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Abstract

Robust numerical models are an essential tool for informing flood and water management
and policy around the world. Physically-based hydrological models have traditionally not
been used for such applications due to prohibitively large data, time and computational
resource requirements. Given recent advances in computing power and data availability, this
study creates, for the first time, a robust, physically-based hydrological modelling system
for Great Britain using the SHETRAN model and national datasets. Such a model has
several advantages over less complex systems. Firstly, compared with conceptual models, a
national physically-based model is more readily applicable to ungauged catchments, in which
hydrological predictions are also required. Secondly, the results of a physically-based system
may be more robust under changing conditions such as climate and land cover, as physical
processes and relationships are explicitly accounted for. Finally, a fully integrated surface
and subsurface model such as SHETRAN offers a wider range of applications compared
with simpler schemes, such as assessments of groundwater resources, sediment transport and

flooding from multiple sources.

In order to develop a national modelling system based on SHETRAN, a large array of
data for the whole of Great Britain and the period 1960-2006 has been integrated into a
framework that features a new, user-friendly graphical interface, which extracts and prepares
the data required for a SHETRAN simulation of any catchment in Great Britain. This has
vastly reduced the time it takes to set up and run a model from months to seconds. Structural
changes have also been incorporated into SHETRAN to better represent lakes, handle pits
in elevation data and accept gridded meteorological inputs. 306 catchments spanning Great
Britain were then modelled using this system. The standard configuration of this system
performs satisfactorily (NSE > 0.5) for 72% of catchments and well (NSE > 0.7) for 48%.
Many of the remaining 28% of catchments that performed relatively poorly (NSE < 0.5) are
located in the chalk in the south east of England. As such, the British Geological Survey
3D geology model for Great Britain (GB3D) has been incorporated for the first time in
any hydrological model to pave the way for improvements to be made to simulations of

catchments with important groundwater regimes. This coupling has involved development



of software to allow for easy incorporation of geological information into SHETRAN for any
model setup. The addition of more realistic subsurface representation following this approach
is shown to greatly improve model performance in areas dominated by groundwater processes.

The sensitivity of the modelling system to key inputs and parameters was tested, partic-
ularly with respect to the distribution and rates of rainfall and potential evapotranspiration.
As part of this, a new national dataset of gridded hourly rainfall was created by disag-
gregating the 5km UK Climate Projections 2009 (UKCP09) gridded daily rainfall product
with partially quality controlled hourly rain gauge data from over 1300 observation stations
across the country. Of the sensitivity tests undertaken, the largest improvements in model
performance were seen when this hourly gridded rainfall dataset was combined with poten-
tial evapotranspiration disaggregated to hourly intervals, with 61% of catchments showing
an increase in NSE as a result of more realistic sub-daily meteorological forcing. Addi-
tional sensitivity analysis revealed that the slight over-estimation of runoff using the initial
model configuration which has a median water balance bias of 5% was reduced in 62% of
catchments by increasing daily potential evapotranspiration rates by 5%. Similarly, model
performance was also found to improve by universally decreasing rainfall rates slightly, which
together indicate the possibility of slight under-estimation of potential evapotranspiration de-
rived from available data. In addition to extensive sensitivity testing, the national modelling
system for Great Britain has also been coupled with the UKCP09 spatial weather generator
to demonstrate the capability of the system to conduct climate change impact assessments.
A set of 100 simulations for each of 20 representative catchments across the country were
processed for a medium emissions scenario in the 2050s, in order to establish and demonstrate
the methodology for conducting such an assessment. The results of these initial simulations
suggest that higher potential evapotranspiration rates, combined with modest increases in
rainfall under this climate change projection, lead to a general decrease in mean annual river
flows. Changes in mean annual flow across the country vary between -26% to +8%, with
the biggest reductions in flow found in the south of England and modest increases in runoff
across Scotland.

This work represents a step-change in how the physically-based hydrological model SHETRAN
can be used. Not only has this project made SHETRAN much easier to use on its own, but
the model can now also be used in conjunction with external applications such as the UKCP09
spatial weather generator and GB3D. This means that the modelling system has great po-
tential to be used as a resource at national, regional and local scales in an array of different
applications, including climate change impact assessments, land cover change studies and

integrated assessments of groundwater and surface water resources.
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Chapter 1

Introduction

1.1 Water related challenges facing Great Britain

The scale of challenges in flood and water resource management facing the UK became abun-
dantly clear during the winter of 2013/2014, when extensive and damaging flooding occurred
in numerous parts of the country. A tidal surge on 5th December 2013 along the east coast
of England was followed closely by a number of severe weather and fluvial and groundwater
flooding events in subsequent months, which formed one of the wettest winters on record
(Department for Communities and Local Government, [2014). The professional services firm
PwC estimated that the insurance industry would face costs of up to £500M from the Decem-
ber 2013 and January 2014 weather events, with damage to the economy priced at £630M
(PricewaterhouseCoopers, [2014)). The UK government additionally pledged £560M to help
the recovery of communities and businesses, while also repairing damaged infrastructure and
flood defences (Department for Communities and Local Government, 2014). This example
begins to highlight the magnitude of financial costs, risks to welfare and the extent of dis-
ruption associated with large flooding events, which may indeed become more frequent in
the coming years as a result of climate change and continuing pressures from development
on floodplains (Pachauri et al., [2014; |Department for Communities and Local Government),
2009). The events of winter 2013/2014 also suggest the existence of vulnerabilities in cur-
rent flood risk management practices, as well as the need for tools allowing assessment of
broad-scale flood risk and options appraisal.

At the other extreme, droughts represent an additional challenge for water management
in the UK, as well as large parts of the world. |[Rahiz and New| (2013a)) project large and
widespread increases in drought characteristics for the 2050s and 2080s across the UK. Plan-
ning to cope with drought risks remains challenging, with unobserved extreme droughts

difficult to account for using existing tools and limited national-scale integration in drought
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plans. Water resources management strategies in the UK under more typical climatic con-
ditions is also demanding, not least because of the requirement to balance water use with
the needs of the environment under the European Union (EU) Water Framework Directive
(Water Framework Directive, |2000). This legislation sets out stringent objectives for the
ecological status of water bodies across the EU. Responsibility for implementation falls to
the Environment Agency (EA) in the UK, who must seek to balance the quantitative and
qualitative pressures on water bodies stemming from the requirements of water users with
ecological and chemical environmental objectives. This is not an insignificant challenge,
given existing pressures on resources in some regions of the UK, legacies from historically
unsustainable practices and the confounding influence of climate change. Robust tools are
needed to appropriately quantify these pressures and explore the implications of alternative
management strategies.

In the context of these issues, the focus of this research is on the development and eval-
uation of a robust and practically useful national hydrological modelling system for Great
Britain using the physically-based model SHETRAN (Ewen et al. 2000), which can ulti-
mately be used to assist in flood and water management. Such a modelling system opens
up new possibilities for quantifying multi-source flood risk, examining the potential effects
of climate change on flood and drought frequency, and assessing water resource manage-
ment options amongst other applications. In addition to practical significance for assisting in
decision-making, constructing a national physically-based modelling system also provides the
opportunity to explore prominent issues regarding the strengths and weaknesses of hydrolog-
ical models on the basis of a large sample of catchments (e.g. Beven|, 2001} 2012; |Paniconi and
Putti, 2015). This analysis can then feed back into evaluation of whether a national model
based on SHETRAN is likely to give robust simulations of runoff in ungauged catchments
and under changing conditions such as climate and land use change, which are questions of
tremendous scientific and practical interest.

A brief discussion of drivers for hydrological modelling and an introduction to different
modelling approaches are given below, in order to contextualise the aims and objectives of
the study that are outlined subsequently. The chapter then concludes with an overview of

the structure of the remainder of the thesis.

1.2 Why model?

Models are simplified descriptions or representations of systems or processes that may form
a basis for evaluating understanding, testing hypotheses and making calculations or predic-

tions (Refsgaard, 1996; Beven, 2012). These models may be perceptual (also referred to as
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conceptual), reflecting qualitative understanding of how phenomena are perceived to work by
scientists or engineers for example (Beven, |2012). There are also mathematical and numer-
ical models, which are formed by translating perceptual understanding of system operation
into equations intended to emulate observed empirical behaviour. Implicit or explicit percep-
tual models are of course integral to all areas of hydrology, but mathematical and numerical
models have also found many applications. For example, these models are regularly used
in flood management for purposes such as flood frequency estimation, prediction of hydro-
graph shape and peak flow rates for hydraulic structure design, and flood forecasting (e.g.
Cameron et al., [1999; Boughton and Droop, 2003} Kjeldsen, [2007; Bell and Moore, 1998)).
In addition, models are central to contemporary water resources planning and management,
in which water demand and supply considerations need to be carefully balanced against the
requirements of the environment (e.g. Arnold et al., |[1998; Loucks et al., 2005; |[Shepley et al.|
2012). The potential impacts of climate change on important features of the hydrological
cycle are also commonly assessed using numerical modelling, which forms a useful tool to
help support mitigation and adaptation planning (e.g. |Arnell, [1999; |Vorosmarty et al. [2000;
Christensen et al| 2004; Prudhomme et al., 2013]).

The applications listed above are but a few examples of how hydrological models are used
in research and practice. The extensive use of these models in various contexts stems from the
simple fact that it is not possible to measure all quantities of interest for supporting important
decision-making processes or indeed advancing scientific understanding in hydrology (Beven,
2012)). As Beven| notes, measurement limitations mean that key decisions in fields such
as flood protection and water resources planning require means of extrapolating in space
and time from available observations. This is particularly critical where observations of
hydrological systems are very limited or absent, such as in ungauged catchments where
historical data for characterising flow regimes do not exist. The absence of such data therefore
presents a particularly significant challenge to effective management of water resources and
hazards in the large areas of the world that are poorly instrumented with respect to key
hydrological state variables and fluxes (Sivapalan, 2003)). The importance of this challenge
is compounded by the numerous pressures and factors affecting water resources and hazards
in many regions (e.g. Vorosmarty et al., 2000). In many catchments, both gauged and
ungauged, it is of great practical significance to assess possible future hydrological impacts
arising from changes in land use or climate, for which no data are available but consequences
for societies and environments around the world may be profound (e.g. Bates et all [2008}

Jimenez Cisneros et al., 2014).

In addition to using modelling as a tool for scientific and practical applications in indi-

vidual catchments, there are also a number of reasons for developing hydrological models



that can be applied at regional or national scales. In terms of advancing science, an im-
portant driver for modelling large areas containing multiple catchments is the usefulness of
comparative approaches in hydrology, which has been recognised during the recent decade
of Prediction in Ungauged Basins (Hrachowitz et al., 2013). Simultaneously investigating
multiple catchments forms a means of learning about hydrological processes and the reasons
for variation in catchment behaviour. Modelling samples of catchments forms a useful part
of this, as well as highlighting possible deficiencies in data, model structure, parameters or
indeed process understanding (Henriksen et al., [2003). In addition, national-scale modelling
can aid practical flood and water management in various ways. Near-term flood forecasting
is one example of this, but a robust model can also assist in planning and decision-making
over the longer-term. This can be through the ability to assess various issues, such as the
potential effects of scenarios of climatic and land use change on water resources and flood
risk. A national-scale model also represents a consistent way to quantify water resource avail-
ability, as well as test and evaluate the implications of different water resource management
strategies with respect to both demand/supply management and environmental sustainabil-
ity. Large-scale flood risk assessments are also possible with national-scale models (Hall et al.
2003), and flooding from various sources (such as fluvial and groundwater sources) can be

assessed at the same time if an appropriate model structure is applied (see discussion below).

1.3 Which model?

The broad spectrum of hydrological models that can be used in various applications can
generally be categorised into three overarching classes on the basis of model structure and
process representation. The first class of models, empirical models, are based on mathemati-
cal relationships between hydrological system inputs and outputs derived solely on the basis
of measurements, rather than physical catchment processes (Zhang, 2007; Pechlivanidis et al.,
2011). Examples of this class include ARMA (autoregressive moving average) models (Box
and Jenkins, 1976), as well as data-driven modelling (DDM) approaches such as artificial
neural networks (ANN) (see |[Dawson and Wilby, |2001). In contrast, the second class of hy-
drological models consider more explicitly important catchment processes, albeit in simplified
ways. Models of this nature, often known as conceptual models, are both widely used and
varied, including codes such as the Stanford Watershed Model (Crawford and Linsleyl, (1966),
HBV (Bergstrom et al., [1995) and TOPMODEL (Beven et al.| [1995). Conceptual models
typically attempt to represent dominant catchment processes through use of connected reser-
voirs, utilising mathematical functions to relate storage and flux terms (Beven, 2012). Yet

the final class of models, physically-based models, attempt to adopt a higher level of realism
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through their basis in equations that are considered to best describe the operation of physical
catchment processes. These models typically attempt to solve differential equations based on
conservation of mass, energy and momentum governing processes such as channel, overland
and subsurface flow, often following from the blueprint put forward by |Freeze and Harlan

(1969).

This categorisation of model types of course simplifies the complexity and variation found
across the spectrum of hydrological models, as discussed further in Chapter 2. The impor-
tant point to note here is rather that different types of models are likely to have contrasting
domains of applicability, which is highly relevant to selection of a model for investigating
issues pertaining to ungauged catchments and non-stationary conditions, as explored in this
research. For example, conceptual models are often sufficiently flexible that good model
performance in relation to observed data can be obtained through calibration of parameters
(Beven, 2012). This potential for accurate simulation of runoff has led to their application in
many practical contexts, as exemplified by the conceptual Grid-To-Grid (G2G) model devel-
oped in the UK (Bell et al., [2007a). This model is used for operational flood forecasting in
the UK (Price et al., [2012)) and has also been applied in climate change impact studies using
Regional Climate Model (RCM) projections (Bell et al. 2007a,b)). However, the application
of stores and functions parameterised to replicate observed behaviour in conceptual models
may not represent physical catchment processes, potentially limiting the reliability of their
predictions outside of the limits used in calibration, given the high dependency on data to
determine model parameters (Beven, 2012). Physically-based models should theoretically be
more reliable in applications such as predicting runoff in ungauged basins or under climate
change, although potential limitations to our ability to prescribe equations for physical pro-
cesses at the model element scale and estimating suitable parameters exist (Beven, 2001)).
There are ongoing debates surrounding issues such as these (e.g. Refsgaard et al., 2010; [Ewen
et al., |2012; Refsgaard et al., [2012), while high input data requirements, computational ex-
pense and often lower absolute accuracy make physically-based models more challenging to

apply in some practical respects.

As the ability to predict flows in ungauged basins and under climatic and land use change
are important aims for this research, the physically-based hydrological model SHETRAN is
used as the basis for the new national modelling system for Great Britain reported here. The
issues surrounding this type of model compared with other options are explored more fully in
the literature review (Chapter 2), but in summary it is argued that using SHETRAN fits well
with the aims of the research outlined in more detail below, while additionally complementing
previous work. Conceptual models for the UK have already been developed (such as G2G
mentioned above (Bell et al| 2007a))), but application of fully integrated physically-based
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models to large numbers of catchments remains a relatively unexplored area, particularly for
the UK. This approach therefore opens up possibilities to investigate a number of interesting
questions using a reasonable sample size and comparative approach, for example regarding
the degree of calibration required for physically-based models and the transferability of pa-
rameters in space and time. These issues impinge on both theoretical debates regarding the
physicality of physically-based models, as well as more practical considerations such as the
reliability of this category of models for making useful predictions for water management.
Indeed, utilising an integrated surface-subsurface model such as SHETRAN paves the way
for applications that are unachievable using existing national models for the UK, such as

national-scale multi-source flood risk assessment.

1.4 Aims and objectives

The aim of this research therefore is to set up a national physically based hydrological model
using SHETRAN (SHETRAN for GB) and to test its capacity for providing robust results,
that can be used to model flood and drought frequencies, in gauged and ungauged catchments,
both now and under future climate change.

The main objectives are to:
e Collate and process national, freely available datasets required for use in SHETRAN
e Develop software to automate the set up of robustly parameterised catchment models

e Develop a gridded hourly rainfall data product for use with the national modelling

system to provide higher resolution information
e Assess the uncalibrated performance of the national modelling system
e Assess the robustness and sensitivity of the system to meteorological inputs
e Relate model performance to catchment characteristics

e Make structural improvements to both SHETRAN and the national datasets where

required
e Couple the national SHETRAN system to the UKCP09 spatial weather generator

e Develop a methodology for a national climate change impact assessment using SHETRAN

and the weather generator.



1.5 Thesis outline

Chapter 2 reviews literature relating to types of hydrological models, their uses and the
argument for physically based modelling. This leads to an outline of the SHETRAN
hydrological model and its applications. A discussion of other national modelling sys-
tems follows and then this work is put into the context of predictions in ungauged

basins.

Chapter 3 describes the data collated and processing methods for the SHETRAN for
GB system. The software that has been developed as part of this work is presented and
the underlying algorithms are explained. The general climatology and physiography of

the country are also briefly described.

Chapter 4 outlines the creation of a gridded hourly rainfall product. A description of
the sub-daily rainfall data and quality control procedures are presented, including a
comparison of the hourly records to daily rainfall data. The disaggregation method is
described and limitations are discussed. A brief analysis of the quality of the resulting

dataset is presented.

Chapter 5 presents the results of the initial simulations from the modelling system. A
number of structural changes are made based on these results and a standard version
of the system is reviewed. A series of sensitivity tests to universal model parameters
such as the roughness coefficient, rainfall and evaporation rates, temporal rainfall dis-
tributions and the inclusion of the hourly rainfall dataset described in Chapter 3. The

model performance is then related to catchment characteristics.

Chapter 6 details a methodology for linking SHETRAN for GB to the UKCP09 spatial
weather generator and conducting a climate change impact assessment. Metrics for

analysis and some initial results are presented.

Chapter 7 addresses the representation of geology in the national modelling system. The
BGS national 3D geological model and other datasets are incorporated into SHETRAN

and the importance of accurate geological information is discussed.

Finally, the main conclusions are presented, limitations of the study are discussed and

possible future work is suggested.






Chapter 2

Literature Review

2.1 Structure of literature review

From the discussion above it begins to become apparent that making reliable, ro-
bust and realistic hydrological predictions in ungauged catchments and/or under non-
stationary conditions is a central focus and challenge in hydrology (e.g. Klemes, 1986;
Sivapalan), 2003 |Gupta et al., 2014)). This review aims to explore this challenge through
considering a number of its dimensions. Firstly, a brief overview of different types of
hydrological models and their relative advantages and disadvantages is given. The
purpose of this is to help identify the properties of hydrological models that may be
required to make predictions in the cases of interest. On the basis of these consider-
ations, the hydrological model selected for this study, SHETRAN, is then discussed.
Other national modelling frameworks are described and the broader topic of prediction
in ungauged basins is discussed. It should be noted that literature related to climate
change impact assessment is presented in Chapter 6, as this in an exemplar application

of the modelling system rather than a key focus of this study.

2.2 Hydrological model classification

Several classifications have been proposed for the substantial and varied range of hy-
drological models in existence (e.g. |O’Connell, [1991; Wheater et al., [1993; [Singh| [1995;
Refsgaard, [1996). These classifications typically differentiate between models on the
basis of at least three key attributes: whether or not the model is deterministic or

stochastic; how space is discretised; and how hydrological processes are represented or
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described (Refsgaard, 1996 Beven, 2012). These attributes and common relationships
between them form the basis of discussion in this section. However, it should be noted
that it is also possible to classify hydrological models based on other features, such as

their treatment of time (e.g. event-based or continuous simulation).

2.2.1 Deterministic and stochastic models

As noted above, hydrological models can be differentiated based on whether they are
deterministic or stochastic. A model may be considered deterministic if it consistently
produces a single, identical set of output variables for a given set of inputs, parameter
values and boundary conditions (Beven, 2012). This means that a given input will
always result in the same output if other aspects of the model are held constant; model
outputs are therefore entirely determined by specified and constant relationships be-
tween inputs and states. In contrast, stochastic models may produce multiple outputs
for a given set of inputs by incorporating a random element into some aspect of the
model or its inputs. This approach is often used in recognition of uncertainties in in-
puts, parameter values or boundary conditions, with the result that a distribution of
outputs may be obtained for a single set of inputs (Beven, [2012). However, the dis-
tinction between deterministic models and stochastic models is not always simple. For
example, Beven| (2012)) notes that there are examples where stochastic error models are
coupled with outputs from deterministic hydrological models. This point is illustrated
by the method described in Montanari and Koutsoyiannis| (2012)), in which stochastic
perturbation of the inputs, parameters and outputs from a deterministic model is con-
ducted to obtain a probability distribution and so assess uncertainty in model results.
It may also be noted that there are models performing deterministic predictions but
using probability density functions of state variables (e.g. PDM Moore, 2007). This
leads Beven (2012) to suggest that if model output variables have some variance (at a
given time step in the case of continuous simulation) then they could be classified as
stochastic, whereas if outputs adopt a single value then the model may be considered

deterministic.

2.2.2 Spatial discretisation

In addition to the distinction between deterministic and stochastic approaches, hydro-
logical models may be further classified on the basis of the mode of spatial discretisation

utilised. Two key approaches to the treatment of space are often identified. Lumped
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models treat the entire catchment as a homogeneous entity, with no explicit repre-
sentation of spatial variation in catchment structure, properties, processes, boundary
conditions or inputs (Singh) [1995). State variables such as subsurface storage thus
effectively represent averages over the catchment area (Beven| 2012)). Conversely, dis-
tributed models divide the whole catchment into a finite number of elements, which
may be assigned different properties and so exhibit contrasting hydrological responses
to forcing inputs. In this case equations for state variables are solved for each element,
with the resulting states representing local averages. The implication of this is that
distributed models are able to account more explicitly for spatial variation in catch-
ment hydrology and its implications for key processes. This feature is conceptually
attractive; it seems intuitively more realistic than representing visibly heterogeneous

catchments as spatially homogeneous.

However, there are several complications here, which are related to both theoretical and
practical issues. For example, a number of questions have been posed concerning scale
issues in distributed models, such as how to identify appropriate parameter values at the
element scale or reconcile differences between the scale of variation of processes and the
element scale required for computational feasibility (Beven, 2012). Furthermore, using
common model performance metrics for evaluating the degree of fit between observed
and modelled variables for a historical simulation, it is not necessarily the case that
distributed models produce more accurate results than lumped models. Issues such as

these are considered in more detail shortly.

It should also be noted that another form of spatial discretisation may be identified in
between the two extremes of lumped and distributed models. Semi-distributed mod-
els are based on modelling multiple discrete sub-catchments, sometimes referred to as
hydrological response units (HRUs) (Beven, 2012)). These sub-catchments are typi-
cally represented as homogenous units based on some metric of hydrological similarity,
though clearly they will differ from each other and so provide some level of spatial
heterogeneity compared with lumped models. This approach has been suggested to
represent a compromise between the computational efficiency of lumped models and
the explicit representation of important spatial variability of models employing a fully
distributed spatial discretisation (Orellana et al., 2008)).
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2.2.3 Model structure and process representation
Empirical models

One group of hydrological models that may be identified on the basis of model struc-
ture and process representation are empirical models. These models are essentially
based on mathematical relationships between hydrological system inputs and outputs,
which are derived solely on the basis of measurements and typically without detailed
consideration of physical catchment processes (Zhang, 2007; Pechlivanidis et al., 2011]).
This means that empirical models generally rely on the availability of observation data
to characterise the behaviour of a hydrological system (Wheater et al., [1993)). This
class of models could be considered to include a broad range of methods, such as trans-
fer functions, which form the basis of the unit hydrograph and its variants (Sherman,
1932; Beven), [2012) or the data-based mechanistic method applied by e.g. [Young and
Beven (1994). This latter approach attempts to limit prior assumptions about the
model structure, which is then identified from the available system input/output data
and considered valid only if it is mechanistically plausible. Time series models such as
autoregressive moving average (ARMA) methods (Box and Jenkins, 1976) could also
be considered as part of the class of empirical models, as well as other data-driven
modelling (DDM) approaches such as artificial neural networks (ANN) (see Dawson
and Wilby, [2001)). In ANN;, a learning set of data is used to train weighting functions

in a network of connected nodes relating system inputs and outputs.

Empirical models are therefore essentially based on induction from available data and
may provide useful tools for the hydrologist in various applications. Yet in the cases
of particular interest in this project (predictions in ungauged catchments and under
changing conditions), empirical models may not be a reliable tool. Firstly, if observa-
tion data are not available then estimating the parameters and/or form of empirical
models may be difficult. Secondly, as empirical models depend on historical data, fu-
ture alterations to hydrological processes arising from changes in climate or land use
may result in deviations from historical behaviour that are not easily accounted for in
models conditioned so heavily on past events. However, in some cases it has been possi-
ble to use this class of models in certain applications despite the absence of site-specific
data. For example, in some regions, statistical relationships have been derived between
catchment descriptors and unit hydrograph parameters. These relationships allow for
estimation of flood hydrographs in ungauged catchments through regionalisation, such
as in the rainfall-runoff models in the UK’s Flood Studies Report (FSR; NERC, 1975)
and Flood Estimation Handbook (FEH; Institute of Hydrology| [1999). The potential
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for applying ANN to predict flood statistics or index floods in ungauged catchments
with comparable performance to FEH methods has also been demonstrated by |Dawson
et al. (2006) for example, although limitations of the large dependency on data avail-
ability for training have been recognised. The use of regionalisation in methods such as
these will be discussed further shortly, but it should be noted at this stage that in gen-
eral empirical methods are intrinsically limited by their limited physical underpinning,
which is problematic when attempting to account for changing hydrological processes
and estimate the range of quantities of interest desired for practical water management

under current and future conditions.

Conceptual models

In contrast to purely data-driven empirical modelling, conceptual models typically at-
tempt to represent dominant hydrological processes understood to be significant in
modulating system input-output relationships at the catchment-scale (Wheater, [2002).
Conceptual models are often considered to have the feature that model structure is
specified a priori (Wheater et al., [1993)), in contrast to some of the data-based mecha-
nistic modelling described above for example. The specification of model structure is
subjective, drawing on the perceptual model of a catchment(s) and so the experience of
the hydrologist (Beven, 2012). Although there is a large range of structures used in dif-
ferent conceptual models, these are usually formed from a series of connected reservoirs
or stores (Pechlivanidis et al., 2011; Beven, [2012). Mathematical functions are defined
to relate the storage and flux terms associated with these reservoirs. Some models may
use a small number of reservoirs or stores, whereas others may implement much more
complex structures. However, the schematic representation of hydrological processes
in this way means that the parameters of conceptual models do not all have physical
meaning (Wheater et al., [1993)). This means that at least some of the parameters are
not directly measurable, such that they have to be estimated through the process of

calibration against observed data (Pechlivanidis et al.| 2011; Beven|, 2012).

It is often the case that conceptual models adopt a lumped spatial discretisation. As
discussed above, this means that spatial variation and heterogeneity is not explicitly ac-
counted for. Rather, computed state variables are in effect catchment averages. Perhaps
the earliest example of this type of lumped conceptual model is the Stanford Watershed
Model (SWM, [Crawford and Linsley, 1966). This model simulates a number of com-
monly important hydrological processes in a simplified manner. For example, effective

rainfall is apportioned to several subsurface stores, with linear and nonlinear reservoirs
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used to simulate interflow and active groundwater respectively. Since the development
of SWM, many more lumped-parameter conceptual models have been developed, in-
cluding the Sacremento Soil Moisture Accounting Model (SAC-SMA, |Burnash et al.,
1973)), the TANK model (Sugawara et al., [1983), the APIC model (Sittner et al.,|1969),
the SSARR model (Rockwood et al., 1972) and the Probability Distributed Model
(PDM, Moore, [2007)) amongst others. The latter model, PDM, exemplifies a set of con-
ceptual models that utilise a probability distribution function of absorption capacity
(or soil moisture) to attempt to implicitly account for spatial variation in catchment soil
moisture levels and its controlling effect on saturation excess runoff generation. This
model has been used in a number of hydrological applications, such as for deriving flood

frequency curves through conducting long model runs (e.g. Lamb, [1999)).

However, there are also examples of conceptual models adopting semi-distributed or
fully distributed modes of spatial discretisation. One example of this is the ARNO
model developed by Todini (1996), which also uses a probability distribution function
of soil moisture but additionally allows for division of a catchment into sub-catchments
that contribute to the overall rainfall-runoff response. HBV is another example of a
semi-distributed conceptual model that has been applied in a wide range of contexts
(Bergstrom et al., [1995; (Gotzinger and Bardossy, 2007; |Seibert, [2003; [Seibert and Mc-
Donnell, [2010). In addition, the PDM has also been applied in more distributed forms.
As Beven| (2012)) notes, concepts underpinning PDM have been applied in the Grid
Model described by Bell and Moore| (1998)) and more recently implemented in the dis-
tributed Grid-To-Grid (G2G) model (Bell et al., 2007a). The G2G model is used for
operational flood forecasting in the UK using inputs from the Met Office Global and
Regional Ensemble Prediction System Forecasts (MOGREPS, Beven, 2012). G2G has
also been used in conjunction with radar rainfall for the purpose of real-time forecast-
ing (Cole and Moore, 2008). Future climate projections for the UK from a 25 km
Regional Climate Model (RCM) have also been assessed using the G2G model (Bell
et al., 2007alb). TOPMODEL (Beven and Kirkbyl, [1979) is another popular conceptual
model that makes use of topographical data and a minimal parameter set, which can

be used to evaluate spatial patterns of results, without being a fully distributed model.

One of the general advantages of conceptual models is that there is often sufficient
flexibility arising from their mathematical structure and parameters to obtain good
model performance in relation to observed data (Beven| 2012). Additionally, conceptual
models may also be considered to have relatively modest data requirements, as well as
the option to adapt the complexity of a conceptual model according to the level of data

available (Wheater, 2002). This class of hydrological models are also often fairly simple
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and rapid to set up and apply. This means that they currently have many applications,
providing an important tool for decision-making in areas such as flood forecasting and

management as mentioned above.

However, although conceptual models may reproduce historical catchment behaviour
with some reference to key processes perceived to be important, this class of models may
not exhibit a large degree of fidelity with respect to physical catchment processes. The
application of stores and functions parameterised to replicate observed behaviour, as
opposed to physical relations governing hydrological processes, means that conceptual
models are subject to some of the same limitations as empirical models. For example,
predictions outside of the limits used in calibration may be questionable, given the
high dependency on data to determine model parameters (Beven), |2012). This is poten-
tially an issue for investigations of possibly unobserved hydrological extremes, which
may need to be taken into account in water resources and flood management. In ad-
dition, omission of physical relationships and incorporation of parameters with limited
physical meaning result in difficulties applying conceptual models under conditions of
changing climate or land use. This is because parameters calibrated based on historical
observations may not be robust under future conditions, particularly when those pa-
rameters are not easily related to physical catchment properties. Indeed, identifying the
most representative parameters is not a simple task even for historical periods in many
cases, given the limited information content of available data, which may be a partic-
ular problem for conceptual models with high-dimensional parameter spaces (Beven,
2012). Finally, reliance on observed data again raises issues of how conceptual models
could be used to predict runoff in ungauged catchments. Some possible solutions for

this last problem have been attempted, which will be discussed shortly.

Physically based models

Physically based hydrological models differ from empirical or conceptual approaches
in that they adopt an ostensibly higher level of physical realism by explicitly solv-
ing equations describing the operation of catchment processes. This class of models
typically follows from |Freeze and Harlan (1969))’s seminal blueprint paper, in which
equations characterising surface and subsurface processes are described and linked to
form an integrated model of the hydrological cycle. These nonlinear partial differential
equations describe processes of infiltration, overland flow, unsaturated and saturated
subsurface flow on the basis of continuity of mass and momentum. The equations are

typically solved using numerical methods such as finite difference or finite element ap-

15



proximations (Beven|, 2012). These methods are often applied in conjunction with a
fully distributed spatial discretisation in two or three dimensions, with the catchment
discretised into a grid of elements for which hydrological processes are resolved. The
physical nature of the equations employed is often suggested to mean that in theory
their parameters are measurable, thereby allowing incorporation of realistic variabil-
ity in catchment properties into model simulations in principle (Beven and O’Connell,
1982)).

A number of different modelling programs have been developed since the elucidation of
this blueprint for physically based spatially distributed (PBSD) hydrological models.
One such early realisation of this approach is in the Systeme Hydrologique Europeen
(SHE) modelling system developed by the British Institute of Hydrology, the Danish
Hydraulic Institute and the French company SOGREAH (Abbott et al., [1986)). The
modules comprising SHE reflect the guiding principles outlined by [Freeze and Harlan
(1969) of formulating and solving equations based on conservation of mass, momentum
and energy. For example, diffusion wave approximations to the St Venant equations are
used to simulate overland and channel flow, with unsaturated and saturated zone flows
modelled using the one-dimensional Richards equation and two-dimensional Boussinesq
equation respectively (Abbott et al., [1986). The significant input data and parameter
specification requirements implied by this formulation were recognised during the design
of SHE, such that flexibility through a modular structure was incorporated so that
simpler calculation methods could be employed in the absence of sufficient data to
justify more sophisticated approaches. This is reflected in the options for calculating
evapotranspiration, where three calculation modes are available in view of practical
difficulties in constraining all terms in the Penman-Monteith equation. Similarly, the
option to use a degree day approach to snowmelt modelling was included, given that

sufficient data are not consistently available for use of the full energy balance approach.

The SHE project has branched into two main strands, namely MIKE SHE (Refsgaard
and Storm, 1995) and SHETRAN (Ewen et al., [2012). These models represent ad-
vancements over the SHE formulation through the inclusion of fully three-dimensional
subsurface components, as well as addition of sediment transport and water quality
modules. A description and review of SHETRAN the model used in this research is
given below but it is worth noting that several other physically based modelling codes
have been developed in addition to SHE and its derivatives. These models include
the Institute of Hydrology Distributed Model (IHDM) (Beven et al. [1987), in which
discretised hillslope planes provide a flexible representation of subsurface flow. The

rationale for this approach is that, when compared with using square grid elements of
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the size typically employed in SHE, it may more accurately represent processes related
to topographic convergence and divergence, such as expansion and contraction of areas

of saturation and surface flow close to channels (Beven et al.| [1987)).

Other examples of physically based models include THALES (Grayson et al., [1992]),
GSSHA (Downer and Ogden, 2004)), WASIM-ETH (Schulla and Jasper|, 2015) and Hy-
droGeoSphere (Therrien et al., [2010; [Brunner and Simmons, [2012). The latter model
is one of the most recently developed physically based hydrological models. It uses a
finite element approach to simultaneously solve the Richards equation describing three-
dimensional variably saturated subsurface flow and a diffusion wave approximation to
the St Venant equation for two-dimensional surface flows. This approach could be
considered as one of the most fully integrated ways for physically based catchment sim-
ulation, but notably it is still fundamentally rooted in the seminal blueprint described
earlier (Freeze and Harlan| 1969; Brunner and Simmons, 2012). This is the case for the
majority of physically based models, which tend to differ more in their approaches to
spatial discretisation and methods of solution rather than their underlying principles
(Beven, |2012).

Physically based spatially distributed models have been applied in a range of studies
of hydrological processes, climate change and land use change, as well as in some prac-
tical water management applications. For example, Goderniaux et al. (2009)) utilised
HydroGeoSphere for fully integrated modelling of surface and subsurface processes in
the Geer basin, a catchment underlain by a Chalk aquifer in eastern Belgium. Sat-
isfactory simulation of both stream flows and groundwater heads was obtained, with
the authors finding that the integrated modelling approach and spatially explicit rep-
resentation of evapotranspiration contribute to sound physical realism in the model.
The calibrated model was then used for assessment of potential climate change impacts
using downscaled and bias-corrected regional climate model (RCM) outputs from a
medium-high emissions scenario. These projections indicated potential reductions in
groundwater heads of up to 8m and decreases in stream flow of between 9 and 33%
in this catchment by 2080. In terms of applications in water management, Refsgaard
et al| (2010)) note how MIKE SHE has been utilised in studies of impacts of different
operational strategies for the Gabcikovo hydropower scheme on the Danube, including
interactions between stream flows, sediment processes, aquifer chemistry and contam-
ination. |Refsgaard et al. (2010)) also describe how MIKE SHE has been utilised to
support management of flood risk, water resources and environmental sustainability in
the South Florida Water Management District. Other examples of physically based

models being applied in national-scale modelling are discussed below.
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The combination of a basis in physical process descriptions and an ability to account for
catchment heterogeneity therefore makes physically based models conceptually attrac-
tive for numerous applications, such as modelling ungauged catchments or basins under
non-stationary climatic or land use changes (Beven and O’Connell, [1982)). However,
a number of critiques of physically based spatially distributed models have emerged
over time (most recently [Paniconi and Putti (2015)), particularly following from [Beven
(1989). These critiques are neatly characterised by |Beven| (1999a)), who identifies prob-
lems of nonlinearity, scale, equifinality, uniqueness and uncertainty in physically based
distributed hydrological modelling. The first issue, nonlinearity, is related to the fact
that the dynamics of nonlinear systems do not average in a simple manner and extremes
exert a large influence on overall system response. Beven| connects this issue with the
problem of scale through the argument that certain equations typically used in phys-
ically based models particularly the nonlinear Richards equation are not necessarily
applicable at feasible grid resolutions in spatially distributed catchment modelling. In
conjunction with local heterogeneity meaning it is difficult to estimate parameters of
the equations at the scale of a model element, the nonlinearity of the Richards equation
means that applying it for a model element would not be consistent with integrating the
Richards equation applied more locally. Beven|additionally notes that sub-grid hetero-
geneities also arise from complicated factors such as preferential flow pathways, which
are not the focus of the Richards equation and particularly difficult to parameterise at

the model element scale.

What Beven! terms problems of uniqueness of place and equifinality are connected to
the issue of differentiating between multiple model structures and parameter sets that
provide similar levels of performance in simulating catchment behaviour. Given the
complexities of real catchments and the limitations of current theories for quantitatively
describing all of their nuances, Beven| argues that identifying a single optimal model
structure for most catchments is very difficult. This is closely related to the fact that
insufficient data are typically available to identify a unique optimal parameter set for
any particular model, an observation stemming from earlier work by |Duan et al.| (1992])
and Beven| (1993)) on simulating catchment discharge using multiple parameter sets. As
Beven (2001]) notes, this issue is particularly relevant for distributed models, which can
in theory have very high numbers of parameters that can vary between model grid cells,
and it is often the interaction between parameters that determines the performance
of a simulation. Both of the problems of specifying optimal model structures and
parameter set are further complicated by limitations in the availability of sufficient

input and validation data, the errors in which are often difficult to fully quantify. All
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of these issues in combination lead Beven| (2001)) to suggest that uncertainty analysis
is an integral part of hydrological modelling, in order to display more faithfully the

limitations of model results.

The arguments put forward by Beven| highlight some of the potential issues with phys-
ically based spatially distributed models, as well as key problems and uncertainties in
hydrological modelling more generally. It is of course important to note that, while
issues of nonlinearity and scale may indeed be associated with models that have their
origins in [Freeze and Harlan| (1969)’s blueprint, other categories of hydrological models
are rooted in mathematics that also only approximates catchment functioning, albeit
with typically less of a basis in understanding of physical processes. It is also certainly
the case that unique model structures and parameter sets cannot necessarily be iden-
tified for conceptual or empirical hydrological models, such that these issues are not
only relevant for physically based distributed models. In addition, there are many ex-
amples of successful use of physically based models in simulating catchment behaviour
and investigating different practical problems, some of which have been detailed above
and others pertaining to national modelling systems are given below. This does not
diminish some of the issues raised by |Beven| of course, but it does show that physi-
cally based models in their current form are able to add value in water management
problems, although their limitations need to be clearly acknowledged. For investigating
particular problems, such as nonstationary climatic or land use conditions, physically
based models are therefore considered to still provide the best option, as they are more
likely to provide physically plausible behaviour under different forcings compared with

conceptual or empirical models.

2.3 SHETRAN

The physically-based spatially-distributed hydrological modelling system employed in
this research is SHETRAN, which has its origins in the Systeme Hydrologique Europeen
(SHE) model developed by the British Institute of Hydrology, the Danish Hydraulic
Institute and the French company SOGREAH (Abbott et al., [1986; Ewen et al., 2012).
As discussed earlier, the foundations of SHE were strongly influenced by [Freeze and
Harlan| (1969)’s blueprint, with these principles taken further and additional processes
incorporated during the development of SHETRAN, along with some divergences in ap-
proach. This development process was partly funded by United Kingdom Nirex Limited

for the practical purpose of assessing the safety of a proposed deep underground repos-
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itory for radioactive wastes (Ewen et al., |2012)). For this assessment a model capable
of analysing transport of radionuclides in surface and shallow subsurface hydrological
systems was required. This led to the current form of SHETRAN, in which finite dif-
ference approximations are used to solve equations describing fully three-dimensional
coupled surface/subsurface water flow and transport of sediments and reactive solutes.
Given the context of its development, it is unsurprising then that a significant strength
of SHETRAN is its detailed treatment of the subsurface as a variably saturated porous

medium and the direct coupling of surface and subsurface flow and transport.

The sediment and solute transport capabilities of SHETRAN are not explored in this
project, but of course the modelling system developed here could provide a starting
point for rapid setup of catchments for investigations of these processes. Focussing in-
stead on the water flow component, however, SHETRAN includes processes of canopy
interception of rainfall, evapotranspiration, infiltration, surface runoff (overland, chan-
nelised and overbank), snowpack formation and melting, storage and flow in the variably
saturated subsurface, flows between surface and subsurface water bodies and ground-
water seepage discharge (Ewen et al., |2012)). Human influences on catchments are also
accounted for, as SHETRAN can incorporate river and groundwater abstractions, flow
augmentation schemes and irrigation. Subsurface flow is based on equations for vari-
ably saturated flow, which accounts for variations in hydraulic conductivity and storage
properties as functions of saturation. Overland and channelised flow are simulated us-
ing a diffusion approximation to the Saint-Venant equations in two and one dimensions
respectively. Evapotranspiration may be represented using the Penman-Monteith for-
mulation or as a fraction of externally supplied potential evapotranspiration, while
snowmelt can be simulated using either a temperature-index or energy balance ap-

proach.

Uses and application of SHETRAN beyond supporting the Nirex work described above
are many and diverse. For example, Bovolo and Bathurst| (2012) used SHETRAN
to determine the magnitude of shallow landslides as a function of rainfall return pe-
riod, while [Parkin et al. (2007) investigated the impact of groundwater abstractions
on stream flow and use SHETRAN to generate a suite of hypothetical groundwater
abstraction impact realisations. In addition, temperature is demonstrated to be a use-
ful tracer of flow pathways using a calibrated SHETRAN model in Birkinshaw and
Webb| (2010|), whereas |Birkinshaw et al.| (2011) used SHETRAN to demonstrate the
impact of deforestation on peak flows and sediment yield in central-southern Chile.
SHETRAN was also found to be suitable for real-time flow forecasting in Mellor et al.
(2000). SHETRAN has additionally been used to study nitrate transport (Koo and
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O’Connell, [2006), groundwater contaminants (Ewen) 1990) and the impact of climate
change on Atlantic salmon (Walsh and Kilsby, 2007) amongst other issues. However,
it is of note that many of these studies are generally focussed on modelling individual
catchments. Simultaneous simulation of large samples of catchments has not been ex-
tensively attempted for SHETRAN, although such investigation provides a very useful
opportunity to evaluate model performance over a range of catchment types and ex-
plore the potential for application of the model to support broad-scale flood and water

resources management .

2.3.1 National hydrological modelling

Following the discussion of different types of hydrological modelling above, examples
of applications of models at the national-scale are now considered. This provides some
context for the work undertaken in this project to configure a physically-based model
for robust and relatively rapid simulations of large numbers of catchments across Great

Britain.

The first example of national hydrological modelling is taken from Denmark, where the
integrated groundwater-surface water model MIKE SHE mentioned earlier has been
applied over an area of 43000km? (Henriksen et all 2003). This project was driven by
the pressures facing groundwater and related effects on stream flows and habitats in
Denmark, where around 99% of the country’s water supply comes from groundwater.
The hydrological context and issues therefore dictated deployment of an integrated sur-
face /subsurface model, for which input data were determined from national databases of
geology, soil, topography, river systems, climate and hydrology. The modelling method-
ology was developed through several iterations over a period of 5 years by a team of
government scientists, ultimately culminating in the creation of 11 regional sub-models
for Denmark (referred to collectively as the DK model). Catchments within the re-
gional sub-models are not predetermined in this system but are calculated by MIKE
SHE, allowing for the possibility that the divide between surface water catchment and
groundwater catchments may not coincide. The DK model includes similar processes
and components to SHETRAN, although notably the unsaturated zone component in
MIKE SHE based on the Richards equation was excluded to reduce run times. Three-
dimensional geology including superficial deposits was incorporated, with the model
set up at 1km resolution with universally applied parameters throughout based on the

literature, pumping tests, fieldwork and previous modelling results.

The problem of over-parameterisation and excessive tuning was kept to a minimum
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by using universal parameter values consistently across the model, 10 free parameters
remained for calibration. This was conducted principally using manual trial-and-error.
Outputs from the model were calibrated and evaluated using data from 4439 boreholes
and 28 river gauging stations, with a system of model performance statistics developed
to capture different aspects of how well the simulations matched observed data. This
provides a useful multi-criteria approach to model evaluation, which has been shown
to be of significant value in constraining parameters in other physically-based mod-
elling studies (Anderton et al., 2002). Henriksen et al. (2003)) concluded that the DK
model produces reliable results, with effective simulation of both groundwater heads
and river flows, leading the authors to suggest that the model is appropriate for opera-
tional applications and national impact studies. There was some degree of discrepancy
in overall water balance for the simulations, however, for which possible explanations
include overestimation of precipitation or underestimation of potential evapotranspi-
ration. Discerning between these different explanations remains challenging, as does
identifying the most appropriate calibration strategy and determining whether all of
the many processes in MIKE SHE are correctly represented. |Henriksen et al.| (2003)
also noted how the challenges in collating and processing large amounts of data are

complemented by advances in understanding of the hydrological processes in Denmark.

In comparison with the MIKE SHE model for Denmark, several differences in approach
were taken in the construction of the national model for France reported in Habets
et al. (2008). The French national model results from coupling a meteorological anal-
ysis system (SAFRAN) with a land surface scheme (ISBA) and a groundwater model
(MODCOU) that solves the diffusion equation. The representation of hydrological
processes is therefore potentially less integrated compared with the MIKE SHE model
for Denmark, particularly with respect to surface/subsurface coupling. The French
national model is typically run at an 8km grid square resolution but can be refined
down to 1km for particular applications. Calibration of the modelling system was not
undertaken, with parameters taken from national databases. Evaluation with respect
to gauged flows for the four largest basins in France revealed Nash-Sutcliffe Efficiency
(NSE) values ranging from 0.68 to 0.88 and water balance biases between -10% to +6%.
In addition, a 10-year simulation showed good results for 610 river gauges, with 66% of
gauges showing NSE greater than 0.55 and 36% showing NSE greater than 0.65. The
model was also compared to snow depth observations and piezometric head observa-
tions. The results were generally considered to be encouraging, but it was noted that
there is notable variability in performance, with NSE ranging from less than 0 to almost

1 and water balance biases ranging from -60% to +60%. It was also found that dry
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years tended to be more poorly simulated than wet years. Influences from hydropower
and dams were not incorporated in the model. The modelling system has been used
at MeteoFrance operationally since 2003 for real-time monitoring of the water budget

estimation of soil moisture for informing flood risk and drought monitoring.

A further example of national hydrological modelling comes from Sweden, where a
national model has been constructed based on the water quality and quantity model
HYPE (Stromqvist et al., [2012; Lindstrom et al., 2010). HYPE is a dynamic, semi-
distributed process-based integrated catchment model, which is built around a modular
structure in which hydrological response units are the basic model elements. Unlike na-
tional models focusing on quantifying water availability or flood risk, [Stromqvist et al.
(2012)) indicate that the main purpose of this system is to assess water quality, includ-
ing levels of nitrogen and phosphorus in response to the European Water Framework
Directive (Water Framework Directive, 2000). The HYPE model has many hundreds of
parameters that could be adjusted during calibration, but when configuring the model,
parameters were mainly estimated from previous modelling experience and from the
literature apart from 15 parameters for each land use and soil type which are calibrated
and a further 10 parameters calibrated for the model globally. These parameters were
calibrated manually and in a stepwise manner from the most important parameters to
the least sensitive ones. Importantly, the calibration of sub-groups of gauged sub-basins
was performed simultaneously. The model was able to simulate large unregulated catch-
ments better than small catchments and unregulated catchments better than regulated

catchments.

The current standard national hydrological model for the UK is the 1km national Grid
to Grid model (G2G) (Bell et al., 2009). Runoff production in G2G is parameterized on
slope and the soil and geology present. It is based on the probability distributed model
(PDM) (Moore, |2007) and models surface water flow, soil water volumes and drainage.
Model performance was assessed on river flows from 42 gauging stations using a daily
time step. The model was found to simulate upland catchments well but struggled to

properly simulate flat, groundwater dominated catchments.

Overall the UK national model performs similarly well to the other national models
discussed here, however, this model is severely limited in its capabilities. The Danish
MIKE SHE model can simulate groundwater levels well and the Swedish HYPE model
is able to simulate nutrient transport and water quality. There is therefore clearly a
need for a more comprehensive UK national model that is able to be used for several

purposes instead of limited to just looking at flood peaks. The G2G model is also
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limited by its lack of representation of snow melt and lakes which can have a significant

effect on hydrology in the UK, especially in the north of England and Scotland.

2.3.2 Predictions in ungauged catchments

Making reliable, robust and realistic hydrological predictions for ungauged catchments
and/or non-stationary conditions - such as land use or climate change - is considered
to be a central focus and challenge in hydrology (e.g. Klemes| |1986; Sivapalan, 2003;
Gupta et al., [2014). This challenge has been the subject of a substantial body of re-
search in recent years (Hrachowitz et al., [2013]). As discussed earlier, the majority of
the worlds basins are ungauged, with significant regional variation in the degree of mon-
itoring of stream flows. This substantially complicates the application of hydrological
models to support management of the array of water-related issues experienced in many
catchments, as calibration and evaluation with respect to measured flows is essential in
most model development processes, particularly for empirical and conceptual models.
Alternative options able to account for the multi-scale spatio-temporal heterogeneity
of catchments must therefore be explored if the benefits of models are to be realised
in ungauged basins. One approach to this is relating the parameters of models to
more easily measurable catchment characteristics, in order to transfer parameters from
gauged catchments where calibration is possible to ungauged catchments (Vogel, |2005)).
Another possibility is to apply physically-based models, if sufficient prior confidence in

the likely accuracy of their predictions can be attained.

The International Association of Hydrological Sciences (IAHS) led a Predictions in
Ungauged Basins (PUB) initiative over 10 years in order to further this aspect of hy-
drology (Sivapalan, [2003; Hrachowitz et al., 2013)). The aim of PUB was to move away
from models that rely on calibration and move towards models that emphasise under-
standing of catchment processes. One of the questions they investigated was whether
point-scale physics really represent large scale patterns and dynamics, i.e. is 'the whole
greater than the sum of its parts’ in catchment hydrology? If so, is this best accounted
for by building models from a bottom-up approach (similar to physically-based models
such as SHETRAN) or using a top-down method, in which processes are parameterised
directly at larger scales? As part of this, various research groups initiated experiments
to help develop process understanding. The conclusion following from this is that hy-
drological models needed to change in order to more flexibly incorporate competing
conceptualisations and permit testing of alternative model formulations. Modelling
frameworks such as FUSE (Clark et al., 2008) and SUPERFLEX (Fenicia et al., 2011)
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were developed to allow for intercomparison of conceptual model components, recog-
nising that no particular model is necessarily universally preferable for all applications

and that model performance depends upon the setting (Rutter et al., 2009).

To use these models in ungauged catchments, parameters must somehow be transferred

from gauged catchments. The process for doing this is discussed below.

Catchment characteristics

Defining catchment characteristics is an essential first step in transferring model param-
eters by any method from a gauged to ungauged basin. This process is also considered
to be a fundamental part of improving catchment science, capitalising on the advan-
tages of comparative approaches in learning about hydrological systems (Hrachowitz
et al., [2013; [Vogel, 2005)). Catchment characteristics used for various applications can
be numerous, but generally relate to physical features of a basin, such as area, slope
and metrics describing relevant properties of land cover and soils, as well as climate (for
example annual average rainfall and temperature) and hydrology (for example base-
flow index). The Flood Estimation Handbook (FEH) (Institute of Hydrology, 1999)
defines 25 catchment descriptors in its industry-standard methodology for pooling UK
catchments on the basis of their properties. These characteristics include catchment
mean altitude, longest drainage path, extent of urban and suburban cover, baseflow
index, mean annual rainfall and mean flood depth amongst other descriptors. While
some commonly used catchment characteristics can be relatively easily and objectively
calculated, such as metrics of catchment elevation or slope, definition of other charac-
teristics can be more subjective. To explore this further, Singh et al. (2014) attempt
to assess which catchment characteristics control the success of parameter transfer to
ungauged catchments in hydrological modelling. Singh et al.| carried out their analysis
using example catchments from across the whole of the USA| finding that the controls
on successful parameter transfer vary significantly with scale, region and objective
function. In general, however, it was concluded that the performance of hydrological
models was largely controlled by the level of similarity in climate, medium and low flow

signatures and elevation between climates.

Following definition of catchment characteristics, one step commonly taken next is to
quantify in some way catchment similarity, i.e. the extent to which properties (and
therefore hopefully functional behaviour) match between the catchments of interest.
This approach was taken by |Ali et al. (2012), who conducted a study using 36 catch-

ments in Scotland to examine similarity indices for catchment classification. Unlike
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previous studies where parameters have been tied to individual catchment character-
istics, the authors used the Affinity Propagation (AP) clustering algorithm (Frey and
Dueck, 2007) to divide catchments into groups of similar characteristics, before iden-
tifying an exemplar catchment that was most representative of any given group. This
methodology has the benefit of allowing the methodology to objectively determine pat-
terns of similarity without significant prior imposition by the researcher, although of
course the parameters required as input to the clustering methodology must be speci-
fied. However, one of the drawbacks of AP is that it does not allow for fuzzy clustering’,
which would better account for cases such as catchments situated on the boundary of
two groups. In AP, membership of a cluster is categorical, with no possibility of partial
degrees of membership, which would perhaps be more intuitive and potentially useful.
Notably, [Frey and Dueck| (2007)) also found that physical catchment characteristics do
not always correlate well to functional characteristics describing catchment behaviour,
such as runoff coefficients. In addition, the choice of similarity metrics may depend
on the context or region under consideration. In this case it was also found that (ge-
ographically) neighbouring catchments were usually more hydrologically similar than

more distant catchments.

The work by [Frey and Dueck| (2007) is useful in demonstrating some of the issues
inherent in relating catchment characteristics to functional similarity in hydrological
response, particularly in relation to the imperfect match usually found between physical
descriptors and functional response between catchments. This issue of the relationship
between physical and hydrological similarity in catchments was additionally explored
by Oudin et al. (2010)). Using aridity index, catchment area, mean slope, median al-
titude, river network density, fraction of forest cover and a BFI estimate/Oudin et al.
(2010) compared 10 UK catchments with a large group of potential analogues in France.
Using this methodology to test how well the hydrology of physically similar catchments
can be predicted when geographical proximity is reduced, it was found that only 60% of
catchments were both hydrologically and physically similar. This relatively low degree
of correspondence between physical and functional properties was considered likely to
be due to either difficulties in accounting for uniqueness and specificity of catchment
behaviour or the omission of sufficiently informative descriptors of hydrogeological prop-
erties from the catchment characteristics. In contrast to findings underpinning the FEH
methods, it was also concluded that the least useful catchment descriptors for determin-
ing hydrological similarity in this context were catchment area and BFI, although this
result could be at least partly an artefact of attempting to convert HOST classifications

into the French equivalent. The most useful catchment characteristics were found to be

26



slope index, aridity index, drainage density and forest cover. It is interesting to note

that the FEH does not include an explicit indicator for geology.

A further step often undertaken using the results from such similarity and grouping
analyses (known as pooling) is then to directly transfer parameters from gauged catch-
ments that would be members of each group, based on their characteristics. This is
based on the assumption that the same parameter set should be applicable for similar
catchments, which in turn presumes an accurate characterisation of catchment similar-
ity. There are a number of studies that apply this method, such as|Ouarda et al.| (2006))
who modified the approach to examine the effect of pooling catchments based on a sea-
sonality regionalisation method. Cunderlik and Burn (2002) used rainfall seasonality
to pool catchments, which allowed catchments with no flow record but a rainfall record
to be modelled.

A slightly different approach to catchment classification was undertaken by [He et al.
(2011)), who consider catchments to be similar if many sets of parameters lead to sim-
ilar model performance and instead of transferring model parameters from a pool of

catchments only the most similar catchments are used as parameter donors.

This methodology is limited by the fact that catchment descriptors often do not cap-
ture the complexity and heterogeneity of natural catchments (Beven, [1999b)). It is also
important to consider the impact that climate change will have on catchment descrip-
tors, and it is unclear whether a pool of catchments necessarily be representative of

each other under different conditions.

Regionalisation

Regionalisation of model parameters attempts to extend the simple donor catchment
methodology by modelling the relationship between catchment characteristics and model
parameters. The assumptions made in regionalisation are 1) that similar parameter sets
will result in similar rainfall- runoff behaviours (an assumption inherent in all models)
and 2) that physical similarity between catchments will result in hydrological similarity
(Oudin et al., 2010). Regionalisation can be carried out using relatively simple statis-
tical methods, such as multiple regression (Oudin et al., [2010; |[Kokkonen et al., 2003),
or more complex methods such as those described later in this section. A two-step
procedure is typically applied in which models of gauged catchments are calibrated
individually and then the relationship between calibrated parameters and the charac-
teristics of each catchment are determined (Seibert, 1999; Merz and Bloschl, |2004).
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However, this method can be limited by the fact that the regression relationship be-
tween parameters and catchment characteristics may often be weak, leading to mixed
results in the success of predicting parameters of models for ungauged catchments ((Vo-
gel, |2005)). This problem relates at least partly to the problem of equifinality, whereby
multiple sets of parameters may produce equally good simulations (Beven and Freer,
2001). If only a single parameter set is determined for the (donor) gauged catchment,
only a single relationship between parameters and catchment characteristics can be
found. Hundecha et al.| (2008) work around this by developing a methodology in which
models are calibrated to both maximise performance and to give a well defined structure
in physiographic-climatic space. The results show that models perform equally well for
catchments used in training/calibration as those used for validation, but that model
parameters outside of the training data can only be extrapolated slightly indicating
that it is only a useful methodology for transferring parameters between very simi-
lar catchments. An alternative approach is demonstrated by |Gotzinger and Bardossy
(2007), who define transfer functions in which model parameters are a function of flow
time, land use, soil properties, area and geology. Instead of calibrating the parameters
of the hydrological model directly, the parameters of the transfer function were instead
calibrated. This reduces the dimensionality of the parameter space and goes some way

to reducing the problem of equifinality.

Several other studies also seek to develop this two-step procedure of calibration followed
by relating model parameters to catchment characteristics. |[Vogel (2005) compares this
basic method to one termed regional calibration, whereby model parameters for all
catchments in a region are calibrated simultaneously. Based on catchments in the
U.S, this latter method resulted in as good a level of calibration essentially equal to
the goodness-of-fit obtained by calibrating each catchment individually, again reflect-
ing the pervasive issue of equifinality. However, the regional calibration approach had
the advantage of lower water balance bias and much stronger regression relationships
between catchment descriptors and model parameters. Interestingly, it was also ob-
served that, for the validation period, both methods gave similar results. This indicates
that, despite more robust regression relationships obtained from regional calibration,
predictive capacity for ungauged catchments did not necessarily improve relative to
using parameters from individually calibrated catchments with more scatter in their
relationship to catchment properties. In addition, Li et al.| (2010) outline a method
for defining catchment similarity and regionalisation of parameters using the ’Index
Model” that takes into account the geographical proximity and hydrological similarity

of catchments instead of just catchment descriptors. This regionalisation method was
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shown to improve hydrological model performance compared with parameter transfer
based on linear regression, particularly for catchments where regression relationships

are poor.

Engeland et al.| (2001) tried a slightly different approach again by parameterising a
large-scale regional model with one set of global parameters, in order that the same pa-
rameters can be used in the large catchment and all of its sub catchments. The authors
used a Bayesian method to ascertain parameter probability distributions conditioned
on observations and then used those to select robust parameters for their model. The
parameter space was predefined by the authors and then sampled using two techniques.
The resulting parameter sets are shown to be narrow in parameter space and provide

good simulations.

Regionalisation methods have been shown to perform well across a range of studies,
which is to be expected with a good set of donor catchments available. Few studies
are able to extend their parameter transfers to dissimilar catchments successfully which
is a significant limitation. Physically based modelling then becomes necessary as no

parameter transfer is required at all.

Physically based approach

An alternative approach to working around the lack of data available for ungauged
basins is to apply a physically-based model using parameters known a priori from
measured datasets as far as possible. This solution is not always possible for various
reasons. For example, sufficient input data may not exist, the model structure may not
capture all relevant processes in a catchment, the model may be difficult to apply at
the required scale and calibration may still be required to achieve an acceptable degree
of accuracy in runoff predictions (Hundecha et al., 2008)). This last point relates to
a number of the common criticisms of physically-based modelling approaches, such as
those regarding scale and parameter estimation put forward by Beven (2001). How-
ever, blind validation tests of physically based models have been conducted that show
with good catchment information, physically based models can perform well without
calibration (Bathurst et al., 2004).

Several recent studies have also explored how physically-based modelling approaches
compare with methods based on empirical and conceptual models for simulating un-
gauged catchments. Booker and Woods (2014) compare model performance for 485
catchments across New Zealand using an uncalibrated physically-based model (TopNet)

with predictions from a purely empirical machine-learning regression model (Random
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Forests). Booker and Woods| found that the empirical approach using Random Forests
outperformed TopNet across all performance measures, which is not unsurprising, given
that tuning of parameters in empirical or conceptual models regularly achieves very high
goodness-of-fit. |Booker and Woods (2014)) note that TopNet has been demonstrated
to provide more accurate simulations in other applications, but clearly some calibra-
tion would be required to achieve this. In this case, applying TopNet to an ungauged
basin would require the transfer of parameters. It would be interesting to see what
methods of parameter transfer would work best in this case, particularly with regard to
whether direct transfer of parameters linked to physical properties could be undertaken
or whether more complicated methods were required for accurate simulation. If simple,
direct transfers were not possible, it would potentially raise significant questions about
the application of physically-based models to ungauged basins, at least in the context

of this model structure and geographical /hydrological context.

In contrast to |Booker and Woods (2014), however, a number of studies applying
physically-based models to ungauged catchments show much more promising results.
For example, |[Fang et al. (2010) demonstrated that an uncalibrated physically-based
hydrological model of an agricultural catchment - using parameters derived a priori
and a LiIDAR DEM - could perform as well as a calibrated model, mainly due to the
high resolution DEM data available. This raises some interesting issues of the extent
to which it is in fact inadequate data that sometimes compromises the application of

physically-based models.

Fang et al.| (2013) went on to show that physically-based models with the correct
structure, flexibility and parameters estimated from measurements on-site, or in similar
conditions, can provide robust estimation of snowpack, soil moisture and streamflow
across multiple scales, by using an uncalibrated physically-based model that included
a full-suite of snow and cold region processes for the Marmot Creek research basin in

Canada.

The strong potential of physically-based models in this respect is also apparent in work
by |Dornes et al.| (2008). Unlike the regionalisation methods described above, which tend
to work best on neighbouring catchments, Dornes et al.| (2008) showed that parameters
with a physical meaning could be transferred to catchments at a great distance when
using physically-based models. This was achieved through calibrating a physically
based model for a catchment and then transferring those parameters, as their physical

meaning was well understood, to another catchment 1350km away.
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2.4 Conclusion

This study aims to create a national modelling system using a physically based model,
SHETRAN, that can be used for modelling both gauged and ungauged catchments
robustly. This literature review has therefore summarised the types of hydrological
models available, the pros and cons of physically based modelling, SHETRAN and its
uses, other national modelling systems and approaches taken for modelling ungauged
basins. Physically based models and SHETRAN in particular, whilst unpopular, offer
real value in their ability to provide robust estimations of many variables whilst also
remaining perfectly clear in their processes allowing the modeller to have a better
understanding of the system they are studying. There is therefore much to be gained

by having such a model for Great Britain.
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Chapter 3

Creating SHETRAN for GB

3.1 Modelling the whole of Great Britain

A central objective of this research is to create a system that enables the automatic
setup of a robust, physically-based spatially-distributed model for any catchment, ei-
ther gauged or ungauged, in Great Britain. This necessitates the collation, processing
and storage of large amounts of data, as well as methods to retrieve and configure catch-
ment models with minimal user-intervention. This chapter outlines the data sources,

modifications made to SHETRAN and automated processes used to build this system.

3.2 Great Britain as a study area

Great Britain is a relatively small, self-contained and data-rich region with reasonable
heterogeneity of hydrology, which makes it suitable for developing and testing a na-
tional hydrological modelling system in terms of practical tractability and availability
of input and evaluation data. There is also a long history of research into catchment
processes in Great Britain, as well as many previous hydrological modelling studies,
which means that catchment behaviour and processes are relatively well researched.
This is an important benefit for assessing the modelling system, as conceptual under-
standing of catchment processes and their variation across Great Britain can be used
to evaluate whether a model is simulating runoff generation mechanisms in a plausi-
ble way. Furthermore, there is an interesting range of catchment types across Great
Britain, with significant variation in topography, geology, land use and climate amongst

other factors. This heterogeneity presents an opportunity to explore the performance
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of the SHETRAN modelling system across large numbers of catchments with varying
properties, which could help to identify strengths and limitations of the system and its

inputs.

The SHETRAN model is configured to run separately for individual catchments, rather
than for multiple catchments in a given execution of the program. The catchments
simulated in this work were determined on the basis of the records for all of the gauged
catchments in the UK held by the National River Flow Archive (NRFA) (National
River Flow Archive, 2014b). There are 1537 gauged catchments in the UK, of which
306 have freely available historic flow data, lie within Great Britain and are of an
appropriate catchment area to be modelled with a 1Tkm SHETRAN model (i.e. not so
small that the grid size is too coarse to represent the catchment and not so large that
processing times become unreasonable). These 306 catchments were therefore selected
as the sample for consideration in this study, in order to evaluate the performance of

the modelling system against historic daily flow data.

The suitability of these 306 catchments for investigating performance of the modelling
system across a range of catchment types is supported by their good geographical
distribution across Great Britain, as shown in Figure[3.1] From this figure, it can be seen
that the 306 catchments cover the whole of Great Britain, ranging from impermeable
upland catchments in Scotland to flat catchments underlain by major chalk aquifers
in East Anglia. The associated variation in catchment properties is significant, as
discussed further in Chapter 4 in relation to model performance. A full list of the
catchments used in this study can be found in Appendix A. Figure |3.1] also highlights
that a substantial range of catchment sizes are also covered by this sample. Some of
the smallest and very largest catchments in Great Britain were omitted due to the
spatial resolution used in this study and computational limits of the parallel processing

infrastructure used in this work (discussed further below).

For each catchment, the NRFA provides descriptions of the setup of the gauging station
and any associated flow measurement issues, a characterisation of the physical features
of the catchment and flow statistics amongst other information. Importantly, human
factors affecting runoff are also listed by categorising the artificial influences on flow as

follows:

— Natural catchment - variation due to abstractions and discharges is so limited
that the gauged flow is considered to be within 10% of the natural flow when it is
greater than or equal to the Q95 flow
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Figure 3.1: The 306 catchments used in this study.
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— Storage or impounding reservoir - natural river flows are affected by water stored

in a reservoir situated in, and supplied from, the catchment

— Regulated river - under certain flow conditions the river will be augmented from

surface water and/or groundwater storage

— Public water supplies - natural runoff is reduced by the quantity abstracted from a
reservoir or by a river intake if the water is conveyed outside the gauging station’s

catchment area

— Groundwater abstraction - natural river flow may be reduced or augmented by

groundwater abstraction or recharge, including mine-water influences

— Effluent return - outflows from sewage treatment works will augment the river flow

if the effluent originates from outside the catchment

— Industrial and agricultural abstractions - direct industrial and agricultural ab-
stractions from surface water and from groundwater may reduce the natural river

flow

— Hydro-electric power - river flow is regulated to suit the demands for power gen-
eration; catchment to catchment diversions may also significantly affect average

runoff.

(Descriptions taken from the NRFA website (National River Flow Archive, [2014b]))

3.3 Data collected

Physically based hydrological models are very data intensive. SHETRAN requires:

— A digital elevation model (DEM)

— A map describing the subsurface properties of a catchment
— A land cover map

— Rainfall

— Potential evapotranspiration (PET)

— A mask delineating the watershed of the catchment.

See Figure[3.2] The datasets used are outlined in Table[3.I]and the details are discussed

in subsequent sections.
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Figure 3.2: A diagram showing the data layers included in the SHETRAN for GB system.
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The datasets chosen for input to the modelling system each cover the whole of Great
Britain, which means that the information supplied for each catchment is consistent.
This has the advantage that interpreting variations in model performance will not
be additionally complicated by the confounding effects of using multiple datasets for
different catchments. With the exception of the rainfall inputs, the datasets are all also
freely available to download under an academic licence, making the models suitable
for use by any research group. Recent developments are such that an alternative,
freely available, gridded daily rainfall dataset for the UK could potentially be applied
within the modelling system (Tanguy et al. 2014)), although the suitability of this
dataset would need to be evaluated first in future work. It should also be noted that
the datasets used are the highest quality ones available for this research, as described
below for each dataset. On this basis it has been presumed that the quality control
processes undertaken in the construction of each dataset make them sufficient for direct

application in the modelling system without any further quality review or refinement.

The fully distributed nature of SHETRAN means that model structure and properties
need to be specified for each grid cell. All maps required as part of this were resampled
to a 1km resolution and aligned with the British National Grid (BNG) for consistency
and ease-of-use. This resolution is partly dictated by the scales of the available soil
and land cover datasets, but it could be argued of course that higher spatial resolution
models may be desirable, in order to more realistically capture the significant hetero-
geneity that can occur at sub-kilometre scales in catchments. For example, with respect
to the representation of soils, it is recognised that effective parameters are required at
this comparatively coarse resolution to implicitly account for the many soil types and
complex variations in structure and properties that could be present within a single
grid square. Some authors, such as Beven (2006)), argue that this compensation by
effective parameterisation could undermine the physical basis of the model to some ex-
tent, as discussed in Chapter 2. It is suggested here that the extent to which this issue
represents a problem can be evaluated with respect to model performance, however. If
the dynamics of catchment models appear to be conceptually plausible and consistent
with available evaluation data, the selected spatial resolution would seem justifiable for

the purpose of national-scale modelling. This point is assessed further in Chapter 5.

The spatial resolution adopted here therefore represents a balance between the informa-
tion content of available data and pragmatic considerations with respect to computing
resources and run times particularly, as well as perceived priorities for investigation and
evaluation. This was also guided by the recent work of [Zhang] (2012), who investigated
the influence of spatial and temporal resolution in SHETRAN. Zhang| (2012) found
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that simulations can be significantly improved by increasing the temporal resolution
of forcing inputs - particularly rainfall - from daily to hourly intervals. In contrast,
improvements due to increasing spatial resolution were found to be more varied and
depend upon the level of catchment homogeneity. This highlights the potentially uni-
versal importance of temporal resolution of inputs relative to spatial resolution, such
that the former was selected as a priority for further investigation, as reported in Chap-
ter 5. Furthermore, the 1km resolution applied here is consistent with other large-scale,
national modelling studies, such as the the UK Grid-To-Grid model (Bell et al., 2007al)
and the national MIKE SHE model for Denmark (Henriksen et al., 2003), which also

use a 1km grid resolution.

The spatial datasets used for model construction were additionally resampled to 500m
and 100m for flexibility. These higher resolution datasets were not used in this study,

but future work could take advantage of them to investigate the effects of spatial reso-

lution in more detail.

Data Type Source Description Reference Licence

Catchment bound- INﬁlml_B_lﬁLElli Shapefiles of 1170 UK Morris et al.| (1990 |Centre for Ecologyl

aries Archive| (2012) catchment boundaries and Hydrology| (2014

Lakes Ordnance Surveyl Shapefiles of lakes. IOrdnance Surveyl Ordnance Surveyl
2012 2014

UKCPO09 Daily Maxi-

mum Temperature

UKCPO09 Daily mini-

mum Temperature

1»

)
(=]
=
)

Oﬁ?n‘el

5km ascii files, one per
day. Used to calculate

PET and snowmelt.

5km ascii files, one per
day. Used to calculate

PET and snowmelt.

(2013b)

IDepartment for En—l

[vironment, Food and|

Rural Affairs| (2014

Department  for En»l

[vironment, Food and|

IPerry Hollisl

Rural Affairs| (2014

UKCP09 Monthly ‘The _Met 5km ascii files, one per and
Relative humidity (2012) month. Used to calculate (2005) (2014)
PET.
UKCPO09 Monthly The Met. ffice! 5km ascii files, one per IPerry and Hollisl ‘The National Archives
Wind Speed (2012) month. Used to calculate (2005) (2014)
PET.
UKCPO09 Monthly Th. Met. i 5km ascii files, one per IPerry and Hollisl ‘The National Archi

Sunshine hours

UKCPO09 Daily Rain-
fall

P73

The Met. Office

month. Used to calculate
PET.

5km ascii files, one per day

1»

1»

IDepartment for En—l

[vironment, Food and|

Rural Affairs| (2014}
Land Cover Map 2007 ICentre for Ecologyl 1km raster (2011) Morton et al.| (2011)
and Hydrology| (2012
Soil map European Commis—l Four 1km rasters Li kerk 1. IEuropean Commis—l
|sion, Joint Research| (2006) |sion, Joint Research|
Centre| (2012 Centre| (2014
Hydrogeology map British Geologicall Shapefile IBritish Geologicall British Geologicall
Survey| (2012 Survey| (2014 Survey| (2012
Digital Elevation Ordnance Surveyl 50m raster Ordnance Surveyl Ordnance Surveyl
Model 2012 2013a) 2014
Flow data National iver FI Individual .csv files National iver FlI. ICentre for Ecologyl

and Hydrology| (2014

Table 3.1: Summary table of datasets used and their associated information.
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Figure 3.3: The 1km resolution DEM.

The digital elevation model (DEM) used in this study was based on the Ordnance
Survey (OS) Land-Form Panorama data. This 50m resolution raster was derived
from stereo areal photography taken in the 1970s, which was used to create OS Lan-
dranger 1:50 000 contours with an absolute accuracy (defined by root-mean-square error
(RMSE)) of typically better than 3m. The Land-Form Panorama DEM was created
from these contours using interpolation and generally has a vertical accuracy of 5m or
better (Ordnance Survey, 2013a). The DEM was downloaded in 20km x 20km tiles,
which were then processed in ArcGIS using the mosaic to raster tool to create one
raster file covering the whole of Great Britain. This raster was then resampled to a

1km resolution using bilinear resampling to determine the average elevation for each
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grid square. Figure [3.3| shows the 1km DEM resulting from this procedure, which il-
lustrates the variation in topography across Great Britain. The figure shows how steep
catchments are generally found in areas of Scotland, Wales and the north of England,
which may be contrasted with areas such as the south-east of England that are very

flat.

One of the applications of the DEM in SHETRAN is in generation of the location
of river channels for routing within the model. These are referred to in SHETRAN
as river links. Preliminary tests for this work suggested that these links more closely
follow actual river paths when the minimum elevations in each grid square - taken
from the original resolution of the Panorama DEM - are accounted for (S. Birkinshaw,
pers. comm., 2012). A DEM based on the minimum elevation values in each 1km grid
square was therefore created, using the same method as described above except with

the resampling based on minimum elevations from the Panorama dataset.

It should also be acknowledged that there are many other DEMs available for the UK.
For example, the Environment Agency offers much higher spatial resolution DEMs
(0.25m to 2m) with vertical accuracy of +/- 0.15m produced from airborne Light De-
tection and Ranging (LiDAR) (Environment Agencyl, [2014)). However, these data only
cover around 50% of England and Wales, and such high resolution is not considered
relevant for catchment modelling at the scales used in this study. The Ordnance Survey
have also recently released a new height product for GB, which is known as OS Terrain
50 (Ordnance Survey, 2013c)). This product, with a reported absolute accuracy of 4m
RMSE, originates from a different capture process to the Panorama data used here.
However, OS Terrain 50 was released in April 2013, too late for incorporation in this
study. Future versions of SHETRAN for GB may benefit from using OS Terrain 50 as
the basis for the DEM, as the latter is an actively maintained dataset, in contrast to
the Panorama dataset. However, the differences between the two products are likely to
be small and of limited significance when modelling at the spatial resolutions used in

this study, although further work could test this hypothesis.

3.3.2 Geology and Soil

SHETRAN represents the catchment subsurface as a column containing multiple layers
of soil or rock. There is one such column for each grid cell in the model, and the

parameters required for each layer of the column are as follows:
— The depth of the layer
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— Saturated water conductivity, K,

— vanGenuchten-a, relating to the inverse of air entry suction (Van Genuchten, [1980)
— vanGenuchten-n, a measure of the pore-size distribution

— The residual moisture content, 6,

— The saturated moisture content, 6.

Soil data obtainable for free under an academic licence are not widely available. There
are some national soil data sets, such as HOST (Boorman et al.; 1995) and the Landls
Digital Soil Dataset (National Soil Resources Institute, [2001)), although licences to use
both of these datasets need to be purchased at reasonable expense. The Landls Digital
Soil Dataset from Cranfield University contains 297 distinct soil associations (classes),
each containing multiple soil horizons. It is possibly the most detailed, widely avail-
able soil dataset for the UK. However, it only covers England and Wales, making it
unsuitable for this project. The HOST dataset is the most widely used soil data source,
but the parameters associated with the soil types do not easily map on to SHETRAN
parameters. This is because HOST data is based on interpretation of raw soil data
with consideration to the dominant runoff processes using a very simplistic, conceptual
model (Ali et al| 2012). Another option is the Food and Agriculture Organization
(FAO) harmonized world soil database (Nachtergaele and Batjes, [2012)), which is com-
prehensive and provides a good basis for conducting global comparisons, containing as

it does a globally consistent set of parameters.

However, an alternative data product, the European Soil Database (ESDB) v2.0 (Liedek-
erke et al., [2006) was identified as the most suitable dataset for meeting the requirements
of this study and modelling system. This based on the fact that the ESDB dataset con-
tains all of the relevant data required for model input and is the most UK-focussed,
freely available dataset. It is Europe wide with a 1km resolution and hydraulic proper-
ties were assigned by a collaboration of 12 European countries. Both the particle size
and the hydraulic data were standardized across Furope by fitting the Mualem-van
Genuchten model parameters (Van Genuchten, |1980) to the individual (h) and K(h)
hydraulic properties stored in the ESDB.

The ESDB was downloaded as several separate raster layers. The ESDB relates the
parameters required by SHETRAN to soil texture, for example a coarse soil a fine
soil, peat, etc. The layers containing the information that SHETRAN uses - dominant
topsoil texture, depth to textural change, dominant subsoil texture and depth to rock
- were selected and combined into one raster file of unique soil classes using a Python

script.
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Figure 3.4: The BGS hydrogeology map.
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Figure 3.5: The subsurface map of the UK created from combining layers from the ESDB
and the BGS hydrogeology layer. The different colours indicate different combinations of

properties.
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In an attempt to setup physically realistic catchment models, a geological layer was
added to the bottom of each soil column. The data for this were taken from the
British Geological Survey (BGS) 1:625 000 scale digital hydrogeological map (British
Geological Survey, 2014)) (see Figure . This map classifies the bedrock of the UK
into a small number of aquifer types based on productivity and is the only GB-wide
map describing aquifer properties, such that it formed the only real option for including
aquifer types into the model (although see Chapter 7 for further recent developments).
It can be seen from Figure that there is notable variation in aquifer types across
the country. The highly productive aquifers are mainly found in the chalk of south-east
England and East Yorkshire, whereas most of Scotland and Wales are underlain by

impermeable igneous rocks and mudstones, resulting in low productivity aquifers.

The BGS hydrogeology map is available in vector format and was converted to a raster
for combination with the soil layer derived from the ESDB. 236 unique subsurface
column types were identified on this basis and coded for use in SHETRAN. The dis-
tribution of these column types can be seen in Figure [3.5] As the parameters that
SHETRAN uses are primarily associated with soil and not included with the BGS hy-
drogeology map, representative hydraulic property values were therefore assigned to the
aquifer descriptions based on typical SHETRAN parameters for similar rock types from
previous modelling experience (S. Birkinshaw, pers. comm. 2012). Each subsurface
type was assigned the parameters shown in Table 3.2l SHETRAN is given hydraulic
properties for each layer on a column based on its type where the soil depths are de-
termined by the ESDB layers and bedrock depth was assigned an arbitraty depth of
20m.

3.3.3 Land cover

The CEH land cover map (LCM) 2007 (Morton et al., 2011)) is the most up-to-date
land cover map freely available for academic use for the UK. The map is derived from
satellite images and digital cartography, using land cover classifications based on the
UK Biodiversity Action Plan Broad Habitats that lead to the definition of 23 land cover
types. The map was simplified into the 7 basic land cover types typically used with
SHETRAN: arable, bare ground, grass, deciduous forest, evergreen forest, shrub and
urban, as the differences between the original 23 groups are not easily distinguishable
by SHETRAN parameters (see Table [3.3] and Figure (Birkinshaw, 2011)). Figure
summarises the proportion of each catchment assigned to different land cover types,

which indicates that most catchments are generally only dominated by grass, shrub or
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EU soil type [’ 0, Ks (m/day) vG-a vG-n

code (em™1)

Texture class of the dominant surface soil type

0 Peat 0.766 0.010 8 0.0130 1.2039

9 Peat 0.766 0.010 8 0.0130 1.2039

1 Coarse 0.403 0.025 60.000 0.0383 1.3774
(<18%clay

And <65%sand)

2 Medium 0.439 0.010 12.061 0.0314 1.1804
(18-35%clay
And <15%sand
Or <18%clay
And 15-65%sand)

3 MediumFine 0.430 0.010 2.272 0.0083 1.2539
(<35%clay
and <15%sand)

4 Fine 0.520 0.010 24.800 0.0367 1.1012
(35-60%clay)

5 VeryFine 0.614 0.010 15.000 0.0265 1.1033
(>60%clay)

Texture class of the dominant subsurface soil type

0 Peat 0.766 0.010 8 0.0130 1.2039

9 Peat 0.766 0.010 8 0.0130 1.2039

1 Coarse 0.366 0.025 70.000 0.0430 1.5206
(<18%clay

And <65%sand)

2 Medium 0.392 0.010 10.755 0.0249 1.1689
(18-35%clay
And <15%sand
Or <18%clay
And 15-65%sand)

3 MediumFine 0.412 0.010 4.000 0.0082 1.2179
(<35%clay
and <15%sand)

4 Fine 0.481 0.010 8.500 0.0198 1.0861
(35-60%clay)

5 VeryFine 0.538 0.010 8.235 0.0168 1.0730
(>60%clay)

Texture class of the hydrogeology layer

1 Highly Productive Aquifer 0.3 0.2 0.1 0.01 5
2 Moderately Productive Aquifer 0.3 0.2 0.01 0.01 5
3 Low Productivity Aquifer 0.3 0.2 0.001 0.01 5
4 No Groundwater 0.3 0.2 0.0001 0.01 5

Table 3.2: Summary table of the soil and rock types used in with SHETRAN and their

properties.
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Figure 3.6: A map showing the variation of land cover types across the UK. The dominant
types are arable (dark blue), grassland (pale blue), urban (red), shrub (orange) and forest
(green and yellow).
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Figure 3.7: Histograms showing % area of catchment of each land cover type. They show that

the most dominant land cover types within catchments are arable, grass and shrub.

arable land covers. The 7 land cover classes used in SHETRAN were assigned the
parameters detailed in Table 3.4, which are based on the SHETRAN documentation
(Birkinshaw), 2011]).

Highly detailed maps of land cover and vegetation types are available from other
sources. For example, Natural England hold maps of agricultural land, ancient wood-
land, heathland and grassland amongst other habitat types at a 100m resolution for
England only (Natural England, 2014). The Joint Nature Conservation Committee
also hold very detailed vegetation data for some areas of GB (Joint Nature Conserva-
tion Committee, [2014). However, this level of detail is not likely to be required in the

SHETRAN modelling system when using a spatial resolution of 1km.

3.3.4 Rainfall

In most previous work with SHETRAN, point rainfall data has tended to be used,
with rainfall time series obtained from the Environment Agency and the Met Office
for example. This approach is adequate for modelling individual catchments, but a
more consistent data set is necessary for setting up a nationwide system. SHETRAN
was therefore updated to take gridded rainfall as input and the UKCP09 5km gridded
precipitation dataset was selected as the fundamental rainfall input for the modelling

system (Perry et al 2009). This dataset created by the Met Office is based on a large
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SHETRAN type

SHETRAN code

LCM2007 class

LCM2007 number

Arable

Bare ground

Grass

Deciduous Forest
Evergreen Forest

Shrub

Urban

1

Arable and Horticulture
Arable

Inland Rock
Supra-littoral Rock
Supra-littoral Sediment
Littoral Rock

Littoral sediment
Saltmarsh

Saltwater

Freshwater

Improved Grassland
Rough grassland
Neutral Grassland
Calcareous Grassland
Acid grassland

Fen, Marsh and Swamp

Broadleaved woodland
Coniferous Woodland

Heather

Heather grassland
Bog

Montane Habitats

Urban
Suburban

3

14, 15, 16, 17, 18
19, 20, 21

4,5,6,7,8,9

10, 11, 12, 13

22, 23

Table 3.3: Table showing the conversion of LCM2007 land cover types to standard SHETRAN

land cover types.

Veg No Vegetation Type Canopy stor- Leaf area index Maximum AE/PE at field
age capacity rooting capacity
(mm) depth(m)

1 Arable 1.5 1 0.8 0.6

2 BareGround 0 0 0.1 0.4

3 Grass 1.5 1 1.0 0.6

4 DeciduousForest 5 1 1.6 1.0

5 EvergreenForest 5 1 2.0 1.0

6 Shrub 1.5 1 1.0 0.4

7 Urban 0.3 0.3 0.5 0.4

Table 3.4: Summary table of the land cover types used in SHETRAN and their properties.
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Figure 3.8: Map showing average annual rainfall. The west coast experiences much higher

rates of rainfall than the east.
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amount of data from the UK’s comparatively dense gauge network and provides full
coverage of the UK at a daily resolution for the period 1961 to 2007. Figure shows
average annual rainfall calculated from the dataset for the period 1961-1990, which
highlights how the west coast and Scotland, where average annual rainfall can exceed
3600mm, are considerably wetter than the east coast and south-east of England, where

average annual rainfall can be less than 600mm.

The UKCP09 daily rainfall grids were derived using regression and interpolation (inverse-
distance weighting) of data from irregularly distributed stations across the UK. It
should be noted that the procedures used to create the precipitation grids do not
account explicitly for the influences of latitude, longitude, altitude, terrain, proximity
to the coast and urban land use (the latter being considered in the development of the
equivalent temperature products) (Perry et al., 2009). In areas of high gauge density
this may result in accurate gridded estimates, however, in mountainous areas higher
elevations are typically under-sampled and so the gridded estimates may be too low.
The data were originally downloaded as Hkm ascii raster grids, one for each day, and a
Python script was written to convert the gridded data into a set of time series for each
Skm grid cell as this is the format required for SHETRAN.

Gridded precipitation datasets for the UK are still relatively small in number, but
CEH have very recently developed a new 1km gridded daily rainfall product, CEH-
GEAR (Gridded Estimates of daily and monthly Areal Rainfall for the United Kingdom
(1890-2012)) (Tanguy et al. [2014). Unlike the UKCP09 5km gridded dataset, which
uses inverse-distance weighting to interpolate station data into a gridded format, CEH-
GEAR uses natural neighbour interpolation. The gridded values are also adjusted by
a monthly correction factor. This new rainfall product could easily be formatted for
use with SHETRAN for GB, which would then allow for it to be tested relative to the
UKCPO09 grids. As the UKCP09 5km gridded rainfall is the only dataset used in this
study that is not freely available to download and CEH-GEAR will be freely available

for all purposes, this might form a useful additional exercise.

3.3.5 PET

The Met Office Rainfall and Evaporation Calculation System (MORECS) is often used
as an evaporation data source for hydrological modelling in the UK (Hough and Jones,
1997)), for example the Environment Agency regional groundwater models (Shepley
et al., 2012). It provides nationwide, real-time assessments of rainfall, potential evapo-

transpiration (PET) and soil moisture (Hough and Jones| [1997)), but the data are not
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Figure 3.9: Map showing average annual PET calculated from UKCP09 meteorological vari-
ables. The south east of England experiences much higher rates of PET than the north. PET

rates are also higher in urban areas indicated by the dark red spots on the map.

freely available. Other distributed estimates of PET are very limited, such that the
approach taken in this work was to calculate PET directly from the gridded variables
available within the UKCP09 dataset. This method also allows the SHETRAN for GB
system to be more directly compatible with UKCP09 weather generator outputs. Vali-
dation of the approach of calculating PET in this way is examined in Chapter 5, where
the sensitivity of model performance to PET is assessed. However, it would be an in-
teresting additional check to compare the calculated PET dataset against MORECS or
MOSES, while future plans to couple SHETRAN for GB with the land surface scheme
JULES (Best et al., [2011) may provide another option.

Potential evapotranspiration time series were calculated from the UKCP09 5km grid-
ded climate variables using the FAO Penman-Monteith method (Allen et al., 1998)) to

produce a UK wide 5km x 5km grid. The variables incorporated were:
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— Maximum temperature 1960-2006 (daily timestep)
— Minimum temperature 1960-2006 (daily timestep)

— Sunshine hours 1961-2006 (monthly timestep)

Relative humidity 1961-2006 (monthly timestep)

— Mean wind speed 1969-2006 (monthly timestep).

The daily grids for these variables were downloaded as ascii files, one for each day,
and so the same process was used to convert the ascii files to time series data for each
grid square. Maximum temperature in the UKCP09 dataset has been corrected for the
effects of latitude/ longitude, altitude and coastal effects, with minimum temperature
corrected for urban effects in addition to these (Perry et al., 2009). The monthly
data for the other variables were obtained as large spreadsheets containing time series
for each bkm grid square for a 20 year period. The monthly data were converted to
daily time series files for each grid square using the simple approach of applying the
average daily value provided for each month as the actual daily value. For the years in
which monthly data were unavailable, the average value for that month was calculated
from the rest of the data set and applied to fill in the gaps. The resulting data is
therefore based on some approximations and could be sensitive to this however, no

better data/methods were available.

The daily data series were then used to calculate daily PET using the Penman-Monteith
equation:

A(R, — G) + pacyce)

Ta

A+ y(1+ 1)

YET =

where:

ETy is the reference evapotranspiration (mm/day),

R, is net radiation at the crop surface [MJm ™ 2day™],
G soil heat flux density M Jm™2day™'],

T mean daily air temperature at 2 m height [°C],

uy wind speed at 2 m height [m s71],

e, saturation vapour pressure [kPal,

e, actual vapour pressure [kPa],

es — €, saturation vapour pressure deficit [kPal,
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A slope vapour pressure curve [kPa’C™!],
7 psychrometric constant [kPa’C~!]. (Allen et al. [1998)

The resulting spatial patterns of PET are shown in Figure [3.9) which shows average
annual PET derived from the UKCP09 dataset using the method described above for
1961-1990. This figure shows that the south-east of England experiences much higher
rates of PET (up to 700mm in London) than the north (less than 400mm). PET rates
are also higher in urban areas as indicated by the dark red spots on the map due to
the urban heat island effect (Howard) |1818). The spatial variation in PET is closely

related to differences in temperature regimes between regions in Great Britain.

It should also be noted that the daily maximum and minimum temperature data are
used to provide input to the snowmelt module of SHETRAN. There are options for both
temperature-index and energy balance modelling of snowpacks within SHETRAN, but
the former, simpler method is used here on account of the lower input data require-
ments. Given the climatology of the UK, this modelling decision is likely to have most
bearing on upland and mountainous regions, for which estimation of all the inputs re-
quired for energy balance is particularly complicated due to topographic complexity.
The commonly used temperature-index method is therefore considered to be a more

appropriate starting point for the modelling system.

3.3.6 Lakes

SHETRAN was modified to allow for input of a map showing the position of lakes in
a catchment, in order to improve their representation in catchment simulations. The
details of the method used for simulating the effects of lakes in SHETRAN is discussed
briefly below and also in Chapter 5. The data layer used as input is the OS Meridian 2
lakes layer (Ordnance Survey, 2013b)). This dataset is available as a vector file, which

was converted to a 1lkm raster.

3.3.7 National River Flow Archive

Each SHETRAN simulation requires a mask to delineate the catchment boundary , in
order to specify which grid squares should be taken into consideration in calculations.
Catchment boundary shapefiles were downloaded for all 1537 catchments described
in the National River Flow Archive (NRFA) (Morris et al., [1990) and converted to

individual ascii files for each catchment. It is worth noting that these boundaries
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are all for the surface water catchment to gauging stations, which does not take into
account any differences in underlying groundwater catchments areas where aquifers are
present or show different flow divides. This consideration only applies to some of the

catchments simulated and is discussed further in Chapters 5 and 7.

For evaluation of the modelling system, all freely available historic daily flow data was
downloaded from the NRFA and stored as time series files for each gauging station
(National River Flow Archive,|[2014a)). The data had been largely quality controlled by

the NRFA however some small formatting errors were identified and removed.

3.4 Modifications to SHETRAN

During the process of building and testing the system presented here, SHETRAN has
been modified in several ways in order to improve its performance (changes to the
SHETRAN code itself were made by S. Birkinshaw). These changes and their effects
are discussed more fully in Chapter 5, but an overview of the fundamentals is presented

here for information. The modifications include the following:

— SHETRAN now accommodates spatially varying rainfall and potential evapotran-
spiration data, as opposed to only point rainfall data as used in most prior work.
This allows for use of recently developed gridded products and provides more

realistic representation of important variability within catchments

— There is now also a better process within SHETRAN for removing sinks in the
DEM - i.e. grid squares at a lower elevation than all neighbouring grid squares -
to prevent unrealistic levels of ponding and surface storage, which would act to

reduce flows in an unrealistic way

— A minimum DEM (describing the minimum elevation in a grid square) is now used
in combination with an average DEM (describing the average elevation in a grid

square) to more accurately route the river links calculated in SHETRAN

— SHETRAN has been modified to accept a map of lake locations so that they
can be accurately represented within catchments. If a lake grid cell intersects a
river link, it is treated as an open water body by reducing the Strickler coefficient
controlling surface roughness from 20 to 3. This acts to effectively slow flow and

increase storage of water in the channel

— Changes have also been made so that it is possible to assign Strickler coefficients

as a function of land cover, rather than applying one parameter value for the whole
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Figure 3.10: The user interface of SHETRAN for GB.

catchment, as has generally been the case in the past. This allows roughness to
vary with vegetation, which seems a conceptually reasonable option. (This is not

explored in this thesis).

3.5 Automatic set up of Shetran

In order to develop a national modelling system based on SHETRAN, a large array of
data for the whole of Great Britain and the period 1960-2006 described above has been
integrated into a framework that features a new, user-friendly graphical interface, which
extracts and prepares the data required for a SHETRAN simulation of any catchment
in Great Britain. This has vastly reduced the time it takes to set up and run a model
from months to seconds. The system represents very substantial progress in the ability
to deploy SHETRAN for individual or very large numbers of catchments, which is

a significant contribution of this thesis to ongoing developments in physically-based
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modelling.

The underlying Python scripts of the system take input from a user interface (scripted
in HTML and Javascript) to automatically set up a model for a catchment (see Figure
B.10). For gauged catchments, an existing catchment boundary can be selected from
a map, while for ungauged catchments a shapefile of the catchment boundary can be
uploaded to extract an appropriate model. The process of setting up a catchment
model using this interface takes only a few seconds as opposed to the several weeks it

can take using a manual approach (Birkinshaw 2010).

The algorithm underpinning catchment setup goes through the following steps:

— Takes a boundary shapefile or gauge number as input to delineate the catchment
— Takes the start and end date of the simulation as input

— Creates a project directory

— Creates or selects the mask

— The bottom left coordinates and the number of rows and columns of the mask file
are used to seek and copy the corresponding area of the larger DEM, minimum
DEM, soil, land cover and PET and rain map. These selections are saved as ascii

maps in the project file

— The PET and rainfall map for the catchment is read and the grid IDs covering the
catchment are identified. The appropriate time series data (using the start and
end date) are then selected and written to a .csv file for use in SHETRAN (one

each for PE, rainfall, maximum temperature and minimum temperature)

— The flow data for this time period are also retrieved using the gauge number. Any

missing data are written to file as a blank, for example in an ungauged catchment

— A library file is generated for this catchment. The library file provides the SHETRAN
data pre-processor with information on file locations, parameter values and timestep

information

— The SHETRAN data pre-processor is run using the library file as input, generating
the input files for SHETRAN.

3.6 Condor

Conducting multiple sensitivity tests and scenario runs for hundreds of models requires

computational resources for conducting large numbers of simulations, ideally in paral-
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lel. Depending on the size of the catchment, running SHETRAN simulations for 12
years at a 1km resolution can take anywhere between a few minutes to several hours,
with a typical run for a single catchment taking between 30 and 60 minutes. Run
times of this order are of course not insignificant when large numbers of runs for each
catchment are desired. In order to efficiently conduct large numbers of runs for the
several hundred catchments simulated in this work, the runs were distributed using
Newcastle University’s Condor Network. The University’s Condor Network is based on
the original Condor Network described in |Litzkow et al.| (1988, and allows applications

to run on idle computers around the university.

To run multiple models using the Condor Network, the input files for each catchment
model must be zipped up and sent to a folder on the main Condor server, along with
a batch file to control execution and a shell script. A zipped copy of SHETRAN, its
.dll library file and 7z.exe are also submitted. Experience has shown that Condor can
be unreliable, so jobs (i.e. catchment simulations) are submitted in batches of 10 with
a b minute wait in between batches, which tends to give a much higher success rate
than attempting to submit too many jobs at once. Each job is then sent from the
main Condor server to an idle computer located within the university. Once the job
has completed, the results are sent back to the Condor server and are automatically
retrieved onto a local machine to avoid using up storage on the Condor server, which

can result in crashes. This process can handle 1-2 sensitivity tests overnight.

3.7 Conclusion

This chapter has detailed the datasets, processing and software development involved
in setting up the SHETRAN for GB national modelling system. Freely available data
- with the exception of rainfall, at this stage at least - were collated and processed into
1km rasters aligned with the British National Grid. The datasets together describe the
country’s physical characteristics. The north and west of GB are particularly steep,
wet, cool and impermeable whilst the south east of England is typically flat, dry, hot
and underlain by chalk aquifers. Modifications were made to SHETRAN itself (by S.
Birkinshaw) to improve the realism of input data, such as permitting distributed pre-
cipitation inputs, as well as representation of some hydrological processes. For example,
channel delineation and therefore flow routing was improved by using a minimum DEM,
with modifications also made to handle DEM sinks and improve the treatment of lakes

in SHETRAN. The snowmelt module was activated to simulate snowpacks. A graphi-
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cal user-interface was developed so that a non-expert can rapidly set up a SHETRAN
catchment model. This user-interface is designed to work in a browser, as it is ulti-
mately intended to be used on a university server so that other modellers can have

access to the system.
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Chapter 4

Creating an hourly rainfall dataset

4.1 The need for hourly rainfall data

Many hydrological applications require high temporal resolution meteorological data.
One important example of this is flood risk management, with flooding in the UK
highly dependent on sub-daily rainfall intensities amongst other factors. Knowledge
of sub-daily rainfall intensities is therefore critical to designing hydraulic structures or
flood defences to appropriate levels of service. Sub-daily rainfall rates are also essential
inputs for flood forecasting, allowing for estimates of peak flows and stage for flood

warning and response.

As well as its importance in water management applications, sub-daily rainfall patterns
are also of significance for the accuracy and physical realism of SHETRAN simulations.
Zhang (2012)) show that SHETRAN is more sensitive to temporal than spatial reso-
lution, and that moving from daily to hourly rainfall data can substantially improve
model performance. Hourly intervals are indeed used as the basic calculation time step
within SHETRAN, but the default method is to distribute daily rainfall inputs uni-
formly over each hour in any given day. This is clearly unrepresentative of observed
rainfall patterns, and often leads to underestimation of rainfall intensity at sub-daily
timesteps. It also has the potential to lead to a slight overestimation of actual evapo-
transpiration in the model, as the higher more realistic rainfall intensities are omitted.
In order to provide more realistic hourly rainfall inputs for SHETRAN and maximise
use of its physical basis, the UKCP09 5km daily gridded rainfall dataset was disag-
gregated to an hourly interval using available rain gauge records. The effects of using
this dataset for model input are then examined in Chapter 5 to see if more realistic

simulations are attained, although the evaluation is limited to daily flows on the basis
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of available data. This should still provide a basis for seeing if the timing of peak flows

and the water balance improve with more accurate sub-daily rainfall inputs.

In addition, an hourly gridded rainfall dataset has significant potential for practical

applications (Blenkinsop et al., 2016)):

— Better representation of extremes and pluvial flash flooding

— Validation of high resolution climate models such as the model used in the CON-
VEX project (Kendon et al., [2012)

— Improving the representation of sub-daily rainfall in weather generators (Jones
et al., 2009).

4.2 Hourly rainfall data

Hourly rainfall data for gauges with records spanning at least 10 years and held in
the UK Meteorological Office (Met Office) Integrated Data Archive System (Met Office
Integrated Data Archive System, 2012) were downloaded from the British Atmospheric
Data Centre (BADC). These data include land surface observations from the UK Met
Office meteorological station network. Additionally, data from 11 gauges in Scotland
were collected from the Scottish Environment Protection Agency (SEPA). Tipping
bucket rain gauge (TBR) data from 1,300 gauges across England and Wales was also
obtained from the UK Environment Agency (EA) (see Figure [4.1)). The data held by
each organisation had been partially quality controlled, but Blenkinsop et al.| (2016])
undertook further quality control procedures, particularly by checking the TBR data

against their associated check gauges. The following checks were used:

— Accumulated totals were removed, for example totals occurring at regular daily

or monthly intervals
— Spuriously high values from high frequency tipping were removed

— Long dry periods (>1 month) were identified and removed if a similar dry period

was not observed in a nearby station

— Negative values - mainly occurring as a consequence of erroneous coding of missing

data - were removed

— Potential daily accumulated values were noted to be most likely to occur at 9am

and 12pm and were identified and removed

— Identification and removal of duplicate rainfall totals in consecutive hourly periods.
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Figure 4.1: Hourly rain gauge locations coloured by record length. Network density is poor
in Scotland but the records there are long. In contrast, the South Fast of England has good

network density but consists of mainly very short records.
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Figure 4.2: A histogram showing the start dates of the hourly rainfall records. The number

of hourly records coming on-line begins to increase in the 1980s and peaks in 2000.

Figure shows the locations of all of the rain gauges used for disaggregation. This
illustrates that coverage in terms of gauge density and record length is good for Wales,
the Midlands and northern England. However, hourly rainfall records in Scotland are
sparse, while hourly rain gauges in the south-west of England tend to have generally
short record lengths. None of the records obtained were 100% complete; all had some
data missing between the record start and end dates. Figure[4.2{shows that most gauges
begin recording in the 1990s. These characteristics of the dataset have implications
for both the period of disaggregation feasible using available hourly data, as well as
uncertainties likely to arise from station density and record completeness or quality.
This may be a particularly important consideration for regions of Scotland, where
hourly records are very limited but mountainous topography could result in complex

variation in spatial and temporal rainfall patterns.
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4.3 Correlation to the daily record

As an additional quality control measure, the hourly rainfall records were aggregated to
daily intervals and compared to the UKCP09 5km gridded daily rainfall dataset. This
dataset was created from the Met Office archive of daily observations and covers the
UK at a 5km x 5km resolution over the period 1958 to 2006. The dataset has already
been quality controlled (Perry and Hollis, 2005|) and used in research (Rahiz and New,
2013b; [Simpson and Jones| 2014)), so it is considered to form an appropriate reference

against which to evaluate the likely accuracy of the hourly measurements.

The procedure for this comparison was to aggregate each hourly rainfall record to
provide a daily total for the period 0900 to 0900 the next day, following the conventions
for rainfall measurement in the UK. Any days for which daily totals could not be
calculated from the hourly data were omitted from the analysis. Each of the aggregated
time series were then compared to those of the UKCP09 5km grid square in which the
gauges are located. This comparison was initially conducted using Pearson’s correlation
coefficient. This statistic can exhibit bias when applied to correlation of rainfall time
series, as a result of the high number of zeros often found in rainfall series, which leads to
a highly skewed dataset (Ha and Yoo, 2007} |Serinaldi, 2008). As investigated by Habib
et al. (2001)), the Pearson correlation coefficient is therefore not an informative measure
of correlation between rainfall datasets, but in this work it was certainly found to be
useful for highlighting errors in the hourly dataset. Every station with a correlation
coefficient value of less than 0.9 turned out to have a very obvious error when inspected

visually.

Three main types of error were found using this method:

— Spurious rainfall rates up to 100 times greater than any other value in the record
(see Figure

— An excess of zeros at the beginning of a record

— A change point in the record where the values increase by a factor of 5, potentially

associated with a change in rain gauge (see Figure

In order to account for the high frequency of zeros in the distributions of daily rain-
fall, binary matching statistics were also applied to compare the gauge data with the
UKCPO09 dataset. This follows an established method demonstrated in [Yoo and Hal
(2007) for example. The matching statistics are calculated for each gauge location

by finding: the percentage of days on which it rains in both the gauge and UKCP09

65



1400

1200 4

Frequency

200

Figure 4.3: Histogram showing the frequency distribution of R? calculated for each gauge and
the daily record corresponding grid square. The majority of records show a correlation of 0.8

or higher.
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Figure 4.4: Time series from the gauge in March showing a spuriously high result.
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Figure 4.5: Time series from the gauge at Cowbridge showing a change in the measurements

by a factor of 5, likely to be caused by a change in rain gauge.
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records (P11); the percentage of days in which it rains in the UKCP09 daily series but
not the aggregated hourly record (P10); the percentage of days that it rains in the
aggregated hourly record but not the UKCP09 daily record (P01); and the percentage
of days where it does not rain in either data series (P00). P00 + P11 therefore shows
how concordant the two records are. Using this approach shows that on average the
records were concordant (P00+P11) 82% of the time. Removing the records subject to
the errors identified above increases the degree of consistency between the aggregated
hourly data and the UKCP09 series to 91% on average. P00 was calculated as 0.38,
P10 as 0.07, PO1 as 0.03 and P11 as 0.53.

Overall the analysis suggests that almost all gauge locations show an excellent corre-
lation between the hourly rainfall record and daily rainfall taken from the UKCP09
gridded dataset. This finding was confirmed by visual inspection of time series to fur-
ther validate the good correlations and identify unexpected anomalies. Stations with
erroneous values were then removed in preparation for using the hourly data in disag-

gregation.

4.3.1 Extreme values

Once the erroneous values were removed, comparison of the extreme values in the
aggregated hourly and UKCP09 daily datasets was undertaken. For each gauge, the
highest annual value was found in the aggregated hourly record and compared to the
highest value in the surrounding 3-day period in the UKCP09 daily gridded dataset.
The 3-day window was used in order to allow for any minor timing error. The two
series were compared by calculating R? for each gauge and corresponding grid cell. This
revealed good correlation between the two data series. This supports the conclusion
that the hourly data shows a high degree of consistency with the UKCP09 dataset,
which supports the approach of disaggregating the latter using the former. Spatial
interpolation of rainfall data typically results in the underestimation of extreme heavy
rainfall events and overestimates the frequency and intensity of very light rainfall events.

It is therefore expected that the correlation of annual maxima will be reduced.

4.4 Disaggregation

Multiple methods for temporally disaggregating rainfall exist that rely upon statistical

relationships between rainfall intensity, frequency and duration (see |Pui et al.| (2012),
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Figure 4.6: Graph showing Pearson R? and matching statistics for each gauge. Points with
low R? and low P00+P11 are records that start with an excess of zero values. Points with

low R? but high PO0+P11 are records that contain a spuriously high value.
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Figure 4.7: Histogram showing the frequency distribution of R? calculated for the annual
maximum rainfall for each gauge and the daily record corresponding grid square before re-
moving the spurious records. Correlation is still generally high but lower correlations are

more frequent due to spatial averaging in the daily record.
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Debele et al.| (2007) and Koutsoyiannis (2003)). However, due to the availability of
hourly rainfall timeseries that appear to be suitable for use with the UKCP09 dataset,
simple nearest neighbour disaggregation using real data was possible in this case. This
method is predicated on examining the observed hourly rainfall record for the gauge
closest to a given cell (on a given day) and applying the shape of the hourly record to
distribute the daily total to hourly intervals. Additional rules were defined to account
for missing data. The process is therefore based on an assumption that the nearest
gauge to a given cell is sufficiently well correlated to the cell at hourly intervals that
the sub-daily distribution can be applied, with no other corrections such as interpolation
of hourly gauge records required. This is likely to be a reasonable approach for those
regions with good gauge density, but uncertainties are expected to be higher in Scotland
and other areas with limited records. In such areas, hourly records are so limited
that it is considered unlikely that more complex methods would yield more accurate
disaggregation, although this is certainly something that would benefit from further

research.
The following algorithm describes the procedure used to disaggregate the daily rainfall
time series for each 5km grid square:
— Calculate the coordinates of the grid square
— Create a list of hourly rainfall gauges, ordered by distance from the grid square
— Create an empty hourly time series
— Fill this with data from the nearest hourly gauge

— If the nearest hourly gauge did not contain all of the information, fill any gaps

with values from the next nearest gauge

— Continue this process until the new hourly time series is full of values or until

there are no more data to fill the time series with

— For each day (0900-0900), distribute the daily total by giving it the shape of the
hourly record whilst preserving the daily total. If there are missing hourly values

in that day, exponentially distribute the values to hourly intervals.

— The results are recorded in a text file as a time series. As well as the disaggregated

value for each hour, the following are also recorded:

x The original hourly value
* The exponentially distributed daily value for that hour

x The gauge that the hourly value came from
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* The preference value (whether it was the first choice gauge, second choice etc.)
* The distance of this gauge from the centroid of the grid square

*x Whether statistical disaggregation was used for this day.

4.4.1 Distance limits

The relationship between rain gauge records as a function of the distance between
gauges was investigated, with a view to ensuring that appropriate spatial search limits
were defined for finding gauges from which sub-daily distributions could be transferred.
This is based on the idea that correlation between rainfall is likely to decrease with
distance between gauges, eventually to the point where a gauge may be of little help
in disaggregating rainfall for a given grid cell. For example, data from a gauge in
Scotland will be of little use when disaggregating daily rainfall in Cornwall in the
south-west of England. Introducing a distance limit also has the practical benefit of
reducing processing time for creating the hourly gridded dataset, as the number of

gauges to be examined for disaggregating each cell can be constrained.

To determine appropriate distance limits, time series from 50 randomly selected hourly
gauges were each compared against another time series for another 50 gauges, each of
which is an increasing distance from the original gauge. The correlation coefficients were
found for each pair, which can be seen in Figure . This shows that the correlation
between hourly gauge records measured by R? tends to decrease exponentially with
increasing distance from the focal gauge. On average, R? fell below 0.5 with a separation
distance of 27km, but a distance limit of 50km was considered to be a useful pragmatic
choice for application in the disaggregation process to provide reasonable coverage
across the country. However, as spatial correlation of hourly rainfall depends on factors
other than just distance and has the potential to vary in both space and time, some
additional investigation was conducted with respect to patterns of regional and seasonal
variation in the relationships between hourly gauge records. This is discussed in the

next section.

4.4.2 Regional and seasonal differences

In order to examine regional dependencies in the spatial correlation between hourly
rain gauges, separate tests of correlation between records were carried out for the
north-west and south-east of England. These regions were selected as examples on the

basis of known contrasts in their precipitation climatologies, with the north-west of
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Figure 4.8: Graph showing how correlation between two gauges decreases with distance. The
graph summarises 50 decay relationships where the blue line is the average correlation per km

and the grey area shows the variation of all of the runs.
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Figure 4.9: Graph showing how correlation between two gauges decreases with distance and
how this varies between region and season. Correlation decays with distance faster in summer
(yellow) than in winter (blue) as summer storms are local convective events and winter storms
occur as large frontal systems. The differences in correlation decay between regions (solid vs

dashed lines) is negligible.
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England recieving higher average annual rainfall and more wet days than the south-
east of England. The two areas were arbitrarily divided by a line using the equation
y = 0.82x + 307008 (in British National Grid (BNG) coordinates) and 50 gauges were
chosen in each region for comparison using the same process described above. The
results of this are shown in Figure[4.9] which illustrates that there is very little difference

in the decay of correlation with distance between the two regions.

However, completing separate analyses for each month of the year indicates that cor-
relation between hourly gauges decays faster with distance in summer months (June,
July, August) than in winter months (December, January, February). Correlation is
acceptable up to around 50km in winter, whereas in summer correlation tends to fall
beneath 0.5 at distances of approximately 15km. These differences appear to be phys-
ically realistic when seasonal variation in mechanisms underpinning precipitation in
the UK are considered. Rainfall during the winter months is often from large frontal
systems, from which spatial correlation of rainfall over substantial distances is to be
expected. In contrast, summer rainfall is often associated with convective systems that
are less extensive spatially, leading to lower correspondence over large distances than
may be observed in winter. These seasonal differences in spatial correlation were not
included in the disaggregation method at this stage, however. Instead a limit of 50km
was chosen to pragmatically balance results from the correlation analysis, gauge density
variability and processing time, as well as to avoid introducing additional complexities
before a simple approach was tested. Further analysis might be required to incorporate
more complicated disaggregation rules accounting for variability in spatial correlation,
although it would be interesting to examine the differences resulting from this in future

work.

4.4.3 Temporal limits

The record lengths and periods of the available hourly rain gauge data were analysed
to determine the most appropriate period for disaggregation. Figure |4.10| shows that
the length of the hourly records is highly variable, with a mean record length of ap-
proximately 11 years. However, there is a trend for more gauges to come online as time
progresses, as can be seen in Figure . On this basis, the time period for disaggre-
gation was selected to be 01/01/1990-31/12/2006, which coincides with the best record
period in terms of gauge numbers. This period is also useful for comparing with the

baseline simulations and sensitivity tests described in Chapter 5.

76



60 ! % !
sol Mk g S S —

N
o

Frequency
w
o

N
o

10 10— ............................ ..........................

0 5000 10000 15000 20000
Length of Record (days)

Figure 4.10: Histogram showing the range of lengths of hourly rainfall records.
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Figure 4.11: Cumulative frequency histogram of hourly rain gauge record start dates. At least
400 gauges are available at the beginning of the chosen time period of 1990-2006 with more

coming online throughout the period.
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4.4.4 Intensity-duration relationships

For days when no hourly data are available within the 50km limit for a given cell - even
if only one hour is missing or when rainfall occurs in the UKCP09 daily record but not
in the hourly record - the daily total is instead disaggregated by statistical methods.
The method applied takes the daily total and distributes it exponentially over a number
of hours that depends on the rainfall total for the day. The maximum hourly rainfall
is arbitrarily taken to be at 10am. The reasoning behind this was to mimic in very
general terms the pattern of a storm event, with the exponential distribution defined
by:

PX<z)=1-¢e™

where

>\:

ST

Therefore for an hours worth of rainfall:

—(h+1)

rain fallathourh = dailytotal(e%h) —e =

7 was determined by intensity-duration relationships that were calculated using all of
the available hourly data. For each gauge, the daily total rainfall and the number of
wet hours were calculated for each day of the record. The results were binned into daily
rainfall quantities: less than 1mm, 1-5mm, 5-10mm, 10-25mm and over 25mm. The
median durations were found for each bin and used as z in the above equation. The

results are shown in Figure [4.12]

The intensity-duration relationships were calculated over all available data but are
expected to vary seasonally, where more intense, short duration events are expected
in summer. The timing of events is also likely to change seasonally, as demonstrated
in Blenkinsop et al.| (2016), where summer storms were found to typically occur at
4pm. This could be an avenue for further investigation and refinement of the gridded

product.

This statistical disaggregation is rarely used because of missing data but is often imple-
mented due to there being no rainfall recorded in the nearest hourly gauge but rainfall

occurring in the gridded daily data.
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Figure 4.12: Histograms showing the intensity/duration relationships of hourly rainfall

records. Storm duration increases with intensity. Seasonal differences are negligible.
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Figure 4.13: Map Showing the average distance between grid square and hourly gauge used
for disaggregation. Most grid squares accessed data from a nearby gauge (<20km), however

areas of Scotland and South West England have to look further afield.
4.5 Disaggregation results

The disaggregated hourly gridded rainfall dataset for the period 01/01/1990 to 31/12/2006
took 5 days to process on a desktop PC. The script outputs a time series file for 4313
5km grid squares and also text files containing the time series for all cells in each of
the catchments modelled in this work. The time series are ordered in ascending order
according to their ID codes for input to SHETRAN.

The quality of this newly disaggregated record was assessed first in terms of the average
distance between grid cells and the rain gauges used for disaggregation. Figure
shows the average distance of rain gauges used in disaggregation from each grid square,
which clearly reflects the lower density of rain gauges in Scotland. The small number of

dark spots in Scotland in Figure [£.13|correspond to the locations of these gauges. It can
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also be seen from this figure that there is generally good hourly record coverage over
the north of England, while the south-west of England performs particularly poorly as

a result of local gauges having only very short records.

The percentage of the time series for each grid cell for which hourly data were un-
available for disaggregation was also examined. The majority of grid squares had no
missing hourly data in their records. This confirms that hourly disaggregation was
conducted with observed data rather than a statistical method for almost all hours and
grid cells, excluding those areas described above. In conjunction with the average dis-
tances of gauges used in disaggregation, this suggests that the gridded hourly rainfall
record should be of good quality overall, as a result of the availability of proximate,
well-correlated gauge records for the majority of cells. However, limitations in terms
of comparatively data-poor regions and simplifications of temporally varying spatial

correlations of rainfall should be noted.

4.6 Conclusions

This chapter outlines the creation of a national hourly gridded rainfall dataset for the
period 01/01/1990 to 31/12/2006 from disaggregation of the UKCP09 5km daily rainfall
grids using SEPA, BADC and EA hourly raingauge data. Quality control measures for
the sub-daily gauged data were undertaken, both through site-specific analysis of errors
indicated by statistical checks and comparison to daily rainfall totals from the UKCP09
grids. The resultant dataset shows good quality overall for England and Wales, where
local (<20km) gauges were available for use in disaggregation. More uncertainties are
present for Scotland in particular, where only a few hourly gauge records exist. Further
evaluation of this dataset through its use as input to the SHETRAN modelling system
is described in Chapter 5.
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Chapter 5
Sensitivity Testing

In chapter 3, the configuration of a national, physically based spatially distributed
hydrological model for Great Britain was outlined. This chapter proceeds to assess the
performance of this modelling system in terms of its capacity to accurately simulate
the behaviour of 306 gauged catchments of varying characteristics distributed across
the country. The performance metrics underpinning this analysis are first introduced
and then applied to evaluate an initial simulation, which is intended to provide a
preliminary benchmark against which subsequent structural changes to SHETRAN
made in this work can be compared. Description and evaluation of these structural
changes follows, providing details of the modifications considered necessary to improve
physical process representation in the model and resolve some initial model stability
issues. Thereafter, the results from a series of sensitivity tests are presented, focusing
on the implications of global changes to a number of SHETRAN’s key parameters.
Finally, the relationships between catchment characteristics and model performance are
explored through cluster analysis and assessment of the relative performance of nested
catchments, which highlights some strengths and weaknesses of both the SHETRAN
modelling system applied to catchments across Great Britain and the currently available

datasets.

5.1 Performance measures

Simultaneously simulating several hundred catchments presents a challenge in terms
of how to assess the extent to which the modelling system produces accurate stream-
flow simulations and whether it does so for the correct reasons, i.e. in a conceptually

plausible way, by faithfully emulating physical catchment processes. In studies fo-
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cussing on a smaller number of catchments, it is typical to combine both quantitative
performance metrics with qualitative judgement and experience in model evaluation,
although there are currently no standard procedures for assessing model performance
(Hrachowitz et al., 2013)). However, as the emphasis of this study is on developing a
system for national scale hydrological modelling of large numbers of catchments, inten-
sive assessment of each catchment by the modeller is clearly not feasible. Therefore,
in conjunction with qualitative analysis of representative hydrographs, this study has
sought to define a range of performance metrics in order to assess goodness-of-fit across

the sample of catchments in a systematic way to indicate aggregate performance.

It should be noted that this study focuses on metrics for evaluation of simulated stream-
flows and catchment water balances with respect to observations, without consideration
of other catchment state variables that could be used to diagnose model accuracy, such
as groundwater heads. Restricting the analysis to streamflows is a pragmatic decision
based on data availability and retaining tractability of the analysis within pragmatic
constraints on the project. Clearly assessment of the system with respect to other
available data would be a desirable avenue for further study, given the integrated rep-

resentation of hydrological processes provided by SHETRAN.

An array of metrics have been employed to evaluate hydrological models with respect
to observations. One such metric is the Nash-Sutcliffe Efficiency (NSE), which is widely
utilised as a general indicator of the degree to which observed and simulated flow time

series correspond (Nash and Sutcliffe, [1970). NSE is calculated as:

3

> (0; = Si)?

NSE =1- %1 -
> (0; — 0)?
=1

with O representing observed flows and S representing simulated flows. Maximum NSE
values of 1 indicate a perfect correspondence between simulated and observed flow time
series, with lower NSE values reflecting a lesser degree of fit. A NSE of 0 suggests that
the model is no better a predictor of observed streamflow than simply taking the mean
of the observations, with NSE values less than 0 implying that the model generally

provides worse estimates of flow than the mean of the observations.

In this work, NSE values for each simulated catchment were classified into a small
number of intervals to facilitate easier interpretation. This follows the approach taken
in other studies investigating large numbers of catchments (e.g. Henriksen et al., 2003;
Crooks et al., 2014 [Habets et all [2008)). NSE values greater than 0.7 were taken

to generally indicate good overall simulation of the streamflow hydrograph here, with
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values between 0.5 and 0.7 indicating reasonable performance and values below 0.5
considered poor. These intervals were defined to be in line with the interpretations of
NSE typically found in the literature and are essentially in line with the classification
used by Henriksen et al. (2003) in one of the few other examples of national-scale

modelling using a physically based spatially distributed approach.

While NSE is frequently used to assess model performance, the metric is known to have
some notable limitations. Firstly, NSE is often considered to be biased towards high
flows, where absolute residuals are often largest and the implications of using squared
differences between observed and simulated values in the calculation are significant
(Bevenl, 2012)). Beven| (2012)) also highlights the sensitivity of NSE to errors in timing
in simulated flows and the potential temporal autocorrelation of residuals, while Gupta
et al. (2009) demonstrate how decomposing NSE into constituent components of cor-
relation, bias and variability could indicate that underestimation of variability occurs
if the NSE value is maximised. Moreover, Gupta et al| (2009) find that comparison
of NSE values between catchments is made more complicated by the way in which
bias is scaled according to the standard deviation of the observations. It is therefore
suggested that NSE needs to be used in conjunction with other performance metrics to

circumvent some of its limitations.

As such, a number of other measure are calculated, as in (Crooks et al.| (2014), including

the bias in the water balance:

| T

Bias = 100(= — 1)

O

the average of the monthly bias in the water balance:
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the average bias in the flow duration curve at percentiles 1, 10, 25, 50 and 75:
1
FD=— Z 100
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and a measure combining both monthly water balance biases and those in the flow
duration curve:
mmfd= MM + FD

Annual water balance bias (%) is calculated by finding the ratio between observed
and simulated total flows for all years of the simulation. This provides an indication

of how well the balance between aggregate catchment inputs, outputs and storage

85



Band NSE Bias (%) mmfd

1 NSE > 0.8 -10 < Bias < 10 mmfd < 20
2 0.6 < NSE < 0.8 -20 < Bias < -10 or 10 < Bias < 20 20 < mmfd < 40
3 NSE < 0.6 Bias < -20 or Bias > 20 mmfd > 40

Table 5.1: Bands for performance statistics.

changes (which may be limited over the longer term) match between observations and
the simulation. Water balance bias therefore allows for assessment of whether or not
the simulated flow volumes are reasonable overall, something which cannot be easily
inferred from visual inspection of hydrographs or indeed quantitative characterisation
using NSE.

However, one of the limitations of analysing the water balance at only the annual
timescale is that seasonal variation is not accounted for and any intra-annual compen-
sating errors remain hidden. As such, monthly water balance bias is also calculated,
which will show any deficiencies in performance related to seasonal variation linked to
the catchment flow regime. This is further complemented by evaluating bias at se-
lected flow percentiles, which indicates how well the model simulates the overall flow
regime, with less emphasis on timing errors than inherent in NSE. Biases in monthly
water balances and at selected percentiles across the flow range are then combined
into a composite metric, mmfd, which usefully describes overall model performance
with respect to both seasonally-varying water balance patterns and the catchment flow

regime.

Similarly to|Crooks et al.| (2014)), bands to categorise performance across a large number
of catchments have been defined for these metrics (see Table . The bands provide a
useful framework for large scale, overall assessment of model simulations, but of course

categorising scores in this way represents a compromise between pragmatism and detail.

It would also be possible to define yet more performance measures to cover other areas
of interest, such as peaks over threshold or flood frequency distributions. For this
study, however, combining NSE, water balance bias, bias at flow percentiles across the
catchment regime and mmfd with visual inspection of as many hydrographs as feasible is

considered to provide enough information for evaluation of overall model performance.
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5.2 Initial Simulation

In order to identify a benchmark level of performance against which to compare the
structural improvements made to SHETRAN and sensitivity tests described shortly,
an initial run was conducted utilising the model configuration described in chapter 3 in
conjunction with best-estimate parameters based on expert knowledge of SHETRAN
(Birkinshaw| 2011). The results of this initial simulation are presented below with
respect to the performance metrics outlined above. Locations of the specific catchments

discussed can be found in figure [5.1]

Measure NSE Bias MM FD mmfd
Median 0.67 -2.2 20.9 25.2 45.2
25" Percentile 0.35 -13.3 13.5 16.7 30.5

75t Percentile 0.77 10.4 32.8 40.2 71.6

% Band 1 19.4 41.1 NA NA 4.4
% Band 2 40.8 28.2 NA NA 36.7
% Band 3 39.8 30.7 NA NA 58.9

Table 5.2: Summary table of performance statistics for the initial run.

The first point to note regarding the initial simulation is that 69% of catchments are
associated with NSE greater than 0.5 and just under 50% of catchments attained NSE
greater than 0.7. This provides a preliminary indication that the initial model con-
figuration results in an encouraging level of simulation of the dynamics of streamflow
hydrographs across the wide range of catchment types in Great Britain. In addition,
Table [5.2|shows that the annual water balance bias is within a range of +/- 10% for ap-
proximately 50% of the catchments, which represents a fairly high degree of consistency
between observed and simulated runoff volumes. However, the degree of spread and
fairly wide overall range of WB biases are notable. Further insights into the patterns
of WB bias may be drawn from Figure , which indicates that spring/summer flows
may be typically overestimated, whereas October/November/December flows may be
underestimated. This pattern of seasonally-varying bias refers to the overall situation
across all catchments, roughly commensurate with the median of the monthly /seasonal
distribution of WB biases for all catchments. However, the degree of spread in the
water balance performance between catchments is large, with the interquartile range
spanning positive to negative balances in each month. This indicates a degree of spa-
tial variability in water balance bias, as reflected in Figure |5.4] Particularly noticeable
are the large biases associated with geographical areas containing a number of chalk

catchments, which are considered in more detail shortly.
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Figure 5.1: Locations of the example catchments discussed in this chapter.
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Figure 5.2: The distribution of NSE for the initial run. FEven with no modification, the

majority of models perform to an acceptable standard.
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Figure 5.8: Map showing NSFE of initial SHETRAN run. The points represent gauge locations
in each catchment. Green indicates good model performance, yellow moderate and red poor.
The majority of poorly performing catchments are groundwater catchments (Affected by chalk

in the south east) or affected by snowmelt in Scotland.
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Figure 5.4: Map showing water balance bias of initial SHETRAN run. The points represent
gauge locations in each catchment. A pale colour indicates a small bias (good), darker in-
dicates a larger bias (bad), red indicates that the simulation is under-predicting flow, blue,

over-predicting. There is no obvious spatial pattern to the bias.
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Figure 5.5: A set of box plots showing the spread of percentage difference between simulated
and observed flows at points on the flow duration curve. The small blue crosses are outliers

Midflows are often

and the blue numbers are the percentage of points that are outliers.
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Figure 5.6: A set of box plots showing the spread of percentage difference in water balance
between simulated and observed flows. The small blue crosses are outliers and the blue num-

bers are the percentage of points that are outliers. The models generally under predict water

balance.
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Figure 5.7: Hydrograph for the Chess at Rickmansworth, initial run. SHETRAN does not
capture the baseflow dominance in the hydrograph. NSE = -12.7.

94



Dulnain at Balnaan Bridge, Run 0.301
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Figure 5.8: Hydrograph for the Dulnain at Balnaan Bridge, initial run. SHETRAN generally
under-predicts flows, especially in the spring months with snowmelt. NSE = 0.5.
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Figure 5.9: Hydrograph for the Teme at Knightsford Bridge, initial run. Generally very good.

the recessions are a little steep and the peaks are generally over estimated. NSE = (0.8.
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As discussed in chapter 3, precipitation inputs are taken from the UKCP09 dataset
(Perry et al., 2009), the best source of distributed precipitation data available for this
study, while PET is calculated using the FAO Penman-Monteith method (Allen et al.|
1998). Uncertainties in both of these datasets could be at least partially responsible
for apparent water balance biases where they occur, although the difference in sign of
typical WB biases between summer and winter potentially indicates that there is not
a seasonally consistent bias in the inputs. The initial simulation therefore highlights
the need to explore the sensitivity of the SHETRAN national modelling system to
uncertainty in rainfall/ PET meteorological inputs. This has been investigated and is
discussed later in this chapter. There may also be an influence on the water balance bias
from abstractions and discharges in some catchments but this is not easily investigated

without abstraction/discharge data and so has not been examined in this study.

The accuracy of the modelling system in simulating catchment flow regimes across
the country can be further investigated through comparison of observed and modelled
flow duration curves. Focusing on aggregate patterns, Figure [5.5) shows that high
flows are often underestimated in catchments in the initial simulation, as to a lesser
extent are low flows. In contrast, mid-range flows tend to be slightly overestimated
overall. The underestimation of runoff at higher flow percentiles is consistent with the
overall under-prediction of flow during the winter months apparent in the analysis of
water balance bias above. A possible explanation of the underestimation of low flows
could be that the simulations appear to exhibit flashier responses and steeper flow
recessions relative to observed hydrographs, which could skew the frequency distribution
of lower flows towards apparent underestimation (see Figure . The combination
of underestimation at low flow percentiles and slight overestimation at medium flow
percentiles could be responsible for the overall pattern of slight overestimation of the
water balance in summer months. However, these general patterns should be viewed in
the context of a substantial range of difference in observed and simulated runoff across
the flow range between catchments, as indicated by the spread in Figure [5.5 This
is reflected in the relatively high percentage of catchments with band 3 mmfd (59%)
which indicates that the variation of differences at points on the flow duration curve

and monthly water balance bias is higher than the annual/ overall bias.

From analysing the initial simulation, it is therefore apparent that many of the catch-
ments are simulated adequately using a basic configuration of SHETRAN without cali-
bration of parameters, when performance is judged in terms of the range of metrics out-
lined above. However, there are certain locations where simulated hydrographs, water

balances and flow regimes do not correspond well with observations. Two geographical
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areas subject to comparatively poor performance are the south east of England and
northern Scotland. The south east of England is dominated by flat, relatively dry and
warm catchments, in which groundwater derived from hydrogeologically varying and
complex aquifers forms a highly significant component of stream flow in a number of
cases. For example, many of the catchments in this area that exhibit fairly poor perfor-
mance in the initial simulation are underlain particularly by major chalk aquifers. The
hydrogeological properties and behaviour of these aquifers varies spatially as a result
of factors such as weathering and water table fluctuations that significantly heighten
transmissivity in river valleys and result in highly heterogeneous hydraulic property
distributions, as well as variation in overlying deposits such as glacial till and Eocene
clays that affect aquifer confinement and interactions with the surface water system
(Shepley et al., 2012).

For reasons such as these, chalk aquifers are notoriously difficult to model (Bell et al.|
2009; (Crooks et al., 2014) and are clearly poorly represented in the initial simula-
tion using this modelling system. The Chess at Rickmansworth (see Figure [5.7)) is
an example of a typical chalk catchment exemplifying this problem. Its hydrograph
demonstrates how SHETRAN does not capture the baseflow-dominated regime of the
catchment when using the parameter values and/or subsurface representation applied
in the initial simulation. The integrated surface-subsurface formulation of SHETRAN
may in theory provide a basis for modelling catchments of this nature, but it is clear
that insufficient information on structural geology and hydraulic properties is contained
within the datasets used in the initial simulation to achieve good performance (attempts
to improve this can be found in chapter 7). In addition to this, appreciable abstrac-
tion takes place in many groundwater catchments; the absence of national abstraction
data available for this work therefore adds an additional complication with respect to

modelling these areas effectively.

The apparent biases and errors in the initial simulation of some Scottish catchments are
perhaps easier to quantify. Firstly, seasonal snow is an important feature of the observed
climatology and hydrology across large areas of Scotland. Snow accumulation and melt
is not incorporated in the initial simulation, such that flows may be overestimated in the
simulation in winter. Rather than precipitation being stored in the seasonal snowpack,
as occurs in reality, it would be routed to streamflow much faster, particularly given
the absence of soil moisture deficits during winter and the extensive low permeability
geology present in Scotland. The initial simulation therefore also underestimates spring
flows by not incorporating snowmelt processes as temperatures rise. Secondly, Scotland

contains a number of large lochs, which are inadequately represented in the initial
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SHETRAN configuration. This omission is manifest in incorrect timing of peak flows
in some catchments, as well as overestimation of peaks where attenuation and storage
of runoff is not represented. In addition, low flows may be underestimated if lochs are
not properly accounted for, as the comparatively steady drainage of water from the

loch under dry conditions is absent.

5.3 Structural changes

From the analysis of the initial simulation described above, it was identified that a
number of structural improvements to the configuration of SHETRAN were required.
These structural changes are the inclusion of the snowmelt module, the inclusion of a
lake map and a way to fix sinks in the DEM that result in some numerical instabilities.

Each of these changes to the model configuration are described in turn.

5.3.1 Representation of lakes

The incorporation of improved lake representation in the modelling system is an im-
portant modification, given that 60% of catchments contain at least 1 lake grid cell.
Indeed, 51% of modelled catchments have lake areas representing more than 1% of
total catchment areas, while 18% of catchments have lake areas accounting for 5% or
more of total catchment areas. The extreme case is the Blackwater at Loch Dee in
Scotland, where 29% of the catchment is covered by lake or loch area. In order to
better account for the influence of these features, a lake map was created following the
procedure described in chapter 3. For grid cells corresponding to lake areas in this map,
the internal Strickler coefficient parameter in SHETRAN for bare ground was reduced
from the initial spatially uniform value of 20 to a lower value of 3 . This adjustment
effectively acts to slow flow routed through lakes, thereby inducing attenuation of flow

and longer storage of water in lake cells.

In order to evaluate the changes to streamflow simulation arising from incorporation of
lakes with an improved parameterisation, hydrographs comparing observed and simu-
lated flows for several catchments containing significant lake areas have been examined,
of which one example is presented here. The Leven at Newby Bridge is an upland, im-
pervious catchment completely containing Lake Windermere, a large lake of 14.7km?
(6% of the catchment area). As Windermere constitutes a significant fraction of the

catchment area, it will clearly play a large role in modulating overall catchment be-
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Figure 5.10: Hydrograph showing initial run of Leven at Newby Bridge. Without the inclusion

of a lake, the simulated peaks are too large, the recessions are too steep and the low flows are

too low.
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Figure 5.11: Hydrograph showing revised run of Leven at Newby Bridge. The introduction of

a lake has attenuated the peaks and regulated the low flow runoff.
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haviour, which is determined from the flow gauging station located a short distance
downstream of the lake outlet. From Figure [5.10]it is apparent that the initial simula-
tion (i.e. without the lake map) is associated with substantial overestimation of peak
flows, as well as underestimation of low flows. The simulated catchment response is
much flashier compared with that seen in the observations. Yet when the lake map is
introduced, peak flows are much more accurately simulated, as can be seen in Figure
5.11] This is a result of more realistic approximation of the attenuating effect of the

large lake. In addition, the role of the lake in temporarily storing water to sustain low

flows is clear from comparing Figures [5.10] and [5.11. The consequences of improved

lake representation are particularly evident in winter months, during which runoff into

the lake is significantly delayed before reaching the catchment outlet.

5.3.2 Removing sinks from the digital elevation model

The original DEM applied in the initial simulation was not checked for ’sinks’. Sinks
occur where a grid cell is lower than all of its surrounding grid cells, which causes
water to artificially accumulate. This sometimes creates numerical instabilities in the
program and causes SHETRAN to crash, but the main consequence of this issue is that
water is not routed correctly. As such, a new algorithm was added to the SHETRAN
pre-processing ‘prepare’ program, in order to remove sinks from the mean DEM. This
is considered to be a conceptually coherent inclusion for modelling in this context and
useful for conducting runs across a large number of catchments in an efficient way.
Adding in this step in the modelling process results in increased flows and decreased
catchment storage. In some catchments flows were increased by a considerable amount
when sinks were removed, as reflected in the differences in water balance bias between

the initial simulation and the simulation incorporating the sink corrections (see Figures

5.4 and [5.15)).

5.3.3 Representation of snowmelt processes

Seasonal snowfall represents a significant component of the water balance and dynamics
of a number of regions of Great Britain, including upland areas such as the highlands of
Scotland, Snowdonia and Cumbria amongst others. As such, incorporating snow accu-
mulation and melt processes is intended to account for the role of snow in modulating

catchment runoff through seasonal storage and runoff processes.
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SHETRAN has two methods for modelling snow: a full energy balance approach or a
simpler degree day method. Employing an energy balance approach requires specifi-
cation of a number of spatially distributed inputs, including incoming shortwave and
longwave radiation, air temperature, relative humidity and wind speed. The full suite
of meteorological data required to drive the energy balance method were not available,
such that the degree day method was implemented in preference. This approach re-
quires only maximum and minimum daily temperatures as inputs by taking advantage
of the strong correlation between air temperature and melt rates, which in turn derives
from the relationship between air temperature and components of the energy balance
(Zuzel and Cox, [1975; Hock, 2003, 2005). In addition a single parameter, the degree
day factor, must be specified to control the rate of melt associated with positive degree
days. The degree day factor is an empirical parameter that may vary both spatially
(with vegetation, slope and other variables) and temporally (Hockl 2003, 2005)). For
this project, it was set at a typical value of 0.0002 mms'°C! for all areas (Birkinshaw),
2011). Snowmelt occurs if the air temperature is greater than 0 degrees C and the rate
of melt depends on the temperature, degree day factor and the specific gravity of the
snow (Birkinshaw, 2011)).

The improvements that occur from including the snowmelt module can be seen in
Figure relative to Figure [5.12] Comparing these two figures, it is notable that, in
the springs of 1994 and 2001 in particular, flows are higher and decrease more gradually

when snow processes are included relative to the initial simulation.

5.4 Standard set up of SHETRAN for GB

Each of the three structual changes described above are considered to improve the
representation of catchment processes in the SHETRAN modelling system in a coherent
manner, such that they have all been brought forward from the initial simulation into
the standard configuration of SHETRAN for Great Britain. The standard simulation
forms the basis for all subsequent sensitivity tests and scenario runs reported in this
chapter and also in subsequent chapters examining climate change scenarios (chapter
6) and integration of a 3D geological model created by the British Geological Survey
(BGS) (Mathers et al., 2014) (chapter 7). This section proceeds to characterise the
overall performance of the standard simulation, in order to evaluate the modelling
system as a whole and provide context for the applications and modifications described

in later chapters.
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Figure 5.12: Hydrograph showing initial run of Dee at Mar Lodge. Note the poor performance
of the model in the spring of 1994 and 2001 when the snowmelt module is not included.

Measure NSE Bias MM FD mmfd

Median 0.69 5.1 18.7 25.3 42.9
25t Percentile 0.39 -2.2 11.6 14.5 27.2
75" Percentile 0.79 18.3 33.3 41.0 72.4
% Band 1 22.5 52.3 - - 12.7
% Band 2 40.8 22.5 - - 34.3

% Band 3 36.6 25.2 - - 52.9

Table 5.3: Summary table of performance statistics for standard run.
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Figure 5.13: Hydrograph showing revised run of the Dee at Mar Lodge. The

snow module has increased runoff in the springs of 1994 and 2001.
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Figure 5.14: Map showing NSFE for the standard SHETRAN for GB. The majority of poorly

performing catchments are groundwater dominated in the South East of England.
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Figure 5.15: Map showing water balance bias of standard SHETRAN run. The points repre-
sent gauge locations in each catchment. A pale colour indicates a small bias (good), darker
indicates a larger bias (bad), red indicates that the simulation is under-predicting flow, blue,
over-predicting. There s now a mostly small positive bias in the water balance, and now

shows a coherent spatial pattern with large overestimations in the South East of England.
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Figure 5.16: The distribution of NSE values. The majority of catchments have an NSE of
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Figure 5.17: A set of box plots showing the spread of percentage difference between simulated
and observed flows at points on the flow duration curve. The small blue crosses are outliers

Midflows are often

and the blue numbers are the percentage of points that are outliers.
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Figure 5.18: A set of box plots showing the spread of percentage difference in water balance
between simulated and observed flows. The small blue crosses are outliers and the blue num-

bers are the percentage of points that are outliers. The models generally under predict flows

i the winter and over predict in the summer.
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Figure 5.19: Poor model performance due to runoff affected by hydropower diversions. This

information is not captured in the SHETRAN input data.
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From Table it can be seen that 74% of catchments in the standard run are associ-
ated with NSE values greater than 0.5, while 50% of modelled catchments have NSE
values greater than 0.69. This represents a similar level of performance to the initial
simulation. both the 25" and 75'" percentiles increase slightly from 0.35 to 0.39 and
0.77 to 0.79 respectively. Reviewing the spatial distribution of NSE values in Figure
[5.14] shows that upland catchments in the north of England and Scotland and Wales
perform well on the whole. However, Figure [5.14] also shows that the structural im-
provements implemented between the initial and standard simulations do not resolve
all difficulties, particularly in simulating chalk catchments. This is as expected, given
that the structural changes made here are not focused on representation of geology,
partly as a result of limitations to available national-scale datasets. Some initial work

to rectify this deficiency is outlined in chapter 7.

The majority of catchments in Scotland that were subject to relatively poor NSE val-
ues in the initial simulation show improvements in the standard run. However, some
catchments in this region are still potentially problematic. For example, the Lyon at
Comrie Bridge has a poor NSE of -0.06. From the hydrograph (Figure it ap-
pears that modelled flows are much higher than observations. Investigating this error
revealed that it is not easily explained by catchment characteristics derived from the
input data. Rather, in the National River Flow Archive (NRFA) catchment descrip-
tion and metadata, this basin is described as having hydropower diversions that greatly
reduce catchment runoff, which fits with the pattern of overestimation of flows in the
SHETRAN system. This case therefore provides an example of a catchment where
SHETRAN has the potential for accurate simulation, but its accuracy is confounded
by influences not captured by the available input dataset. Fortunately, it appears that
for the majority of catchments selected for analysis in this study where the NRFA de-
tails artificial factors affecting runoff, the influence of abstractions and discharges are

sufficiently limited that streamflows can be well simulated.

Water balance bias (Figure and differences in observed and simulated flow dura-
tion curves (Figure remain largely unchanged in distribution in the standard run
when compared with the earlier initial simulation (see Figures and [5.6). Table 5.3
indicates that the median water balance bias is slightly higher in the standard simula-
tion at 5.1% (compared with -2.2% in the initial run). The standard run also shows a
larger under-prediction of flow in the winter months overall, which could be the result
of storage as snow in the winter months or storage in lakes. The flow duration curve
distribution has the same shape as in the initial run, but on average flows are typically

higher across the full flow range. This is reflected in the change in interquartile range
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of the water balance bias which shifts upwards (from -13.3 to -2.2 at the lower end and
from 10.35 to 18.29 at the upper end). This actually increases the percentage of catch-
ments with band 1 water balance bias from 41 to 52%. The percentage of catchments
with band 1 mmfd also increases from 4 to 13%. The spatial distribution of water
balance bias can be seen in Figure [5.15] There is now a mostly small positive bias in
the water balance, and now shows a coherent spatial pattern with large overestimations
in the South East of England.

The implication of this discussion is that, prior to any adjustments to the best estimate
parameter set, the national modelling system set up in this project appears to perform
quite well overall when evaluated with respect to a typical classification of NSE values,
as well as various measures of bias that examine different aspects of the flow regime.
In addition to the fact that 74% of catchments have a good or reasonable performance
when assessed through NSE (i.e. with values greater than 0.5), qualitative assessment of
hydrographs confirms a good degree of correspondence between observations and simu-
lations in terms of the timing and amplitude of peaks and the shape of flows recessions
(see Figure . While correspondence between observed and simulated hydrographs
is therefore very reasonable, analysis of water balance and flow duration curves reveals
notable variation in the match between gauged and simulated flow regimes. Some of
these differences may be attributable to confounding factors that cannot be accounted
for in the scope of this work, for example artificial influences on catchment flows. How-
ever, other explanations for some of this variation may exist, including uncertainties in
input data or model parameters. Therefore, a series of sensitivity tests were conducted,

the results of which are presented below.

5.4.1 Confirmation of results

The sensitivity tests described in this chapter were conducted for the period 1992-2002
(with a 2 year spin-up period of 1990-1991). To confirm that these results are typical
of model performance and not just a function of the particular evaluation period, the
standard simulation was run again but this time for the period 1982-1992 (again with a
2 year spin-up). Only 245 catchments have flow records that span 1980-2002 and could
be compared. as Figure shows a scatterplot of the NSE for each catchment, with
the NSE values for the 1982-1992 plotted against the scores for the 1992-2002 period.
This shows that the system performs similarly for both periods, but with some variation
across catchments. This could be due to a number of reasons, such as differences in the

quality of rainfall/PET inputs or flow records for the earlier period, as well as the fact
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Metric Statistic Standard Validation

NSE Mean NSE Change 0.00 -1.50
% Improved 0.0 24.9
Median 0.69 0.66
Change in Median 0.00 -0.03
258 Percentile 0.37 0.23
751 Percentile 0.78 0.77
% Band 1 21.2 18.1
% Band 2 42.4 40.6
% Band 3 36.3 41.4

Water Balance % Improved 0.0 50.2
Median 5.8 5.3
Change in Median 0.0 -0.4
258 Percentile -1.6 1.1
75t8 Percentile 18.9 20.7
% Band 1 51.8 50.6
% Band 2 22.4 22.1
% Band 3 25.7 27.3

mmfd % Improved 0.0 42.4
Median 43.8 45.1
Change in Median 0.0 1.3
25" Percentile 27.4 27.4
758 Percentile 73.5 81.2
% Band 1 12.7 12.9
% Band 2 33.1 30.1
% Band 3 54.3 57.0

Table 5.4: Summary table of performance statistics for standard run and validation run.

that 1982-1992 was a generally wetter period. This could result in peakier hydrographs

to which NSE scores would be sensitive.

On the whole, performance is similar but very slightly worse in the validation run. The
median NSE decreases from 0.69 to 0.66, the 25" percentile NSE decreases from 0.37
to 0.23 and the 75" percentile NSE decreases from 0.78 to 0.77. Water balance bias
over the interquartile range remains very similar only varying by up to 2%. The same

is true of mmfd, which only varies noticeably in the 75" percentile from 74% to 81%.

5.5 General sensitivity of the modelling system

5.5.1 Sensitivity to the Strickler coefficient

In SHETRAN, surface water is routed using the diffusive wave approximation of the St.

Venant equations. These equations require a friction factor to represent raindrop im-
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Figure 5.20: NSE of the standard set up of SHETRAN for GB for the period 1992-2002 on

the x axis ,vs 1982-1992 on the y axis. Fach point represents a catchment. Model performance

18 similar in both periods. performance is slightly worse during the 1980s.

pact, channelization of flow, obstacles such as litter, crop ridges, rocks, and roughness
from tillage, the frictional drag over the surface, and erosion and transport of sedi-
ment (Engman, 1986). This factor, essentially a roughness coefficient, is represented
in SHETRAN by the Strickler coefficient, which is the inverse of the Manning rough-
ness coefficient. As such, the lower the value of the Strickler coefficient, the higher the
roughness, which can result in slower flow of water and shallower gradients in hydro-
graph fluctuations. Conversely, a high value of the Strickler coefficient will cause water

to runoff faster resulting in steep recessions in the hydrograph.

The Strickler coefficient can therefore have great control over the shape of the event
hydrographs, and prior studies have shown that SHETRAN is very sensitive to this
parameter (Zhang et al.| 2013)). Unlike other parameters in SHETRAN, the Strickler
coefficient is not currently tied to any physical catchment characteristics or model input
datasets. Given its importance and global application in SHETRAN, the sensitivity
of model results to changes in the Strickler coefficient were investigated. Whereas the
default Strickler coefficient applied in SHETRAN simulations (including the initial and
standard runs presented earlier) on the basis of prior experience is typically 1 (Birkin-
shaw, [2011)), three sensitivity runs were conducted in which the Strickler coefficient
across all catchments was set to values of 0.1, 2 and 5 respectively. The results of these

sensitivity tests are discussed below.
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Metric Statistic Standard Strickler 0.1 Strickler 2 Strickler 5

NSE Mean NSE Change 0.00 1.23 -0.51 -1.16
% Improved 0.0 36.9 30.7 24.4
Median 0.69 0.55 0.66 0.6
Change in Median 0.00 -0.14 -0.03 -0.09
250 Percentile 0.39 0.43 0.22 0.02
75" Percentile 0.79 0.69 0.78 0.76
% Band 1 22.5 12.0 22.0 16.4
% Band 2 40.8 28.9 37.1 34.2
% Band 3 36.6 59.1 41.0 49.5

‘Water Balance % Improved 0.0 64.1 30.3 31.9
Median 5.1 3.3 6.0 6.2
Change in Median 0.0 -1.9 0.9 1.1
258 Percentile -2.2 -4.3 -2.0 -2.1
75" Percentile 18.3 15.0 19.1 18.9
% Band 1 52.3 53.9 52.1 51.3
% Band 2 22.5 25.0 22.3 23.3
% Band 3 25.2 21.1 25.6 25.5

mmfd % Improved 0.0 50.2 24.3 22.2
Median 42.9 43.3 43.7 45.7
Change in Median 0.0 0.4 0.7 2.7
25" Percentile 27.2 28.9 29.0 31.6
75" Percentile 72.4 71.7 74.5 76.0
% Band 1 12.7 10.1 10.8 7.6
% Band 2 34.3 34.7 32.8 32.7
% Band 3 52.9 55.2 56.4 59.6

Table 5.5: Summary table of performance statistics for Strickler coefficients of 1, 0.1, 2 and
5.
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Figure 5.21: Map showing the difference (d) to NSE due to reducing the Strickler coefficient
from 1 to 0.1. Blue indicates a decrease in NSE and orange an increase. Model performance

for southern catchments improves as the decrease in Strickler reduces the peakiness of the

hydrograph.
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Figure 5.22: Map showing the difference (d) to NSE due to increasing the Strickler coefficient
from 1 to 2. Blue indicates a decrease in NSE and orange an increase. Model performance
in southern catchments decreases with an increase of Strickler as the hydrographs are now

peakier.
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The results of altering the Strickler coefficient across all catchments are summarised
in Table [5.5] which shows changes in each of the performance metrics with respect to
the standard run. From this table it can be seen that, in aggregate terms, neither
increasing nor decreasing Strickler globally has a positive impact on NSE scores. The
median NSE value for all catchments decreased in each of the simulations with trial
Strickler coefficients relative to the standard run, with the percentage of catchments in
the lowest classification interval (band 3) increasing in all cases. Applying a Strickler
coefficient of 0.1 showed the largest number of improved catchments in terms of NSE,
with 37% of catchments having higher values relative to the standard run. Using a
Strickler coefficient of 5 results in improvement for only a handful of catchments in the
north of Great Britain - and deterioration in other areas - such that this run is not

analysed further.

Analysing the spatial distribution of NSE changes that result from varying the Strick-
ler coefficient indicates some interesting geographical patterns. Figure |5.21| shows that
improvements in NSE arising from application of a lower Strickler coefficient are largely
seen in the southern part of Great Britain. In general terms, a significant proportion of
catchments in this region are typically flatter, with notable contributions from ground-
water in a number of areas. Reducing the Strickler coefficient in this region could have
the effect of lowering catchment response times and inducing shallower recessions in
the hydrograph, i.e. compensating for the physical processes occurring in the catch-
ment that are not accurately represented in the model, particularly with respect to

groundwater-surface water interactions.

When the Strickler coefficient is increased from 1 to 2, an inverse pattern in the spatial
distribution of NSE changes is apparent compared with that described above. Figure
5.22| shows how increasing the coefficient exerts an apparently positive effect on the
NSE values of catchments in the north of Great Britain. Generally there are a larger
number of steep, upland catchments in this region, and it appears that the higher
Strickler coefficient inducing faster overland flow could be favourable here. However,
not all catchments in Scotland improve as a result of this adjustment, which could be a
result of lower roughness conflicting with the representations of lochs/lakes or snowmelt
runoff described above. This could therefore reflect the potential for significant inter-

dependencies between parameterisations and parameter values in a complicated model

such as SHETRAN.

It is also of note that the median water balance bias did slightly reduce in the run where

the Strickler coeflficient was set to 0.1 relative to the standard run. This is consistent
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with the way in which a lower Strickler coefficient slows runoff and thereby enables
more evaporation, which would reduce the overall negative bias slightly. However, the
converse is not apparent, i.e. applying a higher Strickler coefficient does not appear to
degrade water balance bias substantially further, which suggests that the implications
on the water balance of changing Strickler may have some dependence on the direction
of change. With a Strickler of 0.1 low flows were largely underestimated and high
flows were over estimated and with a Strickler of 2 low flows and high flows were both

underestimated.

Therefore, the sensitivity tests on the Strickler coefficient appear to confirm that a
value of 1 performs reasonably overall as a universal parameter, in line with prior ap-
plications of SHETRAN (Birkinshaw| 2011)). Crucially, the analysis here demonstrates
that further improvements in the specification of this parameter are unlikely to be at-
tainable through global adjustment of the parameter, i.e. no single value is likely to
be optimal for all of the different types of catchments in the sample used in this study.
However, it may be possible in future work to relate Strickler to catchment properties,
such as steepness (where it would act as a calibration factor) or land cover, which would
seem intuitively to have some physical relationship to roughness properties. Indeed,
reviewing the land cover distribution presented in chapter 3 shows some geographical
patterns that are at least partially consistent with the sensitivity test results discussed
here. For example, the majority of land cover is arable in the south of the country
compared with predominantly grassland in the north, which fits to some degree with
the differences in model performance arising from increasing or decreasing the Strickler
coefficient, but in reality defining the relationship between land use and roughness may

need to account for other factors. This would be an interesting avenue for further work.

5.5.2 Sensitivity to rainfall rates

There are many errors associated with rain gauge records, the most significant of which
is wind-induced undercatch (Michelson, 2004). These errors were not accounted for
in the construction of the UKCP09 5km gridded dataset (Perry et al., [2009) and so a
sensitivity test was conducted to investigate whether or not any systematic biases in
the model input dataset were present and potentially attributable to undercatch. The
two sensitivity tests used to explore possible undercatch consist of increasing the daily
rainfall by 10 and 20% for all grid squares covering Great Britain. However, from the
evaluation described above, it is apparent that the median water balance bias in the

standard run is an overestimation of 5%. This direction of bias could be interpreted as
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Metric Statistic Standard -10% rain -20% rain +10% rain +20% rain

NSE Mean NSE Change 0 1.42 2.19 -2.04 -4.66
% Improved 0.0 59.5 40.3 13.0 6.0
Median 0.69 0.71 0.61 0.55 0.25
Change in Median 0 0.02 -0.08 -0.14 -0.44
250 Percentile 0.39 0.53 0.45 -0.11 -0.87
75" Percentile 0.79 0.79 0.71 0.72 0.6
% Band 1 22.6 23.4 7.0 7.9 2.0
% Band 2 40.9 46.2 46.7 38.4 24.0
% Band 3 36.6 30.5 46.3 53.8 74.0

‘Water Balance % Improved 0.0 40.1 20.3 12.7 5.0
Median 5.1 -12.1 -28.3 23.9 41.9
Change in Median 0.0 -17.2 -33.4 18.8 36.8
25" Percentile -2.2 -18.0 -35.5 13.0 28.4
75" Percentile 18.3 -2.5 -21.4 42.4 65.9
% Band 1 52.3 33.3 3.5 17.4 2.0
% Band 2 22.6 38.5 12.5 22.0 9.2
% Band 3 25.2 28.2 84.0 60.7 88.8

mmfd % Improved 0.0 52.3 28.5 8.7 3.0
Median 43.0 46.1 65.6 63.3 92.7
Change in Median 0.0 3.1 22.7 20.4 49.8
25" Percentile 27.2 32.5 53.6 41.8 67.7
75" Percentile 72.4 63.0 83.2 104.2 144.0
% Band 1 12.8 3.5 0.6 3.0 0.0
% Band 2 34.3 36.9 4.8 20.7 5.6
% Band 3 52.9 59.6 94.6 76.4 94.4

Table 5.6: Summary table of performance statistics for changes to input rainfall of -10%,
-20%,+10%, +20%.
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Figure 5.23: Map showing changes to NSE due to decreasing rainfall by 20%. Blue indicates
a decrease in NSE and orange an increase. Model performance improves in the south of

England where flow is normally over predicted.
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running counter to the hypothesis of possible undercatch, but it is difficult to attribute
the bias to rainfall inputs immediately, given that uncertainties also exist in PET inputs
and model parameters. In order to explore the issue of water balance bias further,
additional tests were also carried out in which universal reductions in rainfall of 10 and
20% for all grid squares were also tested, which in effect allow for exploration of possible
limitations in interpolation of point rainfall in creation of the UKCP09 gridded dataset.
These initial sensitivity tests are clearly crude and do not account for factors such as
spatial variation in the probability of undercatch amongst other issues, but they do
provide an initial means of checking rainfall inputs. More sophisticated treatments of

uncertainties in rainfall inputs are discussed in subsequent sections.

Of the four sensitivity tests, reducing the rainfall by 10% actually exerts the largest
positive impact on model performance when judged in terms of NSE. In this test,
NSE in 60% of catchments improved, with the median NSE increasing from 0.69 to
0.71. These improvements are mainly associated with a number of catchments moving
from band 3 to band 2 in the classification scheme. This increase in performance of
previously poorly performing catchments is also reflected in the change in the 25
percentile of the NSE distribution from 0.39 to 0.53, which is principally related to
improvements in a number of baseflow-dominated catchments in the southern part of
the country. In these cases, a reduction in rainfall reduces the magnitude of hydrograph
peaks, thus improving NSE without actually rectifying the more fundamental problem
of appropriate representation of the groundwater system in these catchments. This
is emphasised in Figure [5.23] which shows that with a large reduction in rainfall, the
groundwater dominated catchments show the largest improvement (along the warmest
areas of the country, for example, Cornwall) whilst catchments that previously had

good model performance worsen.

Reducing rainfall uniformly by 10% leads to a median reduction in flow of 17% (i.e.
the water balance bias decreases by 17%), whereas decreasing rainfall by 20% leads
to a median reduction in flow of 33%. Conversely, an increase in rainfall of 10%
results in flows approximately 19% higher, while increasing rainfall by 20% results in
an increase in flow of 37%. The changes in flow are therefore clearly proportionate
to the changes in rainfall. There is normally a multiplying effect between change in
rainfall and resultant change in flow (often approximately double) due to the complex

interaction of catchment processes in the model.

It is apparent from these tests that there is not likely to be any simple, uniform spa-

tial patterns of bias in rainfall inputs, with particular complexity apparent in upland
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catchments. This is consistent with the spatial variation in NSE, water balance bias
and other metrics described for the standard run, which exhibit some geographical
clustering in terms of performance but also notable variability. In aggregate terms,
the water balance appears to be approximately correct, which supports the notion that
biases for individual catchments could be related to factors other than undercatch or
simple systematic rainfall measurement biases, such as PET estimation, poorly con-
strained abstractions/discharges or locally sub-optimal parameters. However, it should
be noted that the level of performance obtained with the standard rainfall inputs could
be partly an artefact of the development history of SHETRAN and consequent model
parameter choices that compensate for undercatch in rainfall or other systematic errors
in inputs. Further exploration of this issue would be interesting but is beyond the scope
of this work.

5.5.3 Sensitivity to evapotranspiration rates

In addition to analysing the sensitivity to rainfall rates, the sensitivity of the SHETRAN
for GB modelling system to daily total potential evapotranspiration was also assessed in
a similar way to daily total rainfall inputs. The rate of evaporation can be controlled in
two ways in SHETRAN. Firstly by changing the input time series of PET and secondly
through the actual evaporation to potential evaporation (AE/PE) ratio, which is a
function of land cover. Two tests were conducted where the PET input timeseries
was decreased externally to the model by 5% and 10%, with one additional test of the
effects of increasing PET by 5%. Four further tests were carried out in which PET was
also changed internally by adjusting the actual evaporation to potential evaporation
(AE/PE) ratio parameter within SHETRAN. The AE/PE ratio was increased by 0.1
and 0.2 and also decreased by 0.1 and 0.2 (i.e. the AE/PE ratio for grass is 0.6 and it
was changed to 0.7, 0.8, 0.5 and 0.4 respectively).

Changing the PET externally to SHETRAN by adjusting the input series gives similar
patterns to adjusting the internal AE/PE ratio, with overall improvements in model
performance found in tests with higher evapotranspiration and general deterioration in
simulation skill when less evapotranspiration takes place, as reflected in Table and
elaborated below. This pattern is consistent with the results from sensitivity analysis
of rainfall inputs, which suggests that errors in rainfall or PET may compensate for
each other in some cases. The improvements from applying higher evapotranspiration
tend to be greatest in England rather than Scotland and Wales, as the latter two coun-

tries have quite high proportions of upland catchments with comparatively high mean
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Metric Statistic Standard -5% -10% +5% +0.1 +0.2 -0.1 -0.2

NSE Mean NSE Change 0.00 -0.39 -0.79 0.37 0.53 1.01 -0.61 -1.16
% Improved 0.0 12.1 16.4 54.0 55.2 54.3 8.5 11.6
Median 0.69 0.68 0.66 0.69 0.7 0.7 0.66 0.64
Change in Median 0.00 -0.01 -0.03 0 0.01 0.01 -0.03 -0.05
25t Percentile 0.39 0.36 0.28 0.46 0.47 0.49 0.32 0.23
75" Percentile 0.79 0.78 0.77 0.79 0.79 0.79 0.78 0.76
% Band 1 22.5 21.5 19.9 21.9 24.0 22.0 20.8 19.1
% Band 2 40.8 39.2 38.8 42.8 41.6 46.0 38.9 35.5
% Band 3 36.6 39.2 41.4 35.3 34.4 32.0 40.4 45.4

‘Water balance % Improved 0.0 27.9 23.0 61.9 63.8 56.5 27.4 24.8
Median 5.1 9.3 12.8 1.9 1.5 -1.1 9.1 11.4
Change in Median 0.0 4.2 7.7 -3.2 -3.6 -6.2 4.0 6.3
25" Percentile -2.2 0.7 3.2 -5.3 -4.6 -8.2 0.2 1.5
'75th Percentile 18.3 23.5 29.9 13.2 13.0 9.2 24.9 30.9
% Band 1 52.3 45.7 37.8 54.8 54.2 55.0 45.3 40.8
% Band 2 22.5 23.8 23.7 25.0 27.0 26.5 24.5 22.1
% Band 3 25.2 30.6 38.5 20.2 18.8 18.5 30.2 37.0

mmfd % Improved 0.0 29.2 23.9 60.6 63.5 59.2 26.6 22.9
Median 42.9 45.6 50.0 41.3 39.4 38.8 45.5 50.3
Change in Median 0.0 2.6 7.0 -1.7 -3.5 -4.2 2.5 7.3
25" Percentile 27.2 29.1 30.7 27.5 26.1 26.6 28.9 30.4
75" Percentile 72.4 77.6 87.5 66.2 65.2 63.3 81.0 87.0
% Band 1 12.7 11.9 10.6 12.7 13.6 13.7 12.1 10.7
% Band 2 34.3 30.9 26.9 36.6 36.7 37.4 29.8 28.6
% Band 3 52.9 57.2 62.5 50.7 49.7 48.9 58.1 60.7

Table 5.7: Summary table of performance statistics for increased/decreased PET and in-
creased/decreased AE/PE ratio.
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annual rainfall, which may form a more important control on their overall simulation

performance than evapotranspiration.

Decreasing the PET by 5% (10%) results in a mean NSE decrease of 0.4 (0.8) and
improves only 12 (16)% of catchments respectively, while the median NSE decreases
slightly in both cases. With respect to water balance bias, only 28% (23%) of catch-
ments improve as a result of decreasing PE; these catchments are spread across the
country and do not appear to show any consistent spatial patterns. Median mmfd
increases in both runs, which confirms that decreasing PET is not beneficial to flow
simulation, at least in combination with the rainfall dataset applied. Intuitively, a very
similar pattern emerges when the AE/PE ratio for each of the vegetation parameters is
decreased by 0.1 (0.2). NSE decreases on average by 0.6 (1.2) and NSE only improves
in 9 (12)% of catchments respectively. These improvements again do not show any
clear geographical signals. However, Scotland is noticeably dominated by catchments
showing no overall change as a result of decreasing the AE/PE ratios, again indicating
that those catchments are less sensitive to decreases in PE, which is not unexpected
given that PET is relatively low there compared to the rest of the country and rainfall
relatively high. The median water balance bias increased from 5% to 9 (11)% through
decreasing the AE/PE ratios by 0.1 (0.2), while the median mmfd also increased from
42 in the standard run to 46 (50).

Therefore a decrease in evapotranspiration worsens overall model performance when
other inputs and parameters are held constant, and this reinforces the findings of the
rainfall sensitivity tests described earlier. Conversely, an increase in PET slightly im-
proves results. Approximately 54% of catchments obtain higher NSE scores as a result
of increasing PET input by 5%, and 55 (54)% of catchments improve when the AE/PE
ratio is changed by 0.1 (0.2). The mean NSE change is an increase of 0.4 for increasing
PET by 5%, 0.5 for increasing AE/PE by 0.1 and 1.0 for increasing AE/PE by 0.2.
The median NSE increases slightly across all increased PET tests, as does the 25
percentile, while the lack of change in the 75" percentile shows that the improvements
take place largely in those catchments that obtained relatively poor NSE scores in the
standard run. This is reinforced by noting that the percentage of catchments in band
3 for NSE reduces with increased PE.

Over all tests, reducing PET shifts the distribution of water balance bias towards
more negative bias, resulting in lower median and 75" percentile bias but also lower
25t percentile bias. Increasing PET also improves mmfd slightly, again mainly by

improving band 3 catchments. Such changes are indeed not unexpected for many of
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the chalk catchments, as an increase in PET will reduce the peaks in the hydrograph and
so increase the NSE significantly, although of course this is not necessarily a physically

correct reason for the observed improvement.

These results therefore suggest that there is a careful balance to be struck between
between rainfall and PE, with simulated hydrographs depending closely on the interplay
of both inputs. It appears that some systematic improvements to model performance
may be possible if sufficiently robust adjustments to both datasets can be determined
on the basis of further analysis. The direction of appropriate adjustments is clearly
shown by the sensitivity tests undertaken, with lower rainfall or higher PET required

to produce overall improvements across a range of metrics and for different catchment

types.

5.5.4 Sensitivity to rainfall scaling with elevation

The effects of altitude were not compensated for explicitly in the derivation of the
UKCPO09 5km gridded dataset and whilst the raingauge data used in the interpola-
tion covers some elevation range, it is biased towards lower elevations, particularly in
mountain areas. In order to assess whether or not any signals of error are apparent as
a result of elevation-dependency in precipitation, two approaches to compensation for
the effects of elevation on precipitation intensity were tested to see if correction might
be justified. The first approach was to increase rainfall linearly with elevation by 5%

with every 400m elevation for each grid square i.e.
FactoredRain fall = (5elevation /40000 + 1)Original Rain fall

The second approach tested was to increase rainfall by 15% for every grid square with an
elevation over 150m. In both approaches the multipliers were subjectively chosen, but
at this stage the main point of the experiments was to investigate whether compensation

for elevation might be a worthwhile line of investigation to follow.

The results in Table demonstrate that changing rainfall inputs in both of the ways
described above leads to the majority of catchments performing worse than in the
standard run. Scaling rainfall linearly with elevation increases NSE in only 15% of
catchments, and increasing rain over an elevation threshold increases NSE in only 9%
of catchments. The number of catchments with band 1 NSE reduced slightly from 23%
to 19% with linearly scaled rainfall but dramatically (down to 9%) with threshold-
scaled rainfall. The interquartile range of NSE reduced in both cases also. The median

water balance bias increased in both cases (from 5% in the standard run to 10% and
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Metric Statistic Standard Scaled rain Step rain

NSE Mean NSE Change 0.00 -0.28 -0.53
% Improved 0.0 14.7 9.1
Median 0.69 0.67 0.59
Change in Median 0.00 -0.02 -0.1
25" Percentile 0.39 0.33 0.16
75" Percentile 0.79 0.78 0.73
% Band 1 22.5 19.3 8.9
% Band 2 40.8 40.9 40.7
% Band 3 36.6 39.9 50.3

‘Water Balance % Improved 0.0 24.7 11.5
Median 5.1 10.4 19.8
Change in Median 0.0 5.3 14.7
258 Percentile -2.2 2.3 9.5
75" Percentile 18.3 23.7 33.9
% Band 1 52.3 43.8 22.2
% Band 2 22.5 22.9 26.8
% Band 3 25.2 33.3 51.0

mmfd % Improved 0.0 18.0 9.8
Median 42.9 45.7 61.0
Change in Median 0.0 2.7 18.1
250 Percentile 27.2 29.4 40.5
75t Percentile 72.4 76.9 84.5
% Band 1 12.7 9.5 4.0
% Band 2 34.3 30.1 19.5
% Band 3 52.9 60.5 76.5

Table 5.8: Summary table of performance statistics for changes to scaling rainfall linearly

and in a stepwise fashion.
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Figure 5.24: Map showing changes to water balance bias due to increasing the rainfall linearly.

Blue indicates a larger bias and orange a smaller bias. The bias increases almost everywhere.
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20% respectively) but more so with the threshold increase in rain, as the net amount
of rainfall increase resulting from this change was greater. This was to be expected
as the previous set of sensitivity tests suggested that increasing rainfall would not be
likely to improve the simulation. Figure [5.24] shows that improvements in the bias are
not particularly located in upland areas, and in general there seems to be no regional
pattern to improvements. The mmfd statistics also increase across all measures in
these tests, confirming deterioriation in the simulation of the flow regime results from

adjusting rainfall in these ways.

Overall the results from this set of sensitivity tests show that spatial and altitudinal
biases in input rainfall data are not likely to be simple or compensated for using some
basic approaches. A fairer test may have been to enhance high altitude rainfall, bal-
anced by reductions in low elevation rainfall to maintain the same average. However,
these tests do demonstrate one of the many uses of the SHETRAN for GB system,
namely the ability to test hypotheses at a national scale with evaluation based on a
large number of diverse catchments. As studies of rain gauge undercatch are normally
conducted on a small or catchment scale, this new framework for modelling could allow

for testing of new theories and datasets in a systematic and comprehensive way.

5.5.5 Uniform temporal distribution of rainfall input

The default setup of SHETRAN is to distribute daily rainfall input equally over each
day according to the size of its sub-daily time steps, in effect mimicking a constant
drizzle. This is not representative of what happens in reality of course, where sub-daily
precipitation distributions may vary considerably depending on underlying mechanisms.
The possible consequence of distributing the rainfall in such a uniform way could be
biases in simulated flows, as a result of unrealistic dynamics of soil moisture and evapo-
transpiration compared with more realistic rainfall intensities. A set of sensitivity tests
were therefore conducted to investigate the impact of distributing rainfall uniformly
over 12, 6 and 3 hours periods at the start of the day instead, in order to investigate
the aggregate impacts on catchment response arising from different sub-daily rainfall

intensities and durations.

None of the three runs show an improvement in NSE for the majority of catchments
(Table . In fact, each of the tests shows only a relatively small percentage of catch-
ments improving compared with the standard run, by 35%, 26% and 18% for 12, 6
and 3hrs respectively. The median, 25" and 75" percentile NSE values decrease in
all of the tests, the 12hr test by the least and the 3hr test by the most. The percent-
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Metric Statistic Standard 12hrs 6hrs 3hrs

NSE Mean NSE Change 0.00 -0.25 -1.06 -1.76
% Improved 0.0 35.0 25.7 18.3
Median 0.69 0.65 0.6 0.56
Change in Median 0.00 -0.04 -0.1 -0.13
25t Percentile 0.39 0.22 0.17 0.07
75" Percentile 0.79 0.76 0.73  0.72
% Band 1 22.5 16.3 11.6 6.5
% Band 2 40.8 42.6 38.4 40.8
% Band 3 36.6 41.1 50.0 52.7

‘Water balance % Improved 0.0 35.7 30.6 32.1
Median 5.1 9.7 12.1 13.1
Change in Median 0.0 4.6 7.0 8.0
258 Percentile -2.2 -2.8 1.2 -0.4
75" Percentile 18.3 24.1 27.3  29.0
% Band 1 52.3 38.9 34.4 35.5
% Band 2 22.5 28.5 30.0 25.3
% Band 3 25.2 32.6 35.6 39.2

mmfd % Improved 0.0 30.4 29.0 26.3
Median 42.9 46.4 47.1 51.0
Change in Median 0.0 3.4 4.2 8.1
25" Percentile 27.2 31.0 32.2 33.3
75" Percentile 72.4 82.1 84.5 87.0
% Band 1 12.7 7.0 7.6 6.5
% Band 2 34.3 31.9 29.2 27.8
% Band 3 52.9 61.1 63.2 65.7

Table 5.9: Summary table of performance statistics for 12, 6, and 3 hour rainfall durations.
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age of catchments with band 1 NSE also decrease and the percentage of catchments
with band 3 NSE increase across all tests, reflecting a deterioriation in NSE across the
sample overall. This pattern of declining performance is also seen in the water balance
bias statistics, which show that the water balance bias only improves in around 30% of
catchments. The median, 25" and 75" percentiles of the distribution of water balance
biases all shift to higher values, indicating that the model is behaving as expected, i.e.
increasing the intensity of the rainfall reduces the influence of the evaporation resulting
in more water flowing throught the catchment and entering the channel network for a
given event. Yet as the water balance bias was already adequate or slightly overesti-
mating flows in the standard run, the increase in runoff arising from these tests does
not improve model performance. The percentage of catchments with biases classified
in band 1 decreases and the percentage of catchments with band 3 biases increase as a

reflection of this, while all statistics for mmfd also worsen.

Whilst none of these sensitivity tests improve model performance, they do show that the
(sub-daily) temporal distribution of rainfall input has an impact on the overall model
performance as indicated by NSE and the water balance bias. This suggests that further
investigation of this issue may be warranted using more realistic distributions. The issue
of generally slightly overestimated runoff from the model over the longer-term indicates

that this should perhaps be evaluated with respect to evapotranspiration patterns too.

5.5.6 Exponential Distribution of rainfall input

Further investigation of the implications of rainfall distribution below the level of daily
model inputs was carried out by assessing another approach, namely exponentially dis-
tributing sub-daily rainfall. The reasoning behind this was to see if this approach could
at all mimic in very general terms the pattern of a storm event, with the exponential

distribution defined by:

PX<z)=1-e?

where

A:

IS

Therefore for an hours worth of rainfall:
. . —h —(ht1)
rainfallathourh = dailytotal(e= ) — e =
The mean used depended on the daily total rainfall as in chapter 4.
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Metric Statistic Standard Exp. rain

NSE Mean NSE Change 0.00 -0.05
% Improved 0.0 49.2
Median 0.69 0.71
Change in Median 0.00 0.02
25t Percentile 0.39 0.38
75" Percentile 0.79 0.80
% Band 1 22.5 25.5
% Band 2 40.8 40.1
% Band 3 36.6 34.4

‘Water balance % Improved 0.0 32.7
Median 5.1 5.7
Change in Median 0.0 0.6
258 Percentile -2.2 -1.6
75" Percentile 18.3 18.8
% Band 1 52.3 52.0
% Band 2 22.5 22.5
% Band 3 25.2 25.5

mmfd % Improved 0.0 34.3
Median 42.9 43.1
Change in Median 0.0 0.1
25" Percentile 27.2 27.4
758 Percentile 72.4 73.5
% Band 1 12.7 12.6
% Band 2 34.3 34.1
% Band 3 52.9 53.3

Table 5.10: Summary table of performance statistics for exponentially distributed rainfall.
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Figure 5.25: Map showing changes to NSE due to distributing rainfall exponentially. Blue
indicates a decrease in NSE and orange an increase. Model performance increases in Northern

catchments.
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It can be seen from Table that giving the rainfall an exponential distribution pre-
vented the problems encountered with a uniform temporal distribution. NSE improved
in 49% of catchments, showing that overall exponentially distributed rainfall had no
real detrimental effect. The median NSE improved a small amount from 0.69 to 0.71,
while the percentage of catchments in band 1 increased slightly from 23% to 26%. The
interquartile range of NSE changed very little, which was also the case for water balance
and mmfd. This is most likely because the tail of the distributed rainfall is likely to be
available for evaporation in a similar way to the case of 24 hour uniform distribution.
As it appears that exponentially distributing rainfall improves peak flows in some cases
(reflected where NSE improves) while preserving the initial level of water balance per-
formance, if a simulation requires hourly input of rainfall data without observed data
being available, an exponential distribution of daily rainfall may be a good substitute

given that it has no detrimental impact.

5.5.7 Hourly disaggregation of meteorological input

The natural progression from testing an exponential distribution was to attempt to use
real hourly rainfall data as a basis for the sub-daily temporal distribution in SHETRAN.
The process for hourly disaggregation of the UKCP09 gridded rainfall dataset was
outlined in chapter 3, and it is the resultant hourly gridded dataset which has been
applied in the model here. Two tests were then conducted with these hourly rainfall
grids. The first test simply involved applying the hourly rainfall grids while retaining
the rest of the model setup as per the standard run. A second test was then conducted
using an alternative approach to deriving potential evapotranspiration at a sub-daily

level.

As for rainfall, by default SHETRAN treats daily potential evapotranspiration as being
spread evenly over the course of a day. As an hourly dataset has been created for input,
uniformly distributed PET over a day does not represent a similar level of detail to the
input rainfall data, which could limit the usefulness of applying a sub-daily rainfall
product. The sensitivity of SHETRAN to the sub-daily distribution of PET has not
been well studied, such that it was deemed worthy of some investigation here. However,
as PET is only estimated, and as hourly wind speed and temperature records were not
available to this project, the hourly distribution of PET had to be approximated. The
basic approach to the approximation applied in this study was to distribute 50% of
the daily PET total according to (the positive part of) a sinusoidal shape beginning

at sunrise and ending at sunset, sunrise and sunset times calculated for each grid
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square using the Python package "PyEphem” (Rhodes, 2008)). The remaining 50%
of the daily PET total was distributed uniformly throughout the day. This method
is therefore based on the typical diurnal pattern of variation in temperature - albeit
without accounting for variation in the diurnal cycle, due to lack of data - but selecting
a proportion of total daily PET for this disaggregation is of course subjective and only

an initial test at this stage.

Clearly there are several limitations with this method:

— The relative influence of PET from wind vs. T are unknown
— Temperature lags behind radiation

— Other factors affecting PET are completely ignored.

However, this approach is conceptually more realistic than a uniform distribution, pro-
viding a more intense PET peak for example. Further work involving the collection
of additional datasets or testing the sensitivity of different disaggregation assumptions
could reveal a more suitable approach to deriving sub-daily PET inputs, but the ra-
tionale of this test is really to see if there is much sensitivity within SHETRAN to the
approach adopted to PET variation.

The first test of moving to hourly rainfall based on observations while retaining the
rest of the inputs and settings from the standard run does not change the median NSE.
Applying hourly rainfall and PET disaggregated using the method described above
very slightly increases median NSE from 0.69 to 0.72. However, the 75" percentile of
the distribution of NSE from all catchments increases from 0.79 to 0.82 in the hourly
rainfall test and to 0.84 in the hourly rainfall and PET test, indicating that giving
SHETRAN hourly meteorological data improves the simulated hydrographs of those
catchments that are already perform well in the standard run. This is reflected in
the percentage of band 1 NSE catchments that increases from 23% in the standard
run to 32% and 35% in the tests. These changes to the performance statistics seem
physically realistic, as giving the rainfall a more accurate distribution should lead to
more realistic partitioning of incident precipitation to infiltration and runoff generation
processes. This is likely to particularly affect flashier, more responsive catchments,
which tend to be well simulated in the standard run and then indeed improve further
in terms of NSE. Hourly rainfall distributions generated based on observations may
possibly also improve the timing and magnitude of peak flows, which would also be
likely to contribute to higher NSE scores. Notably, in the first test just applying hourly
rainfall improvements tend to be confined to upland catchments (see Figure , but
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Metric Statistic Standard Hourly rain Hourly rain and PET

NSE Mean NSE Change 0.00 -0.83 -0.29
% Improved 0.0 48.3 61.0
Median 0.69 0.68 0.72
Change in Median 0.00 -0.01 0.03
25" Percentile 0.39 0.29 0.43
75" Percentile 0.79 0.82 0.84
% Band 1 22.5 31.6 35.1
% Band 2 40.8 31.6 30.8
% Band 3 36.6 36.8 34.1

Water balance % Improved 0.0 26.8 57.6
Median 5.1 10.4 4.3
Change in Median 0.0 5.3 -0.8
258 Percentile -2.2 0.7 -2.8
75" Percentile 18.3 26.1 18.2
% Band 1 52.3 44.0 52.9
% Band 2 22.5 22.2 21.0
% Band 3 25.2 33.8 26.1

mmfd % Improved 0.0 20.7 34.2
Median 42.9 46.4 42.1
Change in Median 0.0 3.5 -0.9
25" Percentile 27.2 31.0 28.8
758 Percentile 72.4 80.3 74.0
% Band 1 12.7 11.3 12.0
% Band 2 34.3 29.7 35.1
% Band 3 52.9 59.0 52.9

Table 5.11: Summary table of performance statistics for disaggregated rainfall and disaggre-
gated PET.
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Figure 5.26: Map showing changes to NSE due to adding hourly rainfall. Blue indicates a
decrease in NSE and orange an increase. Model performance increases in most catchments

apart from the groundwater dominated ones.
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when applied in conjunction with disaggregated PET there is improvement across the
country. Several catchments in regions of chalk do show worse NSE scores as a result
of applying hourly rainfall and PET in this test, but as already discussed there are a

number of reasons why these areas are not yet adequately simulated in the model.

It is also important to note that, despite general improvements in NSE in the first test
when applying hourly rainfall only, increases in water balance bias appear to result from
this configuration (the median water balance bias moves from 5% in the standard run to
10% with the incorporation of hourly rainfall). This arises from less evapotranspiration
and faster runoff from the more intense rainfall. However, this problem is mitigated
by the introduction of hourly PE, where more intense rainfall is compensated for by
the more intense evapotranspiration arising from the diurnal cycle (the water balance
bias decreases to 4%). Therefore, it is advisable that hourly PET data should be used
in SHETRAN if hourly rainfall data are being used, in order to maintain physical
consistency between the two inputs. Disaggregating daily rainfall and PET values to
an hourly time step appears to be a promising direction that could form part of future
work refining model inputs. The timing of precipitation events relative to the presumed

diurnal cycle of evapotranspiration could also be a consideration for further research.

5.6 Nested catchments

The sensitivity analysis described above was undertaken with respect to all available
and suitable gauged catchments in Great Britain, in order to use as broad a range of
catchments in the analysis as possible. A significant number of these gauged catch-
ments are in fact sub-catchments of larger basins, which opens up the possibility of in-
vestigating the consistency of model performance between catchments and their nested
sub-catchment(s). Of the 306 NRFA catchments with freely available flow data that
have been modelled in this study, 51% are independent catchments (neither containing
a smaller catchment or nested within a larger catchment), 35% are nested catchments
(i.e. within another catchment) and 13% are large catchments that contain subcatch-
ments but are not subcatchments themselves. This section therefore evaluates how
model performance in terms of NSE for some of the catchments containing the largest
number of nested sub-catchments. This provides some insights into variations in pro-
cess representation between different parts of large catchments that can show significant

internal spatial variation in properties and hydrological regimes.

From Table it is apparent that some some nested catchments perform as well as
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Station

Catchment NSE

Sub1l

Sub2

Sub3 Sub4 Subb Sub6 Sub7 Sub8

Wye at Redbrook
Tyne at Bywell
Kennet at Theale
Lee at Feildes Weir
Dove at Marston on Dove
Nith at Friars Carse
Tees at Broken Scar
Don at Doncaster
‘Weaver at Ashbrook
Avon at Amesbury
Dee at Manley Hall

Bedford Ouse at Roxton

0.93

0.71

-2.91

-0.52

0.82

0.84

0.58

0.72

0.77

-0.45

0.9

0.82

0.7

0.7

-11.18

-22.34

0.79

0.83

0.7

0.64

0.51

-3.35

0.79

0.86

0.67

0.68

0.53

0.46

0.78

0.78

0.59

0.72

0.77

0.42

0.77

0.8

0.21 0.88 0.75 0.46 0.36 0.81
0.7 0.57

-14.16 -12.36
0.79

0.76

0.84

Table 5.12: Shows that subcatchments can perform consistently or inconsistently with the

main catchment.

other sub-catchments or the overall catchment. This pattern seems to apply to both
good and poor NSE values, i.e. all of the sub-catchments tend to either perform well
(typically for the upland catchments, e.g. Nith at Friars Carse) or they all perform
equally poorly (typical for groundwater dominated catchments, e.g. Kennet at Theale,
with one exception discussed below). In these cases a common level of performance
stems from the fact that the catchment and its sub-catchments share quite closely
their catchment characteristics (as found in the National River Flow Archive), for
example, the Nith at Friars Carse and its subcatchments are all underlain by Silurian
shales and Boulder Clay and the land use is arable. However, when there is spatial
variation in catchment properties, for example in the Lee at Feildes Weir, there is
also large variability in model performance judged through NSE scores. In the case of
the Lee catchment, one of the smaller subcatchments, Pincey Brook, is predominantly
impervious despite being underlain by a chalk aquifer , which therefore has properties
allowing for it to be fairly well modelled by SHETRAN (see earlier discussion regarding
the types of catchments best simulated by the modelling system). This results in
it having a much higher NSE (0.79) compared with the other sub-catchments and
the basin overall. Similarly, the Kennet at Theale (Figure , a mainly pervious
catchment of chalk, contains the Enborne at Brimpton sub-catchment (Figure
in the lower reaches of the Kennet catchment, which are mainly impervious as the
chalk is overlain by Tertiary clays. The impervious sub-catchment therefore performs
significantly better than the larger groundwater-dominated catchment of the Kennet

overall.

The Wye at Redbrook (Figure [5.29)) appears to show some variation in model per-
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Figure 5.27: A large groundwater dominated catchment performs poorly.

formance between its 8 sub-catchments. As it is a large catchment underlain by im-
permeable geology, it tends to perform very well as a SHETRAN model at its most
downstream gauging point at Redbrook. However, its subcatchment the Lugg at By-
ton (Figure is covered by extensive alluvial gravel deposits in the valleys, which
act as an aquifer and provide significant baseflow to this tributary. This superficial
deposit aquifer is not fully taken into account in the SHETRAN model and so the
hydrograph is poorly simulated hence a lower NSE score. In conjunction with
the other examples, this confirms that location alone is not a good predictor of model
performance; catchment characteristics are a more powerful indicator. As discussed
earlier, this highlights the issue that certain types of catchment - largely responsive
catchments with a predominantly surface water regime - are more consistently well
simulated by the SHETRAN modelling system than catchments containing significant

aquifers and groundwater-surface water interactions.
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Enborne at Brimpton, Run 7.401
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Figure 5.28: A sub catchment of the Kennet with better model performance because the chalk

15 overlain with impermeable clays.
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Wye at Redbrook, Run 7.401
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Figure 5.29: An impermeable large catchment with good model performance.

5.7 The relationship between catchment character-

istics and model performance

In order to further characterise the controls on variation in model performance across
the simulated catchments, this section analyses some of the ways in which the accuracy
of simulated flows may be related to catchment properties using a statistical approach.

There is of course a significant body of published work on relationships between runoff

and catchment characteristics (also known as descriptors) (Institute of Hydrology, [1999;
Singh et al, [2014; |Ali et al., 2012), which shows that a large number of possible indices

of catchment properties can be defined (area, base flow index, steepness, annual average
rainfall etc.). However, many of these catchment characteristics may be correlated with
each other, as is certainly the case in the UK owing to spatial patterns and correlations
of catchment properties and different hydrological regimes. For example, catchments
underlain by chalk in the south-east of England are typically flat, permeable, relatively
warm and dry, conditions which may contrasted with those found in steep, impermeable,
cool and wet upland catchments in areas of Wales, northern England and Scotland.

Commonly applied catchment descriptors such as indices of slope, permeability and
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Lugg at Byton, Run 7.401
70 E— — T T —
: : . . . —— Simulated

6ol R SR S S S FE S

soll I e S | - T S I T ]

B
o

w
(=]

Flow (m? /s)

P ] I |- [ | _______________ LI -

104 1 NN 'I ..... || | S ! 1| - | |1

0 ALY \\.l\ \ ¥L._ ‘\\ h' 1"\_ i ll"h-._ .'hl‘._. "I Hr i MoNL
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
Date

Figure 5.30: A sub catchment of the Kennet, which performs poorly because the impervious

bedrock is overlain with gravels which act as an aquifer.
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Cluster Annual Average Rainfall (mm) Annual Average PET (mm) BFI DPSBAR Mean Flow (mm/day)

1 657 607 0.40 13.3 0.8
2 700 590 0.66 19.6 0.6
3 1181 507 0.37 53.4 2.1
4 2313 514 0.3 132 5.5
5 1749 515 0.41 85.1 3.8
6 1152 565 0.54 55.6 1.6
7 823 598 0.89 32.6 0.8

Table 5.13: Properties of the centre points of the clusters.

annual mean rainfall will therefore be related to each other in these examples.

The relationships between catchment characteristics and their resultant lack of inde-
pendence from each other complicate interpretation of links between catchment char-
acteristics and flow, as well as the extent to which model performance can be predicted
based on catchment characteristics. This is particularly the case for certain statistical
methods, such as multiple regression. As such, instead of trying to predict model per-
formance from all characteristics as a means of more quantitatively characterising vari-
ation in simulation accuracy, a clustering algorithm was applied to group catchments
based on a small number of basic hydrological characteristics. This was conducted to
see whether catchments with similar features could be seen to perform similarly in a
statistical test, as suggested by the geographical patterns and interpretations presented
earlier in the chapter. The characteristics chosen were the basic properties of annual
average rainfall, annual average PE, baseflow index (BFI), DPSBAR (a measure of
catchment steepness) and mean flow (normalised by area from cumecs to mm/day)
(National River Flow Archive, 2014b; Institute of Hydrologyl 1999).

The affinity propagation (AP) algorithm (Frey and Dueck, [2007) implemented in the
Python module scikit (Pedregosa et al., 2011]) was used to cluster the catchments based
on the characteristics outlined above. AP is a fast and efficient way for identifying
clusters in data that works by treating each data point as a possible exemplar (clus-
ter centre/archetype) and recursively calculating the similarity (squared error) of this
exemplar to the other points (Frey and Dueck, |2007)). The scikit AP function requires
two parameters, ’damping’ and ’preference’, which were set to 0.5 and -35 respectively,
chosen by trial and error to give a small set of clusters. Applying the algorithm resulted
in definition of 7 clusters. Table outlines the properties of each cluster exemplar,
and their relationships to catchment descriptors may be seen in Figure |5.31, The char-
acteristics of each of the simulated catchments are plotted against each other in this

figure, with each catchment coloured according to the cluster to which it belongs in the
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Figure 5.31: A matriz of catchment characteristics. FEach dot represents a modelled catch-
ment. In the lower triangle the catchments are coloured according to the cluster they belong
to. In the upper triangle the catchments are coloured by NSE. cluster 7 is composed of entirely

of catchments with low NSE.
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Figure 5.32: The clusters have been plotted by gauge location. Given the layout of catchments
i GB, i.e. that catchments of similar properties are located close together, the clusters also

mainly follow a spatial pattern.
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Figure 5.33: Bar chart showing the composition of each cluster by model performance. Clus-

ters 7 and 2 are mainly composed of catchments with low NSE.
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lower half of the figure (i.e. below the main diagonal of the scatterplot matrix). The
upper half of the figure also shows the relationships between characteristics for each
catchment, but in this case the points are coloured to NSE, which is discussed further

below.

From Table [5.13| and Figure [5.31] it can be seen that cluster 1 is representative of dry,
high PET, flat catchments with typically low flows. Cluster 2 contains catchments sub-
ject to low rainfall, high PET, moderate BFI and low flows, whereas cluster 3 has more
moderate rainfall, fairly low PET, BFI and DPSBAR but moderate flows. Containing
steep catchments with the highest mean annual flows, cluster 4 is not unexpectedly
also characterised by having the highest rainfall and some of the lowest PET values,
as well as the lowest BFI. Cluster 5 is generally similar to clusters 3 and 4, but it does
have lower rainfall and contains typically shallower catchments, resulting in lower flows
compared with those two clusters. Cluster 6 has moderate rainfall, PET, BFI, slope
and flow, whereas cluster 7 is set apart by its very high BFI, which are combined with

low rainfall, high PET and shallow gradients to result in low flows.

Plotting the geographical distribution of the clusters in Figure [5.32 shows that clear
spatial patterns are associated with the results of the clustering algorithm. Clusters 7
and 2 can be seen to be largely composed of groundwater-fed catchments, particularly
in chalk regions in the south of England that are comparatively flat and dry. Figure
demonstrates that clusters 3, 4 and 5 include steep, impermeable upland catch-
ments, while cluster 6 is mainly composed of catchments in Wales and the south-west of
England, but also a few northern and Scottish catchments (particularly the drier ones
on the east coast). Cluster 1 is formed mainly of catchments in the very south-east of

England, but also contains some catchments located in the Midlands.

In conjunction with earlier figures showing maps of catchment performance, Figure
indicates that there is a notable north-west /south-east divide across Great Britain
in terms of both catchment properties and model performance. This is additionally
reflected in Figure [5.33] which shows the composition of each cluster according to the
number of catchments in different NSE bands. As expected, cluster 7 is composed
almost entirely of catchments with low NSE scores, due to the fact that it is dominated
by catchments in poorly simulated groundwater-dominated regions of England. Cluster
2 shows a roughly even split between low and high NSE. Most of the rest of the clusters
consist of catchments with generally good model performance, although none of the
clusters are associated with exclusively good NSE scores. This reflects the point that

the modelling system does not necessarily work well for every catchment exhibiting
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Figure 5.84: Hydrograph for Hebden Beck at Hebden (NSE -34,4). Simulated flow is over-

predicted as the karstic limestone of the catchment is not properly represented in the model.

properties suggesting that it should be adequately simulated. There can always be some
issue specific to a catchment complicating its representation that is not fully captured
in the broad-scale characteristics used to describe it in this clustering approach. This is
particularly the case when working with relatively coarse resolution national datasets.
For example, there are a number of important features of catchment hydrology that
cannot yet be readily incorporated into the modelling system due to data limitations,
such as detailed descriptions of superficial deposits, abstractions and discharges, flow
regulation, river diversions and limitations of flow measurements amongst other factors

(Coxon et al., 2015]).

Examples of the effects of some of these omissions can be seen in clusters 3, 4, 5 and 6,
which are all comparatively 'good’ clusters that each contain some poorly performing
catchments. Taking group 3 as an example, the worst performing model appears to be
for Hebden Beck at Hebden, which has an NSE of -34.4 (see Figure. Investigating
this catchment further by reviewing the NRFA metadata reveals that the problems in
simulating this catchment are likely to stem from the fact that it is actually a karstic

limestone catchment with significant sink holes and complicated subsurface flow pat-
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Figure 5.35: Hydrograph for Fowey at Restormel (NSE 0.08). The baseflow nature of the
observed flows is not recreated in the simulation as the gravels in the lower reaches of the

valley are not modelled.
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terns. The BGS hydrogeology map used as input for the study marks this catchment
as overlying a moderately productive aquifer. Clearly this level of information is in-
sufficient to accurately approximate the physical processes occurring in this context.
Together with the issues in simulating catchments underlain by chalk aquifers, examples
such as this add weight to the need to incorporate more accurate geological information

into the modelling system.

In group 4 the worst performing catchment with respect to NSE is the Nevis at Claggan
(NSE of 0.47), which is a relatively well-performing catchment to be bottom of a cluster.
Worse performance is found in group 5 for the Lyon at Comrie Bridge, which has an
NSE of -0.06 (see Figure. As discussed above, it is likely that the poor performance
in this case is due to diversions in the flow for hydropower generation, something for
which adequate data were unavailable for this project. The worst catchment in group
6 is the Fowey at Restormel, with an NSE of 0.08 (see Figure . The hydrograph
for this catchment in Cornwall appears to be more baseflow-dominated in reality than
in the model simulations. This is because there is storage from gravel deposits in the
lower reaches of the catchment, which again is not included in the current model set
up and highlights the potential usefulness of more accurate data for superficial and
solid geology. There is also flow regulation within the catchment, while abstraction
from groundwater and surface water may also affect the catchment water balance,
although these effects cannot be quantified without additional incorporation of data on
abstractions and discharges. These cases all demonstrate the existence of peculiarities
that can confound the basic setup of the SHETRAN system, but in each case there
appears to be clear potential for improving simulations if more and/or better quality

data can be included in the model.

The cluster analysis therefore demonstrates that there are some clear relationships
between fundamental catchment properties and flow regimes can be defined. However,
the variation in NSE scores within clusters - which is more of an issue for some clusters
than others - indicates that the relationships are not necessarily simple or universal.
Indeed, analysing some specific examples shows that various local factors complicate the
nature of the relationships between catchment descriptors and model performance using
the SHETRAN system. These factors can come from different sources, such as currently
inadequate descriptions of superficial deposits or insufficient data on abstractions and
diversion. It appears that many of these issues could be rectified with more and/or
better quality data. These results would therefore suggest that attempting to calibrate
parameters of the modelling system across all catchments on the basis of catchment

descriptors could be difficult at this stage at least, due to the potential for parameter
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estimation to be confounded or biased by significant local factors. Careful selection of a
smaller sample of catchments to use in such a process could be possible, but the analysis
above has demonstrated that a relatively high degree of performance can be obtained
by using universal parameters. The main catchments for which this approach appears
to fall down are more likely to be simulated poorly for other reasons, such as insufficient
data on geological structure and properties in chalk regions. Parameters could of course
be tuned further and local influences accounted for in specific applications in individual
(or groups of) catchments, but the cluster analysis demonstrates that the modelling
system generally provides a good baseline level of performance for the majority of

catchment types in Great Britain.

5.8 Comparison with other models

To put the performance of SHETRAN for GB into the wider context of other national
modelling studies for the UK, the results of the standard run were assessed against two
calibrated conceptual model studies: Deckers et al.| (2010)) using HBV and Bell et al.
(2009) using Grid-To-Grid (G2G) (see Chapter 2 for discussion of these models). The
first of these studies involved calibration of HBV for 48 catchments across England and
Wales over the period September 1983 to December 1990 using Monte Carlo simulation.
This is a slightly different model evaluation period compared with that used in this
chapter, but of course an comparison indicating overall similarities and differences can
still be undertaken. The objective functions used in the calibration by |[Deckers et al.
(2010) were relative volume error and NSE, the latter being calculated separately for
all flows, high flows (Q5) and low flows (Q90).
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Catchment HBV NSE SHETRAN NSE

Aire at Kildwick Bridge 0.82 0.89
Arrow at Titley Mill 0.84 0.67
Bedburn Beck at Bedburn 0.61 0.69
Blyth at Hartford Bridge 0.63 0.83
Box at Polstead 0.69 0.03
Boyd at Bitton 0.8 0.83
Brue at Lovington 0.78 0.84
Chater at Fosters Bridge 0.75 0.81
Cheriton Stream at Sewards Bridge 0.47 -16.22
Coquet at Morwick 0.65 0.79
Dee at New Inn 0.73 0.77
Dove at Kirkby Mills 0.67 0.72
Dove at Rocester Weir 0.75 0.79
Fal at Tregony 0.87 0.16
Greta at Rutherford Bridge 0.71 0.7
Gwash South Arm at Manton 0.67 0.52
Gwili at Glangwili 0.85 0.81
Hayle at St Erth 0.86 -0.96
Ise Brook at Harrowden Old Mill 0.65 0.76
Leven at Leven Bridge 0.69 0.86
Lod at Halfway Bridge 0.76 0.74
Lugg at Byton 0.89 0.21
Nadder at Wilton 0.8 0.28
Otter at Dotton 0.78 0.64
Roden at Rodington 0.79 0.12
South Tyne at Featherstone 0.72 0.68
Stringside at Whitebridge 0.7 -4.82
Teme at Knightsford Bridge 0.82 0.8
Thrushel at Tinhay 0.85 0.57
Tywi at Nantgaredig 0.76 0.85
Ure at Kilgram Bridge 0.75 0.81
Wellow Brook at Wellow 0.88 0.78

Table 5.14: Comparison of HBV model performance with SHETRAN for GB.

Table shows the NSE values from the HBV study compared with those from
SHETRAN for GB. Out of the 32 catchments that are simulated in both studies,
SHETRAN performs better with respect to NSE for 14 catchments. A clear pattern
is seen in Figure [5.36] in which catchments associated with good NSE values (>0.5)
in SHETRAN for GB also tend to be well simulated in Deckers et al. (2010)’s HBV
study. However, SHETRAN performs much worse than HBV for catchments with poor
NSE values (<0.5) in both studies. From the discussion above regarding catchment
characteristics, this is not particularly unexpected. This stems from the issue that

the poorly performing catchments in the SHETRAN system are often those that are
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Figure 5.36: Comparison of NSE values from the calibrated HBV model and SHETRAN for

GB.

Figure 5.37: Comparison of approximate NSE wvalues from the calibrated G2G model and

SHETRAN for GB.
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Name G2G NSE (approx) SHETRAN NSE

Beult at Stile Bridge 0.7 0.87
Greta at Rutherford Bridge 0.63 0.7
Crimple at Burn Bridge 0.58 0.61
Lune at Caton 0.78 0.78
Ewe at Poolewe 0.51 0.9
Tawe at Ynystanglws 0.8 0.81
East Dart at Bellever 0.78 0.68
Wye at Cefn Brwyn 0.53 0.7
Falloch at Glen Falloch 0.63 0.68
Mole at Kinnersley Manor 0.68 0.78
Leet Water at Coldstream 0.6 0.78
Cynon at Abercynon 0.88 0.83
Ruchill Water at Cultybraggan 0.68 0.75
Leven at Leven Bridge 0.6 0.86
Nith at Friars Carse 0.79 0.84
Yscir at Pontaryscir 0.8 0.85
Taff at Pontypridd 0.87 0.88
Exe at Thorverton 0.93 0.68
Colne at Lexden 0.7 0.81
Dee at Manley Hall 0.87 0.90
Dove at Izaak Walton 0.53 0.76
Blackwater at Swallowfield 0.78 0.38
Great Stour at Horton 0.72 0.43
Dun at Hungerford 0.7 -14.16
Little Ouse at Abbey Heath 0.56 -0.68
Frome at Ebley Mill 0.57 0.62
Mimram at Panshanger Park -0.5 -22.34
Lambourn at Shaw 0.69 -11.18

Table 5.15: Comparison of G2G model performance with SHETRAN for GB.
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groundwater-dominated. This is largely due to the fact that the parameters associated
with the highly productive aquifer bedrock type in SHETRAN for GB are not likely
to be suitable. The Stringside at Whitebridge, Hayle at St Erth, Cheriton Stream
at Sewards Bridge and Box at Polstead all perform poorly in SHETRAN as a result,
whereas the catchment models in Deckers et al| (2010)’s study have been explicitly

calibrated to give good model performance.

A similar pattern is seen when comparing SHETRAN for GB to the national G2G
model (see Table [5.15). G2G was calibrated on the period 28 November 1980 to 18
December 1982 and the results above are from simulations of 1 January 1985 to 31
December 1993. SHETRAN outperforms G2G on 19 out of 28 catchments that are
common to both studies. In addition, Figure [5.37 shows that SHETRAN generally
gives higher NSE values than G2G for catchments with good performance (NSE>0.5)
in both studies. However, SHETRAN for GB tends to perform worse than G2G for
comparatively poorly simulated catchments in both studies for exactly the same reasons
given above - a calibrated conceptual model simulates groundwater catchments better

than an incorrectly parameterised, physically-based one.

Results from other national studies are not directly comparable, as different catchments
have been modelled, other measures of performance have been used or individual catch-
ment results have not been reported. |Henriksen et al. (2003) give NSE values for 28
gauged catchments in their national MIKE SHE model for Denmark, with 75% of these
catchments showing NSE>0.5. This is quite a high percentage, but of course the sam-
ple of catchments is much smaller relative to those modelled in SHETRAN for GB.
Furthermore, explicit calibration was undertaken by |Henriksen et al. (2003), which is
likely to be aided by the comparative hydrological homogeneity of their study area.
In a separate study, Crooks et al.| (2014) present results for 54 catchments in Great
Britain modelled using the calibrated conceptual model CLASSIC-GB. Only 3 of these
catchments have an NSE value of less than 0.5, which again reflects the substantial
benefits of calibration for faithfully reproducing observed hydrographs. The French na-
tional model (Habets et al., [2008) showed good results for 610 gauged catchments over
a 10-year simulation, with 66% of catchments showing NSE greater than 0.55 and 36%
showing NSE greater than 0.65. These results are similar but a little lower than those
from SHETRAN for GB, and it is interesting to note that neither modelling system

utilised parameter calibration during their respective development processes.

The standard configuration of SHETRAN for GB produces acceptable results across
much of the country, satisfactorily (NSE>0.5) simulating 72% of catchments and pro-
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viding good simulations (NSE>0.7) for 48%. The standard configuration of SHETRAN
for GB therefore performs at a comparable - and in a number of cases favourable - level
with respect to results from other national modelling systems. The comparisons con-
firm that SHETRAN for GB simulates a large proportion of catchments well, indeed
better than calibrated conceptual models for many of the best modelled catchments.
However, as recognised earlier in the chapter, limitations in subsurface representation
lead to comparatively poor simulations in catchments with significant groundwater sys-
tems. Calibration in other modelling studies reveals the clear potential to circumvent
the issue of particularly poorly simulated catchments through refining parameter esti-
mates. However, it should also be noted that this evaluation is based primarily on NSE,
due to its common use in other national modelling studies, but NSE is an imperfect

descriptor of model performance, as discussed above.

5.9 Conclusion

Extensive analysis of the performance of the national modelling system and its sensitiv-
ity to several of the most important input datasets and parameters has been conducted.
The initial run undertaken revealed acceptable model performance (NSE>0.5) in the
majority of catchments, with some exceptions located generally in parts of Scotland and
the south-east of England. Structural improvements were then made to the SHETRAN
system to include snow melt processes relevant particularly in upland regions, as well as
better representation of lakes and handling of sinks in the input DEM. These modifica-
tions resulted in clear improvements leading to definition of the standard configuration
of the national SHETRAN modelling system for Great Britain, against which sub-
sequent sensitivity tests and scenario runs are analysed. The standard configuration
produces acceptable results across much of the country. 72% of catchments are satisfac-
torily modelled (NSE>0.5), with 48% well simulated (NSE>0.7). This is comparable to
other national modelling systems and UK studies using calibrated conceptual models.
The major exception to this level of performance appears to be found in some catch-
ments in the south of England, particularly those underlain by significant aquifers and
so where hydrological regimes are highly influenced by subsurface processes and their
interaction with surface hydrology. Some of the limitations of currently available na-
tional datasets with respect to capturing important features of local hydrological cycles
are also apparent from the sensitivity analysis, important examples of which include
insufficient data on superficial deposits and artificial influences, such as abstractions or

flow regulation.
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The relationship between catchment characteristics and model performance was exam-
ined using the affinity propagation clustering technique. Catchments were clustered
based on 5 key characteristics: average rainfall, average PET, base flow index, steep-
ness and mean flow. The resulting 7 clusters contained catchments that are typically
spatially concentrated, which is due to the distinct meteorological, topographical and
geological patterns in GB. Model performance of each catchment was shown to be re-
lated to its cluster membership and thus its characteristics. However, local variation
of factors affecting runoff combined with missing information in the national datasets

means that model performance is not homogeneous in any cluster.

Sensitivity to the Strickler coefficient representing surface roughness was examined,
as were sensitivities to rainfall and potential evapotranspiration (PET) quantities and
distributions. In tests where relatively small perturbations were applied to the stan-
dard datasets, such as increasing PET by 5% or using an exponential distribution for
sub-daily rainfall, mixed changes in model performance were typically obtained, with
a fairly even split between catchments showing overall improvements and declines in
performance. These tests appear to indicate a degree of robustness in terms of sys-
tem setup and inputs, with variation in catchment performance responses to changes
suggesting little systematic bias and good overall simulation if not necessarily always
locally optimal. This is reflected when larger changes are applied, such as a 20% in-
crease in rainfall or a Strickler coefficient of 5, which leads to large overall decreases
in model performance. In conjunction with the higher variability of responses arising
from smaller perturbations, this is taken as an indication that generally appropriate
parameters and input datasets are being used in the system. Furthermore, where the
changes made had a physical basis - particularly using realistic hourly meteorologi-
cal as inputs - model performance tended to increase slightly at the national scale.
The largest percentage of improved catchment simulations resulted from incorporating
hourly rainfall based on the new dataset created during this project, as well as PET
disaggregated to hourly intervals. Improvements were also seen when the AE/PE ratio
was increased by 0.1, PET increased by 5% or rainfall decreased by 10%, which reflects
the possibility that calculated PET values may be too low or rainfall slightly too high,
although the latter may be less congruent with the expectation of undercatch for a
number of raingauges. This is also supported by Henriksen et al.| (2003) who find a sys-
tematic deviation in water balances, which they attribute to either an overestimation

of precipitation or an underestimation in PET.
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Chapter 6
Climate change impact assessment

The SHETRAN for GB modelling system described in previous chapters has been
used to conduct a preliminary assessment of potential climate change impacts on water
resources for selected catchments across the UK. At this stage the assessment is intended
to demonstrate the fidelity of the modelling system for conducting broad scale analyses
of climate change impacts. For this reason the analysis focusses on a single emissions
scenario and a given time slice. Therefore this study should be treated as a proof of

concept rather than a conclusive evaluation of changes across the ensemble of change.

Many studies have been conducted on the impact of climate change on river flows in the
UK, particularly focusing on specific catchments and areas. [Kay and Jones| (2010) used
3 transient climate projections from HadRM3 for 2 catchments to investigate annual
maxima timeseries for changes in flood frequency using the PDM model introduced
in Chapter 2. |Kay and Jones| showed that using time slices as the basis for analysis
of climate change impacts can be unreliable, as small changes in the definition of the
simulation window can have a large impact on results. The authors then proceeded
to examine the national context by running G2G for the UK, which highlighted the
possibility of higher flood risk across much of the country in the future. Ledbetter
et al.| (2012) took a different approach by developing a new resampling methodology
in order to create an ensemble of change factors to meteorological input data. |Led-
better et al. used this approach to analyse impacts on flows in the Eden catchment
in Scotland and showed that projected changes in flows are sensitive to the techniques
used to create input meteorological data. Lopez et al. (2009)) used a large perturbed
physics ensemble with a water resource model for an area of south-west England and
demonstrated that value is added by using a larger set of climate inputs, which provide

better understanding of the range of plausible futures. |Limbrick et al. (2000)) applied
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several climate scenarios to model one catchment (Kennet at Theale), while Wilby and
Harris| (2006) developed an uncertainty framework for climate change impact assess-
ment accounting for four GCMs, two emissions scenarios, two statistical downscaling
techniques, two hydrological model structures, and two sets of hydrological model pa-
rameters for the Thames catchment. Applying this uncertainty framework revealed
that GCMs and scenario selection are the largest sources of uncertainty in a climate
change impact assessment. These studies are typically small scale, examining only one
or two catchments, using a limited selection of driving climate data or examining only

one aspect of the flow regime.

Christierson et al. (2012)) go further and model 70 catchments across the UK with the
UK Climate Projections 2009 for the 2020s under the A1B scenario. The Future Flows
project (Prudhomme et al. [2013)) goes beyond this and used a consistent methodol-
ogy to assess changes to flow across the whole country. The meteorological inputs to
the hydrological models were derived from Future Flows Climate (Prudhomme et al.,
2012), a national 11-member ensemble of projections derived from the Hadley Centre’s
ensemble projection HadRM3-PPE at the 2050s time slice.

A commonality between these studies is that they largely depend on conceptually based
model formulations rather than physically based approaches. As discussed in Chapter
2, conceptual models may not necessarily form a sound basis for hydrological predic-
tions under a changing climate, as a result of their high dependency on calibration
to prevailing climatic conditions. In theory, physically based models provide a more
robust method of simulating catchment hydrology for the future. Application of such
models in national scale projections has been limited to date because of their high
complexity and computational cost. Therefore this analysis provides a novel insight
into the applicability of such models for broad scale impact assessment as well as the

opportunity for model intercomparison.

6.1 Climate change projections and the UKCPO09

Weather Generator

Current understanding suggests that climate change could have a profound impact on
the hydrological cycle with possible increases in the frequency of extreme events such
as floods (Murphy et al.| (2009); Kendon et al| (2014)). The potential magnitude of
hydrological changes is such that government agencies at various levels and other orga-

nizations need to consider adaptation strategies. Therefore, these institutions require
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indications of the likely direction of change in key hydrological quantities in order to

plan effectively for extreme events and changes in catchment regimes.

A climate impact assessment is not a simple process. Analysis begins with global
climate models (GCMs) which provide indications of change for the world under various
emissions scenarios. Their coarse resolution is inadequate for regional studies and so
their outputs are used as boundary conditions for Regional Climate Models (RCMs).
The finest RCM resolution to date for the UK is 1.5km (Chan et al., 2014) which is just
fine enough to model convective cells for intense rainfall. UKCP09 (Murphy et al., 2009)
provides probabilistic change factors for climate variables from an 11 member RCM
ensemble at a 25km resolution and are the standard set of climate change projections
for the UK. However, change factors cannot be used directly in a hydrological model.
Rather, time series of all model input variables are required. For SHETRAN these
variables are rainfall, PET and maximum and minimum temperature. As SHETRAN
is a spatially distributed model, the variables should be consistent internally, spatially
and with each other. The UKCP09 point weather generator (Kilsby et al., |2007)) has

been further developed to accommodate these needs.

The spatial weather generator (unpublished) produces internally consistent series of
meteorological variables: precipitation, temperature, vapour pressure, wind and sun-
shine, as well as a number of derived variables calculated from the meteorological series,
for example PET. Observed daily rainfall totals and values of other weather variables
are used to calibrate the weather generator for a baseline climate 1961 to 1990. Change
factors at the monthly time scale for each grid square are taken from the UKCP09
probabilistic projections to define the range of possible climate change futures. The
weather generator uses a stochastic rainfall model (Neyman-Scott Rectangular Pulse)
and the other weather variables are then generated conditioned on the rainfall series on
a bkm grid. This procedure provides an internally and spatially coherent time series of
the input variables required in SHETRAN. Kay and Jones (2012) show that using the
weather generator for impact assessments provides benefits over simply using a range

of change factors, as it more fully represents natural variability.

6.2 Uncertainty

Climate change is an important and complex global problem. The associated ongoing

and future impacts are predicted to be wide-ranging and profound, as reported in the
IPCC Fifth Assessment Report (WGII AR5) (Pachauri et al., [2014)) such that timely
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and effective decision-making are critical for mitigation and adaptation. However,
decision-making processes are confounded by a range of issues, not least the scientific
uncertainty associated with appraisal of possible climatic responses and trajectories,
impacts and mitigation/adaptation options. For example, computer models are an
essential tool for assessing future scenarios, but they are inevitably reductionist and
subject to myriad limitations, their accuracy limited by our partial understanding of
the highly complex systems we attempt to simulate. This means that model results
contain uncertainty that needs to be robustly factored into human responses to climate

change.

The uncertainties associated with the kind of study outlined in this chapter are numer-
ous and can be summarised in a 'Cascade of Uncertainty’ (Wilby and Dessai, 2010)
which shows the cumulative effect of uncertainties through the modelling process; be-
ginning with those associated with scenario generation, which rely on an understanding
of future societies, flowing through to climate models, impact models, cities, vulnerabil-
ity, adaptation strategies and decision-making processes. Each additional step not only
propagates the previous set of uncertainties but also introduces its own uncertainties
as a function of the research questions asked, methods and data used, and the spatial

and temporal scales considered inter alia.

Many attempts have been made to quantify uncertainty, and each study takes a dif-
ferent approach. |Christierson et al. (2012) use the GLUE methodology (Beven and
Binley, 1992)) to assess the structural uncertainty of their hydrological model and use
Latin Hypercube sampling to select 20 change factors from the UKCP09 projections.
Prudhomme et al.| (2013)) compare projections from 11 RCM scenarios. |Ledbetter et al.
(2012)) resample both the baseline and future precipitation (from 13 climate models) to
incorporate an estimate of climate variability. Regardless of method, the uncertainty
associated with climate change impact projections is still large, and so these studies
should be used to indicate likely directions of change for the decision making process.
Clearly it is very difficult to accurately project into the future and so all studies should

be evaluated with reference to their simplifying assumptions and limitations.

6.3 Scenario selection

The SRES A1B Medium emissions scenario has been selected in conjunction with the
2050s time slice as the primary focus for this analysis. This selection is consistent with

the scenarios investigated in the future flows project. For a full investigation, multiple
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emissions scenarios and time slices would be modelled, however as the main purpose of
this exercise is to scope the feasibility of assessing broad scale climate change impacts

using SHETRAN, a single scenario will suffice.

6.4 Catchment selection

Of the 350 catchments discussed in previous chapters, 20 have been selected for this
analysis. These catchments have been chosen to provide a good geographical coverage
of the UK. The selected catchments are also ones that are well simulated by SHETRAN,
with all but two catchments exhibiting NSE of greater than 0.7 (the Witham at Claypole
Mill was chosen for its location in the south east of England). The flow duration curves
for these catchments are provided in Appendix B. The range of base flow index (BFT)
is 0.21 to 0.69, although the majority of the selected catchments are largely surface
water dominated. Further refinements to the representation of some of hydrological
processes in some regions of the UK are required before climate change analysis can
be conducted, e.g. the chalk (catchments with a significant groundwater component
are still required). Catchment areas range from 69.4km? to 2175.6km?. Full details of
their properties are given in Table The locations of the catchments can be found
in Figure [6.1]

6.5 Automated set up and technical issues

The weather generator and SHETRAN are not directly compatible as they do not
share a common data format. In order to simplify the process of coupling weather
generator output to SHETRAN for GB several tools have been developed. The first
tool automates the identification of weather generator cell IDs, the second converts
weather generator output into SHETRAN input and the third runs the SHETRAN

models in parallel to reduce computing time.

To identify the weather generator grid cell ids:

— Select a catchment from SHETRAN for GB
— Use the existing rainfall map and mask identify grid squares within the catchment

— Look up the weather generator ID codes from a file of pre calculated IDs and

coordinates

Output a list of IDs as a text file.
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Name Number Area Qagmv BFI Mean Flow ?:w\av NSE Geology Factors affecting Runoff
Aire at Kildwick Bridge 27035 282.3 0.37 6.46 0.89 Limestone with extensive boulder clay cover Reservoirs
Almond at Craigiehall 19001 369.0 0.39 6.16 0.79 Carboniferous rocks overlain by superficial Abstraction and effluent
deposits returns
Bervie at Inverbervie 13001 123.0 0.56 2.15 0.69 Bedrock of mixed permeability; almost 100% Natural
covered with superficial deposits
Braan at Hermitage 15023 210.0 0.43 6.99 0.79 Metamorphic bedrock geology with approx. Natural
60% overlain by superficial deposits
Ceiriog at Brynkinalt Weir 67005 113.7 0.54 3.11 0.79 90% of catchment is impermeable Natural
Dart at Austins Bridge 46003 247.6 0.52 11.30 0.70 Granite Reservoirs
Don at Doncaster 27021 1256.2 0.56 15.96 0.72 Grit, limestones and sandstones” Reservoirs, abstraction
and effluent returns
Eden at Kirkby Stephen 76014 69.4 0.26 2.62 0.79 Carboniferous Limestone and Permian Sand- Natural
stone. variable Boulder Clay cover
Enrick at Mill of Tore 6008 105.9 0.30 3.31 0.83 Impermeable with approx. 20% superficial Natural
deposits.
Frome (Somerset) at Tell- 53007 261.6 0.52 3.77 0.80 limestone Abstraction and ground-
isford water abstraction
Frome at Yarkhill 55018 144.0 0.52 1.15 0.75 Bedrock of very low permeability. Effluent returns
Greta at Rutherford 25006 86.1 0.21 2.28 0.70 Millstone Grit with ; 90% superficial de- Natural
Bridge posits of peat and boulder clay
Leet Water at Coldstream 21023 113.0 0.33 0.98 0.78 Boulder Clay overlying calciferous sandstone Natural
Lossie at Sheriffmills 7003 216.0 0.53 2.74 0.8 Bedrock Schists. Extensive superficial de- Abstraction
posits.
Stour at Throop 43007 1073.0 0.65 13.71 0.73 Predominantly Chalk ( 50%); some clay Abstraction, groundwater
( 30%); limestone and Upper Greensand. abstraction and effluent
returns
Teme at Tenbury 54008 1134.4 0.55 14.40 0.74 Mainly Palaeozoic sediments with Pre- Effluent returns
Cambrian crystalline rocks
Thurso at Halkirk 97002 412.8 0.45 9.09 0.76 Mixed bedrock permeability and approx. Regulation and abstrac-
95% overlain by superficial deposits tion
Tyne at Bywell 23001 2175.6 0.38 46.23 0.71 Carboniferous Limestone with extensive su- Reservoirs
perficial deposits
Urr at Dalbeattie 80001 199.0 0.36 5.96 0.84 Silurian shales extensively covered by Boul- Natural
der Clay.
Witham at Claypole Mill 30001 297.9 0.69 1.86 0.64 Clay with limestone Regulation, abstraction

and effluent returns

Table 6.1: Summary table of catchment characteristics.
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Figure 6.1: Locations of the 20 catchments studied.
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The grid IDs can now be input to the weather generator. To run the spatial weather
generator:

— Open the Weather Generator software

— Copy and paste the grid IDs into the program

— Select 10 control runs and 100 2050 medium emissions scenario runs, each 30 years

long
— Select no change in urban fraction (a parameter of the weather generator)

— Select a daily time step (running the spatial weather generator at an hourly time
step is still very slow and for 20 catchments it was estimated that it would take
several months to generate input for SHETRAN).

The output from the weather generator gives one file for each grid square which contains
100 x 30 year time series written directly after each other. To convert this to SHETRAN

input:

— Reformat the data so that each variable has its own .csv file and so that there is
1 .csv file for each of the 100 (or 10) runs. The data for every grid ID should be

written to one file
— Exponentially distribute the rainfall using the same process outlined in Chapter

4.

The meteorological variables time series are now ready for use with SHETRAN. To run

these simulations efficiently:
— Set up the other SHETRAN files required to run a simulation, including a new
library file
— Run the simulations in parallel using a service such as Condor or The Cloud

— Or use a Python script to parallelize processing over a series of multi processor

servers
— Retrieve and analyse the results.
This process can be finished in 24 hours for an average catchment (using all available

computing resources). For larger catchments the process may take 2-3 days with no

technical difficulties.

Two main technical issues were identified when using weather generator inputs with

SHETRAN:
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— Due to increased rainfall intensity in future scenarios, the maximum allowed rain-
fall in a time step (under section :fr20 in the SHETRAN input files) had to be

increased from 0.5 to 0.7

— Numerical instabilities occurred caused by backwater effects at channel junctions
in the flatter parts of large catchments. This was rectified by increasing the

"Minimum Drop Between Channels’ in the Library file.

Both of these changes have a negligible impact on flow calculations but were necessary
for simulations to complete. For a full national climate impact assessment, it would
be necessary to further automate some of these steps. The weather generator would
have to be run via a script and not via the user interface as described above. Also, the
identification of causes of model instability and subsequent alterations would need to

be automated. Both of these steps would be trivial to instigate when they are required.

6.6 Validation of baseline data

From carrying out 10 baseline (or control) runs from each catchment, it was found that
in some cases the rainfall differed between the observed and control simulations. Fur-
ther investigation of this issue revealed that this was due to the difference in monthly
mean rainfall between the UKCP09 daily gridded datasets and the statistics coded
into the weather generator These statistics were based on an earlier national gridded
rainfall dataset provided by the Met Office several years ago. This is shown in Figure
[6.2] which indicates that in most areas the difference in monthly mean rainfall can be
around +=10%, but for a very few grid squares the differences can be as large as 92%.
However, there is no coherent pattern in the discrepancies between the UKCP09 data
and weather generator statistics, with the percentage difference varying both spatially
and temporally. Work is ongoing to update the weather generator to be wholly consis-
tent with the UKCPO09 daily gridded dataset. This update should appear in the next

version of the weather generator.

The difference between the observed and control runs is not considered to significantly
affect this analysis as the main purpose is to automate a system for using the spatial
weather generator in conjunction with SHETRAN. When the new version of the weather
generator is available, it will link very easily to the system described in this chapter.
Furthermore, the differences between the control and future runs are still considered to

be valid differences although caution is required in interpreting in changes in hydrology
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Figure 6.2: Graphs showing the percentage differences between the mean monthly rainfall
values that the weather generator uses and the mean monthly rainfall values calculated from

the 5km gridded dataset.
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Figure 6.3: % change in mean annual flows between baseline and 2050s runs.

in absolute terms. To avoid confusion, results from simulations using observed data are

not included in the analysis in subsequent sections of this chapter.

6.7 Future scenarios

The analysis in this section now focusses on changes in flows, rainfall and PET between
the control period (1961-1990) and future scenarios (2050s). Both control and future
scenarios have been generated by the weather generator. 10 control scenarios and 100
future scenarios were generated for each catchment. This is in line with the minimum
number of runs recommended in the weather generator guidance to give a representative

sample of the distribution of possibilities.

6.7.1 Annual changes

The discussion of results begins with changes in annual mean flows and then moves to
look at the results on a seasonal basis. The annual results are summarised in Table [6.2]
which shows the percentage change in the mean of the distribution of annual average

flows (cumecs), rainfall (mm/day), pet (mm/day) from control to future.

Figure[6.3]shows the changes in distributions of annual average flow between control and
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Figure 6.5: % Change in mean annual PET between baseline and 2050s runs.
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Name Flow Rain PE

Aire at Kildwick Bridge -5.2 1.8 16.0
Almond at Craigiehall -5.5 3.8 16.5
Bervie at Inverbervie -3.9 4.5 17.3
Braan at Hermitage 0.7 5.0 15.5
Ceiriog at Brynkinalt Weir -8.7 -0.7 19.0
Dart at Austins Bridge -2.7 1.8 21.9
Don at Doncaster -13.1 -1.3 17.6
Eden at Temple Sowerby -1.2 5.4 15.8
Enrick at Mill of Tore -4.1 1.9 15.1
Frome at Yarkhill -17.4 0.7 19.8
Frome (Somerset) at Tellisford -11.9 0.5 22.5
Greta at Rutherford Bridge -6.9 1.0 17.7
Leet Water at Coldstream -9.9 3.3 15.9
Lossie at Sheriffmills -7.6 2.8 15.4
Stour at Throop -9.9 2.6 21.0
Teme at Tenbury -13.3 0.5 19.1
Thurso at Halkirk 6.7 8.6 10.1
Tyne at Bywell -8.8 0.7 15.9
Urr at Dalbeattie 0.3 5.5 16.1
Witham at Claypole Mill -23.7 -1.8 18.0

Table 6.2: Summary table of the median % change in mean annual Flow, Rainfall and PET

between baseline and future scenarios.

future climates based on the multiple realisations of each case. In general terms, annual
average flows typically decrease in the modelled catchments, with greater decreases in
the south of GB compared with the north. Looking at the differences between the mean
of average annual flows for the control and future scenarios, 12 catchments exhibit
decreases in flow of up to 10% and 5 show decreases of up to 20%. The Witham
at Claypole Mill shows by far the greatest reduction in flow of 23.7%, which reflects
large projected increases in evapotranspiration in a small catchment (where changes in
intrinsically small flows may be large in relative terms). Only 3 catchments situated in
the north of GB show increases in flow, but in these cases the magnitudes of change are
relatively modest. For example, the maximum increase out of the modelled catchments
occurs for the Thurso at Halkirk, which shows a change in the mean of annual flows of
6.7% . The increase in flow here is a function of the fact that this catchment is subject
to the largest relative increases in rainfall and the smallest increases in PET out of the

selected catchments due to its high latitude.

Examining the distributions of average annual flows for the realisations of the control
and future climates in Figure [6.3] reveals a general pattern across the catchments lo-

cated in England and Wales particularly. In these catchments, the upper tail of the
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distribution is typically similar for both control and future scenarios, indicating that
changes in annual flows in wetter years are simulated as being fairly minor. However,
the lower tail of the future distribution is typically lower than that of the control for the
majority of catchments modelled. This results in a skew towards lower average annual
flows in the future scenario relative to the control period, which corresponds with the
reduction in the mean of average annual flows for the future climate relative to the con-
trol climate discussed above. This pattern is less apparent for the catchments located

in Scotland, which tend to show less change in the distribution of annual average flows.

Analysis of the distribution of changes in rainfall shown in Figure[6.4]shows that average
annual rainfall is very similar between control and future climates. The only appre-
ciable change is seen at the Thurso at Halkirk, which exhibits a shift towards higher
precipitation (increase of 8.6%), in turn explaining the more significant increases in an-
nual flows simulated here relative to the other catchments. In contrast, a simpler and
more consistent trend is apparent for changes to PET in the future, which are shown in
Figure [6.5l This figure shows a simple trend of PET increasing more the further south
a catchment is, although all selected catchments show large increases in PET relative to
the control period. From this figure it can also be seen that the distribution of changes
in future climate is wider than that of rainfall, which suggests that a broader range of
PET futures is possible. The lower tail of the distribution is always greater than 0 and
the upper tail of the distribution can be greater than 40% in some cases. It is therefore
apparent that the pattern of changes in PET is more consistent than that of rainfall,

which tends to demonstrate more complex variability.

The analysis thus suggests that, at the annual level, it appears that the main driver of
the overall reduction in flows across GB is an increase in PET rather than a reduction
in rainfall. As discussed above, the main exception to this is the increase in rainfall
in the Thurso at Halkirk, which counteracts the comparatively small increase in PET,
resulting in small increases in annual flows observed. This preliminary analysis of
average annual flows across GB suggests a reasonably consistent picture in terms of the
direction of change, though further research could elucidate the geographical locations
and characteristics of catchments showing different behaviour. There is also clearly
some variation in the magnitude of changes in average annual flows between catchments,
which reflects both the influence of projected future scenarios applied through the

weather generator and the modulating influence of catchments characteristics.

172



6.7.2 Seasonal hydrological means

This section outlines the relative changes in seasonal mean flows. Relative changes
in flows are analysed in line with the approach taken in several water management
applications, including abstraction licensing in line with EU Water Framework Directive
legislation (2000). Spring, summer, autumn and winter are defined as MAM, JJA, SON,
and DJF respectively. Table summarises changes in the average daily rainfall, PET

and flow between the 10 control runs and 100 future runs.
In general, Figures [6.6] to show:

— Slight decreases in flow in spring due to moderate increases in PET and negligible

variation in rainfall

— Large decreases in flow in summer due to decreased rain and increased PET

Large decreases in flow in autumn due to increases in PET but little change to

rainfall

— Small increases in flow in winter due to increases in rainfall but diminished by

increases in PET.

The general patterns of seasonal changes in rainfall, PET and flow between control and
future scenarios may be interpreted to form an overall picture of the potential seasonal
effects of climate change in this scenario. Table indicates that spring mean changes
in rainfall between control and future periods are generally fairly limited in magnitude,
with relative changes typically less than around 7%. Spatial variation in the direction
of change in spring rainfall is apparent, however. Catchments situated in the northern
part of GB show modest increases in spring rainfall of up to 7.5%, whereas some of
the catchments in the southern part of the study area show slight decreases (up to
-3.9%). PET increases range from 6.3% in the north of GB to 16.3% in the south. The
combined effects of these changes in rainfall and PET result in the changes in flows
shown in Figures and [6.7 These figures show reductions in flow in the south of
GB, with the distribution of flows being slightly skewed towards lower flows. However,
some catchments appear to exhibit more complex responses. For example, the Tyne at
Bywell shows a particularly large reduction in flows relative to overall patterns, given
its location in the north of England. In addition, the Dart at Austins Bridge shows a
relatively small reduction in flows despite high increases in PET due to it being one of

the wettest catchments.

In summer, this analysis suggests a ubiquitous reduction in rainfall across GB. This

is complemented by PET increases, with greater increases apparent in the south, a
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Flow Rain PE

Name Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn ‘Winter
Aire at Kildwick Bridge -8.8 -42.0 -10.7 6.8 1.9 -20.4 7.5 11.1 13.0 20.5 15.1 13.0
Almond at Craigiehall -2.2 -21.6 -11.6 2.0 6.9 -15.5 11.8 10.5 14.8 18.8 18.3 14.3
Bervie at Inverbervie -7.6 -23.4 -8.2 3.2 2.7 -10.8 9.8 10.4 13.7 18.0 18.4 12.5
Braan at Hermitage -8.2 -28.5 -0.3 13.5 2.8 -13.8 8.5 14.5 12.1 19.2 15.1 10.9
Ceiriog at Brynkinalt Weir -12.3 -26.3 -17.0 1.7 -3.2 -20.2 2.0 7.9 16.3 22.3 17.5 12.8
Dart at Austins Bridge -7.5 -41.1 -19.7 16.6 -2.3 -25.2 -2.3 18.3 15.4 28.9 18.4 11.8
Don at Doncaster -13.5 -23.9 -29.7 -2.7 -3.2 -20.2 -1.9 10.0 14.4 21.6 17.9 10.5
Eden at Temple Sowerby -7.1 -25.9 -10.2 12.8 5.3 -14.4 5.0 17.1 13.5 19.8 14.9 13.7
Enrick at Mill of Tore -9.8 -17.6 -2.0 0.4 0.7 -12.5 8.7 2.2 12.3 16.3 16.1 11.6
Frome at Yarkhill -15.6 -22.7 -39.7 -8.4 -3.9 -21.3 3.4 18.5 15.7 23.9 17.8 11.5
Frome (Somerset) at Tellisford -4.7 -31.7 -38.3 1.1 -0.9 -23.2 0.0 16.0 15.1 28.3 21.8 13.0
Greta at Rutherford Bridge -13.4 -25.0 -19.9 8.1 3.4 -14.5 -0.3 11.9 15.2 19.8 16.1 15.2
Leet Water at Coldstream -6.8 -36.0 -22.1 -1.5 2.7 -15.6 10.3 14.5 14.7 17.1 17.0 10.6
Lossie at Sheriffmills -5.4 -18.0 -13.9 -0.9 4.0 -12.2 10.6 8.3 11.6 17.3 18.4 9.4
Stour at Throop -6.9 -24.0 -41.7 0.6 1.4 -17.3 -0.9 14.6 16.0 25.4 22.3 15.8
Teme at Tenbury -12.1 -28.8 -34.0 -0.8 0.5 -16.9 0.0 11.2 14.4 21.8 19.8 13.7
Thurso at Halkirk 0.9 -12.5 5.2 13.8 7.5 -8.5 12.8 16.5 6.3 13.9 10.3 4.1
Tyne at Bywell -15.5 -31.1 -17.0 3.3 -0.8 -15.3 3.8 9.5 13.6 18.6 15.9 11.4
Urr at Dalbeattie -3.6 -39.7 -4.7 13.2 3.5 -15.9 7.5 16.5 13.5 18.7 15.9 15.6
Witham at Claypole Mill -12.2 -26.9 -42.8 -22.2 0.7 -16.3 -2.6 10.6 13.2 21.0 17.1 9.8

Table 6.3: Table showing median % change in means of flow, rainfall and PET from the control to future scenarios.
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Figure 6.6: % change in mean seasonal flows between baseline and 2050s scenarios.
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Figure 6.8: % change in mean seasonal rainfall between baseline and 2050s scenarios.
177



80 80

601 Frome (Somerset) at Tellisford 60 L Greta at Rutherford IBridge -]
40 + 4 40t —
20+ 4 20t

YL T & ML - Lo
ST @ T AT . T

—-60} 4 —60} i
_80 1 1 1 1 _80 1 1 1 1
80 T T T T 80 . T - T T
60 | Leet Water at Coldstream | g0 | Lossie at Sheriffmills |
0F . . P 0F . -r- %
20} i 1 - 20} -- -
of == B B8 %es = =
=20} — * . -= 4 =20} - * - -+
=40} — 4 =40} e -
-60} 4 —-60} -
_ _80 1 1 1 1 _80 1 1 1 1
o
E 80 T T T 80 T T T T
‘® 60| Stourat Throop -- 1 60| Teme at Tenbury |
c 40} "4 aof i
© - - -- 53 .-
o 20| , — 1 20} — : ]
E o} * * i ok * * * |
£ a0l N - o 4 4 20 _ * N -
& —40} { -ao0f , ]
& —60f - 1 -60} - -
-E _80 1 1 1 1 _80 1 1 1 1
= 80 — — : 80 — . .
60 L Thurso at Halkirk i 60 | Tyne at Bywell i
0F - T 1 40} %
20} -i- * - 20 — X o -
of == =1 0 = = ==
=20} * - - 4 =20+ __ * - - 4
=40} - 4 =40} - .
—-60} 4 =60} -
_80 1 1 1 1 _30 | ] 1 1
BU T T - T T 80 T T . T
60 L Urr at Dalbeattie 1 g0l Witham at Claypole Mill |
40| - 40| X o
20 T 2 T - 20 T o -
of == = = 7 =) == |
ST B8 T T T g F T
40} " 1 —a0} . -+ -
—-60} 4 —-60} - -
_80 1 1 1 1 _8 | | 1 1
MAM JA SON DJF MAM JJA SON DJF
Season Season

Figure 6.9: % change in mean seasonal rainfall between baseline and 2050s scenarios.
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Figure 6.10: % change in mean seasonal PET between baseline and 2050s scenarios.
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Figure 6.11: % change in mean seasonal PET between baseline and 2050s scenarios.
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pattern which is consistent across the seasons. Lower rainfall and higher PET incur
large reductions in flows across GB (see Figures and . The magnitude of these
reductions in flows is notable; the range of decreases in summer flow for the modelled
catchments is from -12.5% to -42.0%. The Thurso at Halkirk experiences the smallest
decrease in rainfall, as well as the smallest increase in PET, and so shows the smallest
reduction in flow. Likewise, the Dart at Austins Bridge exhibits one of the largest
reductions in summer flow and the largest increase in PET, which results in a very
large decrease in flows of -41.1%. In terms of the distribution of flows, long upper
tails combined with some skew towards the lower end of the range of summer flows
are apparent. This reflects the continued possibility of observing lower probability
occurrences of relatively high flows for the season in both control and future cases,

although these could be considered to perhaps constitute atypical summer flows.

Moving to autumn, it can be seen from Figures and that rainfall tends to
exhibit relatively small deviations from the control to future periods. Catchments in
the northern half of GB tend to show increases in rainfall, whereas southern catchments
generally exhibit small reductions. The magnitude of rainfall increases in the northern
half of GB is typically less than 13%, whilst reductions in rainfall in the catchments to
the south are -1% or smaller. PET is consistently higher in the future period relative
to the control; all but one of the increases are in the range of 14.9% to 22.3%, with
the Thurso at Halkirk being lower at 10.3%. The distributions of changes in PET
are typically wider in autumn (and summer), suggesting a wider range of possible PET
futures despite the general transition to higher PET. These patterns of rainfall and PET
translate to decreases in autumn flow in the future period across the country. This is
due largely to the significant soil moisture deficit created in the summer months. These
reductions in flow are much higher in the south of GB than in the north, ranging from
-2% for the Enrick at Mill of Tore in Scotland to -41.7% for the Stour at Throop in
southern England. The exception to this pattern is the small increase in flows for the
Thurso at Halkirk (5.2%). It is also apparent that the Dart at Austins Bridge tends
to show lesser reductions in flow compared with the other catchments in the southern
part of England and Wales, which is considered to reflect the persistence of this area’s
generally higher rainfall totals through into the future period. In addition, it should
be noted when interpreting these changes in flow that relative (percentage) changes
are considered here, such that absolute reductions in flow in autumn are notably larger

than those in summer.

The deficit in flows in autumn is recovered to some degree in winter, principally as a

result of increases in winter rainfall in the future period combined with more modest
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increases in PET relative to those apparent in summer and autumn. Changes in winter
flows range from -22.2 to 16.6%, with notable variability between catchments on the
magnitude of change. Spatial patterns of the direction of change in flows between con-
trol and future periods are less clear in winter compared with summer and autumn. For
example, of the catchments modelled in southern England, some experience relatively
little change whilst one (Witham) experiences a -22.2% decrease in flows and another
(Dart) shows a 16.6% increase in flow. This is likely to be related to the specific nature
of geographical variations in rainfall and PET changes in winter and preceding seasons,
as well as the influence of catchment properties affecting the soil moisture deficit par-
ticularly. Unusually, the Dart at Austins Bridge shows the largest increase in rainfall
and smallest increase in PET (in other seasons this behaviour is normally seen in the
Thurso at Halkirk, at the other end of the country) and as a result shows the largest
increase in flow. On the other hand, the Witham at Claypole Mill shows the largest
relative decrease in flows, which reflects a large soil moisture deficit developed during
summer and persisting through autumn, as well as the influence of its small size (i.e.

relative differences between small flows are large).

In terms of meteorological drivers, the differences between control and future periods
in spring show ostensibly similar overall patterns to those apparent in autumn. In both
cases, rainfall tends to exhibit relatively small deviations from the control to future
periods. Catchments in the northern half of GB tend to have rainfall increases, in
contrast to the southern catchments, which are generally associated with reductions
in rainfall. In spring, the majority of selected catchments show changes in rainfall of
around 5% or less, yet in autumn the magnitude of rainfall increases in the northern
half of GB increases is generally higher. PET is consistently higher in the future period
relative to the control in spring, by a similar magnitude to the overall increase in
autumn, whilst the distributions of PET are again typically wider in the future period
in spring. Flows in the future period in spring are lower everywhere except the Thurso
at Halkirk. This catchment sees a very modest increase in flow of 0.9%, whereas the
other modelled catchments show decreases in flow of up to -15.6% . The magnitude of
flow reduction varies by catchment across GB; it could be suggested that the largest
reductions tend to occur in England and Wales rather than Scotland, but latitude does

not appear to explain the patterns as well as in autumn for example.

It should also be noted that, as annual flows have been shown in the previous section
to be lower in the future period compared with the control period, it is apparent that
the magnitude of increases in winter flows does not fully compensate for the typical

reductions in spring, summer and autumn flows.
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Figure 6.12: Change in mean flows for each future run from the mean control flow, for each

catchment and season, plotted against average daily rainfall and average daily PET. The size

and colour of the dot indicates the direction and magnitude of the percent change in mean

flow. The grey dashed lines indicate the mean rainfall and PET of the control runs.
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Figure 6.13: Change in mean flows for each future run from the mean control flow, for each

catchment and season, plotted against average daily rainfall and average daily PET. The size

and colour of the dot indicates the direction and magnitude of the percent change in mean

flow. The grey dashed lines indicate the mean rainfall and PET of the control runs.
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Figures and provide further detail on the simulated seasonal changes in future
flows. For each catchment and season, the percentage change from the mean of the con-
trol runs to each of the 100 means of the future period runs is plotted against the mean
seasonal rainfall and PET for each future period run (figures for all catchments can be
found in Appendix B). The magnitude and direction of change in flow are represented
by the size and colour of the dots, with larger dots signifying greater changes. Red dots
indicate reductions in flows in the future period relative to the control, whereas blue
dots denote increases in flow in the future period. The grey dashed lines indicate the
mean rainfall and PET of the control runs. Note that the axes of the graphs are not a
fixed scale across catchments or seasons, as this would make the results illegible. These
graphs therefore allow for more detailed appraisal of the seasonal differences between
control and future periods, as it is possible to see the changes in flow for each realisation
of the future period and how these changes relate to input rainfall and PET overall and

for each simulation.

These figures confirm the key patterns evident from Figures to namely large
relative reductions in summer, autumn and spring flows, with generally modest in-
creases in winter flows. The plots highlight that the largest relative reductions in flow
tend to occur in summer, with lower percentage declines in autumn flows that in turn
tend to be larger than the decreases simulated in spring flows. The closest relationships
between average rainfall, PET and flows in the future period are observed in summer,
which exhibits a strong negative correlation of rainfall and PET, such that combina-
tions of lower rainfall and higher PET result in lower flows. Less clear relationships
between these variables are apparent for spring and autumn. These seasons also exhibit
slightly more variation in the direction of change in some catchments compared with
summer, which indicates that some realisations of the future period result in higher
average flows. However, these instances are only a minority in all catchments except
the Thurso at Halkirk. Similarly, in winter there are also some realisations of the fu-
ture period that show reductions in flow, particularly in the Teme at Tenbury, although
in the majority of instances modest increases in flow are apparent. Interestingly, for
some catchments there appears to be a positive correlation between higher rainfall and
higher PET in winter, as is apparent for the Aire at Kildwick Bridge, the Almond at
Craigiehall and the Tyne at Bywell for example.

Figures [6.12] and also reflect some important points regarding the output of the
weather generator. In each season and for all of the catchments simulated, average
future PET for all realisations is greater than the mean control PET. The situation for

rainfall varies with season. In winter, mean rainfall in the future period is higher than
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in the control period in the majority of cases across all of the catchments displayed.
However, in autumn a more mixed picture emerges. Most of of the catchments in
Figures and show generally higher autumn rainfall - for example the Aire at
Kildwick Bridge and the Almond at Craigiehall - whereas others show limited changes
and scatter around the control period mean rainfall. This is particularly the case for
the Teme at Tenbury, which additionally shows comparatively large relative reductions
in autumn flow as a consequence. Spring rainfall in the realisations of the future period
does not appear to show consistent deviation from the control period mean, whilst
most realisations of future summers clearly exhibit less rainfall than the control period

means for all catchments.

Given the strong relationship between PET and rainfall in summer, it would be ex-
pected that simulations with the greatest PET and lowest rainfall would show the
largest decrease in flows i.e. the darkest red, largest circles would be seen in the upper
left corner of the plots, with the dots becoming paler and smaller towards the bottom
right corner. Equally, in winter it would be expected that the largest increases in flows
would coincide with the wettest runs. However, it is interesting to note that this is
not the case. Instead, the change in flow appears to bear little relationship to its PET
and rainfall with respect to the other runs. This reflects the fact that the change in
flow is influenced by more than just the ambient PET and rainfall. The magnitude
(and in some cases direction) of change in a given realisation of the future period is
highly dependent on catchment antecedent conditions, which are in turn a function of
the specific spatial and temporal patterns calculated by the weather generator. The
precise distribution, duration and intensity of rainfall events is likely to be a key part
of this.

The implication of this is that similar values of mean rainfall and PET in a season
can result in very different changes in flow. To demonstrate this, two individual runs
for the future period for the Bervie at Inverbervie have been analysed. These runs
have similar summer mean rainfall of 1.6mm and mean PET of 3.3mm. However, the
change in flows in the two runs are +45.7% and -41.8%, i.e. both very large changes but
opposite in sign. These runs can be identified on the graph for the Bervie at Inverbervie
as the large blue dot overlapping a large red dot. When the context of these runs is
considered, the causes of the differences becomes apparent. The run with increased
summer flows received some of the highest rainfall in the preceding spring (point is an
outlier relative to the main cloud of points), whereas the run with reduced summer flows
was subject to spring rainfall totals more consistent with the majority of realisations.

The run with higher summer flows also had higher spring flows, whilst the run with
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Station Name Q99 Q95 Q90 Q75 Q50 Q25 Q10 Q5 Q1

Aire at Kildwick Bridge -21.68 -19.3 -19.28 -17.43 -23.83 -10.85 -2.2 1.34 8.48
Almond at Craigiehall -10.85 -18.48 -17.45 -15.69 -10.51 -9.9 -4.58 -0.37 3.34
Bervie at Inverbervie -17.32 -14.42 -13.84 -12.83 -15.64 -10.14 -1.73 1.2 8.59
Braan at Hermitage -5.06 -15.95 -15.16 -14.79 -10.59 -1.34 4.73 6.65 8.59
Ceiriog at Brynkinalt Weir -11.84 -20.35 -20.33 -20.63 -15.19 -12.16 -6.77 -2.92 1.99
Dart at Austins Bridge -15.33 -23.18 -22 -18.44 -28.28 -11.06 2.61 7.26 11.93
Don at Doncaster -23.13 -18.73 -17.22 -14.87 -16.9 -22.08 -13.69 -8.73 -3.65
Eden at Temple Sowerby -14.9 -17.3 -17.51 -14.99 -14.8 -5.82 2.42 5.61 9.25
Enrick at Mill of Tore -6.36 -15.93 -15.96 -12.04 -7.59 -3.87 0.49 0.82 -0.38
Frome at Yarkhill -21.63 -20.24 -18.56 -16.21 -15.15 -30.64 -17.98 -14.05 -7.04
Frome (Somerset) at Tellisford -52.7 -44.7 -40.01 -32.14 -21.17 -13.13 -5.28 -0.78 7.87
Greta at Rutherford Bridge -6.99 -10.18 -10.22 -10.59 -12.91 -11.6 -4.94 -3.14 -3.3
Leet Water at Coldstream -25.59 -19.38 -17.02 -13.11 -15.5 -26.53 -8.73 -4.71 -1.8
Lossie at Sheriffmills -16.78 -17.12 -16.92 -15.31 -10.06 -7.65 -4.13 -3.13 -1.12
Stour at Throop -31.47 -33 -32.47 -28.88 -23.42 -19.52 -6.88 -1.61 6.83
Teme at Tenbury -22.1 -19.6 -17.63 -17.23 -26.76 -23.25 -12.45 -6.24 0.69
Thurso at Halkirk -4.12 -8.03 -6.95 -4.77 -5.87 7.08 9.87 11.45 9.72
Tyne at Bywell -13.74 -15.81 -16.53 -15.16 -21.02 -13.24 -8.45 -5.02 -1.67
Urr at Dalbeattie -11.69 -15.34 -14.68 -14.08 -22.62 -3.25 4.76 9.02 14.88
Witham at Claypole Mill -39.54 -34.92 -33.01 -27.73 -22.19 -27.33 -27.54 -24.09 -11.49

Table 6.4: Summary table of % change in mean flow percentiles from control to future sce-

narios.

lower summer flows had lower spring flows. This reflects how antecedent conditions
in a catchment play a large role in determining current flows - in particular how the
relationship between spatial and temporal patterns of rainfall, PET and soil moisture
deficit crucially affects runoff generation. This can be seen again in autumn in the Teme
at Tenbury. Two future runs give very different changes in flow of -58.9% and +57.9%
in autumn (see blue dot overlapping red dot), despite both receiving average daily
rainfall of 3mm and PET of 1.4mm. On examination of the behaviour of the two runs
in other seasons it can be seen that the run showing large decreases in flow experienced
some of the highest PET in spring and summer, whilst the run with increased flows in

autumn experiences moderate PET and higher rainfalls in spring and winter.

6.7.3 Flow duration curves

Flow duration curves usefully characterise the flow regime of a catchment across the
full range of flows. As climate change is considered likely to alter the flow distribution,
with possible implications for numerous water management applications, it is therefore

of interest to assess potential changes using flow duration curves. Figures and
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show flow duration curves for the set of control and future scenarios for each catchment.
Table summarises the percentage change in flow at various flow percentiles from
mean control to mean future. For flows lower than Q50, all of the catchments simulated
experience reductions in flow relative to the control period. These reductions can
sometimes be as large as 40% in the catchments of the Witham at Claypole Mill and
the Frome (Somerset) at Tellisford. On the other hand, it is apparent that increases in
flow occur towards the higher end of the flow range in a number of catchments, albeit to
varying degrees. On average, flows increase the most in the Thurso at Halkirk, which is
consistent with results from the previous sections describing its projected increases in
spring, autumn and winter rainfall. Similarly, the Dart at Austins Bridge, despite being
at the other end of the country, is the wettest catchment and so large projected increases
in winter rainfall create greater high flows (increases in Q10, 5 and 1). In addition,
the Bervie, Braan, Eden, Enrick and Urr all show slight projected increases in Q10 to
Q1 as a function of increased winter rainfall. However, the remaining catchments show
less changes or experience reductions in flow at almost every percentile on average.
Yet even in these cases there tends to be a shift in the range of projected changes in
flow at each percentile derived from individual realisations. For medium and lower flow
percentiles, the maximum flows for the future runs tend to approximately equal the
flows simulated in the control period, but at higher flow percentiles the maximum flows
in the future period do generally exceed the control period flows to varying degrees.
The projected differential changes in flows at the higher end of the flow range reflects
how the properties of different characteristics modulate higher (winter) rainfall in the

future period.

It is also of note that most catchments show a fairly narrow set of possible futures,
with the exception of the Frome at Yarkhill, the Frome (Somerset) at Tellisford and
the Witham at Claypole Mill. The Frome at Yarkhill and the Witham at Claypole
Mill have similar patterns, where future flows decrease across the flow range but with
quite a wide range based on the realisations conducted. The Witham at Claypole Mill
is a small, dry catchment in the south east of England that is sensitive to increases in
PET and decreases in rainfall. Both the Frome at Yarkhill and the Frome (Somerset)
at Tellisford exhibit particularly large decreases in flow in autumn, a feature which
is manifest in the flow duration curves through reduced medium and low flows. In
addition, the Frome at Yarkhill and the Witham at Claypole Mill also exhibit decreases
in flow in winter, which results in a wider range of flows in the upper part of the flow

duration curve.
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6.7.4 Peak flows

Assessing potential changes in peak flows is highly important given the extensive dam-
age that can be caused by floods. A useful method for attempting to analyse possible
changes at the high end of the flow range is the Gumbel plot (or ’extreme value plot’).
The first step in constructing these plots is to analyse the annual maximum flow se-
ries. For each 30 year run, the 30 annual maxima are extracted and sorted in order
of decreasing magnitude. The annual maximum flows are then ranked from 1 (highest
flow) to 30 (lowest flow). The probability of exceedence for each flow, P(X), is then

calculated using the Gringorten formula:

(r—0.44)

PX) = (N +0.12)

where r is the rank and N is the total number of data values. The reduced variate for

each flow value is then calculated:

F(X)=1-P(X)
ReducedV ariate = —log(—log(F"))

(Shaw et al., 2010) A Gumbel distribution is then fitted using L-moments, in this case
using a Python package. The Gumbel reduced variate is therefore related to the return

period of a flow through the probability of exceedence.

Figures and show extreme value plots for each of the modelled catchments.
Table [6.5] summarises the change in the mean of the control to future distribution at

each Gumbel reduced variate/return period.

Figures [6.16] and [6.17| show that half of the selected catchments (the Aire, Almond,

Bervie, Braan, Ceiriog, Dart, Eden, Leet Water, and Urr) are subject to increases of

between 8 to 23% from the mean of the control scenarios to the mean of the future
scenarios at the 5 year return period (reduced variate of 1.5, see Table . However,
considering the range of changes apparent from each of the 100 runs in the future
scenario, the largest changes can be as great as 66% for the Eden at Temple Sowerby
or 100% for the Bervie at Inverbervie. Mean increases in high flows in the future
period calculated from all of the 100 realisations of the future period may therefore
be significantly less than some of the specific increases in more extreme scenarios of

rainfall increase produced by the weather generator.
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Station Name -1.53 -0.83 -0.48 -0.19 0.09 0.37 0.67 1.03 1.50 2.25

Aire at Kildwick Bridge 3.07 9.4 11.36 12.59 13.54 14.35 15.11 15.85 16.65 17.63
Almond at Craigiehall -12.79 0.51 3.96 6 7.52 8.78 9.91 11 12.13 13.49
Bervie at Inverbervie -29.3 -2.58 4.62 8.94 12.17 14.88 17.32 19.68 22.15 25.12
Braan at Hermitage 1.39 7.94 10.07 11.44 12.51 13.44 14.31 15.18 16.11 17.28
Ceiriog at Brynkinalt Weir -10.51 -1.53 1.12 2.76 4.02 5.09 6.07 7.03 8.05 9.3
Dart at Austins Bridge 5.41 12.73 15.08 16.59 17.78 18.8 19.76 20.71 21.73 23.01
Don at Doncaster -29.54 -9.84 -4.6 -1.47 0.86 2.81 4.57 6.26 8.03 10.15
Eden at Temple Sowerby -6.06 6.98 11.25 14 16.16 18.04 19.8 21.55 23.45 25.83
Enrick at Mill of Tore -8.27 -6.79 -6.38 -6.13 -5.94 -5.78 -5.63 -5.49 -5.34 -5.16
Frome at Yarkhill -54.08 -24.16 -16.82 -12.56 -9.43 -6.85 -4.55 -2.36 -0.1 2.59
Frome (Somerset) at Tellisford -15.14 -1.92 1.4 3.34 4.78 5.97 7.03 8.04 9.09 10.35
Greta at Rutherford Bridge -15.26 -7.74 -5.49 -4.09 -3.02 -2.1 -1.26 -0.43 0.45 1.52
Leet Water at Coldstream -53.11 -13.61 -4.77 0.23 3.83 6.76 9.34 11.78 14.27 17.2
Lossie at Sheriffmills -57.43 -17.1 -8.59 -3.86 -0.48 2.24 4.63 6.87 9.15 11.8
Stour at Throop -3.6 4.21 6.38 7.7 8.7 9.54 10.3 11.04 11.82 12.76
Teme at Tenbury -25.9 -9.31 -4.12 -0.84 1.71 3.91 5.94 7.95 10.11 12.78
Thurso at Halkirk 15.95 13.1 12.22 11.66 11.23 10.86 10.52 10.18 9.81 9.37
Tyne at Bywell -7.41 -2.46 -0.94 0.02 0.75 1.39 1.97 2.55 3.16 3.92
Urr at Dalbeattie 9.52 13.42 14.61 15.35 15.91 16.4 16.85 17.29 17.76 18.34
Witham at Claypole Mill -124.77 -46.71 -31.92 -23.92 -18.3 -13.82 -9.94 -6.34 -2.7 1.49

Table 6.5: Summary table of % change in mean flow for a given reduced variate between

control and future scenarios.

For a number of the other catchments, the control runs generally lie in the middle
of the range of flows in the future scenarios. This is the case for the Don, Frome
(Somerset), Greta, Lossie, Stour, Teme, Thurso and Tyne. The changes in mean at
the 5 year return period for these catchments range from 0-12%. Whilst the future
high flows in these catchments tend to show overall increases in the future period, some
catchments appear to exhibit overall decreases in the magnitude of flows at the return
periods investigated. For example, the Enrick, Frome, and Witham show decreases in
the means of the scenarios. In the most extreme future scenarios in these catchments,

annual maximum flows can decrease by up to 50% relative to the control period.

The majority of annual maxima occur in the winter months and so the changes observed
here are directly linked to the changes in winter flows, as examined in previous sections.
It makes sense therefore that the Frome at Yarkhill and Witham at Claypole Mill show
decreases in maximum flows, as the mean winter flow in these cases experience large
decreases that are not apparent in other catchments. The Enrick at Mill of Tore shows
a smaller decrease in mean winter flow. In addition, it should be noted that the timing
of annual maximum flows used to construct the Gumbel plots does not change between

control and future scenarios. Whilst high resolution regional climate models predict
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increased intensity and frequency of summer extreme rainfall caused by convective cells,
these recent developments are not incorporated into the weather generator statistics

currently and are therefore not observed in the results presented here.

6.8 Discussion

This chapter has demonstrated a methodology for conducting a climate change impact
assessment for Great Britain using the SHETRAN for GB system and provided prelim-
inary results using the UKCP09 weather generator for a selection of catchments (for a
given emissions scenario and time slice). The methodology offers a standard, easy to
follow and largely automated process that is repeatable and amenable to application by
others involved in climate change research, impact assessment or mitigation/adaptation
work. The UKCP09 climate projections remain the standard set of scenarios for the UK
and so their use is appropriate here. However, it is recognised that these projections
are now dated and more recent, detailed RCM outputs have become available. As yet
these updates have not been incorporated into a standard product for use in applica-
tions such as climate change impact studies. Fortunately, the weather generator has
been designed with future updates in mind, such that no changes in overall methodol-
ogy would be required to include updates in climate projections. Using 100 realisations
of future climate goes part of the way to addressing the uncertainty surrounding climate
change impact assessments; however, more detailed uncertainty analysis is definitely an

important avenue for future research.

6.8.1 Technical issues

Whilst scripts have been created to automate the extraction of weather generator data,
conversion to SHETRAN input and multiprocessing of model runs, it is not appropriate
for use by non-experts who have stakes in the results, such as government agencies and
local authorities for example. Indeed, the computing resources required to run the
simulations in a reasonable time frame could by itself form a significant obstacle to
direct use of the system by such parties. Clearly it is also necessary to be familiar
with SHETRAN in case technical issues arise and to verify the correct behaviour of the
system. For example, SHETRAN has generally only been tested and verified against
historical climates and hydrological regimes to date; as such, its internal parameters
(i.e. those relating to model convergence and stability as opposed to those directly

controlling hydrological responses) are set accordingly. The implication of this is that,
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when future rainfall values that exceed observed maxima are run through SHETRAN,
the model can sometimes become unstable and fail. Some knowledge of SHETRAN
is therefore required to set the relevant parameters appropriately. It follows of course
that re-running failed models adds time to an already lengthy process in terms of both
user intervention and additional computation, such that it would be useful to explore
the potential for developing automated procedures to diagnose issues around run failure
and attempt logical corrections. It is also worth noting that the main bottleneck in this
methodology was the use of the weather generator, which was not originally designed
for batch processing to support hydrological modelling of large numbers of catchments.
However, it is anticipated that processing time will decrease with the next version of
the weather generator, which will be designed to run on the cloud and so make use of

parallel processing.

If stakeholders such as government agencies and local authorities did require a climate
impact assessment tool, one could easily be developed by processing outputs into a form
allowing non-experts to view results through different visualisations and key statistics.
This chapter has presented some possible ways of analysing changes in flows that could
be included in such a piece of software. The analysis has focused on changes across the
flow range, looking at both the means and ranges of change apparent from multiple
realisations of the future period. This forms a very large amount of information, and
an interactive tool may be a particularly useful means for users to appreciate average
changes and the range of possible futures according to the multiple realisations simu-
lated. Such a tool could more easily contain outputs from large numbers of catchments
than written reports, thereby providing flexibility for users to examine different results

and develop their own understanding of the model outputs.

An assessment tool could also benefit from the fact that, in addition to simulated stream
flows, SHETRAN produces a number of different outputs that are highly relevant for
various water management applications. Amongst other variables, soil moisture, surface
runoff, groundwater levels, actual evapotranspiration and snow cover are all calculated
and may be written to output files at specified time steps during a simulation. The
analysis of these changes is beyond the scope of this work, but it is ultimately one of the
reasons why a physically based model could be particularly valuable in climate change
impact studies. Enhanced process understanding is possible through analysis of the
range of model outputs, whilst specific assessments of changes in both surface and sub-
surface water resources may be investigated in an integrated manner. Expanding this
study to include more catchments would additionally give more scope for comparison

of different catchment behaviours and their influence on water availability, something
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which is more difficult to do with the 20 catchments examined so far, as the smaller
sample size makes it more difficult to disentangle the effects of catchment properties

from evaporation or rainfall changes for example.

6.8.2 Future changes

Although this study is a proof of concept for use of SHETRAN for GB rather than a
complete climate change impact analysis, a number of interesting patterns emerge from
the results. For example, it seems likely that GB could consistently experience a shift
to higher PET rates compared with historical conditions. Particularly in summer and
autumn, and to a lesser degree in spring, higher PET incurs reductions in flow relative
to the control period (reflecting historical conditions). These declines in flow are not
fully compensated for by the typically modest increase in winter flows apparent in most
of the catchments simulated. As a result there is a generally decrease in annual flows
in the future period for the mid-range emissions scenario and 2050s time slice selected.
This pattern is of course based on simulation for a limited number of catchments.
Although catchments with a range of geographical locations, climatological regimes,
catchment characteristics and hydrological behaviours have been selected, changes in
simulated flows in most cases tend to strongly reflect spatial patterns of meteorological

inputs and their changes between the control and future periods.

6.8.3 Comparison to the Future Flows Project

Future Flows SHETRAN for GB
Annual flow +/-20% -24% to +7%
Spring flow -40% -16% to +1%

Summer flow -80% to 4+20% -42% to -12%
Autumn flow -80% to +60% -43% to +5%

Winter flow -20% to +40% -22% to +17%

Table 6.6: Summary table comparing the change in flows from the Future Flows Project and
this study.

So far, national scale climate change impact analyses have not used the weather gen-
erator to derive meteorological inputs for hydrological modelling. As such, direct com-
parisons with other studies are not possible at present. However, some elementary and
general comparison with other national scale studies can be made. |Prudhomme et al.

(2013)) and |Christierson et al.| (2012)) both conduct national scale impact assessments for
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different time slices using different methods. (Christierson et al.| (2012) examine change
in flows for the 2020s using the UKCP09 probabilistic changes in conjunction with the
PDM model and Catchmod. The results of this study show a trend of decreased annual
flows of up to 30% in the south of England. The Future Flows project Prudhomme
et al| (2013) uses 11 ensemble members of the Future Flows Climate projections to
derive change factors for meteorological inputs to the CERF generalised rainfall runoff
model for the 2050s time slice. The main results of the Future Flows project and this
work have been sumarised in Table [6.6] Mean annual flows were seen to change in a
range of around +/-20 %. For about half of the scenarios, small increases in flow are
observed, mainly in the south and east, although the majority of the scenarios show
a reduction of mean annual flow of up to -40% in the west. In Scotland, simulations
suggest limited changes in flow or reductions in mean annual flow. The results pre-
sented in this chapter agree to some extent with these conclusions. Reductions in mean
annual flow in the west are certainly apparent in the results using the SHETRAN for
GB system, but the increases in the south east are not simulated (although clearly only
one catchment in this area has been modelled so far). Scottish catchments also show
comparatively limited overall changes in this study, typically with small decreases apart
from in the case of the Thurso at Halkirk, which exhibits increases in mean annual flow.
The magnitude of changes in annual flows are similar in this study compared with those

described above, with change in annual flows typically in the range -24 to +7%.

Seasonally, the Future Flows Hydrology scenarios show greater reductions in flow across
most of the UK in spring compared with the SHETRAN results. Future Flows Hydrol-
ogy results exhibit decreases in spring flow of up to 40%, whereas SHETRAN shows
decreases in flow of up to 16%. The Future Flows results for summer indicate decreases
throughout the country, although the range of changes is large and spans both positive
and negative changes to flows (from +20% to -80%). The largest decreases according to
the Future Flows results are found in the north and west of Great Britain. SHETRAN
also shows consistent decreases in summer flows of up to 42% across the country, with
the largest decreases found in the west but not necessarily in the north. Changes in
autumn river flow according to the Future Flows project are dominated by reductions
in flow in most cases, but there is a mixed pattern spatially, with percentage changes
ranging from +60% to -80%. In contrast, SHETRAN shows a much clearer picture
of very large reduction in flows in the south of England (of up to 43%) that become
less severe in the north, with a small increase in flows in the northernmost catchment.
The Future Flows study shows changes in winter flow to be mixed with drier, similar
or wetter signals within a -20% to +40% range. SHETRAN results for the selected
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catchments mainly show limited changes or modest increases in winter flows, with the
exception of a notable reduction in flow in the future period for the Witham at Claypole
Mill.

The results of the present study and Future Flows thus appear to be similar in overall
terms, although it is hard to be definitive here, as the use of 11 RCM ensemble mem-
bers in the Future Flows project produced a very mixed pattern of future changes in
terms of magnitude, direction and spatial patterns. This comparison is also compli-
cated by the different approaches to deriving input scenarios between the two projects.
The Future Flows project uses the 11 RCM simulations from the HadRM3-PPE-UK
ensemble directly to derive model inputs, after bias correction and downscaling from
25km to 1km resolution. In contrast, the UKCP09 projections only use these RCM
runs to downscale a much greater number of GCM simulations (280). Various sources
of uncertainty are then incorporated in the UKCP09 projections through a Bayesian
framework and timescaling procedure, which is used to derive probabilistic projections
(Murphy et al. 2009). UKCP09 is therefore a more comprehensive way of simulating
future projections and, as probabilities are assigned, directions of change are more ap-
parent. In addition, without using the same meteorological driving data, it is difficult
to fully assess how the different hydrological model structures applied in Future Flows
compare with SHETRAN as a basis for assessing climate change impacts. It is uncer-
tain whether or not the calibrated parameters used in conceptual models are robust
in the cases of notable shifts in future rates of PET and rainfall, in which case using
a physically-based hydrological model may provide more robustness. However, further
investigation of this issue is required, perhaps through direct comparison of SHETRAN

and the models used in the Future Flows project.
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Chapter 7

Improving the representation of

geology

7.1 The need for proper representation of geology

in hydrological models

A national physically based hydrological model for Great Britain has been set up and
demonstrated to perform reasonably in terms of simulating streamflow hydrographs,
flow regimes and catchment hydrographs across a range of basin types. However, as-
sessment of the standard configuration described in Chapter 5 shows that catchments
in which a significant proportion of streamflow is derived from groundwater are not
consistently well modelled. As SHETRAN is a coupled surface-subsurface model that
has been applied successfully to model regions with notable groundwater interaction
previously (Adams and Parkin| (2002)), Parkin et al.| (2007)), Koo and O’Connell (2006)),
it seems reasonable to expect that better performance could be attained in catchments
where groundwater influences are significant. Starting with the premise that the vari-
ably saturated subsurface flow descriptions in SHETRAN are appropriate for modelling
these catchments in principal, the causes of comparatively poor performance in some

catchments could be more likely to be related to model inputs and parameters.

As discussed in Chapter 3, the model setup has been based on freely available datasets
with full coverage of Great Britain. With respect to representation of the subsurface,

the following limitations are associated with this approach:

— A single bedrock layer

— Bedrock has a uniform thickness of 20m
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— Spatial distribution of hydraulic properties assigned according to the BGS hy-
drogeology map. This map has only 4 categories of aquifer: high productivity,

moderate productivity, low productivity and no groundwater

— Hydraulic properties assigned from previous modelling experience, not from mea-

surements or the literature

— No representation of any kind of geological complexity, including stratigraphy,

lenses, faults etc.
— Surface extent of geological units does not reflect subsurface extent

— No representation of superficial deposits.

This chapter investigates the possibility of overcoming some of the limitations of the
initial approach with respect to defining the layer structure and properties of the sub-
surface in the national modelling system. In particular, a high quality 3D geological
model covering much of GB recently developed by the British Geological Survey (BGS)
(Mathers et al, |2014) is examined and incorporated into SHETRAN, in order to begin
the process of implementing a more accurate description of the subsurface and testing
the implications for model performance. This novel integration of geological and hydro-
logical models could yield significant benefits in the future, for example in integrated
flood and water resources management. The discussion below introduces the geological
model and how it has been coupled with the national SHETRAN modelling system,

before analysing results of initial simulations of the integrated system.

This chapter firstly discusses the datasets available for incorporation into SHETRAN for
GB to improve the representation of geology in the modelling system and the processing
undertaken to achieve this. A set of sensitivity tests using various combinations of these

datasets are then outlined and the results are discussed.

7.2 The BGS 3D geology model

The 3D geological model of Great Britain developed by the BGS was created by first
constructing a series of geological cross-sections covering the whole country (Mathers
et al., 2014)). Each cross section was created in the geological modelling software GSI 3D
(Kessler et all |2009), based on existing map cross sections which in turn were based on
seismic data and borehole information as well as the national 2 dimensional geological
map (Mathers et al.| [2012). 121 cross-sections were constructed, with a total length

of over 20000 kilometres, and the depth of the cross-sections varies between 1.5 and 6
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Figure 7.1: BGS fence diagram on which the 3D geological model is based.

kilometres. The cross-sections were then brought together to form a fence diagram of
the whole of Great Britain (see Figure . This fence diagram was then interpolated
to produce a three-dimensional static model of the geology (Watson et al., 2015]).

This geological model provides a significant advance over the data used in the stan-
dard SHETRAN model configuration, for which the only information available on a
national scale at the time of configuration was the 2D national geological map, which
does not give any indication of layer depth or the order of layers of different strata in
the subsurface. However, there are some limitations associated with the BGS 3D geo-
logical model to note. Most importantly, no hydraulic parameters are associated with
this model and so parameters had to be assigned from previous modelling experience.
Secondly, at present the model only comprises the major geological units and not the
finer detail of areas. Faults are not individual objects in this model; they are simply
shown by a break or offset in the geological units, although future versions of the fence
diagram will support a more flexible representation of faults. In addition, thicknesses
and layers of superficial deposits are not included within the 3D geological model, but
they are available as separate map layers from the BGS resulting in potentially incon-
sistent thicknesses. The digital elevation model used is consistent with that used in
SHETRAN for GB but due to different resampling methods used in SHETRAN for GB
and the BGS data, the elevations at a given point may vary. Geology for this model

also does not cover the whole country, as the 3D model was calculated from the base

203



Permian rocks upwards, while in some sections false horizontal bases were created to
limit the model extent vertically. Furthermore, there has not yet been a full uncertainty
study undertaken to assess the model; it should be noted that each cross-section has
been interpolated only once by one of several experts and so the lines of these sections
are very much interpreted. Cross-section lines could be drawn in various positions so
that the final structure represents one of many possible realisations, and the model does
not reflect the density of hard information used such as borehole logs and geophysical
surveys. It is therefore difficult to tell how many boreholes have been used to construct

each cross-section and thus in which locations data may be dense or sparse.

7.3 BGS superficial deposits data

12 |-

10

Sand

Rock
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Limestone

Gravel

Parent material type
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Figure 7.2: Map of simplified parent material data.

Superficial deposit information would be a useful addition to the SHETRAN for GB

modelling system. The datasets available for use in this project are the BGS Par-
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Figure 7.3: Map of superficial deposits thickness.

ent Materials Map (Lawley, 2009) and the The National Superficial Deposit Thickness
Model (Lawley and Garcia-Bajol 2009). The distribution of superficial deposit types

was taken from the Parent Materials map. A parent material is defined as a geo-
logical deposit from which a soil develops; it is the closest geological deposit to the
ground surface and therefore this map only provides information about the top layer
of superficial deposits and not any deeper layers overlying bedrock. The soil Parent
Materials map is derived from the BGS 1:50000 scale geological map of Great Britain,
with extra information taken from the BGS rock classification scheme volumes 1 to 4
(Gillespie and Styles| (1999), Robertson, (1999), Hallsworth and Knox] (1999)), McMillan|
and Powell (1999)). The map indicates the most likely parent material type for a given

grid square, i.e. the parent material most likely to be encountered at that location if
the overlying soil were removed. The map was provided as a shapefile containing 319
different parent material types. Unfortunately none of these parent material types are

currently associated with any assigned parameters suitable for a hydrological model,
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Parent material saturated water content residual water content saturated conductivity alpha n

Chalk 0.3 0.2 0.1 0.1 5
Clay 0.3 0.2 0.001 0.1 5
Gravel 0.3 0.2 0.01 0.1 5
Limestone 0.3 0.2 0.1 0.1 5
Peat 0.766 0.01 8 0.013 1.2039
Rock 0.3 0.2 0.001 0.1 5
Sand 0.403 0.025 60 0.0383 1.3774

Table 7.1: Properties assigned to the parent material types.

and so insufficient information was available to justify retaining such a large number of
separate material types. The categories were therefore simplified to 7 different parent
material types outlined in Table [7.1, with initial parameters assigned on the basis of

previous modelling experience.

The Advanced Superficial Thickness Model (ASTM) of superficial deposit thickness
was chosen to provide depths of the superficial deposits. This model indirectly uses
borehole data and map information and a digital elevation model, interpolated using the
Natural Neighbour method (Sibson, |1981)) to create a smooth national dataset of deposit
thicknesses. While the interface between soil and parent material can be either be sharp
or a continuum, for the purposes of this project the soil layer from the European soil
database map was taken to have a clear boundary at the base specified. The thickness
of the superficial deposits was then determined from the superficial deposit map minus
the thickness of the soil. The data was provided as a 50m ASCII grid and was resampled
to 1 kilometre grid size to be consistent with SHETRAN for GB.

7.4 EA Transmissivity data

The hydraulic properties of the chalk are known to vary significantly in space, which
has a very large influence on groundwater flow patterns and interactions with surface
water drainage systems (MacDonald and Allen) [2001). Currently no national map or
gridded datasets are available that describe this spatial variation, such that a substi-
tute was sought in the form of the transmissivity distributions utilised in the Envi-
ronment Agency’s regional MODFLOW groundwater models of chalk areas (Shepley
et al., 2012)). The transmissivity distributions in these models are the result of bringing
together available data from pumping tests reported in the Aquifer Properties Man-
ual (MacDonald and Allen, 2001) and other sources, as well as expert judgement of

leading hydrogeologists. While some degree of calibration of transmissivity has been
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Figure 7.4: Map of transmissivity values from the regional FA groundwater models.

undertaken to provide robust results in the modflow models, the original data has been

closely respected (Shepley et al., 2012).

The maps of transmissivity made available by the Environment Agency required conver-
sion to hydraulic conductivity and some additional processing for input to SHETRAN.
The first step in this was to resample the transmissivity maps to a one kilometre grid
square in line with the resolution used in this study. Then, as each of the regional
groundwater models contains several MODFLOW layers to represent chalk strata that
each have an associated transmissivity, the total transmissivity for each grid square
was calculated by adding together the maps for each chalk layer. The total thickness
of the chalk for each grid square was then calculated on the basis of the 3D geological
model layers and the transmissivity was divided by this thickness to give an approxi-
mate hydraulic conductivity for the chalk as a whole. As no water table elevation data
was available to determine the typical saturated thickness of the chalk, it was necessary

to calculate hydraulic conductivity in this simplified way. This approach is therefore
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clearly approximate and does not account for the widely observed decrease of hydraulic
conductivity with depth (Shepley et al., 2012)), but as a first step in representing lateral
variation in chalk hydraulic properties it is considered useful. An obvious next step and
further work would therefore be investigating different simple conceptual models of the
chalk, such as decreasing conductivity with depth or having a band of high conductivity
near the top of the chalk.

Although the Environment Agency has groundwater models for all of the principal
aquifers in the country, the focus of this chapter is to improve particularly the perfor-

mance of the chalk catchments, therefore this was the only data obtained and tested.

7.5 Incorporation of information and modifications

to SHETRAN- new software

The text file output from GSI3D is organised by geological layers, beginning with the
top rock layer (as specified in a separate Generalised Vertical Section (GVS) file) and
providing coordinates of each 1km grid square and the elevation (in metres above sea
level) of the base of that layer. Information for all underlying layers is then presented
sequentially. The surface elevations from the DEM can also be extracted in this way.
A number of processing steps were required to integrate the BGS 3D geological model
output in this format into SHETRAN, which requires the user to specify the subsurface
(including soils) as columns, one per grid square. These columns are recorded in a
SHETRAN library file, which contains the equivalent of the GVS file but with hydraulic
parameters specified in addition to the depth and type of each layer in each of the
columns. The locations of each column are recorded in an ASCII map provided as
input to SHETRAN.

The conversion process has been automated by a Python script that requires the GSI3D
output file, a GVS file with hydraulic parameters and an existing soil map to create
input for SHETRAN. An alternative approach could be to output all of the required
data from GSI directly, but the limitation of this method would be poor representation
of soils, which are difficult to incorporate properly in the geological model due to
their relative thinness. Instead, soil data from the European Soils Database outlined
in Chapter 3 are incorporated in the subsurface description for each column by first
removing the top part of the uppermost layer of geology according to the soil thickness.
The required soil type is then inserted and the total thickness of rock reduced relative to

the GSI3D output by a thickness corresponding to the depth of soil. When superficial
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deposits are included, the thickness and type of deposit are read in from the national
superficial deposits maps first and the corresponding thickness is removed from the
top of the bedrock, allowing the superficial deposits to be inserted. The soil is then
added by removing the required depth of superficial deposits and replacing this with
the required soil types.

Modifications to SHETRAN were made to allow it to simulate deep aquifers (up to
360m) and utilise up to 20 different layers in the subsurface column. The structure
of the library file was reformatted to resemble the GVS file more, so that layer types
and properties are now detailed at the top and the column structures are described
below. This has the advantage of producing tidier library files, in which the hydraulic
properties of a given layer can be changed once instead of every time it appears in a

column. These modifications were incorporated in a new, 64-bit version of SHETRAN.

It should be noted that the BGS geological model only contains information on the
structure and stratigraphy of subsurface formations, not the hydraulic properties asso-
ciated with different geological layers. The specification of parameters needed in hy-
drological or hydrogeological simulations is therefore an additional task. The approach
taken to specifying these parameters is described below for each of the sensitivity tests
undertaken, from which it became apparent that further work on estimating subsurface
properties is required to profit most from the more accurate structural geology added
into the SHETRAN modelling system.

7.6 Different model structures

A series of sensitivity tests with respect to subsurface representation were conducted
on the basis of available data, including the 3D geological model described above. The
tests examined increases in complexity from retaining a 20m thick aquifer from the
standard run described in Chapter 5, through to full 3D representation of geology

including superficial deposits.

Figure shows the different sensitivity tests examined in this chapter. Test 1 is the
standard run of SHETRAN for GB described in Chapters 3 and 5, in which geology
below the soil layer is simulated as a 20m aquifer assigned one of four aquifer types
that reflect hydrogeological productivity in general terms. This test forms the reference
against which other changes to geology in SHETRAN are compared. Test 2 retains the
20m aquifer thickness, but instead of using four general aquifer types, this test incor-

porates transmissivity parameters for the chalk only, taken from the Aquifer Properties
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Figure 7.5: Schematic of different sensitivity tests explored in this chapter.

Manual (MacDonald and Allen) [2001). Test 3 adopts a different approach by imple-
menting the BGS 3D geology model, while Test 4 extends this using the 3D geological

model but additionally applying transmissivity values from EA regional groundwater
models in chalk areas. Test 5 is based on Test 3, but additionally incorporates infor-

mation about superficial deposits overlying the solid geology.

The analysis has been conducted only for catchments that experience a change in their
setup relative to the standard run and so the standard run statistics vary from test to
test.

7.6.1 Simple BGS hydrogeology map

Aquifer type saturated water content residual water content saturated conductivity alpha n
Highly Productive Aquifer 0.3 0.2 0.1 0.01 5
Moderately Productive Aquifer 0.3 0.2 0.01 0.01 5
Low Productivity Aquifer 0.3 0.2 0.001 0.01 5
No Groundwater 0.3 0.2 0.0001 0.01 5

Table 7.2: Properties assigned to the simple geology types.

The model was initially set up with a uniform 20m thickness of bedrock classified as

highly productive aquifer, moderately productive aquifer, low productivity aquifer and
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Figure 7.6: BGS hydrogeology map.

no groundwater according to the BGS hydrogeology map (see Figure . Properties
were assigned to each of these categories on the basis of properties used for each type
of aquifer in previous work and therefore considered relatively standard for SHETRAN
(Birkinshaw], [2011]). These properties are summarised in Table [7.2] The results from
applying this configuration have already been discussed in Chapter 5 and are not re-
peated in detail here. However, it is worth noting again that reasonable results were
produced across much of the country with the notable exception of catchments un-
derlain by major chalk aquifers. This forms the benchmark against which subsequent

sensitivity tests are evaluated.

7.6.2 Aquifer Properties Manual parameters

One of the clear simplifications in the standard run (corresponding to the initial test in
this chapter) is that parameters are applied uniformly across the large chalk regions,

which is not really consistent with the highly heterogeneous nature of the chalk and
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Figure 7.7: Map showing saturated conductivity (m/day) values with chalk divisions from the
Aquifer Properties Manual.

the known patterns of spatial variation in transmissivity that span several orders of
magnitude (Shepley et al., [2012). The most comprehensive source of information on
the hydraulic properties of the chalk is the Aquifer Properties Manual (MacDonald and
Allen) 2001)). This manual represents the culmination of significant efforts to compile
diverse data from pumping tests and laboratory experimentation, which is analysed
and used to provide regional characterisations of the chalk (and other) aquifers across
the UK. The sub-regional differences in chalk transmissivity reported in the Aquifer
Properties Manual were therefore utilised to create hydraulic property maps for input
to SHETRAN that show more spatial differentiation than used in the initial approach
(see Figure compared to Figure and Table compared to . This represents
a likely improvement in the quality of information provided to SHETRAN compared
with the standard run, but the properties of the chalk are known to vary over signif-

icantly smaller scales. As such, this run is intended to evaluate whether performance
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Geology code

Aquifer type

Saturated conductivity (m/day)

1 Highly productive aquifer through pores 0.1

2 Highly productive aquifer through cracks 40

3 Moderately productive aquifer through pores 0.01
4 Moderately productive aquifer through cracks 0.01
5 Low productivity aquifer through pores 0.001
6 Low productivity aquifer through cracks 0.001
7 No groundwater 0.0001
8 Highly productive aquifer through cracks 62.5
9 Highly productive aquifer through cracks 82
10 Highly productive aquifer through cracks 50

11 Highly productive aquifer through cracks 12.5
12 Highly productive aquifer through cracks 39
13 Highly productive aquifer through cracks 15.75
14 Highly productive aquifer through cracks 40
15 Highly productive aquifer through cracks 20

16 Highly productive aquifer through cracks 29
17 Highly productive aquifer through cracks 43
18 Highly productive aquifer through cracks 41.5
19 Highly productive aquifer through cracks 11.5
20 Highly productive aquifer through cracks 33.5
21 Highly productive aquifer through cracks 80
22 Highly productive aquifer through cracks 130
23 Highly productive aquifer through cracks 22
24 Highly productive aquifer through cracks 49.25

Table 7.3: Saturated conductivity properties from the Aquifer Properties Manual.

begins to improve through the use of readily available data from the Aquifer Proper-
ties Manual, rather than whether very accurate simulations can be obtained with this

specific distribution of chalk transmissivity.

71 catchments were affected by inclusion of hydraulic properties from the Aquifer Prop-
erties Manual. Relative to the standard run, the mean change in NSE across these
catchments is an increase of 2.45, with 52% of catchments improving with respect to
NSE scores. This overall increase in NSE conceals some interesting variation between
catchments, however. Notably, 27 of the catchments that had properties changed as
a result of including data from the APM already had an NSE of greater than 0.5 in
the standard run, but several of these catchments actually worsened using the new
properties (see Figure . Conversely, a number of the catchments that originally
performed worst experience improvements with use of data from the Aquifer Proper-
ties Manual. This can be seen in the change in the quartiles and median of the NSE
distribution shown in Table [7.4] with the 25th and 50th percentiles increasing while
the 75th percentile decreases. This reflects the fact that catchments with initially good
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Figure 7.8: Change in NSE from standard to APM parameters.

performance were predominantly flashier with only a small area of highly productive
aquifer or extensive cover by impervious superficial deposits such as clay, which are not
represented in the model structure in this test. It is therefore consistent with expecta-
tions that increasing hydraulic conductivity to the levels apparent in major, unconfined

chalk aquifers decreases the performance of the model in certain catchments.

However, rather than attempting to improve already well-simulated catchments, the
main aim of changing the hydraulic conductivity parameters of the chalk in this way
was to see if the characteristic response of chalk catchments - of high baseflow and
relatively slowly-varying flow variation - could be reproduced by the model through a
simple improvement in initially poorly simulated catchments. This was achieved for the
worst performing catchments, as can be seen in the example of the Allen at Walford
Mill. From comparing Figure |[7.9] with Figure [7.10| it can be seen that substantial
gains in the accuracy of simulation were made. Nevertheless, whilst NSE improves for

catchments such as this one through dramatically reducing peak flows relative to the
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Figure 7.9: Allen at Walford Mill hydrograph for the standard simulation.

standard run, the water balance of the catchments does not necessarily improve, as the
quantity of flow is still not correct in all cases. This explains the fact that the water
balance bias and mmfd statistics in Table [7.4] do not show significant improvement. In
some cases the performance statistics are of limited explanatory power in determining
overall improvements in performance or are somewhat contradictory. For example, the
Mimram at Panshanger Park shows the largest increase in water balance bias, but the
shape of the hydrograph has improved greatly, which is reflected in an improved NSE
score from -22.34 to -7.91.

The main conclusion from this test is that hydraulic properties derived from the Aquifer
Properties Manual can be useful in improving the modelling system, particularly if used
in conjunction with an accurate 3D geological model of the subsurface incorporating
superficial deposits. The absence of such a detailed subsurface model in this test is
likely to explain the variation in degree of improvement between catchments, which
highlights how it is important to correctly simulate regional groundwater flow patterns

in catchments with major aquifers, even at a relatively coarse scale.
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Figure 7.10: Allen at Walford Mill for the APM simulation.

7.6.3 3D geology

The results of the first tests presented above appear to indicate that more detailed and
accurate representations of subsurface structure could be desirable. As such, the BGS
3D model of solid geology was incorporated into the national SHETRAN modelling sys-
tem, as described in section above. In the first instance this was conducted without
adding in superficial deposits, which forms a separate test reported shortly. In many
catchments across the UK where underlying bedrock has low hydraulic conductivity
and storage coefficients, incorporating the 3D geological model is not expected to make
a significant difference, as groundwater flow and storage is intrinsically limited in these
geological formations. Of more interest are catchments overlying major aquifers, such
as chalk and sandstone for example, where subsurface transmissivity can vary signifi-
cantly as a result of heterogeneity in aquifer thickness as well as hydraulic conductivity.
The parameters ascribed to each new lithology were based upon the hydrogeology code
associated with each layer, which were consistent with the original hydrolgeology types
used in the standard run. Therefore the parameter values applied to each lithology in

the 3D model are drawn from the values associated with those codes in the standard
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Metric Statistic Standard APM

NSE Mean NSE Change - 2.45
% Improved - 52.1
Median -0.05 0.23
Change in Median - 0.28
25th Percentile -3.15 -0.72
75th Percentile 0.63 0.46
% Band 1 11.3 0.0
% Band 2 18.3 9.3
% Band 3 70.4 90.7

‘Water Balance % Improved - 21.1
Median 16.1 22.3
Change in Median - 6.2
25th Percentile 0.7 -12.4
75th Percentile 53.5 84.3
% Band 1 28.2 14.7
% Band 2 21.1 21.3
% Band 3 50.7 64.0

mmfd % Improved - 32.4
Median 87.6 101.1
Change in Median - 13.5
25th Percentile 55.8 53.7
75th Percentile 150.6 191.4
% Band 1 5.6 0.0
% Band 2 8.5 14.7
% Band 3 85.9 85.3

Table 7.4: Results from including APM values.

run (see Table [7.5)).

Incorporating the BGS 3D geological model results in changes to the subsurface repre-
sentation of 158 catchments, rather than the 306 modelled in the standard run. This is
because the 3D structural geology was only derived to the base of the Permian period,
which excludes all of the catchments in Scotland. For the 158 catchments in which
revised geology is applied, it can be seen from Table that the mean change in NSE
relative to the standard run is positive, showing that on average catchments are im-
proving. The percent of catchments with higher NSE following the incorporation of
3D geology is 60%. However, the median NSE remains the same at 0.67. The 25th
percentile of the NSE distribution increases notably from 0.08 to 0.3, while the 75th
percentile increases only marginally from 0.77 to 0.79, which indicates that the majority
of improvement is seen in catchments that performed poorly in the standard run. This
point is reinforced by the change in percent of catchments in NSE bands. With the 3D

geological model incorporated, the percentage of catchments in bands 2 and 3 decrease
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Name saturated water content residual water content saturated conductivity alpha n

CRAG-PESA 0.3 0.2 0.01 0.1 5
SOLT-CLSISA 0.3 0.2 0.001 0.1 5
BRBA-SSCL 0.3 0.2 0.01 0.1 5
EOMIO-CLSSG 0.3 0.2 0.01 0.1 5
THAM-CLSSG 0.3 0.2 0.0001 0.1 5
LMBE-CLSSG 0.3 0.2 0.001 0.1 5
TAB-SSCL 0.3 0.2 0.01 0.1 5
WHCK-CHLK 0.3 0.2 0.1 0.1 5
GYCK-CHLK 0.3 0.2 0.1 0.1 5
GUGS-MDSL 0.3 0.2 0.0001 0.1 5
LGS-STMD 0.3 0.2 0.1 0.1 5
‘W-MDSS 0.3 0.2 0.0001 0.1 5
PB-LSMD 0.3 0.2 0.01 0.1 5
LOCR-SSML 0.3 0.2 0.01 0.1 5
WWAK-MDSS 0.3 0.2 0.0001 0.1 5
KLOX-MDSS 0.3 0.2 0.0001 0.1 5
IOGO-SLAR 0.3 0.2 0.01 0.1 5
RAG-SDSM 0.3 0.2 0.01 0.1 5
LI-MSLS 0.3 0.2 0.0001 0.1 5
MMG-MDSS 0.3 0.2 0.001 0.1 5
SSG-SDSM 0.3 0.2 0.1 0.1 5
ZG-DLDO 0.3 0.2 0.1 0.1 5
CCO-MDSS-2 0.3 0.2 0.0001 0.1 5
APY-SCON 0.3 0.2 0.01 0.1 5
PUND-MDSS 0.3 0.2 0.0001 0.1 5
PUND-SCON 0.3 0.2 0.1 0.1 5
No Groundwater 0.3 0.2 0.0001 0.1 5
Low Productivity Aquifer 0.3 0.2 0.001 0.1 5
Moderately Productive Aquifer 0.3 0.2 0.01 0.1 5
Highly Productive Aquifer 0.3 0.2 0.1 0.1 5

Table 7.5: Properties assigned to the 3D geology model.

slightly, by 1.5% and 2.2% respectively, while the percentage in band 1 increases by
3.7%.

Figure shows the difference in NSE between the standard run and the run including
3D geology. From this figure it is apparent that the biggest increases in NSE are located
in chalk regions. Interestingly, however, the largest decreases in NSE between the two
runs are also located in the chalk catchments. Figure confirms that, while there are
increases in NSE in a number of locations, the chalk catchments still perform relatively
poorly overall. As there is a good degree of confidence in the thickness and structure of
the solid geology applied, one of the most likely reasons for poor NSE scores is inaccurate
hydraulic property parameters leading to unrealisitic transmissivities. Furthermore, as

this run does not include superficial deposits, their critical role in modulating runoff
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Metric Statistic Standard 3D geology

NSE Mean NSE Change - 0.44
% Improved - 58.9
Median 0.67 0.67
Change in Median - 0.00
25th Percentile 0.08 0.30
75th Percentile 0.77 0.79
% Band 1 19.6 23.3
% Band 2 38.6 37.1
% Band 3 41.8 39.6

Water Balance % Improved - 41.1
Median 7.2 7.3
Change in Median - 0.1
25th Percentile -1.2 -3.7
75th Percentile 22.7 25.5
% Band 1 45.6 40.9
% Band 2 22.8 23.9
% Band 3 31.6 35.2

mmfd % Improved - 50.0
Median 48.7 47.4
Change in Median - -1.3
25th Percentile 31.6 29.7
75th Percentile 82.0 94.1
% Band 1 9.5 8.8
% Band 2 29.7 32.7
% Band 3 60.8 58.5

Table 7.6: Results from including 3D geology.

processes is not simulated. Additional investigation of both of these issues is required.

When looking at the results of including the 3D geological model in terms of water
balance bias, only 41% of catchments improved (Table . The median water balance
bias remains the same, but the spread of biases widens slightly according to the in-
terquartile range, from -1.2 to -3.7 at the lower end and from 22.7 to 25.5 at the upper
end. The percentage of catchments in band 1 decreases by 5%, with resultant increases
in the number of catchments in bands reflecting higher water balance biases. There is

little change in mmfd overall.

While the results of the first trial of incorporating the 3D geological model are variable,
the approach does appear to show significant potential. One example of this is the
Mimram at Panshanger Park, which shows some of the largest improvements result-
ing from the addition of 3D geology (Figure . This catchment in the south-east of
England is primarily underlain by unconfined chalk. Higher NSE is apparent in the run
using the 3D geological model (-10.7) compared with the standard run (-22.3), as peak
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Figure 7.11: Map of NSE change from the standard to GSI simulations (where d is change
in NSE).

flows decrease as a result of increased storage in the thicker chalk and a higher propor-
tion of runoff deriving from the slower saturated subsurface flow pathway. However,
Figure[7.13]indicates that the shape of the simulated hydrograph is still not completely
consistent with observations, as it remains too peaky. This indicates that, whilst in-
creasing storage by increasing the thickness of the aquifer helps, this approach by itself
is not sufficient for accurate simulation of chalk catchments, as appropriate estimates
of hydraulic parameters are still required. For chalk catchments, spatial patterns of
variation in hydraulic properties need to be accounted for, which includes both areal
and vertical heterogeneity, particularly in terms of the differences between interfluve
and valley areas, as well as variations (typically decreases) in hydraulic conductivity
with depth (MacDonald and Allen) 2001)).

This run forms an initial attempt at incorporating the most realisitic information avail-

able with regards the subsurface in the form of the BGS 3D geological model. This
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Figure 7.12: NSE of the GSI simulations.

integration has not been carried out before, and it is clear that significant further work
is required in order to achieve good representations across all catchment types. Fortu-
nately a methodology and work flow is now in place for further experimentation, which
will allow refinements to the geological model and hydraulic properties to be incorpo-
rated. Two further tests have been conducted on the basis of this methodology, which

are discussed in turn below, with further work anticipated for the future.

7.6.4 Inclusion of MODFLOW T

Of the catchments that have been modelled in this study, only 24 overlap with the
data from EA regional chalk groundwater models available for this study, such that
the impact of including parameters applied in the MODFLOW models could only be
examined for a small number of catchments. The method for deriving hydraulic conduc-

tivity inputs for SHETRAN from these transmissivity distributions is explained above
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Figure 7.13: Hydrograph of the Mimran at Panshanger Park showing the observations (blue),

standard simulation (green) and simulation with 3D geology (red). The NSE improves from
-22.83 to -10.7.

in section [7.5 It is important to note that the data from EA models has been used in
conjunction with the 3D geological model representation of the subsurface but without
the incorporation of superficial deposits to test only the impact of including measured
transmissivity values. As no superficial deposits are included the largest improvements
are expected to be seen in catchments where there is no significant influence from su-
perficial deposits, however, all of the catchments affected in this test are influenced by

superficial deposits and so there is no way of testing this hypothesis.

With a much smaller sample size (24) for analysing the results of this test relative to
the standard run, the changes to the model performance statistics in relative terms
are larger than those calculated for previous tests. On average, NSE increases by 1.37
across the catchments analysed, with 58% of catchments showing an improvment in
NSE when incorporating chalk transmissivity values and distributions from the EA
groundwater models Table [7.7, The median NSE increased from 0.54 in the standard
run to 0.60, and both the 25th percentile and 75th percentile NSE values increased
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Metric Statistic Standard 3D + EA T

NSE Mean NSE Change - 1.37
% Improved - 58.3
Median 0.54 0.60
Change in Median - 0.05
25th Percentile -0.59 -0.07
75th Percentile 0.72 0.78
% Band 1 16.7 12.5
% Band 2 16.7 37.5
% Band 3 66.7 50.0

Water Balance % Improved - 41.7
Median 20.1 25.5
Change in Median - 5.4
25th Percentile 2.9 4.6
75th Percentile 37.3 77.4
% Band 1 29.2 12.5
% Band 2 16.7 20.8
% Band 3 54.2 66.7

mmfd % Improved - 45.8
Median 69.7 95.1
Change in Median - 25.4
25th Percentile 59.0 50.8
75th Percentile 112.9 178.7
% Band 1 8.3 0.0
% Band 2 4.2 16.7
% Band 3 87.5 83.3

Table 7.7: Results from including T values from the EA regional groundwater models.

from -0.59 to -0.07 and 0.72 to 0.78 respectively, reflecting a general improvement in
NSE. However, it should be noted that the percentage of catchments with band 1 NSE
classifications decreases, as does the percentage of catchments with band 3 NSE scores,
which indicates that the some of the initially best-performing catchments worsen and

some of the worst improve.

Figure shows the change in NSE relative to the standard run that comes from using
a more detailed description of 3D geology and EA groundwater model transmissivity
values. There is no simple geographical pattern to the results immediately apparent
from this figure, with neighbouring catchments subject to NSE changes in opposing
directions in some cases, as can be seen in the East Yorkshire chalk area for example.
There are no clear explanations as to why this is the case. There are complex patterns
of superficial deposits over most catchments (as described in the National River Flow
Archive), there are certainly issues relating to averaging transmissivity uniformly over

depth and also with running models of groundwater catchments to only their surface
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Figure 7.14: NSE change due to T values from the EA regional groundwater models.

water extents.

Figures [7.15| and show an example of the improvement that can be obtained from
incorporating into SHETRAN the transmissivity values from the EA groundwater mod-
els with the BGS geological model. This indicates that, while the shape of the hydro-
graph is still not entirely consistent with observations, it is much improved and more

accurately reflects a baseflow-dominated hydrological regime.

Table [7.7] also shows that the water balance bias does not improve with the inclusion
of transmissivity from the EA groundwater models. 42% of catchments show improve-
ments in water balance bias, but there is a general shift in the median and quartiles to
higher biases (albeit with a limited sample size). However, in this test there is a large
change in the mmfd. The median mmfd increases from 70 to 95, which represents a
deterioration in the correspondence of simulated and observed flow regimes. The 25th
percentile of the mmdf distributions decreases whist the 75th increases, indicating that

spread in mmfd increases but that there is not a general shift to poorer mmfd values.
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Figure 7.15: Hydrograph for the Hiz at Arlesey with 3D geology. NSE = -1.31.

Using the EA model T values improves many aspects of the simulated hydrographs
but often in ways that the performance statistics do not capture. Including this data
is clearly not a panacea for correcting groundwater dominated catchment performance
but is certainly a useful data source for conductivity values. These values must be
used in conjunction with other information (superficial deposits, flow pathways, hy-

drostratigraphy etc.) to provide a real improvement.

7.6.5 3D geology and superficial deposits

As described above, the Parent Material map was used as a proxy for superficial deposit
type. One of the main limitations of this dataset is that it does not provide any
stratigraphic information about superficial deposits, i.e. in cases where there could be
some layering. Superficial deposits based on the Parent Material map were combined
with the representations of soil and solid geology based on the BGS 3D model, as
outlined above. As superficial deposits cover much of the country, comparisons between

the standard run and this run (incorporating both 3D solid geology and superficial
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Figure 7.16: Hydrograph for the Hiz at Arlesey with 3D geology and transmissivity values
from the EA groundwater models. NSE = 0.52.

deposits) can be made for 258 catchments. The hydraulic properties of the superficial
deposits can be found in Table

Combining the 3D geology representation with superficial deposits results in a mean
increase in NSE of 0.75 across all catchments. 51% of catchments show improved NSE
with the inclusion of both superficial deposits and 3D geology. Similar to the results
from implementing the 3D geological model alone, the shift in performance seems to be
at the lower end of the NSE distribution, with the 25th percentile increasing from 0.46
to 0.52 whilst the 75th percentile only changes from 0.79 to 0.80 from the standard to
superficial deposit runs respectively. The percentage of catchments in bands 2 and 3 of
NSE decreases from 42.2% to 41.4% for band 2 and from 35.7% to 31.9% whilst band
1 increases from 22.1% to 26.6%.

Figure [7.18] shows that the largest increases in NSE between the standard run and
the run including both 3D geology and superficial deposits are found in regions of
chalk catchments, as well as more generally across England and Wales. Scotland shows

the least number of improved catchments, but still some. This is probably due to a
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Metric Statistic Standard 3D and superficial

NSE Mean NSE Change - 0.75
% Improved - 51.6
Median 0.69 0.70
Change in Median - 0.01
25th Percentile 0.46 0.52
75th Percentile 0.79 0.80
% Band 1 22.1 26.6
% Band 2 42.2 41.4
% Band 3 35.7 31.9

‘Water Balance % Improved - 51.6
Median 4.8 3.5
Change in Median - -1.3
25th Percentile -2.7 -3.7
75th Percentile 17.7 15.0
% Band 1 53.1 50.2
% Band 2 22.9 26.2
% Band 3 24.0 23.6

mmfd % Improved - 51.6
Median 41.0 39.1
Change in Median - -1.9
25th Percentile 27.7 27.7
75th Percentile 70.3 70.9
% Band 1 11.6 12.2
% Band 2 36.8 38.8
% Band 3 51.6 49.0

Table 7.8: Results from including 3D geology and superficial deposits.

variety of factors: the 3D geology, the shallower catchments so that infiltration is more

prominent; the more complex geology and superficial deposit types.

Notably, Table[7.8suggests that the changes in water balance arising from incorporating
improvements to both solid geology and superficial deposits may provide more benefits
than simply using the 3D geology by itself. The water balance bias improves in 52% of
catchments relative to the standard run, with the median bias decreasing slightly (in the
3D geology only run this increases slightly from 7.2 to 7.3). However, when including
3D geology and superficial deposits, the percentage of catchments in band 1 and 3
both decrease slightly relative to the standard run while the number of catchments in
band 2 increases, which suggests that the downward shifts in water balance bias are
not completely convincing, with some of the poorest performing catchments improving
slightly but some of the better ones worsening. The mmfd statistics are very similar for
both runs, which suggests that changes between the tests are general and not seasonally

or percentile specific.

227



@® NSE<0
@ 0<NSE<0.5
O 05<NSE<0.7
O 0.7<NSE<0.8
OOO @ NSE>08
S}
Qo
OO o(gO °
e}
e} LA
®p © 8
OO%G ¢]
Oo. &Pe o
e o
8%0 o °
& %0 o
0(9 @ dO)OOO
® eo
o 0Ce
%’O Q Oeo
8. 8%
g.o ®
S}
° '%)OOOO o
& o 9.0.080 ®
S FE2
e & o @ go
(0) % Q@
0Fe0q @ oog. g&
00 O [ ]
o o O
.~. g @ .. @
0‘3 o, g
0,90 80
s.OQD

Figure 7.17: NSE of superficial deposits test.

The catchments that show the largest improvements in this simulation are due to
the inclusion of the 3D geology rather than the inclusion of superficial deposits. This
suggests that there are some limitations in the degree to which the Parent Material map
used here adequately captures the distribution of superficial deposits across the country;,
although this issue is not necessarily simple to separate from that of difficulties in
estimating the hydraulic properties of these deposits. One example of the limitations of
the data used here for deriving superficial deposits is the case of permeable deposits such
as gravel overlying impermeable bedrock, which was discussed in Chapter 5. Gravel
deposits acting as local or minor aquifers may play a highly important role in catchment
response, for example by increasing baseflow compared with the case where the deposits
were absent. The inclusion of superficial deposits in the model structure should resolve
problems like this, but the national data available at this stage in the form of the Parent
Material map does not seem to represent situations such as this in sufficient detail.

For example, the National River Flow Archive describes the catchment geology of the
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Figure 7.18: Change in NSE to inclusions of superficial deposits.

Lugg at Byton as being 'impermeable formations covered by extensive alluvial gravel
deposits in the valleys’. Yet the Parent Material map shows this area as various types
of mudstone (simplified to 'rock’ for SHETRAN. See Table , giving no indication
of the presence of significant gravel deposits. The Parent Material map is therefore
unlikely to be the ideal choice for this modelling system, and further work is required

to identify or derive a more appropriate solution.

7.7 Conclusions

This chapter has explored the potential for improving a national modelling system
based on SHETRAN through incorporating more detailed information on subsurface
structure and properties than previously available. The tests outlined here indicate that
notable improvements in performance of the modelling system in terms of hydrograph

shape may be obtained by incorporating more realistic stratigraphy and hydraulic prop-
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erties. This is apparent from the test run using hydraulic properties for the chalk from
the Aquifer Properties Manual (MacDonald and Allen, 2001) (1), in which some of the
catchments that performed worst in the standard run improved substantially. Simi-
larly, applying hydraulic conductivity based on transmissivity maps from EA regional
groundwater models leads to some considerable improvements in model performance,
such as the Hiz at Arlesey. It is also the case that some gains in simulation accuracy
were made from utilising more accurate layering and thicknesses of lithological units
from the BGS 3D geological model. In this run 60% of catchments have higher NSE

following incorporation of 3D geology.

However, the importance of accurate data with regards to both geological structure
and hydraulic properties is evident from the way that performance changes across
catchments are mixed in each of these runs. For example, The inclusion of EA trans-
missivity data results in an improvement in NSE in 58% of the catchments tested and
worsen in 42%. This means that for some catchments performance appears to worsen
with inclusion of theoretically more accurate information, which suggests that some
compensating errors may exist in the standard run or that some of the additional in-
formation is not completely accurate. As the BGS geological model is considered to
be a high quality data source - although some further verification is still required -
the implication here is that further work is required to ensure that all of the avail-
able data on hydraulic properties in particular are incorporated into the model, as this
is likely to be critical in improving some of the poorly performing catchments. For
chalk regions, refining hydraulic properties would be likely to mean a better treatment
of the vertical variation in hydraulic conductivity, similar to the MODFLOW-VKD
implementation (Environment Agency, 2003)). It would potentially also be beneficial
to identify which catchments would be better simulated on the basis of groundwater

catchment boundaries rather than surface watersheds.

In addition, the analysis above suggests that the Parent Materials map is unlikely to
form an adequate basis for specifying superficial deposits in the modelling system. This
is demonstrated by the fact that National River Flow Archive descriptors to not match
up with the Parent Materials map. Instead, a 3D model of superficial deposits could
potentially be of significant value when combined with the BGS solid geology model, but
again the effectiveness of this approach would be limited by the quality of hydraulic
property information that could be applied. However, given the extensive areas of
superficial deposits overlying many regions of the UK, rectifying their representation in
the SHETRAN modelling system could bring substantial improvements in simulation

of overall catchment flow regimes.
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The work carried out to couple the BGS 3D geological model with a national SHETRAN
modelling system opens up the possibility for further improving parameter values and
the representation of superficial deposits. Simultaneously simulating large numbers of
catchments and assessing the effects of different refinements is now relatively straight-
forward as a result of the system developed in this research, although additional work
on metrics to assess model performance is desirable to overcome some of the limitations
of different skill scores so clear from the analysis in this chapter. Further refinements for
regions with significant aquifers should also be carried out collaboratively by geologists,
hydrogeologists and hydrological modellers to ensure that the highest quality data and

experience are brought to bear on the modelling system.
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Chapter 8

Conclusion

8.1 Summary of results

The preceding chapters have presented the development and analysis of a robust, multi-
purpose hydrological model for Great Britain. This physically-based modelling system
was created using SHETRAN and national datasets, allowing any catchment - gauged
or ungauged - to be set up in a matter of seconds, a process that could previously
take weeks or even months. This efficient method of model setup is facilitated by a
newly developed and easy-to-use graphical interface. For national scale assessments and
analysis, the modelling system utilises automatic setup scripts and has additionally been
configured to make use of available parallel processing options. This workflow facilitates
for rapid simulation of 306 catchments for multi-year periods using hourly time steps

and relatively high spatial resolution, which could easily be increased if required.

In addition, a new national, gridded hourly rainfall dataset has been produced for input
to the modelling system, in order to explore the effects on model outputs of using more
accurate sub-daily meteorological forcings. The dataset was created for the period 1990
to 2006 by disaggregating the UKCP09 5km gridded daily rainfall dataset using data
from over 1300 hourly rain gauges in conjunction with nearest neighbour interpolation.
Comparing the hourly records with daily rainfall data showed that both datasets are
consistent in timing and amount of rainfall for the majority of gauges, although several
common quality control issues were identified for some rain gauge records. Depending

on the nature of the issues, these records were removed prior to gridding.

Extensive analysis of the performance of the national modelling system and its sensitiv-

ity to several of the most important input datasets and parameters has been conducted.
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The initial run undertaken gave acceptable model performance (NSE>0.5) in the ma-
jority of catchments, with some exceptions located generally in parts of Scotland and
the south-east of England. Structural improvements were then made to the SHETRAN
system to include snow melt processes particularly relevant in upland regions, as well as
better representation of lakes and handling of sinks in the input DEM. These modifica-
tions resulted in clear improvements leading to definition of the standard configuration
of the national SHETRAN modelling system for Great Britain, against which sub-
sequent sensitivity tests and scenario runs are analysed. The standard configuration
produces acceptable results across much of the country where it performs satisfactorily
(NSE>0.5) for 72% of catchments and well (NSE>0.7) for 48%. The major exception
to this level of performance is seen in some catchments in the south of England, par-
ticularly those underlain by significant aquifers and so where hydrological regimes are
highly influenced by subsurface processes and their interaction with surface hydrology.
Some of the limitations of currently available national datasets with respect to captur-
ing important features of local hydrological cycles are also apparent from the sensitivity
analysis, important examples of which include insufficient data on superficial deposits

and artificial influences, such as abstractions or flow regulation.

Comparisons with other UK multi-catchment studies and other national models con-
firm that SHETRAN for GB simulates a large proportion of catchments well and indeed
better than calibrated conceptual models for many of the best modelled catchments.
However, limitations in subsurface representation lead to comparatively poor simula-
tions in catchments with significant groundwater systems. Importantly, the results
presented in this study are from an uncalibrated, physically-based model, whereas the
comparison studies use calibrated models. As such the high level of performance of
SHETRAN for GB is very encouraging.

Sensitivity to the Strickler coefficient representing surface roughness was examined,
as were sensitivities to rainfall and potential evapotranspiration (PET) quantities and
distributions. In tests where relatively small perturbations were applied to the stan-
dard datasets, such as increasing PET by 5% or using an exponential distribution for
sub-daily rainfall, mixed changes in model performance were typically obtained, with
a fairly even split between catchments showing overall improvements and declines in
performance. These tests appear to indicate a degree of robustness in terms of sys-
tem setup and inputs, with variation in catchment performance responses to changes
suggesting little systematic bias and good overall simulation if not necessarily always
locally optimal. This is reflected when larger changes are applied, such as a 20% in-

crease in rainfall or a Strickler coefficient of 5, which leads to large overall decreases in
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model performance. In conjunction with the higher variability of responses arising from
smaller perturbations, this is taken as an indication that generally appropriate param-
eters and input datasets are being used in the system. Furthermore, where the changes
made had a physical basis - particularly using realistic hourly meteorological as inputs
- model performance tended to increase slightly at the national scale. The largest per-
centage of improved catchment simulations resulted from incorporating hourly rainfall
based on the new dataset created during this project, as well as PET disaggregated to
hourly intervals. Improvements were also seen when the AE/PE ratio was increased by
0.1, PET increased by 5% or rainfall decreased by 10%, which reflects the possibility
that calculated PET values may be too low or rainfall slightly too high, although the

latter is not consistent with the expectation of undercatch for a number of raingauges.

Throughout the sensitivity analysis it was generally found that groundwater-dominated
catchments in the south-east of England were not adequately simulated. The reasons
for this were deemed to be largely related to inadequate descriptions of superficial
and solid geology in the standard model datasets, as well as insufficient characterisa-
tions of hydraulic properties and their patterns of spatial variation. For example, the
initial hydrogeological input to the modelling system was a 2D hydrogeological map
that only distinguishes between high, medium and low productivity aquifers, which
does not provide enough data to determine aquifer transmissivity in a meaningful way:.
Possible improvements to the representation of geology in the modelling system were
therefore investigated. In particular, the BGS national 3D geological model, which
accurately characterises stratigraphy and strata thickness to the base of the Permian,
was incorporated into the modelling system to provide a more realistic description of
subsurface structural (solid) geology. The BGS parent materials map showing the type
of deposit from which soils are likely to be derived was additionally incorporated as
a proxy for superficial deposits, although this approach was found to be unsuitable
for appropriate representation of the hydrological role of these deposits. High quality
information on superficial deposits is therefore vital for further improving model real-
ism and performance. In addition, more accurate hydraulic conductivity distributions
were incorporated from both the Aquifer Properties Manual (MacDonald and Allen,
2001) and from EA regional groundwater models, which confirmed that more realistic
parameter values can improve hydrograph shapes if not other deficiencies in simulation
of some catchments. A substantial body of further work is still required to improve
the representation of permeable catchments in the modelling system, with particular
challenges remaining in terms of data for the distribution and properties of superficial

deposits, as well as identifying appropriate hydraulic property parameters and their
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patterns of variation in some key aquifers such as the chalk.

A climate change impact study was also conducted for 20 catchments across the coun-
try to demonstrate how the modelling system could be used for a full national climate
change impact assessment study. In order to facilitate this, code was developed to
apply outputs from the UKCP09 spatial weather generator as inputs to the SHETRAN
modelling system. A medium emissions scenario for the 2050s was chosen as an exem-
plar case. The results from this preliminary investigation suggest that higher projected
PET rates, in combination with modest increases in rainfall, could lead to a general
decrease in mean annual river flows of between -24% to +7% across the country under
this scenario. The largest reductions in mean annual flow are found in the south of
England, while modest increases in flow are found in Scotland, which reflects spatial
variation in the balance between - and expected changes in - rainfall and PET across
Great Britain. Seasonally, SHETRAN shows changes in flow of +1% to -16% in spring,
-12% to -42% in summer, +5% to -43% in autumn and +17% to -22% in winter. Similar
to the case of changes in mean annual flows, there are notable geographical patterns
to these results, with higher flows in the 2050s relative to the baseline typically found
in the west and north of Great Britain, while lower future flows are more common in
the south and east. The results also show that flows typically decrease across all flow
percentiles except for the uppermost (highest) flow percentiles. However, the 10-year
return period flood peak is shown to increase dramatically from -5% to +26% across the
country. Comparison of these results with current projections from the Future Flows
Project (Prudhomme et al.; [2012) shows overall consistency between projections using

two different types of hydrological model.

8.2 Results in the context of important hydrologi-

cal questions

The national, physically-based modelling framework developed in the research has been
applied largely for gauged catchments to date. However, there are a number of ways
in which the work relates to the ongoing issues associated with prediction in ungauged
basins (Sivapalan, [2003; [Hrachowitz et al., |2013). Rather than using some approaches
typically applied to simulating ungauged basins, such as regionalisation on the basis of
catchment characteristics and calibrated parameters for available gauged catchments
(e.g. [Hundecha and Bardossy| (2004))), the focus here has been on testing the sensitiv-

ity of universal parameterisations and datasets. Taking this approach starts to explore
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questions of whether calibration and statistical relationships between catchment prop-
erties and parameters are required for simulating a diverse array of catchments across
Great Britain if a physically-based model is used. The good overall performance ob-
tained for the majority of catchments simulated indicates a fairly high degree of model
robustness taking a universal approach. This may be interpreted as indicating that the
parameters and datasets are appropriate and reasonably close to a global optimum,
which is encouraging for applications in ungauged basins. However, there are of course
a number of catchments that are still relatively poorly simulated, as well as issues of
slightly lower performance in the validation period and the fact that this approach does

optimise performance for any given catchment.

It has been possible to identify and constrain quite closely those situations under which
the modelling system is likely to provide reasonable or poor flow predictions, which
helps to move the system a bit closer to operational usefulness. This knowledge may
inform decisions as to whether the modelling system is appropriate for particular ap-
plications in ungauged basins. For example, the analysis suggests that, at the present
stage of model development, responsive catchments dominated by surface flow regimes
are more likely to be well simulated than catchments with significant hydrogeological
dimensions, particularly in chalk regions. Cluster analysis helps to confirm and quan-
tify this characterisation of variation in system performance, providing some degree of
confidence in predicting the performance of an ungauged catchment based on a rela-
tively small number of catchment descriptors. While the system does not yet provide a
suitable means of flow prediction in all types of catchments in Great Britain, this work
helps to identify where it could form a realistic possibility. It also highlights where
physical improvements to the modelling system and its input data should be made if

applications in ungauged basins are to become more tractable.

In addition, it is also interesting to consider how the results of this study fit with the de-
bates regarding the strengths and limitations of physically-based spatially-distributed
hydrological models. As discussed in Chapter 2, several arguments about the theoreti-
cal underpinnings of physically-based models have been put forward in the literature,
which tend to be around issues of scale, nonlinearity, data requirements, catchment
uniqueness and parameter estimation particularly (Beven| (1989, 2001). Full explo-
ration of these arguments has not been possible within the scope of this project, but
importantly, a physically-based model appears to perform well across a large number of
catchments without any local tuning of parameters. This is an encouraging result for
the structure and equations underpinning SHETRAN, but of course poorly simulated

catchments need to be addressed. The investigations undertaken so far point towards

237



data availability still forming a significant challenge in such catchments, particularly
with respect to characterisation of the subsurface. Initial results from including more
realistic geology and hydraulic properties suggest that better physical information could
resolve some of these problems, but further work along this line is required before this
can be fully appraised. Estimation of subsurface parameters of both soil and geologi-
cal formations is likely to remain a significant challenge, but further compilation and
synthesis of hydraulic testing data is an important avenue of investigation. At any
rate, some of the practical barriers to employing physically-based models for various
applications have certainly been diminished through this work, which has additionally
enabled new possibilities, such as using SHETRAN for comparative studies on large

samples.

The potential applications arising from the development of this system are indeed
significant. Extension of the climate change analysis presented here is very plausible
and forms an interesting new approach to national scale assessment. Coupling with the
UKCP09 weather generator provides some advantages over the use of change factors
applied in a number of other studies. For example, it produces a set of simulations so
that a range of futures can be assessed. Even taking advantage of the resources now
available for parallel processing, climate change impact assessment using this method
still forms a relatively computationally expensive undertaking, but the methodology is
robust as it is physically based. Theory would suggest that results from a model such
as SHETRAN should be the most reliable available for climate change projections, but
more work is required to compare the differences in predictions with other types of
models. There is a similar requirement for land use change studies, but in both cases
it is hoped that such analysis can be conducted relatively efficiently with the tools now

developed.

This work has therefore made SHETRAN a more approachable tool for hydrological ap-
plications and has already had a positive impact beyond this project alone. The system
has been used to set up catchment models for several unrelated studies already, such
as a joint project by the BGS and EA on groundwater flooding in the East Yorkshire
chalk. This forms part of an ongoing project to improve representation of groundwater
in the modelling system and apply it for managing groundwater flood risk. The model
has also been used by Nottingham University to look at impacts from future land cover
changes, while the Met Office is currently exploring how to couple SHETRAN with the
land surface scheme JULES, in order to improve the representation of hydrology in the
latter. Three PhD projects are also currently using the modelling system, while the

rapid setup facility has been used to help a number of Masters students with models
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for their dissertations. Furthermore, this system has great potential to become a na-
tional resource for various applications in flood and water management, for example
by examining scenarios arising from different pressures on water quantity and quality
at local, regional or national scales. The modelling system described here is on a par
with other national modelling capabilities (Henriksen et al. 2003; Habets et al., |2008)
and has a different set of uses than both the G2G (Bell et al., 2009) and CLASSIC-GB
(Crooks et al [2014)) models applied in the UK which focus solely on modelling river

flows.

8.3 Future work

There are a number of directions for future research and applications that could utilise
the modelling system developed and other work presented in this thesis, some of which
are already underway. These future lines of work are grouped by improvements to

software, data, geology and general improvements.

Software:

— The modelling system has so far only been tested at a 1km spatial resolution. This
is a typical resolution for a national scale study (Henriksen et al. [2003; Bell et al.,
2009), but if it is to become a truly multi-purpose system then the model should be
run and evaluated at different resolutions. So far the model setup system provides
capabilities to produce catchment models across Great Britain and 100m and 500m
resolutions, but these models have not yet been tested. Doing this would certainly
make an interesting sensitivity test, extending prior work by |[Zhang| (2012)) further.
Zhang/s study highlighted the importance of temporal resolution for SHETRAN
simulations, but the effects of different spatial resolution on SHETRAN outputs
remain unexplored for the range of catchment types that could be investigated

using the modelling system.

— The graphical user-interface for setting up catchments currently requires the user
to upload a shapefile of the catchment boundary in order to create a model. A
script has been written and tested for generating catchment boundaries automat-
ically from a DEM given an outlet point, which will be incorporated into the

user-interface to further improve its ease of use.

— The modelling system is currently only available for desktop computers, although

other servers and networks can of course be used for running simulations. It is
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planned that the system will be put on an internal intranet and then later onto

the internet with appropriate licences and support.
Data:

— CEH have recently released a new 1km resolution daily gridded rainfall product,
CEH-GEAR (Tanguy et al., 2014)). This is a high quality, freely available rainfall
dataset, and so the potential for using it as meteorological forcing for the modelling
system should be investigated. Initial comparisons with the 5km UKCP09 dataset
applied to date have shown that it is very similar to CEH-GEAR, but the licence

conditions of the latter allow for it to be more readily distributed and applied.

— The hourly rainfall dataset is being updated to be based on the CEH-GEAR
gridded dataset in conjunction with records from hourly raingauges, which will
allow for the dataset to be freely distributed (hosted by CEH). Further analysis of
the hourly gridded rainfall dataset is currently being undertaken with respect to

climatology, preservation of extremes and comparisons of interpolation methods.

— The rainfall dataset employed in the model is considered to be the best available
at the time of model setup, but the lack of readily available potential evapotran-
spiration (PET) data for the UK meant that PET had to be calculated with some
approximations due to data limitations. This is considered to be the best option
at this time, as indicated by the overall accuracy of simulated water balances.
However, it would certainly be of value to see if the reasonably small water bal-
ance bias could be rectified by use of an alternative dataset, such as the MORECS
PET products created by the Met Office (Hough and Jones|, [1997). Similarly, the
possibility of coupling SHETRAN with JULES as described above would also be
a useful and valuable comparison to further test the adequacy of the current PET

dataset.
Geology:

— It is intended that further collaboration with BGS/EA will be carried out to inte-
grate superficial deposits and appropriate hydrogeological parameters with the
BGS 3D geological model. Once this is developed and incorporated into the
SHETRAN system, groundwater level data for representative observation bore-
holes will be obtained from the BGS/EA and used to evaluate internal catchment
model performance. These data would also allow for further assessment of the

physical realism of the standard configuration of the current system.
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— The performance of catchment models has not yet been evaluated with respect
to groundwater level data from observation boreholes. This is a result of the
absence of a nationally available dataset for use in this project, although future
collaboration with BGS and EA may allow for a systematic comparison of observed
and simulated groundwater levels. Multi-dataset evaluation has been shown to be
very important for constraining model parameters (e.g. |Anderton et al., 2002),
which could add significantly to confidence in model behaviour or alternatively

highlight areas of deficient data or locally inappropriate parameter sets.

— A robust method for delineating groundwater catchments where they differ from
surface water catchments and applying appropriate subsurface boundary condi-
tions would also be useful for improving the modelling system. It may well be
possible to draw lessons from the EA’s regional groundwater models covering the
major aquifers in the UK (Shepley et al. [2012), where fluctuating groundwater
catchment boundaries in some regions are accounted for using buffer zones to al-
low the model to calculate flow divides, thereby reducing the influence of specified

boundary conditions.
General:

— No formal uncertainty analysis has been undertaken during the work to date, as
the emphasis has been placed on sensitivity testing. As noted by Hrachowitz et al.
(2013), uncertainty analysis is now widely recognised as an important component
of the workflow in hydrological modelling, although there are ongoing debates
regarding the best ways in which this should be done (e.g. Beven and Binley,
1992; |Clark et al., |2011). It is anticipated that uncertainty analysis would be
an interesting and important additional avenue of investigation for the modelling
system, which could be explored in a different project with additional time and

computing resources.

— The SHETRAN modelling system presented here has not been extensively evalu-
ated with respect to other commonly applied models or indeed or other national
models of Great Britain, such as the G2G (Bell et al., 2009) and CLASSIC-GB
(Crooks et al., [2014) models. Some comparisons are made with the results from
the Future Flows Project (Prudhomme et al.|2012)), but more comprehensive com-
parisons of performance for a historical period would be a useful next step. As
some of the existing national modelling systems are designed and calibrated with
accuracy in mind, such as Habets et al.| (2008) used for flood forecasting, it would

be interesting to evaluate how large the differences in performance are between
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a physically-based model using universal parameterisation and more conceptual

approaches benefiting from more intensive calibration efforts.

Work is ongoing to update the UKCP09 spatial weather generator. Upon comple-
tion of the new version of the weather generator, a full and rigorous climate climate
impact study could be undertaken by using it in conjunction with the SHETRAN
modelling system. Ideally this would include a large sample of catchments from
across Great Britain, as well as a range of scenarios and time slices. This would
provide a more comprehensive dataset for analysing possible hydrological futures
and their variation across the country, as well as the effects of uncertainty from

various sources.

There are also current plans to couple SHETRAN for GB to a hydrodynamic model
(Hi-PIMS, [Liang and Smith| (2015])) for modelling both fluvial and multi-source
flooding. This could pave the way for creating a national groundwater flooding
map derived from a physically-based model. Coupling with Hi-PIMS could also
prompt exploration of whether SHETRAN could be written to run using GPUs,
which would speed up run times and therefore enable the simulation of larger
areas and/or finer resolutions, as well as more scenarios. Separate plans are being
considered for coupling SHETRAN for GB to JULES, which could particularly

improve PET estimates.

The promising results from applying SHETRAN at the national scale in Great
Britain also raise the question of whether the model could form a useful system in
other countries globally, particularly given ongoing development of global datasets
and technologies such as remote sensing. This would of course be a very long-
term process requiring more computing power, while many issues could arise in
terms of obtaining appropriate driving and validation data. However, if levels of
performance of a physically-based modelling system can be related to catchment
types in a similar way to the results presented here, it could be that SHETRAN

could help to fill some of the gaps in particular data-poor contexts.
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Appendix A

Catchment characteristics and

results for standard simulation of
SHETRAN for GB

Table A.1: Catchment characteristics and NSE for standard run.

Catchment Station Area Avg. Ann. Avg. Ann DPSBAR BFI mean flow NSE
Rainfall (mm) PET (mm) (mm/day)
Aire at Kildwick Bridge 27035 284 1211 514 47 0.37 1.96 0.89
Aldbourne at Ramsbury 39101 55 851 598 32 0.97 0.37 -12.36
Allan Water at Kinbuck 18001 163 1409 504 57 0.44 2.79 0.76
Allen at Walford Mill 43018 174 899 612 24 0.91 0.96 -1.96
Allt Deveron at Cabrach 9005 67 1166 490 58 0.49 2.06 0.57
Almond at Almondbank 15013 178 1560 493 12 0.44 2.59 0.6
Almond at Craigiehall 19001 373 947 529 22 0.39 1.43 0.79
Alt at Kirkby 69032 98 876 615 7 0.53 1.24 0.23
Ancholme at Toft Newton 29009 27 622 572 11 0.53 0.44 0.68
Anker at Polesworth 28026 370 671 580 12 0.51 0.72 0.76
Annan at Brydekirk 78003 924 1386 484 59 0.43 2.84 0.86
Ardle at Kindrogan 15014 107 1400 476 98 0.4 2.63 0.53
Arrow at Broom 54007 322 712 599 18 0.53 0.75 0.65
Arrow at Titley Mill 55013 127 1053 569 64 0.56 1.59 0.67
Avon at Amesbury 43005 325 794 602 19 0.91 0.93 -0.45
Avon at Delnashaugh 8004 542 1212 477 90 0.55 2.36 0.6
Avon at Polmonthill 17005 196 988 529 24 0.41 1.83 0.64
Avon at Stareton 54019 351 673 582 13 0.49 0.63 0.9
Axe at Whitford 45004 290 1070 602 42 0.48 1.59 0.79
Ayr at Mainholm 83006 575 1258 512 34 0.29 2.38 0.71
Babingley at Castle Rising 33054 48 681 584 16 0.95 0.91 -1
Bain at Goulceby Bridge 30011 67 737 562 20 0.74 0.44 -3.4
Bedburn Beck at Bedburn 24004 7 968 516 65 0.46 1.38 0.69
Bedford Ouse at Bedford 33002 1474 661 596 13 0.53 0.62 0.86
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Table A.1: Catchment characteristics and NSE for standard run.

Catchment Station Area Avg. Ann. Avg. Ann DPSBAR BFI mean flow NSE
Rainfall (mm) PET (mm) (mm/day)

Bedford Ouse at Roxton 33039 1671 652 596 13 0.57 0.59 0.82
Bervie at Inverbervie 13001 126 880 494 43 0.56 1.48 0.69
Beult at Stile Bridge 40005 279 710 608 11 0.23 0.64 0.87
Beverley Brook at Wimbledon Common 39005 38 637 658 13 0.65 1.22 -0.42
Black Cart Water at Milliken Park 84017 107 1787 511 52 0.37 3.81 0.92
Blackwater at Loch Dee 80006 14 2581 498 95 0.46 7.31 0.69
Blackwater at Swallowfield 39007 358 723 613 14 0.67 0.75 0.38
Blyth at Hartford Bridge 22006 273 716 530 15 0.36 0.67 0.83
Bollin at Wilmslow 69012 74 931 572 37 0.61 1.47 0.46
Box at Polstead 36003 57 582 595 14 0.63 0.33 0.03
Boyd at Bitton 53017 49 843 613 32 0.44 0.97 0.83
Braan at Hermitage 15023 211 1436 492 88 0.43 2.86 0.79
Brain at Guithavon Valley 37009 64 601 596 13 0.67 0.52 0.3
Bran at Dosmucheran 4006 136 2045 472 117 0.28 4.45 0.81
Brett at Cockfield 36009 24 618 592 10 0.32 0.46 0.61
Brock at U/S A6 72007 33 1403 535 62 0.34 2.24 0.69
Brompton Beck at Snainton Ings 27073 13 784 539 37 0.91 1.78 -0.38
Browney at Burn Hall 24005 182 752 536 39 0.5 0.79 0.75
Brue at Lovington 52010 140 895 608 27 0.48 1.18 0.84
Bull at Lealands 41029 40 838 598 21 0.37 0.96 0.83
Bure at Ingworth 34003 171 698 589 11 0.83 0.58 -5.86
Calder at Whalley Weir 71004 319 1216 529 51 0.42 2.31 0.76
Canons Brook at Elizabeth Way 38007 20 656 607 13 0.4 0.76 0.46
Carron at Headswood 17001 125 1582 515 57 0.34 2.42 0.7
Carron at New Kelso 93001 140 2541 461 160 0.26 6.63 0.62
Cary at Somerton 52011 84 732 621 15 0.38 0.84 0.88
Ceiriog at Brynkinalt Weir 67005 111 1290 547 89 0.54 2.42 0.79
Chater at Fosters Bridge 31010 69 691 580 26 0.53 0.64 0.81
Chelmer at Churchend 37011 76 616 589 13 0.43 0.40 0.59
Chelmer at Springfield 37008 194 602 590 13 0.57 0.47 0.58
Cheriton Stream at Sewards Bridge 42008 84 933 599 25 0.96 0.67 -16.22
Cherwell at Enslow Mill 39021 558 700 590 20 0.66 0.59 0.15
Chess at Rickmansworth 39088 97 784 603 27 0.95 0.51 -18.69
Clyde at Blairston 84005 1725 1208 502 43 0.45 2.16 0.73
Cocker at Southwaite Bridge 75004 119 1945 519 135 0.43 3.93 0.85
Coln at Bibury 39020 115 882 590 35 0.93 1.02 -0.46
Colne at Lexden 37005 236 593 598 14 0.52 0.39 0.81
Conder at Galgate 72014 28 1175 531 48 0.35 2.10 0.8
Coquet at Morwick 22001 582 897 504 50 0.44 1.28 0.79
Cothi at Felin Mynachdy 60002 294 1675 567 64 0.42 3.40 0.85
Cray at Crayford 40016 125 696 629 22 0.73 0.34 -19.39
Cree at Newton Stewart 81002 371 1811 507 65 0.27 3.66 0.77
Creedy at Cowley 45012 265 937 601 32 0.46 1.19 0.75
Crimple at Burn Bridge 27051 8 801 555 27 0.31 1.14 0.61
Culm at Wood Mill 45003 225 1010 596 34 0.54 1.43 0.71
Currypool Stream at Currypool Farm 52016 18 983 611 62 0.71 1.00 -0.33
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Table A.1: Catchment characteristics and NSE for standard run.

Catchment Station Area Avg. Ann. Avg. Ann DPSBAR BFI mean flow NSE
Rainfall (mm) PET (mm) (mm/day)

Cynon at Abercynon 57004 107 1913 562 81 0.4 3.48 0.83
Dane at Rudheath 68003 405 861 560 26 0.52 1.05 0.85
Darent at Hawley 40012 184 741 603 31 0.73 0.30 -11.71
Dart at Austins Bridge 46003 254 1857 581 56 0.52 3.84 0.7
Dean Water at Cookston 15008 178 837 516 31 0.59 1.29 0.39
Dearne at Barnsley Weir 27023 119 786 560 37 0.48 1.01 0.64
Dee at Manley Hall 67015 1019 1448 541 78 0.53 2.64 0.9
Dee at Mar Lodge 12007 295 1493 453 127 0.44 3.62 0.62
Dee at New Inn 67018 55 2035 532 88 0.27 4.86 0.77
Dee at Polhollick 12003 699 1414 462 119 0.49 2.90 0.6
Derwent at Camerton 75002 660 1818 519 103 0.49 3.50 0.89
Derwent at Chatsworth 28043 345 1219 538 78 0.55 1.58 0.63
Deveron at Muiresk 9002 970 967 509 48 0.57 1.52 0.79
Don at Doncaster 27021 1272 827 573 37 0.56 1.08 0.72
Don at Parkhill 11001 1276 944 495 53 0.68 1.43 0.56
Doniford Stream at Swill Bridge 51001 75 953 608 50 0.68 1.20 0.28
Dove at Izaak Walton 28046 86 1139 533 57 0.79 1.92 0.76
Dove at Kirkby Mills 27042 63 974 531 86 0.58 1.52 0.72
Dove at Marston on Dove 28018 884 966 538 38 0.61 1.36 0.82
Dove at Rocester Weir 28008 397 1057 534 48 0.62 1.62 0.79
Dover Beck at Lowdham 28060 72 681 552 23 0.75 0.19 -24.2
Dowles Brook at Oak Cottage 54034 41 718 589 35 0.4 0.77 0.64
Duddon at Duddon Hall 74001 90 2263 524 137 0.29 4.82 0.81
Dulnain at Balnaan Bridge 8009 270 1111 484 65 0.44 1.94 0.61
Dun at Hungerford 39028 101 836 596 20 0.95 0.60 -14.16
Duneaton at Maidencots 84022 117 1389 488 45 0.42 2.37 0.65
Dwyfawr at Garndolbenmaen 65007 53 2092 556 94 0.38 4.29 0.81
Dyfi at Dyfi Bridge 64001 467 1978 543 109 0.39 4.32 0.87
Earn at Forteviot Bridge 16004 792 1467 500 93 0.52 3.17 0.89
East Avon at Upavon 43014 89 821 598 19 0.89 0.79 -3.35
East Dart at Bellever 46005 23 2290 558 60 0.44 4.68 0.68
Eastburn Beck at Crosshills 27084 45 1117 510 73 0.35 1.66 0.8
Eastwood Brook at Eastwood 37033 10 556 654 15 0.32 0.42 -0.1
Eden at Kirkby Stephen 76014 70 1470 499 89 0.26 3.23 0.78
Eden at Temple Sowerby 76005 616 1181 507 53 0.37 2.08 0.81
Ehen at Braystones 74005 134 1771 520 89 0.42 3.37 0.71
Ellen at Bullgill 75017 105 1179 533 45 0.49 1.91 0.75
Elwy at Pont-y-Gwyddel 66006 192 1245 556 57 0.45 1.93 0.85
Enborne at Brimpton 39025 152 824 604 19 0.53 0.74 0.53
Enrick at Mill of Tore 6008 110 1360 490 71 0.3 2.60 0.83
Erch at Pencaenewydd 65005 21 1409 553 78 0.54 2.47 0.37
Ericht at Craighall 15025 443 1280 483 90 0.48 2.53 0.75
Eridge Stream at Hendal Bridge 40020 55 888 601 28 0.45 1.12 0.74
Esk at Canonbie 77002 499 1485 473 65 0.38 3.05 0.81
Esk at Cropple How 74007 70 2313 514 132 0.3 5.54 0.75
Ewe at Poolewe 94001 441 2318 466 129 0.64 5.83 0.9
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Table A.1: Catchment characteristics and NSE for standard run.

Catchment Station Area Avg. Ann. Avg. Ann DPSBAR BFI mean flow NSE
Rainfall (mm) PET (mm) (mm/day)

Ewelme Brook at Ewelme 39065 12 715 602 33 0.98 0.32 -26.7
Ewenny at Keepers Lodge 58009 66 1367 585 42 0.57 2.41 0.5
Exe at Pixton 45009 149 1425 585 66 0.52 2.57 0.4
Exe at Thorverton 45001 607 1312 591 48 0.5 2.27 0.68
Fal at Tregony 48003 91 1277 599 32 0.68 1.91 0.16
Falloch at Glen Falloch 85003 82 2832 472 154 0.16 6.29 0.68
Feugh at Heugh Head 12008 231 1193 491 85 0.45 2.19 0.63
Fowey at Restormel 48011 169 1491 585 45 0.62 2.43 0.08
Frome at Ebley Mill 54027 199 858 597 48 0.87 1.09 0.62
Frome at Yarkhill 55018 148 748 596 28 0.52 0.67 0.75
Gairn at Invergairn 12006 153 1220 476 116 0.54 2.20 0.17
Gannel at Gwills 49004 43 1132 604 26 0.67 1.42 -0.38
Gifford Water at Lennoxlove 20007 64 823 508 46 0.58 1.03 0.62
Gipping at Stowmarket 35008 127 597 594 10 0.39 0.43 0.7
Glaslyn at Beddgelert 65001 68 3032 543 162 0.32 7.30 0.74
Goyt at Marple Bridge 69017 185 1182 554 69 0.53 1.73 0.61
Great Eau at Claythorpe Mill 29002 78 719 558 22 0.88 0.70 -1.67
Great Stour at Horton 40011 345 770 610 22 0.69 0.79 0.43
Greet at Southwell 28072 59 656 557 19 0.71 0.44 -0.93
Greta at Rutherford Bridge 25006 87 1135 509 35 0.21 2.26 0.7
Gwash South Arm at Manton 31025 26 729 573 28 0.27 0.60 0.52
Gwili at Glangwili 60006 134 1641 576 52 0.47 3.31 0.81
Halladale at Halladale 96001 209 1136 470 33 0.27 2.09 0.64
Harpers Brook at Old Mill Bridge 32003 74 657 590 16 0.48 0.49 0.7
Harwood Beck at Harwood 25012 26 1474 486 91 0.24 3.30 0.59
Hayle at St Erth 49002 48 1104 589 27 0.83 1.78 -0.96
Hebden Beck at Hebden 27032 25 1544 506 59 0.43 0.62 -34.4
Hiz at Arlesey 33033 114 608 604 17 0.85 0.51 -1.31
Hodder at Hodder Place 71008 266 1620 530 61 0.31 2.81 0.75
Idle at Mattersey 28015 538 664 566 14 0.78 0.38 -6.13
Ingrebourne at Gaynes Park 37018 47 609 617 18 0.49 0.59 0.68
Inver at Little Assynt 95001 145 2165 450 114 0.65 5.00 0.84
Irvine at Newmilns 83010 73 1360 507 41 0.28 2.85 0.64
Irvine at Shewalton 83005 369 1275 518 26 0.27 2.33 0.69
Irwell at Adelphi Weir 69002 561 1281 557 45 0.49 2.70 0.73
Ise Brook at Harrowden Old Mill 32004 197 665 588 16 0.54 0.58 0.76
Ithon at Disserth 55016 363 1194 548 49 0.38 1.92 0.88
Ivel at Blunham 33022 545 593 600 14 0.73 0.47 0.47
Jed Water at Jedburgh 21024 143 958 496 51 0.41 1.43 0.71
Kennet at Theale 39016 1055 803 600 22 0.88 0.80 -2.91
Kent at Sedgwick 73005 210 1749 515 85 0.41 3.79 0.83
Kielder Burn at Kielder 23011 57 1347 483 89 0.33 3.00 0.57
Kinnel Water at Redhall 78004 7 1449 481 64 0.27 3.16 0.71
Kirtle Water at Mossknowe 77004 76 1213 510 33 0.29 2.04 0.73
Kym at Meagre Farm 33012 134 613 594 14 0.26 0.39 0.66
Lambourn at Shaw 39019 240 778 601 24 0.97 0.62 -11.18
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Table A.1: Catchment characteristics and NSE for standard run.

Catchment Station Area Avg. Ann. Avg. Ann DPSBAR BFI mean flow NSE
Rainfall (mm) PET (mm) (mm/day)

Lavant at Graylingwell 41023 89 978 604 45 0.82 0.29 -2.08
Laver at Ripon 27059 82 928 554 44 0.43 1.13 0.7
Leadon at Wedderburn Bridge 54017 291 715 605 20 0.49 0.61 0.73
Lee at Feildes Weir 38001 1056 646 600 16 0.59 0.36 -0.52
Leet Water at Coldstream 21023 114 679 525 18 0.33 0.74 0.78
Leri at Dolybont 64006 49 1629 545 74 0.49 2.36 0.84
Leven at Leven Bridge 25005 202 758 545 33 0.42 0.81 0.86
Leven at Newby Bridge FMS 73010 257 2287 518 114 0.49 4.71 0.92
Liddel Water at Rowanburnfoot 77003 320 1368 485 63 0.31 2.83 0.69
Little Eachaig at Dalinlongart 86001 33 2468 501 168 0.21 4.69 0.67
Little Ouse at Abbey Heath 33034 723 635 599 8 0.8 0.44 -0.68
Llynfi at Three Cocks 55025 137 1134 555 55 0.57 1.42 0.36
Lod at Halfway Bridge 41022 54 868 604 33 0.35 0.95 0.74
Lossie at Sheriffmills 7003 221 886 540 43 0.53 1.07 0.8
Lossie at Torwinny 7006 18 1038 531 37 0.45 1.82 0.56
Loxwood Stream at Drungewick 41025 94 817 600 21 0.22 1.04 0.54
Luce at Airyhemming 81003 175 1522 523 40 0.22 3.03 0.74
Lud at Louth 29003 56 706 563 23 0.9 0.70 -0.78
Lugg at Butts Bridge 55021 377 942 571 53 0.66 1.33 0.46
Lugg at Byton 55014 206 1061 562 71 0.65 1.63 0.21
Luggie Water at Condorrat 84016 33 1168 528 23 0.41 2.29 0.53
Lunan Water at Kirkton Mill 13005 130 723 519 25 0.52 1.12 0.71
Lune at Caton 72004 983 1549 512 72 0.32 3.16 0.78
Lune at Killington New Bridge 72005 223 1654 510 72 0.33 3.86 0.8
Luss Water at Luss 85004 35 2282 499 179 0.28 6.51 0.64
Lymn at Partney Mill 30004 63 730 562 18 0.65 0.68 0.5
Lyne Water at Lyne Station 21018 175 1030 500 51 0.57 1.54 0.81
Lyon at Comrie Bridge 15011 400 1976 475 161 0.44 2.70 -0.06
Manifold at Ilam 28031 151 1108 530 52 0.53 2.04 0.78
Meig at Glenmeannie 4005 127 1913 473 179 0.25 4.71 0.53
Mellte at Pontneddfechan 58006 65 2056 541 76 0.35 4.32 0.87
Meon at Mislingford 42006 75 917 604 30 0.93 1.12 -1.08
Mersey at Ashton Weir 69007 667 1152 565 56 0.54 1.65 0.56
Midford Brook at Midford 53005 147 970 622 31 0.62 1.32 0.86
Mimram at Panshanger Park 38003 135 659 605 20 0.93 0.34 -22.34
Mires Beck at North Cave 26008 42 707 557 26 0.87 0.48 -2.71
Mole at Kinnersley Manor 39069 150 806 603 12 0.39 1.29 0.78
Mole at Woodleigh 50006 329 1369 587 46 0.47 2.31 0.74
Monnow at Grosmont 55029 355 1021 581 64 0.51 1.44 0.81
Motray Water at St Michaels 14005 58 697 553 39 0.57 0.84 0.64
Nadder at Wilton 43006 217 921 607 30 0.81 1.14 0.28
Naver at Apigill 96002 475 1415 464 68 0.42 2.89 0.8
Nene Kislingbury at Dodford 32008 108 670 585 16 0.57 0.50 0.8
Ness at Ness-side 6007 1857 1866 472 104 0.6 4.19 0.57
Nevis at Claggan 90003 71 2880 437 228 0.26 7.99 0.47
Nith at Drumlanrig 79006 481 1589 492 64 0.34 3.08 0.84
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Table A.1: Catchment characteristics and NSE for standard run.

Catchment Station Area Avg. Ann. Avg. Ann DPSBAR BFI mean flow NSE
Rainfall (mm) PET (mm) (mm/day)

Nith at Friars Carse 79002 805 1542 490 68 0.39 2.98 0.84
Nith at Hall Bridge 79003 160 1622 502 58 0.27 3.11 0.83
North Esk at Logie Mill 13007 755 1161 490 76 0.51 2.20 0.73
Nunningham Stream at Tilley Bridge 41001 19 841 602 25 0.33 0.89 0.67
Ock at Abingdon 39081 234 638 613 12 0.64 0.57 0.6
Ogmore at Bridgend 58001 156 1871 572 85 0.48 3.67 0.8
Otter at Dotton 45005 196 1016 595 38 0.53 1.39 0.64
Ouse at Gold Bridge 41005 180 856 595 24 0.49 1.06 0.64
Oykel at Easter Turnaig 3003 336 1862 468 84 0.22 4.21 0.53
Perry at Yeaton 54020 181 789 580 15 0.66 0.76 -0.12
Petteril at Harraby Green 76010 164 962 540 26 0.46 1.13 0.69
Piddle at Baggs Mill 44002 186 997 610 25 0.89 1.12 -2.94
Pincey Brook at Sheering Hall 38026 56 618 596 9 0.37 0.48 0.79
Pointon Lode at Pointon 30014 11 608 586 18 0.49 0.53 0.57
Poulter at Cuckney 28044 37 679 562 29 0.92 0.72 -3.76
Quaggy at Manor House Gardens 39095 34 642 657 17 0.46 0.37 -6.72
Ravensbourne at Catford Hill 39056 125 713 634 23 0.54 0.28 -16.4
Rea at Calthorpe Park 28039 74 810 632 18 0.46 0.91 -0.21
Rede at Rede Bridge 23008 348 1012 496 53 0.32 1.51 0.7
Rhee at Burnt Mill 33021 311 571 597 12 0.74 0.32 0.56
Rhymney at Llanedeyrn 57008 187 1514 580 70 0.47 2.61 0.76
Roden at Rodington 54016 266 719 577 9 0.62 0.62 0.12
Roding at Redbridge 37001 304 624 603 14 0.39 0.51 0.89
Rother at Iping Mill 41011 159 936 605 25 0.67 1.25 0.6
Rother at Princes Marsh 41027 40 942 601 29 0.6 1.10 0.58
Rother at Woodhouse Mill 27025 364 775 571 32 0.54 0.97 0.72
Rothley Brook at Rothley 28056 92 701 579 20 0.46 0.69 0.8
Ruchill Water at Cultybraggan 16003 99 1957 493 112 0.29 4.52 0.75
Sapiston at Rectory Bridge 33013 210 610 602 9 0.65 0.28 -0.3
Scar Water at Capenoch 79004 147 1575 489 92 0.31 3.37 0.78
Severn at Plynlimon flume 54022 9 2656 522 113 0.34 5.15 0.72
Sherston Avon at Fosseway 53023 76 862 593 17 0.65 1.11 0.71
Silk Stream at Colindeep Lane 39049 32 715 656 21 0.33 0.67 -0.12
Skerne at Preston le Skerne 25020 149 686 545 19 0.4 0.50 0.52
Snaizeholme Beck at Low Houses 27047 11 1754 495 107 0.18 4.38 0.71
Soar at Littlethorpe 28082 183 661 577 11 0.49 0.64 0.8
South Esk at Brechin 13008 496 1218 488 91 0.54 2.18 0.74
South Tyne at Featherstone 23006 325 1358 491 74 0.32 2.82 0.68
South Tyne at Haydon Bridge 23004 751 1153 501 61 0.34 2.11 0.7
Sow at Great Bridgford 28052 149 780 549 18 0.65 0.67 0.35
Sprint at Sprint Mill 73009 38 2073 509 120 0.32 4.49 0.81
Stansted Sp at Mountfitchet 38016 49 643 587 16 0.98 0.10 -442.49
Stour at Hammoon 43009 524 886 611 19 0.31 1.26 0.75
Stour at Langham 36006 579 604 595 15 0.52 0.45 0.66
Stour at Throop 43007 1066 896 614 21 0.65 1.11 0.73
Strathmore at Allnabad 96004 108 2253 444 115 0.2 5.87 0.59
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Table A.1: Catchment characteristics and NSE for standard run.

Catchment Station Area Avg. Ann. Avg. Ann DPSBAR BFI mean flow NSE
Rainfall (mm) PET (mm) (mm/day)

Stringside at Whitebridge 33029 100 652 593 8 0.84 0.44 -4.82
Swale at Crakehill 27071 1359 873 546 37 0.47 1.32 0.88
Sydling Water at Sydling St Nicholas 44006 13 1094 602 54 0.88 1.26 -7.27
Taf at Clog-y-Fran 60003 218 1475 573 40 0.55 2.99 0.65
Taff at Pontypridd 57005 464 1960 560 88 0.45 3.82 0.88
Tame at Lea Marston Lakes 28080 801 732 619 13 0.69 1.49 0.06
Tanat at Llanyblodwel 54038 239 1379 544 103 0.48 2.39 0.83
Tas at Shotesham 34002 152 634 595 9 0.59 0.43 0.67
Tawe at Ynystanglws 59001 235 1975 566 78 0.36 4.51 0.81
Tees at Broken Scar 25001 825 1152 509 49 0.34 1.77 0.58
Teise at Stone Bridge 40009 146 841 602 27 0.46 0.80 0.52
Teme at Knightsford Bridge 54029 1502 860 573 46 0.55 1.01 0.8
Teme at Tenbury 54008 1138 888 568 49 0.55 1.09 0.74
Test at Broadlands 42004 1048 830 607 21 0.94 0.91 -7.7
Thrushel at Tinhay 47008 111 1212 591 31 0.43 1.79 0.57
Thurso at Halkirk 97002 417 1070 464 21 0.45 1.88 0.76
Tiddy at Tideford 47009 39 1287 593 42 0.6 2.06 0.21
Tillingbourne at Shalford 39029 58 823 598 33 0.89 0.79 -13.19
Tima Water at Deephope 21026 30 1598 458 68 0.26 3.98 0.71
Tone at Bishops Hull 52005 205 1029 608 38 0.6 1.26 0.73
Torne at Auckley 28050 137 622 595 12 0.7 0.56 -0.21
Tove at Cappenham Bridge 33018 135 710 585 16 0.54 0.67 0.8
Trent at Stoke on Trent 28040 52 886 550 33 0.44 1.05 0.76
Turkey Brook at Albany Park 38021 48 682 620 22 0.22 0.36 0.37
Tyne at Bywell 23001 2183 1057 503 52 0.38 1.83 0.71
Tywi at Nantgaredig 60010 1097 1640 559 64 0.46 3.12 0.85
Uck at Isfield 41006 89 848 598 24 0.42 1.08 0.77
Ure at Kilgram Bridge 27034 511 1431 514 84 0.32 2.72 0.81
Ure at Westwick Lock 27007 922 1179 533 61 0.39 2.01 0.85
Urr at Dalbeattie 80001 198 1397 514 38 0.36 2.60 0.84
Usk at Chain Bridge 56001 919 1462 556 82 0.5 2.62 0.85
Ver at Hansteads 39014 132 724 606 18 0.88 0.28 -31.57
‘Wallington at North Fareham 42001 109 876 623 18 0.41 0.49 -1.81
‘Wansbeck at Mitford 22007 289 833 513 26 0.37 0.96 0.79
‘Waveney at Needham Mill 34006 373 615 597 8 0.46 0.42 0.72
‘Wear at Sunderland Bridge 24001 667 961 518 58 0.42 1.44 0.77
‘Weaver at Ashbrook 68001 613 743 566 12 0.54 0.79 0.77
‘Weaver at Audlem 68005 201 732 568 12 0.54 0.67 0.77
‘Wellow Brook at Wellow 53009 76 1017 624 31 0.62 1.46 0.78
‘Wensum at Fakenham 34011 167 697 589 9 0.82 0.45 -6.21
‘West Avon at Upavon 43017 78 783 598 19 0.71 0.75 0.42
Wey at Broadwey 44009 11 986 617 75 0.95 2.53 -0.05
‘Wey at Tilford 39011 394 881 604 24 0.73 0.71 -4.33
‘Windrush at Newbridge 39006 365 793 594 27 0.86 0.78 -0.15
Wistaston Brook at Marshfield Bridge 68004 97 741 555 13 0.6 0.82 0.51
Witham at Claypole Mill 30001 301 631 578 15 0.69 0.53 0.64
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Table A.1: Catchment characteristics and NSE for standard run.

Catchment Station Area Avg. Ann. Avg. Ann DPSBAR BFI mean flow NSE
Rainfall (mm) PET (mm) (mm/day)

‘Worfe at Burcote 54024 258 713 580 16 0.7 0.38 -2.83
‘Wreake at Syston Mill 28024 413 663 563 17 0.41 0.59 0.78
Wye at Cefn Brwyn 55008 12 2516 526 90 0.31 5.09 0.7
Wye at Hedsor 39023 135 770 606 39 0.94 0.64 -15.61
Wye at Redbrook 55023 4030 1075 570 50 0.53 1.59 0.93
Yscir at Pontaryscir 56013 61 1428 547 54 0.46 2.74 0.85
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Appendix B

Supporting evidence for Chapter 6
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Figure B.1: Flow duration curves of observed and simulated flows for catchments used in the

climate change impact study in Chapter 6.
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Figure B.2: Flow duration curves of observed and simulated flows for catchments used in the

climate change impact study in Chapter 6.
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Figure B.3: Change in mean flows for each future run from the mean control flow, for each

catchment and season, plotted against average daily rainfall and average daily PET. The size

and colour of the dot indicates the direction and magnitude of the percent change in mean

flow. The grey dashed lines indicate the mean rainfall and PET of the control runs.
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Figure B.4: Change in mean flows for each future run from the mean control flow, for each

catchment and season, plotted against average daily rainfall and average daily PET. The size

and colour of the dot indicates the direction and magnitude of the percent change in mean

flow. The grey dashed lines indicate the mean rainfall and PET of the control runs.
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Figure B.5: Change in mean flows for each future run from the mean control flow, for each
catchment and season, plotted against average daily rainfall and average daily PET. The size
and colour of the dot indicates the direction and magnitude of the percent change in mean
flow. The grey dashed lines indicate the mean rainfall and PET of the control runs.
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Figure B.6: Change in mean flows for each future run from the mean control flow, for each

catchment and season, plotted against average daily rainfall and average daily PET. The size

and colour of the dot indicates the direction and magnitude of the percent change in mean

flow. The grey dashed lines indicate the mean rainfall and PET of the control runs.
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Figure B.7: Change in mean flows for each future run from the mean control flow, for each

catchment and season, plotted against average daily rainfall and average daily PET. The size

and colour of the dot indicates the direction and magnitude of the percent change in mean

flow. The grey dashed lines indicate the mean rainfall and PET of the control runs.
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Figure B.8: Change in mean flows for each future run from the mean control flow, for each

catchment and season, plotted against average daily rainfall and average daily PET. The size

and colour of the dot indicates the direction and magnitude of the percent change in mean

flow. The grey dashed lines indicate the mean rainfall and PET of the control runs.
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Figure B.9: Change in mean flows for each future run from the mean control flow, for each

catchment and season, plotted against average daily rainfall and average daily PET. The size

and colour of the dot indicates the direction and magnitude of the percent change in mean

flow. The grey dashed lines indicate the mean rainfall and PET of the control runs.
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