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Abstract 

Streptococcus gordonii is an oral commensal bacterium, and an early coloniser of the acquired 

salivary pellicle that coats tooth surfaces. As such, it is a key organism in the establishment of 

dental plaque biofilms. The amino acid L-arginine has been previously shown to play a role in 

biofilm formation in other oral species, and depletion of L-arginine has a significant impact upon 

S. gordonii growth and gene regulation. Three L-arginine-dependent transcription regulators 

have been identified in S. gordonii, but it is currently not clear how these co-ordinate to sense 

and respond to changes in the exogenous L-arginine concentration. Therefore, the major aims 

of this work were to (i) further elucidate the impacts of L-arginine on S. gordonii growth and 

biofilm formation, (ii) investigate the roles of three putative arginine-dependent regulators in 

modulating arginine-responsive gene regulation, and (iii) assess the effects of L-arginine-

dependent gene regulators on S. gordonii biofilm formation.  

 

Initial growth experiments revealed that high concentrations (≥500 mM) of L-arginine retard S. 

gordonii planktonic growth in a chemically defined medium, resulting in lower growth yields 

than intermediate (0.5 mM) L-arginine. However, 500 mM L-arginine was not toxic to S. 

gordonii cells incubated in natural human saliva. S. gordonii has previously been shown to be 

conditionally auxotrophic for L-arginine, since it can biosynthesise L-arginine under strictly 

anaerobic conditions or during the gradual depletion of extracellular L-arginine, but it cannot 

grow following a rapid shift to medium lacking L-arginine. A similar lack of growth was also 

found following rapid depletion of L-histidine and the branched-chain amino acids. S. gordonii 

is predicted to encode all genes required for L-histidine and branched chain amino acids, and 

it is possible that this organism is conditionally auxotrophic for multiple amino acids. 

 

Rapid depletion of L-arginine was shown previously to result in a change in expression of >20% 

of the S. gordonii genome. By comparing expression levels of some of the most strongly 

arginine-regulated genes when cells were challenged with depletion of L-histidine or branched 

chain amino acids, it was shown that some of the genes (for example, argC, SGO_1686, asp5) 

were specifically regulated by arginine depletion, whereas others (bfbF, SGO_1699) were 

similarly regulated following depletion of all amino acids.  Therefore, it appears that depletion 

of L-arginine results in both an arginine-specific response and a more generalised stress 

response, presumably associated with growth arrest in this medium. 
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Investigation of the roles of three arginine-dependent regulators (ArcR, ArgR and AhrC) by gene 

expression microarrays identified a number of genes that were arginine-responsive and were 

differentially-regulated in the wild-type compared with the isogenic mutants ΔarcR, ΔargR or 

ΔahrC. There was extensive overlap between the genes regulated by the ArgR and AhrC 

regulators, suggesting that these regulators perform similar and interdependent roles in S. 

gordonii. Regulatory responses following arcR disruption were distinct from those seen in the 

argR and ahrC mutants.  In addition to three loci that have previously been described, one 

particular gene, SGO_0846, encoding a hypothetical protein, was highly up-regulated in 

response to arcR deletion. This thesis is the first holistic study of the three arginine-dependent 

regulators in S. gordonii, and shows that each one plays a key role in arginine-dependent gene 

regulation.  

 

Finally, previous unpublished work from our group had demonstrated that S. gordonii ΔarcR 

displayed a defective biofilm phenotype, whereas the deletion strains of the other two 

regulators showed no such phenotype. To determine whether up-regulation of SGO_0846 is 

responsible for the biofilm attenuation in S. gordonii ΔarcR, a deletion mutant of SGO_0846 

was constructed in both the wild-type and ΔarcR background. Disruption of the SGO_0846 gene 

showed no significant differences in biofilm formation levels in comparison to the wild-type 

background, and showed no effect on the biofilm defective phenotype of the ΔarcR mutant. 

This suggests that changes in expression of SGO_0846 are not responsible for the biofilm 

defects seen in the ΔarcR knockout, and that the ArcR regulator is affecting biofilm formation 

via another mechanism.  

 

In conclusion, this thesis provides evidence that arginine has a clear impact on gene expression 

and biofilm formation in S. gordonii, and furthermore, that the ArcR regulator is critical for 

optimal biofilm formation. It is possible that in the future, this could be used as a target for 

controlling S. gordonii biofilm formation, and subsequent dental plaque development.  
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Chapter 1: Introduction 
 

1 
 

1. Introduction 

1.1.  Bacterial biofilms 

1.1.1. Prokaryotic organisms 

Bacteria are arguably some of, if not the most prevalent life forms on the planet, estimated to 

number between 4-6 x 1030 cells (Whitman et al., 1998) and to account for half of the “living 

protoplasm” on earth (Kluyver and van Niel, 1957). From the surfaces we touch, to the soil in 

which we cultivate our crops; from the water we drink to the air we breathe, bacteria are 

consistently present throughout. Even the most difficult conditions are home to these 

prokaryotic life forms. We have only to look to the abilities of the extremophilic 

microorganisms, from psychrophiles such as Vibrio spp. in surviving extreme cold, able to 

sustain replication and metabolic activity to such low temperatures as -20°C (D'Amico et al., 

2006); piezophiles such as Moritella spp. in surviving intense oceanic pressures of over 0.1 MPa 

(Lauro and Bartlett, 2008), salt-loving halophiles such as Halococcus spp. and heat-loving 

thermophiles like Thermus spp. to see that bacteria are able to adapt to not only survive, but 

thrive, in any environment. One such way that these prokaryotic organisms can adapt to 

survive, is by living in a sessile community. 

 

From the first observations of bacteria by the Dutch scientist Antonie van Leeuwenhoek in 

1684, within the dental plaque scraped from his teeth, right through most of the 19th century, 

the focus of research into these micro-organisms was almost exclusively on isolated strains in 

the planktonic phase of growth; something later termed the “pure culture period” of early 

microbiology (Atlas and Bartha, 1997). However, it is now estimated that less than 0.1% of all 

microbial life actually exists in this planktonic form, with the vast majority of cells surviving 

instead in a sessile, anchored form (Bjarnsholt, 2011). This sessile state is one way in which 

bacteria can adapt to aid their own survival in a multitude of different environments, and has 

become known as a biofilm.  

 

1.1.2. Biofilms 

The term “biofilm” was coined in 1978, by Costerton et al. (1978), and has been used widely 

since then. Many researchers have since published their own definitions of what a biofilm 
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consists of, and in 1999, Costerton followed suit and defined a biofilm as “a structured 

community of bacterial cells enclosed in a self-produced polymeric matrix and adherent to an 

inert or living surface” (Costerton et al., 1999). A biofilm forms when bacterial (or fungal) cells 

find themselves at, or actively move to, an interface between two phases. This can consist of 

solid-air and liquid-air interfaces, but generally involves a solid, inert surface and an aqueous 

liquid phase (Donlan, 2002). Biofilms are able to form under any conditions such as these, for 

example, in marine and aquatic environments such as on ship hulls (Angst, 1923) and in ponds 

(Geesey et al., 1977), and on surfaces in or on the human body. These include both artificial 

materials, such as catheters, pacemakers and other in-dwelling plastic and metal medical 

devices (Donlan, 2001), and natural surfaces, such as on skin, in chronic wound infections and 

on tooth surfaces, which will be discussed in more detail later. 

 

1.1.3. Biofilm formation 

It is important to note that this overview of biofilm formation is a general perspective, and that 

individual systems have their own specific issues. Generally, surface interfaces, particularly 

those between liquid and solid phases, are often covered and conditioned with a proteinaceous 

film consisting of organic or inorganic molecules derived from the aqueous phase above 

(Garrett et al., 2008). Biofilm formation initiates when bacterial cells move close to this 

interface, and form a transitory attachment to it (Watnick and Kolter, 2000). This transient 

association is mediated by van der Waals forces, and electrostatic interactions between the cell 

surface and the solid substratum (Percival et al., 2011), known as the DLVO theory 

(Hermansson, 1999). The cells then use protein adhesins and polysaccharides expressed on 

their surfaces to interact with the proteins within the conditioning film, and so form longer 

lasting connections with the solid surface (Garrett et al., 2008).  

 

The first bacterial cells to attach to a surface, the early coloniser species, settle on the 

conditioned surface to form a monolayer (Moorthy and Watnick, 2004) (Figure 1.1). This is a 

covering of single-cells, or cell clusters, that become transiently attached to the surface through 

non-specific binding mediated by electrostatic interactions and other forces (Flemming and 

Wingender, 2010). Cells are then able to initiate receptor-adhesin interactions between their 

cell surface, and the surface to which they are binding, to further adhere themselves to the 
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interface. It is thought that a mixture of factors, including conditioning of the solid surface, cell-

surface hydrophobicity, solid surface roughness and the expression of fimbriae or flagella by 

the cells all influence and aid attachment of bacterial cells to a solid surface (Donlan, 2002; Vu 

et al., 2009).  Following initial binding of the cell monolayer to the surface by specific receptor-

adhesin interactions, subsequent production of extracellular polymeric substances (EPS) 

further strengthens attachment of cells to the surface (Flemming and Wingender, 2010). As 

well as aiding attachment, EPS also helps to form the scaffold to which other cells can bind, and 

form a three-dimensional biofilm.  

 

Following this irreversible attachment of cells to the inert surface, other cells are then recruited 

to the burgeoning biofilm. These may be more cells of the same species, as in monospecies 

biofilms such as Staphylococcus aureus colonisation of catheters; or cells of a different species, 

such as the multispecies biofilms commonly found in chronic wound infections (Dalton et al., 

2011). These cells bind to the existing cell monolayer by further receptor-adhesin interactions, 

whilst simultaneously secreting EPS to help protect and stabilise the biofilm structure 

(Flemming and Wingender, 2010).  

 

Finally, following further recruitment of late coloniser cells and subsequent EPS production, a 

mature biofilm structure is formed. Cells may then naturally disperse from the biofilm, in order 

to target other environments for colonisation. In the case of motile cells, dispersal is a simple 

task of the cells actively transporting themselves to a new site via chemotaxis, as with 

Pseudomonas aeruginosa; however, non-motile cells require enzymes to release them from 

within the biofilm, such as the dispersin B enzyme of Aggregatibacter actinomycetemcomitans 

(Ramasubbu et al., 2005). Natural dispersal of cells from within the biofilm allows perpetuation 

and propagation of the biofilm colonisation of the target interface.  
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Figure 1.1. Diagrammatic representation of the stages of biofilm formation and development. 
Stages represent: 1) Initial attachment of cells to surface. 2) Irreversible attachment of 
monolayer following extracellular polymeric substance (EPS) production. 3) Recruitment of 
more cells to surface, resulting in early biofilm maturation. 4) Production of a mature three-
dimensional biofilm structure, surrounded by the EPS matrix. 5) Release of cells from the 
surface of the biofilm to colonise elsewhere. Figure adapted from Monroe (2007). 
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1.1.4. Biofilm matrix 

The mature biofilm consists of a heterogenous, channelled, three-dimensional network of cells 

(Wood et al., 2002), between which EPS has been secreted to fill the matrix of the biofilm, 

which can account for up to 90% of the total biofilm weight (Flemming and Wingender, 2010). 

The biofilm matrix consists of many different components, including macromolecules such as 

extracellular DNA (eDNA), proteins, polysaccharides, in addition to smaller molecules such as 

lipids, enzymes, water, and organic and inorganic molecules. 

 

The macromolecules of the matrix are thought to work together to form a scaffold upon which 

the cells can bind. This scaffold involves proteins such as amyloid fibres, produced by the FapC 

protein of many different Pseudomonas strains, including P. fluorescens and P. aeruginosa 

(Dueholm et al., 2010); carbohydrates such as cellulose, produced by the Escherichia coli bcs 

genes (Zogaj et al., 2001); and eDNA, released by oral streptococci Streptococcus gordonii and 

Streptococcus sanguinis in response to various environmental stimuli, including hydrogen 

peroxide (Kreth et al., 2009b). These molecules are actively secreted across the cell envelope, 

via secretion systems in the case of proteins and polysaccharides, and by various different 

mechanisms in the case of eDNA, including secretion and autolysis (Bayles, 2007; Jakubovics, 

2013). In addition to helping to structure the biofilm, eDNA can also thermodynamically aid in 

cell-cell and cell-surface adhesion (Das et al., 2010), and mediate horizontal gene transfer 

between different species and cells within the biofilm (Flemming and Wingender, 2010). It is 

also thought to act as a source of carbon and nutrients for other bacterial cells within the 

biofilm (Finkel and Kolter, 2001).  

 

The smaller molecular components of the biofilm matrix, unlike the macromolecules, serve 

non-structural functions. For example, enzymes within the biofilm matrix include 

polysaccharidases, hydrolases and lyases, with roles in degrading matrix components for 

nutrients and reshaping the architecture of the biofilm (Sutherland, 1999; Wingender et al., 

1999; Jakubovics, 2013), whilst water and other compounds within the biofilm serve to hydrate 

and nourish the cells.  

 

The matrix of the biofilm serves many purposes to the bacterial cells. These include aiding 

adhesion (both between cells and to the substratum), and protecting cells from host defenses, 
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chemotherapy and environmental insults (Stewart and Costerton, 2001; Flemming and 

Wingender, 2010). In particular, the matrix is able to confer strong antimicrobial resistance 

upon the biofilm cells. One such example of this is in a β-lactamase-negative strain of the 

pulmonary pathogen Klebsiella pneumoniae, which had a minimum inhibitory concentration 

(MIC) in planktonic culture of 2 µg/mL ampicillin, but was able to survive treatment with up to 

5000 µg/mL ampicillin when growing within a biofilm (Anderl et al., 2000; Stewart and 

Costerton, 2001).  

 

The exact mechanism by which the matrix (or biofilm) protects the bacterial cells from 

antibiotic treatment is not known, however, many mechanisms for resistance have been 

proposed. For example, resistance may be mediated by the presence of persister cells within 

the biofilm, a small population of cells that are highly resistant to antimicrobial compounds. 

One example of this is within P. aeruginosa biofilms, where cells were found to be resistant to 

the antibiotic ciprofloxacin, which was a substrate for a multi-drug resistance pump within the 

cells (Brooun et al., 2000). However, the bacterial cells were found not to be dependent on this 

pump for ciprofloxacin resistance, making the mechanism by which they were resistant 

unknown. These were designated persister cells. Another possible mechanism for antimicrobial 

resistance is retardation of antibiotic or chemical diffusion into the biofilm by the EPS in the 

matrix. Studies investigating tobramycin and gentamicin treatment of P. aeruginosa biofilms 

indicated that one EPS component, eDNA, is able to chelate cations within the matrix of the 

biofilm, and therefore sequester aminoglycosides and cationic antimicrobial peptides (Mulcahy 

et al., 2008; Chiang et al., 2013). 

 

1.1.5. Significance of biofilms 

Irrespective of the mechanism by which biofilm cells survive antibiotic treatment, the fact that 

they are able to survive is extremely significant for the management of infections. In fact, this 

ability to survive antimicrobial treatment was classified as one of the criteria for diagnosis of a 

biofilm infection in clinical specimens, alongside association with a surface, aggregation of cells, 

and localised infections that can result in culture-negative test results (Parsek and Singh, 2003; 

Hall-Stoodley and Stoodley, 2009).  

 



Chapter 1: Introduction 
 

7 
 

Bacterial biofilms are estimated to be involved in “65% of human bacterial infections”, 

according to the US Centre for Disease Control (Potera, 1999), and so the medical burden of 

antibiotic resistance in biofilms is significant. In particular, because of the types of infection 

often caused by biofilms, such as infections of in-dwelling medical devices such as pacemakers 

and prosthetic joints, treatment of these infections is often costly and impacts upon the 

patient’s quality of life. It has been estimated that the cost of fitting, for example, a prosthetic 

hip joint is £3-4000, but the cost of treating an associated infection is £20-30,000 (Allison, 

2000). This is because if antibiotic treatment of the infected area fails, the most reliable way of 

eradicating the resistant biofilm infection is by surgical or mechanical removal of the in-dwelling 

device causing the infection, such as an artificial joint. Part of the costs of treating a device-

associated infection are often due to patient care, as they are unable to have the device 

replaced until the infection is cleared, which can be several months in the case of joint 

prostheses.  

 

This is also the case with dental implant failure, due to oral inflammatory diseases such as peri-

implantitis, mucositis, or gingivitis (Lang et al., 2000). These diseases are all known to be 

triggered by the oral microbes colonising the surfaces of the nutrient-rich environment of the 

oral cavity, in the form of biofilms. The most widely-known example of these biofilms is the 

dental community known as plaque. 

 

1.2.  Dental plaque 

1.2.1. Microbiology of the oral cavity 

One of the common biofilms found within humans is the oral biofilm known as dental plaque. 

It is a polymicrobial community of bacterial and fungal cells, which occupies the surfaces of the 

teeth. In addition, oral biofilms also colonise other areas of the mouth, such as soft tissues.  

 

Healthy individuals often have a wide range of microbial species in their oral cavity, with a 

number of taxa being particularly prevalent. Amongst these are the Actinomyces, Haemophilus, 

Rothia and Streptococcus genera, although different bacterial species prefer to inhabit different 

locations within the oral cavity (Eren et al., 2014). According to the study by Eren et al. (2014), 

which used 16S rRNA oligotyping to characterise the prevalence of different bacterial species 
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on a number of surfaces within the mouth (sub- and supra-gingival plaque, tonsils, throat, 

saliva, hard palate, tongue dorsum, gingiva and buccal mucosa), different bacterial species 

within these genera preferentially colonised different areas of the mouth. For example, 

Fusobacterium peridonticum was found most abundantly on the tongue dorsum, alongside 

Campylobacter concisus, whereas other Fusobacterium and Campylobacter species were not 

as common on these sites, and found more often elsewhere. A number of Streptococcus 

species, including S. mitis and S. infantis, were found across all sites, in all individuals tested. 

Another study by Aas et al. (2005), using 16S rRNA sequencing, found the two most prevalent 

species within the entirety of the oral cavity were the Gram-positive organisms Streptococcus 

mitis, and Gemella haemolysins, a prevalent coloniser of human mucous membranes (Berger, 

1985). These species occupied every one of the aforementioned sites within the mouth, in a 

number of different individuals. However, other species, such as the Gram-positive coccal 

species S. gordonii, Rothia dentocariosa, and members of the Actinomyces spp., were found 

mainly in one location – in this case, the surfaces of the tooth (Aas et al., 2005). The 

microorganisms that bind to the tooth surface comprise the biofilm known as dental plaque. 

 

1.2.2. Dental plaque biofilms 

Dental plaque microorganisms bind not to the actual tooth surface, but to the acquired salivary 

pellicle that coats the tooth surfaces within minutes of brushing. This pellicle is acquired from 

whole saliva, which consists of secretions from three different pairs of glands – the sublingual, 

submandibular and parotid glands (Yao et al., 2003). Whole saliva contains many different 

components, in particular, glycoproteins such as agglutinin, lactoferrin and fibronectin, and 

low-molecular-weight mucins, which are common targets for binding by oral bacteria looking 

to establish biofilms (Takamatsu et al., 2006; Jakubovics et al., 2009; Zijnge et al., 2010; Nobbs 

et al., 2011). These salivary components accumulate on the tooth surface, and form targets for 

different species of bacteria and fungi forming the plaque biofilm.  

 

Dental plaque is widely reported to consist of between 100-200 different species of bacteria 

and fungi, in a healthy individual (Kolenbrander et al., 2010), and these species come from a 

pool of between 500-700 different taxa that are able to live in the mouth (Aas et al., 2005). 

However, more recent studies involving 16S rRNA pyrosequencing and other forms of high 
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throughput sequencing have indicated that these numbers could be considerably higher 

(Keijser et al., 2008; Dewhirst et al., 2010). Aas et al. (2005) demonstrated that Streptococcus 

spp. were one of the six main phyla in the oral cavity, and prevalent colonisers of both tooth 

surfaces and subgingival areas of the mouth. Subsequent studies using 16S rRNA sequencing 

or global sequence alignment analysis have also shown Streptococcus spp. to be among the 

most abundant species in the oral cavity (Lazarevic et al., 2009; Dewhirst et al., 2010; Ahn et 

al., 2011), with one study demonstrating that streptococcal species were prevalent in the 

saliva, dental plaque and mucosa of human hosts of all ages, right from neonates to elderly 

adults who had permanent dentition (Xu et al., 2015). The previously mentioned study by Eren 

et al. (2014)  further demonstrated that the largest variety of Streptococcus species could be 

found within the sub-gingival and supra-gingival plaque regions. 

 

These oral streptococci have been shown to express large numbers of surface receptors (Nobbs 

et al., 2009), and dominate within the early coloniser species of tooth surfaces. In healthy 

individuals, streptococci can form up to 80% of the early plaque biofilm (Rosan and Lamont, 

2000), with the most common primary colonisers being S. mitis, S. oralis, S. sanguinis, S. 

gordonii and Actinomyces oris (Figure 1.2) (Rickard et al., 2003). These species all present many 

receptors on their surfaces, and have the ability to bind not only to the acquired pellicle on the 

tooth surface, but also to each other. They are the first species to initiate formation of the 

plaque biofilm, and by co-aggregating with each other, help to stabilise the foundations of the 

early biofilm.  
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Figure 1.2. Streptococcus spp. colonisation of the acquired salivary pellicle. The early coloniser 
species, in particular Streptococcus gordonii, are shown to bind to many different bacterial 
species. Diagram taken from Rickard et al. (2003). 
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1.2.3. Plaque species interactions 

Coaggregation between different species within the plaque biofilm is important for different 

reasons, including biofilm development, stability and structure. In particular, coaggregation 

between oral Streptococcus spp. and Actinomyces spp., and specifically between the organisms 

Streptococcus gordonii and Actinomyces oris, has been well-characterised, with the 

streptococcal surface protein SspB shown to be responsible for binding to A. oris (Rosan and 

Lamont, 2000; Jakubovics et al., 2005), and recently shown to specifically bind to a surface-

associated polysaccharide produced by A. oris (Back et al., 2015).  

 

Table 1.1 shows some of the interactions made between Streptococcus spp. surface receptors, 

and host and microbial proteins, which aid in colonisation of the host surfaces and stabilization 

of the early biofilm.  The early coloniser species bind to the pellicle by specific interactions 

between the adhesins on the bacterial surface, and salivary proteins such as agglutinin and 

fibronectin. More cells are then recruited to the developing biofilm through cell-cell 

communication via quorum sensing, using the molecules autoinducer-2 (AI-2) and 

streptococcal competence signalling peptide (CSP) (Loo et al., 2000; Cvitkovitch et al., 2003). 

Following early coloniser adherence, secondary coloniser species, such as Porphyromonas 

gingivalis and Fusobacterium nucleatum, are then recruited to bind the existing cell community, 

commencing formation of the three-dimensional structure of the biofilm.  
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Bacterial species Adhesin Target for binding Reference 

S. gordonii, S. oralis, 

S. mitis 

SspA/B 

(antigen 

I/II) 

P. gingivalis, Streptococcus 

mutans, A. naeslundii, Candida 

albicans, salivary gp340 

(Rosan and Lamont, 

2000; Jakubovics et al., 

2005) 

S. gordonii CshA/B 

A. naeslundii, C. albicans, 

Streptococcus oralis, human 

fibronectin 

(Rosan and Lamont, 

2000; Jakubovics et al., 

2009) 

S. gordonii ScaA A. naeslundii 
(Rosan and Lamont, 

2000) 

S. gordonii Hsa 
Human fibronectin, platelets, 

sialic acid residues 

(Jakubovics et al., 

2009) 

S. salivarius VBP Veillonella parvula 
(Rosan and Lamont, 

2000) 

S. cristatus SrpA 
Fusobacterium nucleatum, 

Corynebacterium matruchotii 
(Handley et al., 2005) 

S. gordonii GtfG Endothelial cells  
(Vacca-Smith et al., 

1994) 

S. parasanguinis Fap1 
Salivary protein saccharide 

residues, platelets 

(Ramboarina et al., 

2010) 

 

Table 1.1. Examples of a wide-number of streptococcal surface adhesins, and their unique 
binding specificities. 
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In particular, Fusobacterium is an important secondary coloniser species as these cells are 

found in the middle layers of dental plaque (Zijnge et al., 2010), able to bind to many different 

species within the biofilm, and are therefore often described as bridging organisms between 

the Gram-positive early colonisers and the Gram-negative late coloniser species (Kolenbrander 

and London, 1993). The ability of these cells to coaggregate is important for the formation of a 

structured multispecies biofilm (Kaplan et al., 2009; Kolenbrander et al., 2010). F. nucleatum 

expresses a number of surface adhesins that allow it to bind to different early and late coloniser 

species. For example, the arginine-inhibitable outer membrane protein RadD allows F. 

nucleatum to bind early coloniser streptococci, such as S. cristatus, S. gordonii and S. sanguinis 

(Edwards et al., 2007), and also to the hyphae of Candida albicans (Wu et al., 2015). However, 

another outer membrane protein, FomA, allows F. nucleatum to bind the late coloniser species, 

P. gingivalis (Kinder and Holt, 1993), a coaggregation reaction that is thought to enhance 

periodontal inflammation and disease (Liu et al., 2010). Additionally, F. nucleatum can also be 

bound by the Msp protein of Treponema denticola, another late coloniser species linked to 

periodontal disease (Rosen et al., 2008).  

 

Finally, tertiary and late coloniser species can then bind to the top of the biofilm, becoming 

encased in extracellular polymeric substances that will protect them from the outside 

environment. Cells can later shed from the biofilm, in order to move elsewhere to colonise 

within the oral cavity (see section 1.1.3). 

 

1.2.4. Biofilm-associated diseases 

When the balance of species within the plaque biofilm shifts, diseases of the oral cavity can 

occur. Gingivitis, inflammation of the gingiva (or gums), and periodontitis, inflammation of the 

periodontal tissue which supports the teeth within the jaw, are both triggered by increased 

colonisation of subgingival sites by Gram-negative anaerobic microorganisms such as P. 

gingivalis and T. denticola (Pihlstrom et al., 2005), and are found in up to 20% of middle-aged 

adults worldwide (World Health Organization, 2012). These are also the same organisms that 

are associated with dental implant-associated inflammation, such as peri-implantitis (Shibli et 

al., 2008). Secretion of gingival crevicular fluid (GCF) from serum, which infiltrates periodontal 

pockets, is thought to be part of the inflammatory response that leads to periodontal diseases, 
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but also propagates survival of the organisms that cause it (Seneviratne et al., 2011). GCF 

contains proteins such as albumin and fibrinogen, and can also contain passively transported 

immune cells such as neutrophils and leukocytes (Rahnama et al., 2014). The recognition of 

bacterial colonisation of subgingival spaces by these immune cells triggers an inflammatory 

response, which in turn leads to an increase in GCF secretion, and can raise the pH of the 

subgingival spaces to pH 7.5 (Marsh, 1994). These neutral or alkaline pH are also thought to 

benefit periodontal pathogens, known as the “red complex” of bacterial species, consisting of 

P. gingivalis, T. denticola and Tannerella forsythia (Socransky et al., 1998), allowing them to 

better survive and can cause an over-abundance of these species in the plaque within 

periodontal spaces (Seneviratne et al., 2011).  

 

However, one new idea about the role of microorganisms in the initiation of periodontitis is the 

“keystone pathogen” hypothesis. This suggests that, rather than the presence of red complex 

bacteria being solely responsible for triggering periodontitis, certain species known as 

“keystone pathogens” (such as P. gingivalis) can modulate the host immune response, helping 

to tip the balance of microbial species within the biofilm over into a dysbiotic complex and 

resulting in the further accretion of species associated with disease (Hajishengallis et al., 2011). 

This was demonstrated in mouse models of periodontitis, where low level colonisation of the 

oral cavity by P. gingivalis resulted in changes in microbiota composition, and additionally 

modulated the hose immune response by way of complement receptors C3a and C5a, leading 

to increased periodontal bone loss (Hajishengallis et al., 2011). This was further supported by 

the lack of bone loss in C3a and C5a receptor-deficient mice following inoculation with P. 

gingivalis. 

 

Furthermore, there is evidence that keystone pathogens depend on certain bacterial species, 

such as S. gordonii, to integrate into oral biofilms. S. gordonii is able to co-aggregate with 

P. gingivalis via interactions between the streptococcal SspB surface protein and the 

Porphyromonas FimA/Mfa1 fimbrial proteins, thus aiding P. gingivalis recruitment to the 

biofilm (Lamont et al., 2002). Consequently, S. gordonii may be considered an “accessory 

pathogen”. Whilst not necessarily a pathogen in itself, its ability to specifically interact with 

keystone pathogens or species associated with disease, results in accumulation of these 

pathogenic species within the biofilm and so increases the potential for subsequent dysbiosis 
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(Hajishengallis and Lamont, 2012). Accordingly, co-infections of periodontal mouse models 

with both S. gordonii and P. gingivalis resulted in increased alveolar bone loss in comparison to 

monospecies infections (Daep et al., 2011). Therefore it seems that symbiotic and dysbiotic 

relationships within oral biofilms are responsible for oral health and disease, as opposed to one 

species being related to health, and another to disease. 

 

As mentioned above, increased pH may have the ability to propagate the survival of keystone 

pathogens within the oral cavity, which could in turn lead to periodontitis. Conversely, acidic 

conditions are also damaging to oral health. Dental caries, also known as tooth decay, affects 

over 90% of adults worldwide to some degree (World Health Organization, 2012). Bacterial 

species such as Streptococcus mutans and Lactobacillus acidophilus are capable of rapidly 

metabolising carbohydrates such as glucose or sucrose, to form organic acids such as lactic and 

acetic acid (Featherstone, 2000; Featherstone, 2008). The acids they produce can erode and 

demineralise the enamel surfaces of the teeth, by dissolving calcium phosphate within the 

enamel, or the dentine layer beneath it (Featherstone, 2000), and eventually forming a cavity 

within the tooth structure. This can subsequently lead to pulpitis, an inflammation of the dental 

pulp within the tooth, which manifests as toothache for the sufferer. 

 

The presence of acidogenic bacteria within the plaque biofilm subjects the oral cavity to 

prolonged periods of low pH, as opposed to the spikes of low pH that occur naturally following 

a meal in non-acidogenic plaque in a relationship described by the “ecological plaque 

hypothesis” (Marsh, 1994). This hypothesis states that changes in environmental conditions, 

such as pH or host inflammatory responses, causes a shift in the balance of species within the 

microbiome, predisposing the infection site to disease.  Ordinarily, these short periods of 

acidity would result in demineralisation of tooth surfaces, and then be followed by an alkaline 

period of remineralisation, where calcium phosphate is restored to the tooth surfaces by the 

presence of saliva (Burne and Marquis, 2000). However, prolonged exposure of the oral cavity 

to acid promotes the growth of acid-tolerant (aciduric) organisms within the biofilm, and 

inhibits growth of the acid-sensitive organisms (Svensäter et al., 1997). This helps aciduric and 

acidogenic (acid-producing) microorganisms to predominate within the biofilm community, 

further propagating low pH and consistent demineralisation of tooth surfaces. 
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However, some organisms are capable of counteracting the effects of the acidogenic bacteria 

when given exogenous amino acids such as L-arginine to metabolise into alkalis. One species 

such as this is the Gram-positive facultative anaerobe, Streptococcus gordonii.  

 

1.3.  Streptococcus gordonii 

Streptococcus gordonii is a Gram-positive, facultative anaerobe of the Sanguinis group of 

streptococci (Facklam, 2002; Doern and Burnham, 2010). This group also contains the oral 

streptococci species S. parasanguinis and S. sanguinis, to which S. gordonii used to belong 

before reclassification as a separate species following extensive taxonomic analysis by Kilian et 

al. (1989). S. gordonii is a commensal of the oral cavity, and was generally considered to be a 

species associated with oral health, partly due to its ability to synthesise hydrogen peroxide 

which prevents growth of oral pathogens (Hillman et al., 1985; Barnard and Stinson, 1999). 

However, recent research has indicated that its role is more as an accessory pathogen, despite 

not being a pathogenic species in itself (see section 1.2.4). It is also one of the early colonisers 

of surfaces within the mouth, particularly of the acquired salivary pellicle coating tooth surfaces 

(Kreth et al., 2009a), in addition to the mucosa and within saliva (Xu et al., 2015), and its 

colonisation is facilitated by the large number of surface proteins it expresses. 

 

1.3.1. Infective endocarditis 

Despite S. gordonii not playing a main role in pathogenesis in the oral cavity, it is capable of 

acting as an opportunistic pathogen in humans. If it can gain access to the bloodstream, and 

travel to the cardiovascular system, S. gordonii has the ability to colonise damaged heart valves 

and cause infective bacterial endocarditis. This is mediated in part by two allelic surface protein 

variants, Hsa and GspB, serine-rich repeat proteins that bind to both fibronectin on endothelial 

cells and platelets, aiding bacterial pathogenicity and colonisation of the valve (Takahashi et al., 

2006; Xiong et al., 2008). Hsa and GspB are homologous proteins, both with the ability to bind 

to sialylated glycoproteins, particularly those found on platelet membranes such as 

glycoprotein Ibα (Bensing et al., 2004; Takamatsu et al., 2006). This allows formation of a 

thrombus, in addition to bacterial colonisation of the valve, causing endocarditis. Futhermore, 

a second protein on the surface of S. gordonii cells, PadA, was found to bind to platelets during 
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endocarditis via the fibrinogen receptor GPIIbIIIa on platelet surfaces, triggering further platelet 

adhesion and aggregation with S. gordonii (Petersen et al., 2010). 

 

The Hsa and GspB proteins also play an important role in the ability of S. gordonii cells to 

colonise the oral cavity as a commensal organism. Fibronectin is found on oral surfaces, 

deposited from parotid saliva by the acquisition of the salivary pellicle on the surfaces of the 

teeth (Babu and Dabbous, 1986). Additional binding to other sialylated glycoproteins is also 

mediated by Hsa and GspB, such as binding to salivary agglutinin (Takamatsu et al., 2006). The 

sialic acid-binding capabilities of both Hsa and GspB, along with two other fibronectin-binding 

proteins, the hydrophobic fibrillar proteins CshA and CshB, all contribute to S. gordonii binding 

to the salivary pellicle, in turn initiating the formation of the plaque biofilm (McNab et al., 1994; 

Bensing et al., 2004; Nobbs et al., 2009).  

 

1.3.2. Arginine deiminase system 

As mentioned above, S. gordonii is a commonly-found microorganism within the oral cavity. 

However, if the distribution of species within the plaque biofilm becomes skewed, for example, 

due to an over-abundance of S. mutans, which in turn causes high acid concentrations within 

the biofilm matrix, species that are acid-sensitive can be inhibited. S. gordonii, however, has 

some degree of acid tolerance as a result of a certain catabolism system within the cells, and it 

is this system which caused S. gordonii to be labelled as a “cariostatic” organism (Burne and 

Marquis, 2000), suggesting that it can play a role in alleviating the effects of the acidogenic 

bacteria, and the formation of dental caries. This catabolic system is called the arginine 

deiminase system, or ADS, and has the ability to convert the amino acid L-arginine to ammonia. 

The ADS of S. gordonii was first described in 1983, by Ferro et al. (1983), when S. gordonii was 

still classified as a member of the S. sanguis species, prior to reclassification as a novel species 

(Kilian et al., 1989).  

 

The ADS of S. gordonii consists of three enzymes, which catalyse the breakdown of exogenous 

L-arginine to produce ammonia, carbon dioxide, ornithine (an amino acid, and L-arginine 

precursor) and ATP (Cunin et al., 1986). The three enzymes involved in the pathway are termed 

ArcA or arginine deiminase (encoded by the arcA gene), which converts L-arginine to citrulline 
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and ammonia by hydrolysis; ArcB, or ornithine carbamoyltransferase (encoded by arcB), which 

converts citrulline to carbamoylphosphate and ornithine; and ArcC, carbamate kinase (encoded 

by arcC), which dephosphorylates carbamoylphosphate, in order to form ATP, carbon dioxide 

and ammonia (Cunin et al., 1986; Dong et al., 2002). Together, these genes form part of the 

arc operon (Figures 1.3 and 1.4). 

 

1.3.3. The arc operon 

In S. gordonii, the arcABC locus also contains the genes arcD, encoding an L-arginine-ornithine 

antiporter, and arcT, a hypothetical protein thought to encode a dipeptidase enzyme, able to 

cleave L-arginine residues from other proteins (Dong et al., 2002; Liu and Burne, 2009). These 

genes were thought to be co-transcribed with arcABC as part of an operon, but recently arcD 

was shown to have differential expression to the arcABC genes under changing L-arginine 

concentrations, and discovery of a predicted promoter upstream of arcD suggested that it may 

be transcribed from both the arcA promoter, and its own promoter (Jakubovics et al., 2015). 

Additionally, ArcD was found to play a role in recruiting Fusobacterium nucleatum to the plaque 

biofilm, due to its function in transporting the amino acid ornithine out of S. gordonii cells 

(Sakanaka et al., 2015). F. nucleatum cells utilise ornithine as an energy source, and deletion of 

the arcD gene of S. gordonii within a mixed-species biofilm model was found not only to reduce 

the levels of F. nucleatum within the biofilm, but also to increase sensitivity of S. gordonii cells 

to low pH. This is likely due to the activity of ArcD in transporting L-arginine inside the cells for 

use by the ADS, and subsequent ammonia production contributing to acid-tolerance within the 

biofilm.
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Figure 1.3. Structure of the arc operon of S. gordonii. The arcR gene, labelled “R”, is shown at 
the 3’ end of the arcT gene, and co-transcribed with queA under the control of the pqueA 
promoter. The flp gene, which also encodes an activator of arc operon expression, is shown 
upstream of the arcA gene, with a predicted terminator (circle and line) and promoter (parcA) 
shown also. Numbers represent the gene length in nucleotides (nt). Diagram taken from Liu et 
al. (2008). 
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Figure 1.4. Conversion of L-arginine to ammonia, carbon dioxide and ATP by the arc operon of 
Streptococcus gordonii. The ArcD antiporter transports ornithine out and arginine into the 
S. gordonii cells. The arginine is taken up by the arginine deiminase (ArcA) protein, and 
converted into citrulline, with ammonia as a by-product. The citrulline is converted to 
carbamoylphosphate and ornithine by the ornithine carbamoyltransferase (ArcB) enzyme. The 
carbamoylphosphate can either be used in the biosynthesis of arginine by the Arg genes, or be 
converted to carbon dioxide, with the concurrent phosphorylation of ADP to ATP by the 
carbamate kinase (ArcC) gene. Excess ornithine from ArcB activity is either used alongside 
carbamoylphosphate in arginine biosynthesis, or transported out of the cell by the ArcD 
antiporter. Figure adapted from Cusumano et al. (2014). 
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Finally, the gene arcR encodes the ArcR transcriptional activator, which controls the expression 

of the ADS in response to L-arginine concentration (Dong et al., 2002), and is co-transcribed 

alongside another gene, queA, encoding an S-adenosylmethionine:tRNA ribosyltransferase-

isomerase enzyme (Liu et al., 2008).  

 

Interestingly, the study by Liu et al. (2008) also suggested that S. gordonii appeared to be 

unique in its linkage of the queA and arcR genes, as subsequent sequence analysis of other 

bacterial genomes demonstrated the presence of both genes separately, but not linked 

together or co-transcribed. The queA gene is involved in incorporating the nucleoside queosine 

into tRNA molecules, particularly those with an anticodon specific to the amino acids aspartic 

acid, asparagine, tyrosine and histidine (Slany and Kersten, 1994; Dineshkumar et al., 2002). It 

has also been linked previously to virulence in Shigella flexneri (Durand et al., 1994), and 

stationary growth phase survival in E. coli K12 (Noguchi et al., 1982), although neither of these 

associations have been found with the QueA protein in S. gordonii.  

 

In addition to the ArcR regulation of the arc operon, expression of the ADS is also regulated by 

other mechanisms. Dong et al. (2002) demonstrated that the ADS pathway of S. gordonii is 

subject to carbon catabolite repression (CCR) by the CcpA protein, which caused repression of 

arginine deiminase activity in the presence of glucose, but not galactose. Additionally, the same 

group showed induction of the ADS by another protein, Flp (shown immediately upstream of 

the arcA gene in Figure 1.3), under aerobic conditions (Dong et al., 2004). 

 

1.3.4. Additional roles of the arc genes 

The arcA gene itself may also act as a surface protein in oral streptococci species. In S. gordonii, 

S. intermedius and S. cristatus, ArcA has been shown to inhibit biofilm formation by the gingival 

pathogen Porphyromonas gingivalis (Christopher et al., 2010; Wu and Xie, 2010). In the case of 

S. gordonii, this was contradictory to previous evidence that suggested S. gordonii ArcA actually 

recruited P. gingivalis to the biofilm (Lin et al., 2008). However, this apparent recruitment of P. 

gingivalis by S. gordonii may be due to S. gordonii producing lower levels of ArcA on its surface, 

which may not have been high enough to prevent the P. gingivalis cells from binding to S. 

gordonii biofilms (Wu and Xie, 2010). In all three of these streptococcal species, ArcA has been 
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shown to signal to P. gingivalis to down-regulate expression of its surface fimbrial subunit 

protein, FimA, and furthermore it was shown that addition of purified ArcA from S. intermedius 

to the supernatant of P. gingivalis cells, caused active down-regulation of the expression of 

fimbriae by P. gingivalis itself (Christopher et al., 2010). 

 

Other studies of cell wall-associated and extracellular proteins in Streptococcus pyogenes 

demonstrated that all three enzymes of the ADS pathway, arginine deiminase (ArcA), ornithine 

carbamoyltransferase (ArcB) and carbamate kinase (ArcC), are wall-associated in GAS (Cole et 

al., 2005). In fact, arginine deiminase may even be released from the cell surface (Lei et al., 

2000), possibly contributing to pathogenicity in this species. In S. pyogenes strains, deletion of 

the arginine deiminase gene, known as streptococcal acid glycoprotein in this species, made 

the cells less able to invade human epithelial cells (Degnan et al., 2000; Marouni et al., 2003).  

 

S. gordonii also has the ability to biosynthesise L-arginine, and therefore it is important for it to 

tightly regulate biosynthetic and catabolic gene expression in order to avoid a futile cycle of 

producing and degrading L-arginine. This coordinated regulation is achieved by three 

homologous arginine-dependent regulators, ArcR, ArgR and AhrC. Whilst ArcR plays a role in 

regulating the expression of mainly the catabolism genes, the primary role of ArgR and AhrC 

appears to be in regulating L-arginine biosynthesis, though they also seem to regulate some 

genes involved in catabolism (such as arcDT) which indicates that their regulation overlaps 

slightly with that of ArcR (Jakubovics et al., 2015).  

 

1.3.5. ArgR and AhrC regulation of arginine biosynthesis  

The ArgR and AhrC proteins of S. gordonii were identified by comparison of the S. gordonii DL1 

(wild-type strain) genome with the sequences of known L-arginine-dependent regulators in 

other bacterial species. ArgR was identified through sequence homology to the ArgR protein of 

E. coli, and the AhrC strain through homology to the Bacillus subtilis AhrC protein (Jakubovics 

et al., 2015). ArcR was identified earlier than this, by homology to both B. subtilis AhrC, and the 

ArgR proteins of E. coli and Bacillus licheniformis (Dong et al., 2002; Zeng et al., 2006). Whilst 

ArcR is thought to work independently of the other two regulators, ArgR and AhrC are 

hypothesised by one model to form a protein complex, similar to a proposed model of 
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ArgR/AhrC coordination in Lactococcus lactis (discussed in the next section), in order to bind 

and regulate the arginine biosynthesis genes (Jakubovics et al., 2015). 

 

Further analysis of the role of the ArgR and AhrC regulators, by qRT-PCR analysis of gene 

expression in isogenic mutant strains of S. gordonii, revealed that these proteins 

transcriptionally repress the L-arginine biosynthesis and transport genes of S. gordonii 

(Jakubovics et al., 2015). This includes the genes argC (encoding an n-acetyl-gamma-glutamyl-

phosphate reductase enzyme) and argG (argininosuccinate synthase), both involved in L-

arginine biosynthesis; and pyrAb (also known as carB, carbamoyl phosphate synthase), which is 

involved in both L-arginine and pyrimidine nucleotide biosynthesis. ArcD was also shown to be 

regulated in response to L-arginine concentration, and plays a role in transporting L-arginine 

into the cell. ArcB was shown to have high sequence homology to an anabolic ornithine 

carbamoyltransferase enzyme called ArgF, and deletion of the arcB gene resulted in a strain of 

S. gordonii unable to grow under anaerobic conditions without exogenous L-arginine 

(Jakubovics et al., 2008), suggesting that it plays a role in both arginine catabolism and 

anabolism. This would mean that during arginine biosynthesis, it had the ability to act opposite 

to its role in arginine catabolism by catalysing the conversion of carbamoylphosphate to 

citrulline (Jakubovics et al., 2015). In all, the S. gordonii L-arginine biosynthesis genes are 

considered to consist of argCJBD, argGH, pyrAa and pyrAb (also known as carA and carB), and 

arcB. The catabolism genes consist only of arcABC of the ADS, and arcDT, although the latter 

have not been proven experimentally. 

 

All genes involved in arginine biosynthesis and transport, are down-regulated in response to 

high exogenous L-arginine concentrations by the ArgR and AhrC regulators. ArcR was also 

shown to regulate arginine biosynthesis genes (Jakubovics et al., 2015), as disruption of the 

arcR gene resulted in increased levels of argG expression and a lack of up-regulation of arcABC 

under high arginine. ArgR and AhrC were not shown to affect expression of the arc catabolism 

genes.  

 

Aside from control of L-arginine metabolism genes by regulatory proteins such as ArcR, ArgR 

and AhrC, coaggregation between S. gordonii and Actinomyces oris has also been shown to 

affect expression of these genes. Coaggregation between these two species caused an up-
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regulation of expression of different genes involved in L-arginine biosynthesis and transport in 

S. gordonii. Furthermore, coaggregation with A. oris allowed S. gordonii to grow in low 

exogenous L-arginine concentrations under aerobic conditions (Jakubovics et al., 2008).  

 

1.4.  L-arginine regulation in other bacterial species 

As mentioned previously, the L-arginine regulators of S. gordonii were discovered through 

homology to proteins in other species – specifically, B. subtilis AhrC, and E. coli and 

B. licheniformis ArgR (Dong et al., 2002; Zeng et al., 2006; Jakubovics et al., 2015). 

 

In B. subtilis, AhrC is the main regulator of both L-arginine biosynthesis and catabolism. The L-

arginine biosynthetic operons of B. subtilis consist of argCJBD, carAB and another gene, argF, 

which converts ornithine to citrulline for use in L-arginine biosynthesis, a function predicted to 

be performed by arcB in S. gordonii (North et al., 1989; Gardan et al., 1997; Jakubovics et al., 

2008). These genes are all repressed by AhrC under high L-arginine conditions, whilst the AhrC 

protein simultaneously up-regulates expression of L-arginine catabolism genes rocABC and 

rocDEF, which are also positively regulated by another protein called RocR (Gardan et al., 1997). 

Both RocR and AhrC up-regulate these catabolism genes under high exogenous L-arginine (or 

citrulline, proline or ornithine) conditions, through direct binding of AhrC to RocR, and RocR to 

the promoter upstream of rocA. However, the rocABC and rocDEF genes encode an arginase 

pathway, catabolising arginine to glutamate, rather than an arginine deiminase pathway such 

as those found in S. gordonii, or B. licheniformis. 

 

The environmental bacterium B. licheniformis expresses its own arginine deiminase system, 

controlled by the regulator protein ArgR. This protein acts as both an activator of the arginine 

deiminase pathway, and a repressor of L-arginine biosynthesis (Maghnouj et al., 1998). In this 

species, two copies of the ornithine carbamoyltransferase enzyme are present – one anabolic 

and one catabolic (Broman et al., 1975). Ornithine carbamoyltransferase enzymes have the 

ability to catalyse a reaction to form citrulline and phosphate from ornithine and 

carbamoylphosphate, or vice versa. In B. licheniformis, the catabolic copy is present within the 

arginine deiminase system, playing a similar role to the arcB gene in S. gordonii; whereas the 
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anabolic copy is involved in biosynthesising L-arginine from ornithine and carbamoylphosphate. 

Both are controlled in their expression by the same ArgR protein. 

 

In some species, particularly within the Lactobacillales order of bacteria, there are two or more 

L-arginine regulators present, similar to the systems operating in S. gordonii. For example, 

Lactococcus lactis contains two regulators, ArgR and AhrC, which are thought to either work 

together as a complex, or one protein regulates the other, in order to control expression of L-

arginine biosynthesis and catabolism genes (Larsen et al., 2004). AhrC was later shown by 

Larsen et al. (2005) to aid the ArgR regulator in binding the regulatory ARG box sequences 

upstream of the L-arginine biosynthesis operons, to repress their expression under high 

exogenous L-arginine conditions; and to additionally prevent ArgR from binding to the ARC box 

sequences upstream of the L-arginine catabolism genes, which would prevent activation of 

their expression under high L-arginine. A theory was proposed whereby they were able to do 

this by existing as homohexameric protein complexes of ArgR and AhrC separately, in the 

absence of L-arginine, and that the presence of L-arginine caused the proteins to form a 

heterohexameric subunit consisting of one ArgR and one AhrC trimer (Larsen et al., 2005). This 

would in turn allow them to regulate both biosynthetic and catabolic L-arginine operons, by 

way of binding distinct ARG and ARC operator binding sites respectively. 

 

 Regulatory binding sites 

Regulation of gene expression by interaction of a regulatory protein with an operator binding 

site upstream of the target gene is a well-known mechanism, with those sites often highly 

conserved between bacterial species due to families of regulator orthologs. However, a study 

by Makarova et al. (2001) indicated that whilst these types of L-arginine-specific ARG operator 

binding site are universally found throughout the genomes of many different bacterial species, 

they are poorly conserved. Despite strong conservation of the amino acid sequences of the 

actual L-arginine regulator orthologs in different species, the ARG box recognition sites for the 

same proteins were weakly conserved across different bacterial species. This is possibly due to 

the many versions of these regulators and L-arginine catabolism pathways found in different 

bacterial lineages, leading to divergence in mechanisms of binding and therefore the 

recognition sites themselves.  
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Additionally, different binding sites have been reported for different regulators even within the 

same bacterial species. For example, the aforementioned ARG and ARC boxes in L. lactis, direct 

the ArgR regulator to the promoters of either L-arginine biosynthetic genes (ARG boxes) or L-

arginine catabolism genes (ARC boxes) dependent on whether or not arginine is bound to the 

regulators (Larsen et al., 2005). Another example of this divergence in binding sequence within 

the same species is found within S. gordonii itself. In this case, the ArgR and AhrC regulators 

bind ARG box sequences upstream of the L-arginine biosynthetic genes, but ArcR binds a 

different recognition sequence upstream of the arcABC catabolism genes (Zeng et al., 2006). 

 

 Arginine regulation and virulence 

The presence of three or more L-arginine regulator proteins in one bacterial species, such as is 

found in S. gordonii, is not uncommon amongst the Lactobacillales order. Another species with 

a similar set of three regulators such as this is the pathogenic Gram-positive species, 

Streptococcus pneumoniae. S. pneumoniae encodes three separate L-arginine-dependent 

regulatory proteins, ArgR1, ArgR2 and AhrC, which between them control L-arginine catabolism 

and transport within its cells. S. pneumoniae is auxotrophic for arginine due to an inability to 

synthesise glutamate, and is therefore unable to biosynthesise it, relying upon exogenous 

arginine for growth (Hoskins et al., 2001; Härtel et al., 2012). The protein ArgR2 is orthologous 

to the ArcR protein of S. gordonii, controlling expression of the ADS and arcD genes in S. 

pneumoniae (Schulz et al., 2014).  

 

However, whilst the S. pneumoniae ArgR1 and AhrC proteins have been shown to regulate the 

argGH L-arginine biosynthesis genes, and the transport genes artPQ, abpAB and aapA, as 

expected, they also were found to regulate genes involved in bacterial virulence, including 

genes for L-arginine uptake from the environment and nasopharyngeal colonisation 

(Kloosterman and Kuipers, 2011). The cited study also proposed that the ArgR1 and AhrC 

proteins of S. pneumoniae may act in a similar way to the suggested mechanism in L. lactis, 

namely by forming a heterohexameric protein complex to regulate expression of these 

different genes (Figure 1.5).  
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This linkage of virulence with L-arginine metabolism in S. pneumoniae is not the first time that 

exogenous or endogenous L-arginine concentrations have been linked to something other than 

metabolism or growth in bacterial cells.  
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(A) (B) (C) 

Figure 1.5. Visual representation of the homohexameric and heterohexameric protein complexes 
that may regulate arginine metabolism. (A) represents the homohexameric complexes of the 
two separate arginine regulator proteins, for example, ArgR and AhrC of Lactococcus lactis or 
Streptococcus gordonii, or ArgR1 and AhrC of Streptococcus pneumoniae. (B) represents the 
heterohexameric arrangements of the trimers of these two regulatory proteins. (C) shows the 
alternating subunit arrangement of the proteins from above.  
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1.5.  Roles of L-arginine in other bacterial species 

Even within S. pneumoniae, the other L-arginine-dependent regulator, ArgR2, is linked to yet 

another differential phenotype. An isogenic S. pneumoniae TIGR4 mutant of this regulator 

showed an increase in fitness in comparison to the wild-type strain in a nasopharyngeal 

infection model (Schulz et al., 2014), and indicated that in this species, ArgR2 may have further 

regulatory effects on genes involved in fitness and virulence, which were subsequently up-

regulated to compensate for the loss of ADS and ArcD expression that came with deletion of 

the argR2 gene.  

It is not only in S. pneumoniae that L-arginine metabolism or regulation has been linked to 

virulence. Random transposon mutagenesis of the opportunistic pathogen Enterococcus 

faecalis demonstrated a number of genes that impacted upon biofilm formation in this species 

(Kristich et al., 2008), including argR, ahrC, and the pyrimidine/L-arginine biosynthesis gene 

pyrC. Further analysis of these genes revealed that interruption of the ahrC gene not only 

affected biofilm formation, but also the virulence of the E. faecalis strain in an endocarditis 

infection model (Frank et al., 2013). In contrast, an argR mutant was not affected in 

endocarditis virulence. Investigation into the role of AhrC in E. faecalis infections demonstrated 

that an ahrC transposon mutant strain of E. faecalis OG1RF was impaired in both initial 

attachment of cells to a surface, and further accumulation of cells to the developing biofilm, 

although its specific role in virulence was not clear (Frank et al., 2013). It may be that, as the 

endocarditis model used to assess these strains demonstrated a biofilm-associated infection, 

the defect in initial biofilm formation translated into a decrease in virulence in this E. faecalis 

strain. 

 

Within the broadly pathogenic species Streptococcus pyogenes, the arginine deiminase system 

and its activity in catabolising exogenous L-arginine have been linked to more than one 

virulence phenotype. The streptococcal acid glycoprotein (SAGP) of S. pyogenes, found in cell 

extracts from this bacterium, was able to inhibit the proliferation of human peripheral blood 

mononucleocytes in proliferation assays (Degnan et al., 1998).  This protein was also found to 

have arginine deiminase activity, and it was theorised that its ability to prevent proliferation of 

host immune cells may be due to the activity of this enzyme in the catabolism of exogenous L-

arginine. Depletion of L-arginine from the growth medium by SAGP may prevent the 
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mononuclear cells from growing and proliferating, or may be related to their inability to 

synthesise nitric oxide in the absence of L-arginine, which is a necessary requirement for DNA 

synthesis within these cells (Efron et al., 1991). Irrespective of the mechanism by which SAGP 

prevents mononuclear cell proliferation, this activity may down-regulate the host immune 

response to S. pyogenes infection, thereby increasing the pathogenicity of this species. 

 

Another instance of the ADS of S. pyogenes affecting virulence and fitness in the cells, is the 

apparent necessity of the ArcA and ArcB enzymes for survival of S. pyogenes within host tissues. 

Cusumano et al. (2014) showed that deletion of the arcA gene affected S. pyogenes 

colonisation of soft tissues and mucosa, and arcB (and arcC) deletion caused poor colonisation 

of cutaneous tissue. It was determined that, whilst the ability to metabolise L-arginine was 

linked to mucosal invasion in S. pyogenes, the ability to metabolise both L-arginine and L-

citrulline was important in allowing colonisation of soft tissue and manipulation of the immune 

system in a similar way to that mentioned above for E. faecalis AhrC. Additionally, catabolism 

of L-arginine and citrulline by the ADS system confers increased acid tolerance on S. pyogenes 

cells, which was deemed important for bacterial colonisation of human soft tissues, as high 

bacterial densities would cause a build-up of acid within the colonised tissues (Cusumano et 

al., 2014). 

 

In the periodontal pathogen F. nucleatum, the adhesive functions of the outer membrane 

protein RadD are inhibited by L-arginine. This protein mediates the coaggregation of F. 

nucleatum with Gram-positive early coloniser species of the dental plaque biofilm, such as A. 

oris, S. sanguinis and C. albicans (Kolenbrander et al., 1989; Kaplan et al., 2009; Wu et al., 

2015). However, RadD has also been shown to cause F. nucleatum to induce human 

lymphocytic cell death in vitro, in conjunction with another surface protein, Fap2, via a contact-

based mechanism (Kaplan et al., 2010). This helps F. nucleatum to suppress the immune system 

in vivo, and endure within the plaque biofilm. In addition, RadD-mediated binding of F. 

nucleatum to S. sanguinis has also been shown to allow F. nucleatum cells to better survive 

exposure to hydrogen peroxide in a mixed species microbiota model (He et al., 2012), showing 

that this surface protein, whilst inhibitable by L-arginine, is also able to aid F. nucleatum survival 

against killing by both the host immune system and other bacterial by-products within the 

plaque biofilm. 
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Not all roles that L-arginine plays in other bacterial species are related to virulence or survival, 

although many have been shown to be linked to biofilm formation, including the examples 

above. The E. faecalis AhrC regulator affected virulence in a biofilm-associated infection model; 

S. pyogenes infection of soft tissues within a human host, aided by the metabolism of L-

arginine, is often caused by a biofilm community; and F. nucleatum binding to early colonisers 

within the plaque biofilm was mediated and inhibited by L-arginine.  

 

One further example of a link between L-arginine transport and biofilm formation and 

pathogenesis, is in the human pathogen Staphylococcus aureus. Here, the ArcD protein, which 

encodes an arginine-ornithine antiporter, has been shown to be important in biofilm formation 

due to its ability to enhance accumulation of the polysaccharide intercellular adhesin (PIA) (Zhu 

et al., 2007), which is necessary for formation of a multi-layered biofilm by S. aureus (Cramton 

et al., 1999). 

 

In a microfluidics system model of S. gordonii biofilms, different concentrations of L-arginine 

were found to affect biofilm formation in different ways (Jakubovics et al., 2015). For example, 

in saliva, the addition of low concentrations of L-arginine (0.5-500 µM) enhanced biofilm 

formation when compared to saliva without added exogenous arginine, whereas adding high 

concentrations (5-500 mM) reduced the levels of biofilm formation. This observation forms the 

basis for part of the work in the first results chapter (Chapter 4) of this thesis.  

 

1.6.  Thesis outline and programme of work 

As mentioned above, exogenous L-arginine concentration was shown to have varying effects 

on the biofilm formation ability of S. gordonii DL1. However, the impact of L-arginine 

concentration on planktonic growth of S. gordonii has never been directly assessed, and so 

forms part of the experimental work in Chapter 4. Leading on from this work, an assessment 

of gene regulation in response to arginine depletion in S. gordonii planktonic cells was made, 

and then further investigated to elucidate which of these gene expression responses were 

specific to L-arginine depletion, and which appeared to be part of a general stress response. 
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Chapter 5 focuses on looking at the role the three L-arginine-dependent regulators of S. 

gordonii, ArcR, ArgR and AhrC, play within the S. gordonii cells. This will particularly focus on 

the regulation of different genes throughout the chromosome, as measured by genome-wide 

microarray analysis in response to these three regulatory proteins, and aiming to build a 

picture of the specific regulons of each of these proteins. 

 

Chapter 6 concentrates on the ArcR regulator, and in particular, an S. gordonii isogenic mutant 

strain of the arcR gene, which was found to have a biofilm-defective phenotype. The S. gordonii 

argR and ahrC mutant strains were not shown to have a similar attenuation in biofilm 

formation, and analysis of the ArcR-specific microarray experiment showed the up-regulation 

of one particular uncharacterised gene, SGO_0846, within the ΔarcR mutant strain. Therefore, 

investigations were made into whether SGO_0846 was responsible for the S. gordonii arcR 

mutant biofilm defect, what role it may be playing within S. gordonii cells, and whether 

complementation of an intact copy of the arcR gene would reverse the biofilm attenuation 

observed in the S. gordonii ΔarcR strain. 

 

1.7.  Thesis aims and objectives 

In all, the primary aim of this work is to investigate the role that L-arginine plays in the 

expression of different genes, and the biofilm formation of S. gordonii. Furthermore, it also 

aims to examine the role of the ArcR regulator in mediating these effects.  The objectives of 

this work are as follows: 

 

1. Does L-arginine affect S. gordonii planktonic growth? 

- Planktonic growth in S. gordonii will be assessed for differences in response to varying 

concentrations of L-arginine. 

 

2. Are gene expression responses to arginine depletion L-arginine-specific, or part of a general 

stress response? 

- Genes of interest will be analysed for changes in expression in response to arginine 

depletion and depletion of other amino acids, in order to determine L-arginine-specific 

and general depletion-based stress responses. 
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3. What roles do the three L-arginine-dependent regulator proteins (ArcR, ArgR and AhrC) play 

in gene regulation in S. gordonii? 

- Isogenic mutant strains of the three arginine regulators will be assessed by genome-

wide microarray, in order to determine the regulons for each arginine-dependent 

regulator. 

 

4. What causes the defective biofilm phenotype of the S. gordonii ΔarcR strain? 

- Complementation of the S. gordonii ΔarcR strain, and subsequent analysis of biofilm 

formation levels of this and the deletion strain, will determine whether ArcR is 

responsible for the biofilm defective phenotype seen in that mutant. 

 

5. What roles are ArcR and SGO_0846 playing within S. gordonii biofilms? 

Deletion of the SGO_0846 gene, and analysis of the biofilm formation levels of that strain 

alongside the S. gordonii arcR strains will determine whether this protein is responsible for the 

ΔarcR biofilm defect, in addition to characterisation of the SGO_0846 protein by in silico 

analysis 

 

 

 

 

 

 

.
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2. Materials and Methods 

2.1. Bacterial strains and culture techniques 

2.1.1. Routine culture of microorganisms  

Streptococcus gordonii strains (Table 2.1) were routinely cultured for 18 h overnight in THYE 

(30 g/L Bacto™ Todd Hewitt Broth [Becton Dickinson and Co.], 5 g/L yeast extract [Melford 

Laboratories Ltd.]) or BHY (37 g/L Brain Heart Infusion [Melford Laboratories Ltd.], 5 g/L yeast 

extract) medium, at 37°C anaerobically (80% N2, 10% H2, 10% CO2 [Bugbox Plus, Ruskin]).  

S. gordonii cells were alternatively cultured on BHY or THYE medium solidified by the inclusion 

of 1.5% w/v agar prior to autoclaving. Inoculated plates were grown at 37°C for 48 h in a candle 

jar. 

Chemically-defined FMC medium was also used as growth medium for both planktonic and 

biofilm cultures, made to a modified recipe outlined in Jakubovics et al. (2008). On occasion, L-

arginine, L-histidine, or the branched-chain amino acids (L-leucine, L-isoleucine, L-valine) were 

omitted from FMC, or were added at different concentrations. Where necessary, media for 

S. gordonii were supplemented with antibiotics at the following concentrations: spectinomycin 

250 µg/mL, erythromycin 2 µg/mL, kanamycin 250 µg/mL. 

 

Escherichia coli strains, used for cloning experiments, were grown in Luria Bertani (LB) broth 

(Melford Laboratories Ltd.), or on LB solid medium containing 1.5% w/v agar (added prior to 

autoclaving), at 37°C in aerobic conditions with shaking at 180 rpm. Media were supplemented 

with antibiotics if necessary, at the following concentrations: erythromycin 400 µg/mL, 

kanamycin 25 µg/mL, ampicillin 100 µg/mL. 

 

2.1.2. Bacterial frozen glycerol stocks 

Bacterial planktonic cultures were grown for 18 h overnight, at 37°C, in liquid broth (LB for E. 

coli stocks, THYE or BHY for S. gordonii stocks). Cells were harvested at 3800 x g for 10 min 

(Sigma Laborzentrifugen model 3K10), and resuspended in 1 mL fresh medium containing 

sterile 50% v/v glycerol (VWR), in 1.5 mL sterile screw-cap tubes. Cells were then frozen at 

- 80°C for use as inoculum in other experiments. 
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Strain name Genotype Source/Reference 

Streptococcus gordonii DL1 

(Challis) 
WT* strain H. Jenkinson, Bristol University, UK 

Streptococcus gordonii PK3346 argR::aphA3 (KanR) N. Jakubovics, Newcastle University, UK 

Streptococcus gordonii PK3347 argR::ermAM (ErmR) N. Jakubovics, Newcastle University, UK 

Streptococcus gordonii PK3348 argR::aphA3 / arcR::ermAM (KanR, ErmR) N. Jakubovics, Newcastle University, UK 

Streptococcus gordonii PK3349 argR::aphA3 / ahrC::ermAM (KanR, ErmR) N. Jakubovics, Newcastle University, UK 

Streptococcus gordonii PK3350 ahrC::ermAM (ErmR) N. Jakubovics, Newcastle University, UK 

Streptococcus gordonii PK3351 arcR::ermAM (ErmR) N. Jakubovics, Newcastle University, UK 

Streptococcus gordonii PK3354 arcR::aad9 (SpecR) N. Jakubovics, Newcastle University, UK 

Streptococcus gordonii PK3355 arcR::aad9 / argR::aphA3 (SpecR, KanR) N. Jakubovics, Newcastle University, UK 

Streptococcus gordonii PK3356 arcR::aad9 / ahrC::ermAM (SpecR, ErmR) N. Jakubovics, Newcastle University, UK 

Streptococcus gordonii PK3357 arcR::aad9 / argR::aphA3 / ahrC::ermAM (SpecR, KanR, ErmR) N. Jakubovics, Newcastle University, UK 

Streptococcus gordonii NU05 SGO_0846::ermAM (ErmR) This thesis 

Streptococcus gordonii NU06 SGO_0846::aphA3 (KanR) This thesis 
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*WT = wild-type 

Table 2.1. List of bacterial strains used in this project. 

 

 

Streptococcus gordonii NU07 arcR::ermAM / SGO_0846::aphA3 (ErmR, KanR) This thesis 

Streptococcus gordonii NU08 arcR::aad9 / SGO_0846::ermAM (SpecR, ErmR) This thesis 

Streptococcus gordonii NU09 arcR::aad9 / SGO_0846::aphA3 (SpecR, KanR) This thesis 

Streptococcus gordonii NU10 PK3354 (parcRcomp)  (ErmR) This thesis 

Streptococcus gordonii NU11 NU09 (parcRcomp) (ErmR) This thesis 

Escherichia coli TOP10 

F- mcrA Δ( mrr-hsdRMS-mcrBC) Φ80lacZΔM15 

Δ lacX74 recA1 araD139 Δ(araleu)7697 galU galK rpsL 

(StrR) endA1 nupG 

Invitrogen 

Escherichia coli HST08 

F-, endA1, supE44, thi-1, recA1, relA1, gyrA96, phoA, Φ80d 

lacZΔ M15, Δ (lacZYA - argF) U169, Δ (mrr - hsdRMS - mcrBC), 

ΔmcrA, λ– 

Clontech 

Escherichia coli JM83 
F– ara Δ(lac-proAB) rpsL (Strr)[φ80 dlacΔ(lacZ)M15] thi 

(pVA838) 
Invitrogen 
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2.1.3. Saliva sample collection 

Whole stimulated saliva was collected from ≥5 healthy individuals, not on courses of antibiotic 

treatment, who had not eaten for 2 h prior to donation. Saliva production was stimulated by 

chewing unflavoured chewing gum base. Saliva was kept on ice, dithiothreitol (DTT) was added 

to a final concentration of 2.5 mM, and the mixture was then centrifuged at 15,000 x g for 30 

min, 4°C (using a Beckman model J2-21 centrifuge). The supernatant was collected, diluted 1:2 

or 1:4 in sterile dH2O, and filter sterilised through a 0.2 µm membrane (Acrodisc Syringe Filters, 

Pall Life Sciences). This was then aliquoted and stored at -20°C, for use as growth medium. 

 

2.1.4. Growth curves and spectrophotometric measurements 

Bacterial cells were cultured for 18 h in sterile medium, harvested at 3800 x g (using Sigma 

Laborzentrifugen model 3K10) and resuspended in fresh medium. These cells were then used 

as an inoculum for fresh growth medium, in order to follow the growth rate and yield of the 

bacterial strain. Sterile medium was inoculated with a 1:20 dilution of bacterial overnight 

culture. Growth was quantified by taking optical density measurements of the bacterial cultures 

until cells reached stationary growth phase. Optical density of planktonic cultures was 

measured using plastic screw-cap tubes (16 x 125 mm Culture Tubes, Corning), in a Biochrom 

Libra S11 spectrophotometer at 600 nm wavelength. 

 

2.1.5. Phase contrast microscopy 

Microscopy was performed on planktonic bacterial cultures, or smeared bacterial colonies 

taken from agar plates, in order to check cell morphology and ensure no contamination was 

present in the samples. Light microscopy was carried out on a Zeiss Universal microscope, using 

a Zeiss Neofluar 25X (25/0.60 Ph2 160/0.17) objective.  

 

2.2.  Biofilm growth and quantification 

2.2.1. Routine biofilm culture of microorganisms 

S. gordonii cells were cultured anaerobically in 6-well or 96-well microtitre plates (MTPs) 

(CELLSTAR, Greiner Bio-One), with 50% BHY (50% v/v in sterile dH2O), or 100% FMC medium, 

to encourage biofilm formation.  
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Alternatively, biofilms grown for quantification assays shown in Figure 5.1 were cultured 

aerobically in 96-well MTPs, with 100% TYEG medium (10 g/L Bacto™ Tryptone [Becton 

Dickinson and Co.], 5 g/L yeast extract, 3 g/L dipotassium phosphate [VWR], 2 g/L D-glucose 

[Melford Laboratories Ltd.]; pH 7.5), to encourage biofilm formation. 

MTPs were placed in a humid, anaerobic (or aerobic) environment at 37°C for 24 h, to allow 

biofilms to form on the plate surface. Biofilms were then quantified downstream using crystal 

violet assays. 

 

2.2.2. Crystal violet biofilm assay 

S. gordonii cells were cultured to form biofilms as described in section 2.2.1 above. Levels of 

biofilm formation were quantified by the crystal violet method (Christensen et al., 1985; 

Stepanović et al., 2000). Blank wells were included as a control, containing only sterile medium 

with no cells. Prior to staining, the optical density of the wells was measured at 600 nm 

(Synergy™ HT Microplate Reader, BioTek) in order to estimate the total bacterial growth for 

each well, then the planktonic cell phase was removed from each well. Biofilms were stained 

with 1 volume 0.1% crystal violet dye, and then washed three times in 0.5 volumes PBS to 

remove loosely-bound cells and unbound dye. Following each wash, the plate was tapped to 

remove any loosely-bound cells or excess liquid. The crystal violet stain on the cells was then 

dissolved in 1 volume 7% acetic acid, and the OD570 taken, using the Synergy microplate reader, 

as a measure of biofilm formation. 570 nm was used as the best wavelength for measuring 

crystal violet dye. For each well, the average optical density for the blank wells was subtracted 

as background before quantifying levels of biofilm formation.  

 

2.2.3. Statistical analysis of biofilm quantification assays 

Differences in the levels of biofilm formation between different S. gordonii strains were 

assessed for statistical significance at a 95% confidence level, using one-way ANOVAs with 

Tukey’s pairwise comparisons (assuming equal variances) and two-sample T-tests, performed 

with the Minitab 17 software (Minitab, Inc.).  
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2.3.  Bacterial cloning techniques 

2.3.1. Agarose gel electrophoresis 

Gel electrophoresis was carried out on DNA products from PCR, qRT-PCR or restriction digest 

reactions. qRT-PCR products were analysed using 3% agarose gels, whereas standard PCR and 

digest products were analysed on a gel containing between 0.8-3% agarose (Melford 

Laboratories), depending on the size of the products being analysed. DNA products were mixed 

1:5 with 5x DNA Loading Buffer (Bioline) for loading on the gel, unless already stained with 

ReddyMix from a previous PCR reaction (see section 2.3.3d). 

 

GelRed Nucleic Acid Gel Stain (10,000x in water; Biotium) was added to the gel in order to 

visualise DNA. The following DNA molecular weight markers were used for product size 

reference: HyperLadder 25 bp (25-500 bp; Bioline); HyperLadder 100 bp (100-1013 bp; Bioline), 

HyperLadder 1 kb Plus (250-12,007 bp; Bioline). 

Gels were run at 70-80 V, for 90-120 min, using a Bio-Rad Power Pac 300. Once run, they were 

visualised on the G:BOX Transilluminator (Syngene) on transilluminator setting, on live capture 

at 5.51 Mpixel. 

 

2.3.2. DNA extraction and purification 

2.3.2a. Genomic DNA extraction from whole cells  

Extraction of DNA from S. gordonii cells was carried out using a modified version of the 

MasterPure DNA Purification kit (Epicentre) protocol.  

 

S. gordonii cells were cultured for 18 h in BHY medium at 37°C. Cells were harvested from this 

culture, and resuspended in 37°C pre-warmed spheroplasting buffer (20 mM Tris-HCl, pH 6.8; 

10 mM MgCl2; 26% w/v raffinose.5H2O). Lysozyme (250 µg/mL) and 50 U mutanolysin 

(reconstituted to 10,000 U/mL) were added to the cells prior to incubation at 37°C for 30 min. 

Following incubation, cells were placed into screw-cap tubes with 2x T&C Lysis Solution 

(Epicentre) and acid-washed glass beads, and placed into a bead-lysis machine (Qiagen 

TissueLyser LT) at 50 Hz for 5 min. Tubes were transferred to ice, and 50 µg/µl Proteinase K 

(Epicentre) was added. 
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Cells were incubated at 65°C for 30 min, with brief vortexing every 5 m, and cooled to 37°C. 

RNase A (5 µg/µl, Epicentre) was added before further incubation at 37°C for 30 min. Samples 

were placed on ice, and the protocol continued from the DNA precipitation stage of the 

MasterPure™ Gram Positive DNA Purification Kit (Epicentre) protocol onwards, with the 

exclusion of the later RNase A step. DNA was eluted into TE buffer (10 mM Tris, 1 mM EDTA, 

pH 8.0). DNA concentrations were determined using a NanoDrop ND-1000 Spectrophotometer 

(Thermo Scientific), using the DNA-50 setting. Concentration was measured in ng/µl, and purity 

and quality determined by assessment of the 260/280 and 260/230 readings. Following 

extraction, DNA was stored at - 20°C for use in downstream applications. 

 

2.3.3. Molecular methods 

2.3.3a. Primer design 

Primers for use in quantitative reverse transcription PCR (qRT-PCR) were designed using 

Primer3 software (Rozen and Skaletsky, 2000). qRT-PCR primers were designed to be between 

15-25 bp in length, with a Tm of approximately 60°C, and to generate a product between 50-

200 bp in length.  

 

Primers for other PCR applications were designed using SnapGene software (GSL Biotech, 

2015), and NCBI Primer-BLAST (Ye et al., 2012). All nucleotide sequences for primer design were 

obtained from NCBI Gene (NCBI, 2011-2012). Primer sequences can be found in Table 2.2 and 

Table 2.3. 

 

2.3.3b. Plasmid design and mapping 

Recombinant plasmids were designed and mapped using the SnapGene software (GSL Biotech, 

2015). A description of plasmids used in this project can be found in Table 2.4. 
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qRT-PCR primers 

Primer name Primer sequence Product length qRT-PCR target gene Source/Reference 

16SSg 
F: AGACACGGCCCAGACTCCTAC 

138 bp 
S. gordonii 16S rRNA 

gene 
(Jakubovics et al., 2008) 

R: CTCACACCCGTTCTTCTCTTACAA 

q0175 
F: GCAAGGACACACCTTCTATGAACAA 

98 bp 
SGO_0175 (argG) 

gene 
(Jakubovics et al., 2008) 

R: CCGTCTTGTGGGCAATTTCA 

q0698 
F: ATGAGGATTTCGTTGCCTTG 

112 bp 
SGO_0698 (recN) 

gene 
This thesis 

R: CGAGCCTTATGCTCCTCTTG 

q0846 
F: TTACCCACCAGGAAAACCAG 

181 bp SGO_0846 gene This thesis 
R: ACCTGGATCGTTTGGATCTG 

q0966 
F: GACCCTTCAGGAAATGCAAC 

107 bp SGO_0966 (hsa) gene This thesis 
R: TCGGCAGGGTCATACTTTTC 

q0978 
F: CAATTTTTCAGCGACACTCG 

70 bp SGO_0978 gene This thesis 
R: TCTTTTTCCCAAAGTTTCTTTCC 

q1401 

 

F: ATTACGAGGGCGAGATTGTC 
144 bp SGO_1401 gene This thesis 

R: GGTTGCCATATTGCTGGTTC 

q1411 

 

F: GCAGTTGGAGGAAATTCTGG 
146 bp SGO_1411 (hisC) gene This thesis 

R: CAGCATCCTTGGAAAAGGTC 

q1576 

 

F: ATTTTGGCGCCTATGACATC 

119 bp SGO_1576 (bfbC) gene This thesis 
R: CCCAAGAAGGCTCCTATTCC 
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q1582 
F: TATCCGGCTACTTGCAATCC 

154 bp SGO_1582 (bfbF) gene This thesis 
R: GCTCGCTAAAGTCCACCTTG 

q1587 
F: GCGACGCCCTTGTCATGAAT 

78 bp 
SGO_1587 (queA) 

gene 
This thesis 

R: CGTGACCACCAGTTCCAGGT 

q1588 
F: ATGGAAGACGCCCTCATCAT 

102 bp SGO_1588 (arcR) gene This thesis 
R: CAGTGCATCCAGAATCGCTC 

q1592 
F: AGTTTTGGGCCGTATGTTTG 

111 bp SGO_1592 (arcB) gene 
(Jakubovics et al., 2015) 

[Known as 1447F/R] R: TCGTCAGTCAAACCATTCCA 

q1686 
F: AAGATCGCACTCAGCCTTTG 

105 bp SGO_1686 gene This thesis 
R: TATCGCCTAAGCGAAACAGG 

q1699 
F: GAAACTCCCAATGCAACTCC 

136 bp SGO_1699 gene This thesis 
R: CCACACGACGATCAATATCAG 

q2015 
F: TCCTTGACCCTGAGCATTTC 

136 bp SGO_2015 gene This thesis 
R: CCATAAGGACATTCCGCAAC 

q2028 
F: GACCCATGCGGGTATTTATG 

131 bp SGO_2028 (wzg) gene This thesis 
R: CACCACCCAAAAGGTCAATC 

q2056 
F: AGCCATCTCAAGAAGGTCCA 

101 bp 
SGO_2056 (mutS) 

gene 
This thesis 

R: CCTGTACGGGCATTTTCAGT 

         

        Table 2.2. List of qRT-PCR primers used throughout this project. 
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Standard PCR primers 

Primer name Primer sequence* 
Product 

length 
Use in project Source 

SGO_0846-Bsu361 
F1: TGCACGTAACTCTCGTTACAACAAC 

1562 bp 
SGO_0846  

knock-out 
This thesis 

R1: TGCATCTGACCAAGTCAACTCTTTC 

aphA3-Bsu361 
F3: TGCACCTGAGGAAGGAACAGTGAATTGGA 

910 bp 
SGO_0846  

knock-out 
This thesis 

R3: TGCACCTGAGGAAGCTTTTTAGACATCTAAATC 

ermAM-Bsu361 
F1: TGCACCTGAGGGGAATTGAAGTTAAATTAAATGCT 

816 bp 
SGO_0846  

knock-out 
This thesis 

R1: TGCACCTGAGGGGAATTTACAAAAGCGACTCATAGA 

0846 F1 ovex TGCATTATCTTGTTCAGTATTAGCTGCAG 

869 bp 
SGO_0846  

knock-out 
This thesis 0846 R1 Kan ovex ctccaattcactgttccttgcTCTGGTAAATCAACACTTGGAGTT 

0846 R1 Erm ovex gttcatgtaatcactccTCTGGTAAATCAACACTTGGAGTT 

0846 F2 Kan ovex agatttagatatctaaaaagcttatCAACACCAGGTTTGGTAACAAC 

903 bp 
SGO_0846  

knock-out 
This thesis 0846 F2 Erm ovex acgggaggaaataattcCAACACCAGGTTTGGTAACAAC 

0846 R2 ovex TGCACACTGTTCGCCCATTTCTTA 

Kan ovex 
F1: gcaaggaacagtgaattggag 

914 bp 
SGO_0846  

knock-out 
This thesis 

R1: ataagctttttagatatctaaatct 
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*Regions within primer sequences correspond to: RESTRICTION ENZYME SITE; sequence complementary to another primer. 

 

Table 2.3. List of standard PCR primers used throughout this project. 

 

 

Erm ovex 
F1: ggagtgattacatgaacAAA 

752 bp 
SGO_0846  

knock-out 
This thesis 

R1: gaattatttcctcccgtTAA 

arcR clo 

F1: CTAGGCATGCATGAATAAAATAGAAAGTAGACATCGT 

554 bp 
arcR 

complementation 

P. Bateson 

(unpublished) 

R1: TGCAGTCGACCCGTTTGGCTGGAGAATAAA This thesis 

pPE1010 
F2: GAGGTGCTCCAGTGGCTTCT 

5652 bp 
arcR 

complementation 
This thesis 

R2: CGCCTGGGGTAATGACTCTCT 

CP25 
F3: ccactggagcacctcATGTTGTGTGGAATTGTGAGCG 

181 bp 
arcR 

complementation 
This thesis 

R2: tattcataacagtacTATTTTATTATACCAGCCCCCT 

arcR comp 
F2: gtactgttatgaataAAATAGAAAGTAGACATCGTTTAATTCGTTCCCT 

494 bp 
arcR 

complementation 
This thesis 

R2: tcattaccccaggcgTTATTTACTAAAGAAAAATGGTGGGGCAAATTCTTTAAGCTTAT 
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   Table 2.4. List of plasmids used in this project. 
 

 

 

 

 

Plasmid name Genotype Source/Reference 

parcRcomp pPE1010 vector, CP25+ arcR+ (ErmR) This thesis 

pPE1010 ermAM cassette, gfp reporter plasmid 

(ErmR) 
(Egland et al., 2004) 

pCM18 ermAM cassette, CP25 promoter, 

gfpmut3* gene (ErmR) 
(Hansen et al., 2001) 

pSF151 Suicide vector, aphA3 cassette (KanR) (Lin et al., 1992) 

pVA838 Shuttle vector, ermAM cassette (ErmR) (Macrina et al., 1982) 

pCR2.1 
amp cassette, kan cassette, lacZα 

reporter gene (AmpR, KanR) 

Life Technologies TA 

Cloning Kit 
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2.3.3c.  Release of DNA from whole cells using GeneReleaser 

Colony PCR was carried out on 1 µl whole bacterial cells from 18 h planktonic cultures, using 20 

µl resuspended GeneReleaser (BioVentures, Inc.) to break open cells and inactivate PCR 

inhibitors before performing a normal PCR reaction, using the newly-released DNA as a 

template. The GeneReleaser reaction was performed to manufacturer’s instructions, using the 

following thermocycler programme: 1) 65°C for 30 s; 2) 8°C for 30 s; 3) 65°C for 90 s; 4) 97°C 

for 180 s; 5) 8°C for 60 s; 6) 65°C for 180 s; 7) 97°C for 60 s; 8) 65°C for 60 s; 9) 80°C ∞.  

 

Once reactions were held at 80°C, PCR reaction mixture was added, and PCR was performed as 

detailed below. 

 

2.3.3d. Polymerase chain reaction 

All thermocycler reactions were carried out on T100 Thermal Cycler (Bio-Rad) or DNA Engine 

PTC-200 (MJ Research) thermocycler machines.  

 

Standard polymerase chain reaction (PCR) was performed on DNA samples using the following 

reaction: 1) 94°C for 2 min; 2) 94°C for 10 s; 3) 55°C for 30 s; 4) 68°C for 60 s; repeat from step 

2 35x; 5) 68°C for 7 min; 6) 4°C ∞.  

 

DNA template was used at around 50 ng/µl for S. gordonii chromosomal DNA, and around 30 

ng/µl concentrations for plasmid DNA. Primers were used at 2.5 µM concentrations, diluted in 

sterile dH2O. ThermoPrime 2x ReddyMix PCR Master Mix (Thermo Scientific), containing Taq 

polymerase and 1.5 mM MgCl2, was used as a polymerase enzyme for standard PCR reactions. 

This also contained an inert red dye, which bound directly to PCR products for downstream 

analysis using agarose gel electrophoresis. 

 

Step 3) of the PCR protocol described above constituted the annealing step of the PCR 

programme, the temperature of which depended upon the melting temperature (Tm) of the 

primers used. Tm was calculated using the primer sequence, by the 2(AT) + 4(GC) method. The 

annealing temperature of step 3) of the PCR protocol was then determined to be 5°C lower 

than the primer Tm.   
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For each PCR reaction, one negative (no template) control was also included for each primer 

set, for comparison with experimental samples. In some reactions (i.e. checking gene knockout 

or complementation by PCR), a positive control reaction containing chromosomal or plasmid 

DNA was also included. 

 

Long-range overlap extension (ovex) PCR was carried out on DNA samples using the following 

reactions: 1) 95°C for 5 min; 2) 92°C for 10 s; 3) 55°C for 30 s; 4) 68°C for 2 min; repeat from 

step 2 10x; 5) 92°C for 15 s; 6) 55°C for 30 s; 7) 68°C for 2 min plus 20 s/cycle; repeat from step 

5 25x; 8) 68°C for 7 min; 9) 4°C ∞. 

 

DNA templates and primers were used at the same concentrations as detailed for standard PCR 

above. CloneAmp HiFi PCR Premix (Clontech), containing 1.5 mM MgCl2, was used as a 

polymerase enzyme for long-range PCR reactions for use in downstream In-Fusion cloning 

reactions; Expand High Fidelity PCR System (Roche), containing a mix of Taq and Tgo 

polymerases (with 1.5 mM MgCl2), was used as a polymerase enzyme for long-range PCR 

reactions for downstream restriction digests or overlap extension PCR.  

 

As for standard PCR reactions, the annealing temperatures of steps 3) and 6) of the above PCR 

protocol varied according to the Tm of the primer set used. The extension time of steps 4) and 

7) also varied according to the expected length of the amplified product. A negative control 

was also included in every PCR reaction, as for standard PCR. 

 

2.3.3e. PCR product and plasmid purification 

PCR product and plasmid purification reactions were carried out using the QIAquick PCR 

purification kit and QIAprep Spin Miniprep plasmid kit (QIAGEN), in accordance with the 

manufacturer’s protocols. 

 

2.3.4. Bacterial transformation  

2.3.4a. Restriction digest and ligation 

Restriction digests were carried out using the relevant buffer and inactivation conditions for 

each enzyme, with 20 U enzyme (at concentration 20,000 U/mL) used per 10 µl reaction. For 
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SalI-HF (high-fidelity SalI enzyme) and SphI-HF (New England Biolabs), a double digest reaction 

required the use of Buffer 4 (New England Biolabs), with an incubation at 37°C for 1 h followed 

by heat inactivation of the enzyme at 65°C for 20 min. For Bsu361 digestion, Cutsmart buffer 

(New England Biolabs) was required, with a 1 h incubation at 37°C followed by inactivation at 

80°C for 20 min. In reactions where two enzymes were used, single digests were run alongside 

the double digests as controls. 

 

Ligation reactions were performed using 400 U T4 DNA Ligase (400,000 U/mL, New England 

Biolabs), in a 10 µl reaction, with 1:1 and 3:1 ratio reactions of insert to vector. Reactions were 

performed to the manufacturer’s instructions, with a 10 min incubation at 20°C, followed by 

heat inactivation of the enzyme at 65°C for 10 min. Ligated products were then used in 

downstream transformation reactions. 

 

2.3.4b. Ligation-independent cloning 

Ligation-independent cloning was carried out using the In-Fusion HD Cloning kit (Clontech), 

according to manufacturer’s instructions. PCR products were designed to contain ends that 

were overlapping and complementary to both each other and the ends of the vector, using the 

SnapGene software (GSL Biotech, 2015). The vector was linearised, and the PCR products 

amplified, using the 2x CloneAmp HiFi PCR Premix (see section 2.3.3d). Both the linearised 

vector and the PCR products were then incubated with the 5x In-Fusion HD Enzyme Premix 

(Clontech), and transformed into E. coli according to the protocol below (see section 2.3.4c). 

Following successful E. coli transformation, the recombinant vector was extracted and 

transformed into S. gordonii (see section 2.3.4d). Transformant colonies were checked for 

integrity by DNA sequencing (see section 2.3.4e). 

 

2.3.4c.  Escherichia coli transformation 

E. coli transformations were carried out according to TA Cloning kit (Invitrogen) or In-Fusion HD 

Cloning kit (Clontech) protocols, with no modifications. Transformed cells were plated onto 

selective LB agar, containing the antibiotic concentrations detailed in section 2.1.1. Plates were 

inoculated for 24 h at 37°C, aerobically, and checked for transformants after this time. 

Transformant colonies were then checked for integrity by DNA sequencing (see section 2.3.4e). 
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2.3.4d. Streptococcus gordonii transformation 

S. gordonii cells were cultured in BHY medium for 18 h at 37°C, then sub-cultured into 5 mL 

pre-warmed BHY broth containing 1% v/v heat-inactivated horse serum (HS) and 10% v/v 

glucose (BHY/HS/gluc). Cells were grown at 37°C in a candle jar until they reached an OD600 of 

around 0.25-0.35, and then diluted 1:100 into 5 mL fresh pre-warmed BHY/HS/gluc. After a 

further 60 min incubation at 37°C in a candle jar, cells were aliquoted to 0.8 mL portions and 

incubated with up to 10 µg DNA for 3-4 h. Following this, 100 µl S. gordonii cells were plated 

onto selective BHY or THYE agar, containing the antibiotic concentrations detailed in section 

2.1.1. Plates were incubated for 48 h at 37°C in a candle jar, and checked for transformants 

after this time. Transformant colonies were then checked for integrity by DNA sequencing (see 

section 2.3.4e below). 

 

2.3.4e. DNA sequencing 

Sequencing was carried out on DNA products - which had been pre-prepared in accordance 

with the recommended protocols - by Eurofins Genomics, using prepaid barcodes or Mix2Seq 

tubes. Sequencing was performed on samples using custom primers, and the reactions were 

implemented using dideoxy chain termination/cycle sequencing on ABI 3730XL sequencing 

machines. 

 

Received sample sequences were then aligned against expected sequences using MEGA6 

software (Tamura et al., 2013), with alignment by Clustal W. Sequence trace data were 

manually screened to determine and correct any inaccuracies or inconsistencies in the 

sequences. 

 

2.4. cDNA analysis and microarray 

2.4.1. mRNA extraction from whole cells 

S. gordonii cells were cultured in BHY medium for 18 h at 37°C, and then sub-cultured into fresh 

media, pre-warmed to 37°C. Cells from which RNA was being extracted for downstream qRT-

PCR analysis of recN and mutS genes were grown to OD600 0.5 in 5 mL BHY medium, at which 

point 1 volume of RNALater (Invitrogen) was added, and the tubes were incubated at room 
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temperature for 5 min. Following incubation, cells were harvested at 3000 x g for 20 min, the 

supernatant was removed, and the pellets were frozen at -80°C for RNA extraction at a later 

date. 

 

From samples where RNA was being extracted for downstream microarray or further qRT-PCR 

analysis, cells were harvested from an 18 h overnight culture, washed in FMC medium, and sub-

cultured into 20 mL replete FMC medium, where they were grown at 37°C until reaching an 

OD600 of 0.3-0.4. At this point, cultures were split into four, and 5 mL cells were harvested and 

resuspended in 5 mL of either replete FMC, or FMC depleted of arginine (FMC -arg.), histidine 

(FMC -hist.) or the branched-chain amino acids (FMC -BCAA). Following incubation at 37°C for 

30 min, 1 volume of RNALater was added, tubes were incubated at room temperature for 5 

min, and then cells were harvested at 3000 x g for 20 min. After harvesting, the supernatant 

was removed, and the cell pellet frozen at -80°C for RNA extraction within 5 days.  

 

RNA was extracted using the Ambion RiboPure Bacteria RNA Purification kit (Life Technologies), 

with the following modifications to the cell disruption stage of the protocol: cell pellets were 

thawed on ice, and resuspended in 100 µl spheroplasting buffer containing 0.1 mg/mL 

chloramphenicol or spectinomycin. Mutanolysin was added to cells at a concentration of 500 

U/mL, and the cells were then incubated at 37°C for 5 min. 350 µl RNAWiz solution (Life 

Technologies) was added to cells, and the mixture was vortexed vigorously for 15 s. From this 

point onwards, the original protocol was followed. RNA concentrations were determined using 

a NanoDrop ND-1000 Spectrophotometer (Thermo Scientific), using the RNA-40 setting. 

Concentration was measured in ng/µl, and purity and quality determined by assessment of the 

260/280 and 260/230 readings. Following extraction, RNA was stored at -80°C for use in 

downstream applications. 

 

2.4.2. Reverse transcription of RNA 

Reverse transcription was carried out on RNA samples extracted from S. gordonii cells (see 

section 2.4.1), using a QuantiTect Reverse Transcription kit (QIAGEN), in conjunction with 3 

µg/mL random hexamer primers (Bioline). Reactions were performed according to 

manufacturer’s instructions, with the modification of the Bioline hexamers being used in place 
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of the QuantiTect oligo-dT primers. Subsequent cDNA was then stored at -20°C for use in qRT-

PCR and microarray experiments. 

 

2.4.3. Quantitative reverse transcription PCR 

Quantitative reverse transcription PCR was carried out on cDNA samples that were reverse 

transcribed (see section 2.4.2) from extracted transcriptomic RNA. Samples were placed in 

triplicate into frosted 96-well (non-skirted, low profile) qPCR plates (Eurogentec, Ltd.), and 

sealed with an optical Microseal ‘B’ Adhesive seal (Bio-Rad). Reactions were performed on a 

DNA Engine Opticon 2 (MJ Research), on the following reaction: 1) 95°C for 10 min; 2) 95°C for 

15 s; 3) 60°C for 1 min; 4) Plate read; repeat from step 2 39x; 5) Melting curve from 55-90°C, 

read every 1°C, hold for 5 s. 

 

Primers were used at 2.5 µM concentrations, and SYBR Green dye from the SensiMix SYBR No-

ROX kit (Bioline) was used as both a polymerase and fluorescent dye label for the qPCR reaction. 

Every reaction plate contained a standard curve, consisting of dilutions of S. gordonii DL1 

chromosomal DNA, from a 5 x 101-2 to 5 x 108 dilution; no template (blank) control wells; and 

“no RT” control samples, for control comparison against the experimental samples.  

 

Standard curves, melting curves (to ensure purity of the product), and agarose gel 

electrophoresis (to check the size of the DNA product), were all performed to validate the qRT-

PCR experiments, and were carried out in accordance with MIQE guidelines (Bustin et al., 2009). 

16S gene expression was measured for each sample as a reference, and target gene expression 

was standardised and normalised against 16S expression levels for that sample, to give a fold-

change value for the target gene. 

 

2.4.4. Microarray experiments 

S. gordonii cDNA was tested by custom single-colour microarray (Agilent Technologies) for the 

differential expression of 2051 different genes, in two different bacterial strains grown in both 

high and no arginine conditions, throughout the S. gordonii genome. 
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Samples of RNA (from S. gordonii PK3347 and PK3350, in high and no arginine conditions – see 

section 2.4.1) from four independent experiments, of at least 30 µg/mL concentration, were 

sent to the Functional Genomics and Proteomics Facility of Birmingham University (UK). There, 

the samples were reverse transcribed into target cDNA sequences and fluorescently labelled 

with Cy3 dye, before being hybridised to 60-mer oligonucleotide probes (optimised for 

hybridisation at 65°C). Two chips were used for the microarray, with each chip capable of 

holding 8 samples.  

 

Data was analysed with the assistance of Mr Matthew Bashton and Mr John Casement 

(Bioinformatics Core Facility, Newcastle University), using GeneSpring software (Agilent). Probe 

annotation was obtained from the most recent GenBank records and associated FASTA file 

(http://www.ncbi.nlm.nih.gov/nuccore/NC_009785.1), last modified 11th February 2015. A 

sensitive Bowtie alignment (using Bowtie2 (Langmead and Salzberg, 2012)) was used to align 

probe sequences against FASTA sequences from the GenBank records, and corresponding 

annotations were extracted in order to obtain the probe annotation. A small number of probes 

aligned against positions without annotation, and were therefore labelled “NA”.  

 

2.4.5. Bioinformatic analyses of microarray data  

Comparisons were made between the new microarray detailed above, and a previous 

microarray carried out between S. gordonii DL1 and PK3354 (as detailed in Jakubovics et al. 

(2015)). Microarray data and probe sequences for the previous microarray can be found in the 

Gene Expression Omnibus (GEO) database under accession numbers GSE51346 and GPL17786. 

Statistical analyses were again performed with the assistance of Mr Matthew Bashton and Mr 

John Casement (Bioinformatics Core Facility, Newcastle University).  

 

 For comparison between samples within the same microarray (i.e. DL1 vs PK3354, PK3347 vs 

PK3350), data was normalised using the 75th percentile normalisation with baseline to median. 

Any significant differences between gene expression levels in high and no arginine conditions 

were assessed using T-tests, with P-values corrected for multiple comparisons using Benjamini-

Hochberg false discovery rate (FDR) corrections (Reiner et al., 2003). Genes were deemed 

significantly regulated if they had an FDR-corrected P-value of <0.05, and a fold-change value 

of >2. Principal component analysis (PCA) was performed on all samples from both microarrays 

http://www.ncbi.nlm.nih.gov/nuccore/NC_009785.1
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using the Genespring software (Agilent), in order to analyse the variance of the data and 

identify any anomalous results. In one microarray experiment, one sample (ahcR+, slide 3 

sample 1_2) was removed after being determined to be an outlier following PCA, and so 

differential expression was carried out only on the remaining 15 samples.  

 

COGFun (Functional Clusters of Orthologous Genes) designations, for labelling of gene 

descriptions, were taken from the MicrobesOnline database 

(http://meta.microbesonline.org/operons/ gnc467705.htmL). 

 

Data from both microarrays were subject to cross-comparisons, to determine which genes 

showed differential regulation between S. gordonii DL1 and the arginine regulator mutant 

strains under different arginine conditions. As no mixing of samples occurred between the two 

microarrays - due to restraint on the sample size for each microarray chip - and a significant 

batch effect was shown between the two microarrays following PCA analysis, a simple batch 

correction was not sufficient as it could not then be determined whether differences in gene 

expression were biologically significant or due to the batch effect. Therefore, preliminary Rank 

Product analysis was performed to determine which genes showed significant regulation 

between the two microarrays. A gene was listed as significantly differentially expressed if its 

pfp (percentage of false-positive predictions) was less than 0.05 (95% confidence). Data 

analysis was then performed upon the subsequent data. 

 

For comparisons of microarray vs qRT-PCR data, the correlation of log2 data from the two 

datasets was analysed using a scatter graph with a linear regression analysis, and the r2 value 

and slope of the line measurements from the linear regression line were used as indicators of 

levels of correlation between the datasets. These analyses were performed using the SigmaPlot 

12.5 software (Systat Software, Inc.). 

 

2.5. In silico analysis of S. gordonii genes 

2.5.1. Promoter prediction  

Streptococcus gordonii genes were assessed for predicted promoters using the PromBase 

website (Rangannan and Bansal, 2011). Promoters were judged by their average free energy 

http://meta.microbesonline.org/operons/%20gnc467705.html
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over the length of the predicted promoter sequence, and then ranked by strength and 

likelihood of being a true positive result. The most reliable promoter was chosen as the 

predicted promoter during the in silico analysis. 

 

2.5.2. Operon prediction  

S. gordonii genes were analysed for operon formation and co-transcription with other genes 

using the DOOR2 database (Database of prOkaryotic OpeRons v2) (Dam et al., 2007; Mao et al., 

2009).  

 

2.5.3. Transcription factor binding site prediction 

Transcription factor binding sites (TFBS) were predicted within the S. gordonii genome using 

the PePPER TFBS Search function (de Jong et al., 2012). Homologs of the arginine regulators in 

other bacterial species (e.g. Lactococcus lactis), and their binding sites, were used to scan for 

similar sites within S. gordonii. Each predicted site was then scored on their strength, and the 

strongest binding sites were deemed the most likely to be regulated by one of the arginine 

regulatory genes. 

 

2.5.4. Prokaryotic terminator prediction 

Terminators were predicted using the TransTermHP database (Kingsford et al., 2007), which 

scanned the S. gordonii genome for predicted Rho-independent bacterial terminators. Gene 

sequences were then analysed for the position of the terminator, nearby gene promoters, 

whether the gene was part of an operon, and therefore how likely it was that the predicted 

terminator was a true positive result. Predicted terminators were scored by strength based on 

the potential energy of the hairpin in the terminator sequence. 
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3. L-arginine-specific regulation of gene expression 

3.1.  Introduction 

Previous work on growth in S. gordonii in response to L-arginine concentration has shown that, 

whilst L-arginine appears to have a large effect on biofilm formation, it seems to have little 

effect on the planktonic growth of the cells. Specifically, whilst low concentrations (up to 

500 µM) of L-arginine encouraged S. gordonii biofilm growth, very high concentrations of 

around 500 mM - the same levels found in oral healthcare products - were detrimental to the 

formation of biofilms when grown in cell-free saliva in a BioFlux microfluidics system 

(Jakubovics et al., 2015). These experiments also demonstrated that the same 500 µM and 500 

mM L-arginine concentrations had no effect on the planktonic growth of the cells, in both saliva 

and chemically-defined FMC medium. 

 

Additional unpublished data from our lab (Jakubovics, unpublished) showed that growing S. 

gordonii cells in a microtitre plate in FMC medium, with decreasing concentrations of L-arginine 

from 500 mM to 5 µM, caused no differences in the levels of total biomass or cell yield of either 

planktonic cells or biofilms across all L-arginine concentrations. However, both this work and 

the previous experiment were measuring planktonic growth in biofilm models – to date, no 

data have been obtained measuring growth in strictly planktonic cultures. Furthermore, these 

experiments were performed under aerobic conditions, and did not assess the growth rate of 

S. gordonii. It is possible that L-arginine could have an effect on planktonic growth, similar to 

the effect it demonstrates in biofilms, but that this effect was masked in these experiments by 

the concurrent biofilm growth. Additionally, anaerobic growth of planktonic cells could 

demonstrate differences to the aerobic conditions used in the experiments mentioned above. 

A number of Streptococcus strains, including S. salivarius and S. mutans, are known to require 

L-arginine in order to grow aerobically, despite being able to grow anaerobically without it 

(Terleckyj and Shockman, 1975).  

 

As L-arginine is added to some oral health products in relatively high concentrations of up to 

460 mM (Sullivan et al., 2014), it is important to understand how oral bacteria generally 

respond to these concentrations. As a start, this work focuses on one important species, 

Streptococcus gordonii, known to be a widespread coloniser of the oral cavity and a key 
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organism in the establishment of the dental plaque biofilm (Rickard et al., 2003). It is likely that 

S. gordonii is exposed to a wide range of different L-arginine concentrations whilst growing in 

vivo in a plaque biofilm, as the concentration of L-arginine naturally occurring in saliva is low 

(5-10 µM (Brand et al., 1997)), and the concentration in some oral healthcare products 

significantly higher. The effect of these differing concentrations on planktonic growth could 

vary in response to whether bacterial cells are grown in vitro in chemically-defined medium, or 

in a more biologically-relevant medium such as saliva, and this will be investigated within this 

chapter. 

 

It is known that arginine depletion in S. gordonii plays a large role in gene expression, as a 

genome-wide microarray performed previously by our group demonstrated a large number of 

genes regulated in response to arginine depletion, which is discussed in more detail below 

(Jakubovics et al., 2015). However, arginine depletion is also known to cause growth arrest in 

S. gordonii, as previous work showed that depletion of arginine within a planktonic 

monoculture of S. gordonii in FMC medium resulted in immediate entry of the cells into 

stationary phase, and a lower growth yield than cells cultured in arginine-replete FMC medium 

(Jakubovics et al., 2008). Therefore, in order to distinguish between genes that are regulated 

in response to arginine depletion, and genes that are regulated by a global stress response 

caused by amino acid depletion, a control consisting of samples depleted of other amino acids 

was needed. Therefore, both growth and gene expression were analysed in samples that were 

depleted of L-arginine, L-histidine and the branched-chain amino acids (L-leucine, L-isoleucine 

and L-valine) in this chapter. 

 
Histidine was chosen for comparison with L-arginine, as there is an overlap in gene regulation 

pathways between L-arginine and L-histidine, with the arginine-dependent regulator ArgR 

repressing biosynthesis of both amino acids under high arginine conditions (Jakubovics et al., 

2015). The branched-chain amino acids have been shown to be necessary for planktonic growth 

of S. sanguinis, with cells inhibited in growth without them (Cowman et al., 1975). Preliminary 

growth experiments indicated this is also the case for S. gordonii, with the same growth pattern 

observed after depletion of the branched-chain amino acids and L-histidine as with depletion 

of L-arginine – namely, arrest of growth and entry to stationary phase when cells are placed 

into deplete medium. S. gordonii gene expression analysis following the depletion of L-histidine 

or the branched-chain amino acids, when compared to L-arginine, would demonstrate whether 
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any differences in gene expression observed between these samples were arginine-specific, or 

a general stress response. 

 

As mentioned, a previous study on arginine-specific gene regulation by our group, as assessed 

by genome-wide microarray analysis, identified major responses to arginine depletion. Some 

of these responses appeared to be linked to changes in arginine requirements, and others 

seemed more characteristic of a general stress response or cessation of metabolic activity 

(Jakubovics et al., 2015). In all, 464 genes, which represented a large percentage (22.6%) of the 

S. gordonii chromosome, were differentially-regulated in response to arginine depletion. Of 

these 464 genes, a number of interesting genes that may be linked to biofilm formation showed 

regulation in response to L-arginine depletion. These formed the basis for the genes chosen for 

qRT-PCR analysis in this chapter. The 12 genes of interest used here were chosen as they either 

showed interesting results within the microarray, or were known to be linked to arginine 

biosynthesis or biofilm formation within S. gordonii in some way. These genes are described in 

detail below.  

 

SGO_0966 (hsa) and SGO_0978 (asp5) are part of the hsa locus. Hsa is a streptococcal surface 

adhesin that mediates S. gordonii binding to sialic acid residues on human fibronectin 

(Jakubovics et al., 2009). SGO_1401 and 1411 (hisC) are part of the histidine biosynthesis locus, 

which is known to share regulation with the arginine biosynthesis pathways (Jakubovics et al., 

2015). SGO_1569 (argC) was chosen as a highly up-regulated gene under arginine-deplete 

conditions in the microarray, which as an arginine biosynthesis gene might be expected to be 

up-regulated specifically in response to arginine depletion. A similar rationale was also used for 

selecting SGO_1592 (arcB), which as an important arginine biosynthesis gene (despite being 

found within the S. gordonii ADS locus) may be expected to be up-regulated under no arginine 

conditions.  

 

SGO_1576 (bfbC) and SGO_1582 (bfbF) were chosen for qRT-PCR analysis as members of the 

bfb locus, which encodes the cellobiose PTS system, and which showed interesting down-

regulation in response to arginine depletion in the microarray. This locus has also been 

previously linked to biofilm formation and adhesion in S. gordonii (Kiliç et al., 2004). The final 

two operons which were chosen also showed unexpected regulation in response to arginine 
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depletion – those being the fatty acid biosynthesis genes SGO_1686 and 1699, which showed 

strong down-regulation following arginine depletion in the previous microarray analysis; and 

the receptor polysaccharide genes SGO_2015 (wefE) and 2028 (wzg). Receptor polysaccharide 

also facilitates coaggregation between S. gordonii and the type II fimbriae of Actinomyces oris 

(Cisar et al., 1995; Mishra et al., 2010), another primary coloniser at the base of the biofilm, so 

the arginine-specific regulation that that locus appeared to show within the microarray was 

unexpected. 

 

Analysis of the expression of these genes in response to not only L-arginine, but also L-histidine 

and branched-chain amino acid depletion was performed to indicate which genes showed an 

arginine-specific regulation, and which displayed general responses to amino acid depletion, 

which may be indicative of a larger depletion-based stress response within the cells. In addition, 

comparison of the expression levels of these genes as assessed by qRT-PCR, against the findings 

of the genome-wide microarray, may allow validation of the findings of the microarray. 

 

Therefore, the overall aims of this chapter were to assess the impact of different concentrations 

of L-arginine on planktonic growth of S. gordonii cells under anaerobic conditions, in both 

defined medium and cell-free saliva; and to analyse any differences in gene expression of 

selected genes of interest in response to arginine depletion in planktonic growth conditions. 

Furthermore, this chapter aims to establish any arginine-specific responses in gene expression, 

and distinguish them from general amino acid-depletion responses.  

 

3.2.  Effects of L-arginine on S. gordonii planktonic growth 

3.2.1. S. gordonii DL1 growth in chemically-defined media with differing L-

arginine concentrations 

S. gordonii has previously been shown to cease growth following transfer to no-L-arginine 

medium under aerobic conditions (Jakubovics et al., 2008). To investigate the impact of L-

arginine on S. gordonii growth in more detail, S. gordonii DL1 cells were grown to stationary 

phase in FMC supplemented with between 0 µM and 500 mM L-arginine. 

 

Cells were cultured overnight in nutrient-rich BHY medium, then used to inoculate FMC, or FMC 

amended with different L-arginine concentrations. The concentrations of L-arginine present in 
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the different FMC samples were as follows: 0 µM, 10 µM, 50 µM, 100 µM, 1 mM, 50 mM, and 

500 mM. Cells were grown strictly anaerobically, with timepoints taken every hour over a 7-

hour time period, in order to follow the growth of the cells to stationary phase. Growth was 

followed by measuring OD600 of the different samples as described in Materials and Methods, 

with additional OD600 measurements also taken at 24 h and 48 h timepoints.  

 

Cells grown in 1 mM L-arginine grew rapidly, with a maximum specific growth rate of 1.18 h-1 

(Figure 3.1). There was a slight decrease in exponential growth rate at 100 µM L-

arginine (0.98 h-1), and a more pronounced decrease at 50 µM L-arginine (0.63 h-1). All other 

samples showed extended lag phases, although by 24 h all cultures had reached OD600 >1, with 

the exception of cells grown in 500 mM L-arginine. The 500 mM sample showed some small 

increase in optical density over all timepoints (with a mean specific growth rate of 0.31 h-1), 

however it reached stationary phase at a lower OD600 (and therefore a gave a lower growth 

yield) than the other cultures (OD600 0.28).  

 

This poor growth may have been due to S. gordonii cells rapidly metabolising the high 

concentrations of L-arginine into ammonia under anaerobic conditions, resulting in an 

extremely basic solution within the tube that was retarding growth. The starting pH of every 

culture was the same, however, measurement of the final pH of the samples showed that the 

pH of the 500 mM L-arginine sample was higher (pH 5.9) than for 1 mM L-arginine (pH 4.5). 

However, it is not clear whether this was due to increased alkali production through the ADS, 

or decreased acid production from lower growth yield. Regardless, the pH of the 500 mM L-

arginine sample was still not high enough to inhibit growth. It is possible that the intracellular 

pH may have been sufficiently high to impede growth.  

 

Similarly, in preliminary experiments looking at aerobic growth, S. gordonii DL1 yield was much 

lower at 500 mM L-arginine concentration compared with 1 mM concentration (OD600 0.052 

compared to 2.015 after 48 h). Microscopic analysis of these samples showed normal 

morphology, with no signs of cell lysis (data not shown). Cells incubated aerobically in 0 µM L-

arginine as a control did not grow, as has been previously shown (Jakubovics et al., 2008). 

Therefore it is not clear why 500 mM L-arginine had an apparent bacteriostatic effect on the 
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cells, despite previous work showing no effect on cell growth or yield (under aerobic 

conditions).  



Chapter 3: L-arginine-specific regulation of gene expression 
 

61 
 

 

 

 

 

 

 

 

Figure 3.1. Representative growth curve of S. gordonii DL1 cells in CDM supplemented with 
differing L-arginine concentrations. Cells were grown in FMC medium with different L-arginine 
concentrations, and spectrophotometric measurements were taken at various timepoints as a 
measure of cell growth. Graph shows one of four independent experiments, all of which 
showed similar results. All cells grew to an OD600 >1 within 24 h, with the exception of 
S. gordonii DL1 cultured in 500 mM L-arginine, which showed a lower growth yield than other 
samples. 
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3.2.2. S. gordonii DL1 growth in saliva with differing L-arginine concentrations 

Having shown that L-arginine concentration had a major impact on planktonic cell growth in 

FMC, the effects of L-arginine concentration on S. gordonii growth in saliva were assessed. 

Saliva naturally has a low concentration of free L-arginine, with an average concentration of 

around 5-10 µM (Brand et al., 1997). However, it is important to note that saliva is a complex 

fluid, and that L-arginine residues could potentially also be released from salivary polypeptides 

by proteolytic cleavage. Here, S. gordonii was cultured in saliva supplemented with L-arginine 

at concentrations up to 500 mM.  

 

It was found (Figure 3.2) that viability of the cells decreased slightly over the 48 h time period 

(7.39-fold change in 500 mM L-arg, 5.77-fold change in 0 mM L-arg), and no growth was 

detected over this period, regardless of L-arginine concentration. These data indicate that high 

L-arginine concentrations are not toxic to S. gordonii cells. There was no clear difference 

between the concentration of viable cells in 500 mM or 0 µM L-arginine samples, and whilst 

there was some decline in cell viability towards the later timepoints, this was likely due to 

natural cell death. Phase contrast microscopy showed no difference in cell morphology 

between high and low arginine concentrations, although it was noted that whilst cells appeared 

to form aggregates in lower concentrations of L-arginine, these aggregates did not form in the 

500 mM samples (Figure 3.3).  
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Figure 3.2. Representative graph showing the growth of S. gordonii DL1 cells in high and no 
arginine conditions, as measured by total viable count (CFU/mL). Cells were incubated in 25% 
saliva and 500 mM (dark grey) or 0 mM arginine (light grey), and viable counts were taken at 
different timepoints as a measure of cell growth. Graph shows one biological replicate of four 
independent experiments, all of which showed similar results. Decrease in CFU/mL in the 24 h 
and 48 h timepoints is likely due to natural cell death. 
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Figure 3.3. Phase contrast microscopy images of S. gordonii DL1 cells incubated in differing 
arginine concentrations in saliva. The arrows present in the 5 µM L-arginine image (left) indicate 
clusters of S. gordonii cells, caused by auto-aggregation of the cells in saliva. The same auto-
aggregates were not present in the 500 mM sample (right). Despite the lack of aggregation, 
cell morphology was found to not be affected by the L-arginine concentration. 



Chapter 3: L-arginine-specific regulation of gene expression 
 

65 
 

 

3.2.3. S. gordonii DL1 growth in the absence of different amino acids  

S. gordonii contains all necessary genes for L-arginine biosynthesis, and has been shown above 

to have the ability to grow in medium that is entirely depleted of L-arginine, under strictly 

anaerobic conditions (Terleckyj and Shockman, 1975; Jakubovics et al., 2008). Previous work in 

our group also indicated that when actively growing S. gordonii cells were sub-cultured from L-

arginine-replete medium into fresh medium lacking L-arginine, growth arrested rapidly 

(Jakubovics et al., 2008). In order to investigate whether this functional auxotrophy was an L-

arginine-specific response or whether similar responses would be seen following rapid 

depletion of other amino acids, the experiment was repeated with cells sub-cultured into fresh 

medium lacking either L-arginine, L-histidine, or the branched-chain amino acids (L-leucine, L-

isoleucine and L-valine). S. gordonii carries the essential biosynthetic genes for all of these 

amino acids according to the KEGG database entry for amino acid biosynthesis 

(http://www.genome.jp/kegg-bin/show_pathway?sgo01230), and theoretically should have 

the ability to grow in defined media without them.  

 

S. gordonii cells were cultured in an amino acid replete medium (FMC), and aliquots were 

harvested and resuspended in FMC medium, or FMC depleted of L-arginine (FMC –arg), L-

histidine (FMC –hist), or the branched-chain amino acids (FMC –BCAA). Growth of the cells was 

followed from the point of sub-culture to stationary phase. 

 

Whilst cells that were placed back into amino acid-replete medium continued to grow rapidly 

(Figure 3.4), and reached a high yield (OD600 >1), the cells that were placed into any of the 

depleted media all entered stationary phase soon after sub-culture. None of these samples 

resumed exponential growth, and none achieved a growth yield of OD600 >1. Therefore, S. 

gordonii appears to have multiple conditional auxotrophies. 

 

 

 

http://www.genome.jp/kegg-bin/show_pathway?sgo01230
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Figure 3.4. Effect of amino acid depletion on the growth of S. gordonii DL1 cells in chemically-
defined medium (CDM). Cells were grown in replete FMC medium (CDM) to mid-exponential 
phase, and then split into four parts (point of sub-culture indicated by arrow). One part was 
washed and resuspended in a fresh tube of the amino acid-replete FMC; and the other three 
were washed and resuspended in FMC lacking L-arginine, L-histidine or the branched-chain 
amino acids (L-valine, L-leucine and L-isoleucine). The cells placed into the replete FMC 
continued growing to stationary phase, whereas the cells grown in any of the depleted media 
showed growth arrest shortly after the point of sub-culturing.  
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As S. gordonii contains all necessary biosynthetic genes and pathways for these amino acids, 

and is able to grow in medium lacking L-arginine under anaerobic conditions, the reason is 

unclear as to why these cells are apparently unable to synthesise the depleted amino acids and 

resume aerobic growth upon rapid depletion of L-arginine. The lack of growth in depleted 

media may be due to an over-accumulation of an intermediary molecule, or failure to 

synthesise key biosynthetic enzymes (which are repressed in their expression during growth in 

amino acid-replete medium).  

 

Identification of similar growth responses to depletion of different amino acids allowed 

comparison of gene regulation responses, aimed at distinguishing between arginine-specific 

regulation, and gene regulation in response to general stress and growth arrest (see section 

3.3.2). Therefore, the expression levels of different genes in response to depletion of L-arginine 

was next analysed.  

 

3.3.  Effects of arginine on gene expression 

A genome-wide gene expression microarray was previously carried out on S. gordonii DL1 cDNA 

(Jakubovics et al., 2015), in high and no arginine conditions, in order to investigate which genes 

were being specifically-regulated in response to arginine depletion in planktonic cells. The 

details of the genes that were regulated within this microarray can be found in the introduction 

to this chapter.  

3.3.1. qRT-PCR of gene expression following L-arginine depletion 

 
In order to validate the findings of the S. gordonii DL1 gene expression microarray (Jakubovics 

et al., 2015), qRT-PCR analysis was performed on the same cDNA samples that were used for 

the microarray analysis. qRT-PCR was performed on 12 genes of interest (detailed in the 

chapter introduction), contained within 6 different operons. The 16S gene was also tested as a 

reference gene. qRT-PCR was validated using melt curves, standard curves, and agarose gel 

electrophoresis (Figure 3.5). Reaction efficiency for each experiment was also calculated, and 

the data from any reactions that had an efficiency of between 80-120% was used for further 

analysis, provided gel electrophoresis analysis showed a DNA product of the expected size. 
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Figure 3.5. Example of assay development for qRT-PCR: analysis of the SGO_2028 (wzg) gene. Melt curves (A) and DNA standard curves (B and C) were run alongside 
samples during qRT-PCR reactions as controls. The standard curve contained known ten-fold dilutions of S. gordonii DL1 chromosomal DNA (from 1:500 to 
1:5x108), which covered the range of dilutions for the samples tested. The melt curve was used to ensure that the product formed was pure, and not a result of 
primer dimers. The red, blue and green lines represent triplicate blank (no template) wells, with the yellow line (from one 1:500 DNA standard) for comparison. 
(D) shows a 3% agarose gel electrophoresis, used to check the size of the qPCR product (131 bp expected). HL represents Hyperladder V (Bioline; 25-500 bp). 
There were no bands present in the blank wells (9-11), indicating no contamination of the reaction. All bands in the standard (wells 2-8, decreasing from 1:500 
to 1:5x108 conc.) and sample wells (12-19, replicates of cDNA from S. gordonii DL1 and ΔarcR in high and no arg) were the expected size. 

D 

150 bp 
125 bp 

25 bp 

500 bp 

1     2     3     4     5    6     7    8    9   10   11   12  13   14   15  16   17   18    19 
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Reaction efficiency = 102.3%  
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The genes that were chosen for qRT-PCR analysis are listed in Table 3.1. Target gene expression 

was measured by qRT-PCR, with the resultant values standardised and normalised against 16S 

reference data to give a log2 fold-change value for expression of each of the target genes 

measured (Figure 3.6). The absolute gene expression levels (yielded by multiplying 2 to the 

power of the log2 values) ranged from strongly down-regulated (e.g. the bfbF gene, down-

regulated 85-fold), to highly up-regulated (e.g. argC, up-regulated 420-fold in response to 

arginine depletion). 

 

The changes in gene expression for qRT-PCR were then compared with the microarray, for each 

of the 12 target genes (Table 3.1 and Figure 3.7). It was found that the levels of gene expression 

measured for target genes by both qRT-PCR and microarray correlated very closely, with a 

direct comparison between the two sets of values yielding a graph with a linear regression line, 

with a slope of 0.995 and an r2 value of 0.947. This indicated a strong positive correlation 

between the two sets of data, validating the findings of the microarray.  
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Target gene 
name 

Gene/Locus function 
Microarray expression 

level (absolute fold-
change) 

qRT-PCR expression 
level (absolute fold-

change) 

SGO_0966 (hsa) 
hsa locus, binding to 

oral cavity 

-8.22 -2.86 

SGO_0978 

(asp5) 
-8.31 -8.28 

SGO_1401 
Histidine 

biosynthesis locus 

4.36 3.22 

SGO_1411 

(hisC) 
13.42 7.54 

SGO_1569 

(argC) 

Arginine 

biosynthesis 
520.12 420.22 

SGO_1576 

(bfbC) Cellobiose PTS 

system locus 

-21.10 -20.65 

SGO_1582 

(bfbF) 
-35.01 -85.04 

SGO_1592 

(arcB) 
ADS system locus -2.81 -3.41 

SGO_1686 Fatty acid 

biosynthesis locus 

-17.15 -51.48 

SGO_1699 -12.55 -11.00 

SGO_2015 

(wefE) 
Receptor 

polysaccharide locus 

-12.31 -12.91 

SGO_2028 (wzg) -4.03 -8.07 

 
Table 3.1. Comparison between gene expression levels for target genes as measured by 
microarray or qRT-PCR. Negative numbers represent a down-regulation in gene expression in 
high vs no arginine conditions. 
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Figure 3.6. Log2 gene expression fold-change values for genes assessed by qRT-PCR analysis. 
Target genes were measured in their change in expression in response to high vs no arginine 
conditions, using relative quantification by qRT-PCR. After normalisation against 16S 
background gene expression, target gene expression was expressed as a log2 fold-change value, 
representing the change in gene expression level within DL1 cells when moving from high to no 
arginine conditions. 
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r2 = 0.947 

Figure 3.7. Correlation between gene expression levels measured by microarray or qRT-PCR.                                                                                                                              
Levels of gene expression were measured as log2 fold-change when moving from high to no 
arginine conditions – comparison between these values from the S. gordonii DL1 microarray 
data and the qRT-PCR reactions (run on the same samples as used for the microarray) shows a 
strong correlation (r2=0.947, slope=0.995), indicating that qRT-PCR accurately validates the 
findings of the microarrays.  
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3.3.2. qRT-PCR of gene expression following L-histidine and branched-

chain amino acid depletion 

The microarray analysis carried out in the paper by Jakubovics et al. (2015) demonstrated 

464 genes responding to arginine depletion by changing their expression level. It was possible 

that at least part of the regulatory response was due to general stress, linked to growth arrest. 

Therefore, in order to test which of the differences in gene expression were linked specifically 

to arginine depletion, qRT-PCR analysis was performed on the same target genes tested in 

section 3.3.1, this time on cDNA samples taken from S. gordonii DL1 cells that were deprived of 

L-arginine, L-histidine or the branched-chain amino acids (L-valine, L-leucine and L-isoleucine). 

 

S. gordonii DL1 cells were grown in the same way as for the original microarray, to mid-

exponential phase in replete chemically-defined FMC medium. At this stage of growth, cells 

were split into four different cultures, harvested and then resuspended in either replete FMC, 

FMC without arginine (-arg), FMC without histidine (-hist) or FMC without the branched-chain 

amino acids (-BCAA). They were then incubated for 30 min, and the cells were harvested and 

RNA was extracted. Following reverse transcription to cDNA, the samples were analysed by 

qRT-PCR. Four independent biological experiments were used for each sample. 

 
This analysis showed that whilst some of the target genes assessed appeared to be 

differentially-regulated due to a generalised stress response, others were specifically-regulated 

by depleting a particular amino acid (Table 3.2).  

 

For example, argC was strongly regulated in response to arginine depletion and not by 

depletion of other amino acids, as expected for an arginine biosynthesis gene (Figure 3.8). This 

suggests that this is an arginine-specific response. SGO_1686 (fatty acid biosynthesis) and asp5 

(involved in hsa surface protein biosynthesis), also appeared to show arginine-specific 

regulation, with much less regulation of these genes in response to histidine or branched-chain 

amino acid depletion. 

  

However, other genes, such as hsa or bfbF, appeared to show equal levels of expression across 

all amino acids, suggesting that they may be regulated as part of a general stress response. The 
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qRT-PCR values for the hsa gene showed much lower levels of expression in response to 

depletion of not only L-arginine, but also L-histidine and the branched-chain amino acids, in 

comparison to the value seen in the original microarray analysis (1-fold down-regulation vs 8-

fold down-regulation). This may be due to microarray technology having a broader, genome-

wide focus, and as such generally being less sensitive to changes in lowly-expressed genes 

(Wurmbach et al., 2003). In addition to this, some evidence suggests that differences in the 

location of the microarray probe, and qRT-PCR primers within the target gene can result in 

differences in apparent gene expression (Etienne et al., 2004).  

 

These analyses indicated that other genes, such as hisC and wefE, appeared to show specificity 

to both arginine and histidine, but not the branched-chain amino acids. This may be due to the 

fact that arginine and histidine share overlapping regulatory pathways, with the protein ArgR 

repressing both histidine and arginine biosynthesis under high arginine conditions (Jakubovics 

et al., 2015).  

 

It is also important to note that some large differences were observed between the original 

qRT-PCR analysis on samples deprived of L-arginine (Table 3.1), and the qRT-PCR analysis 

performed in this section (Table 3.2). These are likely due to the use of different biological 

samples for the qRT-PCR analyses. Any slight differences in growth phase or yields of these 

replicates prior to RNA extraction (and subsequent cDNA synthesis) may possibly result in 

changes in gene expression across the genome, leading to large differences in fold-change 

expression of different genes as observed here (such as bfbF, 9-fold down-regulation following 

arginine depletion in these experiments vs 85-fold down-regulation following arginine 

depletion in the original qRT-PCR analysis). This could be controlled for in future qRT-PCR 

analyses by measuring the optical density of the cells prior to RNA extraction, to ensure similar 

growth yields. However, this was not called for in the method used in these analyses and so 

was not performed, potentially leading to the differences observed between the two datasets. 

 

Overall, some of the genes shown to be regulated in response to arginine appeared to be 

specific for arginine, others appeared to be regulated as part of a general response to amino 

acid depletion, suggestive of a more general stress response following growth arrest.  
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Table 3.2. Comparison of absolute fold-change values for qRT-PCR samples deprived of arginine, 
histidine or the branched-chain amino acids. Fold-change represents change in gene expression 
when moving from replete to depleted medium. Negative values represent down-regulation of 
gene expression. 
 
 
 
 
 
 
 
 
 

Target gene name 
-Arg absolute fold-

change 

-Hist absolute 

fold-change 

-BCAA absolute 

fold-change 

SGO_0966 (hsa) -1.45 -1.23 -1.06 

SGO_0978 (asp5) -21.65 -2.71 -2.99 

SGO_1401 4.77 13.61 1.19 

SGO_1411 (hisC) 19.28 17.88 5.85 

SGO_1569 (argC) 33.92 1.28 -1.16 

SGO_1576 (bfbC) -19.59 -19.00 -13.57 

SGO_1582 (bfbF) -9.59 -10.15 -7.35 

SGO_1592 (arcB) -2.31 -2.22 1.02 

SGO_1686 -35.33 -2.14 -4.30 

SGO_1699 -2.78 -1.24 -1.63 

SGO_2015 (wefE) -17.81 -14.30 -4.52 

SGO_2028 (wzg) -4.28 -2.08 -1.10 
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Figure 3.8. Heat map showing visual representation of differential gene regulation in response 
to amino acid deprivation. qRT-PCR analysis was carried out on cDNA samples from S. 
gordonii DL1, resuspended in replete media or media depleted of 
arginine/histidine/branched-chain amino acids. The differences in log2 fold-change are 
represented here visually, with those genes that were up-regulated (during a movement 
from replete to amino acid-depleted medium) shown in red, and those that were down-
regulated (under the same conditions) shown in blue. It appears that gene regulation 
consists of amino acid-specific responses (e.g. argC), and general stress responses (e.g. bfbF).  
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3.4.  Discussion 

The work carried out in this chapter showed that whilst high concentrations of L-arginine do 

not kill S. gordonii planktonic cells (as demonstrated by the growth in saliva experiment, where 

cells retained viability), they do inhibit growth, causing lower growth yields and preventing 

auto-aggregation of S. gordonii cells.  

 

As mentioned in the chapter introduction, S. gordonii has not been shown before to have 

difficulty growing in 500 mM L-arginine. However, these experiments (Jakubovics et al. 

(2015); Jakubovics, unpublished) were performed under aerobic conditions, in a model that 

was designed for assessing biofilm growth more than planktonic growth. The research 

performed directly on planktonic growth in this chapter contradicted the findings of these 

previous experiments, showing that L-arginine does in fact appear to inhibit planktonic growth 

in S. gordonii. This suggests that in past work, the concurrent growth of the biofilm in the model 

may have been masking any effect L-arginine could have been having on planktonic cells. The 

larger surface area in these models could have enhanced the planktonic growth yield of the 

cells by allowing S. gordonii cells to detach from the biofilm and move back into the planktonic 

phase, increasing the apparent planktonic cell yield. As the experiments performed in this 

chapter were carried out in test tubes, this reduced the surface area available to the S. gordonii 

cells to form biofilms, and allowed a more direct measurement of planktonic cell yield and 

growth. Here, it has been shown that 500 mM L-arginine concentrations reduce cell growth 

and yield in defined medium under planktonic conditions. 

 

It is possible that this lower growth yield in high L-arginine is due to the pH of the culture 

supernatant during growth. S. gordonii cells are known to produce large amounts of ammonia 

as a by-product of arginine catabolism by the ADS during long-term growth (Cunin et al., 1986; 

Liu and Burne, 2009). This ammonia can build up and potentially could cause retardation of 

growth and cell toxicity. As mentioned in section 3.2.1, the pH of the bulk fluid of the bacterial 

culture was measured for alkalinity – a large difference was found between the 500 mM and 1 

mM samples (pH 5.9 vs pH 4.5). However, it was still not strongly alkaline pH, and was unlikely 

to be high enough in the bulk fluid to inhibit growth. It may be that the intracellular pH of the 

cells became strongly alkaline, as opposed to the bulk fluid, and this could have caused 

suppression of growth in high arginine. Intracellular pH is known to fluctuate widely in different 
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types of bacteria, in response to extracellular pH, sometimes across as wide a range as from pH 

6 to 9 (Booth, 1985; Breeuwer et al., 1996). It would be interesting to assess the intracellular 

pH of S. gordonii whilst growing in the above conditions, using a fluorescent pH-sensitive dye 

such as carboxyfluorescein succinimidyl ester (cFSE) (Breeuwer et al., 1996), or a pH-sensitive 

variant of a fluorescent protein such as GFP or YFP (Olsen et al., 2002; Wilks and Slonczewski, 

2007).  

 

When incubated in high arginine concentrations in cell-free 25% saliva, the S. gordonii cells did 

not appear to grow. The cells remained viable up to 48 h after initial incubation, as 

demonstrated by the viable counts shown in Figure 3.2, but the cell yield did not increase over 

this time. The slight decrease in viability over this time period was likely due to natural cell 

death. The reason as to why the S. gordonii cells did not grow in saliva was likely due to the 

initial inoculum being too high – at high cell densities, e.g. 1 x 107 cells mL-1, the nutrient 

concentration in the saliva is too low to support multiple rounds of cell division, and so cells do 

not grow (Palmer et al., 2001). Lower starting inoculi allow enough nutrients to support 

repeated cell division. S. gordonii has been shown to have the ability to grow both planktonically 

and in biofilms, and the paper by Palmer et al. (2001) indicates that a starting inoculum of 

around 1 x 104 cells mL-1 would be a suitable starting inoculum in order to assess the impact of 

500 mM L-arginine on growth in saliva. The high arginine concentration also prevented 

aggregation between the bacterial cells. This could potentially cause an impact on the viable 

cell counts, which may increase when bacterial auto-aggregates are dispersed. 

 

S. gordonii is known to auto-aggregate when grown in saliva as a medium, due to the adherence 

of the cells to certain salivary glycoproteins and low-molecular-weight mucins (Ligtenberg et 

al., 1992; Murray et al., 1992). The inhibition of S. gordonii auto-aggregation in high L-arginine 

conditions has not been noted before. However, L-arginine has been shown to affect co-

aggregation in Fusobacterium nucleatum, with the arginine-inhibitable RadD adhesin being 

responsible for F. nucleatum binding to Gram-positive early-coloniser species, such as S. 

gordonii (Kaplan et al., 2009). Additionally, L-arginine is regularly used in industry and 

bioscience at a high concentration to prevent protein aggregation, and aid in denaturation and 

solubilisation of proteins (Tsumoto et al., 2004; Ishibashi et al., 2005; Arakawa et al., 2007). The 
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lack of auto-aggregation between cells in the 500 mM samples is therefore likely due to 

prevention of protein interactions on the bacterial cell surface, mediated by L-arginine.  

 

The conditional auxotrophy for L-arginine, L-histidine and the branched-chain amino acids 

displayed by S. gordonii cells in section 3.2.3 is an interesting result due to the fact that S. 

gordonii apparently has all necessary genes in the biosynthetic pathways for all of these amino 

acids, according to the KEGG database (Kyoto Encyclopedia of Genes and 

Genomes, http://www.genome.jp/kegg-bin/show_pathway?sgo01230 (Kanehisa and Goto, 

2000)).  However, it is possible that S. gordonii is in fact fully auxotrophic for L-histidine and the 

branched-chain amino acids. Therefore, future experiments would need to test whether S. 

gordonii can biosynthesise these amino acids when they are absent from the growth medium, 

and under which conditions it is able to do this.  

 

It has been shown in Staphylococcus aureus isolates, that carbon catabolite repression (CCR, 

via the ccpA gene) contributed to repression of L-arginine biosynthesis in chemically-defined 

medium depleted of L-arginine, causing conditional auxotrophy (Nuxoll et al., 2012). Addition 

of secondary, non-preferred sources of carbon in the growth medium alleviated the effects of 

CCR, and allowed growth of S. aureus cells in L-arginine-depleted CDM. It is possible that CCR 

is contributing to the arrest of S. gordonii growth in L-arginine-depleted medium also, since the 

CcpA protein is known to co-regulate L-arginine catabolism in S. gordonii (Dong et al., 2002). 

Therefore, it would be useful for future studies to focus on investigating the CCR mechanism in 

S. gordonii – for example, by addition of a secondary carbon source in the L-arginine-deplete 

growth medium, in order to see whether that alleviates the auxotrophic phenotype as with S. 

aureus. Alternatively, by engineering a ccpA-knockout strain of S. gordonii, and assessing 

whether this strain has the ability to grow in arginine-deplete medium, where the wild-type S. 

gordonii strain does not.  

  

The impact of amino acid depletion on gene regulation appeared to show some quite specific 

effects, with some of the genes assessed being clearly regulated in response to arginine only, 

and others being equally regulated across all three amino acid depletion samples. For example, 

the hsa gene in particular was equally lowly-regulated across all the –arg, -hist and –BCAA 

samples, as were bfbC and bfbF. The hsa gene encodes part of the Hsa surface protein, and low 

http://www.genome.jp/kegg-bin/show_pathway?sgo01230
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levels of regulation of this gene observed in the qRT-PCR reactions in this chapter may be due 

to natural variation in gene expression levels. However, it is also possible that any differences 

in correlation between the microarray analysis and qRT-PCR analysis, as for this gene, are due 

to small variations in microarray specificity as discussed in section 3.3.2 above. 

 

The bfb genes are involved in the cellobiose phosphotransferase system, which imports 

cellobiose into the bacterial cell. According to the qRT-PCR data (shown in Table 3.2 and Figure 

3.8), the hsa gene is slightly down-regulated in response to amino acid depletion. The bfb 

genes, however, are strongly down-regulated. This may be in response to the bacterial cells 

undergoing a stress response in reaction to the depletion of any of the amino acids tested.  

 

The bfb genes are involved in actively transporting nutrients – in this case, the sugar 

cellobiose – into the S. gordonii cells. However, they have also been shown to be switched on 

during biofilm formation in S. gordonii (Kiliç et al., 2004). As the depletion of amino acids in the 

growth medium puts the cells into a global stress response, any genes involved in carbohydrate 

transport would likely be down-regulated in order to conserve energy within the cells. A similar 

response can be observed in E. coli in response to amino acid starvation – namely, a global 

stress response mediated by the alarmones (p)ppGpp (guanosine 5′,3′ bispyrophosphate and 

guanosine pentaphosphate) (Traxler et al., 2008). The same (p)ppGpp-mediated response can 

also be observed in Bacillus subtilis in response to iron-deprivation, causing up-regulation of 

amino acid biosynthesis pathways – in this case, in order to synthesise the iron chelating 

molecule bacillibactin, so more iron can be taken up from the external environment (Miethke 

et al., 2006).  

 

It is possible that a number of the genes seen to be regulated equally across all strains here 

may be part of a global stress response, potentially mediated by (p)ppGpp in S. gordonii. Future 

work to determine if this is the case, and which genes may be affected in their expression by 

this global stress response, could focus on deletion of the genes which synthesise (p)ppGpp – 

in this case, the relAPQ genes, well-known in S. mutans (Lemos et al., 2007), and also present 

in S. gordonii. Knocking out these genes would prevent the production of the alarmone 

molecules, and would allow analysis of which genes are still affected in their expression in 

response to amino acid depletion, and which remain unchanged. This would help to establish 
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the regulatory circuitry for the global stress response in S. gordonii. Another alternative would 

be to test the expression of these genes in response to the depletion of other amino acids – if 

the expression levels remain constant irrespective of which amino acid has been depleted, that 

would indicate a global stress response. 

 

Of the genes that are apparently specific to arginine, some were expected – such as argC – and 

some were not, for example, in the case of wzg, asp5 and SGO_1686. These genes were 

unexpectedly regulated specifically in response to arginine. The asp5 gene was particularly 

unexpected, as that encodes part of the hsa operon. As Hsa is a surface adhesin, involved in 

binding to fibronectin residues in the human oral cavity, the genes in this operon may not need 

to be expressed whilst the bacterial cells were growing in planktonic culture in defined medium, 

and so expression of these genes may be effectively switched off in response to amino acid 

deprivation.  In the case of asp5, the expression of this gene was strongly down-regulated, but 

only in response to arginine depletion. This was in contrast to the hsa gene itself, which was 

only slightly down-regulated. It is possible, therefore, that instead of these genes being part of 

the same operon, they are part of different operons and as such are regulated and expressed 

differently. Alternatively, the presence of internal promoters that are regulated by different 

sigma factors, such as those found in E. coli (Shimada et al., 2014; Peano et al., 2015), could be 

responsible for differential expression of these genes.  

 

No evidence has been found as yet to suggest that L-arginine, or in fact any other amino acid, 

has any bearing on the biosynthesis or expression of the Hsa protein in S. gordonii, however 

the strong down-regulation of this gene in the arginine-deplete sample suggests that arginine, 

or one of its regulators, is playing an indirect role in the regulation of the asp5 gene. It may be 

that one of the arginine regulatory molecules – ArcR, ArgR or AhrC – may be affecting the 

expression of a gene that in turn regulates asp5 expression, in response to arginine depletion. 

However, this would have to be investigated further before any definite regulatory mechanisms 

could be proposed.  

 

Specific regulation in response to arginine depletion was also observed in the wzg and 

SGO_1686 genes. SGO_1686 is involved in fatty acid biosynthesis, and whilst down-regulation 

of this gene might be expected in a bacterial stress response to nutrient depletion, in order to 
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conserve energy by preventing unnecessary biosynthesis, the down-regulation of this gene 

specifically in response to arginine depletion is unexpected. The wzg gene is part of an operon 

that encodes biosynthesis of the receptor polysaccharide (RPS) surface protein, which mediates 

binding between S. gordonii and A. oris (Cisar et al., 1995; Mishra et al., 2010). This gene was 

more strongly down-regulated in response to arginine depletion than to histidine or branched-

chain amino acid depletion – a four-fold down-regulation in arginine versus a two-fold down-

regulation in histidine. However, this still shows a slight degree of arginine-specific down-

regulation. As for the asp5 gene above, it is possible that for any of these genes, rather than 

arginine having a direct effect on expression of these genes, it is instead playing an indirect role 

in the regulation of these genes through a downstream signalling cascade of some kind. Direct 

signalling was not assessed in these experiments, and could form the basis for future work. 

However, the fact that both asp5 and wzg are part of operons encoding major surface proteins 

in S. gordonii should not be overlooked, as this could play a role in affecting biofilm formation 

in S. gordonii.  

 

Therefore, the work in this chapter has demonstrated that, whilst high concentrations 

(500 mM) of L-arginine do not kill S. gordonii cells, they inhibit planktonic growth. In addition 

to this, planktonic cultures of S. gordonii have been shown to exhibit a functional auxotrophy 

for L-arginine. Analysis of the regulation of certain genes in response to the depletion of these 

amino acids demonstrated the presence of some arginine-specific responses in gene 

regulation, and some genes that showed changes in expression in response to depletion of any 

amino acid. The next chapter of this thesis will take this analysis of gene regulation in response 

to L-arginine one step further, by looking at the role that the different putative arginine-

dependent regulators play in controlling gene expression in S. gordonii.  
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4. Role of transcription regulators in arginine-dependent  

gene regulation 

4.1.  Introduction 

Chapter 3 looked in detail at the arginine-dependent regulation of 12 genes of interest, 

specifically chosen for their roles in arginine biosynthesis and biofilm formation, and described 

in detail in the previous chapter’s introduction. 

 

The microarray analysis which formed the rationale for choosing those 12 genes was recently 

analysed and published in a paper from our group (Jakubovics et al., 2015). The analysis within 

this paper focused on the responses of wild-type S. gordonii DL1 to a shift from high to no 

arginine conditions. This microarray analysis was performed alongside an equivalent analysis of 

S. gordonii ΔarcR, which carries a deletion of the gene which encodes one of the three S. 

gordonii arginine-dependent regulators, ArcR. The expression of 2051 genes was also measured 

in this strain in high arginine and in a shift from high to no arginine conditions. Unlike the S. 

gordonii DL1 data, the data from S. gordonii ΔarcR have not yet been published, nor analysed 

in detail. Therefore, this chapter will focus on discussing the results of this S. gordonii ΔarcR 

microarray. In addition, new microarray analyses were performed here to assess the impact of 

disrupting the argR or ahrC genes, encoding the putative arginine-dependent regulators ArgR 

and AhrC, on S. gordonii gene regulatory responses to shifts from high to no arginine.  

 

The original S. gordonii DL1 microarray found that, of 2051 genes assessed, covering >95% of 

the total predicted genome, 464 were differentially expressed in response to L-arginine 

depletion. These genes represent nearly 23% of the S. gordonii genome, and a majority of the 

genes that can be functionally characterised are associated with amino acid metabolism and 

transport functions, according to COGFun classifications (functional classifications of clusters 

of orthologous groups; an approach that classifies genes into general classes based on their 

function within the bacterial cell). Approximately equal numbers of genes appeared to be up-

regulated and down-regulated in response to arginine depletion, with 247 genes increasing in 

expression (up-regulated) vs 217 decreasing in expression (down-regulated).  
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Some genes were very strongly regulated in response to shifts in arginine concentration, with 

18 loci containing single or multiple genes that were regulated >10-fold. These include up-

regulated operons involved in arginine and pyrimidine biosynthesis, histidine biosynthesis, and 

a number of hypothetical genes that are uncharacterised. The extent of regulation of genes 

within these operons extended from around 10-fold up-regulation, to as high as 339-fold. The 

operons that were down-regulated include the Hsa and receptor polysaccharide (RPS) surface 

protein biosynthesis operons, in addition to the fatty acid biosynthesis and cellobiose 

phosphotransferase (PTS) system genes. The extent of down-regulation in these operons was 

between 5-fold to 30-fold down-regulation. 

 

The work in Chapter 3 aimed to differentiate between arginine-specific gene regulation and 

gene regulation that was associated with general stress induced by growth arrest following 

shifts to no arginine. In many bacteria, direct arginine-dependent regulation is mediated by 

regulators of the ArgR/AhrC family (Cunin et al., 1986). The S. gordonii genome encodes three 

putative arginine-dependent regulators and it has been shown that these each participate in 

regulation of arginine metabolism genes (Jakubovics et al., 2015). The microarray analysis in 

this chapter aimed to determine which genes are regulated by each of these arginine-

dependent regulators, and whether any genes are regulated specifically in response to arginine 

in an ArcR/ArgR/AhrC-independent manner.  

 

 Confirmation of the non-polarity of arginine regulator mutants 

4.2.1. qRT-PCR analysis of downstream gene expression 

Arginine was seen to have an effect on expression of a large number of genes, including genes 

associated with biofilm formation (see previous chapter). Here, the role of three arginine-

dependent regulators in gene regulation was analysed using isogenic mutants. Previous work 

in our lab had resulted in construction of deletion strains of all three arginine regulators, 

encoded by the genes argR, arcR and ahrC, engineered together in combinations of single, 

double and triple mutant strains. However, the possible polar effects of these gene disruptions 

had not previously been investigated, and the work here aimed to assess downstream gene 

expression to ensure that the mutations did not have polar effects on surrounding genes. The 

work described below was included in the publication by Jakubovics et al. (2015).  
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Deletions of S. gordonii argR, arcR and ahrC genes were previously engineered by replacement 

of the regulator gene with an antibiotic resistance cassette, thereby knocking out the function. 

However, all of these regulators are found <200 bp upstream of other genes, and the 

surrounding regions for each are shown in Figure 4.1. The argR gene lies 178 bp upstream of 

mutS, the 3’ end of the arcR gene is just 34 bp away from the oppositely oriented arcT gene, 

and ahrC is just 7 bp upstream of recN.  

 

In order to ensure that downstream gene expression was not being affected by insertion of 

antibiotic-resistance cassettes, qRT-PCR was carried out on three replicates of cDNA samples 

taken from the argR and ahrC mutant strains (PK3346 and PK3350 respectively), grown 

anaerobically in BHY rich medium. Primers were designed to target the gene downstream of 

each regulator gene, namely the DNA mismatch repair gene mutS in the S. gordonii ΔargR 

strain, and the DNA repair gene recN in the S. gordonii ΔahrC strain. Microarray analysis was 

also performed on these genes, within the relevant mutant strains, as part of the work in this 

chapter. In the case of arcR (strain PK3354), expression of the downstream hypothetical arcT 

gene had already been measured as part of the previous microarray analysis (see section 4.3.1 

below). 

 

The absolute fold-change values for the genes of interest were assessed by qRT-PCR, and 

standardised against the levels of gene expression in the S. gordonii DL1 strain, to give a fold-

change value of mutant vs wild-type. It was found that gene expression for the mutS (1.26-fold 

up-regulation in comparison to DL1) and recN (1.09-fold down-regulation in comparison to DL1) 

genes was not significantly affected by deletion of the preceding regulatory gene. Analysis of 

the expression levels of these genes from the S. gordonii ΔargR and ΔahrC microarrays carried 

out in this chapter also showed that each of these genes were regulated <2-fold.  The 

expression of the arcT gene was significantly different, with a 5.21-fold up-regulation observed. 

ArcR has not previously been shown to regulate arcT, which is predicted to encode a 

transpeptidase enzyme that can cleave arginine residues from internalised peptides (Zúñiga et 

al., 1998; Liu et al., 2008). However, due to the putative role of ArcT and its position directly 

downstream of the arcD gene, it is likely that this gene is co-transcribed with arcD and linked 

to the arginine catabolism genes, cleaving arginine residues for conversion to ammonia. 
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Therefore, it is possible that ArcR would also regulate expression of the arcT gene, in addition 

to arcABCD, and so it is likely that the up-regulation of the arcT gene is due to the loss of 

regulation of the arc operon by the ArcR transcriptional regulator, rather than due to a 

downstream polar effects. 
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A) 

C) 

B) 

Figure 4.1. Positions of regulatory genes within their operons, and downstream genes. A) shows the argR gene, with its putative promoter (labelled 
PargR), and terminator (argR-term). The mutS gene lies downstream of this, and no predicted promoter was found between argR and mutS. B) shows 
the ahrC gene, which is apparently co-transcribed with the genes xseA, xseB, SGO_0695 and SGO_0696, all from the promoter PxseA. The recN gene is 
immediately downstream, with its own predicted promoter (PrecN) lying within the ahrC gene itself, and a terminator lying downstream. C) shows the 
arcR gene, co-transcribed from PqueA with the queA gene. The genes arcDT, transcribed together from another promoter, lie in the opposite direction, 
with both arcR and arcT sharing a terminator sequence. (Promoters predicted using PromBase, terminators predicted using DOOR2). Map created 
using the SnapGene software, numbers on DNA strand represent the scale in base pairs. 
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 Roles of ArcR, ArgR and AhrC in arginine-dependent gene 

regulation 

After establishing that the arginine regulator knock-out strains were not having polar effects 

on downstream gene expression, the impact of these mutations on genome-wide gene 

expression in response to changes in exogenous arginine was assessed.  

Genome-wide microarray analysis was performed on single knock-out strains of argR and ahrC. 

S. gordonii ΔargR (PK3346) and ΔahrC (PK3350) cells were grown in arginine-replete chemically-

defined FMC medium, then transferred either to medium replete in or depleted of arginine. 

RNA was extracted after 30 min, and gene expression was assessed by microarray. Data were 

then compared with microarray analyses of S. gordonii DL1 and ΔarcR (PK3354), subjected to 

the same arginine depletion protocols. It is important to note that the data between the sets 

of arrays may not be comparable, as the wild-type was not included on the S. gordonii ΔargR 

and ΔahrC arrays due to cost, and so it was hoped that the new arrays would be comparable 

with the previous ones. However, an important part of the bioinformatics analysis was to 

determine whether a comparison between the experiments that were done at different times 

was reasonable. 

 

4.3.1. Genome-wide microarray of S. gordonii ΔarcR gene expression in high and 

no arginine 

As mentioned in section 4.1, the S. gordonii ΔarcR microarray analysis was carried out at the 

same time as the original S. gordonii DL1 microarray, published in Jakubovics et al. (2015), 

however the ΔarcR microarray data has not yet been published or analysed in detail until now. 

 

In the S. gordonii ΔarcR strain, 576 genes were differentially-regulated in response to a shift 

from high to no arginine conditions. Of these genes, 385 were up- or down-regulated >2.5-fold 

in response to arginine depletion. Amongst these genes were amino acid (including arginine) 

biosynthesis genes, receptor polysaccharide and Hsa biosynthesis genes, and genes from the 

bfb biofilm-associated locus. However, only direct comparison of the data from the S. gordonii 

DL1 and ΔarcR microarrays would indicate which genes were being directly regulated by the 

ArcR protein. 
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Direct comparisons between the S. gordonii DL1 and ΔarcR strains under both high, and no 

arginine conditions, were then made. Under no arginine conditions, no genes were significantly 

differentially expressed between the two strains. However, under high arginine conditions, five 

genes (excluding arcR itself) were shown to be differentially regulated in the S. gordonii ΔarcR 

strain vs DL1 (Table 4.1). These genes are therefore thought to be directly regulated by the 

arginine-dependent ArcR regulator. 

 

These genes consisted of queA, argG, argH, SGO_0177 and SGO_0846. The queA gene is found 

immediately upstream of arcR, and co-transcribed with the arcR gene from its own promoter. 

This gene was up-regulated in the S. gordonii ΔarcR strain under high (and no) arginine 

conditions when compared to the wild-type (11-fold up-regulated in the mutant vs wild-type). 

It has been suggested that QueA is responsible for negatively regulating the expression of the 

arc operon genes (Liu et al., 2008; Liu et al., 2012), and so may be controlled in its expression 

by the ArcR regulator via the pqueA promoter. This would also be supported by the fact that 

deletion of the arcR gene results in up-regulation of this gene, under both high and no arginine 

conditions. The arginine biosynthesis genes argGH, usually repressed slightly by the ArcR 

protein under high concentrations of exogenous arginine, were also up-regulated within the 

ΔarcR mutant, as was the SGO_0177 gene, thought to be co-transcribed with argGH (all 5 to 6-

fold up-regulated in mutant vs wild-type).  

 

However, the most surprising find was the strong up-regulation of the SGO_0846 gene. This 

gene was 148-fold up-regulated in the S. gordonii ΔarcR strain in comparison to the DL1 strain, 

under high arginine conditions, and was not significantly regulated in either the S. gordonii 

ΔargR or ΔahrC strains under high arginine conditions. It is labelled as a putative cell wall 

protein by NCBI Gene (NCBI, 2015), but is otherwise wholly uncharacterised. Analysis of this 

gene, and its possible role within S. gordonii cells, will form the basis of the work undertaken in 

Chapter 5. 
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Gene name Function 
Absolute fold-

change 

SGO_0846 Hypothetical 148.66 

queA Queosine modification of tRNA 11.05 

argH Arginine biosynthesis 6.54 

argG Arginine biosynthesis 5.97 

SGO_0177 Arginine biosynthesis (hypothetical) 5.58 

arcR Transcriptional regulator -73.54 

Table 4.1. Genes that were differentially expressed between the S. gordonii ΔarcR vs wild-type 
strains under high arginine conditions. Negative numbers represent down-regulated genes. The 
arcR gene showed down-regulation in the ΔarcR mutant due to loss of its expression in high 
arginine conditions. 
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4.3.2. Principal component analysis of microarray datasets 

As all four microarray analyses – on wild-type S. gordonii DL1, ΔarcR, ΔargR and ΔahrC strains 

– were carried out at different times, with no mixing of samples between arrays, it was prudent 

to check the data for a batch effect - a form of technical variance within an experiment - 

between the microarrays before carrying out any direct analysis between the datasets. The 

wild-type DL1 and ΔarcR microarrays were performed together, and the ΔargR and ΔahrC 

microarrays were performed together. Principal component analysis was then performed to 

assess whether the different sets of arrays were comparable, in order to perform direct 

comparisons and statistical tests across the two sets of array data.  

 

The principal component analysis, performed by Mr John Casement of the Bioinformatics Core 

Facility (Newcastle University), measured the amounts of variability between the two 

microarray datasets (Figure 4.2).  

 

The samples analysed within the same microarray experiments (i.e. samples on slides 1 and 2, 

and slides 3 and 4), are mixed well with each other. However, there is no mixing of samples 

between the two different microarrays, which indicates a significant batch effect is present 

within the data. It has not been possible to correct for this using parametric statistical tests, 

and therefore direct comparisons of gene expression between the argR and ahrC mutant 

samples, and the DL1 wild-type, are not feasible. Even so, a limited comparison of data across 

different arrays is presented in section 4.3.5 below. 
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Figure 4.2. Principal component analysis (PCA) plot of data from all four microarray experiments. 
The axes of the graph – labelled PC1 and PC2 – represent the two greatest directions of 
variability within the data, with PC1 showing the direction of greatest variability, and PC2 the 
direction of greatest variability within the constraints of the first direction. Each data point on 
the graph represents one of the samples on one of the microarrays, thirty-two samples in total 
(four biological replicates of four strains, each under two conditions), although two samples 
were removed as outliers and were not included in any of the analyses. Slides 1 and 2 represent 
the original wild-type DL1 and ΔarcR microarrays, and Slides 3 and 4 represent the ΔargR and 
ΔahrC microarrays. No mixing of samples occurs between the first and second microarrays, 
indicating a significant batch effect between the two sets of data. (PCA analysis performed by 
Mr John Casement, of the Bioinformatics Core Facility, Newcastle University).  
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4.3.3. Comparison of microarray with qRT-PCR analysis of gene expression in the 

arginine-dependent regulator mutants 

Following discovery of the batch effect between the two microarrays, it was important to 

validate the results of each microarray, in order to ensure the datasets were similar, if not 

directly comparable. In the paper by Jakubovics et al. (2015), qRT-PCR analysis was performed 

in the wild-type strain on seven different genes – six of which were involved in arginine 

metabolism and transport (argC, argG, pyrAb, arcA, arcB, and arcD), and the seventh as a 

control gene (amyB). However, qRT-PCR analysis was also performed at the same time on the 

same genes in the ΔarcR, ΔargR and ΔahrC strains (Jakubovics et al., unpublished work). 

Therefore, in order to validate the findings of the ΔarcR, ΔargR and ΔahrC microarrays, the qRT-

PCR data for the above-mentioned genes was compared against the microarray values for each 

strain. Each microarray was validated separately using this technique, as the variability of the 

data due to the batch effect meant they could not be validated together. 

 

The log2 fold-change values for expression of each of these seven genes, in wild-type S. gordonii 

DL1 and each of the arginine-dependent regulator mutant strains, were compared between 

the qRT-PCR and microarray, for a shift from high to no arginine conditions (Figure 4.3 and 

Figure 4.4).  

 

The comparison showed a strong correlation between the qRT-PCR and microarray analysis for 

these genes in all four strains. The r2 values of the linear regression lines were over 0.9 for each 

strain, with the exception of the S. gordonii ΔarcR strain, where the r2 value was only 0.777. For 

the wild-type DL1 strain, the slope of the line was 0.985, and for the other three strains the 

value of the slope was over 1.1. On the whole, the values for gene expression in the microarray 

and qRT-PCR correlated well for all strains, despite some slight differences in the extent of 

regulation. Therefore, the microarray data were comparable with the qRT-PCR analyses. 
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Figure 4.3. Validation of the S. gordonii DL1 and ΔarcR microarrays by comparison with qRT-PCR data. Gene expression was measured as a log2 fold-
change value when moving from high to no arginine conditions, in both the wild--type S. gordonii DL1 (A) and ΔarcR (B) strains. Seven genes were 
analysed by qRT-PCR analysis, and correlated against the fold-change values for the same genes within each individual microarray. The linear 
regression line for each correlation is shown. Values on the graphs indicate the r2 value and the slope of the line. 

(A)   S. gordonii DL1 (B)   S. gordonii ΔarcR 

r2 = 0.995 
Slope = 0.985 

r2 = 0.777 
Slope = 1.159 
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Figure 4.4. Validation of the S. gordonii ΔargR and ΔahrC microarrays by comparison with qRT-PCR data. Gene expression was measured as a log2 
fold-change value when moving from high to no arginine conditions, in both the S. gordonii ΔargR (A) and ΔahrC (B) strains. Seven genes were 
analysed by qRT-PCR analysis, and correlated against the fold-change values for the same genes within each individual microarray. The linear 
regression line for each correlation is shown. Values on the graphs indicate the r2 value and the slope of the line. 

(B)   S. gordonii ΔahrC (A)   S. gordonii ΔargR 

r2 = 0.953 
Slope = 1.125 

r2 = 0.956 
Slope = 1.148 
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4.3.4. Genome-wide microarrays of gene expression in S. gordonii ΔargR and 
ΔahrC in high and no arginine 

As the data from the S. gordonii ΔargR and ΔahrC strains were shown to be comparable to the 

qRT-PCR data for seven genes of choice, further analysis of the data from these microarrays 

can now be undertaken. However, no direct comparisons can be drawn between these two 

mutants and the wild-type strain, as with the S. gordonii ΔarcR strain. 

 In S. gordonii ΔargR, 347 genes were regulated in response to a shift from high to no arginine 

growth medium. By looking at genes that were strongly regulated in response to arginine in S. 

gordonii ΔargR, it was possible to identify loci that were regulated in response to arginine by 

factors other than ArgR (Table 4.2). 

Three of the most highly up-regulated genes were the arginine biosynthesis genes, argG (63-

fold up-regulated in response to arginine depletion), argH (53-fold up-regulated) and the 

hypothetical protein SGO_0177 (up-regulated 78-fold). These genes are predicted to be co-

transcribed, and were apparently regulated in response to arginine by the ArcR protein, which 

is still encoded by the intact arcR gene in the ΔargR strain. However, other arginine biosynthesis 

genes, including argC and argJ, which were the most highly up-regulated genes in response to 

arginine depletion in the wild-type (approx. 500-fold and 300-fold up-regulation respectively), 

were only two-fold up-regulated in response to arginine depletion in S. gordonii ΔargR. All of 

these genes, argC, argJ, and argGH, have been shown to be regulated by the ArgR and AhrC 

arginine-dependent regulators (Jakubovics et al., 2015). 
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Up-regulated genes Absolute fold-change Down-regulated genes Absolute fold-change 

SGO_0177 78.53 bfbB -101.81 

argG 63.27 bfbG -81.68 

argH 53.09 bfbF -54.98 

SGO_0648 9.75 bfbR -29.56 

SGO_0646 8.01 bfbD -27.21 

SGO_0647 7.77 bfbA -27.16 

SGO_0645 7.40 bfbC -27.01 

SGO_1277 6.10 SGO_1575 -13.07 

nadR 4.69 SGO_1700 -8.95 

SGO_0874 4.51 SGO_1686 -8.49 

Table 4.2. Most highly up- and down-regulated genes in the S. gordonii ΔargR strain, in high vs 
no arginine conditions. Negative numbers represent down-regulated genes. 
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Other highly up-regulated genes include a number of hypothetical genes, such as SGO_0645 

(seven-fold up-regulated) and SGO_0646 (eight-fold up-regulated). The neighbouring genes 

SGO_0647 and SGO_0648 encode a DNA-directed DNA polymerase IV enzyme, and a DNA 

binding protein respectively. They are predicted by the DOOR2 database (Mao et al., 2009) to 

form an operon, along with the aforementioned SGO_0645 and SGO_0646, and so it is likely 

that the roles that the hypothetical genes in this operon play may be related to the roles 

performed by the two characterised genes within the operon, i.e. in DNA replication and 

mutagenesis, akin to the known roles of DNA polymerase IV (Wagner et al.; Ohmori et al., 

2001). The DNA polymerase IV protein is also known to be regulated in response to stress in E. 

coli (Layton and Foster, 2003), and so may be regulated as part of a general stress response to 

arginine depletion in these samples. 

 

The remaining up-regulated genes shown in Table 4.2 are SGO_0874, a putative lipoprotein-

encoding gene, and nadR, a nicotinamide-nucleotide adenylyltransferase transcriptional 

regulator (NCBI, 2014), which were both up-regulated four-fold in response to arginine 

depletion. The nadR gene was regulated to a similar levels across all four microarrays (wild-type 

S. gordonii DL1, ΔarcR, ΔargR, and ΔahrC), so seems likely to be a general stress response. 

However, the SGO_0874 gene was regulated to a similar level in all three arginine-dependent 

regulator mutants, but was more strongly up-regulated in the wild-type strain. This may suggest 

a degree of control, either direct or indirect, over expression of this gene by the arginine 

regulators. 

 
The most strongly down-regulated genes include the bfb operon genes, which encode 

components of a cellobiose phosphotransferase system, previously linked to biofilm formation 

in S. gordonii (Kiliç et al., 2004; Jakubovics et al., 2008). The bfb locus consists of the genes 

SGO_1575, and bfbABCDFGR, which were down-regulated in response to arginine depletion 

between 13-fold and 101-fold. These genes appeared to be more strongly down-regulated in 

both the S. gordonii ΔargR and ΔahrC mutants, and less strongly down-regulated in the ΔarcR 

strain, in comparison to the levels of regulation in the wild-type. This may suggest that the 

ArgR/AhrC proteins play a role in limiting the down-regulation of these genes, and once those 

regulators are deleted the expression level drops further. By contrast, ArcR may directly down-

regulate these genes, as deletion of arcR relieved down-regulation to some extent.  
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Finally, the remaining two down-regulated genes, SGO_1686 and SGO_1700, both encode 

hypothetical proteins. 

 

Of the 374 genes regulated in response to arginine depletion in S. gordonii ΔargR, twelve were 

found to be unique to the ΔargR strain (Table 4.3). This list included the chromosomal 

segregation protein spo0J (2.11-fold up-regulated in a shift from high to no arginine), and a 

predicted membrane protein (SGO_0917, 2.21-fold up-regulated). All 12 of these genes 

appeared to be weakly-regulated, with absolute fold-change values consisting of <2.5-fold 

changes up or down in gene expression.  

 

In the S. gordonii ΔahrC strain, 366 genes were regulated in response to a shift from high to no 

arginine conditions. The most strongly up- and down-regulated genes in this strain were the 

same as those found in the S. gordonii ΔargR strain (Table 4.4). The ΔahrC strain also had 12 

genes that were found to be uniquely regulated in that strain (Table 4.5).  
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Table 4.3. Genes regulated in the S. gordonii ΔargR strain only, in response to a shift from high 
to no arginine conditions. Negative numbers represent down-regulated genes. 

 

Gene name Gene function 
ΔargR absolute 

fold-change values 

cadD Cadmium transporter 2.24 

SGO_0917 Membrane protein 2.21 

spo0J Chromosome segregation protein 2.11 

dnaI Primosomal protein 2.05 

SGO_1507 Hypothetical 2.03 

pfl Formate acetyltransferase 2.02 

fruR Phosphotransferase system repressor 2.00 

SGO_1571 UDP-N-acetylenolpyruvoyl-glucosamine reductase -2.02 

rplM 50S ribosomal protein L13 -2.12 

SGO_0061 Type VII secretion protein  -2.17 

SGO_0062 Hypothetical -2.17 

rpsJ 30S ribosomal protein S10 -2.18 
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Up-regulated genes Absolute fold-change Down-regulated genes Absolute fold-change 

SGO_0177 71.72 bfbG -121.43 

argG 62.38 bfbB -113.64 

argH 55.01 bfbF -68.89 

SGO_0648 9.80 bfbR -34.01 

SGO_0645 8.93 bfbA -32.03 

SGO_1277 8.52 bfbC -30.83 

SGO_0647 8.35 bfbD -29.81 

SGO_0646 8.32 SGO_1700 -10.95 

nadR 5.83 SGO_1575 -10.88 

SGO_0874 5.10 SGO_1686 -8.97 

Table 4.4. Most highly up- and down-regulated genes in the S. gordonii ΔahrC strain, in high vs 
no arginine conditions. Negative numbers represent down-regulated genes. 
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Gene name Gene function 
ΔahrC absolute 

fold-change values 

SGO_1664 Membrane protein 2.20 

SGO_1457 Membrane protein 2.13 

SGO_0050 Hypothetical 2.10 

SGO_0479 Transcriptional regulator (AraC family) 2.07 

SGO_0894 UDP-N-acetylglucosamine 1-carboxyvinyltransferase 2.03 

proV Proline/glycine transporter 2.02 

SGO_0756 Membrane protein 2.01 

SGO_0252 Transcriptional regulator (TetR family) 2.01 

SGO_0747 
5-methyltetrahydropteroyltriglutamate-

homocysteine methyltransferase 
2.01 

SGO_1083 Heme ABC transporter ATP-binding protein -2.05 

SGO_1645 Cellobiose phosphotransferase system subunit IIA -2.08 

SGO_0454 Transcriptional regulator -2.09 

Table 4.5. Genes regulated in the S. gordonii ΔahrC strain only, in response to a shift from high 
to no arginine conditions. Negative numbers represent down-regulated genes.  
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This list of 12 genes included three predicted membrane proteins - SGO_0756, SGO_1457 and 

SGO_1664, all of which had two-fold changes in response to arginine depletion. However, as 

with the S. gordonii ΔargR strain, all of these genes were expressed at levels of <2.5-fold change 

only. It is likely that in both this strain, and the ΔargR strain, the genes that were found to be 

“uniquely regulated” within each strain (Table 4.3 and Table 4.5) were regulated to a low level 

in both the ΔargR and ΔahrC strains, however, only just reach over the cut-off values for 

regulation (>2-fold regulation, p <0.05) in one of the strains. 

 

ArgR and AhrC have been posited to work coordinately with each other in S. gordonii 

(Jakubovics et al., 2015), and in other species such as Lactococcus lactis (Larsen et al., 2005) 

and Streptococcus pneumoniae (Kloosterman and Kuipers, 2011), although in these species, the 

regulons of the genes do not overlap precisely, and some genes have been found to be 

differentially expressed between these two regulators. In this analysis, genes that were found 

to be regulated to the same levels in both S. gordonii ΔargR and ΔahrC in response to arginine 

depletion, but were not regulated to the same degree in the DL1 or ΔarcR strains, were also 

analysed. Thirty-six genes were found, 21 up-regulated and 15 down-regulated in response to 

a shift from high to no arginine conditions. Again, most (but not all) of these genes were <2.5-

fold up- or down- regulated (Table 4.6).  
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Gene name Description 
ΔargR 

absolute FC 
ΔahrC 

absolute FC 

glgP-2 Maltodextrin phosphorylase  3.30 3.21 

malQ 4-alpha-glucanotransferase  3.13 3.35 

SGO_0579 Amino acid ABC transporter ATP-binding protein  2.52 2.19 

msrA Peptide methionine sulfoxide reductase  2.45 2.63 

SGO_1499 Bacteriocin ABC transporter ATP-binding protein  2.42 2.27 

hisS Histidyl-tRNA ligase 2.31 2.37 

SGO_1662 DNA methyltransferase  2.29 2.10 

SGO_0984 Amino acid permease  2.28 2.04 

SGO_2101 Nitrate ABC transporter permease  2.24 2.50 

SGO_0578 Amino acid ABC transporter permease 2.23 2.03 

pflC Formate acetyltransferase activating enzyme  2.22 2.44 

SGO_1181 Transcriptional regulator (OmpR family)  2.21 2.53 

SGO_0291 Copper-translocating P-type ATPase  2.16 2.48 

SGO_1933 Copper transporter CopZ-related protein  2.15 2.24 

SGO_0269 Hypothetical 2.12 2.35 

SGO_0289 Uracil phosphoribosyltransferase  2.11 2.61 

SGO_1934 Copper-translocating P-type ATPase  2.11 2.15 

SGO_0290 ATPase  2.10 2.36 

SGO_0511 Nitroreductase  2.07 2.07 

SGO_1180 Histidine kinase  2.07 2.04 

SGO_0052 Transcriptional regulator (PadR family)  2.03 2.15 

tatA Twin arginine-targeting protein translocase  -2.02 -2.01 

SGO_1084 BCAA ABC transporter permease  -2.04 -2.04 

SGO_2030 Acetyltransferase  -2.11 -2.51 

gyrA DNA gyrase subunit A -2.12 -2.25 

SGO_1006 Nif3-like dinuclear metal center hexameric protein  -2.14 -2.04 

rnc Ribonuclease III  -2.18 -2.19 

SGO_0063 Hypothetical -2.22 -2.00 

gatC Aspartyl/glutamyl-tRNA amidotransferase subunit C  -2.28 -2.28 

atpC ATP synthase epsilon chain  -2.36 -2.20 

nrdG 
Anaerobic ribonucleotide triphosphate  

reductase activator protein  
-2.64 -2.72 

rpmG 50S ribosomal protein L33  -2.76 -2.42 

adk Adenylate kinase  -2.83 -2.93 

rpmF 50S ribosomal protein L32  -2.94 -2.53 

SGO_1243 Pseudo -4.98 -4.44 

SGO_0832 Hypothetical -6.09 -6.75 

Table 4.6. Genes regulated only in the S. gordonii ΔargR and ΔahrC strains in response to a shift 
from high to no arginine conditions. Negative numbers represent down-regulated genes. 
“Absolute FC” = absolute fold-change value for that gene. 



Chapter 4: Role of transcription regulators in arginine-dependent gene regulation 
 

105 
 

This list included genes encoding transcriptional regulators, permease proteins, and a histidine 

kinase gene. However, the most highly up-regulated genes in a shift from high to no arginine 

were a maltodextrin phosphorylase gene, glgP-2 (3.30-fold vs 3.21-fold up-regulated in S. 

gordonii ΔargR vs ΔahrC) and malQ, a 4-alpha-glucanotransferase enzyme (3.13-fold vs 3.35-

fold up-regulated in S. gordonii ΔargR vs ΔahrC). The most down-regulated genes were 

SGO_1243, annotated as a pseudogene by NCBI Gene (4.98-fold vs 4.44-fold down-regulated 

in S. gordonii ΔargR vs ΔahrC); and SGO_0832, a hypothetical gene (6.09-fold vs 6.75-fold 

down-regulated in S. gordonii ΔargR vs ΔahrC). However, none of these genes appeared to be 

significantly more strongly regulated in these mutant strains in comparison to the wild-type, 

although a direct comparison between the two sets of data cannot be made. See section 4.3.5 

for an analysis of between-array data. 

A number of these 36 regulated genes appear to have generic metabolism or transport roles, 

or play a part in transcription or translation. It is possible that the changes in regulation of these 

genes in response to arginine depletion are due to a general stress response, rather than the 

arginine regulatory genes having a direct effect on their gene expression levels. However, it is 

clear that these genes are all regulated to a similar level between the S. gordonii argR and ahrC 

mutants. Therefore, direct comparison of the S. gordonii ΔargR and ΔahrC strains identified no 

genes that were differentially regulated between the two strains under high or no arginine 

conditions, indicating that in S. gordonii the ArgR and AhrC regulons overlap precisely. 

 

4.3.5. Comparison between microarray data from all S. gordonii strains 

Following the PCA analysis performed in section 4.3.2, no direct statistical analysis of data 

between the two microarray experiments can be performed. However, fold-change values can 

still be analysed across the four S. gordonii strains. Nevertheless, it is important to note that 

these fold-change values cannot be directly or statistically compared, as the batch effect may 

be skewing the data to seem more or less significant than it is.  

 

The fold-change values for the most highly up-regulated (Table 4.7) and down-regulated (Table 

4.8) genes (following arginine depletion) from the wild-type S. gordonii DL1 microarray were 

looked at alongside the fold-change values for the same genes within the ΔarcR, ΔargR and 

ΔahrC strains.  
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Gene name Function 
DL1 

absolute FC 

 

ΔarcR 

absolute FC 

 

ΔargR 

absolute FC 

 

ΔahrC 

absolute FC 

argC Arginine biosynthesis 520.12 420.15 2.62 2.55 

SGO_0177 Hypothetical 342.42 77.38 78.53 71.72 

argJ Arginine biosynthesis 319.95 325.64 2.13 2.13 

argB Arginine biosynthesis 306.44 340.62 2.25 1.95 

argG Arginine biosynthesis 269.33 45.37 63.27 62.38 

argD Arginine biosynthesis 260.85 315.85 2.16 1.95 

argH Arginine biosynthesis 207.89 39.66 53.09 55.01 

SGO_0648 DNA-binding protein 54.12 18.49 9.75 9.80 

SGO_1656 
Phosphoenolpyruvate 

carboxykinase 
44.43 49.98 3.22 3.29 

SGO_0647 DNA polymerase IV 42.30 16.99  7.77  8.35 

SGO_0091 Membrane protein 36.62 17.27  NS  NS 

SGO_0646 Hypothetical 36.26  14.16  8.01  8.32 

SGO_0645 Hypothetical 32.39  16.55  7.40  8.93 

SGO_1105 
Pyrimidine/arginine 

biosynthesis 
28.94  56.81  3.06  3.53 

SGO_1106 
Pyrimidine/arginine 

biosynthesis 
28.46  53.12  NS  NS 

SGO_0021 Hypothetical 26.67  12.62  4.10  4.83 

pyrAa 
Pyrimidine/arginine 

biosynthesis 
23.70  28.59  1.99  2.03 

pyrAb 
Pyrimidine/arginine 

biosynthesis 
21.43  35.02  2.00  2.24 

SGO_1102 
Pyrimidine/arginine 

biosynthesis 
18.72  24.22  1.83  1.96 

SGO_1279 Hypothetical 17.98  6.00  NS  NS 

SGO_1410 Histidine biosynthesis 17.01  20.81  3.84  2.89 

hisD Histidine biosynthesis 15.18  16.18  3.56  2.66 

hisG Histidine biosynthesis 15.14  20.38  4.18  3.02 

SGO_1278 Hypothetical 14.26  5.42  NS  NS 

hisC Histidine biosynthesis 13.42  16.83  2.89  2.58 

hisB Histidine biosynthesis 12.45  16.95  3.40  2.57 

SGO_0092 Molecular chaperone 12.28  5.10  NS  NS 

hisH Histidine biosynthesis 11.15  12.15  2.86  2.13 

SGO_0093 Hypothetical 10.64  6.48  NS  NS 

SGO_1835 Hypothetical 10.55  4.42  2.03  2.02 

SGO_0874 Lipoprotein 10.11  4.56  4.51  5.10 

Table 4.7. Strongly up-regulated genes (>10-fold) in the wild-type S. gordonii DL1 strain, in 
response to arginine depletion, compared to the absolute fold-change (FC) values for the same 
genes in each of the three arginine-dependent regulator mutant strains. Shaded cells indicate 
genes where regulation is likely within that mutant strain. NS means no signal given for that gene 
in that microarray.
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Gene name Function 
DL1 

absolute FC 

 

ΔarcR 

absolute FC 

 

ΔargR 

absolute FC 

 

ΔahrC 

absolute FC 

bfbG Cellobiose PTS -81.92 -33.28 -81.68 -121.43 

bfbB Cellobiose PTS -51.14 -22.44 -101.82 -113.64 

bfbF Cellobiose PTS -35.01 -13.41 -54.98 -68.89 

SGO_1700 Enoyl-CoA hydratase -30.82 -20.71 -8.95 -10.95 

bfbR Cellobiose PTS -24.98 -8.98 -29.56 -34.01 

bfbA Cellobiose PTS -24.43 -8.96 -27.16 -32.03 

bfbD Cellobiose PTS -23.63 -6.17 -27.21 -29.81 

bfbC Cellobiose PTS -21.10 -6.31 -27.01 -30.83 

SGO_1686 Fatty acid biosynthesis -17.15 -17.40 -8.49 -8.97 

SGO_1575 Cellobiose PTS -15.59 -2.62 -13.07 -10.88 

accC Fatty acid biosynthesis -15.18 -9.29 -4.42 -5.44 

SGO_0831 Hypothetical -13.73 -10.53 NS NS 

SGO_0832 Hypothetical -13.26 -14.75 NS NS 

wzx RPS biosynthesis -12.93 -14.85 -5.80 -6.29 

accD Fatty acid biosynthesis -12.75 -7.51 -4.51 -5.43 

SGO_1699 Fatty acid biosynthesis -12.55 -9.27 -3.54 -3.99 

rpsD Ribosomal protein S4 -12.54 -9.99 -4.72 -3.90 

accA Fatty acid biosynthesis -12.33 -8.62 -4.54 -4.93 

wefE RPS biosynthesis -12.31 -23.94 -6.05 -6.79 

SGO_1698 Fatty acid biosynthesis -11.93 -6.71 -2.85 -3.41 

SGO_1692 Fatty acid biosynthesis -11.32 -5.12 -3.45 -3.96 

ileS 
Isoleucyl tRNA-

synthetase 
-11.12 -6.66 -5.04 -4.51 

SGO_0976 Hypothetical -10.81 -8.31 -3.62 -3.53 

glf RPS biosynthesis -10.69 -14.56 -5.50 -5.90 

SGO_0977 Hypothetical -10.50 -8.88 -3.77 -3.86 

fabZ Fatty acid biosynthesis -10.47 -5.68 -3.30 -3.65 

wefA RPS biosynthesis -10.44 -8.55 -4.55 -5.69 

accB Fatty acid biosynthesis -10.16 -5.16 -3.28 -3.56 

Table 4.8. Strongly down-regulated genes (>10-fold) in the wild-type S. gordonii DL1 strain, in 
response to arginine depletion, compared to the absolute fold-change (FC) values for the same 
genes in each of the three arginine-dependent regulator mutant strains. Shaded cells indicate 
genes where regulation is likely within that mutant strain. Negative values represent down-
regulation in gene expression, NS means no signal given for that gene in that microarray. 
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Comparison of the fold-changes for the most strongly up- and down-regulated genes in the S. 

gordonii DL1 microarray showed some genes with interesting differential expression between 

the four strains, shaded grey in the tables above. These comparisons are not statistically valid, 

but do highlight genes of interest. For example, the arginine biosynthesis genes argBCDJ all 

dropped significantly in expression in the ΔargR and ΔahrC mutant strains, and comparison of 

this data with a previous qRT-PCR analysis indicated that this is indeed differential regulation 

between the strains (see section 4.3.3). The ArgR and AhrC proteins have previously been 

shown to regulate the expression of these biosynthesis genes in response to low arginine 

conditions (Jakubovics et al., 2015). In addition, the SGO_0177 and argGH genes all appear to 

be less strongly up-regulated to differing extents in all three mutant strains, when compared 

to the levels of expression within the wild-type S. gordonii DL1 strain. It is likely that all three of 

these genes are regulated by the ArcR, ArgR and AhrC regulators.  

 

Amongst the strongly down-regulated genes, the bfb operon (bfbABCDFGR and SGO_1575) in 

particular appears to be less strongly down-regulated within the S. gordonii ΔarcR strain, than 

in any of the other three strains. Further comparison of the fold-change values for the bfb genes 

in the wild-type S. gordonii DL1 vs ΔarcR strains, under high and then low arginine conditions, 

showed that the bfb genes were more strongly down-regulated in the ΔarcR strain in high 

arginine conditions than low. This may be indicative of direct regulation and activation of these 

genes by the ArcR protein, in response to high exogenous arginine, however none of these 

genes were predicted to have a TFBS (transcription factor binding site) in their intergenic 

regions. Still, as mentioned previously, the ArcR binding footprint has not been clearly defined, 

and so it may be binding to a different target sequence to the ArgR/AhrC regulators. Other 

genes that appear to be directly affected in their expression within the ΔarcR strain are the 

wefE and glf genes of the RPS (receptor polysaccharide) biosynthesis operon, which were more 

strongly down-regulated within the S. gordonii ΔarcR strain, when compared to the wild-type. 

 

Analysis of the genes found in Table 4.7 and Table 4.8 indicated that a number of genes appear 

to be differentially expressed within the S. gordonii ΔargR and ΔahrC strains only, which may 

suggest direct regulation of the expression of those genes by the ArgR and AhrC regulatory 

proteins. These genes include pyrAa and pyrAb and argBCDJ, known to be regulated by these 

arginine-dependent regulators, and additionally SGO_1102 and 1105 (both within the 
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pyrAa/pyrAb operon); SGO_1406 to 1411, all genes within the histidine biosynthesis pathway; 

SGO_1656 and SGO_0021. All of these genes are up-regulated in response to arginine depletion 

within the wild-type strain, but less so within the S. gordonii ΔargR and ΔahrC strains. 

Additionally, genes that appear to be specifically down-regulated by ArgR and AhrC include the 

fatty acid biosynthesis genes SGO_1686, SGO_1699 and accACD; the ribosomal subunit protein 

rpsD; and the enoyl-CoA catabolism gene SGO_1700. 

 

4.3.6. Prediction of arginine regulator-specific transcription factor binding sites 

In order to predict whether any of the genes apparently regulated in response to arginine 

depletion by the S. gordonii ΔarcR, ΔargR and ΔahrC strains, may be directly regulated in their 

expression by these arginine-dependent regulators, the S. gordonii genome was analysed for 

putative TFBSs for ArgR. ArgR is the name given to the regulator family of S. gordonii by the 

RegPrecise database (RegPrecise, 2009-2015), and consists of the three regulatory proteins 

ArgR, ArcR and AhrC. The transcription factor binding site of the ArcR regulator at the arcA 

promoter has been assessed by DNase I footprinting (Zeng et al., 2006). However, the binding 

site is longer than usual, at 27 bp, and has not been widely analysed nor clearly defined. A 

BLASTN search of the S. gordonii genome for similar sequences or binding sites only shows the 

sequence upstream of arcA, which is referenced in the aforementioned paper, and no others 

within the S. gordonii chromosome. Therefore, for further in silico analysis of putative arginine-

dependent regulator binding sites in S. gordonii, the ArgR regulon sites listed on the RegPrecise 

database were used. 

 

The TFBS sequences for the ArgR regulator in all Streptococcaceae species (125 sequences in 

total) were downloaded from the RegPrecise database (RegPrecise, 2009-2015), and compiled 

into a position frequency matrix (PFM) for the ArgR regulator. This listed the number of times 

(out of 125 sequences) that a particular nucleotide (e.g. A, G, T and C) was found at each 

position along an 18 bp sequence. This PFM was then used to analyse the S. gordonii DL1 

genome, throughout both the whole chromosome and the intergenic regions, using the PePPER 

server (de Jong et al., 2012). Unfortunately, the output for the website does not give the 

sequence of the predicted TFBS, however, the PFM used to search for these sites is shown in 

Figure 4.5.  
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A [91 53 28 12 50 119 3 118 116 71 38 118 2 79 29 89 68 56] 

C [0 3 2 4 6 1 0 1 2 4 6 0 4 7 78 5 13 2] 

G [2 16 16 79 5 1 1 0 1 2 2 0 0 22 8 3 8 4] 

T [32 53 79 30 64 4 121 6 6 48 79 7 119 17 10 28 36 63] 

 

(A) 

(B) 

Figure 4.5. Position frequency matrix and sequence logo of the ARG box transcription factor binding sequence. (A) shows the position frequency 
matrix used to search for TFBSs – the sequences are 18 bp long, and each position indicates how often each nucleotide appears at that position 
within the sequence, out of a total of 125 analysed sequences. (B) shows a sequence logo for the same PFM, where the larger the letter, the more 
likely it is to be found at that position. Sequence logo created using the WebLogo website (Schneider and Stephens, 1990; Crooks et al., 2004). 
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In total, 54 genes were predicted to have ArgR TFBSs in their intergenic regions. Of these 

putative intergenic sites, 26 were found within genes regulated (to any extent, not just a 

significant extent) by one or more of the arginine-dependent regulators. The most likely TFBSs 

are shown in Table 4.9, and were decided to be likely sites as these genes showed clear 

evidence of regulation by the arginine-dependent regulators. Within this list appeared the 

promoter regions upstream of argG and argC (regulated to some extent by all three arginine-

dependent regulators), and SGO_1102, a gene within the same operon as the 

pyrimidine/arginine biosynthesis genes pyrAa and pyrAb, encoding the PyrR bifunctional gene, 

and shown in Table 4.7 (section 4.3.5) to be regulated by the S. gordonii ArgR and AhrC 

regulators. Other genes that are apparently regulated by ArgR/AhrC (according to the values in 

Table 4.7), that have predicted TFBSs within the intergenic region before the gene are the 

histidine biosynthesis gene hisC, and SGO_0021, a hypothetical protein-encoding gene (Table 

4.9). 

 

However, more work would be needed on these putative binding sites, such as DNA 

electrophoretic mobility shift assays to analyse regulator binding to promoter regions, and 

therefore determine whether any of these genes are in fact directly regulated by any of the 

three arginine-dependent regulatory proteins, ArcR, ArgR or AhrC. 
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Gene name 
Position of TFBS  

(base pairs upstream) 

argC -87 bp 

argG -43 bp 

SGO_1102 -222 bp 

hisC -471 bp 

SGO_0021 -260 bp 

Table 4.9. Putative transcription factor binding sites found in intergenic regions before genes, 
and their binding position. Sites were searched for and predicted using a position frequency 
matrix. Number dictates how far upstream of the start of the gene the TFBS begins. 
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  Discussion 

Nucleic acid insertions have long been known to have the ability to affect expression of 

downstream genes, causing what is known as a polar effect (Franklin and Luria, 1961; Ciampi 

and Roth, 1988). Altering genetic information, by way of either insertion or deletion of DNA 

within the bacterial chromosome, has the ability to shift the translational frame of downstream 

genes, and cause frameshift mutations including both nonsense and missense mutations 

(Starlinger and Saedler, 1972). Analysis of three S. gordonii strains carrying replacement 

knockouts of the arcR, argR and ahrC genes in this chapter required assurance that any 

phenotypes or differential gene expression observed in these strains was not due to polar 

effects on downstream genes, but due to knockout of those specific genes and loss of their 

activity.  

 

The qRT-PCR analysis performed on expression of genes downstream of these three regulator 

knockouts showed that, with the exception of the arcT gene in the ΔarcR strain, neither mutS 

nor recN were significantly altered in their expression following deletion of the preceding gene. 

In the case of arcT, however, there was a small difference observed. ArcR has never been shown 

to have a regulatory effect on the expression of the arcT gene, however, arcT is predicted to 

encode a transpeptidase enzyme, in order to cleave arginine residues from internalised 

peptides (Zúñiga et al., 1998; Liu et al., 2008). It is likely that this gene is linked to the arc 

operon, by providing an additional source of L-arginine for catabolism by the ADS system, and 

so this would suggest that it may also be regulated by ArcR. ArcT has been previously shown to 

be linked to the arc operon in other species, such as Lactobacillus sakei, where it appears to be 

co-transcribed with the arcD gene, and regulated by ArcR (Zúñiga et al., 1998; Zúñiga et al., 

2002). 

 

In the gene expression microarray experiments, comparison of the S. gordonii ΔarcR strain with 

the wild-type, under high arginine conditions, showed that queA, argGH, SGO_0177 and 

SGO_0846 were all up-regulated in the ΔarcR strain. In addition, ArcR also appears to be 

involved in the regulation of the bfb locus. The bfb operon has not been linked to regulation by 

arginine, or an arginine-dependent regulatory protein, previously. However, the expression of 

this operon was between 15 to 50-fold less strongly down-regulated within the S. gordonii 

ΔarcR strain following arginine depletion, in comparison to the wild-type strain. The SGO_1575 



Chapter 4: Role of transcription regulators in arginine-dependent gene regulation 
 

114 
 

gene, which encodes another subunit of the cellobiose PTS, was also 13-fold less strongly down-

regulated in the ΔarcR strain, indicating it too is regulated by ArcR. These genes were also found 

to be more differentially regulated between the ΔarcR and wild-type DL1 strains under high 

exogenous arginine conditions, as opposed to low, suggesting that ArcR may play a role in 

activating the bfb locus under high arginine conditions. As the bfb locus is also known to be 

associated with biofilm formation in S. gordonii, it is possible that ArcR may play a role in biofilm 

formation in this species (Kiliç et al., 2004; Jakubovics et al., 2008).  

 

The wefE and glf genes of the RPS biosynthesis operon were found to actually be more strongly 

down-regulated following deletion of arcR (12-fold and 5-fold respectively), when compared to 

the levels of expression within the S. gordonii wild-type. This suggests that ArcR may be playing 

a role in alleviating the down-regulation of these genes following arginine depletion. Neither 

these genes, nor the bfb locus genes were predicted to contain an ArgR TFBS within their 

intergenic regions. However, as mentioned before, the ArcR protein appears to bind to a 

different sequence to ArgR and AhrC (Zeng et al., 2006). Given the extent of differential 

regulation of the bfb locus, SGO_1575 and wefE within the S. gordonii ΔarcR strain, it seems 

likely that the ArcR protein is involved in their regulation to some extent. Additionally, the 

discovery of the strong up-regulation of the SGO_0846 gene within S. gordonii ΔarcR suggests 

that the ArcR protein is responsible for regulating the expression of this gene also, and this 

forms the basis for the work in Chapter 5. 

 

In the microarray analyses of the S. gordonii ΔargR and ΔahrC strains, many of the genes that 

were differentially regulated in response to arginine depletion appear to have functions in 

metabolism, transport and transcription/translation. This is suggestive of a more general stress 

response in reaction to arginine depletion within the growth medium. In particular, up-

regulation of transport protein-encoding genes, and down-regulation of genes encoding 

ribosomal subunits is indicative of a stress response, triggered by amino acid starvation (Farr 

and Kogoma, 1991). This would also appear similar to a nutrient stress response – a paper by 

Betts et al. (2002), investigating genetic responses to nutrient stress in Mycobacterium 

tuberculosis, showed a similar regulation in different functional classes of genes to those seen 

in response to arginine depletion in these microarrays.  
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Initial comparisons of the data from the microarrays carried out in this chapter has already 

shown some genes that appeared to be differentially-expressed in one of the arginine-

dependent regulator mutant strains, when compared to S. gordonii DL1 in a shift from high to 

no arginine conditions. Due to the batch effect shown in section 4.3.2, no direct statistical 

comparisons between the microarray data sets could be undertaken at this time. However, in 

collaboration with the Bioinformatics Support Unit at Newcastle University, the possibility of 

comparing between arrays using rank product analysis is being explored. This is a method of 

analysing microarray data, by ranking genes in order of how consistently they are highly 

expressed within a particular strain or under certain conditions (Breitling et al., 2004). 

Preliminary data analysis using rank product analysis to compare across the microarray 

datasets, however, appeared to be missing key genes (such as argGH), that were shown in 

section 4.3.5 to be differentially-regulated between the S. gordonii DL1 and ΔargR/ΔahrC 

strains following the loss of regulation by the ArgR and AhrC proteins. However this may be due 

to the system used to filter out genes that were not significantly expressed in the microarray 

prior to the rank product analysis, and so analysis is ongoing to determine whether rank product 

analysis is the best way to directly compare data between the microarrays.  

 

Preliminary analysis of the levels of expression of different genes between all four S. gordonii 

strains indicates that the argBCDJ arginine biosynthesis genes appear to be specifically 

regulated by the ArgR/AhrC transcriptional regulators, in addition to genes from the 

pyrimidine/arginine biosynthesis operon (SGO_1102, pyrAa, pyrAb) and SGO_1656. The qRT-

PCR analysis undertaken in section 4.3.3 corroborated these findings. Furthermore, the biofilm-

associated bfb operon appears to be specifically regulated by the ArcR protein, as these genes 

were less strongly down-regulated in the absence of arginine following deletion of the arcR 

gene than they were in the S. gordonii wild-type, ΔargR or ΔahrC strains.  

 

The arginine and pyrimidine biosynthesis pathways are known to be linked by the 

carbamoylphosphate synthetase enzyme, encoded by arcB in S. gordonii (Larsen et al., 2008; 

Jakubovics et al., 2015), which biosynthesises the molecule carbamoylphosphate, a precursor 

to both the arginine and pyrimidine biosynthetic pathways (Raushel et al., 1999). Additionally, 

the carAB genes of E. coli (homologs of the pyrAa and pyrAb genes in S. gordonii) have been 

previously shown to be regulated by the ArgR transcriptional regulator (Devroede et al., 2004). 
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Therefore it is not surprising that the arginine and pyrimidine biosynthesis genes of S. gordonii 

appear to be under the control of the same regulator proteins, in this case, ArgR and AhrC. 

Within the S. gordonii ΔargR and ΔahrC strains, when compared to the levels of expression for 

these genes within the wild-type strain, the argC gene was approximately 500-fold less up-

regulated; the argGH genes were around 200-fold less up-regulated; argBDJ were 250 to 300-

fold less up-regulated; and the pyrAa and pyrAb genes were 20-fold less up-regulated under no 

arginine conditions. Additionally, the SGO_1102 gene (within the pyrimidine/arginine 

biosynthesis operon) was 16-fold more up-regulated within the wild-type; SGO_1656 was 40-

fold more highly regulated; and SGO_0021 was 20-fold more highly regulated in the wild-type 

strain than the argR and ahrC mutants.  

 

The differences in expression of these genes strongly suggest that they are up-regulated in their 

expression in low arginine conditions by the ArgR and AhrC regulators in vivo. Furthermore, 

some of these genes, namely argC, argG, SGO_1102 and SGO_0021, have putative TFBSs for 

ArgR in the intergenic regions before these genes. These genes, in particular SGO_1656, 1102 

and 0021, would therefore be good targets for following up with qRT-PCR analysis to confirm 

regulation by the ArgR and AhrC regulatory proteins.  

 

Therefore, the work in this chapter has resulted in a preliminary designation of the regulons of 

the ArcR, ArgR and AhrC regulators, which can be further investigated if a statistical method for 

directly comparing the data between microarrays is found. In any case, a number of genes have 

been identified that are putatively regulated by ArgR and AhrC, and these can be further 

investigated by qRT-PCR or other transcriptional analysis methods. These initial regulons 

suggest that ArgR and AhrC overlap precisely in their regulation, which has not been shown in 

any other species before. In the paper by Jakubovics et al. (2015), models for regulation of 

arginine catabolism and biosynthesis genes by ArcR, ArgR and AhrC were proposed. ArgR and 

AhrC were proposed to form a heteromeric complex in order to regulate gene function, as with 

the ArgR and AhrC homologs of Lactococcus lactis (Larsen et al., 2005). In this species, both of 

these regulators interact with each other to form a heteromeric complex, necessary to regulate 

expression of arginine biosynthesis genes such as argC. It is possible that, as the regulons 

appear to overlap precisely between these proteins, this is the same method that S. gordonii 

ArgR and AhrC use to regulate gene expression. 
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The models of arginine-dependent regulation proposed in the paper by Jakubovics et al. (2015) 

suggested that in high exogenous arginine conditions, ArcR up-regulates expression of arginine 

catabolism genes such as arcABC, and down-regulates argGH biosynthesis gene expression, 

whilst the ArgR/AhrC complex represses transcription of the biosynthesis genes and accessory 

arginine-related genes, such as the arcD arginine transporter. In low or no arginine conditions, 

ArcR is responsible for slight up-regulation of the argC and pyrR genes (involved in arginine and 

pyrimidine biosynthesis), at the same time as the ArgR/AhrC complex is up-regulating arginine 

biosynthesis genes. The microarray analyses performed within this chapter corroborates these 

hypotheses, and in addition, has identified a number of other genes that appear to be regulated 

by ArcR, ArgR and/or AhrC.   

 

Therefore, future work is needed to follow up the preliminary findings of the microarray, and 

should focus on direct comparisons between the data from all four S. gordonii strains in 

response to arginine depletion, qRT-PCR analysis on the genes which comprise the regulons of 

ArcR, ArgR and AhrC, and elucidation of the mechanisms by which these proteins regulate gene 

expression in response to arginine depletion. 

 

The work performed in Chapter 5 aims to further investigate the S. gordonii ΔarcR strain, and 

the SGO_0846 gene that was up-regulated within this strain. It also aims to characterise the 

SGO_0846 protein, and determine the role it is playing within the S. gordonii cells.  
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5. Further analysis of the S. gordonii ΔarcR mutant 

5.1.  Introduction 

In the previous chapter, it was found that many genes were regulated in response to arginine, 

and that some were also regulated in response to the deletion of the arginine regulatory genes. 

One such gene that was specifically regulated in response to deletion of the arcR regulator was 

an uncharacterised gene, SGO_0846. This gene is annotated as encoding a possible cell wall 

protein by NCBI Gene (NCBI, 2015), although the analysis undertaken in this chapter suggests 

that it is more likely a released protein. SGO_0846 was found to be up-regulated 148-fold in S. 

gordonii ΔarcR under high arginine conditions compared with the isogenic wild-type. It is 

hypothesised that, as a putative released protein, it may be involved either in cell signalling and 

recruitment of cells to the biofilm, or in structuring of the biofilm and dissemination of cells to 

other sites in vivo, roles that both contribute to biofilm formation in different ways. 

Additionally, SGO_0846 was not up-regulated in the other two regulator mutant strains, S. 

gordonii ΔargR or ΔahrC.  

 

Previous work undertaken in our lab (Jakubovics, unpublished work), investigated the ability of 

the three arginine regulator mutant strains to form biofilms under aerobic conditions, and 

showed that whilst the S. gordonii ΔargR and ΔahrC strains (PK3346, PK3349, PK3350) formed 

biofilms that were not impaired in growth, the ΔarcR strains (PK3354, PK3355, PK3356) 

appeared to be defective in biofilm formation (Figure 5.1). These defective biofilms were found 

to be statistically significantly different in their levels of formation from wild-type S. gordonii 

DL1 (DL1 vs ΔarcR strain and DL1 vs ΔarcR/ΔargR strain p<0.01, DL1 vs ΔarcR/ΔahrC strain 

p<0.05).  

 

The ArcR protein of S. gordonii is known to regulate a number of different genes – namely, the 

arcABC and arcDT genes, some apparent regulation on its upstream gene queA (as observed in 

the previous microarray experiments), and minor regulation on the arginine biosynthesis genes 

(argC, argJ, argGH). Work from our group (Jakubovics et al., 2015) showed that strains of S. 

gordonii carrying respective deletions of the genes arcA, arcB and argH showed no defective 

biofilm phenotypes. The queA, arcD and argG genes have not been tested, however, none of 

these genes have previously been shown to impact on biofilm formation in S. gordonii. The 
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queA gene, which is involved in queosine modification of tRNA molecules, has not been linked 

to biofilm formation, however, QueA has been shown to be linked to virulence and stationary 

phase survival in other bacterial species (Liu et al., 2008).     
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** 
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DL1        ΔarcR       ΔargR     ΔahrC      ΔarcR/     ΔarcR/     ΔargR/  
            ΔargR     ΔahrC      ΔahrC  

Figure 5.1. Biofilm formation by arginine regulator mutant strains, drawn based on 
unpublished data from the Jakubovics lab. Biofilms were grown in TYEG medium, for 18 h 
under aerobic conditions, and quantified by measuring absorbance of crystal violet-stained 
cells at 562 nm. The levels of biofilm formation by ΔarcR single or double mutant strains were 
statistically significantly lower than those of the other mutant strains (as measured by two-
tail unpaired T-test, assuming unequal variance). A triple mutant strain (PK3357) containing 
deletions of all three regulators also showed a similar impairment in biofilm formation (data 
not shown). Bars represent arithmetic means of three independent biological replicates, and 
error bars show standard deviation. * p = <0.05, ** p = <0.01. The ΔarcR mutant strains show 
a significant biofilm defective phenotype, not displayed by the other regulator mutant 
strains. 
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Due to this, there was no clear explanation for the observed biofilm attenuation in the ΔarcR 

gene. Therefore, other genes needed to be investigated to find the basis of this defect, and 

when the dramatic up-regulation of the SGO_0846 gene was found, it was hypothesised that 

the SGO_0846 protein may be involved in the attenuated biofilm phenotype of S. gordonii 

ΔarcR. This chapter aims to test this hypothesis, and to further characterise the SGO_0846 

gene.  

 

In addition, in order to confirm that the biofilm phenotype observed in the ΔarcR strain was 

related to disruption of arcR rather than the insertion of an antibiotic resistance cassette or a 

second site mutation, in this chapter complementation of the ΔarcR strain was achieved by 

placing a copy of the native arcR gene back into the bacterial cells.  

 

Overall, this chapter of the thesis aimed to oversee complementation of the ΔarcR strain, and 

deletion of the SGO_0846 gene in both the wild-type and ΔarcR backgrounds. Furthermore, in 

depth analysis of SGO_0846 itself was performed, and the biofilm-forming abilities of both the 

arcR-complemented and SGO_0846 knockout strains were investigated.   

 

5.2. Confirmation of S. gordonii ΔarcR biofilm defect 

5.2.1. Biofilm growth under anaerobic conditions 

Previous unpublished work in our group demonstrated that ΔarcR single mutants, and strains 

carrying a deletion of arcR in addition to one of the other arginine-dependent regulators (ΔarcR 

double mutants) displayed a clear defect in biofilm formation under aerobic conditions. In order 

to investigate whether the ΔarcR biofilm defective phenotype also occurs under anaerobic 

conditions, the S. gordonii DL1, PK3351 (ΔarcR::ermAM) and PK3354 (ΔarcR::aad9) strains were 

cultured anaerobically in 50% BHY medium for 18 h overnight to form biofilms, stained with 

crystal violet dye and quantified (Figure 5.2).  
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Figure 5.2. Role of ArcR in anaerobic biofilm formation. To assess whether ArcR was important 
for biofilm formation under anaerobic conditions, biofilms were grown from wild-type S. 
gordonii DL1, PK3351 (ΔarcR::ermAM) and PK3354 (ΔarcR::aad9) strains. The biofilms were 
stained with crystal violet, and quantified by measuring optical density (at 570 nm). Bars 
represent arithmetic means of six replicates, and error bars show standard error of mean. (One-
way ANOVA, two sample T-test, *p <0.05). Both ΔarcR strains were significantly impaired in 
biofilm formation in comparison to the wild-type DL1 strain. 
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It was found that the ΔarcR mutant strains displayed a defective biofilm phenotype under 

anaerobic conditions, with both mutant strains showing statistically significantly reduced 

biofilm formation compared with the wild-type DL1 strain (DL1 vs PK3351 p=0.021, DL1 vs 

PK3354 p=0.048). The consistent observation of this defect under both aerobic and anaerobic 

conditions, and the knowledge that neither arcR nor its co-transcribed gene queA are subject 

to regulation by oxygen, suggests that this is not an oxygen-sensitive phenotype. Also, the lack 

of observed defect in the ΔargR and ΔahrC strains suggests that this is a phenotype unique to 

ArcR.  

 

It is worth mentioning that, despite the obvious biofilm attenuation shown by the ΔarcR strains, 

the growth yields of the planktonic cultures (assessed by measurement of the OD600) for all 

strains were comparable across all strains and replicates (data not shown). When examined 

qualitatively during staining, biofilms in the ΔarcR strains appeared to grow normally and to the 

same levels as the DL1 strain, and it was only upon washing to remove the loosely-bound dye 

and cells during the protocol that the biofilm began to disintegrate. Therefore, it appears that 

the biofilm-defective phenotype in S. gordonii ΔarcR is not linked to poor biofilm growth, but 

rather is due to poor binding between the cells, causing them to form weak biofilms that are 

easily removed. Whether this phenotype is a result of the apparent over-expression of the 

SGO_0846 gene remains to be seen, and was investigated with in silico analysis of the gene and 

protein, and knock-out of the gene.  

 

5.3.  In silico analysis of the SGO_0846 gene 
 
In order to find out more information about the SGO_0846 gene, and the possible function of 

the encoded protein product, in silico analysis was performed on both the nucleotide and 

amino acid sequences. Firstly, the 2004 bp nucleotide sequence was used to create a map of 

the gene and operon structure, and to investigate putative regulatory sequences (Figure 5.3). 

The DOOR2 database (Mao et al., 2009) was first used to help predict whether the SGO_0846 

gene was part of an operon with the surrounding genes. The SGO_0845 gene lies around 800 

bp upstream of SGO_0846, and the SGO_0847 gene is 223 bp downstream. Each of these 

genes, SGO_0845, 0846 and 0847, are predicted to be transcribed separately since each gene 

has its own predicted terminator (predicted by the DOOR2 database), and each has its own 
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promoter, predicted by the PromBase database (Rangannan and Bansal, 2011). These putative 

terminators and promoters are shown in Figure 5.3.  

 

Analysis of the nucleotide sequences around SGO_0846 with the PePPER transcription factor 

binding site (TFBS) prediction tool (de Jong et al., 2012), identified one putative TFBS around 

614 bp upstream of SGO_0846. PePPER uses known bacterial regulons and regulator binding 

sites to predict TFBSs in a target bacterial genome. In this case, analysis of the nucleotide 

sequences from the start of SGO_0845 to the end of SGO_0847 for the presence of any AhrC 

or ArgR homolog binding sites in the species Bacillus subtilis, Lactococcus lactis and Escherichia 

coli showed the presence of a predicted AhrC binding site, homologous to B. subtilis AhrC 

binding sites, upstream of the SGO_0846 gene and running in the same direction. It is possible 

that this could be the site used by an arginine regulator, such as ArcR, to control expression of 

the SGO_0846 gene.  

 

Further analysis was then performed upon the amino acid sequence of the SGO_0846 protein. 

The sequence is 667 residues in length, and 76.1 kDa in mass (UniProtKB, 2007). The LocateP 

database (Zhou et al., 2008) predicted SGO_0846 to be a secreted molecule, recognised by a 

type I signal peptidase enzyme (SPI). The protein itself is predicted to have a signal peptide 

cleavage site between residues 29 and 30, with the sequence NTVQAADY. Cleavage was 

predicted to occur between the double alanine residues, by the SignalP database (Petersen et 

al., 2011). 
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Figure 5.3. Map of the SGO_0846 gene and neighbouring genes. The SGO_0846 gene is marked in red, with the SGO_0845 gene 800 bp upstream 
(blue) and the SGO_0847 gene 223 bp downstream (green). The predicted promoters (black) for each gene are shown, as predicted by PromBase, 
as are the predicted terminators (grey), predicted by DOOR2. A predicted transcription factor binding site is also shown 614 bp upstream of the 
start of SGO_0846 (white), for a 77 bp sequence running 5’-3’ that shows homology to the binding sites of the Bacillus subtilis 168 AhrC 
transcriptional arginine metabolism regulator (predicted by the PePPER TFBS tool). (Map created using the SnapGene software, and drawn to scale. 
Numbers on the DNA strand represent the scale in base pairs). 
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According to the annotation in the NCBI Gene database (NCBI, 2015), SGO_0846 is predicted 

to be an uncharacterised ‘cell wall protein’. However, upon examination of the polypeptide 

sequence for wall anchor motifs using the CW-PRED server (Litou et al., 2008), no LPxTG or 

non-LPxTG (e.g. NPxTG, LPxTA, LAxTG) anchoring motifs were found. The peptide was also 

found not to be a lipoprotein, or lipid-anchored.  

 

Secondary structure prediction using the PSIPRED server (Buchan et al., 2013) revealed a 

number of putative helices and sheets, along with a large amount of disorder present in the 

protein structure, predicted by the DISOPRED3 tool. This tool uses x-ray crystal structures of 

other disordered proteins as a basis for comparison with the user’s target amino acid sequence, 

in order to predict regions of disorder (Ward et al., 2004a). Some disordered  regions were 

predicted to be protein binding. Figure 5.4 shows a map of the amino acid sequence, with 

predicted helices and sheets shown, as well as the region of disorder. The Phyre2 analysis 

software also confirmed this finding, predicting that around 53% of the amino acid sequence 

was disordered (Kelley et al., 2015). The PSIPRED Bioserf 3D modeller was used to create a 

predicted tertiary structure model for SGO_0846 (Buchan et al., 2013) (Figure 5.5). 
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Figure 5.4. Map of the amino acid sequence of SGO_0846, as predicted by the PSIPRED software. 
Residues highlighted in pink form part of a helix, those highlighted yellow form part of a sheet 
structure. Regions outlined in red form an intrinsic disordered region (IDR), and those 
highlighted in green are disordered but predicted to be protein-binding. Analysis of the 
secondary structure was performed by PSIPRED, and disorder prediction by DISOPRED3. The 
SGO_0846 protein is predicted to be around 50% disordered. 
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Figure 5.5. Predicted tertiary structure of the SGO_0846 protein, as predicted by the PSIPRED Bioserf server. Polypeptide structure is depicted from 
N-terminus to C-terminus, left to right (labelled as “N” and “C”). Yellow regions depict β-sheets, pink depicts α-helices, purple depicts 310 helices, 
and blue regions of the chain show β-turns. Size bar shows a 20 angstrom (Å), or 2 nm distance. Tertiary structure was predicted by the Bioserf 
server, and modelled using JMol software.  

20 Å / 2 nm 
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PSIPRED MEMSAT-SVM analysis (Jones et al., 1994; Jones, 2007; Nugent and Jones, 2009) was 

used to predict transmembrane protein topology, and predicted a pore-lining helix region 

between residues 648-663, at the C-terminal end of the polypeptide. Aside from this region, 

and the signal peptide region at the N-terminal end of the peptide, the remainder of the protein 

was predicted to be extracellular.  

 

The primary amino acid sequence is asparagine-rich, with 71/667 (10.6%) of the sequence 

consisting of N residues. Tyrosine (Y) and proline (P) residues also appear frequently throughout 

the sequence, with the intrinsically disordered region (IDR) (residues 208-397) in particular 

appearing to be where the majority of the proline-residues were concentrated.  

 

Searches for proteins with identity to the SGO_0846 protein using NCBI BLASTP (Altschul et al., 

1997; Altschul et al., 2005) showed seven different Streptococcus species that contain genes 

encoding proteins with over 90% identity to the full sequence of SGO_0846. These results were 

all for annotated cell wall proteins, and included proteins from three species of S. gordonii 

(strains KCOM 1506, isolated from acute pulpitis infections, 95% identity; IE35, from infective 

endocarditis patients, 95% identity; and G9B, a dental plaque isolate, 98% identity), as well as 

S. mitis (99% identity), S. oligofermentans (98% identity), S. sanguinis (97% identity), and 

Streptococcus sp. 2_1_36FAA (isolated by the Human Microbiome Project, 97% identity). A 

number of other results were found for apparent cell wall protein in other Streptococcus 

species also, however these contained percentage identities lower than 90%, for less than 

100% of the full SGO_0846 amino acid sequence, and so will not be discussed here.  

 

In addition to searching for homologs using NCBI, an additional search was made using the 

StreptoBase database (Wenning Zheng, unpublished data). The Jakubovics group was granted 

pre-publication access to this database, which contains the genomes of many Streptococcus 

spp. bacteria, some of which have not previously had their genomes sequenced or published. 

Searching this database allowed us to find other proteins with high identity to SGO_0846, 

specifically within other S. gordonii strains. This search found that, out of 15 S. gordonii isolate 

genomes in the database, the SGO_0846 protein appears to be highly conserved between all 

of them, including S. gordonii Challis, FSS2, FSS3, M99, 40, PK488 and Blackburn. These results, 
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taken along with the NCBI BLASTP results, suggest that SGO_0846 may be a protein that is 

specific to streptococcal species, and oral streptococci in particular 

 

5.4.  Genetic complementation of S. gordonii ΔarcR mutant  

As the ΔarcR strain has now been shown to form abnormal biofilms irrespective of growth 

conditions, it was important to complement the ΔarcR deletion strain with an intact copy of 

arcR and observe the effects upon growth.  

 

5.4.1. Plasmid cloning strategy 

A strategy was devised to complement the arcR gene using ligation-dependent cloning. The 

pCM18 plasmid (Hansen et al., 2001), which contains a gfpmut3* gene – specifically designed 

to allow for GFP production under anaerobic conditions in S. gordonii – and the strong 

constitutive lactococcal promoter CP25, was chosen as the vector for insertion of the arcR 

gene. The pCM18 plasmid contains a multiple cloning site (MCS), and many other restriction 

sites throughout the plasmid. Analysis of both the plasmid, and the arcR gene, found two 

restriction enzymes (SalI and SphI) that would cleave the gfpmut3* gene from the plasmid 

without cleaving anywhere else in the plasmid or arcR gene. Amplification of the arcR gene with 

primers that contained the restriction sites for these two enzymes (see Materials and Methods 

section for primer sequences) would allow subsequent digestion, and ligation of both the 

newly-linearised vector with the arcR gene, forming a recombinant plasmid which could then 

be transformed directly into S. gordonii. Unfortunately, multiple attempts with this strategy 

yielded no transformants, and so a new strategy for arcR complementation using ligation-

independent cloning was designed.  

 

5.4.2. In-Fusion cloning strategy 

Complementation of ΔarcR was successfully performed using a ligation-independent cloning 

(LIC) strategy – namely, the Clontech “In-Fusion” kit. This LIC method allows multiple fragments 

of DNA to be stitched together by use of primers that contain tails that are complementary to 

the adjoining section of DNA (Figure 5.6). The use of these primers to amplify the desired 

regions of DNA results in  overlapping fragments of target DNA sequences that can be joined 

using the “In-Fusion” enzyme – a Vaccinia virus proofreading exonuclease enzyme that detects 
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complementary regions of double-stranded DNA and strips off the ends to make single-

stranded overhangs (Irwin et al., 2012). These DNA products can then line up with each other, 

anneal by hydrogen bonding via DNA base pairs, and once transformed into E. coli, become 

covalently-bonded recombinant molecules. In the case of ArcR, the arcR gene was attached to 

CP25, the constitutive promoter from the pCM18 plasmid (Hansen et al., 2001); and the 

pPE1010 vector, which contains an erythromycin-resistance cassette, and a strong terminator 

(rrnB T1 terminator) (Egland et al., 2004). This created the recombinant parcRcomp plasmid 

(Figure 5.7), which was transformed into S. gordonii ΔarcR::aad9. The plasmid could not be 

transformed into the ΔarcR::ermAM strain, as both the plasmid and that strain carry 

erythromycin-resistance cassettes, which would make selection for the uptake of the plasmid 

impossible. 
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Figure 5.6. Visual representation of the overlapping DNA fragments required for ligation-
independent cloning (LIC). The CP25 promoter and arcR gene were engineered to be 
complementary to both each other, and the pPE1010 vector. These products were then joined 
to form the recombinant parcRcomp plasmid. Diagram not drawn to scale. 
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Figure 5.7. Final map of recombinant arcRcomp plasmid. The plasmid contains the CP25 
constitutive lactococcal promoter (from the pCM18 plasmid), the arcR gene, and the rrnB T1 
terminator. An erythromycin resistance gene, ermB, is present to allow for antibiotic selection 
of transformants containing the plasmid. The binding locations of the primers used to copy 
the pPE1010 vector, CP25 promoter and arcR gene are also shown. Diagram drawn to scale, 
numbers around plasmid represent sequence size in base pairs. Full plasmid size was 6282 bp. 
(Map created using the SnapGene software). 
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The sequences of the primers that were used for amplifying DNA fragments with 

complementary ends can be found in the Methods chapter, along with details of their 

complementary regions. Once the plasmid had been transformed into E. coli, transformant 

colonies were picked and the plasmid removed from the cells. Eight of these were then 

sequenced to check that the expected sequences were present. Of the eight plasmids 

sequenced, two had no errors, and one of these was chosen for further work. 

 

5.4.3. Confirmation of arcR complementation 

Plasmids were extracted from eight transformant E. coli colonies, and sent to Eurofins MWG 

for dideoxy sequencing. Each sequence was aligned by Clustal W against the expected arcR and 

CP25 sequences using the MEGA6 software (Tamura et al., 2013), in order to screen for any 

mutations (Figure 5.8). The transformant plasmid with the best alignment (in this case, 100% 

alignment) was then used for transformation into S. gordonii PK3354. The subsequent S. 

gordonii arcRcomp strain was then used for further analysis into the role of the ArcR regulator in 

S. gordonii biofilm formation (see section 5.6.2). 
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Figure 5.8. Sequence alignment between expected and received sequences for arcR 
complemented strain. The complemented arcR plasmid was sent to Eurofins MWG for dideoxy 
sequencing, using the CP25F/R and arcRF/R primers. A) shows alignment between the expected 
CP25 promoter sequence, and the plasmid sequence from one of the colonies picked from the 
E. coli transformation. B) shows the alignment between the expected arcR nucleotide 
sequence, and the plasmid sequence from the same transformant. This plasmid was then used 
for further transformation into S. gordonii. (Sequences aligned by ClustalW using the MEGA6 
software). 
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5.5.  Knock-out of S. gordonii SGO_0846 gene 

Having engineered an S. gordonii complemented arcR strain, the next stage was to engineer a 

strain carrying a knock-out of the SGO_0846 strain, in the S. gordonii DL1 (wild-type), ΔarcR and 

arcRcomp backgrounds. This would allow side-by-side comparison of the biofilm formation 

abilities of the S. gordonii ΔarcR, arcRcomp and ΔSGO_0846 strains, as well as the DL1 wild-type 

strain.  

 

5.5.1. Restriction digest strategy 

A restriction digest strategy was devised to enable knock-out of the SGO_0846 gene. The 

SGO_0846 and pCR2.1 vector sequences were analysed for a restriction enzyme that cleaved 

once inside the SGO_0846 gene, but not within the pCR2.1 sequence. The enzyme Bsu361 was 

found to cut approximately half-way through the SGO_0846 gene. Primers were designed to 

amplify both erythromycin-resistance and kanamycin-resistance cassettes from other plasmids 

(pVA838 and pSF151 respectively, see Materials and Methods), and the restriction site for 

Bsu361 was placed within the 5’ end of each primer’s sequence.  

 

The strategy was to insert the SGO_0846 gene into the linearised pCR2.1 vector, using a TA 

cloning kit (Life Technologies). The erythromycin and kanamycin-resistance cassettes could 

then be amplified using primers containing restriction sites for the Bsu361 enzyme. Finally, both 

the SGO_0846 plasmid and the antibiotic resistance cassettes could be cleaved with Bsu361, 

and ligated together to form recombinant SGO_0846::ermAM and SGO_0846::aphA3 plasmids 

for insertion into the S. gordonii DL1 and ΔarcR strains. However, a flaw was later discovered in 

the primer design, and rather than continue with this strategy, another was developed allowing 

the transformation step through E. coli to be by-passed. 

 

5.5.2. Overlap extension PCR strategy 

Having had problems with a ligation-dependent strategy, it was decided upon to try a different 

approach, and an overlap extension PCR reaction was selected to knock-out the SGO_0846 

gene. Primers were designed that were specific to flanking regions of the SGO_0846 gene, and 

to the same kanamycin and erythromycin-resistance cassettes used above. These primers also 

contained regions that were complementary between the antibiotic cassettes and the 
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SGO_0846 flanking regions, allowing overlap between the fragments, which could be stitched 

together in a long-range PCR reaction (primer sequences can be found in the Materials and 

Methods section). This would form a single PCR product, containing a copy of the SGO_0846 

gene with an antibiotic resistance cassette inserted in the middle, which could be transformed 

into wild-type S. gordonii DL1 and ΔarcR strains (Figure 5.9). Theoretically, the SGO_0846::abxR 

product (the SGO_0846 gene containing an inserted antibiotic-resistance cassette) would then 

homologously recombine onto the bacterial chromosome, replacing the intact copy of the 

SGO_0846 gene.  

 

The overlap extension PCR products were transformed directly into S. gordonii DL1, 

ΔarcR::ermAM and ΔarcR::aad9 strains. This resulted in strains that were both single 

(ΔSGO_0846::ermAM, ΔSGO_0846::aphA3) and double mutant strains 

(ΔarcR::ermAM/ΔSGO_0846::aphA3, ΔarcR::aad9/ΔSGO_0846::ermAM, 

ΔarcR::aad9/ΔSGO_0846::aphA3). These strains were confirmed by sequencing, as described 

in section 5.4.3 above, and found to contain the expected sequences. These strains were then 

used for further analysis into the role of SGO_0846 and ArcR in S. gordonii biofilm formation 

(see section 5.6).  
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Figure 5.9. Overlap-extension (ovex) PCR products for S. gordonii SGO_0846 knock-out. Flanking regions of the SGO_0846 gene were amplified, 
using primers containing regions complementary to the ends of either the erythromycin-resistance ermAM cassette, or the kanamycin-resistance 
aphA3 cassette. PCR products for the SGO_0846 flanking regions and the antibiotic resistance cassettes were then stitched together using a long-
range PCR reaction. Maps were created to scale using the SnapGene software. Numbers on the DNA strand indicate the scale in base pairs. 
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5.6.  Characterisation of S. gordonii SGO_0846 knock-out and arcR 
complemented strains 

5.6.1. Growth of S. gordonii ΔSGO_0846 knock-out strains 

To investigate the impact of SGO_0846 gene deletion on S. gordonii growth, wild-type S. 

gordonii DL1, ΔarcR (PK3351 and PK3354), ΔSGO_0846 (NU06) and ΔarcR/ΔSGO_0846 (NU09) 

cells were grown to stationary phase in replete FMC medium under anaerobic conditions. 

Complemented arcR strains did not form part of this experiment. 

 

Cells were cultured overnight in nutrient-rich BHY medium, then used to inoculate pre-reduced 

replete FMC medium. Cells were grown strictly anaerobically, with timepoints taken every hour 

over an 11-hour time period, to follow the growth of all strains to stationary phase. Growth was 

followed by measuring OD600 of the different strains as described in Materials and Methods, 

with a final OD600 measurement also taken at the 24 h timepoint.  

 

With the exception of the PK3351 (ΔarcR) strain, all strains had reached stationary phase, and 

a growth yield of OD600 >1, within six hours of inoculation (Figure 5.10). The PK3351 sample 

displayed a slightly extended lag phase, resulting in this strain taking an additional two hours to 

reach stationary phase following inoculation. This difference may have been due to a lower 

starting inoculum for the PK3351 strain, following poor growth in the overnight culture, 

however the mean specific growth rate for this strain was still comparable to that of the S. 

gordonii wild-type strain (PK3351 1.11 h-1 vs DL1 1.09 h-1). The other ΔarcR strain, PK3354, 

exhibited normal growth with a mean specific growth rate of 1.15 h-1.  

 

However, the NU06 strain (ΔSGO_0846), despite appearing to grow normally and reaching the 

same growth yield (OD600 >1) within the same timeframe as the other strains, exhibited a lower 

mean specific growth rate (0.67 h-1) than any other strain. It is possible that deletion of the 

SGO_0846 gene contributed to a lower growth rate for this strain, however, the NU09 strain 

carrying a double deletion of both the arcR and SGO_0846 genes did not display a similar 

phenotype, with a mean specific growth rate comparable to that of the wild-type strain (1.07 

h-1).
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Figure 5.10. Representative growth curve of S. gordonii strains in chemically-defined medium. 
Wild-type S. gordonii DL1, PK3351, PK3354, NU06 and NU09 cells were grown anaerobically in 
full FMC medium, and spectrophotometric measurements were taken at various timepoints as 
a measure of cell growth. Graph shows one of two independent experiments, which both 
showed similar results. All cells grew to an OD600 >1 within 8 hours of inoculation. The NU06 
strain displayed a lower mean specific growth rate than other strains. 
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Additionally biofilm experiments performed on the NU06 strain in section 5.6.2 showed no 

significant differences between the planktonic growth yields of either the NU06 or the DL1 

strains. Therefore, the apparent slower growth rate of the NU06 strain was not subject to 

further investigation. 

 

5.6.2. Biofilm formation in S. gordonii complemented and knock-out strains 

Following construction of the S. gordonii ΔSGO_0846 (ΔSGO_0846::aphA3) and complemented 

arcR strains (ΔarcR parcRcomp, and ΔarcR/ΔSGO_0846 parcRcomp), the next step was to analyse 

their biofilm phenotypes in order to assess the potential impact of both ArcR and SGO_0846 

on biofilm formation.  

 

The strains wild-type S. gordonii DL1, ΔarcR (PK3354), ΔSGO_0846 (NU06), ΔarcR/ΔSGO_0846 

(NU09), ΔarcR parcRcomp (NU10) and ΔarcR/ΔSGO_0846 parcRcomp (NU11) were cultured for 18 

h overnight in 96-well MTPs to form biofilms, in 50 % BHY medium under humid anaerobic 

conditions. Levels of planktonic cell growth across all strains were compared, to ensure that all 

strains had grown to a similar cell yield, and any differences in biofilm formation levels were 

therefore not due to differences in planktonic growth (Figure 5.11). Biofilms were stained with 

crystal violet dye, washed to remove any loosely-bound cells, and the optical density at 570 nm 

taken as a quantification of biofilm formation levels (Figure 5.12).  
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Figure 5.11. Quantification of levels of planktonic growth associated with biofilms formed by 
different S. gordonii strains. Biofilms were grown from wild-type S. gordonii DL1, ΔarcR, 
ΔSGO_0846, ΔarcR/ΔSGO_0846, ΔarcR parcRcomp and ΔarcR/ΔSGO_0846 parcRcomp. The levels 
of planktonic cell growth in the medium above the biofilms were quantified for each strain by 
measuring optical density at 600 nm. Bars show arithmetic means of six replicates, error bars 
show SEM. Statistical tests performed, using a one-way ANOVA and two-sample T-tests 
comparing wild-type DL1 vs mutants, showed no significant differences in planktonic growth 
between the DL1 strain or any of the mutant strains. Planktonic growth was found to be similar 
across all strains tested, when grown in the context of a biofilm assay. 
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Figure 5.12. Quantification of levels of biofilm formation by S. gordonii strains. Biofilms were 
grown from wild-type S. gordonii DL1, ΔarcR, ΔSGO_0846, ΔarcR/ΔSGO_0846, ΔarcR parcRcomp 
and ΔarcR/ΔSGO_0846 parcRcomp. The biofilms were stained with crystal violet, and quantified 
by measuring optical density at 570 nm. The ΔarcR, ΔarcR/ΔSGO_0846 and ΔarcR/ΔSGO_0846 
parcRcomp strains all show significant impairment in biofilm formation when compared to the 
wild-type strain DL1. Bars show arithmetic means of six replicates, error bars show SEM. 
Statistical tests performed were one-way ANOVA and two-sample T-tests between DL1 vs 
mutants, * p <0.05, ** p <0.01. Complementation of the arcR gene back into the ΔarcR 
backgrounds shows a return of biofilm levels to a non-significantly different level.  
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Quantification of planktonic growth across all strains showed no significant differences 

(p >0.05) between planktonic growth levels for the S. gordonii DL1 strain vs any of the mutant 

strains, which was consistent with the results of the planktonic growth experiments shown in 

section 5.6.1. Biofilm assays showed that although there was a small reduction in biofilm 

formation in S. gordonii arcRcomp compared with S. gordonii DL1 (OD570 2.02±0.18 vs 1.65±0.23), 

it was not statistically significant (p >0.05). This indicates that complementation with plasmid-

borne arcR restored the capacity of the ΔarcR strain to form biofilms. Biofilm formation by S. 

gordonii ΔSGO_0846 was also not significantly different from the wild-type (OD570 2.02±0.18 vs 

1.51±0.16, p >0.05), although the mean level of biofilm formation was lower in comparison to 

the DL1 wild-type strain.  

 
Interestingly, the ΔarcR/ΔSGO_0846 double mutant was the strain that had the most 

significantly different level of biofilm formation when compared to the wild-type (p <0.01), 

although this was not significantly different from either the ΔarcR or ΔSGO_0846 single 

mutants (OD570 1.20±0.16 for ΔarcR/ΔSGO_0846, 1.31±0.17 for ΔarcR, 1.51±0.16 for 

ΔSGO_0846). In addition to this, the ΔarcR/ΔSGO_0846 parcRcomp strain was also significantly 

lower in biofilm formation in comparison to S. gordonii DL1 (OD570 1.49±0.10, p <0.05). 

Statistical comparisons between all other combinations of strains showed no other significant 

differences in biofilm formation levels. 

 

Therefore, complementation with plasmid-borne arcR restored biofilm-forming capacity in the 

ΔarcR background. However, deletion of the SGO_0846 gene appears to have no significant 

effect on the biofilm formation of S. gordonii. The levels of biofilm formation within the 

ΔSGO_0846 strain were lower than that of the wild-type, however, and the ΔarcR/ΔSGO_0846 

strain is significantly impaired in biofilm formation. It is possible that both SGO_0846 and ArcR 

play a role in affecting biofilm formation to some degree, and that the effect is seen additively 

in the ΔarcR/ΔSGO_0846 strain, but further work would be needed to elucidate the exact 

role – if any – that SGO_0846 plays within the S. gordonii biofilm. 
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5.7.  Discussion 

This chapter has shown that the ArcR regulatory protein has a marked effect on biofilm 

formation in S. gordonii. A strain carrying a deletion of the arcR gene was shown to be 

significantly impaired in biofilm formation in comparison to the S. gordonii DL1 wild-type strain, 

under both aerobic and anaerobic conditions, and complementation of the ΔarcR background 

with an intact copy of the arcR gene resulted in a reversal of the observed attenuated biofilm 

phenotype.  

 

ArcR has not been previously shown to be associated with biofilm formation, but work 

performed in Chapter 4 showed that it may play a role in activating expression of the biofilm-

associated bfb locus under high arginine conditions. There is evidence that L-arginine-

dependent regulators have roles in biofilm formation in Gram-positive cocci. For example, 

disruption of the arginine metabolism regulator AhrC of E. faecalis by transposon mutagenesis 

resulted in defective biofilms (Kristich et al., 2008). It was subsequently found that E. faecalis 

AhrC promotes early cell attachment and aids in accumulation of bacterial cells within the 

developing biofilm, as does the ArgR protein to a lesser degree.  However, it was also found 

that E. faecalis AhrC plays an important role in bacterial pathogenesis, as an ΩahrC strain 

(carrying a transposon insertion within the ahrC gene) had significantly attenuated virulence in 

a rabbit endocarditis model (Frank et al., 2013). It was postulated that AhrC expression was 

important early on in the establishment of an endocarditis infection, in order to promote 

biofilm attachment. 

 

There is now a body of evidence indicating that arginine-dependent regulators and their target 

genes are important in the virulence of a range of Gram-positive cocci. For example, the 

arginine deiminase system (ADS), which is controlled by ArgR and ArcR homologs, has been 

linked to virulence in Streptococcus pyogenes. Cell extracts from a strain of S. pyogenes that 

was carrying a deletion of the streptococcal acid glycoprotein (SAGP), thought to have ADS 

activity, were unable to inhibit human peripheral blood mononucleocyte proliferation, and this 

strain was also less able to invade epithelial cells in vitro (Degnan et al., 1998; Degnan et al., 

2000). Additionally, ADS activity has been suggested to be linked to virulence not only in 

Staphylococcus aureus, but also Staphylococcus epidermidis (Diep et al., 2006; Fey and Olson, 

2010). In these bacterial strains, it is thought that the ADS may aid bacterial virulence by 
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allowing survival of the cells under low pH conditions, often encountered intracellularly by 

invading bacteria due to the activity of lysosomes within human host cells (Myers et al., 1995); 

and additionally by depleting free L-arginine so that it cannot be used by the immune system, 

alongside oxygen and NADPH, to biosynthesise nitric oxide which is released as a bacteriocidal 

free radical in response to bacterial infection.  

 

It is possible that the ArcR protein of S. gordonii may be important for virulence in infective 

endocarditis, by modulating biofilm formation in a similar way to AhrC in E. faecalis. This would 

need further investigation in an appropriate animal model. The importance of S. gordonii ArcR 

for oral biofilm formation and persistence within the host oral cavity is also not clear.  It would 

be interesting to measure expression of the arcR gene by qRT-PCR at different stages of growth, 

to see when it was most highly expressed, for example, during early cell growth and initial 

attachment.  

 

The SGO_0846 gene was annotated as encoding a putative cell wall protein by NCBI,  although 

further in silico analysis in this chapter contradicted this, and predicted that it is likely to be 

released through the surface of the cells. SGO_0846 was also predicted to form a pore-lining 

helix at the C-terminal end of the protein. These helices would normally line the channel of a 

pore through the bacterial outer membrane, however, Gram-positive bacteria such as S. 

gordonii do not have an outer membrane. Despite that, however, many pore-lining helical 

domains of proteins have been characterised in Gram-positive bacteria. These include the  α4 

helices of the insecticidal Cry toxin of Bacillus thuringiensis, which is released in crystal form as 

a protoxin around the bacterial spores (Girard et al., 2008); the M1 and M2 helices of  KcsA, a 

potassium channel of Streptomyces lividans (Shrivastava et al., 2000); and transmembrane 

segment 8 of the GltT glutamate transporter of Bacillus stearothermophilus (Slotboom et al., 

2001).  

 

It is possible that, as the PSIPRED server which predicted the pore-lining helical region will use 

other proteins as templates for modelling and predicting topology of the target protein, it may 

have incorrectly predicted this pore-lining helical region. This would also be supported by the 

fact that no wall-anchoring motifs were predicted anywhere in the SGO_0846 amino acid 

sequence. However, the motifs for wall-anchoring of a protein are not always known, and there 
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is precedence for pore-lining helices in Gram-positive proteins, as mentioned above. Cysteine-

scanning mutagenesis (Frillingos et al., 1998), to create mutants of the SGO_0846 protein, 

would allow us to test whether the predicted pore-lining helical region of SGO_0846 was 

actually involved in the activity of the protein, as it would be if the protein was acting as a porin 

molecule, possibly involved in aiding virulence during opportunistic infection. However the role 

of SGO_0846 within S. gordonii cells would have to be known before this could be tested, in 

order to observe any differences in phenotype due to altered activity of a mutant form of the 

protein.  

 

The predicted disordered region in the central domain of the SGO_0846 protein is indicative of 

an ability to change the conformation of the protein structure. Disordered proteins have been 

suggested to play an important role in cell signalling amongst other things, but are relatively 

uncommon in prokaryotic organisms (Ward et al., 2004b). Using the same DISOPRED disorder 

prediction analysis as performed in this chapter, Ward et al. (2004) found that out of 35,000 

bacterial protein sequences analysed, the percentage of frequency for finding regions of 

disorder longer than 50 amino acid residues was only 1.6%. The SGO_0846 protein was 

predicted by DISOPRED to contain a region of disorder consisting of 190 contiguous residues, 

in addition to other shorter regions predicted to be protein-binding disordered regions.  

 

It is thought that the ability of disordered proteins to change their conformational shape makes 

them more adept at binding molecules such as other proteins, whilst avoiding any changes in 

binding affinity; resulting in high specificity and low affinity interactions (Dogan et al., 2014). 

Therefore it is possible that, if SGO_0846 is indeed being secreted from the S. gordonii cells 

into the cell supernatant, it could play a role in signalling by binding other proteins, or even 

surface-associated molecules. This would be contrary to the suggestion above that the pore-

lining helical region may be contributing to the activity of the SGO_0846 protein. If SGO_0846 

was playing a role in cell signalling, this could in turn aid biofilm formation, although this role is 

clearly not mediated by the ArcR protein as deletion of the SGO_0846 gene in the S. gordonii 

wild-type background, containing an intact copy of arcR, did not cause biofilm attenuation.  

 

Analysis of the biofilm phenotype of the ΔSGO_0846 mutant showed that deletion of the 

SGO_0846 gene did not cause any significant differences in levels of biofilm formation between 
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the wild-type DL1 strain and the ΔSGO_0846 strains, although the average level of biofilm 

formation in the ΔSGO_0846 strain was found to be slightly lower than the wild-type. A double 

mutant of arcR and SGO_0846 showed a greater reduction in biofilm formation than the 

ΔSGO_0846 single mutant. Therefore, it is possible that, following further analysis, the 

defective biofilm phenotype of the S. gordonii ΔarcR strain may instead be due to the apparent 

role it plays in regulating the bfb genes, shown in Chapter 6, which are known to be necessary 

for S. gordonii biofilm formation (Kiliç et al., 2004; Jakubovics et al., 2008), as it is clearly not 

mediated by overexpression of the SGO_0846 protein. 

 

If SGO_0846 is indeed a released molecule, as predicted by the LocateP server, it could 

potentially act as a signalling molecule between the bacterial cells in order to promote biofilm 

formation independently of ArcR, or recruit other cells to join the developing biofilm. This 

hypothesis could further be supported by the discovery of the disordered region within the 

SGO_0846 protein, often prevalent in extracellular signalling proteins. Other bacterial species 

have been shown to secrete proteins in order to promote or enhance biofilm formation 

before –  both the LapA protein of Pseudomonas fluorescens, and the BapA protein of the 

Salmonella enterica serovar Enteritidis  are secreted, surface-associated proteins that promote 

increased bacterial biofilm biomass and adhesion to the colonising surface (Hinsa et al., 2003; 

Latasa et al., 2005). SGO_0846 may possibly play a role within S. gordonii biofilms analagous to 

the ones that the BapA and LapA proteins play in these other species, although the single 

ΔSGO_0846 mutant did not show a significant decrease in biofilm formation levels in 

comparison to the DL1 wild-type strain. Furthermore, it seems unlikely that overexpression of 

a protein involved in recruiting cells to the biofilm would result in lower levels of biofilm 

formation, as were seen in the ΔSGO_0846 mutant. Additionally, it is unlikely that a protein 

released from the cell surface plays a major role in adhesion of cells within the biofilm. 

 

It is possible that SGO_0846 may instead play a role in biofilm structuring. Enzymes involved in 

shaping the structure of biofilms are responsible for dispersing cells in order to form channels, 

allowing nutrients and water to reach cells at the base of the biofilm. They can also be 

responsible for detachment of cells from the surface of the biofilm to allow dissemination of 

cells to other sites, as is the case with the phenol-soluble modulin peptides (PSMs) of 

Staphylococcus aureus. These toxins are controlled by the Agr quorum sensing system, and 
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have been shown to be necessary for the formation of channels within the biofilm, and 

dissemination of cells to other sites in vivo, with mutants displaying defective biofilm structures, 

decreased cell detachment and increased biofilm thickness (Periasamy et al., 2012). 

Additionally, many other bacteria also produce peptides that play roles in cell detachment, such 

as the dispersin B protein DspB of the oral pathogen Aggregatibacter actinomycetemcomitans, 

which hydrolyses N-acetylglucosamine residues, or the SPRE enzyme of S. mutans NG8, which 

releases proteins from the surface of the cells, thereby aiding biofilm dissemination (Lee et al., 

1996; Kaplan et al., 2003). If SGO-0846 is indeed a secreted molecule, rather than being 

involved in recruiting cells to the biofilm, it may be involved in dispersing cells from the surface 

of the biofilm, although again, this would not explain the reduced levels of biofilm formation in 

the ΔSGO_0846 mutant.  

 

It is also important to note that further analysis of the microarray data displayed in Chapter 4 

indicated that SGO_0846 was not expressed highly enough to produce a significant signal within 

either the ΔargR or ΔahrC microarrays, indicating that it may be a lowly-expressed gene. Any 

small up- or down-regulation of a lowly-expressed gene would result in a large fold-change, 

which may explain the 148-fold up-regulation observed in SGO_0846 in the ΔarcR strain. 

However, levels of gene expression are not an indication of absolute protein levels, and so until 

more is known about SGO-0846 it is hard to say what effect a large up-regulation in gene 

expression may have on the levels of protein expression. Levels of SGO_0846 protein 

expression in the S. gordonii wild-type strain could be analysed using tandem mass 

spectrometry with selected reaction monitoring, and then compared to levels found in the 

ΔarcR strain.  

 

Clearly, despite the in silico analysis of the SGO_0846 protein thus far, more work would be 

needed to elucidate the exact role that it plays within S. gordonii cells. Experiments such as 

immunolocalisation (Chikwamba et al., 2003) using anti-SGO_0846 antibodies, or fluorescent 

protein fusions to SGO_0846 (Beilharz et al., 2015), could be used to determine whether the 

protein is localised within the cell wall, cell membrane or cell supernatant, as with the P. 

fluorescens LapA protein or the DspB enzyme of A. actinomycetemcomitans. Further work could 

also be performed on adherence and aggregation and biofilm structure in S. gordonii, in order 

to determine whether its role is focused more on cell binding or cell dispersal. This work could 
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include testing auto-aggregation (between S. gordonii cells), and co-aggregation with other 

species (such as Actinomyces oris), to determine whether SGO_0846 may play a role in cell-cell 

binding or signalling; or using confocal laser scanning microscopy, in conjunction with a 

microfluidics system, to determine whether deletion of SGO_0846 is affecting the formation of 

the biofilm structure. It is also important to determine the mechanism by which ArcR affects 

biofilm formation, for example, by using DNA electrophoretic mobility shift assays (EMSA) or 

chromatin immunoprecipitation (ChIP) assays to find where the ArcR protein may be binding 

within the S. gordonii genome.  

 

In summary, the work in this chapter of the thesis showed clearly that the ArcR protein is critical 

for biofilm formation within S. gordonii cells. Additionally, characterisation was begun upon a 

new protein, SGO_0846, which is strongly regulated by the ArcR regulator of S. gordonii.   
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6. General discussion 

The L-arginine deiminase system (ADS) of S. gordonii was first described in 1983, by Ferro et al. 

(1983). Subsequent analysis determined that ADS expression was controlled by an L-arginine-

dependent transcriptional activator, called ArcR (Dong et al., 2002). ArcR is paralogous to two 

other L-arginine-dependent regulators of S. gordonii, ArgR and AhrC, which have been shown 

to control expression of L-arginine biosynthesis genes in this species (Jakubovics et al., 2015). 

Before the work carried out in this thesis, a biofilm-defective phenotype had been observed in 

the ΔarcR mutant strain, and so, in order to determine the basis for the defect, global gene 

regulation had already been analysed using microarray experiments in this strain. However, 

global gene expression had not yet been analysed in the ΔargR or ΔahrC strains. Therefore, it 

was not clear how arginine metabolism may be linked to biofilm formation in S. gordonii. Finally, 

the impact of L-arginine depletion upon global gene expression in S. gordonii cells had not 

previously been investigated.  

 

6.1.  Summary of thesis 

The thesis began with an investigation into the effects of L-arginine on the growth of S. gordonii 

planktonic cells (Chapter 3). Prior to this work, the direct impact of L-arginine on planktonic 

growth of cells had not been studied in detail. S. gordonii may be subjected to large fluctuations 

in the external L-arginine concentration during growth in the oral cavity, as although the 

concentration of free L-arginine within saliva is 5-10 µM (Brand et al., 1997), L-arginine is also 

currently added to oral healthcare products such as toothpastes at concentrations of up to 460 

mM (8%) (Sullivan et al., 2014).  

 

Analysis of planktonic growth in chemically-defined medium showed no differences in growth 

of S. gordonii cells under all L-arginine concentrations, except for the cells in 500 mM L-arginine, 

which had a lower overall growth yield in comparison to the other samples. The survival of S. 

gordonii planktonic cells in saliva was not affected by prolonged exposure to high 500 mM L-

arginine concentrations, indicating that cells retained their viability and that L-arginine is not 

toxic to S. gordonii at high concentrations. Further investigations into growth in S. gordonii 

focused on amino acid depletion, with planktonic cultures depleted of L-arginine, L-histidine 

and the branched-chain amino acids showing an arrest in growth following depletion. This is 
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likely due to cells entering a period of hibernation in response to nutrient starvation. These 

types of responses are likely formed in order to allow the cells to survive longer periods of time 

in nutrient-deprived conditions – for example, cells found in the interior and at the base of 

dental plaque biofilms (such as S. gordonii) often go through periods of localised nutrient 

deprivation due to limited diffusion of nutrients through to the base of the biofilm (Stewart, 

2003). A hibernation-type response under starvation conditions would allow the cells to survive 

for longer periods of time. A similar response has also been observed in E. coli cells in response 

to isoleucine deprivation (Traxler et al., 2008). Therefore, the findings from this chapter 

suggested a form of functional auxotrophy in response to L-arginine depletion in S. gordonii, 

which was then further investigated by global gene expression analysis in Chapter 4.   

 

Investigation into expression of different genes under arginine depletion conditions using qRT-

PCR analysis showed that a number of genes involved in adhesion and biofilm formation were 

differentially expressed in response to arginine depletion, and that whilst some of these 

responses appeared to be part of a general stress response, others were apparently arginine-

specific responses in gene expression. General stress responses in bacteria are triggered by 

unfavourable changes in the exogenous growth environment, such as oxidative stress, heat 

shock or nutrient starvation. These responses cause a switch of gene expression profile within 

the cells from one associated with cell growth and replication, to one that allows cells to enter 

a prolonged stationary phase and thereby increases their chance of surviving the unfavourable 

conditions (Traxler et al., 2008). The regulation of genes as part of an amino acid starvation 

response is likely caused by the alarmone molecule (p)ppGpp, which is known to specifically 

change expression of genes in response to stress or starvation conditions, in order to aid cell 

survival (Betts et al., 2002; Miethke et al., 2006). It is particularly known for downregulating the 

expression of genes involved in metabolism and replication, and upregulating genes involved 

in biosynthesis and stationary phase survival. 

 

As for the arginine-specific responses in gene expression, whilst arginine is known to 

functionally affect binding, adhesion and biofilm formation within other species, it has not 

previously been shown to affect these functions within S. gordonii (Kaplan et al., 2009; Frank 

et al., 2013; Cusumano et al., 2014; Zhuo et al., 2015). The arginine-specific differential 

expression of these genes is likely due to regulation of these genes either directly by one of the 
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arginine-dependent regulators, or indirectly by a downstream signalling cascade. It is possible 

that S. gordonii cells may see exogenous arginine depletion as a sign of subsequent nutrient 

deprivation, and so switch off expression of genes involved in adhesion and biofilm formation 

in order to conserve resources for the next period of nutrient repletion and growth. This would 

be consistent with findings in other bacterial species, such as P. aeruginosa, which indicate that 

nutrient starvation and metabolic substrate depletion are linked to decreased biofilm 

formation, and to detachment of cells from the biofilm (Hunt et al., 2004). Additionally, L-

arginine has also been found to act as an energy source for species such as Lactococcus lactis 

and Streptococcus anginosus following carbohydrate depletion, so depletion of L-arginine and 

other amino acids from the chemically-defined minimal growth medium (as seen in 

experiments performed in this chapter) may trigger a hibernation-type stress response from 

the cells (Moat and Foster, 1995; Stuart et al., 1999; Chávez de Paz et al., 2008). Taken together, 

the experiments performed in this chapter all suggest that L-arginine has a clear effect on both 

planktonic growth, and biofilm formation ability in S. gordonii, which could potentially impact 

upon dental plaque formation in vivo. 

 

Chapter 4 aimed to look into the extent of regulation by each of the three arginine-dependent 

regulator proteins of S. gordonii, by genome-wide microarray analysis. With the exception of 

ArcR (Dong et al., 2002; Zeng et al., 2006), little was known about these regulators and their 

effects on genes other than those involved in arginine metabolic systems. Comparison of these 

microarrays aimed to determine the subset of genes that were regulated by the ArcR, ArgR and 

AhrC regulators. However, the arrays were run separately, with only two strains on each array 

(i.e. DL1 and ΔarcR in the first, ΔargR and ΔahrC in the second), and no mixing of samples 

between the two. Unfortunately, there was a significant batch effect observed. This meant that 

due to technical variation between the experiments, the data could not be directly compared 

between the first and second sets of arrays. Despite this, certain genes were found to be either 

consistently regulated in response to arginine depletion, or in response to deletion of one of 

the three regulator proteins. These included the apparent regulation of the argBCDJ, argGH, 

pyrAa and pyrAb, SGO_1102, 1656 and 0021 genes by the ArgR and AhrC regulators; and the 

activation of the biofilm-associated bfb operon and SGO_1575 genes, and the wefE and glf RPS 

biosynthesis genes, by the ArcR protein. 
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Direct comparisons between the strains that were assessed within the same microarray 

experiments were also made, showing that between the ArgR and AhrC regulators, there were 

no differences in gene regulation. This suggests that these two proteins either work together 

as a regulatory complex, or that one is necessary for regulating the other, as suggested by 

Jakubovics et al. (2015). Other bacterial species have been shown to also express more than 

one arginine-dependent regulator, and, in the case of species where there are two ArgR/AhrC-

like regulators working together, it is often found that one is responsible for activating or 

limiting the effects of the other, or that they work partially independently of each other and 

regulate different genes in response to the same stimuli (Barcelona-Andrés et al., 2002; Larsen 

et al., 2004). S. gordonii appears to be the first instance of a bacterial species where the ArgR 

and AhrC regulators overlap exactly in their regulation. In order to confirm whether these 

proteins do indeed work together in a complex, further work on protein structure and 

interactions, such as protein crystallography, would have to be performed. Furthermore, 

comparison of the S. gordonii wild-type DL1 and ΔarcR strains showed that one gene, 

SGO_0846, was highly up-regulated under high arginine conditions within the ΔarcR mutant 

strain in comparison to wild-type DL1, but was not highly expressed in either the ΔargR or ΔahrC 

strains. 

 

Chapter 5 aimed to investigate the SGO_0846 gene, and determine whether this was the basis 

for a biofilm defect that was found in the S. gordonii ΔarcR mutant strain, but not in either the 

ΔargR or ΔahrC strains. It was hypothesised that the up-regulation of the SGO_0846 gene, seen 

in the ΔarcR microarray analysis in the previous chapter, could be responsible for the defective 

biofilm phenotype. As SGO_0846 was an uncharacterised protein-encoding gene, an in silico 

analysis of both the gene and predicted protein structure was carried out in order to make 

some preliminary predictions about gene expression and protein structure and localisation, 

which might help in the design of experiments to test the role of SGO_0846 in the biofilm defect 

of S. gordonii ΔarcR.  

 

An isogenic S. gordonii mutant strain of SGO_0846 was constructed, and S. gordonii ΔarcR was 

genetically complemented with a plasmid-borne copy of the arcR gene under a strong 

constitutive promoter. No significant differences in biofilm formation were observed between 

S. gordonii DL1 (wild-type) and ΔSGO_0846 strains, indicating that SGO_0846 was not 
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responsible for the defective phenotype found in the ΔarcR mutant. Complementation of the 

ΔarcR gene reversed the biofilm-defective phenotype observed in its isogenic mutant, 

indicating that ArcR was not operating through SGO_0846 to control biofilm formation in S. 

gordonii. However, it is possible that ArcR may be affecting biofilm formation through the 

apparent role it plays in regulating the bfb locus, shown by previous research to contribute to 

biofilm formation in S. gordonii. Therefore, further investigation, such as studying the 

subcellular localisation of ArcR, and searching for interacting proteins using a two-hybrid 

system would be needed to elucidate the mechanism by which ArcR is affecting biofilm 

formation in S. gordonii, and also to determine what role the SGO_0846 protein may be playing 

within the cells. At present, it is unclear why SGO_0846 is up-regulated under high arginine in 

S. gordonii ΔarcR.  

 

6.2.  Thesis findings and future work 

In conclusion, this thesis has demonstrated that arginine has a clear effect on gene expression, 

growth and biofilm development in S. gordonii, mediated both directly by arginine itself, and 

also through the actions of the arginine-dependent regulatory proteins.  

 

S. gordonii was shown to have a clear functional auxotrophy for L-arginine, as cells appeared to 

be unable to synthesise their own arginine under aerobic conditions, whilst growing in 

monoculture. This may potentially be mediated by carbon-catabolite repression of the anabolic 

functions of the ArcB protein under aerobic, no arginine conditions. To elucidate whether the 

foundation of this functional auxotrophy was indeed repression of ArcB function by the CcpA 

regulator, growth experiments could be performed on S. gordonii cells growing in aerobic, 

arginine-deplete conditions, with primary carbon sources (e.g. glucose) also depleted from the 

growth medium. The supply of only secondary sources of carbon (e.g. galactose) should 

alleviate the effects of CCR, and may in turn allow aerobic growth in the absence of arginine to 

resume. Alternatively, the growth of S. gordonii in low arginine could be studied in a ccpA 

knockout mutant, in which carbon catabolite repression is not present.  

 

Depletion of different amino acids was found to have effects on the expression of different 

genes of interest, some of which are involved in the cell surface, adhesion and biofilm 

formation. Some of these effects were found to be equal following depletion of all three sets 
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of amino acids, however, some were specific to a particular amino acid. In the case of the genes 

that were equally-regulated in response to depletion, these are likely to be part of a general 

stringent response by the cells. This could be tested experimentally either by depletion of other 

amino acids from the growth medium, to see if the changes in expression of these genes 

remained the same irrespective of which amino acid was depleted; or further by creating a 

strain of S. gordonii where the relAPQ genes responsible for the production of the stringent 

response molecule (p)ppGpp were knocked-out, and analysing whether the regulation of these 

genes of interest in response to amino acid depletion was subsequently lost.  

 

The ArgR, ArcR and AhrC arginine-dependent regulators were shown to specifically regulate the 

expression of different genes in response to arginine concentration, and potential regulons for 

each regulator were compiled from the data obtained in this thesis. However, more work is 

needed to confirm the findings of the gene expression microarrays – for example, potential 

cross-comparison between the microarrays using rank product analysis (Breitling et al., 2004), 

in order to confirm the predicted regulons for ArgR, ArcR and AhrC that were laid out. 

Furthermore, qRT-PCR analysis could be performed on the genes that appear to form these 

regulons in the different regulator deletion strains, to see whether qRT-PCR analysis confirms 

the same changes in expression of these genes in response to loss of one of the arginine-

dependent regulators as seen in the microarray. The question of whether these genes are in 

fact directly regulated by the arginine-dependent regulators could also be addressed, by 

electrophoretic mobility shift assays, chromatin immunoprecipitation assays and DNase 

footprinting assays, to show direct binding of the regulatory proteins to the DNA sequences for 

the genes composing the putative regulons. 

 

Further evidence was also found to support the theory that the ArgR and AhrC proteins are 

orthologs that work together as a complex in order to regulate gene expression in response to 

exogenous arginine concentrations, as the apparent regulons of these two genes overlapped 

perfectly. To test whether this was indeed the case, co-immunoprecipitation assays could 

indicate whether these two proteins interact with each other, and subsequent x-ray 

crystallography analysis could confirm this, and show the specific conformation of the proteins. 

This could also be used to test for protein conformation and interaction under different arginine 
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conditions, to see whether ArgR and AhrC only interact under certain situations or conditions 

in order to regulate gene expression. 

 

The ArcR regulatory protein has been shown to not only control expression of metabolic genes, 

but also biofilm formation in S. gordonii, likely through secondary regulation mechanisms which 

are yet to be determined. These may include regulation of the bfb cellobiose PTS genes, which 

have been linked to biofilm formation in S. gordonii before. In order to test for direct interaction 

between the ArcR protein and the bfb genes, amongst others, DNase footprinting assays, 

electrophoretic mobility shift assays (EMSA) or chromatin immunoprecipitation (ChIP) assays 

could be employed to map the ArcR recognition sequences in the S. gordonii genome, as the 

binding footprint of ArcR is not well-characterised.. If one such binding site is found within the 

bfb genes, it seems likely that their differential regulation would be responsible for the ΔarcR 

strain defective biofilm phenotype.  

 

Finally, a previously uncharacterised gene of S. gordonii (SGO_0846) was partially characterised 

through in silico analysis and biofilm assays using an isogenic mutant. The in silico analysis 

indicated that SGO_0846 is likely to be released from the surface of the cells, and biofilm 

quantification assays demonstrated that it does not play a major role in ArcR-mediated biofilm 

formation. These observations could form a basis for future work, determining the subcellular 

localisation of SGO_0846 in S. gordonii cells, using immunolocalisation or fluorescent protein 

fusion experiments. Moreover, the contribution, if any, of SGO_0846 to either biofilm 

formation (through accumulation of cells to the biofilm), or biofilm structuring and 

dissemination could be tested through experiments that look at aggregation of S. gordonii cells 

with itself and other bacterial species, and the use of microfluidics systems alongside confocal 

microscopy and quantitative image analysis to observe the differences between biofilms 

formed by wild-type and ΔSGO_0846 strains. 

 

It is possible that, in the future, arginine sensing by S. gordonii could be utilised as a tool to 

control bacterial biofilm formation within the oral cavity – for example, by targeting ArcR in 

order to inhibit biofilm formation, or utilising high concentrations of arginine, shown to reduce 

biomass when applied to a biofilm model (Kolderman et al., 2015), to promote a non-biofilm 

form of growth for S. gordonii, allowing planktonic cells to be cleared from the oral cavity in 
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saliva. Alternatively, if SGO_0846 is indeed a biofilm restructuring molecule, overexpression of 

this protein may encourage excess detachment of cells from the surface of the biofilm, allowing 

planktonic cell clearance from the oral cavity by salivary flow. Together, these strategies all may 

help to control initiation of biofilm formation on the tooth surfaces, and help us to control the 

incidence of oral diseases such as dental caries or periodontitis. 
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Appendix A: Vector maps 
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Appendix B: Microarray data 

S. gordonii DL1 microarray data, regulation of genes in response to arginine depletion

Locus tag Gene name FC (abs) 

SGO_1569 argC 520.12 

SGO_0177 SGO_0177 342.42 

SGO_1568 argJ 319.95 

SGO_1567 argB 306.44 

SGO_0175 argG 269.33 

SGO_1566 argD 260.85 

SGO_0176 argH 207.89 

SGO_0648 SGO_0648 54.12 

SGO_1656 SGO_1656 44.43 

SGO_0647 SGO_0647 42.30 

SGO_0091 SGO_0091 36.62 

SGO_0646 SGO_0646 36.26 

SGO_0645 SGO_0645 32.39 

SGO_1105 SGO_1105 28.94 

SGO_1106 SGO_1106 28.46 

SGO_0021 SGO_0021 26.67 

SGO_1103 carA 23.70 

SGO_1104 carB 21.43 

SGO_1102 SGO_1102 18.72 

SGO_1279 SGO_1279 17.98 

SGO_1410 SGO_1410 17.01 

SGO_1408 hisD 15.18 

SGO_1409 hisG 15.14 

SGO_1278 SGO_1278 14.26 

SGO_1411 hisC 13.42 

SGO_1407 hisB 12.45 

SGO_0092 SGO_0092 12.28 

SGO_1406 hisH 11.15 

SGO_0093 SGO_0093 10.64 

SGO_1835 SGO_1835 10.55 

SGO_0874 SGO_0874 10.11 

SGO_1832 SGO_1832 9.83 

SGO_0090 SGO_0090 9.79 

SGO_0301 SGO_0301 9.60 

SGO_1833 SGO_1833 9.40 

SGO_0846 SGO_0846 9.35 

SGO_1831 SGO_1831 9.20 

SGO_1137 SGO_1137 9.13 

SGO_0624 SGO_0624 8.86 

SGO_1282 SGO_1282 8.14 

SGO_1405 hisA 7.95 



Appendices 

165 
 

SGO_1317 SGO_1317 6.90 

SGO_0427 SGO_0427 6.77 

SGO_1716 SGO_1716 6.21 

SGO_1403 hisIE 6.14 

SGO_0845 SGO_0845 6.11 

SGO_1589 arcT 6.10 

SGO_1404 hisF 5.87 

SGO_1752 SGO_1752 5.83 

SGO_1485 SGO_1485 5.81 

SGO_0496 rgg 5.55 

SGO_0089 SGO_0089 5.49 

SGO_1402 hisE 5.35 

SGO_1830 mga 5.31 

SGO_1126 xerS 5.30 

SGO_0337 trx 5.27 

SGO_0572 SGO_0572 4.99 

SGO_1107 SGO_1107 4.91 

SGO_0682 SGO_0682 4.91 

SGO_0334 SGO_0334 4.91 

SGO_0602 SGO_0602 4.88 

SGO_1194 SGO_1194 4.81 

SGO_1729 SGO_1729 4.62 

SGO_1196 satD 4.53 

SGO_1110 SGO_1110 4.52 

SGO_1564 SGO_1564 4.51 

SGO_0094 SGO_0094 4.48 

SGO_0709 SGO_0709 4.37 

SGO_1401 SGO_1401 4.36 

SGO_0178 rnpA 4.22 

SGO_0687 SGO_0687 4.20 

SGO_1195 SGO_1195 4.20 

SGO_1563 SGO_1563 4.19 

SGO_1590 arcD 4.13 

SGO_0571 SGO_0571 4.12 

SGO_0179 SGO_0179 4.08 

SGO_1134 SGO_1134 4.08 

SGO_0157 SGO_0157 4.04 

SGO_1751 SGO_1751 4.02 

SGO_0883 SGO_0883 4.01 

SGO_0562 SGO_0562 3.98 

SGO_0397 SGO_0397 3.98 

SGO_1138 SGO_1138 3.96 

SGO_0665 SGO_0665 3.92 

SGO_0589 SGO_0589 3.90 

SGO_0601 SGO_0601 3.90 

SGO_1280 SGO_1280 3.89 
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SGO_1529 SGO_1529 3.85 

SGO_0957 SGO_0957 3.85 

SGO_1281 SGO_1281 3.83 

SGO_0360 SGO_0360 3.82 

SGO_0688 SGO_0688 3.77 

SGO_2084 SGO_2084 3.73 

SGO_1655 SGO_1655 3.73 

SGO_0561 SGO_0561 3.71 

SGO_0563 SGO_0563 3.70 

SGO_0396 SGO_0396 3.67 

SGO_1210 fhs 3.64 

SGO_1715 hppH 3.62 

SGO_0508 nrdR 3.59 

SGO_1135 SGO_1135 3.58 

SGO_0138 SGO_0138 3.57 

SGO_1337 SGO_1337 3.49 

SGO_2043 SGO_2043 3.45 

SGO_0339 SGO_0339 3.45 

SGO_2083 SGO_2083 3.43 

SGO_0564 SGO_0564 3.41 

SGO_1108 SGO_1108 3.39 

SGO_0734 SGO_0734 3.38 

SGO_0185 SGO_0185 3.33 

SGO_0964 pdxK 3.32 

SGO_0410 SGO_0410 3.32 

SGO_0368 merA 3.32 

SGO_0523 SGO_0523 3.31 

SGO_1806 ftcD 3.30 

SGO_1256 SGO_1256 3.26 

SGO_0758 SGO_0758 3.25 

SGO_0912 SGO_0912 3.24 

SGO_0430 SGO_0430 3.21 

SGO_0417 acpS 3.18 

SGO_0095 mccF 3.17 

SGO_1750 SGO_1750 3.11 

SGO_0666 SGO_0666 3.11 

SGO_0524 SGO_0524 3.11 

SGO_2102 SGO_2102 3.10 

SGO_1386 SGO_1386 3.09 

SGO_1109 pyrB 3.03 

SGO_0180 jag 3.03 

SGO_0280 trzA 2.99 

SGO_1620 SGO_1620 2.98 

SGO_2012 SGO_2012 2.98 

SGO_2040 SGO_2040 2.96 

SGO_1625 SGO_1625 2.92 
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SGO_0684 SGO_0684 2.91 

SGO_2042 SGO_2042 2.91 

SGO_0303 SGO_0303 2.88 

SGO_1136 SGO_1136 2.87 

SGO_0053 SGO_0053 2.87 

SGO_0181 SGO_0181 2.87 

SGO_2041 SGO_2041 2.85 

SGO_1065 SGO_1065 2.84 

SGO_0865 SGO_0865 2.82 

SGO_1856 SGO_1856 2.82 

SGO_0872 SGO_0872 2.79 

SGO_1500 SGO_1500 2.78 

SGO_0726 SGO_0726 2.78 

SGO_0414 SGO_0414 2.77 

SGO_1498 SGO_1498 2.76 

SGO_0840 SGO_0840 2.76 

SGO_0667 SGO_0667 2.76 

SGO_0405 SGO_0405 2.74 

SGO_2103 SGO_2103 2.73 

SGO_1728 glnQ 2.73 

SGO_1597 SGO_1597 2.72 

SGO_0965 SGO_0965 2.72 

SGO_0842 SGO_0842 2.69 

SGO_0042 SGO_0042 2.65 

SGO_0873 SGO_0873 2.63 

SGO_0297 arb 2.62 

SGO_1791 SGO_1791 2.61 

SGO_1384 SGO_1384 2.60 

SGO_0182 sapR 2.59 

SGO_1999 ctsR 2.59 

SGO_1385 SGO_1385 2.56 

SGO_0398 SGO_0398 2.55 

SGO_1734 SGO_1734 2.55 

SGO_0428 SGO_0428 2.53 

SGO_1840 SGO_1840 2.53 

SGO_0509 SGO_0509 2.52 

SGO_0415 secA 2.51 

SGO_0685 SGO_0685 2.49 

SGO_1035 gloA 2.49 

SGO_0841 SGO_0841 2.46 

SGO_0596 priA 2.46 

SGO_1501 SGO_1501 2.45 

SGO_1611 icd 2.45 

SGO_1122 SGO_1122 2.43 

SGO_0079 SGO_0079 2.41 

SGO_0870 SGO_0870 2.38 
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SGO_1820 SGO_1820 2.38 

SGO_0117 SGO_0117 2.37 

SGO_0228 SGO_0228 2.37 

SGO_1940 SGO_1940 2.37 

SGO_1839 SGO_1839 2.36 

SGO_1527 SGO_1527 2.36 

SGO_0935 SGO_0935 2.35 

SGO_1815 SGO_1815 2.34 

SGO_1838 SGO_1838 2.33 

SGO_1595 SGO_1595 2.32 

SGO_0186 SGO_0186 2.32 

SGO_0948 pgdA 2.31 

SGO_1483 SGO_1483 2.30 

SGO_0418 alr 2.26 

SGO_1736 SGO_1736 2.26 

SGO_1727 SGO_1727 2.25 

SGO_0990 SGO_0990 2.24 

SGO_1998 clpB 2.23 

SGO_1594 SGO_1594 2.21 

SGO_1075 SGO_1075 2.19 

SGO_2044 spxA 2.17 

SGO_2051 SGO_2051 2.16 

SGO_1215 manB 2.16 

SGO_0553 SGO_0553 2.15 

SGO_0943 SGO_0943 2.15 

SGO_0958 SGO_0958 2.14 

SGO_0500 rggD 2.14 

SGO_0493 SGO_0493 2.12 

SGO_2061 SGO_2061 2.10 

SGO_0395 SGO_0395 2.10 

SGO_0354 SGO_0354 2.09 

SGO_1738 SGO_1738 2.08 

SGO_0839 SGO_0839 2.08 

SGO_0340 SGO_0340 2.06 

SGO_0477 SGO_0477 2.01 

SGO_0597 fmt 2.01 

SGO_1434 thiJ -2.01 

SGO_0288 SGO_0288 -2.01 

SGO_0447 nadD -2.03 

SGO_0995 SGO_0995 -2.05 

SGO_1183 brnQ -2.06 

SGO_1683 serS -2.07 

SGO_0558 SGO_0558 -2.07 

SGO_0697 SGO_0697 -2.11 

SGO_1659 SGO_1659 -2.13 

SGO_1472 SGO_1472 -2.13 
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SGO_0391 SGO_0391 -2.13 

SGO_1361 SGO_1361 -2.18 

SGO_0449 SGO_0449 -2.19 

SGO_1375 aroD -2.20 

SGO_1642 SGO_1642 -2.20 

SGO_0985 SGO_0985 -2.21 

SGO_0171 radA -2.21 

SGO_1753 SGO_1753 -2.25 

SGO_1559 nrdF -2.26 

SGO_1641 SGO_1641 -2.27 

SGO_1056 pstC -2.28 

SGO_0858 SGO_0858 -2.28 

SGO_2106 SGO_2106 -2.29 

SGO_0490 SGO_0490 -2.31 

SGO_0465 SGO_0465 -2.32 

SGO_0560 hsdM -2.32 

SGO_0236 SGO_0236 -2.33 

SGO_1024 SGO_1024 -2.34 

SGO_1230 srtA -2.35 

SGO_1824 prmA -2.36 

SGO_1377 SGO_1377 -2.39 

SGO_1737 rpmB -2.40 

SGO_0133 SGO_0133 -2.42 

SGO_0438 SGO_0438 -2.43 

SGO_1643 SGO_1643 -2.43 

SGO_1912 SGO_1912 -2.44 

SGO_0814 SGO_0814 -2.44 

SGO_0173 SGO_0173 -2.44 

SGO_1053 app -2.46 

SGO_1858 SGO_1858 -2.46 

SGO_1057 pstA -2.47 

SGO_0515 murC -2.47 

SGO_1979 rpsC -2.49 

SGO_1880 ssb -2.53 

SGO_1959 rpoA -2.53 

SGO_1878 SGO_1878 -2.54 

SGO_1234 rpsA -2.55 

SGO_1058 pstB2 -2.56 

SGO_0970 secY -2.56 

SGO_1745 fba -2.58 

SGO_1584 SGO_1584 -2.59 

SGO_1754 SGO_1754 -2.59 

SGO_0489 SGO_0489 -2.60 

SGO_1389 SGO_1389 -2.63 

SGO_1390 ligA -2.64 

SGO_2036 SGO_2036 -2.65 
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SGO_0172 SGO_0172 -2.65 

SGO_0763 murA -2.66 

SGO_0637 SGO_0637 -2.67 

SGO_1435 mreB -2.67 

SGO_0765 endA -2.68 

SGO_0817 SGO_0817 -2.68 

SGO_0235 SGO_0235 -2.72 

SGO_1876 SGO_1876 -2.72 

SGO_0816 SGO_0816 -2.75 

SGO_1025 rgp -2.76 

SGO_0238 SGO_0238 -2.77 

SGO_1630 SGO_1630 -2.77 

SGO_0528 ilvC -2.79 

SGO_0450 SGO_0450 -2.81 

SGO_1383 rplS -2.83 

SGO_0254 SGO_0254 -2.84 

SGO_1007 SGO_1007 -2.87 

SGO_1186 SGO_1186 -2.90 

SGO_0643 SGO_0643 -2.90 

SGO_0453 SGO_0453 -2.91 

SGO_0014 pgsA -2.92 

SGO_1446 murF -2.95 

SGO_0527 ilvH -2.99 

SGO_0698 recN -3.01 

SGO_1074 SGO_1074 -3.01 

SGO_1482 SGO_1482 -3.02 

SGO_1672 xerD -3.02 

SGO_1685 SGO_1685 -3.08 

SGO_0639 valS -3.10 

SGO_0434 aspS -3.13 

SGO_0570 SGO_0570 -3.15 

SGO_0804 murB -3.16 

SGO_1593 arcA -3.21 

SGO_1187 SGO_1187 -3.23 

SGO_1984 rplD -3.26 

SGO_0699 SGO_0699 -3.26 

SGO_1536 SGO_1536 -3.34 

SGO_1060 SGO_1060 -3.34 

SGO_1936 adcA -3.34 

SGO_0526 ilvB -3.37 

SGO_1413 SGO_1413 -3.38 

SGO_1444 SGO_1444 -3.39 

SGO_0205 rpsG -3.40 

SGO_1455 rplA -3.40 

SGO_0242 SGO_0242 -3.43 

SGO_1626 SGO_1626 -3.43 
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SGO_1059 pstB1 -3.43 

SGO_0141 SGO_0141 -3.44 

SGO_1443 SGO_1443 -3.52 

SGO_0467 SGO_0467 -3.53 

SGO_0243 SGO_0243 -3.58 

SGO_1371 SGO_1371 -3.59 

SGO_0136 SGO_0136 -3.62 

SGO_1373 aroB -3.65 

SGO_1627 SGO_1627 -3.67 

SGO_1629 livH -3.68 

SGO_0322 SGO_0322 -3.69 

SGO_1465 SGO_1465 -3.69 

SGO_1857 SGO_1857 -3.73 

SGO_0575 pbp2X -3.74 

SGO_0204 rpsL -3.74 

SGO_0437 gatB -3.74 

SGO_1628 braE -3.75 

SGO_0529 ilvA -3.77 

SGO_0015 cbiO -3.78 

SGO_1591 arcC -3.84 

SGO_0452 SGO_0452 -3.86 

SGO_1372 aroC -3.89 

SGO_1534 SGO_1534 -3.90 

SGO_0792 SGO_0792 -3.90 

SGO_1558 nrdE -3.90 

SGO_1506 SGO_1506 -3.93 

SGO_1026 SGO_1026 -3.95 

SGO_1206 asd -4.01 

SGO_0973 asp3 -4.03 

SGO_2028 wzg -4.03 

SGO_0253 SGO_0253 -4.05 

SGO_1937 adcB -4.06 

SGO_1456 rplK -4.10 

SGO_1671 scpA -4.15 

SGO_1748 pyrG -4.18 

SGO_1684 SGO_1684 -4.18 

SGO_1314 SGO_1314 -4.22 

SGO_1008 SGO_1008 -4.23 

SGO_1082 SGO_1082 -4.25 

SGO_1535 ogt -4.27 

SGO_1397 map -4.27 

SGO_1846 SGO_1846 -4.37 

SGO_0451 SGO_0451 -4.39 

SGO_0576 mraY -4.41 

SGO_0713 era -4.41 

SGO_1670 scpB -4.42 
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SGO_0764 SGO_0764 -4.51 

SGO_0432 entB -4.52 

SGO_1015 SGO_1015 -4.53 

SGO_1669 SGO_1669 -4.57 

SGO_0714 SGO_0714 -4.58 

SGO_1388 pulA -4.61 

SGO_1396 SGO_1396 -4.62 

SGO_0408 zmpB -4.72 

SGO_0431 SGO_0431 -4.79 

SGO_0568 glyQ -4.79 

SGO_2027 wzh -4.87 

SGO_0580 SGO_0580 -4.92 

SGO_0793 SGO_0793 -4.99 

SGO_1118 SGO_1118 -5.12 

SGO_0715 mutM -5.20 

SGO_0784 smc -5.23 

SGO_0972 asp2 -5.26 

SGO_1847 polC -5.28 

SGO_0805 potA -5.41 

SGO_1374 aroE -5.59 

SGO_0567 SGO_0567 -5.64 

SGO_0016 cbiO -5.69 

SGO_1244 SGO_1244 -5.79 

SGO_0860 SGO_0860 -5.90 

SGO_0569 glyS -5.94 

SGO_1258 SGO_1258 -5.99 

SGO_1239 parC -6.02 

SGO_1391 SGO_1391 -6.04 

SGO_1785 SGO_1785 -6.05 

SGO_1016 SGO_1016 -6.10 

SGO_0017 SGO_0017 -6.10 

SGO_0787 ftsY -6.21 

SGO_1243 SGO_1243 -6.31 

SGO_0859 pheS -6.31 

SGO_1696 SGO_1696 -6.41 

SGO_1609 SGO_1609 -6.48 

SGO_0786 SGO_0786 -6.49 

SGO_0806 potB -6.59 

SGO_1242 SGO_1242 -6.79 

SGO_0778 thrS -6.84 

SGO_0777 SGO_0777 -6.84 

SGO_0323 SGO_0323 -6.93 

SGO_0975 gtaA -7.16 

SGO_1245 parE -7.42 

SGO_0785 SGO_0785 -7.51 

SGO_0717 SGO_0717 -7.52 
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SGO_1027 SGO_1027 -7.58 

SGO_2025 wze -7.63 

SGO_1697 acpP -7.69 

SGO_1668 SGO_1668 -7.85 

SGO_1017 SGO_1017 -8.06 

SGO_1695 SGO_1695 -8.07 

SGO_0716 coaE -8.18 

SGO_0966 hsa -8.22 

SGO_0978 SGO_0978 -8.31 

SGO_2026 wzd -8.39 

SGO_2019 licD -8.42 

SGO_2024 SGO_2024 -8.48 

SGO_2021 SGO_2021 -8.65 

SGO_1694 fabD -8.80 

SGO_0861 pheT -8.91 

SGO_1240 SGO_1240 -8.98 

SGO_0807 potC -8.99 

SGO_2020 SGO_2020 -8.99 

SGO_0506 rgfB -9.08 

SGO_1241 SGO_1241 -9.11 

SGO_1693 fabG -9.30 

SGO_2023 SGO_2023 -9.59 

SGO_2018 SGO_2018 -9.75 

SGO_0808 potD -9.92 

SGO_1691 accB -10.16 

SGO_2022 SGO_2022 -10.44 

SGO_1690 fabZ -10.47 

SGO_0977 SGO_0977 -10.50 

SGO_2016 SGO_2016 -10.69 

SGO_0976 SGO_0976 -10.81 

SGO_0681 ileS -11.12 

SGO_1692 SGO_1692 -11.32 

SGO_1698 SGO_1698 -11.93 

SGO_2015 SGO_2015 -12.31 

SGO_1687 accA -12.33 

SGO_2098 rpsD -12.54 

SGO_1699 SGO_1699 -12.55 

SGO_1688 accD -12.75 

SGO_2017 SGO_2017 -12.93 

SGO_0832 SGO_0832 -13.26 

SGO_0831 SGO_0831 -13.73 

SGO_1689 accC -15.18 

SGO_1575 SGO_1575 -15.59 

SGO_1686 SGO_1686 -17.15 

SGO_1576 celD -21.10 

SGO_1577 SGO_1577 -23.63 
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SGO_1578 celC -24.43 

SGO_1579 SGO_1579 -24.98 

SGO_1700 SGO_1700 -30.82 

SGO_1582 celA -35.01 

SGO_1580 celB -51.14 

SGO_1581 SGO_1581 -81.92 
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S. gordonii ΔarcR microarray data, regulation of genes in response to arginine depletion

 

Locus tag Gene name FC (abs) 

SGO_1569 argC 420.15 

SGO_1567 argB 340.62 

SGO_1568 argJ 325.64 

SGO_1566 argD 315.85 

SGO_0177 SGO_0177 77.38 

SGO_1105 SGO_1105 56.81 

SGO_1106 SGO_1106 53.12 

SGO_1656 SGO_1656 49.98 

SGO_0175 argG 45.37 

SGO_0176 argH 39.66 

SGO_1104 carB 35.02 

SGO_1103 carA 28.59 

SGO_1102 SGO_1102 24.22 

SGO_1410 SGO_1410 20.81 

SGO_1409 hisG 20.38 

SGO_0648 SGO_0648 18.50 

SGO_0091 SGO_0091 17.27 

SGO_0647 SGO_0647 16.99 

SGO_1407 hisB 16.95 

SGO_1411 hisC 16.83 

SGO_0645 SGO_0645 16.55 

SGO_1408 hisD 16.18 

SGO_0646 SGO_0646 14.16 

SGO_0021 SGO_0021 12.62 

SGO_1406 hisH 12.15 

SGO_1405 hisA 11.58 

SGO_1404 hisF 10.43 

SGO_1590 arcD 9.20 

SGO_1716 SGO_1716 9.06 

SGO_1403 hisIE 8.83 

SGO_1137 SGO_1137 8.23 

SGO_1402 hisE 7.48 

SGO_1832 SGO_1832 6.53 

SGO_1317 SGO_1317 6.51 

SGO_0427 SGO_0427 6.51 

SGO_1401 SGO_1401 6.48 

SGO_0093 SGO_0093 6.48 

SGO_1833 SGO_1833 6.12 

SGO_1279 SGO_1279 6.00 

SGO_1194 SGO_1194 5.70 

SGO_0179 SGO_0179 5.63 

SGO_1805 hutU 5.55 
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SGO_1278 SGO_1278 5.42 

SGO_1277 SGO_1277 5.28 

SGO_1589 arcT 5.21 

SGO_0092 SGO_0092 5.10 

SGO_1256 SGO_1256 4.96 

SGO_1564 SGO_1564 4.93 

SGO_1107 SGO_1107 4.84 

SGO_0496 rgg 4.68 

SGO_1195 SGO_1195 4.68 

SGO_0178 rnpA 4.63 

SGO_0086 SGO_0086 4.60 

SGO_0874 SGO_0874 4.56 

SGO_0301 SGO_0301 4.51 

SGO_1835 SGO_1835 4.42 

SGO_0094 SGO_0094 4.40 

SGO_1196 satD 4.37 

SGO_0883 SGO_0883 4.33 

SGO_1655 SGO_1655 4.30 

SGO_1109 pyrB 4.27 

SGO_1563 SGO_1563 4.21 

SGO_1834 SGO_1834 4.09 

SGO_0571 SGO_0571 4.08 

SGO_1562 SGO_1562 4.01 

SGO_0090 SGO_0090 3.94 

SGO_1108 SGO_1108 3.93 

SGO_1110 SGO_1110 3.71 

SGO_1126 xerS 3.67 

SGO_0089 SGO_0089 3.59 

SGO_0157 SGO_0157 3.58 

SGO_0687 SGO_0687 3.57 

SGO_0508 nrdR 3.56 

SGO_1485 SGO_1485 3.55 

SGO_0180 jag 3.49 

SGO_0302 SGO_0302 3.45 

SGO_1561 SGO_1561 3.42 

SGO_2084 SGO_2084 3.42 

SGO_1618 SGO_1618 3.41 

SGO_0185 SGO_0185 3.35 

SGO_1597 SGO_1597 3.33 

SGO_0682 SGO_0682 3.33 

SGO_1135 SGO_1135 3.32 

SGO_1138 SGO_1138 3.32 

SGO_0368 merA 3.28 

SGO_0572 SGO_0572 3.24 

SGO_0417 acpS 3.23 

SGO_1997 nadR 3.22 
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SGO_0280 trzA 3.19 

SGO_1750 SGO_1750 3.19 

SGO_1280 SGO_1280 3.18 

SGO_0251 SGO_0251 3.16 

SGO_1134 SGO_1134 3.16 

SGO_2043 SGO_2043 3.15 

SGO_0297 arb 3.15 

SGO_1386 SGO_1386 3.14 

SGO_0957 SGO_0957 3.14 

SGO_1922 comYC 3.13 

SGO_0334 SGO_0334 3.11 

SGO_0845 SGO_0845 3.09 

SGO_0665 SGO_0665 3.09 

SGO_2012 SGO_2012 3.08 

SGO_1902 ssb 3.05 

SGO_1920 SGO_1920 3.04 

SGO_1625 SGO_1625 3.03 

SGO_1751 SGO_1751 3.02 

SGO_1923 comYB 3.00 

SGO_1337 SGO_1337 2.99 

SGO_1065 SGO_1065 2.97 

SGO_0709 SGO_0709 2.95 

SGO_1560 SGO_1560 2.92 

SGO_1729 SGO_1729 2.91 

SGO_1877 SGO_1877 2.91 

SGO_0181 SGO_0181 2.90 

SGO_1830 mga 2.88 

SGO_0758 SGO_0758 2.87 

SGO_0964 pdxK 2.87 

SGO_1255 pyrd 2.87 

SGO_0667 SGO_0667 2.86 

SGO_0666 SGO_0666 2.85 

SGO_0602 SGO_0602 2.85 

SGO_1385 SGO_1385 2.84 

SGO_0046 SGO_0046 2.84 

SGO_2083 SGO_2083 2.84 

SGO_1384 SGO_1384 2.83 

SGO_0138 SGO_0138 2.82 

SGO_0411 SGO_0411 2.80 

SGO_0561 SGO_0561 2.79 

SGO_0095 mccF 2.79 

SGO_0523 SGO_0523 2.77 

SGO_1501 SGO_1501 2.77 

SGO_0562 SGO_0562 2.77 

SGO_2103 SGO_2103 2.76 

SGO_0416 SGO_0416 2.75 
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SGO_0339 SGO_0339 2.74 

SGO_0397 SGO_0397 2.74 

SGO_1498 SGO_1498 2.73 

SGO_0184 SGO_0184 2.71 

SGO_0601 SGO_0601 2.70 

SGO_0118 SGO_0118 2.70 

SGO_1733 SGO_1733 2.70 

SGO_0734 SGO_0734 2.70 

SGO_2033 nrdD 2.69 

SGO_0182 sapR 2.68 

SGO_1856 SGO_1856 2.68 

SGO_0430 SGO_0430 2.65 

SGO_1529 SGO_1529 2.65 

SGO_1521 SGO_1521 2.62 

SGO_1752 SGO_1752 2.61 

SGO_2031 SGO_2031 2.61 

SGO_1728 glnQ 2.61 

SGO_2041 SGO_2041 2.60 

SGO_0186 SGO_0186 2.60 

SGO_0418 alr 2.60 

SGO_1525 lacB 2.60 

SGO_1484 SGO_1484 2.60 

SGO_0596 priA 2.58 

SGO_0047 SGO_0047 2.56 

SGO_1596 SGO_1596 2.56 

SGO_1520 SGO_1520 2.55 

SGO_0409 SGO_0409 2.55 

SGO_1522 SGO_1522 2.54 

SGO_0410 SGO_0410 2.52 

SGO_0912 SGO_0912 2.52 

SGO_1064 SGO_1064 2.52 

SGO_1523 lacD 2.49 

SGO_0563 SGO_0563 2.46 

SGO_0842 SGO_0842 2.46 

SGO_0727 SGO_0727 2.46 

SGO_0740 SGO_0740 2.45 

SGO_0270 gltP 2.45 

SGO_1518 lacB 2.44 

SGO_1527 SGO_1527 2.44 

SGO_1500 SGO_1500 2.44 

SGO_0158 SGO_0158 2.42 

SGO_0688 SGO_0688 2.40 

SGO_1610 SGO_1610 2.40 

SGO_1524 lacC 2.39 

SGO_0990 SGO_0990 2.38 

SGO_0296 SGO_0296 2.38 
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SGO_2044 spxA 2.36 

SGO_2040 SGO_2040 2.36 

SGO_0748 SGO_0748 2.35 

SGO_0726 SGO_0726 2.35 

SGO_1517 lacC 2.31 

SGO_1795 SGO_1795 2.30 

SGO_0729 SGO_0729 2.29 

SGO_0564 SGO_0564 2.29 

SGO_1998 clpB 2.29 

SGO_0865 SGO_0865 2.28 

SGO_0415 secA 2.27 

SGO_0398 SGO_0398 2.27 

SGO_1804 hutI 2.25 

SGO_0078 SGO_0078 2.25 

SGO_1526 lacA 2.24 

SGO_0394 SGO_0394 2.23 

SGO_1210 fhs 2.23 

SGO_1281 SGO_1281 2.23 

SGO_1136 SGO_1136 2.23 

SGO_2057 argR 2.22 

SGO_0367 cadX 2.21 

SGO_0396 SGO_0396 2.21 

SGO_2058 argS 2.21 

SGO_0684 SGO_0684 2.19 

SGO_0043 SGO_0043 2.19 

SGO_1519 lacA 2.19 

SGO_0268 SGO_0268 2.19 

SGO_0048 SGO_0048 2.18 

SGO_0211 sspB 2.17 

SGO_0685 SGO_0685 2.17 

SGO_2011 SGO_2011 2.17 

SGO_2051 SGO_2051 2.17 

SGO_0420 SGO_0420 2.17 

SGO_0044 SGO_0044 2.17 

SGO_1070 bioY 2.16 

SGO_2042 SGO_2042 2.16 

SGO_1394 SGO_1394 2.16 

SGO_0395 SGO_0395 2.13 

SGO_1786 gldA 2.12 

SGO_0500 rggD 2.11 

SGO_0478 SGO_0478 2.11 

SGO_1996 SGO_1996 2.09 

SGO_1791 SGO_1791 2.09 

SGO_0839 SGO_0839 2.09 

SGO_0943 SGO_0943 2.08 

SGO_0119 SGO_0119 2.08 
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SGO_0419 recG 2.08 

SGO_1066 SGO_1066 2.07 

SGO_1653 SGO_1653 2.07 

SGO_0870 SGO_0870 2.06 

SGO_0608 comFA 2.06 

SGO_2061 SGO_2061 2.06 

SGO_0603 SGO_0603 2.06 

SGO_0840 SGO_0840 2.05 

SGO_0399 SGO_0399 2.05 

SGO_0872 SGO_0872 2.05 

SGO_0525 SGO_0525 2.04 

SGO_0873 SGO_0873 2.03 

SGO_0405 SGO_0405 2.03 

SGO_1215 manB 2.03 

SGO_1123 ffh 2.03 

SGO_0731 SGO_0731 2.03 

SGO_0589 SGO_0589 2.02 

SGO_1855 yajC 2.02 

SGO_1061 SGO_1061 2.01 

SGO_0728 SGO_0728 2.01 

SGO_0676 SGO_0676 2.01 

SGO_1738 SGO_1738 2.01 

SGO_1058 pstB2 -2.00 

SGO_1434 thiJ -2.01 

SGO_1055 SGO_1055 -2.02 

SGO_0722 tehB -2.02 

SGO_1310 SGO_1310 -2.03 

SGO_1077 coaA -2.03 

SGO_1760 SGO_1760 -2.05 

SGO_1960 rpsK -2.06 

SGO_1544 atpA -2.07 

SGO_1238 ilvE -2.09 

SGO_0240 mvaD -2.10 

SGO_0581 trxB -2.11 

SGO_1005 SGO_1005 -2.12 

SGO_0817 SGO_0817 -2.12 

SGO_0235 SGO_0235 -2.12 

SGO_0858 SGO_0858 -2.12 

SGO_0642 SGO_0642 -2.12 

SGO_0544 SGO_0544 -2.12 

SGO_0136 SGO_0136 -2.12 

SGO_1353 SGO_1353 -2.12 

SGO_2063 SGO_2063 -2.13 

SGO_1470 SGO_1470 -2.13 

SGO_1400 murA -2.13 

SGO_1547 atpB -2.16 
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SGO_1961 rpsM -2.16 

SGO_0814 SGO_0814 -2.16 

SGO_1745 fba -2.17 

SGO_1364 rumA -2.17 

SGO_0517 SGO_0517 -2.17 

SGO_1546 atpF -2.18 

SGO_2070 SGO_2070 -2.18 

SGO_0010 SGO_0010 -2.18 

SGO_1967 rpmD -2.19 

SGO_1939 adcR -2.19 

SGO_0013 SGO_0013 -2.20 

SGO_0305 SGO_0305 -2.20 

SGO_2036 SGO_2036 -2.20 

SGO_0277 pyrA -2.21 

SGO_0391 SGO_0391 -2.21 

SGO_0065 SGO_0065 -2.21 

SGO_1824 prmA -2.22 

SGO_1383 rplS -2.23 

SGO_0701 hup -2.24 

SGO_1370 SGO_1370 -2.25 

SGO_1024 SGO_1024 -2.25 

SGO_1054 SGO_1054 -2.26 

SGO_0815 thiI -2.27 

SGO_0969 nss -2.27 

SGO_1683 serS -2.28 

SGO_0826 SGO_0826 -2.28 

SGO_0515 murC -2.29 

SGO_0744 SGO_0744 -2.29 

SGO_0173 SGO_0173 -2.30 

SGO_0643 SGO_0643 -2.30 

SGO_0132 SGO_0132 -2.30 

SGO_1971 rpsH -2.31 

SGO_0070 SGO_0070 -2.31 

SGO_1972 rpsN -2.31 

SGO_1959 rpoA -2.32 

SGO_1548 atpE -2.33 

SGO_1375 aroD -2.33 

SGO_0566 sgc -2.34 

SGO_1435 mreB -2.35 

SGO_1025 rgp -2.36 

SGO_0066 SGO_0066 -2.37 

SGO_1993 SGO_1993 -2.37 

SGO_1659 SGO_1659 -2.38 

SGO_1973 rplE -2.40 

SGO_0970 secY -2.40 

SGO_1991 hslO -2.40 
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SGO_0012 mpp -2.40 

SGO_0244 SGO_0244 -2.41 

SGO_1845 SGO_1845 -2.41 

SGO_1970 rplF -2.46 

SGO_0527 ilvH -2.46 

SGO_1390 ligA -2.48 

SGO_0637 SGO_0637 -2.48 

SGO_0438 SGO_0438 -2.49 

SGO_1538 SGO_1538 -2.49 

SGO_0067 SGO_0067 -2.50 

SGO_1361 SGO_1361 -2.50 

SGO_1965 secY -2.50 

SGO_0134 SGO_0134 -2.51 

SGO_1117 pcnA -2.51 

SGO_1543 atpG -2.52 

SGO_0689 SGO_0689 -2.52 

SGO_1968 rpsE -2.52 

SGO_1639 SGO_1639 -2.52 

SGO_1977 rpmC -2.52 

SGO_1204 SGO_1204 -2.53 

SGO_0763 murA -2.53 

SGO_0135 SGO_0135 -2.53 

SGO_1754 SGO_1754 -2.54 

SGO_1053 app -2.56 

SGO_1969 rplR -2.57 

SGO_0560 hsdM -2.58 

SGO_1482 SGO_1482 -2.58 

SGO_1938 adcC -2.59 

SGO_1059 pstB1 -2.59 

SGO_0064 SGO_0064 -2.61 

SGO_0241 SGO_0241 -2.62 

SGO_1978 rplP -2.64 

SGO_0698 recN -2.65 

SGO_1963 infA -2.66 

SGO_2106 SGO_2106 -2.66 

SGO_1352 SGO_1352 -2.67 

SGO_0452 SGO_0452 -2.68 

SGO_0429 SGO_0429 -2.68 

SGO_0216 SGO_0216 -2.69 

SGO_0520 SGO_0520 -2.70 

SGO_1283 SGO_1283 -2.70 

SGO_1903 SGO_1903 -2.71 

SGO_0328 SGO_0328 -2.72 

SGO_0639 valS -2.72 

SGO_1443 SGO_1443 -2.72 

SGO_1260 deoD -2.75 
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SGO_1186 SGO_1186 -2.75 

SGO_1060 SGO_1060 -2.75 

SGO_0068 SGO_0068 -2.77 

SGO_1230 srtA -2.77 

SGO_0144 SGO_0144 -2.79 

SGO_0942 zmpC -2.80 

SGO_0699 SGO_0699 -2.80 

SGO_0069 SGO_0069 -2.83 

SGO_1962 rpmJ -2.83 

SGO_1073 SGO_1073 -2.83 

SGO_1823 SGO_1823 -2.84 

SGO_1880 ssb -2.85 

SGO_1413 SGO_1413 -2.86 

SGO_1143 thyA -2.87 

SGO_1322 SGO_1322 -2.88 

SGO_0961 SGO_0961 -2.89 

SGO_1672 xerD -2.90 

SGO_1205 dapA -2.90 

SGO_1397 map -2.90 

SGO_1313 SGO_1313 -2.92 

SGO_1937 adcB -2.92 

SGO_1979 rpsC -2.95 

SGO_1082 SGO_1082 -2.95 

SGO_1371 SGO_1371 -2.95 

SGO_1377 SGO_1377 -2.97 

SGO_1323 rpsP -2.98 

SGO_0962 SGO_0962 -2.98 

SGO_1412 SGO_1412 -3.00 

SGO_0437 gatB -3.01 

SGO_1626 SGO_1626 -3.02 

SGO_1373 aroB -3.04 

SGO_0205 rpsG -3.04 

SGO_0014 pgsA -3.10 

SGO_0528 ilvC -3.10 

SGO_1936 adcA -3.11 

SGO_1389 SGO_1389 -3.13 

SGO_0526 ilvB -3.15 

SGO_1630 SGO_1630 -3.15 

SGO_0238 SGO_0238 -3.15 

SGO_0243 SGO_0243 -3.17 

SGO_1314 SGO_1314 -3.19 

SGO_0242 SGO_0242 -3.19 

SGO_0434 aspS -3.20 

SGO_1007 SGO_1007 -3.21 

SGO_0570 SGO_0570 -3.24 

SGO_1537 SGO_1537 -3.27 
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SGO_1536 SGO_1536 -3.30 

SGO_1118 SGO_1118 -3.31 

SGO_1559 nrdF -3.32 

SGO_1465 SGO_1465 -3.32 

SGO_0466 SGO_0466 -3.32 

SGO_1444 SGO_1444 -3.34 

SGO_1640 SGO_1640 -3.36 

SGO_0467 SGO_0467 -3.38 

SGO_0436 gatA -3.38 

SGO_1627 SGO_1627 -3.39 

SGO_1879 rpsR -3.40 

SGO_0805 potA -3.42 

SGO_0254 SGO_0254 -3.43 

SGO_2048 SGO_2048 -3.44 

SGO_0575 pbp2X -3.44 

SGO_0576 mraY -3.45 

SGO_0453 SGO_0453 -3.47 

SGO_1557 SGO_1557 -3.47 

SGO_1878 SGO_1878 -3.51 

SGO_0529 ilvA -3.51 

SGO_0204 rpsL -3.52 

SGO_1542 atpD -3.52 

SGO_1372 aroC -3.55 

SGO_0253 SGO_0253 -3.57 

SGO_1917 SGO_1917 -3.59 

SGO_0359 rpsI -3.59 

SGO_1534 SGO_1534 -3.62 

SGO_0764 SGO_0764 -3.63 

SGO_0232 SGO_0232 -3.63 

SGO_0765 endA -3.65 

SGO_0860 SGO_0860 -3.66 

SGO_1446 murF -3.70 

SGO_1455 rplA -3.72 

SGO_1008 SGO_1008 -3.74 

SGO_1617 prfC -3.74 

SGO_1737 rpmB -3.76 

SGO_2135 tilS -3.80 

SGO_0275 SGO_0275 -3.83 

SGO_1140 clpX -3.85 

SGO_1206 asd -3.89 

SGO_1026 SGO_1026 -3.90 

SGO_1615 SGO_1615 -3.90 

SGO_1628 braE -3.93 

SGO_1748 pyrG -3.95 

SGO_1187 SGO_1187 -3.96 

SGO_1881 rpsF -3.98 
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SGO_1456 rplK -3.99 

SGO_1847 polC -4.00 

SGO_1506 SGO_1506 -4.03 

SGO_1139 engB -4.04 

SGO_0793 SGO_0793 -4.04 

SGO_0714 SGO_0714 -4.06 

SGO_1374 aroE -4.07 

SGO_0859 pheS -4.08 

SGO_1074 SGO_1074 -4.08 

SGO_0140 SGO_0140 -4.12 

SGO_1846 SGO_1846 -4.13 

SGO_1696 SGO_1696 -4.16 

SGO_0972 asp2 -4.17 

SGO_1616 SGO_1616 -4.17 

SGO_1229 radC -4.18 

SGO_0792 SGO_0792 -4.19 

SGO_0806 potB -4.23 

SGO_0015 cbiO -4.24 

SGO_1535 ogt -4.27 

SGO_0506 rgfB -4.29 

SGO_0568 glyQ -4.34 

SGO_1015 SGO_1015 -4.34 

SGO_1558 nrdE -4.35 

SGO_0966 hsa -4.40 

SGO_1396 SGO_1396 -4.42 

SGO_0276 gdhA -4.42 

SGO_0973 asp3 -4.48 

SGO_1614 SGO_1614 -4.50 

SGO_1388 pulA -4.53 

SGO_0715 mutM -4.54 

SGO_0432 entB -4.64 

SGO_0497 gtfG -4.67 

SGO_0580 SGO_0580 -4.87 

SGO_1629 livH -4.89 

SGO_0713 era -4.90 

SGO_0807 potC -4.90 

SGO_1984 rplD -4.91 

SGO_0786 SGO_0786 -4.94 

SGO_0431 SGO_0431 -4.98 

SGO_1592 arcB -5.00 

SGO_0322 SGO_0322 -5.02 

SGO_1591 arcC -5.05 

SGO_1694 fabD -5.05 

SGO_0567 SGO_0567 -5.06 

SGO_0861 pheT -5.07 

SGO_2028 wzg -5.09 
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SGO_1593 arcA -5.12 

SGO_1692 SGO_1692 -5.12 

SGO_1691 accB -5.16 

SGO_1259 SGO_1259 -5.16 

SGO_0141 SGO_0141 -5.18 

SGO_1245 parE -5.27 

SGO_0784 smc -5.29 

SGO_2027 wzh -5.35 

SGO_0717 SGO_0717 -5.40 

SGO_1695 SGO_1695 -5.65 

SGO_1690 fabZ -5.68 

SGO_1671 scpA -5.69 

SGO_1258 SGO_1258 -5.73 

SGO_0778 thrS -5.75 

SGO_0787 ftsY -5.79 

SGO_0808 potD -5.87 

SGO_1670 scpB -5.89 

SGO_1693 fabG -5.95 

SGO_0716 coaE -5.96 

SGO_0408 zmpB -6.16 

SGO_1669 SGO_1669 -6.17 

SGO_1577 SGO_1577 -6.17 

SGO_0785 SGO_0785 -6.24 

SGO_1391 SGO_1391 -6.31 

SGO_0777 SGO_0777 -6.37 

SGO_1192 rplJ -6.63 

SGO_1244 SGO_1244 -6.65 

SGO_0681 ileS -6.66 

SGO_1697 acpP -6.69 

SGO_1698 SGO_1698 -6.71 

SGO_1668 SGO_1668 -7.26 

SGO_1243 SGO_1243 -7.26 

SGO_0017 SGO_0017 -7.28 

SGO_1017 SGO_1017 -7.43 

SGO_1242 SGO_1242 -7.47 

SGO_1027 SGO_1027 -7.50 

SGO_1688 accD -7.51 

SGO_1240 SGO_1240 -7.56 

SGO_0016 cbiO -7.57 

SGO_2024 SGO_2024 -7.60 

SGO_2025 wze -7.66 

SGO_2026 wzd -7.85 

SGO_0323 SGO_0323 -7.92 

SGO_1016 SGO_1016 -8.04 

SGO_0975 gtaA -8.23 

SGO_0976 SGO_0976 -8.31 
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SGO_1191 rplL -8.49 

SGO_2022 SGO_2022 -8.55 

SGO_1785 SGO_1785 -8.62 

SGO_1687 accA -8.62 

SGO_1241 SGO_1241 -8.66 

SGO_0977 SGO_0977 -8.88 

SGO_1578 celC -8.96 

SGO_1579 SGO_1579 -8.98 

SGO_2021 SGO_2021 -9.01 

SGO_0978 SGO_0978 -9.07 

SGO_1699 SGO_1699 -9.27 

SGO_1689 accC -9.29 

SGO_2020 SGO_2020 -9.78 

SGO_2023 SGO_2023 -9.88 

SGO_2098 rpsD -9.99 

SGO_0831 SGO_0831 -10.53 

SGO_2019 licD -11.38 

SGO_2018 SGO_2018 -12.03 

SGO_1239 parC -13.22 

SGO_1582 celA -13.41 

SGO_2016 SGO_2016 -14.56 

SGO_0832 SGO_0832 -14.75 

SGO_2017 SGO_2017 -14.85 

SGO_1686 SGO_1686 -17.40 

SGO_1700 SGO_1700 -20.71 

SGO_1580 celB -22.44 

SGO_2015 SGO_2015 -23.94 

SGO_1581 SGO_1581 -33.28 
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S. gordonii ΔargR microarray data, regulation of genes in response to arginine depletion 

(Note: locus tags have been changed)

 

Locus tag Gene name FC (abs) 

SGO_0177 SGO_0177 78.53 

SGO_RS00865 SGO_0175 63.27 

SGO_RS00870 SGO_0176 53.09 

SGO_RS03190 SGO_0648 9.75 

SGO_RS03180 SGO_0646 8.01 

SGO_RS03185 SGO_0647 7.77 

SGO_RS03175 SGO_0645 7.40 

SGO_RS06270 SGO_1277 6.10 

SGO_RS09770 SGO_1997 4.69 

SGO_RS04295 SGO_0874 4.51 

SGO_RS06910 SGO_1409 4.18 

SGO_RS05590 SGO_1137 4.12 

SGO_RS00105 SGO_0021 4.10 

SGO_RS05865 SGO_1194 3.86 

SGO_RS06915 SGO_1410 3.84 

SGO_RS02455 SGO_0496 3.68 

SGO_RS03075 SGO_0624 3.59 

xerS SGO_1126 3.57 

SGO_RS06905 SGO_1408 3.56 

SGO_RS05870 SGO_1195 3.50 

rnpA SGO_0178 3.44 

SGO_RS02135 SGO_0430 3.43 

hisB SGO_1407 3.40 

SGO_RS00880 SGO_0179 3.32 

SGO_RS00530 SGO_0106 3.30 

SGO_RS08585 SGO_1751 3.27 

SGO_RS06280 SGO_1280 3.27 

SGO_RS04340 SGO_0883 3.26 

SGO_RS03275 SGO_0665 3.26 

SGO_RS02965 SGO_0602 3.25 

SGO_RS01830 SGO_0368 3.25 

SGO_RS05875 SGO_1196 3.23 

SGO_RS08115 SGO_1656 3.22 

SGO_RS06460 SGO_1317 3.19 

SGO_RS02040 SGO_0409 3.16 

SGO_RS02125 SGO_0427 3.16 

SGO_RS00525 SGO_0105 3.13 

SGO_RS00895 SGO_0182 3.07 

SGO_RS01670 SGO_0339 3.06 

SGO_RS02045 SGO_0410 3.06 

SGO_RS05430 SGO_1105 3.06 
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SGO_RS04720 SGO_0964 3.05 

SGO_RS09845 SGO_2012 3.01 

SGO_RS08580 SGO_1750 3.00 

SGO_RS02810 SGO_0571 3.00 

SGO_RS00775 SGO_0157 2.94 

SGO_RS02960 SGO_0601 2.92 

SGO_RS06920 SGO_1411 2.89 

hisH SGO_1406 2.86 

SGO_RS07810 SGO_1594 2.86 

SGO_RS10205 SGO_2084 2.81 

SGO_RS02775 SGO_0562 2.79 

SGO_RS07660 SGO_1564 2.78 

SGO_RS02780 SGO_0564 2.78 

SGO_RS02050 SGO_0411 2.78 

SGO_RS01645 SGO_0334 2.78 

SGO_RS04250 SGO_0865 2.76 

SGO_RS00890 SGO_0181 2.75 

SGO_RS01980 SGO_0397 2.75 

SGO_RS03390 SGO_0688 2.74 

SGO_RS05580 SGO_1135 2.74 

SGO_RS02585 SGO_0523 2.74 

SGO_RS05450 SGO_1110 2.73 

SGO_RS03360 SGO_0682 2.72 

SGO_RS07655 SGO_1562 2.71 

SGO_RS04640 SGO_0948 2.70 

SGO_RS00885 SGO_0180 2.69 

SGO_RS07890 SGO_1610 2.68 

SGO_RS07350 SGO_1498 2.67 

SGO_RS07650 SGO_1561 2.65 

SGO_RS02970 SGO_0603 2.65 

SGO_RS02815 SGO_0572 2.65 

SGO_RS08590 SGO_1752 2.64 

SGO_RS00450 SGO_0090 2.63 

SGO_RS07685 SGO_1569 2.62 

SGO_RS07825 SGO_1597 2.62 

SGO_RS05255 SGO_1070 2.60 

SGO_RS04685 SGO_0957 2.58 

SGO_RS02770 SGO_0561 2.57 

SGO_RS07815 SGO_1595 2.54 

SGO_RS02080 SGO_0417 2.54 

SGO_RS08110 SGO_1655 2.54 

SGO_RS02850 SGO_0579 2.52 

SGO_RS09775 SGO_1998 2.50 

SGO_RS10200 SGO_2083 2.49 

SGO_RS00475 SGO_0095 2.46 

SGO_RS02510 SGO_0508 2.46 
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SGO_RS07285 SGO_1484 2.46 

SGO_RS01370 SGO_0278 2.45 

SGO_RS04725 SGO_0965 2.42 

SGO_RS07355 SGO_1499 2.42 

SGO_RS09970 SGO_2041 2.41 

SGO_RS07280 SGO_1483 2.40 

SGO_RS05575 SGO_1134 2.40 

SGO_RS01320 SGO_0268 2.40 

SGO_RS07645 SGO_1560 2.39 

SGO_RS06285 SGO_1281 2.39 

SGO_RS04145 SGO_0845 2.38 

SGO_RS02590 SGO_0524 2.35 

SGO_RS01975 SGO_0396 2.34 

SGO_RS05595 SGO_1138 2.33 

SGO_RS02085 SGO_0418 2.33 

SGO_RS07820 SGO_1596 2.32 

SGO_RS01380 SGO_0280 2.31 

SGO_RS03580 SGO_0729 2.31 

SGO_RS10075 SGO_2062 2.31 

SGO_RS03280 SGO_0666 2.31 

SGO_RS02935 SGO_0596 2.30 

SGO_RS03490 SGO_0709 2.30 

SGO_RS02595 SGO_0525 2.29 

SGO_RS08150 SGO_1662 2.29 

SGO_RS03605 SGO_0734 2.28 

SGO_RS08985 SGO_1831 2.28 

SGO_RS04825 SGO_0984 2.28 

SGO_RS02075 SGO_0416 2.28 

SGO_RS01985 SGO_0398 2.27 

SGO_RS06890 SGO_1405 2.26 

SGO_RS10285 SGO_2102 2.25 

SGO_RS07675 SGO_1567 2.25 

SGO_RS01990 SGO_0399 2.24 

SGO_RS10280 SGO_2101 2.24 

SGO_RS01815 SGO_0366 2.24 

SGO_RS06560 SGO_1337 2.24 

SGO_RS02515 SGO_0509 2.24 

SGO_RS05585 SGO_1136 2.23 

SGO_RS09975 SGO_2042 2.23 

SGO_RS02845 SGO_0578 2.23 

SGO_RS08800 SGO_1794 2.22 

SGO_RS05810 SGO_1181 2.21 

SGO_RS04495 SGO_0917 2.21 

SGO_RS09965 SGO_2040 2.21 

SGO_RS06795 SGO_1386 2.20 

SGO_RS01820 SGO_0367 2.20 
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SGO_RS06790 SGO_1385 2.19 

SGO_RS05940 SGO_1210 2.19 

SGO_RS01970 SGO_0395 2.18 

SGO_RS06785 SGO_1384 2.17 

SGO_RS01435 SGO_0291 2.16 

argD SGO_1566 2.16 

SGO_RS09465 SGO_1933 2.15 

SGO_RS09765 SGO_1996 2.15 

SGO_RS07680 SGO_1568 2.13 

SGO_RS02940 SGO_0597 2.12 

SGO_RS06885 SGO_1404 2.12 

SGO_RS01325 SGO_0269 2.12 

SGO_RS10290 SGO_2103 2.11 

SGO_RS01425 SGO_0289 2.11 

SGO_RS10530 SGO_2151 2.11 

SGO_RS09470 SGO_1934 2.11 

SGO_RS01430 SGO_0290 2.10 

SGO_RS01330 SGO_0270 2.08 

SGO_RS02730 SGO_0553 2.07 

SGO_RS02525 SGO_0511 2.07 

SGO_RS05805 SGO_1180 2.07 

SGO_RS02520 SGO_0510 2.05 

SGO_RS07490 SGO_1529 2.04 

SGO_RS03285 SGO_0667 2.03 

SGO_RS00250 SGO_0052 2.03 

SGO_RS07390 SGO_1507 2.03 

SGO_RS09005 SGO_1835 2.03 

SGO_RS01220 SGO_0247 2.02 

SGO_RS04130 SGO_0842 2.02 

SGO_RS09780 SGO_1999 2.00 

SGO_RS05455 SGO_1111 2.00 

SGO_RS07385 SGO_1506 -2.01 

SGO_RS07580 SGO_1547 -2.01 

SGO_RS07640 SGO_1559 -2.01 

SGO_RS06040 SGO_1230 -2.01 

SGO_RS05200 SGO_1059 -2.01 

SGO_RS04765 SGO_0972 -2.02 

SGO_RS05715 SGO_1161 -2.02 

SGO_RS07695 SGO_1571 -2.02 

SGO_RS05325 SGO_1084 -2.04 

SGO_RS08555 SGO_1745 -2.04 

SGO_RS09195 SGO_1878 -2.05 

SGO_RS07555 SGO_1542 -2.05 

SGO_RS09095 SGO_1857 -2.06 

SGO_RS01160 SGO_0235 -2.07 

SGO_RS02600 SGO_0526 -2.08 
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SGO_RS01195 SGO_0242 -2.09 

SGO_RS08185 SGO_1669 -2.09 

ligA SGO_1390 -2.10 

SGO_RS09930 SGO_2030 -2.11 

SGO_RS06735 SGO_1374 -2.11 

rpsA SGO_1234 -2.12 

SGO_RS06045 SGO_1231 -2.12 

SGO_RS01770 SGO_0358 -2.12 

SGO_RS07575 SGO_1546 -2.12 

scpB SGO_1670 -2.13 

SGO_RS09210 SGO_1881 -2.13 

SGO_RS04930 SGO_1006 -2.14 

SGO_RS01005 SGO_0205 -2.15 

SGO_RS06930 SGO_1413 -2.16 

SGO_RS04935 SGO_1007 -2.16 

SGO_RS07530 SGO_1537 -2.16 

SGO_RS00295 SGO_0061 -2.17 

SGO_RS00300 SGO_0062 -2.17 

SGO_RS09725 SGO_1986 -2.18 

SGO_RS09385 SGO_1917 -2.18 

SGO_RS03845 SGO_0783 -2.18 

SGO_RS01205 SGO_0244 -2.20 

SGO_RS09495 SGO_1939 -2.20 

SGO_RS02140 SGO_0431 -2.22 

SGO_RS00305 SGO_0063 -2.22 

SGO_RS07980 SGO_1629 -2.23 

SGO_RS00315 SGO_0065 -2.24 

SGO_RS07095 SGO_1446 -2.26 

SGO_RS09320 SGO_1903 -2.26 

SGO_RS04770 SGO_0973 -2.27 

SGO_RS00330 SGO_0068 -2.28 

SGO_RS02155 SGO_0435 -2.28 

SGO_RS02130 SGO_0429 -2.29 

SGO_RS07190 SGO_1465 -2.29 

SGO_RS01585 SGO_0322 -2.30 

SGO_RS05275 SGO_1074 -2.30 

SGO_RS09940 SGO_2033 -2.32 

SGO_RS05920 SGO_1206 -2.32 

SGO_RS04980 SGO_1015 -2.36 

SGO_RS07550 SGO_1541 -2.36 

SGO_RS01000 SGO_0204 -2.36 

SGO_RS02165 SGO_0437 -2.37 

SGO_RS01145 SGO_0232 -2.37 

SGO_RS03530 SGO_0717 -2.38 

SGO_RS01250 SGO_0253 -2.40 

SGO_RS01775 SGO_0359 -2.41 
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SGO_RS03885 SGO_0792 -2.42 

SGO_RS02615 SGO_0529 -2.42 

SGO_RS05605 SGO_1140 -2.42 

SGO_RS01200 SGO_0243 -2.43 

SGO_RS07885 SGO_1609 -2.44 

SGO_RS00085 SGO_0017 -2.44 

SGO_RS02805 SGO_0570 -2.45 

SGO_RS05490 SGO_1118 -2.45 

SGO_RS02610 SGO_0528 -2.46 

SGO_RS01355 SGO_0275 -2.46 

SGO_RS06925 SGO_1412 -2.46 

polC SGO_1847 -2.49 

SGO_RS03520 SGO_0715 -2.50 

SGO_RS09485 SGO_1937 -2.52 

SGO_RS03955 SGO_0806 -2.52 

gatA SGO_0436 -2.52 

SGO_RS03890 SGO_0793 -2.56 

SGO_RS06185 SGO_1259 -2.57 

SGO_RS07525 SGO_1536 -2.58 

SGO_RS07145 SGO_1456 -2.61 

SGO_RS05035 SGO_1026 -2.63 

SGO_RS02830 SGO_0575 -2.63 

SGO_RS09925 SGO_2029 -2.64 

SGO_RS08180 SGO_1668 -2.66 

SGO_RS01360 SGO_0276 -2.66 

SGO_RS09200 SGO_1879 -2.66 

pheS SGO_0859 -2.67 

SGO_RS07515 SGO_1534 -2.68 

engB SGO_1139, yihA, ysxC -2.68 

SGO_RS03950 SGO_0805 -2.70 

SGO_RS06805 SGO_1388 -2.72 

SGO_RS02835 SGO_0576 -2.73 

SGO_RS06295 SGO_1283 -2.74 

SGO_RS09480 SGO_1936 -2.74 

SGO_RS10095 SGO_2066 -2.76 

era SGO_0713, bex, rbaA, sdgE, yqfH -2.79 

SGO_RS09920 SGO_2028 -2.79 

SGO_RS05270 SGO_1073 -2.80 

SGO_RS03525 SGO_0716 -2.80 

SGO_RS09615 SGO_1964 -2.83 

SGO_RS07635 SGO_1558 -2.84 

SGO_RS01590 SGO_0323 -2.84 

SGO_RS08325 SGO_1698 -2.85 

SGO_RS04220 SGO_0860 -2.86 

SGO_RS10090 SGO_2065 -2.94 

SGO_RS00710 SGO_0144 -2.98 
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SGO_RS07140 SGO_1455 -2.98 

SGO_RS04225 SGO_0861 -3.02 

SGO_RS02800 SGO_0569 -3.07 

SGO_RS04940 SGO_1008 -3.08 

SGO_RS07520 SGO_1535 -3.09 

SGO_RS04985 SGO_1016 -3.17 

SGO_RS04780 SGO_0975 -3.19 

SGO_RS04795 SGO_0978 -3.21 

SGO_RS08755 SGO_1785 -3.27 

SGO_RS08295 SGO_1691 -3.28 

SGO_RS08290 SGO_1690 -3.30 

SGO_RS03960 SGO_0807 -3.32 

SGO_RS08300 SGO_1692 -3.45 

SGO_RS04990 SGO_1017 -3.47 

SGO_RS08310 SGO_1694 -3.54 

SGO_RS08320 SGO_1697 -3.54 

SGO_RS08330 SGO_1699 -3.54 

gyrB SGO_1245 -3.57 

SGO_RS03855 SGO_0785 -3.57 

SGO_RS07630 SGO_1557 -3.58 

SGO_RS04785 SGO_0976 -3.62 

glyQ SGO_0568 -3.63 

SGO_RS06820 SGO_1391 -3.70 

SGO_RS03815 SGO_0777 -3.75 

SGO_RS08305 SGO_1693 -3.75 

SGO_RS03860 SGO_0786 -3.76 

SGO_RS04790 SGO_0977 -3.77 

SGO_RS03850 SGO_0784 -3.77 

SGO_RS09915 SGO_2027 -3.80 

SGO_RS03965 SGO_0808 -3.96 

SGO_RS05315 SGO_1082 -3.99 

SGO_RS06110 SGO_1244 -4.02 

SGO_RS08315 SGO_1695 -4.03 

SGO_RS08315 SGO_1695 -4.20 

SGO_RS03865 SGO_0787 -4.23 

SGO_RS06180 SGO_1258 -4.25 

SGO_RS06090 SGO_1240 -4.30 

SGO_RS03820 SGO_0778 -4.34 

SGO_RS08285 SGO_1689 -4.42 

SGO_RS09900 SGO_2024 -4.43 

SGO_RS06095 SGO_1241 -4.46 

SGO_RS08280 SGO_1688 -4.51 

SGO_RS08275 SGO_1687 -4.54 

SGO_RS09890 SGO_2022 -4.55 

SGO_RS02035 SGO_0408 -4.70 

SGO_RS10265 SGO_2098 -4.72 
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SGO_RS06100 SGO_1242 -4.77 

SGO_RS09875 SGO_2019 -4.77 

SGO_RS09880 SGO_2020 -4.77 

SGO_RS07800 SGO_1592 -4.86 

SGO_RS09870 SGO_2018 -4.87 

SGO_RS05040 SGO_1027 -4.88 

SGO_RS09905 SGO_2025 -4.92 

SGO_RS06105 SGO_RS06105 -4.98 

ileS SGO_0681 -5.04 

SGO_RS09910 SGO_2026 -5.11 

SGO_RS09895 SGO_2023 -5.13 

SGO_RS06085 SGO_1239 -5.42 

SGO_RS09885 SGO_2021 -5.43 

SGO_RS09860 SGO_2016 -5.50 

SGO_RS09865 SGO_2017 -5.80 

SGO_RS02500 SGO_0506 -5.97 

SGO_RS05855 SGO_1192 -6.02 

SGO_RS07805 SGO_1593 -6.02 

SGO_RS09855 SGO_2015 -6.05 

SGO_0832 SGO_0832 -6.09 

rplL SGO_1191 -6.69 

SGO_RS08270 SGO_1686 -8.49 

SGO_RS08335 SGO_1700 -8.95 

SGO_RS07715 SGO_1575 -13.07 

SGO_RS07720 SGO_1576 -27.01 

celC SGO_1578 -27.16 

SGO_RS07725 SGO_1577 -27.21 

SGO_RS07735 SGO_1579 -29.56 

SGO_RS07750 SGO_1582 -54.98 

SGO_RS07745 SGO_1581 -81.68 

celB SGO_1580 -101.81 
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S. gordonii ΔahrC microarray data, regulation of genes in response to arginine depletion 

(Note: locus tags have been changed)

 

Locus tag Gene name FC (abs) 

SGO_0177 SGO_0177 71.72 

SGO_RS00865 SGO_0175 62.38 

SGO_RS00870 SGO_0176 55.01 

SGO_RS03190 SGO_0648 9.80 

SGO_RS03175 SGO_0645 8.93 

SGO_RS06270 SGO_1277 8.52 

SGO_RS03185 SGO_0647 8.35 

SGO_RS03180 SGO_0646 8.32 

SGO_RS09770 SGO_1997 5.83 

SGO_RS04295 SGO_0874 5.10 

SGO_RS00105 SGO_0021 4.83 

xerS SGO_1126 4.56 

SGO_RS02455 SGO_0496 4.29 

SGO_RS05590 SGO_1137 4.10 

SGO_RS06280 SGO_1280 3.57 

SGO_RS04720 SGO_0964 3.56 

SGO_RS02125 SGO_0427 3.55 

SGO_RS05430 SGO_1105 3.53 

SGO_RS01645 SGO_0334 3.48 

SGO_RS08580 SGO_1750 3.47 

SGO_RS09845 SGO_2012 3.44 

SGO_RS02040 SGO_0409 3.38 

SGO_RS05865 SGO_1194 3.37 

SGO_RS00525 SGO_0105 3.35 

SGO_RS06460 SGO_1317 3.34 

SGO_RS08585 SGO_1751 3.32 

SGO_RS04340 SGO_0883 3.31 

SGO_RS07650 SGO_1561 3.31 

SGO_RS08115 SGO_1656 3.29 

SGO_RS05870 SGO_1195 3.27 

rnpA SGO_0178 3.22 

SGO_RS00530 SGO_0106 3.21 

SGO_RS08590 SGO_1752 3.21 

SGO_RS10205 SGO_2084 3.19 

SGO_RS07655 SGO_1562 3.17 

SGO_RS01670 SGO_0339 3.16 
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SGO_RS02045 SGO_0410 3.15 

SGO_RS07660 SGO_1564 3.13 

SGO_RS02135 SGO_0430 3.11 

SGO_RS00880 SGO_0179 3.10 

SGO_RS01980 SGO_0397 3.06 

SGO_RS02960 SGO_0601 3.03 

SGO_RS06910 SGO_1409 3.02 

SGO_RS02050 SGO_0411 3.01 

SGO_RS03075 SGO_0624 3.01 

SGO_RS05255 SGO_1070 3.01 

SGO_RS02780 SGO_0564 2.99 

SGO_RS02965 SGO_0602 2.99 

SGO_RS04640 SGO_0948 2.97 

SGO_RS00775 SGO_0157 2.97 

SGO_RS04685 SGO_0957 2.97 

SGO_RS03360 SGO_0682 2.96 

SGO_RS10200 SGO_2083 2.95 

SGO_RS06915 SGO_1410 2.89 

SGO_RS03275 SGO_0665 2.87 

SGO_RS02775 SGO_0562 2.86 

SGO_RS07890 SGO_1610 2.85 

SGO_RS02810 SGO_0571 2.84 

SGO_RS00450 SGO_0090 2.81 

SGO_RS02585 SGO_0523 2.79 

SGO_RS01830 SGO_0368 2.78 

SGO_RS02815 SGO_0572 2.78 

SGO_RS07645 SGO_1560 2.77 

SGO_RS02770 SGO_0561 2.73 

SGO_RS00895 SGO_0182 2.70 

SGO_RS09090 SGO_1856 2.69 

SGO_RS05875 SGO_1196 2.69 

SGO_RS05595 SGO_1138 2.66 

SGO_RS06905 SGO_1408 2.66 

SGO_RS05575 SGO_1134 2.64 

SGO_RS01370 SGO_0278 2.63 

SGO_RS01425 SGO_0289 2.61 

SGO_RS02590 SGO_0524 2.58 

SGO_RS06920 SGO_1411 2.58 

SGO_RS04250 SGO_0865 2.58 

SGO_RS05580 SGO_1135 2.58 

SGO_RS08110 SGO_1655 2.57 
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SGO_RS05450 SGO_1110 2.57 

hisB SGO_1407 2.57 

SGO_RS07685 SGO_1569 2.55 

SGO_RS05810 SGO_1181 2.53 

SGO_RS03390 SGO_0688 2.51 

SGO_RS01320 SGO_0268 2.51 

SGO_RS10280 SGO_2101 2.50 

SGO_RS02510 SGO_0508 2.49 

SGO_RS08495 SGO_1733 2.49 

SGO_RS01435 SGO_0291 2.48 

SGO_RS06285 SGO_1281 2.48 

SGO_RS03605 SGO_0734 2.48 

SGO_RS01975 SGO_0396 2.47 

SGO_RS00885 SGO_0180 2.47 

SGO_RS04725 SGO_0965 2.46 

SGO_RS08800 SGO_1794 2.44 

SGO_RS00890 SGO_0181 2.44 

SGO_RS02970 SGO_0603 2.43 

SGO_RS10285 SGO_2102 2.43 

SGO_RS07825 SGO_1597 2.43 

SGO_RS07350 SGO_1498 2.40 

SGO_RS01380 SGO_0280 2.40 

SGO_RS00475 SGO_0095 2.38 

SGO_RS07810 SGO_1594 2.38 

SGO_RS09970 SGO_2041 2.37 

SGO_RS10075 SGO_2062 2.37 

SGO_RS07815 SGO_1595 2.37 

SGO_RS01430 SGO_0290 2.36 

SGO_RS02935 SGO_0596 2.36 

SGO_RS03280 SGO_0666 2.35 

SGO_RS01325 SGO_0269 2.35 

SGO_RS00430 SGO_0086 2.34 

SGO_RS02515 SGO_0509 2.34 

SGO_RS02080 SGO_0417 2.33 

SGO_RS01330 SGO_0270 2.31 

SGO_RS07355 SGO_1499 2.27 

SGO_RS03580 SGO_0729 2.26 

SGO_RS07820 SGO_1596 2.26 

SGO_RS06560 SGO_1337 2.25 

SGO_RS07285 SGO_1484 2.25 

SGO_RS06790 SGO_1385 2.25 
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SGO_RS09465 SGO_1933 2.24 

SGO_RS05425 SGO_1104 2.24 

SGO_RS07280 SGO_1483 2.21 

SGO_RS08985 SGO_1831 2.21 

SGO_RS04145 SGO_0845 2.20 

SGO_RS08160 SGO_1664 2.20 

SGO_RS02850 SGO_0579 2.19 

SGO_RS01990 SGO_0399 2.18 

SGO_RS01985 SGO_0398 2.18 

SGO_RS09765 SGO_1996 2.18 

SGO_RS09775 SGO_1998 2.17 

SGO_RS03570 SGO_0726 2.17 

SGO_RS04475 SGO_0912 2.15 

SGO_RS00250 SGO_0052 2.15 

SGO_RS02075 SGO_0416 2.15 

SGO_RS09470 SGO_1934 2.15 

SGO_RS07680 SGO_1568 2.13 

SGO_RS05940 SGO_1210 2.13 

hisH SGO_1406 2.13 

SGO_RS07150 SGO_1457 2.13 

SGO_RS02595 SGO_0525 2.12 

SGO_RS06795 SGO_1386 2.11 

SGO_RS02730 SGO_0553 2.11 

SGO_RS08805 SGO_1795 2.11 

SGO_RS00240 SGO_0050 2.10 

SGO_RS01970 SGO_0395 2.10 

SGO_RS08150 SGO_1662 2.10 

SGO_RS01820 SGO_0367 2.10 

SGO_RS05585 SGO_1136 2.10 

SGO_RS06785 SGO_1384 2.10 

SGO_RS05280 SGO_1075 2.09 

SGO_RS02525 SGO_0511 2.07 

SGO_RS02085 SGO_0418 2.07 

SGO_RS02370 SGO_0479 2.07 

SGO_RS07490 SGO_1529 2.05 

SGO_RS05805 SGO_1180 2.04 

SGO_RS04825 SGO_0984 2.04 

SGO_RS08520 SGO_1738 2.04 

SGO_RS02845 SGO_0578 2.03 

SGO_RS05420 SGO_1103 2.03 

SGO_RS00255 SGO_0053 2.03 
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SGO_RS04385 SGO_0894 2.03 

SGO_RS03490 SGO_0709 2.03 

SGO_RS04485 SGO_0915 2.02 

SGO_RS09005 SGO_1835 2.02 

SGO_RS03715 SGO_0756 2.01 

SGO_RS09975 SGO_2042 2.01 

SGO_RS01245 SGO_0252 2.01 

SGO_RS03670 SGO_0747 2.01 

SGO_RS09965 SGO_2040 2.01 

SGO_RS04280 SGO_0870 2.00 

SGO_RS09840 SGO_2011 2.00 

SGO_RS00305 SGO_0063 -2.00 

SGO_RS09095 SGO_1857 -2.00 

SGO_RS05715 SGO_1161 -2.01 

SGO_RS08555 SGO_1745 -2.02 

SGO_RS00320 SGO_0066 -2.02 

SGO_RS03555 SGO_0722 -2.02 

SGO_RS09195 SGO_1878 -2.03 

SGO_RS05325 SGO_1084 -2.04 

SGO_RS04930 SGO_1006 -2.04 

aspS SGO_0434 -2.04 

SGO_RS04935 SGO_1007 -2.04 

SGO_RS07085 SGO_1444 -2.05 

SGO_RS05320 SGO_1083 -2.05 

SGO_RS01585 SGO_0322 -2.05 

SGO_RS04770 SGO_0973 -2.06 

SGO_RS01775 SGO_0359 -2.06 

SGO_RS01160 SGO_0235 -2.07 

SGO_RS02145 SGO_0432 -2.08 

SGO_RS09320 SGO_1903 -2.08 

SGO_RS01205 SGO_0244 -2.08 

SGO_RS08060 SGO_1645 -2.08 

SGO_RS07985 SGO_1630 -2.09 

SGO_RS02250 SGO_0454 -2.09 

SGO_RS00310 SGO_0064 -2.09 

SGO_RS09385 SGO_1917 -2.10 

SGO_RS06930 SGO_1413 -2.10 

SGO_RS07535 SGO_1538 -2.12 

SGO_RS06040 SGO_1230 -2.12 

SGO_RS01005 SGO_0205 -2.12 

SGO_RS07970 SGO_1627 -2.13 
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SGO_RS02805 SGO_0570 -2.14 

SGO_RS07580 SGO_1547 -2.15 

SGO_RS09495 SGO_1939 -2.16 

SGO_RS08570 SGO_1748 -2.16 

SGO_RS05205 SGO_1060 -2.16 

SGO_RS07530 SGO_1537 -2.16 

SGO_RS07095 SGO_1446 -2.17 

SGO_RS07585 SGO_1548 -2.17 

SGO_RS06735 SGO_1374 -2.19 

SGO_RS03845 SGO_0783 -2.19 

SGO_RS07550 SGO_1541 -2.20 

SGO_RS01200 SGO_0243 -2.20 

SGO_RS01355 SGO_0275 -2.20 

cbiO SGO_0016 -2.20 

SGO_RS05200 SGO_1059 -2.21 

SGO_RS09485 SGO_1937 -2.22 

SGO_RS06045 SGO_1231 -2.25 

scpA SGO_1671 -2.25 

SGO_RS00325 SGO_0067 -2.26 

SGO_RS02155 SGO_0435 -2.28 

SGO_RS06925 SGO_1412 -2.28 

gatA SGO_0436 -2.28 

SGO_RS07575 SGO_1546 -2.29 

SGO_RS07975 SGO_1628 -2.31 

SGO_RS02600 SGO_0526 -2.32 

SGO_RS08045 SGO_1642 -2.32 

SGO_RS07555 SGO_1542 -2.33 

SGO_RS03885 SGO_0792 -2.33 

SGO_RS03890 SGO_0793 -2.34 

SGO_RS06810 SGO_1389 -2.34 

SGO_RS07525 SGO_1536 -2.34 

SGO_RS05920 SGO_1206 -2.34 

SGO_RS09210 SGO_1881 -2.35 

SGO_RS00710 SGO_0144 -2.36 

SGO_RS07640 SGO_1559 -2.36 

SGO_RS02165 SGO_0437 -2.38 

ligA SGO_1390 -2.39 

SGO_RS09480 SGO_1936 -2.39 

SGO_RS02130 SGO_0429 -2.40 

polC SGO_1847 -2.41 

SGO_RS02610 SGO_0528 -2.41 
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SGO_RS05490 SGO_1118 -2.42 

SGO_RS10095 SGO_2066 -2.42 

SGO_RS06295 SGO_1283 -2.44 

rpsA SGO_1234 -2.45 

SGO_RS01250 SGO_0253 -2.46 

SGO_RS00695 SGO_0140 -2.46 

SGO_RS02140 SGO_0431 -2.47 

SGO_RS05270 SGO_1073 -2.48 

SGO_RS07190 SGO_1465 -2.48 

SGO_RS04980 SGO_1015 -2.50 

engB SGO_1139, yihA, ysxC -2.50 

SGO_RS07145 SGO_1456 -2.51 

SGO_RS01000 SGO_0204 -2.51 

SGO_RS09930 SGO_2030 -2.51 

scpB SGO_1670 -2.52 

SGO_RS10090 SGO_2065 -2.53 

SGO_RS00330 SGO_0068 -2.53 

SGO_RS00085 SGO_0017 -2.53 

SGO_RS08185 SGO_1669 -2.55 

SGO_RS07980 SGO_1629 -2.55 

SGO_RS09935 SGO_2031 -2.55 

SGO_RS09940 SGO_2033 -2.55 

SGO_RS01590 SGO_0323 -2.56 

SGO_RS01360 SGO_0276 -2.57 

SGO_RS00315 SGO_0065 -2.58 

SGO_RS05605 SGO_1140 -2.59 

SGO_RS06185 SGO_1259 -2.63 

SGO_RS03955 SGO_0806 -2.63 

SGO_RS03520 SGO_0715 -2.65 

SGO_RS02615 SGO_0529 -2.65 

pheS SGO_0859 -2.67 

SGO_RS02800 SGO_0569 -2.70 

SGO_RS09925 SGO_2029 -2.72 

SGO_RS07885 SGO_1609 -2.73 

SGO_RS03530 SGO_0717 -2.74 

SGO_RS07140 SGO_1455 -2.76 

SGO_RS08180 SGO_1668 -2.78 

SGO_RS09200 SGO_1879 -2.80 

SGO_RS03950 SGO_0805 -2.81 

SGO_RS04220 SGO_0860 -2.86 

SGO_RS02835 SGO_0576 -2.87 
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SGO_RS04940 SGO_1008 -2.88 

SGO_RS04225 SGO_0861 -2.89 

SGO_RS09615 SGO_1964 -2.93 

SGO_RS02830 SGO_0575 -2.94 

SGO_RS03525 SGO_0716 -2.98 

SGO_RS09920 SGO_2028 -2.98 

era SGO_0713, bex, rbaA, sdgE, yqfH -3.06 

SGO_RS04780 SGO_0975 -3.07 

SGO_RS05035 SGO_1026 -3.08 

SGO_RS07515 SGO_1534 -3.12 

glyQ SGO_0568 -3.12 

SGO_RS04985 SGO_1016 -3.13 

SGO_RS08320 SGO_1697 -3.20 

SGO_RS04795 SGO_0978 -3.26 

SGO_RS07520 SGO_1535 -3.28 

SGO_RS03960 SGO_0807 -3.33 

SGO_RS06805 SGO_1388 -3.35 

SGO_RS08755 SGO_1785 -3.35 

SGO_RS04990 SGO_1017 -3.36 

SGO_RS03855 SGO_0785 -3.40 

SGO_RS08325 SGO_1698 -3.41 

SGO_RS03860 SGO_0786 -3.43 

SGO_RS04785 SGO_0976 -3.53 

SGO_RS03865 SGO_0787 -3.54 

SGO_RS03850 SGO_0784 -3.55 

SGO_RS08295 SGO_1691 -3.56 

SGO_RS06180 SGO_1258 -3.56 

SGO_RS05315 SGO_1082 -3.61 

SGO_RS03815 SGO_0777 -3.63 

SGO_RS08290 SGO_1690 -3.65 

SGO_RS06820 SGO_1391 -3.72 

SGO_RS08315 SGO_1695 -3.74 

gyrB SGO_1245 -3.75 

SGO_RS03965 SGO_0808 -3.83 

SGO_RS04790 SGO_0977 -3.86 

SGO_RS09915 SGO_2027 -3.87 

SGO_RS10265 SGO_2098 -3.90 

SGO_RS06110 SGO_1244 -3.91 

SGO_RS07635 SGO_1558 -3.93 

SGO_RS08300 SGO_1692 -3.96 

SGO_RS08310 SGO_1694 -3.98 
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SGO_RS08330 SGO_1699 -3.99 

SGO_RS05855 SGO_1192 -4.12 

SGO_RS03820 SGO_0778 -4.14 

SGO_RS06090 SGO_1240 -4.16 

SGO_RS06095 SGO_1241 -4.28 

SGO_RS02035 SGO_0408 -4.30 

SGO_RS08315 SGO_1695 -4.40 

SGO_RS06105 SGO_RS06105 -4.44 

SGO_RS08305 SGO_1693 -4.44 

ileS SGO_0681 -4.51 

SGO_RS07630 SGO_1557 -4.56 

SGO_RS06100 SGO_1242 -4.57 

rplL SGO_1191 -4.87 

SGO_RS08275 SGO_1687 -4.93 

SGO_RS05040 SGO_1027 -5.00 

SGO_RS06085 SGO_1239 -5.04 

SGO_RS09905 SGO_2025 -5.11 

SGO_RS02500 SGO_0506 -5.19 

SGO_RS09900 SGO_2024 -5.24 

SGO_RS07800 SGO_1592 -5.35 

SGO_RS09910 SGO_2026 -5.36 

SGO_RS08280 SGO_1688 -5.43 

SGO_RS08285 SGO_1689 -5.44 

SGO_RS09875 SGO_2019 -5.48 

SGO_RS09870 SGO_2018 -5.52 

SGO_RS09890 SGO_2022 -5.69 

SGO_RS09860 SGO_2016 -5.90 

SGO_RS09880 SGO_2020 -5.93 

SGO_RS09865 SGO_2017 -6.29 

SGO_RS09895 SGO_2023 -6.29 

SGO_RS09885 SGO_2021 -6.33 

SGO_RS07805 SGO_1593 -6.58 

SGO_0832 SGO_0832 -6.75 

SGO_RS09855 SGO_2015 -6.79 

SGO_RS08270 SGO_1686 -8.97 

SGO_RS07715 SGO_1575 -10.88 

SGO_RS08335 SGO_1700 -10.95 

SGO_RS07725 SGO_1577 -29.81 

SGO_RS07720 SGO_1576 -30.83 

celC SGO_1578 -32.03 

SGO_RS07735 SGO_1579 -34.01 

SGO_RS07750 SGO_1582 -68.89 

celB SGO_1580 -113.64 

SGO_RS07745 SGO_1581 -121.43 
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Appendix D: Conference and meeting attendance, and public 

engagement 

 

North East Postgraduate Conference, Newcastle, 26th October 2012 (Poster) 

Society for General Microbiology Autumn conference, Warwick University, 3rd-5th 

September 2012 

 

Title: Characterisation of a biofilm-defective arcR mutant strain of Streptococcus gordonii 

 

Abstract: Streptococcus gordonii is a bacterium commonly found in the healthy human 

mouth, and a primary coloniser of tooth surfaces. This gives it an important role in the 

establishment of dental plaque, which is a typical 'biofilm' - a multi-layered community 

of bacterial cells surrounded by a sticky protective matrix, found on the surface of teeth. 

Dental plaque is present in health but, if left unchecked, plays a causative role in the 

formation of both gum disease and tooth decay, the two most common oral diseases. A 

strain of S. gordonii has been generated that is defective in biofilm formation. This strain 

carries a deletion of the gene arcR, which encodes ArcR, a protein involved in the 

regulation of arginine catabolism. The role of ArcR in biofilm formation is currently 

unclear. The aim of this project was to investigate the S. gordonii arcR mutant with a view 

to characterising the contribution of ArcR to biofilm growth. A number of phenotypes 

were investigated, including cell surface hydrophobicity, cell surface protein and 

intracellular protein expression, appearance of biofilms (by atomic force microscopy 

imaging), and the relative fitness of the mutant in direct competition with the wild-type. 

It was found that the arcR deletion strain of S. gordonii exhibited structural differences 

from the wild-type - in addition to the unstable biofilm phenotype seen previously - 

including differences in cell surface protein expression. Future work aims to identify those 

proteins that are differentially expressed in order to understand the mechanisms of S. 

gordonii biofilm formation. 
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Centre for Oral Health Research (COHR) research afternoon, Newcastle, 8th May 2013 

(Poster) 

Title: Mechanisms of biofilm formation by Streptococcus gordonii  
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Eurobiofilms 2013, Ghent University - Belgium, 9th-12th September 2013 (Poster) 

 

Title: Role of the regulatory protein ArcR in Streptococcus gordonii biofilm formation 

 

Abstract: Streptococcus gordonii is a primary coloniser of the oral cavity and is key in the 

establishment of dental plaque. Previous studies in our laboratory have shown that the 

arcR gene, encoding a transcriptional regulator (ArcR), is essential for biofilm formation 

by S. gordonii. Further, by microarray analysis, ArcR was found to control the expression 

of a putative cell surface protein of unknown function, termed SGO_0846. The aim of this 

study was to characterise the effect of arcR on SGO_0846 expression and biofilm 

formation.  

This was achieved through competition assays, to measure the relative fitness of an arcR 

deletion strain in comparison to the wild-type DL1 strain; quantitative PCR, used to 

confirm and quantify levels of expression for the SGO_0846 gene in this strain and in DL1; 

and mutagenesis of the SGO_0846 gene, to observe the effects of deletion of this gene 

on the biofilm phenotype. 

Competition assays showed a difference in relative fitness between the wild-type and 

arcR deletion strains, with the arcR mutant being out-competed by DL1 over a prolonged 

period of time. Quantitative PCR confirmed the effect of ArcR on SGO_0846 expression 

levels, with SGO_0846 expression being higher in the arcR deletion strain. Significant 

progress has also been made towards mutagenesis of the SGO_0846 gene. In conclusion, 

these results demonstrate that ArcR strongly regulates the expression of the SGO_0846 

gene, and furthermore the biofilm formation of Streptococcus gordonii. 

 

 

 



Appendices 

229 
 

 

 

 



Appendices 

230 
 

International Association for Dental Research General Session, Boston – Massachusetts, 

USA, 11th-14th March 2015 (Oral presentation) 

 

Title: Impact of Amino Acid Depletion on Streptococcus gordonii Gene Expression 

 

Abstract:  

Objectives: Streptococcus gordonii is an oral commensal bacterium, and one of the early 

colonizers of tooth surfaces during the initial stages of dental plaque formation. Recent 

work within our group has shown that S. gordonii gene expression is dramatically altered 

in response to a rapid depletion of arginine, and that many genes associated with biofilm 

formation are regulated. However, it is not known whether this extensive response is 

specific to arginine, or whether it is part of a more generalized stress response. We 

hypothesize that arginine plays a unique role in the regulation of biofilm-associated 

genes, and this study aimed to assess S. gordonii gene regulation in response to depletion 

of different amino acids. 

Methods: S. gordonii was cultured in chemically-defined medium (CDM). Cells were 

harvested, resuspended in CDM or CDM lacking arginine, histidine, or branched-chain 

amino acids (BCAA), and RNA was extracted after 30 min. Gene expression was analyzed 

by qRT-PCR. 

Results: Shifting S. gordonii from amino acid-replete CDM to CDM lacking arginine or 

BCAA resulted in bacterial growth arrest, whereas exponential growth was maintained in 

CDM lacking histidine. There was some overlap observed between the gene regulation 

responses to depletion of specific amino acids, however, some of the genetic responses 

were unique to arginine. In particular, genes involved in the Hsa cell surface receptor 

synthesis and the cellobiose phosphotransferase system were specifically regulated in 

response to arginine depletion. 

Conclusions: In conclusion, arginine has a quantifiable effect on the regulation and 

expression of a number of genes within the S. gordonii genome, some of which are 

directly involved in the process of biofilm formation. Future work aims to determine the 

precise roles of these genes in the formation and maintenance of Streptococcus gordonii 

biofilms. 
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Public Engagement 

 

British Science Festival 2013, Newcastle University – What’s Hiding in Your Mouth? 

 

Helped to organise and run a free event at the British Science Festival, in September 2013. 

This event was aimed at children, to educate them about oral hygiene and the 

microbiology of the mouth.  

 

 

 

Soapbox Science, Newcastle, June 2015 

 

Volunteered as a helper at the Soapbox Science event, held in Newcastle city centre and 

aimed at promoting awareness of women in science, and current scientific research.  
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