-mode of action. As this thesis focusses on α-mannosidases encoded by the α-

mannan and high mannose N-glycan degrading systems of Bacteroides 

thetaiotaomicron (B. theta), the α-mannosidases encoded by the genome of B. theta 

are described here.  

1.1.3.1.1 GH92 

GH92 α-mannosidases display variation in α-mannosidic link preference, with activity 

observed against α1,2, α1,3, α1,4 and α1,6 linkages (Zhu et al., 2010). NMR 
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experiments revealed that GH92s which hydrolyse either an  α1,2, α1,3 or α1,4 

mannosidic linkage, generated β-mannose, indicating that an inverting mechanism of 

hydrolyse is utilized by members of GH92. The GH92 α-mannosidases are Ca2+ 

dependent, being one of three glycoside hydrolase families requiring a metal ion for 

catalytic activity. Interestingly all three families (GH38, 47 and 92) contain only α-

mannosidases. Metal ion interacts with O2 and O3 of the mannose bound in the -1 

active site, possibly providing the conformational flexibility required for the enzyme to 

recognise the ground state and transition state of the substrate, most likely due to the 

lack of distorting binding energy provided by the -2 sub-site as these enzymes are 

exo-acting (Zhu et al., 2010) 

The three-dimensional structure of the GH92 family of α-mannosidases reveals a two 

domain structure. The small N-terminal domain of the enzyme is comprised of a β-

sandwich, whilst the larger C-terminal domain consists of an α/α6 barrel fold. The active 

site of the GH92 family adopts a pocket topology which is formed by both the N- and 

C-terminal domains.  

A number of GH92 α-mannosidases are encoded by the genome of B. theta (23), with 

23 encoded by the α-mannan targeting apparatus of the bacterium (Cuskin et al., 

2015b). The GH92 enzymes encoded by B. theta have been previously characterised 

by Zhu et al. (2010), demonstrating activity against a variety of α-mannosidase 

linkages present in yeast mannan and mammalian high mannose N-glycans.  Around 

50% of the GH92 α-mannosidases encoded by B. theta were up-regulated when the 

bacterium was cultured on yeast α-mannan or mammalian glycans, indicating the 

likely importance of GH92 α-mannosidase activity in the degradation of these glycans  
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1.1.3.1.2 GH38 

GH38 α-mannosidases utilize a retaining, double displacement mechanism of 

hydrolysis and require a Zn2+ ion for catalysis. The crystal structure of a GH38 derived 

from Streptococcus pyogenes (SpGH38) in complex with a transition state mimic 

shows that the zinc ion is coordinated at the active site of the enzyme in an overall T6 

octrahedral coordination configuration and interacts with the mannose residue bound 

in the active site, most likely enabling the distortion of the substrate towards the 

transition state (1S5 ‘skew-boat’), reminiscent of the role of Ca2+ in GH92 α-

mannosidases. GH38 enzymes display variation in specificity with respect to the α-

mannosidic linkage and the substrate bound at the positive subsites (Suits et al., 2010) 

1.1.3.1.3 GH125 

GH125 enzymes derived from Clostridium perfringens (CpGH125) and Streptococcus 

pneumoniae (SpGH125) hydrolyse α1,6-mannobiose with a net inversion of 

stereochemistry, indicating a single displacement mechanism of hydrolysis. Catalysis 

mediated by GH125 enzymes is metal-independent. This demonstrates that there is 

no a prior reason why the enzyme mediated exo cleavage of α-mannosidic linkages 

requires divalent metal ions. The three dimensional structure of SpGH125 and Cp125 

demonstrates the family consists of an (α/α)6 fold. Ligand recognition in the -1/+1 

catalytic sub-sites of SpGH125 has been explored using thio-mannobiose, a non-

cleavable substrate, revealing that aspartate 218 and glutamate 391 are the catalytic 

general acid and base of the enzyme respectively. The catalytic residues are 

structurally conserved in CpGH125 as well as the other clan members, GH15 and 

GH65. The resolved crystal structure of SpGH125 shows that O1 of the mannose 

bound at +1 is solvent exposed indicating that the enzyme can accommodate 

extended α1,6-mannooligosaccharides (Gregg et al., 2011). A crystal structure of a 
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GH125 B. theta enzyme has been solved by a structural genomics consortium and its 

comparison to SpGH125 is described in Chapter 4, Discussion. 

1.1.3.2 α-mannanases 

α-mannases are endo-acting enzymes cleave internal α-mannosidic linkages. There 

are currently two families of endo-α-mannanases featured on the CAZy database, 

GH76 and GH99.  

1.1.3.2.1 GH76 

GH76 enzymes have been shown to be endo-α1,6-mannanases. It has recently been 

elucidated that the GH76 family act with an overall retention of stereochemistry, 

utilizing a double displacement method of hydrolysis. The GH76 enzymes are metal 

independent. The resolved crystal structure of a GH76 endo-α1,6-mannanase derived 

from Bacillus circulans (BcGH76) reveals an (α/α)6 helical barrel fold. 3D structures of 

enzyme-substrate complexes show a solvent accessible, long, curved cleft like 

structure constituting the active site of the Bacillus circulans enzyme to which α1,6-

mannopentaose is bound in the -4 to +1 sub-sites of the enzyme. The mannose 

residue bound to the -1 sub-site of the enzyme adopts a OS5 conformation. 

Interestingly, an enzyme-inhibitor complex revealed that the azasugar of α-mannosyl-

1,6-isofagamine was distorted to a B2,5 conformation in the same sub-site, therefore 

suggesting catalysis proceeds through a boat-conformation in the GH76 family. 

BcGH76 displays endo-mannanase activity against α1,6-mannooligosaccharides with 

a degree of polymerisation (DP) ≥3 (Thompson et al., 2015).  

1.1.3.2.2 GH99 

GH99 mammalian and bacterial enzymes display endo-α1,2-mannanase activity 

(bacterial). The mammalian Golgi enzymes target glucose substituted mannosyl 

moieties found in the structure of immature mammalian high-mannose N-glycans, 

cleaving the α1,2-mannoside linkage internally and accommodating up to three 
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glucose substitutions  proximal to the site of enzymatic cleavage. The bacterial GH99 

enzymes release α1,3-mannobiose from the chain termini of Saccharomyces 

cerevisiae yeast α-mannan through the cleavage of an α1,2-linkage. Both bacterial 

enzymes show a strong preference for D-mannose at the -2 subsite reflecting steric 

clashes with an equatorial O2 (O2 is axial in mannose).  Interestingly, eukaryote 

derived GH99s which display a preference for glucose in the -2 subsite possess a 

tyrosine residue capable of interacting with the equatorial O2 of glucose, conveying 

specificity that is complementary to the biological activity of the eukaryotic enzymes 

(Hakki et al., 2015) 

The GH99 family of endo-α-mannosidases act with a net retention of anomeric 

configuration and utilize a double, displacement mechanism of hydrolysis. 

Interestingly, the catalytic nucleophile of the family is yet to be elucidated. Instead, a 

catalytic process whereby catalysis is assisted by substrate has been proposed, 

involving the 2OH residue which is deprotonated by the general acid/base of the 

enzyme and proceeds via a 1,2 anhydrosugar intermediate with neighbouring group 

participation (Hakki et al., 2015) 

1.1.4 GH families which target β1,6-glucans 

Reflecting the presence of β1,6-glucans in the yeast cell wall, glycoside hydrolase 

families which may potentially target β1,6-glycosidic linkages, are also encoded by the 

genome of B. theta and are described here.   

1.1.4.1 β-glucosidases  

β-glucosidases cleave β-glucosidic linkages in an exo-acting fashion. 
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1.1.4.1.1 GH3 

GH3 contains enzymes with an plethora of functions that include β-glucosidases, β1,4-

xylosidases. Members of this family often have an array of specificities. GH3 enzymes 

cleave β-glycosidic linkages through a retaining, double-displacement mechanism of 

catalysis (Paal et al., 2004).  Characterised GH3 enzymes that target β-glucans are 

exo-hydrolases, which act at the non-reducing termini of β-D-glucan polymers and 

glucooligosaccharides. Characterised GH3 β-glucosidases target β1,3, β1,4 and β1,6 

linkages, with some enzymes capable of cleaving both β1,3 and β1,4 glucosidic bonds 

(Hrmova et al., 1998). 

The three-dimensional structure of GH3 enzymes reveals significant diversity in 

domain number/arrangement, as well as seemingly low sequence identity amongst 

some family members. However, structural overlays of crystallised GH3 β-

glucosidases has shown that the architecture and amino acids in the active site are 

conserved, despite low sequence identity (Bohlin et al., 2013) 

1.1.4.2 β-glucanases 

β-glucanases are endo-acting glycoside hydrolases that cleave β-linked glucosidic 

linkages. Described in this thesis is a representative of GH30 subfamily 3. Previously 

characterised members of this subfamily display β1,6-glucanase activity. 

1.1.4.2.1 GH30 

The GH30 family utilizes a retaining mechanism of hydrolysis. Crystal structures of 

GH30 members revealed a TIM barrel (α/β)8 fold. Currently, no 3D structure of a GH30 

subfamily 3 β1,6-glucanase has been reported.   

GH30 β1,6-glucanase of eukaryotic origin have been investigated, but not extensively 

characterised.  The GH30 subfamily 3 fungal enzymes display endo-β1,6-glucanase 

activity. These enzymes target fungal cell wall β-D-glucans liberating small amounts 

of glucooligosaccharides (Oyama et al., 2002)  
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1.2 Carbohydrate Binding Modules 

Glycoside hydrolases that target complex recalcitrant substrates such as the plant cell 

wall often contain non-catalytic carbohydrate binding modules (CBMs).  CBMs 

potentiate the catalytic activity of their cognate catalytic domains through targeting or 

proximity effects (Bolam et al., 1998). CBMs that bind to single glycan chains often 

share the same specificity as their cognate enzyme, and direct the biocatalyst to its 

substrate. In heterogeneous complex structures, such as the plant cell wall, targeting 

enables efficient protein-substrate interactions. CBMs that bind insoluble 

carbohydrates increase the concentration of enzymes in the vicinity of these complex 

glycan superstructures leading to more efficient degradation. A third proposed 

mechanism by which CBMs potentiate the degradative capacity of their cognate 

enzyme is through non-catalytic disruption of the target substrate. This mechanism, 

however, has recently been questioned. This mechanism was founded primarily by 

the observation that CBP21, a member of CBM33, although not tethered to enzymes 

was able to substantially increase the efficiency of chitin degradation by endo-acting 

chitinases. CBP21 was later shown not to be a CBM but was an enzyme (lytic 

polysaccharide monooxygenase) that attacked chitin. Thus the poster boy of the CBM 

disruption school of thought has been discredited (Vaaje-Kolstad et al., 2010) .    

CBMs, Like glycoside hydrolases, are grouped in 71 sequence-based families on the 

CAZy database. The binding specificities of CBMs have been elucidated via 

biochemical and structural studies, with CBMs being observed to bind to a number of 

major plant cell wall polymers (cellulose, xylans, β-mannans, pectins) (Zhang et al., 

2014), storage polysaccharides (glycogen, starch and fructans), chitin and mammalian 

glycans. 
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CBM ligand binding site topography is generally complementary to the conformation 

adopted by the target glycan and can often indicate the preference of the CBM for 

crystalline or soluble carbohydrates. As such, CBMs are grouped into three types 

based on binding site topology, A, B or C respectively, in attempts to provide functional 

classification. Type A CBMs bind to crystalline substrates. The ligand binding site of 

type A is planar and houses three aromatic amino acid residues. The hydrophobic 

surface presents a platform-like architecture, complementary to the crystalline surface 

presented by insoluble cellulose and chitin (Kraulis et al., 1989). Ligand binding in type 

A CBMs is entropy driven, believed to result from the release of trapped water 

molecules from the hydrophobic faces of crystalline ligands and the CBM itself 

(Creagh et al., 1996). Example CBM families which feature type A CBMs include 1,2, 

3, 5 and 10.  

The binding site of type B CBMs presents a cleft like topology that targets the internal 

regions of individual glycan chains (>15 Ǻ in length) (Charnock et al., 2002).  Type B 

CBM-ligand interactions are predominantly achieved through extensive polar contacts 

formed between ligand and polar amino acid residues housed within the binding cleft 

of the CBM. Additional specificity is conferred by aromatic amino acids, which most 

frequently form parallel hydrophobic stacking interactions with the sugar rings of the 

ligand, but can also adopt a sandwich conformation (Boraston et al., 2002). Such 

hydrophobic residues are often orientated to accommodate the target ligand. For 

example, CBMs that bind to xylan (which adopts a 3-fold screw axis conformation), 

often have two tryptophan residues located in the ligand binding cleft that are 

orientated 120o degrees to each other, thereby conferring xylan specificity (Simpson 

et al., 2000). Examples of CBM families which included type B CBMs are 4, 15, 16, 

20, 28 and 36. 
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The ligand binding site of exo-acting type C CBMs display a pocket topology and target 

the termini (primarily the non-reducing terminus) of glycan chains. The binding sites of 

type C CBMs accommodate 1 to 3 sugars.  Interestingly, appending a type C CBM 

(CBM66) which binds to the non-reducing termini of fructans, significantly enhanced 

the activity of its parent, non-specific β-fructosidase enzyme (GH32) against the highly 

branched fructan, levan, but not inulin, a linear fructose polymer. This example 

demonstrates how CBMs can confer enzymatic substrate specificity (Fujimoto et al., 

2013). Examples of the three functional topologies demonstrated by CBMs are shown 

in Figure 1.2. 
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Whilst usually a more prevalent feature of lectins, binding proteins which are not too 

dissimilar to CBMs with regards to ligand binding mechanisms, avidity effects have 

been observed in enzymes that possess more than one CBM. The CBMs of these 

Figure 1.2. Examples of type A, ,B and C CBMs. (A) Structure of CBM1 from Hypocrea 

jecorina (B) Structure of CBM2 from Cellulomonas fimi. (C) Structure of CBM29 from 

Piromyces equii in complex with mannohexaose (D) Structure of CBM4 from Cellulomonas 

fimi in complex with cellopentaose (E) Structure of CBM9 from Themotoga maritima in complex 

with cellobiose, recognising the non-reducing terminus of the sugar molecule. (F) Structure of 

CBM6 from Bacillus halodurans in complex with laminarihexaose, recognising the non-

reducing termini of the sugar molecule. Structures are continuously colour ramped with 

aromatic amino acid residues contributing to binding shown as sticks.  Solvent accessible 

surface is coloured gray, whilst surfaces contributed to by aromatic amino acid residues is 

coloured purple. Co-complexed ligands are shown as blue sticks. Figure taken from Gilbert et 

al., 2013.  
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enzymes can demonstrate different binding specificities respectively, and can result in 

a greater degradative capacity of the parent enzyme (Cuskin et al., 2012) 

Calcium has been increasingly shown to play significant roles in CBM-ligand binding, 

mediating direct ligand recognition. The divalent metal ion can stabilize the 

conformation of residues that play a key role in ligand recognition, it can play a direct 

role in glycan binding or it can cause increased affinity through avidity effects by 

mediating CBM dimerization (Montanier et al., 2011).  

1.3 Complex polysaccharide – structure and function 

1.3.1 Major plant cell wall polysaccharides  

The plant cell wall is rich in polysaccharides and presents a complex and 

heterogeneous structure which is extremely recalcitrant to enzymatic degradation. The 

major components of plant cell wall are cellulose, hemicellulose, pectin and lignin, 

which form a network of polysaccharides, providing mechanical support to the plant 

cell.  

Cellulose consists of linear, undecorated β1,4-glucan chains, comprised of repeating 

cellobiose units (each sequential glucose monomer is orientated 180o to one another). 

Such glycan chains are arranged in parallel and from contacts via hydrogen bonding 

and van der Waals forces, resulting in crystalline structures known as microfibrils, 

comprising 36 or 24 cellulose molecules (Fernandes et al., 2011).  

Hemicellulose polysaccharides most commonly consist of β1,4-linked backbones 

which are extensively decorated, thereby preventing the formation of crystalline 

structures. Such glycan chains interact with cellulose microfibrils via hydrogen bonding 

and function to provide strength to the plant cell wall. The major polysaccharide 

components of hemicellulose are xyloglucan, xylan, mannan and mixed-linked 
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glucans, with the branching and abundance of each polysaccharide varying 

dramatically between differing plant species and cell types. The polysaccharide 

xyloglucan, consisting of a β1,4-linked glucan backbone substituted with α1,6-xylose 

residues, constitutes the most abundant glycan in dicot primary cell walls (20-25 % of 

cell wall) (Scheller and Ulvskov, 2010). Up to 70 % of the xyloglucan backbone can be 

substituted. Xyloglucans of the XXXG classification have three decorated glucose 

residues, with a fourth unbranched backbone residue. The XXXG motif repeats 

regularly in the polysaccharide. The structure of xyloglucan is not ubiquitous amongst 

species however, with permutations of the XXXG type of xyloglucan being observed 

which harbour additional mono or disaccharide residues capping the canonical xylose 

side chains such as galactose, arabinose and fucose (Larsbrink et al., 2014) . Within 

the plant cell wall, xyloglucan forms non-covalent interactions with cellulose, ‘coating’ 

the microfibrils, and is believed to act as a cross-linker, providing structural support 

during cell expansion. Another possible role xyloglucan provides is the prevention of 

cellulose microfibril aggregation, with xyloglucan acting as a spacer (Whitney et al., 

2000).  

Xylans are a major constituent of the hemicellulose of grass cell walls and are 

extensively substituted.  Up to 90 % of the xylose backbone of glucuronarabinoxylan, 

can be decorated with an array of saccharide residues, predominantly L-arabinose 

and D-(methyl)glucuronic acid but also D/L galactose D-xylose, acetate and ferulate 

groups, presenting a highly complex substrate (Albersheim et al., 1994) . Methyl-

glucuronic acid substitutions are more prevalent in dicots (10 %) than grasses (Pauly 

et al., 2013).  
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Mixed linked glucans are prevalent in grass cell walls, consisting of a linear β—linked 

glucan. The proportion of β1,4 to β1,3 linkages is 70:30 respectively.  

Heteromannans, such as β-mannans and glucomannans, represent a lower proportion 

of hemicellulose and act as a potential energy source in angiosperms. β-mannans are 

comprised of β1,4-linked mannosidic residues, whilst glucomannan consists of 

random sequences of glucose and mannose residues β1,4-linked in a linear fashion.  

Galactoglucomannan and galactomannan are polysaccharides in which galactose 

side chains are appended (α1,6)  to the respective β1,4-linked backbones (Vogel, 

2008).  

Three major pectins are present in the plant cell wall; homoglacturonan (HG), 

rhamnogalactturonan I (RG-I) and rhamnogalactturonan II (RG-II), the proportion of 

which is ~60%, ~30% and 10% respectively. RG-II, a sub-domain of the pectic fraction, 

represents a structurally complex carbohydrate and consists of an α1,4-linked 

homogalacturonan backbone decorated with two structurally distinct disaccharides 

and two distinct oligosaccharides (Buffetto et al., 2014). RGII exists as a dimer within 

the plant cell wall, and is cross linked via a borate molecule, forming a 1,2 borate-diol 

diester with the apiosyl residue containing side chain of RG-II (Kobayashi et al., 1996). 

Pectins are proposed to act as spacers within the plant cell wall, preventing the 

aggregation of cellulose microfibrils (Chanliaud and Gidley, 1999) 

Lignin, a component of secondary cell walls, provides strength to the plant cell wall. 

Lignin is highly hydrophobic and is comprised of hundreds of aromatic monomers, 

providing an extremely chemically complex structure. Lignin molecules are composed 

mainly of three monolignols; p-coumaryl, coniferyl and sinapyl alcohols which are 

polymerised via an oxidative process via free radicals (Davin and Lewis, 2000). As 
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such, the variety posed by lignin both chemically and sterochemically, renders the 

polymer extremely recalcitrant to enzymatic targeting. 

1.3.2 The yeast cell wall 

Yeast cells, typified by Saccharomyces cerevisae, are protected from environmental 

stresses via a cell wall. The wall consists of a variety of glucan and chitin 

polysaccharides cross linked covalently with proteins to form a matrix. Chitin 

contributes only 1% by dry weight of the total polysaccharide content of the wall of 

Saccharomyces species (Aguilar-Uscanga and Francois, 2003).  Described below are 

the more prominent polysaccharides, typical of the yeast cell wall, Figure 1.3. 

Significantly, the polysaccharide and mannoproteins components of the yeast cell wall 

have been found to display an array of bioactive properties in both humans and 

animals, predominantly through interaction with mammalian pattern recognition 

receptors. Pattern recognition receptors, such as the Toll-like and mannose receptors 

located on the cell surface of immune cells bind to both β-glucans and mannoproteins 

respectively, recognising these molecules as pathogen associated molecular patterns 

(Latge, 2010). Indeed, the polysaccharides of the yeast cell wall have been attributed 

to the stimulation of immunoregulatory cells (Chen and Seviour, 2007) and anti-

bacterial effects (Ganner et al., 2010).  
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1.3.2.1 Yeast mannan 

 

1.3.2.1.1 Saccharomyces cerevisiae yeast mannan and mutant mannans 

Attached to the yeast cell wall proteins are α-mannans, bound via asparagine 

residues, which protrude extracellularly from the yeast cell. Manno-proteins constitute 

up to 50% of the yeast wall (Klis et al., 1998). The structure and saccharide 

constituents of yeast mannan can vary amongst species.   

Yeast α-mannans (yeast mannan) consist of an inner core region and an outer chain, 

Figure 1.4. The structure of the inner core region of yeast mannan is reminiscent of 

mammalian high mannose N-glycans. The inner core is composed of two β1,4 linked 

N-acetylglucosamine (GlcNAc) residues linked to a mannose residue via a β-1,4 bond.  

Appended to this trisaccharide structure are two branches, the first of which consists 

of two α1,6 linked mannose residues that are capped with α1,3 and α1,2 mannosyl 

residues, respectively. The other branch contains an α1,3-linked mannose.   

(Nakajima and Ballou, 1974). The outer chain of yeast mannan from S. cerevisae, 

consists of an α1,6 linked mannose backbone, decorated with α1,2 linked mannose 

side chains capped with α1,3 linked mannose residues.  Phosphate bridges also exist 

within the polysaccharide and add additional mannose side chains to the 

Figure 1.3. A cartoon representation of the polysaccharide network 

constituting the yeast cell wall. Figure adapted from Brown et al., 2014. 
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polysaccharide. The synthesis of yeast mannan is mediated by glycosyltransferases.  

The core region of yeast mannan is synthesised in the endoplasmic reticulum and the 

outer chain in the Golgi apparatus.  The glycosyltransferases responsible for the 

biosynthesis of the outer chain in S. cerevisae has been characterized through 

deletion studies in yeast cells. Mutants missing various outer chain 

glycosyltransferases produce truncated mannan structures that are shown in Figure 

1.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. The structure of Saccharomyces cerevisiae Yeast mannan. M represents mannose 

residues and P represents phosphate. All arrows unless stated otherwise, denote an α-bond. The 

number above the arrow shows linkage.  Mutations of glycosyltransferases are coloured red.  All 

residues which follow/are below the blue lines are missing in that respective mutation. Figure adapted 

from Ballou (1990). The mnn9 mutation completely abrogates synthesis of the yeast mannan outer 

chains 
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1.3.2.1.2 Schizosaccharomyces pombe yeast mannan  

Schizosaccharomyces pombe possesses a morphologically unique Golgi apparatus, 

which differs from other eukaryotes (Ziegler et al., 1994; Gremmill and Trimble, 1998). 

Two galactosyl transferases localized to the Golgi append galactose residues to 

mannans which are elongated from the core mannan structure (Ziegler et al., 1994). 

As such, the outer chain of S. pombe consists of an α-1,6 linked mannose backbone, 

with 98% of the backbone 2-O-substituted with α-1,2 linked, pyranose galactose 

residues. Around 10% of these galactose side-chains are capped with an additional 

β-linked galactose residue. Terminal β-linked galactose residues possess a pyruvate 

residue linked in a 4,6-acetal-(ketal-) manner.  

1.3.2.2 β-glucan fractions of the yeast cell wall 

1.3.2.2.1 β1,3-glucans 

Two fractions of β-glucan exist within the yeast cell wall. β1,3-glucans account for over 

half of the cell wall polysaccharides in S. cerevisiae. The β1,3-glucans of the yeast cell 

wall contain moderate β1,6-linked glucosdic decorations, and can extend up to ~1,500 

residues in length. The polysaccharide adopts a single or triple helical confirmation, 

stabilised by inter-chain hydrogen bonding, and present ‘spring’ like structures, 

believed to endow the yeast cell wall with a degree of tensile strength (Kopecka, 2013). 

1.3.2.2.2 β1,6-glucans 

β-1,6-glucans have an important role in cell wall structure by cross-linking other 

constituents of the cell wall, including manno-proteins and chitin (Kapteyn et al., 1999). 

Indeed, mutations resulting in disruptions to β1,6-glucan synthesis have lethal effects 

on yeast cells, owing the β1,6-glucan fraction acting to ‘hold’ the cell wall polymers 

intact (Kopecka, 2013).  The structure of the mature β-1,6-glucan polysaccharide in S. 

cerevisiae has only recently been fully elucidated by Aimanianda et al. (2009). The 

β1,6-glucan polysaccharide consists of a glucose backbone linked via β-1,6 bonds. 
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The backbone is substituted with β1,3 linked glucose units with sporadic capping of 

an additional β1,6 linked glucose appended to the glucose side chains (Figure 1.5).  

The polymer can extend up to 200 glucose residues in length (Aimanianda et al., 

2009), with the degree of branching of the polysaccharide varying between yeast 

species. In S. cerevisae β-1,6 glucans up to 7% of the polymer is branched, while 75% 

branching occurs in  S. pombe (Aimanianda et al., 2009). 

β1,6-glucans purified from S. cerevisae have previously been shown to possess anti-

carcinogenic properties inhibiting metastasis in a number of cancers, including colon 

carcinoma cells. This is believed to occur through the modulation of macrophages and 

natural killer cells (Yoon et al., 2008). β1,6-glucans interact with C11b/CD18 and 

Dectin-1 receptors, presented by neutrophils and macrophages, respectively. β1,6-

glucans, therefore, activate cytokine production and adaptive immunity, which,  

potentially may attenuate the impact of colitis (Jawhara et al., 2012). Indeed, Jawhara 

et al. (2012), demonstrated that yeast β-glucans demonstrated a beneficial effect on 

inflammation and the colonization of C. albicans (a potentially pathogenic yeast), in 

mouse models.  

 

 

 

 

Figure 1.5. The structure of Saccharomyces cerevisiae β-1,6-Glucan. G indicates a glucose 

residue. All Arrows denote β-bonds and the numbers above the arrows represent linkage. Figure 

adapted from Aimanianda et al. (2009) 
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1.3.2.3 High mannose N-glycans 

High mannose mammalian N-glycans (HMNGs) are similar in composition to the core 

structure of yeast mannan.  The trisaccharide motif of GlcNAc-β1,4-GlcNAc-β1,4-

Mannose is preserved. Appended to this trisaccharide are eight mannose residues, 

linked via an assortment of alpha- linkages found in yeast mannan. HMNGs, however, 

are distinct from the yeast mannan core structure due to additional α1,2 linked 

mannose residues capping the termini of the mannose branches and their lack of an 

outer chain. 

HMNGs decorate the surface of intestinal epithelial glycoproteins and are present in 

secreted mucus. Bacteroides species, such as B. theta can scavenge these glycans 

(Martens et al., 2011) 

1.4 The human gut microbiome 

1.4.1 The composition of human gut microbiota and environment 

The human large bowel is inhabited by a vast array of micro-organisms which directly 

influence host health and nutrition. This community of microorganisms is referred to 

as the microbiota and encompasses commensal, symbiotic and pathogenic bacteria 

present within the gut (for review see (Bakhtiar et al., 2013). The microbiota contains 

~1014 bacteria grouped into around 1000 different species. The most prominent 

members of the distal gut belong to the phyla Firmicutes and Bacteroidetes, with 90% 

of the microbiota belonging to these two genera. The composition of the microbiota 

can fluctuate dramatically between individuals; however, a core ensemble of gut 

microbes is possessed by the majority of people (Qin et al., 2010) 

 

The composition of the gut microbiota can fluctuate dramatically due to diet and most 

astonishingly, the distribution of bacteria can alter in a time-scale of hours as a result 
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of selective feeding (Turnbaugh et al., 2009).  A diet high in fibre and containing 

abundant plant polysaccharides results in the proliferation of Bacteroidetes species 

and a decrease in the levels of Firmicutes (De Filippo et al., 2010). Calorie restricted 

mice display increased levels of Bacteroidetes than those whose calorie intake is low 

(Ley et al., 2005).  Likewise, obese ob/ob mice, which are genetically predisposed for 

over-eating, have a much lower abundance of Bacteroidetes species in their 

microbiota and an increased level of Firmicutes species than their wild-type 

counterparts. 

 The relationship between the human host and the microbiota is symbiotic in healthy 

individuals (Hwang et al., 2012).  Commensal bacteria inhabiting the gut prevent the 

colonisation of potentially pathogenic bacteria on the intestinal epithelium and so 

constitutes a barrier to infection (Turner, 2009).  Dendritic cells, generated in the gut-

associated lymphoid tissue, sample commensal bacteria via pattern recognition 

receptors such as Toll-like receptors. This enables the innate and adaptive immune 

system of the gut to distinguish between commensal and pathogenic bacteria, 

maintaining intestinal homeostasis (Quigley, 2010). A change in the composition of 

the microbiota results in dysbiosis and potentially disease. Inflammatory Bowel 

Disease (IBD) is the chronic inflammation of the gastro-intestinal tract and has been 

associated with dysbiosis. Crohn’s disease, a prevalent IBD, has been linked to a 

decrease in the number of Firmicutes species within the microbiota (Sokol et al., 

2008).  The microbiota is crucial for gut homeostasis, the imbalance of which has the 

potential to induce disease states.  

1.4.1.1 Bacteroides  

The Bacteroides genus of the Bacteroidetes phyla are glycan-degrading generalists. 

Bacteroides thetaiotaomicron (B. theta), is a Gram-negative bacterium belonging to 

the phylum Bacteroidetes (Rogowski et al., 2015). B. theta is a prominent member of 
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the human colonic microbiota and is one of the primary bacteria involved in glycan 

degradation in the gut (Sonnenburg et al., 2010). The microbiota presents a highly 

competitive environment. The success and fitness of the Bacteroides can be attributed 

to the capacity of this phylum to degrade the major classes of plant polysaccharides 

and host derived glycans. Transcription and growth studies (Martens et al., 2011) 

demonstrate that B. theta, in addition  to metabolising major plant polysaccharides 

such as starch, fructans and the pectins, is also capable of utilizing host O- and N-

linked mammalian glycans and α-mannans derived from yeast and other microbial 

eukaryotes (Cuskin et al., 2015b).  The closely related species, Bacteroides ovatus 

(B.ovatus), in addition to degrading pectins and fructans, also utilizes the major plant 

hemicelluloses such as xylans, -mannans and xyloglucans (Larsbrink et al., 2014; 

Rogowski et al., 2015). The ability of the Bacteroides genera to degrade such glycans 

is attributed to the many glycanases encoded by the organism’s genome. The CAZy 

database predicts that the B. theta genome encodes 261 glycoside hydrolases. 

Indeed, the strategies by which B. theta degrades glycans, beyond the proto-typical 

starch utilization system, have recently been further elucidated (See 1.6 Characterised 

PULs of Bacteroides). 

1.4.2 Complex glycan utilization and nutrient sharing 

The catabolism of complex dietary carbohydrates in the human alimentary underpins 

the structure of the human gut microbiota. The metagenome of the gut microbiota 

encodes for ~100-fold more genes than that of the human genome, many of which are 

targeted to polysaccharide degradation. As much as 18% of the B. theta genome is 

dedicated to glycan degradation and utilization (Rogers and Bruce, 2012). The human 

gut microbiota is exposed to a plethora of complex glycans which pass through the 

gastrointestinal tract largely undigested. Furthermore, the colonic microbiota is 



26 
 

exposed to host derived glycans in the form of secreted mucins and surface glycans 

of epithelial cells that are shed (Rogers and Bruce, 2012).  These dietary and host 

glycans represent a major potential nutrient source for gut bacteria. Indeed, prebiotic 

strategies (See Section 1.4.4), used to manipulate the composition of the human gut 

microbiota via the promotion of prebiotic bacteria, rely upon the use of complex 

carbohydrates only accessible to the targeted bacterial subset.  Such a strategy is 

heavily reliant on the glycan food web of the human gut microbiota (Rogowski et al., 

2015). For example, studies have shown that organisms, such as Ruminococcus gnavus 

modify host sialic acids such that the product is used exclusively by the Ruminococcus 

(Crost et al., 2013).  Apart from these few reports, how complex glycan degradation 

and utilization is orchestrated between the numerous members of the human gut 

microbiota is little understood, as is the potential for nutrient sharing in such a complex, 

highly competitive environment.  

1.4.3 Short chain fatty acids and their influence on host health and nutrition 

Short chain fatty acids (SCFA), the end products of bacterial fermentation of dietary 

glycans, are absorbed through the intestinal gut epithelium and can contribute up to 

10% of our total calorific intake (Ley et al., 2005). The role of the gut microbiota in 

energy harvesting is emphasized by the observation that germ-free rats display a 

lower abundance of SCFAs in the gut and excrete two-fold the amount of calories than 

colonized rats fed on identical, polysaccharide rich diets (Hoverstad and Midtvedt, 

1986). Germ-free Rats must compensate for this lack of energy absorption via 

increased feeding (Tremaroli and Backhed, 2012). This evidence suggests that the 

gut microbiota can be described as a functional metabolic organ and so underpins the 

mutualistic dependence which exists between the human host and gut microbiota. 
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The three main SCFA products of bacterial fermentation are butyrate, acetate and 

propionate and have repeatedly been shown to have a positive impact on gut health, 

some of these roles include acting as epithelial energy sources, vasodilators and 

modulators of the inflammatory response (For review see Tremaroli and Backhed 

(2012).  The ratio and abundance of SCFA produced within the gut is dependent on 

the level of carbohydrates consumed in the diet and the composition of the microbes 

which colonize the gut. For example, the co-colonisation of B. theta and 

Methanobrevibacter smithii is optimal for the fermentation and utilization of dietary 

fructans due to M. smithii using the products of B. theta fructan degradation and 

fermentation. Mice which are co-colonised with M. smithii and B. theta displayed a 

dramatic increase is adiposity, demonstrating an increased efficiency of fermentation 

and SCFA absorption compared to animals colonised only with B. theta (Samuel and 

Gordon, 2006). Butyrate is a major energy source for colonocytes. In germ-free mice 

colonocytes are starved of energy (Donohoe et al., 2011). Butyrate is an inhibitor of 

histone deacetylase, and so plays a significant role in cellular proliferation, 

differentiation and modulation of gene expression within the host colonic epithelium. 

As such, butyrate is believed to regulate up to 2% of transcription within mammalian 

colonocytes (Davie, 2003). Acetate and propionate are utilized in the liver and are 

important substrates in lipogenesis and gluconeogenesis. This is consistent with the 

increased levels of stored triglycerides in the livers of mice which harbour a gut 

microbiota..  

1.4.4 Probiotic and prebiotic strategies 

Dysbiosis of the gut-microbiota results in the induction of disease states, including 

obesity and Inflammatory Bowel Diseases (IBDs) (Quigley, 2010). In addition, due to 

the numerous health benefits conferred by SCFAs, dietary strategies designed to 
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target subsets of bacteria are being devised in the hope of engineering the microbiota 

to maintain human health. This is achieved by introducing or inducing sub-populations 

of bacteria to proliferate within the gut using probiotics or prebiotics.  

Probiotics are orally administered live strains of microorganisms, intended to colonise 

the GI tract to induce health benefits, including aiding in digestion. Clostridium 

butyricum, a butyrate synthesising bacterium present within the intestines of healthy 

adults, is utilized as a probiotic in the treatment of non-antimicrobial induced diarrhoea 

and constipation in humans (Okamoto et al., 2000). One recent study administered 

Clostridium butyricum to rats where it was observed that fatty liver disease progression 

was severely reduced as a result of the bacterium indirectly modulating lipogenesis 

leading to a reduction in triglyceride content and insulin resistance (Endo et al., 2013). 

Prebiotic strategies entail the inclusion of complex glycans resistant to host 

degradation within the diet, which are utilized by a specific subset of bacteria in the 

microbiota. Such strategies are cheaper than probiotics and are utilized readily in the 

animal rearing industries (Goffin et al., 2011). Evidence suggests that the composition 

of the gut microbiota can shift in response to short and long term dietary intervention 

(Turnbaugh et al., 2009).  Reduced inflammation was observed in genetically altered 

mice, predisposed for obesity when administered with prebiotics (Delzenne and Cani, 

2011).  

The findings of Rogowski et al. (2015) described in Section 1.4.2, illustrates the 

importance of understanding the mechanisms by which complex glycans are degraded 

by different members of the microbiota. For instance, the complex 

glucuronoarabinoxylan, utilized ‘selfishly’ by B. ovatus, would result in the proliferation 

of B. ovatus exclusively, a documented producer of propionate. However, if the diet 
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was supplemented with the less complex wheat arabinoxylans or glucuronoxylans, 

both B. ovatus and Bifidobacteria, which uses the oligosaccharides generated by the 

Bacteroides, could potentially thrive. Bifidobacteria mediate the production of the 

beneficial SCFA butyrate in the microbiota (Wachtershauser and Stein, 2000).  

Understanding these interactions with respect to glycan metabolism is critical when 

designing bespoke prebiotics.   

Yeast is a key component of the brewing and baking industries. The inclusion of 

mannan oligosaccharides and yeast cultures in diet has been observed to have a 

positive impact on intestinal health in a number of animal studies.  Weaning pigs 

whose diet was supplemented with yeast cultures demonstrated increased growth, 

improved intestinal health and a better immune function. These improvements were 

comparable to pigs fed antibiotic growth promoters and so has the potential to replace 

antibiotics in animal feed (Shen et al., 2009). Both yeast culture and manno-

oilgosaccharide supplementation in diet have been observed to improve gut 

morphology.  Increased jejunal villus height and an improved villus height to crypt 

depth ratio has been observed. This process is thought to be modulated by intestinal 

microbe colonisation, explaining increased growth rates through better absorption of 

nutrients in the gut (Dimitroglou et al., 2009). 

1.5 Polysaccharide utilization loci 

When B. theta was cultured with polysaccharides, it was observed that transcription 

of specific genetic loci were up-regulated. These gene clusters, defined as 

Polysaccharide Utilization Loci (PULs), encode an array of proteins tailored for the 

sensing, degradation and utilization of the polysaccharide that activates the locus. The 

defining aspect of a PUL is the presence of an extracellularly located homologs of the 



30 
 

SusD and SusC proteins (defined henceforth as SusDh andSusCh, respectively) 

present in the starch utilization system. SusDh binding proteins bind environmental 

glycans and facilitate the translocation of captured glycans into the periplasmic space 

through delivery to the energy dependant SusCh  transporter (Sonnenburg et al., 2010; 

Martens et al., 2011). There are 208 homologs of SusC and SusD pairs encoded by 

B. theta, indicating that the genome encodes an extensive array of glycan utilizing 

systems (Xu et al., 2007). Encoded by most PULs are other extracellular binding 

proteins, such as surface glycan binding proteins (SGBPs), which sequester glycans 

from the environment as a prelude to enzymatic digestion and translocation to SusDh 

proteins prior to import through SusCh pores. A myriad of extracellular and periplasmic 

glycanases, encoded by the PUL degrade captured glycans in a sequential manner, 

rendering short chain oligosaccharides and monosaccharides, which can be 

metabolized by the bacterium. Polysaccharide sensing and signal transduction is 

achieved via sensors encoded by the PUL. Hybrid two component systems (HTCS) 

and extra cytoplasmic function (ECF) σ factors which span the internal cytosolic 

membrane  are utilized in the up-regulation of the PUL and are activated by specific 

glycans (Miyazaki et al., 2005). 

The cellular localization of cell envelope associated proteins is inferred by the 

presence of a bacterial signal peptide. Proteins harbouring a type I signal peptide 

recognition motif are secreted to the periplasmic compartment of the cell. Proteins 

which encode a type II signal peptide motif are predicted lipoproteins and are localised 

to the extracellular membrane. Lipo-proteins harbour a canonical N-terminal cysteine 

residue to which an N-acyl-S-diaglyceryl molecule is bound following cleavage of the 

signal peptide, therefore anchoring the protein to the lipid membrane (Bos et al., 2007). 



31 
 

As stated above the PUL paradigm was built upon the starch utilization system (sus) 

first characterised in B. theta. The PUL encoding the sus system is composed of eight 

genes susRABCDEFG. SusE and SusF bind and sequester starch from the 

environment, enabling the extracellular α-amylase, SusG, to cleave the captured 

starch, hydrolysing the polysaccharide into long chain oligosaccharides. SusC and 

SusD work in tandem to import the products of SusG degradation into the periplasmic 

space where enzymes, encoded by susA and susB, act upon imported 

oligosaccharides, degrading them into small oligosaccharides and the 

monosaccharide glucose through neopullulanase and α-glucanase activities. SusR is 

a sensor/regulator element which spans the cytosolic membrane and is responsible 

for the further up-regulation of the sus system. A model of starch degradation by the 

sus system is shown in Figure 1.6. 

1.5.1 Extracellular binding proteins 

1.5.1.1 SusD-like  

The extracellularly located SusD, characterized in the starch utilization system of B. 

theta, has previously been shown to bind starch (Shipman et al., 2000). The 3D 

structure of SusD indicates that the 551 amino acid residue protein is composed of 22 

α-helicies, eight of which constitute four highly conserved tetra-trico peptide repeats 

(TPRs)(Koropatkin et al., 2009). These TPR motifs are implicated in the formation of 

protein-protein interactions, and are thought to mediate the SusC/SusD complex 

formed at the extracellular membrane (Cho and Salyers, 2001). 

The 3D structure of the SusD reveals a shallow-surface binding site which can interact 

with three individual glucose moieties of the starch molecule. Binding studies indicate 

that the curved starch analogue β-cyclodextrin binds to SusD with a ~10 fold higher 

affinity than the linear starch derivative, maltoheptaose (Koropatkin et al., 2008). 

Starch forms a cyclic complex in solvent, owing to the α1,4-glycosidic bonds which link 
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the glucose monomers of the polysaccharide, indicating that SusD displays preference 

for starch surrogates which possess a helical conformation. This suggests that starch 

recognition by SusD is structure dependant and is not conferred by the 

stereochemistry of the monomeric constituents of the polysaccharide. Conversely, the 

SusDh protein, BT1043, encoded by the O-glycan PUL of B. theta, binds to the 

reducing end of Di-β-N-acetyl glucosamine through hydrogen bonding. This is 

mediated via polar amino acid residues located in the ligand binding site (Koropatkin 

et al., 2009) and so ligand recognition is conferred by interactions with individual β-N-

acetyl glucosamine units. This indicates there is diversity in ligand recognition 

displayed by SusDh proteins. 

SusDh proteins have been shown to play a substantial role in polysaccharide utilization 

in B. theta (Koropatkin et al., 2008). The deletion of SusD in the sus system abolishes 

the ability of B. theta to utilize starch and its derivatives. Surprisingly, it has been found 

that SusD is vital for the utilization of linear malto-oligosaccharides, even with malto-

oligosaccharides with a D.P <6, for which the protein has undetectable affinity for. This 

suggests that SusD is not only required for starch binding and sequestering, but serves 

other functions vital to polysaccharide utilization. Martens et al. (2009) speculate this 

could be due to SusD being required to stabilise the SusC/SusD complex located to 

the outer-membrane in addition to delivering malto-oligosaccharides to the outer 

membrane SusC transporter. Indeed, SusD-like proteins have been observed that 

seemingly possess no binding function, suggesting that a proportion of SusDh proteins 

may act solely to stabilise the outer-membrane complex (Cuskin et al., 2015b). These 

hypotheses are consistent with the observation that other outer membrane proteins, 

such as SGBPs, are encoded by PULs and are more likely candidates for glycan 
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sequestering and initial binding of environment polysaccharides, reflecting their high 

affinity for these ligands (Bolam and Koropatkin, 2012).  

1.5.1.2 Surface glycan binding proteins 

Unlike SusDh proteins, SGBPs are not vital to polysaccharide utilization (Cho and 

Salyers, 2001). In vitro studies have shown that the deletion of SGBP genes does not 

impact on the capacity of B. theta to grow on the respective polysaccharide (Shipman 

et al., 2000).  Whilst the position of the SGBP ORF is generally conserved within the 

PUL, there is little sequential/structural homology shared between these binding 

proteins.  

1.5.2 SusC-like 

The SusCh transporter belongs to a family of TonB-dependant receptors found in 

gram-negative bacteria. The protein consists of seven domains, forming a porin at the 

extracellular membrane through which molecules can be transported into the cell in 

an energy dependant manner. Energy for transportation is generated through the 

formation of the TonB-ExbBD complex and proton-motif forces. Whilst energy is 

required for the translocation of macro-molecules, smaller molecules are able to 

diffuse freely through the porin and into the periplasmic space (Ferguson and 

Deisenhofer, 2002) 

1.5.3 Carbohydrate sensing and PUL up-regulation 

Carbohydrate sensing and PUL up-regulation is mediated primarily through hybrid 

two-component systems (HTCS) and extracytoplasmic function (ECF) sigma/anti-

sigma factors which span the cytosolic membrane of the bacterial cell. PULs are 

perpetually expressed at low levels. In response to the appropriate molecular cue, 

such as ligand binding to the sensor/regulator protein, specific PULs are up-regulated 

(Sonnenburg et al., 2010)  
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HTCS are composed of the domains found in the typical bacterial two-component 

system, and include, within a single polypetide chain, an N-terminal extracellular 

sensor, cytoplasmic histidine kinase, response regulator, phosphoacceptor domain 

and DNA binding domain (Sonnenburg et al., 2010; Bolam and Koropatkin, 2012). The 

degradation products generated by extracellular and periplasmic enzymes encoded 

by the PUL bind to the sensor domains of the HTCS, which protrude into the 

periplasmic space.  Once activated, it has been proposed that the cytoplasmic DNA-

binding domain may be released, binding DNA and therefore activating transcription 

(Miyazaki et al., 2005). Two classes of HTCS exist, the Reg_prop class and 

Periplasmic Binding Protein (PBP) class, grouped according to the structure of their 

respective periplasmic sensor domains. The Reg_prop class of HTCS bind 

oligosaccharides with a D.P ≥ 2 (Martens et al., 2011). Conversely, the only 

characterized PBP HTCS binds monomeric fructose (Sonnenburg et al., 2010). 

Nevertheless, the mechanism of signal transduction appears to be conserved 

(Sonnenburg et al., 2006; Martens et al., 2011). 

Recently, the structure of the periplasmic domain of a HTCS (BT4663), encoded by 

the heparin PUL of B. theta, reveals that ligand binding induces a conformational 

change in protein structure, which differs from the previously observed piston/rotation 

mechanisms of the sensor histidine kinases of two component systems. Upon ligand 

binding, the C-terminal domain of the protein appears to adopt a scissor blade-like 

closing mechanism. This enables the cytoplasmic histidine kinase domain to catalyse 

reciprocal phosphorylation for signal transduction (Lowe et al., 2012) 

Extracytoplasmic function (ECF) sigma/anti-sigma factors are regulatory elements 

which are encoded by some PULs. When the appropriate signal is received, the ECF 

sigma/anti-sigma release their sigma factor which binds to RNA polymerase and 



35 
 

stimulate transcription (Helmann, 2002). These regulators are mainly distributed in 

PULs dedicated to the degradation of O-linked mucins (Bolam and Koropatkin, 2012).   

1.5.4 Enzymes 

PULs encode an array of glycanases, which are tailored for the deconstruction of the 

polysaccharide. A myriad of enzyme are required to hydrolyse complex 

polysaccharides, reflecting the different linkages and sugar monomers that comprise 

such complex glycans. This is exemplified by the complex polysaccharide 

rhamnogalacturonan II (RGII). RGII is composed of 20 different linkages. To fully 

degrade RGII, no less than 20 glycanases would be required. B. theta has the capacity 

to degrade RGII. When B. theta was cultured on RGII, 30 ORFs were up-regulated, 

constituting the RGII PUL of B. theta (Martens et al., 2011).  This evidence suggests 

the number of glycanases encoded by PULs correlates to the complexity of the 

targeted glycan.  
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Figure 1.6. The starch utilization system of B. theta. A diagram of the starch utilization system of B. 

theta, the archetypal polysaccharide utilization loci. Environmental starch is sequestered via the 

extracellular binding proteins; SusFED, whereby it is hydrolysed via SusG, an extracellular α-amylase. 

Products of SusG degradation are transported into the periplasmic space through the extracellular 

membrane spanning porin, SusC. Long chain oligosaccharides are further degraded by the 

periplasmically located enzymes, SusAB, via neopullulanase and α-glucanase activity respectively and 

are transported into the cell through an inner membrane sugar permease whereby they are catabolised 

by the cell.  The products of periplasmic degradation also result in the further up-regulation of the PUL, 

mediated via the senor/regulatory element, SusR. Figure adapted from Martens et al. (2009). 
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1.6 Characterised PULs of Bacteroides  

Recent studies of the polysaccharide utilization systems of Bacteroides, highlights the 

complexity of the enzymes that mediate glycan degradation and are described below. 

1.6.1 The xyloglucan PUL of Bacteroides ovatus 

A B. ovatus PUL was up-regulated when the bacterium was cultured on xyloglucan, a 

relatively abundant dietary polysaccharide consisting of a β1,4-glucan backbone 

decorated with α1,6-xylose side chains, in a repeating XXXG or XXGG motif 

depending on the polysaccharide source. Side-chains can be capped with 

monosaccharides of galactose (β1,2-linked) or a β-D-1,2-galactose-L-α1,2-fucose 

disaccharide respectively.  The xyloglucan PUL, referred to as XyGUL, encoded for a 

SusD-like protein, a SusC-like protein, a HTCS as well as eight predicted glycoside 

hydrolases based on their location in CAZy sequence based families. A schematic of 

XyGUL and a model of xyloglucan utilization by B. ovatus is displayed in Figure 1.7 

and Figure 1.8 respectively. The extracellular degradation of xyloglucan is dominated 

by surface endo-xyloglucanase activity, mediated by two enzymes BoGH5A and 

BoGH9A respectively, generating short oligosaccharides from the polysaccharide.  

Genetic knock-outs of the BoGH5A ORF abrogated B. ovatus xyloglucan utilization, 

highlighting the importance of the enzyme in xyloglucan utilization. BoGH9A displayed 

low activity and deleting the gene encoding the endoglucanase did not affect B. ovatus’ 

ability to grow on xyloglucan.  Interestingly, no homologs of BoGH9A were encoded 

by orthologous xyloglucan PULs, perhaps providing an example of functional 

redundancy in a PUL system.  
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The remaining enzymes, predicted to be localised to the perisplasmic space, 

demonstrated the following exo-acting activities; GH2 β-galactosidase; GH3(A/B) β-

glucosidase; GH31A α-xylosidase and GH43 (A/B) α-L-arabinofuranosidase, 

Figure 1.7. The xyloglucan PUL (XyGUL) of B. ovatus. ORFs encoding enzymes are 

coloured blue. The function of the protein encoding ORFs are labelled accordingly 

according to function.  Figure adapted from Larsbrink et al., 2014. 

Figure 1.8. Proposed model of xyloglucan utilization by B. ovatus. Proteins are 

labelled according to function/GH family. Saccharide residues are represented by 

shapes and colours. Blue circles represent glucose, orange stars represent xylose, 

turquoise pentagons represent arabinofuranose and yellow circles represent galactose 

residues. The enzymes which remove individual monomers are coloured according to 

the saccharide residue they target. Figure adapted from La.rsbrink et al., 2014. 



39 
 

respectively, and act sequentially to debranch and depolymerise imported 

oligosaccharides into monomeric saccharides. Interestingly, the two GH3 β-

glucosidases encoded by XyGUL share specificities and act upon β-glucosidic 

linkages in identical contexts. The requirement for two seemingly identical activities in 

the PUL system is not understood, but again, suggests a degree of functional 

redundancy (Larsbrink et al., 2014) 

Interestingly, evidence suggests the XyGUL systems encoded by different  

Bacteroides species, harbour ORFs, which enable the use of xyloglucans derived from 

other plant sources. For example, orthologous XyGULs encode GH29 and GH95 α-

fucosidases, enabling the bacteria to efficiently utilize the xyloglucan of dicots. The B. 

ovatus XyGUL does not, however, encode α-fucosidases.  

The PUL described above provides an example whereby the depolymerisation of the 

targeted glycan, specifically a relatively abundant glycan, is mediated primarily by 

surface, endo-acting enzymes which show tolerance for decorations and release a 

plethora of short oligosaccharides into the extracellular space for import by the 

bacterial cell. Decoration removal is exclusively mediated in the periplasmic space.  

1.6.2 The xylan PULs of Bacteroides ovatus 

A study by Rogowski et al. (2015) demonstrates B. ovatus utilization of complex xylans 

and how different forms of xylan are degraded through the recognition of unique 

specificity determinants by the encoded protein ensemble. The genome of B. ovatus 

contains two PULs, implemented in the deconstruction of complex xylans. A schematic 

of the xylan PULs of B. ovatus is shown in Figure 1.9. Interestingly, the two loci appear 

to be regulated by different signalling molecules. The xylan PULs, designated PUL-

XylS and PUL-XylL, were up-regulated by undecorated xylans (birchwood 

glucuronoxylan (BGX)) or by more complex GAXs and arabinoxylans. Interestingly, 
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PUL-XylS encodes for fewer enzymes, reflecting the lower complexity of the glycans 

targeted by the locus. Both PULs encode a plethora of glycoside hydrolases belonging 

to CAZy families with known activities against xylans. However, PUL-XylL encodes 

glycoside hydrolases belonging to families which were not implicated in xylan 

deconstruction (GH31, GH95, GH97 and GH98), and highlights the potential 

difficulties faced when predicting enzyme specificities based on CAZy family location.  

Three surface enzymes, located in GH10 (BACOVA_04390), GH30 

(BACOVA_03432) and GH98 (BACOVA_03433), were implicated in the cleavage of 

the xylan backbone at the cell surface. Interestingly, the activity of the surface GH10 

enzyme appeared to be tailored to generate xylooligosaccharides with a DP >5.  

Previously characterised GH10 family members appear better suited to targeting 

smaller xylooligosaccharides.  Indeed, the typical GH10 (β/α)8-fold barrel of the 

enzyme appeared to be interrupted by two xylan binding CBMs, and it is speculated 

to form the extended substrate binding cleft of the enzyme (Rogowski et al., 2015).  

Such evidence suggests BACOVA_04390 had evolved to accommodate longer 

oligosaccharides at the cell surface, reducing release of short chain oligosaccharides 

which could potentially be lost to the extracellular space. The surface GH30 enzyme, 

BACOVA_03432 targets glucuronoxylan, conferred by the infrequent (Me)GlcA side 

chains positioned in the -2 subsite of the enzyme, which thus generates long 

oligosaccharides with a DP ~10. Similarly, the surface GH98, BACOVA_03433 

generates oligosaccharides specifically from CX; the first GH98 family member to 

display endo-xylansae activity. The GH98 enzyme required unique specificity 

determinants for activity, requiring xylopyranose and arabinofuranose decorations 

linked O3 and O2 to the xylan backbone. The three surface xylanases of the xylan 

PULs therefore require infrequent specificity determinants for activity, recognising the 
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differing decorations of a multitude of xylans and are seemingly adapted to target 

different substrates.  

The binding specificity of the SusD-like surface binding proteins of PUL-XylS and PUL-

XylL reflect the enzyme and signalling specificities of their respective PULs. 

BACOVA_04390 of PUL-XylS bound to xylooligosaccharides with a a DP >6, 

consistent with the xylooligosaccharide products liberated by GH10 endo-xylanase 

activity. BACOVA_03427, encoded by PUL-XylL, displayed affinity for BGX and CX, 

but not WAX or undecorated xylooligosaccharides.  

 

 

 

 

Figure 1.9. The xylan PULs encoded by B. ovatus. A schematic of the two xylan PULs 

encoded by B. ovatus, PUL-XylL and PUL-XylS respectively. Protein encoding ORFs are 

labelled according to protein function or CAZy sequence based family (if applicable). 

Figure adapted from Rogowski et al., 2015.  
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Three SGPB are also encoded by the xylan PULs of B. ovatus. The SGPB encoded 

by PUL-XylS displayed identical specificity as the SusD-like protein encoded by the 

same PUL, binding to undecorated xylooligosaccharides with a degree of DP >6 with 

affinities higher than the SusDh protein. 

Only one SGBP encoded by PUL-XylL demonstrated binding activity. 

BACOVA_03431, which bound to both BGX and CX. Interestingly, BACOVA_03431 

appears to be related to the GH10 family of xylanases but lacks the conserved catalytic 

nucleophile of the family. Similarly, the -2 subsite appeared to be abrogated. The 

SGBP, BACOVA_03431, appears to be an ‘inactive’ GH10 enzyme and is the first 

example of a catalytically inactive enzyme functioning as an SGBP.  

Similar to the xyloglucan utilization model (Larsbrink et al., 2014), the bulk of xylan 

decoration removal occurs in the periplasm, and is performed by an array of exo-acting 

enzymes. Such enzymes display activities against xylan decorations in different 

contexts. For example, BACOVA_03422, the first GH31 family member to display α-

xylosidase activity, liberates α-D-xylose units from the side chains of corn xylan but 

displays no activity against xyloglucan.  

Deletion studies performed by Rogowski et al. (2015) again reinforce the differing roles 

of PUL-XylS and PUL-XylL in degrading different xylans. Deletion of PUL-XylS 

abrogated B. ovatus growth on simple xylans, but not complex xylans. Conversely, 

deletion of the larger PUL, PUL-XylL, prevented B. ovatus growth on complex xylans 

but not on linear xylans.  

 

 

 

 



43 
 

 

 

1.7 Objectives 

 

The aims of this study are as follows; 

1. To further elucidate the specificity the CBM65 family demonstrates for 

xyloglucan over linear glucans through the biochemical and structural 

characterization of the second CBM65 module (CBM6BB), encoded by the 

endoglucanase EcCel5A. 

2. To explore the hierarchal degradation and mechanisms of yeast α-mannan 

utilization by B. theta through the biochemical characterisation of glycoside 

hydrolases which target α-mannosidic linkages. Elucidate the biochemical 

mechanisms by which B. theta targets the α-mannan of different yeast species, 

and to understand how the enzymatic ensemble encoded by the yeast α-

mannan PULs and high mannose N-glycan PUL of B. theta displays specificity 

for similar, but structurally distinct glycans.  

3. Explore β1,6-glucan utilization and degradation by Bacteroides through the 

biochemical and structural  characterisation of the enzymes/proteins encoded 

by the β1,6-glucan degrading apparatus. 
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Chapter 2: Materials and Methods 

 

2.1 Molecular biology 

2.1.1 Bacterial strains and plasmids 

The strains of Escherichia coli and plasmids utilized in this study are listed in the 

Tables 2.1 and 2.2. 

 

 

 

 

 

 

 

 

 

Strain Description Usage Reference 

BL21 

(DE3) 

F'ompT,hsdSB (rB-mB), gal.dcm. (DE3) Protein Expression Studier and 

Moffat (1986) 

TUNER 

(DE3) 

F'ompT,hsdSB (rB-mB), gal.dcm. lacY1, 

(DE3) 

Protein Expression Novagen 

TOP 10 F-mcrA Δ(mrr-hsdRMS-

mcrBC)±80lacZΔM15 ΔlacX74 recA1 

end A1 araD139 Δ(ara, leu)7697 galU 

galK Δλ- rpsL nupG tonA hsdR 

DNA manipulation Invitrogen 

Plasmid Size (kb) Genotype Supplier 

pET21a 5.4 Ampr*, T7 lac laclq Novagen 

pET28a 5.4 Kanr**, T7 lac laclq Novagen 

pET32b 5.9 Ampr*, T7 lac laclq Novagen 

PET43b 5.9 Kanr**, T7 lac laclq Novagen 

Table 2.1. Bacterial Strains used in this study 

Figure 1 

Table 2.2. List of plasmids used in this study 

*Ampicillin resistant. **Kanamycin resistant.  
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2.1.2 Growth media  

Growth media used in this study is presented in Table 2.3. Once fully dissolved, all 

growth media utilized were subjected to autoclaving, as detailed in section XX. Unless 

stated otherwise, growth media, like all chemicals and reagents in this study, were 

resuspended in 18.2 MΩ H2O produced by a Millipore Milli-RO 10 purification system. 

 

 

 

 

Medium Reagents Amount per litre Notes

Bacto®tryptone 10 g

Bacto®yeast extract 5 g

NaCl 10 g

LB-agar Agar 2 g Agar added to pre-prepared 

100 mL LB media (2%), 

sterlilised and cooled before 

antibiotic addition

Tryptone Peptone 10 g

Bacto Yeast extract 5 g

Glucose 2 g

Cysteine (free base) 0.5 g

1 M KPO4 pH 7.2 100 mL

Vitamin K solution, 1 mg/mL 1 mL

TYG salts 40 mL

0.8% CaCl2 1 mL

FeSO4 , 0.4 mg/mL 1 mL 

Rasazurin, 0.25 mg/mL 4 mL

His-Heam solution (0.2 M 

Histidine, pH 8.0

See notes

NH4SO4
1 g

Na2CO3
1 g

Cysteine (free base) 0.5 g

1 M KPO4 pH 7.2 100 mL

Vitamin K solution, 1 mg/mL 1 mL

FeSO4 , 0.4 mg/mL 10 mL

Rasazurin, 0.25 mg/mL 4 mL

Vitamin B12 0.01 mg/mL 0.5 mL

Mineral salts for defined medium50 mL

His-Heam solution (0.2 M 

Histidine, pH 8.0)

See notes

Final pH adjusted to 7.4 

using NaOH.

 Appropriate volumes of 

media were aliquoted into 

individual vessels prior to 

autoclaving. Media was left 

to cool before His-heam 

solution addition (1 µM per 1 

mL)

For growth experiments, 

excluding the appropriate 

controls, concentrated 

monosaccharide/polysaccha

ride solutions were added for 

a final concentration of 5 

mg/mL following sterilization 

and cooling. His-heam 

solution was added like TYG 

media.

Lucia-Bertani (LB) 

TYG media

Minimal Media 

Table 2.3. Growth media 
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2.1.3 Selective media  

Selection of bacterial cells harbouring the plasmid of interest was performed by the 

addition of the appropriate antibiotic stock solution (1000-fold dilution) to growth media 

< 55 oC. Antibiotic stocks used are displayed in Table 2.4. 

 

 

 

2.1.4 Sterilisation  

Growth media, apparatus and solutions utilized in the growth of bacterial cells were 

sterilized via autoclaving at 121 oC, 32 lb/ inch-1 for 20 min. Heat sensitive reagents 

were sterilised by filtering through 0.22 – 1 µM pore, filter discs (Supor® Acrodiscs 

(Millipore)) using sterile syringes.  

 

2.1.5 Storage of DNA and bacterial cells 

Plasmid DNA was stored at -20 oC in 10 mM Tris/HCl buffer, pH 8.5 (Elution buffer, 

(Qiagen)).  Bacterial colonies grown on agar plates were stored at 4 oC for a maximum 

of one week.  Bacterial cells subject to long term storage were kept at -80 oC in 25% 

glycerol (v/v).  

Antibiotic Stock 

Concentration 

Final antibiotic 

concentration 

Storage 

Ampicillin 100 mg/mL in H20 100 µg/mL 4 oC < 5 days 

Kanamycin  10 mg/mL in H2-0 10 µg/mL 4 oC < 5 days 

Table 2.4. Antibiotic stocks 



47 
 

2.1.6 Plating of bacterial cells 

Prior to spreading, a metal utensil was sterilised via submersion in 100% ethanol and 

passing through a flame and subsequently allowed to cool (~30 sec). Bacterial cells, 

suspended in media (100 µL), were pipetted onto the surface of the media-agar plate 

and spread evenly over the plate surface. Plated cells were incubated for 16 h at 37oC 

2.1.7 Anaerobic growth of B. thetaiotaomicron and B. ovatus 

Bacteroides species were cultured in tryptone, yeast extract, glucose (TYG) media 

when optimal growth was required and to generate a ‘viable’ cell population following 

cryo-storage. Typically, a glass test tube containing 5 mL of TYG media (prepared as 

described in Section 2.1.3) was inoculated with 50 - 100 µL of Bacteroides cells from 

a glycerol stock (25% (v/v)) or directly from a previous culture. The tubes were 

subsequently incubated in an anaerobic cabinet at 37oC until stationary phase was 

reached (2.0 OD600nm). 

For experiments assessing the ability of Bacteroides species to utilize differing carbon 

sources, minimal media was utilized (prepared as described in Section 2.13). Prior to 

experiments, cells were first washed via repeated centrifugation (5,000 x g, 10 min) 

and resuspension steps.  Cells were pelleted, supernatant discarded and cells 

resuspended in minimal media (5 mL) at least three times. Sterile tubes containing 5 

mL minimal media were inoculated with 200 µL of washed cells. The appropriate 

carbon source was added for a final concentration of 5 mg/ml via the addition of a 

concentrated sugar stock, sealed with cotton wool and incubated in an anaerobic 

cabinet (37oC). Cell growth was monitored by measuring the optical density of cells 

within the anaerobic cabinet via the use of a spectrophotometer. 

2.1.8 Centrifugation 

Cultured bacterial cells (100 – 1000 mL) were harvested via low speed centrifugation 

(5,000 x g for 10 min) in 500 mL vessels at 4oC using a JA-10 rotor and a Beckman 
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Coulter, J2-21 centrifuge. Bacterial cultures which were < 10 mL were centrifuged in 

25 mL sterilin tubes at 5,000 x g for 10 min using a Hettich Zentrifugen bench-top 

centrifuge. For Cultures < 1 mL, Eppendorf tubes were used as vessels and pelleted 

using a HEREAEUS PICO17 (Thermo Scientific) bench-top centrifuge. 

2.1.9 Chemically competent E. coli 

The chemically competent E. coli cells utilized in this study were prepared utilizing a 

protocol derived from Cohen et al. (1972) (Cohen et al., 1972). A single E. coli colony 

was used to inoculate 5 mL of LB media and incubated at 37oC for 16 h with 180 RPM 

shaking. The overnight culture (1 mL) was subsequently used to inoculate 100 mL of 

LB media and incubated under the previously described conditions until an OD600nm of 

4.0. The cells were put on ice for 20 min, and pelleted via gentle centrifugation (280 x 

g for 5 min). The resultant supernatant was discarded and pelleted cells were 

resuspended in 3 mL of ice cold 0.1 M CaCl2. The aforementioned process was 

repeated but with cell resuspension in 1 mL of ice cold 0.1 M MgCl2. Cells were 

subsequently kept on ice for 2 h, completing the process. Competent cells were stored 

as 100 µL aliquots with 25 % (v/v) glycerol at -80oC for long term storage.  

2.1.10 Transformation of E. coli 

Plasmid DNA (4 ng) was pipetted directly into competent E. coli cells (Section 2.1.9), 

mixed via gentle tapping and put on ice for 30 min under flame sterile conditions. Cells 

were subsequently heat shocked at 42oC for 1.5 min, before being replaced back into 

ice for a further 2 min. LB media (500 µL) was added to cells before incubation at 

37oC/180 RPM shaking for 1 h.  Following recovery, bacterial cells were subjected to 

gentle centrifugation (1.5 k RPM for 2 min). Upon centrifugation, 500 µL of supernatant 

was discarded, and transformed cells were gently resuspended in the remaining media 

supernatant by pipetting. Resuspended cells were then plated onto the appropriate 

antibiotic containing LB-agar plate as detailed in Section 2.1.3. 
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2.1.11 Replication of DNA 

The E. coli TOP 10 cell strain was utilized to generate plasmid DNA. TOP 10 cells 

were transformed, as described in Section 2.1.10 and plated on selective LB plates as 

described previously. Following incubation and TOP 10 colony formation, a single 

colony was used to inoculate 5 mL of LB-media containing the appropriate antibiotic. 

Cells were allowed to incubate at 37oC for 16 h with 180 RPM shaking. The cultured 

cells were subsequently harvested via centrifugation at 5,000 x g for 10 min. Resultant 

supernatant was gently removed and discarded before plasmid DNA was extracted 

from cells using a Qiagen QIAspin miniprep kit according to manufacturer’s 

instructions.  

2.1.12 Determination of DNA and protein concentration 

The estimated concentration of purified DNA and protein was assessed by absorbance 

at 260nm and 280nm respectively using a spectrophotometer (NanoDrop 2000 UV-

Vis spectrophotometer (Thermo Fisher Scientific Inc, USA) and applying the Beer-

Lambert formula; 

A = εCI 

 

Where by A = absorbance 280nm or 260nm; ε = molar extinction coefficient; I = length 

of light path (cm) and C = molar concentration of sample. The extinction coefficient of 

recombinant proteins was predicted using the following online tool; 

http://web.expasy.org/protparam/.  

2.1.13 Extraction of genomic DNA from Bacteroides cells 

Extraction of genomic DNA from Bacteroides cells was performed using the Sigma 

GenElute™ Genomic DNA kit, according to manufacturer’s guidelines. 
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2.1.14 mRNA extraction and protection from Bacteroides cells 

For experiments where-by the up-regulation of open reading frames in response to 

molecular cues needed to be ascertained in Bacteroides, Bacteroides cells were 

cultured anaerobically in minimal media and the appropriate carbon source as 

described in Section 2.1.7. Once mid-exponential phase (0.6 – 0.8 OD600nm) was 

reached, the RNA of the bacterial cells was protected and extracted using the 

RNAprotect (Qiagen) reagent and the RNeasy Plus minikit (Qiagen), respectively, in 

accordance with manufacturer’s guidelines.  

2.1.15 Reverse transcription of mRNA to cDNA 

The reverse transcription of mRNA to cDNA (extracted according to Section 2.1.14), 

was performed using the QIAGEN QuantiTect Reverse Transcription Kit, in 

accordance with manufacturer’s guidelines.  

2.1.16 Polymerase Chain Reaction 

DNA amplification was performed by PCR, using the Novagen Hot start PCR kit 

(Novagen). A typical PCR reaction is shown in Table 2.5. In this study, standard PCR 

was used primarily to amplify the DNA of protein encoding open reading frames 

(ORFs) via specific primers, complementary to each strand of the DNA molecule and 

designed to the flanks of the DNA region to be amplified (Mullis and Faloona, 1987). 

Primers were designed such that ~20 bases were complementary to the target DNA 

sequence. Where possible, target sequences were extended/reduced to permit for 

optimal G/C content; ensuring a melting temperature (Tm) of ≥ 50oC and a difference 

in Tm between the two primers not exceeding 5 oC. For cloning experiments, 

endonuclease restriction sites were engineered onto the 5’ end of the primers. An 

additional six bases were added onto the primer, preceding the restriction site, to 

facilitate restriction enzyme cleavage and subsequent ligations in similarly cut vectors. 

The online service, Webcutter 2.0 (http://rna.lundberg.gu.se/cutter2/), was used to 

http://rna.lundberg.gu.se/cutter2/
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ensure desired restriction sites were not encoded internally within the DNA sequence 

to be amplified. OligoCalc (http://www.basic.northwestern.edu/biotools/oligocalc.html) 

was used to calculate primer parameters using the following formula; 

 

Tm = 64.9 + 41* (yG + zC -16.4)/ wA +xT +yG +zC) 

Where w, x, y, z are the number of bases A, T, G, C in the sequence, respectively 

 

Primers were synthesised and provided in lyophilized form by Eurofins MWG 

(Germany), and subsequently resuspended in highly distilled H20 (Sigma-Aldrich, UK) 

with a volume appropriate to provide the desired concentration. Amplifications were 

performed using a PHC-3 thermocycler (Biorad). A typical thermo-cyclic reaction is 

shown in Table 2.6.  The success of the amplification and integrity of the amplified 

products was analysed using agarose gel electrophoresis (Section 2.1.18) 

 

 

 

 

 

 

 

 



52 
 

 

Reagents Volume 

Highly pure H2O 24 µL 
10 x KOD buffer (10 X 1.2 M Tris-HCL, 100 
mM KCl, 50 mM (NH4)2SO4, 1% Triton X-100, 
0.01% BSA, pH 8.0) 

5 µL 

dNTPs (2 mM) 5 µL 
MgSO4 (25 Mm) 4 µL 
Template DNA (~70 ng/µL) 1 µL 
Novagen KOD DNA polymerase (2.5 
U/µL) 

1 µL 

Forward oligonucleotide primer (5 µM) 5 µL 
Reverse oligonucleotide primer (5 µM) 5 µL 
Total Volume 50 µL 

 

 

Program name Event Temperature Duration Number of 

cycles 

Program 1 Denaturation 95oC 1 min 1 

Program 2 Denaturation 95 oC 1 min 

30 Annealing 50 oC 1 min 

Extension 68 oC 1 min/ 1 kbp 

Program 3 Final extension 68 oC 10 min 1 

Program 4 Storage 10 oC 16 h 1 

 

 

2.1.17 Site-directed mutagenesis 

Site directed mutagenesis (SDM) is a technique utilizing PCR to introduce nucleotide 

changes that encode a single, specific, amino acid change in the target protein. 

Forward and reverse oligonucleotide primers harbouring the mutation (in the centre of 

the primer) were designed to be complementary to the plasmid DNA template and 

codon optimised for E. coli. Primer parameters were calculated as described in Section 

2.1.16. For SDM applications, primers were typically designed to ~30 bp and to 

Table 2.5. Typical PCR reaction 

Table 2.6. Typical PCR thermocycle 
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possess melting temperatures of ≥ 50 oC. The standard SDM-PCR reaction, utilizing 

a Novagen hot-start KOD DNA polymerase, is displayed in Table 2.7. The thermo-

cyclic program is shown in Table 2.8. The success of the amplification and integrity of 

the amplified products was probed as described in Section 2.1.12 

 

5 µL  10 x Reaction buffer (20 mM Tris-HCL, pH 7.5) 

1 µL  dNTP mix (2 mM each) 

1 µL  KOD DNA polymerase (2.5 U/µL ) 

20 ng Plasmid dsDNA template 

125 ng Forward oligonucleotide primer 

125 ng Reverse oligonucleotide primer 

  Ultra-pure sigma H2O to a final volume of 50 µL 

 

 

 

 

1 cycle at 950C for 2 min 

18 cycles at 950C for 1 min 

  550C for 1 min 

  680C for 2 min/kb of plasmid length (vector + insert) 

 

 

Table 2.7. A typical SDM-PCR reaction mixture 

Table 2.8. Thermocycler program for SDM-PCR reaction 
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After successful PCR amplification, 1 µL (10 units) of Dpn1 restriction enzyme was 

added to the reactions and incubated for 1 h at 37 oC. The enzyme digested parental 

methylated DNA but not the newly amplified, unmethylated DNA (harbouring the 

mutation). The plasmid DNA containing the mutation was then transformed into 

Escherichia coli TOP10 competent cells. SDM-plasmid DNA was subjected to 

sequencing analyses by Eurofins MWG, and read in the forward and reverse direction 

using primers designed to the T7 promoter and T7T terminator regions contained in 

the pET vectors (Novagen). 

2.1.18 Analysis of PCR result by agarose gel electrophoresis of DNA 

Agarose gel electrophoresis was used to probe the success of PCR, allowing for the 

detection and separation of amplified DNA fragments by size. Agarose gels (1 %) were 

created by the addition of 0.5 agarose (low grade (Melford Ltd) or SeaKem® Gold 

Agarose (Lonza) into 50 mL of 1 x 0.9 mM Tris base/ 0.9 mM boric acid/ 0.2 mM EDTA, 

pH 8.0 (TBE) buffer and subjected to heating via microwave. Once sufficiently cooled 

(< 50oC), ethidium bromide (1 µg/mL final concentration) was added, allowing 

visualisation of DNA. Gels were cast in mini-gel trays (Biorad) with an appropriate 

comb to provide wells. Once set, the gel-containing tank was filled with ~50 mL 1 x 

TBE buffer. Samples to be ran were prepared via the addition of 5 µL loading buffer 

(0.25% (w/v) bromophenol blue, 50% (v/v) glycerol, 10 x TBE buffer) to 5 µL of PCR 

reaction/DNA and loaded into wells. Hyperladder™ I markers were ran as DNA 

fragment size standards. Electrophoresis was ran at a constant voltage of 70 V for ~45 

min. Gels were visualised using Bio-Rad Gel Doc 1000 system (Bio-rad)  

2.1.19 Purification of PCR products 

Products of PCR amplification were purified using the Qiagen QIAquick PCR 

purification Kit (Qiagen), according to manufacturer’s instructions. To separate and 

purify amplicons of interest, DNA was extracted from the agarose gel (Seakem® Gold 
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Agarose) and purified using the Qiagen QIAquick Gel Extraction Kit (Qiagen), in 

accordance with manufactures’ guidelines 

2.1.20 Digestion of DNA using restriction enzymes 

Restriction digest of double stranded DNA harbouring endonuclease restriction sites 

was performed according to manufacturer’s guidelines (MBI Fermentas), providing 

optimal conditions for endonuclease activity. DNA subjected to endonuclease activity 

was purified as detailed in Section 2.1.19, preceding subsequent ligation steps.  

2.1.21 Ligation of digested insert and vector DNA 

Before being subjected to ligation, digested insert DNA and vector DNA were first 

purified as described in Section 2.1.19. DNA concentrations were first ascertained as 

detailed in Section 2.1.12, in order to provide a molar ratio of insert to vector of 3:1 in 

ligation reactions. Ligations were performed using the Novagen rapid ligation kit 

(Novagen) in accordance with manufacturer’s instructions. A typical ligation reaction 

is shown in Table 2.8. Reactions were left at room temperature for 30 min and 

subsequently used (10 µL) to transform E. coli TOP 10 cells as described in Section 

2.1.10. 
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Reagents Volume 

Vector ( X ng/µL) Concentration dependant 

Insert DNA (Y ng/µL) Concentration dependant 

5 x Ligase buffer (250 mM Tris/HCL, pH 7.6, 

50 mM MgCl2, 25 µM ATP, 25 mM dithiothretol, 

25% (w/v) polyethylene glycol 8000) 

4 µl 

T4 DNA ligase (4 U/µL) 1 µl 

Ultra-pure H2O Up to total volume 

Total volume 20 µL 

 

 

2.1.22 Automated DNA sequencing 

DNA sequencing was performed using the MWG Biotech (Germany) Value Read 

service, to ensure the successful introduction of the desired mutation into the protein 

encoding DNA sequence (SDM) and/or to assess plasmid DNA integrity. Plasmid DNA 

samples (1.5 µg) were lyophilized using a vacuum pump. Typically, plasmids were 

sequenced from the forward and reverse direction using T7 promoter 

(TAATACGACTCACTATAGGG) and T7 terminator (CTAGTTATTGCTCAGCGGT) 

primers respectfully. If Internal regions of inserted DNA sequences were beyond 

flanking sequencing range, complementary internal primers were designed to probe 

sequence integrity. Bespoke primers for sequencing were also synthesised and 

utilized by MWG Biotech (Germany). Generated sequencing data was analysed using 

a multiple sequence alignment tool such as ClustalW 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). 

 

Table 2.9. Typical Ligation reaction 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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2.1.23 Quantitative PCR 

Quantitative PCR was performed using a Roche Light Cycler 480 real-time PCR 

system. For each sample of DNA to be quantified, 10 ng of cDNA (Section 2.1.15) was 

used and ran in duplicate. A typical qPCR reaction consisted of 5 µL SYBER green I 

master mix (Roche), 1 µL of forward and reverse primer (5 µM), 2 µL of cDNA template 

and 1 µL ultra-pure H20.  A typical qPCR reaction consisted of three cycles. 1) 

denaturing – 1 cycle, at 95oC for 5 min.; 2) cycling – 45 cycles at 95oC (5 sec), 50 oC 

(5 sec) and 72 oC (10 sec), respectively and 3) melt curve – 1 cycle at 95 oC (5 sec) 

and 65 oC for 1 min. The resultant data was analysed using the LightCycler® 480 

version 1.5.0.39 software (Roche) 

2.1.24 Over-expression recombinant proteins in E. coli 

E.coli BL21 or TUNER cells were transformed as described in Section 2.1.10 with 

the plasmid encoding antibiotic resistance and gene of interest, and plated onto 

Luria-Bertani (LB) media-agar with the appropriate antibiotic (10 µg/mL (kanamycin) 

or 100 µg/mL (ampicillin)). The transformed cells were grown for 16 h at 37 oC, and 

were subsequently used to inoculate 1 L baffled flasks of LB broth media containing 

the selective antibiotic (10 -100 µg/mL final concentration). Bacterial cells were 

cultured at 37oC with 180 RPM shaking to mid-exponential phase (A600 = 0.6). After 

cooling of bacterial cultures to room temperature, recombinant protein expression 

was induced via the addition of 1 mM (E. coli BL21) or 0.2 mM (E. coli TUNER) 

isopropyl β-D-1-thiogalactopyranoside (IPTG).  Induced cells were incubated 

overnight at 16 oC with 150 RPM shaking.  Cells were harvested via centrifugation at 

5000 x g for 10 min. The bacterial pellet was subsequently resuspended in 10 mL 

Talon buffer (20 mM Tris/HCl, 300 mM NaCl, pH 8.0) and sonicated, lysing the cells. 

The sonicated pellet was centrifuged at 15, 000 x g for 30 min, leaving a supernatant 

containing the soluble fraction (cell free extract, (CFE)) and an insoluble fraction (the 
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pellet).  The CFE containing the recombinantly expressed protein was then 

subjected to Immobilized Metal Affinity Chromatography (IMAC).  

2.1.25 Purification of protein 

2.1.25.1 Immobilised metal affinity chromatography (IMAC) 

Immobilized metal affinity chromatography was utilized to purify recombinant protein.  

The column, containing 2 mL bed volume of Cobalt Talon Resin (ClonTech), was 

first equilibrated by passing 20 mL Talon buffer through the column. The cell free 

extract (CFE), containing the His-tagged recombinant protein, was loaded onto the 

column through a 1.2 AcroDisc syringe filter (Pall Corporation), binding the tagged 

protein to the resin.  The column was washed using 20 mL Talon buffer, before the 

protein was eluted in a series of 10 mL elution steps using increasing concentrations 

of Talon buffer containing imidazole (5 mM and 100 mM respectively). Each fraction 

was subsequently analysed using SDS-PAGE for quality control.  Elution fractions of 

sufficient purity were dialysed overnight in 4 L of buffer at an appropriate pH 

(selected to reduce protein precipitation), removing imidazole from the purified 

fraction.  Protein concentration was analysed post-dialysis, as described in Section 

2.1.12. 

2.1.25.2 Ion-exchange and gel filtration chromatography 

Recombinant proteins of insufficient purity were subjected to further purification via 

ion-exchange chromatography and/or gel filtration, as were proteins entering crystal 

trails. An Akta pure system (GE healthcare) was utilized for both ion-exchange and 

gel filtration chromatography. Anion exchange chromatography was performed using 

a CaptoQ (GE healthcare) column. Proteins subjected to anion-exchange were first 

dialysed overnight into 20 mM TRIS/HCL pH 8.0 (Buffer A), concentrated if required 

(See Section 2.1.27) and subsequently loaded onto the pre-equilibrated column using 

a 1 mL loop (maximum of 10 mg total protein). A reservoir of 20 mM Tris/HCl,1 M 
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NaCl, pH 8.0 solution (Buffer B) was utilized to provide an increasing salt gradient over 

time. Fractions (1.5 mL) above an absorbance threshold of 0.02 absorbance units 

(280nm) were collected and subsequently probed by SDS-PAGE analysis.  

Gel filtration was performed using a HiLoad™ 16/60 Superdex™ 200 Prep grade 

column (GE Healthcare). Preceding the injection of protein,  the column was first 

equilibrated by passing two column volumes of buffer A (20 mM Tris, 150 mM NaCl, 

pH 8.0) through the column. The protein sample (concentrated to 1 mL), was 

subsequently loaded into a 1 mL loop and injected onto the column. Buffer A was 

passed through the column at a flow rate of 1 mL min-1. Protein fractions (1.5 mL) 

exceeding the set absorbance threshold were analysed in the same manner as 

described for anion-exchange. 

 Following SDS-PAGE analysis, samples of sufficient purity were pooled and buffer 

exchanged into a buffer of choice through repeated concentration/dilution steps (See 

Section 2.1.27). 

2.1.26 SDS-PAGE analysis 

The relative purity and size of recombinantly expressed proteins was analysed via 

SDS-PAGE. Polyacrylamide gels of 12.5 % (v/v) were utilised in this study. The 

polyacrylamide gels consist of two layers, a stacking layer and a larger resolving later 

respectively. The composition of each respective layer is displayed in Table 2.9. Gels 

were cast in 12 cm x 10 cm glass plates (ATTO Corporation (Genetic Research 

Instruments) and sealed via rubber bands. The resolving layer was first poured into 

the glass cassette, filling two 2/3s of the cassette, and topped off with water. Once the 

resolving layer had polymerised, additional water was discarded before the final 

stacking layer was poured. A comb (providing wells) was placed into the stacking 

layer, and allowed to set. Before gel use, the rubber seal and comb were removed. 
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Protein samples were prepared by the addition of 7 µL SDS loading buffer (Table 2.9) 

to 10 µL of purified protein fractions. Quality control samples generated during a typical 

IMAC purification, such as the insoluble fraction, cell free extract, un-bound flow 

through and the column wash, were prepared by adding 7 µL of SDS loading buffer to 

1 µL of the respective fraction.  Samples were boiled in a heat block for 3 min and 

centrifuged at 13,000 RPM for 5 min before being loaded onto the gel. Protein 

standards (Sigma), providing Mr markers, were ran with protein samples to provide an 

estimation of protein size. 

SDS-PAGE was performed by placing the gel containing plates within the 

electrophoresis  tank, which is filled with running buffer (Table 2.9). Samples were 

loaded onto the gel via pipetting and subjected to electrophoresis at a current of 35 

mA per gel. Protein bands were stained upon the completion of electrophoresis via 

submerging the acrylamide gel in Coomassie Blue stain (0.4% Coomassie Brilliant 

Blue R, 10% (v/v) glacial acetic acid) for ≥ 30 min and visualised using a Bio-Rad Gel 

Doc 1000 system (Bio-rad). 
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Reagent Volume/Amount 

Resolving Gel (12.5%) For 4 gels 

0.75 M Tris/HCl buffer, pH 8.8, 0.2 % SDS 9.4 mL 

40% Acrylamide 5.8 mL 

H20 3.5 mL 

10% (w/v) Ammonium persulphate 90 µL 

TEMED 30 µL 

Stacking gel  

0.25 M Tris/HCl buffer, pH 8.8, 0.2 % SDS 3.75 mL 

40% Acrylamide 0.75 mL 

H20 3.0 mL 

10% (w/v) Ammonium persulphate 60 µL 

TEMED 20 µL 

Loading buffer  

SDS 10% (w/v) 

0.25 M Tris/HCl buffer, pH 8.8, 0.2% SDS 5 mL 

Glycerol 25% (w/v) 

β-mercaptoethanol 2.5 mL (w/v) 

Bromophenol blue dye 0.1% 

Running Buffer  

32 mM Tris/ 190 mM glycine, pH 8.3 350 mL 

SDS 0.1% 

 

 Table 2.9 SDS-PAGE buffers 
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2.1.27 Concentrating protein and buffer exchange 

Purified protein fractions were concentrated using 20 mL Vivaspin™ centrifugal 

concentrators (Vivasceince) with appropriate Mr cut offs, dependant on protein size 

(30 or 10 kDa respectively). Centrifugation (5,000 x g) was performed using a swing 

out – MSE Mistral 3000i desktop centrifuge (MSE, UK).  For crystal screens where 

buffer exchanging was a necessity, the process was repeated via extensive 

dilution/concentration cycles, where by additional buffer/H2O was added to the protein-

containing compartment and centrifuged until a low volume (< 1 mL). The buffer 

exchange process was repeated at least four times.  

2.1.28 Protein crystallization screens 

The sitting vapour diffusion method was utilized for all crystal screens performed in 

this study. Typically, three commercial screens were utilized unless stated otherwise 

(JCSG+, PACT and STRUCTURE (Qiagen)). Screens were pipetted into the 96- well 

plates by hand.  In general, 80 µL of screen solution was added to the respective main-

well. The protein of interest (mg/mL) was pipetted using a mosquite™ robot (TTP 

Labetch), into the two sub-wells per condition with a 1+1 and 2+1 program, providing 

1 µL of protein plus 1 µL of screen solution and 2 µL of protein samples  plus 1 µL of 

screen solution, respectively. Attempts at the co-crystallisation of protein and ligand 

were performed via the addition of the respective ligand (concentration variable) to the 

protein of interest, before robot distribution.   Plates were visualised using a Leica MZ-

6 microscope (Leica MICROSYSTEMS)  
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2.2 Biochemistry 

2.2.1 Enzyme assays 

Unless explicitly stated, all enzyme assays in this study were performed at 37oC and 

performed in triplicate in the presence of bovine serum albumin (0.1 mg/mL (w/v)). 

Kinetic graphs were plotted using GraphPad Prism 5.0 Likewise, the kinetic 

parameters generated were analysed and calculated using the aforementioned 

software using the appropriate form of regression 

2.2.1.1 Glucose and Mannose detection using mannose assay kit (Megazyme) 

A megazyme detection kit (D-Mannose, D-Fructose and D-glucose (K-MANGL)) was 

used for assays whereby the release of glucose or mannose by glucosidases or 

mannosidases  was quantified, respectively. For the detection of glucose, glucose 

released by the enzyme of interest is phosphorylated by hexokinase and adenosine-

5’-triphosphate (ATP) to glucose-6-phosphate (G-6-P). G-6-P is subsequently 

oxidised by NADP+, in the presence of G-6-P  dehydrogenase, to gluconate-6-

phosphate thereby simultaneously reducing NADP+ to NADPH. The formation of 

NADPH can be quantified at A340nm . The measurement of mannose by the kit relies 

on two additional enzymes to those described above, in addition to the hexokinase 

and G-6-P hydrogenase. Liberated mannose is converted to mannose-6-phosphate 

by a hexokinase, before being converted to fructose-6-phosphate (F-6-P) by 

phosphomannose isomerase (PMI). The generated F-6-P, is then converted to G-6-P 

by phosphoglucose isomerase. The subsequent steps, leading to the reduction of 

NADP+, are the same as described for glucose detection.  

The reactions were performed with the appropriate buffer for the enzyme of interest. 

The reaction mixture, minus enzyme, was aliquoted into glass cuvettes (500 µL) and 

allowed to equilibrate at 37oC, as was enzyme before being added. Absorbance was 

measured overtime at the aforementioned OD using a Pharmacia Ultrospec 400 
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spectrophotometer. The rate of monosaccharide (glucose/mannose)  release is 

stoichiometric to NADP+ reduction and can be quantified using the rate of NADP+ 

reduction over time and the extinction coefficient of NADPH (6300 M-1 cm-1) 

respectively. 

2.2.1.2 Galactose detection using galactose assay kit (Megazyme) 

A linked enzyme assay kit (Megazyme, (K-ARGA)) was used to quantify galactose 

released by galactosidases, and therefore deduce the kinetic parameters of the 

enzyme of interest. The methodology when performing these assays was as described 

in Section 2.2.1.1.  

The enzymes utilized in this assay result in the reduction of NAD+ to NADH, the 

absorbance of which can be measured at A340nm. Galactose, liberated by the enzyme 

of interest, is converted to β-D-galactose by galactose mutarotase. β-D-galactose is 

subsequently oxidised by NAD+ in the presence of β-galactose dehydrogenase . NAD+ 

is thereby reduced to NADH which is stoichiometric to galactose release. The rate of 

galactose release can therefore be quantified, as detailed in Section 2.2.1.1, using the 

extinction coefficient (6200 M-1 cm-1) 

 

2.2.1.3 Determining enzyme kinetic parameters using pNP-substrates 

The kinetic paramters of exo-acting enzymes against pNP-substrates were deduced 

spectrophotometrically, with the same methodology to Section 2.2.1.1. Enzymatic 

cleavage of the pNP group results in a stoichiometric increase in A400nm when the 

glyosidic linkage is cleaved. The resultant 4-nitrophenolate group has a molar 

extinction coefficient of 10,000 at A400nm at pH 7.0. 
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2.2.1.4 5-Dinitrosalicyclic acid assay (DNSA) 

Reducing sugar assays measure the reducing ends of sugars. As a polysaccharide is 

cleaved, a new reducing end is exposed. This can be quantified using DNSA reagent. 

In this study, a reducing sugar assay was used to assay the activity of endo-acting 

enzymes against polysaccharides. Reactions included 1 mg/mL BSA. At the 

appropriate time point, 500 µL of DNSA reagent (1% w/v) DNSA, 0.2% (v/v) phenol, 

1% (w/v) NaOH, 0.002% glucose, 0.05% (w/v) NaS03) was added to a 500 µL aliquot 

of the reaction, terminating enzymatic activity.  The mixture was then boiled for 20 min, 

placed on ice for 10 min and left to equilibrate at room temperature. The absorbance 

of the reactions was measured at 575 nm. A standard curve containing 0, 50, 100, 

150, 200, 250, 300, and 400 µg of the appropriate monosaccharide was utilized to 

quantify the formation of reducing ends.  Excluding the addition of monosaccharide, 

standard curve samples were identical to reaction samples, including polysaccharide 

to control for background reducing ends. 

2.2.2 Fluorescent labelling of substrates  

Substrate labelling with 2-aminobenzamide, enabling detection via HPAEC with a 

fluorescent   detection module (Section 2.2.4), was performed using a Sigma 

GlycoProfile 2-AB labelling kit as per manufacturer’s instructions. 

2.2.3 Thin layer chromatography (TLC) 

In this study thin layer chromatography was used to analyse the digestion products of 

an enzymatic degradation of polysaccharides and oligosaccharides and to analyse 

purified oligosaccharides. Briefly, 3 µL of sample and the appropriate standards (1 

mM) is spotted onto a 10 cm tall TLC plate (Silicagel 60, 20 x 20, Merk). The width of 

the plate was sample dependant. Samples were spotted 1 cm from the bottom of the 

plate with 1 cm spacing between each sample and dried. The plate was placed into a 

1 cm deep pool of running buffer (butan-1-ol/acetic acid/water (2:1:1 (v/v))) inside a 
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covered, glass tank. Running buffer was left to migrate within 1 cm of the top of the 

plate, before being dried and replaced into the tank to run again as done previously.  

The plate was subsequently dried thoroughly and submerged in developer (sulphuric 

acid/ethanol/water (3:70:20 (v/v)), 1 % (w/v) orcinol) for 30 s before again being dried 

thoroughly.  The plate was developed through heating at ~80 oC for  5 min. Enzyme 

digestions to be analysed via Thin Layer Chromatography (TLC) typically included  

BSA (1 mg/mL) and were heat deactivated by boiling for 10 min.  Prior to analysis by 

TLC, assays would be centrifuged at 13,000 x g for 10 min.  

2.2.4 High Pressure Liquid Chromatography 

High pressure liquid chromatography (HPLC) was performed in this study for both 

qualitative and quantitative purposes. HPLC was used to elucidate the products of the 

enzymatic degradation of polysaccharides/oligosaccharides and to verify the 

homogeneity of oligosaccharides generated via size exclusion chromatography 

purification (Section 2.1.25.2 Ion-exchange and gel filtration chromatography). 

Substrate depletion assays were analysed using HPLC to ascertain the catalytic 

efficiency of an endo-acting glycoside hydrolases against oligosaccharides. Samples 

were analysed using a pre-equilibrated, analytical CARBOPACTM PA-200 anion 

exchange column and BorateTrap (Dionex) connected to an automated Dionex DX500 

and ICS3000 system (Dionex), which included a gradient pump, detector 

compartment, electrochemical detector and auto-sampler. Mono/oligosaccharides 

were detected using pulsed amperometric detection (PAD) using the following 

settings; E1 = +0.05, E2= +0.6, E3= -0.6. Typically, samples were eluted with 0-5 min 

100 mM NaOH, 5-25 min 100 mM NaOH and a 0-75 mM NaAC linear gradient, with a 

flow rate of 0.5 mL/min and a maximum pressure of 2000 psi. The appropriate 

monosaccharide and oligosaccharides were used as standards at a concentration of 
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0.1 mM unless stated otherwise. For quantitative assays, an internal standard of 

fucose (0.03 mM) was included in reactions. Fluorescent detection of 2-

aminobenzamide labelled substrates was achieved using a fluorometric detector 

module. Data was collected and manipulated using Chromeleon™ Chromatography 

Management System V.6.8 (Dionex) via a Chromeleon™ server (Dionex) and 

GraphPad Prism 5.0. 

2.2.5 Binding Assays 

2.2.5.1 Isothermal titration calorimetry (ITC) 

The thermodynamic parameters of protein-ligand interactions were ascertained via 

isothermal titration calorimetry (ITC), performed using a MicroCal™ VP-isothermal 

titration calorimeter. Heats of dilution were minimised during ITC experiments by 

dialysing the protein of interest into buffer. Said buffer was subsequently used as a 

solvent for ligand. Protein and ligand samples were first centrifuged (13,000 RPM for 

10 min) to pellet any impurities. Protein (typically 50 µM – 100 µM) was equilibrated in 

the cell of the machine (1.8 mL) at a constant temperature (25oC). Ligand was injected 

into the protein containing cell in 28 titrations of 10 µL with 200 s spacing between 

each injection, with stirring. Temperature fluctuations are measured during ligand 

injection. An increase (exothermic) or decrease (endothermic) in temperature per 

injection over a titration, is indicative of a protein-ligand interactions. 

The thermodynamic parameters of ligand binding generated via ITC, including the 

association constant Ka, binding enthalpy ∆H and the stoichiometry of binding (n) were 

interpreted using MicroCal Origin 7.0 software.  The change in Gibbs free energy ∆G0 

and change in entropy ∆S0 were derived using the following equation; 
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-RTInKa = ΔG = ΔH – TΔS 

R is the gas constant (1.99 cal.K-1 .mol-1), T is the temperature in degree absolute 

(298.15k), ΔG is free energy and ΔS is the entropy of binding. 

2.2.5.2 Affinity gel electrophoresis 

Affinity gel electrophoresis was used as a qualitative screen of binding to assess 

protein-polysaccharide interactions. Single layer, non-denaturing, polyacrylamide gels 

were produced and ran utilizing the same apparatus and equipment as described in 

Section 2.1.26. A typical non-denaturing, native gel consisted of  7.5 % (w/v) 

acrylamide and native buffer  (25 mM Tris and 250 mM glycine buffer, pH 8.3). Ligand 

binding was assessed via electrophoresing the protein/s of interest through a non-

ligand containing and a ligand containing gel. Polysaccharides were incorporated into 

gels prior to polymerisation, typically at a concentration of 0.1 % (w/v) unless stated 

otherwise. 

Protein samples were prepared via the addition of protein (5 µg total) to loading buffer 

(7 µL, 5 % (v/v) glycerol and 0.0025 % bromophenol blue)) and gently mixed. Both 

gels (ligand and non-ligand) were ran concurrently in the same tank, filled with native 

buffer and electrophoresed with a current of 10 mA per gel for ~ 2 h. BSA (5 µg total) 

was ran parallel to protein samples as a negative binding control. The resultant gels 

were stained and visualised following the same protocol as Section 2.1.26 

2.2.6 Generation and verification of substrates 

2.2.6.1 Purification of yeast α-mannan and mutant derivatives  

Overnight cultures of yeast (S. cerevisiae or S. pombe) were used to inoculate 1 L 

non-baffled flasks of Yeast extract/peptone/dextrose (YPD) media. Yeast cells were 

cultured at 30 oC with 150 RPM shaking until fully grown. Cells were harvested via 

centrifugation at 6000 RPM for 10 min. The resultant yeast pellet was resuspended in 
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10 mL 20 mM citrate buffer, pH 7.0 per litre of cell culture. The resuspended yeast 

pellets were subsequently pooled and autoclaved at 126 oC for 90 min. Autoclaved 

cells were subjected to centrifugation at 10,000 RPM for 10 min, giving a supernatant 

containing extracted polysaccharides and a pellet. The supernatant (supernatant 1) 

was collected. The remaining pellets were again resuspended in 20 mM citrate buffer, 

pH 7.0 (1.5 x original resuspension volume) and autoclaved again (125oC, 90 min). 

Following being autoclaved, the above centrifugation step was repeated and the 

resulting supernatant (supernatant 2) collected. Supernatants 1 and 2 were 

subsequently pooled and an equal volume of Fehling’s reagent was added to the 

pooled supernatants. The mixture was incubated at 40 oC for 2 h with stirring. 

Following incubating, the solution was divided into sterilins and the resulting precipitate 

harvested by centrifugation (5,000 x g for 10 min), rendering a pellet and supernatant. 

The supernatant was discarded and the white pellets resuspended with 3 M 

Hydrochloric acid, giving a light green solution (~2 mL of 3 M HCl per pellet). HCl (1 

mL at a time) was added to pellets if not fully dissolved. The resultant green 

resuspension was pooled together and slowly added to 100 mL of methanol/acetic 

acid (8:1) with gentle stirring and incubated for 15 min, giving a thick, white precipitate. 

The precipitate was subsequently pelleted via centrifugation (5000 RPM, 10 min) and 

the supernatant discarded. The pellets were further washed  (x3) with 100 mL 

methanol/acetic acid (8:1) by evenly distributing methanol/acetic acid mixture amongst 

pellets, vortexing briefly and centrifuging for 1500 RPM for 5 min.  A final methanol 

wash step (100% methanol) was performed before pellets were left to dry overnight . 

Once dry, each pellet was dissolved in ultra-pure H20 and dialysed into H20. When 

dialysis was complete, the solution was freeze dried, rendering purified α-mannan. 
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2.2.6.2 Purification of oligosaccharides by size exclusion chromatography 

The respective oligosaccharide mixtures was freeze dried and re-suspended in a 

minimal volume of 50 mM acetic acid (<5 mL).  Size exclusion chromatography was 

utilized to separate the mixture according to molecular mass.  Shorter 

oligosaccharides (D.P <6) were separated using P2 Bio-Gel (Bio-Rad), whilst longer 

oligosaccharides (D.P >5) were separated using P4 Bio-Gel. The respective Bio-Gels 

were packed into two Glass Econo-columnsTM (2.5 cm x 80.0 cm), and connected in 

series with flow-adapters (Bio-Rad) before being equilibrated with degassed 50 mM 

acetic acid, pumped through the columns at 0.2 mL min-1 using a peristaltic pump (LKB 

Bromma 2132 microperpex™).  The digestion mixture was loaded directly onto the 

column bed and allowed to settle before the acetic acid reservoir was pumped through 

the columns at 0.2 mL min-1. After the column dead volume (200 mL) had run through 

both columns, 2 mL fractions were collected with 3 µL of every 10th fraction (or more 

frequently for regions of interest) via TLC, and the D.P. of the oligosaccharides were 

estimated by comparing their migration with appropriate oligosaccharide standards. 

Selected pooled fractions were then freeze dried and analysed further through MALDI 

mass spectrometry (Section 2.2.6.3) and High Pressure ion exchange 

Chromatography (HPAEC) (Section 2.2.4). 

 

2.2.6.3 Mass spectroscopy 

Purified manno-oligosaccharides were analysed via MALDI-TOF MS (Matrix-Assisted 

Laser Desorption Ionisation – Time Of Flight Mass Spectrometry) to measure the 

molecular weight of the purified oligosaccharide. The purified oligosaccharide (100 

µM) was dissolved in water and diluted 10 fold with matrix (2,5-dihydroxybenzoic acid 

(DHB) 10 mg/mL (w/v) . The mixture (2 µL) was then spotted onto a MALDI plate and 

dried to co-crystallize the analyte and matrix before being analysed with the help of 
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Dr. Joe Grey and Dr. Adam Jackson. MALDI-TOF mass spectrometry analyses were 

performed with an AB4700 MS instrument (Applied Biosystems) in positive ion, 

reflector mode with 100 shots taken per spectrum. 

2.3 Bioinformatics 

2.3.1 Alignments 

The sequences of protein encoding ORFs analysed in this study were acquired via the 

integrated microbial genomes (IMG) gene search tool (https://img.jgi.doe.gov/cgi-

bin/mer/main.cgi?section=FindGenes&page=geneSearch). Alignments of DNA and 

protein sequences in this study were performed using ClustlW2 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/)  

2.3.2 Prediction of prokaryotic signal peptides 

The presence/type of signal peptide encoded by gram negative bacterial proteins 

explored in this study was predicted utilizing LipoP 1.0 software, hosted at 

http://www.cbs.dtu.dk/services/LipoP/  
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Chapter 3: Understanding How Non-catalytic 

Carbohydrate Binding Modules Can Display 

Specificity for Xyloglucan 

3.1. Introduction 

Plant biomass represents a major nutrient source for the bacterial ecosystems of the 

rumen and large bowl of mammals (Mackie and White, 1990). This abundant carbon 

source is exploited through an array of microbial plant cell wall degrading glycanases 

encoded by such bacterium. The plant cell wall however, is highly recalcitrant to 

enzymatic degradation owing to its heterogeneous and complex structure (See 

Introduction Section 1.3.1. Because of such complexity, many of the plant cell wall 

degrading glycoside hydrolases encoded by ruminant bacteria often encode for non-

catalytic carbohydrate binding modules (CBMs). Primarily, CBMs potentiate catalytic 

activity through targeting or proximity effects (Bolam et al., 1998) . 

CBMs are grouped into amino acid sequence based families in the CAZY database 

(www.cazy.org) (See Introduction, Section 1.2). Recognition of target ligands by CBMs 

can be highly specific or promiscuous (Montanier et al., 2011). Usually, in CBMs which 

display a degree of plasticity, specificity is conferred through the recognition of a 

structure common to the target ligands. For instance, all CBMs which bind β-glucans 

(β1,4-glucans) also bind xyloglucan (β1,4-glucose backbone, α1,6-xylose single 

substitutions). However, as of yet, no evidence exists to suggest that such CBMs 

target the O6 α-xylose decorations of the polysaccharide, but merely accommodate 

them (Najmudin et al., 2006).  Ligand recognition in CBMs is therefore diverse and 

often compliments the activity/biological context of its cognate catalytic domain. 

A previous report identified an endoglucanase (EcCel5A) encoded by Eubacterium 

cellulosolvens. The enzyme two CBM domains that could not be designated into a 

http://www.cazy.org/
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family based on sequence based similarities (molecular architecture shown in Figure 

3.1). Reported target substrates of the EcCel5A enzyme include lichenin, a β1,3-β1,4 

mixed linked glucan, carboxymethylcellulose and to a lesser extent, oat spelled xylan 

(poly-β1,4-xylose) (Yoda et al., 2005). The two CBMs, CBM65A and CBM65B share 

73 % sequence identity. It was previously reported that the two CBM65 modules of 

EcCel5a displayed binding to acid swollen cellulose and lichenin (β1,3/β1,4 glucan), 

barley β-glucan (β-1,3/β-1,4 glucan) and xyloglucan, indicating an unquantified 

preference for xyloglucan. 

 

 

 

 

 

 

 

Qualitative binding experiments suggest that the CBM65s of EcCel5a display a 

preference for xyloglucan. This was explored during my Masters of Research degree. 

CBM65A and CBM65B were expressed recombinantly and the specificity and 

mechanism of polysaccharide recognition was investigated through quantitative 

binding assessments and a structure informed strategy to probe the ligand binding site 

of CBM65A. No protein in complex with ligand was obtained during the Masters project 

Figure 3.1. The molecular architecture of EcCel5a. CBM65A comprises residues 27 – 120 

of EcCel5a. CBM65B comprises residues 581 – 713 of EcCel5a. 
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and so the exact mechanism of ligand recognition by the CBM65s was unclear. The 

data generated throughout the Masters project is incorporated into the following results 

chapter to provide a clear narrative.   

3.2 Objectives 

The objectives of this chapter are to explore the binding specificity and ligand 

recognition of the CBM65 family, informed by pre-existing biochemical data generated 

during the Masters of Research degree, and to provide further insight into how 

differential ligand recognition of β-glucans is achieved in this newly characterised CBM 

family.  

3.3 Results 

3.3.1 Biochemical characterisation of CBM65 specificity 

3. 3.1.1 Protein expression and purification 

 In order to investigate the binding specificities of the two CBM65s of EcCel5a, DNA 

encoding CBM65A and CBM65B, residues 27 – 170 and residues 581 – 713 of ful 

length EcCel5A respectively, were synthesised with codon usage optimised for 

expression in Escherichia coli and sub-cloned into a pET28a derivative by NZYTech 

Ltd, Portugal. The CBM encoding plasmids were used to transform E. coli TUNER 

competent cells. Cells were cultured and recombinant protein expression was induced 

according to standard protocol as outlined in Materials and Methods, Section 2.1.24. 

The recombinant protein contained an N-terminal His6-tag and were thus purified by 

immobilised metal affinity chromatography. Purity was assessed by SDS-PAGE. Both 

CBM65A and CBM65B ran with an apparent Mr of 17 kDa and 18 kDa respectively, 

consistent with their predicted size. For crystallography, CBM65A and CBM65B were 

purified further using size exclusion chromatography using a HiLoad 16/60 Super-dex 

75 colomn (GE healthcare). Chromatography was carrired out in 20 mM Tris-HCl 
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buffer, pH 7.5 containing 150 mM NaCl. Following purification, confirmed by SDS-

PAGE, recombinant protein was buffer exchanged into Sigma-ultra pure H2O using a 

10 kDa molecular mass centrifugal concentrator (Amicon). 

3.3.2. Specificity of the CBM65s 

3.3.2.1 Qualitative Evaluation of CBM65 ligand binding. 

The binding specificities of CBM65A and CBM65B were explored during the Master of 

Research degree using affinity gel electrophoresis (AGE) to provide a qualitative 

assessment of ligand binding. The results of AGE are displayed in Figure 3.2. 

Recombinant protein was electrophoresed through a non-denaturing, polyacrylamide 

gel in the presence and absence of ligand (varying concentrations (% w/v)). Protein-

ligand interactions retard recombinant protein migration and are indicative of binding 

when compared to the migration of a non-binding standard of bovine serum albumin 

(BSA).  Recombinant CBM65A and CBM65B bound to a several soluble β-linked 

glucans. Binding was observed to barley β-glucan, a β1,3/β1,4 mixed linked glucan 

and to decorated β1,4-linked glucans, such as xyloglucan (α1,6-xylose sidechain 

substitutions) and hydroxyethylcellulose (HEC). Neither CBM65A nor CBM65B bound 

to other β-linked polysaccharides, including xylans, glucomannans or galactans.  No 

binding was observed to α-linked glucans, indicating that the two CBMs preferentially 

target β1,4 – linked glucans. The inability of the CBMs to bind xylan suggests that the 

O6 moieties of the glucose residues which comprise the backbone of the β1,4 – linked 

glucans are specificity determinants, whilst the ability of the two CBM65s to bind to the 

decorated xyloglucan suggest a degree of side-chain tolerance or indeed specificity in 

the binding site of the two proteins. 
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3.3.2.2. Quantitative Evaluation of CBM65 ligand binding  

To further probe the binding specificities of the two CBM65 modules and to 

quantitatively assess the thermodynamic parameters of binding, isothermal titration 

calorimetry (ITC) was performed as described in Materials and Methods, Section 

2.2.5.1. The thermodynamic parameters of ligand binding generated via ITC, including 

the association constant Ka, binding enthalpy ∆H and the stoichiometry of binding (n) 

were interpreted using MicroCal Origin 7.0 software.  The change in Gibbs free energy 

∆G0 and change in entropy ∆S0 were derived using the equations,  also described in 

Materials and Methods, Section 2.2.5.1. 

 

Figure 3.2. Affinity gel electrophoresis of CBM65A and CBM65B against soluble 

polysaccharides.  CBM65A and CBM65B were electrophoresed through a non-denaturing, 

polyacrylamide gel in the presence and absence (Control) of ligand. Bovine serum 

albumin (BSA) acts as the non-binding control. Figure adapted from Luis et al., 2012. 
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Protein Ligand Ka (M-1) ΔG          
(kcal 
mole-

1) 

ΔH 
(kcal 

mole-1) 

TΔS 
(kcal mole-1) 

n 

CBM65A β-Glucan 1.5  (±0.0) x 104  -5.7 -11.8 ± 
0.1 

-6.1 1.01 ± 
0.0 

CBM65A Xyloglucan 1.7 (±1.4) x 105 -7 -18.0 ± 
0.3 

-11.0 1.03 ± 
0.0 

CBM65A Hydroxyethylcellu
lose 

1.2 (±0.0) x 104 -5.5 -11.1 ± 
0.2 

-5.6 1.02 ± 
0.0 

CBM65A Cellohexaose 2.1 (±0.3) x 103   -4.3 -11.3 ± 
5.5 

-6.9 1.0 ± 
0.1 

CBM65A Xyloglucan 
Heptasaccharide 

(XXXG) 

5.62 (±0.1) x 103 -5.1 - 9.6 ± 
0.4 

-4.5 1.03 ± 
0.0 

CBM65B β-Glucan 8.2 (±0.2) X 103 -5.3 -12.1 ± 
0.1 

-6.8 1.0 ± 0.0 

CBM65B Xyloglucan 1.01 (±0.1) X 105 -6.8 -4.2 ± 
0.1 

-7.7 1.0 ± 0.0 

CBM65B Hydroxyethylcellu
lose 

1.42 (±0.4) X 104 -5.6 -7.0 ± 
0.1 

-1.4 1.0 ± 0.0 

CBM65B Cellohexaose 2.31 (±0.2) X 103 -4.6 -2.8 ± 
1.0 

-8.2 1.0 ± 0.3 

CBM65B Xyloglucan 
Heptasaccharide 

(XXXG) 

1.7 (±0.0) x 103 -4.4 -10.2 ± 
0.0 

-5.8 1.0 ± 0.0 

Table 3.1. Affinity and thermodynamics of CBM65A and CBM65B binding to soluble polysaccharides and 

oligosaccharides   
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The results of ITC of CBM65A and CBM65B, generated during the Masters of 

Research project are shown in Table 3.1. Both CBM65A and CBM65B display identical 

binding specificities, consistent with the AGE data. The CBM65s demonstrated affinity 

for the polysaccharide xyloglucan with a (Ka  ~105 M-1), whilst showing a ~10-fold 

reduction in affinity to the undecorated, mixed linked barley β-glucan and to 

hydroxyethylcellulose. 

Binding of the two CBM65s was quantifiably assessed against oligosaccharides. 

Moderate  binding affinities were observed against cellohexaose, with Ka values of 

~103 M-1 for both CBMs. Unquantifiable  binding to the oligosaccharides cellopentaose 

and  cellotetraose  was observed for the CBM65s with an estimated Ka value of << 

~103 M-1.  No binding to cello-oligosaccharides with a degree of polymerisation (D.P.) 

less than four was observed.  The CBMs displayed preferential binding affinities (Ka 

of ~103 M-1) for xyloglucan heptasaccharide (Glc4Xyl3 or XXXG), an oligosaccharide 

consisting of four β1,4-linked glucose residues with single xylose decorations at the 

O6 position of three glucose residues; the reducing end glucose is unsubstituted. The  

binding affinities and specificities of the two CBM65s, preferentially targeting β1,4-

linked and mixed β1,3-β1,4-linked ligands, is consistent with the documented activities 

of the CBM65s cognate enzyme, EcCel5a.  

 Typical of CBM binding to soluble ligands, the thermodynamic parameters of CBM-

ligand binding suggests that binding was primarily enthalpy driven with a canonical 

entropic penalty on binding affinity, indicated by a decrease in entropy (Boraston et 

al., 2004). The stoichiometry of CBM binding to soluble polysaccharides was 

calculated by altering the concentration of ligand until an n value of 1 was achieved (n 
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= number of binding sites), assuming a single site binding model. To determine the 

number of sugar residues occupied per CBM protomer, the following calculation was 

performed; 

 

Occupancy (No. of sugar residues per protein molecule)= 

 

 

CBM65A and CBM65B on average bound once per ~11 sugar residues in tandem, 

thereby indicating that the CBM65s bind to target ligands internally.  

 

3.3.3 Crystal Structure of the CBM65s 

To investigate ligand recognition and specificity determinants in the binding site of the 

CBM65s, attempts to co-crystallise the CBM65s with cellohexaose or XXXG were 

performed.  Co-crystallisation screens of CBM65A (80 mg/mL) using the hanging drop 

vapour diffusion method (described in xxxxx) with cellohexaose (10 mM) and XXXG 

(10 mM) produced crystals in the conditions 0.2 M ammonium sulphate, 0.1 M sodium 

acetate, pH 4.6, 30 % v/v PEG 2000 MME and 0.2 M lithium sulfate, 0.1 M Tris, pH 

8.5, 25 % w/v PEG 1500 respectively. The crystals of CBM65A in the presence of 

cellohexaose diffracted with a resolution of 1.6 Å and the data set was solved by Dr. 

Arnuad Baslé using molecular replacement of a selenomethionine-SAD derived 

CBM65A structure previously generated Dr. Shabir Najmudin (Lisbon, Portugal). No 

ligand was bound to the protein in crystal.  

 Concentration of polysaccharide used in ITC titration  g L  ÷ Mr of sugar monomer  Da    X 1000 (mM)

Concentration of polysaccharide for n=1 (mM)
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CBM65B (80 mg/mL) was co-crystallised with XXXG (100 mM) in 200 mM ammonium 

acetate, 100 mM tri-sodium citrate, pH 5.6, 22 – 30 % (w/v) PEG 4000. The CBM65B-

XXXG crystals are shown in Figure 3.3. Upon harvesting, the crystals were cryo-

protected in reservoir solution and 20 % PEG 400 containing XXXG (100 mM). The 

crystals were subjected to X- ray diffraction at the DIAMOND light source (Harwell, 

UK), beam line IO2 and diffracted at a resolution of 2.4 Å, generating a data set which 

was subsequently processed using the CCP4 suite. The CBM65B-XXXG protein-

ligand complex had a P43212 space group, belonging to the hexagonal system. The 

phase problem was solved utilizing the apo-crystal structure of CBM65B (previously 

solved by Dr. Shabir Najmudin (Lisbon, Portugal), in conjunction with MOLREP. 

Crystal fishing, data collection, structure building and refinement were all performed 

by Dr. Arnaud Baslé, structural biology lab, Newcastle University. Data collection and 

refinement statistics are presented in Appendix A. 

 

 

 

 

 

 

 

 

 



81 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Crystals of CBM65B and XXXG obtained via hanging drop vapour diffusion 

method.  CBM65B (80 mg/mL)/XXXG (100 mM) crystals were obtained in the following 

conditions; 200 mM ammonium acetate, 100 mM tri-sodium citrate, pH 5.6, 22 – 30 % 

(w/v) PEG 4000 . Figure taken from Venditto et al.(Venditto et al., 2013). 
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3.3.3.1. The apo-crystal structure of CBM65 

The solved structure of apo-CBM65A reveals that CBM65A protein adopts a β-

sandwich fold. Interestingly, unlike most CBMs which assume a β-sandwich fold, the 

CBM65s seemingly lack a stabilising calcium ion coordinated by loops connecting the 

β-strands (Simpson et al., 2002). The β-sandwich is comprised of two β-sheets 

connected by loops. β-sheet 1 is formed by five anti-parallel β-strands (termed β1, β9, 

β3, β7, β6) and  is convex in shape. The concave β-sheet 2, which comprises the 

solvent accessible surface of the protein, consists of four anti-parallel β-strands (β2, 

β8, β4, β5 respectively). The loop connecting β4 and β5 in CBM65A is longer than the 

structurally equivalent loop in CBM65B and is seemingly of functional significance 

(See 3.3.4.2 Understanding ligand recognition in the CBM65s). An α-helix (Lys125 to 

Tyr132/ Lys668 to Tyr675) completes the structures of CBM65A and CBM65B 

respectively. A protein schematic of the apo-structures of CBM65A and CBM65B is 

shown in Figure 3.4A 

3.3.3.2 The ligand binding site of CBM65 

The crystal structure of CBM65B in complex with XXXG shows a distinct cleft like 

structure, 20 – 25 Å in length presented by a β-sheet, typical of type-B CBMs which 

bind internally to target ligands (Figure 3.4B). The co-crystallised structure reveals the 

binding site harbours a significant number of tryptophan residues (Figure 3.4C). An 

overlay of the apo-CBM65A structure indicates these residues are strictly conserved 

(Figure 3.4D). Indeed, site directed mutagenesis of these residues to alanine 

diminished ligand recognition (see 3.3.4. Site Directed mutagenesis of CBM65A and 

CBM65B), thereby undoubtedly confirming that location of the ligand binding site 

within this cleft like structure.  
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3.3.3.3 β1,4-backbone recognition of xyloglucan heptasaccharide by CBM65B 

Analysis of the CBM65B-XXXG co-crystallised structure revealed that four tryptophan 

residues (Trp602, Trp607, Trp646, and Trp651) located inside the ligand binding cleft, 

coordinate recognition of the β1,4-linked glucose backbone of XXXG. Recognition of 

the backbone is mediated primarily through apolar contacts. Trp646 makes a parallel 

apolar interaction with the undecorated, reducing end glucose henceforth termed Glc-

1 (residues downstream from this residue are termed Glc-2,3 and 4 respectively,  with 

Glc-4 being the non-reducing end) . Trp651 coordinates both Glc-2 and Glc-3 whilst 

Trp602 interacts with Glc-4 through the formation of parallel hydrophobic contacts. The 

β1,4-backbone of XXXG is further coordinated via perpendicular apolar interactions 

between Glc-3 and Trp607. The orientation of the tryptophan residues within the cleft 

induce a twisting conformation between Glc-2 and Glc-4 of the tetrasaccharide 

backbone. The pyranose ring of Glc-1 is coordinated at an 180o angle relative to 

glucose-2. The only polar contact between CBM65B and the glucose backbone of 

XXXG is mediated via Gln653, which forms a hydrogen bond with the O2 and O3 

moieties of the non-reducing glucose residue (Glc-4).   

3.3.3.4 CBM65B recognition of the α1,6-xylose substitution of xyloglucan 

heptasaccharide.  

Xyl-2 (corresponding to the O6 linked xylose residue to Glc-2, Xyl-3 is O6 linked to 

glucose-3 etc.) is coordinated by Trp607, Trp646, Trp651, and Tyr685. Xyl-3 forms 

hydrophobic interactions with Trp651.  Polar interactions are mediated between O2 and 

the endocyclic oxygen of the Xyl-2 residue, coordinated by the nitrogen moiety of 

Trp607 and the Nζ group of the Lys689 residue. (Figure 3.4) The observed ligand 

recognition between CBM65B and XXXG and can be extended to CBM65A with a high 

degree of certainty, albeit with observed differences in β1,4 backbone recognition (see 

Section 3.3.4.2). 
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3.3.4. Site Directed mutagenesis of CBM65A and CBM65B 

3.3.4.1 CBM65 Mutant generation, expression and purification  

Mutant variants of CBM65A (Master of Research degree) and CBM65B (D649A), were 

generated via single site directed mutagenesis as described in Materials and Methods, 

Section 2.1.17. The primers used to generate CBM65B variant, D649A are shown in 

Table 3.2. PCR amplifications, harbouring the single amino acid substitution were 

treated with Dpn1 in order to digest methylated-DNA, leaving the cDNA intact. 

Successfully amplified products were sent for sequencing (MWG, Germany) to check 

the integrity of the cDNA sequence, confirming the single base substitution to alanine 

was successful.   CBM65 mutant variants were expressed and purified with identical 

methodology to that of the wild type proteins.  

 

 

 

CBM65B variant Sequence (5´→3´) Direction 

D649A GCACGTTGGGATAAAGCCATTTGGGCGCAG Forward 

CTGCGCCCAAATGGCTTTATCCCAACGTGC Reverse 

 

3.3.4.2. Understanding Ligand Recognition in the CBM65s 

The apo-CBM65A crystal structure and the co-crystallised CBM65B-XXXG structure 

were used to inform which amino acid residues located in the ligand binding cleft of 

Table 3.2. Oligonucleotide primer sequences (5’ -> 3’) used to generate a single site substitution of Asp649 to 

alanine. 
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the CBM65s may mediate ligand recognition and specificity. The predicated aromatic 

ligand binding residues were conserved between CBM65A and CBM65B. Thus, 

mutations which were predominantly performed on CBM65A during the Masters of 

Research project to explore ligand recognition can also be applied to CBM65B. A 

number of single site substitutions of amino acid residues (Trp55. Trp60, Trp99 and 

Trp108) were previously generated by Ms S. Ana Luis (Lisbon, Portugal) in the ligand 

binding cleft of CBM65A 

AGE (polysaccharides) and ITC (polysaccharides and oligosaccharides) were 

performed to assess the binding capacity of CBM65A and CBM65B mutant variants 

to an array of ligands (Table 3.3). Substituting Trp55. Trp60, Trp99 to alanine in CBM65A, 

equivalent to Trp602, Trp607 and Trp646 in CBM65B, disrupted binding to barley β-glucan 

and cellohexaose but not to xyloglucan. Only mutating Trp108 to alanine (Trp651 in 

CBM65B) abrogated all ligand recognition. These data confirm the importance of these 

four aromatic amino acid residues to the recognition of the β1,3/β1,4 backbone of β-

glucan and cellohexaose and by extension, cellulose. The observation that xyloglucan 

recognition is maintained in all mutants except CBM65A W108A suggests that 

xyloglucan recognition is primarily preserved through other specificity determinants 

unique to xyloglucan, such as interactions with the α-xylose substitutions of the 

polysaccharide. 
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The recognition of XXXG by the two CBM65s is generally conserved, as described in 

Sections 3.3.3.3 and 3.3.3.4 respectively. The connecting loop between β4 and β5 of 

CBM65A (harbouring residues Trp99 to Gln106), is longer than the equivalent region in 

CBM65A 
variant 

Ligand Ka (M-1) ΔG          
(kcal mole-

1) 

ΔH  
(kcal 

mole-1) 

TΔS  
(kcal 

mole-1) 

n 

T58A β-Glucan 8.3 (±1.0) x 103 -5.3 -12.9  ± 
0.2 

-7.6 1.0 ± 
0.1 

Q106A β-Glucan 1.1 (±0.03) x 104  -5.5 -8.0  ± 0.2 -2.5 1.0 ± 
0.0 

Q110A β-Glucan 3.9 (±0.4) x 103 -4.9 -10.0 ± 
0.2 

-5.1 1.0 ± 
0.1 

K146A β-Glucan 5.3 (±0.2) x 103  -5.1 -9.9  ± 
0.5 

-4.8 1.0 ± 
0.0 

Y70A β-Glucan 1.1 (±0.08) x 104  -5.3 -11.7 ± 
0.8 

-6.4 1.0 ± 
0.0 

Y114A β-Glucan 1.1  (±0.02) x 104  -5.5 -12.8 ± 
0.3 

-7.3 1.0 ± 
0.0 

Y142A β-Glucan 8.9 (±0.04) x 103  -5.4 -13.0  ± 
0.6 

-7.6 1.0 ± 
0.0 

W55A 
W60A 
W99A 

W108A 

β-Glucan and 
cellohexaose 

No binding 

T58A Cellohexaose 2.5 (±0.4) x 103  -4.6 -11.4 ± 
5.5 

-6.8 1.01 ± 
0.4 

Q106A Cellohexaose No binding 

Q110A Cellohexaose Weak binding (unquantifiable) 

K146A Cellohexaose ~9.0(±1.2) x 102   Binding too weak to quantify 

Y70A Cellohexaose 2.9 (±0.3) x 103  -4.7 -11.8  ± 
3.8 

-7.1 1.0 ± 
0.2 

Y142A Cellohexaose 1.6 (±0.007) x 103   -4.3 -14.7 ± 
3.0 

-10.4 1.01 ± 
0.1 

Q106A Xyloglucan 3.5 (±0.5) x 104 -7.5 -26.7 ± 
0.7 

-19.2 1.0 ± 
0.0 

Q110A Xyloglucan 1.3 (±0.2) x 105 -6.9 -16.6 ± 
0.3 

-9.7 1.0 ± 
0.0 

W55A Xyloglucan 6.6 (±0.3) x 104 -6.5 -22.4 ± 
0.2 

-15.9 1.0 ± 
0.0 

W60A Xyloglucan 3.1 (±0.06) x 103 -4.7 -22.8 
±0.3 

-18.1 1.0 ± 
0.0 

W99A Xyloglucan 5.0 (±0.9) x 103 -5.0 -22.7 ± 
0.3 

-17.7 1.0 ± 
0.0 

W108A Xyloglucan No binding 

CBM65B 
variant 

Ligand Ka (M-1) ΔG          
(kcal mole-

1) 

ΔH  
(kcal 

mole-1) 

TΔS  
(kcal 

mole-1) 

n 

D649A Cellohexaose 1.5 (±0.05) x 103 -4.3 -8.1 ± 0.2 -3.8 1.0 ± 
0.2 

Table 3.3. Affinity and thermodynamics of CBM65A and CBM65B variant binding to soluble 

polysaccharides and oligosaccharides   
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CBM65B. Inspection of an overlay of the two CBM65 protein structures indicates that 

Gln106 makes polar interactions with the O2 and O3 moieties of Glc-2 of the 

tetrasaccharide β1,4 backbone of XXXG. However, the equivalent residue Asp649, of 

CBM65B, is beyond hydrogen bond forming range and is unlikely to make polar 

contact with ligand, suggesting differential modes of cellulose recognition between the 

highly conserved CBM65s. Mutants, substituting Gln106 (CBM65A) and Asp649 

(CBM65B) for alanine displayed identical binding affinities to WT proteins for β-glucan 

and xyloglucan. The CBM65B mutant, D649A, did not abrogate cellohexaose 

recognition. However, the CBM65A mutant, Q106A, displayed no affinity for 

cellohexaose as confirmed by ITC. Gln106 is crucial for cellulose recognition in 

CBM65A. 
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Figure 3.4. Structure of the CBM65s. A. CBM65A and CBM65B, continuously colour 

ramped, are shown in a schematic form. The loop containing residues Gln106 and Asp649 of 

CBM65A and CBM65B respectively, are highlighted by an arrow. Gln106 is seemingly 

crucial for cellohexaose recognition in CBM65A; Asp649 (CBM65B) is not key in cellulose 

recognition. B. CBM65B is depicted as a schematic (colour ramped as A), with ligand 

electron density (2F0 – Fc) at 1.5 σ shown. XXXG is represented in stick format. Sugar 

residues are coloured according to element. Carbon moieties of glucose residues are 

coloured yellow, whilst the carbon moieties of the xylose decorations are yellow. C. Surface 

representation of the solvent accessible surface of CBM65B with XXXG in complex 

(coloured as in B). The aromatic residues key to ligand recognition are highlighted green. 

D. Overlay of the ligand binding sites of CBM65A and CBM65B showing conserved 

residues involved in ligand binding. The carbons of CBM65A amino acid residues are 

highlighted and labelled in cyan. The carbons of CBM65B amino acid residues are labelled 

and highlighted in green. Hydrogen bonds are represented by dashed lines. The diagrams 

were drawn in PyMOL. Figure taken from Luis et al., 2012. 
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3.4 Discussion  

This chapter reports the apo structure of CBM65A and CBM65B in complex with 

XXXG. The biochemical and structural data described demonstrates how the 

differential recognition of structures within the same ligand is mediated in the CBM65 

family.  Recognition of β-glucans, as shown by the CBM65B-XXXG complex, is 

primarily mediated through hydrophobic interactions between the tryptophan 

residues housed in the ligand binding cleft and the glucopyranose rings of the ligand 

backbone. These extensive hydrophobic interactions contribute significantly to 

binding affinity.   

The CBM65s displayed a significant preference for polysaccharides (xyloglucan and 

barley β-glucan) and decorated oligosaccharides (XXXG). The association constants 

generated by ITC indicate that both the CBM65s bind to cellotetraose with a lower 

affinity than cellohexaose The β1,4-backbone of cellotetraose however, fully 

occupies the ligand binding site. It is plausible that the increased interactions 

between the ligand binding site of the CBMs and the two additional glucose moieties 

of cellohexaose are responsible for the increase in observed affinity. However, the 

amino acids which mediate these extra ligand contacts are unknown. Potential 

candidates include Tyr70 and Tyr617 of CBM65A and CBM65B respectively, located at 

the entrance of the ligand binding cleft, and a glutamine (Gln67 in CBM65A and 

Gln659 in CBM65B). However, mutant variants of CBM65A where the aforementioned 

residues were substituted for alanine demonstrate similar affinities for the 

hexasaccharide to that of the WT protein, excluding their possible involvement in 

cellulose recognition. An alternative explanation for the seemingly low affinity 

displayed for cellotetraose could be due to mutarotation of the reducing end glucose, 

which would adopt multiple conformations and result in a loss of entropy. Ligands 
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with a D.P > 4 would instead be in a fixed conformation and thereby restrict 

mutarotation, reducing the associated entropic penalty.  However, the fact that mixed 

linked glucans or β1,4-gluco polysaccharides bind with higher affinity than 

cellohexaose suggests that the conformational fixing of the reducing end glucose is 

not the sole reason for the observed decrease in affinity for cellotetraose. It has been 

observed that ligands which extend out of the ligand binding cleft of the CBM can 

bind with greater affinity than a ligand which occupies the binding site fully (Boraston 

et al, 2011) due to intra-chain hydrogen bonding formed between the glycan chains 

and may explain the displayed increased affinity the CBM65s share for longer, linear 

β-glucans. Thermodynamic parameters generated in this study must be viewed with 

a degree of caution. The c – value, product of protein concentration and the binding 

constant (Ka), provides an indication of reliability of the thermodynamic data 

generated by ITC.  A c - value of < 1 is potentially indicative of unreliable data 

(Turnbull and Daranas, 2003). Many of the protein-ligand interactions investigated in 

this study have c - values < 1. However, for low affinity systems, such as protein-

carbohydrate interactions it is not possible to achieve c – values in optimal ranges 

due to limited solubility of ligands. Nevertheless, reliable Ka and ΔH values can be 

generated in low-affinity systems through measures deployed in this study as 

described by Turnbull and Daranas (Turnbull and Daranas, 2003). 

Mutating Gln106 in CBM65A completely abrogated cellohexaose binding. However 

the affinity of the mutant CBM Q106A for xyloglucan and the mixed linked, β-glucan 

was retained. This observation implies that CBM65A displays plasticity in ligand 

recognition, recognizing both linear β1,4 glucans and  β1,3-1,4 mixed linked glucans 

independently and that Gln106 is only necessary for cellulose recognition. 

Interestingly, CBM65B lacks a functional equivalent to Gln106. Mutating the perceived 
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functional equivalent in CBM65B, Asp649, the only residue observed to form polar 

contacts with the glucose backbone of XXXG, did not impact upon cellohexaose 

recognition.  Additionally, if the mechanism of CBM65B recognition of linear β1,4 

glucans can be disrupted independently of β1,3-1,4 mixed linked glucan recognition 

is not known.  

 The data presented in the chapter shows how the CBM65s preferentially target 

xyloglucan. The increased affinity demonstrated by the CBM65s for decorated 

ligands can be attributed to both the apolar and polar interactions between the ligand 

binding site residues of CBM65B and the O6-linked xylose residues of XXXG (and 

by inference CBM65A). These interactions significantly increasing the affinity of the 

protein modules for the decorated ligands. Ligand binding is primarily achieved by 

hydrophobic contacts of the sugar rings with aromatic amino acids (McCartney et al., 

2006). Indeed, hydrophobic stacking of aromatic residues against the 

pyranose/furanose rings of sugar residues are common features of β-glucan binding 

CBMs, which is usually coordinated by three aromatic residues housed within the 

ligand binding cleft (Simpson et al., 2000). However, five aromatic residues are 

located within the binding site of the CBM65s which make apolar interactions with 

the glucose backbone or xylose decorations of XXXG. 

The importance of the aromatic residues of the ligand binding cleft to ligand binding 

is emphasised by the observation that mutating Trp108 in CBM65A, equivalent to 

Trp651 in CBM65B destroys ligand recognition, including the recognition of 

xyloglucan. This is consistent with the observation that the CBM65B-XXXG complex 

reveals that significant coordination of the bound ligand is mediated by Trp651. The 

aromatic residues interacts with the Glc-2 and Glc-3 residues and the Xyl-2 and Xyl-

3 decorations of XXXG. Trp60 and Trp99 alanine substitutions in CBM65A (Trp607 and 
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Trp646 in CBM65B) also result in reductions in binding affinity, highlighting the 

importance of these of aromatic residues in recognising the glucan backbone and 

xylose decorations of XXXG. Conversely, mutating Trp55 (Trp602 in CBM65B) to 

alanine did not diminish CBM65A affinity for xyloglucan, most likely due to the lack of 

interactions with xylose-4 of XXXG. These data help to provide a model for the 

recognition of decorated polysaccharides.  

 3.5 Future Work 

CBM65A and CBM65B, new members of the CBM family 65 share limited sequence 

similarities to two endoglucanases encoded by Cellulosilyticum ruminicola and 

Clostridium lentocellum. The endoglucanase of C. ruminicola, displays two tandem 

repeat sequences with homology to EcCel5a. Significantly, three of the four 

tryptophan residues which are critical for β-glucan recognition in CBM65A and 

CBM65B are conserved in the related protein modules the C. ruminicola 

endoglucanase (Figure 3.5). One can hypothesise that these conserved residues 

likely play a similar role and are key in mediating β-glucan recognition. A better 

understanding of how this new family of CBMs recognise the decorations of 

substituted polysaccharides in lieu of conserved structural elements may enable the 

engineering of CBMs with multiple specificities in tandem with higher affinities which 

may potentiate the activity of enzymes of industrial significance.  
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Figure 3.5. Amino acid sequence alignments of CBM family 65 proteins. The amino 

acid sequences labelled EcCBM65A(/B) are from the Eubacterium cellulovorans (Ec) 

GH5 endoglucanase. The protein sequences labelled CrCBM65A(/B) are from the 

Cellulosilyticum ruminicola (Cr) GH5 endoglucanase.  Key residues necessary for ligand 

recognition are coloured green. Fully conserved residues are denoted by an *. Figure 

adapted from Luis et la., 2012. 
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Chapter 4: α-mannan degradation and utilization by 

Bacteroides thetaiotaomicron. 

4.1. Introduction 

The human gut microbial community, termed the microbiota, plays a pivotal role in 

human health and nutrition (Arpaia et al., 2013). Key glycan degraders such as 

Bacteroides thetaiomicron (B. theta), are prevalent in the microbiota of ‘healthy’ 

humans. Complex glycan utilization is achieved through a protein/enzyme ensemble 

up-regulated to orchestrate the deconstruction of a specific glycan. These glycan 

degrading systems are encoded by polysaccharide utilization loci (PULs). Each PUL 

encodes a system that degrades a specific glycan (Bolam and Koropatkin, 2012) 

Yeast α-mannan is an  important component of the cell wall of yeasts such as 

Saccharomyces cerevisiae (S. cerevisiae) A ubiquitous feature of the glycan is an 

α1,6-mannose backbone that comprises the outer chain of the polysaccharide. The 

mannose containing backbone is decorated with a range of side chains that can vary 

significantly amongst yeast species. The α1,6-mannan backbone of S. cerevisiae is 

decorated with α1,2-linked mannose side chains and is capped with α1,3-linked 

mannose residues. Phosphate bridges provide additional complexity to this substrate, 

linking an α1,3-mannobiose moiety to mannose residues appended directly to the 

α1,6-mannan backbone of the glycan. The side chains decorating the α-mannan 

backbone of Schizosaccharomyces pombe (S. pombe) are less extensive, and 

consists of single α1,2-linked galactose residues and single α1,2-linked mannose 

residues appended directly to the backbone (Ziegler et al., 1994). 

The core region of S. cerevisiae α-mannan, from which the outer chain extends, is 

nearly identical in composition and structure to that of mammalian high mannose N-
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glycans (HMNG), which decorate mammalian cells. HMNG, consist of two β1,4-linked 

N-acetyl glucosamine residues, to which a β1,4-linked mannose residue is appended. 

Extending from the central mannose residue are two branches which consists of 

mannose residues linked by various α-linkages. The structures of yeast α-mannans 

and HMNG are shown in Figure 4.1. 

 

 

The genome of B. theta encodes 36 glycoside hydrolases predicted to target α-

mannosidic linkages due to sequence similarities to previously characterised 

glycoside hydrolase families (GHs)  known to possess α-mannosidase (GH38, GH47, 

GH92 and GH125) or α-mannanase (GH76) activities (Xu et al., 2007).  Three PULs, 

designated PUL-Man1, PUL-Man2 and PUL-Man3 (Figure 4.2) (Cuskin et al., 2015b) 

were shown to be upregulated in B. theta when the bacterium was cultured with S. 

cerevisiae α-mannan as a sole carbon source. Intriguingly, PUL-Man1 and Pul-Man2 

display a significant degree of synteny in the ‘core’ region of these loci PUL, encoding 

Figure 4.1. Structure of yeast α-mannans and mammalian high mannose N-glycans. 

A cartoon representation of the structure of the yeast α-mannan of Saccharomyces 

cerevisiae (S. cerevisiae) and Schizosaccharomyces pombe (S. pombe) α-mannan and 

mammalian high mannose N-glycans (HMNG). The saccharide and linkage composition of 

each polysaccharide is denoted by a key. Asn, to which HMNGs are covalently bound, 

represents asparagine. (Figure adapted from Cuskin et al., 2015). 
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proteins with seemingly identical predicted activities. Thus, both PUL-Man1 and PUL-

Man2 encode two predicted GH76 endo-α1,6-mannanases, a GH125 α1,6-

mannosidase and GH92 α-mannosidase, a phosphatase, as well as the importation 

machinery of the PUL (SusD-like and SusC-like). The syntenic region of the two PULs 

also contain proteins of unknown function that flank the SusC/D pairs.  Interestingly, 

the open reading frames (ORFs) encoded by the peripheries of PUL-Man1 and PUL-

Man2 have seemingly divergent activities. Man-PUL1 encodes for a predicted GH97 

α-galactosidase and so plays a potential role in S. pombe α-mannan degradation. 

Likewise, PUL-Man2 encodes for a GH38 α-mannosidase, BT3774, an enzyme which 

was shown by Dr Cuskin to display broad specificity. Indeed Cuskin showed that 

BT3774 plays a pivotal role in the periplasmic side chain removal of S. cerevisiae yeast 

α-mannan; it is the only enzyme capable of efficiently removing the sterically restricted 

α1,2-linked mannose residues appended directly to the backbone of yeast α-mannan 

(Cuskin et al., 2015b).  PUL-Man3 shares no discernible similarities in PUL 

organisation to PUL-Man1 and Pul-Man2, but encodes for a GH99 endo-α1,2-

mannosidase, which has known involvement in S. cerevisiae yeast α-mannan side-

chain removal (Hakki et al., 2015) 

 Surprisingly, despite the significant similarities in the structure and composition 

shared between the core region of yeast α-mannan and HMNGs, HMNGs up-regulate 

a single PUL, (PUL-HMNG), which is distinct from the mannan loci. PUL-HMNG 

mediates HMNG deconstruction (Cuskin et al., 2015b) and encodes four enzymes, 

three GH92 α-mannosidase and a GH18 endo-β-N-acetylglucosaminidase, and two 

surface glycan binding proteins that target the glycan (Figure 4.2)   

 



97 
 

 Transcriptomic data showed that yeast α-mannans are not surrogates for HMNG 

(Cuskin et al., 2015b), but are nutrient sources for B. theta.  Given the limited number 

of different α-mannosyl linkages in α-mannans and HMNGs, the biological rationale 

for such an extensive array of B. theta enzymes that target these bonds is unclear. It 

is possible that the branched structure of glycans containing these α-mannosyl 

linkages predicates a complex hierarchical degradative process, in which the various 

α-mannosidases display specificity for structures downstream of the target bond. This 

may explain the requirement for such a large number of enzymes and PULs which 

target similar but distinct substrates. It is likely that the HMNG-specific PUL encodes 

for an enzyme profile tailored to HMNG degradation, but not yeast α-mannan, 

deconstruction.  
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Figure 4.2. The polysaccharide utilization loci encoded by Bacteroides thetaiotaomicron 

which are up-regulated by, and target, α-mannan. A schematic representation of the 

polysaccharide utilization loci encoded by the genome of B. theta which target (A) yeast α-

mannans (PUL-Man1, PUL-Man2 and PUL-Man3) and (B) high mannose N-glycans (PUL-

HMNG). The genes encoding known or predicted function are colour coded and are annotated 

according to CAZy family where applicable. Areas of PUL-Man1 and PUL-Man2 which display a 

high degree of synteny are highlighted with a grey background.  SGPB represents surface glycan 

binding protein. (Figure adapted from Cuskin et al., 2015).  

A 

B 
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4.2 Objectives 

In this chapter B. theta is used as a model for dissecting the mechanism by which a 

key member of the microbiota metabolizes complex carbohydrates containing α-

mannosyl linkages, achieved primarily through the characterization of enzymes 

encoded by PUL-Man1/2/3 and PUL-HMNG, providing a biochemical rationale for the 

distinct yeast α-mannan and HMNG utilization apparatus. The biochemical data 

generated in this chapter, in conjunction with growth studies and pre-exisitng 

genetic/in vivo data provides a model for the utilization of glycans that contain α-

mannosidic linkages.  

4.3 Results 

4.3.1. Elucidating the α-mannosidases encoded by Bacteroides 

thetaiotaomicron capable of de-branching yeast α-mannan 
The enzymatic degradation of α-mannan is greatly restricted through steric constraints 

imposed through mannose side-chains appended to the α1,6-mannan backbone. 

Previous work performed by Dr. Fiona Cuskin found that the four GH76 endo-α1,6-

mannanases encoded by PUL-Man1 and PUL-Man2 were unable to cleave the 

mannan backbone until undecorated regions are exposed. As stated above Dr Cuskin 

showed that the GH38 α-mannosidase BT3774, encoded by PUL-Man2, removes the 

most challenging, sterically restricted, mannosidic bond in which the mannose at the 

base of the mannan side chains is linked α1,2 to the mannan backbone. However, the 

three mannan PULs do not encode a candidate surface α-mannosidase. Such an 

enzyme must exist otherwise the surface endo-α1,6-mannanases would not be able 

to cleave the mannan backbone. The surface deconstruction of yeast α-mannan is 

therefore poorly understood. The capacity of 11 B. theta  α-mannosidases (Zhu et al., 

2010), predicted to be localised to the cell surface and belonging to GHs (ten GH92s 
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members and one GH38 member) with known α-mannosidase activity, to remove 

mannose side-chains was assessed. The localisation of the α-mannosidases explored 

in this section were predicted due to the presence of a type II single peptide, assessed 

via LipoP (http://www.cbs.dtu.dk/services/LipoP/). However, some α-mannosidases 

were assayed, despite being predicted to harbour a type I signal peptide, owing to the 

presence of a canonical cysteine residue encoded early in the N-terminal protein 

sequence (< 20 residues from start codon); a potential indicator of a signal II peptide. 

An example signal peptide analysis is shown in Figure 4.3. The remaining analysis are 

displayed in Appendix A. 

 

 

 

 

QQSKKTVEFVDYVNPLMGTESTFAFSHGNTY

PAVAVPWGMNFWSPQTGENGSGWMYTYTDSLMRGFRQTHQPSPWINDYGT

FSIMPLAGELKMSHKERLVPFSHQQEKATPYNYSVTFNNGLQTSLSATSR

GAVFEVSFPEKEDQYVVVDAYNGGSSITIEPEKRLVKGATRYNNGGVPDN

FANYFMMEFSHPVIEYGTYNGDTLLHHQTDVAADYTCAYLKFDVPAGEKL

TIRTASSFISPEQAAINFNREVADADVQLISGKAREQWNNYLGRVEAEGG

TDEQLRTFYSCLYRTLLFPREFYEFDSQGNPVYYSPYDGNVHDGYMYTDN

GFWDTFRAVHPLFTLLYPEVSERVTQSIINAYNESGFMPEWASPGHRGCM

IGNNSVSLLVDAWMKGIQTVDAEKALEAMIHQTQARHAEIASVGRDGFEY

YDKLGYVPYPEVPEATAKTLEYAYADWCIARFAESLGKQDIADQYYQKAP

NYRNLYYPEHGFMWTKDAKGNWRDRFDATEWGGPFTEGSSWHWTWSVFHD

PEGLSELMGGHEPMIARLDSMFVAPNTYNYGTYGFVIHEIAEMVALNMGQ

YAHGNQPVQHAIYLYDYIGQPWKTQYHLRNVMDKLYNSGSKGYCGDEDNG

QTSAWYVFSAMGFYPVCPGMPEYAIGSPLFKKVTLHLPEGKNFVVSAADN

AADRPYIRKALLNGQEFTRNYLTHDELKQGGELNLSMDSVPNQQRGTQPA

DFPYSYSK

Figure 4.3. LipoP signal peptide prediction of BT2199. The left hand panel shows 

the full, wild-type amino acid sequence of BT2199, a GH92 α-mannosidase. The right 

hand panel shows a LipoP signal peptide analysis of the BT2199 protein sequence. 

BT2199 is predicted to have a signal II (SpII) peptide, indicating the protein is localised 

to the cell surface. The point of signal peptide cleavage is predicted to be between 

residues 18 and 19, the position of which is denoted by red and green colouring of the 

amino acid residues at the site of cleavage, S18 and C19, respectively. 
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4.3.1.1 Expression and Purification 

The constructs (generated previously by Dr Zhu;(Zhu et al., 2010)) encoding the 

enzymes described above  ere expressed in E. coli TUNER cells and purified by IMAC 

as described in 2.1.25.1 , generating pure recombinant protein, confirmed via SDS-

PAGE. An example of an SDS-PAGE analysis of a typical IMAC purification is shown 

in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.1.2 The α-mannosidases which may potentiate side-chain removal. 

The capacity of each α-mannosidase to de-branch yeast α-mannan was performed in 

the presence of characterised enzymes believed to facilitate side chain removal and 

included the GH99 endo-α1,2-mannosidase, BT3862 (Hakki et al., 2015) and the 

sugar-6-monophosphatase, BT2630. Also incorporated into assays was the GH76 

endo-α1,6-mannanase, BT2631 (see below) which can act upon the α1,6-mannan 

backbone exposed following side-chain removal, generating α1,6-linked 

Figure 4.4. Example SDS-PAGE analysis of an IMAC purification. All SDS-PAGE 

gels were 12.5 % (w/v). L = low size marker H= high size marker (kDa); P = 

insoluble fraction; CHE = cell free extract; FT = flow through; W = wash ( 1x 

TALON buffer); E1 = elution 1 (5 mM imidazole,1 x TALON buffer); E2 = elution 

2 (100 mM imidazole, 1 x TALON buffer). A. BT3994 ran with an apparent Mr of 

~80 kDa, consistent with the predicted sizes of the recombinant proteins 
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mannooligosaccharides visualised by TLC analysis. Seven out of the ten α-

mannosidases were active against intact yeast α-mannan, liberating mannose (Figure 

4.5). Of the exo-acting α-mannosidases tested only BT2199 and BT3990, not encoded 

by PUL-Man1-3 of B. theta, were capable of removing the side chains of yeast 

mannan, enabling the GH76 endo-mannanase to attack the α1,6-mannose backbone 

and evidenced by the production of oligosaccharides (Figures 4.6). BT3990 is 

encoded by HMNG-PUL whilst BT2199 appears to be encoded by a PUL seemingly 

distinct from the yeast α-mannan degrading apparatus of B. theta. Subsequent cell 

localization studies by Lowe and Cuskin showed that BT3990 was located in the 

periplasm. Thus, BT2199 is the candidate surface enzyme which generates limited 

undecorated regions of the yeast mannan backbone, which could thus be cleaved by 

the outer membrane GH76 endo-mannanases.    

 

 

 

 

 

Figure 4.5. Thin Layer Chromatography (TLC) of predicted extracellular α-
mannosidases activity against intact S. cerevisiae α-mannan. TLC analysis of S. 
cerevisiae yeast α-mannan (1 mg/ml (w/v)) incubated individually with 50 µM of each 
respective GH92 α-mannosidase, and the GH38 α-mannosidase, BT4072. Assays were 

performed in 20 mM Tris/HCl, 300 mM NaCl, pH 8.0 at 37 
o
C for 1 h. Digests included 1 µM 

GH99 endo-α1,2-mannanase, 1 µM sugar-6-monophosphatase (BT2630) to determine the 
activity of the GH92/GH38 against yeast α-mannan sans GH76 endo-α1,6-mannanase 
activity. Samples were run against α-mannooligosaccharide standards, D.P 1 to 4, denoted by 
S.  Lane 1 - No enzyme, yeast α-mannan; Lane 2 - BT1769 (GH92);Lane 3 – BT1878 (GH92);  
Lane 4 – BT2199 (GH92); Lane 5 - BT3130 (GH92); Lane 6 - BT3773 (GH92); Lane 7 - 
BT3858 (GH92); Lane 8 - BT3990 (GH92); Lane 9 - BT3991 (GH92); Lane 10 - BT3994 
(GH92); Lane 11 -BT4073 (GH92); Lane 12 - BT3862 (GH99); Lane 13 -BT2630 
(phosphatase); Lane 14 – BT3774 (GH38); Lane 15 – BT4072 (GH38).  
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4.3.1.3 Comparing extracellular side-chain removal with periplasmic side-chain 

removal of yeast α-mannan. 

The GH92 α-mannosidase, BT2199, was deemed to be the most likely putative 

candidate enzyme to facilitate the extracellular de-branching of yeast α-mannan, 

owing to the enzyme’s predicted localisation to the cell surface. Due to the 

periplasmically located GH38 α-mannosidase BT3774’s key role in side-chain removal 

and deconstruction of yeast α-mannan, assays were performed to determine the 

relative differences in the rate of surface and periplasmic side-chain depolymerisation, 

providing potential biological context.  

The ability of the α-mannosidases to de-branch yeast α-mannan at various 

concentrations was assessed (Figure 4.7). The GH76 endo-α1,6-mannanase, BT3792 

was present in the assays to determine debranching activity of the α-mannosidases. 

The relative rate of debranching was deduced via TLC analysis. Both enzymes were 

able to facilitate GH76 endo-mannanase attack, observed by the presence of α1,6-

Figure 4.6. The capacity of endo-mannanases to act on mannan treated with α- 

mannosidases analysed by TLC. The experiment was carried out as described in Figure 4.3 

except that the reactions were supplemented with 1 µM GH99 endo-α1,2-mannanase, 1 µM 

sugar-6-monophosphatase (BT2630) and 1 µM GH76 endo-α1,6-mannanase(BT2631) to 

determine de-branching activity of the GH92/GH38. The lanes are labelled as in Figure 4.3.  
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manno-oligosaccharides and confirming the ability of these enzymes to de-branch 

yeast α-mannan. The GH38, BT3374, was significantly more active, enabling 

backbone access at concentrations as low as 0.2 µM. BT2199 was only able to 

adequately facilitate endo-mannanase activity at concentrations of 5 µM, a ~25-fold 

lower activity than BT3774 in its ability to expose the backbone of yeast mannan 

(Figure 4.8). The GH99 endo-α1,2-mannosidase (BT3862), and the sugar-6-

phosphtase (BT2630), were not incorporated in these assays, demonstrating that the 

respective activity of these enzymes is not required for side chain removal. Surface 

side chain removal appears to be significantly limited relative to periplasmic 

depolymerisation and is consistent with the low quantities of mannose released into 

the culture supernatant when B. theta is cultured with yeast mannan as a sole carbon 

source (Cuskin et al., 2015b).  

 

 

 

 

 

 

 

 

 

 

Figure 4.7. Thin Layer Chromatography comparing BT2199, GH92 α-mannosidase  activity 

with the dominant periplasmic debranching enzyme, BT3774 GH38 α-mannosidase, 

against yeast α-mannan. TLC analysis comparing the putative extracellularly located GH92 

(BT2199) with the periplasmically located GH38 (BT3774). The relative activity of the enzymes 

against S. cerevisiae yeast α-mannan at various concentrations was assayed by incubating 

enzyme with the polysaccharide (1 mg/ml (w/v)). The concentration of the enzyme being assayed 

is displayed below the respective lane. Assays were performed in 20 mM Tris/HCl, 300 mM NaCl, 

pH 8.0 at 37 oC for 1 h. Samples were run against α-mannooligosaccharide standards, D.P 1 to 

4, denoted by S.  
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Figure 4.8. Thin Layer Chromatography comparing BT2199, GH92 α-mannosidase yeast α- 

mannan debranching activity with the dominant periplasmic debranching enzyme, BT3774 

GH38 α-mannosidase. A. TLC analysis comparing the putative extracellularly located GH92 

(BT2199) with the periplasmically located GH38 (BT3774). The ability of the enzymes to debranch 

S. cerevisiae yeast mannan at various concentrations when incubated with the polysaccharide (1 

mg/ml (w/v)) was assayed in the presence of the extracellular GH76 endo-α1,6-mannanase, 

BT3792 (1 µM). The concentration of the enzyme being assayed is displayed below the respective 

lane. Assays were performed in 20 mM Tris/HCl, 300 mM NaCl, pH 8.0 at 37 oC for 1 h. Samples 

were run against α-mannooligosaccharide standards, D.P 1 to 4, denoted by S. The GH76 endo-

α1,6-mannanase, BT3792 (1 µM) was incubated with the mutant mannan, mnn2 (1 mg/mL (w/v)) 

lacks mannose side-chains) as a positive control of GH76 activity. 
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4.3.2. Characterisation of the enzymes which degrade the α1,6-

mannan backbone of yeast α-mannan 
 

4.3.2.1.1The cellular location of the four GH76 endo-α1,6-mannanases 

(mannanases) encoded by the yeast mannan PULs of B. theta  

The mannan PULs (PUL-Man) of B. theta encode four GH76 enzymes; two derived 

from both PUL-Man1 (BT2623 and BT2631) and PUL-Man2 (BT3782 and BT3792.  

Sequence analysis of the four enzymes by LipoP predicts that BT2623 and BT3782 

have a type I signal peptide and so are located to the periplasmic space, with BT2623 

and BT2631 predicted to contain a type II signal peptide, suggesting that these 

membrane-bound enzymes are on the surface of the bacterium.  Localisation 

experiments utilizing fluorescently labelled antibodies performed by Drs Cuskin and  

Lowe, confirmed that BT3792 was indeed present on the cell surface and therefore 

corroborates these predictions (Cuskin et al.2015).  

4.3.2.1.2. Expression and purification 

The four GH76 enzymes were previously cloned into pET-based expression vectors, 

which supplied a His6 tag, by Dr Cuskin. The four proteins were purified here using 

IMAC and their purity analysed by SDS-PAGE, Figure 4.9. BT2623, BT3782 and 

BT3792 were cloned by Dr. Fiona Cuskin and BT2631 was cloned by Dr. Joanna 

Norman. The four GH76 mannanases, like all B. theta proteins investigated in this 

study, were cloned without signal peptides. The genes encoding BT3782 and BT3791 

were cloned into pET28a with N-terminal truncations of 154 and 74 amino acid 

residues, respectively, and harboured an N-terminal His6-tag. To aid in solubility, DNA 

encoding mature BT2623 and BT2631 were cloned into pET32b and pET43b, which 

supplies a thioredoxin and NUS tag, respectively, and a C-terminal His6-tag to the 

recombinant proteins. BT3792, BT2623 and BT2631 were expressed in E. coli BL21 
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cells and were produced is soluble form, as seen upon SDS-PAGE analysis. BT3782 

was expressed in E. coli TUNER cells to maximise soluble protein production.  

 

Figure 4.9. SDS- PAGE analysis of the protein purification of the four GH76s 

encoded by yeast mannan PULs one and two.  SDS-PAGE data of BT2623 (A), 

BT2631 (B), BT3782 (C) and BT3792 (D) following IMAC. All SDS-PAGE gels were 

12 % (w/v). L= low molecular weight marker; P = insoluble fraction; CFE = cell free 

extract; FT= flow through; W = wash; E1 = elution 1, 5 mM imidazole; E2 = elution 

2, 100 mM imidazole. A. BT2623 ran with an apparent Mr of 66 kDa. B. BT2631 

ran with an apparent Mr of 116 kDa. C. BT3782 ran with an apparent Mr of 40 kDa. 

D. BT3792 ran with an apparent Mr of 48 kDa. These values are consistent with 

the predicted size of the proteins. 
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4.3.2.1.3. The four GH76 are endo-α1,6-mannanases with activity against mnn2 

mutant yeast mannan 

As demonstrated previously by Dr Cuskin, the four recombinant GH76 endo-

mannanases encoded by PUL-Man1 and PUL-Man2 were active against the 

undecorated α1,6-mannan backbone derived from the mnn2 mutant of S. cerevisiae.  

In this PhD project TLC analysis revealed that the surface located mannanases, 

BT2623 and BT3792, produced larger oligosaccharide products (D.P ≥ 4) than their 

periplasmic counterparts, BT2631 and BT3782 (D.P ≤3) Kinetic data showed that the 

periplasmic GH76 enzymes were ~3 to 10 times more active than their surface 

counterparts (Table 4.1) 

 

KM 

 (mg ml-1) 

kcat  

 (s-1) 

kcat/Km   

(s-1 mg-1 ml) 

BT2623  1.892 ± 0.399 297 ± 19.07 157 

BT2631 nd nd 743 ± 8.048 

BT3782 0.4315 ± 0.333 705 ± 219 1633 

BT3792  2.425 ± 1.136 1263 ± 262 521 

 

 

4.3.2.1.4. Activity of the GH76 mannanases versus α1,6-

mannooligosaccharides 

In order to elucidate the activity of the GH76 enzymes against oligosaccharides, high 

D.P (>4) and low D.P (<4) α1,6-mannooligosaccharides were generated by treatment 

of mnn2 yeast mannan with BT3792 and BT2631, respectively. Enzyme (10 uM) was 

incubated with the polysaccharide (10 mg/mL (w/v) for 2 h at 37 oC , in the presence 

of 20 mM Na-HEPES, pH 7.5. Enzymatic digests were subsequently pooled, 

lyophilized and subjected to size exclusion chromatography using P2-gel columns 

Table 4.1. Kinetic parameters of GH76 endo-α1,6-mannanase 

activity against the mnn2. Generated by Dr. Cuskin. 
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(BioRad) as described in Materials and Methods, Section 2.2.6.2, rendering pure 

oligosaccharides of single species. The integrity of purified oligosaccharides was 

confirmed by HPAEC-PAD and MALDI-TOF mass spectrometry (Figure 4.10). Full 

methodology of the preparation of the oligosaccharides is detailed in Materials and 

Methods, Section 2.2.6.3.  

 

 

 

 

 

Figure 4.10. Mass Spectrometry result of purified α1,6-

mannooligosaccharides. Details of MALDI-TOF spectrometry (mass spec) 

used to verify purified α1,6-mannooligosaccharides are described in Materials 

and Methods, Section 2.2.6.3. (A) mass spec result of α1,6-mannopentose (M5) 

and (B) α1,6-mannooctose (M8). A mass/charge ratio (m/z) of 851 was given for 

M5, corresponding to the mass of M5 (828) plus a sodium adduct (23). The m/z 

of M8 was observed at 1337, corresponding to the mass of M8 (1314) plus 

Sodium (23). 
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The catalytic activity of the four GH76 enzymes against α1,6-mannooligosaccharides 

was assessed by incubating each enzyme with an α-1,6-mannooligosaccharide with 

a D.P. of 2-8 (defined as M2-M8, respectively). Enzyme concentration was adjusted 

to provide ≥ 80 % degradation within the maximum time point and aliquots of the 

reaction were taken and the enzyme inactivated by boiling. Substrate depletion was 

observed by HPAEC-PAD (Figure 4.11) and plotted using GraphPad Prism 5.0. The 

gradient (velocity (min)) was ascertained via linear regression analysis. The equation 

utilized is shown below; 

 

Velocity (min) = In[St0] / In[Stx]* 

Kcat/Km (M-1 min-1) = Velocity (min) / Enzyme concentration (M) 

*In represents natural log. peak area of oligosaccharide when time = 0 min. tx is peak area of oligosaccharide at time point 

 

The data are displayed in Table 4.2 The four GH76 enzymes displayed comparable 

rates against longer oligosaccharides (D.P 6-8), degrading α-1,6-mannooctose (D.P 

8), with an efficiency of ~1 x 106 M-1 min-1. The activities of the surface endo-

mannanases, BT2623 and BT3792, demonstrated a significant decline in activity 

against oligosaccharides with a D.P < 6, with a kcat/Km ~1 x 103 M-1 min-1 against 

mannotetraose (D.P 4), and  no activity observed against mannotriose over 24 h. 

Conversely, the periplasmic GH76 enzymes, BT2623 and BT3782, maintained 

catalytic efficiency against manno-oligosaccharides with a D.P as low as 4, with only 

a 2-fold decrease in activity observed between mannotetraose and mannotriose. 

These data demonstrate that the substrate binding cleft of the periplasmic enzymes 

are optimised to bind small oligosaccharides compared to the surface endo-

mannanases. 
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BT2623(s) BT2631(p) BT3792(s) BT3782(p) 

1.0 x 103 ± 1.0 102 5.6 x 103 ± 2.0 x 102

4
2.2 x 102 ± 0.1 x 102 1.3 x 105 ± 2.0 x 102 1.8 x 103 ± 0.3 x 102 5.8 x 105 ± 3.0 x 104

Oligosaccharide d.p.
kcat/K m  (M-1 min-1)

3 No Activity No Activity

6
1.8 x 104 ± 1.3 x 103 1.2 x 106 ± 5.2 x 104 1.1 x 105 ± 5.9 x 103 6.1 x 106 ± 1.6 x 105

5
7.2 x 102 ± 0.1 x 102 1.3 x 106 ± 6.6 x 104 2.4 x 103 ± 0.5 x 102 3.9 x 106 ± 1.8 x 105

8
1.5 x 105 ± 5.6 x 103 1.9 x 106  ± 1.3 x 105 1.5 x 106 ± 1.3 x 105 1.0 x 107 ± 5.6 x105

7 5.0 x 104 ± 3.7 x 103 1.7 x 106 ± 1.8 x 105 1.3 x 106 ± 9.7 x 104 4.5 x 106 ± 2.3 x 105

Table 4.2. Kinetic data of the four GH76 α-1,6-mannanases VS α-1,6-manno-oligosaccharides (d.P 3-8). 

Figure 4.11. GH76 α-mannanases substrate depletion data generation. In Panel a and b, BT3782 (0.05 

µM) and BT3792 (30 µm) respectively, were incubated with α1,6-mannotetraose at a concentration <<Km.. 

Assays were performed in 50 mM Na-phosphate buffer, pH 7.5 in the presence of 0.01 mg/mL (w/v) BSA 

and incubated at 37oC for 1h. Reaction aliquots were taken at the respective time-point and heat 

deactivated. Substrate depletion was measured using HPAEC and the rate (b) was plotted using GraphPad 

Prism 5.0, enabling kcat/KM to be determined. α1,6-mannooligosaccharides were identified by their degree 

of polymerization (M1, mannose; M2, mannobiose; M3, mannotriose; M4, mannotetraose) and IP is 

injection peak. 
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4.3.2.1.5. Sequence and structural analysis of the GH76s encoded by 

Bacteroides thetaiotaomicron 

Alignment of the amino acid sequences of the four GH76s revealed a conserved motif 

(YDD) (Figure 4.12). Comparison of the 3D crystal structure of a Listeria innocua 

GH76, Lin0763, with that of the GH76 enzyme, BT3792 (crystal structure solved by 

Dr. Mike D. Suits, Victoria University, Canada), revealed that the two aspartate (Asp) 

residues, Asp258 and Asp259 of the YDD motif are also structurally conserved (Figure 

4.13). These conserved Asp residues are housed within a curved, cleft-like structure, 

possibly indicating the substrate binding cleft of the enzyme (See Discussion section). 

These data suggest that Asp258 and Asp259 are candidate catalytic residues of the 

GH76 family of glycoside hydrolases.  



113 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12. Sequence alignment of the four GH76 α1,6-mannanases encoded 

PUL-Man1 and PUL-Man2 of B. theta. Alignment of the amino acid sequences of the 

four GH76 enzymes; BT2623, BT2631, BT3782 and BT3792 respectively.  The highly 

conserved YDD motif, comprising of the tentative catalytic residues of the enzymes, is 

highlighted in green. * represent conserved residues, : indicates conservation between 

groups of strongly similar properties and . indicates conservation between groups of 

weakly similar properties. 
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Figure 4.13. Structural alignment of the 3D structures of BT3792 and 

Lin0763. A structural alignment of the Bacteroides thetaiomicron GH76 (BT3792) 

with the Listeria innocua GH76 (Lin 0763), showing conserved aspartate residues. 

The structure of BT3792 is coloured green and the structure of Lin0763 is coloured 

blue. BT3792 aspartate residues are highlighted magenta whilst the Lin0763 

aspartate residues are highlighted yellow.  
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4.3.2.1.6. Site directed mutagenesis of the catalytic residues of the GH76, 

BT3792. 

To determine if the conserved aspartate residues of the GH76 enzyme BT3792 were 

the catalytic residues of the GH76 family of glycoside hydrolases, site directed 

mutagenesis was utilized. DNA encoding the single amino acid substitution was 

generated via PCR amplification using the primers displayed in Table 4.3 and 

analysed by electrophoresis, ensuring amplification of the DNA was successful (Figure 

4.14). Parental DNA was degraded with Dpn1 a restriction enzyme that attacks only 

methylated DNA, and the introduction of the mutation into the cloned amplified DNA 

was confirmed by sequencing (MWG Eurofins),  confirming that the candidate catalytic 

residues, Asp258 and Asp259, had been individually substituted with alanine in the 

encoded proteins.  Mutant derivatives of BT3792 were defined D258A and D259A 

respectively.  

 

 

 

 

 

 

 

 

 

 

Table 4.3. Primers used to generate BT3792 mutants. 
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Figure 4.14. Quality control of the Site-Directed Mutagenesis of BT3792. An 

agarose gel of the site-directed mutagenesis PCR amplification of BT3792. Lane 1 = 

PCR product containing D258A mutation; Lane 2 = PCR product of D259A mutation. 

Invitrogen Hyper Ladder 1 (HL1) was run as a molecular weight marker. Agarose 

gels were 1% and electrophoresed for 1 h. Molecular weight markers indicate an 

amplication product of ~8000 bp, consistent with the size of vector plus the BT3792 

insert. 
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4.3.2.1.6.1. Mutant expression and purification 

D258A and D259A, were expressed as described in Section 3.1.2 with near-identical 

yields as the wild-type enzyme. An example SDS-PAGE of the purification of D258A 

and D259A is shown in Figure 4.15. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.15. SDS- PAGE analysis of the protein purification of mutant 

variants of BT3792.  SDS-PAGE data of BT3792 mutant variants D258A and 

D259A following IMAC. All SDS-PAGE gels were 12 % (w/v). L= low molecular 

weight marker; P = insoluble fraction; CFE = cell free extract; FT= flow through; W 

= wash; E1 = elution 1, 5 mM imidazole; E2 = elution 2, 100 mM imidazole. Both 

proteins ran with an apparent Mr of 45 kDa, consistent with their expected size.  
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4.3.2.1.6.2. Assaying the ability of BT3792 derivatives to degrade mnn2 mutant 

yeast mannan. 

The catalytic activity of the BT3792 mutants, D258A and D259A, was assessed using 

a reducing sugar assay against the mutant yeast mannan, mnn2. The reducing sugar 

assay assesses the ability of the enzyme to hydrolyse glycosidic bonds, and ergo, 

reveal new reducing ends, which can be quantified using a standard curve of 

mannose. Mutant activity was assayed concurrently with wild-type BT3792. The assay 

was conducted in 50 mM Na-HEPES buffer, pH 7.5. Reactions were incubated at 370C 

for 30 min at a final substrate concentration of 5 mg/mL (w/v).  Both of the mutant 

enzymes displayed no measurable activity against mnn2 yeast mannan at an enzyme 

concentration of 25 µM, whilst wild-type enzyme displayed activity at concentrations 

of 0.1 µM (a 250 fold difference). These findings suggest that Asp258 and Asp259 are 

the catalytic residues of the enzyme.   

4.3.2.2. Investigating the activity of the GH125 enzymes, BT2632 and BT3781, 

encoded by the yeast α-mannan PULs of Bacteroides thetaiotaomicron. 

4.3.2.2.1. Expression and purification 

Both members of GH125 encoded by PUL-Man1 and PUL-Man2 were cloned by Mr. 

Carl Morland into pET28a. Recombinant forms of mature BT2632 and BT3781, 

consisting of amino acid residues 22 – 460 and 24 – 460 respectively, were expressed 

in E. coli BL21 cells, purified by IMAC and analysed via SDS-PAGE. Both GH125 

enzymes were expressed in soluble form (Figure 4.16). 
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4.3.2.2.2. The GH125s are α1,6-mannosidases  

The GH125 enzymes encoded by PUL-Man1 and PUL-Man2 (BT2632 and BT3781 

respectively), share 92% sequence homology and are predicted α1,6-mannosidases. 

Sequence analysis suggests both of the GH125 harbour a type I signal peptide, and 

so are predicted to be located to the periplasmic space. As such, the two enzymes 

were assayed against wild type and mnn2 mutant S. cerevisiae mannan. TLC and 

HPAEC-PAD analysis revealed that both enzymes were unable to degrade wild type 

yeast mannan (data not shown) but released mannose from the undecorated α1,6 

backbone of mnn2 mannan, confirming that the two GH125 enzymes are exo-α1,6-

mannosidases (Figure 4.17). 

 

Figure 4.16. SDS-PAGE analysis of the protein purification of the GH125s, 

BT2632 and BT3781. The two proteins were purified by IMAC. All SDS-PAGE gels 

were 12 % (w/v). L= low molecular weight marker; P = insoluble fraction; CFE = 

cell free extract; FT= flow through; W = wash; E1 = elution 1, 5 mM imidazole; E2 

= elution 2, 100 mM imidazole. Both proteins migrated according to their predicted 

size. BT2632 and BT3781 migrated with an apparent Mr of ~55 kDa. 
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4.3.2.2.3. GH125 α1,6-mannosidase activity against α1,6-

mannooligosaccharides. 

Kinetic data of the two GH125 enzymes were generated versus α-1,6 linked 

mannobiose (D.P 2), mannotriose (D.P 3) and mannotetraose (D.P 4), using a 

mannose detection assay kit (Megazyme) as described in Materials and Methods, 

Section 2.2.1.1. Reactions were carried out in 50 mM Na-HEPES buffer, pH 7.5 at 

37oC. 

The kinetic data generated is displayed in Table 4.4 and Figure 4.18. Both of the 

GH125 enzymes (BT2623 and BT3781) displayed similar affinities (KM) for each 

substrate, demonstrating a small preference for mannobiose over mannotriose and 

mannotetraose, indicating that both enzymes contain two subsites, -1 and +1.  

Figure 4.17. The activity of the GH125 α-mannosidases, encoded by PUL-Man1 and PUL-
Man2 of Bacteroides thetaiotaomicron. BT2632 and BT3781 (0.1 µM) were incubated with 1 
mg/ml (w/v) debranched mannan (mnn2) for 1 h in 50 mM Na-HEPES buffer, pH 7.5 at 37 oC. 
Panel A displays TLC analysis of the reactions, while the corresponding samples were analysed 
by HPAEC in Panel B. α1,6-mannooligosaccharides were identified by their degree of 
polymerization (M1, mannose; M2, mannobiose; M3, mannotriose; M4, mannotetraose) and IP is 
injection peak. 

A B 
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GH125 Substrate KM (mM) kcat (min-1) Kcat/KM (mM-1 min-1) 

BT2632 α1,6-mannobiose 0.43  
± 0.04 

1777 ± 44 4133 

α1,6-mannotriose 0.53  
± 0.07 

2613 ± 132 4930 

α1,6-mannotetraose 0.67  
± 0.07 

1260 ± 60 1881 

BT3781 α1,6-mannobiose 0.34  
± 0.03 

1051 ± 22 3091 

α1,6-mannotriose 0.59  
± 0.05 

2313 ± 90 3920 

α1,6-mannotetraose 0.42  
± 0.06 

1239 ± 59 2960 

 

 

Figure 4.18.  Graphs of the kinetic data generated for the two GH125s VS α1,6-manno-

oligosaccharides (D.P 2-4). Kinetic data of BT2632 (A) and BT3781 (B) versus 

mannooligosaccharides. Initial rates were derived using the mannose-detection kit (Megazyme). 

Rate of absorption (A min-1) was converted to rate of mannose released (µM min-1) using the 

extinction co-efficient of NADPH and plotted in GraphPad Prism 5.0 using Michaelis-Menten 

kinetics. 

Table 4.4. Kinetic data of the two GH125 α-1,6-mannasidases VS α-1,6-manno-oligosaccharides (D.P 2-3). 
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4.3.2.3. Assaying the activity of the GH97 BT2620, an α-galactosidase encoded 

by PUL-MAN1 of B. theta 

BT2620 is a member of GH97 a family that contains α-galactosidases and α-

glucosidases (Cantarel et al., 2009). Mannan from the yeast S. pombe contains α-

galactose side chains side chains and thus the polysaccharide is potential substrate 

for BT2620. To test this hypothesis the ORF encoding mature BT2620 was cloned into 

the E. coli expression vector pET28a. The protein was expressed in E. coli and 

subsequently purified by IMAC as described for the other B. theta enzymes described 

in this chapter, the methodology of which is detailed in Materials and Methods, Section 

2.1.25. 

4.3.2.3.2 Characterization of GH97 BT2620, an α-galactosidase  

The data displayed in Figure 4.19 showed that when incubation of BT2620 with S. 

pombe α-mannan liberated galactose, demonstrating that the enzyme cleaved the 

α1,2-linked galactosyl units appended to the α1,6-mannan backbone.  Thus, BT2620 

is an α-galactosidase. No galactose was liberated from S. cerevisiae α-mannan by 

BT2620. The specificity of BT2620 was explored against several substrates containing 

α-linked galactose moieties using TLC. BT2620 displayed extremely low catalytic 

activity against raffinose (O-α-D-galactopyranosyl-(1,6)-α-D-glucopyranosyl-β-D-

fructofuranoside) and melibiose (6-O-α-D-galactopyranosyl-D-glucose). No activity 

was observed against stachyose (α-D-galactopyranosyl-(1,6)-α-D-galactopyranosyl-

(1,6)-α-D-glucopyranosyl-β-D-Fructofuranoside)  or carob galactomannan, a 

polysaccharide consisting of a β1,4-linked mannose backbone with α1,6-galactose 

side-chains. Kinetic parameters were unattainable due to the extremely low catalytic 

activity of BT2620 against these substrates and S. pombe α-mannan 
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BT2620, displayed activity against pNP-α-D-galactose but not pNP-β-D-galactose or 

pNP- α-D-glucose. The enzyme was extremely slow with a catalytic efficiency (kcat/KM) 

of 56 min-1 M-1 (Figure 4.20). Individual kinetic parameters could not be determined as 

the KM was >>3 mM, after which substrate solubility was a problem.  

 

 

 

 

 

Figure 4.19. Thin Layer Chromatography assessing GH97 α-galactosidase activity. TLC analysis of GH97 

BT2620 (1 µM), encoded by PUL-Man1, incubated with various polysaccharides/oligosaccharides 

containing α-linked galactose moieties. Assays were performed in 50 mM Na-HEPES, pH 7.0 at 37 oC for 

1 h. Polysaccharide concentrations were 1 mg/mL (w/v) and oligosaccharide concentrations were 1 mM 

respectively. Samples were run against multiple standards, denoted by S. NOE denotes no enzyme 

control. Numbered lanes show GH97 BT2620 incubations with;  1 – S. pombe yeast α-mannan; 2 – Carob 

galactomannan; 3 – stachyose; 4 –melibiose and 5 – raffinose.  
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4.3.2.3.3 De-branching activity of BT2620 against S. pombe α-mannan 

The ability of BT2620, to de-branch S. pombe α-mannan and enable GH76 endo α-

mannanase accesses to the α1,6-mannan backbone was assessed by incubating 

BT2620 (1 µM) in the presence of the periplasmic (BT3782) or surface (BT3792) GH76 

endo-mannanases. TLC analysis of the reactions showed that in in the absence of α-

galactosidase activity, the GH76 endo-mannanases were not able to attack the 

decorated α1,6-mannan backbone, as no  mannooligosaccharides were generated. 

Conversely, in assays incorporating the α-galactosidase BT2620, the GH76 

mannanases were able to attack the mannan backbone releasing 

mannooligosaccharides (Figure 4.21).  

 

 

 

Figure 4.20.  Graph of GH97 α-galactosidase BT2620 vs pNP-α-D-galactose to 

generate catalytic efficiency constant. Rates were generated spectophotometrically (A 

min-1) at OD400nm. The rate of pNP group cleavage and release, stoichiometric to glucose 

release (mM min-1), was calculated using the extinction coefficient of pNP at pH 7.0. 

Activity against pNP-α-D-galactose was generated by incubating enzyme (0.25 µM) at 37 
oC in the presence of Na- HEPES, pH 7.0. Rates were analysed using linear regression 

in GraphPad Prism 5.0.  
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4.3.3. Can the degradation products liberated by B. theta cultured 

on α-mannan support the growth of other non-mannan utilising 

Bacteroides? 
To assess if the surface break down products of yeast α-mannan degradation 

generated by B. theta can sustain the growth of other non-mannan utilizing 

Bacteroides species, co-culturing experiments (in collaboration with Dr. Fiona Cuskin 

and Dr. Elisabeth Lowe) were performed with two additional Bacterodies species; 

Bacteroides cellulosilyticus WH2 (B. cellulo) and Bacteroides xylanisolvens NLAE-zI-

Figure 4.21. TLC of S. pombe mannan treated with BT2620 and other mannan 

degrading enzymes. TLC demonstrating that BT2620, a GH97 α-galactosidase, is 

capable of facilitating GH76 endo-α1,6-mannanase attack on the S. pombe α1,6-

mannan backbone. Lanes  1, 2 and 3 show debranched mannan, mnn2 (1 mg/mL (w/v)) 

incubated without enzyme, with the periplasmic (BT3782) and extracellular (BT3792) 

GH76 endo-mannanase, respectively. Lanes 4 to 7 show individual incubations of S. 

pombe α-mannan (1 mg/mL (w/v)) with 4 – no enzyme; 5 – 1µM BT2620; 6 – 1µM 

BT3782; 7 – 1µM BT3792). Lanes  8 and 9 show incubations of S. pombe α-mannan 

(1 mg/mL (w/v)) with the BT2620 (1 µM) in tandem with 8 –  BT3782 (1 µM) and 9 –  

BT3792 (1 µm). Lane 10  - galactose standard (Gal); Lane 11 – α1,6-

mannooligosaccharides standards, D.P 1 – 4 (M1, M2, M3 and M4). Reactions were 

performed in 50 mM Na-HEPES, pH 7.0 and proceeded for 1 h at 37oC 



126 
 

p352 (B. xylani). B. cellulo is unable to degrade and utilize α-mannan, but is able to 

grow on mannose. B. xylani contains a PUL syntenic with B. theta PUL-Man1. B. xylani 

exhibits very limited growth on S. cerevisiae mannan (Figure 4.22) but, in addition to 

growing on mannose, can depolymerise and utilize unbranched α-mannan, consisting 

solely of the α1,6-mannan backbone (Cuskin et al., 2015b). B. theta, prepared as 

described in Materials and Methods 2.1.7, was co-cultured with either B. xylani or B. 

cellulo independently, in the presence of either mannose (5 mg/mL (w/v)) or yeast α-

mannan (5 mg/mL (w/v)) as the sole carbon source. All experiments were performed 

in triplicate. Samples of bacterial growth (1 mL) were taken at the point of inoculation, 

early exponential phase, late exponential phase and stationary phase (Assessed by 

OD at 600nm). Cultures were plated onto rich media to determine the number of 

colonies at each phase of growth. The proportions of the Bacteroides species relative 

to each other were determined using quantitative PCR from genomic DNA, using 

unique markers for each strain (performed by Dr. Elisabeth Lowe). Both B. cellulo and 

B. xylani were also grown individually on S. cerevisae α-mannan. The results of the 

co-culturing experiment are depicted in Figure 4.22.  

When B. theta was co-cultured with either B. cellulo or B. xylani in the presence of 

mannose, the relative proportion of the two co-cultured Bacteroides species remained 

constant from the point of inoculation to stationary phase, suggesting that the three 

Bacteroides species are capable of importing and catabolising mannose equally. 

When co-cultured on S. cerevisiae α-mannan, however, B. theta out-competed both 

B. cellulo and B. xylani; the relative proportion of the respective co-cultured organisms 

changed from ~1:1 at inoculation to almost 100% B. theta at stationary phase. These 

data suggest that the limited mannose released by B. theta during extracellular 

mannan degradation cannot support the growth of Bacteroides species. 
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Figure 4.22. Assessing if yeast α-mannan degradation products, generated by B. 

theta can support the growth of other Bacteroides species. B. theta (Bt) was co-

cultured  anaerobically with B. cellulo WHZ (a,b) or B. xylani (Bx) NLAE-zl-p352 (c,d), in 

the presence of mannose (b,d) or S. cerevisiae α-mannan (a,c) as the sole carbon source 

(5 mg/mL (w/v)).  The upper graph of each panel depict the colony forming units mL-1 (c.f.u. 

mL-1) of each strain, relative to the c.f.u mL-1 at inoculation. Total c.f.u. mL-1 was determined 

by colony counts. The relative proportion of each Bacterodies species was determined by 

qPCR (Dr. Elisabeth Lowe) of marker genes from genomic DNA (lower graph of each 

panel). Error bars represents the standard deviation of three biological replicates (Cuskin 

et al., 2015). 
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4.3.4. Further elucidating the enzymatic deconstruction of high 

mannose N-glycan by α-mannosidases encoded by the high 

mannose N-glycan polysaccharide utilization locus of Bacteroides 

thetaiotaomicron.  
PUL-HMNG, encoded by B. theta, is activated solely by HMNG and not yeast α-

mannan, despite the similarities in core structure and composition of the respective 

glycans (Cuskin et al., 2015b). PUL-HMNG encodes three GH92 α-mannosidases that 

hydrolyse α1,2- (BT3990) α1,3- (BT3991) and α1,6- (BT3994) mannosidic linkages 

(Zhu et al., 2010).  As reported by Zhu et al. (2010) using qualitative assays, BT3994 

is able to hydrolyse the terminal α1,6-mannosidic linkage in HMNG treated with 

BT3990, which generates  Man5GlcNAc2, or both BT3990 and BT3991 that produces 

Man3GlcNAc2 (Figure 4.23). BT3994, however, was shown not to be active against an 

α1,6-linked disaccharide of mannose. This observation suggests a specificity 

determinant is required for BT3994 activity, which is present in both Man5GlcNAc2 and 

Man3GlcNAc2, but absent in α1,6-mannobiose. It can be hypothesized that either 

BT3994 requires an essential mannose residue at the +2 subsite or that BT3994 

displays specificity for a GlcNAc moeity at the +3 subsite of the enzyme for catalysis 

to occur. This hypothesis was probed in the following experiments.  

4.3.4.1 A non-reducing end N-acetyl glucosamine is a specificity determinant, 

essential for GH92 BT3994 α-mannosidase activity. 

To provide quantitative detailed information on the specificity of BT3994, a GH92 α1,6-

mannosidase (Zhu et al., 2010), the activity of the enzyme was determined using 

fluorescent labelled substrate.  A Man9GlcNAc2 oligosaccharide was labelled with 2-

aminobenzamide (AB) as described in Chapter 2 Section 2.2.2. Such labelling 

compromises the integrity of the modified reducing end GlcNAc. Man5GlcNAc2-AB and 

Man3GlcNAc2-AB oligosaccharides were generated from Man9GlcNAc2-AB  

(Structures shown in Figure 4.23) using BT3990 and both BT3991 and BT3990, 
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respectively. This was verified by HPAEC-PAD using a fluorescence detection system. 

Likewise, α1,6-mannotetraose and α1,6-mannotriose were 2-AB labelled (Figure 4.24) 

to explore BT3994 specificity for mannooligosaccharides.  

 

 

 

 

 

Figure 4.23. Structure of Man9GlcNAc2 and oligosaccharides generated to probe GH92 BT3994 α-

mannosidase specificity.  The structure of Man9GlcNAc2 is shown. Man5GlcNAc2 is generated by 

incubation of Man9GlcNAc2 with the GH92 α1,2-mannosidase, BT3990. Man3GlcNAc2 can be 

subsequently generated via treatment with the GH92 α1,3-mannosidase , BT3991. The specificity of 

the α1,6-mannosidase, BT3994 was tested against 2-Aminobenzine labelled Man5GlcNAc2 and 

Man3GlcNAc2 and analysed by a fluorescence detection system using HPAEC-PAD. The sugar/linkage 

composition of the oligosaccharides is denoted by a key. 
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The GH92 α1,6-mannosidase,  BT3994, was active against both 2-aminobenzamide 

labelled Man5GlcNAc2-AB and Man3GlcNAc2-AB. Efficiency constants (kcat/KM) of 

BT3994 against these substrates were generated by substrate depletion using the 

same methodology as described in Section 4.3.2.1.4.and analysed by HPAEC-PAD 

using fluorescence detection. The data are reported in Table 4.5 and example 

analyses are shown in Figure 4.25. Interestingly, the GH92 α1,6-mannosidase was 

not active against α1,6-mannotetraose-AB (effectively mannotriose) at enzyme 

concentrations as high as 10 µM, strongly suggesting that BT3994 requires GlcNAc at 

the reducing end +3 subsite for catalytic activity. Likewise, the lack of activity BT3994 

displays against α1,6-mannotriaose-AB (effectively mannobiose), confirms the 

observations of Zhu et al., (2010) 

Figure 4.24. HPAEC-PAD flurescence detection of 2-aminobenzne labelled α1,6-

mannotetraose and α1,6-mannotriose.  An example of the detection of 2-aminobenzene  

(AB) labelled α1,6-mannotetraose (Man4-AB) and α1,6-mannotriaose (Man3-AB) using a 

florescence detection system (HPAEC-PAD). The respective labelled α1,6-oligosaccharide 

is distinguished by colour and denoted by a key.  
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Enzyme Substrate Kcat/KM ( min-1 mM-1) 

BT3994 

α1,6-Mannobiose* Nd 

α1,6-Mannotriaose** Nd 

Man5GlcNAc2-AB 165 

Man3GlcNAc2-AB 391 

 

 

 

Figure 4.25. HPAEC-PAD fluorescent detection to monitor substrate depletion and activity 

of the GH92 α1,6-mannosidase, BT3994. Representative example of the substrate depletion 

data provided by GH92 α1,6-mannosidase BT3994 incubation with Man5GlcNac2-AB and α1,6-

mannotetraose-AB (Man4-AB), analysed by fluorescent detection (HPAEC-PAD).  kcat/KM 

values were generated by determining the rate of substrate depletion using GraphPad Prism 

5.0, if applicable. Assays were performed in 20 mM Na-citrate buffer, pH 7.5. 

Table 4.5. Catalytic efficiency of BT3994 against α1,6-mannooligosaccharides and exposed 

α1,6-linked mannose residues of HMNG. *Substrate is α1,6-Mannotriaose-AB and represents 

α1,6-Mannobiose. ** Substrate is α1,6-Mannotetraose-AB and represents α1,6-Mannotriaose. 
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4.4. Discussion 

The biochemical data generated in this chapter attempts to elucidate the hierarchal 

degradation of yeast α-mannan orchestrated by PUL-Man1-3 of B. theta. As such a 

model of yeast α-mannan degradation by B. theta is displayed in Figure 4.29.  

GH76 endo-α1,6-mannanase attack on the α1,6-mannan backbone is restricted due 

to steric constraints imposed by the mannan side chains of yeast α-mannan. Thus, 

limited side-chain removal must occur extracellularly to facilitate surface GH76 α-

mannanases cleaving mannosidic linkages in the backbone.  Attempts to elucidate the 

α-mannosidases localised to the cell surface which could fulfil this function revealed 

two such candidates; BT3990 and BT2199, which were able to de-branch yeast α-

mannan sufficiently to enable the GH76 α-mannanases to attack the backbone. 

Subsequently, localisation experiments performed by Dr Fiona Cuskin and Dr 

Elisabeth Lowe showed that BT3990 is a periplasmic enzyme. Excluding the potential 

role of the enzyme in extracellular side-chain deconstruction (Cuskin et al., 2015b). 

Instead, the α-mannosidase BT2199 is the most likely candidate enzyme.  The 

BT2199 ORF appears to be encoded by a PUL, owing to the presence of a SusC/D-

pair. This PUL and bt2199 specifically were not upregulated by yeast α-mannan. 

However, only the fold up-regulation of bt2199 in response to α-mannan was explored, 

and so the basal expression levels of BT2199 are unknown. Conversely, the key 

periplasmic debranching enzyme, BT3774, is up-regulated 50~fold compared to 

glucose grown cells, when B. theta cells were confronted with α-mannan (Cuskin et 

al., 2015b).  Uniquely, B. theta has seemingly evolved a strategy to utilize yeast α-

mannan through deploying surface exo-acting enzymes which are not encoded, or up-

regulated by, the cognate PUL or polysaccharide degradation products respectively 

(Cuskin et al., 2015b). Instead, side-chain removal is mediated by a constitutively 
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expressed α-mannosidase, which will thus infrequently expose the mannan backbone. 

Indeed the limited removal of the mannan side chains at the surface of B. theta is also 

reflected by the very low activity of BT2199 compared to the functionally equivalent 

GH38 α-mannosidase BT3774 (Cuskin et al., 2015b). B. theta has seemingly evolved 

a strategy which minimises nutrient loss at the cell surface, illustrated by the lack of 

oligosaccharides observed when B. theta is cultured with yeast α-mannan as a sole 

carbon source (Cuskin et al., 2015b). The inability of B. theta support the growth of B. 

xylani or B. cellulo when co-cultured on yeast mannan supports the view that the 

breakdown of the glycan at the surface of B. theta is minimal. Whilst BT2199 is the 

candidate enzyme which mediates extracellular side chain removal, additional 

experiments must be performed to validate this claim. This hypothesis could be 

verified by knocking out bt2199 and exploring whether the mutant is able to grow on 

yeast mannan.  

 

The GH76 glycoside hydrolases encoded by PUL-Man1 and PUL-Man2 are endo-

α1,6-mannanases. Site-directed mutagenesis of the two highly conserved aspartate 

residues, housed in a curved, cleft-like structure of the enzyme, abolished catalytic 

activity. Asp258 and Asp259 are therefore the candidate catalytic residues of the 

enzyme. Indeed, the topography of the active site is complementary to the 

conformation adopted by α-mannans as illustrated by Thompson et al. (2015). Indeed 

an overlay of the structure of BT3792 with a close GH76 homolog (Bacillus ciculans 

(Bc) endo-α1,6-mannanase; PDB code 5AGD) in complex with mannopentaose 

revealed that the ligand is located in a curved cleft containing the two catalytic 

residues, confirming the location of the substrate binding region and the active site 

Figure 4.26. The distance separating the two catalytic aspartate residues of the 
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enzyme of ~5 Ǻ is typical of  glycoside hydrolases that utilize a retaining, double 

displacement mechanism of catalysis (Rye and Withers, 2000), suggesting that the 

GH76 enzyme BT3792 and, by inference, all members of the family, are retaining 

enzymes. This hypothesis was confirmed by NMR performed by Dr. Alan Cartmell, 

revealing that the α-mannooligosaccharide products generated by the GH76 enzyme 

BT3792 demonstrated an overall net retention in anomeric configuration (Cuskin et 

al., 2015b). In the structural overlay described above, Figure 4.27 Asp258 is below the 

plane of the mannose bound in the active site (-1 subsite) and O1 of the carboxylate 

is 2.6 Å from the anomeric carbon demonstrating its role as the catalytic nucleophile. 

O1 of Asp259 is within hydrogen bonding distance (2.9 Å) indicating that this 

carboxylate residue functions as the catalytic acid/base.  

 

 

 

 

 

 

 

 

Figure 4.26. Crystal structure of the GH76 endo-α,16-mannanase, BT3792, in 

complex with α1,6-mannopentose. α1,6-mannopentaose is displayed in the ligand 

binding cleft of BT3792, and is coloured yellow. Oxygen moieties are coloured pink 

respectively. The surface of the enzyme is displayed and coloured grey. The conserved 

catalytic residues of the enzyme, Asp258 and Asp259 are coloured red. PDB code: 5AGD. 
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Endo-α1,6-mannanase activity is key to the sequential degradation of yeast α-

mannan, illustrated by the observed differences in activity displayed between the 

surface and periplasmic GH76 enzymes. The two extracellular GH76 endo-α1,6-

mannanases (BT2623 and BT3792) generate longer oligosaccharides from the 

mannan backbone than the corresponding periplasmic enzymes (BT2631 and 

BT3782), and are catalytically slower against the polysaccharide. Kinetic data of the 

GH76 enzymes versus α1,6-mannooligosaccharides suggest that the periplasmic 

endo-mannanases are more adapted for the degradation of small chain 

mannooligosaccharides than the corresponding extracellular enzymes. These findings 

offer a potential model by which the backbone of yeast mannan is processed by B. 

theta.   The surface GH76 enzymes are catalytically slower and make infrequent cuts 

along the exposed backbone of yeast mannan, generating large oligosaccharides 

which can be imported into the periplasm of the cell. Once within the cell, periplasm 

the GH76 enzymes rapidly degrade the imported mannooligosaccharides. The longer 

oligosaccharides generated by the surface mannanases ensures minimal extracellular 

metabolism and prevents loss of substrate to the human gut microbiota. Indeed, 

limiting the extracellular cleavage of long chain oligosaccharides would help 

synchronise the rate of import with cleavage; maximising substrate acquisition through 

reduced extracellular metabolism 
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The observed lower rates of surface GH76 endo-mannanase activity is consistent with 

limited biochemical data of surface Bacteroides enzymes (arabinanases and 

xylanases), which also display low catalytic activity (Cartmell et al., 2011). The 

periplasmic GH76 endo-mannanases, by generating numerous short chain α1,6-

oligosaccharides, maximise the substrate available to the periplasmic located GH125 

α1,6-mannosidases.  

The two GH125 α-mannosidases, BT2632 and BT3781, encoded by PUL-Man1 and 

PUL-Man2 respectively, are exo-α1,6-mannosidases which are capable of degrading  

α1,6-mannooligosaccharides and demonstrate the highest affinity for mannobiose.  

The preference for the disaccharide suggests that two sugar binding sub-sites are 

utilized by the enzymes, with Man-α1,6-Man motif occupying the -1 and +1 subsites. 

The crystal structure of the apo form of BT3781 and the Clostridium perfringens 

GH125 exo-α1,6-mannosidase, CpGH125, were previously determined, the latter in 

complex with α1,6-mannobiose (Gregg et al. (2011). In the crystal-structure of 

CpGH125 the non-reducing end of mannobiose occupied the -1 subsite and the 

Figure 4.27. Overlay of the catalytic residues of the GH76 endo-α16-

mannnases, BT3792 and BcGH76, in complex with 

mannopentaose. The catalytic residues of BT3792 are depicted in blue. 

The homologous residues, located within the BcGH76 (PDB code: 

5AGD) active site are coloured green respectively. The bound ligand, 

α1,6-mannopentaose is coloured yellow, with pink oxygen moieties. The 

sub-sites of the enzyme in which each respective pyranose ring of 

mannopentoase interacts is labelled accordingly. 
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reducing end mannose was bound at the +1 subsite. The CpGH125 catalytic site has 

the potential to accommodate longer oligosaccharides, with the reducing end sugar 

protruding into solvent. The structure of the catalytic site of CpGH125 indicates an 

inability for the enzyme to accommodate α1,2-linked side chains as O2 of the mannose 

at the +1 and/or -1 subsites are pointing at the enzyme surface. Indeed an overlay of 

the apo crystal structure of BT3781 and CpGH125 show that the active site (-1 subsite) 

and the +1 subsite are completely conserved in the two enzymes side chains and is 

consistent with the inability of the B. theta enzyme to act on α1,6-mannan backbones 

that contain side chains appended to O2, Figure 4.28. The structural conservation 

between the two enzymes also indicates that BT3781 only contains two subsites 

explaining why the enzyme displays maximum activity against mannobiose.  The 

observation that the GH125 B. theta enzyme could not act upon the highly decorated 

yeast mannan, indicate that side chain removal of oligosaccharides imported into the 

periplasm occurs prior to backbone depolymerisation by the GH76 and GH125 

enzymes.  
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Figure 4.28. The structures of GH125 a1,6-mannosidases that play a key role in yeast 
mannan degradation. Panel A shows an overlay of BT3781 (green; PDB code 2P0V) with 
the substrate and catalytic residues of the Clostridium perfringens GH125 a-mannosidase 
CpGH125 (cyan; PDB code 3QT9), in which the ligand 6-S-alpha-D-mannopyranosyl-6-thio-
a-D-mannopyranose (Man-S-Man) is shown in yellow. Panel B shows the solvent exposed 
surface of BT3781 in the vicinity of the active site in which the catalytic residues (Glu174 and 
Glu439) are depicted in magenta. The position of Man-S-Man is based on the overlay shown 
in Panel A. The figure was prepared using PyMOL. 
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B. theta has seemingly adapted a ‘selfish’ mechanism of yeast α-mannan utilization, 

supported by biochemical characterisation of the enzymes encoded by PUL-Man1/2/3 

and the inability of B. theta mannan degradation products to sustain the growth of 

other Bacteroides species. These data are entirely consistent with the observation that 

wild type B. theta is out-competed by a B. theta PUL-Man1/2/3 deletion strain in 

animals fed a diet not containing α-mannan, highlighting the significant energy 

cost/investment targeting yeast α-mannan entails, most likely owing the significant 

number of enzymes, transporters and binding proteins that must be expressed to fully 

degrade the polysaccharide (Cuskin et al., 2015b). These results reinforce the 

hypothesis that yeast α-mannan is a consistent nutrient source for the human gut 

microbiota. Indeed the selfish utilization strategy of high complexity/low abundance 

glycans extends to other PUL systems, such as the Bacteroides ovatus utilization of 

complex xylans (Rogowski et al., 2015).  

PUL-Man1 encodes a GH97 α-galactosidase, BT2620, which removes the α-

galactose decorations appended to the backbone of S. pombe α-mannan to facilitate 

endo-mannanase attack. This indicates that B. theta has evolved the ability to target 

the α-mannan of different yeast species. The importance of BT2620 in B. theta S. 

pombe α-mannan utilization is emphasized by observed growth defect of the ΔPUL-

Man1 B. theta mutant cultured on S. pombe mannan (Cuskin et al., 2015b). 

Interestingly, PUL-Man2 encodes a GH130 glycoside hydrolases capable of targeting 

the β1,2-mannosidic linkages which cap the mannose side-chains of Candida albicans 

α-mannan, a pathogenic yeast and commensal member of the gut microbiota (Cuskin 

et al., 2015a). This reinforces the variety of fungal mannans targeted by B. theta. 

The GH92 α1,6-mannosidase, BT3994, encoded by PUL-HMNG, targets the α1,6-

mannosidic linkages of Man5GlcNAc2-AB and Man3GlcNAc2-AB. The AB labelled 
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substrates utilized to assay BT3994 specificity in this chapter destroyed the terminal 

reducing end GlcNAc and thus the substrate targeted by these enzymes were 

Man5GlcNAc and Man3 -

mannotriose GlcNAc positioned in the +3 subsites is an absolute specificity 

determinant. Although BT3994 can hydrolyse substrates extended past the +3 subsite 

it is likely that Man5GlcNAc and Man3GlcNAc are the biologically substrates, as the 

GH18 endo-β-N-acetylglucosaminidase encoded by PUL-HMNG is localised to the 

cell surface. This enzymes releases HMNG by hydrolysis of the β1,4-linkage of the 

terminal GlcNAc-GlcNAc moiety of Man9GlcNAc2, before importation into the cell. The 

periplasmic localised enzymes of the HMNG-PUL would therefore only be presented 

with Man9GlcNAc. These data show that BT3994, is specific for HMNG, and supports 

the evidence that the HMNG-PUL apparatus is distinct from the α-mannan degradation 

apparatus, encoding an enzyme profile tailored to HMNG degradation, but not yeast 

α-mannan, deconstruction. Indeed, the inability of a mutant strain of B. theta lacking 

bt3993 (extracellular sigma-factor regulator of PUL-HMNG) to grow on Man9GlcNac2 

demonstrates that the HMNG-PUL targets HMNG exclusively (Cuskin et al., 2015b).  

 

While α-mannan represents a nutrient to the human microbiota, the polysaccharide 

may also have clinical implications. Patients with Crohn’s disease often have 

circulating anti-S. cerevisiae antibodies (ASCA). The epitope for this antibody is a 

mannan with α terminal Man-α1,3-Man disaccharide (Peeters et al., 2001);(Quinton et 

al., 1998), suggesting a relationship between the polysaccharide and Crohn’s disease. 

This view is supported by the observation that the ASCA epitope, expressed by a 

number of microorganisms inhibits the killing of Escherichia coli by macrophages and 

monocytes, suggesting that the suppression of mucosal phagocyte function by 
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microbial α-mannan may contribute to Crohn’s disease pathogenesis (Mpofu et al., 

2007). Intriguingly mannan induces the presentation of the endo-α1,2-mannosidase 

BT3862 and the α1,3-mannosidase on the surface of B. thetaiotaomicron that, 

collectively, would degrade the ASCA epitope and thus prevent the inhibition of 

mucosal phagocytes by α-mannans. Thus, in addition to utilizing yeast mannan as a 

nutrient, the capacity of B. thetaiotaomicron to express a repertoire of α-mannosidases 

that target α-mannans may also protect the large bowel from Crohn’s disease and 

inflammatory bowel disease generally.         
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Figure 4.29. Model of Yeast α-mannan degradation by Bacteroides thetaiotaomicron. 

In this model limited degradation of the mannan occurs at the surface and the bulk of 

glycan degradation occurs in the periplasm. Yeast α-mannan is partially de-branched at 

the cell surface by constitutively expressed α-mannosidases (most likely the GH92 α-

mannosidase, BT2199 and potentially with GH99 endo-α1,2-mannosidase assistance), 

providing access for the extracellular  GH76s endo-α1,6-mannanases (BT2623 and 

BT3792) to the α1,6-mannan backbone. High molecular weight oligosaccharide products 

are transported through the SusC homolog into the periplasm. Following concerted side-

chain removal via GH38 α-mannosidase (BT3774), GH92 α-mannosidase 

(BT2629/BT3784) and phosphatase  (BT2630 and BT3783) activity, periplasmic GH76 

enzymes (BT2632 and BT3782), hydrolyse the linear α-1,6-mannooligosaccharides into 

small chain products (D.P ≤3). The α1,6-mannooligosaccharides upregulated the mannan 

PULs prior to their hydrolysis into mannose by the GH125 α1,6-mannosidases BT2632 

and BT3781, which can then be imported and fermented by the bacterium. 
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4.5. Further work 

Further work must be performed in order to elucidate if BT2199 is the only extracellular 

candidate α-mannosidase capable of debranching yeast α-mannan. This could be 

investigated via knocking out the ORF encoding BT2199 and assessing the ability of 

the mutant to grown on yeast α-mannan and the linear mannan backbone.  

Furthermore, to further assess if the break down products of B. theta growth with yeast 

α-mannan can support the growth of other Bacteroides, a more compelling experiment 

would be to co-culture wild type B. theta with a Pul-Man1/2/3 deletion strain of B. theta, 

reducing any possible inter-species differences in mannan catabolism. Similarly, a 

deletion strain of the surface GH76 endo-mannanases encoded by PUL-Man1 and 

PUL-Man2 could be co-cultured with wild type B. theta to assess if the release of high 

molecular weight oligosaccharides during α-mannan depolymerisation are able to 

support growth of other potential mannan utilizers.  
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Chapter 5: Bacteroides thetaiotaomicron and 

Bacteroides ovatus can utilize the β1,6-glucan  

fraction of the yeast cell wall as an energy source 

5.1 Introduction 
The Bacteroides genus, exemplified by the gram negative Bacteroides 

thetaiotaomicron (B. theta), represents a significant proportion of the human gut 

microbiota. Around 40% of the B. theta genome encodes carbohydrate active 

enzymes (CAZymes)  enabling this bacterium to utilize a myriad of complex dietary 

and host-derived glycans (Rogowski et al., 2015). Such CAZymes, many of which 

belong to sequence based glycoside hydrolase families (GHs), are often encoded in 

distinct genetic loci that target and are up-regulated by specific glycans. These 

polysaccharide utilization loci (PULs) encode periplasmic and cell envelope 

associated proteins that mediate the acquisition, degradation, and utilization of specific 

polysaccharides.  All PULs encode homologues to the SusC/SusD pair present in the 

starch utilization locus. These proteins, which are localised to the extracellular 

membrane, mediate glycan import into the periplasm. Hypothetical PULs are identified 

by the presence of homologues of SusC and SusD (defined as SusCh and SusDh, 

respectively), which are upregulated by the depolymerised products of their cognate 

polysaccharide. The portfolio of PULs is not conserved amongst the Bacteroidetes 

genera, and thus the glycan degrading capacity varies in the organisms that belong to 

this phylum (Larsbrink, 2014). 

 It was previously reported that when B. theta was cultured with yeast extract, peptone, 

dextran (YPD) media, the expression of a PUL (defined henceforth as PULbtPUS) 

containing bt3310 and bt3311 that encode a SusCh and SusDh, respectively, were 

upregulated (Sonnenburg et al., 2010). Bioinformatic analysis of PULbtPUS identified a 

number of potential protein encoding genes including a homologue to the regulator of 
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the starch PUL, defined here as SusRh (BT3309), a GH30 glycoside hydrolase 

(BT3312), a surface glycan binding protein or SGBP (BT3313) and a GH3 glycoside 

hydrolase (BT3314). It is possible that the proteins encoded by PULbtPUS orchestrate 

the deconstruction of a polysaccharide present in the YPD medium. A schematic of 

this predicted PUL is shown in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Schematic of PULbtPUS. Hypothetical protein encoding open reading 

frames (ORFs) are shown as arrows (to scale), the direction of which indicates the 

orientation of the ORF. Predicted activity is annotated above the ORF, whilst the 

locus tag of the ORF is annotated below. Sus--like indicates the predicted role of 

the encoded protein based on sequence similarities with the homologous protein in 

the prototypic starch utilization system (Sus). GH (glycoside hydrolase) followed by 

a number indicates the amino-acid sequence based family the protein is 

categorised in the CAZy database. SGBP represents surface glycan binding 

protein.  
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Yeast cell wall polysaccharides present in the yeast extract of YPD media are potential 

target substrates for PULbtPUS. The yeast cell wall, consisting of a number of complex 

polysaccharides, includes chitins, α-mannans and β-glucans that differ in linkage (See 

Chapter 1, Section 1.3.2). B. theta can utilize yeast α-mannan as an energy source 

(Cuskin et al., 2015b), suggesting yeast cell wall polysaccharides are viable targets 

for the human gut microbiota. Indeed, the acquisition and evolution of the PULs which 

target yeast mannan coincides with the human domestication of yeast (Cuskin et al., 

2015b).  The predominant glycan in the yeast wall, comprising ~80%, is β1,3-glucan 

decorated with β1,6-linked glucose side chains. These β-glucans comprise up to 1500 

glucose residues and plays a structural role in the yeast cell wall. The helical 

conformation adopted by the β1,3-glucans provides tensile strength to the cell wall, 

protecting the yeast cell against turgor induced by osmatic stress. The minor β1,6- 

glucans, constituting 10 – 15% of the Saccharomyces cerevisiae (S. cerevisiae) cell 

wall,  consist of a β1,6-glucan backbone substituted with β1,3-glucose decorations, 

and are estimated to extend to ~200 glucose residues in length. The proportion of 

β1,3-glucose side chains is species specific, being 7 % in S. cerevisiae but can be as 

much as up to 75 % in Schizosaccharomyces pombe (Aimanianda et al., 2009). The 

β1,6-glucan fraction of the cell wall is covalently linked to the β1,3-glucan fraction and 

cross-links the yeast cell wall (Aimanianda et al., 2009). The importance of the β1,6-

glucan fraction to cell wall structure and yeast survival, is demonstrated by the lack of 

viability shown by yeast mutants which lack the transferases responsible for the 

assembly of the β1,6-glucan fraction in vivo (Kurita et al., 2011). A representation of 

the structure of the β1,6-glucan fraction of the yeast cell wall is displayed in Figure 5.2 
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Previously characterised GH30 glycoside hydrolases which belong to the sub-family 

3 are at present exclusively endo-β1,6-glucanases. Reported activity of GH3 glycoside 

hydrolases includes β-glucosidase activity, suggesting that these enzymes target β-

linked glucans and that PULbtPUS may orchestrate β-glucan deconstruction, specifically 

β1,6-glucans.  

5.2 Objectives 

The objectives of this chapter is to elucidate the degradation of β1,6-glucans by 

Bacteroides through the biochemical characterisation of the proteins encoded by the 

PULs believed to target this substrate. 

5.3 Bacteroides thetaiotaomicron and Bacteroides ovatus are capable of 
utilizing β1,6-glucans as a carbon source. 

5.3.1. Culturing B. theta and B. ovatus with β-glucans. 

To establish the yeast -glucan(s) utilized by B. theta and B. ovatus, the two 

Bacteroides  were cultured anaerobically in the presence of the linear β1,3-linked 

glucan, laminarin and pustulan, a linear β1,6-glucan polysaccharide. Growth curves 

are displayed in Figure 5.3.  Both Bacteroides species were able to utilize pustulan as 

an energy source, growing to an optical density of 2.0 (OD600nm).  No growth was 

observed when B. theta and B. ovatus were incubated in minimal media containing 

Figure 5.2. Structure of  the  β1,6-glucan fraction of the Saccharomyces cerevisiae 

cell wall. G indicates glucose residues. All arrows represent β-bonds, with numbers besides the 

arrows denoting linkage. Figure adapted from Aimanianda et al. (2009) 
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laminarin for 24 h period indicating that the two organisms were unable to target β1,3-

glucans. 

 

 

 

 

 

 

 

 

 

 

5.3.2. Transcription of PULbtPUS and PULboPUS is upregulated by β1,6-glucans.  

Given that B. theta can grow on yeast β1,6-glucans and the genes encoded by 

PULbtPUS  are predicted to encode PULPUS, it is likely that transcription of the locus is 

activated by pustulan. As described below, B. ovatus contains a PUL (PULboPUS) that 

is synthenic with PULboPUS and thus is predicted to also orchestrates the degradation 

of pustulan. To test the hypothesis that PULbtPUS and PULboPUS were upregulated by 

pustulan, confirming their role in the degradation of the β1,6-glucan, quantitative 

polymerase chain reactions (qPCRs) were performed on the transcripts derived from 

the genes encoded by the two loci. To ensure that no observed activation of the PULs 

Figure 5.3. Growth curves of anaerobic B. theta and B. ovatus cultured on glucose 

and β-glucans. Minimal media (2 mL) containing glucose ( 5 mg/mL), the linear β1,3-

glucan laminarin (5 mg/mL) or the linear β1,6-glucan, pustulan (5 mg/mL), was inoculated 

with  B. theta (BT) or B. ovatus (BO)). Inoculated bacteria were incubated anaerobically in 

a 24-well plate. Bacterial growth was continuously monitored (represented by OD600nm), 

until stationary phase was reached.  Bacterial growths were performed in triplicate, the 

average optical density is plotted on GraphPad Prism 5.0.  
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was due to unspecified components in TYG medium, Bacteroides cells (stored in 

glycerol (25 % v/v)/ TYG) were sub cultured twice over night into minimal media 

containing glucose (5 mg/mL), before being washed and inoculated into minimal media 

(3 mL) containing glucose (5 mg/mL) and pustulan (5 mg/mL), respectively. Cells were 

grown anaerobically until early-exponential phase (0.6 OD600nm) and RNA was 

extracted and reverse transcribed to cDNA as described in Materials and Methods, 

Sections 2.1.14 and 2.1.15, respectively. The primers, complementary to regions of 

the ORFs and designed to produce amplicons between 100 – 150 base pairs are 

displayed in Table 5.1. qPCR revealed that, compared to glucose grown cells, 

pustulan mediated a ~100-fold upregulation of bt3310 – bt3313 in B. theta and ~200- 

fold up-regulation of bacova_00942 – 00945 in B.ovatus, Figure 5.4. No upregulation 

of bt3309 and bacova_00941, the SusRh regulators, was observed as seen in previous 

gene upregulation studies of PULs (Sonnenburg et al., 2010). Interestingly, the ORFs 

encoding for BT3314 and BACOVA_00946, the hypothetical GH3 β-glucosidases, 

were only upregulated ~10- and ~25-fold in B. theta and B. ovatus respectively 

(relative to glucose grown cells) (Figure 5.4). The exact signalling molecule that induce 

the up-regulation of the β-glucan PUL in both species in not known.  
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Bacteroides species 
Open Reading 
Frame 

Nucleotide sequence (5' -> 3') Direction 

Bacteroides 
thetaiotaomicron 

bt3309 
TGCCTCTTCGGCTTCTATTT Forward 

ATGGAATTAGGAGCCACGTC Reverse 

bt3310 
ACGTGTTGCTTACCTTGCTG Forward 

GTCGGAGGCTTCACCATACT Reverse 

bt3311 
TCCGTAGCCCGTACTCTTCT Forward 

AAACCATCAGCCTTCACCTC Reverse 

bt3312 
ATGGAAGAGGTAGCATTGGG Forward 

TGACAACCACCTTCACGATT Reverse 

bt3313 
GGCTGGGAAGACAATACGAT Forward 

CGGACTCGCTTCATAGTTGA Reverse 

bt3314 
GAGTTCAACCGTCACACCAC Forward 

ACCGGAGTCGGTATCTTCAC Reverse 

Bacteroides ovatus 

bacova_00941 
TATCTGCGACTCTGCAATCC Forward 

CGTGTACATTCCCGTTGAAG Reverse 

bacova_00942 
GGTAACCAGTCGGGTATTGG Forward 

AGCATTTGCGTAATCAGTCG Reverse 

bacova_00943 
GGACTGGAACCGGTATATGG Forward 

CATGGCACGGAATATCTTTG Reverse 

bacova_00944 
GGCGCCTACTTCCATTACAT Forward 

TCAGAGAACGTTTCCGTCAG Reverse 

bacova_00945 
ATCTGGGCTATTGGAACAGG Forward 

CCGGCTATGAATGTCAGTTG Reverse 

bacova_00946 
AGTGGCTAAAGATGCCGACT Forward 

TGCCAGTTCGCTTATCACTC Reverse 

 

 

 

 

Table 5.1. Nucleotide sequences of primer utilized in quantitative PCR experiment to assess 

gene expression levels of the genes in PULbtPUS and PULboPUS  
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5.3.3. PULbtPUS is wide-spread amongst the Bacteroides genus. 

Analysis of the genomes of Bacteroides revealed that PULbtPUS is conserved amongst 

all other B. theta strains currently sequenced from clinical settings, and numerous 

other Bacteroides species including B. ovatus strain ATCC-8483, where the locus is 

defined as PULboPUS. Thus, PULbtPUS and PULboPUS are syntenic, while the 

corresponding encoded proteins display a high degree of sequence identity and are 

thus highly likely to display the same function (Figure 5.5). 

 

Figure 5.4. Quantitative PCR of the transcripts derived from PULbtPUS and PULboPUS when B. theta and 

B. ovatus were cultured on pustulan and glucose. Anaerobic cultures in minimal media  (3 mL) 

containing the respective carbon source (5 mg/mL) were grown until 0.6 OD600nm before mRNA was 

harvested. Growths were performed in triplicate. The fold up-regulation compared to glucose grown 

cells of each gene is labelled with the respective encoded labelled according to predicted function.  
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Figure 5.5. Schematic representation of the synteny and homology shared between 

PULbtPUS and PULboPUS. The two PULs are labelled by Bacteroides species. The locus tag 

of the predicted protein encoding ORFs are displayed beneath their respective 

representation (bt for B. theta and bacova for B. ovatus). The amino-acid sequence identity 

shared between the encoded hypothetical proteins with the same predicted function 

(denoted by a dashed line) is displayed as a percentage.  
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5.4. Characterisation of the proteins encoded by PULbtPUS  

The mechanism of β1,6-glucan utilization by Bacteroides was initially explored in B. 

theta and accomplished through characterising the proteins encoded by PULbtPUS. 

5.4.1. Characterisation of the extracellular binding proteins, SusDh and SGBP 

encoded by PULbtPUS 
 

5.4.1.1. Expression and purification 

DNA encoding SusDh and extracellular SGBP, BT3311 and BT3313 respectively, were 

cloned via a high-throughput cloning service (NZYtech, Portugal). The proteins (like 

all B. theta proteins investigated in this study), were cloned without signal peptides. 

The genes were cloned into a pET28a derivative and supplied an N-terminal His6-tag 

to BT3311 and BT3313. The two proteins, which were expressed in E. coli TUNER 

cells were produced in soluble form and purified by IMAC, Figure 5.6. The observed 

size of the purified proteins were consistent with their predicted size.  
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Figure 5.6. SDS-PAGE of recombinant expression and purification of BT3311 and BT3313. SDS-

PAGE of typical BT3311 and BT3313 purification following IMAC. All SDS-PAGE gels were 12 % 

(w/v). Marker Mr is displayed in kDa. L = low size marker; P = insoluble fraction; CHE = cell free 

extract; FT = flow through; W = wash ( 1x TALON buffer); E1 = elution 1 (5 mM imidazole,1 x 

TALON buffer); E2 = elution 2 (100 mM imidazole, 1 x TALON buffer).  BT3311 ran with an 

apparent Mr of 58 kDa. BT3313 ran with an apparent Mr of 70 kDa. Both values are consistent 

with the predicted sizes of the recombinant proteins, at 55.5 kDa and 72 kDa respectively. 
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5.4.1.2 The Extracellular binding proteins demonstrate preferential binding to 

Pustulan, a linear β1,6-glucan polysaccharide. 

The activity of the potential carbohydrate surface binding proteins to soluble 

polysaccharides was first assessed via affinity gel electrophoresis as a qualitative 

screening method, which is described in Materials and Methods, Section 2.2.5.2. The 

non-binding negative control protein was bovine serum albumin (BSA). Both BT3311 

and BT3313 displayed binding to pustulan (Figure 5.7). No binding to the linear β1,3 

linked glucan laminarin was observed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Affinity gel electrophoresis of BT3311 and BT3313 against soluble β-glucans. 

Recombinant BT3311 (SusDh) and BT3313 (SGBP) were electrophoresed through a non-

denaturing, polyacrylamide gel in the presence and absence of ligand (0.1 % (w/v). Bovine serum 

albumin (BSA) was used as a non-binding control.  
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To provide a quantitative assessment of glucan recognition, isothermal titration 

calorimetry (ITC) was utilized to determine the thermodynamic parameters of ligand 

binding. Using ITC the association constant (Ka) change in enthalpy and stoichiometry 

of binding (n) were determined using MicroCal Origin 7.0 software, as described in 

Materials and Methods, Section 2.2.5.1  The data-set is reported in Table 5.2 and 

example titrations are shown in Figure 5.8.  The SusDh (BT3311) and SGBP (BT3313) 

displayed Ka values of 4.0 x 104 M-1 and 5.1 x 105 M-1, respectively, for pustulan. 

 

Protein Ligand Ka (M-1) n 

BT3311 

Pustulan 4.0 (±0.25) x 104 1.1 ± 0.0 

β1,6-glucoheptaose 1.8 (±0.03) x 104 1.0 ± 0.0 

β1,6-glucohexaose 1.6 (±0.02) x 104 1.0 ± 0.0 

β1,6-glucopentaose 
Unquantifiable Binding 

β1,6-glucotetraose 

β1,6-glucobiose No Binding 

BT3313 

Pustulan 5.1 (±0.4) x 105 1.0 ± 0.0 

β1,6-glucoheptaose 6.0 (±0.04) x 104 1.0 ± 0.0 

β1,6-glucohexaose 5.8 (±0.06) x 104 1.0 ± 0.0 

β1,6-glucopentaose 
Unquantifiable Binding 

β1,6-glucotetraose 

β1,6-glucobiose No Binding 

 

 

 

 

 

 

 

Table 5.2. Association constant values (Ka) generated by isothermal titration calorimetry for 

BT3311 and BT3313 against pustulan and β1,6-oligosaccharides 
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Figure 5.8. Example ITC data of BT3311 and BT3313 binding to pustulan. Panel A 

and B show an ITC trace of BT3311 and BT3313, respectively, binding to pustulan. 

Panel C demonstrates a control titration of ligand into buffer.  Ligand (5 mg/mL) in the 

syringe was titrated into the protein containing cell (50 µM) or buffer for control titration. 

The top half of each ITC trace shows the raw heats generated per titration; the bottom 

half shows the integrated peak areas, fitted using a single-site binding model by 

MicroCal Origion software. All ITC was performed in 50 mM Na-HEPES buffer, 150 

mM NaCl, pH 7.5  
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To deduce the ability of the surface binding proteins to bind to β1,6-gluco-

oligosaccharides with differing degrees of polymerisation (D.Ps), the pustulan 

polysaccharide (1 g) was subjected to acid hydrolysis (20 mM HCl for 2 h) giving β1,6-

oligosaccharides of varying D.Ps. Following neutralisation, the oligosaccharide 

mixture was subjected to size exclusion chromatography (see Section 2.2.6.2. for 

methodology), rendering purified oligosaccharides of single species ranging from 

glucobiose to glucooctaose (Shown in Figure 5.9). The size of the oligosaccharides 

was based on the assumption that successive eluted glycans differed by a D.P. of 1.   

 

 

Figure 5.9. HPAEC-PAD analysis of purified β1,6-oligosaccharides. Oligosaccharide 

fractions rendered by P2-column size exclusion chromatography were first analysed for 

purity and degree of polymerisation (D.P) by HPAEC-PAD. Samples were diluted in water 

(100-fold dilution) for analysis. A glucose (0.05 mM) standard was ran concurrently to 

provide information on D.P of purified oligosaccharides relative to glucose. Fractions are 

labelled according to D.P (2-10). Once confirmed to be homogenous in composition, 

purified oligosaccharide fractions were pooled and subjected to lyophilisation. 
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Both proteins displayed maximum binding to oligosaccharides with a D.P. of 6 or 7. 

No measurable binding was detected for ligands with a D.P. ≤5. BT3313 displayed an 

affinity for glucohexaose and glucoheptaose around 3.5-fold greater than BT3311, 

Table 5.2.    

5.4.2. Characterisation of the enzymes encoded by the β1,6-glucan 

PUL of Bacteroides thetaiotaomicron 
 

5.4.2.1. Expression and Purification 

The ORFs encoding mature BT3312 and BT3314 (lacking signal peptides) were 

cloned into a pET28a expression vector derivative as described in Materials and 

Methods, Section 2.1.21. The His-tagged proteins were purified by IMAC to 

electrophoretic homogeneity. The size of the purified proteins, as judged by SDS-

PAGE, Figure 5.10 were consistent with their predicted molecular weight based on 

primary sequence.  BT3312, a candidate for crystal trails, was subjected to further 

purification by size-exclusion chromatography 
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5.4.2.2. Sequence analysis and prediction of the cellular location of, BT3312, a 

hypothetical GH30 endo-β1,6-glucanase. 

BT3312  is a member of sub-family 3 of GH30. All previously characterized members 

of this sub-family have been shown to display β1,6-glucanase activity. LipoP 

(http://www.cbs.dtu.dk/services/LipoP/) analysis of BT3312 predicts that the protein is 

localised to the outer membrane of the cell due to the presence of a type II signal 

peptide (Figure 5.11).  

Figure 5.10. SDS-PAGE of recombinant expression and purification of BT3312 and BT3314. SDS-

PAGE of typical BT3312 and BT3314  purification following IMAC. All SDS-PAGE gels were 12 % 

(w/v). Marker Mr is displayed in kDa. L = low size marker; P = insoluble fraction; CHE = cell free 

extract; FT = flow through; W = wash ( 1x TALON buffer); E1 = elution 1 (5 mM imidazole,1 x 

TALON buffer); E2 = elution 2 (100 mM imidazole, 1 x TALON buffer). BT3312 ran with an 

apparent Mr of 55 kDa. BT3314 ran with an apparent Mr of 80 kDa. Both values are consistent 

with the predicted sizes of the recombinant proteins, at 53 kDa and 82 kDa respectively. 
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5.4.2.3. The GH30, BT3312, is an endo-β1,6-glucanase with activity against pustulan, a 

linear β1,6 glucan polysaccharide. 

In order to investigate the specificity and activity of BT3312, the capacity of the enzyme 

to hydrolyse various glyosidic linkages was assessed. Qualitative assessments of 

activity were analysed by TLC. Michaelis-Menten kinetics was generated via reducing 

sugar assays (polysaccharide substrates) or by substrate depletion using HPLC 

(oligosaccharide substrates) as described in 2.2.1.4.1 and 2.2.4, respectively. Assays 

incorporating BT3312 were conducted at 37 oC in 20 mM sodium-phosphate buffer, 

pH 7.5. Rates were plotted using GraphPad Prism 5.0 and analysed via non-linear or 

linear regression where appropriate.  

 

BT3312 was found to be catalytically active against the linear β1,6-linked glucan 

pustulan, rendering glucose and glucobiose as limit products of digestion (Figure 

5.12), thereby confirming that BT3312 is a β1,6-glucanase. During the initial stages of 

the reaction a series of oligosaccharides were generated demonstrating that the 

Figure 5.11. LipoP analysis of the predicted GH30 β1,6-glucananse. LipoP analysis 

(http://www.cbs.dtu.dk/services/LipoP/) indicates the likelihood of a SpII signal peptide 

(lipoprotein signal peptide) and a predicted cleavage site at amino acid residue 20 of the 

protein sequence. These data indicate BT3312 is localised to the outer membrane of the cell.  
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enzyme has an endo mode of action (Figure 5.13).  No activity against the other 

polysaccharides assessed including β1,3-glucan, β1,4-glucan and β1,6-galactan was 

observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13. TLC analysis of GH30 endo-β1,6-glucananse ,BT3312, activity against 

pustulan. TLC showing BT3312 (0.1 µM or 0.01 µM) activity against pustulan (1 mg/mL) 

over a time course totalling 1 h. Samples of the reactions were taken at the respective time 

points and deactivated by boiling for 10 min. NOE = No enzyme control. G = glucose (1 mM) 

which was ran as a standard.  

Figure 3.12. Thin layer chromatography (TLC) of 

limit products generated by BT3312 against 

pustulan.  TLC showing a 16 h digest of BT3312 (1 

µM) with pustulan (1 mg/mL), ran against a glucose 

and β1,4-glucooligosaccharide standard (G -> G4). 

NOE = no enzyme control.   
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The full Michaelis-Menten kinetic parameters of BT3312 against pustulan are reported 

in Table 5.3 and Figure 5.14 and were determined via a reducing sugar assay as 

described in Materials and Methods, Section 2.2.1.4.1. Briefly, as the glycoside 

hydrolase cleaves sugar chains internally, new reducing ends are formed, inducing a 

colour change in the assay reagents which can be measured spectrophotometrically 

at OD540nm. A standard curve of glucose was utilized to quantify the formation of new 

reducing ends. Enzyme (50 nM) was incubated with a range of pustulan 

concentrations (0.5 – 8 mg/mL) with aliquots taken of the reaction over a series of time 

points. Reactions were deactivated by the addition DNSA reagent. The initial linear 

rate was plotted against substrate concentration.  BT3312 had a kcat of 13824 min-1 

against the polymeric substrate and a Km of 5.6 mg/mL for the polysaccharide. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14. Activity of BT3312 against pustulan. Rates were generated via a DNSA reducing 

sugar assay using a fixed enzyme concentration (0.05 µM) against a range of substrate 

concentrations Rates were plotted using GraphPad Prism 5.0 and analysed using Michaelis-

Menten kinetics. 
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Enzyme Substrate Km (mg/mL) Vmax (µM min-1) Kcat (min-1) Kcat/Km (mg-1 mL min-1) 

BT3312 Pustulan 5.6 69.1 1382 247 

 

5.4.2.4. BT3312 activity vs pustulan-derived oligosaccharides. 

To ascertain the activity of BT3312 against the oligosaccharide β1,6-glucooctose, 

BT3312 (0.01 µM) was incubated with β1,6-glucooctaose (0.03 mM) to ≤ 30 % of the 

starting quantity of substrate (represented by peak area) at T0 (0 min) after a 25 min 

time course. Aliquots of the reactions were taken at 5 min time points (T1 – 6) and 

analysed using HPAEC-PAD to deduce peak area. BSA (0.1 mg/mL) and an internal 

standard of fucose (0.01 mM) were incorporated into all assays. Substrate depletion 

was plotted using Graphpad Prism 5.0 and the gradient (velocity (min)) was 

ascertained via linear regression analysis. The Kcat/Km (M-1 min-1) of β1,6-glucooctose 

hydrolysis by BT3312 was subsequently deduced as performed in Chapter 4, Section 

4.3.2.1.4.. BT3312 demonstrated a kcat/Km value of 6.4 x 106 M-1 min-1 against β1,6-

glucooctaose. The graph used to generate the catalytic efficiency of the enzyme is 

depicted in Figure 5.15. 

 

 

 

 

 

 

 

 

Table 5.3. Kinetic parameters generated from BT3312 VS Pustulan 
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5.4.2.5. Crystallisation of BT3312. 

Purified protein (20 mg/mL) was distributed into 96 well plates by a Mosquito microliter 

pipetting robot (TTP labtech) with a total of two drops per well; the ratio of protein 

mixture to reservoir, being 1:1 and 2:1 respectively.  Eight commercially available 96-

well screens were used. Crystals of BT3312 were obtained in the commercial 96-well 

screen PACT, the conditions being 0.2 M Sodium Bromide, 0.1 Bis Tris Propane, pH 

6.5, 20 % w/v PEG 3350. The structure of the GH30 enzyme was solved by molecular 

replacement by Arnaud Baslé using the GH30 human glucosylceramidase (displays 

Enzyme Oligosaccharide Kcat/Km (M-1 min-1) 

BT3312 β1,6-glucooctaose 6.39 (± 0.2) x 106  

Figure 5.15. Graph showing substrate depletion of β1,6-glucooctaose by BT3312. BT3312 (10 nM) 

was used to treat β1,6-glucooctaose (0.03 mM). Aliquots were taken at 5 min intervals over a 25 min 

time-course. Reactions were deactivated by boiling for 10 min. The area of the glucooctasoe peak was 

determined at the respective time point and standardised to an internal standard of fucose.  In(S0/St) 

values were plotted using GraphPad Prism 5.0, where S0  = peak area of glucooctaose at T0 (0 min) and 

St =peak area of glucooctaose at time point (X min). Linear regression was used to ascertain the gradient 

(rate) which was subsequently divided by enzyme concentration to derive the Kcat/Km efficiency constant.  

Table 5.4.Substrate depletion data of BT3312 vs β1,6-

glucooctaose 
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26% identity over 86% of sequence with BT3312) as the search model. Subsequent 

to the PhD project crystals (grown by Dr Elisabeth Lowe) were transferred to a 10 μl 

drop consisting of 7 μl reservoir solution, 2 μl 20% PEG 400 and 1 μl glucose-β1,6-

deoxynijiromycin (kindly provided by Dr Spencer Williams, University of Melbourne) 

and allowed to soak for 5 min prior to freezing. Data was collected at Diamond Light 

Source, on beamline IO3 and the inhibitor-bound structure was solved by Dr Arnaud 

Baslé, as described before. Data collection and refinement statistics are displayed in 

Appendix A.  

5.4.2.6. Analysis of the apo-structure of BT3312, a GH30 encoded by B. theta  

BT3312 comprises two domains. The catalytic domain displays a (β/α)8 barrel fold or 

TIM barrel, extending from residues Asp82 to Lys427, and a  β-sandwich domain 

comprising sequences from both the N- and C-termini. The TIM barrel contains a 

central eight stranded β-barrel (strands 1 and 5 were not represented in the β-strand 

schematic using the pymol programme). Extending from each β-strand is an α-helix. 

In general extended loops link the α-helices with the β-barrel, although a small β-sheet 

comprising three anti-parallel strands is in the loop connecting β-strand-8 and α-helix-

8. The β-sandwich domain contains seven antiparallel β-strands in one sheet, two 

contributed by the N-terminal region of the enzyme. The other β-sheet comprises three 

antiparallel strands with one derived from the N-terminus. As BT3312 is located in 

GH30, the enzyme is a member of clan GH-A in which the fold and catalytic apparatus 

and mechanism are conserved. According to these criteria BT3312 is predicted to 

display a double displacement acid-base assisted mechanism in which anomeric 

configuration is retained after bond cleavage. Similarly the catalytic acid/base and 

catalytic nucleophile are predicted to be in β-strands 4 and 7 of the barrel, respectively, 

and highly conserved within the clan. Thus, the candidate catalytic residues are 
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Glu236 (acid-base) and Glu337 (nucleophile). The catalytic roles of Glu236 confirmed 

by the observation that the mutant E236A rendered the enzyme completely inactive.   

 

Consistent with other clan GH-A glycoside hydrolases the substrate binding is 

predicted to be positioned on top of the β-barrel. Indeed, inspection of this region of 

the enzyme reveals a deep U-shaped pocket that houses the catalytic residues, Figure 

5.16. The active site pocket of BT3312 is very different to the topology of the substrate 

binding regions of other GH-A endo-acting enzymes, which display a linear or curved 

cleft that is open at both ends. The architecture of the substrate binding region of 

BT3312 is adapted to the structure of β1,6 glucan. NMR analysis of this short glucan 

revealed a hooked, u-shaped configuration (Lowman et al., 2011) that is entirely 

complementary to the typology of the substrate binding region of BT3312 (see below).     

 

 

 

 

 

 

Figure 5.16. The pocket topology of the GH30, BT3312 active site. The surface 

of the enzyme is shown. The catalytic residues of the enzyme, residing in the 

pocket-like active site of the enzyme are coloured light blue, The bound inhibitor, 

glucose-β1,6-deoxynijiromycin, is coloured yellow. 
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5.4.2.7. Analysis of the BT3312-inhibitor complex.  

The apo structure of BT3312 bound to the transition state mimic glucose-β1,6-

deoxynijiromycin revealed details of the active site and the distal substrate binding 

subsites. The deoxynijiromycin bound in the active site (-1 subsite) adopts an 4E (E 

refers to envelope) conformation, Figure 5.17. While this may comprise the transition 

state geometry, most β-gluco-configured substrates adopt a 3H4 conformation at the 

transition state. Given that 4E and 3H4 (H refers to a half-chair geometry) are adjacent 

to each other in the reaction coordinate pathways, and nitrogen in the deoxynijiromycin 

ring may skew the conformation adopted by the molecule in active site, it is likely that 

3H4 is the transition state conformation during β1,6-glucan hydrolysis by BT3312.  

 

 

 

 

 

 

 

 

 

 

The polar interactions between the active site of BT3312 and deoxynijiromycin are 

displayed in Figure 5.18. The carboxylate of Glu337 and N2 of Asn235 made polar 

contacts with O2. O3 interacted with N1 of Trp177, N2 of Asn242 and the 

carboxylate of Asp129. The O2 of Asp129 and N1 of Trp375 made hydrogen bonds 

with O4. The polar interactions were completed by the endocyclic nitrogen donating a 

hydrogen bond to O2 of Glu337. Binding of deoxynijiromycin in the active site was 

Figure 5.17. The ‘envelope’ conformation adopted by the transition state 

mimic, glucose-β1,6-deoxynijiromycni, when in complex with BT3312. 

The deoxynijiromycin bound in the active site (-1 subsite) adopts an 4E (E 

refers to envelope) conformation. The endocyclic nitrogen of the molecule is 

coloured blue, whilst oxygen atoms are coloured red. Carbons are coloured 

yellow 
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also mediated through apolar contacts between the sugar ring and Trp375, which 

provides the hydrophobic platform in the -1 subsite. The catalytic nucleophile is ~3 Å 

from the anomeric carbon of deoxynijiromycin and is thus in an optimum position to 

mount a nucleophilic attack on the chiral centre. Glu236 is in an optimal position to 

donate a proton to the glycosidic oxygen appended to C1, and thus is able to function 

as the acid-base catalyst.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The -2 subsite makes only apolar interactions with the glucose at the non-reducing 

end of glucose-β1,6-deoxynijiromycin. Trp343 stacks against the pyranose rings while 

the disulphide formed by Cys391 and Cys394 also makes apolar contacts with the -2 

glucose. Given that O6 of the non-reducing glucose is pointing into solvent it is unlikely 

that there are additional negative subsites in BT3312. It is difficult to establish the 

number of positive subsites without bound ligand in this region of the enzyme. Based 

Figure 5.18. The polar interactions which coordinate the inhibitor complex in the 

BT3312 active site. Amino acids which interact with the deoxynijiromycin inhibitor are 

coloured green and labelled accordingly. The inhibitor is labelled as in Figure 5.20. The 

catalytic subsite in which the respective cyclic ring of the inhibitor binds is also labelled 

accordingly. Hydrogen bonds are denoted by dotted lines. 
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on the height of the wall of the substrate binding cleft, however, there are likely to be 

~2 positive sites in which Glu236, His279, Asn280 and Asp284 contribute to substrate 

binding.  

           

BT3312 is the first structure of GH30 subfamily 3. Comparison of the structure of 

BT3312 with GH30 enzymes with different specificities sheds light on the structural 

basis for substrate specificity, which is dominated by the topology of the substrate 

binding regions of the respective proteins. Thus, when BT3312 is compared with the 

glucuronoxylanase from Dickeya chrysanthemi D1 (PDB code 2y24), The B. theta 

enzyme contains a large loop extending from residues 379-396 that sterically occludes 

the -2 and -3 subsites in the glucuronoxylanase, Figure 5.19A,B. This loop is stabilised 

by a disulfide bond between Cys391 and Cys394, and three short beta strands behind 

the loop (coloured orange in Figure 5.19). BT3312 contains a second extended loop 

comprising Gln234 to Trp250 that prevents access to the positive subsites in the 

glucuronoxylanase, Figure 5.20A,B. Indeed the lack of residues that target O6 of 

substrate bound at -1 or -2 reinforces the view that it is the topology of the proximal 

substrate region of BT3312 that confers specificity for β1,6-glucan over β1,4-xylan. 

The xylose polymer, which lacks O6 moieties, adopts a linear three-fold screw axis 

conformation that is distinct from the highly curved, U-shaped structure exhibited by 

the β1,6-glucan. It should be emphasised that β1,3-glucans are highly curved and 

adopt a conformation that is similar to β1,6-glucans ref. The active site of BT3312, 

however, is not able to accommodate a β1,3-linked glucose as O6 would clash with 

the protein surface.  
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Figure 5.19A. Overlay of BT3312 with a glucuronoxylanase from Dickeya 

chrysanthemi. Both enzymes are depicted in schematic form. BT3312, the 

GH30 encoded by B. theta is shown in green. The Dickeya chrysanthemi 

glucuronoxylanase (PDP code: 2y24) is coloured cyan. Co-complexed inhibitor 

is shown in yellow.  The extended loop of BT3312 which sterically occludes the 

-2 and -3 subsites in the glucuronoxylanase, is shown in orange 

Figure 5.19B. Overlay of BT3312 with a glucuronoxylanase from 

Dickeya chrysanthemi  - Surface. Depicted as described for Figure 

5.19A, with the surface of the enzymes displayed. 
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Figure 5.20A.  Overlay of BT3312 with a glucuronoxylanase from Dickeya 

chrysanthemi showing the extended loop of BT3312. Proteins and bound 

inhibitor are represented as described in Figures 5.22. A second extended loop of 

BT3312 (shown in red), is depicted and is predicted to prevent access to the positive 

subsites in the glucuronoxylanase 

Figure 5.20B.  Overlay of BT3312 with a glucuronoxylanase from Dickeya 

chrysanthemi showing the extended loop of BT3312 - Surface. Proteins and 

bound inhibitor are as represented as in Figures 5.23A with a surface 

representation. The second extended loop of BT3312 (shown in red), is predicted 

to prevent access to the positive subsites in the glucuronoxylanase 
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The active site (-1) subsite of the GH30 subfamily 3 enzyme BT3312 was compared 

with the homo-sapiens β-glucosidase (PDB code 2V3D)  and the D. chrysanthemi  

glucuronoxylanase (PDB code 2Y24), representatives of subfamilies 1 and 8, 

respectively, Figure 5.21. In addition to the catalytic nucleophile and acid-base 

residues many of the other substrate binding residues were conserved in the three 

enzymes. Indeed the only two residues were not conserved. Asn142 in BT3312 was 

replaced in the other two enzymes by an aromatic residue that makes apolar contacts 

with the substrate. The loop containing Asp129 adopts a different position in the 

glucuronoxylanase (to accommodate the linear extended substrate), and thus there is 

no residue equivalent to the aspartate in this enzyme. The additional distal subsites in 

the glucuronoxylanase likely compensate for this loss of binding energy in the active 

site.     

 

 

 

 

 

Figure 5.21. An overlay of the active site residues of GH30 BT3312, a 

homo-sapiens β-glucosidase and the D. chrysanthemi  

glucuronoxylanase. BT3312 amino acid residues are shown in green, the 

D. chrysanthemi glucuronoxylase (PDB code: 2y24) are depicted in blue and 

the amino acid residues of the homo-sapiens β-glucosidase are shown in 

yellow, respectively. Amino acid residues are labelled according and are 

believed to form interactons with the bound glucose-β1,6-deoxynijiromycin 

inhibitor (coloured pink). 
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5.4.2.8. Cellular location of, BT3314, a predicted GH3 exo-glucanase. 

LipoP analysis suggests that the GH3 BT3314 is predicted to have a signal I peptide, 

indicating that the protein is most likely localised to the periplasmic space. 

 

5.4.2.9. Determining the activity BT3314, a GH3 enzyme encoded by PULbtPUS 

The ability of BT3314 to hydrolyse various glyosidic linkages was assessed by 

incubating recombinant enzyme (10 µM and 0.01 µM) at 37 oC for 1 h against β1,4 – 

linked galactobiose, mannobiose and xylobiose as well as β-linked gluco-

dissacharides (β1,4/ β1,3/ β1,6). TLC analysis revealed that BT3314 was only able to 

hydrolyse β-D-gluco-disaccharides, demonstrating a preference for the β1,6-linkage. 

BT3314 was also active against p-nitrophenyl-β-D-glucopyranoside (PNP-β-D-

glucose), confirming that BT3314 was a β-glucosidase as predicted, and hydrolysing 

gluco-configured sugars from the non-reducing end with an exo-mode of action.  

 

The observed preference for β-linkage was further explored quantitatively using a 

linked-assay kit that detected the production of glucose. Briefly, released glucose is 

phosphorylated and is oxidised by glucose-6-phosphate dehydrogenase, which 

converts NADP+ to NADPH, which can be detected at A340nm.  The assay is fully 

described in Methods and Methodology, Section 2.2.1.1.  The activity of BT3314 

against pNP-β-D-glucose was similarly assessed spectrophotometrically owing to the 

stoichiometric increase in A400nm when the glyosidic linkage is cleaved. The assay is 

described in Methods and Methodology, Section 2.2.1.3. Kinetic parameters of 

BT3314 vs substrates were conducted in 50 mM Na-HEPES buffer, pH 7.0. Rates 

were plotted using GraphPad Prism 5.0 and analysed via linear regression or non-

linear regression (against pNP-β-D-glucose). The full-data set is shown in Table 5.5 

and example graphs displayed in Figure 5.22.  
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The β-glucosidase BT3314 showed a distinct preference for the β1,6-linked 

disaccharide, demonstrating a kcat/Km value of 5.6 µM-1 min-1 compared to 0.18 µM-1 

min-1 for laminaribiose (β1,3) and 0.05 µM-1 min-1 for cellobiose (β1,4). The Km values 

for these substrates were too high to determine. Full Michaelis-Menten kinetics were 

obtained for BT3314 against pNP-β-D-glucose. BT3314 had an extremely low catalytic 

efficiency against this substrate, with a kcat/Km of 0.02 µM-1 min-1, highlighting the 

potential significance of the +1 sub-site of the enzyme in substrate binding. The GH3 

enzyme displayed a Km value of 2.4 mM and a kcat (number of substrate molecules, 

hydrolysed per active site, per unit of time) of 40.8 min-`1. 

 

 

 

Enzyme Substrate Km (µM) Kcat (min-1) Kcat/Km (µM-1min-1) 

BT3314 

pNP-β-D-Glu 2403 40.82 0.02 

β-D-Glc-[1->3]-D-Glc ND ND 0.18 

β-D-Glc-[1->4]-D-Glc ND ND 0.05 

β-D-Glc-[1->6]-D-Glc ND ND 5.6 

 

Table 5.5. Kinetic parameters of BT3314, against β-linked gluco-disaccharides. ND = No data.  
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Figure 5.22. Example graphs of kinetic data generated for BT3314, VS pNP-β-D-glucose and β1,3-

laminabiose.  Kinetic data of BT3314 versus pNP-β-D-glucose (A) and β1,3-laminabiose (B). Against 

pNP-β-D-glucose, initial rates were derived spectrophotometrically, where-by rate of absorption (A 

min-1) at OD400nm was converted to rate of glucose released, inferred through pNP group cleavage and 

release (min-1) using the extinction coefficient of pNP at pH 7.0. Rates were analysed in GraphPad 

Prism 5.0  using Michaelis-Menten kinetics. Similarly, against β-linked disaccharides, rates of 

absorption at 340 nm were ascertained and converted to rate of glucose release (min-1) using the 

extinction coefficient of NADPH and plotted in GraphPad Prism 5.0 before being analysed using linear 

regression.  

 

5.5. The Bacteroides ovatus GH3 β-glucosidase, BACOVA_00946, 
displays significantly greater activity than the homologous Bacteroides 
thetaiotaomicron enzyme.  

 

5.5.1. Cloning and Expressions 

DNA encoding for the GH3 β-glucosidase, BACOVA_00946, minus signal peptide, 

was generated by PCR using primers which encoded for Nhe1 and Xho1 restriction 

sites at the 5’ and 3’ ends respectively. Digested DNA was subsequently ligated into 

a pET28a expression vector in a manner which ensured the inclusion of an N-terminal 

poly-His6 tag was appended to the GH3 β-glucosidase. The validity of the cloned DNA 

sequence was confirmed by DNA sequencing (MWG, Germany) using primers probes 
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commentary to the T7 promoter and T7 terminator encoded by the expression plasmid. 

BACOVA_00946 was expressed in E. coli TUNER cells according to standard protocol 

and purified by IMAC. SDS-PAGE analysis showed that the enzyme was had been 

highly purified, Figure 5.23.  

 

 

 

 

 

 

 

 

 

 

5.5.2.2 Evaluation of BACOVA_00946, a GH3 β-glucosidase vs β-linked gluco-

disaccharides 

The GH3 encoded by B. ovatus, BACOVA_00946, displayed identical specificities as 

the characterised GH3 of B. theta, BT3314, confirming that BACOVA_00946 is a β-

glucosidase. The kinetic parameters of BACOVA_00946 against β-linked gluco-

disaccharides and pNP-β-D-glucose was ascertained using the same methodology as 

the B. theta enzyme and are reported in Table 5.6 respectively. Example graphs are 

displayed in Figure 5.24. 

Figure 5.23. SDS-PAGE of recombinant expression and purification of BACOVA_00946. SDS-

PAGE of a typical BACOVA_00946 purification following IMAC. All SDS-PAGE gels were 12 % 

(w/v). Marker Mr is displayed in kDa. L = low size marker; P = insoluble fraction; CHE = cell free 

extract; FT = flow through; W = wash ( 1x TALON buffer); E1 = elution 1 (5 mM imidazole,1 x 

TALON buffer); E2 = elution 2 (100 mM imidazole, 1 x TALON buffer). Bacova_00946 ran with an 

apparent Mr of 80 kDa, consistent with the recombinant protein’s predicted sizes of 53 kDa  



178 
 

BACOVA_00964 displayed the same trend in linkage preference as the B. theta 

enzyme, demonstrating the highest catalytic efficiency for the β1,6-linkage with a 

kcat/Km value of 38.8 µM-1 min-1. The enzyme had a ~10-fold lower catalytic efficiency 

against the β1,3-linked disaccharide (3.7 min-1 µM-1) and displayed a Kcat/Km of 0.65 

µM-1 min-1 for the β1,4-linkage, a ~60-fold reduction in activity compared to the 

enzyme’s efficiency when cleaving the β1,6-linkage. The B. ovatus GH3 is significantly 

more active against all tested linkages than the equivalent enzyme in B. theta. 

BACOVA_00964 was ~7-fold more efficient at cleaving the β1,6-linked disaccharide, 

~20-fold more efficient against the β1,3-linkage and ~10 fold more efficient when 

hydrolysing the β1,4-linkage. BACOCA_00964 demonstrated extremely low catalytic 

activity against pNP-β-D-glucose, although the enzyme was 10-fold more efficient that 

the corresponding B. theta -glucosidase.  
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Enzyme Substrate Km (µM) Kcat (min-1) Kcat/Km (µM-1min-1) 

Bacova_00946 

pNP-β-D-Glu 1052 195.8 0.19 

β-D-Glc-[1->3]-D-Glc ND ND 3.73 

β-D-Glc-[1->4]-D-Glc ND ND 0.65 

β-D-Glc-[1->6]-D-Glc ND ND 38.8 

 

 

 

 

 

5.5.2.3. Amino Acid sequence comparison between the GH3 β-glucosidases, 

BT3314 and BACOVA_00946  

To explore the possible biochemical rationale between the observed differences in 

catalytic activity demonstrated between the GH3 β-glucosidases of B. theta (BT3314) 

and B. ovatus (BACOVA_00946), an alignment of the amino acid sequences of the 

two proteins was performed, and is displayed in Figure 5.25. The two GH3 β-

Table 5.6. Kinetic parameters of BACOVA_00964, against β-linked gluco-disaccharides. ND = No data.  

0.1 µM GH3 Bacova_00964 VS pNP-β-D-glucose 1 µm GH3 Bacova_00964 VS β-D-Glc-[1->3]-D-Glu 

Figure 5.24. Example graphs of kinetic data generated for BACOVA_00964, VS pNP-β-D-glucose and 

β1,3-laminabiose.  Kinetic data of BACOVA00964 versus pNP-β-D-glucose (A) and β1,3-laminabiose (B).  

A B 
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glucosidases share a 91 % sequence similarity. Interestingly, the only major 

differences in amino acid residues is a 12 amino acid insertion in the B. theta protein, 

encompassing residues Ser239 – Tyr250. Sequence alignments of previously 

characterised GH3 family β-glucosidases show that this insertion is, at least in 

sequence, in close proximity to the catalytic nucleophile of the enzyme, Asp265 and 

Asp279 in the B. theta and B. ovatus enzymes, respectively. Whilst highly speculative, 

it is possible that this amino acid insertion near the catalytic nucleophile of the enzyme 

is responsible for the observed difference in catalytic activity. Interestingly, alignments 

of the GH3 amino acid sequences encoded by the β1,6-glucan locus of all sequenced 

B. theta clinical isolates reveals that the insertion of 12 amino acids is 100 % 

conserved, whilst significantly, all alignments of the GH3 from the β-1,6-glucan PUL 

of other sequenced Bacteroides species are more similar to the B. ovatus GH3 

enzyme, lacking this insertion.  
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Figure 5.25. Full amino acid sequence alignment of the GH3 β-glucosidases BT3314 

and BACOVA_00946. Catalytic residues of the enzyme, based on homology, are 

highlighted in green. N= catalytic nucleophile. The 12 amino acid insertion (residues Ser239 

– Tyr250)  in the Bacteroides theta enzyme, hypothesized to be responsible for retardation in 

catalytic activity, is highlighted by a blue box.   
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5.6. Culture supernatant analysis.  

Thin layer chromatography (TLC) of early stationary phase (2.0 OD600nm
) culture 

supernatants of B. theta and B. ovatus growth with pustulan revealed the accumulation 

of a glycan the growth media (Figure 5.26), confirmed to be the disaccharide β1,6-

glucobiose by HPAEC-PAD analysis. The potential significance for the accumulation 

of the disaccharide is explored in the Discussion.   

 

Analysis of culture supernatants of B. theta growth with pustulan revealed a large 

number of β1,6-oligosaccharides during  the exponential phase (Figure 5.27). This is 

consistent with the endo-mode of action of the GH30 enzyme BT3312  

 

 

 

 

 

 

Figure 5.26. Thin layer chromatography (TLC) of culture supernatants of B. theta and 

B. ovatus grown on pustulan and glucose to stationary phase. Culture supernatants 

from stationary phase cultures were subjected to TLC using the following markers: glucose 

(G) and available β1,4-linked glucooligosaccharides (cellobiose  (G2) – cellotetraose (G4).  
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Figure 5.27. TLC analysis of  culture supernatants of B. theta and B. ovatus grown on the β1,6-

polysaccharide, pustulan.  Overnight grown minimal media with glucose (5 mg/ mL)) were used to inoculate 

minimal media (5 mL) containing pustulan (5 mg/mL). Anaerobic growth was measured spectrophotometrically 

(OD600nm), which is representative of different stages of bacterial growth. Samples of the culture supernatant 

were taken at various optical densities and analysed by TLC. Samples are labelled according to the optical 

density (OD600nm) at which they were taken. EARLY/LATE represent stationary phase samples taken 

immediately when stationary phase was reached or ~6 h into stationary phase respectively. Glucose and β1,4-

glucooligosaccharides (d.p. 2 to 4) were used as standards (denoted by G -> G4). Panel A and B displays 

growth of  B. theta and B. ovatus, respectively,with pustulan. 

B. ovatus  

A  

B. theta  

B  
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5.7. Discussion 

This chapter provides evidence that the PULbtPUS targets the utilization of  β1,6-

glucans. This PUL appears to be widespread amongst a number of Bacteroides 

species, suggesting that β1-6-glucans are a viable energy source. Whilst β1,6-glucans 

upregulate PULbtPUS and PULboPUS the exact signalling molecule which activates these 

loci has not been elucidated. Owing to the observation that B. theta and B. ovatus cells 

cultured with glucose as a sole carbon source display no increase in gene expression, 

it can be concluded with a high degree of certainty that monomeric glucose does not 

activate the β1,6-glucan PUL. Instead, the activating molecule is most likely a β1,6-

oligosaccharide, the D.P of which was not explored.  

The data presented in this chapter attempts to construct a model of β1,6-glucan 

utilization in Bacteroides through the characterisation of the proteins encoded by 

PULbtPUS. The surface binding proteins encoded by PULbtPUS, and by inference the 

equivalent proteins derived from PULboPUS, target the β1,6-glucan pustulan 

preferentially, and display similar affinities for β1,6-glucooligosaccharides with a D.P 

> 7 as shown by ITC. β1,6-glucans have been shown to adopt a hook-like 

conformation in solution, with four β-D-1,6-glucopyranose residues forming one hook 

(Lowman et al., 2011). It is possible that the two surface binding proteins not only 

recognise and interact with the individual glucopyranose residues of the β1,6-glucan, 

but also the secondary structure formed by the target glycan. Previously characterised 

SusDh proteins have been observed to recognise glycan structures (Koropatkin et al., 

2009);(Koropatkin et al., 2008). The binding specificities of both SusDh, BT3311, and 

the SGBP, BT3313, are consistent with the activity of the surface GH30 endo-β1,6-

glucanase. Complementary to the biological function of SGBPs, sequestering target 

glycans to the cell surface, a number of SGBPs have been observed to bind to target 
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polysaccharides and their constituent oligosaccharides following surface enzyme 

degradation (Cuskin et al., 2015b). Indeed, this is consistent with the longer 

oligosaccharide products generated by the surface GH30 endo-β1,6-glucanase 

generated during the initial stages of degradation as observed in vivo. SusDh proteins 

bind oligosaccharides for transportation through their cognate outer membrane SusCh 

into the periplasmic space where further enzymatic deconstruction occurs, reiterating 

the hypothesis that both extracellular binding proteins target long chain 

oligosaccharides and is complemented by studies of other PUL systems (Rogowski et 

al., 2015). 

Genomic data indicate that the core enzymatic machinery necessary to fully degrade 

β1,6-glucans is seemingly conserved amongst Bacteroides species, and consists 

solely of a GH30 endo-β1,6-glucanase and a GH3 β-glucosidase. As such, PULbtPUS 

presents a relatively simple model of polysaccharide utilization by a PUL system. 

Indeed, the complexity of a PUL (complexity meaning the number of protein encoding 

ORFs required to fully degrade and utilize the target substrate) correlates to the 

complexity and accessibility of the target substrate (Rogowski et al., 2015). The GH30 

endo-β1,6-glucanase, predicted to be localised to the cell surface, targets extracellular 

polysaccharides initially, cleaving the sugar polymer into β1,6-olgiosaccharides. The 

presence of an endo-acting enzyme on the cell surface, generating oligosaccharides 

which can be further processed (usually following transportation into the periplasm), is 

typical of other PULs which target ‘less-complex’ substrates (galactan. Jonathon 

Briggs personal communication).  

The capability of the surface GH30 endo-β1,6-glucanase to hydrolyse short chain 

oligosaccharides to a D.P of three (not quantified) is interesting. Previously 

characterised surface endo-acting enzymes preferentially target longer 
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oligosaccharides and display little/no catalytic activity against oligosaccharides with a 

d.p < 5, owing to weak binding at sub-sites proximal to the active site of the enzyme 

(Cuskin et al., 2014, Rogowski et al., 2015), and perhaps suggests a significant 

proportion of oligosaccharides are degraded at the cell surface. The observation that 

culture supernatants of B. theta and B. ovatus grown in the presence of pustulan 

results in the accumulation of β1,6-glucobiose in the growth media, suggests that the 

bulk of degradation does indeed occur extracellularly and is concurrent with the activity 

of the recombinant GH30 enzyme. It has recently been proposed that Bacteroides 

utilizes a ‘selfish’ mechanism of polysaccharide utilization when presented with a 

complex glycan, which would require a significant energy investment by the bacterium 

to degrade.  The bulk of depolymerisation occurs within the bacterial cell and therefore 

reduces the quantity of depolymerised products released extracellularly for potential 

scavenging by competitors (Cuskin et al., 2014, Rogowski et al., 2015). Conversely, 

Bacteroides has been shown to employ strategies which liberate oligosaccharides 

extracellularly during degradation, to the extent of being able to sustain the growth of 

co-cultured bacterial  species in vivo (Rogowski et al., 2015). The abundance of 

extracellular β1,6-oligosaccharides released by the surface GH30 during growth 

suggest that the bacterium has not evolved to utilize β1,6-glucans in an overtly selfish 

manner. The significance of this is not clear, although a ‘self-less’ model of 

polysaccharide utilization in B. theta is usually utilized for high-abundance/low-

complexity substrates (unpublished data). Interestingly, β1,6-glucans would not be 

abundant, although the complexity of this glucan fraction can vary drastically. 

The exo-acting GH3 β-glucosidase, predicted to reside within the perisplasm, most 

likely further depolymerises β1,6-linked oligosaccharides by liberating glucose from 

imported GH30 endo-glucanase products, which can be transported into the 



187 
 

cytoplasm and catabolized by the bacterium. However, the necessity for this enzyme 

can be questioned owing to the ability of the surface GH30 glucanase to generate 

glucose from the polysaccharide.  The B. theta GH3,  BT3314, has been shown to 

target a number of β-linked disaccharides, and displayed the greatest preference for 

the β1,6-linkage, albeit with a severely reduced efficiency when compared to the B. 

ovatus GH3 β-glucosidase. The difference in catalytic activity observed between the 

recombinant GH3 enzymes of B. theta and B. ovatus is surprising owing to the high 

degree of amino acid sequence homology shared between the two enzymes (91 %). 

It should be noted, however, that due to availability of substrate, the activity of the GH3 

enzymes could not be tested against β-oligosaccharides with a D.P > 2. It is plausible 

that the B. theta enzyme, or indeed both enzymes, may be catalytically more efficient 

against the tri or tetrasaccharide, accommodating additional β-D-glucose moieties in 

potential +2/+3 catalytic sub-sites, lowering the affinity constant (Km). Regardless, the 

need for the GH3 enzyme in the model of β1,6-glucan degradation can be questioned; 

the low catalytic activity of the B. theta GH3 enzyme in conjunction with the ability of 

the surface GH30 to produce glucose suggests a level of redundancy in the B. theta 

β1,6-glucan PUL system. To reiterate, gene up-regulation data suggest that the 

activating molecule of the β1,6-glucan PUL is a β1,6-linked gluco-oligosaccharide. 

Catalytically low levels of β-glucosidase activity would therefore be necessary to 

degrade the signalling molecule, preventing continuous up-regulation of the PUL, 

providing one potential reason for the lack of total-redundancy of the GH3 enzyme in 

B. theta.  

The degree of β1,3-linked glucose side-chains of the β1,6-glucan fraction of the yeast 

cell wall can vary significantly amongst yeast species. Studies report branching of up 

to 75 % in Schizosaccharomyces pombe, a yeast utilized in the brewing industry. 
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BT3314, the endo-β1,6-glucanase can tolerate a degree of decoration of the β1,6-

backbone and can hydrolyse purified yeast β1,6-glucans from Saccharomyces 

cerevisiae, which on average has β1,3-linked glucose decorations every 19 glucose 

residues (Aimanianda et al., 2009). The degree of tolerance the GH30 endo-β1,6-

glucanase possesses for highly decorated β1,6-glucans is not known.  It can be 

speculated that a highly decorated β1,6-glucan, such as the β-glucans possessed by 

S. pombe (B. theta targets the α-mannan of S. pombe (Cuskin et al., 2015b)), would 

result in a lower frequency of cuts making it a less-accessible backbone, potentially 

altering the proposed model of β1,6-glucan degradation dramatically. Whilst highly 

speculative, it can be hypothesised that when Bacteroides is challenged with highly 

decorated β 1,6-glucans, the GH3 β-glucosidase would play a much more pivotal role 

and may even provide a competitive advantage to B. ovatus which encodes for a 

significantly more active GH3 β-glucosidase owing to the enzyme’s ability to remove 

the β1,3-linked glucose decorations of imported oligosaccharides more efficiently. 

Indeed, B. theta is capable of degrading and utilizing yeast α-mannan, whilst B. ovatus 

cannot, lacking the PULs necessary to target the highly complex glycan (Cuskin et al., 

2015b). B. theta requires a significant energy investment to target the highly complex 

α-mannans of the yeast cell wall. In vivo studies have shown that wild-type B. theta is 

outcompeted by a mutant lacking the PULs needed to target α-mannan when fed a 

non-mannan diet, thereby suggesting α-mannan utilization is only ‘cost-effective’ when 

the target substrate is available. The evolutionary persistence of the α-mannan PULs 

in B. theta therefore suggests that α-mannans are valuable target substrates for the 

gut bacterium, despite the ‘risk’. Due to the role of β1,6-glucans in the  structural 

integrity of the yeast cell wall, it can be speculated that enzymatic disruption of this 

glucan may potentially liberate other structural polysaccharides. Tentatively, B. theta 
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may have evolved a strategy to disrupt the yeast cell wall, gaining access to a 

preferential, more abundant, substrates as a nutrient sources. This view is supported 

by the proposed redundancy of the B. theta GH3 glucosidase and its similarity with 

GH3 enzymes from other B. theta strains. B. ovatus, which is unable to utilize yeast 

α-mannans and encodes for a significantly more active GH3 β-glucosidase may be a 

more efficient β1,6-glucan utilizer as a result, due to the organism’s requirement to 

access β1,6-glucans solely as an energy source. 

5.8 Further Work. 

Future work is necessary to further explore the observed differences in GH3 

glucosidase activity between the B. theta and B. ovatus enzyme, in order to fully 

ascertain if such discrepancies in activity extend to in vivo, and to fully elucidate the 

biological rationale for such differences in activity. To achieve this goal, competition 

experiments must be performed to see if the more active GH3 of B. ovatus provides a 

competitive advantage over B. theta when cultured with pustulan and yeast β1,6-

glucans of various species to investigate if the degree of side-chains affects β1,6-

glucan utilization. Assessing the ability of Bacteroides species to degrade the β1,6-

glucans of other yeast species would help to inform our knowledge of complex glycan 

utilization and sharing with the gut.  

Yeasts, such as Candida albicans are commensal members of the gut, and can be 

pathogenic in immunocompromised patients. The ability of B. theta to degrade yeast 

cell wall glycans, and the potential of the organism to disrupt yeast cell walls may help 

to modulate yeast levels within the gut, preventing opportunistic yeast infections and 

pathogenesis. The ability of the bacterium to access and degrade intact yeast cell 

walls must be assessed.  
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Further health implications may arise from the release of yeast cell wall molecules into 

the gut lumen, induced by B. theta hydrolysis. Both β1,3 and β1,6 glucans have been 

observed to be immunostimulatory and may interact with the immune system of the 

host. Indeed, β1,6 glucans are potent cytokine inducers in human blood (Noss et al., 

2013). As such, the degradation of yeast cell wall polysaccharides by Bacteroides may 

result in inflammation of the gut which would need to be explored. 
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Chapter 6.0: Final Discussion 
 

The data presented in this study provides example mechanisms by which organisms 

that inhabit the highly competitive environments of both the rumen and the human 

distal gut have evolved unique strategies to facilitate the degradation and utilization of 

complex carbohydrates.  

Bacteria which inhabit the rumen have evolved to target plant biomass primarily 

through deploying glycoside hydrolases which often encode for non-catalytic CBMs. 

CBMs enhance the activity of their parent catalytic domain (As described in the 

Introduction, Section 1.2). Understanding the molecular basis of CBM-ligand 

interactions informs enzyme based saccharification strategies to disrupt and degrade 

the highly complex and heterogeneous plant cell wall. As such, engineering the 

specificity of enzymes and CBMs is of industrial relevance. Chapter 3 describes the 

continued structural and biochemical characterisation of a non-catalytic binding 

module of the CBM65 family, derived from an endoglucanase encoded by 

Eubacterium cellulosolvens, an organism which is consistently dominant in the rumen 

(Prins et al., 1972). The CBM65 family uniquely displays specificity for the side-chains 

of the decorated β1,4-glucan xyloglucan, over linear β1,4-glucans. The crystal 

structure of CBM65B in complex with ligand provides insight into side-chain specificity, 

revealing that specificity for the decorated xyloglucan is conferred through an 

extended hydrophobic platform, consisting of five aromatic residues, forming 

interactions between both the glucan backbone and xylose decorations of the 

polysaccharide. ITC revealed that the CBM65s displayed a higher affinity for the 

decorated XXXG oligosaccharide than the undecorated equivalent oligosaccharide, 

cellotetraose. Substituting the back-bone specific residue in CBM65A abrogated 
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cellulose recognition but did not impact upon xyloglucan affinity, therefore 

emphasising the importance of side-chain recognition, which is in contrast to other 

previously characterised CBMs (Najmudin et al., 2006). Surprisingly, mutating the 

structurally equivalent residue in CBM65B did not impact upon cellulose recognition, 

despite no other obvious candidate residues being apparent in the ligand binding cleft. 

The mechanism by which CBM65B recognises linear β1,4-glucans is some-what 

unclear. A co-complexed structure of CBM65B with cellooligosaccharides is 

necessary to elucidate whether CBM65A and 65B recognise cellulose via differening 

mechanisms or to identify a functionally equivalent residue in the CBM65B which 

provides a polar contact with the glucose backbone of linear β1,4-glucans. 

 X-2 L110F, a CBM variant engineered from a xylan specific Rhodothermus marinus 

CBM, has recently been shown to bind xyloglucan via interactions with both the 

backbone and decorations of xyloglucan (von Schantz et al., 2014).  X-2 L110F 

displays similarities in xyloglucan recognition to CBM65B, both displaying a preference 

for the branched polysaccharide over linear β1,4-glucans. Likewise, the aromatic 

amino acid residues housed within the ligand binding cleft have a crucial impact on 

ligand binding in both CBM65 and X-2 L110F. The binding interface of X-2 L110F is 

rich in aromatic side chains, forming hydrophobic interactions with XXXG. However, 

whilst CBM65 binding of XXXG is primarily mediated by apolar and hydrophobic 

contacts, X-2 L110F binding of XXXG requires substantial binding site plasticity in 

order to achieve polar contacts between the xylose decorations of XXXG, with several 

amino acids undergoing conformational changes in the ligand binding cleft. In contrast, 

the ligand binding site of CBM65 is pre-arranged and undergoes little rearrangement 

of amino acid chains upon ligand binding. CBM65B-XXXG complex reveals only one 

polar contact between the protein and xylose decorations of XXXG, whilst up to nine 
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polar contacts are formed between X-2 L110F and the xylose sidechains,  

Interestingly,  X02 L110F and CBM65s recognise differing faces of the XXXG 

oligosaccharide. Whilst the CBM65 display no binding to xylans, X-2 L110F displays 

higher affinity for oat-spelt xylan over tamarind seed xyloglucan, again suggesting 

differing mechanism of ligand recognition. Such differences observed in xyloglucan 

recognition between the CBM65s and X-2 L110F, as well as differences in ligand 

binding cleft architecture, may enable the targeting of xyloglucan in differing plant cell 

wall contexts and be of industrial benefit. Indeed, CBMs can recognise identical 

ligands in solution, but demonstrate differing specificities for cell walls (McCartney et 

al., 2006). Likewise, whilst the primary role of CBMs is to increase enzyme substrate 

proximity, some CBMs may enable targeting to accessible regions of the plant cell wall 

(Montanier et al., 2009). The multiple binding specificities demonstrated by the 

CBM65s may enable more efficient targeting in heterogeneous plant cell walls. The 

structure of xyloglucan can vary between cell type and plant species (Fry et al., 1993). 

The mechanism of ligand recognition displayed by CBM65 may allow for subtle 

variations in ligand structure and may accommodate the xyloglucans of taxonomically 

diverse cell walls. These data presented in Chapter 3 provides a model by which 

decorated polysaccharides are recognised by CBMs, and how a CBM can 

demonstrate a distinct preference for xyloglucan over β-glucans (Luis et al., 2013). 

Chapters 4 and 5 provides insight into yeast cell wall polysaccharide utilization by B, 

theta through the biochemical characterisation of the molecular machinery encoded 

by the respective PUL systems. The ability of Bacteroides to utilize yeast cell 

polysaccharides is entirely consistent with the organisms perceived role as a ‘glycan 

generalist’ (Martens et al., 2009), enabling Bacteroides to flourish in a highly-

competitive eco-system. The strategies utilized by B. theta to target different fractions 
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of the yeast cell wall, α-mannan and β1,6-glucans respectively, are in stark contrast. 

Indeed, α-mannan utilization appears to be restricted to limited Bacteroides species, 

(Cuskin et al., 2015b), whilst PULPUS is seemingly wide-spread. β1,6 glucan utilization 

represents a seemingly simple model of polysaccharide utilization. Extracellular 

deconstruction is dominated by an endo-acting β1,6-glucanase, with a high efficiency 

against the polysaccharide and high d.p β1,6-oligosaccharides. This is reminiscent of 

xyloglucan utilization by B. ovatus (Larsbrink, 2014), whereby extracellular metabolism 

of the polysaccharide is mediated by endo-acting enzymes. Likewise, the SusDh and 

SGPB encoded by PULPUST bind polysaccharide and β1,6-oligosaccharides with a d.p 

>6 preferentially.  Further parallels can be drawn between the xyloglucan system and 

pustulan utilization by B. theta, due to the speculated redundancy of exo-acting 

enzymes encoded by the respective PULs. The periplasmic GH3 β-glucosidase of 

PULbtPUS is catalytically feeble. The surface endo-glucanase can generate glucose 

from the polysaccharide and so the necessity of this enzyme for β1,6-glucan utilization 

is unknown. It can be speculated that this enzyme may serve to hydrolyse the 

molecular cues which up-regulate the PUL. The significance of the GH3 needs to be 

elucidated by assessing the ability of GH3 deficient B. theta strains to utilize β1,6 

glucans. Such observations are further emphasised by the fact that the homologous 

GH3 β-glucosidase encoded by PULboPUS displays significantly greater activity against 

tested disaccharides.   

Evidence provided in Chapter 4 shows that B. theta as evolved to utilize the α-mannan 

of different yeast species. An α-galactosidase encoded by PUL-Man1 was able to 

sufficiently remove the α-galactosyl residues appended to the backbone of S. pombe 

α-mannan to enable GH76 endo-mannanase attack of the backbone. 
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Numerous attempts to manipulate the composition of the human gut microbiota have 

been attempted. However, the lack of knowledge of complex glycan utilization and 

sharing within the gut environment by key glycan degraders has slowed such efforts 

(Hooper et al., 2002). Evidence provided in Chapter 4 demonstrates how the α-

mannan apparatus of B. theta is tailored to minimise substrate loss to the environment, 

and by extension, the gut lumen. Conversely, oligosaccharides are freely liberated 

during β1,6-glucan utilization by B. theta.  Extracellular side chain removal of α-

mannan is mediated by a constitutively expressed α-mannosidases, not encoded by 

PUL-Man1-3. Extracellular mannose-side chain removal is severely limited, but 

sufficient enough to enable GH76 endo-α1,6-mannanase access to the sterically 

restricted α1,6-mannanase back-bone. Mannose liberated during B. theta α-mannan 

deconstruction could not support the growth of other Bacteroides species. Indeed, 

biochemical characterisation of the surface GH76 endo-α1,6-mannanases reveals that 

they are adapted to hydrolyse longer α1,6-oligosaccharides, and are slower than their 

periplasmically located counterparts. This strategy would reduce loss of substrate to 

the gut lumen, synergising substrate cleavage with importation. The periplasmic α-

mannosidases were ~20-50-fold more efficient at mannose side-chain deconstruction 

than the enzyme believed to facilitate extracellular debranching. These data suggest 

B. theta has adopted a selfish mechanism of α-mannan degradation, owing the 

significant energy investment targeting α-mannan entails (Cuskin et al., 2015b). Such 

observations resonate with the findings of (Rogowski et al., 2015), where-by the by 

products of B. ovatus complex xylan utilization were unable to support the growth of 

co-cultured xylooligosaccharide users. Conversely, the products liberated during B. 

ovatus degradation of simpler xylans were able to the support growth of co-cultured 

species.  These findings suggest that glycan complexity dictates the strategy of 
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utilization and contributes to our understanding of bacterial interactions within the gut 

microbiota, potentially informing prebiotic strategies. 

The data presented in Chapter 4 also shows how B. theta has evolved to target the α-

mannan of differing yeast species. The α-galactosidase encoded by PUL-Man1 was 

able to sufficiently remove the α-galactosyl residues appended to the backbone of S. 

pombe yeast mannan to enable GH76 endo-mannanase attack. PUL-Man2 encodes 

a GH130 glycoside hydrolase which targets the β1,2-mannosidic linkages that cap the 

mannose side-chains of Candida albicans α-mannan, a pathogenic yeast and 

commensal member of the gut microbiota (Cuskin et al., 2015b). The ability of B. theta 

to target alternate fungal mannans most likely arose due to exposure to dietary 

mannans or commensal yeasts in the gut.   

To conclude, evidence presented in this thesis demonstrates that Bacteroides has 

evolved the ability the target yeast cell wall polysaccharides, and exploits α-mannans 

and β1,6-glucans through differing strategies. B. theta encodes for PUL-Man1-3 and 

PULPUS. It can be speculated that B. theta may disrupt yeast cell walls through β1,6-

glucan hydrolysis, thereby providing access to a niche and preferential substrate (α-

mannan). Conversely, B. ovatus does not encode for PUL-Man, but encodes PULPUS. 

B. ovatus may potentially solely target β1,6-glucans as an energy source, a hypothesis 

which may be supported by the greater activity displayed by the GH3 encoded by 

PULboPUS than the B. theta homologue. This needs to be assessed by competition 

experiments. Nevertheless, the impact of yeast modulation within the gut (especially 

of pathogenic yeasts) may be of importance to human health.  
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Protein GH Family 
Signal peptide (SpI or 

SpII) 

Predicted 
cleavage 

posistion in 
protein sequence 

BT1769 

GH92 

SpII  18/19 

BT1878 SpII  23/24 

BT2199 SpII  18/19 

BT3130 SpI 20/21 

BT3773 SpI 22/23 

BT3858 SpII  23/24 

BT3990 SpI 19/20 

BT3991 SpII  19/20 

BT3994 SpII  16/17 

BT4072 GH38 SpI 20/21 

    

BT4073 GH92 SpII  19/20 

lipoP analysis of B. theta encoded, putative extracellular α-mannosidases used to determine 

debranching activity on yeast α-mannan 
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Data collection CBM65B-XXXG 

Source  I04 

Wavelength (Å) 0.9795 

Space group P43 21 2 

Cell dimensions  

    a, b, c (Å) 57.9, 57.9, 116.7 

 ()  90.0, 90, 90.0 

No. of unique 

observations 

8,856 

Multiplicity 6.2 (4.7) 

Resolution (Å) 58.37-2.35 (2.48-

2.35) 

Rmerge (%) 7.8 (66.1) 

I/I 13.4 (2.0) 

Completeness (%) 100.0 (100.0) 

  

Refinement  

Rwork/ Rfree 22.44 (28.03) 

No. atoms  

    Protein 955 

    Ligand 72. 

    Water 1 

B-factors  

    Protein 50.4 

    Ligand 47.6 

    Water 39.5 

R.m.s deviations  

    Bond lengths (Å)  0.012 

    Bond angles (º) 1.56 

Data collection and refinement statistics for CBM65B 
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Data collection BT3312 BT3312-Inhibitor 

Source  I02 I03 

Wavelength (Å) 0.9794 0.7749 

Space group P21 P21 

Cell dimensions   

    a, b, c (Å) 62.4, 156, 78.0 62.4, 78.8, 145.5 

 ()  90.0, 100.4, 90.0 90.0, 94.9, 90.0 

No. of measured 

reflections 

429705 (10374) 445926 (22895) 

No. of independent 

reflections 

114209 (4871) 116665 (5762) 

Resolution (Å) 48.24-1.90 (1.93-

1.90) 

48.79-1.85 (1.88-

1.85) 

Rmerge (%) 6.7 (57.8) 9.9 (78.4) 

CC1/2 1.00 (0.47) 1.00 (0.64) 

I/I 9.0 (1.8) 7.8 (1.6) 

Completeness (%) 99.2 (86.2) 97.4 (97.6) 

Redundancy 3.8 (2.1) 3.8 (4.0) 

   

Refinement   

Rwork/ Rfree 19.8 (24.8) 18.7 (23.2) 

No. atoms   

    Protein 10497 10675 

    Ligand N.A. 66 

    Water 705 616 

B-factors   

    Protein 34.3 30.6 

    Ligand N.A. 29.15 

    Water 39.6 39.9 

R.m.s deviations   

    Bond lengths (Å)  0.017 0.018 

    Bond angles (º) 1.82 1.79 

Data collection and refinement statistics for BT3312 (GH30). 
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Appendix B – Chemicals, media and enzymes used in this study 
B1 Chemicals 

Biogene 

 Electrophoresis grade Agarose 

British Drug Houses (BDH) 

 Acetic acid (glacial) 

Acrylamide solution (40 % (w/v); Electran) 

Bromophenol blue 

Citric acid 

Calcium chloride 

Ethanol 

Hydrochloric acid 

Isopropanol 

Magnesium chloride 

Magnesium sulphate 

Methanol 

Potassium dihydrogen orthophosphate 

Sodium acetate 

Sodium chloride 

Sulphuric acid 

Triton X-100 

Dextra 

 Man9(GlcNAc)2 

Fisons 

46/48% (w/v) NaOH 

Sodium acetate trihydrate 

Megazyme 

Barley β-glucan  

Cellobiose 

Cellotriose 

Cellotetraose 
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Cellopentaose 

Cellohexaose 

Hydroxyethylcellulose (HEC) 

Laminarbiose 

Melibiose 

Pustulan 

Raffinose 

Stachyose 

Xyloglucan heptasaccharide (XXXG) 

Xyloglucan 

Melford Laboratories 

Isopropyl-β-D-thiogalactoside (IPTG) 

HEPES 

GE Health Care 

Agarose (ultrapure) 

Sigma 

3,5-Dinitrosalasylic acid (DNSA) 

4-nitophenyl substrates (pNP) 

Ammonium persulphate 

Ampicillin 

Bovine serum albumin (BSA) 

Coomassie Brilliant Blue G 

Copper sulphate 

D-Galactose 

D-Glucose 

D-Mannose 

di-Sodium hydrogen phosphate 

Ethelene diamine tetra-acetid acid, disodium salt (EDTA) 

Ethidium bromide 

Glycerol 

Imidazole 

Kanamycin 
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L-Fucose 

N,N,N’,N,- Tetramethylethylene diamine (TEMED) 

Potassium Chloride 

Potassium thiocyanate 

Rochelle salts 

Sodium bicarbonate 

Sodium carbonate 

Sodium dodecyl sulphate (SDS) 

Yeast mannan 

Zinc Sulphate 

β-Mercaptoethanol 

B2 Media 

Difco 

Bacto®tryptone 

Bacto®yeast extract 

Oxioid 

Bacteriological Agar No. 1 

B3 Enzymes 

MBI Fermentas 

DNA restriction endonucleases 

Invitrogen 

Bacteriophage T4 DNA ligase 

Megazyme 

Glucose-6-phosphate dehydrogenase 

Hexokinase 

Phosphoglucose isomerase 

Phosphomannose isomerase 

Novagen 

KOD HotStart DNA polymerase 

Stratagene 

Dpn1 restriction endonuclease 

B4 DNA 
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MWG Biotech 

All primers 

B5 Kits 

Qiagen 

Plasmid mini kit 

Plasmid midi kit 

Qiaquick Gel extraction kit 

Qiaquick PCR purification kit 
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