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Abstract 

Congenital heart disease (CHD) is the most common congenital malformation, affecting 8 

out of 1000 lives births, yet its aetiology remains largely unresolved. The rapidly growing 

number of point mutations implicated in isolated CHD suggests that single mutations may 

contribute significantly to CHD risk. This thesis presents an investigation of the genetic 

underpinnings of various types of CHD following different study designs. 

First, I designed a new approach to variant calling which I implemented as the variant 

caller BAMily. My aim was to develop a method of uncovering putative variants in next-

generation sequencing data, shared by a subset of individuals and absent in another 

subset. I tested the variant caller’s performance against other known variant callers and 

demonstrated that it provides comparable; and often better, results. This novel variant 

caller was applied to a study of 8 families in which a disease trait was segregating; along 

with the variant caller SAMtools, leading to the discovery of likely disease-causing 

variants in 5 families. 

Second, I studied de novo mutation in 32 sporadic cases of transposition of the great 

arteries (TGA) in an attempt to identify genes that, when mutated, lead to TGA. The 32 

patients with TGA were sequenced with their parents; as well as one unaffected sibling. 

To achieve this aim, three variant callers were used: SAMtools, GATK Unified 

Genotyper and BAMily, the latter acting as a filter. Potential de novo variants were found 

in GREB1, RBP5, SNX13. Results suggested a complex genetic etiology underlying TGA. 

Finally, I studied a large series of cases of tetralogy of Fallot (ToF). The study involved 

824 patients which ToF and a comparator set of 490 patients with neurodevelopmental 

disorders lifted from the UK10K project. The aim of the study was to identify genes that, 

when mutated, play a role in the manifestation of ToF might cluster. For this, I first 

categorised variants according to their potential to disrupt protein function. I then 

compared genes in which potentially disease-causing rare variants occurred to lists of 

genes previously implicated in CHD in the literature. Following this, I identified the 

clustering of potentially deleterious rare variants across the coding region of genes and 

exons in ToF patients, hypothesising that variants influencing ToF would cluster in ToF 

patients. This study led to the discovery of candidate variants in FLT4 and NOTCH1 for 

non-syndromic ToF. As with TGA, the results I have obtained suggested a complex 

etiology for ToF. 
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Chapter 1. Introduction
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1.1. Summary 

This thesis presents multiple whole-exome sequencing and capture (WES) studies 

performed on patients with congenital heart disease (CHD). It also describes a new 

approach to variant calling, a key step of sequence analysis. This introductory chapter 

provides an overview of CHD and its causes, paying particular attention to the 

contribution of genetic factors, including results of previous WES studies. This chapter 

also describes the steps involved in a sequencing study, with a particular emphasis on 

WES studies. The last section provides an overview of different sequencing study designs. 

1.2.  Congenital Heart Disease Overview 

1.2.1. Definition and incidence 

Congenital heart disease (CHD) in its broadest sense refers to heart malformations arising 

during cardiogenesis (Bruneau and Srivastava, 2014). Disruption of regulatory 

mechanisms acting on specific cell lineages in the maturing heart can lead to structural 

deviations from the heart’s typical morphology, resulting in varying degrees of morbidity 

at birth and later in life (Bruneau, 2008).  

A recurring figure given for the incidence of CHD is 8 per 1000 live births (Bernier et al., 

2010). As such, CHD accounts for close to a third of all major congenital defects (van der 

Linde et al., 2011). However, this figure is based on the aggregation of the results from 

epidemiological studies using different criteria as to what constitutes CHD. One early 

study of CHD by Mitchell et al. (1971) set the requirement that a heart defect should be 

“actually or potentially of functional significance” to be considered a CHD. This 

definition excludes defects largely considered benign such as persistent left superior vena 

cava (Hoffman and Kaplan, 2002). One notable heart defect that is consequently largely 

excluded from most epidemiological studies is bicuspid aortic valve (BAV) as clinical 

symptoms typically do not manifest before 40 years of age (Hoffman and Kaplan, 2002). 

Factoring BAV in the incidence of CHD would put the total CHD incidence at 21 per 

1000 live births (Hoffman and Kaplan, 2002). Other limiting factors in estimating CHD 

are regional variations in incidence and the effectiveness of diagnosis (Bernier et al., 

2010). 

CHD can take on many distinct forms. The 8 most common forms of CHD among modest 

to severe cases are shown in Figure 1 with their reported birth prevalence by continent. 
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They are as follows: ventricular septal defect (VSD), atrial septal defect (ASD), tetralogy 

of Fallot (ToF), pulmonary stenosis (PS), aortic stenosis (AoS), patent ductus arteriosus 

(PDA), coarctation of the aorta (CoA) and transposition of the great arteries (TGA) (van 

der Linde et al., 2011). 

 

Figure 1. Birth prevalence of the 8 most common subtypes of modest to severe forms of CHD as measured on 

different continents. This bar chart is from van der Linde (2011) and is based on their meta-analysis of 

worldwide birth prevalence of CHD. Above each CHD subtype, the average prevalence is given. *Prevalence 

rate significantly higher than in Europe and North America. †Prevalence rate significantly lower than in Europe. 

‡ Prevalence rate significantly lower than in Europe, North America and Oceania. § No data available. 

Among CHD subtypes, VSD is the most common form of CHD. As an isolated cardiac 

defect, VSD accounts for nearly 40% of all diagnosed CHD (Penny and Vick, 2011). 

VSD also appears in complex forms of CHD, either as an integral part of a more complex 

condition; such as ToF, or as a secondary consequence; as in TGA. A VSD is a defect in 

the wall separating the heart’s ventricles (Kung and Wong, 2014). The main outcome of 

VSD is the redirection of some of the heart’s blood flow from one chamber directly into 

another (Penny and Vick, 2011). This bypassing of the circulatory system is referred to as 

‘shunting’ and can occur in either or both directions, with varying levels of intensity, 

depending on the size and location of the defect. In some cases, the direction in which 

shunting occurs changes over time. Patients described as having Eisenmenger syndrome 

originally experience left-to-right shunting which, left untreated, turns into right-to-left 

shunting in young adult life owing to the development of pulmonary hypertension (Gamss 

and Haramati, 2014). In general, right-to-left shunting reduces blood flow to the lungs, 

thus limiting blood oxygenation (Penny and Vick, 2011). The mixing of deoxygenated 

blood with oxygenated blood manifests in patients as cyanosis, a bluish coloration of the 

skin (Bruneau, 2008). VSDs can also subsequently cause aortic valve prolapse or 



 

4 

 

pulmonary valve obstruction (Penny and Vick, 2011). Most VSDs detected at birth are 

asymptomatic muscular defects that close within the first year of life (Penny and Vick, 

2011). VSDs presenting a risk for a patient’s health can be closed through surgery or the 

implantation of a catheter device (Kung and Wong, 2014). 

 

Figure 2. There are different types of ventricular septal defect (VSD) including conoventricular (1), 

perimembranous (2), inlet (3) and Muscular (4) VSD. The arrows represent the redirection of blood flow; also 

known as shunting. Abbreviations: RA: right atrium, RV: right ventricle, LA: left atrium, LV: left ventricle, 

SVC: superior vena cava, IVC: inferior vena cava, MPA: main pulmonary artery, Ao: aorta, TV: tricuspid valve, 

MV: mitral valve, PV: pulmonary valve, AoV: aortic valve. Image from the Centers for Disease Control and 

Prevention, National Center on Birth Defects and Developmental Disabilities available at:  

http://www.cdc.gov/ncbddd/heartdefects/ventricularseptaldefect.html  

Defects in the septum may also arise at the level of the atria. ASDs are the second most 

common form of CHD totalling nearly 13% of all CHDs (Kendall et al., 2014). ASD are 

further classified according to the atrial structure affected: the septum primum or the 

septum secundum (Kendall et al., 2014). Septal defects in this latter structure, termed 

ostium secundum, are the most common, representing 80% of all ASDs (Kendall et al., 

2014). As with VSD, shunting occurs and its intensity is dependent on the location and 

size of the defect. Most ASDs requiring intervention are closed through the use of a 

catheter device with only extreme cases requiring surgery (Kendall et al., 2014). An 

illustration of ASD is shown in Figure 3. 
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Figure 3. Atrial septal defect (ASD). The arrow crossing the septal defect represents the redirection of 

oxygenated blood flow from the left atrium to the right atrium. Abbreviations: RA: right atrium, RV: right 

ventricle, LA: left atrium, LV: left ventricle, SVC: superior vena cava, IVC: inferior vena cava, MPA: main 

pulmonary artery, Ao : aorta, TV: tricuspid valve, MV: mitral valve. Image from the Centers for Disease 

Control and Prevention, National Center on Birth Defects and Developmental Disabilities available at: 

http://www.cdc.gov/ncbddd/heartdefects/atrialseptaldefect.html  

Another common type of cardiac abnormality involves the narrowing of structures of the 

heart, impeding blood flow. The three most common subtypes of CHD that fit this 

description are CoA, AoS and PS. According to Lee et al. (2014a), CoA is estimated to 

amount to 7% of all CHD cases, with a slight bias towards male cases. Individuals with 

CoA are likely to be diagnosed with other cardiac defects, particularly BAV (Lee et al., 

2014a). CoA describes the constriction of the stretch of aortic arch found between the left 

subclavian artery and the ductus arteriosus in the developing heart. Different levels of 

coarctation exist. Lee et al. (2014a) liken severe cases of CoA to cases of interrupted 

aortic arch as blood circulation through the aorta is blocked. On the other hand, some 

cases are asymptomatic. The latter are left mostly untreated (Lee et al., 2014a). Both 

surgery and transcatheter balloon angioplasty have been extensively used to repair CoA 

with extremely low levels of morbidity and mortality in either case (Vergales et al., 2013; 

Lee et al., 2014a). Despite this, neither technique is fully restorative and patients are at 

risk of recoarctation, developing aneurysm or hypertension (Vergales et al., 2013). As a 

result, lifelong follow-ups are necessary (Vergales et al., 2013). 

http://www.cdc.gov/ncbddd/heartdefects/atrialseptaldefect.html
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Figure 4. Coarctation of the aorta (CoA). The arrows show the direction of regular blood flow. Blood flow is 

impeded towards the descending aorta. Abbreviations: RA: right atrium, RV: right ventricle, LA: left atrium, 

LV: left ventricle, SVC: superior vena cava, IVC: inferior vena cava, MPA: main pulmonary artery, Ao: aorta, 

TV: tricuspid valve, MV: mitral valve, PV: pulmonary valve, AoV: aortic valve. Image from the Centers for 

Disease Control and Prevention, National Center on Birth Defects and Developmental Disabilities available at: 

http://www.cdc.gov/ncbddd/heartdefects/coarctationofaorta.html 

AoS accounts for about 4% of all CHD cases (Hochstrasser et al., 2014). AoS takes on 

the form of a narrowing of the aortic valve, called stenosis, which hinders blood flow 

from the left ventricle to the aorta (Alizadehasl and Sadeghpour, 2014). The stenosis is 

the result of the joining; termed commissural fusion, of normally distinct heart valve 

leaflets. The aortic valve is thus described in many cases as uniscupid; in predominantly 

severe cases, or bicuspid, although in some cases remains tricuspid (Alizadehasl and 

Sadeghpour, 2014). The additional resistance created by the stenosis puts a strain on the 

muscles of the heart’s left chamber, leading to the development of an excessive, and 

eventually less efficient, left ventricle muscle mass. Balloon aortic valvuloplasty is 

performed on infants with the condition in order to widen the aortic valve with more 

invasive surgery taking place later in life (Ewert et al., 2011; Alizadehasl and Sadeghpour, 

2014). Long term treatment, particularly if stenosis reoccurs, includes aortic valve 

replacement either by inserting a mechanical aortic valve or grafting a donor’s aortic or 

pulmonary valve (Alizadehasl and Sadeghpour, 2014). 
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Figure 5. Aortic stenosis (Aos). The arrows represent blood flow. In AoS, the blood flow to the aorta is limited by 

the partial fusion of valve leaflets. AoS can lead ventricular hypertrophy as shown above. Abbreviations: RA: 

right atrium, RV: right ventricle, LA: left atrium, LV: left ventricle, Ao: aorta, PA: pulmonary artery. Image is 

from The Royal Childent's Hospital Melbourne and is available at: 

http://www.rch.org.au/cardiology/heart_defects/Aortic_Stenosis_AS/ 

PS occurs in 7-12% of patients with CHD (Warnes et al., 2008). PS is an obstructions 

similar to AoS, but located instead on the pulmonary valve (Sadeghpour and Alizadehasl, 

2014). In this instance, the stenosis limits blood outflow towards the lungs. As with AoS, 

PS is the result of varying levels of commissural fusion (Sadeghpour and Alizadehasl, 

2014). Depending on the severity of the PS, the right ventricle can display varying levels 

of hypertrophy and occasionally mild hypoplasia (Sadeghpour and Alizadehasl, 2014). 

 During foetal development, the aorta and the pulmonary artery are connected by the 

ductus arteriosus. This bridge usually disappears within two days of birth (Schneider and 

Moore, 2006). The ductus arteriosus is considered patent when the structure persists long 

after birth. For Schneider and Moore (2006), the structure can be considered patent if it 

persists beyond the first weeks after birth. However, Schneider and Moore (2006) 

acknowledge that other experts place the threshold for abnormality at 3 months. 

Excluding silent PDAs that are unintentionally discovered during echocardiography, PDA 

represents between 5 to 10% of all CHD cases (Schneider and Moore, 2006). PDAs lead 

to left-to-right shunting, some of the oxygenated blood returning to the pulmonary artery. 

The excess pulmonary blood flow results in an increase of pressure in the pulmonary 
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circulation and may result in difficulties breathing (Schneider and Moore, 2006). If 

shunting is substantial and uncorrected, the rise in pulmonary pressure may achieve levels 

greater than the systemic circulation and become permanent, leading to Eisenmenger 

syndrome (Schneider and Moore, 2006). There is an active debate as to whether PDAs 

should be treated in the early years of life, when the rate of spontaneous ductus arteriosus 

closure is high, and if so, what treatments are preferable (Bose and Laughon, 2007; 

Clyman and Chorne, 2007).  

ToF accounts for around 7-10% of CHD patients and is the most common cyanotic CHD 

(Bailliard and Anderson, 2009). The underlying abnormality in developmental anatomy 

resulting in ToF is typically considered to be an anterocephalad deviation of the outflow 

tract septum, which leads to an aggregation of four heart defects: a large VSD, a 

displacement of the aorta over the VSD, a PS causing the obstruction of the right 

ventricular outflow tract (RVOT), and hypertrophy of the right ventricle (Nelson et al., 

2014). This tetrad of abnormalities can be accompanied by other defects such as a right 

aortic arch or additional VSDs (Bailliard and Anderson, 2009). As such, ToF is one of the 

most complex forms of CHD. Surgery is performed in the first few months of life in order 

to close the VSD and mitigate the effect of the PS using the techniques usually associated 

with both these malformations in their isolated form (Mazur et al., 2013). A more detailed 

description of ToF is presented in chapter 5. 

TGA represents 5% of all CHD and is more prevalent in males (Unolt et al., 2013). It is 

considered one of the most severe forms of CHD, carrying a 95% mortality rate within 

the first year of life if left untreated (Saremi, 2014). Patients with the most common form 

of TGA, dextro-transposition of the great arteries (D-TGA), display a pulmonary artery 

and an aorta that are each connected to the wrong ventricle (Warnes, 2006). Warnes 

(2006) describes this severe malformation as ventriculoarterial discordance. This 

discordance results in a lack of oxygenation of the blood travelling through the body as 

the circulation consists of two parallel circuits. Most cases are accompanied by additional 

cardiac malformations such as VSD, PS and other valvular abnormalies (Warnes, 2006). 

In the absence of a communication between the right and left circulations, the condition is 

lethal; therefore, initial intervention in TGA, in the early hours to days of life, typically 

consists in creating communication between the circulations at atrial level using balloon 

septostomy until a definite repair can be performed (Warnes, 2006). Where a complete 
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TGA is observed, an arterial switch operation is necessary (Warnes, 2006). A further 

description of TGA is given in chapter 4. 

1.2.2. Evolution of treatment 

While CHD remains the most prevalent cause of childhood morbidity in the Western 

world to this day, advances in medical and surgical care over the last few decades have 

made it possible for many of those afflicted to live beyond childhood (van der Linde et al., 

2011). Since the year 2000, more adults live with CHD than children (Guleserian, 2011). 

This has shifted some of the mortality from birth to adulthood. 

The first serious attempt to correct a heart defect, was undertaken by John Strieder in 

1937 (Kaemmerer et al., 2004). However, the operation, which consisted in the ligation of 

a PDA, ended in failure, with the patient dying from complications 4 days later. The 

following year brought two successful PDA ligations, independently performed by Robert 

Gross and Emil Karl Frey within months of each other (Kaemmerer et al., 2004). A few 

years later, in 1944, Clarence Crafoord performed the first successful CoA reparation 

(Guleserian, 2011). The same year, Blalock performed what was to be known as the 

Blalock-Taussig shunt operation (Guleserian, 2011). Designed to relieve the lack of blood 

oxygenation that characterises cyanotic heart disease, the operation redirects blood flow 

from the subclavian artery to the pulmonary artery. Many cardiac surgery firsts followed 

suit. 

One important milestone in the treatment of heart defects is the development of the 

cardiopulmonary bypass unit, which allowed for effective open heart surgery (Guleserian, 

2011). Previous surgeries of the same kind relied on hypothermia, presenting great risks 

for patients who did not receive blood to vital organs such as the brain (Guleserian, 2011). 

Cardiopulmonary bypass largely solved this issue. For Kendall et al. (2014), the first 

successful intracardial operation to correct ASD, performed by John Heysham Gibbon in 

1953, marks the birth of modern cardiac surgery. Intracardial repair of multiple cardiac 

pathologies soon followed, with the successful operation of patients with VSD and ToF 

occurring less than a year after the first pioneering ASD surgery (Geva et al., 2014). 

The further development of heart surgery over a period of half a century has dramatically 

reduced CHD-related child mortality. Hoffman et al. (2004) estimate that in the US alone, 

1.5 million patients will have been diagnosed with some form of CHD between 1940 and 
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2002. Conducting a large review of reports on various CHDs they concluded that, without 

surgery, we could expect 650,000 CHD patients to be alive in that time frame against 

more than 1.3 million, assuming equal access to available treatment. The actual number 

of CHD survivors is therefore somewhere in between these two estimates. 

The increasing prevalence of CHD results chiefly from the ever-increasing number of 

patients surviving into adulthood (Hoffman et al., 2004). This positive development 

comes with a caveat, that while heart surgery allows many CHD sufferers to survive 

beyond childhood, the surgery is rarely a fully restorative process. Operations on the heart 

leave behind what Perloff and Warnes (2001) describe as residua of the condition. In a 

patient with supravalvular aortic stenosis, systemic hypertension may persist even after 

surgical repair as some arterial abnormalities remain (Perloff and Warnes, 2001). 

Additionally, some surgical intervention, such as those which involve the grafting of 

cardiac structures, will inevitably inflict sequelae to the heart (Perloff and Warnes, 2001). 

For these reasons, adult survivors display a lower life expectancy when compared to that 

of the average population (Verheugt et al., 2010). It is crucial for adults with CHD to 

receive proper medical advice on potential complications of corrected heart defects 

throughout life. 

The shift in mortality rates caused by CHD from a primarily neonate population to 

adulthood also implies an additional disease burden on future generations where genetic 

variation plays a significant role in the disease (Fesslova et al., 2011). In this context, 

genetic counselling becomes a crucial part of patient care. For prospective parents with a 

history of CHD risk, knowing the recurrence risk of a specific type of CHD in offspring 

allows them to make informed family planning decisions (Deanfield et al., 2003). It also 

allows medical practitioners to better accompany at risk pregnancies (Deanfield et al., 

2003). Beyond recurrence risk, genetic testing, based on the rapidly evolving field of 

CHD genetics research, can provide a more targeted diagnosis for families (Pierpont et al., 

2007). Providing the most complete and up-to-date genetic counselling requires the 

identification of the whole range of genetic factors that contribute to CHD (Zaidi et al., 

2013).  

1.2.3.  Genetic contribution to CHD 

In a seminal paper on the etiology of CHD, James Nora (1968) formulated the hypothesis 

that CHD was largely the result of a multitude of gene-environment interactions. Through 
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this hypothesis, Nora suggests that cases of CHD are predominantly isolated events, with 

no single leading environmental or genetic cause (Gelb and Chung, 2014). However, 

successive population studies of CHD lead to a different conclusion, namely that genetic 

factors play a much larger role in CHD than would be expected if CHD were mainly the 

result of combined polygenic inheritance and environmental factors (Gelb and Chung, 

2014). A case-control study of 2,102 infants with CHD in the Baltimore-Washington 

metropolitan area (Ferencz et al., 1989) revealed a higher frequency of extracardiac 

abnormalities in CHD patients compared to healthy controls in the same area. 17.5% of 

infants with CHD had extracardiac abnormalities with an identified genetic cause, 

compared to 0.7% of healthy controls. From the CHD history of first degree relatives of 

1893 cases, Ferencz et al. (1989) identified a significant excess of CHD in mothers and 

full siblings in cases compared with controls, further emphasizing the role inheritance can 

play in CHD. Burn et al. (1998) studied 727 adults with severe CHD, attempting a 

comprehensive nationwide ascertainment of the first cohort of CHD patients in the UK 

that had cardiac surgery in childhood and had at the time of the study started having 

families of their own. This study aimed to provide the recurrence risk in offspring for all 

CHD as well as distinct subtypes. Recurrence risk provides some insight into the fraction 

of a disease that is attributable to inherited risk. For adults with CHD, Burn et al. (1998) 

found a recurrence risk of CHD in offspring of 4.1%. This represents a fivefold higher 

prevalence than the 0.8% consensus estimate in an unselected population. However, this 

risk estimate conceals the strong variability that exists between CHD subtypes. Burn et al. 

(1998) report the disease recurrence risk in offspring of patient with ToF, anomalous 

pulmonary venous connection, abnormal connection and atrioventricular septal defect 

(AVSD) as 3.1%, 3.7%, 5.1% and 7.8% respectively, indicating very substantial genetic 

contributions to risk of these individually rare conditions. It is important to note here that 

“abnormal connection” refers to a category created for the study to include “abnormalities 

of situs, of atrioventricular concordance, and of the architecture of the atrioventricular and 

ventriculoarterial valves” (Burn et al., 1998). None of the offspring of patients with TGA 

had been diagnosed with the disease. Using the disease recurrence risks for different 

categories of relatives, Burn et al. (1998) attributed different models of inheritance to the 

CHD subtypes analysed when possible. The variability of disease recurrence between 

CHD subtypes raises a number of issues. As in many other studies of the recurrence of 

CHD, the study by Burn et al. (1998) relies on relatively small sample sizes (Oyen et al., 

2009). The overall CHD recurrence will be influenced by the subtypes of CHD that are 
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included in the study given the variability that exists between subtypes. It also raises the 

issue of how one might partition CHD into categories so as to provide the best estimate of 

recurrence risk in offspring while including enough data in each category for the resulting 

estimate to be meaningful. The exhaustive Danish Civil Registration System (DCRS) 

allowed Øyen et al. (2009) to avoid many of these problems. The study focused on 

information stored by the DCRS on 18,708 individuals born with CHD between 1977 and 

2005 out of a total of 1,763,591 individuals. From the population data, Øyen et al. (2009) 

were able to calculate recurrence risk ratios for different subtypes of CHD. The 

recurrence risk ratio compares the recurrence risk of a disease trait in relatives of the 

probands with the share of the population diagnosed with the disease. Øyen et al. (2009) 

found strong variations in the recurrence risk ratio among different subtypes of CHD, 

“ranging from 3-fold to 80-fold increases compared with the population prevalence”. This 

once more clearly demonstrates the existence of a strong genetic component to CHD 

while also emphasizing the variability in this component’s importance depending on 

CHD subtype. Reproduced in Table 1 are the recurrence risks for first-degree relatives 

associated with each CHD subtype as they appear in Øyen et al. (2009). 

CHD phenotype in first degree relative Relative risk 95% confidence interval 

Heterotaxia 79.1 32.9–190 

Conotruncal defect 11.7 8.01–17.0 

AVSD 24.3 12.2–48.7 

Anomalous pulmonary venous return N/A N/A 

Left ventricular outflow tract obstruction 12.9 7.48–22.2 

Right ventricular outflow tract obstruction 48.6 27.5–85.6 

Isolated septal defect 3.41 2.69–4.32 

|_ ASD 7.07 4.51–11.1 

|_ VSD 3.41 2.20–5.29 

|_ ASD+VSD 5.57 0.79–39.5 

Isolated PDA 8.74 5.58–13.7 

 |_ At term 4.8 0.68–34.1 

 |_ Preterm 19.5 10.5–36.1 

Unspecified CHD only 5.22 3.40–8.00 

Other specified CHD 12.6 7.68–20.5 

Overall same heart defect phenotype 8.15 6.95–9.55 

Table 1. Relative risk of recurrence of CHD by family CHD history among first degree relatives in Danish cohort. 

Table is reproduced from Øyen et al. (2009). 
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In chapter 4 and 5, I will explore what these studies said about recurrence risk for first-

degree relatives of TGA and ToF patients respectively.  

The knowledge surrounding environmental factors conducive to CHD remains limited. 

As CHD results from developmental events in the early stages of pregnancy, the focus of 

much of the research into environmental factors has been on maternal exposures (Gorini 

et al., 2014). Gorini et al. (2014) note that maternal exposure to a range of chemicals with 

teratogenic properties, particularly in the first trimester of pregnancy, has been implicated 

in the development of CHD in the newborn. Excessive maternal stress or deleterious 

behaviours during pregnancy; such as smoking, can likewise increase the risk of a child 

being born with CHD (Jenkins et al., 2007). Maternal chronic disease can also act as an 

environmental factor promoting CHD, as illustrated by a recent cohort study by Liu et al. 

(2013) carried out on upward of 2 million mother-infant pairs in Canada. The study 

uncovered multiple significant associations between child CHD and maternal chronic 

diseases such as hypertension and systemic connective tissue disorders. Excluding 

maternal CHD, maternal diabetes shows the strongest associations with CHD in infants, 

with reported odds of 4.65 and 4.12 of observing CHD in the offspring of mothers with 

type 1 and type 2 diabetes. Maternal diabetes has been associated with many CHD 

subtypes, including TGA, VSD, AVSD, PDA, hypoplastic left heart syndrome, 

cardiomyopathy and several conotruncal and outflow tract defects (Jenkins et al., 2007). 

Blue et al. (2012) state that these strong environmental factors, along with strong genetic 

factors, account for 20% of CHD cases; the remaining 80% having some unknown 

multifactorial etiology. 

The first CHD for which genetic factors were identified were those occurring as part of a 

syndrome; where the disease is accompanied by several other extracardiac defects 

(Bruneau, 2008). CHD is a common feature of trisomies 13, 18 and 21 as well as other 

chromosomal aneuploidies (Richards and Garg, 2010). CHDs are also identified as part of 

syndromes caused by copy number variants (CNV). For examples, CHDs are observed in 

a majority of cases of 22q11.2 microdeletion syndrome and Williams-Buren syndrome 

(Richards and Garg, 2010). Syndromic cases of CHD have also been found to be the 

result of SNVs in specific genes. This is the case for Holt-Oram syndrome which is 

triggered by mutations in TBX5, or Allagille syndrome which is caused by JAG1; or 

NOTCH2 in some rare cases, both of which involve cardiac defects (Bruneau, 2008). 

Families in which CHD follows a Mendelian pattern of inheritance have also helped 
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uncover genes that, when mutated, can cause isolated CHD. These include genes that play 

a role in early heart development such as NKX2.5 and GATA4 (Bruneau, 2008). However, 

with a majority of isolated CHD cases being sporadic, the specific contribution of genetic 

factors to CHD has been the source of much debate and mirrors to some extent that of 

other complex diseases. Of particular relevance are the developments that have taken 

place around common disease. Over the past few decades, two competing ideas have been 

advanced to explain common complex disease: The common disease, common variant 

(CDCV) and the common disease, rare variant (CDRV) hypotheses (Schork et al., 2009). 

The CDCV hypothesis postulates that complex disease could be explained as the 

combined action of several common variants each with low penetrance (Schork et al., 

2009). In this context, ‘common’ is understood as an allelic population frequency greater 

than 1% (Manolio et al., 2009). The CDRV hypothesis on the other hand predicts the 

existence of many highly penetrant rare variants, a single rare variant being sufficient to 

trigger complex disease (Schork et al., 2009). Under this hypothesis, variants that 

contribute to complex disease are subject to negative selection and are therefore expected 

to be present at low frequency in the human population (Nelson et al., 2012). A gene can 

be associated to a common disease phenotype through various rare variants acting within 

a specific region of the gene (Iyengar and Elston, 2007). While genome-wide association 

studies (GWAS) have identified thousands of common genetic variants that confer some 

of the risk in developing complex diseases, these variants only explain a modest fraction 

of inherited risk (Zuk et al., 2014). This holds true for CHD as well. Looking at 1,995 

CHD cases and 5,159 controls, a GWAS lead by Cordell et al. (2013a) found an 

association between ASD and the locus 4p16. However, this association only accounted 

for 9% of population-attributable risk for ASD specifically. As GWAS are built around 

the assumption that common complex disease follows the CDCV model, the ‘missing 

heritability’ has been used as an argument in favour of the CDRV hypothesis (Manolio et 

al., 2009). The term ‘missing heritability’ here refers to the observation that many GWAS 

of complex disease only appear to explain a fraction of the estimated heritability for a 

given population; where heritability refers to the amount of trait variation that is due to 

genetic variation in a given population (Visscher et al., 2008; Manolio et al., 2009). The 

CDRV hypothesis has also gained traction as a result of population sequencing studies 

and what these revealed about the distribution of rare variants in the human population. 

The sequencing of 1,092 individuals by the 1000 Genomes Project Consortium (2012) 

has brought to light an abundance of rare variants in all human populations, exceeding 



 

15 

 

what would be predicted from population genetic theory (Altshuler et al., 2010). In this 

context, a variant is considered rare if it has a minor allele frequency (MAF) <0.5%. A 

study by Tennessen et al. (2012) of 15,585 protein coding genes in a large sample of 

individuals of European and African ancestry revealed that out of 500,000 identified 

single nucleotide variants (SNVs), 430,000 had a MAF<0.5%. The recent explosion of 

the human population over the last 10,000 years is partly responsible for the current 

population-wide distribution of rare variants (Keinan and Clark, 2012). Based on data 

from the 1000 Genomes Projects, Marth et al. (2011) showed that variants with a MAF<1% 

include a high proportion of functional variants. Comparing synonymous, missense and 

nonsense variants, Marth et al. (2011) found that the distribution of allele frequencies in 

these three functional categories of variants varied significantly across categories. A 

higher proportion of missense variants were found to be rare compared with synonymous 

variants while a higher proportion of nonsense variants were found to be rare compared to 

both synonymous and missense variants. Marth et al. (2011) reported that 78% of 

nonsense variants were found to have a MAF<1%. Variants that are predicted to be 

deleterious based on evolutionary conservation and potential protein structure or dosage 

changes are also overrepresented among rare variants (Marth et al., 2011; Nelson et al., 

2012). Despite the current interest in the CDRV hypothesis, studies built around it have 

had limited success in identifying the underlying rare variants of many common diseases 

(Auer and Lettre, 2015). The study designs used for rare variant association and their 

limits are further explored in chapter 5.   

As population studies such as those of Burn et al. (1998) and Øyen et al. (2009) make 

clear, CHD comprises a range of distinct subtypes governed by different levels of 

inherited risk. Importantly, estimates of the genetic component of any disease are 

influenced by factors such as the early mortality rate; including fetal loss, associated with 

the disease. Mortality rates vary substantially depending on the cardiac defect (Hoffman 

et al., 2004). Severe cardiac defects are associated with high mortality rates early in life. 

For example, untreated ToF carries an 70% mortality rate in the first 10 years of life, 

TGA a 95% death rate in the first year of life (Starr, 2010; Saremi, 2014). Any mutation 

that increases the risk of developing severe CHD would therefore be expected to be 

strongly negatively selected (Cordell et al., 2013b). Disease-causing variants in patients 

with severe CHD would be expected to be extremely rare or private, having arisen from a 

recent mutation event. In patients with no family history of CHD, the manifestation of 
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CHD can be the result of a de novo mutation occurring in a parental germ cell and being 

passed on to the patient. In chapter 4 and 5 I will describe how these observations 

influenced the approach to each CHD studied. 

In a recent paper on the molecular genetics of CHD, Andersen et al. (2014) list a total of 

55 genes associated with CHD identified via linkage analysis, the mapping of CNVs and 

WES. Using linkage analysis, a technique applied to large pedigrees that draws on 

recombination events to identify which of a set of genetic markers is in close proximity to 

a disease locus, Basson et al. (1997) were able to implicate the transcription factor gene 

TBX5 in the development of Holt-Oram syndrome, an inheritable condition that can 

include heart defects such as ASD, VSD and cardiac conduction defects. Linkage analysis 

was also useful in elucidating disease-causing genes in isolated cases of familial CHD 

such as NKX2.5 and GATA4, both also transcription factor genes (Schott et al., 1998; 

Garg et al., 2003). Three mutations in the transcription factor gene, NKX2.5, were 

uncovered by analysing four families with a history of CHD (Schott et al., 1998). A 

single mutation in GATA4 was found to be responsible for the various CHD phenotypes; 

systematically including ASD, established in one family over five generations (Garg et al., 

2003). In addition to transcription factors, the list of CHD associated genes presented by 

Andersen et al. (2014) includes genes involved in the signalling pathways of the heart, the 

cardiac sarcomere and chromatin modifiers. The authors also point to 500 genes that lead 

to cardiac defects in mice when mutated, inferring that there exists a similar number of 

disease genes for CHD in humans. Focusing on severe CHD, Zaidi et al. (2013) 

sequenced 626 parents-offspring trios, including 362 patients; the offspring, with serious 

cardiac defects not seen in parents. The parents-offspring trios were used to identify 

potentially disease-causing de novo variants occurring in human orthologs of genes 

highly expressed during cardiogenesis in mice. Based on the number of nonsynonymous 

de novo variants occurring in these genes in cases and controls, the authors conclude that 

de novo SNVs altogether contribute to approximately 10% of severe CHD, a contribution 

which they estimate rests on a set of 401 disease genes. Zaidi et al. (2013) also found an 

excess of de novo variants in patients with CHD in genes that affect histone methylation, 

potentially around key developmental genes. 
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1.3. Whole-Exome Sequencing (WES) Studies Of Disease 

1.3.1. Sequencing technologies 

The number of sequencing platforms has expanded dramatically in the past decade. In 

2003, when the Human Genome Project (HGP) was completed, Sanger sequencing was 

the standard technique (Collins et al., 2004). This technique was devised by Fred Sanger 

and his team as far back as 1977 (Sanger et al., 1977). However, over the first decade of 

the millennium, a new range of massively-parallel sequencing platforms were developed 

and collectively referred to as next-generation sequencing (NGS) (Metzker, 2010). These 

platforms were developed to address a demand for fast, cheap and accurate high-

throughput sequencing (Metzker, 2010). Many of these NGS technologies achieved this 

through the parallel sequencing by synthesis of distinct DNA fragments (Mardis, 2013). 

With the incorporation of each nucleotide during sequencing by synthesis, a chemical 

reaction emits a signal, indicating which nucleotide was added (Mardis, 2013). For this 

signal to be captured by the sequencing platform however, the DNA fragments must first 

have been amplified. Amplification is achieved through polymerase chain reaction (PCR) 

which creates local clusters of DNA fragments which signal synchronously the addition 

of each new base (Mardis, 2013). Figure 6 provides an example of the sequencing process 

on the Illumina platform. 

The first commercial NGS platform, released in 2005, was the 454 pyrosequencing 

system. When first released, a single run on the 454 pyrosequencing platform was capable 

of delivering up to 25 million base pairs (Mbps) of sequence over four hours (Margulies 

et al., 2005). This provided a net improvement on Sanger methods which, even today, 

reaches no more than 96 kbps per run (Shokralla et al., 2014). Other NGS technologies 

include the Illumina platform, originally released in 2006, and the ABI SOLiD system, 

released in the following year. Each one of these platforms has been refined over the 

years. The latest versions of both these platforms, the Illumina HiSeq and the SOLiDv4, 

possess throughputs upward of a billion base pairs in their last iterations, as shown in 

Table 2 (Buermans and den Dunnen, 2014; Shokralla et al., 2014). The research 

presented in this thesis revolves almost exclusively on sequence data produced via 

Illumina sequencing, one of the more widely used sequencers today. An overview of 

Illumina sequencing is presented in Figure 6. All three platforms rely on a high-definition 
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camera to capture the signals emitted during sequencing by synthesis (Mardis, 2013). The 

Ion-Torrent, another massively-parallel sequencing platform, presents an innovation in 

that respect (Mardis, 2013). The Ion-Torrent captures a direct by-product of nucleotide 

incorporation, the release of a hydrogen ion, using an electric sensor (Mardis, 2013).  

Sequencing 

platform 

ABI 3730xl 

(Sanger) 

454 GS FLX Illumina 

HiSeq2500 

ABI SOLiDv4 

Output (per run) 96 kbps 450-700 Mbps 200 Gbps 300 Gbps 

Reads (per run) 96 0.7-1 million 3 billion 2.7 billion 

Read length (max) 1-1.5 kbps 700  bps 2 x 100 bps 85 bps 

Run type (SE/PE) SE SE SE & PE SE & PE 

Table 2. Current sequence platform specifications for Sanger sequencing and three NGS platforms. Numbers 

are from Shockralla et al. (2014) and Buermans and den Dunnen (2014). Output and read length are given in 

read base pairs. SE. single end reads; PE, paired end reads. 

 

 

Figure 6. An overview of The Illumina sequencing method. Figure is from Mardis (2013). During library 

preparation (a) DNA fragments are flanked with adapter sequences. These adapters complement adapter 

sequences distributed across a flow cell. After hybridisation, the DNA fragments are amplified using bridge PCR 

(b). This generates local clusters of identical DNA fragments which give off a synchronous fluorescent signal 

during sequencing by synthesis (c).  
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Building on the successes of NGS, new technologies have emerged (Schadt et al., 2011) . 

Unlike NGS technologies, these new technologies do not require an amplification step. A 

sequencer such as the Helicos Genetic Analysis platform is capable of detecting the signal 

emitted for a single DNA molecule (Schadt et al., 2011). Some of these technologies 

present an additional innovation: sequencing in real-time (Mardis, 2013). The 

combination of these innovations is epitomised by the Pacific Biosciences’ single 

molecule, real time (SMRT) system (Mardis, 2013). The SMRT system is able to 

complete an entire run within hours where the original NGS technologies take days (van 

Dijk et al., 2014). Another advantage with many of these new technologies is the ability 

to sequence reads orders of magnitude longer than what can be achieved with NGS 

technologies (Koren and Phillippy, 2015). The SMRT system can sequence reads 50 kbps 

(Koren and Phillippy, 2015). A more recent, technological innovation, the Oxford 

nanopore minION, does not have a well-defined upper limit; its maximum read length 

dependent on the length of the DNA strand that passes through it (Karlsson et al., 2015). 

Platforms such as Oxford nanopore platform no longer use sequencing by synthesis, using 

instead a molecular structure called a nanopore capable of detecting nucleotides passing 

through it (Koren and Phillippy, 2015). One important thing to note however is that many 

of these new technologies do not yet provide the read accuracy necessary to investigate 

SNVs and small indels (Koren and Phillippy, 2015). These technologies are nonetheless 

useful for other purposes such as finishing genome assemblies previously hindered by 

short reads (Koren and Phillippy, 2015).  

1.3.2. Exome capture via target-enrichment 

NGS technologies have greatly enhanced the search for variants underlying various 

disease traits. By sequencing twelve unrelated individuals, four of which were affected by 

Freeman-Sheldon syndrome, a rare autosomal dominant disorder, Ng et al., (2009) first 

illustrated the potential of such practice. After filtering variants found in the four 

Freeman-Sheldon syndrome patients against those found in eight HapMap exomes and a 

database of known variants, dbSNP (Sherry et al., 2001), Ng et al., (2009) found that only 

a single gene, MYH3, had corresponding nonsynonymous rare variants in all four patients. 

Dozens of studies have since identified the genetic underpinnings of many disorders, 

including extremely rare conditions such as Kabuki syndrome (Gonzaga-Jauregui et al., 

2012). What many of these studies have in common is that they favour the use of whole-

exome sequencing (WES) over whole-genome sequencing (WGS). Examples of WGS 



 

20 

 

being used to successfully identify disease variants do exist, as illustrated by a study 

conducted by Nishiguchi et al. (2013)  which established not only new disease-causing 

variants, but also a previously unidentified  disease gene for a progressive blindness 

disease, retinitis pigmentosa. Furthermore, WGS has come to play an increasingly larger 

role in clinical practice, a fact exemplified by large-scale initiatives such as England’s 

100,000 genomes project (Siva, 2015) which includes patients with a whole-range of rare 

diseases and cancers and their relatives. However, the costs involved in both sequencing 

and storage have long been prohibitive for that line of research (Rabbani et al., 2014). 

Teer and Mullikin (2010) originally referred to WES as the “sweet spot before [WGS]”. 

WES offers a relatively cheaper alternative to WGS by focusing the sequencing effort on 

exonic regions of the genome (Teer and Mullikin, 2010). In humans, the exome accounts 

for only 1% of the entire genome, but contains all of the genome’s protein-coding 

sequences (Teer and Mullikin, 2010). Protein-coding regions alone are estimated to 

harbour 85% of deleterious mutations in the whole genome (Majewski et al., 2011). 

In order to focus sequencing on exome regions, an exome capture step is required to 

complete sample processing. The library of genomic DNA fragments obtained for 

sequencing is subjected to target enrichment, a process by which specific DNA fragments 

are captured using a custom set of complementary oligonucleotides which correspond to a 

selected fraction of the genome (Mamanova et al., 2010). While various capture methods 

exist, hybrid capture is the most prominent for whole-exome capture. The most 

commonly used exome capture kits; offered by Nimblegen, Agilent and Illumina, use in-

solution hybrid capture (Chilamakuri et al., 2014).  

Hybrid capture for NGS was first developed by Nimblegen with on-array capture. In a 

paper introducing their approach, Hodges et al. (2007) describe the repurposing of DNA 

microarray for exome capture and sequencing. The DNA microarray hybridisation step is 

used to capture exon targets. The next step for a standard DNA microarray experiment 

would consist in scanning the microarray to detect some chemically-induced signal given 

off by labelled targets (Mamanova et al., 2010). However, in exome capture, the targets 

are not labelled and are instead recuperated for sequencing (Mamanova et al., 2010).  

Building on the success of on-array capture while addressing some of its drawbacks, in-

solution capture hybridisation was developed (Mamanova et al., 2010). With in-solution 

capture, probes are eluted from the DNA microarray and amplified through PCR and 
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subsequently biotinylated. The amplification step creates an excess of probes, which in 

turn allows for target-enrichment to take place with less target DNA. The fragments 

hybrised in a solution are then captured by beads that bind biotin (Gnirke et al., 2009). 

Recent hybridisation techniques use in-solution capture. Table 3 lists the principal exome 

capture technologies. 

Exome capture 

technologies 

Agilent SureSelect 

Human All Exon (v.4) 

Roche NimbleGen 

SeqCap EZ Exome (v.3) 

Illumina  

Nextera & Truseq 

Exome Enrichment* 

Targeted bases 51.1 Mb 64.1 Mb 62.08 Mb 

Number of targets  185,636 368,146 201,071 

Overlap with…    

RefSeq 28.2 Mb 29 Mb 31.9 Mb 

CCDS 27.4 Mb 28.02 Mb 31.02 Mb 

ENSEMBL 29.43 Mb 30.15 Mb 32.07 Mb 

Table 3. Target specifications of the four principal exome capture technologies and their overlap with various 

databases reporting exons. Each technology covers different regions of the human exome. Only 26.2 million 

bases (Mb) targeted are shared by all four capture technologies. The data is obtained from Chilamakuri et al. 

(2014).  *Illumina’s Nextera and Truseq Exome Enrichment technologies use the same targets. 

 

1.3.3. Exome-sequencing study tools 

In order to extract useful information from sequence data originating from WES, a 

number of steps are required. The first step of any sequencing analysis is a thorough 

quality control of the data (Altmann et al., 2012). Quality control is followed by the 

alignment of sequence data to one or more reference sequences and the detection of 

potential variants. Depending on the aim of a WES analysis, the variant data can be 

annotated and filtered according to a set of specific criteria. An overview of the WES 

pipeline is provided in Figure 7.  

For the majority of quality control, alignment and variant calling tools, an estimate of 

base quality is essential (Altmann et al., 2012). NGS platforms are equipped with base 

calling software which determines the quality of the data captured by the sequencer 

(Ledergerber and Dessimoz, 2011). The signals emitted during sequencing-by-synthesis 

and recorded by an image-capture device, are transcribed as base calls (Altmann et al., 

2012). Each base call assignment is accompanied with a value indicating the certainty 

with which the base call was made. This value takes into account properties of the signal 

such as intensity or distance from other clusters, as well as sequencing cycle (Altmann et 
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al., 2012). This base call quality is stored as a Phred-like score (Ewing and Green, 1998; 

Ewing et al., 1998; Altmann et al., 2012). The base call quality is the first assessment of 

sequencing quality and is crucial for quality control. A number of recent software 

programs attempt to improve base quality score assignment, either by providing a 

recalibration of the calling (DePristo et al., 2011) or offering a different base calling 

procedure to the one provided with the platform (Massingham and Goldman, 2012). 

Despite the latter developments, the sequencer’s own base quality scoring system remains 

the most widely used (Altmann et al., 2012). 

 

Figure 7. A typical WES workflow. Some variant callers such as SOAPsnp or GATK require a quality score 

recalibration step. 

Some measure of quality control is important at every stage of sequence analysis. 

However, a clear emphasis is placed on the quality control of raw sequence data as 

problems arising during or prior to sequencing are likely to compromise the entire 

analysis (Guo et al., 2013). At several steps during sample processing and sequencing, 

data might become significantly compromised. For example, during sample and library 

preparation, DNA can undergo degradation or contamination (Robasky et al., 2014). PCR 

amplification can be marred by excessive amplification errors if the genomic data is of 

poor quality (Robasky et al., 2014). During sequencing, signals from DNA fragment 

clusters might overlap, usually as a result of overloading of the sequencer’s flow cell 

(Robasky et al., 2014). Quality control provides the means to assess the integrity of 

sequencing data before any analysis takes place. Many of these problems can be detected 

by studying the distribution of values for some metric in the pool of raw sequence data 

(Ross et al., 2013). This usually includes metrics such as per base sequence quality and 

•Bases are read from sequencer traces.  

•Each call produces a base quality score. 
base calling 

•A number of metrics are used to determine the overall quality of sequence reads. quality control 

•Reads are aligned to one or more reference sequences.  

•Each alignment produces a mapping quality score. 
read alignment 

•base and mapping quality scores are recalibrated to account for systematic 
sequencing biases. Quality score recalibration 

•The aligned reads are compared to a reference for deviations.  

•The caller determines which are sequencing errors and which are genuine variants. 
Variant caling 

•Population frequency and functional annotations are provided for each variant. 

•Variants are filtered to fit the description of the putative disease-causing variant. 

Variant annotating and 
filtering 
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content, per sequence mean quality score and content, sequence length (Patel and Jain, 

2012). Single value metrics, such as the estimated rate of duplications in the data, can also 

help flag up problems with sequencing (Patel and Jain, 2012). In principle, any indication 

of overall poor quality data should result in a new round of sequencing once the source of 

error has been addressed. Another important stage requiring quality control is variant 

calling. Estimating the sensitivity and specificity with which calls were made can help 

assess the reliability of results at every stage. In this context, sensitivity refers to the rate 

with which a caller identifies variants that are present in an individual while specificity 

refers to the rate with which callers exclude variants that are not present in an individual. 

Microarray data has often been used for the purpose of estimating variant calling 

sensitivity and specificity (Houniet et al., 2015). However, microarray data is not always 

available. Publicly available population data can also provide a reliable means of 

estimating sensitivity and specificity (Houniet et al., 2015). Some quality control at each 

stage is important in order to correctly interpret WES study results. 

Even when focused on the exome, sequencing produces a large amount of read data. 

Coupled with the relatively short size of each read and the presence of base miscalls, 

determining the original position of each read in the genome proves to be a computer-

intensive task (Altmann et al., 2012). This is rendered all the more complex by regions of 

the genome that contain repeats or that are homologous to other regions of the genome. 

Sequence alignment is generally achieved by mapping particular sequence reads to 

regions of the genome by comparing these to one or more reference sequences. In the 

case of human genome, reference sequences have two principal sources: the university of 

California Santa Cruz (UCSC) genome assembly and the Genome Reference Consortium 

(GRC) genome assembly (Pabinger et al., 2014). Both assemblies are identical, differing 

only in presentation (Pabinger et al., 2014). In order to provide fast alignment of large 

amounts of short read data, various data structures are used to efficiently access subsets of 

the reference data, read data or both (Li and Homer, 2010). Fast aligners can be broadly 

divided into two categories: those with algorithms based on hash tables and those based 

on prefix/suffix tries (Li and Homer, 2010). Hash tables are data structures that link 

objects, referred to as keys, to corresponding values in a table. The key provides the 

location of the corresponding value through a transformation by a hash function. In this 

context, hash tables can either be used to store information on k-mer subsequences of the 

reference; a solution employed by NovoAlign (Novocraft, 2014b), or information on the 



 

24 

 

reads themselves, an approach used by MAQ (Li et al., 2008). In either case, a particular 

DNA sequence acts as a key for a list of values representing the locations at which the 

particular combination occurs. A prefix/suffix trie; derived from the word “retrieval”, is 

an ordered tree data structures from which a value can be retrieved using the suffixes; or 

prefixes, of a sequence of characters as a key. In the context of alignment, the values will 

refer to the position at which a subsequence starts; or ends if prefix trie. An example of a 

prefix trie is given in Figure 8. 

 

Figure 8. Example of a DNA sequence stored in a suffix tree. Each possible suffix subsequence can be used as a 

key to retrieve the index at which the subsequence starts. Each edge corresponds to a subsequence starting with 

a new character (for the root node: A, T, G and C). For example, TCA can either be followed by A or G, leading 

to two edges. 

 Prefix/suffix tries can take on one of many forms such as: suffix-tree, enhanced suffix 

array and FM-index (Li and Homer, 2010). The widely-adopted aligners in this category 

such as Bowtie (Langmead et al., 2009) and BWA (Li and Durbin, 2009) employ FM-

index (Li and Homer, 2010). As with base calling, the quality of each read mapping is 

given as a Phred score (Li and Durbin, 2009). In this case, the score represents the 

confidence with which a read is aligned. This depends on the number of mismatches 

between a read and its best alignment to the reference (Li and Homer, 2010). In addition 

to base mismatches, most aligners also accept alignments that leave gaps in either the 

read or the reference. When these types of gaps are not errors, they are indicative of the 

presence of a small insertion or deletion. Together, the base and mapping quality scores 

are useful in determining the existence of deviations from the reference corresponding to 

SNVs, insertions and deletions. 

Aligned sequence reads provide a data set from which SNVs and small indels can be 

uncovered. This process is referred to as variant calling (Nielsen et al., 2011). Many 

methods complement variant detection with genotype prediction (Altmann et al., 2012). 
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In this case, the whole process is referred to as genotype calling; variant calling being 

implied. Early implementations of variant calling relied on counting the occurrences of 

nucleotides mapping to a particular position of the reference sequence (Altmann et al., 

2012). Any deviation from the reference sequence that was observed in a set of high-

quality reads above a certain frequency was called as a variant. While this was sufficient 

for revealing variants in loci combining high-quality reads with high read depth, the 

approach did little to address the uncertainties due to errors in base calling and alignment 

and low read depth (Altmann et al., 2012). Whichever exome capture technology is used, 

there is inevitably some variability in sequence coverage; or read depth (Chilamakuri et 

al., 2014). Additionally, high or low GC content reduces the efficiency of PCR 

amplification, leading to a low read depth in the corresponding regions (Aird et al., 2011). 

This early approach has therefore been supplanted by a number of callers using 

probabilistic methods to distinguish genuine variants from sequencing errors (Pabinger et 

al., 2014). With few exceptions, variant callers use the Phred base and mapping quality 

scores as input for their probabilistic models (Pabinger et al., 2014). Methods built on 

Bayes’ theorem, such as those employed by SAMtools (Li et al., 2009a) and GATK 

(DePristo et al., 2011), produce from the sequence data a posterior probability of an 

observed deviation being a variant. 

The sequencing and variant calling of large number of samples has become common 

practice in WGS studies, particularly when applied to population and cancer genomics 

studies (Chen and Sun, 2013; Wang et al., 2013). Originally, population studies employed 

pooled sequencing, where DNA from a cohort of patients was included in a single library 

preparation (Altmann et al., 2011). This was done to reduce costs incurred by sample 

preparation of a large number of individuals (Altmann et al., 2011). However, in recent 

years, population studies have returned to a more traditional approach. The study of ToF 

patients presented in chapter 5 is one such example. In cancer studies, sequencing is 

performed on DNA from tumour and normal cells in order to uncover somatic SNVs 

which may contribute to a particular type of cancer (Larson et al., 2012). Identifying 

variants in these types of sequence data requires callers to work with a different set of 

assumption. Population and cancer studies therefore have their own range of specialised 

variant callers. In WES, multiple sample sequencing and concurrent variant calling can be 

used to detect a variant inherited by multiple individuals in a family. Using the family 

structure to draw relationships between the different samples, callers such as FamSeq 
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(Peng et al., 2013), PolyMutt (Li et al., 2012) and DeNovoGear (Ramu et al., 2013) 

provide joint genotype predictions that are consistent with Mendelian inheritance. More 

details on these approaches to variant calling will be given in Chapter 3.   

Variant calling produces a large list of variants. In order to pinpoint a subset of variants 

that match the description of the putative disease-causing variant, filtering and annotation 

is required (Altmann et al., 2012). The first step is to filter for exome data. Variants that 

fall outside the exome target region are filtered out. Two forms of filtering are then 

applied following variant calling. The first aims to reduce the burden of false-positive 

variants in the list by subjecting it to quality thresholds. For example, variants supported 

by very low read-depths can be unreliable and are therefore often excluded (Nielsen et al., 

2011). The second form of filtering aims to reduce the list of variants to a set most 

relevant to the observed disease and its hypothesised pattern of inheritance (Altmann et 

al., 2012). For example, an autosomal recessive disease in a patient with consanguineous 

parents will require that the individual manifesting the disease be homozygous for the 

variant of interest while parents carrying the disease are heterozygous. Variants present in 

individuals that are not expected to carry the disease-causing variant or absent in 

individuals that are expected to carry the disease-causing variant can likewise be filtered 

out. Additional data is often required for further filtering and variant prioritisation such as 

population frequency data and functional prediction (Wang et al., 2010). Variant 

databases such as dbSNP (Sherry et al., 2001) or the 1000genomes project (Abecasis et 

al., 2012) report countless variants and their corresponding MAFs. If the studied disease 

is predicted to be the result of a very rare allele, variants that have a high MAF can be 

filtered out, leaving only rare variants; typically understood as variants with a MAF<1% 

(MacArthur et al., 2014). Provided there are no obvious candidates among the remaining 

variants, these can be prioritised according to their putative functional impact on protein 

structure. A first distinction can be made between potentially truncating variants; 

nonsense variants, frame-shifting indels and splice site variants, and other non-

synonymous variants. For missense variants, a number of functional predictions can be 

used to support a variant’s deleterious potential (Dong et al., 2015). These functional 

predictions are based on such things as sequence conservation at the variant site and the 

predicted effect of the variant on specific protein structure features (Dong et al., 2015). 

The assumption is that the disruption of a highly-conserved sequence or of a crucial 

protein structure is likely to be damaging. However, many of these functional prediction 
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tools were not originally intended as predictors of disease-causing potential (Grimm et al., 

2015). As a consequence of the different criteria underlying different functional 

predictors, the results for a single variant occasionally appear contradictory (Dong et al., 

2015). The accuracy of functional predictors is limited. Dong et al. (2015) measured the 

qualitative prediction performance of 11 functional predictors against a dataset of known 

deleterious and neutral variants and found MutationTaster to have the highest estimated 

accuracy with 86%. Another popular prediction tool, PolyPhen-2 had an estimated 

accuracy of 79%. One should therefore be careful not to over-interpret the predictions 

obtained from these programs. There is a number of services that integrate a variety of 

databases and functional annotation tools into a single pipeline, as is the case with 

ANNOVAR (Wang et al., 2010).  

As a result of additional filtering through annotation, variants can be concentrated into a 

small set of potentially disease-causing variant. The best candidates can be selected for 

sequence validation and functional studies aimed at confirming the link between mutation 

and disease trait. 

1.3.4.  Exome-sequencing study designs 

WES studies aimed at identifying disease-causing mutations can take on a number of 

forms ranging from a simple family-based study to larger case-control studies (Bamshad 

et al., 2011). What particular study design is most appropriate will often depend on the 

type of disease and mutation being studied and the availability of samples. Family-based 

studies are more adequate when the disease trait is identified as segregating in a family in 

a way that suggests the inheritance of a single causative variant. A large number of 

individuals with the disease might not be available for sequencing, but multiple 

individuals in a single family might exhibit the same disease phenotype. To date, the 

genetic underpinnings of dozens of rare syndromes have been identified through family-

based NGS studies (Gonzaga-Jauregui et al., 2012). On the other hand, given a large set 

of individuals with putative rare de novo mutations triggering a single disease, a large 

case-control study may permit the identification of small regions or genes in which 

variations occur more frequently in a case population compared with controls. Because of 

the cost involved in sequencing large numbers of case and controls, the latter type of 

study is still rare (Derkach et al., 2014). This type of study will be discussed in more 

depth in chapter 5.  
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WES study designs are often inspired by previous methods of identifying disease-causing 

mutations which relied on different technologies. From the 1980s onwards, highly 

penetrant mutations were identified through linkage analysis (Bailey-Wilson and Wilson, 

2011; Brunham and Hayden, 2013). Taking advantage of the recombination that occurs 

during meiosis, linkage analysis uses markers to identify regions in the genome that co-

segregate with a disease phenotype in a family. The regions can then be subjected to 

targeted sequencing so that the precise molecular alterations can be identified. Some early 

examples of successful linkage analysis include the identification of a disease locus for 

Huntington’s disease and cystic fibrosis (Gusella et al., 1983; Riordan et al., 1989). 

Brunham and Hayden (2013) report that between 1980 and 2010, the genetic basis of 

upwards of 4,000 Mendelian diseases was elucidated through linkage analysis, 

particularly after the sequencing of the human genome at the turn of the century. The 

sequencing of the human genome enhanced linkage analysis by providing investigators 

with better knowledge of the genes within a locus of interest. However, the introduction 

of NGS technologies has rendered linkage studies largely superfluous. There exist some 

examples in the literature of WGS and linkage analysis being used in tandem. One 

example is the discovery of deletion in the gene PTPN11 in a family with 

metachodromatosis, a disease that affects bone development (Sobreira et al., 2010). The 

region in which that deletion was identified was first determined through linkage analysis. 

A single individual from that family was then analysed using WGS and the deletion was 

uncovered (Sobreira et al., 2010). Nonetheless, WES alone can be used to identify highly 

penetrant alleles and does not require as many samples or as many familial generations 

(Brunham and Hayden, 2013). This makes NGS the ideal technology for investigating 

rare diseases in families, even with small pedigrees, making linkage studies redundant. 

The elucidation of diseases through linkage analysis was progressively supplanted by 

genome-wide association studies (GWAS) as the focus of research moved from 

Mendelian diseases to common complex disease (Antonarakis and Beckmann, 2006). 

Theoretically, GWAS provide a better approach for elucidating diseases that follow the 

common disease common variant (CDCV) model, deriving their strength from large 

numbers of unrelated case and control samples (Saint Pierre and Genin, 2014). GWAS 

use the case-control design in order to identify differences in allele frequency at known 

polymorphic sites. These polymorphic sites in turn provide an association between a 

particular locus containing the causal variant; in linkage disequilibrium with the 
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polymorphic site, and a disease trait. While GWAS has successfully associated a number 

of common diseases with various loci, these loci often only account for a small fraction of 

the estimated heritability in the population under study (Manolio et al., 2009). Efforts 

have been made to adapt GWAS to detect the effect of aggregates of rare variants (Bansal 

et al., 2010). In order for the actual rare variants to be detected, GWAS need to be 

supplemented by NGS studies with which the loci producing the strongest associations 

can be analysed for individual variants (Nejentsev et al., 2009). Variants that are 

extremely rare in the human population; MAF<0.5%, will be undetectable in GWAS 

however due to low power unless a very large number of samples are used. This warrants 

a new strategy. It is in this context that large WES case-control studies are expected to 

take over from GWAS (Cirulli and Goldstein, 2010). The main obstacle remains the cost 

of sequencing large numbers of cases and controls (Derkach et al., 2014). The size of case 

and control sets required to identify rare variants is discussed at length in chapter 5. 

In WES studies, closely related individuals can be used to uncover both inherited and de 

novo disease-causing variants provided the variants exhibit high penetrance. Studies of de 

novo variants,  concentrate on individuals exhibiting a disease trait which is not observed 

in their parents and is suspected to be the result of de novo variants (Bamshad et al., 

2011). Here the assumption is made that the disease-causing variants are dominant and do 

not have incomplete penetrance (Bamshad et al., 2011). A variant with incomplete 

penetrance could be inherited without leading to disease in all carriers. De novo studies 

could therefore be used to investigate traits that are highly deleterious and occur only in 

sporadic cases (Bamshad et al., 2011). De novo variants are identified by sampling 

parents-offspring trios or quartets in which a child is alone in exhibiting a disease trait. 

Sequencing data from parents and sibling provide a set of variants which can be excluded 

from the child (Bamshad et al., 2011). The assumption made here is that a variant 

occurring in two closely related individuals is unlikely to have occurred as the result of 

two distinct mutation events and thus more likely to have been inherited. Assuming 

perfect sequencing, the remaining list of variants would mostly contain de novo variants, 

with the remainder of variants undetected in parents due to mosaicism; where a particular 

variant is only present in certain cell types in an individual. This is the study design 

followed in chapter 4. Familial relationships can also be drawn on to identify variants 

underlying a disease trait. If a disease trait follows a Mendelian pattern of inheritance, it 

can be suggested that it is being caused by a single causal variant, provided this variant 
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shows high-penetrance. Assuming high-penetrance is essential in determining carrier 

status and thus ultimately identifying a causal variant. Candidate variants are identified by 

sequencing related individuals; healthy and affected, and selecting those variants present 

in carriers and absent in non-carriers. Depending on the pattern of inheritance, further 

assumptions can be made about the location of the putative variant or the genotype 

expected in each carrier.   

Case-control studies are largely focused on unrelated individuals and seek to identify 

causal regions or genes in the development of a disease. Case-control studies focused on 

sporadic disease for which de novo variants are suspected are the exception. Siblings are 

assumed not to carry disease-causing variants and can therefore be used as controls. This 

was the strategy adopted for a large autism spectrum disorder study by Sanders et al. 

(2012) in which 238 families were sequenced. These families consisted of 38 parents-

offspring trios and 200 parents-offsprings quartets. The 200 non-affected siblings were 

used as controls, revealing an excess of non-synonymous de novo variants in probands 

and uncovering a gene association between autism and the gene SCN2A. A recent 

example of a case-control study for CHD is the study by Zaidi et al. (2013). This study 

investigates potential causal genes for an array of severe CHD phenotype. The study 

consists of 362 parents-offspring trios where the proband has severe CHD, and 264 

parents-offspring controls. I use the case-control WES study design in chapter 5 and it 

will be discussed at greater length in that chapter. As the focus of WES case-control 

studies shifts towards rare variants of lower effect sizes, increasingly larger case-control 

studies will be required to increase statistical power (Lee et al., 2014b). 

1.4. Conclusion 

With this PhD project, I investigate the genetic underpinnings of severe CHD using WES, 

with a particular emphasis on TGA and TOF. Based on current research on the genetic 

etiology of both these diseases, I conducted bioinformatics analyses of WES studies and 

identified genes that hold potentially disease-causing variants. Additionally, I devise and 

implement a new approach to variant calling with the aim of improving detection of 

variants shared by individuals carrying a disease when a multiply affected, putative 

Mendelian pedigree is being studied. 
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Chapter 2. Methods
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2.1. Overview 

Whole-exome sequencing plays a central role in the research presented in this thesis. In 

this chapter, I will cover the core methods of WES used in data generation. I will first 

specify which NGS and exome capture technologies were used. I will also review the 

recurring tools and metrics used to assist exome data analysis throughout the entire 

project and provide an outline of the hardware enlisted for the analysis. However, since 

bioinformatics methods and pipeline development suitable for the three different study 

designs adopted in my work; analysis of Mendelian families; analysis of de novo variants 

in trio families; and case-control analysis, formed a significant portion of my work, each 

individual chapter of this thesis has its own set of methods developed by me, 

complementing the standard methods described in this chapter. 

2.1.1.  Genome sequencing and exome capture 

While the sample processing, sequencing and exome capture of genomic DNA was not 

performed by me personally, reviewing these aspects may help to understand the various 

analyses I performed. I will therefore briefly describe some of the steps involved in the 

generation of WES data. 

2.1.2. Sequencing and capture 

The required sequencing for this project; including preliminary steps such as sample 

processing and library preparation, was divided between three different research centres:  

 The Institute of Genetic Medicine (Newcastle University, UK) 

 Glasgow Polyomics (University of Glasgow, UK) 

 The McGill University and Génome Québec Innovation Centre (Montreal, Canada) 

DNA was extracted from blood samples originally held at Newcastle’s Institute of 

Genetic Medicine (IGM). Target enrichment for exome capture was performed using 

SureSelect
XT

 Human All Exon 50Mb kit V4 (Agilent Technologies, 2015) from Agilent 

Technologies, USA. Details on the performance of this technology compare to other 

available technologies can be found in Chapter 1.   
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At all three locations, sequencing was performed using the Illumina platform (Illumina, 

2015c). Both UK sites used the Illumina Genome Analyzer IIx (GAIIx) (Illumina, 2012b), 

while The McGill University and Génome Québec Innovation Centre (MUGQIC) used 

Illumina HiSeq 2000 sequencers (Illumina, 2014a). The Illumina GAIIx produces around 

30 million reads per flowcell lane. Each read is 76 base pairs (bp) long. The Illumina 

HiSeq 2000 produces around 180 million bps per flowcell lane. The reads are 101 bp long. 

The HiSeq 2000 is able to process large numbers of samples together using multiplex 

sequencing. All sequencing was done with paired-end reads (Illumina, 2015b). Over the 

course of three years, the sequencing shifted from the IGM to Glasgow Polyomics (GP) 

and finally to the McGill University and Génome Québec Innovation Centre (MUGQIC). 

2.1.3. Quality control 

Before proceeding with sequence analysis, the quality of the raw exome data must be 

assessed. This preliminary quality control step was carried out at the sites where the 

sequencing was performed and some samples may have been sequenced a number of 

times as a result. The quality metrics used in the MUGQIC to assess sequencing quality 

were provided together with the sequencing data. For data emanating from UK locations, 

I have independently produced quality metrics using the NGS QC toolkit v2.2.3 (Patel 

and Jain, 2012). In either case, the quality metrics, using the platform’s base quality score 

(Ewing and Green, 1998; Ewing et al., 1998), included the following: 

 By base position in the read 

o Average base quality score 

o Percentage of reads with base falling within a base quality score range (i.e. 

0-10, 11-20, 21-30, 31-40) 

 By number of reads 

o Read falling within a GC content percentage bracket. (i.e. 0-5,…,95-100) 

o Read average base quality score  

 Percentage base composition (including non-ATGC) 

The NGS QC toolkit also provided a summary of its quality checks, giving a percentage 

of high and low quality reads. By default, NGS QC toolkit sets the threshold of high-

quality at 20 which corresponds to a base calling accuracy of 99%. I also applied this 

threshold to quality metrics generated by MUGQIC. Using these quality metrics, I was 

able to check for irregularities which would betray poor quality data. The first step was to 
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check that high-quality reads represented ≥90% of the data. Following this, I reviewed 

metrics that presented base quality scores by base position in the read to check for any 

sudden drops in quality. I verified that there was no excess of non-ATGC bases and that 

none of the four bases were either significantly over or underrepresented. In addition to 

the previously described quality metrics, MUGQIC also provided the percentage of read 

duplicates; PCR and optical duplicates, per sample providing some additional insight into 

the quality of sequencing at MUGQIC. 

2.2. Data analysis 

2.2.1. Hardware specifications 

The bulk of data analysis was completed on a computer cluster based at the IGM, 

currently running on a Scientific Linux 6.3 (Fermilab, 2014) operating system. Jobs were 

submitted to the cluster using the OGS/GE 2011.11p1 batch-queuing system (Open Grid 

Scheduler project, 2013) for distributed resource management. The hardware on which 

the operating system runs has been upgraded on multiple occasions over the past three 

years.  

At the start of my PhD project, the cluster was composed of a single headnode and 16 

compute nodes. A Dell R510 server node was used as the headnode, while the 16 

compute nodes were distributed across 4 Dell C6100 rack servers. The headnode operates 

on two Intel Xeon E5620 2.40 GHz quad-core processors and 12GB of RAM and has 

19TB of available storage space. Each of the compute nodes operates on two Intel Xeon 

E5640 2.67 GHz quad-core processors, 47GBs of RAM and has 160GB of hard disk 

space. 

In the fall of 2012, a login node and 4 additional compute nodes were added. The 

additional compute nodes share the same specifications as the previous 16 with the 

exception of RAM; 96GBs, and hard disk space; 900GBs. A Dell C1100 server node acts 

as the login node with two Intel Xeon E5640 2.40 GHz quad-core and 24GBs of RAM. In 

2014, a high-intensity compute node; with four Intel Xeon E7-4820 2.00 GHz 8-core 

processors, 520GBs of RAM and 400GBs of hard disk space, was added to the cluster. 

Such upgrades were crucial in order to pursue large scale WES analyses. In addition to 

new login and compute nodes, 2 Dell R510 nodes attached to 2 Dell MD1200 storage 

shelves provide 73TB of lustre storage. 
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In the final year of the PhD project, a computer cluster at Manchester University’s 

Faculty of Medical and Human Sciences was also made available for this project. The 

cluster was primarily used for the data analysis of 871 ToF cases and 500 controls as 

presented in chapter 5. The cluster comprises 10 compute nodes; each equipped with 512 

GBs of RAM and a dual 2.60 GHz 8-core processor. The compute nodes provide a total 

of 55TB of hard disk space. 

2.2.2. Software and scripts 

WES analysis calls upon a whole sequence of programs, requiring some degree of 

automation. Analysis pipelines were devised through a combination of Perl (Perl.org, 

2002) and Bash shell (GNU Project, 2014) scripts which could then be submitted as one 

or more jobs on a cluster’s compute nodes. The scripts were also used to directly filter 

and interpret data without the use of any third-party software. The scripts used for this 

project thesis are a combination of my modification of scripts originally written by 

colleagues and scripts written by myself to fulfil study-specific aims. All of the tools 

described in the following paragraphs were run using scripts. The programming language 

Java was also used to implement a variant caller. Details are provided in chapter 3. 

The Illumina sequencing platform is distributed with its own sequencing software 

pipeline (Illumina, 2015d). For the purpose of our analyses, the use of this pipeline is 

limited to the steps immediately following sequencing: image analysis, base calling and 

file conversion, the latter including demultiplexing where applicable. The two first steps 

do not fall within the remit of my data analysis, but awareness of the version of the 

pipeline used is vital. The data produced at the IGM and GP is provided through the 

Illumina v1.6 pipeline, while data from the MUGQIC goes through the Illumina v1.8 

pipeline. This distinction is important as base call quality is encoded using a different 

range of ASCII values in either version. Starting with Illumina v1.3 and up to v1.7, the 

base quality score was encoded in ASCII with an offset of +64, a format unique to the 

Illumina platform. With Illumina v1.8, the offset changed to +33 to coincide with the 

Sanger format (Illumina, 2012a). The similarity between encodings has been the source of 

much confusion and potentially experimental error (Cock et al., 2010). Alignment tools 

such as BWA (Li and Durbin, 2009) provide an option to convert the illumine-specific 

encoding format into the more broadly accepted Sanger format (Cock et al., 2010). 

Failure to explicitly signal the use of the illumina-specific encoding will result in the 



 

36 

 

incorrect interpretation of base quality scores, with negative repercussions on alignment 

and variant calling. 

Sequence data from a single run of the Illumina GAIIx (Illumina, 2012b) is delivered 

from Illumina’s base calling software in the QSEQ file format (Illumina, 2012a). The 

QSEQ files are divided by lanes and read direction; given paired-end sequencing. For 

sequencing runs performed at the IGM and GP, I converted the QSEQ files into the 

widely-used FASTQ format (Cock et al., 2010) using GERALD, a tool included in 

Illumina’s data analysis pipeline (Illumina, 2015d). For each sequence lane, two FASTQ 

files were produced, each containing reads sequenced from the same end. Where 

sequence data for a single individual was present in multiple lanes, I concatenated the 

corresponding files so that the remaining pairs of FASTQ files all corresponded to a 

single sample. The demultiplexed sequence data delivered from the MUGQIC was sent in 

the BAM file format (Li et al., 2009a). This file provides the required data in compressed 

form, with sequence alignment. To ensure consistency between samples in my analysis, 

this alignment was disregarded. I extracted unaligned sequence data from the BAM files 

(Li et al., 2009a), producing two FASTQ files; given paired-end sequencing, for each 

BAM file. This was achieved using the program Picard (The Broad Institute, 2015c). 

A number of data analysis tools were used repeatedly across studies. For sequence 

alignment I used BWA v0.7.4 (Li and Durbin, 2009). BWA takes a FASTQ file as input 

and produces an alignment in BAM format (Li et al., 2009a). At this stage, encoding that 

was not in the Sanger format was flagged up using the corresponding option in BWA (Li 

and Durbin, 2009). After every sequence alignment, duplicates were removed using 

Picard (The Broad Institute, 2015c).  

Three different variant callers; two widely-used callers and one of my own devising, were 

used: 

 SAMtools v0.1.18 (Li et al., 2009a)  

 GATK UnifiedGenotyper v.2.2.9/ v.3.1.1 (DePristo et al., 2011)  

 BAMily (not yet published) 

The above variant callers can take one or more aligned BAM files, producing a list of 

variants in VCF file format (Danecek et al., 2011). For each variant caller, a different 

approach was used. Using SAMtools, I called variants from parent-offspring trio samples 
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together, while producing individual calls for unrelated samples. Before using GATK’s 

UnifiedGenotyper, I used GATK’s realignment and recalibration tools on each sample 

producing recalibrated BAM files. I then called the entire set of recalibrated samples with 

GATK’s UnifiedGenotyper, producing a single VCF output for all the samples of a single 

study. The use of BAMily is described in chapter 3 and in chapter 4. 

For the purpose of both sequence alignment and variant calling, I used the UCSC genome 

hg19 assembly (UCSC, 2015) in FASTA format. This assembly was used for all analyses 

described in this thesis. Unless stated otherwise, all variant call data were filtered for the 

target regions from the SureSelect
XT

 Human All Exon 50Mb kit V4 from (Agilent 

Technologies, 2015) Agilent Technologies, USA. 

Every variant call is accompanied by a quality score (Q) in Phred format; where the error 

probability is expressed as a score through a logarithmic transformation (Ewing and 

Green, 1998; Ewing et al., 1998). In chapter 4 and chapter 5, I use this score to capture 

high-confidence calls. For GATK, the minimum confidence threshold for high-quality 

variants is a score of Q30 corresponding to a 99.9% probability that the call is correct 

(The Broad Institute, 2015b). I apply this threshold to SAMtools as well. The SAMtools 

and GATK genotype predictions were used as an additional filtering criterion in chapter 3 

and chapter 4. The quality of selected variant calls was also checked using IGV, an 

alignment viewer (Robinson et al., 2011). Using this program I was able to flag potential 

false positives variants by inspecting their sequence context. 

The studies undertaken for this PhD were focused on identifying putative rare variants 

which can cause disease. To filter for variants more likely to fit this description, 

population frequency and functional annotations are required. For this purpose, I used 

ANNOVAR (Wang et al., 2010). ANNOVAR provides gene, region and population data 

annotations for each called locus, by simply adding columns to those already existing in 

the VCF output. This additional information can be used to filter and rank variant call 

data. Using my own scripts, I filter the data using the available annotation. For every 

sequencing analysis, I select non-synonymous variants, falling either in an exonic or 

splice-site region. Known polymorphisms are removed from the list of variants by 

comparing variant call data to population databases such as the 1000genomes project 

(Abecasis et al., 2012) and the NHLBI Exome Sequencing Project (ESP) (NHLBI, 2015). 

Alleles with a minor allele frequency (MAF) ≥1% in either of these databases are filtered 
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out. To filter out additional common variants, some of which are artefacts, I used an in-

house list of variants compiling the results of 418 previous WES analyses. A frequency 

threshold of 1% is also used in this case. In each study, the potential pathogenicity of 

variants is partly determined by their predicted functional effect. Various programs 

provide such predictions via ANNOVAR. These include MutationTaster (Schwarz et al., 

2010), Polyphen-2 (Adzhubei et al., 2010) and LRT (Chun and Fay, 2009). I use these to 

either filter or rank potential disease-causing variants. 

Beyond this step, each study tends to differ. Each study has its own methodology which I 

will describe in the methods section of each subsequent chapters.
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Chapter 3. Design, development and testing of a new approach to variant 

calling
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3.1. Summary 

In this chapter, I present the design and implementation of a new approach to variant 

calling. The resulting variant caller, BAMily, is designed to identify putative variants in 

WES data, shared by a subset of individuals, while absent in another subset. This 

approach to variant calling is particularly applicable to pedigrees in which multiple 

related individuals are suspected of sharing a variant causing a Mendelian disease trait. It 

can be described as a two-step detection process. Variants are first detected in a sample 

pool, using all available reads. Variant detection in the pool is then used to assist the 

detection of variant presence or absence in each individual. This approach is particularly 

useful when a variant, well represented in a pool of individuals, is also present in the 

reads from a particular individual but, due for example to low quality or coverage, is 

difficult to distinguish from errors. This approach also involves assigning probabilities to 

undetected variants in single samples of being truly absent or merely unobserved in an 

individual. The desired outcome is a variant caller which can be used to uncover variants 

that segregate with a trait exhibited by groups of individuals, out of a larger set of 

individuals. For example, the variant caller can be part of a NGS study on patients 

exhibiting a disease trait suspected of having a shared origin in the form of one or more 

variants. Families presenting disease traits that follow an autosomal dominant pattern of 

inheritance is one such case. I compare the implementation of this approach against other 

variant callers using data from individuals in pedigrees that have also been analysed using 

genotyping microarray. The results show that my approach provides an advantageous 

balance between sensitivity, specificity and running time that is complementary to 

existing methods. As a consequence, I use this new approach to study 8 families. Previous 

analyses failed to establish plausible disease-causative candidates in most of these 

families. The development of BAMily presents a new opportunity to attempt to resolve 

these families.  

3.2. Introduction 

While NGS platforms produce overall high-quality data from which DNA sequences can 

be determined, library preparation and sequencing involve a range of steps and optical 

technology that introduce significant variability in the quality of the data (Kircher et al., 

2011). Variation in the base call error rate is in large part mitigated by the presence of 

overlapping reads. However, variants can become indistinguishable from errors for loci 
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supported by fewer reads. Regions with low read depth pose an additional problem as 

they may reveal only one of two alleles present at a heterozygous locus (Nielsen et al., 

2011). A survey of WES projects centred on Mendelian disease has led Gilissen et al. 

(2012) to report that specific mutations underlying disease traits will be identified in only 

60% of families. This statement should be treated with great caution as the outcome of a 

WES project will depend on many factors such as the number of carriers sequenced and 

the mode of inheritance observed in a family. Nevertheless, what this estimate conveys is 

the need for improvements in the analysis of WES data.  The challenge for variant callers 

in the past few years has been to extract variants from reads that are difficult to interpret. I 

will quickly review some of the approaches that have been used to interpret low-quality 

data below. 

3.2.1. Improving variant calling 

Addressing the limitations of NGS has motivated the development of a plethora of 

increasingly sophisticated tools for sequence alignment, variant calling and filtering 

(Pabinger et al., 2014). Popular variant callers such as SAMtools or GATK take model 

based approaches and have led to increased rates of variant discovery; particularly when 

compared to the original read counting method, while keeping the rate of false positives 

low (Li et al., 2009a; DePristo et al., 2011). Variant callers rely on estimated calling error 

probabilities. These estimates are generated by the base calling procedures which are 

platform specific and themselves subject to biases. There have been efforts to correct 

known biases, such as the increased propensity for base miscall in later sequencing cycles 

(Altmann et al., 2012). One approach is to train statistical models on sequencing data. 

This is the solution proposed by the integrated caller in the Atlas2 suite which uses a 

logistic regression model trained on exome data to call single nucleotide variants (SNVs) 

and indels (Challis et al., 2012). Challis et al. (2012) report that their caller is thus able to 

mitigate the effects of exome capture such as reference bias and strong variability in 

depth coverage. Another approach involves the use of known single nucleotide 

polymorphisms (SNP) in order to re-estimate the quality of sequence data (Altmann et al., 

2012). By identifying sequencing mismatches from the reference not previously identified 

as nucleotide polymorphisms and treating these as errors, it is possible to derive more 

accurate error rates from the sequence data. This is the concept behind base quality score 

recalibration, first introduced with SOAP and then implemented by GATK (Li et al., 

2009b; DePristo et al., 2011). 
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Current variant callers have the ability to detect variants across multiple samples. This 

provides another potential source of improvement for variant calling. At a single locus, 

the quality and quantity of reads will differ between samples. For a single sample, variant 

detection can be hindered by the lack of high-confidence reads, the scarcity of read data, 

or both (Altmann et al., 2012). Samples that present a high yield of high-confidence reads 

can help with the interpretation of low-confidence reads in another sample. A higher rate 

of variant detection can also be achieved by factoring in the relationships that bind the 

individuals from which these samples originate. In the following section I review WES 

approaches which use the relationship between samples to increase variant detection. 

3.2.2. Variant calling involving multiple samples 

3.2.2.1. Family-based sequencing 

Families provide a context in which rare variants are concentrated in a relatively small set 

of samples. Family-based studies can be used to uncover both inherited and de novo 

variants. Disease-causing variants that result from de novo mutation are identified by 

sampling family trios or quartets in which a child is alone in exhibiting a disease trait. 

Sequencing data from parents and siblings provide a set of variants which can be 

excluded from the child, since they are inherited (Bamshad et al., 2011). This approach to 

variant discovery has revealed the role that de novo variants play in the manifestation of 

neurodevelopmental disorders (Veltman and Brunner, 2012a). Familial relationships can 

also be used to identify mutations causing diseases which follow a Mendelian pattern of 

inheritance. Candidate mutations are identified by sequencing related individuals; healthy 

and affected, and selecting those mutations that segregate with the disease. Family-based 

sequencing studies often rely on variant callers such as SAMtools (Li et al., 2009a) or 

GATK (DePristo et al., 2011). However, recent attempts to improve variant calling in this 

domain have led to the development of callers specifically tailored to family sequencing.  

Family-based studies benefit from pedigree structure which provides a means to relate 

each sequenced individual to all others. For a single locus, the sequence reads from one 

individual are used to determine the presence of absence of a variant in the reads of 

another following Mendelian inheritance. Thus a variant that would typically be difficult 

to distinguish from error at a single locus in an individual, benefits from a confident 

detection of the same variant in a parent individual. The relationship between individuals 

can be used to derive information that either supports or penalizes the genotype 
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predictions that originally arise from an individual's sequence data. This is the principle 

behind family-based variant callers such as FamSeq (Peng et al., 2013) and PolyMutt (Li 

et al., 2012); these callers were published while the present work was in progress. 

Family-based callers exploit shared variation in closely related individuals in order to 

strengthen variant detection for each single individual. While the idea of using shared 

variation in this way has primarily been applied to families, it can also be applied more 

generally to cases where multiple individuals share disease-causing variants without 

necessarily all being closely related as will be discussed later in the chapter. 

3.2.2.2. Pooled sequencing 

The costs involved with WGS, though falling very rapidly, remain an important obstacle 

in the carrying out of large case-control studies (Derkach et al., 2014). While WES 

sequencing provides a cheaper alternative for studies which involve only a few dozen 

samples, it remains often too costly for studies involving several hundreds of samples. 

Even during the period of this PhD, costs for WGS and WES data generation have 

substantially converged; the downstream data processing and storage requirements, 

however, remain significantly different between the two approaches. The demand for 

cheaper large-scale sequencing studies has motivated the development of pooled 

sequencing (Derkach et al., 2014). Pooled sequencing consists in creating a DNA library 

for sequencing from the pooled DNA of all the individuals of a study (Chen and Sun, 

2013). Two population sequences; for cases and controls, are effectively created from 

which the various frequencies of different variants can be estimated.  

This approach focuses on establishing the presence of variants in a given pool without 

assigning these to particular individuals. Variants or clusters of variants likely to play a 

role in the disease under study will be overrepresented in the case pool compared to 

controls. This approach compensates for the variability in sequence data quality by using 

all reads covering a single locus. Variant callers tailored to pooled sequencing include 

SNVer (Wei et al., 2011), vipR (Altmann et al., 2011) and CRISP (Bansal, 2010). One of 

the pitfalls of such an approach however, is that individuals can no longer be 

distinguished. This type of sequencing would therefore not be sufficient to arrive at an 

individualised variant detection. However, such an approach could be used to uncover 

variants as a preliminary step to per individual variant calling. 
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In recent years however, with cross-collaborations providing the means to carry out large 

studies, pool sequencing has been phased out in favour of sequencing individuals in large 

cohorts. The study presented in chapter 5 is one example. 

3.2.2.3. Somatic sequencing 

Population and family-based studies compare sequencing data emanating from multiple 

individuals. In cancer sequencing, the method is adapted to compare data originating from 

a single individual, but different cells (Meyerson et al., 2010). DNA samples obtained 

from tumour cells are compared with samples from non-tumorous somatic cells. As with 

pooled sequencing, sequencing data are produced for multiple DNA samples. Due to 

inevitable admixture of different cell populations, both cancer and cancer-free, mutations 

may manifest as a variant of low frequency. A somatic variant caller, tailored to address 

the particularities of somatic mutations, is thus required (Pabinger et al., 2014). A few 

example of these are Mutec (Cibulskis et al., 2013), Strelka (Saunders et al., 2012), 

SomaticSniper (Larson et al., 2012) and Varscan2 (Koboldt et al., 2012). 

3.2.3.  Aim 

In this chapter, I present a novel approach to variant calling that derives its inspiration 

from some of the approaches previously described. The variant caller is focused on 

identifying variants that are predicted to be shared by a subset of individuals while absent 

in another subset. In the context of a disease trait, these subsets correspond to the pattern 

of inheritance exhibited by the trait. By changing the scope of interest from all variants 

present across the set of individuals to a more meaningful subset of shared variants, we 

can tackle detection of disease-causing variants from a different angle. The caller first 

identifies variants in the pool of individuals we wish to analyse. The pool will be strongly 

enriched for shared variants. In this step, no distinction is made between individuals. 

Variant detections in the pool provide data to make inferences about the existence or 

absence of variants in distinct individuals, leading to variant re-discovery in reads 

previously too difficult to call. Using this approach we can also estimate a probability of 

non-discovery of a true variant or consolidate its absence at loci where no detection has 

occurred. Many variants are likely to be excluded from studies due to poor sequence 

coverage in one or two individuals, resulting in failure to identify causative alleles in 

WES and WGS studies. My approach addresses this problem by estimating the 
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probability that a variant is present even if not observed in an individual’s reads and 

incorporating this probability in the final variant calls assigned. 

3.2.4. Presentation of the 8 families analysed 

Using the new approach to variant calling presented in this chapter, I analysed 8 families, 

in which several members share a disease phenotype. These families were part of a larger 

effort to identify disease-causative variants in families in which the disease trait followed 

a Mendelian pattern of inheritance. The 8 families correspond chiefly to cases unresolved 

at the time of study that had already undergone multiple analyses of WES data. With its 

new approach, BAMily provided the opportunity to analyse these again. The principal 

investigators with clinical responsibility for each family proposed possible modes of 

inheritance based on family segregation. In several of these families, the pattern of 

inheritance of the disease strongly suggested either an autosomal dominant or autosomal 

recessive mode of inheritance with full penetrance. In other families, some patients show 

what could be a dominant disease, but with reduced penetrance. Based on this observation 

and patient availability, a number of individuals in each family were sequenced. In Figure 

9 to 16, I provide the corresponding 8 pedigrees and the justifications that we used to 

assign specific patterns of inheritance conjectured. 

Family 1: 

 

Figure 9. Four individuals exhibit hereditary scleroscing poikiloderma (HSP) with tendon contracture, 

myopathy and pulmonary fibrosis (Mercier et al., 2013). The disease is assumed autosomal dominant. 

*Individuals sequenced. 

Several members of the first family exhibit a very rare disease, hereditary scleroscing 

poikiloderma (HSP) accompanied by muscle defects; tendon contractures and myopathy, 

as well as scarring of the lungs; referred to as pulmonary fibrosis (Mercier et al., 2013). 

The corresponding pedigree is shown in Figure 9. Mercier et al. (2013) describe HSP as 

“a combination of mottled pigmentation, telangiectasia, and epidermal atrophy in the first 

few months of life”. In this context, telangiectasia refers to the visible dilation of 
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capillaries on the surface of the skin. Describing the pedigree presented above, Khumalo 

et al. (2006)  proposed that the disease follows an autosomal dominant pattern of 

inheritance. Two siblings and the unaffected mother were sequenced. 

Individuals in the extended pedigree, reproduced in Figure 10, suffer from 

atrioventricular septal defect (AVSD) and, in two cases, ostium primum atrial septal 

defect (ASD). ASD and AVSD both consist of a gap in the wall that separates left and 

right structures of the heart. Both the atria and ventricles are involved in AVSD, while the 

atria only are involved in ASD (Kaza et al., 2013). Despite the phenotypical differences, 

the development of isolated AVSD shares an embryological mechanism with ostium 

primum ASD, both originating from the abnormal development of endocardial cushions 

that separate the different chambers of the normal heart (Kaza et al., 2013). Therefore, 

family members with either AVSD or primum ASD were considered to have equivalent 

phenotypes in this pedigree. According to D’Allesandro et al. (2015), approximately 30% 

of AVSD are attributable to either chromosomal or single-gene defects. In this family, the 

segregation of CHD, suggests that an autosomal dominant variant with partial penetrance 

is causing the reported septal defects. A total of five individuals; two obligate carriers, 

two individuals with AVSD and one with ASD, were sequenced. 
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Family 2: 

 

Figure 10. Multiple individuals across an extensive family tree present atrioventricular septal defects (AVSD). Disease assumed to be caused by a single variant with reduced 

penetrance. *Individuals sequenced. †A DNA sample that does not match this individual was sequenced due a due to sample mix-up. The sequence data was therefore not retained.
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Family 3: 

 

Figure 11. The disease trait observed in five individuals has been described as atypical Brugada syndrome. 

Disease is assumed autosomal dominant. Individuals with a normal electrocardiogram are marked NE. 

Individuals that did not present the syndrome as a result of Flecainide stimulation are marked NF. *Individuals 

sequenced. 

Family 3 includes several cases of atypical Brugada syndrome (BrS). The phenotype 

observed in the index case of this family was ventricular fibrillation, where cardiac 

muscles of the ventricles contract asynchronously, manifesting as cardiac arrest which 

without prompt defibrillation would prove fatal. The corresponding pedigree is shown in 

Figure 11. BrS describes a change in normal electrical activity of the heart during a 

particular segment of a heartbeat (Antzelevitch et al., 2005). The electrocardiography of 

patients with BrS reveals an elevation of the ST-segment, abnormal heart rhythm; 

arrhythmia, and sudden cardiac death (Antzelevitch et al., 2005). Not all carriers of the 

syndrome show this pattern at resting heart rate. Flecainide can be used to unmask this 

pattern in disease carriers. Whether the patterns were seen at baseline or after injection of 

Flecainide, the clinical examiners determined that the current cases show an 

electrophysiology that deviates from the usual presentation for Brugada and therefore 

identified it as atypical. BrS is typically described as an autosomal dominantly inherited 

disease, with a total of 16 genes currently associated with the syndrome, the most 

common being SCN5A  in which loss-of-function mutations are found in about 20% of 

cases (Brugada et al., 1993). However, studies in families harbouring SCN5A mutations 

have shown low disease penetrance, and recent data have served to further emphasise the 

genetic complexity of the phenotype; for example Bezzina et al. (2013) showed evidence 

for association of common alleles at SCN5A and HEY2 with BrS. 
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Family 4: 

 

Figure 12. Mother and offspring show discordant CHD phenotypes along with other defects. Six pregnancies did 

not come to term. The disease pattern of inheritance is unclear. *Individuals sequenced. 

In the family, represented in Figure 12, a mother and her offspring present complex 

cardiac defects along with a number of other pathologies. The mother has a patent ductus 

arteriosus, a VSD, aortic regurgitation, and a common brachiocephalic trunk. She is 

missing the gall bladder. At 14, she also developed lymphoedema, a defect of the 

lymphatic system that causes tissue swelling with accumulation of lymph fluid (Cemal et 

al., 2011). Additionally, the mother has coeliac disease, an autoimmune disease that leads 

to gluten intolerance (Leeds et al., 2008). The surviving child has dextrocardia; the major 

axis of the heart is orientated towards the right mirroring the position of a normal heart 

(Bernasconi et al., 2005). Other heart defects include VSD and an interrupted aortic arch 

(IAA). Another child, who died during intrauterine gestation, displayed a common arterial 

trunk, ASD, subvalvular VSD and ventricular hypertrophy. The presence of bilaterally tri-

lobed lungs suggests laterality disturbance is responsible for the observed cardiac 

malformations. Another child, who died soon after birth, exhibited VSD, abnormal lung 

lobation, a small adrenal gland and spleen and hypospadias; where the urethra is 

misplaced. This child is also characterised by the absence of a gall bladder. The mother-

daughter pair was sequenced. 

Family 5: 

 

Figure 13. A sibling pair, both sequenced, exhibit double-outlet right ventricle. A number of possible modes of 

inheritance are possible for this family. *Individuals sequenced. 
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In the family depicted in Figure 13, a pair of siblings was found to share double-outlet 

right ventricle (DORV). DORV describes a range of defects that involve the aorta and 

pulmonary artery both arising from the right ventricle (Obler et al., 2008). The results of a 

study by Obler et al. (2008) suggest that a little under half of cases of DORV arise as a 

result of chromosomal abnormalities. Beyond chromosomal abnormalities, a number of 

SNVs and indels have been implicated in the development of DORV, both in humans; for 

example in CFC1, and knockout mice (Obler et al., 2008). In this particular family, the 

parents and two other siblings do not exhibit the disease. A number of modes of 

inheritance can be hypothesised for this family. Only the sibling pair with DORV has 

been sequenced. This was justified by the absence of a clear disease-carrying status for 

parents. 

Family 6: 

 

Figure 14. A sibling pair in a nuclear family exhibit major aortopulmonary collateral artery with pulmonary 

atresia. One patient (II:1) presents a number of other cardiac defects. Neither parent presents a disease 

phenotype. A number of modes of inheritance are possible for this family. *Individuals sequenced. 

In the family represented in Figure 14, the two siblings exhibiting major aortopulmonary 

collateral artery (MAPCA) with pulmonary atresia (PA). Additionally, the female sibling 

has a VSD, a right-sided aortic arch and a left-sided innominate vein. Pulmonary atresia 

with VSD and MAPCA is typically considered a variant of the tetralogy of Fallot 

phenotype (Prieto, 2005). MAPCA describes the persistence of arteries branching off 

from the aorta and supplying the pulmonary system in the event of an underdevelopment 

of the pulmonary valve and arterial system (Boshoff and Gewillig, 2006). MAPCA is 

often the result of PA which occurs when the pulmonary valve leaflets are fused shut 

(Bailliard and Anderson, 2009). While neither parent exhibited the disease, the presence 

of MAPCA in both offspring suggests that some genetic factor could be causing the 

disease. To explore this possibility, all four individuals were sequenced. 
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Family 7: 

 

Figure 15. Three related cousins, each exhibit Tetralogy of Fallot. The manifestation of ToF in cousins suggests 

some genetic variant with partial penetrance could underlie these cases. *Individuals sequenced. 

Three distantly related cousins; represented in Figure 15, were found to each exhibit 

Tetralogy of Fallot (ToF). A description of ToF is given in Chapter 1 and further details 

provided in chapter 5. Each of the three patients was initially treated separately and then 

discovered to be related. Using linkage analysis to determine segments of DNA identical 

by descent, it was determined that III:1, III:3 and III:5 were cousins (personal 

communication). The recurrence of ToF in three closely related individuals suggests the 

possibility of some genetic variant with reduced penetrance underlying the disease. 

Family 8: 

 

Figure 16. A sibling pair; one of which is deceased, have relapsing cardiomyopathy. Parents have been found to 

be consanguineous. As a consequence, the disease is assumed autosomal recessive. *Individuals sequenced. 

In Family 8, a sibling pair exhibits relapsing dilated cardiomyopathy. Neither parent is 

affected. Crucially however, the parents are consanguineous; they are first cousins. This 

suggests that the disease is autosomal recessive. The pedigrees are reproduced in Figure 

16. The cardiomyopathy in this family is described as relapsing as both affected members 

have experienced heart failure on multiple occasions. Cardiomyopathies are diseases of 

the heart muscle, encompassing a number of structural and functional defects (Sisakian, 
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2014). Dilated cardiomyopathy, the most common form of cardiomyopathy, is 

characterised by either the left or both ventricles being dilated and, consequently, 

dysfunctional (Sisakian, 2014). Up to 40% of dilated cardiomyopathies are found in 

Mendelian cases (Sisakian, 2014). All four members of the nuclear family were 

sequenced. Also of note, both affected siblings suffered intractable epilepsy and had 

significant learning difficulties. The male sibling died of heart failure. The female sibling 

after two relapsing episodes requiring support with a cardiac Ventricular Assist Device 

(VAD) and Extracorporeal Membrane Oxygenation (ECMO) received a heart transplant. 

The study of these 8 families is the first WES study to incorporate this new approach to 

variant calling. This chapter therefore not only covers the design, implementation and 

testing of this approach; through BAMily, but also presents its first application. 

3.3. Methods 

I devised a novel approach to variant calling. To implement this new approach, I used the 

Java programming language. The program takes in a set of samples in the BAM file 

format (Li et al., 2009a) with a carrier status applied to each. The status allows the variant 

caller to distinguish samples in which we expect to see a mutated allele from those in 

which no such allele should be found. The program also allows users to set a number of 

variables, such as the number of independent alleles expected in the pool based on the 

relationship between individuals. Decryption of the binary-encoded BAM files is handled 

by the SAM-JDK library (The Broad Institute, 2015c). The calls that are generated by a 

variant caller are stored in files that follow the VCF file specification (Danecek et al., 

2011) although a few columns are specific to this implementation. The approach was 

implemented in a program: BAMily. The accuracy of calls made by this implementation 

was then tested. 

3.3.1. Measures of shared variant detection quality 

The value of our approach and its implementation can be measured in its ability to 

correctly identify variants shared by a predetermined subset of individuals that are absent 

in another subset. Both sequencing artefacts and variants that do not segregate with the 

predetermined pattern need to be excluded and are therefore considered negatives. A 

comparison of known genotypes with the variants presented by our caller allows us to 

estimate sensitivity and specificity of the program. In this context, sensitivity corresponds 
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to the rate with which the caller identifies variants that are known to follow the desired 

pattern of inheritance. Let        be to the number of variants known to follow the 

desired pattern of inheritance, where   corresponds to variants identified by the variant 

caller and   corresponds to those missed by the caller. We have: 

            
 

 
 

Specificity corresponds to the rate with which the caller excludes variants that do not 

follow the desired pattern of inheritance as well as genotype mis-assignments resulting 

from sequencing artefacts. Let       correspond to the number of variants that are 

known not following the desired pattern of inheritance, where   corresponds to variants 

correctly excluded by the variant caller, while   corresponds to those incorrectly detected 

by the caller. We have: 

            
 

 
 

Data produced using genotyping microarray provides a list of SNPs present in a single 

individual. Data from the individuals used for sequencing can be used to estimate the 

sensitivity and specificity of different variant callers. While it is true that microarray data 

are not devoid of error, it is sufficiently accurate for the purpose of estimating sensitivity 

and specificity, as was first published by Ng et al. (2009). Positions were separated 

between those that carried alleles that that followed the pattern of interest and those that 

did not. The former was used to estimate sensitivity while the latter was used to estimate 

specificity. Any positions not represented in the microarray were excluded. 

Exome sequencing and microarray data were obtained for 21 complete parent-offspring 

trios and a set of five additional individuals; three first cousins, their mutual uncle and 

one unrelated individual, from previous experiments. The 21 trios were obtained from a 

study of Tetralogy of Fallot (ToF) in which the offspring in each trio is the affected 

proband. Sequencing was performed on the Illumina GAIIx (Illumina, 2012b) with target 

enrichment for exome capture using SureSelect
XT

 Human All Exon 50Mb kit (Agilent 

Technologies, 2015).  The Infinium HD Human660W-Quad Beadchip (Illumina, 2015a) 

was used as genotyping microarray. The chip has markers for 657,366 SNPs and copy 

number variants (CNV) spanning the entire length of the genome. For each of the 21 trios, 

around 13,726 positions represented in the microarray were within sequencing targets. 
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The microarray data did not always provide a clear genotype assignment. For each trio, 

positions missing a genotype assignment were excluded from the evaluation. There are 

therefore some small differences in the number of positions represented per trio. In order 

to measure the effect of sample set size on caller performance, I used five samples; four 

originating from a single family, which were included in a large quantitative genetic study 

of hypertension. Figure 17 shows the corresponding pedigree for the 4 related individuals. 

In this case, the sequencing was performed on the Illumina HiSeq 2500 (Illumina, 2014b). 

Samples were aligned using BWA v0.7.4 (Li and Durbin, 2009). For the five additional 

individuals, genotypes were available for 14,087 positions. Differences between these 

two sets are largely due to differences in the sequencing platform used. 

 

Figure 17. Pedigree of the four related individuals included in my analysis. Samples were originally sequenced as 

part of a hypertension study. *Individuals sequenced. 

First I assessed variants shared between a father-child pair and absent in the mother in 

each of our trios. This corresponds to the variant calling step that would be used in the 

search for a paternally-inherited disease-causing variant. To do this, I derived a sensitivity 

and specificity measurement for each trio. This measurement was performed using five 

different variant callers: SAMtools v.0.1.18 (Li et al., 2009a), GATK UnifiedGenotyper 

v3.1.1 (DePristo et al., 2011), GATK+FamSeq, GATK+PolyMutt and BAMily. FamSeq 

v.1.1.0 (Peng et al., 2013) and PolyMutt v.0.1.5 (Li et al., 2012) used the genotype 

likelihoods produced by GATK. For each caller, with the exception of BAMily, I filtered 

for variants shared by father-child pair and not by the mother using their respective 

genotype calls. This last step is already integrated into BAMily’s design.  

I then made a series of sensitivity and specificity measurements on the additional five 

individuals, investigating the effect of the number of individuals analysed and their 

relatedness on sensitivity, specificity and the number of variants produced. Starting with 
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three samples, I first singled out variants shared between two related individuals and 

absent in the unrelated individual, getting an average sensitivity and specificity from each 

possible arrangement of samples. The same was done with four and five samples, each 

time searching for variants shared by the individuals that were related. Following this, 

using sample from all five individuals, I performed every possible combination of 

assuming non-carrier status of one, then two, of the related individuals and obtained 

sensitivity and specificity measures. The unrelated individual here serves to exclude 

variants that are not family-specific and to prevent common sequencing artefacts from 

being detected as variants. 

 

3.3.2. Application of BAMily to the WES study of 8 families 

The WES analysis of the 8 families follows some of the methods outlined in Chapter 2. 

As in other studies, sequencing was performed at the Institute of Genetic Medicine (IGM) 

using the Illumina Genome Analyzer IIx (GAIIx) (Illumina, 2012b). Target enrichment 

for exome capture was performed using SureSelect
XT

 Human All Exon 50Mb kit V4 

(Agilent Technologies, 2015) from Agilent Technologies, USA. I used BWA v0.7.4 (Li 

and Durbin, 2009) for sequence alignments, Picard (The Broad Institute, 2015c) for 

duplicate removal and BAMily for variant calling. In the analysis of each family using 

BAMily, I added one individual from Family 1 as non-carrier (I:3, see Figure 9) to better 

exclude any systematic errors that might be shared between individuals and therefore 

preclude the possibility of these errors being called as genuine shared variants. For 

comparison, I also called variants using SAMtools v0.1.18 (Li et al., 2009a). SAMtools 

assigns a genotype to each individual for every variant site. Variants were selected if the 

corresponding genotype assignments fit the pattern of inheritance agreed upon on at the 

outset of the analysis. This step was not required for BAMily, with the pattern of 

inheritance being set as part of the variant calling. For either caller, I excluded variants 

not called with high-confidence (Q30). I used the online implementation of Annovar 

(Chang and Wang, 2012) to access the latest version of annotation tools described in 

Chapter 2. In this particular case, I incorporated the ExAC (The Broad Institute, 2015a) 

population database into the analysis. Using a criterion of exclusion lower than that 

outlined in Chapter 2 (MAF≥1%), when filtering against the 1000genomes risks the 

exclusion of rare pathogenic variants, the database being based only on 1,092 genomes of 
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variable coverage, and thus the estimates of allele frequencies >1% being subject to 

considerable error (Abecasis et al., 2012). On the other hand, ExAC aggregates exome 

sequencing from 60,706 unrelated individuals meaning that alleles with frequencies >0.5% 

can be confidently recognised from the dataset as polymorphisms (The Broad Institute, 

2015a). I therefore excluded any variant with a MAF>0.5% in ExAC. I also filtered the 

list of variants against an in-house list of variants already found in 418 previous WES 

analyses. This step excludes variants that have been uncovered before in studies of 

different conditions undertaken at our institute. Those analyses used the same laboratory 

methods and similar bioinformatics pipeline, and are therefore likely to represent 

systematic errors rather than disease-causing variants of interest. MutationTaster 

(Schwarz et al., 2010), Polyphen-2 (Adzhubei et al., 2010) and LRT (Chun and Fay, 2009) 

were used to assess potential pathogenicity. The resulting list of variants was evaluated 

using resources such as the Online Mendelian Inheritance in Man (NCBI, 2015) and 

GeneCards (Rebhan et al., 1998) compendiums. These results provided information on 

the gene context for each variant. I also referred back to results from previous analyses, 

performed either by me or colleagues. I used the integrative genomics viewer (IGV) 

(Robinson et al., 2011) in order to inspect each variant’s sequence context. This tool was 

invaluable in picking out probable artefacts in low complexity regions and among indels. 

I selected probable disease-causing variants for validation if they appeared in genes which 

could conceivably play a role in the disease. For example, for a CHD phenotype, variants 

appearing in genes expressed in the embryonic heart or genes leading to a cardiac defect 

in mouse models were retained. I report the variants that were sent for validation in 

Section 3.4.5. I also used the opportunity presented by this analysis to look for CNVs. For 

this purpose, I used ExomeDepth (Plagnol et al., 2012). I looked for CNVs found across 

all putative disease variant carriers in a family that stretched across at least 0.1Mbs. The 

confidence with which each CNV call is made is given with a Bayes factor (BF). I 

selected CNVs called with high confidence (BF≥30). ExomeDepth requires controls, 

ideally with the same overall read depth. Sequence data from 20 of the parents of 

probands with transposition of the great arteries (TGA); presented in Chapter 4, were 

used as controls. 

3.4. Results 

In this section I first present the design for my new approach to variant calling which I 

implemented as the variant caller BAMily. I then present the results of multiple 
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performance tests which provide a means of assessing BAMily in the context of other 

widely-used variant caller. Finally, I report the results of the integration of BAMily in the 

WES studies of 8 families. 

3.4.1. A new approach to variant calling 

Let us assume that we have a set of sequenced individuals and some putative variant we 

hypothesise to be present in some individuals while absent in others. Let   be the number 

of individuals in which that variant is present and m the number of individuals in which it 

is absent. Let   represent the calling results from the entire pool of samples. For that same 

locus, let Si represent the calling results for individual  , such that              . Let 

  be the status for a variant in the pool and    the status for a variant in individual   such 

that              . At each locus, the presence of a variant is given as   while the 

absence of a variant is signalled by   . For each locus, we want to know the probability a 

variant is detected in   individuals and not detected in    individuals. My approach can 

be summed up as the following expression:  

                                               

                  

 

   

                  

   

     

 
(1) 

I use Bayes' theorem to determine the probability that a variant is present in individual  , 

given sequence data; from both the individual and pool, and the variant detection status in 

the pool of samples: 

                 
                                        

                                              
 (2) 

Conversely, the probability that a variant is not present in an individual given the data is: 

                                     (3) 

The characteristic feature of my method's two-step nature is the dependence of the variant 

status    on the pool's variant status  . 

Let us assume that for a variant to be detected in the pool, it must be present in at least 

one individual in that pool. Following this assumption, a variant will be present in at least 

one allele within a pool of   independent alleles. The probability of detecting a variant in 
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a single individual i therefore depend on detection in the pool. The probability of a variant 

in individual i given its presence in the pool is as follows: 

              
 

 
 (4) 

And the probability of absence is as follows: 

              
   

 
 (5) 

We assume that it is not possible for a variant absent in the pool to be subsequently 

present in any single individual. We can therefore make the following assertions: 

                 (6) 

                  (7) 

Given the calling results T, the probability of presence in the pool can also be obtained by 

applying Bayes' theorem: 

           
                 

                      
 (8) 

The probability of absence in the pool is similarly given by: 

                        (9) 

In order to define the prior probability of detecting a variant from the sample pool, we 

must first define the prior probability of a variant being present at a locus for a pair of 

individuals. Let that event be defined as    for an individual  . A generally accepted 

approximation for this is      (Li et al., 2008). For a small    , the prior can be 

extended to a pool of samples and approximated in the following manner: 

                      
 

    
      (10) 

This set of expressions has been implemented in the variant caller BAMily. 
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3.4.2. Base call accuracy across reads from individual 

Equation 2 requires a probability that the sequence data from individual   fits a particular 

detection assignment. The following equations are based on the genotype likelihood 

equation proposed for Heng Li’s statistical framework for SNP calling (Li, 2011). The 

sequence data    can be described as a set of   reads, with   reads corresponding to 

reference reads (alternatively, the base assignment with the highest count that is not the 

variant of interest) and     reads corresponding to reads showing the variant. We can 

describe these reads in terms of their error probabilities such that    is the error 

probability associated with read  . The error probabilities are determined from base and 

mapping scores in the PHRED format called quality scores. This format, along with the 

formula required to convert quality scores into error probabilities, are detailed in two 

papers (Ewing and Green, 1998; Ewing et al., 1998) and will therefore not be described 

here. How a quality score    is obtained from mapping and base quality is shown in 

Equation 16. From the genotype likelihood equation presented in Li (2011) we derive the 

following probabilities: 

                

 

   

        
 

  

 

     

 (11) 

                     

 

   

   

 

     

 

(12) 

As with other variant callers, error probabilities below a certain threshold are excluded. In 

this implementation, for a read   to be counted requires       ; although this value can 

be changed by the user. 

3.4.3. Base call accuracy across reads from pool 

Equation 8 also requires a probability that sequence data fit with a particular detection 

assignment. Let   be the error probability associated with all reads containing the variant 

of interest. We have the following probabilities: 

              (13) 

and 
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 (14) 

At each base position, there are 3 possible incorrect base call assignments, the sum total 

probability of which is given by the conditional error probability. Depending on the true 

base being interpreted by the sequencer, some erroneous base call assignments will be 

more or less probable. Given that we cannot know the true base being sequenced, we 

make the simplifying assumption that each incorrect assignment has an equivalent 

probability of arising in sequencing leading to Equation 14.  

The error probability for all reads containing the variant of interest   is obtained from the 

sum total of quality scores in the PHRED format once converted into error probabilities 

(Ewing and Green, 1998; Ewing et al., 1998). We can write this quality score   as the 

sum of quality scores for   overlapping reads containing the variant of interest with    the 

quality score for read  : 

     

 

   

 (15) 

Each base in a read is associated with a base call quality score    and a mapping call 

quality score   . The overall quality score qj combines these two qualities as follows: 

              (16) 

 

3.4.4. Caller performance 

I measured the running time of each caller on sequence data from five individuals. For 

five individuals, SAMtools requires approximately 8 hours to run. Given that BAMily 

reports a subset of all variants, its running time depends on the carrier status assigned to 

each individual. Running time for five individuals fluctuates between 6-8 hours. Both of 

these programs were run on a single core. By contrast, GATK's realignment and 

recalibration steps require an average 6 hours per sequenced individual, using two cores 

in each case. GATK’s UnifiedGenotyper then requires an additional 8.5 hours running on 

4 cores. FamSeq and Polymutt require GATK to run and therefore can offer no running 

time advantage. 
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I provide an array of sensitivity and specificity estimates for the five variant callers using 

the method describes in Section 3.3.1. I first performed measurements on trios, focusing 

on the shared variants between father and child, excluding all variants shared with the 

mother by either. From the sensitivity and specificity estimates obtained for 21 distinct 

trios, I determine an average sensitivity and specificity for each variant caller tested. 

Summaries of these results are provided in Table 4 and Figure 18 with the standard error. 

 SAMtools GATK FamSeq PolyMutt BAMily 

Sensitivity % 95.87 97.98 98.02 97.76 98 

Specificity % 99.62 99.91 99.87 99.91 99.91 

Table 4. Mean sensitivity and specificity computed over 21 trios compared to microarray data. These results are 

also reproduced in Figure 18.  

 

Figure 18. Mean sensitivity and specificity computed over 21 trios compared to microarray data. Represented 

with the mean is the standard error. Variants are required to be predicted as present in father and child, but not 

mother, to be called. GATK and BAMily are here shown to overlap. 

Over 21 parent-offspring trios, the combination of GATK+FamSeq presents the highest 

overall sensitivity. However, this comes at a cost in specificity. Likewise, the 

combination of GATK+Polymutt presents the highest overall specificity, but this comes 



 

62 

 

at the cost of sensitivity. GATK and BAMily sensitivity and specificity largely overlap. 

BAMily's average sensitivity appears higher, however the difference is not significant (p-

value=0.197, paired Wilcoxon signed-ranked test). However, it is important to measure 

BAMily’s performance when a larger sample set size is being used, since BAMily is 

designed to incorporate relationship information from multiple family members, and trio 

families would not be anticipated to fully utilise the advantages of this method. 

I therefore measured sensitivity and specificity for various sample set sizes using 

sequence data from three cousins, their mutual uncle and one unrelated individual, as 

shown in Figure 17. I first focused on variants shared between cousin pairs and cousin-

uncle pairs, excluding variants shared with the unrelated individual. I then proceeded to 

increase sample size by incrementally adding one of the remaining cousins or uncle to 

each pair. In each case, I identify variants shared between the newly added individual and 

related individuals from the previous call, excluding once more variants present in the 

unrelated individual. 

As sample size increases, we observe an overall increase in specificity and decrease in 

sensitivity. Additionally, we observe a decrease in the number of variants produced with 

an increased sample set size. Increasing the number of individuals in which shared 

variants are sought effectively reduces the number of candidates that will have to be 

screened. Within a particular set size, the number of variants produced decreases 

depending on genetic distance between samples. Samples from cousin trios produce more 

SNVs than uncle-cousins trios for example. GATK, GATK+Polymutt and BAMily show 

similarly high specificity while GATK+FamSeq displays the highest sensitivity for any 

case. As before however, the combination of GATK with either Polymutt or FamSeq 

leads to a decrease in one of these indicators. As with the parents-offspring trios, BAMily 

and GATK provide a similar balance between sensitivity and specificity. Results are 

presented in Table 5 and Figure 19. 

Still using the set of five individuals, I analysed the data assuming that one of the cousins 

or uncle was a non-carrier and produced variant calls excluding variants from that 

individual and the unrelated individual. This was repeated with each family individual, 

testing every possible combination and obtaining an average. I then assumed two samples 

were non-carriers and proceeded in the same manner. I found that specificity increases as 

the total number of variants produced is further reduced. As expected, the total number of 
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variants produced is higher with genetic distance from the non-carriers. In scenarios 

where the uncle was assumed to be a non-carrier, fewer variants were produced. 

Sensitivity and specificity for all callers start to align. However, with a smaller number of 

variants, one missed variant has a large impact on sensitivity as can be seen in the results 

shown in Table 6. 

 SAMtools GATK FamSeq PolyMutt BAMily 

Variants present in cousin-uncle pair, absent in unrelated individual (3 trios) 

Sensitivity % 96.88 97.79 97.98 97.51 97.73 

Specificity % 99.9 99.95 99.83 99.94 99.94 

False discovery % 1.05 0.53 1.8 0.62 0.62 

…in cousin-cousin pair, absent in unrelated individual (3 trios) 

Sensitivity % 96.74 97.72 97.86 97.51 97.72 

Specificity % 99.9 99.95 99.81 99.96 99.95 

False discovery % 1.12 0.54 2.14 0.45 0.6 

…in uncle-cousins trio, absent in unrelated individual (3 quartets) 

Sensitivity % 96.85 97.48 97.82 97.35 97.52 

Specificity % 99.91 99.96 99.83 99.96 99.94 

False discovery % 1.5 0.6 2.8 0.69 0.98 

…in cousins trio, absent in unrelated individual (1 quartet) 

Sensitivity % 96.7 97.11 97.25 96.97 97.11 

Specificity % 99.9 99.97 99.87 99.97 99.94 

False discovery % 1.82 0.56 2.35 0.56 1.12 

…in uncle-cousins quartet, absent in unrelated individual (1 quintet) 

Sensitivity % 96.66 97.01 97.36 96.84 97.01 

Specificity % 99.92 99.97 99.88 99.96 99.96 

False discovery % 1.96 0.72 2.81 0.9 1.08 

Table 5. Sequence data and microarray data comparison for various sample sizes with cousin-cousin and uncle-

cousins arrangements shown separately. In this table, positions refer to the positions covered by the microarray 

data. For a more complete set of metrics, see Appendix, Table S1. 
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Figure 19. Sequence data and microarray data comparison for various sample sizes (In this case, the average of 

cousin-uncle pairs is used to illustrate a sample size 2). Each point represents an increase in sample size when 

reading from right to left; with sensitivity decreasing. 
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 SAMtools GATK FamSeq PolyMutt BAMily 

Variants in cousins, absent in uncle and unrelated individual (1 quintet) 

Sensitivity % 96.2 96.2 96.2 96.2 96.2 

Specificity % 99.97 99.99 99.99 99.99 99.98 

False discovery % 2.56 1.3 1.3 1.3 1.94 

…in uncle-cousins trio, absent in one cousin and unrelated (3 quintets) 

Sensitivity % 95.99 97.18 97.92 97.18 97.77 

Specificity % 99.98 99.99 99.94 99.99 99.98 

False discovery % 1.37 0.91 3.64 0.91 1.33 

…in cousin pair, absent in uncle-cousin-unrelated trio (3 quintets) 

Sensitivity % 96.52 97.85 97.47 97.85 97.85 

Specificity % 99.98 99.99 99.98 99.99 99.99 

False discovery % 1.38 0.6 1.38 0.6 1.17 

…in uncle-cousin pair, absent in cousins-unrelated trio (3 quintets) 

Sensitivity % 95.38 97.03 97.38 97.18 96.84 

Specificity % 99.98 99.99 99.96 99.99 99.99 

False discovery % 1.83 0.5 2.65 0.69 0.69 

Table 6. Sequence data and microarray data comparison for a fixed sample size of five, assuming different pairs 

and trios of individuals to be non-carriers. In this table, positions refer to the positions covered by microarray 

data. For a more complete set of metrics, see Appendix, Table S2. 

The measurements shown in Table 4 and Figure 18 as well as Table 5 and Table 6 

indicate that BAMily is overall more sensitive and specific than SAMtools, more 

sensitive than GATK+Polymutt and more specific than GATK+FamSeq. For large 

sample set sizes ≥4, BAMily closely mirrors GATK's sensitivity as shown in Table 5, 

occasionally appearing more sensitive. Regardless of the sample size, BAMily's 

specificity is either matched or lower than that of GATK's. Given the diminishing size of 

the total variant output with each new sample, a slight decrease in specificity is not 

particularly disadvantageous. 

3.4.5. Analysis of the 8 families 

The analysis of 8 families using BAMily and SAMtools revealed a number of variants 

that appeared to have disease-causing potential. This demonstrates the applicability of the 

approach implemented as BAMily. Table 7 provides a list of candidates that were sent for 

validation.
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Family ID Phenotype Carrier status (genotype for SAMtools) Rare variants Predicted deleterious* Candidates retained 

   BAMily SAMtools BAMily SAMtools  

Family 1 HSP mother non-carrier, offspring 

(heterozygous) 

84 55 23 20 3** 

Family 2 ASD/AVSD All carriers (heterozygous) 25 1 3 1 0 

Family 3 BrS All carriers (heterozygous) 77 18 45 1 1**† 

Family 4 Complex CHD All carriers (not specified) 177 128 50 43 2 

Family 5 DORV All carriers (heterozygous) 175 116 36 39 5** 

Family 6 MAPCA Mother and offspring carriers, father non-

carrier/ Father and offspring carriers, 

mother non-carrier (heterozygous) 

69/94 64/74 17/23 27/24 1 

Family 7 ToF All carriers (heterozygous) 114 4 51 2 0 

Family 8 Relapsing 

cardiomyopathy 

All carriers (heterozygous in parents, 

homozygous in offspring) 

17 9 7 6 3 

Table 7. Number of rare variants detected by BAMily and SAMtools in each family following filtering. *Predicted as possibly delirious (or equivalent) by Polyphen2, MutationTaster 

and LRT; or an indel. **Candidates retained was not predicted as deleterious by all pathogenicity predictors. † Candidate was not found by BAMily.
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Family ID Position  Nucleotide and amino acid change 

(transcript)* 

Gene Validated 

Family 1 chr3:19479731 c.G1253A:p.R418Q (ENST00000328405) KCNH8 Yes 

 chr8: 11412934 c.G713A:p.R238Q  (ENST00000259089) BLK Yes 

 chr17:11572991 c.T3233G:p.I1078S (ENST00000262442) DNAH9 No 

Family 2 No candidates  

Family 3 chr16:88792738 c.C3922G:p.L1308V (ENST00000301015) PIEZO1 No 

Family 4 chr4:114276906 c.G7132A:p.E2378K  (ENST00000357077) ANK2 No 

 chr22:19213864 c.G1825A:p.D609N (ENST00000427926) CLTCL1 In progress 

Family 5 chr3:193855858 c.G679A:p.G227S (ENST00000232424) HES1 In progress 

 chr5:42700088 c.A602G:p.E201G (ENST00000230882) GHR No 

 chr5:118556760 c.G7679A:p.G2560D (ENST00000311085) DMXL1  No 

 chr6:87969514 c.C6167A:p.S2056Y (ENST00000369577) ZNF292 No 

 chr6:105609396 c.C389T:p.A130V (ENST00000254765) POPDC3 In progress 

Family 6 chr9: 139409980 c.G1858T:p.D620Y (ENST00000277541) NOTCH1 Yes 

Family 7 No candidates  

Family 8 chr2: 27427777 c.C757T:p.253W (ENST00000310574) SLC5A6 Yes 

 chr2: 29383269-

29383270 

c.1470_1471del:p.R490fs 

(ENST00000320081) 

CLIP4 Yes 

 chr5:1681999 c.G1324A:p.D442N (ENST00000332966) SLIT3 Yes 

Table 8. List of candidates selected for validation work from BAMily and SAMtools analysis. *For brevity, 

variant is shown for one transcript only. 

 In Family 1, I rediscovered three missense variants found in a previous analysis in genes 

KCNH8, BLK and DNAH9. All three were detected by SAMtools and BAMily. LRT was 

unable to produce a pathogenicity prediction for the variant in BLK, but both Polyphen2 

and MutationTaster predicted the variant to be deleterious. I sent the candidates for 

validation and two were found to be genuine variants, as show in Table 8. The variant in 

BLK was of particular interest. A review of the literature on BLK reveals that the gene 

coincides with a region previously associated with keratolytic winter erythema (KWE) 

(Appel et al., 2002). Beyond the fact that both KWE and HSP are skin disorders, they 

share similar symptoms such as the high skin pigmentation; or hyperkeratosis, and 

sclerosis of the hands and feet (Appel et al., 2002; Mercier et al., 2013). A parallel 

investigation of this family had found evidence that the variant causing HSP in Family 1 

was in the gene FAM111B (Mercier et al., 2013). The evidence supporting a causative 

role for the FAM111B variant was the presence of two more variants, including one de 

novo variant, in the same gene in four unrelated families exhibiting a similar phenotype 
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(Mercier et al., 2013). The FAM111B variant reported in that paper was not retained in 

my analysis, as it was predicted to be benign by the pathogenicity predictor 

MutationTaster. Nonetheless, this variant was detected by both BAMily and SAMtools. 

Despite these findings, BLK could still play a role in the disease, possibly as a phenotypic 

modifier. Study of the additional families with this very rare disorder would be necessary 

to test this hypothesis. ExomeDepth did not reveal any CNV candidates. 

In Family 2, BAMily and SAMtools found few variants both rare and predicted 

deleterious. In SAMtools, the only rare variant found to be deleterious by Polyphen2, 

LRT and MutationTaster had been identified in previous analyses, but had failed 

validation through Sanger sequencing. BAMily identified 25 rare variants segregating 

with disease but 15 were predicted to be benign by all pathogenicity predictors. 

Furthermore, several variants occurred within the same set of genes, suggesting false 

positives. For example, 13 variants were all found in killer cell immunoglobulin-like 

receptor (KIR) genes in a region known for being highly polymorphic (Middleton and 

Gonzelez, 2010). No candidates were retained. No rare CNVs were found to be shared 

between individuals. 

In Family 3, BAMily and SAMtools also found few variants when all filters were applied. 

BAMily identified 43 rare indels, but most were clearly false positives based on allele 

frequency in calls and further inspection in IGV. I therefore looked for rare variants 

predicted to be deleterious by at least one pathogenicity predictor. I selected a missense 

variant discovered through SAMtools in PIEZO1 and predicted to be deleterious by 

MutationTaster and Polyphen2. This variant was not found through BAMily. The gene 

encodes an ion channel protein which could play a role in vascular development (Ranade 

et al., 2014). Validation work revealed that the variant was present in only 4 of the 5 

sequenced individuals. The clinical genetics team responsible for the care of this family 

have since discovered a deletion spanning the entire length of SCN5A in all carriers 

(personal communication). SCN5A is the principal causative gene for BrS (Brugada et al., 

1993). This gene-wide deletion could not have been identified with the SNV-focused 

methods used in the comparison between variant callers. However, CNV analysis using 

ExomeDepth did corroborate this finding in all five carriers, with one notable distinction: 

the CNV was found to span the entire length of two genes rather than one, SCN5A and 

SCN10A. The latter has also been implicated in cases of BrS (Hu et al., 2014). Also, 

although deletions spanning SCN5A have been reported in BrS, deletions spanning both 
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SCN5A and SCN10A have not. The cardiac electrophysiology phenotype of the family 

was noted to be atypical for BrS; whether this reflects haploinsufficiency of both SCN5A 

and SCN10A will be the subject of further investigation.  The deletion also stretched 

across the last exon of the gene EXOG, a gene previously not thought to be involved in 

BrS. 

In family 4, given the difficulty in ascribing a mode of inheritance for the putative variant, 

I only filtered out homozygous reference genotypes, accepting any variant found in both 

sequenced individuals. I rediscovered a missense variant in ANK2 from a previous 

analysis through both SAMtools and BAMily. The gene is not known for playing a role in 

cardiogenesis, but has been associated with long-QT syndrome. However, the variant 

failed validation. Another particular missense variant stood out, being located in CLTCL1. 

This was again detected by both SAMtools and BAMily. 22q11.2 deletion syndrome 

typically encompasses CLTCL1 among other genes, suggesting that it could play a role in 

some of the phenotypes observed in patients with the syndrome (Michaelovsky et al., 

2012). CHDs present in patients with 22q11.2 deletion syndrome can include IAA and 

VSD (Kobrynski and Sullivan, 2007). ExomeDepth did not reveal any CNV candidates. 

In Family 5, I rediscovered three missense variants from one of my previous analyses. 

The variants were detected by both callers. The variants in GHR, DMXL1 and ZNG292 

respectively, failed to validate. I also found new candidates, again with both callers. I 

found a missense variant in HES1 predicted deleterious by MutationTaster, LRT and 

Polyphen2. HES1 in mouse is expressed in the second heart field during cardiogenesis 

and is essential for outflow tract development (Rochais et al., 2009). Loss of the gene in 

mice led to a displacement of the aorta over ventricles and a VSD (Rochais et al., 2009). I 

also found another missense variant in POPDC3 which, despite only being predicted to 

be deleterious by LRT was nonetheless of interest as it shares sequence similarity with 

BVES which is associated with another conotruncal defect, Tetralogy of Fallot; see 

chapter 5 (Wu et al., 2013). Both these genes were discovered based on a chick gene 

ortholog which is preferentially expressed during chick cardiogenesis (Andree et al., 

2000). HES1 and POPDC3 are now awaiting validation. No candidate CNVs were found.  

Given the difficulty in applying a carrier status to parents in Family 6, I ran BAMily 

twice for this family, each time with one of the parents identified as a disease carrier. 

Despite the large number of rare variants detected as a result, one candidate stood out due 
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to the family’s MAPCA phenotype. From the analysis in which the mother was predicted 

to be a disease-carrier, a missense variant in NOTCH1 was found in the two siblings and 

the mother by both BAMily and SAMtools. The variant was predicted as deleterious by 

all pathogenicity predictors. NOTCH1 is part of the Notch signalling pathway which 

plays a key role in cardiogenesis (Niessen and Karsan, 2008). MAPCA has been 

identified as a secondary cardiac anomaly in patients with ToF harbouring a JAG1 

mutation (McElhinney et al., 2002). This is significant as JAG1 is part of the Notch 

signalling pathway (Niessen and Karsan, 2008). In NOTCH1, mutations have been 

reported as causing a range of aortic valve diseases (Garg et al., 2005). No candidate 

CNVs were found. 

Few variants were found by SAMtools and BAMily together in Family 7, none of which 

were convincing candidates. BAMily detected 51 rare variants predicted to be deleterious 

by MutationTaster, Polyphen2 and LRT. However, 30 were indels, most of which were 

likely false positives; which I determined using IGV. Multiple variants were found in the 

same genes. For example, 9 missense variants were found in CTBP2 suggesting these 

were false positives. No candidates were retained. Additionally, no large rare CNVs were 

found to be shared among them. 

In Family 8 both lists of variants predicted to be deleterious shared 3 variants, which 

corresponded to the candidates selected. Three candidates, in CLIP4, SLC5A6 and SLIT3 

respectively were validated. The variant in CLIP4 was a frameshift deletion. The gene is 

expressed in vascular endothelial growth factor-induced embryoid bodies (Rebhan et al., 

1998). The other two candidates are missense variants predicted to be deleterious by all 

pathogenicity predictors. SLC5A6 is a sodium-dependent multivitamin transporter 

(Rebhan et al., 1998). It has been found to be expressed in the embryonic mouse heart at 

E14.5. SLIT3 is expressed in cardiomyocyte-like progenitor cells (Rebhan et al., 1998). It 

is also expressed in rat vascular smooth muscle cells. Mice with a disrupted Slit3 gene 

show right ventricular hypertrophy (Eppig et al., 2015). No candidate CNVs were added 

to this list. 

3.5. Discussion 

3.5.1. BAMily performance 

I assessed five different variant callers: SAMtools, GATK, GATK+FamSeq, 

GATK+Polymutt and BAMily. By comparing genotype and sequence data, I estimated 
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the sensitivity and specificity of each of these variant callers given sequence data from 

three to five individuals, with different degrees of relatedness. For each variant caller, I 

recorded the total running time required to call variants for five individuals. For GATK, 

crucial pre-calling steps such as base quality score recalibration were factored into 

running time measurements. 

When comparing standalone variant callers; SAMTools, BAMily and GATK, the latter 

two presented the best balance between sensitivity and specificity overall. The variant 

callers that rely on GATK, FamSeq and Polymutt, would typically be expected to build 

on GATK's sensitivity and specificity advantage, providing a marked improvement in at 

least one metric without significantly affecting the other. However, my tests revealed a 

different picture. Figure 18 and Table 5 and Table 6 show a gain of sensitivity when 

FamSeq was applied to GATK output in most of the scenarios I tested, but at the expense 

of specificity. The GATK+FamSeq calling strategy produced the lowest specificity across 

all five callers tested. With Polymutt, the gains for the scenarios we have tested were even 

less clear. Polymutt provided a slight advantage in specificity overall, best illustrated in 

Figure 18, but in many cases, GATK specificity remained unchanged where Polymutt 

was applied. The overall sensitivity attributed to Polymutt was lower than GATK's, as is 

apparent in Table 5. For the scenarios shown in Table 6 sensitivity remained unchanged 

whether PolyMutt was applied or not, with only one exception. From these measurements, 

I conclude that, for the scenarios explored, Polymutt and FamSeq do not lead to an 

improvement of the results already produced by GATK. 

With data from five individuals, BAMily and SAMtools were able to produce variant 

calls in less than 9 hours running on a single core. By contrast, GATK's genotyping step 

alone required a similar amount of time to run on four cores. To this running time must be 

added that of recalibration and realignment steps that preceded genotyping and that also 

required multiple cores in order to run smoothly. GATK's total core running time was 

largely in excess of what was observed for SAMtools and BAMily. Thus, SAMtools and 

BAMily present a substantial running time advantage over GATK. 

While SAMtools and BAMily present running times that fall within the same range, 

BAMily had an overall higher sensitivity and specificity. Accounting for running time, 

sensitivity and specificity together, BAMily presents a discernible advantage over GATK 

as well. While GATK and BAMily have comparable sensitivities and specificities across 
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a number of scenarios, BAMily is able to deliver results in substantially less time. With 

my approach thus provides an advantageous balance between sensitivity, specificity and 

running time. Studies that aim to uncover variants present in one set of individuals and 

absent in another can greatly benefit from variant calling following this approach. 

3.5.2. BAMily’s usage in the analysis of 8 families 

The design and implementation of a new approach to variant calling provided an 

opportunity to re-analyse families for which samples were sequenced, but no disease-

causing candidates were found. Having undergone several rounds of analysis with no 

success, many of these cases are likely to remain unresolved with current WES 

approaches. Gilissen et al. (2012) reported a similar experience, with 60% of their WES 

projects centred on Mendelian disease leading to the discovery of causal variants, leaving 

many cases unresolved. However, some families could be elucidated with the shifts in 

approach that a variant caller such as BAMily can provide.  

Using BAMily and SAMtools to analyse these 8 families revealed candidates in 5 out of 8 

families. At the time of writing, many validations are still in progress (performed by 

laboratory colleagues and not part of my thesis work). However, for two families, 

candidates have already been succesfully validated. In Family 1, this is the case for a 

variant in BLK. The gene in which the mutation was found has been implicated in the 

development of KWE, which shares characteristics with HSP (Appel et al., 2002). As 

mentioned briefly in Section 3.4.5, a candidate in FAM111B was found through a cross-

collaboration predating my analysis. This variant had been missed from several analyses 

as it was classified by MutationTaster as benign. The presence of two other variants in the 

same gene in four distinct families with HSP provided evidence that the gene was 

probably misclassified (Mercier et al., 2013). Although this variant appears to be the 

likeliest cause of HSP in Family 1, there is still room to consider the variant in BLK as a 

candidate or a contributing factor to the disease. In Family 8, three variants were 

validated, in SLIT3, CLIP4 and SLC5A6. Of particular interest is the variant in SLC5A6; 

solute carrier family 5 member A6, as another gene encoding for a solute carrier, 

SLC25A3, has previously been implicated in cardiomyopathy (Mayr et al., 2007). 

Demonstrating the disease-causing potential of any of the candidates listed in Table 7, 

through experimental assays for example, would provide further validation for the new 

approach to variant calling proposed implemented with BAMily. 
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3.6. Conclusion 

In this chapter, I designed and programmed a new variant caller; BAMily, based on a new 

approach to variant calling. This approach focuses on detecting variants that are 

distributed in a specific way among a group of individuals. As such, it is primarily 

targeted at pedigrees. I evaluated the performance of the caller against other available 

programmes and confirmed it had comparable; and occasionally higher, accuracy coupled 

with its reduced computation demand. I incorporated the caller to a WES analysis of eight 

families for which previous analyses using older approaches had been unsuccessful. The 

use of the new caller resulted in the identification of strong candidate genes in two 

families that will require biological validation in future work. This completely new 

approach to variant calling will also be useful for future WES studies. 
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Chapter 4. De novo mutations in transposition of the great arteries
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4.1. Summary 

Transposition of the great arteries (TGA), while being one of the more common and 

severe forms of CHD, still remains poorly understood. The absence of familial precedents 

for the disease (in particular, relatively low sibling recurrence risks) has led to the 

hypothesis explored in this chapter that the manifestation of TGA in these individuals is 

the result of single, rare, large effect, de novo mutations. The following study focuses on 

the identification of de novo variants via whole-exome sequencing and analysis of family 

trios and one quartet. With this study I attempt to identify genes that play a role in normal 

development of the great arteries and that, when mutated, predispose to TGA. Three 

different variant callers are used towards fulfilling these aims: SAMtools, GATK and 

BAMily, with the latter acting as a filter. The variants called as a result are the main focus 

of the study. 

4.2.  Introduction 

4.2.1. Transposition of the great arteries. 

As briefly described in chapter 1, TGA is one of the most common and severe forms of 

CHD, but its origins remain poorly understood (Unolt et al., 2013). With an incidence of 

0.2 per 1,000 live births, it is the fourth most common CHD (Unolt et al., 2013; Saremi, 

2014). Untreated, TGA carries a 95% mortality rate in the first year of life (Saremi, 2014). 

Isolated cases represent half of all TGA while cases accompanied by extra cardiac defect 

account for 10% of all TGA (Martins and Castela, 2008). TGA takes on a number of 

forms, but can be broadly categorised as either dextro-transposition of the great arteries 

(D-TGA) or levo-transposition of the great arteries (L-TGA).   

D-TGA is the most frequent form of TGA. Patients with D-TGA have switched arteries 

arising from the ventricles (Saremi, 2014). The aorta arises from the right ventricle, while 

the pulmonary artery arises from the left ventricle. This creates two separate circuits, with 

oxygen-poor blood circulating around the body while oxygen-rich blood is continually 

recirculated to the lungs. In a little over half of D-TGA cases, the pulmonary artery and 

aorta run parallel to each other instead of crossing as they would in a normal heart 

(Saremi, 2014). 
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Figure 20. Dextro-transposition of the great arteries (D-TGA). In the above case, the TGA is accompanied by an 

ASD and PDA. Arrows indicate blood flow.  Abbreviations: RA: right atrium, RV: right ventricle, LA: left 

atrium, LV: left ventricle, SVC: superior vena cava, IVC: inferior vena cava, MPA: main pulmonary artery, Ao: 

aorta, TV: tricuspid valve, MV: mitral valve, PV: pulmonary valve, AoV: aortic valve. ASD: atrial septal defect, 

PDA: patent ductus arteriosus. Image from the Centers for Disease Control and Prevention, National Center on 

Birth Defects and Developmental Disabilities available at: http://www.cdc.gov/ncbddd/heartdefects/TGA.html 

L-TGA is the rarer form of TGA, accounting for less than 1% of all CHDs (Warnes, 

2006). Patients with L-TGA have both switched arteries and atria. As a consequence, 

normal blood flow is maintained (Warnes, 2006). For this reason, L-TGA is also 

commonly referred to as congenitally-corrected TGA (C-TGA). 

The exact mechanisms at work during embryological development that lead to TGA 

remain largely unknown (Unolt et al., 2013). Two theories have been advanced on the 

subject. One theory, proposed by Goor and Edwards (1973),  describes TGA as the result 

of an incomplete rotation of the aorta around the body’s vertical axis, towards the left 

ventricle. The arteries find themselves aligned over the wrong ventricular outflow tracts. 

This theory is inspired by Goor’s own observations on human embryos (Goor et al., 

1972).  Goor and Edwards’ theory also accounts for various other conotruncal defects, 

such as double outlet right ventricle (DORV) and tetralogy of Fallot (ToF). These defects 

also present a displacement of the arteries relative to the ventricles. In patients with 

DORV, the aorta and pulmonary artery arise from the right ventricle (Obler et al., 2008). 

In patients with ToF, described in chapter 1 and chapter 5, the aorta is displaced over both 



 

77 

 

ventricles while the pulmonary artery is stenotic (Nelson et al., 2014). According to this 

theory, each distinct defect is the product of the same incomplete rotation, arrested at 

different stages of development, with TGA representing the most extreme end of the 

spectrum (Unolt et al., 2013). Another theory, proposed by De la Cruz et al. (1977) sees 

TGA as the result of an abnormal development of the wall that separates the developing 

aorta and pulmonary artery. Instead of developing as a normal spiral, it develops linearly, 

the future aorta positioning itself above the right ventricle, leading to TGA. A recent 

study by Bajolle et al. (2006) lends more credibility to the first theory. By studying mice 

with mutated Splotch and Pitxc2δc genes, the authors were able to experimentally 

associate conotruncal defects with the arrested rotation of the aortic outflow tract.  

A number of environmental risk factors are thought to contribute to the development of 

TGA. Martins and Castela (2008) point to maternal exposure to a number of teratogens; 

rodenticides, herbicides and antiepileptic drugs, and maternal diabetes as some risk 

factors. Maternal diabetes,  has been identified as a risk factor for CHD in general (Wren 

et al., 2003). Wren et al. (2003) report a 5-fold increase of CHD in newborns with 

diabetic mothers. However, maternal diabetes is especially relevant to TGA. TGA 

represents 14.4% of all CHD in newborns with diabetic mothers (Wren et al., 2003). In 

this case, Wren et al. (2003) report a 17-fold increase in TGA in newborns with diabetic 

mothers (Wren et al., 2003). Other environmental risk factors associated with TGA 

include maternal infection, ingestion of ibuprofen and exposure to ionising radiation 

during pregnancy and in vitro fertilisation (Unolt et al., 2013).  

The genetic underpinnings of TGA remain largely unresolved. Unlike many other CHDs, 

TGA is rarely observed in association with a chromosomal defect (Fahed et al., 2013). 

Because of the extremely high and early mortality rate associated with the disease 

preceding recent surgical advances (Saremi, 2014), variants that contribute to disease risk 

are unlikely to be common in the population. For common variants to influence TGA risk 

would require some form of balancing selection given the deleteriousness of the disease. 

Additionally, highly penetrant dominant variants are unlikely to be passed on. Familial 

cases of the disease are thus expected to be particularly rare. 

In the study by Burn et al. (1998) first mentioned in chapter 1, no cases of parent-

offspring TGA were reported. Burn et al. (1998) suggest therefore that TGA is a sporadic 

defect. However, in their comment on the study, Digilio et al. (1998)  point to several of 
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their studies that support Mendelian inheritance of TGA in a select number of cases. In 

one such study, Digilio et al. (2001) found recurrence risks of CHD of 0.5% and 1.8% in 

parents and siblings of patients with TGA. The authors propose that some of this risk can 

be explained as cases of monogenic or multigenic inheritance. These few possible 

examples of familial TGA establish some genetic basis for the disease. However, the 

majority of TGA cases are sporadic (Digilio et al., 2001). Given these facts, it can be 

hypothesised that de novo mutation may play a substantial role in accounting for sporadic 

TGA. 

TGA is rarely accompanied by extracardiac defects, with the exception of laterality 

defects (Unolt et al., 2013). TGA has been reported in cases of heterotaxy, a disease 

where organs develop on the opposite side of the body leading to a host of morphological 

defects (De Luca et al., 2010). TGA has been frequently reported as part of asplenia 

syndrome, a type of heterotaxy characterised by the absence of a spleen (Unolt et al., 

2013). In mice, knockouts of Smad2 and Nodal genes lead to TGA, with an added right 

pulmonary isomerism; where the morphology of the left lung takes on characters of the 

right lung, usually in more than half of cases (Unolt et al., 2013). The association 

between laterality defects and TGA has led researchers to study genes involved in 

establishing the left-right body plan in isolated TGA cases (Goldmuntz et al., 2002; De 

Luca et al., 2010). A study by De Luca et al. (2010) found mutations in FOXH1, ZIC3, 

NKX2.5 and NODAL in familial TGA cases. CFC1 has also been implicated in patients 

exhibiting TGA (Goldmuntz et al., 2002). A recent study of 362 cases of severe CHD 

included 47 patients with TGA (Zaidi et al., 2013). Three de novo variants were 

uncovered in TGA patients: one in a known laterality gene, SMAD2, and two in genes not 

previously-associated with TGA or laterality defects, NAA15 and RAB10. The WES study 

presented in this chapter is focused entirely on TGA. The probands used for the study 

comprise 32 patients exhibiting the disease. There is no previous family history of CHD 

in any of these cases. This leads to the hypothesis that the disease phenotype is brought 

about by single rare large effect de novo mutations. 

4.2.2. Family-based WES for uncovering de novo mutations  

Each individual is born with several variants that they do not share with either of their 

parents. Such mutations arise in the parental gametes, and occasionally during early 

embryonic development, and are referred to as de novo (Ku et al., 2012). Before the 
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advent of NGS, estimates of the rate of de novo per base mutation in a single genome for 

a single generation varied between 1.1×10
-8

 and 3×10
-8

 
 
(Conrad et al., 2011). Using 

WGS, Conrad et al. (2011) provide a similar, yet more accurate, per base estimate of 

1.18×10
-8

. This translates to an average of 74 new single nucleotide variants (SNVs) per 

newborn, with variation in rate between individuals found to be correlated with paternal 

age (Kong et al., 2012; Veltman and Brunner, 2012b). With a genome that spans over 3 

billion base pairs, any two unrelated individuals are exceedingly unlikely to share a de 

novo variant. De novo mutations will also tend to be more deleterious on average, having 

not been subjected to selection over multiple generations (Veltman and Brunner, 2012b). 

This leads Veltman and Brunner (2012b) to conclude that de novo mutations are the likely 

source of many sporadic disease cases. 

An estimated 85% of all deleterious mutations are expected to lie in the protein-coding 

regions contained in the human exome, which itself covers 1% of the genome (Majewski 

et al., 2011). Using the figures above, we can estimate the rate of de novo variants in the 

exome to be 0.74 on average per newborn. An earlier estimate by Robinson (2010) placed 

that figure at around 0.89. However, these mutations are expected to play a significant 

role in non-inherited; or sporadic, disease (Veltman and Brunner, 2012b). De novo 

variants are more deleterious on average than inherited variants, that have been subject to 

natural selection over many generations (Veltman and Brunner, 2012b). A single de novo 

could therefore be responsible for a sporadic disease in an individual.  

Both de novo CNVs and SNVs contribute to the risk of a number of neurodevelopmental 

diseases, such as autism spectrum disorder (AD) and schizophrenia. In chapter 1, I 

described one study by Sanders et al. (2012) which revealed an excess of non-

synonymous de novo variants in 238 patients with autism spectrum disorder (AD) when 

compared with 200 healthy siblings. Focusing on truncating de novo variants in genes 

expressed in the brain revealed a large contrast, with an odds ratio of truncating to 

synonymous variant in cases and controls of 5.65. A more recent example, a large-scale 

study of de novo variants in 1,078 AD patients compared with 343 unaffected siblings, 

revealed an excess of genes with more than two de novo non-synonymous variants in 

patients (Samocha et al., 2014). Samocha et al. (2014) compare their results against a 

model of the rate of de novo mutation per gene; with the rate of mutation overall and in 

functional subsets factored in as well, for each variant type. The number of mutation 

events in healthy siblings was found to fit the model. However, an excess of truncating 
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variants was found in AD patients. Furthermore, an excess of genes with at least 2 de 

novo mutations was found in AD patients for all variant types except synonymous 

variants. Here again, results from the healthy siblings fit the model’s expectations. These 

findings strongly implicate de novo mutation affecting specific protein-coding genes in 

the development of sporadic AD. One study of AD by O’Roark et al. (2012b) was able to 

establish a paternal bias in de novo variants, accounting for the increase of AD risk with 

paternal age using a combination of gene sequencing. O’Roark et al. (2012b) sequenced 

the exome of 209 trios and 50 unaffected siblings, using markers for haplotype phasing to 

determine the origin of de novo variants. Studies suggest that de novo variants could also 

play a role in the manifestation of schizophrenia (Xu et al., 2011). While schizophrenia 

shows a strong familial preponderance, patients with no family history have been reported 

(Xu et al., 2011). Several studies of schizophrenia have focused on the contribution of de 

novo copy number variants (CNV) to the disorder, including one study by Xu et al. (2008) 

which found that de novo CNVs were 8 times more frequent in 152 schizophrenia patients 

then in 159 unaffected patients. To identify de novo SNVs potentially contributing to 

sporadic cases of schizophrenia, Xu et al. (2011) sequenced the exome of 53 parents-

offspring trios; in which only the offspring had schizophrenia, and 22 unaffected trios. Xu 

et al. (2011) found a large excess of non-synonymous de novo variants in patients with 

schizophrenia compared with healthy controls. They also found a ratio of de novo non-

synonymous variants to de novo synonymous variants in the case population exceeding 

what would be expected in the general population. It remains difficult to demonstrate 

which particular de novo variants contribute to these neurodevelopmental disorders, 

particularly if the genes have not previously been implicated in the disease. However, in 

all these studies, the excess of non-synonymous variants; especially truncating variants, 

strongly suggest an important role for de novo variants in these pathologies. 

For CHD, the role of de novo mutation has been investigated in a study conducted by 

Zaidi et al. (2013). The authors have chosen to focus on severe sporadic CHD cases; 

which include TGA cases. Presumably, this choice was operated under the assumption 

that severe cases would be more likely to be caused by de novo variants. The authors 

selected 4,169 genes known to be highly expressed during mouse cardiogenesis and 

compared the incidence of de novo variants in gene orthologs in 362 severe CHD patients 

and 264 controls originating from parent-offspring trios. Zaidi et al. (2013) uncovered a 

significant excess of de novo changes; both synonymous and non-synonymous, in the 
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selected genes in CHD cases compared to controls. The contrast between cases and 

controls was more pronounced for truncating variants, amounting to an odds ratio of 7.5. 

This excess was particularly pronounced in histone-modifying genes. Many of the genes 

in which de novo variants were found involved the writing, removing and reading of 

histone methylations. This class of genes is known for its regulation of gene expression 

(Bruneau and Srivastava, 2014). Mutations in those genes could therefore have far-

reaching consequences on cardiac cell differentiation, potentially leading to many of the 

defects observed in CHD patients (Bruneau and Srivastava, 2014). Based on the rate of 

non-synonymous de novo variants in these gene orthologs in cases compared to controls, 

Zaidi et al. (2013) put forward the idea that de novo mutation contributes 10% of severe 

CHD (95% confidence interval: 5-15%). Ultimately, this estimate relied on similarities in 

high gene expression during cardiogenesis between mice and humans and could therefore 

be an underestimate (Zaidi et al., 2013). It is also important to emphasise here that this 

conclusion pertains only to severe CHD. In a commentary, Bruneau and Srivastava (2014) 

reported this last conclusion by Zaidi et al. (2013) as applicable to sporadic CHD in 

general. However, it is possible that de novo mutation does not play as great a role in 

milder forms of sporadic CHD. 

The study of putative de novo mutations underlying genetic diseases requires the 

sequencing of disease patients and their unaffected parents (Bamshad et al., 2011). For 

rare genetic diseases, it is possible to first identify potentially de novo candidate 

mutations in cases via WES and then confirm which mutations are de novo via gene-

targeted Sanger sequencing of the entire family trio or by using modified molecular 

inversion probes (O'Roak et al., 2012a). An early study by Hoischen et al. (2010) 

illustrates this practice with the WES of four patients with Schinzel-Giedion syndrome. 

Patients with Schinzel-Giedion syndrome present severe mental retardation, distinctive 

facial features and several organ and bone abnormalities (2010). In each of the four 

patients, Hoischen et al. (2010) uncovered a variant at a different locus in SETBP1. 

Confirmation of the variant and its de novo nature was obtained through targeted 

sequencing of the corresponding family trios. Hoischen et al. (2010) also used targeted 

sequencing on eight more cases, revealing additional variants, the total set clustering 

within an 11bp exonic region. However, locus heterogeneity is common in genetic 

disease, whereby mutations occurring in distinct genes lead to the same disease trait 

(Veltman and Brunner, 2012b). In this context, the putative disease-causing de novo 
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mutations in individuals exhibiting a shared disease phenotype could be located in 

different genes, making it difficult to pick out likely candidate genes. Studies involving a 

disease trait for which locus heterogeneity is suspected call for entire trios to be analysed 

via WES. Neurodevelopmental disorders illustrate the fact that de novo mutations at 

different loci can lead to the same trait (Hoischen et al., 2014). Hoischen et al. (2014) 

report that schizophrenia could be the product of mutation in more than 500 distinct genes. 

The first study involving the WES of parent-offspring trios was performed by Vissers et 

al. (2010) and centred around 10 patients with sporadic mental retardation. De novo non-

synonymous variants were identified in 9 genes, with six variants retained as probably 

disease-causing based on functional evidence. Crucially, these six de novo variants were 

all found in distinct genes. The CHD study by Zaidi et al. (2013) previously mentioned 

provides another example of locus heterogeneity. A total of 37 genes in cases were found 

to harbour potentially disease-causing de novo variants, with 34 genes harbouring only 

one variant. Furthermore, the authors estimate to total number of disease-associated genes 

to be around 400. 

The following study involves 32 patients exhibiting TGA. By sequencing the 31 

corresponding parent-offspring trios as well as a single nuclear family of four (the 

additional sibling being unaffected), I seek to uncover de novo mutations potentially 

responsible for triggering TGA. Multiple variant callers are enlisted for this purpose, 

producing a consensus list of candidate variants. For those variants most likely to be 

pathogenic, validation work was performed by colleagues based in the laboratory. Several 

layers of annotation, data-mining and pathway analysis are used to elucidate a potential 

association between each variant and TGA. 

4.3. Methods 

The sequencing of the samples required for this study was shared between three institutes: 

Newcastle’s Institute of Genetic Medicine (IGM) and the Glasgow Polyomics (GP) 

research facility in the United Kingdom and the The McGill University and Génome 

Québec Innovation Centre (MUGQIC). The share of sequencing was distributed as shown 

in Table 9. Target enrichment was performed using Agilent’s SureSelect
XT

 Human All 

Exon 50Mb kit V4 (Agilent Technologies, 2015). The quality control applied to 

sequencing does not differ from what was described in Chapter 2. 
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Institute 
Patients 

sequenced 

families complete 

after sequencing 

First sequencing 

run date 

Last sequencing 

run date 

IGM 43 12 23/08/2012 08/03/2013 

GP 24 22 16/05/2013 25/07/2013 

MUGQIC 30 32 05/03/2014 20/10/2014 

Table 9. Distribution and duration of WES for institutes involved. Sequencing was spread across the duration of 

the PhD. 

The sequencing of 32 families was spread across the entire PhD project. As such, I have 

re-analysed families on multiple occasions, prompting progressive refinements to the 

methods used. For the purpose of this thesis however, I will focus primarily on the 

methods used in my final analysis. 

I performed sequence alignment for 97 samples using the aligner BWA v0.7.4 (Li and 

Durbin, 2009). Originally, I used NovoAlign v2.7.13 (Novocraft, 2014b). However, 

NovoAlign’s main advantage, namely its higher sensitivity, comes at the price of a longer 

running time (Novocraft, 2014a). With the significant number of individuals involved in 

this study and limited computing resources at first, I eventually selected BWA v0.7.4 (Li 

and Durbin, 2009) over NovoAlign. For consistency, I re-aligned the few samples 

originally aligned using NovoAlign with BWA. I removed duplicates using Picard (The 

Broad Institute, 2015c). 

During the project, I used three different variant callers to identify variants present in the 

aligned sequence samples: 

 SAMtools V0.1.18 (Li et al., 2009a) 

 GATK UnifiedGenotyper v.2.2.9 (DePristo et al., 2011) 

 BAMily (For more details, see chapter 3) 

SAMtools and GATK UnifiedGenotyper were used to create a consensus list of high-

confidence variants. There are some discrepancies between variant callers, even when 

only high-confidence variants are considered (O'Rawe et al., 2013). These discrepancies 

are particularly evident with indels which are generally more difficult to detect than 

SNVs (O'Rawe et al., 2013). The assumption here is that variants reported by two widely-

used callers are more likely to reflect the existence of actual variants. Consensus between 

callers therefore serves as a final quality filtering criterion for candidate variant selection. 

BAMily’s strength resides in its ability to detect variants present across multiple samples 
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and absent across others, even if the evidence for occurrence in single samples is weak. 

Using BAMily to detect variants present in a single proband will produce many more 

false positives than in SAMtools and GATK. However, BAMily can help with the 

exclusion of false positives that arise from variants being called incorrectly in parents. In 

this study, BAMily therefore plays the role of a filter. The process by which BAMily calls 

variants across multiple samples is described in chapter 3. The consensus between 

SAMtools and GATK, with the filtering step provided by BAMily, results in a final 

consensus list of variants. 

I performed variant calling using SAMtools and BAMily by family unit. For each variant 

site, SAMtools assigns a genotype to each member of the trio. I searched variant sites at 

which the genotypes were consistent with a de novo variant in the offspring. In other 

words, I selected variant sites where the offspring was predicted to be heterozygous for 

the variant while both parents were predicted as homozygous for another base, most 

likely the reference. BAMily does not require this filtering step, as the expected variant 

assignment for each individual must be established prior to variant calling, as discussed in 

chapter 3. I therefore set BAMily to provide calls for variants present in the offspring, but 

absent in parents; and sibling in the quartet. With GATK’s UnifiedGenotyper, all aligned 

samples were called for variants in a single run. As detailed in chapter 2, variant calling 

with the UnifiedGenotyper is preceded by a number of realignment and recalibration 

steps. As with SAMtools, I filtered for variant sites for which the genotype assignment 

suggested a de novo variant. For all variant callers, variants outside the exome target 

regions were excluded. As described in chapter 2, I only considered variants that passed 

the high-confidence quality threshold Q30. As variants found to be de novo are unlikely 

to reoccur in any of the other trios, I excluded variants found in any of the 32 pairs of 

parents and the unaffected offspring. 

The resulting variants were then annotated using ANNOVAR (Wang et al., 2010). 

Variants were retained if they represented non-synonymous changes in an exonic or 

splice region and were rare. A variant was considered rare if it had a minor allele 

frequency (MAF) of <1% according to both the 1000g (Abecasis et al., 2012) and the 

NHLBI Exome Sequencing Project (ESP) (NHLBI, 2015) population databases. In 

addition to the population databases from ANNOVAR (Wang et al., 2010), an in-house 

list of variants detected in previous exome studies; totalling 418 exome sequences, helped 

to exclude more variants from the list. 
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The filtered list of variants detected by SAMtools and GATK produced several candidates. 

Candidates were further prioritized depending on the consensus of multiple functional 

prediction tools. Originally, these were limited to MutationTaster (Schwarz et al., 2010) 

and Polyphen2 (Adzhubei et al., 2010), but LRT (Chun and Fay, 2009) and 

MutationAssessor (Reva et al., 2011) were eventually incorporated into the analysis. The 

full list of prioritised variants is presented in the Section 4.4. 

The Integrative Genomics Viewer (IGV) (Thorvaldsdottir et al., 2013) provided an 

additional tool for inspecting candidates and eliminating variants in high repeat regions or 

indels that appeared to be artefacts when viewed in their full sequencing context. This 

was followed by a review of the genes candidate variants appeared in, using the Online 

Mendelian Inheritance in Man (NCBI, 2015) database as well as several resources housed 

by the GeneCards compendium (Rebhan et al., 1998). Variants selected as candidates 

were communicated to colleagues (see acknowledgments) at the IGM and at Manchester 

University’s Institute of Cardiovascular Sciences for validation through Sanger 

sequencing. 

I investigated the genes in which de novo variants were found using a number of pathway 

analysis tools. I first analysed genes in STRING v.10 (Jensen et al., 2009), followed by 

EnrichNet (Glaab et al., 2012). STRING provides a method for evaluating and visualising 

potential functional links between proteins (Jensen et al., 2009). The functional links are 

built around several categories of evidence; represented as color-coded edges in 

STRING’s network view, that tie the activity of two proteins; or their putative homologs 

in other species, together (Jensen et al., 2009). Evidence in each category is accompanied 

by a confidence score which adds up to a combined score; on a scale from 0 to 1. 

Functional links with a score above 0.4 are represented as edges in STRING’s network 

view (Jensen et al., 2009). I looked at the functional links between the protein products of 

the genes from my final list of variants. Additionally, I looked for enrichment in gene 

ontology (GO) terms (Gene Ontology, 2004) and KEGG interaction pathways (Kanehisa 

and Goto, 2000). Applying my own scripts to STRING data, I determined the shortest 

functional pathways between protein products. Using EnrichNet, I interrogated a number 

of pathway databases. I also submitted the genes in which de novo variants were found in 

SAMtools and GATK separately. 
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Recently, the  ExAC (The Broad Institute, 2015a)  population database was released for 

public use. The database contains variant calls from 60,706 unrelated individuals. I 

therefore used this database to further annotate my final list of variants. 

This study has undergone a number of iterations over the course of three years. The 

following section presents the results of the WES study in its final iteration. 

4.4.  Results 

Identifying potentially disease-causing de novo variants required filtering large amounts 

of variant data. Within exome targets, SAMtools detected an average of 38,137.4 high-

confidence variants (Q30) per individual while GATK presented an average of 45,690.6 

high-confidence variants per individual. These large quantities of variant data required 

various rounds of filtering to be applied in order to restrict each list to variants most likely 

to result from actual de novo mutations with disease-causing potential. Table 10 provides 

an average for all of these steps for the probands. 

Variant 

caller 

Total Detected as 

de novo 

Rare In exon or 

splice site 

Non-

synonymous 

Not in-

house* 

Detected by 

BAMily 

SAMtools 38,656.3 21.7 15.1 6.6 4.8 3.6 1.2 

GATK 45,525.6 27.9 12.6 7.1 4.9 3.4 1.2 

Table 10. Average number of high-confidence variants in probands at different stages of the filtering process by 

variant caller. *Not previously detected in-house in 418 exomes.  

Consistent with the extremely low number of de novo variants expected in a single exome; 

estimated to be 0.74 as described in Section 4.2.2, the number of high-confidence variants 

predicted as de novo by both SAMtools and GATK for any proband was many orders of 

magnitude lower than its total number of high-confidence variants. However, to get to a 

final list of de novo variants with fewer false positives, a number of steps were required. 

De novo variants are no more likely to occur at a common variant site than anywhere else 

in the genome. Variants that coincided with common variants were thus almost certainly 

false positives. Excluding non-rare variants, as well as any variant that was not in a splice 

site or exon, brought the average number of SNVs and indels per individuals closer to the 

estimate of Section 4.2.2.  

The number of predicted non-synonymous de novo SNVs and indels called for each 

proband varied although tended to converge with each filtering step. The average number 

of variants per proband, the range of value across probands and the total number of 
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variants by variant caller are given in Table 11. The average number of variants identified 

by SAMtools and GATK was only slightly in excess of the expected average. The 

consensus between the two callers is likely to discard some of the remaining false 

positives with BAMily providing an additional filter for false positives. 

Variant 

Caller 

Average (per proband) Range Total  

SNVs indels SNVs indels SNVs Indels 

SAMtools 2.3 1.3 0-9 0-4 73 41 

GATK 3.3 0.1 0-20 0-1 105 4 

Table 11. Average and range of non-synonymous de novo variants per proband once all filtering has been 

applied. Also given is the total number of variants by variant caller. 

Once filtering with BAMily was applied, the number of variants produced by each caller 

and both caller were further reduced to the numbers shown in Figure 21. 

4.4.1. De novo variants identified by consensus. 

Of the 47 variants found post-filtering, around 51% were shared by both SAMtools and 

GATK UnifiedGenotyper. This represented a total of 23 SNVs and a single indel. GATK, 

with its IndelRealigner step, provided a conservative number of indel detections. Before 

the application of the filter provided by BAMily, GATK had detected a total of 4 indels, 3 

of which were shared with SAMtools. By contrast, SAMtools produced a list of 42 indels, 

most of which were likely to have been artefacts. The share of SNVs and indels identified 

by SAMtools and GATK post-filtering; including the application of GATK, is shown in 

Figure 21. 
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Figure 21. Distribution of variants detected in 32 probands post-filtering in both variant callers. BAMily was 

used as a filter. 

Variant were found among 14 out of a total of 32 probands. In total, 24 variants were 

found, corresponding to a ratio of de novo variants per proband of 0.75, close to the 0.74 

described in Section 4.2.2. The variants, and the genes and families in which they 

occurred, are summarised in Table 12. 

The 24 variants found post-filtering included 2 nonsense variants and a single frameshift 

deletion. These were found in genes ZNF227, GDPGP1 and ENTPD2 respectively. The 

possible pathogenicity of the remaining 21 missense variants was based on pathogenicity 

predictions from four functional predictors as shown in Table 13. 16 out of 21 missense 

variants were flagged as probably pathogenic by at least one of the functional predictors. 

Among these 16 variants, 4 variants were predicted as at least possibly pathogenic; or 

equivalent, by Polyphen2, LRT and MutationTaster, with support from MutationAssessor. 

The 4 variants were found in ANGPTL2, PROK1, PHLPP2 and PDE4D respectively. 

Each variant in the consensus list occurred in a distinct gene. I will henceforth refer to 

each variant by the gene in which it occurred.  

The genes in which the variants in the consensus list occur have not previously been 

associated with TGA or other conotruncal defects. None have been identified as laterality 

genes. None of these genes are orthologs for the 276 genes highly expressed in the 

developing mouse heart as compiled by Zaidi et al. (2013). The closest association to this 

list is the presence of a paralog of KCNJ12, known as KCNJ2.



 

89 

 

Family Gene Position (hg19) Nucleotide and amino acid change (transcript) 

33 ANGPTL2 chr9:129856079 c.G944C:p.G315A (ENST00000373425) 

KCNJ12 chr17:21319408 c.G754A:p.D252N (ENST00000331718, ENST00000583088) 

LMOD3 chr3:69168173 c.G1333A:p.E445K (ENST00000420581, ENST00000489031) 

ZNF419 chr19:58004899 c.G974A:p.S325N (ENST00000221735), c.G977A:p.S326N 

(ENST00000424930) 

70 CPT2 chr1:53675809 c.A463G:p.M155V (ENST00000371486) 

85 ZNF577 chr19:52376725 c.T518C:p.L173P (ENST00000301399) 

216 RBP5 chr12:7280940 c.A148G:p.M50V (ENST00000266560) 

222 FAM208B chr10:5789201 c.C3817A:p.L1273I (ENST00000328090) 

PROK1 chr1:110998906 c.T251C:p.L84P (ENST00000271331) 

245 DCDC1 chr11:31327850 c.A520G:p.I174V (ENST00000452803) 

GREB1 chr2:11758998 c.G991A:p.V331M (ENST00000396123) 

RAD52 chr12:1034628 c.G531C:p.K177N (ENST00000358495) 

280 PHLPP2 chr16:71713341 c.T202A:p.S68T (ENST00000568004), c.T988A:p.S330T (ENST00000393524),  

c.T988A:p.S330T (ENST00000568954) 

ZNF227 chr19:44732650 c.C112T:p.R38X (ENST00000313040) 

311 GDPGP1 chr15:90785068 c.C928T:p.R310X (ENST00000558017) * 

312 PDE4D Chr5:58271514 c.C1110A:p.D370E (ENST00000317118), c.C1077A:p.D359E 

(ENST00000358923), c.C1983A:p.D661E (ENST00000340635), 

c.C1575A:p.D525E (ENST00000360047) ,c.C1617A:p.D539E 

(ENST00000405755), c.C1593A:p.D531E (ENST00000503258), 

c.C1791A:p.D597E (ENST00000507116), c.C1800A:p.D600E 

(ENST00000502484) 

ENTPD2 chr9:139945759 c.450delC:p.Y150fs (ENST00000312665, ENST00000355097) 

388 COL11A2 chr6:33134330 c.C4031T:p.A1344V (ENST00000361917) **, c.C4094T:p.A1365V 

(ENST00000374708) **, c.C4352T:p.A1451V (ENST00000341947) ** 

GPR17 chr2:128409078 c.G853A:p.V285I (ENST00000393018, ENST00000272644) 

478 KRTAP4-6 chr17:39296424 c.C316T:p.R106C (ENST00000345847) 

501 HECTD4 chr12:112622770 c.G9484A:p.V3162M (ENST00000377560)**, c.G9562A:p.V3188M 

(ENST00000550722)** 

503 CREB3L3 chr9:4157266 c.C431T:p.P144L (ENST00000078445, ENST00000602147,  

ENST00000602257),  c.C428T:p.P143L (ENST00000595923) 

SNX13 chr7:17937012 c.T70C:p.F24L (ENST00000409604, ENST00000428135) 

540 ZFHX3 chr16:72829270 c.T4569A:p.S1523R (ENST00000397992), c.T7311A:p.S2437R 

(ENST00000268489) 

Table 12. The 24 variants from the consensus list identified by family. For brevity, only well supported 

transcripts are shown here unless unavailable. Well supported transcripts are described in Ensembl as being 

supported by one or more non-suspect mRNA. *Transcript has support level 2 meaning that the best supporting 

mRNA has been flagged as suspect **Transcript has support level 5 meaning that the reported structure is not 

constructed from any single transcript. More on transcript support levels available at: 

http://www.ensembl.org/Help/Glossary?id=492 
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Family Gene pathogenicity prediction* 

Polyphen2 LRT MutationTaster MutationAssessor 

33 ANGPTL2 probably damaging deleterious disease causing medium 

 

KCNJ12 benign deleterious disease causing neutral 

 

LMOD3 benign neutral polymorphism medium 

 

ZNF419 possibly damaging N/A polymorphism low 

70 CPT2 benign neutral disease-causing neutral 

85 ZNF577 probably damaging N/A polymorphism high 

216 RBP5 benign neutral disease-causing low 

222 FAM208B benign neutral polymorphism low 

 

PROK1 probably damaging deleterious disease-causing medium 

245 DCDC1 benign neutral polymorphism neutral 

 

GREB1 benign deleterious polymorphism neutral 

 

RAD52 benign deleterious disease-causing medium 

280 PHLPP2 probably damaging deleterious disease-causing low 

 

ZNF227 Nonsense mutation 

311 GDPGP1 Nonsense mutation 

312 PDE4D 

Probably 

damaging deleterious disease-causing medium 

 

ENTPD2 Frameshift deletion 

388 COL11A2 benign deleterious polymorphism neutral 

 

GPR17 benign neutral polymorphism neutral 

478 KRTAP4-6 N/A unknown N/A medium 

501 HECTD4 benign N/A, N/A neutral 

503 CREB3L3 benign N/A polymorphism neutral 

 

SNX13 

probably 

damaging deleterious N/A low 

540 ZFHX3 benign deleterious disease-causing low 

Table 13. Pathogenicity prediction of each variant based on the output of four functional predictors. *Possible 

predictions for each program are as follows: Polyphen2: probably damaging, possibly damaging, benign; LRT: 

deleterious, neutral, unknown; MutationTaster: disease-causing, disease-causing automatic [nonsense or known 

disease-causing in dbSNP], polymorphism, polymorphism automatic [any known variant in dbSNP not identified 

as disease-causing]; MutationAssessor: high, medium, low, neutral. 

Submitting the 24 corresponding genes to STRING (Jensen et al., 2009) revealed possible 

functional links between some of the protein products. Although the set of proteins was 

not enriched in interactions (p-value=1.63E-1), possible functional links were found 

between PDE4D, PHLPP2 and ZNF227. While an interaction between 3 proteins among 

24 is not statistically significant (1.03E-1), the interactions were nonetheless noteworthy 

in that they occurred between three particularly strong candidate genes. The functional 
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links, between these proteins and between GPR17 and PROK1, are represented by 

STRING’s network view shown in Figure 22. Both functional links to PHLPP2 were 

predicted on the basis of several types of evidence, including the interaction of putative 

homologs in other species. The functional link between PHLPP2 and ZNF227 gave a 

combined score of 0.44. This was based on the co-mention of these two proteins; as well 

as putative homologs, in five publications; as determined through their abstract. There 

was also evidence of co-expression of homologs in plasmodium falciparum as well as 

evidence for protein-protein interactions in several species; specifically evidence of 

protein binding in Drosophila melanogaster. The functional link between PHLPP2 and 

PDE4D gave a combined score of 0.82. This was also based on co-mention in five 

publications; but only for putative homologs, and co-expression of homologs in 

plasmodium falciparum. Evidence of protein-protein interactions was based on homologs 

in Saccharomyces cerevisiae. The evidence for a functional link between GPR17 and 

PROK1 was particularly strong, leading to a combined score of 0.9. This score was based 

on both proteins appearing in the G alpha (q) signalling pathway stored in the Reactome 

Pathway database (Croft et al., 2014). It is worth noting however that GPR17 was 

predicted to be benign by a consensus of functional predictors. No significant GO term or 

KEGG pathway enrichments were found. 

 

Figure 22. STRING network view of the protein products and predicted functional links for 23 genes in which de 

novo variants were found (DCDC1 was not available for network view). The different types of evidence for 

functional links between proteins are represented by edges. Evidence for functional links between proteins was 

derived from text-mining (yellow), experimental work (pink) and co-expression data (black) and association in a 

curated databases (blue). 
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Using the list of functional links between proteins in STRING, I determined the 

functional distance between each of the 24 proteins corresponding to my list of genes. 

The number of functional links separating each gene via its protein product is given in the 

Appendix, Figure S1. Ultimately, the analyses using STRING were inconclusive, 

providing no additional information by which the variants of interest could be further 

prioritised. 

Submitting the 24 genes from the consensus list via EnrichNet (Glaab et al., 2012) did not 

provide further evidence of enrichment for specific pathways. I submitted two additional 

gene lists to EnrichNet based on the list of de novo variants found in SAMtools and 

GATK separately. No pathway enrichment was found for either of those lists of genes. 

DNA samples for 11 trios were sent away for Sanger validation work. The validations 

centred on 16 of the 24 de novo variants called by SAMtools and GATK, selected 

according to functional prediction; showed in Table 13. Variants were selected for 

validation work if they were considered as at least probably deleterious; or equivalent, by 

one of the functional predictors used. This meant that variants which were considered 

only possibly deleterious by one predictor; such as the variant in ZNF419, but otherwise 

benign, were not selected. Table 14 lists the gene variants for which validation work was 

requested and the subsequent results. 

Family Gene Confirmed de novo? 

33 ANGPTL2 yes 

 KCNJ12 Parental traces unclear, gene is possibly paternally inherited 

70 CPT2 yes 

85 ZNF577 yes 

216 RBP5* yes 

222 PROK1 yes 

245 GREB1 yes 

 RAD52 yes 

280 PHLPP2* yes 

 ZNF227* yes 

311 GDPGP1 yes 

312 PDE4D yes 

 ENTPD2 yes 

388 COL11A2 yes 

503 SNX13 yes 

540 ZFHX3 Validation in progress 

Table 14. DNA samples from 11 families were sent away for validation work. A total of 14 variant sites were 

confirmed to harbour a de novo variant in the proband. Validation work for KCNJ12 remains ambiguous, 
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variant potentially paternally inherited. *Validation work at these variant sites was done in an earlier iteration 

of the project, but the variants were rediscovered in this final iteration.  

All but two of the variants detected by SAMtools and GATK were confirmed to be de 

novo; with one variant still awaiting validation. This proves that my pipeline is able to 

accurately identify variants that appear to be de novo from blood samples. It is still 

possible that some of these variants are not de novo, but the result of mosaicism, which I 

will explain in Section 4.5. 

4.4.2. Evidence of processes relevant to cardiogenesis in genes for which de novo 

variants were uncovered using WES. 

Available information on each of the 16 genes selected in the previous section was 

obtained using GeneCards (Rebhan et al., 1998)  and the OMIM (NCBI, 2015) 

compendiums. Here I provide a summary of findings in genes that support a potential role 

in the normal development of the heart. 

One approach taken in uncovering a role for the genes in cardiogenesis was to look at 

whether the mRNA product of that gene had been reported as differentially expressed in 

embryonic tissues relating to the cardiovascular system. Results for 3 genes are shown in 

Table 15. These results rely largely on the LifeMaps database, which is part of the 

GeneCards suite (Rebhan et al., 1998). It is worth noting that, for a number of genes, this 

information was not available. Therefore, the absence of reported expression in the 

embryonic heart tissue cannot be interpreted as an absence of a role in cardiogenesis. 

Gene Expression in embryonic heart tissue 

ANGPTL2 Atrioventricular canal cells in the dorsal aorta and outflow tract 

GREB1 atrioventricular canal cells 

ENTPD2 atrioventricular node cells 

Table 15. Positively differentiated expression in embryonic heart tissue of mRNA reported for genes of interest. 

Data collected by LifeMaps, part of the GeneCards suite (Rebhan et al., 1998). 

Expression in adult heart can also provide some clues as to a potential role in 

cardiogenesis. ANGPTL2 has been reported as highly expressed in the adult heart 

(Rebhan et al., 1998; Kim et al., 1999). ENTPD2 was also reported as expressed in the 

adult heart (Rebhan et al., 1998). One of PDE4D’s many protein products, isoform 7, has 

been detected in heart and skeletal muscle (Rebhan et al., 1998). Once again, it is difficult 
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to conclude that a gene was not expressed in heart tissue where annotations were not 

present or potentially incomplete. The expression of PROK1 was identified as limited to 

endocrine tissue in the ovary, testis, placenta and adrenal gland, which could be an 

argument for ruling it out as a contributor to cardiogenesis (LeCouter et al., 2003). 

Nonetheless, there is no information on the gene’s expression in embryonic heart (Rebhan 

et al., 1998). 

Using  the Mouse Genome Informatics (MGI) database (Eppig et al., 2015), I surveyed 

mouse knockouts in genes homologous to the genes of interest. Once again, I looked for 

genes which, when mutated, lead to an abnormal cardiovascular phenotype or embryonic 

lethality. The results are shown in Table 16. 

Gene Mouse gene homolog Abnormal cardiovascular phenotype in mouse 

ANGPTL2 Angptl2 None 

COL11A2 Col11a2 None 

CPT2 Cpt2 None 

ENTPD2 Entpd2 None 

GDPGP1 Gdpgp1 None 

GREB1 Greb1 None 

KCNJ12 Kcnj12 None 

PDE4D Pde4d Increased cardiac muscle contractility 

PHLPP2 Phlpp2 None 

PROK1 Prok1 None 

RAD52 Rad52 None 

RBP5 Crabp1 None 

SNX13 Snx13 Abnormal cephalic vascularization, small number of capillaries in 

neural folds (embryonic lethality during organogenesis). 

ZNF227 None / 

ZNF577 None / 

ZNFHX3 None / 

Table 16. Abnormal cardiovascular system phenotype in mutated mice. Where mice homologs of the genes were 

found, gene knockouts were available. Data collected by the Mouse Genome Informatics database (Eppig et al., 

2015). 

Mutated mice in two homologs were found to lead to an abnormal cardiovascular 

phenotype. However, neither led to TGA or any other conontruncal defect in mice. 
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4.4.3. Re-evaluation of the data using ExAC. 

The recent release of ExAC (The Broad Institute, 2015a) presents an additional 

opportunity to establish whether the variants in the consensus list have been previously 

reported. In Table 17 are shown the allele counts in ExAC; with corresponding MAF, for 

each variant found both in the consensus list and in the ExAC database. This list includes 

variants that were confirmed to be de novo through Sanger sequencing, such as GDPGP1 

and GREB1. The variant occurring in KCNJ12, which could not be confirmed as de novo, 

was found in ExAC with a MAF which suggest that the variant is unlikely to be de novo 

in the proband. 

Gene Allele count MAF 

ANGPTL2 0 / 

COL11A2 0 / 

CPT2 0 / 

ENTPD2 0 / 

GDGP1 1 8.24E10
-6

 

GREB1 11 1.73E10
-4

 

KCNJ12 229 1.89E10
-3

 

PDE4D 0 / 

PHLPP2 0 / 

PROK1 0 / 

RAD52 0 / 

RBP5 0 / 

SNX13 0 / 

ZNF227 0 / 

ZNF577 0 / 

ZNFHX3 0 / 

Table 17. Variants found by SAMtools and GATK that are also present in ExAC, listed by the gene these occur 

within. 

Some of the cohorts included in ExAC belong to disease-specific population studies. 

Some of these studies involve heart disease patients, but these focus on the development 

of heart disease later in life rather than CHD. Given that CHD can accompany other 

diseases, a few patients with CHD phenotypes could have been included in one of these 

disease-specific populations. Therefore, it is difficult to determine what the presence of 

some of the variants of this study in ExAC might signify for disease-causing potential. 
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4.5. Discussion 

4.5.1. WES study considerations in uncovering de novo variants 

The WES study presented in this chapter was based on the hypothesis that de novo point 

mutations and indels significantly contribute to the incidence of TGA. In previous studies, 

focused on familial TGA, a number of rare variants were uncovered in laterality genes 

ZIC3, CFC1 and NODAL (Unolt et al., 2013). These studies established TGA as a disease 

which can be caused by one or a small group of mutated genes. However, the measured 

recurrence rate in relatives of patients with TGA across studies remains low, with most 

cases of TGA considered sporadic (Digilio et al., 2001; Unolt et al., 2013). The 

overwhelming share of sporadic cases could be explained to some extent by the 

deleteriousness of the disease. TGA is a highly lethal CHD, with 95% of patients dying 

within the first year of life when the transposition is not surgically corrected (Saremi, 

2014). With only recent generations having benefitted from corrective surgery, most 

mutations predisposing to TGA having arisen in patients in the past are expected to have 

been eliminated by natural selection. De novo variants are thus suggested to play a large 

role in sporadic TGA. Another hypothesis is that environmental factors play the larger 

role in the development of TGA. In Section 4.2.1, I mentioned some of the known 

environmental triggers. 

Studying de novo variants using WES presents its own series of challenges. As in other 

WES studies, variants might be missed due to low quality reads and low read depth 

(Altmann et al., 2012). This is discussed in chapter 1 and again in chapter 3. In this 

context, the issue extends to whether a variant detected in the proband can be considered 

de novo. Given perfect sequence coverage, a variant can be considered de novo if is 

detected in the proband but not in either parent. In reality however, variant sites may have 

too few reads in one or both parents, making a genotype assignment difficult. Filtering 

such cases out, as has been done in the present study, can exclude genuine de novo 

variants. Another possible approach is to rely on other types of filtering to differentiate de 

novo variants from inherited variants. This can be done for example by using a stringent 

MAF threshold. This approach presents its own problems. Population databases, such as 

the ESP (NHLBI, 2015) may contain miscalls reported as a low frequency variants. It is 

also possible that a few of these rare variants will match de novo variants. Additionally, 
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using a stringent MAF will not be able to filter out variants that are not de novo but have 

nonetheless occurred as a result of a recent mutation event. In chapter 1, I reviewed the 

literature around the distribution of variants in the human population which found an 

abundance of rare variants compared to what would be expected from population genetic 

theory (Altshuler et al., 2010). This will include many variants not present in either the 

1000g or ESP database. 

As shown in Table 10, the number of variants detected as de novo was in excess of the 

number of variants expected. True de novo variants had to be extracted from this list. In 

Section 4.2.2, I mentioned the rate of de novo variants as being 0.74 in the exome per 

individual. Provided de novo variants are indeed causing TGA, the actual rate of de novo 

variants per exome will be slightly higher due to selection bias. However my results from 

de novo detection are still one order of magnitude higher. This will once more largely be 

imputable to sequencing error and the incorrect assignment of genotypes by SAMtools 

and GATK. Mosaicism in parents might also contribute to this effect. Mosaicism refers to 

the presence of cell lines with different genotypes at a given locus within a single 

individual due to a postzygotic de novo mutation event (Biesecker and Spinner, 2013). A 

variant could have therefore been detected as de novo in a proband whilst being inherited 

if it is not present in the blood cells from the parents; or appears with low frequency, in 

the parent that carries the variant (Biesecker and Spinner, 2013). Conversely, a 

postzygotic de novo mutation event can lead to mosaicism in the proband. The resulting 

variant could thus cause the manifestation of TGA while not being detected in DNA from 

blood samples. It is difficult at this time to determine the contribution of somatic mutation 

to CHD as few studies have investigated this possibility. In one recent study of cardiac 

tissues and blood samples from 52 unrelated patients with ToF, Huang et al. (2013) 

identified two somatic variants in GATA6; a gene previously implicated in CHD, in 

patients. To my knowledge, no somatic variants have been reported as a trigger for a case 

of TGA yet. 

The rate of variants identified in my study once filters have been applied is at around 0.75 

per proband. This is close to the rate of de novo variants found in the literature as 0.74. 

Validation work suggests that this final list of variants does in fact mostly contain genuine 

de novo variants, with only 1 of 15 variants sent for validation not confirmed to be de 

novo; with another variant pending validation. However, the difficulty is in knowing how 

many de novo variants were missed as a result of sequencing and filtering. It is possible 
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that the rate of actual de novo variants in the 32 probands is higher. There is also little 

indication as to which of these variants could be disease-causative beyond functional 

predictions. Variants were not found in genes already associated with TGA or heterotaxy. 

Likewise, no two variants were found in the same genes. This last point must be 

contrasted with the sample size used for this study. A total of 32 proband were studied, 

with consensus list variants found in 14 probands, some of which appear to be unlikely to 

be disease-causative. In their study of the contribution of de novo variants in severe 

sporadic CHD, Zaidi et al. (2013) estimated that a total of 400 genes, when mutated, 

could be contributing to severe sporadic CHD. The consequence of such locus 

heterogeneity for small studies is that overlap in genes with disease-causing de novo 

variants would be unlikely to occur. If their conclusions can be applied to single CHD 

subtypes; in this case TGA, this could explain why my study only does not include two de 

novo variants in the same gene. In the following section, I describe the de novo variants 

predicted to be deleterious found in 11 probands. 

4.5.2. De novo variants by family 

The WES study focused on 32 families. The final consensus list contained 24 variants 

across 14 probands. 16 variants in 11 probands were predicted to be probably deleterious; 

or equivalent, by at least one functional predictor. 

In the proband of family 33, a total of 4 candidates were detected by SAMtools and 

GATK. The variants are distributed among four genes: ANGPTL2, KCNJ12, LMOD3 and 

ZNF419. Only variants in ANGPTL2 and KCNJ12 were predicted as probably deleterious. 

It was not possible to establish whether the variant in KCNJ12 is a de novo variant in the 

proband. However, using ExAC, I determined that the variant, although rare was unlikely 

to be a de novo given it was identified in 229 other individuals. At the very least, its 

presence across this many individuals suggests that it is not disease-causing. ANGPTL2 

appears to be the most likely to be pathogenic. According to RefSeq annotation (Pruitt et 

al., 2014), ANGPTL2 is part of an ensemble of angiopoietins, proteins expressed almost 

exclusively in the vascular endothelium. Angiopoientins are responsible for the formation 

of new blood vessels; or angiogenesis, and thus are part of the vascular endothelial 

growth factor (VEGF) family. ANGPTL2 is also abundantly expressed in adult heart and 

embryonic atrioventricular canal cell tissues (Rebhan et al., 1998; Kim et al., 1999). 

Possibly underscoring a role in the formation of the great arteries is the mouse homolog 



 

99 

 

gene Angptl2’s role in the inflammation  leading to abdominal aortic aneurysm (AAA) 

(Tazume et al., 2012). Tazume and his team were able to demonstrate an abundant 

expression of the Angptl2 protein in macrophages within vessel walls and to show a 

reduction of aneurysm size and vessel structure destruction in mice with Angptl2-

deficient macrophages. Mice knockouts in Angptl2 display a reduced distribution of 

microphages at inflammatory sites (Eppig et al., 2015). Based on the current evidence, 

the best candidate in this family appears to be the variant in ANGPTL2. 

In family 70, a candidate was found in gene CPT2 and predicted as disease-causing by 

MutationTaster, but benign; or neutral, by others. CPT2 encodes an enzyme that 

contributes to the transfer of fatty acid from the cytosol to mitochondria for oxidation 

(Longo et al., 2006) The enzyme produced by CPT2 is active within the mitochondrial 

inner membrane (Longo et al., 2006). To date, genes involved in cardiogenesis have not 

been found to act through mitochondria (Gelb and Chung, 2014). From this I have 

concluded that the gene is unlikely to play a role in cardiogenesis. 

In family 85, one candidate was found in ZNF577, a gene encoding for a zinc finger 

protein. Pathogenicity predictions are mixed. Few annotations exist for this gene that 

could be used to either support or rule out a role in cardiogenesis. The distribution of 

truncating variants in ZNF577, as seen in ExAC, suggests that the abnormal activity of 

ZNF577 could be tolerated by the organism. 

In family 216, one candidate was found in RBP5 and predicted as disease-causing by 

MutationTaster, but benign otherwise. RBP5 encodes for a retinol binding protein, retinol 

being the alcoholic form of vitamin A (Folli et al., 2001). According to Folli et al. (2001), 

gene expression in adult is largely specific to the kidney. However, the identification of a 

de novo variant in a gene that encodes a retinol binding proteins remains interesting. TGA 

has been reported as associated with high maternal intake of retinol supplements 

(Loffredo et al., 2001). Retinoic acid, the active form of vitamin A, is used to induce 

TGA in newborn mice via ingestion in the mother (Unolt et al., 2013). Retinoic acid 

antagonists are also used to induce TGA, suggesting that normal cardiac development 

depends on a balance in the level of retinoic acid (Cipollone et al., 2006). Additionally, 

Nash et al. (2015) identified a variant in RBP5 shared between 5 distantly related patients 

with total anomalous venous return (TAVR) that they suggests contributes to the disease. 

Briefly, a TAVR occurs when all pulmonary veins are malpositioned during 



 

100 

 

cardiogenesis, leading to the wrong connections being made. While TAVR and TGA are 

two distinct CHDs, these have been observed together, which could be indicative of some 

shared etiology (Raff et al., 2002). There are a number of reasons to be cautious about the 

results presented by Nash et al. (2015). Firstly, the variant has a MAF of around 9%. 

According to the authors, the variant is overrepresented in patients with TAVR, but not in 

patients with heterotaxy. Secondly, the gene selected for knockdown in zebrafish, rbp7a, 

only shares 51% sequence similarity with RBP5. A little under half of the mutant 

zebrafish display abnormal right-side looping of the heart which, at the very least, 

establishes a role for retinol binding proteins in cardiogenesis (Nash et al., 2015). On this 

basis, a role for the RBP5 de novo variant found in this family’s proband should not be 

excluded. It can be hypothesised that a mutated RBP5, leading to a malformed protein 

that cannot bind retinol as effectively as a normal protein, could decrease the level of 

retinol available to the cell in the developing heart. This would then lead to less retinoic 

acid, with the mutation having the effect of a retinoic acid antagonist. 

In family 222, two candidates were found, in FAM208B and PROK1 respectively. The 

variant in gene FAM208B; for which few resources exists, is predicted to be benign. On 

the other hand the variant in PROK1 is predicted as pathogenic by all four pathogenicity 

predictors used in this study. PROK1, which encodes a prokineticin protein, belongs to 

the VEGF family (LeCouter et al., 2003). This is the second variant identified in a gene 

belonging to the VEGF family in the consensus list with ANGPTL2. As its early name, 

endocrine-gland-derived vascular endothelial growth factor, suggest, it is specifically 

expressed in endocrine tissue in the ovary, testis, placenta and adrenal gland (LeCouter et 

al., 2003). This targeted expression makes PROK1 an unlikely actor in cardiogenesis and 

by extension, unlikely to be a cause of TGA when mutated. 

In family 245, the candidates were found in DCDC1, GREB1 and RAD52. The variant in 

DCDC1 is largely predicted to be benign with some prediction of deleteriousness for the 

other two genes. RAD52 encodes a protein that plays an integral role in double-strand 

break repair and DNA recombination (Park et al., 1996). This specific role suggests that 

the protein probably does not play a role in cardiogenesis. GREB1 is characterised by its 

high expression in estrogen-receptor-positive breast tumors (Ghosh et al., 2000). It is also 

expressed in prostate cancer tissue (Rae et al., 2006). Relevant to this study is its 

expression in atrioventricular canal cells in embryonic tissue, a characteristic it shares 

with ANGPTL2 (Rebhan et al., 1998). However, the strongest evidence for a potential 
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role for GREB1 in causing TGA is the previous identification of a CNV in a patient with 

malposition of the great arteries (MGA) which overlaps this gene (Fakhro et al., 2011). 

Fakhro et al. (2011) tested the expression of GREB1 in Xenopus Tropicalis using in situ 

hybridization and found expression patterns that suggested that the gene could indeed 

play a role in left-right patterning; and cardiogenesis in general (Rebhan et al., 1998; Kim 

et al., 1999). The subsequent gene knockdown conducted by Fakhro et al. (2011) did not 

lead to an abnormal left-right looping phenotype. Despite this, GREB1 remains a strong 

candidate in this present study. An interesting finding using ExAC was the identification 

of 11 other unrelated individuals with the same variant. It is possible that these 

individuals were part of one of the disease-specific population studies incorporated by 

ExAC, although this cannot be confirmed at this time (The Broad Institute, 2015a). None 

of the studies focus on CHD, but it is possible that some patients with multiple defects 

including CHD would have been incorporated to a study on the basis of the extracardiac 

defects. 

In family 280, two candidates were found, in PHLPP2 and ZNF227 respectively. Both 

candidates have a high disease-causing potential, with the variant in ZNF227 being a 

truncating variant. PHLPP2 encodes a protein which is known to mediate 

dephosphorylation of several genes (Brognard et al., 2007). Of particular interest is the 

action of PHLPP2 on AKT1, a gene embedded in the VEGF signalling pathway 

(Brognard et al., 2007). PHLPP2 acts to suppress AKT1’s activity (Brognard et al., 2007). 

PHLPP2 is thus a third gene in the final list of variants found to be involved with the 

VEGF pathway. As with the ZNF577 variant, there are few annotations about ZNF227. 

The de novo variant in this case is a nonsense variant. However, the distribution of 

truncating variants seen with ExAC suggests that truncating variants in this gene might 

not cause a deleterious phenotype.  

In family 311, a candidate nonsense variant was found in GDPGP1. GDPGP1 regulates 

GDP-D-glucose levels in cells (Adler et al., 2011). Few annotations exist about this gene. 

The variant in GDPGP1 was validated as an actual de novo variant, but has also been 

identified in an individual reported in ExAC. Additional information on the patient 

identified in ExAC could either support or rule out this variant as a cause for TGA. Given 

the specific nature of the protein function, a role in cardiogenesis is unlikely. 
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In family 312, two candidate variants were found, in PDE4D and ENTPD2 respectively. 

Both appear to be strong candidates based on functional prediction, the latter being a 

frameshift insertion. PDE4D acts on cyclic AMP (cAMP) (Houslay et al., 2007). The 

cAMP molecule acts as a regulator for different cell processes, with specialised functions 

in different cell types (Houslay et al., 2007). PDE4D, a member of the phosphodiesterase 

family, in turn, regulates the action of cAMP (Houslay et al., 2007). Different isoforms 

are expressed in different tissues, with isoform 7 being most expressed in heart and 

skeletal muscle. PDE4D appears to be associated with heart failure, but not severe cardiac 

defects arising during cardiogenesis (Houslay et al., 2007). ENTPD2 encodes for an 

enzyme in the cell membrane of the ectonucleoside triphosphate diphosphohydrolase 

family (Chadwick and Frischauf, 1997). The gene is expressed in atrioventricular node 

cells in the embryonic heart and  in the adult heart (Rebhan et al., 1998). The presence of 

a frameshift insertion makes ENTPD2 an interesting candidate, but there seems to be little 

literature hinting at a role for ENTPD2 in cardiogenesis. 

In family 328, two variants were identified, one in COLL1A2 and the other in GPR17. 

Both variants are largely predicted as benign with the exception being an assignment of 

‘deleterious’ by LRT for the variant in COL11A2. COL11A2 encodes an alpha chain for 

type XI collagen (Lui et al., 1996). In turn, type XI collagen is important for skeletal 

integrity (Lui et al., 1996). Diseases associated with mutations in COL11A2, such as 

Stickler syndrome, largely involve skeletal defects and  hearing loss (Rebhan et al., 1998). 

Around half of patients with Stickler syndrome also have a regurgitating mitral valve 

(Liberfarb et al., 1986). There does not appear to be any described cases of Stickler 

syndrome with TGA. As established earlier, TGA is seldom seen with extracardiac 

defects (Unolt et al., 2013). 

In family 503, two candidates were found in CREB3L3 and SNX13 respectively. The 

variant in CREB3L3 is predicted to be benign. The variant in SNX13 is predicted to be 

deleterious by Polyphen2 and LRT. SNX13 belongs to the sorting nexin family of proteins 

and  is involved in intracellular trafficking (Rebhan et al., 1998). Interestingly, knockout 

of the homolog gene in mice can lead to abnormal blood vessel morphology and is lethal 

to the mouse embryo (Zheng et al., 2006). Another member of the sorting nexin family, 

SNX10, has been found to act in a regulatory pathway for ciliogenesis; the development 

of cell cilia (Chen et al., 2012). Although still highly speculative, this presents the 

possibility of a role for mutated sorting nexins in ciliopathy; diseases of dysfunctional 
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cilia. The implication for TGA being that disorders relating to abnormal cilia can result in 

heterotaxy, a feature that accompanies some cases of TGA (Ware et al., 2011). 

In family 540, the candidate is in gene ZFHX3 and is predicted as potentially deleterious 

by LRT and MutationTaster. ZFHX3 encodes a transcription factor with several 

homeodomains and zinc finger motifs (Rebhan et al., 1998). The gene has been linked to 

atrial fibrillation, but not any form congenital cardiac defect (Benjamin et al., 2009). 

The variants in these families do not occur in heterotaxy genes or genes associated with 

TGA. There does not appear to be any unifying theme to categorise these variants. 

Several are involved in the VEGF pathway, but this association does not reach 

significance. Furthermore, one of the genes in this pathway, PROK1, is specific to tissues 

that did not include the heart. A few variants occur in genes that could play a role in TGA 

based on evidence from previous experiment. This is the case for example of variants in 

RBP5 and GREB1. A role for SNX13 also seems possible. No two candidates were found 

in the same gene; however the cohort was relatively small in size. A larger cohort of 

sporadic TGA cases might help further elucidate the present cases. Variants found in 

these same genes in other WES studies of sporadic TGA could lend credibility to some of 

the candidates identified in this study. This extends to the study of de novo CNVs in TGA 

patients which might also reveal CNVs affecting the same genes identified in this study. 

Finally, it cannot be ruled out that the scarcity of candidates could be an indication that 

TGA is largely caused by environmental factors. 

4.6.  Conclusion 

The WES analysis of 32 families; 31 parent-offspring trios and a single quartet, has 

revealed a number of de novo variants distributed across 14 of the probands affected by 

TGA. The rate of de novo per proband is close to what would be expected with 0.75 de 

novo variants detected per proband. Among 24 de novo variants detected to date, 16 are 

predicted to be probably deleterious; or equivalent, by at least one pathogenicity predictor 

and 14 have been validated. None of the variants detected occur in genes previously 

associated with TGA or heterotaxy. The genes were also not part of a list of 276 genes 

highly expressed in heart compiled by Zaidi et al. (2013). There was no unifying theme 

associating a subset of the genes found with disease. Despite all this, the existing 

literature suggests that the variants that occur in several genes could be disease-causative. 

These include the variants in GREB1, RBP5 and SNX13. Other variants identified in this 
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study could have an impact on the development of TGA through some as of yet unknown 

mechanism. The genes in which these variants were found can be compared to those that 

appear in future studies. The re-occurrence of any of these genes in future WES studies of 

TGA patients would be further evidence that these genes, when mutated, are involved in 

ToF. If TGA can be caused by de novo mutations in many distinct genes, large trio 

studies will be required to better determine which genes, when mutated cause ToF. 
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Chapter 5. Whole-exome sequencing study of 824 patients with 

Tetralogy of Fallot
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5.1.1. Summary 

Tetralogy of Fallot (ToF) is a complex form of congenital heart disease (CHD) combining 

four heart morphological defects: a large ventricular septal defect, a displacement of the 

aorta over the septal defect, a narrowing of the pulmonary valve and a thickening of the 

right ventricular wall. The most common form of cyanotic CHD, its genetic etiology 

remains nonetheless largely unresolved. In this chapter, I present a large-scale WES study 

involving 824 unrelated ToF patients with sequencing performed at McGill University 

and the Génome Quebec Innovation Centre (MUGQIC). This study focuses on 

identifying genes that potentially play a role in the development of ToF using various 

approaches. In a first stage, I categorised rare variants according to their potential to 

disrupt normal protein function. I compared the genes in which these rare variants occur 

to sets of genes previously associated with CHD in the literature. In a second stage, I 

identified clustering of rare variants across the length of gene coding sequences (CDS) 

and exons in the 824 ToF cases. I hypothesised that rare variants influencing the disease 

trait would cluster in ToF patients. The genes in which clustering occurred were also 

compared to sets of genes implicated in CHD. In the final stage of my study, I conducted 

a pathway analysis using STRING v.10 (Jensen et al., 2009) and Enrichnet (Glaab et al., 

2012). With STRING, I checked the list of genes in each cluster category for an 

enrichment of protein-protein interactions. I then used Enrichnet to determine if the genes 

fell within any specific pathways or processes. Using interaction data from STRING, I 

looked for genes in each cluster category that might directly interact with known ToF 

genes. To test the assumptions made at every step of the study, I used a second set of 490 

cases with various neurodevelopmental disorders, obtained from the UK10K project, as 

comparators. This study reveals that rare single nucleotide variants (SNVs), truncating or 

otherwise predicted to be deleterious, in known ToF genes are found in 4.4% of patients 

with ToF. This suggests that genes previously identified as influencing ToF through 

single highly-deleterious variants only account for a small fraction of ToF cases. The 

study of SNVs clustering in ToF patient revealed the novel candidate FLT4 and 

established NOTCH1 as contributors to ToF. Overall, results of the study suggest that, 

despite the identification of both known and potentially novel genes influencing the risk 

of ToF, single highly-penetrant variants do not play a major role in ToF, implying a more 

complex genetic etiology is at work in many patients presenting ToF. 
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5.2. Introduction 

5.2.1. Tetralogy of Fallot 

As described in Chapter 1, ToF is one of the most common forms of CHDs accounting 

for 7-10% of all CHD pathologies (Bailliard and Anderson, 2009). It is the most common 

form of cyanotic CHD which is characterised by an intermittent or permanent bluish 

appearance as a result of low blood oxygenation (Apitz et al., 2009). The principle 

abnormality is an antero-cephalad deviation of the ouflow tract septum, resulting in four 

linked phenotypic features: a ventricular septal defect (VSD), a displacement of the aorta 

over the VSD, a narrowing of the pulmonary valve; described as pulmonary stenosis (PS), 

and a progressive thickening of right ventricular wall, or right ventricular hypertrophy 

(RVH) (Bailliard and Anderson, 2009; Nelson et al., 2014). The VSD occurs in the 

anterior part of the muscular ventricular septum and is typically quite large (Lev and 

Eckner, 1964). As a result of the septal defect and of an aorta overriding both ventricles, 

blood circulation is perturbed, with oxygen poor blood that has not traversed the 

pulmonary circulation being ejected to the systemic circulation, a phenomenon described 

as shunting (Lev and Eckner, 1964). The PS, which can occur at different levels along the 

pulmonary outflow tract, also greatly perturbs blood circulation, restricting blood flow 

through the lungs (Anderson and Weinberg, 2005). Stenosis is occasionally associated 

with the incomplete development of the pulmonary valve, described as hypoplasia, with 

either a fusion of leaflets; pulmonary atresia (PA), or a complete absence of the 

pulmonary valve (Bailliard and Anderson, 2009). The absence of the valve leads to blood 

flowing back into the right ventricle. The right ventricular hypertrophy is considered a 

secondary phenotype, developing progressively as the right ventricular muscle works to 

compensate for the PS (Nelson et al., 2014) . In addition to the four principal 

morphological defects that characterise ToF, there exist a number of additional minor 

cardiac defects. Bailliard and Anderson (2009) report that a quarter of ToF patients have 

their aortic arch on the right. Half of patients with PA have a persistent patent ductus 

arteriosus which provides blood with access to the pulmonary artery via the aorta 

(Bailliard and Anderson, 2009). In some cases, the large VSD characteristic of ToF is 

accompanied by additional smaller septal defects, both of the ventricles and atria. The 

tricuspid valve is occasionally found to be displaced over both ventricles in ToF patients 

(Bailliard and Anderson, 2009).  
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Arthur Louis Étienne Fallot, described ToF as the abnormality underlying the majority of 

cases of “la maladie bleue” (Anderson and Weinberg, 2005). Cyanosis is the main 

physical sign associated with ToF, although it is absent from some mild cases (Lev and 

Eckner, 1964). The degree of cyanosis depends on the level of severity of the underlying 

defects, particularly the extent of the PS. In a clinical study of infants with ToF, 

Shinebourne et al. (1975) describe cases of persistent cyanosis. The authors point to 

pronounced infundibular stenosis, which involves a diminished pulmonary valve ring, as 

the root cause of the severity of cyanosis in these patients. Shinebourne et al. (1975) also 

describe patients with intermittent cyanosis, brought on by crying, which gradually 

increases over time. Other outcomes of ToF include loss of consciousness, heart murmurs, 

shortness of breath and eventually, heart failure (Shinebourne et al., 1975). Without 

surgery, 80% of affected individuals die before the age of 10 (Starr, 2010). However, 

thanks to advances in modern surgery, patients who undergo complete surgical repair in 

early life show an 85% survival rate over the first 30 years of life (Bailliard and Anderson, 

2009). 

The disease etiology of ToF has yet to be fully uncovered. ToF has been reported as a 

component of several syndromes; diseases characterized by several defects in distinct 

tissues and organs. These include patients with chromosomal aneuploidy, such as 

trisomies of chromosomes 13, 18 and 21, as well as large copy number variants (CNVs) 

inducing disorders such as 22q11.2 deletion syndrome (Nelson et al., 2014). A 22q11.2 

deletion has been estimated to be present in 15% of ToF patients, a proportion that rises 

to 40% when considering patients with PA (Nelson et al., 2014). Although it is important 

to note that 22q11.2 deletion syndrome refers to a range of phenotypes that do not all 

include ToF or CHDs in general. When 22q11.2 deletion syndrome does cause ToF, the 

defect is often accompanied by several extra-cardiac defects. 

A few patients with isolated ToF; unaccompanied by extra-cardiac defects, have been 

described as members of apparently Mendelian families. For example, a missense variant 

in JAG1 was shown to follow an autosomal dominant pattern in a family with multiple 

CHD phenotypes, including ToF (Eldadah et al., 2001). No family member presented 

Alagille syndrome, typically caused by mutation in JAG1 (Eldadah et al., 2001).  

However, the majority of ToF cases studied are sporadic. Excluding ToF patients with 

22q11.2 microdeletions, Burn et al. (1998) found a recurrence risk of CHD in siblings of 

2.2% and of 3.1% in offspring hinting at a strong, but complex, genetic component 
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underlying isolated non-Mendelian ToF (Burn et al., 1998). A genome-wide association 

study (GWAS) carried out on 839 ToF patients; some of which are included in the study 

in this chapter, and 5159 controls, conducted by Cordell et al., (2013b), suggests that 

common variants influence the risk of ToF. This includes single nucleotide 

polymorphisms (SNPs) in regions 12q24 and 13q32, the latter SNPs coinciding with the 

GPC5 locus. The identification of common variants influencing the risk of ToF in region 

12q24 is consistent with a candidate gene study, carried out on some of the same patients, 

which revealed an association between a common variant in PTPN11 and the disease 

(Goodship et al., 2012). However, as Cordell et al. (2013b) point out, ToF is associated 

with a high and early mortality rate and therefore severely reduced reproductive fitness. 

Alleles conferring additional risk of an individual developing ToF would be expected to 

be constrained by natural selection to allele frequencies lower than the ~5% which 

typically yield GWAS signals. We therefore expect rare and de novo genetic variants to 

play a substantial role in the development of ToF. Greenway et al. (2009) identified 11 

rare CNVs in ToF patients that were either absent or extremely rare (>0.001) in a set of 

controls. Greenway et al. (2009) highlight their discovery of CNVs, predominantly 

duplications, occurring in region 1q21.1, in 5 of 114 ToF patients and none of their 

controls. The association between duplications in region 1q21.1 and ToF was later 

confirmed by the work of Soemedi et al. (2012a) and Silversides et al. (Silversides et al., 

2012). Small duplications coinciding with the GJA5 locus, suggests this gene plays a role 

in the development of ToF and other forms of CHD (Soemedi et al., 2012a). Results from 

case-control studies of CNVs in ToF suggest that large CNVs are significant contributors 

to the disease burden in ToF (Silversides et al., 2012; Soemedi et al., 2012a; Soemedi et 

al., 2012b). This is true whether or not one chooses to include patients with a 22q11.2 

deletion. 

To date, few genes have been conclusively associated with ToF. Studies attempting to 

uncover genes that contribute to ToF through indels and SNVs have largely focused on 

sequencing genes thought to be good candidates. This typically includes genes that 

coincide with known CNVs in ToF such as TBX1 which resides in the 22q11.2 region, 

and genes previously associated with CHDs (Griffin et al., 2010). Table 18 provides a 

summary of genes associated with ToF to date through gene sequencing studies. 
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Gene Patients with rare variant Size of control set Reference 

NKX2-5 9/201* 50 (McElhinney et al., 2003) 

ZFPM2 2/47 120 (Pizzuti et al., 2003) 

GATA4 1/201* 159
†
 

(Tomita-Mitchell et al., 

2007) 

CFC1 8/121* 125 (Roessler et al., 2008) 

FOXH1 5/121* 
 

TDGF1 2/121*  

GDF1 3/121* 125 (Roessler et al., 2009) 

NODAL 12/121*  

JAG1 2/94* 100 (Bauer et al., 2010) 

TBX1 3/93 500 (Griffin et al., 2010) 

GJA5 2/178 784 (Guida et al., 2013) 

GATA6 2/52 200 (Huang et al., 2013) 

GATA5 2/35* 200 (Jiang et al., 2013) 

BVES 4/114 400 (Wu et al., 2013) 

FOXA2 4/93 500 (Topf et al., 2014) 

FOXC1 4/93 
 

FOXC2 2/93 
 

HAND2 1/93 
 

NKX2-6 1/43* 200 (Zhao et al., 2014) 

TBX5 2/94 200 (Baban et al., 2014) 

Table 18. Gene sequencing studies that report a causal link between a gene and ToF. *Study includes case 

patients with different CHDs, the number reported is the number of case patients with ToF. †105 additional 

controls were tested for two specific variants in exon 6. 

Given the heterogeneity of loci causally linked with isolated ToF, extracting genetics 

insights from WES studies rather than through individual candidate gene sequencing calls 

for a large set of cases and controls. 

5.2.2. The study of disease with locus heterogeneity using WES 

Many rare diseases are caused by single highly-penetrant rare variants occurring within a 

specific locus. While ToF is a common cardiac defect, it can be hypothesised that many 

cases of the disease are also result from single highly-penetrant rare variants. The 

distinction with rare disease is in the number of different loci at which the disease-causing 

variant may arise, a phenomenon referred to as locus heterogeneity (Bamshad et al., 

2011). 20 genes have already been causally linked to ToF, as shown in Table 18. To 

identify the gene regions in which rare variants causing a particular disease occur, a large 

set of unrelated patients that share the disease is needed. Given a large set of cases, 

variants contributing to a disease trait will form detectable clusters within specific regions 
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of a gene or genes which, when mutated, lead to the disease. Given reliable sequencing 

data, clusters can be uncovered using the Wd statistic (Lange, 1997). There will also be a 

higher frequency of case patients with variation in genes contributing to the disease 

compared to a random sample of the population. To capture this frequency increase 

requires a reference set that can represent this random sample of the population. 

The development of NGS techniques, particularly WES, provides researchers with new 

opportunities in elucidating the genetic etiology of diseases such as ToF, although it also 

presents its own challenges (Bansal et al., 2010). Disease-causing rare variants have to be 

extracted from the background of human variation and sequencing error. For any NGS 

study, filtering criteria to extract genuine rare variants of functional significance from the 

rest of variation are essential (Altmann et al., 2012). Filtering criteria need to be 

consistent across cases and controls in order to avoid introducing bias that may confound 

the results of a study. Ideally, case and control samples need to be sequenced together. 

This avoids the kind of bias that arises from using different sequencing and capture 

technologies and protocols for cases and controls (Derkach et al., 2014). It also avoids 

sequencing bias that may arise from the same sequencing platform being calibrated 

differently (Derkach et al., 2014). Differences in read depth between cases and controls 

can lead to differences in MAF estimation and, as a consequence, to spurious associations 

while true associations are missed (Derkach et al., 2014). Derkach et al. (2014) provide a 

method, the Robust Variance Score (RVS), to address these biases. With this method, 

Derkach et al. (2014) aim to make publicly available genome-wide data suitable as 

controls for large NGS case-control studies. Using large public control resources across 

studies could have a transformative effect, similar to what was seen in GWAS as first 

illustrated by The Wellcome Trust Case Control Consortium (WTCCC) study which 

compared 14,000 cases from 7 common diseases to 3,000 controls (Burton et al., 2007). 

However, the efficacy of this method remains to be confirmed through independent 

studies.  

In NGS case-control studies, testing whether a single rare variant is associated with a 

disease trait requires a number of sequenced samples in excess of what can often be 

practically achieved. For example, Lee et al. (2014b) estimate that 460 individuals would 

have to be sequenced in order to ensure a 99% probability of sampling an allele with a 

minor allele frequency (MAF) of 0.5%. Single variant testing becomes particularly 

problematic if a number of the variants associated with a disease trait are expected to be 
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private, in other words, only in a single individual. Another thing to remain mindful of is 

that there are large numbers of rare variants in the human genome, as confirmed by 

Tennessen et al. (2012), which will not be associated to disease. The study I present in 

this chapter is based on the assumption that a major cause of isolated sporadic ToF are 

single highly-penetrant rare variants. However, for many diseases, including some 

subtypes of CHD, a more complex etiology has been proposed over the years, leading to 

the methods that I will now present (Gelb and Chung, 2014). Given a CHD with a more 

complex genetic etiology of ToF, one of the following methods could form the basis of a 

future WES study design.  

The alternative to single variant testing mentioned above is to perform a multiple variants 

test. For this kind of test, distinct variants are aggregated according to some feature, such 

as a shared gene region or functional relevance (Bansal et al., 2010). This process is often 

referred to as collapsing (Dering et al., 2011). Collapsing involves a summarisation of the 

presence of rare variants within some unit of interest in both case and control samples 

(Bansal et al., 2010). All collapsing methods can be refined by selecting which type of 

variant to collapse. For example, collapsing can focus on rare truncating variants or 

variants predicted to be deleterious in genes or groups of genes (Dering et al., 2011). Lee 

et al. (2014b) describes five broad categories of multi variant tests: burden and adaptive 

burden tests, variance-component tests, omnibus tests and the exponential combination 

test. The first four sets of tested have been implemented in a number of methods working 

on different assumptions about patient sequence data (Lee et al., 2014b). 

Burden tests were the first to be devised, with Mogenthalier and Thilly’s (2007) ‘Cohort 

Allelic Sums Test’ (CAST). CAST represent collapsing in its simplest form: a binary 

value is assigned to each gene region in an individual depending on the presence or 

otherwise of rare variants in that region (Lee et al., 2014b). The results of CAST over 

cases and controls can be summarised as a score using Fisher’s exact test (Moutsianas and 

Morris, 2014). The assumption made here is that the mere presence of rare variants in a 

region increases disease risk (Lee et al., 2014b). To test a dominant genetic model; where 

each rare variant in some region contributes to the disease risk, the binary value becomes 

a count of the number variants in the region, a model underlying the MZ test by Morris 

and Zeggini (2010). The disadvantage of this approach is that any rare variant that has no 

effect on the disease trait will interfere with the signal of any real association. The 

aforementioned methods require a MAF threshold above which variants are excluded 
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from the test (Lee et al., 2014b). The presence of variants that are too common and 

therefore likely to be in cases and controls may interfere with the signal emanating from 

large effect rare variants associated with the disease. Setting a MAF threshold can lead to 

the exclusion of causal variants if too low or the inclusion of many non-causal variants if 

too high (Moutsianas and Morris, 2014). Both will reduce the test’s power. Putative 

differences in effect can be partially captured through a variant’s rareness. With their 

‘Weighted Sum Test’ (WST), Madsen and Browning (2009) replace the MAF threshold 

with a weighting system which varies as a function of a variant’s known MAF. Rarer 

alleles will be given a higher weight. The attribution of weights to variants is further 

explored by the ‘Combined and Multivariate and Collapsing’ (CMC) method which 

attempts to capture the effect of both rare and common variants on a disease trait, 

assigning weight in intervals (Li and Leal, 2008).   

Burden test have largely been superseded by adaptive burden tests, a number of methods 

that account for the possibility that specific variants within a collapsed region can have 

trait-decreasing effects or no effect at all (Lee et al., 2014b). Given that the actual 

direction of the effect of each variant is not known, estimates are made through a 

marginal model. In these tests, such as Han and Pan’s (2010) aSum test, variants that are 

estimated to have a trait-decreasing effect are given a negative weighting  (Moutsianas 

and Morris, 2014). One of the pitfalls of these methods however is that, in order to 

determine the statistical significance of a possible association, the test has to be carried 

out on every possible marginal model arising from a different distribution of the trait 

amongst individuals tested (Moutsianas and Morris, 2014). In other words, the model 

needs to account for all the possible phenotype distributions across a set of individuals. 

This makes scaling up the tests to the whole-exome or whole-genome impractical, if not 

impossible (Moutsianas and Morris, 2014). This issue is addressed by variance-

component tests, also referred to as dispersion tests (Lee et al., 2014b; Moutsianas and 

Morris, 2014). Unlike burden tests, variance-component tests were designed to account 

for trait-decreasing and neutral effects (Lee et al., 2014b). Variance-component tests 

analyse  the variance in genetic effects between variants in a group (Lee et al., 2014b). A 

test statistic is produced for each variant and it is the variance in these statistics that is 

analysed (Lee et al., 2014b). In the `Sequence Kernel Association Test’ (SKAT), the 

distribution of effects is compared with what would be expected under the null hypothesis 

of no association with a disease trait (Wu et al., 2011). As with burden testing, different 
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methods built around variance-component exists to address different assumed models of 

inheritance. To study a single trait with no covariates, the C-alpha test can be used (Neale 

et al., 2011). While variance-component tests provide their best results when a small 

fraction of variants influence the trait and are better equipped than burden tests to deal 

with trait-decreasing variants, burden tests still offer the best results when most variants 

within a specific region are trait-increasing (Lee et al., 2014b). Omnibus tests combine 

burden and variance-component tests, in an attempt to capture the advantages provided by 

both types of test (Lee et al., 2014b). However, this makes omnibus tests computationally 

intensive. 

In this chapter I present a WES case study involving 867 patients with ToF. Selecting 824 

cases for which variant calls presented high specificity, I first looked for rare variants 

called in genes previously implicated in ToF or CHD. This was followed by an analysis 

of the clustering of rare variants across the coding sequence (CDS) of genes and exons. 

Finally, I subjected genes containing rare variants to pathway analysis. At every stage in 

the case study, results were compared to those obtained in 490 patients with various 

neurodevelopmental disorders. This study reveals that rare truncating variants in known 

ToF genes; previously uncovered through gene sequencing studies, are found in 0.8% of 

patients, and rare variants predicted to be deleterious (excluding truncating variants) in 

3.6% of patients. Results from the study of clusters indicate that FLT4 and NOTCH1 are 

overrepresented in ToF patients. Furthermore, evidence suggests that FLT4 directly 

interacts with other genes that have been implicated in CHD. At the time of writing, this 

dataset represented the largest exome-sequencing study of a homogeneous CHD 

phenotype yet reported. 

5.3. Material and Methods 

The study initially included a total of 867 patients living in Northern Europe and 

presenting isolated ToF. DNA extracted from blood and saliva samples were provided by 

several laboratories working with Newcastle’s Institute of Genetic Medicine (IGM) as 

shown in Table 19. WES was performed at the McGill University and the Génome 

Quebec Innovation Centre (MUGQIC) using the Illumina HiSeq 2000 (Illumina, 2014a). 

The exome capture was performed using Agilent SureSelectXT Human All Exon 50Mb 

kit (Agilent Technologies, 2015). 

 



 

115 

 

Location Number of Samples 

Bristol Royal Hospital for Children, UK 70 

CONCOR, Netherlands 63 

Leeds General Infirmary, UK 147 

Centre for Human Genetics, Leuven University, Belgium 83 

Royal Liverpool Children’s Hospital NHS trust, UK 119 

Newcastle Royal Victoria Infirmary, UK 127 

Institute of Genetics, Nottingham University, UK 72 

Department of Cardiovascular Medicine, Oxford University, UK 142 

The Children’s Hospital at Westmead, Australia 44 

Table 19. Locations from which blood and saliva samples were obtained from 867 ToF patients. 

This large series of ToF cases was initially supposed to be accompanied by a sequencing 

matched reference set. However, we were not able to obtain this sequencing matched set. 

I therefore acquired sequencing data from the UK10K project European Genome-

Phenome Archive (EGA) for use as a comparator sample. Access to EGA was limited to a 

few studies. UK10K healthy controls were only available as low-coverage whole-genome 

sequencing (WGS) data. A number of WES disease cohorts were available for use as a 

comparator sample. These cohorts involved patients from the UK and Ireland, presenting 

various kinds of neurodevelopmental diseases. The four WES studies I selected include 

patients with autism spectrum disorder (AD), schizophrenia and mental retardation. These 

are summarised in Table 20. I selected cases for which the sequence data matched 

MUGQIC’s sequencing strategy; sequencing and exome capture using Illumina HiSeq 

2000 and Agilent SureSelectXT Human All Exon 50Mb kit. This further restricted the 

number of cases available to me. In total, I obtained 500 neurodevelopmental (NDD) 

cases to be used as controls in a prospective case-control study. Once I determined that a 

case-control study would not produce meaningful results due to systematic differences 

between the ToF and UK10K NDD data, I repurposed the NDD cases as a second set of 

samples against which to test the assumptions made at each stage of my WES case study. 
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Study name Pathologies studied Number of cases included 

in my study 

UK10K_NEURO_MUIR psychoses and mental retardation 48 

UK10K_NEURO_ABERDEEN schizophrenia 266 

UK10K_NEURO_ASD_GALLAGHER autism spectrum disorder 72 

UK10K_NEURO_EDINBURGH schizophrenia 114 

Table 20. Studies from which NDD cases were acquired. The study UK10K_NEURO_MUIR contains sequence 

data from the Illumina GAIIx which was consequently excluded. 

The work this study involves required large amounts of computing power and storage. I 

therefore carried out my analysis on two different computer clusters: Lampredi2; hosted 

at Newcastle University, and Hydra; at Manchester University. The clusters are described 

in detail in Chapter 2 in Section 2.3.1. I accessed the latter remotely from Newcastle. ToF 

and NDD sequence data files were provided in the BAM file format and the reads were 

extracted to produce FASTQ files in order for me to perform my own alignment. It was 

important for sequence alignment and variant calling to be consistent across all sets. The 

same process is described in Chapter 4. I performed alignments using BWA (Li and 

Durbin, 2009), removed duplicates using Picard (The Broad Institute, 2015c), and called 

variants using SAMtools (Li et al., 2009a), filtering out calls falling outside of the exome 

capture’s target region. In addition to ToF and NDD cases, I downloaded sequence data; 

in BAM file format, from 875 unrelated individuals present in the 1000genomes project 

(1000g) (Altshuler et al., 2012). I used the same procedure to get my own sequencing 

alignment. However, variant calls were restricted to a subset of loci of interest first 

identified in ToF and NDD cases and described below. 

For the purposes of the study, I estimated the sensitivity and specificity of each set of 

variant calls using population data, a technique described by Houniet et al. (2015). In this 

context, sensitivity corresponds to the rate with which the caller identifies variants at sites 

where variants are present. Specificity corresponds to the rate with which the caller does 

not identify variants at sites where variants are absent. A large number of erroneous 

variant calls can quickly become unmanageable in a large-scale study, masking the signal 

from genuine variants. I have therefore excluded from the study any cases that presented 

a specificity of ≤99%. In other words, any case that was likely to include many false 

positives. This means that the final case study effectively includes 824 ToF cases from 

867. Similarly, I retained 490 NDD cases out of 500 for this study. Every stage of the 

WES study involves this set of cases. 
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Given that ToF cases and NDD cases were sequenced independently, I set out to 

determine whether the two sets of cases were comparable and therefore whether NDD 

could be used as controls. To provide an ideal comparison, presence of a disease trait 

should be the only characteristic that differentiates a disease case set from a comparator 

set. Differences in sequencing or set composition can be the source of biases between sets, 

making an objective case-control comparison difficult. In order to determine this, for 

every gene I counted the number of cases with at least one high-confidence (Q30 in 

SAMtools) rare synonymous variant, testing for the hypothesis that no significant 

difference exists in counts between ToF cases and NDD cases. The comparison was done 

using Fisher’s exact test, producing a set of p-values that was then compare to a standard 

chi-square distribution. To determine whether sequencing bias might disappear with 

variants called with higher confidence, I repeated the same operation using a higher 

threshold for confidence (Q60). 

For this WES study, I only retained variants called with high-confidence (Q30). Using 

ANNOVAR (Wang et al., 2010), I annotated each set of  variant calls, providing me with 

the information needed to apply different filtering criteria. I used it to extract rare variants. 

Variants present in the 1000g and the Exome Variant Server (EVS) with a MAF≥1% 

were excluded from the study as too common to be of interest (MacArthur et al., 2014). I 

also excluded variants with a frequency of ≥1% in 418 in-house exomes from other 

studies. I excluded all variants shared between ToF and NDD cases and any variant 

appearing with a frequency of ≥1% in either set. In addition to removing common 

variants, these steps are also expected to remove a number of overrepresented sequencing 

artefacts. To further remove likely artefacts, I excluded any variant falling within a 

segmental duplication. Segmental duplications were detected using GenomicSuperDups 

which is part of ANNOVAR annotation (Wang et al., 2010). As a result of the difficulties 

inherent in indel calling, indel calls produced by SAMtools were much less reliable than 

those produced for SNVs. Indels were therefore removed from list of variants. These 

different filtering steps led to a list of variant sites that I used in every subsequent stage of 

the study. 

Using SAMtools, I called the aforementioned variant sites in 875 cases from the 1000g, 

thus providing a further list against which to filter results from ToF and NDD cases. 

Variants present in ToF or NDD cases that were also present in the 1000g at least once 

were filtered as part of a more stringent filtering criterion. This left only variants unique 
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to either set of cases. Additionally, this step removed artefacts. The list of variants from 

the 1000g available through ANNOVAR will have had some known artefacts removed 

from it. The variant sites I called from the 1000g will still carry these artefacts and can 

thus be used to remove the artefacts that may exist in my list of variants. It is worth 

pointing out that this filter is particularly stringent and will remove variants that would be 

estimated to have a MAF~0.05% but could be in fact much rarer due to the limited 

amount of alleles used to estimate the MAF. In Section 5.4, I annotated the results I 

obtained following my main filtering pipeline to account for the results of obtained after 

stringent filtering. 

At every stage of the WES study, I divided rare variants into four categories: truncating, 

predicted deleterious, non-synonymous and synonymous. Here I define variants as 

truncating if they are predicted to shorten the coding segment of a gene (Rivas et al., 

2015). This category includes nonsense variants and splice site variants. The following 

category; predicted deleterious, includes variants predicted as deleterious by a consensus 

of pathogenicity predictors, excluding truncating variants. The predictors used are 

MutationTaster, PolyPhen2 and LRT, as in Chapter 4. In order for a variant to be 

considered predicted deleterious, each pathogenicity predictor has to predict the variant to 

be at least possibly deleterious. The non-synonymous category includes all missense 

variants with the exception of those in the previous category. The synonymous category 

includes all variants that are synonymous and therefore does not overlap with any of the 

three other categories. To separate the effects of each category, it was crucial that none of 

the categories overlap. This was particularly crucial for the truncating and predicted 

deleterious categories for which deleteriousness was determined through dissimilar 

approaches.  

The first step of this WES ToF study was to establish the presence of rare truncating 

variants and rare variants predicted deleterious in genes previously implicated in ToF and 

CHD. Mutated genes that influence the risk of ToF will be more common in ToF patients 

than in patients with some unrelated disease, a fact that is expected to be reflected in the 

number of cases with one or more rare variants in known ToF genes. I therefore 

compared genes harbouring rare variants in 824 ToF cases to two sets of genes implicated 

in ToF as summarised in Table 21. 
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Gene set Disease Genes in set  Source 

Known ToF ToF (isolated) 20 Gene sequencing studies (see Table 18) 

IVA  ToF (isolated) 42 Ingenuity Variant Analysis software
™

  

ToF syndrome ToF (syndromic) 80 Winter-Baraitser Dysmorphology Database 

HRC  CHD 312 HeartRepair consortium 

Zaidi  CHD (severe) 276 Study by Zaidi et al. (2013) 

CHD syndrome CHD (syndromic) 674 Winter-Baraitser Dysmorphology Database 

Cilia CHD (cilia) 61 Study by Li et al. (2015) 

Table 21. Summary of gene sets used in the study of variants in genes previously implicated in ToF or CHD. 

The first set contained genes that were causally linked to isolated ToF through gene 

sequencing studies; presented in Table 18, while the second set contained genes identified 

through Ingenuity Variant Analysis software
™ 

(QIAGEN, 2015) as affecting isolated ToF. 

One gene in the set identified through Ingenuity Variant Analysis software
™

, TGFB1, 

was annotated as having a “protective effect” and was therefore excluded. Additionally, I 

looked at variants in genes associated with syndromes that involved ToF, catalogued by 

the Winter-Baraitser Dysmorphology Database (London Medical Databases, 2014). I also 

compared the genes in my study to two sets of genes implicated in various types of CHD, 

also summarised in Table 21. The first set originated from the HeartRepair Consortium 

(HRC) (EU FP7 Consortium). The HRC is a European research group investigating 

cardiac development through various methods. The different consortium members have 

contributed to a set of candidates, each using their own criteria of selection, but with the 

unifying theme that the genes were somehow involved in CHD. The second set was 

compiled for a study on the contribution of de novo variants to severe CHD, including 

ToF (Zaidi et al., 2013). Zaidi et al. (2013) selected genes associated to CHD through 

human and model system studies. As before I compared genes harbouring variants in my 

study to genes associated with syndromes, in this case involving CHD, compiled in the 

Winter-Baraitser Dysmorphology Database (London Medical Databases, 2014). 

Following a study by Li et al. (2015) suggesting that genes involved with cilia 

development and cilia-transduced signalling play a major role in CHD, I decided to 

include these genes into my study. The mutated mouse orthologs of these genes were 

found to cause CHD (Li et al., 2015).  Some overlap between sets is to be expected. The 

overlap between categories pertaining to ToF and CHD in general are shown in Figure 23, 



 

120 

 

where I have grouped ToF lists and CHD lists together. Most of the genes from the 

known ToF gene set are included in the IVA gene set. Comparing all the gene sets 

pertaining to ToF with the cilia gene set shows overlap only in 2 genes. 

For each gene set, I calculated the odds ratio of ToF cases harbouring rare variants; first 

truncating followed by predicted deleterious, in candidate genes for ToF or CHD over 

NDD cases. 

 

Figure 23. The overlap between the gene sets pertaining to ToF (top left) and between those pertaining to CHD 

(top right). Also shown is the overlap between all ToF gene sets and all CHD gene sets with the cilia gene set 

(bottom). 
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The next step in the WES ToF case study was to detect clustering in rare variants in the 

four categories delineated above. Variants contributing to disease are expected to cluster 

within specific gene or exons. The different categories provide a gradient of predicted 

effect against which the amount of clustering can be contextualised. For this, I 

implemented the Poisson approximation of The Wd statistic described by Lange (1997). 

Assuming that each position in the coding region of the exome is equally likely to carry a 

rare variant, the statistic estimates the probability of observing more than the expected 

number of rare variants for a given length of coding sequence (CDS) given the total 

number of variants in the exome and the total number of CDS and their lengths. I set the 

threshold for significance as α=0.05. For this study, I define two sets of CDS: The coding 

portion of the gene and the exon. For the gene, coding regions were determined using 

known gene transcripts. The number of protein-coding genes was established to be 19,214, 

while the number of exons 233,785, from records in the Ensembl database (Cunningham 

et al., 2015). These values were used to correct for multiple-testing. The identifiers and 

sizes of known protein-coding transcripts and specific exons were also obtained from the 

Ensembl database using BioMart to shape and download the query (Cunningham et al., 

2015). Ensembl provides transcripts which have different levels of support, signalled by a 

transcript support level (tsl) flag. For this study, I only used gene transcripts marked as 

tsl:1 which signifies the following: “all splice junctions of the transcript are supported by 

at least one non-suspect mRNA” (Cunningham et al., 2015). I counted variants falling 

within a CDS using two different schemes. For the first scheme, if a variant at one 

particular position was seen in several different patients it was still only counted once. I 

refer to this first scheme as clustering by position. This ensured that any remaining non-

rare variants or sequencing artefacts repeating across individuals did not lead to excessive 

clustering, while masking genuine clusters of rare variants. In a second scheme, I counted 

the actual number of rare variants in patients. I refer to this second scheme as clustering 

by variant. For comparison, I also looked at clustering within genes and exons in NDD 

cases. In order to compare clustering in ToF and NDD cases, I sampled variants in ToF 

cases 1000 times in each category, with each new sample containing the same number of 

variants as in NDD cases. This is an important step given the difference in the number of 

cases with ToF and NDD. I looked for any clustering in genes previously implicated in 

CHD using the gene sets described in Table 21. 
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Finally, I performed pathway analysis on the genes identified at different stages of this 

project. As in chapter 4, I started by using STRING v.10 (Jensen et al., 2009), followed 

by EnrichNet (Glaab et al., 2012). Using STRING, I looked at the interaction between the 

protein products of the genes found in each clustering category. I first looked for 

enrichment in interaction, followed by specific enrichment in gene ontology (GO) terms 

(Gene Ontology, 2004) and KEGG interaction pathways (Kanehisa and Goto, 2000). 

Using EnrichNet, I interrogated a number of pathway databases to uncover any over-

representation of genes belonging to a certain pathway or process. The significance of 

overrepresentation is judged using two metrics: the level of overlap between query genes 

and genes in a pathway; given as a q-value, and the distance of query genes to genes in a 

pathway; given as an XD-score. The evidence gathered from different layers of enquiry 

was used to determine which genes could play a role in ToF. 

5.4. Results 

5.4.1. Sequence data presentation 

My study originally focused on 867 ToF cases sequenced by MUGQIC and 500 NDD 

cases, sourced from various UK10K studies that were to be used for comparison. The 

mean depth of coverage for each set and the number of variants per case is given in Table 

22 along with an overall estimation of the sensitivity and specificity using population data 

(Houniet et al., 2015). The mean read depth per ToF case is nearly twice that of NDD 

cases. This likely stems from differences in sequencing protocol between case sets. 

 

 ToF cases (n=867) NDD cases (n=500) 

Read depth per case (mean) 93.9 49.9 

Number of Q30 variants per case (mean) 38589 39668.8 

Estimated sensitivity (%) 95.9 93.3 

Estimated specificity (%) 99.5 99.7 

Table 22. Description of sequence data from ToF and NDD cases in target regions before the selection of cases 

with high specificity. 

As an initial quality filtering step, I excluded cases that were in the lower specificity 

range, with an estimated specificity ≤99%. These are shown in Figure 24. Overall, 824 

ToF cases and 490 NDD cases were estimated to have a specificity >99%. All other cases 

were not used for the remainder of the study. 

Table 22 hints at some systematic difference between sets. This may be the result of 

variations in sequencing protocol which can affect the frequency with which a particular 
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allele is observed in a set of cases. The variability in allele frequencies imputable to 

disease may consequently be masked by the variability introduced by different 

sequencing protocols. To determine whether the two sets are comparable, for each gene I 

compared the number of ToF and NDD cases with at least one high-confidence rare 

synonymous variant. I ended up with an individual count per gene for each set. The 

counts per gene in each set were compared using Fisher’s exact test and the resulting 

distribution was compared to a chi square distribution. If the two sets have comparable 

variant counts, the resulting distribution should approximately follow a chi-square 

distribution. The distribution of my data did not follow the expected chi-square 

distribution, as shown in Figure 25. There was more variance in variant counts between 

the two sets than would be expected by chance alone. This manifests in Figure 25 as an 

upward curve. Figure 26 shows the same experiment over higher-confidence variants 

(Q60). Selecting variants from higher-confidence calls does not lead to a chi-square 

distribution. A comparison of allele frequencies in case sets, following the designs 

described in Section 5.2.2, is therefore likely to be compromised by sequencing bias. 
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Figure 24. Estimates of sensitivity and specificity in 824 ToF cases and 490 NDD cases. The line represents a cut-

off threshold of 99%. Cases below the threshold are excluded from the study. Data visualisation provided by 

Mauro Santibañez-Koref. 
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Figure 25. Distribution for each gene compared with a standard distribution of Fisher’s exact test statistics. The 

distribution does not approximate the chi-square distribution. 

 

 

Figure 26. Distribution for each gene (variants Q60) compared with a standard distribution of Fisher’s exact test 

statistics. Despite quality selection, the distribution does approximate the chi-square distribution. 
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Variant calls for each case were filtered to contain only high-quality rare variants. The 

mean count of these rare variants and the category they belong to are summarised in 

Table 23. There appears to be more rare SNVs of all categories per ToF case than per 

NDD case. The largest difference concerns truncating SNVs with around 1.5 times more 

variants per ToF case than per NDD case. In the categories that contain indels, the 

differences between ToF and NDD cases were more pronounced. There were around 3.8 

more indels predicted deleterious per ToF case than per NDD case. The differences are 

not necessarily biologically meaningful and could also be the result of differences in 

sequencing protocols. Alternatively, it can be the result of different set sizes, with the 

rarer variants having a lower probability of being represented in a set of 490 cases over a 

set of 824 cases. 

Category ToF cases (n=824) NDD cases (n=490) 

 SNVs Indels SNVs Indels 

Truncating 8.9 6.4 6 3.6 

Predicted deleterious 47.1 7.5 39 2 

Non-synonymous 105.9 0 81.1 0 

Synonymous 79.1 0 56 0 

Table 23. Mean count per patient of rare variants in each variant category. Categories are mutually exclusive. 

 

5.4.2. Variants in genes implicated in congenital heart disease 

Given known issues with indel calling using SAMtools, I decided to primarily focus on 

SNVs. I started by focusing on those rare SNVs categorised as truncating and therefore 

with the highest potential to be damaging. Do any of these rare truncating SNVs occur 

within genes previously associated with ToF or CHD? How many ToF cases are these 

rare SNVs found in? To answer these questions, I used the seven sets of genes previously 

associated with either ToF or a range of CHDs, described in Section 5.3. Answers are 

provided by the data presented in Table 24.
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Gene set Carrier frequency in 

ToF cohort (%) 

Number of genes Number of SNVs Carrier frequency in 

NDD cases (%) 

Number of genes Number of SNVs 

Known ToF  0.8 5 7 0 0 0 

IVA  2.2 10 19 0.4 2 2 

ToF syndrome 3.3 23 35 2.4 10 12 

HRC  11 91 139 9.6 41 48 

Zaidi  10.4 88 139 10.2 36 54 

CHD syndrome 21.8 227 376 23.7 104 139 

Cilia 5.9 30 67 4.7 15 23 

Table 24. Rare truncating SNVs in ToF and NDD cases present in genes from CHD gene sets. For results with indels see Appendix, Table S3.
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Of particular note is the fraction of ToF cases with truncating rare SNVs in known ToF 

genes. Rare truncating SNVs in known ToF genes were found in 0.8% of ToF cases. The 

truncating SNVs occurred across 5 ToF genes: GATA6, JAG1, NKX2-6, NODAL and 

TBX1. NKX2-6 and NODAL both harboured two variants each. Allowing for genes more 

loosely implicated in ToF by using the set provided from IVA’s data mining increased the 

fraction of ToF cases in which genes were found to 2.2%. Considering genes implicated 

in syndromes in which ToF has been observed instead of the isolated ToF genes from the 

previous two sets resulted in a carrier frequency in ToF patients of 3.3%. A little over 10% 

of ToF patients had at least one truncating variant in genes that belonged to the Zaidi or 

HRC gene sets. Rare truncating SNVs in genes implicated in syndromes with any CHD 

phenotype were found in 21.8% of cases. All three sets cover a larger array of genes than 

previous sets, particularly the latter. It is therefore to be expected that a higher fraction of 

ToF cases have truncating variants in genes that appear in these sets. Variants in genes 

belonging to the Cilia gene set were found in 5.9% of ToF patients. To establish whether 

the genes in each set are more prevalent in ToF cases than in some unrelated disease 

requires a point of comparison. I performed the same analysis on NDD cases, the results 

of which are shown in Table 24. 

The most interesting result was that, in 490 individuals with NDD, not a single rare 

truncating SNV was found in a known ToF gene. Two individuals with NDD did have 

truncating variants in genes associated with ToF according to IVA. The two genes in 

question, MYOM2 and TCEB3, originated from a single study by Grunert et al. (2014). 

MYOM2 was found both in ToF cases and NDD cases. The differences between ToF and 

NDD patients for other gene sets were less striking. For example, a total of 2.4% NDD 

patients had at least one truncating variant in a gene previously implicated in syndromes 

that include ToF, compared to 3.3% in ToF patients. This result is altogether not 

unexpected given that some syndromes will involve both CHD and neurodevelopmental 

disorders. Patients with CHARGE syndrome for example; caused by mutations in CHD7, 

can present both ToF and mental retardation (Michelucci et al., 2010). To establish 

whether genes in a particular gene set were significantly more prevalent in ToF cases than 

in NDD cases, I calculated an odds ratio for each set. The odds ratios are given in Table 

25. The odds of truncating variants being found in genes associated with ToF; whether in 

the Known ToF or IVA gene set, were substantially higher in ToF cases than in NDD 
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cases. However, this did not extend to genes implicated in syndromes of which ToF is a 

part. For other gene sets, Fisher’s test did not reach statistical significance and the odds 

gravitated towards 1. Lower odds are to be expected when looking at CHD genes, many 

of which have yet to be shown to influence the risk of ToF. Conversely, many of them 

could be associated with neurodevelopmental disorders. This conclusion is particularly 

applicable to the CHD syndrome gene set. Additionally, the HRC gene set contains a 

subjective selection of CHD genes some of which could be only tenuously linked to CHD. 

Given that the two sets of cases were not well-matched, one must exercise great care in 

interpreting these results. 

Gene set Odds ratio (p-value) 

Known ToF  ∞ (3.79E-2) 

IVA  5.44 (6.76E-3)  

ToF syndrome 1.35 (2.49E-1) 

HRC  1.17 (2.32E-1) 

Zaidi  1.03 (4.86E-1)  

CHD syndrome 0.9 (7.99E-1) 

Cilia 1.28 (2.01E-1) 

Table 25. The odds of ToF cases having truncating variants in relevant genes over NDD cases. 

For both ToF and NDD patients, I looked at the distribution of truncating SNVs in genes 

from the HRC set. 80 of 91 genes harboured less than 3 variants in ToF cases. All 41 

genes with SNVs in the NDD cases had less than 3 variants. Both ToF and NDD cases 

had truncating SNVs for 16 of these genes. Table 26 lists the few genes for which 

variants were found only in ToF patients and for which there were more than 3 truncating 

SNVs. For this gene set, NOTCH1 was revealed to be the gene with the largest number of 

variants. IGF2 presented an equal number of truncating variants, but these are all filtered 

out if stringent filtering is applied. 

HRC genes Number of truncating variants 

IGF2*, NOTCH1  5 

EDN* 4 

CHFR, CLTC, MESP1, PRKG1, SCN5A,VCL 3 

Table 26. HRC set of genes for which there are at least 3 truncating SNVs in 824 ToF cases, but not in 490 NDD 

cases. *SNVs in gene completely removed by stringent filtering. 

Having looked at rare truncating SNVs, I then turned to variants predicted as deleterious. 

It is worth reiterating at this stage that truncating SNVs were not included in this category. 
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The results for ToF and NDD cases are shown in Table 28. SNVs predicted to be 

deleterious in known ToF genes were found in 3.6% of ToF patients. It is important to 

note at this stage that a number of missense variants were found in known ToF genes in 

two gene sequencing studies carried out on a subset of the ToF cases being studied here 

(Griffin et al., 2010; Topf et al., 2014). TBX1 and HAND2 were among the genes 

sequenced in these two studies. In order to avoid bias from variant rediscovery, I carefully 

surveyed the variants found in my analysis and compared them to those found in the two 

gene sequencing studies. There was no overlap in the variants that were found. As shown 

in Table 23, per individual, the number of rare SNVs predicted to be deleterious is an 

order of magnitude larger than the number of rare truncating SNVs. This translated to a 

high carrier frequency for each gene set, whether ToF or NDD patients were being 

studied. 

Table 27 provides the list of known ToF genes observed in ToF cases. Genes for which 

truncating SNVs were found all also harbour at least one SNV predicted to be deleterious 

in ToF cases. Notably, there were six SNVs fitting that description in JAG1. 

Known ToF genes Number of variants predicted deleterious 

JAG1  6 

GATA4 5 

BVES, TBX5, ZFPM2 3 

FOXH1, GATA5, GATA6, NODAL 2 

GJA5, HAND2, NKX2-6, TBX1, TDGF1  1 

Table 27. Known ToF genes for which there are variants predicted deleterious in 824 ToF cases. 

NDD patients also presented variants in known ToF genes. Given that the damaging 

potential of these variants is more uncertain; as it relies on pathogenicity prediction tools, 

this result was not entirely surprising. Five genes for which SNVs were found in ToF 

patients also harboured SNVs in NDD patients: BVES, FOXH1, JAG1, NKX2-6 and TBX5. 

Three variants were found in JAG1 in NDD patients for example. The contrasts between 

ToF and NDD patients observed when studying rare truncating variants in known ToF 

genes did not carry over to rare variants predicted as deleterious. However, the odds ratios 

did reveal some differences, as shown in Table 29.
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Gene sets Carrier frequency 

in ToF cases (%) 

Number of genes Number of SNVs Carrier frequency in 

NDD cases (%) 

Number of genes Number of SNVs 

Known ToF  3.6 14 33 1.8 5 9 

IVA 9.2 32  85 8.2 16 42 

ToF syndrome 27.8 54 289 17.6 42 93 

HRC  65 229   995 58.6 172 449 

Zaidi  59.5 184  877 54.7 143 396 

CHD syndrome 89.2 469 2255 87.6 391 1106 

Cilia 30.1 44 312 33.5 43 205 

Table 28. Rare SNVs predicted to be deleterious in ToF and NDD cases that are present in genes from CHD gene sets. For results with indels see Appendix, Table S4. 
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ToF patient presented more than twice the odds of having a variant predicted to be 

deleterious in a known ToF gene as an NDD patient. Given the increased number of 

SNVs included in this category, statistical significance was reached for several gene sets. 

This was the case for the HRC and the ToF syndrome gene sets. The latter gene set 

presented an odds ratio of 1.8 in favour of ToF patients. Whether statistically significant 

or otherwise, other gene sets had odds ratios close to 1. 

Gene sets Odds ratio (p-value) 

Known ToF  2.02 (4.18E-2) 

IVA  1.14 (2.91E-1)  

ToF syndrome 1.8 (1.33E-5) 

HRC  1.32 (1.12E-2) 

Zaidi 1.22 (5.11E-2)  

CHD syndrome 1.17(2.06E-1) 

Cilia 0.86 (9.09E-1) 

Table 29. The odds of ToF cases having variants predicted as deleterious in relevant genes over NDD cases. 

To determine if SNVs in specific genes of the ToF syndrome set might be responsible for 

the observed odds ratio, I looked at gene-specific odds ratios and their distribution in ToF 

and NDD cases. Genes for which variants predicted to be deleterious were found largely 

overlapped in ToF and NDD cases. Among the 10 genes with the most SNVs in ToF 

cases, only PDX1 was not represented in NDD cases. However, on further inspection, 

many of the 13 individuals with variants in PDX1 were found to share one of two 

recurring variants, leaving only two unique variants. To compare variants in ToF and 

NDD cases, I therefore chose to focus only on the proportion of individuals with unique 

variants. Furthermore, for each gene only one variant was counted per individual. The 

results of this analysis are shown in Table 30. The odds of a variant being observed in 

NOTCH1 in a ToF patient were 5 time higher than in an NDD patients. Results for other 

genes did not reach statistical significance. 
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ToF syndrome 

genes 

SNVs pred. deleterious in 

ToF patients 

SNVs pred. deleterious in 

NDD patients 

Odds ratio (p-value) 

NOTCH1 25 3 5.07 (1.63E-3) 

DOCK6 15 3 3.01 (5.22E-2) 

ATP7A 9 1 5.39 (6.46E-2) 

CHD7 9 3 1.79 (2.86E-1) 

ACE 9 7 0.76 (7.89E-1) 

GLI3 6 3 1.19 (5.51E-1) 

EHMT1 8 1 4.79 (9.45E-2) 

BOC 8 3 1.59 (3.63E-1) 

Table 30. Genes from the ToF syndrome set with the most SNVs predicted to be deleterious after recurring 

variants have been excluded. 

Whether the focus is on truncating variants or variants predicted to be deleterious the 

odds of finding rare variants in known ToF genes in ToF cases rather than NDD cases 

were consistently higher. Additionally, there were slightly higher odds of finding variants 

predicted as deleterious in genes from the ToF syndrome gene set in ToF patients than in 

NDD patients. The overabundance of NOTCH1 carried part of that trend. 

5.4.3. Identification of variants clustering in genes and exons 

Results like those shown for NOTCH1 in Table 30 suggest that rare variants are clustered 

within certain genes in ToF patients. Following the assumption that each position in the 

coding sequence (CDS) of the exome is equally likely to carry a variant, clustering then 

refers to a higher concentration of variants than expected by chance within a stretch of 

CDS given the overall variant rate. If ToF patients harbour variants that are disease-

causative, some level of clustering across corresponding genes should be discernible in 

the disease-specific population. The second step in this WES study consisted in 

identifying such clusters in ToF cases and sorting them by gene. Genes for which clusters 

were found in ToF and NDD cases were excluded as not disease-specific. It is important 

to stress that this does not constitute a comparison between ToF and NDD cases, as the 

two sets were not well-matched, as shown in Section 5.4.1. The NDD cases here provided 

a filter for clusters that were not specific to ToF cases. Genes were also excluded if 

clustering was also found in the Synonymous category in ToF cases given that 

synonymous variants are unlikely to lead to be disease-causative. 

As outlined in Section 5.3, I started by looking at clustering of SNVs by position. These 

results are shown in Table 31 for every category of rare variant at gene and exon level. 
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The number of genes in which clusters occur at both levels was also determined. Clusters 

were identified in a total of 144 genes. Among these genes, 13 were identified both in 

ToF and NDD cases. Crucially, none of these overlapping genes were found in the 

Truncating category. This is significant given that the category concentrates the most 

likely highly-deleterious variants. Looking at the overlap between the categories in ToF 

cases showed 15 genes present in at least two categories. 7 of the 15 genes overlapping 

categories in ToF cases were also present in NDD cases. The recurrence of these genes is 

likely to be the product of their high tolerance to mutation, leading to false cluster 

detections. Both the Non-synonymous and Synonymous categories, which are expected 

not to concentrate disease-causing variants presented many clusters. 

CDS type ToF cases (n=824) NDD cases (n=490) 

Truncating 6,802 2,623 

Gene 3 1 

Exon 7 6 

Both 1 0 

Predicted deleterious 34,065 16,454 

Gene 30 11 

Exon 19 8 

Both 4 0 

Non-synonymous 73,043 34,627 

Gene 37 9 

Exon 19 9 

Both 7 0 

Synonymous 53,767 24,159 

Gene 18 4 

Exon 8 6 

Both 2 0 

Table 31. Number of genes that showed evidence of clustering (by position) at gene and exon levels. The total 

number of positions in each category in ToF and NDD cases is given in the header of each section. Only SNVs 

were considered here. 

Despite not being able to compared ToF and NDD cases directly, I was able to compare 

their rates of clustering. To do this, the same number of positions had to be studied in 

both. As shown in Table 31, the number of positions studied for ToF cases is at least 

twice that of NDD cases, due not only to the higher number of ToF cases, but also 

differences in sequencing. In order to get an approximation of the number of clusters that 

would be observed in ToF cases given the same number of positions as in NDD cases, I 

sampled the positions in ToF cases 1000 times to match the number of positions in NDD 
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cases. For example, for the truncating category, I created 1000 samples from ToF cases 

covering 2,623 positions randomly selected from the original 6,802. For each of these 

lists, I uncovered clusters around gene and exons and produced an average number of 

clusters. The results of this process are shown in Table 32. With some exceptions, ToF 

and NDD cases showed similar numbers of clusters. If disease-causative variants were 

responsible for most ToF cases, more clustering in ToF cases should have been observed 

in the Truncating and Predicted Deleterious category. No clear indication of this was 

found. 

CDS type NDD cases (n=490) 1000 ToF cases samples (from n=824) 

  

Average 

Fraction with more clusters 

than NDD cases 

Truncating 2,623  

Gene 1 1.7 0.51 

Exon 6 7.5 0.64 

Predicted deleterious 16,454  

Gene 11 9.4 0.23 

Exon 8 8.8 0.53 

Non-synonymous 34,627  

Gene 9 11.4 0.76 

Exon 9 6.5 0.07 

Synonymous 24,159  

Gene 4 4.9 0.57 

Exon 6 4.1 0.04 

Table 32. Average number of genes which showed evidence of clustering (by position) at gene and exon levels 

after sampling of positions in ToF cases (NDD cases are shown for comparison). The fraction of samples that 

produced a higher number of clusters than observed in NDD cases is also indicated. Only SNVs were considered. 

Clusters of truncating SNVs were found across 9 genes, most of these identified within a 

single exon. Most clusters were found to include no more than 3 truncating SNVs. The 

exceptions were clusters in genes CCDC102B and FLT4, with cluster sizes in the gene of 

5 and 8 SNVs respectively; where cluster size refers to the number of SNVs in the cluster. 

The clusters were specific to the Truncating category, the only exception being a cluster 

of 8 SNVs in the non-synonymous category across CCDC102B. Table 33 describes those 

genes in which clusters were found. The clusters are not affected if stringent filtering is 

applied. 
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Gene Clustering level Cluster size (p-value) 

A2M Exon 2 (3.72E-2)  

CCDC102B Gene/ Exon 5 (3.57E-2) / 3 (2.65E-2)  

CTPS2 Exon 3 (2.74E-3)  

FLT4 Gene 8 (1.28E-2) 

PHF10 Exon 3 (9.16E-3)  

RAD9B Exon 3 (4.07E-3)  

SHPK Exon 3 (2.98E-2)  

TAC3 Gene 3 (4.36E-2) 

TNPO1 Exon 3 (2.98E-3)  

Table 33. Size and p-value of clusters (by position) of truncating SNVs in ToF patients. The clusters of truncating 

variant in NDD patients do not occur in the same genes. 

There were considerably more clusters in the Predicted Deleterious category. In total, 

clusters were found in 48 genes. Among these, 4 genes were also the site of clustering in 

NDD cases: ATG2A, PCDH9, PRRC2C and ZNF423. SNVs in the Synonymous category 

in ToF cases were also found to cluster in PRRC2C and ZNF423 and APC2. The same 

genes were found in the Non-synonymous category as well, with the addition of ATG2A. 

The abundance of SNVs in these genes across multiple categories and, more importantly, 

across cohorts suggested a high gene mutation rate independent of ToF. Applying 

stringent filtering to the list leads to the further exclusion of 5 genes: ADAMTS17, 

MEF2D, SLC26A1, STX6 and VCL. Table 34 lists the 10 genes with the most significant 

clustering relative to gene or exon size; excluding the 9 genes just mentioned. The full list 

can be found in the Appendix as Table S6. The list includes NOTCH1 which was 

identified in Section 5.4.2 as having an overabundance of variants in ToF patients 

compared to NDD patients. The presence of a cluster in NOTCH1 in ToF cases, but not in 

NDD cases thus consolidates previous results. The largest clusters were found in NEB and 

HMCN1 with a variant count larger than 50. Unlike clusters in the previous category, a 

majority of clusters were found spanning several exons rather than being concentrated 

within a single one. 
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Gene Clustering level Cluster size (p-value) 

HMCN1 Gene 56 (4.37E-7) 

SERBP1 Gene/ Exon 14 (6.18E-7) / 9 (1.92E-5) 

MYO7A Gene 30 (6.36E-6) 

NAV2 Gene 32 (6.38E-6) 

GLDC Gene 20 (9.11E-6) 

NEB Gene 58 (2.83E-5) 

NELL1 Gene 17 (4.80E-5) 

NOTCH1 Gene 31 (7.89E-5) 

SNCAIP Gene 6 (8.95E-5) / 4 (2.99E-2) 

PTPN5 Exon 6  (1.35E-4) 

Table 34. Size and p-value of the 10 most significant clusters (by position) of SNVs predicted to be deleterious in 

ToF patients, excluding those with an equivalent in NDD cases and the Synonymous SNV category. The full list 

is in the appendix in Table S6.  

After looking at clusters by position, I looked at clusters formed by variants counted for 

each occurrence; which I refer to here as by variant. The number of clusters in each 

category for ToF and NDD cases is shown in Table 35. Here again I considered only 

SNVs. This approach to clustering led to a sharp increase in each category both in ToF 

and NDD cases when compared to results from clustering by position. This suggests, 

despite filtering for rare variants, that many variants shared by multiple unrelated 

individuals remained in the data. The application of stringent filtering supports this view 

as large numbers of clusters from the first three categories were discarded as a result. This 

was particularly true of clusters in exons for both the Predicted Deleterious and Non-

synonymous categories with 79 and 126 clusters removed after stringent filtering. The 

results after stringent filtering are shown in the Appendix in Table S5. A total of 51 genes 

were found in at least two categories, 14 of which were also found in NDD cases. 

However, there was once more little overlap between the Truncating category and other 

categories. CCDC102B was once again shared by Truncating and Non-synonymous 

categories. GCKR and TPO were shared with the Synonymous category. FLT4, 

previously found to harbour significant clustering in the Truncating category for ToF 

cases, was also found in the same category for NDD cases. Crucially however, the 

clustering was limited to exon 2 and involved the same exact variant in 4 different NDD 

patients. By contrast, the cluster in ToF cases involved 8 distinct rare variants. Therefore, 

the presence of a cluster in FLT4 in NDD patients does not affect the importance 

attributed to the cluster in ToF patients. 
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CDS type TOF cases (n=824) NDD case (n=490) 

Truncating 7,326 2,964 

Gene 34 34 

Exon 60 81 

Both 24 25 

Predicted deleterious 38,826 19,105 

Gene 80 31 

Exon 186 159 

Both 43 18 

Non-synonymous 87,247 39,763 

Gene 126 29 

Exon 222 54 

Both 67 9 

Synonymous 65,177 27,453 

Gene 83 13 

Exon 255 58 

Both 50 7 

Table 35. Number of genes that showed evidence of clustering (by variant) at gene and exon levels. The total 

number of variants in ToF and NDD cases is given for each category. Only SNVs were considered. 

I once again compared ToF and NDD cases through sampling. The results are shown in 

Table 36. The numbers of genes with clusters in each category varies widely between 

ToF and NDD cases. This is true of categories where little variation was expected such as 

the Synonymous category. There were almost systematically less clusters in the samples 

of ToF cases for the Truncating and Predicted Deleterious categories compared to NDD 

cases. The opposite tendency was observed in the remaining two categories. One possible 

explanation for this observation is that it represents disease-specific clustering in the 

NDD cases. However, it is difficult to for a conclusion in this case given that ToF and 

NDD cases were not well-matched. The excess clustering in NDD cases could also be due 

to a higher number of artefacts in that set of cases over ToF cases. 
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CDS type NDD cases (n=490) 1000 TOF cases samples (from n=824) 

  

Average 

Fraction with more clusters 

than NDD cases 

Truncating 2,964  

Gene 34 11.1 0 

Exon 81 24.4 0 

Predicted deleterious 19,105  

Gene 31 25.5 0.07 

Exon 159 68.2 0 

Non-synonymous 39,763  

Gene 29 38.8 0.99 

Exon 54 74.1 1 

Synonymous 27,453  

Gene 13 20.8 0.97 

Exon 58 66.4 0.87 

Table 36. Average number of genes which showed evidence of clustering (by variant) at gene and exon levels 

after sampling of positions in ToF cases (NDD cases are shown for comparison). The fraction of samples that 

produced a higher number of clusters than observed in NDD cases is also indicated. Only SNVs were considered. 

In the following sections, I have therefore decided to focus on results obtained from the 

study of clustering when SNVs were counted by position rather than by variant. 

5.4.4. Clustering in genes implicated in CHD 

Having identified clusters in genes and exons, some fraction of which could be 

hypothetically explained by genes influencing the risk of ToF, I then compared the sets of 

CHD genes to all clusters for ToF case. Were any of the genes in which clusters were 

found already implicated in ToF or CHD more generally? The results are given in Table 

37, with a gene by gene break down for each category in the Appendix, Table S7. Table 

38 provides the list of genes for which clusters were found in the Predicted Deleterious 

category for ToF cases, but not in the Synonymous category or in NDD cases. 

Gene sets Truncating Predicted Deleterious Non-Synonymous Synonymous 

Known ToF  0 0 0 0 

IVA  0 0 0 0 

ToF syndrome 0 2 0 0 

HRC  0 4 2 1 

Zaidi  0 2 1 0 

CHD syndrome 0 6 4 4 

Cilia 0 1 0 0 

Table 37. Number of genes from CHD gene sets that harbour clusters (by position) for ToF cases. There is some 

overlap between genes found in each gene set. For list of genes see appendix, Table S7. 
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None of the genes included in ToF and IVA sets presented clustering. Clusters in two 

genes of the ToF syndrome set were found in the Predicted Deleterious category, 

NOTCH1 and PORCN; NOTCH1 is also shared by the HRC, Zaidi and CHD syndrome 

sets. As in sections above, the cluster in NOTCH1 stood out with 31 SNVs. 

Gene Gene set Clustering level Cluster size (p-value) 

ADAMTS17* CHD syndrome Gene 17 (4.15E-3) 

CC2D2A CHD syndrome, Cilia Exon 4 (4.07E-2) 

COL3A1 CHD syndrome Gene 19 (1.62E-2) 

MEF2D* HRC Gene 6 (2.00E-2) 

MYOM1 HRC Exon 5 (3.19E-3) 

NEK2 Zaidi Gene 10 (2.09E-2) 

NOTCH1 ToF/CHD syndrome, HRC, Zaidi  Gene 31 (7.89E-5) 

PORCN ToF/CHD syndrome Exon 4 (4.72E-2) 

VCL* HRC Gene 13  (4.74E-2) 

Table 38. Genes present in CHD gene sets for which there are clusters (by position) in the Predicted Deleterious 

category only for ToF cases. Also excluded are genes in the Synonymous category. *Gene no longer in list if 

stringent filtering is applied. 

 

5.4.5. Pathway analysis. 

I started by submitting genes in which SNVs cluster to STRING v.10 (Jensen et al., 2009). 

I then ran these same genes through EnrichNet (Glaab et al., 2012). STRING required at 

least 10 genes in order to calculate interaction enrichment. I therefore combined the 

Truncating and Predicted Deleterious categories for this step, producing a total list of 54 

genes. The potential protein-protein interactions identified by STRING are shown in 

Figure 27. STRING determined the set of genes not to be enriched in interactions (p-

value=6.60E-1). A total of 4 interaction networks were found, including one with 4 

interacting proteins. The networks included genes found in the HRC gene set MEF2D, 

NOTCH1 and VCL. On closer inspection, not all protein-protein interactions appeared 

convincing. Evidence of protein-protein interactions for the protein products in the 

network containing 4 proteins; NMNAT1, LARS, CTPS2, PUS7, relied entirely on 

evidence from homologous genes in other species. As a result, the highest combined 

score (CS) for that network was 0.479, between NMNAT1 and LARS. The predicted 

interactions between NEB and VCL (CS=0.472) and between COL3A1 and ZNF423 

(CS=0.437) relied solely on the co-mention of proteins and genes in publications, a fairly 

vague criterion to base interaction on. By contrast, the putative interactions between 
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MEF2D and NOTCH1 (CS=0.764) and between NOTCH1 and FLT4 (CS=0.946) showed 

stronger interactions, with varied types of evidence. In addition to co-mention of 

NOTCH1 and FLT4 in 50 publications, homologs in other species were found to interact 

in experimental and biochemical interactions. This result is particularly interesting given 

that the network included both NOTCH1 and FLT4, genes singled out in previous sections. 

 For comparison, I performed the same step for NDD cases. This produced a list of 26 

genes. STRING determined that there was no enrichment in interactions in this list either 

(p-value=1.16E-1). A single interaction network was found, including the proteins of 

genes GRIK, DLG3 and TANC1. Interestingly, GRIK is associated with depersonalisation 

disorder; a type of psychosis, and DLG3 with mental retardation, suggesting this network 

could be of biological significance for NDD cases. However, the combined score for their 

predicted interaction was only 0.476. Running either of these lists of genes through 

EnrichNet did not return any significant enrichment for known pathways or processes. 

The genes GRIK and DLG3 were found to belong to a group of ionotropic activity of 

kainite receptors, but this was only significant in terms of network distance distribution 

(XD-score=1.8) and not overlap (q-value=6.7E-2).  

As an additional test, I submitted all genes with at least one unique rare truncating SNV 

in ToF cases, and then in NDD cases, to EnrichNet. This resulting in a gene set of 4,971 

genes in ToF cases and 2,309 genes in NDD cases, a large fraction of the total of human 

genes. Both resulting gene sets were enriched for ABC transporters (ToF cases: XD-

score=3.2 and q-value=2.2E-4; NDD cases: 2.7 and q-value=2.2E-5) according to KEGG, 

while the gene set for ToF cases was also enriched for genes involved in 

glycosaminoglycan degradation (XD-score=3.169 and q-value=4E-2). 
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Figure 27. Protein-protein interactions for genes in which clusters of SNVs in Truncating and Predicted 

Deleterious categories were found. 

While the functional link found between NOTCH1 and FLT4 could prove to be 

significant if FLT4 is confirmed to play a role in ToF, the STRING analysis did not lead 

to any new conclusions regarding potential pathways involved in ToF. The results from 

EnrichNet pathway analyses were similarly inconclusive. 

5.5. Discussion 

The work presented in this chapter provides both evidence of overrepresentation of 

known and potential ToF genes in ToF patients compared with NDD patients. In this 

Section I will review the evidence gathered for different genes. 

5.5.1. Re-discovery of known ToF genes 

In Section 5.4.2, I reported that rare truncating SNVs in known ToF genes; genes 

previously implicated in ToF via gene sequencing studies (Table 18), were found in 0.8% 

of ToF patients while being completely absent from NDD patients. This involved 5 of 20 

known ToF genes with NKX2-5 and NODAL each harbouring two SNVs each. 3.6% of 

ToF patients were found to harbour SNVs predicted as deleterious in 14 of 20 known ToF 

genes. Many of these SNVs were found in JAG1 and GATA4. However, rare SNVs were 



 

143 

 

also found in 1.8% of NDD patients. Both sets of patients had variants in the same set of 

5 genes. One particular striking example is JAG1, for which 6 SNVs were found in ToF 

patients and 3 in NDD patients. On the other hand, there were also genes with rare SNVs 

only in ToF patients, such as GATA4 with a total of 5 SNVs. ToF patients were shown to 

have twice the odds of having a rare variant predicted deleterious in a known ToF gene 

than NDD patients. But what can explain the 1.8% of NDD patients with SNVs predicted 

to be deleterious in known ToF genes?  

There are two main reasons such results should be expected. The first reason is that a 

number of the variants detected in either set of patients may have been determined as 

deleterious when they are in fact benign. Inferring disease-causing potential for a 

missense variant requires the use of in-silico functional prediction tools with limited 

accuracy (Schwarz et al., 2010). Given that these SNVs would have no influence on the 

incidence of ToF they would be unlikely to be found concentrated in either cohort. 

However, we would still expect to be able to detect the effect of those SNVs correctly 

predicted as deleterious as is likely to be the case in my data. It is also worth noting that 

other deleterious variants might be predicted as benign by at least one functional 

prediction tool, in which case they would fall in the Non-synonymous category and not be 

counted. The second reason we should expect such results is that, among the truly 

deleterious SNVs, there might be some that can contribute to neurodevelopmental 

disorders as well as ToF. Rare SNVs found in JAG1 and predicted as deleterious were 

found in both ToF and NDD patients. Mutations in JAG1 have been implicated in 

Allagille Syndrome which in turn have been known to include neurodevelopmental 

defects such as mental retardation in some rare cases (Rauch et al., 2006). It could 

therefore be hypothesised that SNVs in a gene like JAG1 would contribute to ToF in one 

set of patients and neurodevelopmental disorders in others. Despite this potential overlap, 

rare deleterious SNVs in ToF genes should be more consistently implicated in isolated 

ToF and therefore present in larger proportions among ToF patients over NDD patients.  

This final observation is more difficult to apply to genes in which ToF is part of a 

syndrome. Not only do these syndromes not always involve ToF, they can involve many 

types of neurodevelopmental disorders. As was discussed in Section 5.2.1, 22q11.2 

deletion syndrome is a recurrent cause for ToF. It has also been associated to psychosis 

and ASD, disorders represented in the NDD cases in this study (Wu et al., 2014). Despite 

this, the data appears to indicate higher odds of ToF patients having rare variants 
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predicted deleterious in genes for syndromes involving ToF (see Table 29). A gene by 

gene analysis revealed several genes to be more frequent in ToF cases rather than NDD 

cases although only the overabundance of SNVs in NOTCH1 produced statistically 

significant results. Given that the ToF and NDD cases are not well-matched set, these 

results can only be interpreted as indicative of a potential role for NOTCH1 in ToF, with 

additional evidence needed to complement this finding. It is worth noting that truncating 

SNVs in NOTCH1 were also found in 5 ToF patients and not in NDD patients. NOTCH1 

is catalogued as a cause of Adams-Oliver syndrome; the main feature of which are skin 

and limb abnormalities,  in the Winter-Baraister Dysmorphology Database  (London 

Medical Databases, 2014). CHD is observed in 20% of cases of Adams-Oliver syndrome 

and one possible CHD subtype is ToF (Stittrich et al., 2014). Incidentally, NOTCH1 is 

not the only gene from this set to be involved in Adams-Oliver syndrome. DOCK6, with 

an odds ratio near statistical significance, has also been implicated in the syndrome. One 

paper by Wessels and Willems (2010) claims that NOTCH1 has been implicated in non-

syndromic ToF. This appears to be based the identification of a NOTCH1 mutation in a 

family with aortic valve disease (Garg et al., 2005). The only individual in the pedigree 

with ToF was not evaluated as deceased at the time, but the presence of a NOTCH1 

mutation in other individuals with CHD in the same pedigree does provide some evidence 

that NOTCH1 is implicated in isolated ToF. There is also additional evidence for a role 

for NOTCH1 in ToF from the study of CNVs. A study of 34 infants with isolated ToF; 

which do not include cases of 22q11 deletion syndrome, by Bittel et al. (2014) revealed 

two patients with CNVs encompassing the NOTCH1 gene. In another study of CNVs in 

114 ToF patients, Greenway et al. (2009) identified a single individual with 6 CNVs 

coinciding with NOTCH1 and JAG1 gene regions. Rare truncating SNVs in NOTCH1 

were found in 0.6% of ToF patients, while SNVs predicted as deleterious were found in 

4.1%, a proportion larger than for the list of 20 known ToF genes. Additionally, in 

Section 5.4.5, NOTCH1 was found to have 10 possible functional links with known TOF 

genes, particularly JAG1, another gene from the Notch-signalling pathway. 

Results from the IVA gene set indicate that the odds of observing a rare truncating SNV 

in a gene of the IVA set were more than five times higher for ToF patients than NDD 

patients. However, this difference between ToF and NDD patients disappeared when 

SNVs predicted as deleterious were considered instead. What could explain such a strong 

disparity between the results from the set of known ToF genes and IVA genes? As shown 
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in Figure 23, most genes from the known ToF set are accounted for in the IVA gene set. 

Of the remaining 25 genes identified by IVA, a total of 16 were selected for inclusion 

based on a single paper by Grunert et al. (2014). This implies that any shortcomings with 

the methodology of that particular study could have a large effect on the observed results 

for that particular gene set. The fact that the odds did not favour either ToF or NDD 

patients when rare variants predicted to be deleterious were considered suggests that the 

odds ratio observed for truncating SNVs could be largely led by known ToF genes rather 

than a feature of the IVA gene set. 

What results obtained using ToF-oriented gene sets broadly suggest is that the genes 

previously implicated in ToF; whether by gene sequencing studies or through other 

methods, can only account for a small fraction of ToF cases. It cannot be determined 

which fraction of patients have truly deleterious variants in known ToF genes, but it 

cannot exceed 4.4% of patients.  

The final results to consider are those that arise from the CHD gene sets, mainly the HRC 

and Zaidi sets. The genes in these sets do not appear to be harbouring proportionally more 

variants in either ToF or NDD patients. In Section 5.4.2, I pointed to the size of these sets 

compared with ToF specific gene sets and problems with the methodology of selection as 

potential reasons for these results. A case can be made that this provides further evidence 

that distinct CHD subtypes should be studied separately. Many deleterious gene variants 

will be specific to particular types of CHD. Selecting rare variants in ToF patients 

previously associated with CHD in general might therefore not yield meaningful results. 

In the case of genes from the study by Zaidi et al. (2013), this could be indicative of 

histone-modifying genes playing very little role in ToF specifically. This was the case for 

this study. The combination of ciliopathies and CHD in the Cilia gene set did not produce 

any distinct signal either in ToF patients either. This suggests that if cilia genes do 

influence the risk of CHD, this is not particularly applicable to ToF. Admittedly, many of 

these genes, when mutated, were accompanied by heterotaxy, a phenotype not commonly 

associated with ToF (Li et al., 2015) . 

In Section 5.4.2, I presented the identification of a number of new SNVs in known ToF 

genes as well as SNVs in NOTCH1 which is occasionally described in the literature as a 

cause for ToF, although not systematically. The existence of these SNVs remains to be 

validated by Sanger sequencing in future work. Several genes not previously implicated 
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ToF, but involved in CHD which have appeared to be more abundant in ToF patients 

could play a role in the disease. However, it is not possible to reach a conclusion for these 

genes without an adequate comparator set. Additional comparisons of ToF cases with a 

well-matched reference set should provide additional evidence for some of these gene 

candidates.  

5.5.2. Genes potentially involved in isolated ToF from clustering 

The number of clusters varied significantly depending on the approach taken. The number 

of clusters varied strongly depending on whether clusters were determined by position or 

by variant. Determining clusters by counting each variant regardless of whether it had 

appeared in other individuals already led to a sharp increase in the number of clusters. 

Through sampling of variants in ToF patients, I was able to compare the proportional 

number of clusters in ToF and NDD cases (see Table 36). Where clusters had been 

obtained by counting each occurrence of a variant instead of each variant position once, 

NDD cases had more clusters of the Truncating and Predicted Deleterious category while 

ToF cases had more clusters of the Non-synonymous and Synonymous category. By 

comparison, counting variants by position led to ToF and NDD cases with similar 

numbers of clusters as evidenced in sampling results (see Table 32). This suggested that 

there was no excess of clustering in ToF cases compared to NDD cases. Assuming that 

ToF is largely brought on by single highly-penetrant rare variants while NDDs are the 

product of several interacting common and rare variants, one would expect to see more 

clustering in ToF patients than in NDD patients. This in turn suggests that highly-

penetrant rare variants do not play a major role in ToF. 

The first observation that can be made about genes for which there is evidence of 

truncating SNV clustering in ToF cases is that many of these clusters were extremely 

small and many resided near the threshold of statistical significance (see Table 33). One 

example was the cluster detected in A2M in exon 35. It is unlikely that a cluster that 

includes only 2 SNVs will truly be significant. This finding most likely reflects the small 

size of exon 35. Only two genes were the site of clustering involving more than 3 variants, 

CCDC102B and FLT4, with clusters of 5 and 8 respectively. Clustering was also found in 

CCDC102B in the Non-synonymous category. Both of these genes thus appeared to have 

a genuine overabundance of truncating SNVs in ToF patients. In the case of FLT4, this 

fact must be balanced with the discovery of a cluster in NDD cases as well when clusters 
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were counted by variant. However as described in Section 5.4.3, this was the result of a 

single variant identical in four NDD patients and thus not the product of a very rare 

variant. 

A number of other details about the gene suggest a potential role. FLT4; also previously 

described as VEGFR-3, encodes a tyrosine kinase receptor for vascular endothelial 

growth factors C and D. In humans, mutations in the gene cause Milroy disease 

(lymphedema) with the causative variants identified in patients with the disease occuring 

within the kinase domains (Connell et al., 2009). However, Dumont et al. (1998) showed 

that the early inactivation of Flt4 in mice leads to the abnormal development of large 

blood vessels, including the dorsal aorta. They concluded that “VEGFR-3 has an essential 

role in the development of the embryonic cardiovascular system before the emergence of 

the lymphatic vessels” (Dumont et al., 1998).  These results were corroborated by later 

studies in mice (Haiko et al., 2008). Further mining the literature using IVA (QIAGEN, 

2015) revealed that FLT4 directly interacts with 3 genes that are all associated with 

cardiac defects found in ToF patients: VEGF, NOS3 and STAT3. The VEGFR3 protein 

binds with the VEGFA protein (Kukk et al., 1996). Vegfa, when knocked out in mice can 

lead to an overriding aorta, VSD and persistent truncus arteriosus (Stalmans et al., 2003). 

In fact, Stalmans et al. (2003) explicitly describe cardiac defects in some of these mice as 

ToF. The VEGFR3 protein also increases activation of the eNOS protein (Lahdenranta et 

al., 2009). Nos3 knockout in mice has been known to lead to VSD (Feng et al., 2002). 

Finally, the VEGFR3 protein increases activation of STAT3 protein (Korpelainen et al., 

1999). Stat3 knockout in mice cardiac cells can lead to pulmonary stenosis (Zhang et al., 

2009). The different pathways from FLT4 to CHD are represented in Figure 28. 

CCDC102B by comparison, is not well characterized. 

In addition to rare truncating SNVs having been found in FLT4 in ToF patients, a single 

CNV encompassing the gene FLT4 was also found in a study by Soemedi et al. (2012b) 

of 283 ToF trios; including probands analysed in this study. Soemedi et al. (2012b) found 

that 3 of the 5 genes covered by the duplication in 5q35.3 are expressed in fetal heart. The 

results of my study would suggest that it is the disruption of FLT4 that leads to ToF in 

this patient. 
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Figure 28. Pathway from FLT4 to CHDs relevant to ToF as seen in IVA (QIAGEN, 2015). 

A large number of clusters were found for rare SNVs predicted deleterious. This included 

a cluster in NOTCH1, one of the genes in which we have previously established an 

overabundance of SNVs in ToF cases. Some of the top clustering results involved long 

genes with SNVs spread across many exons with no particular region showing a 

concentration of SNVs. This was the case for HMCN1, MYO7A, NAV2 and NEB. None of 

these genes have been reported as involved in cardiogenesis. HMCN1 mutations have so 

far been identified as the cause of age-related macular degeneration (Schultz et al., 2003). 

NEB has been determined as the leading cause of nemaline myopathy (Lehtokari et al., 

2006). Mutations in MYO7A have led to cases of deafness and Usher syndrome; which 

leads to visual impairments in addition to deafness (NCBI, 2015). None of those genes 

appear to present links with cardiogenesis. On the other hand, 9 of 14 SNVs in SERBP1 

were found in the first exons, forming a cluster at both exon and gene level. Variants in 

SERBP1 have not been linked to disease, but the protein product of the gene binds with 

the mRNA product of SERPINE1; a serine proteinase inhibitor, which has been 

implicated in thrombophilia; an increase in the risk of blood clotting (Rebhan et al., 1998).  

The only indication of a large cardiac defect being associated with the mutated gene was 

in a patient presenting an inferior vena cava interruption; in addition to a deep vein 

thrombosis, who also had a variant in SERPINE1 (Galati et al., 2011). The patients also 

had several other variants in genes associated with thrombophilia (Galati et al., 2011). 

NELL1 mutations lead to congenital skeletal defects (Desai et al., 2006). Cases of 

syndromic ToF have been accompanied by skeletal defects; as in Alagille syndrome 
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(Bauer et al., 2010). However, no link between NELL1 and congenital heart disease has 

been established yet. 6 SNVs were found in SNCAIP including 4 in a single exon. 

However, this exon is non-coding in the particular transcript for which clustering was 

detected (Cunningham et al., 2015). PTPN5 presents an interesting case as 6 SNVs were 

identified specifically in one of 15 exons. It has been suggested that another protein 

tyrosine phosphatase, PTPN11, influences the susceptibility of an individual to ToF; in 

this case through the action of a common variant (Goodship et al., 2012).  

One of the limitations of this study was the absence of a well-matched reference set 

which could act as a control, that is, individuals not selected for the presence of any 

specific condition, who had been sequenced using identical methodology. A study of the 

ToF patients which uses controls from the 1000 genomes project is currently underway. 

This study will follow some of the methodologies outlined in Section 5.2.2, which could 

not be applied to this current study. The results of these future studies will complement 

the study presented in this chapter. Further work will also involve the refinement of 

cluster detection strategies. The rate of variation differs for each gene and could have an 

impact on cluster detection. This should be taken into account for better cluster 

identification. The recent release of the repository ExAC offers one possible resource that 

could provide per gene estimates of variation rate. 

5.6. Conclusion 

At the time of writing, this study is the largest WES study of ToF yet reported. It involved 

the study of 824 ToF patients against 490 patients with various neurodevelopmental 

disorders. Despite the inherent limitations of the comparator set, I was able to uncover an 

overabundance of genes previously implicated in ToF in ToF patients compared to NDD 

patients. For one specific category, this extended to genes previous implicated in 

syndromes that involved ToF. However, these genes only accounted for a small fraction 

of ToF patients. I used clustering to uncover genes that may also be implicated in ToF. 

With support from pathway analysis and the existing literature on the genes found, I was 

able to uncover a promising candidate, FLT4. My study also strongly suggests that 

NOTCH1 in involved in the manifestation of sporadic non-syndromic. This study also 

suggests that highly-penetrant variants can only explain a small fraction of ToF cases, 

leading to the conclusion that a more complex genetic etiology might be at work in many 
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ToF cases. Further refinements in methodology and in the choice of comparator set 

should provide more insight. 



 

151 

 

Chapter 6. General Discussion
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6.2. Summary 

The overarching aim of this PhD was to uncover potential causal rare variants in patients 

with congenital heart disease (CHD). My work had three aspects: the study of families in 

which a disease trait was segregating, the study of de novo mutation in sporadic cases of 

transposition of the great arteries (TGA) and the study of a large series of cases of 

tetralogy of Fallot (ToF). Each of these studies was conducted using WES and focused on 

variants found in protein-coding regions. 

The study of CHD was initiated with the analysis of 8 families. 7 of these families 

exhibited cardiovascular disease, 5 with a CHD phenotype; the other two displaying 

relapsing cardiomyopathy and atypical Brugada syndrome (BrS) respectively. The 8 

families had been analysed over the course of a few years and remained unresolved. 

There can be many possible reasons for the absence of suitable candidates in such 

projects, starting with the genuine absence of causal rare variants. For example, the 

disease could have been triggered by a rare copy number variant (CNV) or represented an 

aggregation of sporadic cases. Another reason could be the poor quality of sequencing at 

particular loci, leading the causal variant to be missed in one or more carriers. The design 

and implementation of BAMily was an attempt to address this second issue. I analysed all 

8 families using BAMily and SAMtools. This was followed by the analysis of de novo 

mutation in sporadic cases of TGA. 32 probands were sequenced with their unaffected 

parent; and in one family an unaffected sibling. The cohort only included non-syndromic 

cases of TGA; cases that did not exhibit additional cardiac or extracardiac defects. The 

third analysis was based on a large series of 867 non-syndromic ToF cases. This study 

was originally envisioned as a case-control comparison. However, we were unable to 

obtain a control set sequenced at the same site as the non-syndromic ToF cases and with 

the same technology. I concentrated on finding clusters of variants within our cases and 

used as a reference set 500 cases from multiple studies of neurodevelopmental disorders 

(NDD) from the UK10K study (Wellcome Trust Sanger Institute, 2010). This was the 

closest dataset in terms of sequencing approach available to me at the time. I found the 

sets not to be suitably matched, but was nonetheless able to gain insights into the genetic 

etiology of ToF.  
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In this chapter, I review each of the three studies, including limitations and possible 

improvements, and integrate the main findings and discuss them in relation to the primary 

objective of my thesis. 

6.3.  Limitations. 

6.3.1. Limitations working with WES data 

In Chapter 3, I presented some of the limitations intrinsic to WES data. Specifically, I 

described how a new approach to variant calling could address issues arising from 

imperfect sequence coverage. I implemented and tested the variant caller BAMily which I 

subsequently applied to the 8 families in which a disease was segregating. These 

limitations also informed the design of the study of non-syndromic TGA. In this study, I 

obtained variants from the consensus of two variant callers, SAMtools (Li et al., 2009a) 

and GATK UnifiedGenotyper (DePristo et al., 2011) in order to limit the number of false 

positives. In each study, calling indels proved to be problematic. Many indels were picked 

out as false positives in IGV (Robinson et al., 2011). I excluded indels from the core of 

the study of non-syndromic ToF patients. Indels were judged on a case by case basis in 

other studies.  

6.3.2. Limitations due to study assumptions 

Each WES analysis presented in this thesis was built on the assumption of single rare 

variants causing disease. The analysis of non-syndromic TGA and ToF patients was also 

based on the assumption that these variants were highly penetrant. Each assumption 

implies limitations on what results can be found.  

In two families, no potential causal variants were identified. For these families, a more 

complex genetic etiology could be at work. Overall, likely causative SNVs and indels 

were found in 5 out of 8 families; or 62.5% of families. This rate of success is comparable 

to the 60% reported by Gilissen et al. (2012) for their WES projects centred on Mendelian 

disease. Extending the search for rare variants to CNVs led to the discovery of a causative 

CNV in one of the families. 

The study of 32 TGA patients and their parents yielded 24 de novo variants across 14 

probands, with 16 variants in 11 probands predicted as deleterious by at least one 

pathogenicity predictor. The rate of de novo variants per proband was 0.75, comparable to 

the estimated rate of de novo variants in the protein-coding exome on average per 
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newborn of 0.74; determined from the rate for whole-genome (Veltman and Brunner, 

2012b). If most TGA cases in this study arose through highly-deleterious de novo 

mutations, this would be reflected by the rate of de novo variants per proband due to 

effect of selection bias (Girard et al., 2011). Instead, what the rate found suggests is that 

highly-deleterious de novo do not account for most TGA cases. This was the general 

conclusion put forward by Zaidi et al. (2013) for severe CHD. Specifically, Zaidi et al. 

(2013) estimated that de novo mutation could contribute 10% of severe CHD. In their 

study, Zaidi et al. (2013) compared the rate of de novo variants per individual in genes 

selected for their expression in the embryonic mouse heart cases and controls. With rates 

of 0.88 and 0.85 de novo variants per individual in cases and controls, Zaidi et al. (2013) 

determined that the difference between patients with severe CHD and controls was not 

statistically significant. The study also reported few de novo variants to which TGA could 

be attributed. For 65 TGA patients, no more than 3 potentially causative de novo 

mutations were found. In my own study I have concluded that de novo variants are not the 

major factor in the development of TGA. The current approach can be used to elucidate 

the few cases that are due to disease-causing de novo variants. Prospective disease-

causative de novo variants that have been validated have been identified in 3 TGA 

patients; or around 10% of cases. However, a different approach will be needed to 

complement the genetic etiology of TGA. 

The principal limiting factor in the study of non-syndromic ToF patients was the lack of a 

well-matched reference set, as discussed in Chapter 5. The rate of clustering in each 

cohort of patients nonetheless strongly suggested that my starting assumption did not 

apply to non-syndromic ToF either. The rates of clustering, when variants were only 

counted once per position, in truncating SNVs and SNVs predicted as deleterious were 

equivalent for ToF and NDD patients. This suggested one of two possibilities: either 

highly-deleterious rare SNVs influence the risk of disease to a high degree in both sets of 

patients or it does so in neither. There are at least two reasons to suspect the latter is true. 

One reason is that NDD have already been identified as polygenic disorders, arising from 

the combined action of several common and rare variants (Clarke et al., 2015). 

Incidentally, this could explain the higher rate of clustering in NDD patients when each 

variant was counted for both truncating SNVs and SNVs predicted as deleterious with 

this approach favouring variants that are near the limit between common and rare variants. 

A second reason is the small role that SNVs in genes previously implicated in ToF play in 
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this cohort. Genes previously implicated in ToF through gene sequencing studies showed 

no sign of clustering. Only 0.8% of ToF patients had truncating SNVs in these genes, 3.6% 

of ToF patients if variants predicted as deleterious were considered instead. In this latter 

case, only a fraction of the SNVs uncovered will truly be disease-causative. The relative 

absence of clusters in genes that can be associated with a CHD phenotype also suggests 

highly-deleterious rare SNVs cannot account for the majority of ToF cases. Clusters in 

FLT4 and NOTCH1 are the exception and as such, their finding is the main result of the 

study.  

The assumptions made for cluster detection also place limits on this last study. It was 

assumed that the number of rare variants found in any segment of the exome of a set size 

would be the same regardless of locus. This leads to false clustering in genes that tolerate 

high mutation rates. In this study, I tackled this issue by excluding genes in which 

synonymous variants cluster. I also excluded genes with any type of clustering found in 

NDD patients. However, an approach that can avoid these false clusters in the first place 

is needed. I make suggestions of improvement in the following section. 

6.3.3.   Potential disease-causing variants. 

The WES studies centred around cardiovascular disease have led to several outcomes. 

With the large series of non-syndromic ToF cases, the influence of genes implicated in 

ToF through gene-sequencing studies was reaffirmed, albeit with a smaller contribution to 

disease etiology than suggested by the original studies (see Table 1, Chapter 5). The role 

of mutation in NOTCH1 in the development of ToF phenotypes was also reaffirmed 

(Wessels and Willems, 2010). While SCN5A and SCN10A have both been implicated in 

Brugada syndrome previously, the identification of a CNV spanning both genes 

constitutes a new finding (Hu et al., 2014). For 7 genes in particular, evidence from the 

literature supports a role in cardiovascular disease: CLTCL1, FLT4, GREB1, HES1, 

POPDC3, RBP5 and SLC5A6. There is some evidence to suggest that a rare de novo 

variant in SNX13 in a patient with non-syndromic TGA could also be disease-causing 

although this is still a speculative conclusion. The discovery of disease-causing variants 

in families in which disease is segregating involved the design and implementation of a 

new variant caller: BAMily.  

Variants in NOTCH1 were found in multiple studies. A missense variant in NOTCH1 was 

detected; and subsequently validated, in a family in which two siblings were diagnosed as 
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having pulmonary atresia (PA) and ventricular septal defect (VSD) accompanied by 

major aortopulmonary collateral arteries (MAPCA). Interestingly, the combination of PA 

and VSD; occasionally with MAPCA, is typically interpreted as a variation of the ToF 

phenotype (Prieto, 2005). Additionally, 5 nonsense variants were found in NOTCH1 

among non-syndromic ToF patients that were not found in NDD patients. NOTCH1 was 

also found to harbour a cluster of single nucleotide variants (SNV) predicted as 

deleterious in ToF patient. No cluster was found among synonymous variants or in any 

category of SNV for NDD patients. While it is not possible to ascertain which specific 

SNVs predicted as deleterious are disease-causative, the truncating SNVs are likely to be 

disease-causative. NOTCH1 has been implicated in ToF, in a single individual in a family 

case study and a in a single CNV in a study of ToF patients (Garg et al., 2005; Greenway 

et al., 2009). My results demonstrate that disease-causative variants for NOTCH1 are 

found in non-syndromic ToF patients as well. Interestingly, the variant in the family I 

studied is assumed to have reduced penetrance as neither parents present the disease 

phenotype (see Chapter 3, Figure 6). It is therefore possible that some NOTCH1 variants 

could also have reduced penetrance in non-syndromic ToF patients. 

Another strong gene candidate in the development of ToF is FLT4. 8 nonsense variants 

were found to cluster within FLT4 in ToF patients. The protein product of FLT4 interacts 

with the protein from 3 genes; VEGF, NOS3 and STAT3, through binding and increased 

activation (Feng et al., 2002; Stalmans et al., 2003; Zhang et al., 2009). These genes have 

been implicated in cardiac defects found in ToF. Also of interest is the fact that the 

expression of STAT3 is also regulated by another gene previously implicated in ToF, 

PTPN11 (Zhang et al., 2009; Goodship et al., 2012). A common variant in PTPN11 was 

shown to influence the risk of developing ToF (Goodship et al., 2012). FLT4 and 

PTPN11 could be influencing disease risk through STAT3. 

A de novo missense variant in RBP5 was found in a patient with non-syndromic TGA. A 

variant in that gene had previously been implicated in a case of total anomalous venous 

return (Nash et al., 2015). Investigating this result, Nash et al. (2015) created Zebrafish 

mutants in rbp7a, the closest homolog to RBP5. In almost half of fish, the mutation led to 

abnormal looping of the heart (Nash et al., 2015). The fact that the gene encodes a 

retinol-binding protein is also particularly significant given that the intake of retinol 

supplements during pregnancy or the injection of retinoic acid in a pregnant mouse 

triggers TGA in offspring (Loffredo et al., 2001). 
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Two missense variants, in HES1 and PODC3, were found in a pair of siblings with 

double-outlet right ventricle (DORV). The most promising candidate was the variant in 

HES1. Like NOTCH1 and JAG1, HES1 is a component of the Notch signalling pathway 

(Rochais et al., 2009). The homolog Hes1 is expressed in the second heart field during 

cardiogenesis in mice, playing an essential role in outflow tract development (Rochais et 

al., 2009). POPDC3 shares sequence similarity with BVES, a gene implicated in ToF 

through gene sequencing studies (Wu et al., 2013). My own study of non-syndromic ToF 

cases does not support the notion that BVES plays a substantial role in ToF which casts 

some doubt on the role of POPDC3 on DORV. 

For two missense variants, in genes CLTCL1 and GREB1, evidence of a potential role in 

cardiac malformation was obtained from CNV studies. A variant in CLTCL1 was found in 

a mother and daughter presenting complex CHD profiles which included extracardiac 

features; such as lymphoedema in the mother. CLTCL1 is one of the genes lost as a result 

of a 22q11.2 deletion (Michaelovsky et al., 2012). Crucially, the daughter had an 

interrupted aortic arch (IAA). Half of IAA cases are attributable to a 22q11.2 deletion 

syndrome (Kobrynski and Sullivan, 2007). Although the deletion of TBX1 has been 

typically designated as the main contributor of cardiac defects in 22q11.2 deletion 

syndrome, a role for CLTCL1 cannot be excluded. A de novo missense variant in GREB1 

was found in a non-syndromic TGA patient. In a study conducted by Fakhro et al. (2011), 

GREB1 was lost as a result of a rare CNV in a case of malposition of the great arteries 

(Fakhro et al., 2011). Expression patterns in Xenopus Tropicalis suggested a role in 

cardiogenesis, specifically left-right patterning (Fakhro et al., 2011).  

One non-syndromic TGA patient has a de novo missense variant in SNX13. Knockouts of 

the mouse homolog SNX13 lead to abnormal blood vessel morphology and embryonic 

lethality (Zheng et al., 2006). There is potentially a link between sorting nexins and 

heterotaxy; a feature of syndromic TGA cases, via ciliopathies (Ware et al., 2011; Chen 

et al., 2012). However, this line of reasoning remains highly speculative at this stage. 

Two of the three WES study designs used to uncover disease-causing variants made use 

of BAMily. The design, implementation and testing of the variant caller are covered at 

length in Chapter 3. In addition to laying the foundation for a new approach to variant 

calling, BAMily has contributed to the discovery of potentially disease-causative rare 

variants in families with a disease that is segregating and in non-syndromic TGA patients. 



 

158 

 

6.3.4.   Outlook 

The WES analysis of patients with various cardiac defects throughout this PhD has led to 

the discovery of likely disease-causing variants. In due course, these will be studied in 

biological experiments investigating the mechanisms that lead to heart disease. The 

necessity for a new approach to variant calling has also led to the design and 

implementation of the variant caller BAMily, which has contributed to variant discovery 

in two analyses. However, what these analyses have also revealed is that only a small 

fraction of non-syndromic TGA and ToF cases can be attributed to highly-penetrant rare 

variant. This is consistent with what the literature already suggests for severe CHD, 

whether SNVs or CNVs are considered (Greenway et al., 2009; Soemedi et al., 2012b; 

Zaidi et al., 2013). Elucidating the genetic etiology of sporadic CHD will therefore 

require the study of rare variants that influence the risk of disease with varying effect 

sizes. Methods for collapsing rare variants might provide some insight in the short-term 

(Lee et al., 2014b). However, detecting the effect of single rare variants that are not fully 

penetrant will require large case-controls studies with a number of patients vastly 

exceeding what has been done for CHD in terms of WES studies to date (Zuk et al., 

2014). 

6.4.  Conclusion 

The overarching aim of this PhD was to discover likely causal rare variants in patients 

with CHD as well as a few other congenital defects. The work I carried out towards 

fulfilling this aim revealed promising candidates across 9 genes: CLTCL1, HES1, 

POPDC3, NOTCH1, FLT4, SLC5A6, GREB1, RBP5 and SNX13. With the exception of 

NOTCH1, these genes have not previously been implicated in the diseases of the patients 

in which candidates were found. NOTCH1 harbours likely disease-causing variants in two 

distinct studies, a familial case of PA/VSD/MAPCA and patients with sporadic non-

syndromic ToF. Many of the genes in which likely causative variants were uncovered for 

this thesis will be the subject of biological experiments. In the process of identifying 

potential causal rare variants, I have established that highly-deleterious mutations do not 

contribute to the majority of non-syndromic ToF and TGA cases, suggesting a more 

complex genetic etiology. Future studies of CHD will undoubtedly focus on elucidating 

the genetic contribution of variants with reduced penetrance on severe CHD phenotypes 

such as ToF and TGA.
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Full results of variant caller comparisons 

The following tables contain supplementary data relevant to Section 3.4.4. 

 SAMtools GATK FamSeq PolyMutt BAMily 

Variants present in cousin-uncle pair, absent in unrelated individual (3 trios) 

SNVs (avg.) 6885 7313 7792 7159 7386 

Position in calls 1181 1186 1203 1183 1186 

True positive 1168 1179 1182 1176 1179 

Sensitivity % 96.88 97.79 97.98 97.51 97.73 

Specificity % 99.9 99.95 99.83 99.94 99.94 

False discovery % 1.05 0.53 1.8 0.62 0.62 

…in cousin-cousin pair, absent in unrelated individual (3 trios) 

SNVs (avg.) 6051 6459 6954 6301 6533 

Position in calls 1100 1104 1124 1101 1105 

True positive 1087 1098 1100 1096 1098 

Sensitivity % 96.74 97.72 97.86 97.51 97.72 

Specificity % 99.9 99.95 99.81 99.96 99.95 

False discovery % 1.12 0.54 2.14 0.45 0.6 

…in uncle-cousins trio, absent in unrelated individual (3 quartets) 

SNVs (avg.) 4261 4484 5035 4432 4476 

Position in calls 780 778 799 778 782 

True positive 769 774 776 773 774 

Sensitivity % 96.85 97.48 97.82 97.35 97.52 

Specificity % 99.91 99.96 99.83 99.96 99.94 

False discovery % 1.5 0.6 2.8 0.69 0.98 

…in cousins trio, absent in unrelated individual (1 quartet) 

SNVs 3731 3950 4309 3901 3971 

Position in calls 716 710 724 709 714 

True positive 703 706 707 705 706 

Sensitivity % 96.7 97.11 97.25 96.97 97.11 

Specificity % 99.9 99.97 99.87 99.97 99.94 

False discovery % 1.82 0.56 2.35 0.56 1.12 

…in uncle-cousins quartet, absent in unrelated individual (1 quintet) 

SNVs 2989 3113 3515 3094 3609 

Position in calls 561 556 570 556 558 

True positive 550 552 554 551 552 

Sensitivity % 96.66 97.01 97.36 96.84 97.01 

Specificity % 99.92 99.97 99.88 99.96 99.96 

False discovery % 1.96 0.72 2.81 0.9 1.08 

Table S1. Sequence data and microarray data comparison for various sample sizes with cousin-cousin and uncle-

cousins arrangements shown separately. In this table, positions refer to the positions covered by the microarray 

data.  
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 SAMtools GATK FamSeq PolyMutt BAMily 

Variants in cousins, absent in uncle and unrelated individual (1 quintet) 

SNVs 752 833 828 818 829 

Position in calls 156 154 154 154 155 

True positive 152 152 152 152 152 

Sensitivity % 96.2 96.2 96.2 96.2 96.2 

Specificity % 99.97 99.99 99.99 99.99 99.98 

False discovery % 2.56 1.3 1.3 1.3 1.94 

…in uncle-cousins trio, absent in one cousin and unrelated (3 quintets) 

SNVs (avg.) 1278 1360 1549 1360 1354 

Position in calls 219 221 229 221 223 

True positive 216 219 220 219 220 

Sensitivity % 95.99 97.18 97.92 97.18 97.77 

Specificity % 99.98 99.99 99.94 99.99 99.98 

False discovery % 1.37 0.91 3.64 0.91 1.33 

…in cousin pair, absent in uncle-cousin-unrelated trio (3 quintets) 

SNVs (avg.) 1095 1152 1165 1153 1186 

Position in calls 169 170 170 170 171 

True positive 166 169 168 169 169 

Sensitivity % 96.52 97.85 97.47 97.85 97.85 

Specificity % 99.98 99.99 99.98 99.99 99.99 

False discovery % 1.38 0.6 1.38 0.6 1.17 

…in uncle-cousin pair, absent in cousins-unrelated trio (3 quintets) 

SNVs (avg.) 1410 1506 1586 1512 1529 

Position in calls 183 184 188 184 184 

True positive 180 183 183 183 182 

Sensitivity % 95.38 97.03 97.38 97.18 96.84 

Specificity % 99.98 99.99 99.96 99.99 99.99 

False discovery % 1.83 0.5 2.65 0.69 0.69 

Table S2. Sequence data and microarray data comparison for a fixed sample size of five, assuming different 

pairs and trios of individuals to be non-carriers. In this table, positions refer to the positions covered by 

microarray data. 

  



 

162 

 

Analysis of protein-protein functional links 

The following table contain supplementary data relevant to Section 4.4.1. 

 

Figure S1. Number of functional interactions separating protein products of genes from the final list of 24.  
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ZNF227 1 2 3 2 3 2 3 3 3 3 3 3 3 2 3 3 2 3 3 3 4 4 4

GPR17 2 2 2 3 3 3 3 3 2 3 3 1 3 3 3 3 3 3 3 3 3 4 4

RAD52 2 2 2 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5

CREB3L3 2 2 3 3 3 3 3 3 2 3 2 3 2 3 2 3 3 3 3 3 3 4 5

ZFHX3 2 2 3 2 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 4 3 4

KCNJ12 2 2 3 3 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4

FAM208B 2 2 3 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 4 3 4

CPT2 3 2 3 3 3 3 3 2 3 3 3 3 3 3 2 2 3 3 3 3 4 3 5

PROK1 2 2 2 3 3 1 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 4 5

GREB1 2 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 5

HECTD4 2 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 2 3 3 3 4 4 5

ANGPTL2 2 3 3 3 3 3 3 2 3 3 3 2 3 3 3 3 4 3 3 3 3 4 5

COL11A2 2 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 4 3 4 4

ZNF577 2 3 3 2 2 3 3 3 3 3 3 3 4 3 2 4 3 3 4 3 4 4 5

DCDC1 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5

RBP5 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 4 4 4 5

SNX13 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 3 4 4 4 4 5

LMOD3 3 2 3 4 4 3 3 3 4 3 4 4 3 3 4 3 3 4 4 4 4 5 5

GDPGP1 3 3 3 3 4 4 3 4 3 4 3 3 4 4 4 4 4 4 4 4 4 5 5

KRTAP4-6 4 4 4 4 4 4 5 5 4 4 4 5 5 5 5 5 4 5 5 5 5 5 5



 

163 

 

Tables that include both SNVs and indels. 

The following tables contain supplementary data relevant to Section 5.4.2. 

Gene set Carrier frequency in 

ToF cohort (%) 

Number of genes Number of variants Carrier frequency in 

NDD cases (%) 

Number of genes Number of variants 

Known ToF  1.8  6  15  0  0  0  

IVA  5 17  42 0.6  3  3  

ToF syndrome 6.7 32 64 3.1 13 15 

HRC  19  127  221 13.9  53  71  

Zaidi  18 116  224  16.1 56  88  

CHD syndrome 38.5 284 587 33.5 145 213 

Cilia 10 36 104 6.3 21 31 

Table S3. Rare truncating variants in ToF and NDD cases present in genes from CHD gene sets.  

 

Gene sets Carrier frequency in 

ToF cases (%) 

Number of genes Number of variants Carrier frequency in 

NDD cases (%) 

Number of genes Number of variants 

Known ToF  5.3  16  47  2.2  7  11  

IVA 11   35  102  8.2  16  42  

ToF syndrome 33.1 59 378 19.4 44 106 

HRC  69.4 239   1113   61  178  474  

Zaidi  64.6  194  984  56.7  149  420  

CHD syndrome 92.5 490 2601 90 404 1191 

Cilia 31.9 45 334 33.9 43 208 

Table S4. Rare variants predicted to be deleterious in ToF and NDD cases present in genes from CHD gene sets.
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Updated tables following additional filtering against 875 controls from the 1000g 

project 

The following tables contain supplementary data relevant to Section 5.4.3. 

CDS type TOF cases (n=824) NDD case (n=490) 

Truncating 6,830 2,680 

Gene 24 28 

Exon 42 60 

Both 18 17 

Predicted deleterious 33,998 17,131 

Gene 45 25 

Exon 107 60 

Both 19 17 

Non-synonymous 71,541 34,844 

Gene 62 21 

Exon 96 49 

Both 28 5 

Synonymous 65,154 27,442 

Gene 83 13 

Exon 255 57 

Both 50 7 

Table S5. The number of genes with significant clustering (by variant) at gene and exon levels following 

additional filtering against 875 controls from the 1000g project. The total number of positions in each category 

in ToF and NDD cases is given in the header of each section. Only SNVs are considered here 
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Complete tables for Predicted Deleterious 

Gene Clustering level Cluster size (p-value) 

ADAMTS17* Gene 17 (4.15E-3) 

APC2* Exon 5 (6.24E-3) 

ATG2A Gene 10 (1.17E-3) 

CC2D2A Exon 4 (4.07E-2) 

CCDC101 Gene 8 (3.46E-2) 

COL3A1 Gene 19 (1.62E-2) 

CPXM2 Gene 14 (4.11E-3) 

CSMD3 Gene 30 (7.33E-3) 

FLNB Gene/ Exon 29 (2.66E-4) / 5 (2.48E-2) 

GLDC Gene 20 (9.11E-6) 

H6PD Gene 15 (1.27E-3) 

HMCN1 Gene 56 (4.37E-7) 

HOOK1 Gene 13 (1.48E-2) 

INSC Gene 11 (1.40E-2) 

KIF16B Gene 8 (1.57E-3) 

LARS Gene 11 (6.82E-3) 

MCM3AP Exon 5 (4.76E-2) 

MEF2D* Gene 6 (2.00E-2) 

MYO7A Gene 30 (6.36E-6) 

MYOM1 Exon 5 (3.19E-3) 

NAV2 Gene 32 (6.38E-6) 

NEB Gene 58 (2.83E-5) 

NECAB2 Gene 8 (4.54E-2) 

NEK2 Gene 10 (2.09E-2) 

NELL1 Gene 17 (4.80E-5) 

NMNAT1 Gene/ Exon 8 (2.33E-2)/ 6 (5.90E-4) 

NOTCH1 Gene 31 (7.89E-5) 

PCDH9 Exon 4 (3.79E-4) 

POLRMT Exon 9 (1.64E-2) 

PORCN Exon 4 (4.72E-2) 

PRRC2C Gene 9 (4.36E-3) 

PTPN5 Exon 6  (1.35E-4) 

PUS7 Exon 4  (1.24E-2) 

RANBP9 Exon 6  (1.01E-3) 

RYR3 Gene 40 (2.65E-2) 

SERBP1 Gene/ Exon 14 (6.18E-7)/ 9 (1.92E-5) 

SLC26A1* Gene 14 (1.59E-3) 

SNCAIP Gene 6 (8.95E-5)/ 4 (2.99E-2) 

ST13 Exon 4 (4.95E-2) 

STX6* Gene 8  (1.12E-2) 

TARBP1 Exon 4  (1.60E-2) 

VCL* Gene 13  (4.74E-2) 

ZFR Exon 5  (7.68E-3) 

ZNF385D Exon 5  (7.07E-3) 

ZNF423 Exon 8  (6.61E-10) 

Table S6. Size and p-value (by position) of SNVs predicted to be deleterious in ToF patients. Underlined are 

genes that are also present in NDD cases or the Synonymous category. *Gene no longer in list after stringent 

filtering against 875 controls from the 1000g project. 

  



 

166 

 

Tables of genes with clusters and in gene sets. 

The following tables contain supplementary data relevant to Section 5.4.4. 

Gene sets Predicted 

Deleterious 

Non-Synonymous Synonymous In NDD cases 

ToF 

syndrome 

NOTCH1, PORCN    

HRC  MEF2D*, MYOM1, 

NOTCH1, VCL* 

LAMA5, MESP1* LAMA5  

Zaidi  NEK2, NOTCH1 PCNT  VIT 

CHD 

syndrome 

ADAMTS17*, 

CC2D2A, COL3A1, 

NOTCH1, PORCN, 

ZNF423 

HSPG2*, PCNT, 

PLEC, ZNF423 

MECP2, PLEC, 

RYR1, ZNF423 

CENPJ, COL17A1*, 

HSPG2, PLEC*, 

ZNF423 

Cilia CC2D2A    

Table S7. genes from CHD gene sets that harbour clusters (by position) for ToF cases. In bold are genes 

appearing in multiple gene sets (except shared between ToF and CHD syndrome sets as one includes the other).  

Underlined are genes that are also present in NDD cases or the Synonymous category. *Gene no longer in list if 

stringent filtering is applied.  

 

 

 

 



 

167 

 

 

References



 

168 

 

Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M., Handsaker, R.E., Kang, H.M., 
Marth, G.T. and McVean, G.A. (2012) 'An integrated map of genetic variation from 1,092 human 
genomes', Nature, 491(7422), pp. 56-65. 
Adler, L.N., Gomez, T.A., Clarke, S.G. and Linster, C.L. (2011) 'A novel GDP-D-glucose 
phosphorylase involved in quality control of the nucleoside diphosphate sugar pool in 
Caenorhabditis elegans and mammals', Journal of Biological Chemistry, 286(24), pp. 21511-23. 
Adzhubei, I.A., Schmidt, S., Peshkin, L., Ramensky, V.E., Gerasimova, A., Bork, P., Kondrashov, A.S. 
and Sunyaev, S.R. (2010) 'A method and server for predicting damaging missense mutations', 
Nat Meth, 7(4), pp. 248-249. 
Agilent Technologies (2015) SureSelect All Exon Kits Details & Specifications. Available at: 
http://www.genomics.agilent.com/article.jsp?pageId=3042 (Accessed: 8th of August). 
Aird, D., Ross, M.G., Chen, W.S., Danielsson, M., Fennell, T., Russ, C., Jaffe, D.B., Nusbaum, C. and 
Gnirke, A. (2011) 'Analyzing and minimizing PCR amplification bias in Illumina sequencing 
libraries', Genome Biology, 12(2). 
Alizadehasl, A. and Sadeghpour, A. (2014) 'Congenital Aortic Valve Stenosis', in  Comprehensive 
Approach to Adult Congenital Heart Disease. Springer,  pp. 275-279. 
Altmann, A., Weber, P., Bader, D., Preuß, M., Binder, E. and Müller-Myhsok, B. (2012) 'A 
beginners guide to SNP calling from high-throughput DNA-sequencing data', Human Genetics, 
131(10), pp. 1541-1554. 
Altmann, A., Weber, P., Quast, C., Rex-Haffner, M., Binder, E.B. and Muller-Myhsok, B. (2011) 
'vipR: variant identification in pooled DNA using R', Bioinformatics, 27(13), pp. I77-I84. 
Altshuler, D., Durbin, R.M., Abecasis, G.R., Bentley, D.R., Chakravarti, A., Clark, A.G., Collins, F.S., 
De la Vega, F.M., Donnelly, P., Egholm, M., Flicek, P., Gabriel, S.B., Gibbs, R.A., Knoppers, B.M., 
Lander, E.S., Lehrach, H., Mardis, E.R., McVean, G.A., Nickerson, D., Peltonen, L., Schafer, A.J., 
Sherry, S.T., Wang, J., Wilson, R.K., Gibbs, R.A., Deiros, D., Metzker, M., Muzny, D., Reid, J., 
Wheeler, D., Wang, J., Li, J.X., Jian, M., Li, G., Li, R.Q., Liang, H.Q., Tian, G., Wang, B., Wang, J., 
Wang, W., Yang, H.M., Zhang, X.Q., Zheng, H.S., Lander, E.S., Altshuler, D.L., Ambrogio, L., Bloom, 
T., Cibulskis, K., Fennell, T.J., Gabriel, S.B., Jaffe, D.B., Shefler, E., Sougnez, C.L., Bentley, D.R., 
Gormley, N., Humphray, S., Kingsbury, Z., Koko-Gonzales, P., Stone, J., McKernan, K.J., Costa, G.L., 
Ichikawa, J.K., Lee, C.C., Sudbrak, R., Lehrach, H., Borodina, T.A., Dahl, A., Davydov, A.N., 
Marquardt, P., Mertes, F., Nietfeld, W., Rosenstiel, P., Schreiber, S., Soldatov, A.V., Timmermann, 
B., Tolzmann, M., Egholm, M., Affourtit, J., Ashworth, D., Attiya, S., Bachorski, M., Buglione, E., 
Burke, A., Caprio, A., Celone, C., Clark, S., Conners, D., Desany, B., Gu, L., Guccione, L., Kao, K., 
Kebbel, A., Knowlton, J., Labrecque, M., McDade, L., Mealmaker, C., Minderman, M., Nawrocki, 
A., Niazi, F., Pareja, K., et al. (2010) 'A map of human genome variation from population-scale 
sequencing', Nature, 467(7319), pp. 1061-1073. 
Altshuler, D.M., Durbin, R.M., Abecasis, G.R., Bentley, D.R., Chakravarti, A., Clark, A.G., Donnelly, 
P., Eichler, E.E., Flicek, P., Gabriel, S.B., Gibbs, R.A., Green, E.D., Hurles, M.E., Knoppers, B.M., 
Korbel, J.O., Lander, E.S., Lee, C., Lehrach, H., Mardis, E.R., Marth, G.T., McVean, G.A., Nickerson, 
D.A., Schmidt, J.P., Sherry, S.T., Wang, J., Wilson, R.K., Gibbs, R.A., Dinh, H., Kovar, C., Lee, S., 
Lewis, L., Muzny, D., Reid, J., Wang, M., Wang, J., Fang, X.D., Guo, X.S., Jian, M., Jiang, H., Jin, X., 
Li, G.Q., Li, J.X., Li, Y.R., Li, Z., Liu, X., Lu, Y., Ma, X.D., Su, Z., Tai, S.S., Tang, M.F., Wang, B., Wang, 
G.B., Wu, H.L., Wu, R.H., Yin, Y., Zhang, W.W., Zhao, J., Zhao, M.R., Zheng, X.L., Zhou, Y., Lander, 
E.S., Altshuler, D.M., Gabriel, S.B., Gupta, N., Flicek, P., Clarke, L., Leinonen, R., Smith, R.E., 
Zheng-Bradley, X., Bentley, D.R., Grocock, R., Humphray, S., James, T., Kingsbury, Z., Lehrach, H., 
Sudbrak, R., Albrecht, M.W., Amstislavskiy, V.S., Borodina, T.A., Lienhard, M., Mertes, F., Sultan, 
M., Timmermann, B., Yaspo, M.L., Sherry, S.T., McVean, G.A., Mardis, E.R., Wilson, R.K., Fulton, L., 
Fulton, R., Weinstock, G.M., Durbin, R.M., Balasubramaniam, S., Burton, J., Danecek, P., Keane, 
T.M., Kolb-Kokocinski, A., McCarthy, S., Stalker, J., Quail, M., et al. (2012) 'An integrated map of 
genetic variation from 1,092 human genomes', Nature, 491(7422), pp. 56-65. 



 

169 

 

Andersen, T.A., Troelsen Kde, L. and Larsen, L.A. (2014) 'Of mice and men: molecular genetics of 
congenital heart disease', Cell Mol Life Sci, 71(8), pp. 1327-52. 
Anderson, R.H. and Weinberg, P.M. (2005) 'the clinical anatomy of tetralogy of fallot', Cardiology 
in the Young, 15(s1), pp. 38-47. 
Andree, B., Hillemann, T., Kessler-Icekson, G., Schmitt-John, T., Jockusch, H., Arnold, H.H. and 
Brand, T. (2000) 'Isolation and characterization of the novel Popeye gene family expressed in 
skeletal muscle and heart', Developmental Biology, 223(2), pp. 371-382. 
Antonarakis, S.E. and Beckmann, J.S. (2006) 'Mendelian disorders deserve more attention', Nat 
Rev Genet, 7(4), pp. 277-82. 
Antzelevitch, C., Brugada, P., Borggrefe, M., Brugada, J., Brugada, R., Corrado, D., Gussak, I., 
LeMarec, H., Nademanee, K., Perez Riera, A.R., Shimizu, W., Schulze-Bahr, E., Tan, H. and Wilde, 
A. (2005) 'Brugada syndrome: report of the second consensus conference: endorsed by the 
Heart Rhythm Society and the European Heart Rhythm Association', Circulation, 111(5), pp. 659-
70. 
Apitz, C., Webb, G.D. and Redington, A.N. (2009) 'Tetralogy of Fallot', Lancet, 374(9699), pp. 
1462-71. 
Appel, S., Filter, M., Reis, A., Hennies, H.C., Bergheim, A., Ogilvie, E., Arndt, S., Simmons, A., 
Lovett, M., Hide, W., Ramsay, M., Reichwald, K., Zimmermann, W. and Rosenthal, A. (2002) 
'Physical and transcriptional map of the critical region for keratolytic winter erythema (KWE) on 
chromosome 8p22-p23 between D8S550 and D8S1759', European Journal of Human Genetics, 
10(1), pp. 17-25. 
Auer, P.L. and Lettre, G. (2015) 'Rare variant association studies: considerations, challenges and 
opportunities', Genome Medicine, 7. 
Baban, A., Postma, A.V., Marini, M., Trocchio, G., Santilli, A., Pelegrini, M., Sirleto, P., Lerone, M., 
Albanese, S.B., Barnett, P., Boogerd, C.J., Dallapiccola, B., Digilio, M.C., Ravazzolo, R. and 
Pongiglione, G. (2014) 'Identification of TBX5 mutations in a series of 94 patients with Tetralogy 
of Fallot', Am J Med Genet A, 164A(12), pp. 3100-7. 
Bailey-Wilson, J.E. and Wilson, A.F. (2011) 'Linkage analysis in the next-generation sequencing 
era', Hum Hered, 72(4), pp. 228-36. 
Bailliard, F. and Anderson, R. (2009) 'Tetralogy of Fallot', Orphanet Journal of Rare Diseases, 4(1), 
p. 2. 
Bajolle, F., Zaffran, S., Kelly, R.G., Hadchouel, J., Bonnet, D., Brown, N.A. and Buckingham, M.E. 
(2006) 'Rotation of the Myocardial Wall of the Outflow Tract Is Implicated in the Normal 
Positioning of the Great Arteries', Circulation Research, 98(3), pp. 421-428. 
Bamshad, M.J., Ng, S.B., Bigham, A.W., Tabor, H.K., Emond, M.J., Nickerson, D.A. and Shendure, J. 
(2011) 'Exome sequencing as a tool for Mendelian disease gene discovery', Nat Rev Genet, 
12(11), pp. 745-755. 
Bansal, V. (2010) 'A statistical method for the detection of variants from next-generation 
resequencing of DNA pools', Bioinformatics, 26, pp. i318 - i324. 
Bansal, V., Libiger, O., Torkamani, A. and Schork, N.J. (2010) 'Statistical analysis strategies for 
association studies involving rare variants', Nat Rev Genet, 11(11), pp. 773-785. 
Basson, C.T., Bachinsky, D.R., Lin, R.C., Levi, T., Elkins, J.A., Soults, J., Grayzel, D., Kroumpouzou, 
E., Traill, T.A., Leblanc-Straceski, J., Renault, B., Kucherlapati, R., Seidman, J.G. and Seidman, C.E. 
(1997) 'Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram 
syndrome', Nat Genet, 15(1), pp. 30-5. 
Bauer, R.C., Laney, A.O., Smith, R., Gerfen, J., Morrissette, J.J.D., Woyciechowski, S., Garbarini, J., 
Loomes, K.M., Krantz, I.D., Urban, Z., Gelb, B.D., Goldmuntz, E. and Spinner, N.B. (2010) 'Jagged1 
(JAG1) mutations in patients with tetralogy of fallot or pulmonic stenosis', Human Mutation, 
31(5), pp. 594-601. 
Benjamin, E.J., Rice, K.M., Arking, D.E., Pfeufer, A., van Noord, C., Smith, A.V., Schnabel, R.B., Bis, 
J.C., Boerwinkle, E., Sinner, M.F., Dehghan, A., Lubitz, S.A., D'Agostino, R.B., Lumley, T., Ehret, 



 

170 

 

G.B., Heeringa, J., Aspelund, T., Newton-Cheh, C., Larson, M.G., Marciante, K.D., Soliman, E.Z., 
Rivadeneira, F., Wang, T.J., Eiriksdottir, G., Levy, D., Psaty, B.M., Li, M., Chamberlain, A.M., 
Hofman, A., Vasan, R.S., Harris, T.B., Rotter, J.I., Kao, W.H.L., Agarwal, S.K., Stricker, B.H.C., Wang, 
K., Launer, L.J., Smith, N.L., Chakravarti, A., Uitterlinden, A.G., Wolf, P.A., Sotoodehnia, N., 
Kottgen, A., van Duijn, C.M., Meitinger, T., Mueller, M., Perz, S., Steinbeck, G., Wichmann, H.E., 
Lunetta, K.L., Heckbert, S.R., Gudnason, V., Alonso, A., Kaab, S., Ellinor, P.T. and Witteman, J.C.M. 
(2009) 'Variants in ZFHX3 are associated with atrial fibrillation in individuals of European 
ancestry', Nature Genetics, 41(8), pp. 879-881. 
Bernasconi, A., Azancot, A., Simpson, J.M., Jones, A. and Sharland, G.K. (2005) 'Fetal dextrocardia: 
diagnosis and outcome in two tertiary centres', Heart, 91(12), pp. 1590-1594. 
Bernier, P.-L., Stefanescu, A., Samoukovic, G. and Tchervenkov, C.I. (2010) 'The Challenge of 
Congenital Heart Disease Worldwide: Epidemiologic and Demographic Facts', Seminars in 
Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual, 13(1), pp. 26-34. 
Bezzina, C.R., Barc, J., Mizusawa, Y., Remme, C.A., Gourraud, J.-B., Simonet, F., Verkerk, A.O., 
Schwartz, P.J., Crotti, L., Dagradi, F., Guicheney, P., Fressart, V., Leenhardt, A., Antzelevitch, C., 
Bartkowiak, S., Borggrefe, M., Schimpf, R., Schulze-Bahr, E., Zumhagen, S., Behr, E.R., Bastiaenen, 
R., Tfelt-Hansen, J., Olesen, M.S., Kaab, S., Beckmann, B.M., Weeke, P., Watanabe, H., Endo, N., 
Minamino, T., Horie, M., Ohno, S., Hasegawa, K., Makita, N., Nogami, A., Shimizu, W., Aiba, T., 
Froguel, P., Balkau, B., Lantieri, O., Torchio, M., Wiese, C., Weber, D., Wolswinkel, R., Coronel, R., 
Boukens, B.J., Bezieau, S., Charpentier, E., Chatel, S., Despres, A., Gros, F., Kyndt, F., Lecointe, S., 
Lindenbaum, P., Portero, V., Violleau, J., Gessler, M., Tan, H.L., Roden, D.M., Christoffels, V.M., 
Le Marec, H., Wilde, A.A., Probst, V., Schott, J.-J., Dina, C. and Redon, R. (2013) 'Common 
variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with 
high risk of sudden cardiac death', Nat Genet, 45(9), pp. 1044-1049. 
Biesecker, L.G. and Spinner, N.B. (2013) 'A genomic view of mosaicism and human disease', Nat 
Rev Genet, 14(5), pp. 307-320. 
Bittel, D.C., Zhou, X.G., Kibiryeva, N., Fiedler, S. and O'Brien, J.E. (2014) 'Ultra High-Resolution 
Gene Centric Genomic Structural Analysis of a Non-Syndromic Congenital Heart Defect, 
Tetralogy of Fallot (vol 9, e87472, 2014)', PLoS One, 9(5). 
Blue, G.M., Kirk, E.P., Sholler, G.F., Harvey, R.P. and Winlaw, D.S. (2012) 'Congenital heart 
disease: current knowledge about causes and inheritance', The Medical Journal of Australia, 
197(3), pp. 155-159. 
Bose, C.L. and Laughon, M.M. (2007) 'Patent ductus arteriosus: lack of evidence for common 
treatments', Archives of Disease in Childhood - Fetal and Neonatal Edition, 92(6), pp. F498-F502. 
Boshoff, D. and Gewillig, M. (2006) 'A review of the options for treatment of major 
aortopulmonary collateral arteries in the setting of tetralogy of Fallot with pulmonary atresia', 
Cardiology in the Young, 16(3), pp. 212-220. 
Brognard, J., Sierecki, E., Gao, T. and Newton, A.C. (2007) 'PHLPP and a second isoform, PHLPP2, 
differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms', Mol 
Cell, 25(6), pp. 917-31. 
Brugada, R., Campuzano, O., Brugada, P., Brugada, J. and Hong, K. (1993) Brugada Syndrome 
(2010/03/20). Available at: http://www.ncbi.nlm.nih.gov/pubmed/20301690. 
Bruneau, B.G. (2008) 'The developmental genetics of congenital heart disease', Nature, 
451(7181), pp. 943-8. 
Bruneau, B.G. and Srivastava, D. (2014) 'Congenital Heart Disease Entering a New Era of Human 
Genetics', Circulation Research, 114(4), pp. 598-599. 
Brunham, L.R. and Hayden, M.R. (2013) 'Hunting human disease genes: lessons from the past, 
challenges for the future', Human Genetics, 132(6), pp. 603-17. 
Buermans, H.P.J. and den Dunnen, J.T. (2014) 'Next generation sequencing technology: Advances 
and applications', Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1842(10), pp. 
1932-1941. 



 

171 

 

Burn, J., Brennan, P., Little, J., Holloway, S., Coffey, R., Somerville, J., Dennis, N.R., Allan, L., 
Arnold, R., Deanfield, J.E., Godman, M., Houston, A., Keeton, B., Oakley, C., Scott, O., Silove, E., 
Wilkinson, J., Pembrey, M. and Hunter, A.S. (1998) 'Recurrence risks in offspring of adults with 
major heart defects: results from first cohort of British collaborative study', The Lancet, 
351(9099), pp. 311-316. 
Burton, P.R., Clayton, D.G., Cardon, L.R., Craddock, N., Deloukas, P., Duncanson, A., Kwiatkowski, 
D.P., McCarthy, M.I., Ouwehand, W.H., Samani, N.J., Todd, J.A., Donnelly, P., Barrett, J.C., 
Davison, D., Easton, D., Evans, D., Leung, H.T., Marchini, J.L., Morris, A.P., Spencer, C.C.A., Tobin, 
M.D., Attwood, A.P., Boorman, J.P., Cant, B., Everson, U., Hussey, J.M., Jolley, J.D., Knight, A.S., 
Koch, K., Meech, E., Nutland, S., Prowse, C.V., Stevens, H.E., Taylor, N.C., Walters, G.R., Walker, 
N.M., Watkins, N.A., Winzer, T., Jones, R.W., McArdle, W.L., Ring, S.M., Strachan, D.P., Pembrey, 
M., Breen, G., St Clair, D., Caesar, S., Gordon-Smith, K., Jones, L., Fraser, C., Green, E.K., Grozeva, 
D., Hamshere, M.L., Holmans, P.A., Jones, I.R., Kirov, G., Moskvina, V., Nikolov, I., O'Donovan, 
M.C., Owen, M.J., Collier, D.A., Elkin, A., Farmer, A., Williamson, R., McGuffin, P., Young, A.H., 
Ferrier, I.N., Ball, S.G., Balmforth, A.J., Barrett, J.H., Bishop, D.T., Iles, M.M., Maqbool, A., 
Yuldasheva, N., Hall, A.S., Braund, P.S., Dixon, R.J., Mangino, M., Stevens, S., Thompson, J.R., 
Bredin, F., Tremelling, M., Parkes, M., Drummond, H., Lees, C.W., Nimmo, E.R., Satsangi, J., 
Fisher, S.A., Forbes, A., Lewis, C.M., Onnie, C.M., Prescott, N.J., Sanderson, J., Mathew, C.G., 
Barbour, J., Mohiuddin, M.K., Todhunter, C.E., Mansfield, J.C., Ahmad, T., Cummings, F.R., Jewell, 
D.P., et al. (2007) 'Genome-wide association study of 14,000 cases of seven common diseases 
and 3,000 shared controls', Nature, 447(7145), pp. 661-678. 
Cemal, Y., Pusic, A. and Mehrara, B.J. (2011) 'Preventative measures for lymphedema: 
Separating fact from fiction', Journal of the American College of Surgeons, 213(4), pp. 543-551. 
Chadwick, B.P. and Frischauf, A.M. (1997) 'Cloning and mapping of a human and mouse gene 
with homology to ecto-ATPase genes', Mammalian Genome, 8(9), pp. 668-672. 
Challis, D., Yu, J., Evani, U.S., Jackson, A.R., Paithankar, S., Coarfa, C., Milosavljevic, A., Gibbs, R.A. 
and Yu, F. (2012) 'An integrative variant analysis suite for whole exome next-generation 
sequencing data', BMC Bioinformatics, 13, p. 8. 
Chang, X. and Wang, K. (2012) 'wANNOVAR: annotating genetic variants for personal genomes 
via the web', Journal of Medical Genetics, 49(7), pp. 433-436. 
Chen, Q. and Sun, F. (2013) 'A unified approach for allele frequency estimation, SNP detection 
and association studies based on pooled sequencing data using EM algorithms', BMC Genomics, 
14(Suppl 1), p. S1. 
Chen, Y.Q., Wu, B., Xu, L.L., Li, H.P., Xia, J.H., Yin, W.G., Li, Z., Shi, D.W., Li, S., Lin, S., Shu, X.D. and 
Pei, D.Q. (2012) 'A SNX10/V-ATPase pathway regulates ciliogenesis in vitro and in vivo', Cell 
Research, 22(2), pp. 333-345. 
Chilamakuri, C.S., Lorenz, S., Madoui, M.-A., Vodak, D., Sun, J., Hovig, E., Myklebost, O. and 
Meza-Zepeda, L. (2014) 'Performance comparison of four exome capture systems for deep 
sequencing', BMC Genomics, 15(1), p. 449. 
Chun, S. and Fay, J.C. (2009) 'Identification of deleterious mutations within three human 
genomes', Genome Research, 19(9), pp. 1553-1561. 
Cibulskis, K., Lawrence, M.S., Carter, S.L., Sivachenko, A., Jaffe, D., Sougnez, C., Gabriel, S., 
Meyerson, M., Lander, E.S. and Getz, G. (2013) 'Sensitive detection of somatic point mutations in 
impure and heterogeneous cancer samples', Nature Biotechnology, 31(3), pp. 213-219. 
Cipollone, D., Amati, F., Carsetti, R., Placidi, S., Biancolella, M., D'Amati, G., Novelli, G., Siracusa, 
G. and Marino, B. (2006) 'A multiple retinoic acid antagonist induces conotruncal anomalies, 
including transposition of the great arteries, in mice', Cardiovascular Pathology, 15(4), pp. 194-
202. 
Cirulli, E.T. and Goldstein, D.B. (2010) 'Uncovering the roles of rare variants in common disease 
through whole-genome sequencing', Nat Rev Genet, 11(6), pp. 415-425. 



 

172 

 

Clarke, T.K., Lupton, M.K., Fernandez-Pujals, A.M., Starr, J., Davies, G., Cox, S., Pattie, A., Liewald, 
D.C., Hall, L.S., MacIntyre, D.J., Smith, B.H., Hocking, L.J., Padmanabhan, S., Thomson, P.A., 
Hayward, C., Hansell, N.K., Montgomery, G.W., Medland, S.E., Martin, N.G., Wright, M.J., 
Porteous, D.J., Deary, I.J. and McIntosh, A.M. (2015) 'Common polygenic risk for autism 
spectrum disorder (ASD) is associated with cognitive ability in the general population', Mol 
Psychiatry. 
Clyman, R.I. and Chorne, N. (2007) 'Patent ductus arteriosus: evidence for and against 
treatment', The Journal of pediatrics, 150(3), p. 216. 
Cock, P.J., Fields, C.J., Goto, N., Heuer, M.L. and Rice, P.M. (2010) 'The Sanger FASTQ file format 
for sequences with quality scores, and the Solexa/Illumina FASTQ variants', Nucleic Acids Res, 
38(6), pp. 1767-71. 
Collins, F.S., Lander, E.S., Rogers, J., Waterston, R.H. and Conso, I.H.G.S. (2004) 'Finishing the 
euchromatic sequence of the human genome', Nature, 431(7011), pp. 931-945. 
Connell, F.C., Ostergaard, P., Carver, C., Brice, G., Williams, N., Mansour, S., Mortimer, P.S., 
Jeffery, S. and Consortium, L. (2009) 'Analysis of the coding regions of VEGFR3 and VEGFC in 
Milroy disease and other primary lymphoedemas (vol 124, pg 625, 2009)', Human Genetics, 
125(2), pp. 237-237. 
Conrad, D.F., Keebler, J.E., DePristo, M.A., Lindsay, S.J., Zhang, Y., Casals, F., Idaghdour, Y., Hartl, 
C.L., Torroja, C., Garimella, K.V., Zilversmit, M., Cartwright, R., Rouleau, G.A., Daly, M., Stone, 
E.A., Hurles, M.E. and Awadalla, P. (2011) 'Variation in genome-wide mutation rates within and 
between human families', Nat Genet, 43(7), pp. 712-4. 
Cordell, H.J., Bentham, J., Topf, A., Zelenika, D., Heath, S., Mamasoula, C., Cosgrove, C., Blue, G., 
Granados-Riveron, J., Setchfield, K., Thornborough, C., Breckpot, J., Soemedi, R., Martin, R., 
Rahman, T.J., Hall, D., van Engelen, K., Moorman, A.F.M., Zwinderman, A.H., Barnett, P., 
Koopmann, T.T., Adriaens, M.E., Varro, A., George, A.L., dos Remedios, C., Bishopric, N.H., 
Bezzina, C.R., O'Sullivan, J., Gewillig, M., Bu'Lock, F.A., Winlaw, D., Bhattacharya, S., Devriendt, K., 
Brook, J.D., Mulder, B.J.M., Mital, S., Postma, A.V., Lathrop, G.M., Farrall, M., Goodship, J.A. and 
Keavney, B.D. (2013a) 'Genome-wide association study of multiple congenital heart disease 
phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16', Nat 
Genet, 45(7), pp. 822-824. 
Cordell, H.J., Topf, A., Mamasoula, C., Postma, A.V., Bentham, J., Zelenika, D., Heath, S., Blue, G., 
Cosgrove, C., Granados Riveron, J., Darlay, R., Soemedi, R., Wilson, I.J., Ayers, K.L., Rahman, T.J., 
Hall, D., Mulder, B.J., Zwinderman, A.H., van Engelen, K., Brook, J.D., Setchfield, K., Bu'Lock, F.A., 
Thornborough, C., O'Sullivan, J., Stuart, A.G., Parsons, J., Bhattacharya, S., Winlaw, D., Mital, S., 
Gewillig, M., Breckpot, J., Devriendt, K., Moorman, A.F., Rauch, A., Lathrop, G.M., Keavney, B.D. 
and Goodship, J.A. (2013b) 'Genome-wide association study identifies loci on 12q24 and 13q32 
associated with tetralogy of Fallot', Hum Mol Genet, 22(7), pp. 1473-81. 
Croft, D., Mundo, A.F., Haw, R., Milacic, M., Weiser, J., Wu, G., Caudy, M., Garapati, P., Gillespie, 
M., Kamdar, M.R., Jassal, B., Jupe, S., Matthews, L., May, B., Palatnik, S., Rothfels, K., Shamovsky, 
V., Song, H., Williams, M., Birney, E., Hermjakob, H., Stein, L. and D'Eustachio, P. (2014) 'The 
Reactome pathway knowledgebase', Nucleic Acids Research, 42(D1), pp. D472-D477. 
Cunningham, F., Amode, M.R., Barrell, D., Beal, K., Billis, K., Brent, S., Carvalho-Silva, D., Clapham, 
P., Coates, G., Fitzgerald, S., Gil, L., Girón, C.G., Gordon, L., Hourlier, T., Hunt, S.E., Janacek, S.H., 
Johnson, N., Juettemann, T., Kähäri, A.K., Keenan, S., Martin, F.J., Maurel, T., McLaren, W., 
Murphy, D.N., Nag, R., Overduin, B., Parker, A., Patricio, M., Perry, E., Pignatelli, M., Riat, H.S., 
Sheppard, D., Taylor, K., Thormann, A., Vullo, A., Wilder, S.P., Zadissa, A., Aken, B.L., Birney, E., 
Harrow, J., Kinsella, R., Muffato, M., Ruffier, M., Searle, S.M.J., Spudich, G., Trevanion, S.J., Yates, 
A., Zerbino, D.R. and Flicek, P. (2015) 'Ensembl 2015', Nucleic Acids Research, 43(D1), pp. D662-
D669. 
D/'Alessandro, L.C.A., Al Turki, S., Manickaraj, A.K., Manase, D., Mulder, B.J.M., Bergin, L., 
Rosenberg, H.C., Mondal, T., Gordon, E., Lougheed, J., Smythe, J., Devriendt, K., Bhattacharya, S., 



 

173 

 

Watkins, H., Bentham, J., Bowdin, S., Hurles, M.E. and Mital, S. (2015) 'Exome sequencing 
identifies rare variants in multiple genes in atrioventricular septal defect', Genet Med. 
Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., 
Lunter, G., Marth, G.T., Sherry, S.T., McVean, G., Durbin, R. and Grp, G.P.A. (2011) 'The variant 
call format and VCFtools', Bioinformatics, 27(15), pp. 2156-2158. 
de la Cruz, M.V., Sanchez Gomez, C., Arteaga, M.M. and Arguello, C. (1977) 'Experimental study 
of the development of the truncus and the conus in the chick embryo', J Anat, 123(Pt 3), pp. 661-
86. 
De Luca, A., Sarkozy, A., Consoli, F., Ferese, R., Guida, V., Dentici, M.L., Mingarelli, R., Bellacchio, 
E., Tuo, G., Limongelli, G., Digilio, M.C., Marino, B. and Dallapiccola, B. (2010) 'Familial 
transposition of the great arteries caused by multiple mutations in laterality genes', Heart, 96(9), 
pp. 673-7. 
Deanfield, J., Thaulow, E., Warnes, C., Webb, G., Kolbel, F., Hoffman, A., Sorenson, K., 
Kaemmerer, H., Thilen, U., Bink-Boelkens, M., Iserin, L., Daliento, L., Silove, E., Redington, A., 
Vouhe, P. and Cardiology, E.S. (2003) 'Management of grown up congenital heart disease', 
European Heart Journal, 24(11), pp. 1035-1084. 
DePristo, M.A., Banks, E., Poplin, R., Garimella, K.V., Maguire, J.R., Hartl, C., Philippakis, A.A., del 
Angel, G., Rivas, M.A., Hanna, M., McKenna, A., Fennell, T.J., Kernytsky, A.M., Sivachenko, A.Y., 
Cibulskis, K., Gabriel, S.B., Altshuler, D. and Daly, M.J. (2011) 'A framework for variation 
discovery and genotyping using next-generation DNA sequencing data', Nature Genetics, 43(5), 
pp. 491-+. 
Dering, C., Hemmelmann, C., Pugh, E. and Ziegler, A. (2011) 'Statistical analysis of rare sequence 
variants: an overview of collapsing methods', Genetic Epidemiology, 35(S1), pp. S12-S17. 
Derkach, A., Chiang, T., Gong, J., Addis, L., Dobbins, S., Tomlinson, I., Houlston, R., Pal, D.K. and 
Strug, L.J. (2014) 'Association analysis using next-generation sequence data from publicly 
available control groups: the robust variance score statistic', Bioinformatics, 30(15), pp. 2179-
2188. 
Desai, J., Shannon, M.E., Johnson, M.D., Ruff, D.W., Hughes, L.A., Kerley, M.K., Carpenter, D.A., 
Johnson, D.K., Rinchik, E.M. and Culiat, C.T. (2006) 'Nell1-deficient mice have reduced expression 
of extracellular matrix proteins causing cranial and vertebral defects', Human Molecular Genetics, 
15(8), pp. 1329-1341. 
Digilio, M.C., Casey, B., Toscano, A., Calabrò, R., Pacileo, G., Marasini, M., Banaudi, E., Giannotti, 
A., Dallapiccola, B. and Marino, B. (2001) 'Complete Transposition of the Great Arteries: Patterns 
of Congenital Heart Disease in Familial Precurrence', Circulation, 104(23), pp. 2809-2814. 
Digilio, M.C., Marino, B., Banaudi, E., Marasini, M. and Dallapiccola, B. (1998) 'Familial 
recurrence of transposition of the great arteries', The Lancet, 351(9116), p. 1661. 
Dong, C.L., Wei, P., Jian, X.Q., Gibbs, R., Boerwinkle, E., Wang, K. and Liu, X.M. (2015) 
'Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in 
whole exome sequencing studies', Human Molecular Genetics, 24(8), pp. 2125-2137. 
Dumont, D.J., Jussila, L., Taipale, J., Lymboussaki, A., Mustonen, T., Pajusola, K., Breitman, M. 
and Alitalo, K. (1998) 'Cardiovascular failure in mouse embryos deficient in VEGF receptor-3', 
Science, 282(5390), pp. 946-949. 
Eldadah, Z.A., Hamosh, A., Biery, N.J., Montgomery, R.A., Duke, M., Elkins, R. and Dietz, H.C. 
(2001) 'Familial Tetralogy of Fallot caused by mutation in the jagged1 gene', Human Molecular 
Genetics, 10(2), pp. 163-169. 
Eppig, J.T., Blake, J.A., Bult, C.J., Kadin, J.A., Richardson, J.E. and Grp, M.G.D. (2015) 'The Mouse 
Genome Database (MGD): facilitating mouse as a model for human biology and disease', Nucleic 
Acids Research, 43(D1), pp. D726-D736. 
Ewert, P., Bertram, H., Breuer, J., Dähnert, I., Dittrich, S., Eicken, A., Emmel, M., Fischer, G., 
Gitter, R., Gorenflo, M., Haas, N., Kitzmüller, E., Koch, A., Kretschmar, O., Lindinger, A., Michel-
Behnke, I., Nuernberg, J.H., Peuster, M., Walter, K., Zartner, P. and Uhlemann, F. (2011) 'Balloon 



 

174 

 

valvuloplasty in the treatment of congenital aortic valve stenosis — A retrospective multicenter 
survey of more than 1000 patients', International Journal of Cardiology, 149(2), pp. 182-185. 
Ewing, B. and Green, P. (1998) 'Base-Calling of Automated Sequencer Traces Using Phred. II. 
Error Probabilities', Genome Research, 8(3), pp. 186-194. 
Ewing, B., Hillier, L., Wendl, M.C. and Green, P. (1998) 'Base-Calling of Automated Sequencer 
Traces UsingPhred. I. Accuracy Assessment', Genome Research, 8(3), pp. 175-185. 
Fahed, A.C., Gelb, B.D., Seidman, J.G. and Seidman, C.E. (2013) 'Genetics of congenital heart 
disease: the glass half empty', Circulation Research, 112(4), pp. 707-20. 
Fakhro, K.A., Choi, M., Ware, S.M., Belmont, J.W., Towbin, J.A., Lifton, R.P., Khokha, M.K. and 
Brueckner, M. (2011) 'Rare copy number variations in congenital heart disease patients identify 
unique genes in left-right patterning', Proceedings of the National Academy of Sciences of the 
United States of America, 108(7), pp. 2915-2920. 
Feng, Q., Song, W., Lu, X., Hamilton, J.A., Lei, M., Peng, T. and Yee, S.P. (2002) 'Development of 
heart failure and congenital septal defects in mice lacking endothelial nitric oxide synthase', 
Circulation, 106(7), pp. 873-9. 
Ferencz, C., Boughman, J.A., Neill, C.A., Brenner, J.I. and Perry, L.W. (1989) 'Congenital 
Cardiovascular Malformations - Questions on Inheritance', Journal of the American College of 
Cardiology, 14(3), pp. 756-763. 
Fermilab (2014) Scientific Linux. Available at: https://www.scientificlinux.org/ (Accessed: 2nd of 
October). 
Fesslova, V., Brankovic, J., Lalatta, F., Villa, L., Meli, V., Piazza, L. and Ricci, C. (2011) 'Recurrence 
of congenital heart disease in cases with familial risk screened prenatally by echocardiography', J 
Pregnancy, 2011, p. 368067. 
Folli, C., Calderone, V., Ottonello, S., Bolchi, A., Zanotti, G., Stoppini, M. and Berni, R. (2001) 
'Identification, retinoid binding, and x-ray analysis of a human retinol-binding protein', Proc Natl 
Acad Sci U S A, 98(7), pp. 3710-5. 
Galati, G., Gentilucci, U.V., Mazzarelli, C., Gallo, P., Grasso, R.F., Stellato, L., Afeltra, A. and Picardi, 
A. (2011) 'Deep Vein Thrombosis, Inferior Vena Cava Interruption and Multiple Thrombophilic 
Gene Mutations', American Journal of the Medical Sciences, 342(1), pp. 79-82. 
Gamss, C. and Haramati, L.B. (2014) 'Eisenmenger Syndrome', Cardiac Imaging, p. 154. 
Garg, V., Kathiriya, I.S., Barnes, R., Schluterman, M.K., King, I.N., Butler, C.A., Rothrock, C.R., 
Eapen, R.S., Hirayama-Yamada, K., Joo, K., Matsuoka, R., Cohen, J.C. and Srivastava, D. (2003) 
'GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5', 
Nature, 424(6947), pp. 443-7. 
Garg, V., Muth, A.N., Ransom, J.F., Schluterman, M.K., Barnes, R., King, I.N., Grossfeld, P.D. and 
Srivastava, D. (2005) 'Mutations in NOTCH1 cause aortic valve disease', Nature, 437(7056), pp. 
270-274. 
Gelb, B.D. and Chung, W.K. (2014) 'Complex Genetics and the Etiology of Human Congenital 
Heart Disease', Cold Spring Harb Perspect Med, 4(7). 
Gene Ontology, C. (2004) 'The Gene Ontology (GO) database and informatics resource', Nucleic 
Acids Research, 32(suppl 1), pp. D258-D261. 
Geva, T., Martins, J.D. and Wald, R.M. (2014) 'Atrial septal defects', Lancet, 383(9932), pp. 1921-
32. 
Ghosh, M.G., Thompson, D.A. and Weigel, R.J. (2000) 'PDZK1 and GREB1 are estrogen-regulated 
genes expressed in hormone-responsive breast cancer', Cancer Res, 60(22), pp. 6367-75. 
Gilissen, C., Hoischen, A., Brunner, H.G. and Veltman, J.A. (2012) 'Disease gene identification 
strategies for exome sequencing', European Journal of Human Genetics, 20(5), pp. 490-497. 
Girard, S.L., Gauthier, J., Noreau, A., Xiong, L., Zhou, S., Jouan, L., Dionne-Laporte, A., Spiegelman, 
D., Henrion, E., Diallo, O., Thibodeau, P., Bachand, I., Bao, J.Y.J., Tong, A.H.Y., Lin, C.-H., Millet, B., 
Jaafari, N., Joober, R., Dion, P.A., Lok, S., Krebs, M.-O. and Rouleau, G.A. (2011) 'Increased exonic 
de novo mutation rate in individuals with schizophrenia', Nat Genet, 43(9), pp. 860-863. 



 

175 

 

Glaab, E., Baudot, A., Krasnogor, N., Schneider, R. and Valencia, A. (2012) 'EnrichNet: network-
based gene set enrichment analysis', Bioinformatics, 28(18), pp. I451-I457. 
Gnirke, A., Melnikov, A., Maguire, J., Rogov, P., LeProust, E.M., Brockman, W., Fennell, T., 
Giannoukos, G., Fisher, S., Russ, C., Gabriel, S., Jaffe, D.B., Lander, E.S. and Nusbaum, C. (2009) 
'Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted 
sequencing', Nat Biotech, 27(2), pp. 182-189. 
GNU Project (2014) Bash. Available at: https://www.gnu.org/software/bash/ (Accessed: 8th of 
August). 
Goldmuntz, E., Bamford, R., Karkera, J.D., dela Cruz, J., Roessler, E. and Muenke, M. (2002) 'CFC1 
mutations in patients with transposition of the great arteries and double-outlet right ventricle', 
Am J Hum Genet, 70(3), pp. 776-80. 
Gonzaga-Jauregui, C., Lupski, J.R. and Gibbs, R.A. (2012) 'Human genome sequencing in health 
and disease', Annu Rev Med, 63, pp. 35-61. 
Goodship, J.A., Hall, D., Topf, A., Mamasoula, C., Griffin, H., Rahman, T.J., Glen, E., Tan, H., 
Palomino Doza, J., Relton, C.L., Bentham, J., Bhattacharya, S., Cosgrove, C., Brook, D., Granados-
Riveron, J., Bu'Lock, F.A., O'Sullivan, J., Stuart, A.G., Parsons, J., Cordell, H.J. and Keavney, B. 
(2012) 'A Common Variant in the PTPN11 Gene Contributes to the Risk of Tetralogy of Fallot', 
Circulation: Cardiovascular Genetics, 5(3), pp. 287-292. 
Goor, D.A., Dische, R. and Lillehei, C.W. (1972) 'The Conotruncus: I. Its Normal Inversion and 
Conus Absorption', Circulation, 46(2), pp. 375-384. 
Goor, D.A. and Edwards, J.E. (1973) 'The Spectrum of Transposition of the Great Arteries: With 
Specific Reference to Developmental Anatomy of the Conus', Circulation, 48(2), pp. 406-415. 
Gorini, F., Chiappa, E., Gargani, L. and Picano, E. (2014) 'Potential effects of environmental 
chemical contamination in congenital heart disease', Pediatr Cardiol, 35(4), pp. 559-68. 
Greenway, S.C., Pereira, A.C., Lin, J.C., DePalma, S.R., Israel, S.J., Mesquita, S.M., Ergul, E., Conta, 
J.H., Korn, J.M., McCarroll, S.A., Gorham, J.M., Gabriel, S., Altshuler, D.M., Quintanilla-Dieck, 
M.D., Artunduaga, M.A., Eavey, R.D., Plenge, R.M., Shadick, N.A., Weinblatt, M.E., De Jager, P.L., 
Hafler, D.A., Breitbart, R.E., Seidman, J.G. and Seidman, C.E. (2009) 'De novo copy number 
variants identify new genes and loci in isolated sporadic tetralogy of Fallot', Nature Genetics, 
41(8), pp. 931-U98. 
Griffin, H.R., Töpf, A., Glen, E., Zweier, C., Stuart, A.G., Parsons, J., Peart, I., Deanfield, J., 
O'Sullivan, J., Rauch, A., Scambler, P., Burn, J., Cordell, H.J., Keavney, B. and Goodship, J.A. (2010) 
'Systematic survey of variants in TBX1 in non-syndromic tetralogy of Fallot identifies a novel 57 
base pair deletion that reduces transcriptional activity but finds no evidence for association with 
common variants', Heart, 96(20), pp. 1651-1655. 
Grimm, D.G., Azencott, C.-A., Aicheler, F., Gieraths, U., MacArthur, D.G., Samocha, K.E., Cooper, 
D.N., Stenson, P.D., Daly, M.J., Smoller, J.W., Duncan, L.E. and Borgwardt, K.M. (2015) 'The 
Evaluation of Tools Used to Predict the Impact of Missense Variants Is Hindered by Two Types of 
Circularity', Human Mutation, 36(5), pp. 513-523. 
Grunert, M., Dorn, C., Schueler, M., Dunkel, I., Schlesinger, J., Mebus, S., Alexi-Meskishvili, V., 
Perrot, A., Wassilew, K., Timmermann, B., Hetzer, R., Berger, F. and Sperling, S.R. (2014) 'Rare 
and private variations in neural crest, apoptosis and sarcomere genes define the polygenic 
background of isolated Tetralogy of Fallot', Human Molecular Genetics, 23(12), pp. 3115-3128. 
Guida, V., Ferese, R., Rocchetti, M., Bonetti, M., Sarkozy, A., Cecchetti, S., Gelmetti, V., Lepri, F., 
Copetti, M., Lamorte, G., Cristina Digilio, M., Marino, B., Zaza, A., den Hertog, J., Dallapiccola, B. 
and De Luca, A. (2013) 'A variant in the carboxyl-terminus of connexin 40 alters GAP junctions 
and increases risk for tetralogy of Fallot', Eur J Hum Genet, 21(1), pp. 69-75. 
Guleserian, K.J. (2011) 'Adult congenital heart disease: surgical advances and options', Prog 
Cardiovasc Dis, 53(4), pp. 254-64. 
Guo, Y., Ye, F., Sheng, Q., Clark, T. and Samuels, D.C. (2013) 'Three-stage quality control 
strategies for DNA re-sequencing data', Briefings in Bioinformatics. 



 

176 

 

Gusella, J.F., Wexler, N.S., Conneally, P.M., Naylor, S.L., Anderson, M.A., Tanzi, R.E., Watkins, P.C., 
Ottina, K., Wallace, M.R., Sakaguchi, A.Y., Young, A.B., Shoulson, I., Bonilla, E. and Martin, J.B. 
(1983) 'A polymorphic DNA marker genetically linked to Huntington's disease', Nature, 
306(5940), pp. 234-238. 
Haiko, P., Makinen, T., Keskitalo, S., Taipale, J., Karkkainen, M.J., Baldwin, M.E., Stacker, S.A., 
Achen, M.G. and Alitalo, K. (2008) 'Deletion of Vascular endothelial growth factor C (VEGF-C) and 
VEGF-D is not equivalent to VEGF receptor 3 deletion in mouse embryos', Molecular and Cellular 
Biology, 28(15), pp. 4843-4850. 
Han, F. and Pan, W. (2010) 'A Data-Adaptive Sum Test for Disease Association with Multiple 
Common or Rare Variants', Human Heredity, 70(1), pp. 42-54. 
Hochstrasser, L., Ruchat, P., Sekarski, N., Hurni, M. and von Segesser, L.K. (2014) 'Long-term 
outcome of congenital aortic valve stenosis: predictors of reintervention', Cardiology in the 
Young, pp. 1-10. 
Hodges, E., Xuan, Z., Balija, V., Kramer, M., Molla, M.N., Smith, S.W., Middle, C.M., Rodesch, M.J., 
Albert, T.J., Hannon, G.J. and McCombie, W.R. (2007) 'Genome-wide in situ exon capture for 
selective resequencing', Nat Genet, 39(12), pp. 1522-1527. 
Hoffman, J.I. and Kaplan, S. (2002) 'The incidence of congenital heart disease', J Am Coll Cardiol, 
39(12), pp. 1890-900. 
Hoffman, J.I., Kaplan, S. and Liberthson, R.R. (2004) 'Prevalence of congenital heart disease', Am 
Heart J, 147(3), pp. 425-39. 
Hoischen, A., Krumm, N. and Eichler, E.E. (2014) 'Prioritization of neurodevelopmental disease 
genes by discovery of new mutations', Nat Neurosci, 17(6), pp. 764-72. 
Hoischen, A., van Bon, B.W.M., Gilissen, C., Arts, P., van Lier, B., Steehouwer, M., de Vries, P., de 
Reuver, R., Wieskamp, N., Mortier, G., Devriendt, K., Amorim, M.Z., Revencu, N., Kidd, A., 
Barbosa, M., Turner, A., Smith, J., Oley, C., Henderson, A., Hayes, I.M., Thompson, E.M., Brunner, 
H.G., de Vries, B.B.A. and Veltman, J.A. (2010) 'De novo mutations of SETBP1 cause Schinzel-
Giedion syndrome', Nat Genet, 42(6), pp. 483-485. 
Houniet, D.T., Rahman, T.J., Al Turki, S., Hurles, M.E., Xu, Y., Goodship, J., Keavney, B. and 
Santibanez Koref, M. (2015) 'Using population data for assessing next-generation sequencing 
performance', Bioinformatics, 31(1), pp. 56-61. 
Houslay, M.D., Baillie, G.S. and Maurice, D.H. (2007) 'cAMP-Specific phosphodiesterase-4 
enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized 
cAMP signaling', Circulation Research, 100(7), pp. 950-66. 
Hu, D., Barajas-Martinez, H., Pfeiffer, R., Dezi, F., Pfeiffer, J., Buch, T., Betzenhauser, M.J., 
Belardinelli, L., Kahlig, K.M., Rajamani, S., DeAntonio, H.J., Myerburg, R.J., Ito, H., Deshmukh, P., 
Marieb, M., Nam, G.B., Bhatia, A., Hasdemir, C., Haissaguerre, M., Veltmann, C., Schimpf, R., 
Borggrefe, M., Viskin, S. and Antzelevitch, C. (2014) 'Mutations in SCN10A Are Responsible for a 
Large Fraction of Cases of Brugada Syndrome', Journal of the American College of Cardiology, 
64(1), pp. 66-79. 
Huang, R.T., Xue, S., Xu, Y.J. and Yang, Y.Q. (2013) 'Somatic mutations in the GATA6 gene 
underlie sporadic tetralogy of Fallot', Int J Mol Med, 31(1), pp. 51-8. 
Illumina (2012a) CASAVA v.1.8.2 User Guide. Available at: 
https://support.illumina.com/content/dam/illumina-support/documents/myillumina/a557afc4-
bf0e-4dad-9e59-9c740dd1e751/casava_userguide_15011196d.pdf (Accessed: 8th of August). 
Illumina (2012b) Genome Analyzer IIx User Guide. Available at: 
http://support.illumina.com/content/dam/illumina-support/documents/myillumina/d2aa31fa-
51a0-48c9-8747-edfb748701ff/gaiix_userguide_scs2-10_15030966_c.pdf (Accessed: 8th of 
August). 
Illumina (2014a) HiSeq® 2000 System User Guide. Available at: 
http://support.illumina.com/content/dam/illumina-



 

177 

 

support/documents/documentation/system_documentation/hiseq2000/hiseq-2000-user-guide-
15011190-v.pdf (Accessed: 8th of August). 
Illumina (2014b) HiSeq® 2500 System User Guide. Available at: 
http://support.illumina.com/content/dam/illumina-
support/documents/documentation/system_documentation/hiseq2500/hiseq-2500-user-guide-
15035786-d.pdf (Accessed: 12th of August). 
Illumina (2015a) Human660W-Quad BeadChip Support. Available at: 
https://support.illumina.com/array/array_kits/human660w-quad_dna_analysis_kit.html 
(Accessed: 11th of August). 
Illumina (2015b) Paired-End Sequencing. Available at: 
http://www.illumina.com/technology/next-generation-sequencing/paired-end-
sequencing_assay.html (Accessed: 8th of August). 
Illumina (2015c) Sequencing and array-based solutions for genetic research. Available at: 
http://www.illumina.com (Accessed: 8th of August). 
Illumina (2015d) Sequencing Software Support. Available at: 
http://support.illumina.com/sequencing/sequencing_software.html (Accessed: 8th of August). 
Iyengar, S.K. and Elston, R.C. (2007) 'The genetic basis of complex traits: rare variants or 
"common gene, common disease"?', Methods Mol Biol, 376, pp. 71-84. 
Jenkins, K.J., Correa, A., Feinstein, J.A., Botto, L., Britt, A.E., Daniels, S.R., Elixson, M., Warnes, C.A. 
and Webb, C.L. (2007) 'Noninherited risk factors and congenital cardiovascular defects: current 
knowledge: a scientific statement from the American Heart Association Council on 
Cardiovascular Disease in the Young: endorsed by the American Academy of Pediatrics', 
Circulation, 115(23), pp. 2995-3014. 
Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, 
A., Simonovic, M., Bork, P. and von Mering, C. (2009) 'STRING 8—a global view on proteins and 
their functional interactions in 630 organisms', Nucleic Acids Research, 37(suppl 1), pp. D412-
D416. 
Jiang, J.Q., Li, R.G., Wang, J., Liu, X.Y., Xu, Y.J., Fang, W.Y., Chen, X.Z., Zhang, W., Wang, X.Z. and 
Yang, Y.Q. (2013) 'Prevalence and spectrum of GATA5 mutations associated with congenital 
heart disease', Int J Cardiol, 165(3), pp. 570-3. 
Kaemmerer, H., Meisner, H., Hess, J. and Perloff, J.K. (2004) 'Surgical treatment of patent ductus 
arteriosus: a new historical perspective', The American journal of cardiology, 94(9), pp. 1153-
1154. 
Kanehisa, M. and Goto, S. (2000) 'KEGG: Kyoto Encyclopedia of Genes and Genomes', Nucleic 
Acids Research, 28(1), pp. 27-30. 
Karlsson, E., Lärkeryd, A., Sjödin, A., Forsman, M. and Stenberg, P. (2015) 'Scaffolding of a 
bacterial genome using MinION nanopore sequencing', Sci. Rep., 5. 
Kaza, A., Minich, L.L. and Tani, L. (2013) 'Atrioventricular Septal Defects', in Da Cruz, E.M., Ivy, D. 
and Jaggers, J. (eds.) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. 
Springer London,  pp. 1479-1491. 
Keinan, A. and Clark, A.G. (2012) 'Recent Explosive Human Population Growth Has Resulted in an 
Excess of Rare Genetic Variants', Science, 336(6082), pp. 740-743. 
Kendall, S., Karamichalis, J., Karamlou, T., Teitel, D. and Cohen, G. (2014) 'Atrial Septal Defect', 
Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care, pp. 1439-1454. 
Khumalo, N.P., Pillay, K., Beighton, P., Wainwright, H., Walker, B., Saxe, N., Mayosi, B.M. and 
Bateman, E.D. (2006) 'Poikiloderma, tendon contracture and pulmonary fibrosis: a new 
autosomal dominant syndrome?', British Journal of Dermatology, 155(5), pp. 1057-1061. 
Kim, I., Moon, S.O., Koh, K.N., Kim, H., Uhm, C.S., Kwak, H.J., Kim, N.G. and Koh, G.Y. (1999) 
'Molecular cloning, expression, and characterization of angiopoietin-related protein - 
Angiopoietin-related protein induces endothelial cell sprouting', Journal of Biological Chemistry, 
274(37), pp. 26523-26528. 



 

178 

 

Kircher, M., Heyn, P. and Kelso, J. (2011) 'Addressing challenges in the production and analysis of 
illumina sequencing data', BMC Genomics, 12, p. 382. 
Koboldt, D.C., Zhang, Q.Y., Larson, D.E., Shen, D., McLellan, M.D., Lin, L., Miller, C.A., Mardis, E.R., 
Ding, L. and Wilson, R.K. (2012) 'VarScan 2: Somatic mutation and copy number alteration 
discovery in cancer by exome sequencing', Genome Research, 22(3), pp. 568-576. 
Kobrynski, L.J. and Sullivan, K.E. (2007) 'Velocardiofacial syndrome, DiGeorge syndrome: the 
chromosome 22q11.2 deletion syndromes', Lancet, 370(9596), pp. 1443-1452. 
Kong, A., Frigge, M.L., Masson, G., Besenbacher, S., Sulem, P., Magnusson, G., Gudjonsson, S.A., 
Sigurdsson, A., Jonasdottir, A., Jonasdottir, A., Wong, W., Sigurdsson, G., Walters, G.B., Steinberg, 
S., Helgason, H., Thorleifsson, G., Gudbjartsson, D.F., Helgason, A., Magnusson, O.T., 
Thorsteinsdottir, U. and Stefansson, K. (2012) 'Rate of de novo mutations, father’s age, and 
disease risk', Nature, 488(7412), pp. 471-475. 
Koren, S. and Phillippy, A.M. (2015) 'One chromosome, one contig: complete microbial genomes 
from long-read sequencing and assembly', Curr Opin Microbiol, 23, pp. 110-20. 
Korpelainen, E.I., Karkkainen, M., Gunji, Y., Vikkula, M. and Alitalo, K. (1999) 'Endothelial 
receptor tyrosine kinases activate the STAT signaling pathway: mutant Tie-2 causing venous 
malformations signals a distinct STAT activation response', Oncogene, 18(1), pp. 1-8. 
Ku, C.S., Vasiliou, V. and Cooper, D.N. (2012) 'A new era in the discovery of de novo mutations 
underlying human genetic disease', Human Genomics, 6. 
Kukk, E., Lymboussaki, A., Taira, S., Kaipainen, A., Jeltsch, M., Joukov, V. and Alitalo, K. (1996) 
'VEGF-C receptor binding and pattern of expression with VEGFR-3 suggests a role in lymphatic 
vascular development', Development, 122(12), pp. 3829-3837. 
Kung, G. and Wong, P. (2014) 'Ventricular Septal Defects', in Wong, P.C. and Miller-Hance, W.C. 
(eds.) Transesophageal Echocardiography for Congenital Heart Disease. Springer London,  pp. 
241-252. 
Lahdenranta, J., Hagendoorn, J., Padera, T.P., Hoshida, T., Nelson, G., Kashiwagi, S., Jain, R.K. and 
Fukumura, D. (2009) 'Endothelial Nitric Oxide Synthase Mediates Lymphangiogenesis and 
Lymphatic Metastasis', Cancer Research, 69(7), pp. 2801-2808. 
Lange, K. (1997) Mathematical and statistical methods for genetic analysis. New York: Springer. 
Langmead, B., Trapnell, C., Pop, M. and Salzberg, S.L. (2009) 'Ultrafast and memory-efficient 
alignment of short DNA sequences to the human genome', Genome Biol, 10(3), p. R25. 
Larson, D.E., Harris, C.C., Chen, K., Koboldt, D.C., Abbott, T.E., Dooling, D.J., Ley, T.J., Mardis, E.R., 
Wilson, R.K. and Ding, L. (2012) 'SomaticSniper: identification of somatic point mutations in 
whole genome sequencing data', Bioinformatics, 28(3), pp. 311-317. 
LeCouter, J., Lin, R., Tejada, M., Frantz, G., Peale, F., Hillan, K.J. and Ferrara, N. (2003) 'The 
endocrine-gland-derived VEGF homologue Bv8 promotes angiogenesis in the testis: Localization 
of Bv8 receptors to endothelial cells', Proceedings of the National Academy of Sciences of the 
United States of America, 100(5), pp. 2685-2690. 
Ledergerber, C. and Dessimoz, C. (2011) 'Base-calling for next-generation sequencing platforms', 
Briefings in Bioinformatics. 
Lee, M., d’Udekem, Y. and Brizard, C. (2014a) 'Coarctation of the Aorta', Pediatric and Congenital 
Cardiology, Cardiac Surgery and Intensive Care, pp. 1631-1646. 
Lee, S., Abecasis, G.R., Boehnke, M. and Lin, X. (2014b) 'Rare-variant association analysis: study 
designs and statistical tests', American Journal of Human Genetics, 95(1), pp. 5-23. 
Leeds, J.S., Hopper, A.D. and Sanders, D.S. (2008) 'Coeliac disease', British Medical Bulletin, 88(1), 
pp. 157-170. 
Lehtokari, V.-L., Pelin, K., Sandbacka, M., Ranta, S., Donner, K., Muntoni, F., Sewry, C., Angelini, 
C., Bushby, K., Van den Bergh, P., Iannaccone, S., Laing, N.G. and Wallgren-Pettersson, C. (2006) 
'Identification of 45 novel mutations in the nebulin gene associated with autosomal recessive 
nemaline myopathy', Human Mutation, 27(9), pp. 946-956. 



 

179 

 

Lev, M. and Eckner, F.A.O. (1964) 'THe pathologic anatomy of tetralogy of fallot and its 
variations', Chest, 45(3), pp. 251-261. 
Li, B., Chen, W., Zhan, X., Busonero, F., Sanna, S., Sidore, C., Cucca, F., Kang, H.M. and Abecasis, 
G.R. (2012) 'A likelihood-based framework for variant calling and de novo mutation detection in 
families', PLoS Genet, 8(10), p. e1002944. 
Li, B. and Leal, S.M. (2008) 'Methods for Detecting Associations with Rare Variants for Common 
Diseases: Application to Analysis of Sequence Data', The American Journal of Human Genetics, 
83(3), pp. 311-321. 
Li, H. (2011) 'A statistical framework for SNP calling, mutation discovery, association mapping 
and population genetical parameter estimation from sequencing data', Bioinformatics, 27(21), 
pp. 2987-2993. 
Li, H. and Durbin, R. (2009) 'Fast and accurate short read alignment with Burrows-Wheeler 
transform', Bioinformatics, 25(14), pp. 1754-60. 
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, 
R. and Genome Project Data Processing, S. (2009a) 'The Sequence Alignment/Map format and 
SAMtools', Bioinformatics, 25(16), pp. 2078-2079. 
Li, H. and Homer, N. (2010) 'A survey of sequence alignment algorithms for next-generation 
sequencing', Brief Bioinform, 11(5), pp. 473-83. 
Li, H., Ruan, J. and Durbin, R. (2008) 'Mapping short DNA sequencing reads and calling variants 
using mapping quality scores', Genome Res, 18(11), pp. 1851-8. 
Li, R., Yu, C., Li, Y., Lam, T.W., Yiu, S.M., Kristiansen, K. and Wang, J. (2009b) 'SOAP2: an improved 
ultrafast tool for short read alignment', Bioinformatics, 25(15), pp. 1966-7. 
Li, Y., Klena, N.T., Gabriel, G.C., Liu, X.Q., Kim, A.J., Lemke, K., Chen, Y., Chatterjee, B., Devine, W., 
Damerla, R.R., Chang, C.F., Yagi, H., San Agustin, J.T., Thahir, M., Anderton, S., Lawhead, C., 
Vescovi, A., Pratt, H., Morgan, J., Haynes, L., Smith, C.L., Eppig, J.T., Reinholdt, L., Francis, R., 
Leatherbury, L., Ganapathiraju, M.K., Tobita, K., Pazour, G.J. and Lo, C.W. (2015) 'Global genetic 
analysis in mice unveils central role for cilia in congenital heart disease', Nature, 521(7553), pp. 
520-U224. 
Liberfarb, R.M., Goldblatt, A., Opitz, J.M. and Reynolds, J.F. (1986) 'Prevalence of mitral-valve 
prolapse in the Stickler syndrome', American Journal of Medical Genetics, 24(3), pp. 387-392. 
Liu, S., Joseph, K.S., Lisonkova, S., Rouleau, J., Van den Hof, M., Sauve, R. and Kramer, M.S. (2013) 
'Association between maternal chronic conditions and congenital heart defects: a population-
based cohort study', Circulation, 128(6), pp. 583-9. 
Loffredo, C.A., Silbergeld, E.K., Ferencz, C. and Zhang, J. (2001) 'Association of transposition of 
the great arteries in infants with maternal exposures to herbicides and rodenticides', Am J 
Epidemiol, 153(6), pp. 529-36. 
London Medical Databases (2014) London Medical Databases: About the LM Database Series. 
Available at: http://www.lmdatabases.com/about_lmd.html#lddb (Accessed: 14th of 
September). 
Longo, N., Amat di San Filippo, C. and Pasquali, M. (2006) 'Disorders of carnitine transport and 
the carnitine cycle', American journal of medical genetics. Part C, Seminars in medical genetics, 
142C(2), pp. 77-85. 
Lui, V.C.H., Ng, L.J., Sat, E.W.Y. and Cheah, K.S.E. (1996) 'The human alpha 2(XI) collagen gene 
(COL11A2): Completion of coding information, identification of the promoter sequence, and 
precise localization within the major histocompatibility complex reveal overlap with the KE5 
gene', Genomics, 32(3), pp. 401-412. 
MacArthur, D.G., Manolio, T.A., Dimmock, D.P., Rehm, H.L., Shendure, J., Abecasis, G.R., Adams, 
D.R., Altman, R.B., Antonarakis, S.E., Ashley, E.A., Barrett, J.C., Biesecker, L.G., Conrad, D.F., 
Cooper, G.M., Cox, N.J., Daly, M.J., Gerstein, M.B., Goldstein, D.B., Hirschhorn, J.N., Leal, S.M., 
Pennacchio, L.A., Stamatoyannopoulos, J.A., Sunyaev, S.R., Valle, D., Voight, B.F., Winckler, W. 



 

180 

 

and Gunter, C. (2014) 'Guidelines for investigating causality of sequence variants in human 
disease', Nature, 508(7497), pp. 469-476. 
Madsen, B.E. and Browning, S.R. (2009) 'A Groupwise Association Test for Rare Mutations Using 
a Weighted Sum Statistic', PLoS Genetics, 5(2), p. e1000384. 
Majewski, J., Schwartzentruber, J., Lalonde, E., Montpetit, A. and Jabado, N. (2011) 'What can 
exome sequencing do for you?', Journal of Medical Genetics, 48(9), pp. 580-589. 
Mamanova, L., Coffey, A.J., Scott, C.E., Kozarewa, I., Turner, E.H., Kumar, A., Howard, E., 
Shendure, J. and Turner, D.J. (2010) 'Target-enrichment strategies for next-generation 
sequencing', Nat Meth, 7(2), pp. 111-118. 
Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, M.I., 
Ramos, E.M., Cardon, L.R., Chakravarti, A., Cho, J.H., Guttmacher, A.E., Kong, A., Kruglyak, L., 
Mardis, E., Rotimi, C.N., Slatkin, M., Valle, D., Whittemore, A.S., Boehnke, M., Clark, A.G., Eichler, 
E.E., Gibson, G., Haines, J.L., Mackay, T.F., McCarroll, S.A. and Visscher, P.M. (2009) 'Finding the 
missing heritability of complex diseases', Nature, 461(7265), pp. 747-53. 
Mardis, E.R. (2013) 'Next-generation sequencing platforms', Annu Rev Anal Chem (Palo Alto 
Calif), 6, pp. 287-303. 
Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., 
Braverman, M.S., Chen, Y.J., Chen, Z., Dewell, S.B., Du, L., Fierro, J.M., Gomes, X.V., Godwin, B.C., 
He, W., Helgesen, S., Ho, C.H., Irzyk, G.P., Jando, S.C., Alenquer, M.L., Jarvie, T.P., Jirage, K.B., Kim, 
J.B., Knight, J.R., Lanza, J.R., Leamon, J.H., Lefkowitz, S.M., Lei, M., Li, J., Lohman, K.L., Lu, H., 
Makhijani, V.B., McDade, K.E., McKenna, M.P., Myers, E.W., Nickerson, E., Nobile, J.R., Plant, R., 
Puc, B.P., Ronan, M.T., Roth, G.T., Sarkis, G.J., Simons, J.F., Simpson, J.W., Srinivasan, M., Tartaro, 
K.R., Tomasz, A., Vogt, K.A., Volkmer, G.A., Wang, S.H., Wang, Y., Weiner, M.P., Yu, P., Begley, R.F. 
and Rothberg, J.M. (2005) 'Genome sequencing in microfabricated high-density picolitre 
reactors', Nature, 437(7057), pp. 376-80. 
Marth, G.T., Yu, F.L., Indap, A.R., Garimella, K., Gravel, S., Leong, W.F., Tyler-Smith, C., Bainbridge, 
M., Blackwell, T., Zheng-Bradley, X., Chen, Y., Challis, D., Clarke, L., Ball, E.V., Cibulskis, K., Cooper, 
D.N., Fulton, B., Hartl, C., Koboldt, D., Muzny, D., Smith, R., Sougnez, C., Stewart, C., Ward, A., Yu, 
J., Xue, Y.L., Altshuler, D., Bustamante, C.D., Clark, A.G., Daly, M., DePristo, M., Flicek, P., Gabriel, 
S., Mardis, E., Palotie, A., Gibbs, R. and Project, G. (2011) 'The functional spectrum of low-
frequency coding variation', Genome Biology, 12(9). 
Martins, P. and Castela, E. (2008) 'Transposition of the great arteries', Orphanet Journal of Rare 
Diseases, 3. 
Massingham, T. and Goldman, N. (2012) 'All Your Base: a fast and accurate probabilistic 
approach to base calling', Genome Biology, 13(2), p. R13. 
Mayr, J.A., Merkel, O., Kohlwein, S.D., Gebhardt, B.R., Bohles, H., Fotschl, U., Koch, J., Jaksch, M., 
Lochmuller, H., Horvath, R., Freisinger, P. and Sperl, W. (2007) 'Mitochondrial phosphate-carrier 
deficiency: A novel disorder of oxidative phosphorylation', American Journal of Human Genetics, 
80(3), pp. 478-484. 
Mazur, W., Siegel, M.J., Miszalski-Jamka, T. and Pelberg, R. (2013) 'Tetralogy of Fallot Repair', in  
CT Atlas of Adult Congenital Heart Disease. Springer,  pp. 311-318. 
McElhinney, D.B., Geiger, E., Blinder, J., Benson, D.W. and Goldmuntz, E. (2003) 'NKX2.5 
mutations in patients with congenital heart disease', J Am Coll Cardiol, 42(9), pp. 1650-5. 
McElhinney, D.B., Krantz, I.D., Bason, L., Piccoli, D.A., Emerick, K.M., Spinner, N.B. and 
Goldmuntz, E. (2002) 'Analysis of cardiovascular phenotype and genotype-phenotype correlation 
in individuals with a JAG1 mutation and/or Alagille syndrome', Circulation, 106(20), pp. 2567-
2574. 
Mercier, S., Kury, S., Shaboodien, G., Houniet, D.T., Khumalo, N.P., Bou-Hanna, C., Bodak, N., 
Cormier-Daire, V., David, A., Faivre, L., Figarella-Branger, D., Gherardi, R.K., Glen, E., Hamel, A., 
Laboisse, C., Le Caignec, C., Lindenbaum, P., Magot, A., Munnich, A., Mussini, J.M., Pillay, K., 
Rahman, T., Redon, R., Salort-Campana, E., Santibanez-Koref, M., Thauvin, C., Barbarot, S., 



 

181 

 

Keavney, B., Bezieau, S. and Mayosi, B.M. (2013) 'Mutations in FAM111B Cause Hereditary 
Fibrosing Poikiloderma with Tendon Contracture, Myopathy, and Pulmonary Fibrosis', American 
Journal of Human Genetics, 93(6), pp. 1100-1107. 
Metzker, M.L. (2010) 'Sequencing technologies - the next generation', Nat Rev Genet, 11(1), pp. 
31-46. 
Meyerson, M., Gabriel, S. and Getz, G. (2010) 'Advances in understanding cancer genomes 
through second-generation sequencing', Nature Reviews Genetics, 11(10), pp. 685-696. 
Michaelovsky, E., Frisch, A., Carmel, M., Patya, M., Zarchi, O., Green, T., Basel-Vanagaite, L., 
Weizman, A. and Gothelf, D. (2012) 'Genotype-phenotype correlation in 22q11.2 deletion 
syndrome', BMC Medical Genetics, 13, pp. 122-122. 
Michelucci, A., Ghirri, P., Iacopetti, P., Conidi, M.E., Fogli, A., Baldinotti, F., Lunardi, S., Forli, F., 
Moscuzza, F., Berrettini, S., Boldrini, A., Simi, P. and Pellegrini, S. (2010) 'Identification of three 
novel mutations in the CHD7 gene in patients with clinical signs of typical or atypical CHARGE 
syndrome', Int J Pediatr Otorhinolaryngol, 74(12), pp. 1441-4. 
Mitchell, S.C., Korones, S.B. and Berendes, H.W. (1971) 'Congenital heart disease in 56,109 births. 
Incidence and natural history', Circulation, 43(3), pp. 323-32. 
Morgenthaler, S. and Thilly, W.G. (2007) 'A strategy to discover genes that carry multi-allelic or 
mono-allelic risk for common diseases: A cohort allelic sums test (CAST)', Mutation 
Research/Fundamental and Molecular Mechanisms of Mutagenesis, 615(1–2), pp. 28-56. 
Morris, A.P. and Zeggini, E. (2010) 'An Evaluation of Statistical Approaches to Rare Variant 
Analysis in Genetic Association Studies', Genetic Epidemiology, 34(2), pp. 188-193. 
Moutsianas, L. and Morris, A.P. (2014) 'Methodology for the analysis of rare genetic variation in 
genome-wide association and re-sequencing studies of complex human traits', Briefings in 
Functional Genomics, 13(5), pp. 362-370. 
Nash, D., Arrington, C.B., Kennedy, B.J., Yandell, M., Wu, W., Zhang, W., Ware, S., Jorde, L.B., 
Gruber, P.J., Yost, H.J., Bowles, N.E. and Bleyl, S.B. (2015) 'Shared Segment Analysis and Next-
Generation Sequencing Implicates the Retinoic Acid Signaling Pathway in Total Anomalous 
Pulmonary Venous Return (TAPVR)', PLoS One, 10(6), p. e0131514. 
NCBI (2015) Online Mendelian Inheritance in Man, OMIM®. Available at: http://www.omim.org/. 
Neale, B.M., Rivas, M.A., Voight, B.F., Altshuler, D., Devlin, B., Orho-Melander, M., Kathiresan, S., 
Purcell, S.M., Roeder, K. and Daly, M.J. (2011) 'Testing for an Unusual Distribution of Rare 
Variants', PLoS Genetics, 7(3). 
Nejentsev, S., Walker, N., Riches, D., Egholm, M. and Todd, J.A. (2009) 'Rare Variants of IFIH1, a 
Gene Implicated in Antiviral Responses, Protect Against Type 1 Diabetes', Science, 324(5925), pp. 
387-389. 
Nelson, J.S., Bove, E.L. and Hirsch-Romano, J.C. (2014) 'Tetralogy of Fallot', Pediatric and 
Congenital Cardiology, Cardiac Surgery and Intensive Care, pp. 1505-1526. 
Nelson, M.R., Wegmann, D., Ehm, M.G., Kessner, D., Jean, P.S., Verzilli, C., Shen, J.D., Tang, Z.Z., 
Bacanu, S.A., Fraser, D., Warren, L., Aponte, J., Zawistowski, M., Liu, X., Zhang, H., Zhang, Y., Li, J., 
Li, Y., Li, L., Woollard, P., Topp, S., Hall, M.D., Nangle, K., Wang, J., Abecasis, G., Cardon, L.R., 
Zollner, S., Whittaker, J.C., Chissoe, S.L., Novembre, J. and Mooser, V. (2012) 'An Abundance of 
Rare Functional Variants in 202 Drug Target Genes Sequenced in 14,002 People', Science, 
337(6090), pp. 100-104. 
Ng, S.B., Turner, E.H., Robertson, P.D., Flygare, S.D., Bigham, A.W., Lee, C., Shaffer, T., Wong, M., 
Bhattacharjee, A., Eichler, E.E., Bamshad, M., Nickerson, D.A. and Shendure, J. (2009) 'Targeted 
capture and massively parallel sequencing of 12 human exomes', Nature, 461(7261), pp. 272-6. 
NHLBI (2015) Exome Variant Server. Available at: http://evs.gs.washington.edu/EVS/ (Accessed: 
8th of August). 
Nielsen, R., Paul, J.S., Albrechtsen, A. and Song, Y.S. (2011) 'Genotype and SNP calling from next-
generation sequencing data', Nat Rev Genet, 12(6), pp. 443-51. 



 

182 

 

Niessen, K. and Karsan, A. (2008) 'Notch signaling in cardiac development', Circulation Research, 
102(10), pp. 1169-1181. 
Nishiguchi, K.M., Tearle, R.G., Liu, Y.P., Oh, E.C., Miyake, N., Benaglio, P., Harper, S., Koskiniemi-
Kuendig, H., Venturini, G., Sharon, D., Koenekoop, R.K., Nakamura, M., Kondo, M., Ueno, S., 
Yasuma, T.R., Beckmann, J.S., Ikegawa, S., Matsumoto, N., Terasaki, H., Berson, E.L., Katsanis, N. 
and Rivolta, C. (2013) 'Whole genome sequencing in patients with retinitis pigmentosa reveals 
pathogenic DNA structural changes and NEK2 as a new disease gene', Proceedings of the 
National Academy of Sciences, 110(40), pp. 16139-16144. 
Nora, J.J. (1968) 'Multifactorial inheritance hypothesis for the etiology of congenital heart 
diseases. The genetic-environmental interaction', Circulation, 38(3), pp. 604-17. 
Novocraft (2014a) FAQ | Novocraft. Available at: http://www.novocraft.com/support/faq/. 
Novocraft (2014b) Novoalign. Available at: http://www.novocraft.com/products/novoalign/ 
(Accessed: 8th of August). 
O'Rawe, J., Jiang, T., Sun, G., Wu, Y., Wang, W., Hu, J., Bodily, P., Tian, L., Hakonarson, H., 
Johnson, W.E., Wei, Z., Wang, K. and Lyon, G. (2013) 'Low concordance of multiple variant-calling 
pipelines: practical implications for exome and genome sequencing', Genome Medicine, 5(3), p. 
28. 
O'Roak, B.J., Vives, L., Fu, W., Egertson, J.D., Stanaway, I.B., Phelps, I.G., Carvill, G., Kumar, A., 
Lee, C., Ankenman, K., Munson, J., Hiatt, J.B., Turner, E.H., Levy, R., O'Day, D.R., Krumm, N., Coe, 
B.P., Martin, B.K., Borenstein, E., Nickerson, D.A., Mefford, H.C., Doherty, D., Akey, J.M., Bernier, 
R., Eichler, E.E. and Shendure, J. (2012a) 'Multiplex targeted sequencing identifies recurrently 
mutated genes in autism spectrum disorders', Science, 338(6114), pp. 1619-22. 
O'Roak, B.J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B.P., Levy, R., Ko, A., Lee, C., 
Smith, J.D., Turner, E.H., Stanaway, I.B., Vernot, B., Malig, M., Baker, C., Reilly, B., Akey, J.M., 
Borenstein, E., Rieder, M.J., Nickerson, D.A., Bernier, R., Shendure, J. and Eichler, E.E. (2012b) 
'Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations', 
Nature, 485(7397), pp. 246-50. 
Obler, D., Juraszek, A.L., Smoot, L.B. and Natowicz, M.R. (2008) 'Double outlet right ventricle: 
aetiologies and associations', Journal of Medical Genetics, 45(8), pp. 481-497. 
Open Grid Scheduler project (2013) Open Grid Scheduler: The official Open Source Grid Engine. 
Available at: http://gridscheduler.sourceforge.net/index.html. 
Oyen, N., Poulsen, G., Boyd, H.A., Wohlfahrt, J., Jensen, P.K. and Melbye, M. (2009) 'Recurrence 
of congenital heart defects in families', Circulation, 120(4), pp. 295-301. 
Pabinger, S., Dander, A., Fischer, M., Snajder, R., Sperk, M., Efremova, M., Krabichler, B., 
Speicher, M.R., Zschocke, J. and Trajanoski, Z. (2014) 'A survey of tools for variant analysis of 
next-generation genome sequencing data', Briefings in Bioinformatics, 15(2), pp. 256-278. 
Park, M.S., Ludwig, D.L., Stigger, E. and Lee, S.H. (1996) 'Physical interaction between human 
RAD52 and RPA is required for homologous recombination in mammalian cells', Journal of 
Biological Chemistry, 271(31), pp. 18996-9000. 
Patel, R.K. and Jain, M. (2012) 'NGS QC Toolkit: A Toolkit for Quality Control of Next Generation 
Sequencing Data', PLoS One, 7(2). 
Peng, G., Fan, Y., Palculict, T.B., Shen, P., Ruteshouser, E.C., Chi, A.K., Davis, R.W., Huff, V., 
Scharfe, C. and Wang, W. (2013) 'Rare variant detection using family-based sequencing analysis', 
Proc Natl Acad Sci U S A, 110(10), pp. 3985-90. 
Penny, D.J. and Vick, G.W., 3rd (2011) 'Ventricular septal defect', Lancet, 377(9771), pp. 1103-12. 
Perl.org (2002) The Perl Programming Language. (Accessed: 8th of August). 
Perloff, J.K. and Warnes, C.A. (2001) 'Challenges posed by adults with repaired congenital heart 
disease', Circulation, 103(21), pp. 2637-43. 
Pierpont, M.E., Basson, C.T., Benson, D.W., Jr., Gelb, B.D., Giglia, T.M., Goldmuntz, E., McGee, G., 
Sable, C.A., Srivastava, D. and Webb, C.L. (2007) 'Genetic basis for congenital heart defects: 
current knowledge: a scientific statement from the American Heart Association Congenital 



 

183 

 

Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: endorsed by the 
American Academy of Pediatrics', Circulation, 115(23), pp. 3015-38. 
Pizzuti, A., Sarkozy, A., Newton, A.L., Conti, E., Flex, E., Digilio, M.C., Amati, F., Gianni, D., Tandoi, 
C., Marino, B., Crossley, M. and Dallapiccola, B. (2003) 'Mutations of ZFPM2/FOG2 gene in 
sporadic cases of tetralogy of Fallot', Hum Mutat, 22(5), pp. 372-7. 
Plagnol, V., Curtis, J., Epstein, M., Mok, K.Y., Stebbings, E., Grigoriadou, S., Wood, N.W., 
Hambleton, S., Burns, S.O., Thrasher, A.J., Kumararatne, D., Doffinger, R. and Nejentsev, S. (2012) 
'A robust model for read count data in exome sequencing experiments and implications for copy 
number variant calling', Bioinformatics, 28(21), pp. 2747-2754. 
Prieto, L.R. (2005) 'Management of Tetralogy of Fallot with Pulmonary Atresia', Images in 
Paediatric Cardiology, 7(3), pp. 24-42. 
Pruitt, K.D., Brown, G.R., Hiatt, S.M., Thibaud-Nissen, F., Astashyn, A., Ermolaeva, O., Farrell, 
C.M., Hart, J., Landrum, M.J., McGarvey, K.M., Murphy, M.R., O’Leary, N.A., Pujar, S., Rajput, B., 
Rangwala, S.H., Riddick, L.D., Shkeda, A., Sun, H., Tamez, P., Tully, R.E., Wallin, C., Webb, D., 
Weber, J., Wu, W., DiCuccio, M., Kitts, P., Maglott, D.R., Murphy, T.D. and Ostell, J.M. (2014) 
'RefSeq: an update on mammalian reference sequences', Nucleic Acids Research, 42(D1), pp. 
D756-D763. 
QIAGEN (2015) Ingenuity Variant Analysis™. Available at: www.quiagen.com/ingenuity 
(Accessed: 2nd of September). 
Rabbani, B., Tekin, M. and Mahdieh, N. (2014) 'The promise of whole-exome sequencing in 
medical genetics', J Hum Genet, 59(1), pp. 5-15. 
Rae, J.M., Johnson, M.D., Cordero, K.E., Scheys, J.O., Larios, J.M., Gottardis, M.M., Pienta, K.J. 
and Lippman, M.E. (2006) 'GREB1 is a novel androgen-regulated gene required for prostate 
cancer growth', Prostate, 66(8), pp. 886-94. 
Raff, G.W., Geiss, D.M., Shah, J.J., Bond, L.M. and Carroll, J.A. (2002) 'Repair of transposition of 
the great arteries with total anomalous pulmonary venous return', Ann Thorac Surg, 73(2), pp. 
655-7. 
Ramu, A., Noordam, M.J., Schwartz, R.S., Wuster, A., Hurles, M.E., Cartwright, R.A. and Conrad, 
D.F. (2013) 'DeNovoGear: de novo indel and point mutation discovery and phasing', Nat 
Methods, 10(10), pp. 985-7. 
Ranade, S.S., Qiu, Z.Z., Woo, S.H., Hur, S.S., Murthy, S.E., Cahalan, S.M., Xu, J., Mathur, J., Bandell, 
M., Coste, B., Li, Y.S.J., Chien, S. and Patapoutian, A. (2014) 'Piezo1, a mechanically activated ion 
channel, is required for vascular development in mice', Proceedings of the National Academy of 
Sciences of the United States of America, 111(28), pp. 10347-10352. 
Rauch, A., Hoyer, J., Guth, S., Zweier, C., Kraus, C., Becker, C., Zenker, M., Hüffmeier, U., Thiel, C., 
Rüschendorf, F., Nürnberg, P., Reis, A. and Trautmann, U. (2006) 'Diagnostic yield of various 
genetic approaches in patients with unexplained developmental delay or mental retardation', 
American Journal of Medical Genetics Part A, 140A(19), pp. 2063-2074. 
Rebhan, M., Chalifa-Caspi, V., Prilusky, J. and Lancet, D. (1998) 'GeneCards: a novel functional 
genomics compendium with automated data mining and query reformulation support', 
Bioinformatics, 14(8), pp. 656-664. 
Reva, B., Antipin, Y. and Sander, C. (2011) 'Predicting the functional impact of protein mutations: 
application to cancer genomics', Nucleic Acids Research. 
Richards, A.A. and Garg, V. (2010) 'Genetics of congenital heart disease', Current cardiology 
reviews, 6(2), pp. 91-97. 
Riordan, J.R., Rommens, J.M., Kerem, B., Alon, N., Rozmahel, R., Grzelczak, Z., Zielenski, J., Lok, S., 
Plavsic, N., Chou, J.L. and et al. (1989) 'Identification of the cystic fibrosis gene: cloning and 
characterization of complementary DNA', Science, 245(4922), pp. 1066-73. 
Rivas, M.A., Pirinen, M., Conrad, D.F., Lek, M., Tsang, E.K., Karczewski, K.J., Maller, J.B., Kukurba, 
K.R., DeLuca, D.S., Fromer, M., Ferreira, P.G., Smith, K.S., Zhang, R., Zhao, F.M., Banks, E., Poplin, 
R., Ruderfer, D.M., Purcell, S.M., Tukiainen, T., Minikel, E.V., Stenson, P.D., Cooper, D.N., Huang, 



 

184 

 

K.H., Sullivan, T.J., Nedzel, J., Bustamante, C.D., Li, J.B., Daly, M.J., Guigo, R., Donnelly, P., Ardlie, 
K., Sammeth, M., Dermitzakis, E.T., McCarthy, M.I., Montgomery, S.B., Lappalainen, T., 
MacArthur, D.G., Consortium, G. and Consortium, G. (2015) 'Effect of predicted protein-
truncating genetic variants on the human transcriptome', Science, 348(6235), pp. 666-669. 
Robasky, K., Lewis, N.E. and Church, G.M. (2014) 'The role of replicates for error mitigation in 
next-generation sequencing', Nat Rev Genet, 15(1), pp. 56-62. 
Robinson, J.T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G. and Mesirov, 
J.P. (2011) 'Integrative genomics viewer', Nat Biotech, 29(1), pp. 24-26. 
Robinson, P.N. (2010) 'Whole-exome sequencing for finding de novo mutations in sporadic 
mental retardation', Genome Biology, 11(12). 
Rochais, F., Dandonneau, M., Mesbah, K., Jarry, T., Mattei, M.G. and Kelly, R.G. (2009) 'Hes1 Is 
Expressed in the Second Heart Field and Is Required for Outflow Tract Development', PLoS One, 
4(7). 
Roessler, E., Ouspenskaia, M.V., Karkera, J.D., Velez, J.I., Kantipong, A., Lacbawan, F., Bowers, P., 
Belmont, J.W., Towbin, J.A., Goldmuntz, E., Feldman, B. and Muenke, M. (2008) 'Reduced NODAL 
signaling strength via mutation of several pathway members including FOXH1 is linked to human 
heart defects and holoprosencephaly', Am J Hum Genet, 83(1), pp. 18-29. 
Roessler, E., Pei, W.H., Ouspenskaia, M.V., Karkera, J.D., Velez, J.I., Banerjee-Basu, S., Gibney, G., 
Lupo, P.J., Mitchell, L.E., Towbin, J.A., Bowers, P., Belmont, J.W., Goldmuntz, E., Baxevanis, A.D., 
Feldman, B. and Muenke, M. (2009) 'Cumulative ligand activity of NODAL mutations and 
modifiers are linked to human heart defects and holoprosencephaly', Molecular Genetics and 
Metabolism, 98(1-2), pp. 225-234. 
Ross, M.G., Russ, C., Costello, M., Hollinger, A., Lennon, N.J., Hegarty, R., Nusbaum, C. and Jaffe, 
D.B. (2013) 'Characterizing and measuring bias in sequence data', Genome Biology, 14(5), p. R51 
[Online]. Available at: http://europepmc.org/abstract/MED/23718773 

http://europepmc.org/articles/PMC4053816?pdf=render 

http://europepmc.org/articles/PMC4053816 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=EBI&pubmedid=23718773 

http://www.pubmedcentral.nih.gov/picrender.fcgi?tool=EBI&pubmedid=23718773&action=stre
am&blobtype=pdf 

http://dx.doi.org/10.1186/gb-2013-14-5-r51 DOI: 10.1186/gb-2013-14-5-r51 (Accessed: 2013). 
Sadeghpour, A. and Alizadehasl, A. (2014) 'Pulmonary Valve Stenosis', in  Comprehensive 
Approach to Adult Congenital Heart Disease. Springer,  pp. 311-314. 
Saint Pierre, A. and Genin, E. (2014) 'How important are rare variants in common disease?', Brief 
Funct Genomics, 13(5), pp. 353-361. 
Samocha, K.E., Robinson, E.B., Sanders, S.J., Stevens, C., Sabo, A., McGrath, L.M., Kosmicki, J.A., 
Rehnstrom, K., Mallick, S., Kirby, A., Wall, D.P., MacArthur, D.G., Gabriel, S.B., DePristo, M., 
Purcell, S.M., Palotie, A., Boerwinkle, E., Buxbaum, J.D., Cook, E.H., Jr., Gibbs, R.A., Schellenberg, 
G.D., Sutcliffe, J.S., Devlin, B., Roeder, K., Neale, B.M. and Daly, M.J. (2014) 'A framework for the 
interpretation of de novo mutation in human disease', Nat Genet, 46(9), pp. 944-50. 
Sanders, S.J., Murtha, M.T., Gupta, A.R., Murdoch, J.D., Raubeson, M.J., Willsey, A.J., Ercan-
Sencicek, A.G., DiLullo, N.M., Parikshak, N.N., Stein, J.L., Walker, M.F., Ober, G.T., Teran, N.A., 
Song, Y., El-Fishawy, P., Murtha, R.C., Choi, M., Overton, J.D., Bjornson, R.D., Carriero, N.J., 
Meyer, K.A., Bilguvar, K., Mane, S.M., Sestan, N., Lifton, R.P., Gunel, M., Roeder, K., Geschwind, 
D.H., Devlin, B. and State, M.W. (2012) 'De novo mutations revealed by whole-exome 
sequencing are strongly associated with autism', Nature, 485(7397), pp. 237-U124. 



 

185 

 

Sanger, F., Nicklen, S. and Coulson, A.R. (1977) 'DNA Sequencing with Chain-Terminating 
Inhibitors', Proceedings of the National Academy of Sciences of the United States of America, 
74(12), pp. 5463-5467. 
Saremi, F. (2014) 'Transposition of the Great Arteries', in Saremi, F. (ed.) Cardiac CT and MR for 
Adult Congenital Heart Disease. Springer New York,  pp. 225-258. 
Saunders, C.T., Wong, W.S.W., Swamy, S., Becq, J., Murray, L.J. and Cheetham, R.K. (2012) 
'Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs', 
Bioinformatics, 28(14), pp. 1811-1817. 
Schadt, E.E., Turner, S. and Kasarskis, A. (2011) 'A window into third generation sequencing (vol 
19, pg R227, 2010)', Human Molecular Genetics, 20(4), pp. 853-853. 
Schneider, D.J. and Moore, J.W. (2006) 'Patent ductus arteriosus', Circulation, 114(17), pp. 1873-
82. 
Schork, N.J., Murray, S.S., Frazer, K.A. and Topol, E.J. (2009) 'Common vs. rare allele hypotheses 
for complex diseases', Curr Opin Genet Dev, 19(3), pp. 212-9. 
Schott, J.J., Benson, D.W., Basson, C.T., Pease, W., Silberbach, G.M., Moak, J.P., Maron, B.J., 
Seidman, C.E. and Seidman, J.G. (1998) 'Congenital heart disease caused by mutations in the 
transcription factor NKX2-5', Science, 281(5373), pp. 108-11. 
Schultz, D.W., Klein, M.L., Humpert, A.J., Luzier, C.W., Persun, V., Schain, M., Mahan, A., Runckel, 
C., Cassera, M., Vittal, V., Doyle, T.M., Martin, T.M., Weleber, R.G., Francis, P.J. and Acott, T.S. 
(2003) 'Analysis of the ARMD1 locus: evidence that a mutation in HEMICENTIN-1 is associated 
with age-related macular degeneration in a large family', Hum Mol Genet, 12(24), pp. 3315-23. 
Schwarz, J.M., Rodelsperger, C., Schuelke, M. and Seelow, D. (2010) 'MutationTaster evaluates 
disease-causing potential of sequence alterations', Nat Meth, 7(8), pp. 575-576. 
Sherry, S.T., Ward, M.H., Kholodov, M., Baker, J., Phan, L., Smigielski, E.M. and Sirotkin, K. (2001) 
'dbSNP: the NCBI database of genetic variation', Nucleic Acids Res, 29(1), pp. 308-11. 
Shinebourne, E.A., Anderson, R.H. and Bowyer, J.J. (1975) 'Variations in clinical presentation of 
Fallot's tetralogy in infancy. Angiographic and pathogenetic implications', British Heart Journal, 
37(9), pp. 946-955. 
Shokralla, S., Gibson, J.F., Nikbakht, H., Janzen, D.H., Hallwachs, W. and Hajibabaei, M. (2014) 
'Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate 
DNA barcode capture from single specimens', Molecular Ecology Resources, 14(5), pp. 892-901. 
Silversides, C.K., Lionel, A.C., Costain, G., Merico, D., Migita, O., Liu, B., Yuen, T., Rickaby, J., 
Thiruvahindrapuram, B., Marshall, C.R., Scherer, S.W. and Bassett, A.S. (2012) 'Rare Copy 
Number Variations in Adults with Tetralogy of Fallot Implicate Novel Risk Gene Pathways', PLoS 
Genetics, 8(8). 
Sisakian, H. (2014) 'Cardiomyopathies: Evolution of pathogenesis concepts and potential for new 
therapies', World Journal of Cardiology, 6(6), pp. 478-494. 
Siva, N. (2015) 'UK gears up to decode 100 000 genomes from NHS patients', The Lancet, 
385(9963), pp. 103-104. 
Sobreira, N.L.M., Cirulli, E.T., Avramopoulos, D., Wohler, E., Oswald, G.L., Stevens, E.L., Ge, D.L., 
Shianna, K.V., Smith, J.P., Maia, J.M., Gumbs, C.E., Pevsner, J., Thomas, G., Valle, D., Hoover-Fong, 
J.E. and Goldstein, D.B. (2010) 'Whole-Genome Sequencing of a Single Proband Together with 
Linkage Analysis Identifies a Mendelian Disease Gene', Plos Genetics, 6(6). 
Soemedi, R., Topf, A., Wilson, I.J., Darlay, R., Rahman, T., Glen, E., Hall, D., Huang, N., Bentham, J., 
Bhattacharya, S., Cosgrove, C., Brook, J.D., Granados-Riveron, J., Setchfield, K., Bu'Lock, F., 
Thornborough, C., Devriendt, K., Breckpot, J., Hofbeck, M., Lathrop, M., Rauch, A., Blue, G.M., 
Winlaw, D.S., Hurles, M., Santibanez-Koref, M., Cordell, H.J., Goodship, J.A. and Keavney, B.D. 
(2012a) 'Phenotype-specific effect of chromosome 1q21.1 rearrangements and GJA5 
duplications in 2436 congenital heart disease patients and 6760 controls', Human Molecular 
Genetics, 21(7), pp. 1513-1520. 



 

186 

 

Soemedi, R., Wilson, I.J., Bentham, J., Darlay, R., Topf, A., Zelenika, D., Cosgrove, C., Setchfield, K., 
Thornborough, C., Granados-Riveron, J., Blue, G.M., Breckpot, J., Hellens, S., Zwolinkski, S., Glen, 
E., Mamasoula, C., Rahman, T.J., Hall, D., Rauch, A., Devriendt, K., Gewillig, M., O' Sullivan, J., 
Winlaw, D.S., Bu'Lock, F., Brook, J.D., Bhattacharya, S., Lathrop, M., Santibanez-Koref, M., Cordell, 
H.J., Goodship, J.A. and Keavney, B.D. (2012b) 'Contribution of Global Rare Copy-Number 
Variants to the Risk of Sporadic Congenital Heart Disease', American Journal of Human Genetics, 
91(3), pp. 489-501. 
Stalmans, I., Lambrechts, D., De smet, F., Jansen, S., Wang, J., Maity, S., Kneer, P., von der Ohe, 
M., Swillen, A., Maes, C., Gewillig, M., Molin, D.G.M., Hellings, P., Boetel, T., Haardt, M., 
Compernolle, V., Dewerchin, M., Plaisance, S., Vlietinck, R., Emanuel, B., Gittenberger-de Groot, 
A.C., Scambler, P., Morrow, B., Driscol, D.A., Moons, L., Esguerra, C.V., Carmeliet, G., Behn-
Krappa, A., Devriendt, K., Collen, D., Conway, S.J. and Carmeliet, P. (2003) 'VEGF: A modifier of 
the del22q11 (DiGeorge) syndrome?', Nature Medicine, 9(2), pp. 173-182. 
Starr, J.P. (2010) 'Tetralogy of Fallot: Yesterday and Today', World Journal of Surgery, 34(4), pp. 
658-668. 
Stittrich, A.B., Lehman, A., Bodian, D.L., Ashworth, J., Zong, Z.Y., Li, H., Lam, P., Khromykh, A., 
Iyer, R.K., Vockley, J.G., Baveja, R., Silva, E.S., Dixon, J., Leon, E.L., Solomon, B.D., Glusman, G., 
Niederhuber, J.E., Roach, J.C. and Patel, M.S. (2014) 'Mutations in NOTCH1 Cause Adams-Oliver 
Syndrome', American Journal of Human Genetics, 95(3), pp. 275-284. 
Tazume, H., Miyata, K., Tian, Z., Endo, M., Horiguchi, H., Takahashi, O., Horio, E., Tsukano, H., 
Kadomatsu, T., Nakashima, Y., Kunitomo, R., Kaneko, Y., Moriyama, S., Sakaguchi, H., Okamoto, 
K., Hara, M., Yoshinaga, T., Yoshimura, K., Aoki, H., Araki, K., Hao, H., Kawasuji, M. and Oike, Y. 
(2012) 'Macrophage-Derived Angiopoietin-Like Protein 2 Accelerates Development of Abdominal 
Aortic Aneurysm', Arteriosclerosis, Thrombosis, and Vascular Biology, 32(6), pp. 1400-1409. 
Teer, J.K. and Mullikin, J.C. (2010) 'Exome sequencing: the sweet spot before whole genomes', 
Hum Mol Genet, 19(R2), pp. R145-51. 
Tennessen, J.A., Bigham, A.W., O'Connor, T.D., Fu, W., Kenny, E.E., Gravel, S., McGee, S., Do, R., 
Liu, X., Jun, G., Kang, H.M., Jordan, D., Leal, S.M., Gabriel, S., Rieder, M.J., Abecasis, G., Altshuler, 
D., Nickerson, D.A., Boerwinkle, E., Sunyaev, S., Bustamante, C.D., Bamshad, M.J. and Akey, J.M. 
(2012) 'Evolution and functional impact of rare coding variation from deep sequencing of human 
exomes', Science, 337(6090), pp. 64-9. 
The 1000 Genomes Project Consortium (2012) 'An integrated map of genetic variation from 
1,092 human genomes', Nature, 491(7422), pp. 56-65. 
The Broad Institute (2015a) Exome Aggregation Consortium (ExAC). Available at: 
http://exac.broadinstitute.org. 
The Broad Institute (2015b) GATK | Tool Documentation Index. Available at: 
https://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_gatk_tools_walkers_genotyp
er_UnifiedGenotyper.php#--standard_min_confidence_threshold_for_emitting (Accessed: 8th 
of August). 
The Broad Institute (2015c) Picard tools. Available at: http://broadinstitute.github.io/picard/ 
(Accessed: 8th of August). 
Thorvaldsdottir, H., Robinson, J.T. and Mesirov, J.P. (2013) 'Integrative Genomics Viewer (IGV): 
high-performance genomics data visualization and exploration', Brief Bioinform, 14(2), pp. 178-
92. 
Tomita-Mitchell, A., Maslen, C.L., Morris, C.D., Garg, V. and Goldmuntz, E. (2007) 'GATA4 
sequence variants in patients with congenital heart disease', J Med Genet, 44(12), pp. 779-83. 
Topf, A., Griffin, H.R., Glen, E., Soemedi, R., Brown, D.L., Hall, D., Rahman, T.J., Eloranta, J.J., 
Jungst, C., Stuart, A.G., O'Sullivan, J., Keavney, B.D. and Goodship, J.A. (2014) 'Functionally 
significant, rare transcription factor variants in tetralogy of Fallot', PLoS One, 9(8), p. e95453. 
UCSC (2015) UCSC Genome Browser Home. Available at: https://genome-euro.ucsc.edu/ 
(Accessed: 8th of August). 



 

187 

 

Unolt, M., Putotto, C., Silvestri, L.M., Marino, D., Scarabotti, A., Massaccesi, V., Caiaro, A., 
Versacci, P. and Marino, B. (2013) 'TRANSPOSITION OF GREAT ARTERIES: NEW INSIGHTS INTO 
THE PATHOGENESIS', Frontiers in Pediatrics, 1. 
van der Linde, D., Konings, E.E., Slager, M.A., Witsenburg, M., Helbing, W.A., Takkenberg, J.J. and 
Roos-Hesselink, J.W. (2011) 'Birth prevalence of congenital heart disease worldwide: a 
systematic review and meta-analysis', J Am Coll Cardiol, 58(21), pp. 2241-7. 
van Dijk, E.L., Auger, H., Jaszczyszyn, Y. and Thermes, C. (2014) 'Ten years of next-generation 
sequencing technology', Trends in Genetics, 30(9), pp. 418-426. 
Veltman, J.A. and Brunner, H.G. (2012a) 'Applications of Next-Generation Sequencing De Novo 
Mutations in Human Genetic Disease', Nature Reviews Genetics, 13(8), pp. 565-575. 
Veltman, J.A. and Brunner, H.G. (2012b) 'De novo mutations in human genetic disease', Nat Rev 
Genet, 13(8), pp. 565-75. 
Vergales, J.E., Gangemi, J.J., Rhueban, K.S. and Lim, D.S. (2013) 'Coarctation of the aorta - the 
current state of surgical and transcatheter therapies', Curr Cardiol Rev, 9(3), pp. 211-9. 
Verheugt, C.L., Uiterwaal, C.S., van der Velde, E.T., Meijboom, F.J., Pieper, P.G., van Dijk, A.P., 
Vliegen, H.W., Grobbee, D.E. and Mulder, B.J. (2010) 'Mortality in adult congenital heart disease', 
Eur Heart J, 31(10), pp. 1220-9. 
Visscher, P.M., Hill, W.G. and Wray, N.R. (2008) 'Heritability in the genomics era [mdash] 
concepts and misconceptions', Nat Rev Genet, 9(4), pp. 255-266. 
Vissers, L.E.L.M., de Ligt, J., Gilissen, C., Janssen, I., Steehouwer, M., de Vries, P., van Lier, B., Arts, 
P., Wieskamp, N., del Rosario, M., van Bon, B.W.M., Hoischen, A., de Vries, B.B.A., Brunner, H.G. 
and Veltman, J.A. (2010) 'A de novo paradigm for mental retardation', Nature Genetics, 42(12), 
pp. 1109-+. 
Wang, K., Li, M. and Hakonarson, H. (2010) 'ANNOVAR: functional annotation of genetic variants 
from high-throughput sequencing data', Nucleic Acids Res, 38(16), p. e164. 
Wang, Q., Jia, P., Li, F., Chen, H., Ji, H., Hucks, D., Dahlman, K., Pao, W. and Zhao, Z. (2013) 
'Detecting somatic point mutations in cancer genome sequencing data: a comparison of 
mutation callers', Genome Medicine, 5(10), p. 91. 
Ware, S.M., Aygun, M.G. and Hildebrandt, F. (2011) 'Spectrum of clinical diseases caused by 
disorders of primary cilia', Proc Am Thorac Soc, 8(5), pp. 444-50. 
Warnes, C.A. (2006) 'Transposition of the Great Arteries', Circulation, 114(24), pp. 2699-2709. 
Warnes, C.A., Williams, R.G., Bashore, T.M., Child, J.S., Connolly, H.M., Dearani, J.A., del Nido, P., 
Fasules, J.W., Graham Jr, T.P., Hijazi, Z.M., Hunt, S.A., King, M.E., Landzberg, M.J., Miner, P.D., 
Radford, M.J., Walsh, E.P. and Webb, G.D. (2008) 'ACC/AHA 2008 Guidelines for the 
Management of Adults With Congenital Heart Disease: A Report of the American College of 
Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to 
Develop Guidelines on the Management of Adults With Congenital Heart Disease) Developed in 
Collaboration With the American Society of Echocardiography, Heart Rhythm Society, 
International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography 
and Interventions, and Society of Thoracic Surgeons', Journal of the American College of 
Cardiology, 52(23), pp. e143-e263. 
Wei, Z., Wang, W., Hu, P., Lyon, G.J. and Hakonarson, H. (2011) 'SNVer: a statistical tool for 
variant calling in analysis of pooled or individual next-generation sequencing data', Nucleic Acids 
Research, 39, p. e132. 
Wellcome Trust Sanger Institute (2010) UK10K. Available at: www.uk10k.org (Accessed: 14th of 
December). 
Wessels, M.W. and Willems, P.J. (2010) 'Genetic factors in non-syndromic congenital heart 
malformations', Clinical Genetics, 78(2), pp. 103-123. 
Wren, C., Birrell, G. and Hawthorne, G. (2003) 'Cardiovascular malformations in infants of 
diabetic mothers', Heart, 89(10), pp. 1217-1220. 



 

188 

 

Wu, M., Li, Y., He, X., Shao, X., Yang, F., Zhao, M., Wu, C., Zhang, C. and Zhou, L. (2013) 
'Mutational and functional analysis of the BVES gene coding region in Chinese patients with non-
syndromic tetralogy of Fallot', Int J Mol Med, 31(4), pp. 899-903. 
Wu, M.C., Lee, S., Cai, T.X., Li, Y., Boehnke, M. and Lin, X.H. (2011) 'Rare-Variant Association 
Testing for Sequencing Data with the Sequence Kernel Association Test', American Journal of 
Human Genetics, 89(1), pp. 82-93. 
Wu, P., Teot, L., Murdoch, G., Monaghan-Nichols, A.P. and McFadden, K. (2014) 'Neuropathology 
of 22q11 Deletion Syndrome in an Infant', Pediatric and Developmental Pathology, 17(5), pp. 
386-392. 
Xu, B., Roos, J.L., Dexheimer, P., Boone, B., Plummer, B., Levy, S., Gogos, J.A. and Karayiorgou, M. 
(2011) 'Exome sequencing supports a de novo mutational paradigm for schizophrenia', Nat 
Genet, 43(9), pp. 864-8. 
Xu, B., Roos, J.L., Levy, S., van Rensburg, E.J., Gogos, J.A. and Karayiorgou, M. (2008) 'Strong 
association of de novo copy number mutations with sporadic schizophrenia', Nat Genet, 40(7), 
pp. 880-5. 
Zaidi, S., Choi, M., Wakimoto, H., Ma, L., Jiang, J., Overton, J.D., Romano-Adesman, A., Bjornson, 
R.D., Breitbart, R.E., Brown, K.K., Carriero, N.J., Cheung, Y.H., Deanfield, J., DePalma, S., Fakhro, 
K.A., Glessner, J., Hakonarson, H., Italia, M.J., Kaltman, J.R., Kaski, J., Kim, R., Kline, J.K., Lee, T., 
Leipzig, J., Lopez, A., Mane, S.M., Mitchell, L.E., Newburger, J.W., Parfenov, M., Pe'er, I., Porter, 
G., Roberts, A.E., Sachidanandam, R., Sanders, S.J., Seiden, H.S., State, M.W., Subramanian, S., 
Tikhonova, I.R., Wang, W., Warburton, D., White, P.S., Williams, I.A., Zhao, H., Seidman, J.G., 
Brueckner, M., Chung, W.K., Gelb, B.D., Goldmuntz, E., Seidman, C.E. and Lifton, R.P. (2013) 'De 
novo mutations in histone-modifying genes in congenital heart disease', Nature, 498(7453), pp. 
220-3. 
Zhang, W.J., Chan, R.J., Chen, H.Y., Yang, Z.Y., He, Y.T., Zhang, X., Luo, Y., Yin, F.Q., Moh, A., Miller, 
L.C., Payne, R.M., Zhang, Z.Y., Fu, X.Y. and Shou, W.N. (2009) 'Negative Regulation of Stat3 by 
Activating PTPN11 Mutants Contributes to the Pathogenesis of Noonan Syndrome and Juvenile 
Myelomonocytic Leukemia', Journal of Biological Chemistry, 284(33), pp. 22353-22363. 
Zhao, L., Ni, S.H., Liu, X.Y., Wei, D., Yuan, F., Xu, L., Xin, L., Li, R.G., Qu, X.K., Xu, Y.J., Fang, W.Y., 
Yang, Y.Q. and Qiu, X.B. (2014) 'Prevalence and spectrum of Nkx2.6 mutations in patients with 
congenital heart disease', Eur J Med Genet, 57(10), pp. 579-86. 
Zheng, B., Tang, T.D., Tang, N., Kudlicka, K., Ohtsubo, K., Ma, P., Marth, J.D., Farquhar, M.G. and 
Lehtonen, E. (2006) 'Essential role of RGS-PX1/sorting nexin 13 in mouse development and 
regulation of endocytosis dynamics', Proceedings of the National Academy of Sciences of the 
United States of America, 103(45), pp. 16776-16781. 
Zuk, O., Schaffner, S.F., Samocha, K., Do, R., Hechter, E., Kathiresan, S., Daly, M.J., Neale, B.M., 
Sunyaev, S.R. and Lander, E.S. (2014) 'Searching for missing heritability: designing rare variant 
association studies', Proc Natl Acad Sci U S A, 111(4), pp. E455-64. 

 

 

 


