
School of Computing Science

Antares: A Scalable, Efficient
Platform for Stream, Historic,

Combined and Geospatial Querying

Rebecca Simmonds

Submitted for the degree of Doctor of
Philosophy in the School of Computing

Science, Newcastle University

June 2016

c© 2016, Rebecca Simmonds

Abstract

Traditional methods for storing and analysing data are proving inadequate for process-

ing “Big Data”. This is due to its volume, and the rate at which it is being generated.

The limitations of current technologies are further exacerbated by the increased de-

mand for applications which allow users to access and interact with data as soon as

it is generated. Near real-time analysis such as this can be partially supported by

stream processing systems, however they currently lack the ability to store data for

efficient historic processing: many applications require a combination of near real-time

and historic data analysis. This thesis investigates this problem, and describes and

evaluates a novel approach for addressing it. Antares is a layered framework that has

been designed to exploit and extend the scalability of NoSQL databases to support low

latency querying and high throughput rates for both stream and historic data analysis

simultaneously.

Antares began as a company funded project, sponsored by Red Hat the motivation was

to identify a new technology which could provide scalable analysis of data, both stream

and historic. The motivation for this was to explore new methods for supporting scale

and efficiency, for example a layered approach. A layered approach would exploit the

scale of historic stores and the speed of in-memory processing. New technologies were

investigates to identify current mechanisms and suggest a means of improvement.

Antares supports a layered approach for analysis, the motivation for the platform was

to provide scalable, low latency querying of Twitter data for other researchers to help

automate analysis. Antares needed to provide temporal and spatial analysis of Twitter

data using the timestamp and geotag. The approach used Twitter as a use case and

derived requirements from social scientists for a broader research project called Tweet

My Street.

Many data streaming applications have a location-based aspect, using geospatial data

to enhance the functionality they provide. However geospatial data is inherently diffi-

cult to process at scale due to its multidimensional nature. To address these difficulties,

- i -

this thesis proposes Antares as a new solution to providing scalable and efficient mech-

anisms for querying geospatial data. The thesis describes the design of Antares and

evaluates its performance on a range of scenarios taken from a real social media ana-

lytics application. The results show significant performance gains when compared to

existing approaches, for particular types of analysis.

The approach is evaluated by executing experiments across Antares and similar sys-

tems to show the improved results. Antares demonstrates a layered approach can be

used to improve performance for inserts and searches as well as increasing the ingestion

rate of the system.

- ii -

Declaration

I declare that this thesis is my own work unless otherwise stated. No part of this thesis

has previously been submitted for a degree or any other qualification at Newcastle

University or any other institution.

Total word count approx 45,000 Rebecca Simmonds

- iii -

Publications

Portions of the work within this thesis have been documented in the following publi-

cations:

Simmonds, R. M., Watson, P., Halliday, J. and Missier, P. (2014). A Platform for

Analysing Stream and Historic Data with Efficient and Scalable Design Patterns. 2014

IEEE World Congress on Services, (Ii), 174-181. doi:10.1109/SERVICES.2014.40

Mearns, G., Simmonds, R., Richardson, R., Turner, M., Watson, P. and Missier, P.

(2014). Tweet My Street: A Cross-Disciplinary Collaboration for the Analysis of Local

Twitter Data. Future Internet, 6(2), 378-396. doi:10.3390/fi6020378

Simmonds, R., Watson, P. and Halliday, J. (2015). Antares: A Scalable, Real-Time,

Fault Tolerant Data Store for Spatial Analysis. 2015 IEEE World Congress on Ser-

vices, 105-112. doi:10.1109/SERVICES.2015.24

- iv -

Acknowledgements

Firstly I would like to thank my supervisory team Paul Watson and Paolo Missier for

their continued support throughout and for the opportunity to be a part of such a

great project.

I would like to give a big thanks to Stephen Dowsland and Mark Turner for their

collaboration and contributions to the visualisations and Tweet My Street project - it

was a pleasure working as a development team with them.

Tweet My Street would not have been possible without the collaborative work and

support of Graeme Mearns and Ranald Richardson - who it was a pleasure to work

with - many thanks to them.

I would also like to thank Dawn Branley for her support and collaboration.

I would like to thank the following people for their continued support and for re-

viewing the thesis: Matthew Forshaw, Jonathan Halliday, Derek Mortimer and Simon

Woodman.

I would also like to thank all of my colleagues and friends from Newcastle who have

supported me and helped to make this project possible, they are: Michael Bell, Ryan

Emerson, Barry Hodgson, Adnan Hussain, Beth Lawry, Stephen Mackenzie, Oonagh

Mcgee, Dominic Searson, David Stokes, Jennifer Warrender and Ginny Wooley.

Lastly I would like to acknowledge and give huge thanks to my family especially

Alison Simmonds, Ingrid Simmonds and Mark Simmonds for their continued support

and strength through the whole process it would not have been possible without them.

- v -

Contents

1 Introduction 1

1.1 Thesis Contributions . 4

1.2 User Requirements . 5

1.3 Dissertation Outline . 6

2 Technical Context 7

2.1 Introduction . 8

2.2 Stream . 8

2.3 Stream Processing . 8

2.4 NoSQL Database . 8

2.5 Social Media Analytics . 9

2.6 Twitter . 9

2.7 Combined Querying . 9

3 Architecture 10

3.1 Introduction . 11

3.2 Related Work . 13

3.2.1 Scalable Stream Processing . 13

3.2.1.1 Storm . 14

3.2.1.2 Drools . 14

3.2.1.3 S4 . 15

3.2.1.4 System S . 16

3.2.1.5 ESPER . 17

- vi -

3.2.1.6 Rainbird . 18

3.2.1.7 Millwheel . 18

3.2.1.8 InfoSphere . 18

3.2.1.9 Apache Samza . 19

3.2.1.10 Heron . 19

3.2.1.11 Conclusion . 19

3.2.2 Historic Processing . 20

3.2.2.1 Relational Cloud . 23

3.2.2.2 HBase . 25

3.2.2.3 MongoDB . 27

3.2.2.4 BigTable . 29

3.2.2.5 HadoopDB . 30

3.2.2.6 Infinispan . 32

3.2.2.7 Titan . 34

3.2.2.8 SimpleDB . 35

3.2.2.9 Neo4j . 36

3.2.2.10 Riak . 38

3.2.2.11 Conclusion . 40

3.2.2.12 Cassandra: in Detail 40

3.2.3 Combined Processing . 43

3.2.3.1 StreamInsight . 43

3.2.3.2 Truviso . 44

3.2.3.3 Cloud Dataflow . 45

3.2.3.4 Spark . 46

3.2.3.5 Summingbird . 47

- vii -

3.2.3.6 Lambda . 47

3.2.3.7 Conclusion . 48

3.3 System Architecture . 50

3.3.1 Stream Querying . 51

3.3.2 Historic Querying . 53

3.3.3 Combined Querying . 55

3.3.4 Insert Rate . 59

3.4 Data Model . 61

3.4.1 Case Studies . 62

3.4.2 Queries . 63

3.4.3 Schema . 69

3.4.4 Stream Schema . 72

3.5 Evaluation . 74

3.5.1 Ingestion Rate . 74

3.5.2 Batch Experiment . 76

3.5.2.1 Comparison of Antares and the Synchronous Cluster . 77

3.5.2.2 Conclusion . 79

3.5.3 Read Performance . 79

3.5.3.1 Exact Match Experiment 82

3.5.3.2 Range Query Experiment 85

3.5.3.3 Stress Experiments . 88

3.5.3.4 Conclusion . 90

3.5.4 Stream Queries . 91

3.5.4.1 Conclusion . 91

3.5.5 Combined Queries . 92

3.5.5.1 Conclusion . 94

3.6 Conclusion . 94

- viii -

4 Spatial Extensions 96

4.1 Introduction . 98

4.2 Related Work . 99

4.3 Research into Spatial Databases and GIS 99

4.3.1 B-Trees . 99

4.3.2 R-Trees . 100

4.3.3 Kd-Tree . 101

4.3.4 Quad Tree . 101

4.3.5 Geohashing . 101

4.3.6 Distributed Trees . 101

4.3.7 NoSQL system and Geospatial Processing 102

4.3.8 Conclusion . 104

4.4 Geospatial Querying . 105

4.4.1 Solr Overview . 106

4.4.2 Dynamic Index Layer . 108

4.4.3 An Unbalanced Tree . 116

4.4.4 Kd-Tree . 120

4.4.5 Quad-Tree . 122

4.4.6 Geohashing . 123

4.4.7 Schema . 123

4.4.8 Query Mapping . 124

4.4.9 Spatial Algorithms . 125

4.4.9.1 Insertion Algorithm 125

4.4.9.2 Point and Range Algorithms 128

4.4.10 Extension to Querying Model 130

- ix -

4.5 Consistency . 130

4.5.1 Scenarios . 131

4.6 Evaluation . 137

4.6.1 Read Performance . 138

4.6.2 Scale Experiments Comparing Different Structures in Antares

with Different Systems . 141

4.6.3 Writes . 148

4.6.4 Conclusion . 149

4.7 Conclusion . 150

5 Application to Twitter 151

5.1 Introduction . 152

5.2 Social Media Analysis . 152

5.2.1 Conclusion . 158

5.3 User Interface . 159

5.4 Tweet My Street . 161

5.4.1 West End of Newcastle . 162

5.4.2 International Day Against Homophobia and Transphobia 164

5.4.3 Psychology . 165

5.4.4 Conclusion . 165

6 Conclusion 167

References 171

- x -

List of Figures

3.1 A Cassandra column family . 41

3.2 A Cassandra cluster . 42

3.3 Antares: abstract architecture . 51

3.4 Antares: stream querying architecture 52

3.5 Antares: historic querying architecture 55

3.6 Antares: combined querying architecture (type 1) 56

3.7 Antares: combined querying architecture (type 2) 56

3.8 Query language mapped to the back-end 59

3.9 Twitter data model . 64

3.10 Tweets per second written to the Antares one-node cluster using

increasing batch sizes . 77

3.11 Tweets per second written to Antares and the Synchronous System . . 78

3.12 Percentage savings for Antares . 79

3.13 Range query . 80

3.14 Exact match query . 80

3.15 Schema for the unindexed column family 81

3.16 Example schema . 81

3.17 Unindexed exact match query . 82

3.18 Unindexed range query . 82

3.19 Mean response time for exact match queries executed across Antares

and an unindexed cluster . 83

3.20 Mean response time for exact match executed across Antares 83

- xi -

3.21 Percentage savings for Antares . 84

3.22 Mean response time for range queries executed across Antares and an

unindexed cluster . 86

3.23 Mean response time for range queries executed across Antares 87

3.24 Percentage savings of the Antares system 87

3.25 Mean response time for exact match query with increasing concurrent

queries . 89

3.26 Mean response time for Query One with increasing concurrent queries . 90

3.27 Tweets processed per second by ESPER 92

3.28 Mean response time of query four with increasing concurrent queries

while simultaneously inserting to the database 94

4.1 Prefix Tree . 107

4.2 Antares: geospatial architecture . 110

4.3 Antares: abstract geospatial architecture 111

4.4 The mapping between the world and grid regions which represent tree

nodes . 112

4.5 Node B being split . 113

4.6 Quad-Tree mapped from the grid . 114

4.7 The grid changing for a split . 114

4.8 The indexing layer converted to Cassandra schema 115

4.9 A viewport intersecting multiple grids 116

4.10 An unbalanced tree being balanced . 118

4.11 Nodes which are not queried as they hold no data 119

4.12 A node and its values . 121

4.13 Grid represents a Kd-Tree . 121

4.14 Kd-Tree . 121

- xii -

4.15 Grid representation of a Quad-Tree . 122

4.16 Quad-Tree . 123

4.17 Scenario One . 132

4.18 Scenario Two . 134

4.19 Scenario Three . 136

4.20 Scenario Four . 137

4.21 Mean response times for geospatial querying (up to 2000 km2) 139

4.22 Mean response times for for geospatial quering (up to 1000 km2) 140

4.23 Percentage saving Antares . 140

4.24 Mean response times for map queries as the number of nodes increases 141

4.25 Mean response time (ms) for geospatial queries executed across

different systems on a one-node cluster 144

4.26 Mean response time (ms) for geospatial queries executed across

different systems on a two-node cluster 145

4.27 Mean response time (ms) for geospatial queries executed across

different systems on a three-node cluster 146

4.28 Mean response time (ms) for geospatial queries executed across

different systems on a four-node cluster 147

4.29 Number of inserts per second as the number of nodes is increased . . . 149

5.1 Antares: map . 160

5.2 Antares: map with modal . 160

5.3 Antares: word cloud . 161

5.4 Antares: activity graph showing the rate of tweets in the West End of

Newcastle . 163

5.5 Antares: map showing community opinion 163

5.6 Antares: obvious traffic routes . 164

- xiii -

List of Tables

3.1 Database characteristics and descriptions 21

3.2 Parameters and values in the queries 65

3.3 Query definitions . 65

3.4 Query parameters . 65

3.5 Questions and matching queries . 66

3.6 Tweets per second written to Antares with increasing batch sizes . . . 76

3.7 Tweets per second written to Antares and the Synchronous System . . 78

3.8 Mean response time for exact match queries executed across Antares

and an unindexed cluster . 82

3.9 Mean response time for range queries executed across Antares and an

unindexed cluster . 86

3.10 Mean response time for exact match query with increasing concurrent

queries . 89

3.11 Mean response time for Query Four with increasing concurrent queries 90

3.12 Tweets processed per second by ESPER 91

3.13 Mean response time for read and write load 93

4.1 Mean response time (ms) for Solr compared with Antares for

increasingly large areas (km2) . 139

4.2 Mean response time (ms) for Antares as the number of nodes increases 141

4.3 Mean response times (ms) for each framework across a one-node cluster 143

4.4 Mean response times (ms) for each framework across a two-node cluster 145

4.5 Mean response times (ms) for each framework across a three-node cluster146

- xiv -

4.6 Mean response times (ms) for each framework across a four-node cluster 147

4.7 Mean response time (ms) for Antares as the number of nodes increases 149

- xv -

Acronyms

List of Acronyms

API : Application Program Interface

CEP Complex Event Processing

CQL : Cassandra Query Language

DBMS : Database Management System

DRAM : Dynamic Random Access Memory

EPL : Event Processing Language

GFS : Google File System

HDFS : Hadoop Distributed File System

JDBC : Java Database Connectivity technology

JPA : Java Persistence API

JVM :Java Virtual Machine

MBR : Minimum Bounding Box

MTTF : Mean Time To Failure

MVCC : Multi-version Concurrency Control

RDBMS : Relational Database Management System

SQL: Structured Query Language

SSD : Solid State Drive

TTL: Time to Live

- xvi -

1
Introduction

Contents
1.1 Thesis Contributions . 4

1.2 User Requirements . 5

1.3 Dissertation Outline . 6

- 1 -

Chapter 1: Introduction

The emergence of “Big Data”, including data from social media, sensors and online

resources, has created the need for novel processing and storage technologies. Tra-

ditional methods for storing and analysing data have proved inadequate due to the

sheer volume of data, and the rate at which it is being generated. Given the real-time

nature of many of these data sources the success of an application often depends on the

stream of data being analysed very quickly after it is collected. Additionally, with the

growth of mobile devices, data often has location tags assigned to it, and the ability to

process this in a timely manner is the basis for many applications. For example, direc-

tion applications need to respond in near real-time. However, large scale location data

can be challenging to process with new scalable technologies due to the rich querying

functionality required to query latitude, longitude and metadata (multidimensional

data).

Near real-time analysis of these types of datasets can be partially supported by stream

processing systems, however many applications require a combination of stream pro-

cessing and historic data analysis. Stream processing can often be limited by the size

of memory available, which can be expensive to increase. Therefore being able to pro-

cess the stream as it is collected then store it in a database supports a more affordable

and scalable solution. This also means that querying the data at a later date is also

possible. For example being able to identify an event in real-time, say an earthquake,

then querying the historic store later to try to identify the epicentre.

Twitter analytics is used as a generalisable example to drive the design and evaluation

of a scalable system that can achieve this (however, Antares is capable of processing

any temporal and geospatial data). The Twitter firehose emits Tweets at an average

rate of 5000 per second [1]. The data used was based on temporal and geotagged

information.

Each Tweet is essentially a JSON object made up of a set of tags representing the

metadata of the Tweet itself. The data model taken from this metadata and used

for Antares contains a user, retweet, geotag, timestamp, hashtag and status. User:

this is who posted the Tweet. Retweet: this demonstrates whether the Tweet has

been retweeted and if so gives the Tweet a new id, as well as containing the original

one. Geotag: this describes the location the Tweet was posted using a latitude and a

- 2 -

Chapter 1: Introduction

longitude. Timestamp: this is when the Tweet was posted. Hashtag: this describes

the topic of the Tweet and is one word preceded by a hashtag. Status: content of the

Tweet.

To identify events as they occur, for example, all Tweets with a specific hashtag,

requires the ability to query data arriving at the full rate of the Twitter firehose. All

Tweets then need to be stored in a database, which must be able to simultaneously run

queries against the stored (i.e. historic) data, potentially spanning billions of items.

For example, at the current rate, Twitter will see 150 billion generated in 2015, and

has witnessed bursts as high as 143,199 per second [1].

The system must also support “combined” queries that use both stream and historic

analysis techniques together in order to answer questions such as identifying all Tweets

that have been retweeted more than a certain number of times. The combined query

searches both stream and historic data in a time period that stretches from the past

to the future. One query will be submitted by the user and the system will provide a

novel mechanism for transparently translating and executing the correct type of query.

Designing a system that can scale to handle the full arrival rate of events from the

Twitter firehose while simultaneously answering user queries against the stream and

historic data is challenging in terms of providing reliability and availability. This is

challenging due to the rate of ingestion as the system must also enable availability

to query simultaneously, which means investigating concurrent solutions. The system

must also ensure measures to maintain reliability while supporting availability.

This challenge is made yet more complicated by the importance of geotagged data for

processing Twitter and other types of streaming data. Existing solutions use spatial

indexing techniques, including tree and hashing structures, to accelerate geospatial

queries. However spatial data can still be challenging to process at scale due to its

multidimensional nature as each point contains a latitude, longitude and metadata

(related to the content posted). The complexity of processing stream, historic and

multidimensional data has driven the design and implementation of Antares to support

scalable queries that range over both time and space.

- 3 -

Chapter 1: Introduction

1.1 Thesis Contributions

This thesis investigates this problem of scalably supporting applications that require a

combination of near real-time and historic data analysis, and describes and evaluates

a novel approach for addressing it. The approach used within this thesis is a layered

one, which allows a scale that a non-layered approach would not due to the volume of

data being ingested and timeouts caused by this. Any solution to this problem must

provide:

1. A stream processing system for near real-time analysis of the high-velocity in-

coming data.

2. A historic data store capable of high data ingestion rates, that reliably stores

incoming data even while simultaneously executing queries.

3. Scalable, high throughput, low-latency processing of queries over the historic

data store for geospatial and temporal data.

4. Investigate the viability of a layered approach to scalable querying of Twitter

data.

A survey of different data processing technologies was undertaken to investigate and

evaluate a layered approach, which sort to retain the benefits of NoSQL systems and

the scale that can be provided by utilising them. So new research was needed to

design methods to support low latency querying and high throughput rates for both

near real-time and historic data analysis simultaneously.

This thesis addresses these problems and introduces a framework called Antares, a

scalable system, which processes data-streams, historic data and combines the two

mechanisms to provide analysis for multidimensional data e.g. temporal and geospa-

tial. In particular, it provides new methods required to support the high performance

querying of geospatial data. Antares runs in the Cloud, exploiting its potential for

scaling out and elasticity (supporting the simple addition and removal of nodes for a

burst of events). The thesis describes the design of Antares and evaluates its perfor-

mance on a range of scenarios taken from a real social media analytics application.

- 4 -

Chapter 1: Introduction

The results show significant performance gains when compared to existing approaches,

for particular types of analysis.

The thesis’ contributions are therefore:

1. The design, implementation and evaluation of Antares, which is used to develop

techniques of scalable querying of Twitter data.

2. The design, development and evaluation of optimisations for the high throughput

ingestion of data streams - specifically by a historic store to improve the stream

processing through the use of a layered approach

3. The design, development and evaluation of a novel in-memory cache to reduce

query response time and increase the scalability for querying spatial data.

1.2 User Requirements

The motivation for designing and developing such a system can be demonstrated

through the user requirements necessary for a cross disciplinary project called Tweet

My Street. This project used Antares to analyse geotagged and temporal data to

derive data-driven insight from Twitter data.

Antares needed to provide combined querying to support identification of events on

the stream, which would support the querying of a much larger stored dataset. The

results from the large stored datasets had to return in near real-time so that a combined

solution with the stream data was possible. The novel solution provided by Antares

allows users to write one query for both of these processing techniques rather than two.

This abstraction supports easier and more efficient execution of combined queries.

Additionally Antares ingests the data simultaneously while executing queries. This

aims to provide the user the ability to query current data while not dropping other

data that could be investigated later. If the user queried an event, for example, a

conference, there may be new hashtags that become popular later in the conference.

Antares supports the storage and querying of that data after the hashtag has been

identified, therefore giving the user rich temporal querying.

- 5 -

Chapter 1: Introduction

Antares also supports increased performance geospatial querying. The requirement of

the system was to use a simplified append-only model to enable vast improvements in

the efficiency of geospatial querying. Antares required the ability to zoom in/out of the

display area and also to pan around. The system would use its append only qualities

to simplify and reduce query execution time. The system was append only due to the

nature of the above requirements – all data must be stored to support querying at

a later date. This resulted in the huge increase in performance when compared with

current commercial systems. Antares supports querying of large geospatial datasets,

using a map visualisation to enable user interaction with the dataset.

1.3 Dissertation Outline

The scope of the remaining chapters is as follows:

• Chapter 2 outlines the technical aspects of the thesis and terms that will be used

in later chapters.

• Chapter 3 discusses the design and implementation of Antares. It focuses on

comparing related systems. It then describes the low-latency of the combined

processing and the optimisations to enable this. This is then evaluated and

conclusions drawn from these experiments.

• Chapter 4 then moves on to the extension of Antares to cope with large amounts

of geospatial data processing. Following the same structure as mentioned: related

work, architecture, evaluation and conclusion.

• Chapter 5 describes the application of Antares and how it scalably analyses

Twitter data in a project called Tweet My Street. Related work is compared,

the user interface is described and a critical analysis of the system is given.

• Chapter 6 concludes the thesis, reflecting on how well the objectives were met,

and proposing topics for future work.

- 6 -

2
Technical Context

Contents
2.1 Introduction . 8

2.2 Stream . 8

2.3 Stream Processing . 8

2.4 NoSQL Database . 8

2.5 Social Media Analytics . 9

2.6 Twitter . 9

2.7 Combined Querying . 9

- 7 -

Chapter 2: Technical Context

2.1 Introduction

This chapter introduces technical aspects that are used within the thesis. The aim of

the chapter is to give an expanded explanation of the terms and their meaning within

the context of this thesis.

2.2 Stream

Stream: a sequence of data elements which are given to the computer in a continuous,

real-time flow as the data is produced. It is different to batch processing as each item

is produced individually then given to the system to process there is always incoming

data (unless the data source has stopped producing data) therefore there is a constant

intake of data rather than a batch of data items which need processed in periodic

intervals.

2.3 Stream Processing

Stream processing: the ability to analyse data as it is produced.

Ingesting a stream of data with the ability to produce some output which may or not

be a stream, set of tuples or tables.

2.4 NoSQL Database

These databases do not use the conventional relational schemas to store the data.

These types of database promote denormalisation of the data as they claim such easily

scalable systems that extra data would not compromise the execution time of search

or write queries. The schema is usually more flexible with resultant trade-offs between

consistency, availability and partitioning tolerance.

- 8 -

Chapter 2: Technical Context

2.5 Social Media Analytics

Social media includes micorblogs and social networking services such as Facebook,

Twitter and YouTube. The analysis of this data using techniques which focus on the

structure and terms specific to this media (rather than traditional techniques) is called

social media analytics.

2.6 Twitter

Twitter is a social media microblogging platform which allows users to post Tweets,

which are 140 characters posted to other users. The social media platform allows

users to chose the content they see by following other users, and users have followers.

Hashtags are used to express a topic within the Tweet and help to support users

searching the social media platform as well as providing popular topics to suggest to

users these are called “trending” topics.

2.7 Combined Querying

Within the context of this thesis the term combined querying means one or more

queries which use both historic and stream processing. The order of the query, whether

it be sequential or parallel does not affect the term combined querying so long as both

layers (historic and stream) have been used in the processing to produce some output.

- 9 -

3
Architecture

Contents
3.1 Introduction . 11

3.2 Related Work . 13

3.2.1 Scalable Stream Processing . 13

3.2.2 Historic Processing . 20

3.2.3 Combined Processing . 43

3.3 System Architecture . 50

3.3.1 Stream Querying . 51

3.3.2 Historic Querying . 53

3.3.3 Combined Querying . 55

3.3.4 Insert Rate . 59

3.4 Data Model . 61

3.4.1 Case Studies . 62

3.4.2 Queries . 63

3.4.3 Schema . 69

3.4.4 Stream Schema . 72

3.5 Evaluation . 74

3.5.1 Ingestion Rate . 74

3.5.2 Batch Experiment . 76

3.5.3 Read Performance . 79

3.5.4 Stream Queries . 91

3.5.5 Combined Queries . 92

3.6 Conclusion . 94

- 10 -

Chapter 3: Architecture

3.1 Introduction

Antares is a scalable, cloud-based framework designed to support the storage and

querying of high-velocity, high-volume Twitter data. Antares supports low latency

combined, historic, streaming and geospatial processing. Antares has been designed

and implemented to enable other researchers to use the tooling to analyse Twitter

data, and as a result it has successfully supported published research projects [2], [3]

and [4]. Antares is currently being deployed in a cross disciplinary project called Tweet

My Street [3].

Antares uses a layered approach to implement these querying techniques. The layered

approach helps to extend and exploit the desirable characteristics of a stream pro-

cessing system and a historic data store to provide scalable Twitter analysis. Antares

builds on two existing components – Cassandra and ESPER.

The key features of the Antares design are:

1. Database optimisations to enable efficient stream and historic data querying.

The resulting low query latency facilitates combining the querying of historic

data with stream event processing.

2. Enabling transparent submission of queries - the user should only enter one query

whether it be a stream, historic or combined - the system will translate this into

the correct query submission and execution.

3. Optimisations, which are needed to ingest high velocity and volume data streams.

Consistency can be lowered to provide higher ingestion rates- therefore all data

written to the database will be eventually consistent.

4. A distributed scalable caching layer which enables fast, efficient geospatial query-

ing.

5. A set of algorithms which are required to map the caching layer to the storage

layer, which enables efficient querying to exploit scalable data storage.

6. Consistency checks for the distributed geospatial cache.

- 11 -

Chapter 3: Architecture

7. A web interface for interaction with and visualisation of large volumes of data.

This section describes the architecture for which Antares is based on and extends.

Antares supports scalable querying of the Twitter firehose. This required high inges-

tion rates and a ”combined” querying mechanism, which would support: stream and

historic querying as well as exploiting the low latency to provide a combination of

both querying techniques. Antares would provide easy querying of Twitter data by

combining both querying mechanisms through one query stated by the user. Antares

takes these queries and translates them into the correct type of query whether that

be stream, historic or combined. This chapter argues that Antares uses a layered

approach to support scalable Twitter analysis which provides the user with low la-

tency querying and a single interface to enter querying parameters for all querying

mechanisms. The scale Antares provides would not be possible with a non-layered ap-

proach as the querying and insertions are distributed throughout the system to allow

for greater intake of requests. The motivation for Antares was to

1. provide researchers with a scalable means of analysing Twitter data

2. investigate different technologies to provide scalable Twitter analysis.

A literature review of the technology was undertaken to identify a suitable technology

which could scale-out to exploit the advantages of the elasticity of cloud computing.

This chapter describes different technologies which were considered for the layered

approach within Antares. These are then compared with current ”combined” systems

to show the difference between Antares and these. Antares and the data model used to

design the queries is then described in detail. This refers to the querying mechanisms,

query language, mapping and then the evaluation of the system. The evaluation of

Antares used Twitter data and simulated firehose rates to evaluate the latency of the

queries and how the combined querying and writing to the system affects the speed of

query responses.

- 12 -

Chapter 3: Architecture

3.2 Related Work

This section reviews technologies which could be used for the layered approach to

analysing Twitter data. These technologies are compared and the desirable features of

each decided whether to use or not. The stream processing systems are reviewed for

scalability to validate if it could be used within the system to achieve feature three.

A set of databases which are regarded or have been described as scalable are also

investigated then a database with the desired qualities is used. The last part of the

related work looks at systems which have been combined/layered like Antares these

are reviewed and compared. The related work is used to examine the technology

space which currently exists for layered approaches and identify technology which

can be extended to provide scalable Twitter querying and analysis. Then compare

Antares with current systems and identify differences and the improvements made by

the system.

3.2.1 Scalable Stream Processing

Stream processing systems are becoming increasingly important with the spread of

sensor and mobile technologies. The need for distributed and/or fault tolerant systems

is leading to new approaches. Additionally the eruption of Big Data has led to a

change in direction for data analysis, with it requiring larger and larger data sets to be

processed within restrictive time limits. Therefore this section reviews and evaluates

current technologies that provide stream analysis.

A literature review was carried out on different stream processing systems, which

reviewed the scalability of the system to ingest and process data and the querying

mechanisms that are used by these systems. These were compared and then a suitable

stream processing system was chosen to support the scalability of the layered approach

taken within Antares.

To identify a stream processing system which is capable of ingesting a large amount of

data a literature review was undertaken describing and comparing current technolo-

gies. These were then used to chose one that would support the layered and scalable

approach of Antares.

- 13 -

Chapter 3: Architecture

3.2.1.1 Storm

Storm [5], [6] is an open source real-time processing system, which executes continu-

ous queries across stream data to identify events. Storm provides efficient and quick

querying for real-time applications. It is a stream processing system that was recently

acquired by Twitter and has just become open source.

Streams of data are inputted, processed and then a resultant stream is outputted.

It provides complex message processing of stream data, as well as continuous queries.

Antares supports real-time querying as well, it supports queries which are continuously

executed across the data stream being processed. Antares also provides low latency

query responses.

Storm has the ability to process millions of messages per second by supporting scale-out

functionality. It supports distributed RPC, parallel search querying and set operations

on large-scale data sets.

Distributed RPC allows queries to be divided and executed in parallel, which supports

efficient response times. However Storm shreds data if the ingestion rate becomes

too much - Antares uses high ingestion rates achieved through asynchronous calls and

batch to avoid this problem.

The framework is held completely in-memory and therefore does not provide stand-

alone persistent data storage, which is similar to the ESPER layer within Antares -

Cassandra is used to provide persistence.

Storm uses “topologies” to execute queries similar to map reduce across the stream.

These topologies are continuous queries and can be executed for an unbounded amount

of time. Joins are not typically supported. Antares does not use joins as this technique

could decrease performance, denormlisation is used to improve performance.

3.2.1.2 Drools

Drools Fusion is a rule based, forward chaining inference based rule engine and complex

event processing system (CEP), which ingests multiple asynchronous streams [7].

Drools supports user-defined sliding windows and is schemaless in order to provide

flexibility. Facts are executed by Drools, which are a set of rules.

- 14 -

Chapter 3: Architecture

Queries are constructed of rules and facts, which are used to examine the data. Mul-

tiple streams can be ingested and joined. The system is provided by Red Hat and

is therefore open source. Multiprocessor hardware supports partitioning. Optional

logging is supported to provide persistence as well as pluggable storage through the

use of the Java persistence API (JPA). If JPA is used then this supports additional

consistency as the system itself already uses transactions.

Antares does not need strict consistency rules - like for example a banking system

would to ensure that bank accounts are consistent - a slight delay in consistency for

Twitter is acceptable to improve performance.

Drools has the capability to scale to 900,000 facts on a 64bit JVM [8] with reasonable

performance.

The system supports elasticity and it is used in the cloud to automate the increase

and reduction of resources in a Java EE application.–what java ee application

The system is suited to algorithmic trading, telecom rating, fraud detection, content-

based routing, credit approval, insurance and risk assessment. Antares does not need

the functionality that application like these would require - ACID transactions are

useful for such applications but will only affect the performance of Antares with no

gain for the low latency queries required by Antares.

Utilising the rules so that they are effective can be hard. It is not very useful for

smaller projects where the rules do not change over time and can be more difficult to

debug.

3.2.1.3 S4

S4 [9] is a stream processing system which is used to process unbounded data streams.

It is distributed and partially fault tolerant, depending on the pluggable storage used.

Each node processes the information and then messages are used to communicate this

between nodes. This could cause performance issues while ensuring that each node

within the cluster knows who has processed what. This is not a problem when using

ESPER in Antares - it provides scalability on one machine. Antares uses a scalable

historic store to provide collection of big data, where as the stream processing system

- 15 -

Chapter 3: Architecture

is used to provide scalable real-time analysis of current data only - for the Twitter

firehose.

It is suited to applications for: click stream analysis, evaluation of online algorithms

and marketing campaigns. –how does this compare to antares do the applications have

similarities?

S4 does not have a buffering mechanism therefore if there is too much data the excess

is lost (data shredding). As there is no buffering it would not be suitable for large

Twitter streams. Antares aims to process large scale data therefore loss of data from

shredding would not meet the desirable characteristics of the system. ESPER provides

a scalable means of ingesting the entire firehose without loss of data.

The system uses modified map-reduce functions to execute queries across the stream.

Antares supports real-time queries with results being continuously pushed back to the

user.

3.2.1.4 System S

System S [10] is a stream processing system which responds to information quickly and

can then dynamically change requirements. It continuously analyses data at high rates

and rapidly adapts to changing data forms and types. Antares focuses on Twitter data

(for now) and therefore does not require quick dynamic changes to different inputs -

it would be future work - but currently may affect performance and scale.

The system is highly available, heterogeneous and distributed. The system is used for

providing security and information confidentiality for shared information by IBM. It

executes a process similar to a continuous query that can be executed across multiple

streams. Security is not a specified feature of Antares, therefore there would be no

benefit in trading performance for secure data storage.

The system is used for anomaly detection, telescope data retrieval and analysis, energy

trading services, financial services, health monitoring and manufacturing. System S

is not an open source product and focuses on security features, which reduces perfor-

mance.

- 16 -

Chapter 3: Architecture

3.2.1.5 ESPER

ESPER [11] is a CEP system, which ingests stream data and executes continuous

queries over these to identify events. It is a standalone system. It supports slid-

ing tumbling and combined time-windows for temporal querying. Events are filtered

and analysed and then a response is returned in real-time. An event occurs when a

constraint in the continuous query is met.

ESPER has a flexible schema with no constraints. Operations that are supported

are: grouping, aggregation, sorting, filtering, merging, splitting or duplicating of event

streams. The query language supported is called EPL and is a derivative of SQL, which

supports complex querying. The system supports inner and outer joins to combine

streams.

A variety of pluggable database storage is available. ESPER is multi-threaded and pro-

vides a concurrency-safe iterator, with read-write locking. The system has a performance-

focused design, which includes: query strategy analysis and index building.

Antares opted to use ESPER as it is suited to complex computations, high through-

put and low latency real-time applications. ESPER also supports complex queries

and user-defined time-windows, which means it is suited to performance workloads.

Antares requires high throughput and low latency querying for handling stream pro-

cessing.

In ESPER a time-window signifies that an event must happen within that time period

for the query to trigger some action. In the case of Antares it could trigger the

execution of a query to the database or the return of results to the user. This is

dependent on the type of query executed by the user, if it is a stream query then

the results from a query executed across the stream data are returned. As mentioned

some of the combined queries contain a “trigger event”, which means when an event

is identified by ESPER a historic query is executed across the database too and the

results combined for the user. ESPER was chosen as it can handle large numbers of

events, and specify time-windows proficiently.

- 17 -

Chapter 3: Architecture

3.2.1.6 Rainbird

Real-time counting (e.g. URLs and Twitter clicks) was introduced by a commercial

system called Rainbird [12]. This uses Cassandra as a persistent store for durability

and executes stream processing in the application layer. This is similar to Antares

using the layered approach and an historic store for its scale to support collection and

processing of large scale datasets.

It uses tokenisation for textual analysis on Tweets by counting their occurrence. The

system supports write rates of hundreds of thousands per second and a read volume

of tens of thousands of reads per second. These queries are all executed with low

latency and are approximately under 100 ms. Rainbird supports horizontal scaling

of terabytes. However the querying language is limited to only counting operations,

therefore it would be impractical to use in the project.

3.2.1.7 Millwheel

Millwheel [13] is a fault tolerant stream processing framework used for Internet scale

applications. The system is used widely at Google for low latency data processing.

Users specify a directed computational graph and continuous flow of records all while

being fault tolerant. Data is sent along the edges and through nodes to process. Any

node or edge can fail at any time and the result will still be correct. Millwheel supports

high fault tolerance, which is a characteristic which may decrease performance and

therefore would not help achieve the stated features.

3.2.1.8 InfoSphere

InfoSphere [14] is IBM’s commercial offering for stream analysis. It provides user-

defined operations and a high throughput rate up to millions of events per second.

Frameworks like Infosphere and Millwheel provide new stream processing technologies

however they are not open source and could not be considered for this project.

- 18 -

Chapter 3: Architecture

3.2.1.9 Apache Samza

Apache Samza [15] is a distributed stream processing framework, which uses Kafka for

messaging and Hadoop Yarn [16] for fault tolerance. It supports a simple API for ac-

cess. This is used within Twitter’s Heron [17]. It has managed state, snapshotting and

restoration to support fault tolerance. For scalability it partitions data to distribute

across a cluster and uses Yarn to manage the containers.

3.2.1.10 Heron

Heron [17] provides stream processing at scale and is the replacement for Storm to help

support easier debugging and increased scale. Heron was adopted by Twitter on June

4th 2015. It provides a solution for real-time user counts and real-time engagement

with Tweets and advertisements. Antares provides aggregate functions as well, but it

supports a wider functionality of querying.

Heron runs topologies (these are the same topologies as Storm executes – mentioned

previously) and allows “backpressure” to adjust the flow of data. Spout backpressure

allows the ingest rate to be monitored and modified to ensure that the ingestion rate

is always equal to or less than the maximum ingestion capacity of the system. This

means that no tuples are dropped and ensures no work is lost. This is different to

Storm which drops tuples if it is unable to handle them. Backpressure is used so

debugging is easier as you can see when a skew in data has occurred and identify the

root cause of the error [17].

A Heron instance does most of the work and runs only a single task, therefore de-

bugging is easier as there is only one task executing. Experiments show that Heron

reduces latency and increases throughput.

3.2.1.11 Conclusion

This section has reviewed and identified stream-processing engines that could be used

within the Antares system. After reviewing the literature it was identified that [12]

and [5] do not have the SQL capabilities of ESPER (for more complex querying rather

than GET, SET and delete – which is a trade-off for performance) and Drools [7]

- 19 -

Chapter 3: Architecture

supports ACID transactions which can decrease performance and is therefore focusing

on the wrong characteristics which are necessary for Antares. Antares is based around

scalable and high performing querying and analysis of Twitter data.

Security is the main focus of [10], which is not necessary for Antares. Reliability and

the ability to ingest high rates of data is one of the major contributions of Antares

therefore a system like S4 uses messaging to support consistency and shredding to

reduce ingestion of data when a node becomes over-saturated this was not suitable

for the desired characteristics of Antares - namely the the scalable and performance

required (wanted/stated/contributed) by the system.There is a lot of choice, but we

chose ESPER due to its support for complex querying, low latency and scale, which is

essential for the Twitter analytics applications that Antares must support.

The next section identifies different historic store which are regarded as scalable and

examines the different characteristics then identifying the correct data store to extend.

3.2.2 Historic Processing

To chose a technology which would support scalabilty, flexibility and features to best

allow for a layered and scalable approach to querying and processing Twitter data

received as a stream a set of technologies were investigated. This involved identifying

different scalable technologies and comparing them to see which would be fit for use

within Antares to support the achievement of contribution –blah blah blah.

The historic store should provide a high insertion rate, low latency querying and scale-

out functionality. The ability to support large-scale data processing is vital due to

the petabytes of data being produced by sources such as social media and sensors.

Traditional processing techniques do not typically meet the needs for processing such

large datasets. Traditional relational databases do not provide the scale, and batch

processing databases do not support timely enough responses to meet the requirements

of real-time applications. Therefore new technologies and mechanisms are being ex-

plored.

This section reviews different database technologies aimed at solving these problems,

by either using a new database approach or by extending traditional RDBMS sys-

- 20 -

Chapter 3: Architecture

tems. By reviewing the different technologies available a conclusion about suitable

applications and workloads for each is drawn. Each of the databases is described and

compared using common features of databases. The features that were compared are

shown in the Table 3.1.

Characteristic Description
Schema Describes the schema if there is one

and how the database structures data held within it
Joins Whether the data layer supports joins

Open Source Whether the database source code is freely available
Partition type Describes how and if the database is partitioned (sharded)

Logging Does the database log operations?
Locking Describes the locks used by the database
Storage Whether the database is in-memory or held on disk

Consistency Whether the database uses ACID transactions
or uses an eventual consistency model

Availability This describes the probability that
the database is operational at a given time

Partition Tolerance Whether the cluster continues
to work even without communication between all the partitions

Performance This describes the performance of queries
executed over the database

Scalability This describes whether and by how much
the database performance can be scaled out

Table 3.1: Database characteristics and descriptions

Before classifying databases in these terms, some of the terminology used in the clas-

sification is introduced.

Blanket Statement Removal: Removal of occasional statements (queries) that span

the entire database.

CAP Theorem: CAP Theorem (consistency: a read sees all previously completed

writes; availability: reads and writes are always successful and partition tolerance:

during a network partition, a distributed system must choose either consistency or

availability) describes that a system can never provide 100% of all three of these

properties at any one time. Therefore there must be a trade-off between properties.

For example if a system is very available and partition tolerant then it may implement

eventual consistency [18].

- 21 -

Chapter 3: Architecture

Check and Set: Uses version stamps, so that when an object is retrieved, so is the

version stamp, and this is then passed to the set method. The system will then verify

whether the version number is the latest and allow the update, or, if not, fail it.

Cold Cache: When the cache starts it has no values - is empty - so there is no

speed-up advantage to having it.

Consistent Hashing: When a hash table is resized only k/n keys need mapped where

k = numberofkeys and n = numberofslots, as opposed to all of them.

Chubby: Loosely coupled distributed lock service [19].

Decision Tree: A tree structure, which shows the consequences of a chain of decisions.

Hash Partitioning: A hashing function is used on the key (or another attribute) to

calculate the location in the database the data is written to.

Dominant Workloads: Workloads that are major resource consumers.

HQL: Hibernate query language - fully object oriented similar to SQL.

Master-Master: All nodes accept requests and each node will propagate changes if

replication is used.

MVCC: This is a concurrency mechanism, which marks old data “out-dated” rather

than deleting it. There are multiple versions of data, which allows readers to see the

data as it was when it was requested - even if it was updated during the read.

Optimistic Locking: Multiple transactions can compete without interfering with

each other. No lock is used while writing and before committing the transaction

verifies if any other transaction has modified the data during the read. If there is a

conflict the transaction is rolled back.

Pig: High level programming language to abstract from Java.

Quorum: n machines must be available to make a read/write.

Referential partitioning: Used to facilitate joins across a shared-nothing network.

It is a method of aggressive hash partitioning that attempts to take into account the

foreign key relationships of the tables. During the data load, referential partitioning

includes an additional step, which involves joining with the parent table to find the

foreign key.

- 22 -

Chapter 3: Architecture

Shared Nothing: Each node is independent of all others; this includes independent

memory and disk space. This means there is no contention for resources and that the

nodes are self-sufficient.

Sloppy Quorum: All reads and writes are performed on the first n healthy nodes.

Split Execution Environment: Divides the environment that queries are executed

in, providing the database layer and the application layer (a map reduce layer).

SSTable: This is a key-value file, which is used to provide persistence.

Vector Clocks: An algorithm for creating a partial ordering of events in a distributed

system. Messages hold the state of the sending processes clock.

Workload aware partitioning: By monitoring query patterns and data accesses,

it moves data (using graph partitioning) to ensure fewer cross server transactions,

reducing the cost and time to query. When the query is analysed this analysis is

outputted in the form of a graph. The graph joins with edges which transactions

go between which nodes (tuples), these edges are then weighted to show how many

transactions occur. This graph is then used to find partitioning that balances the load

and decreases the weight of edges.

New database technologies are now outlined using the terms described in Table 3.1,

which may be considered for use in Antares.

3.2.2.1 Relational Cloud

Relational Cloud: A relational database as a service, which provides strong consis-

tency using ACID transactions. It uses a central coordinator to manage the system

for the user and understand different workloads. To manage the workloads the system

hosts multiple databases on one server, it then analyses these and moves them about

as necessary [20].

Schema: A relational schema.

Query Language: SQL, the system uses a decision tree to identify the correct nodes

to search for the data, unless there are a lot of requests then it uses the lookup table.

- 23 -

Chapter 3: Architecture

Joins: A coordinator is used to consolidate the database to reduce the amount of

distributed joins, but they are possible. Therefore joins are generally executed within

the database on a single node.

Open Source: No – MIT’s investigation of cloud based technologies.

Partitioning Type: Workload aware partitioning which means by monitoring query

patterns and data accesses, it moves data (using graph partitioning) to ensure less

cross-server transactions, reducing the cost and time to query. When the query is

analysed this analysis is outputted in the form of a graph. The graph uses edges to

join transactions which are executed across different nodes (tuples), these edges are

then weighted to show how many transactions occur. This graph is then used to find

partitioning that balances the load and decreases the weight of edges. This provides

less multi-node transactions as well as load balancing.

Logging: The databases have a combined log, which means they all commit together

(group committing).

Locking: Provides locks for the transactions within the system (but tries to reduce

multi-node locks).

Storage: Uses a standard DBMS with database servers, supports MySQL, Postgres

and JDBC.

Consistency: The database supports strong consistency by using transactions. It

uses multi-node transactions and tries to partition the nodes intelligently creating as

few multi-node transactions as possible (more costly and larger overhead).

Availability: Replicates data by partition for availability.

Partition Tolerance: The system is a consistent and available system, when there

are failures the system will repartition and move data to bring it back online.

Scalability: Relational cloud allows multiple databases on one server. Scalability

is achieved through workload aware partitioning, which uses graph partitioning. This

limits the scale, but a solution to this is to use blanket statement removal and sampling

tuples and transactions, these heuristic methods help scalability. The system has not

currently been tested on the cloud, it has however used 128 tables on eight machines

and it showed throughput increased with scaling [21].

- 24 -

Chapter 3: Architecture

Performance: The latency is increased because of privacy and security in the coordi-

nator, however this was the application of the database. To support improvements in

performance a router is used to decide the node the query should be executed on and

the distribution plan (to help load balancing and scalability). The distribution plan

provides performance enhancement by improving the flow of the queries.

Fault Tolerance: Failover is supported through the use of replicas, which are handled

by the coordinator while it is distributing the workload.

Elasticity: Graph partitioning of data provides near linear elastic scale-out even for

complex transactions.

Applications: Due to the improvements in security this database could be used in the

public or private cloud. It is also designed for applications that require high stability

and elasticity.

Workloads: The database should be used for skewed and standard workflows. Cur-

rently it is suited to OLTP and web applications.

Conclusion: This database provides very good security methods (designed and im-

plemented by MIT). CryptDb is used to encrypt the data in the database and then

the user can query the encrypted data. Currently the system is in development and

various elements need to be put together for it to work on the cloud. Performance is

enhanced using its workload-aware approach to querying and distributing transactions

and partitions.

Antares features focus on performance, –scalability and high ingestion rates of the

Twitter firehose, Relational cloud however focuses on security. The privacy and en-

cryption used in Relational cloud increases latency therefore it is not suited to a system

which is focusing on performance enhancements like Antares.

3.2.2.2 HBase

HBase: Apache HBase is a NoSQL column store, which is based on BigTable. To

scale-out nodes can be added. The architecture for this is master-slave, however mul-

tiple masters are used so there are no single points of failure. HDFS is used as storage

- 25 -

Chapter 3: Architecture

and is tightly integrated with Zookeeper. The database was developed by Facebook

[22].

Schema: There is no schema.

Query language: B-Trees are used to support quick range queries. Additionally map

reduce and a HIVE interface are supported. The Hive interface is used to communicate

with the underlying Hadoop architecture.

Joins: Joins are not supported.

Open source: The software is open source.

Partitioning type: The partitioning and distribution are transparent. The data is

divided using a key range, these are called blocks, and are distributed to each node in

the cluster. When querying, the correct key range is identified using a look-up table,

which is denormalised to prevent bottlenecks.

Logging: Any updates to the system are logged to support crash recovery (WAL write

ahead log).

Locking: There are no global locks, however locks and transactions are available at

row level.

Storage: Updates are written in-memory and then periodically committed onto disk-

HDFS.

Consistency: There is no global consistency, however the system does offer row

level atomic transactions. Additionally the system supports wide scope user-defined

transactions. There are optimistic concurrency control aborts if there is a conflict.

Availability: Highly available, but if a machine goes down there is a short period of

unavailability.

Partition Tolerance: Replication over multiple datacenters supports partition tol-

erance.

Scalability: Parallel batch processing using map-reduce supports scalability.

Performance: Facebook uses the database for real-time messaging by load balancing,

random sequential access and compression. It is a high performance system, however

this is chosen over durability.

- 26 -

Chapter 3: Architecture

Elasticity: HBase uses a gossip protocol to communicate and a peer-to-peer archi-

tecture, which allows the system to add and remove nodes quickly. However this can

only be done easily for reads. The data is split into regions; these are saved onto

the HDFS. The regions have multiple replicas across different nodes. Region-servers

are used to manage different region datacenter nodes. When new data is added this

causes the current and newly added data to be split across nodes and replication to be

considered. To rebalance this data the HDFS has to be re-balanced and the ownership

of the data decided within HBase.

Applications: It is used for Facebook’s messaging system. It is used for random

real-time read/write access to big data applications that require cloud elasticity.

Workloads: It has been designed for write dominant workloads.

Conclusion: HBase is used for Facebook messaging. The system processes large

datasets efficiently and quickly. It is eventually consistent and should be used for

systems that are focused on availability.

3.2.2.3 MongoDB

MongoDB: MongoDB is the leading document store for available, partition tolerant

systems. The system uses collections and stores data in the common JSON format.

The network is a master-slave architecture [23].

Schema: The database has no schema and uses JSON objects.

Query Language: MongoDB supports the execution of map-reduce functions and

employs a rich declarative query language. Additionally it supports ad-hoc queries.

Joins: There are no joins supported.

Open source: The system is open source.

Partition type: There is automatic sharding on a user-defined attribute which is

transparent.

Logging: OpLog [24] is used, which resides on a local server and the update and

modifications are written to this log.

Locking: There are no locks used.

- 27 -

Chapter 3: Architecture

Storage: Memory mapped B-Trees are saved to memory and then flushed to disk. It

uses GridFS [25] for storing objects.

Consistency: The system is characteristically eventually consistent, however ACID

transactions can be executed on fields.

Availability: The weaker consistency and no refusal of writes even when there are

failures in the system supports high availability. Additionally the system replicates

the data and each of the nodes storing the replicated data may also answer queries.

Partition Tolerance: The master-slave architecture supports partition tolerance as

the slaves with replicated data can answer the query.

Scalability: If the system is partitioned it can support very scalable reads and writes.

Performance: If large map-reduce jobs are executed then execution is carried out in

batch. This can result in longer return times, which is dependent on the complexity

of the query and the size of the data. However this is to be expected when executing

a map-reduce job. By using asynchronous replicas, query performance is improved

because the master can send requests out at any time.

Fault tolerance: Replication of the nodes for failover and recovery is automatic.

Replication is asynchronous and happens at the shard level. The system recovers from

a failure by electing a new master. Server failure while a slave is reading from the log

to replicate means that data is lost.

Elasticity: The cluster is elastic and supports load balancing.

Applications: The database is specialised for large datasets and supporting simple

scaling to process and store it. The system is currently being used by Craigslist,

which uses the database to archive information. Foursquare also uses the database for

check-ins as it provides a mechanism for geospatial indexing and small location-based

updates.

Workload: Reads and writes are scalable so both workloads are suitable for the

database.

Conclusion: MongoDB is a popular document store, which provides a rich query-

ing language as well as being very scalable and available. It provides strong local

consistency, which reduces conflicts and stale reads and writes.

- 28 -

Chapter 3: Architecture

3.2.2.4 BigTable

BigTable: BigTable is a column-oriented store, which is one big table consisting of

column keys. It uses a distributed storage system, which is partitioned into tablets

each of these is a range of row keys. BigTable is a consistent and partition tolerant

system sacrificing availability. The architecture is best suited to many smaller sets

of data and has a limit of 100 column families with no restriction on the number of

columns. It has no schema, automatically load balances and the structure can be

modified dynamically [26].

Schema: The system is made of column families but is very flexible. There is one

keyspace (the table) and data is denormalised to reduce response time. The schema is

saved in Chubby.

Query Language: It allows simple queries and uses SSTables for easy lookup.

Joins: There are no joins allowed.

Open Source: It is not open source.

Partition type: The data is divided into shards using the row key and these are

called tablets.

Logging: There is a commit log per tablet, which is stored in GFS (Google file

system).

Locking: It uses a distributed locking service called Chubby, which uses a master to

serve requests only as long as there is a majority of active servers.

Storage: All data is stored in GFS and SSTables provide persistence of immutable

objects for lookup.

Consistency: The system supports strong consistency with ACID semantics and uses

one server tablet per data shard. Transactions are available across entities and entity

groups – this is limited to five for groups to keep performance up. It uses version

control to try to reduce stale data, which can be controlled in two ways. The first is

by keeping N copies, the second is by keeping data for a set amount of time.

Availability: Availability is limited as a trade off for strong consistency. If a tablet

fails then the data contained in that tablet is unavailable until it is fixed.

- 29 -

Chapter 3: Architecture

Partition Tolerance: Replicas support partition tolerance for node failures.

Scalability: The system is very scalable and petabytes of data can be processed

across thousands of commodity servers. Simply adding servers to the cluster can

support scaling to different capacities [26].

Performance: Petabytes of data can be processed with high performance. The per-

formance is tunable through the master and the bigger the scale the higher the per-

formance.

Fault tolerance: Replicas are deployed using the GFS, execution is synchronous and

the master maintains these. Recovery and error detection is also the responsibility of

the master, which is completed by periodically polling for lock state. If the master

receives no communication back or the server returns with a lost lock exception then

the master attempts to acquire an exclusive lock on that file. If the server cannot

acquire a lock then the server file is deleted.

Elasticity: The master supports elasticity by splitting the tablets when the size limit

is exceeded and load balancing the database. Performance is sacrificed over durability,

therefore performance may be slower but the data is not lost.

Applications: Applications suited to the database are web indexing, Google Earth,

Google analytics, Orkut, Personalised search, Writely and Google finance.

Workloads: The system is best suited to large-scale datasets, heavy write loads,

throughput-oriented batch processing jobs and latency-sensitive serving workloads.

Conclusion: BigTable is a popular NoSQL database that provides scalability and

elasticity. ACID transactions are supported, which sacrifices some of the availabil-

ity. The database was created by Google to solve scale problems and is used by the

company.

3.2.2.5 HadoopDB

HadoopDB: This system creates a hybrid of map reduce and DBMS. The database

has a shared-nothing architecture, which can easily be executed across a cluster con-

taining commodity hardware. A cluster consists of multiple independent nodes, which

are connected using Hadoop. Originally PostgreSQL was used, but the framework

- 30 -

Chapter 3: Architecture

changed to a NoSQL database to increase performance. The system uses HDFS and

a map reduce layer. The system uses a database connector for MySQL, Postgres

and VectorWise. These allow the SQL queries to execute across the database and

transforms the result to a key value pair for the Hadoop layer [27].

Schema: It uses tables, so that a derivative of the SQL language can be used to query

the database and so joins, aggregation, selection, etc. are included. The most recent

version is using a columnar database, where the database content is stored by column

instead of row to improve performance

Query Language: HadoopDB uses Pig and HQL, it has a flexible query interface

which uses SQL or map reduce functions. Queries are parallelised using Hadoop,

which serves as a coordination layer. To improve performance mostly queries can only

execute on a single node, which is easier after the map reduce layer. The map reduce

layer is a master-slave architecture, in which the master controls the jobs and slaves

track the tasks.

Joins: Allows joins but these are executed in the application layer by Hadoop.

Open Source: HadoopDB is open source, however there is also a commercial version

called Hadapt.

Partitioning Type: Referential partitioning, this is used to facilitate joins across a

shared-nothing network. It is a method of aggressive hash partitioning that attempts

to take into account the foreign key relationships of the tables. During the data load,

referential partitioning includes an additional step, which involves joining with the

parent table to find the foreign key. This can be extended to an arbitrary number of

tables.

Logging: A catalogue stores information about the partitions, datasets in the cluster

and replica locations.

Locking: It is assumed that storage will be PostgreSQL or VectorWise, therefore

there would be locks used for transactions.

Storage: Uses HSFS as a distributed file system.

Consistency: It is assumed that the framework has strong consistency using ACID

transactions as the underlying databases do.

- 31 -

Chapter 3: Architecture

Availability: The framework is highly available across a cluster [27].

Partition Tolerance: If a partition fails then the performance degrades dramatically

and can even fail until it is brought back up again.

Scalability: HadoopDB uses map reduce to scale-out at a lower price and is highly

scalable by allowing distributed processing of large data sets. Hadoop’s ability to

schedule tasks supports scaling out to thousands of nodes.

Performance: The framework provides high performance and efficiency by pushing

the query processing into the underlying database system. Similar to the parallel

database, it provides load balancing, flexibility and extensibility.

Fault Tolerance: HadoopDB achieves fault tolerance by restarting tasks that have

failed on other nodes. Its fault tolerant properties are similar to that of Hadoop.

Elasticity: There is a global and local hasher which partitions and load balances the

partitions between the nodes in the cluster, which additionally provides a dynamic

method for repartitioning data.

Applications: HadoopDB is best suited to cloud and big data applications and has

been used for analysis of data within the semantic web for biological data analysis [28].

Workloads: Workloads that are analytical and use structured data are best suited

for HadoopDB.

Conclusion: This is a system that continues to be extended and improved to generate

a database using Hadoop technologies. It started by using PostgreSQL, but it is now

looking into using a columnar DBMS.

3.2.2.6 Infinispan

Infinispan: Infinispan is a NoSQL, data-as-service, key-value store with a data grid

architecture. It has a REST interface and is a consistent available system [29].

Schema: Is a key-value store and so has no schema. It uses hibernate OGM (for

persistence) which doesn’t have any particular schema as well, however JPA does have

a class schema.

- 32 -

Chapter 3: Architecture

Query language: It uses map reduce functions and supports querying using hibernate

search and Apache Lucene [30].

Joins: There are no joins supported.

Open source: It is open source.

Partitioning Type: It is a data grid for a main memory cache and so does not have

partitions, it extends the cloud elasticity to the data layer.

Logging: It uses a log for transactions.

Locking: Locks are used, but with non-blocking algorithms. The acquisition of locks

has been improved so that only locks on a single node are used, this prevents deadlocks

on multiple nodes which would lead to updates no longer being possible.

Storage: It is stored in-memory and is a distributed cache. It is persistent and

provides a very large heap.

Consistency: It provides ACID transactions and is highly concurrent.

Availability: Highly available. Nodes can fail but the system will still work. It has

replicas across the network, as well as the ability to persist state to configurable cache

stores.

Partition Tolerance: Consistency is chosen over partition tolerance.

Scalability: It is extremely scalable, as data is distributed equally and there is no

limit to the size.

Performance: Response times are linear with low latency because it is in-memory.

Fault tolerance: There are replicas across the system, which supports high fault

tolerance.

Elasticity: It is an elastic system, which is best suited for elastic data and the cloud.

Applications: Enterprise and cloud applications.

Workloads: Big data applications with data flows, which contain bursts of events

that require consistency.

Conclusion: Inifinispan is an in-memory key-value store, which is highly scalable

- 33 -

Chapter 3: Architecture

with transactions for consistency. It is elastic, which makes it very suitable for the

cloud.

3.2.2.7 Titan

Titan: Titan is a distributed graph database, which can be used in conjunction with

other databases. The database supports complex algorithms, which can be executed

across the system to provide complex analysis of large datasets [31].

Schema: It uses a graph representation.

Query Language: It uses Gremlin, Frames and Rexter traversal.

Joins: It does not support global graph operations, so it does not provide joins. “Titan

is a scalable OLTP graph database focused on handling a large number of concurrent

transactions against a single graph” [31].

Open source: The system is open source.

Partition type: The partitioning of the database depends on the database used for

storage.

Logging: The system has no logging.

Locking: Locking is user-defined.

Storage: The storage is pluggable and a variety of databases is supported such as

Cassandra and HBase.

Consistency: This is again dependent on the database being used for storage.

Availability: Once again this is dependent on the storage used.

Partition Tolerance: Once again this is dependent on the storage used.

Scalability: It is very scalable and capable of supporting 3 billion nodes, 100 million

vertices, 10,000 concurrent users and 50 machines [31].

Performance: The database supports concurrent transactions and can execute 49

million transactions in 2.3 hours.

Fault Tolerance: Fault tolerance is tunable and user-defined.

- 34 -

Chapter 3: Architecture

Elasticity: The database is designed for simple addition and removal of nodes.

Applications: It should be used for large-scale data that has complex relations that

would be best represented by a graph.

Workloads: Quick reads would be the appropriate workload for the database as it is

graph based.

Conclusion: This framework is best suited for extending existing systems’ analytical

capabilities. The graph can be used for quick reads and analysing complex relations.

However the characteristics of the database are largely based on the system that it is

extending.

3.2.2.8 SimpleDB

SimpleDB: This is Amazon’s key-value store. Each key has a document, which

supports multiple indexes. Documents are held in domains, and there is the ability to

have domains in domains. The domain indexes are automatically updated [32].

Schema: There is no schema.

Query Language: The querying language is simple, with get, set and delete.

Joins: There are no joins allowed.

Open source: The system has no open source version.

Partitioning type: There is no automatic sharding.

Logging: There are no logs as there are not any transactions. Additionally the system

does not use MVCC so there is no mechanism for identifying clashes on the client side.

Locking: There are no locks as the system is eventually consistent and executes

concurrent writes.

Storage: The data is stored in commodity servers in a data centre.

Consistency: The system is eventually consistent. Provides a consistent read and an

eventual read, however [33] found that there were more stale reads when the consistency

was set at “consistent read”. Eventual read also has lower latency.

Availability: It is highly available, even if some of the network is down.

- 35 -

Chapter 3: Architecture

Partition Tolerance: Even if there are failures or connectivity issues the system will

still be available, therefore the system is partition tolerant.

Scalability: Due to its simplistic approach the system is very scalable.

Performance: Performance is tunable and exploiting its advantages like sorting at-

tributes will support high performance.

Fault tolerance: Fault tolerance management is automatic and replication is asyn-

chronous.

Elasticity: Amazon handles scaling and automatic elasticity.

Applications: The system is used for web and cloud applications.

Workloads: The system is suitable for high write loads that are not bursty.

Conclusion: Amazon SimpleDB is a cloud service, which does not require user man-

agement. Amazon provides the database as a software as a service. It provides the

user with a lot of support, as well as a simple and easy way of storing data.

3.2.2.9 Neo4j

Neo4j: Neo4j is a leading graph database implemented in Java, which uses node and

relationship properties. It provides the user with a REST interface for easy access and

is a consistent and available system [34].

Schema: There is no predefined schema so it can be easily evolved.

Query language: It is a graph database so employs traversal and pattern matching.

Joins: The graph traversal is the equivalent of a recursive join.

Open source: The database has a dual license, so there is an open source version

and an enterprise version.

Partitioning Type: The database can be partitioned, however this must be done

manually.

Logging: Neo4j uses logging for transactions. The slaves log the transaction they

have committed, which is then propagated to the master.

- 36 -

Chapter 3: Architecture

Locking: Locks are kept on the nodes being modified when adding, moving or remov-

ing data, each of these operations is treated as an ACID transaction.

Storage: The storage is a disk based Java persistence engine and there is an optimised

storage manager for storing graphs. It is SSD ready.

Consistency: Neo4j uses ACID transactions for mutable operations and provides

strong consistency.

Availability: The enterprise server has a high availability feature, which enables a

fault tolerant database architecture, and horizontally scaling read-mostly architecture.

It can be made fault tolerant by ensuring the slaves contain an exact replica of the

master.

Partition Tolerance: Graph databases are inherently hard to partition, therefore

the database is not partition tolerant as there are no partitions. If a section becomes

unreachable then the whole system becomes unavailable until the problem is fixed this

is so that there are no inconsistent writes.

Scalability: The database scales horizontally to billions of nodes and relationships

and allows multiple databases on one server.

Performance: High performance, fast queries through traversals. Frequently outper-

forms relational back ends.

Fault tolerance: Slaves are used to make replicas of the master nodes to provide

fault tolerance, which makes it a very robust system.

Elasticity: New nodes can be added dynamically, and relationships can be created

between them.

Applications: The database is used for enterprise computing applications and data

with relations. It performs efficiently for graph traversals when querying data, which

means it is effective for connected data which would require multiple joins in a rela-

tional database.

Workloads: Read heavy workloads and analytical workloads where traversal and

connectivity of data is important. External caching is needed for low latency reads.

Conclusion: Graph databases are becoming increasingly popular for use by social

- 37 -

Chapter 3: Architecture

media sites to support networking and operations such as “a friend of a friend”. It

provides users with ACID transactions and powerful querying capabilities for recording

relationships between data.

3.2.2.10 Riak

Riak: Riak is an advanced key-value store, which can be treated like a document store.

The system has no master, which means that all of the nodes in the system are equal.

The database is distributed and a derivative of Dynamo, which uses a REST interface

for connections. The system is networked in a ring and divided into partitions, each

of which is managed by a vnode. Each data point is stored with a primary key, which

is used for querying, however there are no secondary indexes, the rest of the data is

stored in JSON format [35].

Schema: Riak has no schema and there is no set data type as all data is converted to

JSON, which also means that any language can be supported.

Query Language: The database supports map reduce. The database does not sup-

port secondary indexing, however objects can be linked –the number of these is limited–

however this does support range queries. Possible querying operations are limited to

get, put and delete, however full text search is optional but can increase latency.

Joins: No joins are supported; they must be executed in the application layer.

Open source: The database is open source.

Partitioning Type: A hash partition is used on the primary key to partition the

database. The network ring is divided into equal partitions to support load balancing.

A gossip protocol is used to manage which nodes are in charge of which partition.

Logging: Statebox [36] can be used to store write state to increase concurrency.

Locking: The database does not have locks to prevent write conflicts and instead sup-

ports high availability by allowing writes to the database at any time. The consistency

is kept by using semantic reconciliation. This where the statebox merges differences.

Storage: The storage is in-memory and supports some pluggable memory too.

Consistency: The system is eventually consistent and therefore does not support

ACID transactions. The consistency is tunable and dependent on the number of

- 38 -

Chapter 3: Architecture

replicas. The consistency can be based on each read supporting different degrees of

consistency on each replica. It has optimistic concurrency and uses a MVCC derivative.

Vector clocks are used for versioning.

Availability: If a VNode ceases to execute due to a failure then the other nodes

execute the failed node’s tasks, this provides the user with high availability. Any node

within the network can service a request, therefore it is possible the system will always

accept a read or write, however it does depend on the consistency level.

Partition Tolerance: Riak is a highly available system and if a partition is down

consistency will be sacrificed to still allow writes.

Scalability: Riak is a distributed, horizontally scalable database, which scales to 10s

of nodes for the enterprise version.

Performance: Riak can use pluggable engine stores, the recommended one is Bitcask,

which supports tunable performance and durability. There is no single point of failure

and maintenance can be carried out with a rolling start.

Fault tolerance: Replicas are deployed which support fault tolerance by taking over

the tasks of failed nodes. Additionally it supports hinted handoff, so when the node is

back online the new data can be written there. There is also no single point of failure.

It uses the gossip protocol to identify who is alive.

Elasticity: Riak is elastic; it allows the addition and removal of nodes automatically,

as well as providing automatic load balancing. This works well for small loads but

is completely unresponsive for larger loads. When a new node is added partition

ownership is redistributed and data is transferred immediately.

Applications: This is a scalable database with a REST interface and is therefore

suited to web applications. It is fully elastic so can be used in the cloud. It should

only be used if consistency isn’t the main concern and availability is the priority.

Workload: The system is suited to intensive read and write workloads because of its

tunable consistency.

Conclusion: Riak provides a more advanced key-value store, which is scalable and

provides a REST interface. Although it is essentially an available partition tolerant

- 39 -

Chapter 3: Architecture

system, consistency can be altered and tuned for the application’s specific require-

ments. Storage for the system is also pluggable which supports more flexibility.

3.2.2.11 Conclusion

This literature review identified many different technologies, these were evaluated and

one chosen to extend and use within Antares.

Relational Cloud provides an SQL solution to scalable processing however the emphasis

is on security making a trade off between that and performance. Antares does not

require high security and instead aims to improve performance.

SimpleDB provides scalable database solutions, however no complex querying is sup-

ported and they were therefore not appropriate for Antares.

Databases [35] and [22] predominantly use map-reduce and have no secondary indexing,

therefore making geospatial querying more complex and not suitable for Antares.

HadoopDB was focusing on partitioning the database to support scale-out functionality

for the cloud. This did not meet the requirement of high ingestion of large scale data

to be stored and processed, of Antares.

Graph databases can be notoriously hard to partition therefore Titan and Neo4j were

not the optimal solution for the system.

After reviewing all of the different technologies the first decision was to use an open

source technology so that experimentation was possible. The database selected was

Cassandra due to its scalability. In particular, it supports high write rates, which

is important given the rate at which Tweets from the firehose need to be stored.

Additionally the data store is easily and simply horizontally scalable with easy indexing

for more complex querying. This gives it the potential to provide low latency responses

to queries. Cassandra is now examined in more detail.

3.2.2.12 Cassandra: in Detail

In Cassandra each dataset is contained within a keyspace; these are the equivalent of

a database in RDBMS. A keyspace contains column families (tables), shown in Figure

- 40 -

Chapter 3: Architecture

3.1, which hold a set of rows. Each row has a unique identifier – a row key. Each row

can have a different number of columns; there are static and dynamic column families.

Static column families use a static set of names, although the number of these used in

each column can vary depending on the data ingested. Dynamic column families store

arbitrary column names taken from the data.

Figure 3.1: A Cassandra column family

A Cassandra cluster is assembled using a ring structure as shown in Figure 3.2. There

is no master node and each node is responsible for managing the data stored on

that node only. Adding nodes to the cluster supports horizontal scaling. To improve

performance, as a node is added, the data is automatically load balanced across the

cluster in milliseconds.

Data is partitioned across nodes in Cassandra to improve performance and depend-

ability. How this is done depends on the partitioner used and the replication factor.

The default partitioner for version 2.x of Cassandra is a Murmur3Partitioner, which

uniformly distributes data across the nodes using the MurmurHash hash values. The

row key is then used to distribute column family data across nodes in a cluster.

- 41 -

Chapter 3: Architecture

Figure 3.2: A Cassandra cluster

The hash of the row key is calculated and used to give the data a token. The token

is used to place the data on a node, as shown in Figure 3.2. By using the row key to

partition data the rows are never divided, therefore decreasing the response time of

queries as only one node will need to be queried. The set of nodes can be viewed as a

ring divided into different ranges. Each hashed key is part of a range within the set of

nodes. For the cluster used by Antares, the ranges are equal, as each of the machines

has the same specification.

Tokens are used to load balance the cluster. Each token informs the node of the range

of data it is responsible for. Queries are distributed to any node in the cluster and

then directed to the node which owns the data – this can be determined using the

token. When an insert is accepted by a node in the cluster the row key is hashed to

calculate the token. The token is then used to locate the node the query needs to be

executed on. If it is data which needs to be appended to a row currently residing in

the store then the request is submitted to the node which owns that data. If it is a

new row it can be written directly to the node as rows are not stored sequentially.

A gossip algorithm is used to distribute information to the cluster about additional

nodes or failures. The replication strategy used in Antares is “simple strategy” – this

- 42 -

Chapter 3: Architecture

means that each row is saved on a designated node, and also one node along the ring,

moving clockwise. This provides fault tolerance for the cluster by ensuring no single

point of failure. The cluster uses the load balancing policy, token-aware balancing,

which evenly distributes queries across the cluster. They are then either satisfied by

the receiving node or sent to the correct one for execution.

Without the correct design using Cassandra for scalability, fault tolerance and speed

becomes inefficient and impractical, limiting data analysis rather than empowering

it. Antares optimises the database structure for efficient querying. Stream processing

and database systems have been reviewed, however the next section identifies current

combined querying systems.

3.2.3 Combined Processing

The ability to combine stream and historic processing quickly and efficiently can be

a difficult problem to solve. This has been exacerbated by the sudden increase in

the velocity and volume of datasets such as those generated by sensors and social

media. New mechanisms and technologies are therefore being used to support “hybrid”

processing. This section investigates different current systems which use combined

processing of voluminous data, which are then compared with Antares to describe the

differences, similarities and contributions of Antares.

3.2.3.1 StreamInsight

StreamInsight analyses event data being streamed in from multiple sources and gains

insight through historical data mining [37]. It provides a framework that sits on top

of an SQL server and is free to download. A dashboard for users to interact with and

gain support is available. The dashboard provides graphical displays of the results.

The system has a flexible schema based on the stream data it is collecting, however

the underlying database is restricted to SQL relations.

Antares extends Cassandra therefore is not restricted by SQL relations and supports

a mechanism for storing data where performance is not limited by relations and joins.

The data is denormalised in the database which allows for querying of only one “table”

- 43 -

Chapter 3: Architecture

- this is because an index is created on the data relation and stored in one table. Then

the database only needs to read from that table, as opposed to reading from two tables

and joining the correct subset of data. Then if another relation is required the table

(or index) is created for that too, this duplication is not a problem as the database

can be scaled out. The system is made durable by logging operations to an event log.

Streaminsight uses query checkpointing to provide high availability, where as Antares

uses asynchronous execution of queries for this. It allows the queries to execute in

parallel so that the availability is increased as more queries can be accepted rather

than waiting for the query to execute before accepting another (synchronously).

Streaminsight has no simple way of scaling-out, although additional nodes can be

added there is no suggested mechanism for how the query would be executed over

multiple nodes with the relational data. The data may be related to data in tables

on another node, this would therefore need to be joined in the application layer. This

would decrease performance and increase query response time. Unlike Antares which

supports the addition of nodes to the cluster even while the cluster is running. The data

is then automatically load balanced by Cassandra to support distributed execution for

increased performance. Data can be partitioned but it does not support partition

tolerance.

It is a high performance system supporting response times of milliseconds. Applica-

tions it is suited to are financial trade feeds, operational data from sensor networks,

manufacturing equipment and data center monitoring infrastructure. This is a com-

mercial system that uses stream and historical analysis for businesses. It provides

analysis of complex events and exploits the advantages of the underlying Microsoft

SQL Server [38].

3.2.3.2 Truviso

Truviso [39] is an append-only stream processing system, which uses continuous queries

to incrementally update input streams. It uses CQL from the Stamford STREAM

project [40]. This is the same query language that Antares is used as the base of

describing the Antares querying language. Truviso is used for counting and aggregate

- 44 -

Chapter 3: Architecture

functions, Antares supports temporal and geospatial querying therefore incremental

updates are too simplistic for the system.

The system ingests a stream and produces a processed stream as output. The system

uses raw and historical streams, the raw is from sensors (real-time) and the historic

is from databases, which allows the combination of two. A typical query divides the

stream into smaller streams; these are processed and historical data included in the

analysis if required. This result is then converted into a result stream. Antares uses a

similar technique but it is based on the temporal nature of the query where as Truviso

divides the streams to help with performance only - Antares does include the stream

analysis to support better performance as well.

Truviso is used for applications, which are involved in the financial market, monitoring

systems, real-time decision support, fraud detection (cross channel fraud) and on-

line gaming (detecting malicious behavior and monitoring QoS). The project is not

open source, but provides an interesting solution to streaming in conjunction with the

SQL database PostgreSQL. These applications take advantage of the transactions used

within the system, however Antares has no requirement for transactions as it would

only decrease performance which is the key characteristic of the Antares system.

3.2.3.3 Cloud Dataflow

Cloud Dataflow [41], [42] is a Google product for unified programming; the SDK is

available open source. This product was introduced in 2014 by Google and emphasises

the importance of combining batch processing and real-time stream analytics. It uses

windowing techniques to add temporal querying. This is the same as Antares, which

also uses time windows, however Antares uses the time window to identify which query

to execute. Dataflow uses a layered technique as well to provide stream and historic

querying, however the time windows specified must be for either historic or stream and

different queries must be specified for each. Antares supports one querying language

for both and uses a query monitor to execute these by identifying the time window

the user has specified (past, current, future or both). Antares also supports combined

querying which supports triggered and simultaneous querying.

It supports a wide range of data processing scenarios including session analysis, anomaly

- 45 -

Chapter 3: Architecture

detection and funnel analysis. Antares focuses on Twitter analysis on in this thesis

but has the ability to be used for other applications.

The service is fully elastic as the service is managed and deployed in Google’s cloud.

Therefore resources are added and removed as is required for processing, which is

automatic. This is different to Antares as nodes must be added and removed manually,

however load balancing is automatic and there is no requirement to shut down the

cluster for this adjustment. These features mean dataflow and Antares are horizontally

scalable.

Fault tolerance is managed by the service as well, and fault tolerant consistent execu-

tion is guaranteed regardless of the size of the data or cluster and the complexity of

the data. Antares supports fault tolerance through re-tries and works with eventual -

every write will eventually be correct.

The system is best suited to applications with high-volume computation, workflow

synthesis, and extract transform load (ELT). The system provides a managed service

for users to use quickly and efficiently.

3.2.3.4 Spark

Spark [43] combines a stack of high-level tools and supports their combined use. The

tools are: Spark SQL, MLib, GraphX and Spark Streaming. These tools support

streaming and historic analysis and Spark is a tool that can be used to manage and

create workflows for these. This is similar to Antares which uses a layered approach to

provide improved specific features - in this case stream, historic and combined analysis.

However Antares uses the query monitor to provide a transparent layer to which any

of the queries is mapped to the correct querying mechanism.

Spark allows pluggable storage to hold the data before and after processing. It is a

high performance system, which executes programs up to 100 times faster than Hadoop

MapReduce [44] for in-memory computations, and ten times faster for disk-based an-

alytics. Applications can be written using a variety of languages, exploiting a set of

inbuilt operators. It can be deployed in most environments and supports a wide range

of data sources. Spark is predominantly a workflow engine which combines sources, so

- 46 -

Chapter 3: Architecture

not a store itself. Spark is a similar system to Antares, supporting more tooling for

analysis, but no transparent input of a variety of different querying techniques.

3.2.3.5 Summingbird

Summingbird [45] is a hybrid system which combines streaming and map reduce func-

tions to execute on Storm and Scalding. It has three modes: batch, stream and hybrid

(which uses both). This is the same as Antares, however as mentioned with other

combined systems it is missing the the transparent submission that Antares has.

It sacrifices fault tolerance to provide quicker more efficient responses to eradicate the

slow response times of batch and map reduce functions executed in Hadoop. Summing-

bird is a layer on top of Storm and Hadoop which supports the mapping of both stream

and batch processing. As has been mentioned Storm is shreds data if the ingestion rate

becomes too high, this is not a feature that Antares implements - it uses buffers and

has a higher ingestion rate so that data does not need to be shredded, therefore Storm

would not be suitable (which is the underlying technology of Summingbird). Storm

has also been changed and extended to create Heron which adds to the functionality

and is a replacement for Storm - so would not be suitable.

State is updated incrementally because of the large batch jobs that are executed over

the data. Antares identified the need for faster combined processing of large datasets,

however it uses optimisations to index and ingest data using a NoSQL store to allow

for low latency querying and efficient combination of stream and historic processing.

3.2.3.6 Lambda

Lambda [46] is an architecture that uses Spark, Kafka [47], Akka [48], Cassandra [49]

and Scala [50]. It provides a layered approach like Antares to provide support for

specific queries. However as has been mentioned there is no transparent submission

like other systems, where as Antares does have that feature.

Lambda supports a variety of different analytics supporting the user for a wide range

of processing, where as Antares focuses on providing scalable and low latency querying

for Twitter data providing the user with easy and transparent methods of submitting

- 47 -

Chapter 3: Architecture

any query through a user interface and the system itself identifies which query to

execute.

It supports fast access to historical data on the fly for predictive modelling with real-

time data from the stream. Designed to handle massive amounts of data by taking

advantage of both batch and stream processing. This is similar to Antares which

provides stream, historic and combined querying. It uses Spark to combine both types

of processing. It supports complex analytics using Kafka for stream processing and

Cassandra to store historic data. Cassandra is used within Antares too for its scalable

and flexible characteristics.

This became an Apache project in 2014 and demonstrates the importance on combining

stream and historic data with efficiency.

3.2.3.7 Conclusion

Antares required scalable storage and an efficient ingestion of data. [43], although a

high performing system, required additional tools to be used for the above aim and is

predominantly a workflow engine, which does not meet the requirements of Antares.

[45] uses map reduce which requires large batches of data to be analysed for a longer

period than was suitable for use within Antares. Antares aimed to return in near

real-time when querying the database to combine data with the stream in a timely

manner. [46] and [41] were not available when Antares was first designed and have

been added to the related work. [51] does not provide the scale necessary for Antares

without complex partitioning. Therefore it did not make sense to use a tool which

is not designed specifically for scaling horizontally unlike Cassandra. [52] is not open

source and requires the addition of a database to allow for storage.

Antares utilises open source software, which can quickly and efficiently stream pro-

cesses and query a database. Therefore it was decided to exploit the scale ESPER and

Cassandra to extend the system and provide low latency querying for stream, historic

and combined analysis. Antares also supports querying of complex data types such

as geospatial data. Therefore the next section identifies techniques for processing and

scaling out.

- 48 -

Chapter 3: Architecture

Antares provides a quick and efficient mechanism for entering user-defined parameters

into an interface for interaction and visualisation. The framework is an optimisation

of existing technologies used to overcome slow response times from query execution

over large datasets that have been saved to disk.

Truviso decreases performance for transactional characteristics, which does not meet

the requirements of Antares - which are based around scale and performance. There-

fore, it is not a suitable system for use.

Dataflow is a high performance stream and historic analysis system designed and

implemented by Google and based in the cloud with elastic features for scaling in and

out automatically. However it does not feature the combined querying mechanism

of Antares or the simplistic transparency of inputting one query for any querying

mechanism - stream, historic or combined.

Spark is a similar system to Antares, supporting more tooling, however, it has no

transparent input of a variety of different querying techniques.

Summingbird did not have the desired features of Antares it did not provide buffering

and high ingestion rates of Antares. It is also based on Storm, which has now been

replaced by Heron and implements the shredding technique.

Lambda is very similar to Antares and provides a layered approach with a wide se-

lection of tools, however it does not have the ease of use and transparent submission

of Antares. Antares also focuses and supports scalable Twitter analysis with low la-

tency querying and high throughput. This is different to Lambda as it allows the user

more freedom to design and build their own system where as Antares has already been

designed and implemented to provide large scale ingestion and low latency querying.

Antares provides a transparent means of submitting stream, historic or combined

queries through a user interface to support scalable and low latency Twitter analysis.

It is different from other layered approaches as it gives the user optimised functionality

and high performance with little effort from them. It exploits temporal indexing

features to enable large scale Twitter analysis.

- 49 -

Chapter 3: Architecture

3.3 System Architecture

The previous section justified a choice of a combination of ESPER and Cassandra to

provide the scalable, low latency and high ingestion rates described in features one-

three for requirements of Antares. The literature review identifies combined analysis

systems and compared them to Antares. Antares supports a more focused approach on

scale and high ingestion rates of temporal and geospatial data than other systems. It

supports transparent submission of queries independent of what type of query is being

executed. This section describes the architecture which supports then then moving on

to the mapping between the architecture and the querying mechanisms.

Antares is a scalable, low latency analysis tool, which provides complex processing of

historic and stream data and the ability to combine both. One motivation behind the

design and development of the system was to exploit the scalability of NoSQL tech-

nologies to ingest large data streams. Scaling out databases so they can support the

fast querying of large-scale data can be challenging in a system which is continuously

ingesting new data. Having the ability to return queries in near real-time allows the

user to combine these results with stream processing results and in a timely man-

ner, supporting insights from both past and current events. The queries executed by

Antares can be divided into three categories, stream, historic and combined.

Antares is based around two technologies ESPER and Cassandra. Optimisations were

designed to remove the inefficiencies for querying both stream and historic data. There

is a web interface that accepts queries from the user. Antares has a query monitor for

interpreting whether a query is stream, historic or combined. This solves the problem

of how to query the different technologies. The system accepts stream data for storage

and querying simultaneously. When a Tweet is ingested it can be processed in ESPER

if a stream query is executing. Each Tweet is also stored in Cassandra to enable

historic queries. This is executed concurrently as the queries are executed over the

store.

- 50 -

Chapter 3: Architecture

Figure 3.3: Antares: abstract architecture

As a query enters Antares it is passed to the query monitor shown in Figure 3.3. Here

the time parameters are extracted to identify whether a stream, historic or combined

query should be submitted. As a Tweet enters Antares it is stored in the historic store

this is shown with the dotted arrow in Figure 3.3. The Tweet is also passed to the

stream query if one is being executed.

3.3.1 Stream Querying

A stream query is executed when a time period starts or ends in the future. This is

then sent to the query monitor, which identifies that this is a stream query and sends

the query to ESPER. The query monitor uses the parameters set by the user, through

the web interface, and the time-window and constructs a query for ESPER. Once the

query is sent to ESPER a continuous query is executed over the time-window and

results which meet the constraint specified by the query are returned. This is shown

in Figure 3.4.

A Java class was designed and implemented to represent all of the values specified in

the Tweet data model in Section 3.9. This class enabled the ESPER query engine

- 51 -

Chapter 3: Architecture

to use Java objects (the pre-defined Tweet object) to identify different parts of the

Tweet meta data and query them. As each Tweet enters Antares if a stream query has

been executed then the Tweet is passed to ESPER. ESPER then uses the Java class

to convert the Tweet into the Tweet Java object. Once this has been done then the

Tweet object is inspected for any information that is related to the query constraint.

For example when an aggregate query is being executed then if the Tweet meets the

query constraint the count is increased.

All continuous query metadata is held in memory by ESPER for each query executing

at the time. Once the query constraints are met the result is take out of memory and

passed back to the query monitor to be displayed to the user. The size of the dataset

is constrained by the amount of RAM. This is why the historic store is used to support

scale. It is assumed that the user will execute stream queries more frequently and for

shorter periods of time. Where as the database is used for wide-ranging and scalable

execution across long time periods.

ESPER supports 10,000 events per second [53]. Therefore it is assumed that for

Antares this rate is high enough to provide reliability - therefore ESPER will not

block or drop messages.

Figure 3.4: Antares: stream querying architecture

- 52 -

Chapter 3: Architecture

Now the syntax of the language will be described. Queries can be constructed in the

form of:

SELECT a1...an FROM s <WHERE p > || <HAVING p >

where a1...an is a projection list, s is a stream of Tweets with a time window which

represents a period of time from the current time to a point in the future and p is a

predicate.The angular brackets <> denote an optional term such as the WHERE and

HAV ING. One or none of these may be contained in the query. There are restrictions

on stream queries, the time window is constrained from the present to any point in

the future. The syntax for this language in this thesis is focused on Twitter analysis

so must use the data model specified (this is due to the focus of the thesis- to explore

scalable Twitter analysis framework solutions). This also means the FROM clause

should only contain one stream. The projection list must also not contain aggregate

functions other than COUNT . The evaluation of the stream results in a stream of the

projection list variables that adhere to the predicate.

3.3.2 Historic Querying

A query is historic if both time parameters are specified in the past. The query

monitor, which examines the parameters entered by the user through the web interface

verifies this. A query is then constructed consisting of the time period and any other

parameters specified by the user. The query is then executed by Cassandra, as shown

in Figure 3.5, and the results returned to the user.

Now the syntax of historic querying will be described. Queries can be constructed in

the form of:

SELECT a1...an FROM h <WHERE p > || <HAVING p>

where a1...an is a projection list, h is a database of stored Tweets, with a time period

from the current time to a point in the past and p is a predicate. The angular brackets

<> denote that a term is optional, for example, WHERE and HAV ING. One or

- 53 -

Chapter 3: Architecture

none of these can be used in the query.There are restrictions on the historic queries,

the time window must start in the past and end no later than the current time. The

FROM clause is primarily constrained to the schema used in this thesis to improve

performance. The projection list must also not contain aggregate functions other than

COUNT . The evaluation of the historic store results in the projection list variables

that adhere to the predicate.

The following pseudo code executes a query to ESPER or Cassandra depending on

the timewindow specified by the user. This is done transparently to the user and the

Query Monitor determines whether the query should be a stream, historic or combined

query. The condition x could be threshold or hashtag, however this pseudo code is

used to generalise the process of mapping the queries.

Algorithm 1 Execute Query

input:
date starttime # beginning of the time window
date endtime # end of the time window
variables:
date now # currenttime()
date timewindow = endtime - starttime
if timewindow <= now then

find schema
execute query over cassandra
return query result

else if timewindow >= now then
execute query in ESPER
return results each time condition is met

else if timewindow > now AND timewindow < now then
compile EPSER query
compile cassandra query
execute query over cassandra and ESPER
return query results

end if

- 54 -

Chapter 3: Architecture

Figure 3.5: Antares: historic querying architecture

3.3.3 Combined Querying

Combined queries consist of a time-window which spans the past and the future. The

start time will begin in the past and the end time finishes the time-window in the

future. The query monitor constructs a stream and historic query, this is done by

decomposing the time period into the time in the past (start time until now: the

time-window for the historic query) and from now until the future end time (the time

period for the stream query). There are two types of combined query.

The first type submits a query to ESPER. ESPER executes a continuous query, pro-

cessing each Tweet that is ingested from the stream. It uses the same mechanism as

previously described to identify whether the query constraint has been met. If it has

then an historic query is executed, which is shown in Figure 3.6 where the parameters

of the query are passed to the query monitor and then an event is triggered from

ESPER to the historic driver which queries Cassandra, this is all then returned to the

user.

- 55 -

Chapter 3: Architecture

Figure 3.6: Antares: combined querying architecture (type 1)

Figure 3.7: Antares: combined querying architecture (type 2)

The second type of combined query executes a stream and a historic query at the

same time, as shown in Figure 3.7. The results are then returned to the user. The

- 56 -

Chapter 3: Architecture

query monitor receives a query request. The query monitor then identifies whether it

is a combined query. If it is then two queries need to be constructed, therefore there

is a slight delay in current time for the queries, however both queries will have the

same current time - therefore it does not cause any problems. The historic query uses

current time as the end time of the query and the stream query uses it as the start

time.

The continuous query is executed first to ensure that the current time for the stream

starts as quickly as possible. Then the historic query is executed - it is not important

how late this is submitted, as all Tweets are stored as they enter Antares, therefore

there is no loss of data and the query searches the user-defined time-period independent

of the submission time. If the stream query fails then the historic query is not executed

and the query is re-tried. This method of submission and execution ensures no race

conditions as the two queries will always be executed in the correct order.

The stream processing system is required to support the scale of the system and

maintain intake of requests. Without ESPER the amount of requests to the database

would approximately double, therefore there would be more strain on the database.

Once a query is made to the database if it is unsuccessful there is a timeout of 5

seconds then the query is retried. The timeout was chosen to ensure that enough time

was given to allow for multiple queries to execute before trying again. If the time

was too short, for example, 100 milliseconds then the system would still be overloaded

giving it 5 seconds allowed for a long enough time to retry without being too long for

a noticeable delay to the system. This would become increasingly more probable as

the number of requests increased and then the user may get blocked waiting as the

system saturates - this becomes a significant problem when you are trying to write

petabytes of data while listening for requests off thousands of users. ESPER allows

the stream queries to be executed across another layer of the system, which reduces

the load on the database and ensures that the queries can be returned in near real-

time. The timeout does not occur so there is no substantial loss to service. Therefore

the design decision of including ESPER rather than executing all queries over the

database provided higher ingest rates and lower latency queries to support features

one and three.

- 57 -

Chapter 3: Architecture

Now the syntax of the combined querying will be described. Queries can be constructed

in the form of:

SELECT a1...an FROM sh <WHERE p > || <HAVING p >

where a1...an is a projection list, sh is a stream/database of Tweets, with a time

period from a point in the past to a point in the future and p is a predicate. The

angular brackets <> denote that the term is optional. In the case of the WHERE

and HAV ING you can use one or none of them. The combined queries time window

is defined as any point in the past or future and determines the way in which the

query is executed. The projection list must also not contain aggregate functions other

than COUNT . The evaluation of the stream/historic store results in the projection

list variables that adhere to the predicate.

The query language is mapped to the back end by a series of steps and functions Figure

3.8 shows these functions. The functions are described below - time window and collect.

The time window function constructs a query using the time period specified, sending

the query to s (stream), h (database) or hs (both). The collect function is a cross

product of all of the results after they have been evaluated to return to the user.

Time_Window:

if(time >= now)

send to h

else if(time <= now)

send to s

else

send to sh

Collect description:

SELECTION h, s => STREAM hs

In Figure 3.8 the user inputs a select query which is based on a time period which

starts in the past and ends in the future - this is a combined query. The predicate

- 58 -

Chapter 3: Architecture

defined in the example is a hashtag therefore the query will return all Tweets which

match this hashtag. Once the query has been submitted the time window function

determines which queries to compile to and which layers the query should be submitted

to. As the figure shows the example uses a combined query so a query is compiled

for each layer. As can be seen the queries are both selects and contain a status in

the projection list and a hashtag is used as the predicate. Once the queries have been

executed the results from either layer are collected as a stream of values (or statuses

in this example) and returned back to the user.

Figure 3.8: Query language mapped to the back-end

3.3.4 Insert Rate

The Twitter firehose can exceed over 500 million tweets per day [1], 5,000 per second,

therefore the development of a scalable, available and consistent framework to store

all of these can be challenging. Scaling to such large volumes of data can lead to con-

sistency and availability problems if the throughput rate is not high enough. Antares

implements novel techniques to solve these challenges efficiently.

Cassandra executes queries synchronously, this results in queries being executed seri-

ally and the database locking until a request has returned, yielding increased response

times because the client is blocked from executing until the lock is released decreas-

- 59 -

Chapter 3: Architecture

ing availability. Antares uses the Datastax library to make asynchronous calls to the

database, eliminating throughput problems. A higher insert rate is possible as more

queries are executed simultaneously.

Executing the queries asynchronously means the database does not block increasing

the throughput rate; this resulted in Antares being able to support tens of thousands of

data insertions per second. Executing the queries asynchronously results in concurrent

query execution; however when executing queries in parallel the order they are returned

in is not guaranteed. This can cause reduced consistency as there is no guarantee a

write will be made successfully as soon as as a Tweet is ingested by Antares. However

this trade off is acceptable to support the scale-out features of Antares.

Antares uses a Java Class called Future, it represents the results of an asynchronous

task, in the case of Antares the task is a query executed across the database, these

are stored in a list. The query is executed and a listener is used to listen for the

return of the query, whether it is null (the execution failed) or the results from the

query. The list is used as a log of incomplete and unsuccessful query requests, but

when a successful event returns the task is removed from the future list. Unsuccessful

queries are retried; this ensures eventual database consistency and that all writes will

eventually succeed. For example, a query result returns with an exception, there is

a timeout of 5 seconds and then the query is retried. When there is a spike in the

volume of data being ingested, there may be more requests in contention meaning that

there may be be more clashes or time-outs, therefore retries are necessary.

The number of tasks in the list is limited to the protocol depth (approximately 128

requests per node) to ensure no overflow exceptions and that all the data is written to

the database. Once this limit is exceeded then the futures are forced to finish, if they

are successful they are taken off the list until the size of the list is under the limit, if it

returns with an exception then it is retried. However the list will continue to receive

requests. This list of futures is only limited by the size of memory. When a future is

first in the list it is submitted to the database and executed is possible, if not then it

is stored in the server buffer. When the server buffer becomes full queries return with

exception and response time increases. This is why Antares is configured and tuned

to prevent this by limiting the amount of requests - this is shown in section 3.5.

- 60 -

Chapter 3: Architecture

To support the high throughput rate of the asynchronous calls there must be sufficient

connections to the database, to maintain these connections there is a database thread

pool. This maintains the number of connections and ensures it does not become too

large, as if there are too many then the database will block. The database thread

pool ensures only 9 connections per machine are ever established at any one time, as

defined in the configuration settings.

Another optimisation is to batch query execution. Queries are batched and then

submitted to the database asynchronously. This results in parallel execution of queries,

thus potentially increasing performance. It also ensures the data flow is high enough

so resources are not under utilised.

Antares implements a novel query monitor to translate the one user-defined query into

two separate queries if the query is combined or if it is stream/historic then the query

monitor passes it to the right module of Antares.

Antares implements asynchronous querying and batching to extend Cassandra to sup-

port high insertion rates while scaling-out. The next section goes into detail about

how the geospatial querying was extended.

3.4 Data Model

The architecture design, motivation and implementation have been described, the

mapping between the architecture and the querying is now described.

Antares [2] was designed and implemented to support querying against streaming and

historic data for the analysis of Twitter.

A literature review was undertaken to understand the domain area - Section 3.4.1.

From this, a comprehensive set of queries were defined to encompass the relations in

the Twitter data model - Section 3.4.2.

Its goal was high throughput and low latency. Antares supports real-time, historic and

combined querying by optimising two technologies: ESPER and Cassandra. Antares

implements an index structure, which is required to enhance Cassandra and enable

low latency querying to support optimised querying for stream, historic and combined

processing. This is described in Section 3.4.3.

- 61 -

Chapter 3: Architecture

Streaming data can arrive at high rates and volumes, therefore optimisations are re-

quired to allow high-rate ingestion while querying the database and stream simulta-

neously. These are described in Section 3.4.4.

Antares has been in a research project called Tweet My Street, Section 5.4 describes

some of the use cases used for this.

The next section describes each of the technologies and how they were extended within

Antares.

3.4.1 Case Studies

A literature review was undertaken investigating what topics were being analysed using

social media, focusing mainly on Twitter. The questions collated from this were used

to see what domains could be used to identify information about world events. The

aim was to identify a set of unrelated domains and then use the same generic queries

and query patterns to derive information from the Tweets. The three domain areas

found by an exhaustive literature review were marketing and advertising, conferences,

and emergency responses. From these areas a set of queries were derived.

Marketing and Advertising: The need to understand the popularity and spread of

Tweets and topics contained within them is important commercially [54]. For example,

[55] highlights some of the important questions that companies want answering. This

includes monitoring Tweets with specific keywords, and using retweets to identify the

popularity of certain marketing items. Examples of questions that have been identified

within this domain are:

1. What is currently trending? [56]

2. Did this hashtag trend yesterday? [54]

3. What retweets will be popular in the next hour? [56]

Conferences: In conferences and presentations, the use of a common hashtag,

along with a dedicated Twitter profile, is commonplace. This is used as a method of

publicising the event, as well as monitoring attendee and external engagement [57].

Some common questions from this application domain are:

- 62 -

Chapter 3: Architecture

1. What has been posted about this conference? [58]

2. What are people’s opinions on this paper? [59]

3. Which aspects of the conference have been the most popular? [60]

Emergency Response: Emergency response encompasses a range of types of in-

cidents, e.g. from natural disasters such as floods and earthquakes, to crimes in your

neighbourhood. [61] explains in depth the important role that social media has when

responding to emergencies. Key questions that have been asked in this domain are:

1. What information is available about this flood? [62]

2. What Tweets were sent from the city that the earthquake originated from? [63]

3. Which retweets were posted most during the riots? [64]

These are just three examples. The next section describes the Twitter data model and

queries for investigating Tweets.

3.4.2 Queries

To enable the querying of Twitter data to answer common questions, a data model was

designed to capture the relations between the data types in Twitter, and is illustrated

in Figure 3.9.

Antares needed to provide a scalable and efficient means of answering these questions.

The questions needed to be wide ranging enough to cover multiple domains while

having the ability to represent stream historic and combined queries. So that Antares

could translate one request into the correct query type to enable simpler use for the

user. These issues were addressed by identifying a small core set of generic queries

that could answer the questions from the case studies. The queries are now described.

In these descriptions, terms that are used are listed in Table 3.2. Each of the queries

can be a stream, historic or combined query; the difference is described in Table 3.3.

Type a is a historic query – these contain a time window held within the past. Type b

are combined queries – these cover a time window, which begins in the past and then

- 63 -

Chapter 3: Architecture

Figure 3.9: Twitter data model

finishes in the future. The last type, c, are stream queries – these are executed in a

time window in the future. Parameters to be used in the system and passed to the

query monitor are declared in the parenthesis next to the query number.

The query language is based on the CQL (continuous query language) discussed in [40].

The query is based on a time window which is specified inside the square brackets. As

each of the queries can be either a stream, historic or combined query the store over

which the query is executed –whether it be stream, database or both– is represented

by the place-holder “Tweets”. Therefore you can use the query language to specify a

specific query type or use the word Tweets to mean they can be executed across both

layers within the system. It uses an SQL-like declaration for condition statements.

Each query is used to describe the relationships in the data model. This is achieved by

changing the parameters in the queries to produce different results. Table 3.4 shows

the six different parameters used in the queries and in which queries they were used.

The data model describes the data and the relations that Antares focuses on. The

queries provide a comprehensive set of queries to search the data model. Each query

defines a relation in the data model.

Trends were a common theme in the questions asked of the use cases. Hashtags are a

prominent feature of Tweets; they provide a means of categorising Tweets into themes

without very complex textual analysis. They help to group Tweets and trends for

users to express their opinions or to find out about topics they are interested in.

- 64 -

Chapter 3: Architecture

Parameters Description
hashtag topics in a Tweet prefixed by #
count a tool used to store the number

of times an event has occurred
threshold an integer that represents

a total the count is constrained by
location a string representing

the location of a Tweet
retweet a ‘Tweet that has been

reposted by another user
time this is a timestamp of

when a Tweet was posted
tweetid a unique number given to

the Tweet to identify it

Table 3.2: Parameters and values in the queries

Type Lower Threshold (startTime) Upper Threshold (endTime)
a Historic Past Past
b Combined Past Future
c Real Time Future Future

Table 3.3: Query definitions

Queries Parameters

threshold startTime endTime location hashtag tweetid
Q1 x x x
Q2 x x x
Q3 x x x x
Q4 x x x
Q5 x x x
Q6 x
Q7 x x x

Table 3.4: Query parameters

- 65 -

Chapter 3: Architecture

Questions Queries
Marketing and Advertising Question 1 Query One

Question 2 Query Four
Question 3 Query Two

Conference Question 1 Query Five
Question 2 Query Five
Question 3 Query One

Emergency Response Question 1 Query Five
Question 2 Query Three
Question 3 Query Seven

Table 3.5: Questions and matching queries

Being able to analyse these can help to support researchers in filtering the amount of

information they are analysing and increase the probability of the information being

relevant. Therefore Query One identifies trends and returns the resulting hashtags

and their count. This query takes three parameters, as can be seen in Figure 3.4.

These specify a set of upper and lower time bounds and a threshold limit. The value

of threshold specifies how many times a hashtag must occur between the time bounds

before it is identified as a trend. The counter is incremented each time a duplicate

hashtag in the same time-bound is included in a Tweet. A counter is a Cassandra

device which increments automatically.

Q1(startTime, endTime, threshold)

SELECT hashtag, counter

FROM Tweets[$startTime-$endTime]

HAVING COUNT(hashtag) > $threshold

Another feature of Tweets is the“retweet”function – this allows people to identify more

popular Tweets quickly and easily. The retweet function basically re-posts a Tweet

that was posted by another user, which results in the Tweet being shown to additional

users, increasing the reach of the Tweets. Therefore it can be derived that the more

popular a Tweet the more relevant it is to current world events or opinions. Therefore

Query Two identifies popular retweeted Tweets. Here the variable threshold provides

the minimum number of times a Tweet must have been retweeted. If the retweet

count exceeds the threshold then the Tweet is considered a popular retweet and a

result returned to the user.

- 66 -

Chapter 3: Architecture

Q2(startTime, endTime, threshold)

SELECT counter, tweetid

FROM Tweets[$startTime-$endTime]

HAVING COUNT(retweet) > $threshold

Location is a very important part of the metadata which provides additional infor-

mation. By looking at the area from which a post originated, additional insights can

be derived about marketing locations, the epicentres of natural disasters and much

more. Query Three finds all Tweets with a hashtag and location specified by the user

in a time-window. The location parameter is a user-defined string. This was used for

simplicity and is extended to include latitude and longitude in Section 4.4. This is

because the user-defined location is not accurate.

Q3(startTime, endTime, location, hashtag)

SELECT tweet

FROM Tweets[$startTime-$endTime]

WHERE tweet.location=$location

AND tweet.hashtag=$hashtag

Query Four returns a count of how many times the specified hashtag has appeared in

tweets within the time bounds.

Q4(startTime, endTime, hashtag)

SELECT COUNT(tweetID)

FROM Tweets[$startTime-$endTime]

WHERE tweet.hashtag = $hashtag

Query Five allows users to specify a hashtag of interest to them; the query returns the

tweets containing the hashtag within the time-bound.

Q5(startTime, endTime,hashtag)

SELECT tweet

FROM Tweets[$startTime-$endTime]

WHERE tweet.hashtag=$hashtag

Query Six identifies the number of users that follow the user that posted the Tweet.

Q6(tweetID)

SELECT userID as userid

FROM Tweets

- 67 -

Chapter 3: Architecture

WHERE $tweetID=tweet.id

SELECT noOfFollowers

FROM Tweets

WHERE userID = userid

Query Seven returns all the times that a Tweet has been posted or retweeted.

Q7(tweetId, starttime, endtime)

SELECT counter

FROM Tweets[$startTime-$endTime]

WHERE $tweetID=tweet.id

As mentioned each query describes a relation in the data model listed are the query

and the relation it describes.

Query One: multiple hashtags are in multiple statuses.

Query Two: users retweet Tweets.

Query Three: Tweets contain a geotag.

Query Four: one hashtag can be mentioned in multiple Tweets (returns the count

instead of status).

Query Five: one hashtag is mentioned in multiple statuses.

Query Six: users have followers (relation follows).

Query Seven: Tweets are posted at a specific point in time.

The hashtag has a more complex relationship as it is a many-to-many relationship.

Therefore more queries are dedicated to querying this variable.

A set of use cases were used to define a data model for the relations between the data

types in Tweets. A set of comprehensive queries for searching the relations within the

data model were then defined and used to support an exhaustive search of the domain.

The next section describes the database design to enable low latency querying of the

data model.

- 68 -

Chapter 3: Architecture

3.4.3 Schema

To support storing the data in a more easily retrievable way, an efficient and novel

global indexing system was designed and developed to provide support for the queries

mentioned above. One important design decision was to denormalise data to reduce

execution times and increase throughput by eliminating the cost of joins for the generic

queries.

The two key design challenges for creating a scalable system were:

1. How to efficiently access Tweets by time.

2. How to efficiently perform aggregations.

The database design is now described and shows how these challenges were met. One

of the design challenges faced when constructing schemas in a NoSQL store is whether

or not to replicate data. Denormalising data can make querying more efficient, by

producing indexes specific to that query. Replicating data increases the storage space

taken up, however due to the cost of hardware now and the ease of scaling out there

is no need not to increase performance by denormalising data.

An example of that is the column family tweet, which is indexed by tweetid with

the status being used as the column name. This means other indexes can store just

the tweetid and then use this index to retrieve the status if it is required. As has

been shown some queries use tweetid for identifying tweets. This indexing technique

allows the status to be retrieved with increased efficiency and performance. This also

improves write performance as Cassandra can write without reading. This is because

the data is not written sequentially, therefore Antares does not need to find the correct

place for inserting data it can just be written directly. The system takes the tweetid

and writes to the next space on disk, therefore no read is required beforehand. This

also meant no other keys need to be changed and consistency is not an issue.

CREATE TABLE tweet (

tweetid text,

status text,

PRIMARY KEY (tweetid))

- 69 -

Chapter 3: Architecture

The hashtag time column family was designed for Queries One and Four. All Tweets

arrive from the firehose with metadata that includes their creation time. For efficient

access to data from Tweets created within particular time-bounds, the schema uses

time buckets, each of which stores data created within a particular time range. A

timestamp is extracted from the metadata of the Tweet and split into two values: day

and minute. Day is the primary key and minute the column name. Each column in the

row represents a minute within a day (e.g. 0-1399). The value of the day is determined

by dividing the timestamp by 86400000 (as this is the number of milliseconds in a day

and timestamps are stored in milliseconds).

The granularity of the time buckets was chosen by analysis of typical queries within

the case studies, for example, a conference may be held over a week. Therefore a daily

analysis of the Tweets about that day - with an hourly granularity - would enable a

user to delve into appropriate detail. The schema also takes advantage of Cassandra’s

composite column keys: this column family uses minute and hashtag as a composite

column key (the PRIMARY KEY keywords in the schema introduce the keys: the first

value is the row key and the rest form the column name; when the column name

consists of multiple columns, it is called a composite column key).

To deal with the challenge of efficiently handling aggregations, a count is maintained

of the number of times that a hashtag has occurred within the period identified by the

day and minute. When a new ‘Tweet arrives from the firehose the composite key is

used to increment the appropriate counter. Queries One and Four exploit this schema.

One performs a range scan over the rows, using the minutes to identify the correct

range, which selects the hashtags and their counts. Once these have been retrieved,

the count for each different hashtag is totaled and returned to the user if it exceeds the

threshold. Query Four instead uses the day and the whole composite key to identify

the count of a specific hashtag in that time period.

CREATE TABLE hashtag_time (

day bigint,

minute bigint,

hashtag text,

value counter,

PRIMARY KEY (day, minute, hashtag))

- 70 -

Chapter 3: Architecture

The column family tweet time follows an identical pattern to hashtag time, with

hashtags replaced by tweetids. Queries Two and Seven use the schema to access data

based on tweetid.

CREATE TABLE tweet_time (

day bigint,

minute bigint,

tweetid text,

value counter,

PRIMARY KEY (day, minute,tweetid))

The column family user is indexed using the same pattern as tweet, but metadata

from the Tweet is replaced by information about the user.

CREATE TABLE user (

userid bigint,

handle text,

PRIMARY KEY (userid))

Tweet geo is based on the same time bucket structure as the previous column families;

it is used to answer Query Three. The column name is a composite column key

of timebucket, hashtag and location, allowing for an exact key match to efficiently

retrieve the status of the Tweet based on location and hashtag. It has the same

pattern as Query Two. The location and hashtag from the metadata are checked for

a match. location is taken as the user-defined string, as previously mentioned, and

extended in Section 4.4.

CREATE TABLE tweet_geo (

day bigint,

minute bigint,

location text,

hashtag text,

status text,

PRIMARY KEY

(day, minute, location, hashtag))

Hashtag status is indexed by time, it allows Query Five to retrieve a status using

the hashtag. It adds redundant data (status) instead of creating a relation between

hashtag and status for more efficient querying.

- 71 -

Chapter 3: Architecture

CREATE TABLE hashtag_status (

day bigint,

minute bigint,

hashtag text,

tweetid text,

status text,

PRIMARY KEY

(day, minute, hashtag))

User follower uses the same pattern as tweet user, using a userid it finds the

number of followers that was saved at that time. This is an exact key match query

and will perform with the same efficiency as the previously mentioned column family.

CREATE TABLE tweet_user (

tweetid text,

userid bigint,

PRIMARY KEY (tweetid,userid))

CREATE TABLE user_follower (

userid bigint,

follower_count bigint,

PRIMARY KEY (userid, follower_count))

This section describes the database schema, which will be used to support efficient

low latency querying, which enables combined querying with the stream processing

system. The next section will describe how the queries and the schema are translated

into stream processing queries.

3.4.4 Stream Schema

Each of the queries described in Section 3.4.2 can be executed across the stream or the

database. Here the execution of queries across the stream is explained. For ESPER

to execute a continuous query a Java object was defined to represent a Tweet. The

Java object represented the data model and contained attributes included in Figure

3.9, which supported the analysis of the relations described in Section 3.4.2. Therefore

each Java object has the attributes: status, hashtag, number of followers, timestamp,

geotag, number of retweets and userid.

When Query One is executed in ESPER the hashtags and their count are stored in

an in-memory hashmap. The hashes are the keys and the value is a counter, which

- 72 -

Chapter 3: Architecture

is incremented each time the hashtag is included in a Tweet. As the queries are

time-bounded, the space occupied in the hashmap by a record can be recovered once

the query reaches the end of the time-window, and so the memory requirements are

limited.

When executing Query Two over the stream it extracts the retweet count from each

Tweet and identifies whether it exceeds the stated threshold. Therefore it varies from

the historic query as there is no aggregate function the value is taken from the live

Tweet.

Query Three is similar to Query Two as it has an exact and extracts the location and

hashtag from the Tweet. If the values match the parameters specified by the user

then the results are returned to the user. The query is executed over the user-defined

time-period, however results are returned each time a constraint is met and as soon as

it is met.

An aggregate function is executed across the stream for Query Four, which counts

each time a Tweet mentions a hashtag. This is a counter held in-memory and each

time the hashtag is mentioned the counter is increased. The result is returned after

the time-period has finished.

Query Five returns the each Tweet in which the user-defined hashtag is mentioned.

Each time a Tweet contains the hashtag then Tweet is returned while the query is

executed.

The execution of Query Six varies on the stream when compared to the database.

The user specifies a tweetid and if it is used at that point in time then the Tweet is

returned otherwise the query returns.

Query Seven uses the tweetid and if a Tweet is identified as having this tweetid then

the user object (contained in the Tweet metadata) is accessed and the number of

followers extracted. This is then returned to the user, however the query is executed

for the full time period in case the Tweet is retweeted. If the Tweet has been retweeted

then the userid maybe different therefore the number of followers will be different.

Antares provides a novel mechanism for combining both of these querying techniques

by executing one query. This section has explicitly described the schema for the stream

- 73 -

Chapter 3: Architecture

processing.

3.5 Evaluation

Antares provides low latency, scalable query execution over large volumes of stream

data. It has been employed in research projects to allow automated and efficient

analysis of Twitter data [3]. This section evaluates its performance: in particular the

two key measures: the query response times and data ingest rates of the system.

These experiments described here explore and evaluate the various design choices,

extensions and optimisations that support efficient, scalable stream, historic and com-

bined queries.

3.5.1 Ingestion Rate

To evaluate the system, a collection of 10 million Tweets were compiled using the

Twitter4J streaming API [65]. High ingestion rates are then replayed, to replicate the

Twitter firehose. These can be faced when dealing with high velocity data streams

– the data created by the Twitter firehose can average 5,000 Tweets per second [1].

The Tweets were replayed at the highest throughput rate the hardware specification

would allow. Twitter4J is a free API, which allows access to Twitter data – it allows

different types of collection, with both searching and streaming APIs. The search API

allows the user to search for Tweets historically, however it is restricted to 150 queries

every 15 minutes. The streaming API limits the number of Tweets collected from the

firehose to 1% of all the Tweets at any given point in time.

The experiments described in this section were created to prove the system could scale

to support high ingestion rates – allowing, for example, the Twitter firehose to be

written to disk without any loss of data.

The experiments were executed in the Amazon cloud, using m1.large machines, the

configuration for which was: Memory: 7GB, 2 cores, Storage 840GB and network

performance: moderate, operating system Ubuntu.

The dataset of Tweets used is 14GB is size however this is simulated to imitate the

- 74 -

Chapter 3: Architecture

firehose. The system constraints for memory are kept to a minimum so that the oper-

ating system does not cache things and therefore a correct representation of Antares

using the database and disk storage is represented. The Tweets are replayed from

another machine in the same datacentre as to not include network delays but also not

on the same machine so that it does not affect the way the database and the machine

use the memory on the machine.

Cassandra has two different methods of storing data. The first is a Memtable, which

is in-memory storage. As data enters the Cassandra cluster it is stored to a Memtable.

Each Memtable has a tunable storage limit, once this is reached then the column fam-

ilies are flushed to disk. SSTables are used for disk storage. These are immutable data

files and each one corresponds to a column family. Additionally there are temporary

SSTables, which are merged into one large SSTable periodically and asynchronously.

This supports fault tolerance, as there is a non-volatile store of the Memtables even if

they have not been flushed to disk. As the data enters the system for the first time it

is saved in-memory as this is quicker than writing to disk. Once the amount of data

in the Memtable surpasses the storage limit it is written to disk, which takes longer

and can reduce the ingest rate. Creating a faster initial ingestion rate does not affect

the overall average rate of ingestion.

Each Cassandra node was started in an empty state, with only the indexes described in

the database. Two optimisations were designed and implemented to increase ingestion

rate: a) batching of queries b) asynchronous execution of queries. Batching queries

ensures the flow of data is sufficient to utilise the full capacity of the database. If the

flow of data is too low then efficiency is lost as resources are not used and therefore

become underutilised. If the flow of data is too high then the database becomes

over-saturated which causes queries to fail. Cassandra executes queries synchronously,

which can cause a bottleneck. This is a result of sequential execution and callback

waiting time. By executing queries asynchronously the ingestion rate of Antares can

be increased dramatically as queries can be executed in parallel.

Cassandra was designed to support highly scalable writes but the extensions in Antares

aimed to increase the ingestion rate significantly so that it can handle much higher

velocity streaming data.

- 75 -

Chapter 3: Architecture

3.5.2 Batch Experiment

The experiments were designed to evaluate the performance and scalability of the

extensions implemented by Antares. The first experiment is executed over one Amazon

machine and measures the effect that batching the Tweets to modify the data flow has

on the ingestion rate of the Cassandra instance.

A batch is a set of insert queries - one query represents one Tweet to be inserted - the

batch is sent as a list of these inserts to the database. When this is submitted to the

database if there is CPU power available then the inserts will be executed in parallel.

The experiment consisted of one client, –or m1.large machine– which sends varying

sized batches to the one-node Cassandra cluster to be written to disk. Batches of

Tweets are replayed at the highest rate the Amazon machine specification can replicate.

The number of Tweets processed within a given time is counted and the Tweet per

second rate is calculated by taking the numberofTweets/numberofseconds.

Figure 3.10 demonstrates as the batch size is increased from 1 to 200 the number of

Tweets ingested increases by over 50%, from 3,047 to 6,895. The number of Tweets

ingested begins to tail off after this with a decrease in ingestion rate for a batch of

400 Tweets. This is because the batch has become too big and the number of queries

has over saturated the database. This causes queries to time-out (default time-out is

10,000 ms), and therefore another query must be sent to ensure the data is written.

This results in an increase in the time taken for queries to execute and therefore the

number of Tweets written within that time period is reduced. This demonstrates that

batching the Tweets has a direct impact on the ingestion rate and is used to optimise

Antares to produce the most efficient ingestion rate.

Batch size Tweets per
(Number of Tweets) second

1 3046.8
100 5101.13
200 6895.39
300 6928.61
400 6824.68

Table 3.6: Tweets per second written to Antares with increasing batch sizes

- 76 -

Chapter 3: Architecture

Figure 3.10: Tweets per second written to the Antares one-node cluster using increas-
ing batch sizes

3.5.2.1 Comparison of Antares and the Synchronous Cluster

The next experiment replays Tweets again, however it varies the number of nodes in

the cluster. Each run starts with a completely empty state server. The experiment

was executed over a one-node cluster increasing to an eight-node cluster.

Antares is compared with a Cassandra cluster, which is indexed using the same design

pattern. However the “synchronous” cluster does not use batching or asynchronous

writes to improve performance.

Figure 3.11 demonstrates a comparison between Antares and a cluster with no asyn-

chronous queries or batching. As is demonstrated in Figure 3.11, the ingest rate

increased linearly and Antares has the ability to consume over five times the average

Twitter firehose with an eight-node cluster. The four-node cluster supports an inges-

tion rate of 20,470 Tweets per second, by doubling the number of nodes the ingestion

rate is increased to 34,881 Tweets per second. As the average rate is 5,000 Tweets per

second a four-node cluster is more than sufficient for ingestion. Using a larger cluster

enables Antares to cope with spikes in the data flow. Therefore the number of nodes

used for the experiments is four as it has the capability of capturing the entire firehose

and potential bursts of activity from users or applications.

The difference between clusters is 6,928 Tweets to 208 Tweets on one machine. This

difference only increases as the cluster size increases. 34,881 Tweets can be ingested by

Antares however the synchronous cluster can only ingest 349 Tweets in an eight-node

- 77 -

Chapter 3: Architecture

cluster. This is an improvement of approximately 100 times more data ingestion. This

demonstrates the efficiency of the optimisations made to Antares when compared with

a normal Cassandra cluster. 34,881 Tweets is more than five times the average Twitter

firehose, which means Antares is capable of handling the full firehose but also bursts

of events.

The addition of nodes provides greater hardware support, however the results show

that the software extensions support higher ingestion rates and therefore less hard-

ware is required for a given ingestion rate. The percentage savings shown in Figure

3.12 demonstrates that Antares improves performance by nearly 100% for a four-node

cluster.

Number of Antares Synchronous Percentage Savings
Machines (Tweets per second) (Tweets per second) (%)

1 6929 208.06 97
2 10768 247.18 97.7
3 20470 283.19 98.61
4 34076 349.09 99.98

Table 3.7: Tweets per second written to Antares and the Synchronous System

Figure 3.11: Tweets per second written to Antares and the Synchronous System

- 78 -

Chapter 3: Architecture

Figure 3.12: Percentage savings for Antares

3.5.2.2 Conclusion

Query batching and asynchronous execution has shown improvements in the ingestion

rate. Twitter data was used to evaluate Antares and show optimisations supporting

an ingestion rate of over 30,000 Tweets per second. The batching ensures the resources

of Antares are used. Asynchronous queries provides a means of query execution that

does not block and reduce availability. Antares can provide a mechanism of ingesting

the entire Twitter firehose without reducing availability.

3.5.3 Read Performance

The previous experiments determined that Antares can support an ingestion rate of

five times the Twitter firehose. However the ability to search and process this data

efficiently and quickly at scale was vital to support the combination of real-time stream

analysis and historic processing. This was implemented through the design and de-

velopment of indexing mechanisms, described in Section 3.4. This section evaluates

the execution time for these indexes against a non-indexed system, which includes an

evaluation of the effect of increasing query loads on the data store.

To evaluate the historic store, different types of query were executed over the Cassandra

cluster and the mean response times plotted against the number of machines used. The

first set of experiments takes a workload of 1,000 queries – one of type exact match and

one of range query. The system was deployed on the cloud and the same specification

Amazon machines as previously mentioned were used.

- 79 -

Chapter 3: Architecture

Antares was deployed over a one-node cluster increasing to a four-node cluster (as this

is the optimal cluster size for ingestion rate) to evaluate the effect on query response

times with indexing with increasing cluster sizes. These queries were taken from the

generic queries described in Section 3.4.1. The exact match query is Query One and

the range query is Query Four. These were executed sequentially over the database

and the mean response time measured, after each result was recorded an extra m1.large

machine was added to the cluster.

The data was automatically load balanced by Cassandra and then the queries were

executed afterwards to ensure load balancing had no affect on the execution time. Load

balancing a cluster can take up to a few seconds and stops calls to the database. The

workloads were executed across an Antares cluster with indexing to establish efficiency

and an unindexed cluster –schema shown in Figure 3.15– to compare and evaluate the

optimisations made to Antares.

The start and end time parameters were randomly generated values each entered into

individual queries. Fifty percent were generated to be within the earlier half of the

day, fifty in the later half. Values were placed at the start (earlier in the day) and end

(later in the day) of the row. Hashtags were generated for the exact match query, 80%

were hashtags that were included in the dataset, 20% were not.

Q1(startTime, endTime, threshold)

SELECT hashtag, counter

FROM hashtag_time[$startTime-$endTime]

HAVING COUNT(hashtag) > $threshold

Figure 3.13: Range query

Q4(startTime, endTime, hashtag)

SELECT COUNT(tweetID)

FROM hashtag_time[$startTime-$endTime]

WHERE tweet.hashtag = $hashtag

Figure 3.14: Exact match query

- 80 -

Chapter 3: Architecture

CREATE TABLE unindexed(

tweetid text,

hashtag text,

time bigint,

userid text,

PRIMARY KEY(tweetid)

);

Figure 3.15: Schema for the unindexed column family

The unindexed cluster stores the information about a Tweet in one column family.

Counters cannot be used without indexing the column family, so the values that are

collected must also be counted in the application layer.

Before describing the query mechanism for the unindexed cluster an example schema is

demonstrated in Figure 3.16 as an example of the constraints for querying a Cassandra

cluster. In the table example there must be an equals operator on a to use an equality

operator such as less than on b. There must also be an equality operator on a and b

to be able to use the other operators on c. This is to ensure that the query responses

are timely and that searches do not have to span the entire cluster. To query without

this pattern, the ALLOW FILTERING statement is used.

CREATE TABLE example(

a text,

b text,

c text,

value text,

PRIMARY KEY(a,b,c));

Figure 3.16: Example schema

The query shown in Figure 3.17 is an exact match using the unindexed schema. It

queries for information about a Tweet which contains a hashtag and was posted at a

certain time. As the unindexed schema uses the tweetid as a primary key –and does

not index on hashtag– ALLOW FILTERING is used to enable querying on a non-primary

key component. Therefore each Tweet must be queried to identify whether it was

posted in the time-window and if it contained the hashtag.

- 81 -

Chapter 3: Architecture

SELECT *

FROM unindexed

WHERE hashtag=? AND time<? AND time>?

ALLOW FILTERING;

Figure 3.17: Unindexed exact match query

The query shown in Figure 3.18 is a range query executed over the unindexed cluster.

Again all the Tweets must be searched, returned and then the count totalled.

SELECT *

FROM unindexed

WHERE time < value AND time >value

ALLOW FILTERING;

Figure 3.18: Unindexed range query

3.5.3.1 Exact Match Experiment

The query from Figure 3.14 was executed across Antares increasing the cluster size for

each experiment.

Number of Antares Unindexed Percentage Savings
Machines (ms) (ms) (%)

1 60.38 10679.84 99.43
2 45.39 14686.33 99.69
3 40.35 18179.95 99.78
4 34.66 32950.1 99.89

Table 3.8: Mean response time for exact match queries executed across Antares and
an unindexed cluster

- 82 -

Chapter 3: Architecture

Figure 3.19: Mean response time for exact match queries executed across Antares and
an unindexed cluster

Figure 3.20: Mean response time for exact match executed across Antares

- 83 -

Chapter 3: Architecture

Figure 3.21: Percentage savings for Antares

Figure 3.19 shows a graph of the dramatic difference in mean response times comparing

Antares and an unindexed cluster. For a one-node Antares cluster the mean response

time of a query is 60 ms, which is very efficient chiefly when compared to the unindexed

cluster’s mean response time of 10,679 ms. For a four-node Antares cluster the mean

response time is reduced further to 34 ms. Antares ensures this by using unique

indexing which guarantees the data will be on one node. Therefore when a query

is executed it is accepted by any one node in the cluster and sent on to the node

containing the data using a hashed value of the key, as previously explained in Section

3.2.2.12. This reduces execution time when compared with the unindexed cluster as

only one hop is required. As hardware is added to the cluster performance increases

as shown in Figure 3.20, as there are more resources to accept more queries.

The unindexed cluster of nodes increases the response time when compared with

Antares. The response time for one node increases to over 10,000 ms when com-

pared with 60 ms for Antares. Response times increase within the unindexed cluster

as the number of searches is increased. In the unindexed cluster each Tweet is stored

separately by their tweetid. Therefore any queries executed with constraints other

than the tweetid require searching the entire dataset. The queries used in this experi-

ment have temporal and textual (hashtags) constraints, therefore each Tweet must be

queried to identify whether it meets the constraints of the queries. When Tweets are

stored in the unindexed cluster each Tweet will be stored in a new row for each hashtag

contained in the Tweet. This results in increased searching, therefore n rows maybe

be searched just for one Tweet, n depending on the number of hashtags contained in

- 84 -

Chapter 3: Architecture

the Tweet.

The addition of nodes increases the response time of the cluster by nearly 3 times

when compared with the response time of the one-node cluster. This is because the

database has to examine the data held on each node, which introduces network latency,

increasing the overall response time. Additionally the performance decreased because

of cluster load balancing. When a node is added to the cluster it becomes responsible

for a shard of data. The row key is used to partition the data, for an unindexed cluster

each Tweet has its own row key, therefore each Tweet is stored on any machine with no

order. This increases the response time, as the query has to execute on every machine.

There is therefore an improvement of a factor of 1000 for indexed queries compared

with an unindexed schema.

Antares scaled linearly and reduced execution times by nearly a half when compared

with the unindexed cluster. These results demonstrate that the index is correctly

distributing the data so to exploit the parallelism of the cluster. As the number of

nodes is increased, the concurrent execution of queries can increase, as there are more

available CPUs. As can be seen in Figure 3.21 the saving for query execution time is

nearly 100% for all cluster sizes.

3.5.3.2 Range Query Experiment

The range query shown in Figure 3.13 was executed across both types of cluster, the

results are shown in Figure 3.22 and Table 3.9. The range query has an increased

response time when compared with the exact match query as there are more compar-

isons made within the row. Additionally more data is returned from a typical range

query. The query response time dropped by a factor of 4 when additional machines

were added as shown in Figure 3.23. When Antares is compared with the unindexed

cluster the response time is reduced by a factor of 190 for a four-node cluster. This

was because the index exploited the additional hardware resources and parallelism.

The indexed cluster uses a composite key to allow efficient querying not only on the

partition key. This means the ALLOW FILTERING key word does not need to be used,

which degrades performance, as execution is unpredictable. Unpredictable execution

can lead to additional disk seeks and increased latency. Figure 3.24 shows the savings

- 85 -

Chapter 3: Architecture

that Antares supports, the optimisations provide over 90% of savings for each cluster.

This demonstrates the improved performance of the querying and provides near real-

time results so the results from each query can be combined seamlessly. This allows

a user to execute one query, which combines the results. This is a novel approach to

combined querying.

Number of Antares Unindexed Percentage Savings
Machines (ms) (ms) (%)

1 1041.36 10970.13 90.51
2 610.28 24195.63 97.48
3 595.58 36316.36 98.36
4 255.72 48359.02 99.47

Table 3.9: Mean response time for range queries executed across Antares and an
unindexed cluster

Figure 3.22: Mean response time for range queries executed across Antares and an
unindexed cluster

- 86 -

Chapter 3: Architecture

Figure 3.23: Mean response time for range queries executed across Antares

Figure 3.24: Percentage savings of the Antares system

The range query and the exact match query had similar response times when executed

across the unindexed cluster. This is because the query still has to search through all of

the stored Tweets. Once again as nodes were added into the cluster the mean response

time decreased on Antares by a factor of 4, whereas the response time increased for the

unindexed schema by a factor of 4. The unindexed schema increases response time as

the row key is the tweetid, so each node must be searched. This increases the number

- 87 -

Chapter 3: Architecture

of queries and the network time.

3.5.3.3 Stress Experiments

The next experiment evaluates the performance of Antares under stress. The experi-

ment executes increasing numbers of concurrent queries, evaluating the query through-

put rate. Each experiment is again executed across the same four-node Amazon cluster

as previously mentioned. To test scalability, the experiment uses a JMeter [66] plug-

in to create threads that generate queries. The cluster was pre-populated with the

Twitter dataset before the queries were executed across Antares.

The time-window parameters were randomly generated values each entered into indi-

vidual queries. Fifty percent were generated to be within the earlier half of the day,

fifty in the later half. By using values that are randomly ordered reads to the database

are not sequential. To return larger amounts of data –to stress the range query– val-

ues that placed queries at the start (earlier in the day) and end (later in the day) of

the row were used. This also simulates real world values, as the case studies suggest,

queries would be written based on events, which do not have to be chronological. A

randomly generated set of days was used to represent queries that span more than one

day, which requires multiple queries or an IN statement. Multiple queries are required

as each day is a new row, therefore there is a separate row key to search for each day,

as described in Section 3.4.3. Cassandra stores the most recent data to the Memtables,

until the commitlog reaches capacity and flushes to SSTables. Therefore if the data

is newer it will still be in-memory but if it is older it will have been written to disk.

Therefore having a spread of dates measures the system’s response time when reads

must come from memory and disk.

Hashtags were generated for the exact match query, 80% were hashtags that were

included in the dataset, 20% were not. The database behaves differently when no

results are found. This is because Antares need only read once from disk and as there

is no result it returns straight away.

- 88 -

Chapter 3: Architecture

Number of Mean response
Queries time (ms)

0 0
10 99
100 137
200 140
500 141
1000 200
2000 201
3000 206
10000 402

Table 3.10: Mean response time for exact match query with increasing concurrent
queries

Figure 3.25: Mean response time for exact match query with increasing concurrent
queries

Figure 3.25 shows a graph of the average response time for Query Four when executed

across the database. Antares supports a higher throughput and only starts to increase

rapidly around 10,000 queries. Antares supports large numbers of users querying the

system simultaneously without losing data. Even with 10,000 queries the response

times are under 400 milliseconds.

The next experiment used Query One. This is a range query and parameters select

all hashtags within a time-bound. The parameters for this query were generated with

the same distribution as the previous one. This query differs from Four as it uses

the minutes to bind the query to a time range. The queries for this experiment are

generated by the same mechanism as previously described. The average response time

for Query One is displayed in Table 3.11, this shows 1,000 queries executing with a

- 89 -

Chapter 3: Architecture

response time of under 2,000 milliseconds. Figure 3.26 demonstrates the linear scaling

of the reads as the number of queries increases. This is because the indexing reduces

processing, increasing the efficiency and performance. This query is slower than Four,

as a range query queries more data. The experiments were stopped after 10,000 as the

longest response time for a user reaches 2 seconds.

Number of Mean response
Queries time (ms)

0 0
10 299
100 383
200 415
500 1072
1000 1891

Table 3.11: Mean response time for Query Four with increasing concurrent queries

Figure 3.26: Mean response time for Query One with increasing concurrent queries

3.5.3.4 Conclusion

The response time of the queries provided low latency query responses that ensured

that stream querying could be combined with the historic store. Cassandra requires

index designing and implementing to support low latency querying. Temporal time

indexes can help to reduce latency and have a percentage savings of over 90%.

- 90 -

Chapter 3: Architecture

3.5.4 Stream Queries

As described in Section 3.2.1.5 the ESPER complex event processing system was used

to process the stream data. The following experiment evaluates whether ESPER can

be used to ingest the event stream at the full rate, and whether triggering queries has

an effect on performance. Figure 3.27 shows ESPER executing both without a trigger

to the historic store and with. As described in Section 3.3, when a user specifies a

time period which starts in the past and continues into the future Antares recognises

this and executes a combined query. For this Antares executes a continuous query and

once a constraint is met another query is executed across Cassandra.

The first dataset shows the throughput of Tweets, for the exact match query with over

160,000 Tweets in 18 seconds (9,000 per second). This demonstrates ESPER’s ability

to process the Twitter firehose quickly and efficiently. This is the same for the stream

with read load, the dip at the beginning is ESPER reaching a stable state after staring

up.

This experiment shows that the CEP system can meet the performance requirements.

For each Tweet the hashtag is identified and counted. The hashtags are saved and a

count for each stored in-memory and checked until a threshold is exceeded.

Time Elapsed ESPER ESPER
seconds with read load

0 0 0
2 30100 7379
8 100000 82139
15 142000 119217
20 170000 170000

Table 3.12: Tweets processed per second by ESPER

3.5.4.1 Conclusion

ESPER supports a scalable stream processing system which can ingest the entire

firehose without having to shred data. This provides an implementation for the scalable

features stated in the introduction.

- 91 -

Chapter 3: Architecture

Figure 3.27: Tweets processed per second by ESPER

3.5.5 Combined Queries

This section evaluates how Antares performs for combined queries (Section 3.3). Com-

bining stream and historic processing can be challenging, as historic queries must re-

turn results with low latency so as to return up-to-date results in time to be combined

with the stream query being executed. It would be a huge drawback to receive the

results after the stream query had returned and another was executing because then

the streaming data results may be irrelevant.

For a combined query the time-window specifies a lower time-bound –a time in the

past– and the upper time-bound in the future. The query monitor identifies that it

is a composite query and sends a query to ESPER (to execute a historic query if the

threshold is exceeded). For this combined query, exact match query (Figure 3.13) and

range query (Figure 3.14) have been used. As the Tweets are received from the stream,

ESPER keeps state about the hashtags, and counts each time they have appeared, until

they exceed the threshold specified in the query. If this occurs, the exact match query

is executed over the database, by passing the hashtag and the time-window for the

historic data. This returns a result specifying whether the hashtag has been mentioned

before in that time-bound and selects the contents of Tweets it was contained within.

The time-bound is 20 seconds with a threshold of 20 hashtags. As previously shown,

the range query executes efficiently in ESPER but whether combining it with a query

to the historic store affects its performance is now explored. This is shown in Figure

3.28.

- 92 -

Chapter 3: Architecture

The experiment is executed over the same four-node Amazon cluster as previously

described. The collected set of Tweets is again used to simulate the Twitter firehose

with a peak load. Each Tweet is then written to the database. While the data is

being written, varying numbers of queries are executed across the database. Exact

match query was used as it had the most efficient execution and the parameters were

kept the same as the previous experiment to simulate an identical read load. Figure

4.13 illustrates the same linear shape as the previous results as the amount of queries

increases. The mean response time is under 600 milliseconds for 2,000 queries, even-

tually reaching 1.5 seconds for 5,000. This illustrates the system’s ability to process a

heavy simultaneous read and write load.

Number of Queries Mean response
time (ms)

0 0
10 100
100 146
300 197
421 361
916 518
1997 523
5000 1535

Table 3.13: Mean response time for read and write load

- 93 -

Chapter 3: Architecture

Figure 3.28: Mean response time of query four with increasing concurrent queries while
simultaneously inserting to the database

3.5.5.1 Conclusion

Antares supports combined querying while simultaneously inserting data into the his-

toric store. The performance does not decrease significantly and supports collection

and processing of large scale data. The mean query response times for searching in the

database provides a mechanism for combining the stream processing with the historic

processing.

3.6 Conclusion

This section provided a literature review of different technologies, which led to the

combination of ESPER and Cassandra being used in Antares. These technologies

were used to provide a scalable and low latency layered approach to the processing

of Twitter data. Cassandra allowed feature one to be implemented using indexing

techniques to map the Twitter data to the database using temporal patterns - this

reduced the query response time. The evaluation demonstrated the use of temporal

indexing supported low latency queries so they could be combined with stream data

in a timely manner while simultaneously writing to the database.

- 94 -

Chapter 3: Architecture

The query monitor maps the time window given by a user to the correct query - this

is then used to execute the correct query whether it be historic, stream or combined.

This satisfies feature two as the user enters a time window without having to know

the kind of query they are executing.

The layered approach shown in this chapter supported scalable stream and historic

queries by load balancing requests utilising both layers. Requests could be handled

by either layer this meant the number of time-outs were reduced. A time-out blocks

for 5 seconds, however with a large number of requests this will increase linearly if the

number of requests is the same. However, if there are bursts of requests this could

increase exponentially, therefore the use of two layers supports the load balancing of

requests and reduces the number of re-tries. The layered approach takes advantage of

in-memory speed and the scale of disk to provide scalable near real-time querying of

Twitter data.

Antares uses batching and asynchronous execution to improve the ingestion rate and

support scalability of the system - this achieved feature three as shown in the evaluation

section where the ingestion rate was approximately 35,000 for only four machines.

Antares supports an indexing structure for efficient querying, which was derived from

a literature review. Antares implements a set of comprehensive queries to analyse the

relations of a data model defining Twitter. It provides a novel mechanism for combin-

ing queries, but allowing the user to transparently enter only one query. Asynchronous

queries and batching are used for high insertion rates, extending Cassandra.

The rest of the features are described in the following chapters.

- 95 -

4
Spatial Extensions

Contents
4.1 Introduction . 98

4.2 Related Work . 99

4.3 Research into Spatial Databases and GIS 99

4.3.1 B-Trees . 99

4.3.2 R-Trees . 100

4.3.3 Kd-Tree . 101

4.3.4 Quad Tree . 101

4.3.5 Geohashing . 101

4.3.6 Distributed Trees . 101

4.3.7 NoSQL system and Geospatial Processing 102

4.3.8 Conclusion . 104

4.4 Geospatial Querying . 105

4.4.1 Solr Overview . 106

4.4.2 Dynamic Index Layer . 108

4.4.3 An Unbalanced Tree . 116

4.4.4 Kd-Tree . 120

4.4.5 Quad-Tree . 122

4.4.6 Geohashing . 123

4.4.7 Schema . 123

4.4.8 Query Mapping . 124

4.4.9 Spatial Algorithms . 125

4.4.10 Extension to Querying Model 130

4.5 Consistency . 130

4.5.1 Scenarios . 131

4.6 Evaluation . 137

4.6.1 Read Performance . 138

4.6.2 Scale Experiments Comparing Different Structures in Antares
with Different Systems . 141

- 96 -

Chapter 4: Spatial Extensions

4.6.3 Writes . 148

4.6.4 Conclusion . 149

4.7 Conclusion . 150

- 97 -

Chapter 4: Spatial Extensions

4.1 Introduction

This chapter extends on the previous system architecture design and implementa-

tion demonstrating scalable analysis of geospatial data. The previous functionality

of Antares is improved to help an on going project Tweet My Street. As has been

mentioned Tweet My Street is a cross disciplinary project with social scientists who

required scalable geospatial analysis. Scalable geospatial analysis is a growing area of

research with many trying to identify a solution to support analysis of mobile devices

which enable location services and gps devices are used to “tag” a users location. Twit-

ter allows the user to add their location as they post a Tweet. Therefore the analysis

and visualisation of this tag in a Tweet can support users in adding context to their

analysis. For example if we use the use cases described in the previous chapter, if a

company are running an advertising campaign for a new product they can monitor the

hype on Twitter by tracking keywords - however if they use location too then they can

monitor the location of the ad campaign too, and derive whether people passing the

advert are commenting on the product which will show the effect of the advertisement

itself.

Antares aimed to provide the user with a scalable means of displaying the data on

a browser to allow the user a more automated means of analysis. This chapter will

describe the extensions that were designed and implemented to support this. Spatial

analysis can be complex due to its multi-dimensional nature, however there are tra-

ditional techniques out there. These however do not have the scale of current noSQL

solutions. The research identifies whether using a noSQL database with spatial pro-

cessing techniques can help to improve the scale of processing for spatial data - which

is needed due to the large amount of data produced by mobile devices and as they

increase in number so will the data. A literature review was undertaken to identify

processing techniques and the different noSQL solutions to processing spatial data.

A solution was then designed and implemented, which is described. This was then

evaluated against different noSQL solutions using a simulated stream of Tweets.

- 98 -

Chapter 4: Spatial Extensions

4.2 Related Work

This section describes different geospatial structures which support efficient spatial

storage and processing it then leads on to current solutions which use these techniques

and noSQL databases to enable scalable geospatial analysis. Antares uses a simpler

querying model to support a scalable solution for querying Twitter data with low

latency query responses. The aim of Antares is to provide a scalable map view of

Twitter data that maybe panned around, zooming in and out with speed and no

limitation on the size of the data. The size of the data should also not hinder the

performance. The literature review undertaken reviews current solutions and compares

the technologies used.

4.3 Research into Spatial Databases and GIS

This section reviews and evaluates various geospatial processing structures and how

these are being extended to exploit the scalable nature of noSQL databases. Spatial

data is intrinsically complex to process, which is attributable to its multidimensional

nature. Multi-key searches are required to support range queries across such data.

There are multiple well-established structures employed for storing and processing

spatial data, in this section we review and compare a subset of different indexing

structures for geospatial analysis, the most common of these are tree structures.

4.3.1 B-Trees

A B-Tree [67] can be defined as a hierarchical structure of nodes beginning with a

root node, which references sub-trees of linked child nodes. These direct searches to

the leaf nodes containing data. These structures are employed to store and process

hierarchical data. When identifying or inserting the data each level of the tree is

traversed, comparing nodes until a leaf node is discovered and returned or inserted. If

spatial data is stored using a hierarchical structure an n-dimensional rectangle is used

as a bounding box for the objects indexed. Each node will have a maximum number of

entries. All leaves appear on the same level, and if m is the maximum number of entries

- 99 -

Chapter 4: Spatial Extensions

then m=‘m/2 is the minimum number of entries in a node. Each node represents a

bounding box, which represents a geographical area. If the data is inserted and the

nodes limit is surpassed then it is split into two new leaf nodes. Rebalancing the tree

is carried out when it is necessary to ensure the maximum number of levels below

the root is the same depth or to within a set limit. The reason for this is to reduce

the length of branches therefore reducing the number of traversals and reducing query

execution time.

A B+ Tree is an n-ary tree [67]. The root node can be a leaf or a node with child

nodes. The number of child nodes is variable. Each node in the tree only holds a

key and the data appended to an additional layer after the leaf nodes. The data is

appended to the position which has the correct key, so when the tree is traversed for

that data it will find the leaf node that points to that piece of data.

4.3.2 R-Trees

A fundamental type of tree is R-Trees [68], these are a dynamic indexing structure.

R-Trees are typically height balanced, therefore the main cost incurred when using this

structure is rebalancing the tree. This tree structure uses proximity to group clusters

of points together for querying. Each node in the tree has a capacity limit; when this is

exceeded the node is split and data contained by that parent node is divided between

the two new child nodes. A node is split based on the position and closeness of the

points contained in the node. There are different methods for this division: Linear –

choose far apart points as ends and keep the points that are held within; Random –

choose nodes randomly and assign them so that they require the smallest minimum

bounding rectangle (MBR) enlargement; Quadratic – choose two nodes so the dead

space between them is maximised; Exponential – search all possible groupings.

A variant of the R-Tree is the R+ Tree [68]. This structure completely avoids over-

lapping bounding boxes, which is achieved by adding objects to multiple buckets,

which means the depth of an R+ Tree could be substantially larger than an R-Tree

constructed from identical data. R-Trees are a useful data structure for geospatial

processing, however when compared with structures like geohashing they are overly

complex.

- 100 -

Chapter 4: Spatial Extensions

4.3.3 Kd-Tree

Kd-Trees [69] are binary trees which equate the median of all the points stored in

the node and then split the node at that location in the bounding box. Kd-Trees

also support the simple addition of another dimension, such as time. Nodes split

alternatively between each dimension in the structure, therefore each level represents

a different dimension in the tree. Kd-Trees are particularly interesting as they can use

a third dimension and are easy to implement.

4.3.4 Quad Tree

Another modification of the Kd-Tree is the Quad Tree [70], instead of dividing the

buckets of the tree into two each node is split into quadrants. This structure is used

for two-dimensional data e.g. “find all the cities which are within 300 miles of Chicago

or north of Seattle”. Inserting data has the same principle as a binary tree with

comparison done at each level to decide into which one it is inserted. Deleting and

merging two trees can be difficult. Quad Trees support easy geospatial processing and

allow for more fine-grained querying when compared with the Kd-Tree.

4.3.5 Geohashing

Geohashing [71] is a hierarchical spatial data structure, which uses base 32 to encode

geospatial data. The more similar the geohash the closer the data points are. It is used

as a simple and easy mechanism for storing geospatial data, as the algorithm is simple

and partially matching the hashes can give an approximate mechanism for detecting

closeness quickly.

4.3.6 Distributed Trees

As the size of datasets increases this has led to the development of distributed struc-

tures such as the SD-R Tree [72], which is an in-memory distributed R-Tree. It is an

extension of an R-tree – each leaf node stores a subset of indexed data and the height

differs at most one. The cluster that holds the distributed R-Tree is accessed by an

application on the client. The client accesses the cluster from an image stored on the

- 101 -

Chapter 4: Spatial Extensions

client. Therefore that image (and the structure of the tree held in that image) can

become outdated by splits to the data (these are the same as splits described above for

the R-Tree). The cluster sends messages to the client periodically to stop the update

on the outdated image. Distributing the tree in this way is more complex than the

indexing in Antares and unnecessary to improve query execution time. The messages

may increase wait time and with only one client this will cause a bottleneck when

ingesting the data.

A P-Tree [73] is a distributed B+ Tree and is an index structure for distributed range

queries. This maintains sections of semi-independent B+ Trees at each peer. There is

no primary copy replication. Each key is viewed as the smallest key to each peer, and

then each one is responsible for looking after the left-most point in the tree from root

to leaf. Each peer relies on a subnet of its peers to complete the tree. The P-Tree is a

distributed tree but lookups can be expensive if the entire path of the tree is required,

as many nodes may need searched.

The Oct-Tree [74] is a three-dimensional, distributed variant of the Quad Tree. It

employs a geohashing algorithm to identify the node containing the requested points.

A disadvantage of using this tree is that the root can become overloaded.

4.3.7 NoSQL system and Geospatial Processing

Social media, sensors and portable devices generate large volumes of spatial data;

this has led to a deviation from traditional processing techniques. NoSQL databases

support scalable, flexible and fault tolerant solutions for processing data. However they

do not have well-established spatial querying techniques as do RDBMS. Therefore new

mechanisms are required to combine spatial querying and distributed fault tolerant

NoSQL systems. Some NoSQL based approaches are now described.

Cassandra is a column-oriented database, which provides support for spatial querying

by using a framework called Solr [75]. Solr uses a textual search system called Lucene

[30] for indexing the data and employs Cassandra as the data store. A Prefix Tree is

used to index the spatial data; the tree divides the world into a grid. Each of these

grids are further decomposed into smaller grid cells as the depth of the tree increases.

- 102 -

Chapter 4: Spatial Extensions

The Solr nodes distribution techniques do not efficiently exploit Cassandra’s scale-out

capabilities: each node in the cluster has its own tree, which maintains its own data.

Therefore, any query being executed across a multi-node cluster has to search each

node, which increases query response time.

Neo4j [34] the graph database, supports spatial querying using an R-Tree. It uses this

structure for low latency searching of geometric shapes and topology operations.

MD-HBase [76] enables multidimensional spatial querying using the NoSQL database

HBase. It linearises co-ordinates by using bit interleaving and the z ordered curve

algorithm (which maintains locality) to index the data. This is referred to as the

index layer and references the key used to query the database. MD-HBase builds

two standard indexes Kd-Tree and Quad Tree. MD-Hbase can handle hundreds of

thousands of inserts per second on a modest 16-node cluster and support response times

as low as 100 ms [76]. It uses linearisation techniques to transform multidimensional

points into one-dimensional data points. Additionally a novel naming schema called

longest common prefix naming is used. A look-up array is stored and used for searches.

It is similar to a Prefix Hash Tree. Concurrent read while splitting may be inconsistent,

[76] have left consistency as additional work.

MongoDb [23] employs spatial querying; it uses geohashing to represent different quad-

rants of the region. This database suits sparse spatial point data because of its flexible

schema.

Hadoop GIS [77] is a high performance spatial data warehousing system, which uses

map reduce to process large datasets. It supports multiple spatial queries on map

reduce through the use of spatial partitioning, a customisable spatial query engine

RESQUE [78], implicit parallel spatial query execution of map reduce and effective

methods for changing query results by handling boundary objects. It supports Hive

for declarative queries. Spatial querying involves geometric computations, which can

be very compute intensive. Datasets are broken down into tiles and then processed in

parallel. This is achieved by using spatial partitioning – when tiles are too dense the

process is executed again. Real-time spatial query engine supports generic querying,

simple parallelism and leveraging existing query mechanisms. It builds tile based

indexes on the fly, supporting dynamic indexing.

- 103 -

Chapter 4: Spatial Extensions

GISQF [79] is a system for spatial analysis, which extends Hadoop to implement

map-reduce for spatial querying of GDELT [80] datasets. The system produces more

efficient response times than Hadoop.

Another Hadoop solution is CLoST [81] which is a scalable framework used for spatial-

temporal data. Its main objective is to avoid scanning a whole dataset, it is based

on hierarchical partitions that use core attributes to efficiently parallel process range

scans. Antares provides scalable spatial analysis but with real-time responses, unlike

the batch map reduce functions of Hadoop based systems.

Another spatial NoSQL database is HbaseSpatial [82]. This is another system that ex-

tends HBase. HBaseSpatial has evaluated the system against MongoDB and MySQL.

This system uses a static grid index for querying, but it uses vectors for searching,

inserting, and identifying whether the latitude and longitude of the point data is con-

tained within a grid.

MHB-Tree [83] combines spatial querying with a NoSQL data OrientDB. It uses a B-

Tree based structure to process real-time insertion of spatial data. It stores the data

using a geohash, and is evaluated against MySQL.

4.3.8 Conclusion

The approaches described here use more complex querying mechanisms, however this

sacrifices the scale and performance that Antares requires. Antares exploits the scal-

ability of a noSQL database to increase ingestion and search sizes with low latency,

which is achieved by using a simpler querying model used to display the data in a

view port. The system is designed to ingest and process large scale datasets, therefore

there is no requirement to delete data this also improves the performance of Antares

and differentiates it from other systems described in this literature review. This the-

sis aims to exploit the scalability, fault tolerance and flexibility of NoSQL technology

and combine it with spatial querying techniques to develop novel algorithms and an

indexing structure to support low latency querying that out performs existing systems.

- 104 -

Chapter 4: Spatial Extensions

4.4 Geospatial Querying

Geospatial data is inherently difficult to process due to its two dimensional nature –

point data consists of a latitude and longitude. For example, querying for all points

contained within a rectangle area on a map could require comparing each point held

within the database. Being able to reduce the amount of points queried is beneficial

and will reduce response time of queries. Traditional spatial querying techniques use

tree structures to reduce the size of data queried to reduce response time. With

the increase in dataset volume and the need for faster and more efficient processing,

geospatial processing has seen the rise of a new challenge when processing data.

Antares supports a simple querying model for retrieving points contained within a

rectangle [4]. This simplicity supports dramatic improvements in querying response

times as will be further explained in this section. This query model is only possible

because the system is append-only. The aim of Antares was to insert and retrieve

large-scale data. No modification functions were required as the aim was to collect all

data to support its retrieval at any point in the future.

Antares provides a point in rectangle querying model to support the querying of Twit-

ter data in a view port for social scientists research. This has been driven by the

cross-disciplinary project Tweet My Street where large scale datasets have been used

to analyse different use cases. The data in these datasets provided geo-tags which

if displayed on a map provide a richer analysis technique. The aim of Antares was

to provide scalable and low latency querying of this dataset - no matter how many

points were contained within the rectangle. Therefore the implementation of Antares

supports this functionality and provides the user with a scalable and low latency mech-

anism for querying geospatial Twitter data.

Antares supports scalable geospatial querying through a user interface. The main aim

of Antares was to provide functionality for the user to be able to zoom in and out

quickly in a browser using the viewport (the user’s visible area of the web page) as the

region being queried.

Antares aimed to use the scalability of Cassandra and geospatial querying techniques

to provide a scalable and efficient means of achieving this. Datastax uses Solr (with

- 105 -

Chapter 4: Spatial Extensions

Cassandra), as mentioned in Section 4.3.6, for geospatial querying. However it is

limited in performance.

Solr allows users to query geospatial regions but with high latency and timeouts for

larger regions (investigated in more detail in Section 4.6.2). Therefore Antares aimed

to reduce query response time and additionally support large region querying using

Cassandra and enable the user to quickly and efficiently pan around a browser querying

the data. The problems with Solr are now described alongside the design of a new

system to produce the required performance.

4.4.1 Solr Overview

Cassandra is a column-oriented database, which provides support for spatial querying

by using Solr [75]. This is a search server built on Lucene Core. However, the response

time for retrieving large areas of data points is too long, this is shown in Section

4.6.2. Query response times must be near real-time to support quick zoom in/out

functions. This is overcome by the new approach described in this section. This uses

an in-memory cache and novel algorithms to significantly improve performance and

scalability.

Solr has three different types for spatial data“LatLon”,“PointType”and the“Recursive

Prefix Tree Field Type” (RPT) [84]. LatLon represents a two-dimensional point of

latitude and longitude, based of the spherical earth model. The latitude and longitude

are saved as separate numbers within the LatLon construct. PointType is the same

however it does its calculations using the flat earth model. RPT uses the Prefix Tree

for storage and searching. Geospatial types are added to an XML file to register with

Solr that it is being used. Solr uses bbox, which generates a box using a specified co-

ordinate and a distance. The distance is then used to create the region being queried

from that point.

Solr uses a prefix tree to index the spatial data. This tree employs ‘Geohashing to

search the tree using prefixes. It is an ordered dynamic tree structure, which uses keys

of type string, as shown in Figure 4.1.

Unlike a binary tree, no node holds the id of another. Instead, the position in the

- 106 -

Chapter 4: Spatial Extensions

Figure 4.1: Prefix Tree

tree defines the key it is associated with. All descendant nodes have a common string

prefix associated with the parent node, with the exception of the root node, which is

an empty string. The values of each node are not associated with every node, only

the leaves and nodes with a key in a prefix of that node’s key. The Solr tree divides

the world into grid cells as described for other tree structures. Each grid cell is then

further decomposed into smaller grid cells. The larger ones being level one and the

smaller ones level two, this continues for n levels dependent on the size of the dataset.

Each grid is given a prefix as a key using a Geohash – in Figure 4.1 the first node in

level one has a prefix of “T”. As nodes are split the prefix is extended – as can be seen

in Figure 4.1 the child nodes of “T” become “to” and “te”.

When a query is executed to search for a region of points, the Lucene filter is employed

to identify which nodes to search for and which to disregard. Once these have been

identified, each Geohash is compared to the user’s query and matching points are

returned.

As nodes are added to the cluster a tree is created for each one. The structure is then

responsible for maintaining data on that node only, so adding more nodes provides

- 107 -

Chapter 4: Spatial Extensions

additional storage but does not utilise the added CPU power by executing commands

in parallel. Therefore, any query being executed across a multi-node cluster has to

search each node, which increases query response time. This results in increased delays

to response time and limits the querying power of Solr.

Lucene is not an eventually consistent system and this is why the data cannot be

distributed. If the data were distributed across the cluster and a global index was

used then the system would have to implement a global lock. Therefore each time

a read or write was executed on the system each node would block until the query

returned, therefore yielding a increase in response time.

4.4.2 Dynamic Index Layer

This section describes the investigation of a dynamic grid to help support scalable and

near real-time spatial querying of Twitter data. The design decisions, structures and

algorithms employed to support low latency querying will be discussed

Antares employs an indexing layer, which uses a cache to store pointers to geospatial

data in Cassandra. This enables efficient querying of the spatial data to reduce re-

sponse times. The indexing layer constructs and executes queries using the cache; this

ensures that Cassandra does not know anything about the structure of the cache. This

enables efficient querying and takes advantage of Cassandra’s column family schema

for indexing data.

A common performance problem when viewing a selection of points on a map can be

the volume of data being returned to the browser. Typical static grid methods will

return all the points in each grid that has been specified. If a view port intersects

multiple grids then the number of points is multiplied by the number of intersecting

grids even if they are not all shown in the view port. This can be exeacerbated by

the density of the number of points in the grid as a static grid method would have no

means of dividing the grids if they became highly populated. This can increase query

time and even make browser viewing impossible if the time-out is too high.

It was believed that to reduce the number of points outside the viewport being returned

a dynamic grid would help and therefore reduce query time. By implementing a

- 108 -

Chapter 4: Spatial Extensions

dynamic grid structure more densely populated areas can be split into smaller grids,

supporting more specific and fine-grained querying. Limiting the number of points in

a grid would also improve performance and ensure that response times are reduced

as there would be a maximum on the number of data points that can potentially be

returned at any point. Therefore a dynamic grid indexing structure would support the

aim of zooming in and out and panning around.

The cache used by Antares is a tree structure. It improves spatial querying perfor-

mance by extending Cassandra and leveraging its scalable characteristics. The index

layer is used to manage and construct queries to the database to ensure low latency

querying. Antares supports spatial querying by employing algorithms, which are exe-

cuted across different tree structures.

The index layer has different user-defined configuration parameters that can be tuned;

the height of the tree can be specified to avoid tree nodes representing distinctly small

geographic areas (e.g. GPS is only accurate to four meters). The capacity of each tree

node is also configurable, providing fine-grained or broader tree nodes.

Figure 4.2 demonstrates the distributed nature of Antares – both the client nodes and

the Cassandra nodes are distributed to increase efficiency and scalability. A client node

is the server holding the tree structure and not a client holding a browser. As can be

seen in Figure 4.2 the clients ingest data, execute queries and the indexing layer is also

stored in-memory here. Storing the structure in-memory means that traversing the tree

takes very little time. Each of the clients ingests and accepts queries simultaneously.

The queries to the Cassandra cluster can be accepted by any node that is available.

- 109 -

Chapter 4: Spatial Extensions

Figure 4.2: Antares: geospatial architecture

Figure 4.3 shows the abstract layers of the structure of the geospatial querying for

Antares. Each time new data is received by a client node this is sent to the indexing

layer. Here an algorithm is executed to traverse the tree and identify the correct tree

node to insert the data into. A query is then constructed and sent to the database to

write the data. When a query is submitted to the client node this is also passed onto

the indexing layer. However the indexing layer executes a search algorithm, which

traverses the tree to identify the tree nodes, which must be queried. Then a query is

constructed and submitted to the database to retrieve the data.

- 110 -

Chapter 4: Spatial Extensions

Figure 4.3: Antares: abstract geospatial architecture

Antares supports the interchange of different structures but employs the same algo-

rithms over them. The system takes advantage of well-established tree querying tech-

niques but removes some of the more “traditional” storage and processing techniques

employed when considering tree processing. This is possible due to the immutable

nature of the data used, as it is append only. The requirements of the tree also change

due to its distributed nature, as distributed locking can cause problems and deadlocks;

to avoid these, algorithms were designed to avoid the need for locks, and as a result,

most operations can be done concurrently.

The indexing layer is held on a client node and the tree is copied across each client

node in the cluster, which decreases the chance of bottlenecks and supports scalability

by increasing the number of nodes ingesting data. All spatial queries utilise this layer,

rather than accessing Cassandra directly, as shown in Figure 4.2.

The tree currently supports three operations, one to add data into the tree and then

split the tree nodes if they have reached capacity, a search algorithm for point data

and a range algorithm.

- 111 -

Chapter 4: Spatial Extensions

Each node in the tree represents a geographic region on a map as demonstrated in

Figure 4.4. The first grid is the whole world then as the number of Tweets stored

increases the grid is decomposed into smaller grid cells. Figure 4.5 shows the division

of the grid cells using a Quad-Tree. The grid is divided into four new cells for this tree

structure, so node B transfers data into nodes F, G, H and I. Nodes F, G, H and I

are the child nodes of node B. Each node in a tree structure has a maximum number

of entries (in this case Tweets) that it can consume until new child nodes are created

and the data is “split” between them.

Figure 4.4: The mapping between the world and grid regions which represent tree
nodes

- 112 -

Chapter 4: Spatial Extensions

Figure 4.5: Node B being split

Figure 4.6 shows a Quad-Tree which is composed of the grid cells shown in Figure 4.5.

Each node in the tree represents a region of the world. Figure 4.6 shows the root node

A to the bottom level of the tree with child nodes F, G, H and I. As a grid is split

new nodes are created and the data divided between them. By looking at Figure 4.5

and Figure 4.6 it is clear to see that the data is divided by region and not size and

pushed to the new child nodes. This means the tree grows dynamically by data-intense

locations.

- 113 -

Chapter 4: Spatial Extensions

Figure 4.6: Quad-Tree mapped from the grid

Figure 4.7 demonstrates the mapping between the in-memory tree structure and the

Cassandra cluster. Each tree node is written to the database non-sequentially; this

results in faster writes and larger ingestion rates. This is because the write queries can

be accepted by any Cassandra node and therefore wait time is reduced.

Figure 4.7: The grid changing for a split

Each tree node contains data about the region it maps to in the grid as shown in

- 114 -

Chapter 4: Spatial Extensions

Figure 4.8. This includes:

Id: This is a unique identifier for the data.

Number of children: this is the number of children the node owns and is used for

consistency checks – mentioned later in Section 4.5

Entries: This is the number of data items already stored in the node.

Capacity: This is the limit on how much information the tree node can store before

it needs to be split.

Bounding box: identifies the region the tree node owns.

Figure 4.8 demonstrates all the information held by each node within the tree. The id

is used as a key in the database and is used to signify the record that should be read

or written. As the id is the key this ensures that all records for one node are held on

the same Cassandra node. This is because a key is the identifier for a row and rows

by default are always held on the same Cassandra node.

When a new node is added to the cluster, because a node is full, it does not affect

the indexing layer. This is because the cluster will automatically rebalance and the

id (rowkey) is hashed to represent the new node it is now stored on. However during

this time the cluster is not available for querying.

Figure 4.8: The indexing layer converted to Cassandra schema

- 115 -

Chapter 4: Spatial Extensions

The data contained within each tree node changes as data is ingested. Once the tree

has been traversed and the correct tree node identified for insertion the number of

entries is increased. The indexing layer also validates whether the number of entries

has exceeded the capacity of the tree node. If the tree node has exceeded the capacity

it is then split and new child nodes are generated. The number of children field is then

increased.

When a query is accepted by the client to display a set of points on a viewport this

can intersect multiple tree nodes (grids). This is because the viewport may intersect

more than one tree node, therefore a point could be held in any of the tree nodes

that are intersected by that viewport. This is shown in Figure 4.9, where the red grid

is the viewport and it covers grids B, C, G, H, L and M. Therefore the client will

send this request to the indexing layer where the search algorithm will be executed.

This traverses the tree for the intersected grids and constructs a query containing the

correct tree node ids. The query is then submitted to Cassandra to retrieve the points.

Figure 4.9: A viewport intersecting multiple grids

4.4.3 An Unbalanced Tree

The tree has no balancing algorithm. This reduces query execution time by removing

the blocking time that would have been required to balance the tree. This was only

possible due to the type of data being used, which meant an append only system could

be implemented. With the new “Big Data” mentality, most use-cases don’t require the

ability to delete and modify data. The collection and processing of all data ever

received at any time in the future is the new challenge.

Balancing a tree structure can support lower latency querying as fewer levels will be

queried as shown in Figure 4.10. Fewer levels being queried results in fewer disk seeks

- 116 -

Chapter 4: Spatial Extensions

as not as much data needs to be searched. However this is only an advantage for trees

with a large number of levels and that are not distributed.

The tree structures used in Antares have a limited height as GPS are only accurate to

four meters therefore there is never any need to divide grids/nodes any further after

that meaning that the tree does not get any deeper. Data is just entered into the leaf

nodes from there on. Therefore it is advantage to remove the cost of balancing the tree

and having some branches which are longer as they will not increase query response

time to the database.

For example a Kd-Tree of the whole world and having been split to the maximum

depth, the height would be 15,000. So each degree is approximately 111 km (111.2 km

for the latitude), therefore 4 m is equivalent to 0.036 degrees (rounded to the nearest

two significant numbers). A world grid would be constructed of a 10,000 degrees x

5000 degrees therefore if each grid was split to 0.036 there would be 15,000 levels in

the tree. Therefore searching in-memory, down one branch is not data intensive and is

done quickly. Then only the leaves are added to the query to be sent to the database.

This is because the database will still query the same number of nodes, whether it is

balanced or not. The cache search executed maybe a few milliseconds longer (worst

case) but it will be negligible.

- 117 -

Chapter 4: Spatial Extensions

Figure 4.10: An unbalanced tree being balanced

To reduce the chance of bottlenecks the tree is copied and distributed across a number

of clients as shown in Section 4.4.2, therefore keeping it unbalanced helps to reduce

execution time of queries and increases ingestion rate. If the tree were balanced a

global lock would be required blocking all queries and ingestion until the tree was

balanced. This would therefore reduce ingestion rates and increase query response

times.

Antares exploits the eventually consistent nature of Cassandra to yield increased avail-

ability and avoid data loss. This is done by always accepting writes and then checking

and updating consistency eventually using a time-out – this is explained in detail in

Section 4.5. Consistency can only be eventual because the data is immutable and only

the pointer to the data location changes.

A typical disadvantage of using tree structures is query hot spots. This is where

positions in the tree such as the root node become query heavy. This increases waiting

times for queries to start executing and increases query response times. Antares avoids

these hot spots by exploiting the distributed nature of Cassandra. The divides are

- 118 -

Chapter 4: Spatial Extensions

based on write hot spots rather than load. This is because each node is distributed

across the cluster non-sequentially, therefore the reads will also be distributed.

Each query to a tree node uses one CPU. Therefore queries can be executed in parallel

if there is more than one CPU. Consequently as there are only a fixed number of CPUs

the fewer queries executed (less tree nodes searched) the lower the response time as

the execution will have a higher parallelism. The parallelism of the query is directly

dependent on the number of CPUs. Once each CPU is executing a query then the

queries wait to be executed.

Antares was designed to exploit this advantage. As data is entered into the tree it is

split and pushed down the tree to the leaf nodes. Therefore the root node and tree

nodes which are not children do not need to be queried. This is demonstrated in Figure

4.11 here the nodes marked with crosses are not included in the query submitted to

the database.

Figure 4.11: Nodes which are not queried as they hold no data

Therefore there are less queries to execute and the response time is reduced.

Another advantage Antares has is that all of the tree nodes are not written sequen-

tially to the Cassandra cluster. This results in queries being distributed across the

cluster. As a result there is not a single point (e.g. the root node) where queries are

concentrated, which prevents hotspots. Potential consistency issues and solutions are

described in detail in Section 4.5.

- 119 -

Chapter 4: Spatial Extensions

The three structures evaluated in Section 4.6.2 are a Kd-Tree, Quad-Tree and a Geo-

hash structure.

4.4.4 Kd-Tree

After deciding that a tree structure would be optimal for append only geospatial data,

as there is no lock required, the tree will not need to be balanced and is used for

holding keys not the data itself. The first structure implemented in Antares was a

Kd-Tree [69], which offers a simple tree structure to execute the algorithms over. A

Kd-Tree is a derivative of a binary tree, therefore each parent has two child nodes.

Each node contains the number of data entry points added, the number of children

and their ids, the capacity of the node and the node id.

Each node also contains a bounding box. A bounding box is the region (or grid) that

a node owns, and is used to dictate where spatial data is stored in Cassandra – the

node id is the key used to access the data. The id, constructed from the top left and

bottom right co-ordinates as shown in Figure 4.12, is used to determine if a point is

contained in the bounding box’s geographic region. Therefore given a world map, the

area of this geographical region is described by using the co-ordinates of the top left

corner and the co-ordinates of the bottom right corner, this region is a “grid”. This

“world grid”, shown in Figure 4.12 represents the root node’s bounding box. When the

tree is first instantiated it contains only one node (the root node), as this represents

the “world grid” all points are contained in the bounding box. This results in all data

being stored to the data store with the root node id. Once the capacity of the root

node is exceeded the bucket and node are “split”.

- 120 -

Chapter 4: Spatial Extensions

Figure 4.12: A node and its values

Figure 4.13: Grid represents a Kd-Tree

Figure 4.14: Kd-Tree

Figure 4.13 shows the grid of a Kd-Tree, node A is the original root node that has now

- 121 -

Chapter 4: Spatial Extensions

been split twice, first into node A and B and then node B has been split into nodes

D and E – this is because the node capacity was exceeded. The new nodes now own

the data in that grid, not the parent. Figure 4.14 shows the Kd-Tree which is mapped

from the grid shown in Figure 4.13.

4.4.5 Quad-Tree

The second structure implemented into the tree was the Quad-Tree [71]. This differs

from the Kd-Tree as each grid is split into quadrants, resulting in the parent node

having four child nodes. As shown in Figure 4.15 the root node A again contains all

of the data until the capacity is exceeded. Once this happens the grid is split into

quadrants, these are nodes B, C, D and E. In this figure node B is also split as it has

exceeded the node capacity. This is then mapped to the tree shown in Figure 4.16.

Figure 4.15: Grid representation of a Quad-Tree

- 122 -

Chapter 4: Spatial Extensions

Figure 4.16: Quad-Tree

4.4.6 Geohashing

The third structure is a geohashing algorithm [71], which is essentially a tree structure

where parents have 32 children. It uses base32 to encode the latitude and longitude

taken from the input data. This involves recursively splitting the node into 32 grids,

which represent each of the child nodes. This means there are very fine-grained grids

and the tree’s depth is much shorter than the others. The tree starts with the same

root node as the other two, with a grid covering the whole world, the parent node is

split into 32 children. This continues as the data is ingested and stops when splitting

the grid would become irrelevant (i.e. when the size of the grid becomes smaller than

the accuracy of the device, for example, GPS is accurate to 4 meters). The structure

is usually used for proximity queries as the data is stored predominately by locality.

Therefore if you execute a proximity search then data points are saved on the disk

closer together, therefore there is no requirement for large scans and it reduces the

query response time.

4.4.7 Schema

A schema was designed, shown below, and developed to store the geospatial data into

Cassandra. It uses the traditional column family model, as Cassandra is unaware of

the indexing layer. The row is made up of a rowkey, lat (latitude), lon (longitude)

- 123 -

Chapter 4: Spatial Extensions

and value. The column name can also optionally include time, which adds a third

dimension to the data. The composite column of latitude, longitude and optionally

time provides a secondary index for querying, which is referred to as wide rows. The

value is a JSON object of the data point content.

CREATE TABLE geo(

lat text,

lon text,

time text, --optional

value text,

PRIMARY KEY (lat, lon, (*time)))

*time is an optional attribute if it is not

mentioned then it is not a primary key

The schema was modified from the previous tweet geo. It was extended to include

latitude and longitude to support more complex querying.

The rowkey is a special unique key which identifies the row (the equivalent to a grid

in the ”world grid”, i.e. a tree node). The tree uses this rowkey as a pointer to the row

in the database. The tree only holds this pointer not the actual data - that is stored

in the database.

4.4.8 Query Mapping

The architecture maps queries from the tree structure in-memory to the Cassandra

database without the database knowing anything about the indexing layer. The ad-

vantage of using this layered approach is searching for index keys can be done in

memory and the database is only required for the retrieval of the data itself.

This section discusses the mechanisms used for this and demonstrates how the original

user entered parameters are converted into a query to be executed across Cassandra.

The user chooses a viewport in the browser to display the points contained within

that rectangle. The top left co-ordinates and bottom right co-ordinates are given to

the indexing layer, these are then used to search the tree using the range algorithm

described in the next section. These searches are executed in-memory over a tree

structure held on a different “client-server”, which is not held on the Cassandra cluster.

- 124 -

Chapter 4: Spatial Extensions

Once the correct node or nodes are found which hold data contained in the user-

specified grid then the keys from each of these nodes is used to compile a query to be

executed over Cassandra. Single key querying is used as it improves the performance

of Cassandra, which is optimised for single index queries. If multiple keys are found

(i.e. the viewport crosses more than one region) then the additional queries are added

to the query using the IN keyword. The IN keyword is used as it allows the queries to

be executed as if they were a set of different queries and in parallel, therefore response

time will be reduced. The keys are taken and entered into the following queries to be

executed over Cassandra.

Q1(topLeft, bottomRight)

SELECT * from geo

WHERE key = topLeft+bottomRight

Q2(topLeft, bottomRight, starttime, endtime)

SELECT * from geo

WHERE key = topLeft+bottomRight and time > starttime and time < endtime

These are executed across Cassandra and then this is returned and displayed in the

browser-rest used to enable this

4.4.9 Spatial Algorithms

Sets of novel algorithms were implemented for searching and inserting data into Cas-

sandra. Data was collected from streams and inserted efficiently and quickly into the

database using the novel cache and algorithms designed and developed for Antares.

There is a basic set of algorithms, which are used to search the data to provide efficient

low latency response times so that a viewport can be rendered in a browser for a user

to analyse. The algorithm’s principal constraint was to return in a few milliseconds to

enable quick and simple rendering of data points at the client.

4.4.9.1 Insertion Algorithm

The Insertion Algorithm, as shown in Algorithm 2, searches the tree to identify the

correct node to insert the data into Cassandra. This is done by recursively traversing

- 125 -

Chapter 4: Spatial Extensions

the tree for the node containing the minimum-bounding box. The data is inserted into

the data store (Cassandra) using the co-ordinates from the minimum-bounding box as

a row key.

Algorithm 2 Insert

int capacity # limit of points in a node
geo point # an object made of a latitude and a longitude
geo region # the bounding box which represents a geographic area on a map
a key is the identifier for a record in the database made of a top left coordinate
and bottom right coordinate
Object node # contains all keys for that region
int maxHeight this is the maximum height of the tree
int height this is the height of the tree at runtime
int numberOfNodes # this is the number of nodes contained in the tree-the struc-
ture the nodes are contained in
int numberOfPoints # the amount of data that a node contains at runtime
int capacity # the limit of the number of key entries per node
list a1...an # a list of predicates
predicate p # this is the query predicate
database h # this is the historic store where tweets have been stored
tweet x is Twitter data which contains a latitude, longitude
and optionally time - the data is take from a stream of tweets s
input: tweet x
if numberOfNodes<1 then
node = new node

end if
if x.point contained in node.region then

if node.numberOfPoints < capacity then
INSERT INTO h VALUES (x)

return boolean true
else if height < maxHeight then

Split(node, data)
else

INSERT INTO h VALUES (x)

end if
else

Insert(x)
end if

The next algorithm described is the Split Algorithm displayed in Algorithm 3. Algo-

rithm 3 requires a node to split the data being entered and the number of new nodes to

instantiate. This example uses the Kd-Tree structure, for simplicity. When a bucket

exceeds the capacity, the node’s bounding box is split into two new bounding boxes

and two new nodes containing these. The grid is divided by alternating between lat-

- 126 -

Chapter 4: Spatial Extensions

Algorithm 3 Split

This algorithm splits a node into two nodes and points from the original node are
inserted into the new nodes. The points are then removed form the original node

Require: node, data
Object node1
Object node2
geo point # contains a latitude and longitude
int count # keeps a count of each search through the tree to split the bounding
boxes alternatively
geo region # geographical area represented by a top left co-ordinate and a bottom
right co-ordinate
Object key # represents a row in the database and is the top left co-ordinate and
bottom right co-ordinate
if count % 2 == 0 then

latitude halved and two new regions created
region.latitude/2
node1.region = region1
node2.region = region2

else
longitude halved and two new regions created
region.longitude/2
node1.region = region1
node2.region = region2
if point contained in node1.region then

database is updated to ensure:
node.key = node1.key
return true

else
database is updated to ensure:
node.key = node2.key
return true

end if
end if
delete points from node

- 127 -

Chapter 4: Spatial Extensions

itude and longitude. The data must then be moved from the parent node to the two

new child nodes.

Comparing the bounding box co-ordinates with the row keys of these child nodes allows

the data to be inserted into the matching grid. After that, the data that was contained

in the parent node is deleted. As this is done queries are still accepted. Each client

node can access the data at any point or split the data at any point, which can cause

consistency issues. How this is dealt with is described in Section 4.5.

4.4.9.2 Point and Range Algorithms

Two algorithms for searching the tree were also implemented – these can be seen

in Algorithm 4, Point Query, used to find any data associated with a specific point

(represented by a latitude and longitude) in the database. When it is executed it

traverses the tree to identify the minimum-bounding box. Once this has been identified

a query using the bounding box co-ordinates and the point’s latitude and longitude is

sent to Cassandra. Any node can accept the query then the correct node, which holds

the data, is sent the query by checking the token.

Algorithm 5 is called Range Query and allows any four points to represent a region

on a map: the query then returns all the points in this area. This is more complex

than a point query as it requires querying multiple buckets to find the points from a

user-defined grid, which may intersect many or few of the grids defined in the tree.

The index is traversed to identify the path of the tree, which contains the minimum-

bounding boxes that intersect the user-defined grid. Once identified the id of the

nodes containing the points are used to query Cassandra. As described earlier the

data points in the tree are pushed down to the leaf nodes. Once the path of the

intersecting grids has been calculated, nodes which do not contain data can be pruned

from the path. Therefore the root node and other inner nodes can be pruned as the

data they contained has been pushed down the tree to the leaf nodes. When a query

is decomposed in Cassandra the parallelism is dependent on the number of CPUs to

execute each query parameter, therefore if there are less parameters then this exploits

the database’s parallelism and response times are decreased.

- 128 -

Chapter 4: Spatial Extensions

Algorithm 4 Point Query

geo point # contains a latitude and longitude
geo region # geographical area represented by a top left co-ordinate and a bottom
right co-ordinate
Object node1
Object id each node id corresponds to a row id in the database
int capacity # the limit of the number of key entries per node
int numberOfPoints # the amount of data that a node contains at runtime
Object Tweet # this is a Tweet which contains a status, timestamp, co-ordinate
and user information
geo tweet.point # this is a point (latitude and longitude) contained in a tweet
input: point
if point contained in node1.region AND node1.numberOfPoints <capacity then

SELECT $Tweet$ FROM hs WHERE key=node.id and tweet.point = point

return Tweet
else
node1 +1 # move to next level of the tree

end if

Algorithm 5 Range Query

Object node1
geo region # geographical area represented by a top left co-ordinate and a bottom
right co-ordinate
int capacity # the limit of the number of key entries per node
Object key # a key is the identifier for a record in the database made of a top left
coordinate and bottom right coordinate
input: region
if region intersects node1.region AND node1.numberOfPoints <capacity then

SELECT $Tweet$ FROM hs WHERE key=node.id

return list Tweets
else
node1 +1 # move to next level of the tree

end if
return Tweets

- 129 -

Chapter 4: Spatial Extensions

4.4.10 Extension to Querying Model

Antares uses a simplified querying model to support scalable and low latency querying

of geospatial and temporal Twitter data. Extensions to the query model could support

a wider range of querying in this section geospatial querying options implemented by

the NoSQL database MongoDB are discussed and how the system would be extended

to include these described.

A radius query or near by query could be implemented to support the function of

finding nearest neighbours or nearby places. The current indexing layer and database

would still be untilised for scalability and low latency. When a query was executed

it would return the grids that intersect the radius. Once this is returned then an in-

memory search would remove the points which were not contained within the radius.

This can be calculated using this formula (xi − x)2 + (yi − y)2 if this is less than the

radius2 then it is within the circle, if it is equal it is on the edge of the circle and if it

greater it is not in the circle. The performance would decrease but as the processing

is handled in-memory which would speed the processing up. The database will also

still provide low latency and scalable querying as the structure has not changed.

Another function would be to allow polygon querying, this would be implemented in

the same way only the equation for calculating a circle would not be used. polygon

shapes could also be introduced in the same way using the same indexing structure.

To add deletion or modification to the index would be complex and would reduce

performance unnecessarily as the aim of the system itself was to provide scalable

storage of Twitter data so that it could be replayed and processed. As Antares provides

scalable and low latency querying there is no need to delete data and if it is modified it

can be re-added and the timestamp would provide a means of deciding which is newer.

The requirement was to allow all data within a given time bound to be processed

therefore the data should not be removed or the aim is not met.

4.5 Consistency

As previously mentioned Antares uses a cache for storing keys (pointers to the geospa-

tial data), querying them and constructing queries. This is distributed over clients to

- 130 -

Chapter 4: Spatial Extensions

stop bottlenecks, which can lead to consistency issues. This section addresses each of

these issues and the solutions that are implemented by Antares. The following scenar-

ios cover all use cases when using this simplified querying model for reads and writes

and because the system is append-only.

4.5.1 Scenarios

This section describes different consistency scenarios and the solutions implemented

by Antares.

Read:

The first set of scenarios covers consistency challenges while retrieving data.

Scenario One:

Problem: Client 2 owns a leaf node (Node B in Figure 4.17) that has exceeded the

limit; therefore the client splits the node and starts writing to the child nodes. However

only Client 2 executes a split function, the rest of the clients do not. Then because

Client 1’s cache is stale, it writes to Node B. Then Client 2 reads from Node D. In

this scenario the stale cache has resulted in new data being written to an old source,

therefore not all data related to this query is read and becomes lost in nodes that are

no longer queried.

Solution: When Client 2 reads from Node D, it also reads from Node B to ensure,

if there is left over data, Antares reads all data that has been written to Cassandra.

This ensures that even if other clients are stale this does not affect the system and

data is read from old caches too.

- 131 -

Chapter 4: Spatial Extensions

Figure 4.17: Scenario One

- 132 -

Chapter 4: Spatial Extensions

Scenario Two:

Problem: Client 2 owns a leaf node (Node B shown in Figure 4.18) that has exceeded

the limit; therefore the client splits the node and starts writing to the child nodes.

However only Client 2 executes a split function, the rest of the clients do not. However

this time Client 2 writes to Node D, then Client 1 reads from Node B. This is the same

problem: the queries will not return all of the data, as some of the caches are stale.

However this time the problem is with the downward path of the tree.

Solution: As Client 1 does not know that Node D exists it doesn’t query the new

node in Scenario Two. However if Client 1 also queries potential children nodes, then

it would be able to return the data, but how does it do this when it doesn’t know

it exists? As Antares splits the grids at each level of the tree, the key for the node

can be calculated at every level. The potential height of the tree is known from the

user-defined configuration. Therefore, the child nodes’ co-ordinates can be calculated

by splitting the nodes using the Split Algorithm. This means a new node’s id can be

calculated and queried by the indexing layer without it having to know if it has been

created yet.

Antares also knows the potential height of the tree and therefore the amount of po-

tential leaf nodes. The potential new node id is worked out and added to the query, if

it returns data then the client knows its cache is stale. Therefore a split is performed

on the node, then another query is sent out to check if the newly split node is a child,

if it returns true, do nothing more, if it returns false then another split is executed.

As shown in Figure 4.18 Client 1 would need to split Node B to become consistent.

This continues until the client is no longer stale, the trade off for this consistency is

the extra queries to the database. However all the data will be returned whether the

cache is stale or not. The system also has no global locking therefore it does not block

while this is being executed. Only one client will block and all other clients will still

accept data and queries.

Write:

The next scenarios describe consistency problems while writing data.

Scenario Three:

- 133 -

Chapter 4: Spatial Extensions

Figure 4.18: Scenario Two

- 134 -

Chapter 4: Spatial Extensions

Problem: As points are written to Antares the index can become inconsistent because

each client is a standalone machine and responsible for its own data. If the client has a

node which has exceeded its limit then the node is split. This however does not mean

that the node is split on any other client, as demonstrated in Figure 4.19. If the client

had a heavy write load and no reads came through then there would never be a check

to see if the cache was stale or not and the clients could all be out of sync by varying

levels in the tree.

Solution: Antares employs a time-out in which the cache may be stale, once this is

exceeded a query is sent to the database to ensure the current leaf node is a child

node, if this is true then the node is split. Every node executes this. This ensures that

all stale caches will become eventually consistent and the scenario described cannot

happen.

In Scenario Three if Client 2 had timed out then the node id of Nodes B and C would

be queried to identify if the database had a true boolean value for “is a leaf node”.

In this scenario the database would return false for Node B –as Clients 1 and 3 have

split– and true for Node C. Therefore Client 2 would execute the Split Algorithm on

Node B pushing all of the data to the new Nodes D and E and returning Client 2 to

a consistent state. Queries to Client 2 will be blocked as the split is executed but can

be accepted by other clients. The client will also continue to ask the database “am I

a leaf node?” until that branch returns true.

- 135 -

Chapter 4: Spatial Extensions

Figure 4.19: Scenario Three

Scenario Four:

Problem: If Client 2 has written to Node C during the timeout then there is data

written to the wrong node up the branch. Therefore that data is written in the wrong

tree node and is now lost to the user as the tree grows.

Solution: To solve the problem described above when the time-out is exceeded all

data is pushed down the tree to the leaf nodes, ensuring the trees are consistent across

the client nodes. Client 2 realises it is inconsistent by querying the database, it then

splits Node C into Node D and Node E, and all extra data is pushed down the tree.

If the limit is exceeded then the tree is split again into Node F and G. This is done

recursively until the tree has reached the child nodes. Each of these adds a round trip

to the database but at the price of the consistency as each time the leaf is split there

is another query to the database to check that it is consistent.

A query is executed that selects all data points with Node D’s id and then these are

split into Node E, the number of data points in Node E is then checked and if it

exceeds the limit the node is split into two new nodes, this is executed recursively

until all nodes have a number of data points under the configured node capacity, as

- 136 -

Chapter 4: Spatial Extensions

shown in Figure 4.20.

Figure 4.20: Scenario Four

4.6 Evaluation

The next section of this chapter evaluates the new geospatial querying mechanism de-

signed and deployed in Antares. The motivation was to support the geospatial query-

- 137 -

Chapter 4: Spatial Extensions

ing research being undertaken by the social scientists. This led to a novel geospatial

querying mechanism designed to exploit the scalability of NoSQL technology. The next

experiments demonstrate the scalability of Antares and how efficient the indexing is.

4.6.1 Read Performance

This experiment was designed to show the efficiency and scalability of the new mech-

anisms to support searching for geospatial data to display within a browser.

Managing the markers in a viewport was troublesome and caused many problems.

The original solution would return response times that were so long the request would

time-out. This was addressed by the design of a new tree structure and algorithms

described in Section 4.4.

To evaluate the new geospatial mechanisms, increasingly large geographic areas were

queried. The area was increased to replicate the zoom out functionality required for

the user to analyse the data. The first experiment was executed on one machine to

prove response times for Antares were quick enough to render the map without a

browser time-out. The second set of experiments evaluated the scalability of Antares

by increasing the size of the cluster.

The first experiment shown in Figure 4.21 used a one-node cluster of the previously

defined Amazon cloud machines. Twitter data was written to the database so the

queries were executed across a pre-populated database to evaluate the search capabil-

ities of the cache and algorithms. For this experiment, the client was not distributed

as distributing the client has little affect on reads. However multiple levels of the tree

were still queried as if they had been distributed (as described in more detail in the

previous Section 4.4.9).

As demonstrated in Table 4.1 all of the results are returned in under 27 milliseconds

for a Kd-Tree implementation. This has dramatically improved response times and

has provided fast enough querying to visualise the data for the user to analyse when

compared with the Solr implementation for geospatial querying with Cassandra. This

is demonstrated in Figure 4.21, however as the difference in mean response times is so

large Figure 4.22 demonstrates mean response times for between 100-1,000 km2.

- 138 -

Chapter 4: Spatial Extensions

–percent

The experiment ranged from 100 km2 to 2,000 km2 – the area was not extended after

this as Solr could not query a larger area without timing out. This demonstrates

the capability of Antares to support large area searches while zooming in, out and

panning. The optimisations reduce the response time by a factor of 10 for smaller

areas and approximately a factor of 5,000 for larger areas. This is a vast increase in

performance, this was achieved by simplifying the query model. Antares is required

to store all data so it may be queried at a later date, therefore it is an append only

system. This allows Antares to out-perform other systems such as Solr as the querying

model is simpler, which supports more efficient writes. This is how such a large gain

in performance is achieved.

km2 Solr Antares: Kd-Tree Percentage Saving (%)
100 69.8 6.9 90.11
250 102.44 15.16 85.2
500 259.96 17.5 93.26
1000 570.32 31.8 94.42
1500 78729.36 23.02 99.97
2000 130813.12 26.48 99.98

Table 4.1: Mean response time (ms) for Solr compared with Antares for increasingly
large areas (km2)

Figure 4.21: Mean response times for geospatial querying (up to 2000 km2)

- 139 -

Chapter 4: Spatial Extensions

Figure 4.22: Mean response times for for geospatial quering (up to 1000 km2)

Figure 4.23: Percentage saving Antares

The second experiment was executed across the Amazon cluster, and after each ex-

periment a node was added to the cluster. The cluster was already populated and the

experiments were used to evaluate searches across Antares. As the response times were

so small the scale tests were executed using 1,000 km2 areas. For each experiment an

additional node was added to the cluster after the other was finished. The scale tests

were executed across Antares clusters which implemented the Kd-Tree, Quad-Tree

and Geohashing. The experiments in Figure 4.24 show the increase in nodes provides

- 140 -

Chapter 4: Spatial Extensions

scalable and quicker response times for querying. The percentage saving in Figure

4.23 shows an improvement of over 85% for each cluster, which demonstrates the huge

improvements made by Antares.

number of machines Antares: Antares: Antares:
Kd-Tree Quad-Tree Geohashing

1 31.80 3.56 2.00
2 8.55 1.21 2.13
3 4.61 1.50 1.54
4 8.55 1.16 1.40

Table 4.2: Mean response time (ms) for Antares as the number of nodes increases

Figure 4.24: Mean response times for map queries as the number of nodes increases

4.6.2 Scale Experiments Comparing Different Structures in
Antares with Different Systems

In this section Antares was deployed on the cloud and its performance evaluated by

comparing it with current NoSQL spatial querying frameworks, Solr and MD-Hbase.

Solr uses Lucene on top of Cassandra to index spatial data. MD-Hbase is an extension

of Hbase. A spatial dataset of 10 million geotagged Tweets was inserted into these

NoSQL databases in preparation for experiments that compare the read performance.

Solr uses a Prefix Tree to index the spatial data. This tree employs geohashing to

search the tree using prefixes. It is an ordered dynamic tree structure, which uses keys

of type string. Described in greater detail in Section 4.4.1 As nodes are added to the

cluster a tree is created for each one. The structure is then responsible for maintaining

- 141 -

Chapter 4: Spatial Extensions

data on that node only. The queries were also executed across an MD-Hbase cluster (as

previously mentioned in Chapter 3). This spatial querying system uses an in-memory

structure also, but uses a z ordered curve for querying the data.

The specification of the machines used for this experiment are as follows: 15 Gb ram,

4 cores, 4 * 420 GB of storage, 64 bit and 1000 Mbps I/O performance. Each of the

nodes in the cluster was pre-populated before the experiments were executed across

the cluster.

The experiments compared the performance of the Antares system with Solr and MD-

Hbase. The experiments were executed over an increasing number of machines. The

query area is also increased and the response time measured.

The first experiment deploys a single node cluster for Solr, Antares and MD-Hbase.

For each of the experiments the Tweets were replayed and written to the database, so

that each node was pre-populated with spatial data. Each query was then executed

specifying a geographical region. The region was increased in size for each execution

and the response time recorded. The system executed the queries across a Kd-Tree,

Quad Tree and Geohashing. The full set of results is demonstrated in Table 4.3.

The table contains n/a for some of the MD-HBase values; this is because the queries

only accepted integer values not doubles. A degree is approximately equal to 111 km

and MD-HBase uses co-ordinates to specify the region being queried. Therefore the

experiments could only be executed in approximately 100 km increases.

- 142 -

Chapter 4: Spatial Extensions

km2 MD-Hbase Antares: Antares: Antares: Solr
Kd-tree Quad Tree Geohashing

50 n/a 6.96 5.05 3.08 35.28
100 103.95 6.36 2.3 3.12 34.76
150 n/a 6.95 2.30 3.375 38.72
200 99.5 6.17 2.44 2.4 42.04
250 n/a 15.16 2.6 4 52.36
300 n/a 12.18 1.72 3.72 61.96
350 125.1 14.52 1.52 1.71 72
400 n/a 13.13 2.84 3.48 62.88
450 223.4 14.32 6.14 3.04 99.24
500 n/a 17.6 1.52 2.72 80.48
550 365.55 18.05 1.52 5.5 139.76
600 n/a 13.67 3.55 2.5 130.32
650 448.9 14.57 1.83 2.04 155.04
700 n/a 14.16 1.52 1.68 187.96
750 n/a 12.55 2 1.72 224.64
800 417.8 13.045 2.32 2 251.56
850 n/a 19.25 3.28 1.6 304.6
900 463.05 19 4.08 1.44 333.68
950 n/a 19.88 5.4 2.92 368.52
1000 413.2 31.8 3.56 2 458.6

Table 4.3: Mean response times (ms) for each framework across a one-node cluster

As shown in Figure 4.25, a one-node cluster employing the Kd-Tree decreases the

response time for a small region query by a factor of 6 when compared with Solr.

The response time is decreased by a factor of 14 for a query region of 1,000 km2.

The performance of Antares improves by over 50% for a larger region, because Solr

searches additional buckets when compared with Antares. When searching the bucket

for a user-defined set of points the Lucene filter must then compare each geohash to

the required geographical area to identify whether the point is contained within it.

Antares uses the search algorithm to prune the tree path (number of buckets queried)

so fewer buckets are queried in the data store, which results in fewer disk seeks and

quicker response times. As the nodes in Solr’s Prefix Tree are filled the hash becomes

longer and Lucene has to do more textual comparisons for each point it is trying to

identify.

- 143 -

Chapter 4: Spatial Extensions

Figure 4.25: Mean response time (ms) for geospatial queries executed across different
systems on a one-node cluster

As can be seen in Figure 4.25, MD-Hbase’s response time is over a factor of 10 greater

than Antares when using the least efficient structure (Kd-Tree) on one node. MD-

Hbase’s response time was approximately as long as Solr’s for large regions, but in-

creased by a third for smaller regions on the one-node cluster. This is because the

indexing layer for MD-Hbase has to first be queried to return a starting point for the

query. It then uses this key to execute the query across the database and return the

results. This additional disk seek costs time and can be seen to increase response time

in the results.

The next experiment deployed a two-node cluster for each of the frameworks as shown

in Figure 4.26. Additional nodes decreased the response time for both Antares and

MD-Hbase, however it increased Solr’s response time. Antares improved response

times by a factor of approximately 300 when querying a large region and a factor of

approximately 80 when querying a smaller region compared with Solr, as is demon-

strated in Table 4.4. Solr’s response time increases by over double for a small region

and over 100ms when compared with the one-node cluster.

- 144 -

Chapter 4: Spatial Extensions

km2 MD-Hbase Antares: Antares: Antares: Solr
Kd-tree Quad Tree Geohashing

50 n/a 5.63 1.13 1.24 84.2
100 108 4.25 1.54 1.5 67.08
150 n/a 4.22 1.04 1.58 62.52
200 136 4.88 1.29 1.20 66.76
250 n/a 3.48 1.76 1.08 69.36
300 n/a 4.22 1.17 1.48 69.72
350 111 3.65 1.56 1.5 73
400 n/a 3.42 1.28 1.38 63.52
450 231 3.43 3.21 1.13 70.44
500 n/a 4.91 1.32 1.16 173.08
550 240 3.08 1.24 1.42 282.44
600 n/a 3.48 1.5 1.29 239.84
650 243 5 1.64 1.38 255.04
700 n/a 3.17 1.4 1.42 252.68
750 n/a 3.54 1 1.32 239.68
800 389 3.38 0.96 1.16 491.2
850 n/a 5.09 1.42 1.36 519.84
900 391 5 1.08 1.38 585.80
950 n/a 5.13 0.96 1.28 566.68
1000 391 8.55 1.21 2.13 608.68

Table 4.4: Mean response times (ms) for each framework across a two-node cluster

Figure 4.26: Mean response time (ms) for geospatial queries executed across different
systems on a two-node cluster

As is shown in Figure 4.27 and Figure 4.28, adding a third and fourth node keeps the

response times of Antares at between 3-5 ms but only increased the response time

of Solr. This is due to the distribution of the indexing structure over the servers –

it has to query each node separately. The system described here takes advantage of

- 145 -

Chapter 4: Spatial Extensions

the distribution and the extra CPU power, executing the searches in parallel for each

bucket and returning the values. For a three-node cluster this system is a factor of

9,280 faster than Solr and for four nodes it is a factor of 15,774 faster.

km2 MD-Hbase Antares: Antares: Antares: Solr
Kd-tree Quad Tree Geohashing

50 n/a 5.79 1.92 1.92 5569.08
100 68 3.88 1.46 1.75 5016.08
150 n/a 3.70 1.42 1.58 5027.92
200 49 4.38 1.83 1.79 5475.68
250 n/a 4.46 1.96 1.8 6002.80
300 n/a 4.21 1.5 1.68 6032.64
350 52 3.54 1.46 1.63 5962.56
400 n/a 4 1.46 1.79 5949.88
450 201 3.3 1.29 1.54 7369.88
500 n/a 3.67 2.29 1.68 12346.24
550 188 4.39 1.88 1.58 24758.80
600 n/a 3.83 1.63 1.64 22175.52
650 219 3.39 1.58 1.54 22567.80
700 n/a 3.58 1.63 1.71 23424.92
750 n/a 4.00 2.79 1.88 24738.80
800 254 3.74 1.29 1.8 46077.92
850 n/a 5.63 1.33 1.6 56477.00
900 282 4.46 1.5 1.42 61770.96
950 n/a 5.57 1.46 1.50 64109.56
1000 243 4.61 1.5 1.54 78871.88

Table 4.5: Mean response times (ms) for each framework across a three-node cluster

Figure 4.27: Mean response time (ms) for geospatial queries executed across different
systems on a three-node cluster

- 146 -

Chapter 4: Spatial Extensions

km2 MD-Hbase Antares: Antares: Antares: Solr
Kd-tree Quad Tree Geohashing

50 n/a 4.54 1.54 1.46 5569.08
100 25 5.047 1.58 1.4 5016.08
150 n/a 3.25 1.5 1.36 5027.92
200 68 4.52 1.33 1.6 5475.68
250 n/a 3.5 1.24 1.72 6002.8
300 n/a 4.71 1.33 1.79 6032.64
350 61 6.38 1.38 1.63 5962.56
400 n/a 3.75 1.32 1.75 5949.88
450 84 3.63 1.33 1.33 7369.88
500 n/a 5.25 1.58 1.64 12346.24
550 138 6.13 1.32 1.46 24758.8
600 n/a 3.79 1.29 1.80 22175.52
650 256 5 1.46 1.56 22567.8
700 n/a 3.17 1.52 1.58 23424.92
750 n/a 3.54 1.58 1.44 24738.8
800 246 3.38 1.40 1.64 46077.92
850 n/a 5.09 1.32 1.63 56477
900 255 5 1.29 1.72 61770.96
950 n/a 5.13 1.48 1.6 64109.56
1000 275 8.55 1.16 1.4 78871.88

Table 4.6: Mean response times (ms) for each framework across a four-node cluster

Figure 4.28: Mean response time (ms) for geospatial queries executed across different
systems on a four-node cluster

The four-node Hbase cluster reduces the difference between the Kd-Tree and MD-

Hbase to just over a factor of 6 for small region searches. The Quad-Tree improved the

response time of Antares when compared with the Kd-Tree chiefly for larger regions:

this is because the structure allows more fine-grained querying, therefore the path will

- 147 -

Chapter 4: Spatial Extensions

be shorter and fewer buckets are queried. Antares queries fewer buckets by employing

pruning techniques in the search algorithm, which reduces the response time. This

is true for the Geohashing as well, which reduced response time down to little over

a millisecond. For each of the frameworks the response time decreases as additional

hardware is added to the cluster, except for Solr as previously mentioned. When

compared with Solr the performance of MD-Hbase is similar if not slightly worse for

smaller regions, when executed on a one-node cluster. However once hardware is added

and MD-Hbase takes advantage of the parallelism that is available with more CPU

power then the results diverge. Solr performs increasingly poorly as nodes are added

and is approximately a factor of 290 slower than MD-Hbase, the full set of results is

demonstrated in Tables 4.5 and 4.6.

4.6.3 Writes

The geospatial data also needs to be written to the database. In this next section the

efficiency and scalability of this is evaluated. The cluster was as previously described,

and contained four nodes. It was expected that when the number of clients was

increased, the performance would increase. Therefore additional clients were added

to the system to evaluate if and by how much the performance increased. This is

achieved by adding a new node to generate and send queries, which also stores a local

instance of the tree. By adding clients it is expected that performance will increase as

the rate of Tweets being streamed to Cassandra can be increased. Therefore adding

more clients should remove the bottleneck.

As can be seen in Figure 4.29 the number of writes increases linearly. Therefore adding

clients does scale up the number of writes and prevents a bottleneck. Additionally the

consistency checks mentioned in Section 4.5 do not affect the performance. This is

due to an increase in resources, which increases the data flow to the server. Antares

takes advantage of the increased data flow by using all available resources, therefore

increasing efficiency and allowing the addition of hardware to increase ingestion lin-

early. The consistency checks do not affect the performance as when the client stops

taking requests to become consistent, the other client nodes can keep writing to and

reading from the database.

- 148 -

Chapter 4: Spatial Extensions

number of machines Writes
per second

1 7339.704969
2 13409.23856
3 19628.13933
4 26342.15256
5 33443.591

Table 4.7: Mean response time (ms) for Antares as the number of nodes increases

Figure 4.29: Number of inserts per second as the number of nodes is increased

4.6.4 Conclusion

The geospatial extension that Antares uses provides a scalable and near real-time

mechanism for querying spatial data. The simplified model allows for the queries

to return with reduced response times when compared with other NoSQL geospatial

systems. Antares meets the requirement of near real-time view port querying and has

been used in the Tweet My Street project. This however, is only possible because of

the append only style of the system and the requirement that it be scalable to allow

for data capture to be continual with no time to live limitations. The chapter has also

discussed ways in which this could be modified to provide further functionality in the

future.

- 149 -

Chapter 4: Spatial Extensions

4.7 Conclusion

This chapter has described the spatial extensions of Antares. These extensions support

the scalable and low latency analysis of spatial and temporal data. The querying

model has been simplified to support large scale data viewing and processing. This

was the requirement of Antares and only possible due to its append only behaviour.

The system does make a trade off by providing a simpler querying model however

suggestions of how this can be improved were given earlier in the chapter. The scale

of the data displayed and processed is the advantage Antares gains over other systems

which use noSQL for geospatial querying. Antares also supported a large reduction

in query execution time providing low latency analysis of the data which supports

the real-time querying requirement of the system. Anatres additionally accounts for

consistency problems and uses mechanisms to ensure that the system is eventually

consistent. This chapter has demonstrated the scale and low latency querying of the

Antares cache for geospatial querying which is the third contribution described in this

thesis.

- 150 -

5
Application to Twitter

Contents
5.1 Introduction . 152

5.2 Social Media Analysis . 152

5.2.1 Conclusion . 158

5.3 User Interface . 159

5.4 Tweet My Street . 161

5.4.1 West End of Newcastle . 162

5.4.2 International Day Against Homophobia and Transphobia . . . 164

5.4.3 Psychology . 165

5.4.4 Conclusion . 165

- 151 -

Chapter 5: Application to Twitter

5.1 Introduction

A layered approach to analysing temporal and spatial Twitter data using a system

called Antares has been described in earlier chapters. Antares uses streaming, historic

and combined querying mechanisms to analyse Twitter data. It provides scalable in-

gestion rates of the Twitter firehose and provides low latency querying for temporal

and spatial data extending on current streaming and historic processing technologies.

This layered approach supports the scale and low query responses times required to

handle high volume and velocity stream data. Antares has been used within a cross-

disciplinary project called Tweet My Street to analyse Twitter data collected around

different events. This chapter discusses the different technologies and mechanisms used

to process social media data and compares these approaches with Antares. The user

interface which displays the Twitter data for user analysis is then described and the

projects that have used Antares explained to demonstrate how the querying mecha-

nisms were derived and used in the real world.

5.2 Social Media Analysis

Social media generates vast amounts of data per second and these datasets can be

used to derive useful insights. This section investigates different uses for social media

and then focuses on Twitter analytics. Antares uses Twitter analytics to evaluate

the system and for research projects, therefore establishing current technologies and

research supports identifying improvements in this area.

YouTube is popular for its video content. [85] looks at how content affects the popu-

larity of the video. It can also be used to support the improvement of health issues.

Facebook is being used to help arthritis sufferers, by trying to promote educational

programmes [86]. Social media is even used to monitor the outbreak of war and civil

unrest [87].

The emergence of cloud computing has provided cost-effective, pay-as-you-go capac-

ity to process big data economically. It has encouraged the exploration and analysis

of datasets collected from the Internet, which has led to research investigating so-

- 152 -

Chapter 5: Application to Twitter

cial media. Twitter is a huge producer of data, which is available by connecting to

the firehose. Research investigating Twitter analysis has previously concentrated on

various components of the Tweet itself: [39] rates news sites by counting their URL

mentions, [88] counts the number of followers that a user has, exploring celebrities and

their followers, [89] focuses on defining trends by the co-occurrence of words within

Tweets and [60] describes a mechanism for determining popular messages on Twitter

so they can be forwarded to people who are following fewer users. Other components

of Tweet metadata that are being investigated are gender and location [90]. Twitter

can be used as an opinion-sharing network, to establish on-line tensions, with [91]

using sentiment analysis to track racism in football. It uses Cosmos [92], which is a

system that uses sentiment analysis and machine learning to detect tensions. As an

opinion-sharing network Twitter does not guarantee reliability of the content of its

messages; [93] questions this by asking how Tweets mirrored the real-life results of the

NBA playoffs. Exploring the content of Tweets through analysis of hashtags allows

topics and trends to be identified [94]. Timely and consistent information is of high

importance in emergency events, so low-latency querying and near real-time results

are vital, which is shown in [61].

Stream analysis can be used to detect events such as [95] and [6]. TEDAS mentioned

in [96] also uses stream data, to rank Tweets and predict locations in real-time. This

paper [97], researched data collected from Twitter around the Egyptian and Tunisian

revolutions. It has shown that it is an additional source of information to the news

about on going events around the world. A public radio presenter, Andy Carvin, used

Twitter to make sense of different information about the Arab spring uprisings and to

link demonstrations and the people involved.

Bollen et al [98] delve into sentiment analysis to discover how that information can

be used to predict the stock market. Investigating how Twitter feeds correlate with

the Dow Jones Industrial Average, they found that changes in public sentiment can

be tracked from the content of large scale Twitter feeds using relatively simple text

processing and that changes in the sentiment were responsive to a number of socio-

cultural drivers. Data from social media is not simply background noise there are

strong correlations and relationships with activities, actions and issues in the offline

- 153 -

Chapter 5: Application to Twitter

world.

The availability of geo-located social media and rise of mobile usage is presenting both

an opportunity and a challenge in terms of the analysis of the data produced. Geo-

tagged Twitter data gives an understanding of what may be occurring in a given geo-

graphic location at a given time, providing a dialogue of what is happening within com-

munities on a day to day basis or during significant events. [99] found that analysing

geographic data over time can give interesting insight into events such as natural dis-

asters like Hurricane Irene or public disorder events like the London Riots of 2011.

Tweets were also found to be useful in gauging the severity of the situation on the

ground.

There is recognition of the quantity of social media data available and the value it

has in supporting research in the social sciences. Analysis of said data has proven to

be possible and congruent with events and systems in the offline world. There is still

scope for improved access, tooling and scalability to aid exploration of Twitter data

in order to better understand the data and aid further research.

A theoretical paper that discussed the idea of a Microblogs Data Management System

is introduced in [60], this discusses the requirement of a management system which is

tuned and can control microblogging data. It discusses the importance of temporal,

spatial and keyword searches - these are the characteristics which Antares bases its

queries. The temporal aspect of the querying is defined as the most important and

should be included in all queries - this is the approach Antares uses to ensure recency

of data and to decrease the result set size to support quicker querying and relevant

data. The architecture itself would use a query engine and memory indexer - providing

a combination of in-memory querying and historic querying to support lower latency

querying. The system must be able to support high ingestion rates so that data is not

lost from the high volume and velocity streams of microblogging sites. Antares agrees

with this and implements a feature to allow for this. The design introduces a memory

indexer to provide a solution which will monitor the hits to memory and the usage of

the data stored in memory to optimise querying. Antares uses a different approach

layering the system to use a stream processing system for immediate processing and

low latency database queries for historic and wider ranges of querying. The paper also

- 154 -

Chapter 5: Application to Twitter

alludes to the most prominent queries being top k to reduce the query time and enable

scalable processing - as the data sets produced from microblogging sites are so vast.

Antares uses its scalable nature to return the entire result set a user requests bounded

by time, space or keywords - this is because of its scalable nature a feature requirement

of the system. The Microblogs Data Management System is similar to Antares is some

ways however is more focused on optimising queries in memory and with smaller result

sets, Antares instead focuses on scaling Twitter analysis so that query result sets are

not constrained but do return with enough low latency to support the combination of

historic and stream processing. Both systems however show a design for high ingestion

rates, which Antares supports and has been proven to support this by evaluation using

a simulated stream of Twitter data.

There are other applications that collect and analyse Twitter data, a selection of the

most important of these is discussed below.

1. Collaborative On-line Social Media Observatory (COSMOS): A product of an

Economic and Social Research Council (ESRC) strategic “Big Data” investment

that seeks to bring together researchers from different areas to explore the dif-

ferent dimensions of social media data [92]. COSMOS is an example of an ap-

plication which is designed for academic users. It is presented in both a desktop

application and also an on-line version that benefits from scalability. The desktop

application does not have the ability to scale but does provide a suite of visu-

alisation and data exploration tools. Visualisation is customisable and provides

textual/trend analysis, geographical mapping, relationship mapping and other

more generic charting tools. Data sources on the desktop edition are limited

to imported historical data and data taken from the Twitter Search API [100].

COSMOS makes use of other contextual data such as a persistent connection to

the UK police API. Use of the Hadoop environment allows the application to

scale, whilst storing the tweets in MongoDB. Instantaneous searches are available

over the MongoDB datasets, however this is done through the use of in-memory

indexes that are costly in terms of resources, with 24GB RAM required to search

across one month of Twitter Search API output.

- 155 -

Chapter 5: Application to Twitter

2. TweeQL and Twitinfo: Twitinfo is a Twitter analysis web platform which sits

on top of TweeQL a Twitter querying language based on Twitter to support

processing of unstructured Twitter data into structured output for underlying

systems. Twitinfo processes geospatial, temporal and keyword data. It has a

novel algorithm for detecting peaks in the Twitter data which is displayed on

a rate graph. The query language itself allows the expressive nature of submit-

ting queries about anyone of these key features. These techniques are similar to

Antares, however they do not have the scalability of Antares or the combina-

tion of both historic and stream processing - TweeQL is for stream processing.

Twitinfo does not store data into a store so data cannot be replyed or anal-

ysed, which is different to Antares which allows that functionality. Instead the

focus is on the querying language and its mapping from Tweets to structured

data - the query language is more complex then Antares however both systems

have different requirements. Antares supports scalable ingestion and combined

querying and Twitinfo and TweeQL provide a querying language for mapping

a Twitter stream to structured output. The interfaces have similar function-

ality to iterations of Antares including, the rate of Tweets graph, the map of

Tweets (however Antares builds on this information rather than just geospatial

analysis) and the list of Tweets - this was used for specific hashtags. Twitinfo

has the added feature of peaks and sentiment analysis. The system also uses

a third party geospatial co-oridnates finding software where as Antares uses its

own scalable and low latency algorithms and caching mechanism to map this

from in-memory to the database.

3. SensePlace2: Developed at Penn State University, SensePlace2 is a temporal

geospatial analysis tool for visualising Tweets. The visualisation techniques are

different to Antares, which provides clustering and a time/location graph view.

“geovisual analytics application which forages place-time-attribute based infor-

mation from the Twitterverse and supports crisis management through visually-

enabled sensemaking of the information derived. SensePlace2 integrates compu-

tational methods for capturing, storing, and indexing tweets with visual query

and analysis methods” [101].

- 156 -

Chapter 5: Application to Twitter

4. Geosocial Gauge: Developed by an interdisciplinary team at George Mason Uni-

versity, Geosocial Gauge [102] is a research platform that seeks to make use

of social media data to provide insight into such areas as use of language on

Twitter during natural disasters, and virtual boundaries that exist across tradi-

tional boundaries. Geosocial Gauge was created within or in consultation with a

multi-disciplinary team to guide iterative development to produce an open tool

for research on a wide range of topics.

5. Sentiment Viz: An online sentiment analysis tool created at North Carolina

State University. Sentiment is measured using a sentiment dictionary to measure

sentiment for the evaluated Tweets. Tweets are pulled directly from Twitter for

a user’s chosen keyword [103].

6. Radian6: A commercial offering from SalesForce marketed at companies who

want to monitor and manage their on-line brand and direct their customer service

and on-line marketing efforts [104].

7. Twitonomy: Another web based tool that allows monitoring of individual ac-

counts, lists, hashtags or keywords. The focus is on the individuals and busi-

nesses who want to manage their online presence on Twitter. Broader search

tools are available; however they appear to suffer high latency when returning

queries and provide only basic visualisation [105].

8. Tweet Ping: A web based tool that displays tweets as they are posted in real-

time around the world. Tweet Ping is less an interactive analysis tool and more

a visualisation tool that shows the global distribution of Tweets as they occur

[106]. Tweet Ping provides what can be seen as a shallow view into data pro-

vided by social media. Despite this it provides an engaging visual that is useful

for attracting interest and attention to a particular subject area. Tweet Ping

provides visualisation but lacks the interactivity to provide meaningful analysis.

Likewise the application is able to handle a stream of Twitter data but does not

show potential to scale beyond the Twitter Search API or to other social media

sources.

- 157 -

Chapter 5: Application to Twitter

5.2.1 Conclusion

Much of the literature focuses on application specific querying of Twitter data, unlike

Antares, which provides non-application specific querying. The queries enable a core

set of questions, which can be used in different application areas. Antares is solely an

on-line tool so there is always access to the scalability of the cloud unlike systems like

COSMOS. In comparison, Antares is able to quickly return queries from a six-week

dataset taken from the Twitter firehose while consuming less than 3GB memory.

Radian6 and Twitonomy are just two examples of applications that are designed for

individuals and businesses to analyse social media interactions to better understand

how the public view them and their brand. This type of tool also allows users to

make decisions on how best to direct their on-line marketing and social media efforts

and as a result see better returns on investment. Radian 6 and Twitonomy provide

useful analytics and visualisations, these include analysis over time, metrics regarding

users and their influence and engagement with other users. Mapping of Tweets is also

available. Twitonomy has limited scope in terms of high volume analysis and also

there is little interaction available in the visualisation. The search tools also appear

to be making use of the Twitter Search API rather than any high volume source such

as the Twitter firehose.

Applications in this category can be adapted through usage and feedback; however

the visualisations do not have the level of interactivity that would provide a useful

research tool. Antares has the ability to provide this functionality, given its array of

visualisation tools.

Antares focuses on scalability and low latency querying unlike the tools mentioned in

this section. Antares aimed to improve the ingestion rate, query execution time and

scalability of these systems. Antares provides visualisations to support the analysis of

Twitter data for the user, providing spatial and temporal displays of the data for the

user to process, this is described in the next section.

- 158 -

Chapter 5: Application to Twitter

5.3 User Interface

To enable non-expert users to analyse data there is a web interface which was designed

and developed with colleagues. This is used to enter parameters to queries and support

the visualisation of the data. When data from the web interface arrives at the query

monitor, it is analysed and turned into queries against the streaming data and/or the

historic data depending on the time-bounds.

In Figure 5.1 the web interface’s map feature is shown. The interface allows the user to

zoom in and out and pan around a world map. The Tweets are displayed on the map

as clusters (the circled numeric values) this is the number of Tweets in that area. This

method is used to make the display less cluttered for users and enable easier analysis.

By clicking on one of these clusters the Tweets for the area are displayed and the user

can then click on the Tweet marker shown on the right hand side of the figure with

the Twitter bird as the symbol. Once the Tweet marker has been clicked the content

of the Tweet is displayed in a modal – this is shown in Figure 5.2. From there the user

can access information about the user, the place, nearby Tweets and events. This is

provided by using third party APIs.

A graph of the rate of Tweets is also displayed on the bottom of Figure 5.2. The graph

displays the rate of Tweets over time for that viewport. It enables the user to replay

Tweets as they were posted. By clicking on the play button the Tweets for each day

are displayed, growing in number and displaying the distribution of Tweets in the area

covered by the viewport. Additionally specific days can be chosen to display on the

map and the playback can be paused. It can be used to predict future peaks or explore

historic peaks (e.g. for marketing it would be useful to know when to put an advert

on television or social media). This uses the tree structure but indexes on time to add

an extra dimension to the schema for querying.

- 159 -

Chapter 5: Application to Twitter

Figure 5.1: Antares: map

Figure 5.2: Antares: map with modal

Figure 5.3 displays the word cloud implemented in Antares. Here you can see there are

multiple hashtags displayed in the viewport. These hashtags have all co-occurred in the

same Tweet as the hashtag the user clicked on to display the word cloud. The larger

the hashtag the more often it has been posted together with the hashtag selected. This

allows users to identify what topics are connected and can support further investigation

of a topic using wider search terms.

- 160 -

Chapter 5: Application to Twitter

Figure 5.3: Antares: word cloud

5.4 Tweet My Street

Once Antares had been designed and developed it was deployed in a cross-disciplinary

project called Tweet My Street [3], which is a collaboration of social geographers and

computer scientists. The project drew on the interest in processing big data and how

it can be used to provide insights into social, economic and political data.

The queries derived from earlier drive the web UI to support social scientists in an-

swering “how are more deprived areas using Twitter?” and “can social media endanger

people in homophobic countries?”

Antares was used to visualise geographical data by placing a marker on a map to

represent where Tweets were posted. The map also combines data about world events

that happened within that time period, to compare whether people were interested in

world events and if that was having an effect on people’s opinions. It uses the location

to highlight the five closest Tweets to challenge whether the location is directly involved

in similar topics and themes in that area.

Through the collaboration an iterative approach has been employed for the design and

development of the system, using user feedback to modify Antares. It has supported

research and analysis for humanities-based projects.

Antares has been deployed and used in different case studies for the Tweet My Street

project, to enable interactive visualisations and near real-time processing of Twitter

- 161 -

Chapter 5: Application to Twitter

data. Data has been collected from the full firehose and the comprehensive set of

queries have been applied for the case studies.

5.4.1 West End of Newcastle

The West End is one of the more deprived urban areas in Newcastle, which would

suggest the inhabitants may not have the technology or means to access and use social

media. This case study aimed to identify whether or not this was true, and if not then

what information could be derived about the area from social media posts.

The study collected a set of Tweets from the area for a four-week period. Antares was

employed to visualise the rate, as shown in Figure 5.4, of the Tweets on an hourly basis.

This demonstrated that there was a high number of people tweeting from the area,

even though, according to Leetaru et al, only 1.6% of people have the functionality

turned on [107]. It was discovered that people within the area would often economise

to buy technology, which facilitates access to social media, emphasising how important

the platform and accessing it is to people.

Further analysis of the data led to findings about the ethnicity of the area, which

corresponded to its demographic. It was also established that people were using the

platform to express concerns about the local community, as can be seen in Figure 5.5,

where a user mentions the lack of heating within a council residence.

The link between transportation and social media posts can also be identified, shown

in Figure 5.6. Therefore collection of more real-time data would give an idea of traffic

delays and service quality. This study demonstrated how even a smaller collection of

Twitter data can be employed to analyse local communities.

- 162 -

Chapter 5: Application to Twitter

Figure 5.4: Antares: activity graph showing the rate of tweets in the West End of
Newcastle

Figure 5.5: Antares: map showing community opinion

- 163 -

Chapter 5: Application to Twitter

Figure 5.6: Antares: obvious traffic routes

5.4.2 International Day Against Homophobia and Trans-
phobia

Tweet My Street also analysed a collection of ten million tweets. This is a much larger

dataset and has been collected at a global level, using a list of hashtags to filter the data

instead. The collection was based on the International Day Against Homophobia and

Transphobia (IDAHOT), with data being collected for the period three weeks before

and after the event. The aim of this study is to support the campaign by analysing

the reaction on Twitter and provide insights into the tensions and opinions around the

day. Antares was used to analyse the data with the aim of relaying this information

to the campaigners themselves.

The study focused on African countries which are deemed the “worst places to be ho-

mosexual” (WPTBH). The study focused on Saudi Arabia, Sudan, Mauritius, Somalia

and Nigeria. The greatest number of Tweets were posted in Nigeria; 99% were in

English and 82.89% were posted by males. Not one of the Tweets contained a refer-

- 164 -

Chapter 5: Application to Twitter

ence to IDAHOT, therefore demonstrating little impact from the western campaign

to WPTBH placed in the global south – this was a noted observation across all the

countries mentioned. 11.8% of the data was used to “name” or “out” people suggesting

there is a real danger attached to social media in such areas. The information will go

towards helping and supporting the campaign to grow and to help places such as the

WPTBH.

5.4.3 Psychology

The system is being used to establish whether self-harm cases are on the increase. The

study aims to demonstrate whether content from the Internet and specifically social

media provides a platform for people to connect and support each other and provides

an additional type of support group. It is thought the increase in self-harm may just

be the increase of awareness about the topic through platforms such as social media.

Antares collected a dataset containing self-harm hashtags. An example within the

dataset is the strong co-occurrence of “one direction”, “harry styles” and “depression”,

which was because of One Direction fans not being able to go to the show. The

data showed a large amount of people tweeting about self-harm and eating disorders.

During only a 24 hour period over 4,000 Tweets were collected. Analysis of the data

revealed a positive element to the sharing of self-harm content on social media, with

supportive posts being shared more than content encouraging self-harm behaviour.

Some examples of positive posts included those offering support to others, or raising

awareness of self-harm in the general population. Self-harm dedicated blogs (i.e.,

those where the users solely blogged about self-harm and no other topics) were in

the minority, and those that did exist tended to be of a positive, pro-recovery nature

(rather than encouraging self-harm). Overall, suggesting that social media may play

a positive role for the majority of users sharing SH related posts.

5.4.4 Conclusion

Antares has provided social scientists with a visualisation tool that enables then to

explore and analyse large Twitter data sets in a scalable and timely manner. This

- 165 -

Chapter 5: Application to Twitter

provides them with a tooling to collect large data sets and then explore different use

cases around events, which would have previously been executed manually. The sys-

tem itself has shown ingestion rates beyond the size of the average firehose and queries

that support the combination of historic and streaming analysis. The spatial function-

ality supports low latency querying which is an improvement on current technologies

allowing visualisations of large sets of data to be mapped. As can be seen from the

related work many systems focus on specific querying techniques or specific application

areas. Antares provides a non-application specific mechanism for scalably processing

and ingesting Twitter data. It extends the layered approach of historic and streaming

data to support greater scalability and combine different temporal aspects of analy-

sis - reprocessing past events, processing current and future and combining the two.

Antares covers a specific domain area which was led by the research undertaken by the

social scientists, however this does not hinder its performance and it uses this subset

of questions to form a model and basis to prove the scalability of the system and how

it can be used to derive insights for researchers.

- 166 -

6
Conclusion

- 167 -

Chapter 6: Conclusion

The aim of this thesis was to explore and identify possible solutions to support efficient

and near real-time querying of large volume stream and stored Twitter data. The

solution would support stream, historic, combined and geospatial analysis with the

aim of producing low-latency responses when querying large-scale datasets, even as

data was being ingested at high velocity. The motivation came from work in a multi-

disciplinary project focused on Twitter analytics.

An extensive literature review identified opportunities for improvement for the com-

bined processing of stream and stored data, especially large geospatial data. Antares

explores how to build on the strengths of noSQL databases to meet these require-

ments. This research is timely given the recent explosion in streaming data from so-

cial media and other sources such as sensors. Antares improved on current techniques

for geospatial analysis, focusing on improving performance and increasing scalability.

The evaluation demonstrated that Antares supports simpler geospatial querying that

is a factor of 1000 times faster in some cases. The querying functionality could be

extended, however for the purpose of quick view port analysis in a browser Antares

provides a new contribution for querying geospatial data using an in-memory cache

and noSQL database.

It was identified that improvements could be made to exploit the scale of noSQL

databases with the efficiency of traditional geospatial querying techniques. These

could be achieved by adapting them to support novel techniques for querying new

datasets such as Twitter. Antares supports a novel caching mechanism for efficient

geospatial data analysis, which was evaluated and shown to out perform the current

state of the art. This enabled users of Antares to interactively explore large temporal

and geospatial datasets quickly and efficiently something not possible without Antares.

For example Antares was evaluated against Solr for geospatial queries, and shown to

be 15,000 times faster for the range of experiments in Chapter ??.

A layered approach was explored and how this would affect performance and scalability.

The layered approach supported scalability to enable larger ingest rates - supporting a

stream and historic layer meant that processing could be undertaken in both. Requests

made to the system used both layers, which balanced the load of requests to each.

This reduced the number of time-outs, therefore reducing query execution time. The

- 168 -

Chapter 6: Conclusion

time-out is 5 seconds, however with large volumes of data this would have just kept

increasing and would have reduced the ingestion rate of the system. The ingestion rate

would have been reduced as the system would have blocked due to the wait held by the

time-out. The layered approach supports higher ingest rates as the stream processing

layer can ingest data and the historic store can ingest data, therefore load balancing.

The layered approach also provides real-time analysis, using the speed of in-memory,

and scale of historic stores (disk storage), which is cheaper and more durable, while

helping to expand and scale-out the system by adding new nodes.

As demonstrated in Chapter ??, the design of Antares achieved its aims: it is capable

of executing tens of thousands of queries concurrently, and in some cases its novel

mechanisms halved response times.

The first contribution was made by the analysis of use cases to derive the design and

implementation of a set of queries to provide functionality to Antares for querying

Twitter data - this was then used to support the evaluation of scalability and low

latency querying as well as using the tooling to support research of large Twitter

datasets. These queries were derived from a data model described in Section 3.4.

Implementation of these and an index to optimise data retrieval supported the trans-

parent combination of stream and historic analysis, with percentage savings nearly

reaching 100%. Allowing one query to be submitted with Antares translating whether

stream, historic or a combination of both needed to be executed.

Antares uses indexing techniques to improve the performance of query execution by

distributing the data to enable scale-out capability. However the datasets also need to

be ingested at high rates to accommodate large sized data streams. Antares makes the

second contribution by optimising data ingestion using asynchronous batching. For

example an eight-node cluster can cope with over 30,000 Tweets per second. This

supports scalable Twitter ingestion for analysis which can ingest the average Twitter

firehose for five times more data.

The Split Algorithm was designed so that there is no global locking required in the

system, this reduces execution time and exploits the asynchronous features added into

Antares. As Antares is an append only system there is no need to rebalance the tree.

- 169 -

Chapter 6: Conclusion

This design decision also supported quicker reads and writes as there was no need to

hold a global lock on the system when it was being rebalanced.

Antares was used within a cross-disciplinary project called Tweet My Street. This

collaboration resulted in use of real user requirements that had to be met. This

allowed the system to be evaluated as a research tool by social geographers, while

simultaneously generating interesting computing problems. It also meant Antares

underwent rigorous user testing, which caught errors, and generated new requirements

that had not been originally thought of. This helped Antares in its aim to provide

insights into interesting events by analysing Twitter data. It meant that the key aims

of the system like low response times became even more crucial, and it became obvious

if they were not good enough for the users.

Future work that could be used to continue research in the area would be to identify

a means for making ESPER distributed. ESPER currently only executes on a stan-

dalone machine – if it could be distributed over many machines its scale would be

very powerful. Antares could also be extended to notify people of different events that

have been identified for a particular user. A query could be executed over a prolonged

period and then when an event is identified on the stream and/or the historic the user

would be notified of an event. The next step for this would be to allow a user to

reply to this notification to either set off another query execution or to request more

information.

Antares is a scalable platform utilised in a cross-disciplinary project where it provides

researchers with an advanced analytical tool. The system improves on response times

for combined, historic and stream querying. Additionally, Antares supports geospatial

querying with efficient response times, and results show that it outperformed the cur-

rent state of the art for this. It has exploited the scale of NoSQL databases to support

geospatial querying at scale and so support a rich, interactive user-interface. Design-

ing Antares has provided an insight into the technical aspects of NoSQL databases

and social media analysis. It is now forming the basis of future work to extend its

capabilities and further improve its performance.

- 170 -

References

[1] I. L. Stats, “Twitter Usage Statistics,” 2014. [Online]. Available:

http://www.internetlivestats.com/twitter-statistics/

[2] R. Simmonds, P. Watson, J. Halliday, and P. Missier, “A Platform for Analysing

Stream and Historic Data with Efficient and Scalable Design Patterns,” 2014

IEEE World Congress on Services, no. Ii, pp. 174–181, 2014.

[3] G. Mearns, R. Simmonds, R. Richardson, M. Turner, P. Watson, and P. Missier,

“Tweet My Street: A Cross-Disciplinary Collaboration for the Analysis of Local

Twitter Data,” Future Internet, vol. 6, no. 2, pp. 378–396, 2014.

[4] R. Simmonds, P. Watson, and J. Halliday, “Antares: A Scalable, Real-Time,

Fault Tolerant Data Store for Spatial Analysis,” 2015 IEEE World Congress on

Services, pp. 105–112, 2015.

[5] A. Toshniwal, J. Donham, N. Bhagat, S. Mittal, D. Ryaboy, S. Taneja, A. Shukla,

K. Ramasamy, J. M. Patel, S. Kulkarni, J. Jackson, K. Gade, and M. Fu,

“Storm@twitter,” Proceedings of the 2014 ACM SIGMOD international confer-

ence on Management of data - SIGMOD ’14, pp. 147–156, 2014.

[6] R. McCreadie, C. Macdonald, I. Ounis, M. Osborne, and S. Petrovic, “Scalable

distributed event detection for Twitter,” 2013 IEEE International Conference

on Big Data, pp. 543–549, October 2013.

[7] Red Hat, “Drools Fusion.” [Online]. Avail-

able: http://docs.jboss.org/drools/release/6.2.0.CR1/drools-

docs/html/DroolsComplexEventProcessingChapter.html

[8] R. Hat, “Red Hat Magazine -Rules and Drools Rundown.” [Online]. Available:

http://magazine.redhat.com/2008/07/17/rules-and-drools-rundown/

[9] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed stream

computing platform,” in Proceedings of the 2010 IEEE International Conference

- 171 -

on Data Mining Workshops, ser. ICDMW ’10. Washington, DC, USA: IEEE

Computer Society, 2010, pp. 170–177.

[10] IBM, “System S Stream Processing.” [Online]. Available:

http://researcher.watson.ibm.com/researcher/view group subpage.php?id=2534

[11] Codehaus, “Esper - Complex Event Processing,” 2014. [Online]. Available:

http://esper.codehaus.org/

[12] K. Weil, “Rainbird : Real-time Analytics @ Twitter,” Presented at: Twitter

Conference, 2011.

[13] T. Akidu, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax,

S. McVeety, D. Mills, P. Nordstrom, S. Whittle, T. Akidau, and K. BekiroÄ§lu,

“MillWheel: Fault-Tolerant Stream Processing at Internet Scale,” Proceedings of

the the VLDB Endowment, vol. 6, no. 11, pp. 734–746, 2013.

[14] IBM, “IBM InfoSphere Software - Information Integration, Data Ware-

house and Master Data Management.” [Online]. Available: http://www-

01.ibm.com/software/uk/data/infosphere/

[15] Apache, “Samza.” [Online]. Available: http://samza.apache.org/

[16] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans,

T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia,

B. Reed, and E. Baldeschwieler, “Apache hadoop yarn: Yet another resource

negotiator,” in Proceedings of the 4th Annual Symposium on Cloud Computing,

ser. SOCC ’13. New York, NY, USA: ACM, 2013, pp. 5:1–5:16.

[17] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M.

Patel, K. Ramasamy, and S. Taneja, “Twitter Heron: Stream Processing at

Scale,” ACM SIGMOD Record, 2015.

[18] J. Browne, “Brewer’s CAP theorem,” J. Browne blog, 2009.

[19] M. Burrows, “The Chubby lock service for loosely-coupled distributed systems,”

OSDI ’06: Proceedings of the 7th symposium on Operating systems design and

implementation SE - OSDI ’06, pp. 335–350, 2006.

172

[20] MIT, “relationalcloud,” 2013. [Online]. Available:

http://relationalcloud.com/index.php?title=Main Page

[21] C. Curino, E. P. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden, H. Bal-

akrishnan, and N. Zeldovich, “Relational cloud: A database-as-a-service for the

cloud,” Journal: 5th Biennial Conference on Innovative Data Systems Research,

CIDR 2011, 2011.

[22] Apache, “HBase,” 2014. [Online]. Available: http://hbase.apache.org/

[23] MongDb, “MongoDB Architecture Guide,” 2013. [Online]. Available:

http://www.mongodb.com/mongodb-architecture

[24] MongoDB Manual 3, “Replica Set Oplog.” [Online]. Available:

http://docs.mongodb.org/manual/core/replica-set-oplog/

[25] MongoDb, “GridFS.” [Online]. Available:

http://docs.mongodb.org/manual/core/gridfs/

[26] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. a. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable,” ACM Transactions on

Computer Systems, vol. 26, no. 2, 2008.

[27] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and A. Rasin,

“HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for

analytical workloads,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp.

922–933, 2009.

[28] SIGMOD ’10: Proceedings of the 2010 ACM SIGMOD International Conference

on Management of Data. New York, NY, USA: ACM, 2010.

[29] Red Hat, “infinispan,” 2015. [Online]. Available: http://infinispan.org/

[30] Lucene, “Apache Lucene,” 2013. [Online]. Available: http://lucene.apache.org/

[31] S. Jouili and V. Vansteenberghe, “An empirical comparison of graph databases,”

Proceedings - SocialCom/PASSAT/BigData/EconCom/BioMedCom 2013, pp.

708–715, 2013.

173

[32] Amazon, “AWS | Amazon SimpleDB âĂŞ Simple Database Service,” 2015.

[Online]. Available: http://aws.amazon.com/es/simpledb/#pricing

[33] H. Wada, A. Fekete, L. Zhao, K. Lee, and A. Liu, “Data Con-

sistency Properties and the Trade-offs in Commercial Cloud Stor-

age: the Consumers’ Perspective,” in CIDR, 2011, pp. 134–

143. [Online]. Available: http://www.cidrdb.org/cidr2011/program.html

http://www.cidrdb.org/cidr2011/Talks/CIDR11 Wada.ppt

[34] Neo4j, “Neo4j Graph Database.” [Online]. Available: Http://neo4j.com/

[35] B. T. Inc., “Riak | Basho Technologies,” 2015. [Online]. Available:

http://basho.com/riak/

[36] Mochi Media, “mochi statebox riak.” [Online]. Available:

https://github.com/mochi/statebox riak

[37] S. J. Kazemitabar, U. Demiryurek, M. Ali, A. Akdogan, and C. Shahabi,

“Geospatial Stream Query Processing using Microsoft SQL Server StreamIn-

sight,” Proceedings of the VLDB Endowment, vol. 3, no. 1-2, pp. 1537–1540,

2010.

[38] Microsoft, “SQL Server,” pp. 1–10, 2014. [Online]. Available:

http://www.microsoft.com/en-gb/server-cloud/products/sql-server/

[39] M. Grinev, “Analytics for the Real-Time Web,” System, pp. 1391–1394, 2011.

[40] A. Arasu, S. Babu, and J. Widom,“The cql continuous query language: Semantic

foundations and query execution,” The VLDB Journal, vol. 15, no. 2, pp. 121–

142, Jun. 2006.

[41] Google Inc, “Google Cloud Platform,” 2014. [Online]. Available:

https://cloud.google.com/

[42] PCWorld, “Google takes on real-time big data analysis with new cloud services.”

[Online]. Available: http://www.pcworld.com/article/2911112/google-takes-on-

realtime-big-data-analysis-with-new-cloud-services.html

174

[43] InfoWorld, “Databricks takes on Google streaming analysis with Spark.”

[Online]. Available: http://www.infoworld.com/article/2607830/open-source-

software/databricks-takes-on-google-streaming-analysis-with-spark.html

[44] J. Dittrich and J.-a. Quian, “Efficient Big Data Processing in Hadoop MapRe-

duce,” Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 2014–2015, 2012.

[45] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin, “Summingbird: A framework for

integrating batch and online mapreduce computations,” Proc. VLDB Endow.,

vol. 7, no. 13, pp. 1441–1451, Aug. 2014.

[46] H. Edelson, “Lambda Architecture with Spark Stream-

ing, Kafka, Cassandra, Akka, Scala.” [Online]. Avail-

able: http://www.slideshare.net/helenaedelson/lambda-architecture-with-

spark-streaming-kafka-cassandra-akka-scala

[47] N. Garg, “Apache Kafka,” 2013. [Online]. Available:

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:No+Title#0\nhttp://books.google.com/books?hl=en&lr=&id=qS9eAQAAQBAJ&oi=fnd&pg=PT6&dq=apache+kafka&ots=ZsSZ0FJypD&sig=MnVJ1hhV4bc7BuccpMTZWWKzRo8

[48] Typesafe Inc, “Akka.” [Online]. Available: http://akka.io/

[49] Datastax, “Performance improvements in Cassandra 1.2.” [Online]. Available:

http://www.datastax.com/dev/blog/performance-improvements-in-cassandra-

1-2?utm source=NoSQL+Weekly+Newsletter&utm campaign=900dff577b-

NoSQL Weekly Issue 107 December 13 2012&utm medium=email

[50] Scala, “The Scala Programming Language,” 2011. [Online]. Available:

http://www.scala-lang.org/

[51] R. Schindlauer, “Scalability Patterns,” 2010. [Online]. Available:

https://social.technet.microsoft.com/Forums/windowsserver/en-US/be14f0ed-

5066-4d86-a001-c5e6ba4d708c/scalability-patterns?forum=streaminsight

[52] “Cisco Completes Acquisition of Lightwire,” 2012.

[Online]. Available: http://newsroom.cisco.com/press-release-

content?type=webcontent&articleId=744182

175

[53] Michael Hwang, “Stream Processing Using ESPER,” 2015. [Online]. Available:

https://www.hakkalabs.co/articles/stream-processing-using-esper

[54] H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social network or

a news media?” in Proceedings of the 19th International Conference on World

Wide Web, ser. WWW ’10. New York, NY, USA: ACM, 2010, pp. 591–600.

[55] D. Fisher, “Interactions with Big Data Analytics population by running con-

trolled,” Interactions, pp. 50–59, 1983.

[56] M. Mathioudakis and N. Koudas, “Twittermonitor: Trend detection over the

twitter stream,” in Proceedings of the 2010 ACM SIGMOD International Con-

ference on Management of Data, ser. SIGMOD ’10. New York, NY, USA: ACM,

2010, pp. 1155–1158.

[57] Twitter, “CS Conferences,” 2013. [Online]. Available:

https://twitter.com/CS Conferences

[58] D. S. Shiffman, “Twitter as a tool for conservation education and outreach: what

scientific conferences can do to promote live-tweeting,” Journal of Environmental

Studies and Sciences, vol. 2, no. 3, pp. 257–262, Jul. 2012.

[59] D. R. A. McKendrick, “Smartphones, Twitter and New Learning Opportunities

at anaesthetic Conferences,” Anaesthesia, vol. 67, no. 4, pp. 437–8, Apr. 2012.

[60] L. Hong and B. D. Davison, “Predicting Popular Messages in Twitter,” ReCALL,

pp. 57–58, 2011.

[61] A. B. P. Guide, “Social Media in an Emergency,” Opus, March 2012.

[62] S. Doan, B. H. Vo, and N. Collier, “An analysis of twitter messages in the 2011

tohoku earthquake,” CoRR, vol. abs/1109.1618, 2011.

[63] S. Nagar, A. Seth, and A. Joshi, “Characterization of social media response to

natural disasters,” Proceedings of the 21st international conference companion

on World Wide Web - WWW ’12 Companion, p. 671, 2012.

[64] P. J. R. Alan Rusbridger, Reading the Riots, guardian ed. Guardian, 2012.

176

[65] Twitter4j, “Twitter4J - A Java library for the Twitter API,” 2014. [Online].

Available: http://twitter4j.org/en/index.html

[66] Mishail, “CqlJmeter.” [Online]. Available:

https://github.com/Mishail/CqlJmeter

[67] D. Comer, “The ubiquitous B-tree,” ACM Computing Surveys, vol. 11, pp. 121–

137, 1979.

[68] A. Guttman, “R-trees: A Dynamic Index Structure for Spatial Searching,” Pro-

ceedings of the 1984 ACM SIGMOD International Conference on Management

of Data - SIGMOD ’84, pp. 47–57, 1984.

[69] J. L. Bentley, “Multidimensional binary search trees used for associative search-

ing,” Communications of the ACM, vol. 18, pp. 509–517, 1975.

[70] R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval on

composite keys,” Acta Inf., vol. 4, no. 1, pp. 1–9, Mar. 1974.

[71] J. Liu, H. Li, Y. Gao, Y. Hao, and D. Jiang, “A geohash-based index for spatial

data management in distributed memory,” in Geoinformatics (GeoInformatics),

2014 22nd International Conference on, June 2014, pp. 1–4.

[72] C. Du Mouza, W. Litwin, and P. Rigaux, “SD-Rtree: A scalable distributed

Rtree,” Proceedings - International Conference on Data Engineering, pp. 296–

305, 2007.

[73] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram,“Querying peer-

to-peer networks using P-trees,” Proceedings of the 7th International Workshop

on the Web and Databases colocated with ACM SIGMOD/PODS 2004 - WebDB

’04, p. 25, 2004.

[74] P. Kalnis, “Distributed Spatial Databases,” in Encyclopedia of Database Systems.

Springer, 2009, pp. 920–925.

[75] A. Rafalovitch, Instant Apache Solr for Indexing Data How-to. Packt Publish-

ing, 2013.

177

[76] S. Nishimura, S. Das, D. Agrawal, and A. E. Abbadi, “Md-hbase: A scalable

multi-dimensional data infrastructure for location aware services,” in Mobile

Data Management (MDM), 2011 12th IEEE International Conference on, vol. 1.

IEEE, 2011, pp. 7–16.

[77] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz, “Hadoop-

GIS: A High Performance Spatial Data Warehousing System over MapReduce.”

Proceedings of the VLDB Endowment International Conference on Very Large

Data Bases, vol. 6, no. 11, pp. 1009–1020, 2013.

[78] D.-M. Chang, “RESQUE: A resource based simulation system for construction

process planning.” Dissertation Abstracts International Part B: Science and En-

gineering[DISS. ABST. INT. PT. B- SCI. & ENG.],, vol. 47, no. 10, 1987.

[79] K. M. Al-naami, “GISQF : An Efficient Spatial Query Processing System,” 2014

IEEE International Conference on Cloud Computing, 2014.

[80] K. Leetaru and P. A. Schrodt, “GDELT: Global data on events, location, and

tone, 1979–2012,” in ISA Annual Convention, vol. 2, 2013, p. 4.

[81] H. Tan, W. Luo, and L. M. Ni, “Clost: a hadoop-based storage system for big

spatio-temporal data analytics,” in Proceedings of the 21st ACM international

conference on Information and knowledge management. ACM, 2012, pp. 2139–

2143.

[82] N. Zhang, G. Zheng, H. Chen, J. Chen, and X. Chen, “HBaseSpatial: A Scalable

Spatial Data Storage Based on HBase,” 2014 IEEE 13th International Confer-

ence on Trust, Security and Privacy in Computing and Communications, pp.

644–651, 2014.

[83] Y. Li, G. Kim, L. Wen, and H. Bae, Ubiquitous Information Technologies and

Applications. Dordrecht: Springer Netherlands, 2013, ch. MHB-Tree: A Dis-

tributed Spatial Index Method for Document Based NoSQL Database System.

[84] A. S. Foundation, “Field Types Included with Solr.” [Online]. Available:

https://cwiki.apache.org/confluence/display/solr/Field+Types+Included+with+Solr

178

[85] F. Figueiredo, J. M. Almeida, F. Benevenuto, and K. P. Gummadi,“Does content

determine information popularity in social media?: A case study of youtube

videos’ content and their popularity,” in Proceedings of the 32Nd Annual ACM

Conference on Human Factors in Computing Systems, ser. CHI ’14. New York,

NY, USA: ACM, 2014, pp. 979–982.

[86] B. S. Brosseau. L, Wells. GA, “Orthopedics News Article People getting a grip

on arthritis II An innovative strategy to implement clinical practice guidelines

for rheumatoid arthritis and osteoarthritis patients through Facebook,” Health

Education Journal, 2013.

[87] J. Xu, T.-C. Lu, R. Compton, and D. Allen, Social Computing, Behavioral-

Cultural Modeling and Prediction: 7th International Conference, SBP 2014,

Washington, DC, USA, April 1-4, 2014. Proceedings. Cham: Springer In-

ternational Publishing, 2014, ch. Civil Unrest Prediction: A Tumblr-Based Ex-

ploration, pp. 403–411.

[88] B. Meeder, B. Karrer, C. Borgs, R. Ravi, and J. Chayes, “We Know Who You

Followed Last Summer : Inferring Social Link Creation Times In Twitter,”Focus,

2012.

[89] J. Pöschko, “Exploring twitter hashtags,” CoRR, vol. abs/1111.6553, 2011.

[90] A. P. Burnap, W. Housley, J. Morgan, L. Sloan, N. Avis, A. Edwards, O. Rana,

M. Williams, and P. Burnap, “Working Paper 153 : Social Media Analysis ,

Twitter and the London Olympics (A Research Note) Social Media Analysis ,

Twitter and the London Olympics 2012,” 2012, to be published.

[91] P. Burnap, O. F. Rana, N. Avis, M. Williams, W. Housley, A. Edwards, J. Mor-

gan, and L. Sloan, “Detecting tension in online communities with computational

Twitter analysis,” Technological Forecasting and Social Change, May 2013.

[92] P. Burnap, O. Rana, and M. Williams, “COSMOS: Towards an integrated and

scalable service for analysing social media on demand,” International Journal of

Parallel, Emergent and Distributed Systems, no. May, pp. 37–41, 2014.

179

[93] E. Baucom, A. Sanjari, X. Liu, and M. Chen, “Mirroring the real world in social

media: Twitter, geolocation, and sentiment analysis,” in Proceedings of the 2013

International Workshop on Mining Unstructured Big Data Using Natural Lan-

guage Processing, ser. UnstructureNLP ’13. New York, NY, USA: ACM, 2013,

pp. 61–68.

[94] T. a. Small, “What the Hashtag?” Information, Communication & Society,

vol. 14, no. 6, pp. 872–895, September 2011.

[95] X. Zhou and L. Chen, “Event detection over twitter social media streams,” The

VLDB Journal, vol. 23, no. 3, pp. 381–400, Jul. 2013.

[96] R. Li, K. H. Lei, R. Khadiwala, and K. C.-C. Chang, “TEDAS: A Twitter-

based Event Detection and Analysis System,” 2012 IEEE 28th International

Conference on Data Engineering, pp. 1273–1276, Apr. 2012.

[97] A. Hermida, S. C. Lewis, and R. Zamith, “Sourcing the Arab Spring: A Case

Study of Andy Carvin’s Sources on Twitter During the Tunisian and Egyptian

Revolutions,” Journal of Computer-Mediated Communication, vol. 19, no. 3, pp.

479–499, Apr. 2014.

[98] J. Bollen, H. Mao, and X. Zeng, “Twitter mood predicts the stock market,”

Journal of Computational Science, vol. 2, no. 1, pp. 1–8, Mar. 2011.

[99] D. Thom, H. Bosch, S. Koch, M. Worner, and T. Ertl, “Spatiotemporal anomaly

detection through visual analysis of geolocated twitter messages,” in Visualiza-

tion Symposium (PacificVis), 2012 IEEE Pacific, Feb 2012, pp. 41–48.

[100] T. Developers, “The Search API.” [Online]. Available:

https://dev.twitter.com/rest/public/search

[101] G. Center, “SensePlace2,” 2015. [Online]. Available:

http://www.geovista.psu.edu/SensePlace2/

[102] G. M. University, “GeoSocial Gauge Where Innovation Is Tradition,” 2014.

[Online]. Available: http://geosocial.gmu.edu/

180

[103] “TweetViz Twitter Visualiser.” [Online]. Available: tweetviz.com

[104] SalesForce, “Radian6.” [Online]. Available:

http://www.salesforcemarketingcloud.com/

[105] Bitly, “Twitonomy Twitter #analytics and much more,” 2014. [Online].

Available: http://twitonomy.com/

[106] Lightstream, “Tweetping,” 2015. [Online]. Available: http://tweetping.net/

[107] K. H. Leetaru, S. Wang, G. Cao, A. Padmanabhan, and E. Shook, “Mapping

the global Twitter heartbeat: The geography of Twitter,” First Monday, vol. 18,

2013.

181

