A Novel Assay to Measure Mitochondrial Dysfunction in Human Skeletal Muscle
Implications for the Diagnosis and Treatment of Mitochondrial Diseases

Mariana Frota Cúcio de Moraes Rocha

Thesis submitted for the degree of Doctor of Philosophy

Newcastle University
Wellcome Trust Centre for Mitochondrial Research
Institute of Neuroscience
October, 2015
Author’s Declaration

This thesis is submitted for the degree of Doctor of Philosophy to Newcastle University. The research was performed within the Wellcome Trust Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, and is my own work. This research was carried out under the supervision of Professor D. M. Turnbull and Dr. Karolina Rygiel, between September 2012 and October 2015.

I certify that none of the material offered in this thesis has been previously submitted by me for a degree or any other qualification at this or any other university.
Abstract

Mitochondrial dysfunction occurs in patients with mitochondrial disease, in neurodegenerative conditions and as part of the ageing process. It affects predominantly tissues with high metabolic requirements such as central nervous system and skeletal muscle. In patients with mitochondrial disease, both mitochondrial and nuclear genetic defects commonly cause a biochemical defect in muscle. However, due to the multi-copy nature of mitochondrial DNA, muscle displays a mosaic pattern of deficiency when the mitochondrial genome is affected. This particular pattern makes these defects challenging to quantify.

Current standard methods to diagnose and investigate mitochondrial disease in affected tissues present several limitations. Biochemical studies are only suitable for cases with a high proportion of cells with mitochondrial respiratory chain deficiency. Moreover, histochemical assays only provide qualitative assessment of complex II and IV activities and are not capable of evaluating other complexes, such as complex I - the commonest affected respiratory complex in mitochondrial pathology. This project aimed therefore at developing a novel assay to accurately quantify mitochondrial dysfunction in human skeletal muscle. Once optimised, this assay was further used to explore: the mechanisms underlying mitochondrial pathology, its potential in helping the current diagnostic setting, as well as its potential to assess the effectiveness of therapeutic approaches aimed at treating mitochondrial dysfunction.

This work described the development and validation of a novel quadruple immunofluorescent technique. This assay quantifies accurately key subunits of respiratory complexes I and IV together with mitochondrial mass, using a single 10µm section. The additional labelling of a cell membrane marker allows semi-automatic and computer-based sampling of large numbers of individual muscle fibres. Using this technique, this study characterised a variety of mitochondrial and nuclear genetic defects and demonstrated that specific genotypes exhibit distinct biochemical signatures in muscle. In patients with suspected mitochondrial disease, this assay provided clues on the possible genetic causes. Furthermore, this novel assay evaluated the effect of an endurance exercise program in patients with mitochondrial myopathy and was able to detect subtle changes in respiratory complexes levels.
Acknowledgements

First, I would like to thank my supervisors Professor Doug Turnbull and Dr. Karolina Rygiel for giving me the opportunity to do my studies in the Mitochondrial Research Group. They have provided unwavering support and guidance throughout. I am deeply grateful for all the professional and sometimes more personal advice. Both have been an example to me.

I would like to extend my thanks to everyone that has helped me with the research presented here. Professor Rob Taylor, for giving me access to all muscle biopsies and for his advice in many occasions. John, for all the support with the statistics and patience each time I would knock on his door. And interrupt his work. Anne, for teaching me the immunofluorescence technique. Hannah, for helping me with the analysis of the single deletion patients that engaged the exercise training programme.

I would also like to thank everyone from this fantastic research group. Particularly Hannah, Amy, Phil, Alexia, Jono, Craig, Pav and Ewen which have always provided me with invaluable laughs and friendship. I also have to thank all my “non-lab” friends who have been with me since the day I moved to Newcastle. Especially, a great thank to Sofia, Lucy, HN, ME, MB and GP - which I consider them as my inner family here in Newcastle.

Finally to all my family and friends back in Portugal! Especially to those that have supported me over the last years, even without having a clue as to what I am studying. Also, to those that, after three years of me being here, think that I am living in Liverpool. And a special thanks to my friends that “have taught me to live life with all my cells”.

A sincere and deep thank to my family, mum and dad, brother and sister, and in-laws. For all your support and advice over the last years. For never quitting on calling me everyday, even though I only pick up the phone sporadically.

To everyone which I have crossed paths with, and that have made me laugh out loud!
Table of Content

Chapter 1. Introduction ... 1
1.1 Mitochondria structure and function .. 2
 1.1.1 Mitochondrial structure and organization 2
 1.1.2 Mitochondrial genome .. 3
 1.1.3 Mitochondrial biogenesis ... 6
 1.1.4 Mitochondrial functions .. 7
 1.1.5 Mitochondrial genetics ... 11
1.2 The healthy skeletal muscle .. 13
 1.2.1 Muscle architecture ... 13
 1.2.2 Muscle fibre types .. 15
 1.2.3 Mitochondrial subpopulations in muscle fibres 16
 1.2.4 Muscle contraction .. 17
 1.2.5 Muscle metabolism ... 18
1.3 The ageing skeletal muscle ... 19
 1.3.1 Biochemical and in vivo and in vitro studies 19
 1.3.2 Histochemical studies .. 20
 1.3.3 Molecular studies .. 21
 1.3.4 Studies in animal models .. 21
1.4 The skeletal muscle in mitochondrial diseases 23
 1.4.1 Clinical presentations ... 23
 1.4.2 Hallmarks of mitochondrial disease 26
 1.4.3 Mitochondrial defects .. 27
 1.4.4 Nuclear defects ... 29
1.5 Aims ... 31

Chapter 2. Materials and methods ... 32
2.1 Materials ... 32
2.2 Methods .. 35
 2.2.1 Ethical approval ... 35
 2.2.2 Muscle biopsies ... 35
 2.2.3 Cryostat sections .. 35
 2.2.4 Mayer’s Haematoxylin counter-staining 35
 2.2.5 Cytochrome c oxidase (COX)/ Succinate dehydrogenase (SDH) 36
Chapter 3. Developing a novel assay to investigate mitochondrial respiratory chain dysfunction in single muscle fibres ... 40
3.1 Introduction .. 40
3.2 Aim .. 41
3.3 Methods ... 41
 3.3.1 Cohort - clinical characteristics ... 41
 3.3.2 Cryosectioning .. 42
 3.3.3 COX/SDH histochemistry ... 42
 3.3.4 Immunohistochemistry .. 43
 3.3.5 Imaging .. 44
 3.3.6 Assessing mitochondrial respiratory chain dysfunction 44
3.4 Results ... 46
 3.4.1 Challenges of COX/SDH histochemistry .. 46
 3.4.2 Developing an objective classification using COX/SDH histochemistry 53
 3.4.3 Developing an objective classification using immunofluorescence 63
3.5 Discussion ... 77
 3.5.1 Challenges of COX/SDH histochemistry .. 77
 3.5.2 The objective classification based on COX/SDH histochemistry 78
 3.5.3 The objective classification based on immunofluorescence 79
Chapter 4. Optimising the novel assay to become a reliable high-throughput and computer-based tool 81
4.1 Introduction ... 81
4.2 Aim ... 82
4.3 Methods .. 82
 4.3.1 Cohort clinical characteristics ... 82
 4.3.2 Cryo-sectioning .. 82
 4.3.3 COX/SDH histochemistry ... 82
 4.3.4 Fluorescence-based immunohistochemistry .. 84
 4.3.5 Imaging .. 84
4.4 Results .. 85
 4.4.1 Automation of image analysis ... 85
 4.4.2 Classification of fibres using COX-I/porin and NDUFB8/porin ratios 85
 4.4.3 Optimizing NDUFB8 signal ... 91
4.4.4 Classification of fibres based on COX-I and NDUFB8 linear regressions........ 102

4.5 Discussion.. 114

4.5.1 Advantages of the novel method.. 115

4.5.2 Technical methodology.. 116

4.5.3 Potential applications .. 117

Chapter 5. Mitochondrial respiratory chain profile of patients with different mitochondrial genetic defects... 118

5.1 Introduction ... 118

5.2 Aims.. 119

5.3 Methods.. 119

5.3.1 Cohort clinical characteristics .. 119

5.3.2 Cryo-sectioning .. 120

5.3.3 Immunofluorescence .. 120

5.3.4 Imaging ... 125

5.3.5 Densitometry measurements .. 125

5.3.6 Data analysis .. 125

5.4 Results... 126

5.4.1 MRC profile from patients with known mutations affecting complex I or IV activities specifically .. 126

5.4.2 MRC profile from patients with single large-scale mtDNA deletions 127

5.4.3 MRC profile from patients with mutations in nuclear genes involved in mtDNA maintenance .. 134

5.4.4 MRC profile from patients with mutations in mitochondrial-encoded tRNA leucine 1 (MT-TL1) .. 135

5.4.5 MRC profile from patients with mutations in other mitochondrial-encoded tRNAs 137

5.4.6 MRC profile from patients with mutations in other nuclear genes .. 139

5.4.7 MRC profile from patients with suspected mitochondrial disease investigated for diagnostic purposes .. 141

5.5 Discussion... 142

5.5.1 Patients with isolated complex deficiencies .. 142

5.5.2 Patients with single large-scale mtDNA deletion .. 143

5.5.3 Patients with mutations in nuclear genes involved in mtDNA maintenance 144

5.5.4 Mutations in mitochondrial-encoded tRNAs .. 145

5.5.5 Mutations in other nuclear genes ... 148

5.5.6 Diagnostic patients .. 150
Chapter 6. Therapeutic effect of a six months endurance training program in patients with mitochondrial myopathy

6.1 Introduction

6.1.1 Endurance training in healthy population

6.1.2 Endurance training in mitochondrial myopathies

6.2 Aims

6.3 Methods

6.3.1 Cohort clinical characteristics

6.3.2 Endurance training program

6.3.3 Muscle biopsies

6.3.4 Cryo-sectioning

6.3.5 Immunofluorescence

6.3.6 Imaging

6.3.7 Densitometry measurements

6.3.8 Data analysis

6.4 Results

6.4.1 Patients with single large-scale mtDNA deletions

6.4.2 Patients with point mutations in mitochondrial-encoded tRNAs

6.5 Discussion

6.5.1 The effect of endurance exercise

6.5.2 Weaknesses of this study

Chapter 7. Concluding remarks

7.1 Main findings

7.2 Future work

7.3 Final conclusion

Chapter 8. Appendix

8.1 Renewal of ethics approval

8.2 Patient consent form and brief description of procedures

Chapter 9. References
List of Figures

Figure 1.1 Schematic illustration of mitochondria structure and organisation 3
Figure 1.2 The human mitochondrial genome. .. 4
Figure 1.3 Schematic model of the oxidative phosphorylation system .. 8
Figure 1.4 Illustration of the threshold effect .. 13
Figure 1.5 Schematic illustration of skeletal muscle organisation ... 14
Figure 1.6 Mosaic deficiency of the mitochondrial respiratory chain in ageing muscle 20
Figure 1.7 Mosaic deficiency of the mitochondrial respiratory chain in muscle from patients with mitochondrial disease ... 26
Figure 3.1: Mitochondrial dysfunction in biceps, diaphragm and psoas muscles from aged control 1 .. 47
Figure 3.2: Mitochondrial dysfunction in biceps, diaphragm and psoas muscles from aged control 2 .. 48
Figure 3.3: Mitochondrial dysfunction in biceps, diaphragm and psoas muscles from aged control 3 .. 49
Figure 3.4: Mitochondrial respiratory chain profile of different muscles from Aged Control 1. 50
Figure 3.5. Inter- and intra-observer variability of visual classification ... 52
Figure 3.6. COX reactivity is an outcome measure of COX activity. (A,B) ... 54
Figure 3.7: Relationship between COX and SDH activities. ... 54
Figure 3.8. Representative print-screen images showing the main steps of COX and SDH densitometry in individual fibres ... 55
Figure 3.9. Objective classification of muscle fibres from aged control 3 according to the COX/SDH ratio .. 57
Figure 3.10. Normalisation methods tested ... 59
Figure 3.11. Methodology developed to compare the different normalisation methods 61
Figure 3.12. Objective classification given by the ratio and difference values when using the normalisation method 3 .. 62
Figure 3.13. Representative print-screen images showing the main steps of COX-I and SDHA densitometry in individual fibres .. 64
Figure 3.14. Complex I and IV protein abundance in aged bicep muscle ... 64
Figure 3.15: Complex I, II and IV protein abundance in aged diaphragm muscle 67
Figure 3.16. Objective classification of muscle fibres according to the COX-I/SDHA ratio 68
Figure 3.17. Comparing COX/SDH histochemistry with complex I, II and IV protein abundance in young, aged and diseased skeletal muscle ... 70
Figure 3.18. Objective classification of fibres based on COX/SDH histochemistry and COX-I/SDHA and NDUFA13/SDHA immunodetection in young, aged and diseased skeletal muscle. 71
Figure 3.19. Complex I, complex IV and porin protein abundance in aged diaphragm muscle. 73
Figure 3.20. Correlation between SDHA and porin. ... 74
Figure 3.21 Optimisation undertaken to decrease the exposure times needed to image the different channels (20x). ... 76
Figure 4.1 Image analysis using IMARIS software. ... 86
Figure 4.2 Representative images of complex I and IV levels in skeletal muscle sections from controls and patients. ... 87
Figure 4.3 Control population. ... 88
Figure 4.4 Classification of muscle fibres based on the mean and standard deviation of COX-I/porinT and NDUFB8/porinT from the control population.. 90
Figure 4.5 COX-I and NDUFB8 versus porin signals background corrected using an area of the section devoid of fibres.. 92
Figure 4.6 COX-I and NDUFB8 versus porin signals background corrected using the NPC. 94
Figure 4.7 Background noise from secondary antibodies measured across the NPC section.... 95
Figure 4.8 Impact of increasing dilutions of Alexa fluor 546 antibody on the signal-to-noise ratio... 97
Figure 4.9 The impact of changing the protein block (10%NGS), incubation of secondary antibodies (2h at 4°C) and mounting medium (Prolong Gold) on the signal-to-noise ratio. 98
Figure 4.10 The impact of multiple quenching protocols on the NDUFB8 signal-to-noise ratio. 99
Figure 4.11 The impact of coupling NDUFB8 with different secondary antibodies on the signal-to-noise ratio.. 100
Figure 4.12 COX-I and porin signal-to-noise ratios when coupled with Alexa fluor 488 and Alexa fluor 546 antibodies respectively... 100
Figure 4.13 The impact of different incubation conditions (secondary antibodies) on the NDUFB8 signal-to-noise ratio.. 102
Figure 4.14 Approaches tested to create the control group. .. 104
Figure 4.15 Validation of ODCOX-I and ODNDUFB8 linear regressions............................... 104
Figure 4.16 Deviation of COX-I and NDUFB8 levels in each fibre from the expected levels, according to porin level. .. 106
Figure 4.17 Summary graphical outputs of the R programing supporting tool....................... 106
Figure 4.18 Mitochondrial respiratory chain expression profile linking complex I, complex IV and porin levels in patients with mitochondrial disease... 108
Figure 4.19 Correlation between COX activity and COX-I immunodetection........................ 109
Figure 4.20 Inter-observer variability of quadruple immunofluorescence. 111
Figure 4.21 Reproducibility of quadruple immunofluorescence. ... 113
Figure 4.22 Inter- and intra-observer variability of visual classification... 114
Figure 5.1 MRC profile linking complex I, complex IV and porin levels from patients showing isolated complex I or IV deficiency. ... 126
Figure 5.2 MRC profile from patients harbouring single, large-scale mtDNA deletions that show a specific pattern of both complex I and IV equally affected. ... 128
Figure 5.3 MRC profile from patients harbouring single, large-scale mtDNA deletions that show a specific pattern of complex I more affected than complex IV. ... 129
Figure 5.4 MRC profile from patients harbouring single, large-scale mtDNA deletions that show a specific pattern of complex IV more affected than complex I. ... 129
Figure 5.5 Deletion size among the different groups of patients. ... 131
Figure 5.6 Correlation between mitochondrial respiratory chain deficiency and mutation load in patients from group 2. ... 133
Figure 5.7 MRC profile from patients harbouring multiple mtDNA deletions in muscle. 134
Figure 5.8 MRC profile from patients with the m.3243A>G MT-TL1 mutation. ... 135
Figure 5.9. MRC profile from patients with mutations in other mitochondrial-encoded tRNAs. 138
Figure 5.10 MRC profile from patients with different nuclear genetic defects.. 140
Figure 5.11 MRC expression profile from patients with suspected mitochondrial disease. 141
Figure 6.1 Endurance training program. ... 158
Figure 6.2: Example of a box-plot showing the COX-I Z scores from 1st, 2nd and 3rd muscle biopsies. ... 160
Figure 6.3 Box plots of COX-I and NDUFB8 Z scores of individual muscle fibres in 1st, 2nd and 3rd biopsies from patients with single large-scale mtDNA deletions assigned to group A (continues on the next page). ... 163
Figure 6.4 Box plots of COX-I and NDUFB8 Z scores of individual muscle fibres in 1st, 2nd and 3rd biopsies from patients with single mtDNA deletions assigned to group B (continues on the next page). ... 167
Figure 6.5 Box plots of COX-I and NDUFB8 Z scores of individual muscle fibres in 1st, 2nd and 3rd biopsies from patients with point mutations assigned to group A. ... 172
Figure 6.6 Box plots of COX-I and NDUFB8 Z scores of individual muscle fibres in 1st, 2nd and 3rd biopsies from patients with point mutations assigned to group B (follows in the next page). ... 174
List of Tables

Table 1.1 Composition of OXPHOS complexes and factors required for the proper assembly.... 4
Table 1.2 Muscle fibre type enzymes, function and contractile characteristics. 17
Table 1.3 Common syndromes caused by mutations in mitochondrial DNA........................ 24
Table 1.4 Common syndromes caused by mutations in nuclear DNA.............................. 25
Table 3.1. Clinical information from subjects included in this study................................. 42
Table 3.2. Primary and secondary antibodies used for chromogen-based immunohistochemistry.. 45
Table 3.3. Primary and secondary antibodies used for immunofluorescence 45
Table 3.4. Agreement between the objective classification and subjective classification when using different normalisation methods .. 62
Table 3.5. Exposure times used to image the different channels....................................... 74
Table 4.1. Clinical information from subjects included in this study................................. 83
Table 4.2 Primary and secondary antibodies used for immunofluorescence 84
Table 4.3. Set of standard deviation limits tested to classify fibres 89
Table 4.4 Correlation of COX activity and COX-I levels.. 110
Table 4.5 Inter-observer variability of quadruple immunofluorescence............................. 111
Table 5.1 Patients cohort details ... 121
Table 5.2 Primary and secondary antibodies used for immunofluorescence 125
Table 5.3 Activity of the respiratory chain complexes measured in muscle homogenates 127
Table 5.4 Quantification of both COX-I and NDUFB8 deficiency in patients with single large-scale mtDNA deletion ... 130
Table 5.5 Genes removed by the deletion in patients from group 1, 2 and 3....................... 132
Table 5.6 Quantification of COX-I and NDUFB8 deficiency in patients with multiple mtDNA deletions ... 136
Table 5.7 Quantification of COX-I and NDUFB8 deficiency in patients with m.3243A>G point mutation in MT-TL1 ... 136
Table 5.8 Quantification of COX-I and NDUFB8 deficiency in patients with other point mutation in mitochondrial-encoded tRNAs... 139
Table 5.9 Quantification of both COX-I and NDUFB8 deficiency in patients with other nuclear genetic defects... 140
Table 5.10 Quantification of both COX-I and NDUFB8 deficiency in patients with suspected mitochondrial disease ... 142
Table 6.1 Clinical information from subjects included in this study................................. 156
Table 6.2 Example of quantification of COX-I and NDUFB8 levels.................................. 161
Table 6.3 Quantification of COX-I and NDUFB8 levels in patients with single mtDNA deletions assigned to group A .. 165
Table 6.4 Quantification of COX-I and NDUFB8 levels in patients with single mtDNA deletions assigned to group B .. 169
Table 6.5 Effect of exercise in complexes IV and I levels in patients with single large-scale mtDNA deletions .. 171
Table 6.6 Quantification of COX-I and NDUFB8 levels in patients with point mutations assigned to group A .. 173
Table 6.7 Quantification of COX-I and NDUFB8 levels in patients with point mutations assigned to group B .. 177
Table 6.8 Effect of endurance exercise in complexes IV and I levels in patients with point mutation in mt-tRNAs .. 178
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcetylCoA</td>
<td>AcetylCoenzyme A</td>
</tr>
<tr>
<td>Ach</td>
<td>Acetylcholine</td>
</tr>
<tr>
<td>AChRs</td>
<td>Acetylcholine receptors</td>
</tr>
<tr>
<td>ANT1</td>
<td>Adenine nucleotide translocator</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>ATPase</td>
<td>ATP synthase</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovin serum albumin</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>Calcium</td>
</tr>
<tr>
<td>COX</td>
<td>Cytochrome c oxidase</td>
</tr>
<tr>
<td>CPEO</td>
<td>Chronic Progressive External Ophthalmoplegia</td>
</tr>
<tr>
<td>Cr</td>
<td>Creatine</td>
</tr>
<tr>
<td>CS</td>
<td>Citrate synthase</td>
</tr>
<tr>
<td>DAB</td>
<td>3,3 Diaminobenzidine tetrahydrochloride</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>DHPR</td>
<td>Dihydropyridine receptors</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleoside triphosphates</td>
</tr>
<tr>
<td>ELAC2</td>
<td>ElaC Ribonuclease Z 2</td>
</tr>
<tr>
<td>FADH₂</td>
<td>Reduced flavin adenine dinucleotide</td>
</tr>
<tr>
<td>GFM2</td>
<td>G Elongation Factor, Mitochondrial 2</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish peroxidase</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>K⁺</td>
<td>Potassium</td>
</tr>
<tr>
<td>KSS</td>
<td>Kearns-Sayre syndrome</td>
</tr>
<tr>
<td>LHON</td>
<td>Leber’s Hereditary Optic Neuropathy</td>
</tr>
<tr>
<td>LRPPRC</td>
<td>Leucine-Rich Pentatricopeptide Repeat Containing</td>
</tr>
<tr>
<td>MCU</td>
<td>Mitochondrial calcium uniporter</td>
</tr>
<tr>
<td>MELAS</td>
<td>Mitochondrial Encephalomyopathy, Lactic acidosis, and Stroke-like episodes</td>
</tr>
<tr>
<td>MERFF</td>
<td>Myoclonus Epilepsy with Ragged-red fibres</td>
</tr>
<tr>
<td>MILS</td>
<td>Maternally Inherited Leigh syndrome</td>
</tr>
<tr>
<td>MRC</td>
<td>Mitochondrial respiratory chain</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>MRS</td>
<td>Magnetic resonance spectroscopy</td>
</tr>
<tr>
<td>mtEFG2</td>
<td>Mitochondrial elongation factor G2</td>
</tr>
<tr>
<td>MT-ND1</td>
<td>Mitochondrially Encoded NADH Dehydrogenase 1</td>
</tr>
</tbody>
</table>
mt-SSB Mitochondrial single stranded binding protein
MT-TE Mitochondrial-encoded glutamic acid
MT-TG Mitochondrial-encoded glycine
MT-TL1 Mitochondrial-encoded leucine1 (UUA/G)
MT-TN Mitochondrial-encoded asparagine
MT-TP Mitochondrial-encoded proline
MT-TS1 Mitochondrial-encoded serine1
MT-TW Mitochondrial-encoded tryptophan
Na+ Sodium
NAD+ Nicotinamide adenine dinucleotide
NARP Neuropathy, ataxia and retinitis pigmentosa
NGS Normal goat serum
NRF-1 Nuclear respiratory factor 1
NRF-2 Nuclear respiratory factor 2
O2. Superoxide anion
OD Optical density
OH Hydroxyl radical
OXPHOS Oxidative phosphorylation
PBS Phosphate buffered saline
PCr Phosphocreatine
PEO1 Twinckle helicase gene
PFA Paraformaldehyde
PGC-1α Peroxisome proliferator-activated receptor gamma co-activator 1-α
PNPT1 Polynucleotide phosphorylase
POLG Polymerase gamma
POLMRT MtRNA polymerase
PS Pearson’s Syndrome
RNA Ribonucleic acid
RNaseP Mitochondrial ribonuclease P
ROI Region of interest
ROS Reactive oxygen species
RRF Ragged-red fibres
RRM2B Ribonucleotide Reductase M2 B (TP53 Inducible)
rRNA Ribosomal RNA
RT Room temperature
RyR Ryanodine receptors
SDH Succinate dehydrogenase
SERCA Ca2+ ATPase
SLC25A4 Solute Carrier Family 25
SOD1 Copper/zinc superoxide dismutase
SOD2 Manganese superoxide dismutase
TBST Tris buffered saline with tween
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCA cycle</td>
<td>Tricarboxylic acid cycle</td>
</tr>
<tr>
<td>TFAM</td>
<td>Mitochondrial transcription factor A</td>
</tr>
<tr>
<td>TFAM</td>
<td>Mitochondrial transcription factor A</td>
</tr>
<tr>
<td>TFB1M</td>
<td>Mitochondrial transcription factor B1</td>
</tr>
<tr>
<td>TFB2M</td>
<td>Mitochondrial transcription factor B2</td>
</tr>
<tr>
<td>TIFF</td>
<td>Tagged image file format</td>
</tr>
<tr>
<td>TIM</td>
<td>Translocase of the inner membrane</td>
</tr>
<tr>
<td>TOM</td>
<td>Translocase of the outer membrane</td>
</tr>
<tr>
<td>tRNA</td>
<td>Transfer RNA</td>
</tr>
<tr>
<td>tRNAse Z</td>
<td>Mitochondrial ribonuclease Z</td>
</tr>
<tr>
<td>VDAC</td>
<td>Voltage-gated ion channel</td>
</tr>
</tbody>
</table>
List of publications

Chapter 1. Introduction

The skeletal muscle is the most abundant tissue in vertebrates’ body. It controls voluntary movement and its mass is a determinant factor of muscle strength, endurance and physical performance. Due to its high metabolic demand, skeletal muscle is highly dependent on mitochondria – the main producer of cellular energy.

During normal ageing, skeletal muscle undergoes an inevitable loss of muscle mass – also known as sarcopenia (Rosenberg, 1997); approximately 40% of muscle mass is lost between the ages of 20 and 80. This is responsible for a decline in muscle strength and fitness leading to varying degrees of restricted mobility, disability and loss of independence of the affected individual.

Since mitochondrial function and content in human muscle also declines with ageing, dysfunctional mitochondria are thought to play an important role in sarcopenia. In light of increasing life expectancy, understanding mitochondrial dysfunction in ageing skeletal muscle and finding strategies to reduce sarcopenia are important and relevant.

In trying to understand the role of mitochondrial dysfunction in sarcopenia, it became apparent to me that the methods used to assess mitochondria in human muscle sections had major limitations. My PhD studies therefore focused on developing improved methods to quantify respiratory chain deficiency in human skeletal muscle and for this I extensively used muscle from patients with mitochondrial disease. Mitochondrial diseases are a group of disorders that arise from defects of the mitochondrial oxidative phosphorylation system (OXPHOS). The skeletal muscle is one of the tissues frequently affected and remains a major target of clinical investigations, often used to confirm or refute a mitochondrial diagnosis.

This introduction provides an overview of (1) mitochondrial structure, functions and genetics and (2) the healthy skeletal muscle. This is important to understand the following sections covering mitochondrial damage accumulating in the skeletal muscle during (3) ageing and in (4) mitochondrial diseases.
1.1 Mitochondria structure and function

Mitochondria are vital cellular organelles with a predominant role in energy metabolism. They provide energy via the process of oxidative phosphorylation to produce ATP for the majority of cellular processes. In addition, mitochondria are also involved in regulation of cellular metabolism, redox homeostasis, \((\text{Ca}^{2+})\) calcium signalling and programmed cell death.

1.1.1 Mitochondrial structure and organization

Mitochondria are highly dynamic organelles that form a complex network inside cells. Their organisation was first elucidated by Palade, which with the use of electron microscopy, identified a common mitochondrial structure irrespective of the species. These comprise of two separate membrane systems (the outer and the inner membrane), the mitochondrial matrix and a system of internal cristae. Both inner and outer membranes are separated by the intermembraneous space (Palade, 1953) (Figure 1.1). Later studies using 3D electron microscopic tomography provided a better resolution of mitochondrial structure. These described the cristae as separate tubular membranes bound to the inner mitochondrial membrane (Mannella et al., 1994).

Both membranes are involved in the import and export of molecules. The outer membrane contains the voltage-gated ion channel porin (VDAC). This channel allows the diffusion of cations (such as \(\text{Ca}^{2+}\)) and small molecules of low molecular weight (metabolites and nucleotides) (Szabo and Zoratti, 2014). Both inner and outer membranes contain the translocases TIM/TOM (translocase of the inner membrane/ translocase of the outer membrane), which mediate the transport of nuclear-encoded proteins across the membranes (Endo and Yamano, 2010). They also enclose proteins that are crucial for mitochondrial fusion, namely the mitofusins mfn1 and mfn2 (located in the outer membrane) and OPA1 (optic atrophy 1, located in the inner membrane) and also Drp1 (Dynamin related protein 1, located in the outer membrane) which is crucial for fission (Westermann, 2012). These act in concert to allow constant network remodelling - changes in mitochondria morphology, size, number and content – and therefore adapting to changing metabolic demand (Westermann, 2012). The inner mitochondrial membrane holds the mitochondrial respiratory chain system responsible for oxidative phosphorylation and energy generation.

Lastly, mitochondrial matrix houses the mitochondrial genome (mtDNA), all the biochemical reactions involved in energy production (such as the citric acid cycle and \(\beta\)-oxidation), as well as mitochondrial replication, transcription and translation.
Figure 1.1 Schematic illustration of mitochondrial structure and organisation.
Mitochondrial are ovoid double-bounded organelles. The inner and outer membranes are separated by the intermembrane space. The inner membrane harbours the oxidative phosphorylation system and mitochondrial matrix contains the mitochondrial genome.

1.1.2 Mitochondrial genome

1.1.2.1 Mitochondrial DNA

Mitochondria are the only cellular organelles holding their own genome in mammalian cells. They are maternally inherited (Giles et al., 1980) and contain thousands of copies of mtDNA packaged in stable nucleoprotein complexes called nucleoids (Miyakawa et al., 1987, Satoh and Kuroiwa, 1991). Nucleoids reside in the mitochondrial matrix in close association with the inner membrane (Albring et al., 1977). Although each nucleoid was thought to contain 6-10 mtDNA copies (Legros et al., 2004), more recent super-resolution microscopy revealed that it only contains 1-2 mtDNA copies (Kukat et al., 2011). The number of mtDNA copies in cells is variable ranging from none (in erythrocytes) (Shuster et al., 1988), to hundreds or thousands (Shoubridge and Wai, 2007), depending upon the tissue and cellular energy requirements.

Each mtDNA molecule measures 16,569 bp, is circular and double-stranded (Figure 1.2) (Anderson et al., 1981, Andrews et al., 1999). The mitochondrial genome is highly compact; there are no introns or intergenic non-coding regions except for the displacement loop (D-loop) - containing transcriptional promoters. Most genes are separated by only one or two non-coding base pairs, and two genes (MT-ATP6 and MT-ATP8) have overlapping regions (Anderson et al., 1981).

The mitochondrial genome encodes 13 core subunits of the oxidative phosphorylation system (complex I, III, IV and V) as well as 22 transfer RNAs (tRNAs) and 2 ribosomal RNAs (rRNAs) (Anderson et al., 1981, Andrews et al., 1999) (Figure 1.2). Both tRNAs and rRNAs are required for the translation of mitochondrial mRNA transcripts. The remaining 79 subunits, over 35 assembly factors (Kadenbach, 2012) and proteins involved in mtDNA synthesis, mtDNA
transcription, mtDNA translation, RNA maturation, RNA stability and regulation, are encoded by the nuclear genome (Smits et al., 2010). Following transcription, nuclear mRNAs are translated in the cytoplasm and then imported into the mitochondria where both mitochondrial-encoded and nuclear-encoded subunits are assembled into fully functional complexes (Tuppen et al., 2010).

![Figure 1.2 The human mitochondrial genome.](image)

The mtDNA encodes 13 polypeptides of the OXPHOS system; genes encoding complex I subunits are shown in green, those encoding complex III in purple, complex IV in green and complex V in cyan. Additionally, it encodes two ribosomal RNA (shown in red) and 22tRNAs (denoted by their single amino acid code) required for mitochondrial protein synthesis. Image (adapted) with the courtesy of Dr Casey Wilson.

<table>
<thead>
<tr>
<th>Complex</th>
<th>Mitochondrial-encoded subunits</th>
<th>Nuclear-encoded Subunits</th>
<th>Nuclear-encoded assembly factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex I</td>
<td>7 ND1-ND6, ND4L</td>
<td>37</td>
<td>11</td>
</tr>
<tr>
<td>Complex II</td>
<td>0</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Complex III</td>
<td>1 Cytochrome b</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>Complex IV</td>
<td>3 MTCO1-MTCO3</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>Complex V</td>
<td>7 ATP6, ATP8</td>
<td>17</td>
<td>4</td>
</tr>
</tbody>
</table>

1.1.2.2 Replication and maintenance of mitochondrial DNA

The replication of mtDNA relies entirely on the nuclear genome. It occurs continuously, independent of the cell cycle in replicative cells and in post-mitotic cells (Bogenhagen and Clayton, 1977). Korhonen et al. have reconstituted the minimum mitochondrial replisome in
vitro and identified three major nuclear-encoded proteins: the trimeric polymerase gamma (POLG), the mitochondrial single stranded binding protein (mt-SSB) and the helicase Twinkle (Korhonen et al., 2004).

The heterotrimeric POLG (Lestienne, 1987) is made of a catalytic subunit (POLYA – encoded by POLG1) and two accessory subunits (POLYB – encoded by POLG2). It has polymerase activity, 3’-5’ exonuclease/proofreading activity and 5’deoxyribose phosphate lyase activity (involved in mtDNA repair) (Gray and Wong, 1992). Twinkle has 5’-3’ DNA helicase activity and facilitates mtDNA synthesis by unwinding the double stranded mtDNA (Spelbrink et al., 2001) whereas the mt-SSB stabilises the single stranded regions of mtDNA at replication forks, and enhances POLG and Twinkle activities (Curth et al., 1994, Korhonen et al., 2003).

In addition, other nuclear proteins are indirectly involved in mtDNA maintenance by controlling the deoxynucleoside triphosphates (dNTP) pool, such as the cytosolic ribonucleotide reductase (p53R2 subunit, encoded by RRM2B) (Tanaka et al., 2000) and the mitochondrial adenine nucleotide translocator (ANT1, encoded by SLC25A4) (Neckelmann et al., 1987). The p53R2 subunit catalyses de novo synthesis of dNTPs whereas ANT1 mediates the exchange of ATP (out) for ADP - and by this it regulates the intramitochondrial concentration of adenine nucleotides. It was shown that a balanced proportion of the four nucleotides is essential for mtDNA and nDNA replication fidelity and repair (Mathews and Song, 2007).

1.1.2.3 Mitochondrial transcription and translation

Mitochondrial transcription is also operated by nuclear-encoded proteins; the basic machinery required for transcription initiation (mitochondrial transcriptional core) includes mtRNA polymerase (POLRMT) (Tiranti et al., 1997), mitochondrial transcription factor A (TFAM) (Fisher and Clayton, 1988) and transcription factor B2 (TFB2M) (Falkenberg et al., 2002, Sologub et al., 2009). TFAM binds mtDNA upstream to the promoter site inducing a conformational change of the light-strand; this exposes the promoter region and activates transcription. Following this, POLRMT recognises the promoter and initiates RNA synthesis after forming a heterodimer with TFB2M (Rebelo et al., 2011).

Transcription of both strands generates long polycistronic primary mRNA, which then undergo endonucleolytic processing. The mitochondrial ribonuclease P (RNase P) is responsible for the 5’ end cleavage of mt-tRNAs precursors (Rossmanith and Karwan, 1998) whereas the tRNase Z
(encoded by *ELAC2*) is responsible for the 3’ end cleavage (Schiffer *et al.*, 2002). Since most mRNAs and rRNAs are punctuated by tRNAs, this cleavage releases individual mRNAs, rRNAs and tRNAs (Ojala *et al.*, 1981).

Most excised mRNAs (except ND6 mRNA transcript) are polyadenylated on their 3’end and then released for translation (Van Haute *et al.*, 2015). By contrast, tRNAs follow extensive post-transcriptional modifications before being aminoacylated with the cognate amino acid (tRNAs). In that respect, the addition of CCA trinucleotide at the 3’end of tRNAs is essential for correct aminoacylation by the cognate tRNA-aminoacyl synthetases; the modifications of the wobble position (first position of the anticodon) are critical for accurate decoding and translation fidelity; as many as other modifications which are essential for structural stability, maturation and correct folding. Finally excised rRNAs (12S and 16S) undergo several nucleotide modifications required for proper folding, stability, and ribosome assembly and function (Van Haute *et al.*, 2015).

Translation of the 13 polypeptide subunits of OXPHOS complexes can then proceed. It requires several nuclear-encoded factors (involved in translation initiation, elongation, termination and ribosome recycling), assembled mitoribosomes (made up of 12S and 16S and further 81 nuclear-encoded mitochondrial ribosomal proteins) and aminoacylated tRNAs (Smits *et al.*, 2010).

1.1.3 Mitochondrial biogenesis

Mitochondrial biogenesis is the process by which mitochondrial number and activity increases in response to metabolic stress (such as exercise) or environmental stimuli (Kelly and Scarpulla, 2004). The peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) plays a central role in this process through the co-activation of a great number of nuclear transcription factors, such as NRF-1 and NRF-2 (Wu *et al.*, 1999). The activation of the later, was shown to increase the expression of TFAM (Virbasius and Scarpulla, 1994), TFB2M (Gleyzer *et al.*, 2005) and several nuclear-encoded respiratory chain subunits (Evans and Scarpulla, 1990). Alongside, TFAM is imported into mitochondria were it up-regulates mitochondrial-encoded subunits such as COX-II (Puigserver *et al.*, 1998, Wu *et al.*, 1999). The resulting increased synthesis and incorporation of new mitochondrial proteins results in a higher overall mitochondrial activity and content (Kelly and Scarpulla, 2004).
1.1.4 Mitochondrial functions

1.1.4.1 Mitochondria oxidative metabolism

Mitochondria are the centre of oxidative metabolism - the major metabolic system to replenish ATP levels in cells. Production of ATP from both glucose and fatty acids occurs in four major steps: acetyl coenzyme A (acetyl-CoA) generation (the main substrate of the tricarboxylic acid cycle, TCA), electron transfer to electron carriers (TCA cycle), electron donation to the mitochondria respiratory chain and lastly ATP production by ATP synthase (MacIntosh et al., 2006).

1.1.4.1.1 Acetyl-CoA and TCA cycle

Acetyl-CoA can be generated either through the oxidation of fatty acids or through the breakdown of pyruvate. Cytoplasmic fatty acids are transported into mitochondria via the carnitine shuttle (Bremer, 1983). Once in the matrix, these are sequentially broken into acetyl-CoA through the beta-oxidation (β-oxidation) pathway. In parallel, pyruvate (a by-product of glycolysis) can also be imported into mitochondria - via the mitochondrial pyruvate carrier. There, pyruvate is converted by decarboxylation into acetyl-CoA by the pyruvate dehydrogenase. At this stage, acetyl-CoA derived from either glycolysis or β-oxidation enters TCA cycle (Baker et al., 2010). Series of oxidative reactions transfer electrons to hydrogen from electron carriers - nicotinamide adenine dinucleotide (NADH) and flavin mononucleotide (FAD) - forming three NADH and one FADH$_2$ respectively (Krebs, 1940, Krebs and Eggleston, 1940).

1.1.4.1.2 The oxidative phosphorylation system

Oxidative phosphorylation (OXPHOS) is embedded in the inner mitochondrial membrane and consists of the mitochondrial respiratory chain (complexes I-IV) and ATP synthase (complex V). It is coupled to the oxidative pathway at complex I and complex II levels (Figure 1.3).

Complexes I and II are the first electron-acceptors of the respiratory chain, receiving the electrons derived from NADH and FADH$_2$ respectively. These are then transferred along the chain: to complex III, via coenzyme Q (or ubiquinone), and to complex IV through cytochrome c. The flow of electrons along the respiratory chain is coupled with the active pumping of protons into the intermembrane space (at complexes I, III and IV) building up the mitochondrial transmembrane potential. The generated electrochemical gradient is finally
used by the ATP synthase to drive ATP production upon the diffusion of protons back into the matrix (Mitchell, 1961).

The capacity of mitochondria to produce ATP under maximal or basal conditions (mitochondrial oxidative capacity) depends on the oxidative enzyme content and activity. These, together with mitochondrial density define muscle oxidative capacity (Schwerzmann et al., 1989).

![Schematic model of the oxidative phosphorylation system](image)

Figure 1.3 Schematic model of the oxidative phosphorylation system.
The respiratory chain (complexes I-IV) and ATP synthase (complex V) are responsible for ATP production. While electrons are transferred along the chain by diffusible electron carriers (coenzyme Q or ubiquinone and cytochrome c), protons are pumped into the intermembrane space via cI, cIII and cIV. The created proton gradient across the inner membrane is finally used by the complex V to drive ATP production. Black arrow indicate the direction of electron flow; Grey arrows represent the translocation of protons (H^+). Keys: cI: complex I, cII: complex II, cIII: complex III, cIV: complex IV, cV: complex V, CoQ: coenzyme Q, Cyt c: cytochrome c, e-: electron.

1.1.4.1.3 Components of the OXPHOS system

Complex I (NADH dehydrogenase) is the largest enzyme (~980 kDa) of the OXPHOS system and represents the major entry point of electrons. It consists of 45 structural subunits, of each seven are mitochondrial-encoded (ND1-ND6 and ND4L) and 38 are nuclear-encoded. The assembly of the structural subunits into a functional holocomplex requires additionally nuclear-encoded assembly factors; 10 have already been identified, but more are expected to be discovered (Kadenbach, 2012). The complex presents three functional modules. The N module where dehydrogenase oxidizes NADH, the Q module where hydrogenase reduces ubiquinone (lipid-soluble electron carrier) and the P module where protons are pumped into the intermembrane space by a proton translocase. The coordinated cross-talk between these modules allows the transfer of electrons from NADH to ubiquinone, and the translocation of...
four protons across the inner membrane. The latter generates an internal negative membrane potential (Mimaki et al., 2012).

Complex II (succinate dehydrogenase) is the smallest complex (~123 kDa) of the OXPHOS system and is also a member of the TCA cycle. It consists of four structural subunits (SDHA, SDHB, SDHC and SDHD) all encoded by nuclear genes. SDHA and SDHB compose the catalytic core; SDHC and SDHD anchor the complex to the inner membrane. Only two assembly factors are presently known (Kadenbach, 2012). Complex II acts as a link between TCA cycle and the OXPHOS system. In the TCA cycle complex II catalyses oxidation of succinate to fumarate, producing FADH_2. The oxidation of FADH_2 releases electrons, which are transferred through several prosthetic groups and ultimately used to reduce ubiquinone to ubiquinol in the OXPHOS system (Hagerhall, 1997).

Complex III (cytochrome c reductase) consists of 11 subunits, of which one is mitochondrial-encoded (cytochrome b). Two assembly factors have been identified. Complex III oxidizes ubiquinol (reduced by complex I and II) and transfers electrons to cytochrome c (a water soluble electron carrier located in the intermembrane space). This process is coupled with the translocation of two protons into the intermembrane space (Benit et al., 2009).

Complex IV (cytochrome c oxidase, 200 kDa) is composed of 13 subunits, of which three (MTCOI, MTCO2, MTCO3) are mitochondrial-encoded. MTCOI and MTCO2 compose the catalytic core involved in the electron transfer whereas MTCO3 appears to be involved proton pumping. Complex IV mediates the transfer of electrons (through several prosthetic groups) from reduced cytochrome c to molecular oxygen. Reduction of oxygen to water is coupled with the translocation of four protons into the intermembrane space (Diaz, 2010).

Complex V (F_1F_0 ATP synthase, 550 kDa) consists of 16 subunits, two of which are mitochondrial-encoded (ATPase6 and ATPase8). It has two domains: the F_1 sector and F_0 sector. The F_1 sector is a soluble globular structure that extends into the matrix and composes the catalytic ATP synthase portion; the F_0 sector is cylindrical rotor-like structure embedded in the inner membrane, through which protons are translocated. Similarly, two assembly factors have been identified (ATPF1, ATPF2) (Kadenbach, 2012). Complex V uses the electrochemical proton gradient created by complexes I, III and IV to drive the synthesis of ATP. The diffusion of protons along F_0 creates a rotary motion which is transmitted to the catalytic domain F_1 that in turns drives the condensation of ADP and inorganic phosphate (Pi) into ATP molecules (Jonckheere et al., 2012).
1.1.4.2 Calcium Handling

Mitochondria play a crucial role in calcium homeostasis due to their ability to uptake and buffer large quantities of Ca\(^{2+}\) (Rossi and Lehninger, 1963). Calcium crosses both outer and inner mitochondrial membranes mainly through VDAC and mitochondrial calcium uniporter (MCU) (Baughman et al., 2011, De Stefani et al., 2011), respectively, diffusing down its electrochemical gradient. This process reduces cytoplasmic calcium and is dependent on mitochondrial membrane potential. Extrusion occurs mainly through the 3Na\(^{2+}\)/Ca\(^{2+}\) exchanger (Patergnani et al., 2011).

Calcium is a major modulator of cellular function, with a crucial role in regulation of ATP production (Griffiths and Rutter, 2009) and apoptosis induction (Orrenius et al., 2003). An increase in calcium uptake stimulates mitochondrial respiratory chain function (by stimulating the dehydrogenases and electron carriers) and hence ATP production (Denton et al., 1980, Jouaville et al., 1999). However, a sustained and excessive accumulation of calcium in mitochondria is toxic and can drive apoptosis (Mattson and Chan, 2003). Furthermore, in muscle, calcium is the signalling messenger that triggers all processes underlying muscle excitation-contraction. A tight regulation of calcium concentration is therefore crucial for proper muscle function (MacIntosh et al., 2006).

1.1.4.3 ROS production

Mitochondrial OXPHOS system is a major source of ROS in cells (Jensen, 1966, Boveris et al., 1972). Although historically they were seen as major cause of cell damage, it is now accepted that they are biologically important for several cellular functions such as adaptation to hypoxia and regulation of autophagy (Sena and Chandel, 2012).

During oxidative phosphorylation, some electrons leak from the transport chain, at complexes I and III (Loschen et al., 1973, Cadenas et al., 1977). These electrons can react with oxygen and convert it into superoxide anion (O\(_2^-\)), by partial reduction (Loschen et al., 1974). O\(_2^-\) – the precursor of other ROS - is released either into the intermembrane space (O\(_2^-\) produced by complex III) or mitochondrial matrix (O\(_2^-\) produced by complex I), where it is converted into hydrogen peroxide (H\(_2\)O\(_2\)) by copper/zinc superoxide dismutase (SOD1) or manganese superoxide dismutase (SOD2), respectively. Subsequently, H\(_2\)O\(_2\) diffuses into cytoplasm and is converted into water by glutathione peroxidase (Turrens, 2003). Although antioxidant enzymes work together to convert ROS into less harmful by-products, some H\(_2\)O\(_2\) can be reduced to hydroxyl radical (OH\(^-\)) by O\(_2^-\) and by reduced transition metals (Winterbourn, 1995).
When excessive ROS are produced, the cellular antioxidant system might not be sufficient to counteract. This results in damage of lipids, proteins and nucleotides and can ultimately lead to necrosis or apoptosis.

1.1.4.4 Apoptosis

Finally mitochondria have a pivotal role in programmed cell death (apoptosis) (Hockenbery et al., 1990). Apoptosis can be triggered either extrinsically (by ligand-activation of death receptors on plasma membrane) or intrinsically (by DNA damage, oxidative stress, Ca²⁺ overload and endoplasmic reticulum stress). In the intrinsic pathway, intracellular signals facilitate mitochondrial inner membrane permeabilisation and the consequent release of pro-apoptotic factors (proteins from the Bcl-2 family and cytochrome c) into the cytosol. This leads to the assembly of the apoptosome and further activation of caspases (Galluzzi et al., 2007).

1.1.5 Mitochondrial genetics

1.1.5.1 Mitochondrial DNA mutations

The mutation rate of the mitochondrial genome is estimated to be 10 to 20-fold higher than the nuclear genome (Brown et al., 1979). Somatic (de novo) mtDNA mutations are partly caused by reactive oxygen species (ROS) damage due to the close proximity of the mitochondrial genome with the source of mitochondrial ROS (complexes I and III) and the lack of protective histones (Ljungman and Hanawalt, 1992). Additionally, mutations can arise during mtDNA synthesis and/or during mtDNA repair processes (Krishnan et al., 2008). POLG presents a high error rate (Kunkel and Loeb, 1981) and its exonuclease activity was shown to generate single-stranded regions of mtDNA at double strand beaks, thereby promoting mtDNA deletion formation (Krishnan et al., 2008).

Mitochondrial DNA mutations can be grouped into two major classes, point mutations and rearrangements. The former arise from single base pair substitutions either in structural genes (coding for the respiratory chain complexes), rRNAs or tRNAs. They can be pathogenic or neutral polymorphisms (Tuppen et al., 2010). Neutral polymorphisms arise from either synonymous mutation (mutations not causing changes in the amino acid) or neutral non-synonymous mutations (causing a change in the amino acid). Pathogenic mutations usually affect highly conserved amino acids/nucleotides and/or lead to a clear loss of function of the affected protein, among other features as revised by Taylor et al. (Taylor et al., 2004).
Rearrangements include deletions (single or multiple), which are always pathogenic due to the partial removal of the mitochondrial genome, and duplications (Tuppen et al., 2010).

1.1.5.2 Heteroplasmy

Due to the multi-copy nature of the mitochondrial genome, wild-type and mutant copies can co-exist in individual muscle fibres (Holt et al., 1988, Zeviani et al., 1988). Homoplasmic occurs when all mtDNA copies are identical (wild type or mutant) whereas heteroplasmy occurs when there is a mixture of more than one mtDNA genotype (wild type and mutant) (Taylor and Turnbull, 2005). The proportion between wild-type and mutated mtDNA copies – known as mutation load – can vary between muscle fibres, along muscle fibres length (Sciacco et al., 1994) or among other tissues and organs within the same patient (Shanske et al., 2004). Also, mutation load can change with time, decreasing in fast dividing tissues (blood) (Rahman et al., 2001) and increasing in post-mitotic tissues (muscle and brain) (Larsson et al., 1990, Weber et al., 1997).

1.1.5.3 Threshold effect

MtDNA mutations are functionally recessive (with rare exceptions (Sacconi et al., 2008)). The biochemical profile depends on the amount of mutated and wild type mtDNA (Figure 1.4); a muscle fibre segment shows respiratory chain dysfunction (Figure 1.4, blue segment of muscle fibre) when mutated mtDNA copies accumulate above a certain pathological threshold (Sciacco et al., 1994, Elson et al., 2002). Above this level, wild type mtDNA copies can no longer compensate for the mutation and support the normal mitochondrial function (Rossignol et al., 2003).

The threshold level was shown to vary according to the tissue and the type of mutation. While single large-scale mtDNA deletions cause a biochemical defect when present at levels higher than 60% (Hayashi et al., 1991), point mutations in tRNA genes only manifest a defect when present at levels above 90% (Chomyn et al., 1992). Also, tissues which are highly dependent on OXPHOS system present a lower threshold level when compared to tissues relying on anaerobic glycolysis (Tuppen et al., 2010). Deficient regions of muscle fibres are usually flanked by regions with intermediate activity progressing gradually into regions with normal mitochondrial function (Elson et al., 2002, Murphy et al., 2012).
Mutated mtDNA can accumulate within cells up to a critical threshold with no impact on mitochondrial respiratory chain function (illustrated in the longitudinal fibre in beige); wild type molecules can complement the defect. When the percentage of mutated mtDNA relative to wild type mtDNA (mutation load) exceeds the “threshold”, mitochondrial respiratory chain function declines and the biochemical defect become apparent (illustrated in the longitudinal fibres in blue).

1.2 The healthy skeletal muscle

The skeletal muscle is formed during myogenesis through the proliferation, differentiation and fusion of mononuclear myoblasts into myotubes (MacIntosh et al., 2006). These, group into cylindrical multinucleated syncytium called muscle fibres which are generally arranged in parallel along the longitudinal axis of the muscle (MacIntosh et al., 2006). The number of muscle fibres increases until 25 weeks of gestational age. Beyond this age, cell proliferation is slowed (ceasing after birth) and muscle cross-sectional area increases through the hypertrophy of existing fibres (Stickland, 1981).

1.2.1 Muscle architecture

1.2.1.1 Extracellular matrix

The skeletal muscle is mechanically supported by the extracellular matrix organized into three interconnecting layers (Figure 1.5) (Borg and Caulfield, 1980). The endomysium covers individual muscle fibres and is crucial for force transmission to both tendons and adjacent fibres. The perimysium is a thicker layer that holds together muscle fibres into fascicules providing the pathway for the capillary network and innervating motor neurons. And finally,
the epimysium surrounds the entire muscle and is continuous with the outer layer of the tendon (Gillies and Lieber, 2011).

Each muscle fibre is additionally surrounded by a glycoprotein complex, called the basement membrane (Bowman, 1840), which lies between the endomysium and plasma membrane (or plasmalemma). It is involved in the organization of the neuromuscular junction, the termination of synaptic transmission and the connection between the plasmalemma and the endomysium (MacIntosh et al., 2006). The plasmalemma and basement membrane are collectively referred to as sarcolemma (MacIntosh et al., 2006).

![Schematic illustration of skeletal muscle organisation.]

Figure 1.5 Schematic illustration of skeletal muscle organisation.

The skeletal muscle consists of muscle fibres encapsulated within epimysium, grouped by the perimysium, and covered by the endomysium. Each muscle fibre is composed of myofibrils. Image (adapted) with the courtesy of Professor Richard L. Lieber.

1.2.1.2 Muscle fibres ultrastructure

Muscle fibres are formed by myofibrils arranged in parallel, and each myofibril is formed by the repetition of sarcomeres. Sarcomeres represent the contractile unit of the muscle (Hopkins, 2006). They are separated from each other at Z line and are made up of actin (thin
myofilaments), myosin (thick myofilaments) and associated proteins (troponins and tropomyosin) (Hanson and Huxley, 1953, Huxley, 1953).

Each myofibril is surrounded by two networks of tubular structures: T tubules and sarcoplasmatic reticulum (Franzini-Armstrong and Porter, 1964). T tubules are invaginations of the plasmalemma that run transversely across the fibre, encircling myofibrils. Its branched arrangement allows propagation of the action potentials into the interior of muscle fibre. T tubules harbour dihydropyridine receptors (DHPR, voltage-gated Ca\(^{2+}\) channels) involved in the transduction of excitation into contraction. The sarcoplasmatic reticulum derives from the outer nuclear envelope and forms a network of longitudinal channels and chambers. They house ryanodine receptors (RyR) and Ca\(^{2+}\) ATPase (SERCA). RyR is a channel responsible for Ca\(^{2+}\) release whereas SERCA is involved in Ca\(^{2+}\) sequestering (MacIntosh et al., 2006).

In mature muscle fibres, nuclei accumulate in the periphery of individual fibres adjacent to the plasmalemma. According to the myonuclear domain theory, each nucleus controls the surrounding area of cytoplasm by transcribing mRNAs locally and incorporating proteins in the myonuclear domain (Hall and Ralston, 1989, Pavlath et al., 1989).

1.2.1.3 Motor endplate

The motor endplate is the muscle region contacting with motor nerve terminals. It is characterized by a deep folding of the sarcolemma; the crests of the folds accumulate nicotinic acetylcholine (ACh) receptors (AChRs) (Fertuck and Salpeter, 1974) while the depths contain voltage-gated sodium (Na\(^{+}\)) channels. Nicotinic AChRs are non-selective cations channels activated by ACh and mediate the depolarization of the plasmalemma. When the ACh-mediated depolarization reaches a certain threshold, voltage-gated Na\(^{+}\) channels are activated leading to the generation of a muscular action potential (Kandel et al., 2000).

1.2.2 Muscle fibre types

The growth and differentiation of muscle fibres is known to be tightly controlled by the nervous system. Motor neurons influence the phenotype of muscle fibres through the frequency of electrical activity (Buller et al., 1960). Discharge rates at 10 and 100Hz are decoded by the transcriptional machinery into different patterns of gene expression triggering slow and fast-phenotypes respectively (Schiaffino et al., 1999).
Muscle fibres can be grouped into different classes according to morphological, metabolic and contractile characteristics (Table 1.2) (Burke et al., 1971, Peter et al., 1972, Reiser et al., 1985). Briefly, type I fibres present a high oxidative capacity, their contraction and relaxation times are longer, they generate less power (mechanical energy released per unit of time) and require less ATP. Type II present elevated glycolytic capacity, less mitochondria, high ATP consumption rates and they fatigue more rapidly in response to sustained activity. These differences between muscle fibres extend further to motor neuron properties as well as to the structure of contractile elements. Most skeletal muscles have a mixture of different fibre types with the ratio between type I to II varying with the muscle.

Several studies have shown marked differences in mitochondria between fast and slow fibre types. In type II fibres, the Ca2+ buffering capacity per mitochondria is lower, the threshold for Ca2+ induced apoptosis is 3-fold higher and they produce 3-fold more ROS (Picard et al., 2012).

1.2.3 Mitochondrial subpopulations in muscle fibres

Skeletal muscle fibres contain two subpopulations of mitochondria that differ essentially in their subcellular localization, structure, bioenergy, activity, adaptive capacity and susceptibility to apoptosis (Palmer et al., 1977, Elander et al., 1985, Cogswell et al., 1993, Bizeau et al., 1998, Adhihetty et al., 2005, Mollica et al., 2006). In brief, 20% of mitochondria accumulate around the nuclei in sub-sarcolemmal regions (called sub-sarcolemmal mitochondria) whereas the remaining accumulate in parallel rows between myofibrils. These inter-myofibrillar mitochondria are involved in energy production for muscle contraction. They are smaller and more compact, have a higher oxidative capacity (efficiency in ATP production), produce more reactive oxygen species (ROS) and are less sensitive to Ca2+ induced cell death.
Table 1.2 Muscle fibre type enzymes, function and contractile characteristics.

<table>
<thead>
<tr>
<th></th>
<th>Type I Slow</th>
<th>Type IIA Fast-resistant</th>
<th>Type IIB Fast-fatigable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morphological properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibre diameter</td>
<td>Small</td>
<td>Medium</td>
<td>Large</td>
</tr>
<tr>
<td>Capillary density</td>
<td>Rich</td>
<td>Rich/ medium</td>
<td>Sparse</td>
</tr>
<tr>
<td>Mitochondria</td>
<td>Rich</td>
<td>Rich</td>
<td>Poor</td>
</tr>
<tr>
<td>Oxidative activity</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Glycolytic activity</td>
<td>Low</td>
<td>High/ intermediate</td>
<td>High</td>
</tr>
<tr>
<td>Myoglobin</td>
<td>High</td>
<td>High/ Intermediate</td>
<td>Low</td>
</tr>
<tr>
<td>Myosin heavy chain</td>
<td>Type I</td>
<td>Type IIA</td>
<td>Type IIB</td>
</tr>
<tr>
<td>Functional properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recruitment</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Ca(^{2+}) sequestration (SR)</td>
<td>Slow</td>
<td>Slow/ rapid</td>
<td>Rapid</td>
</tr>
<tr>
<td>ATP consumption</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Contraction speed</td>
<td>Slow</td>
<td>Fast</td>
<td>Fast</td>
</tr>
<tr>
<td>Twitch force</td>
<td>Small</td>
<td>Intermediate</td>
<td>Large</td>
</tr>
<tr>
<td>Fatigues resistance</td>
<td>High</td>
<td>Low/ Intermediate</td>
<td>Low</td>
</tr>
</tbody>
</table>

Key: SR: sarcoplasmic reticulum. Adapted from (MacIntosh et al., 2006) and (Hopkins, 2006).

1.2.4 Muscle contraction

Muscle contraction is initiated with synaptic transmission at the neuromuscular junction. The propagation of an action potential into the pre-synaptic terminals causes the opening of voltage-gated Ca\(^{2+}\) channels. This increases cytoplasmic Ca\(^{2+}\) concentrations which in turn activates the exocytosis machinery. As a result, ACh is released into the synaptic cleft. On the post-synaptic side, ACh binds to nicotinic AChRs. This interaction triggers the influx of cations into muscle fibres depolarizing the surrounding plasmalemma. Consequently, the activation of voltage-gated Na\(^{+}\) channels generates a muscular action potential that spreads bi-directionally along plasmalemma (Kandel et al., 2000).

The transduction of depolarization into contraction (excitation-contraction coupling) is facilitated by DHPR receptors. While depolarization spreads down t-tubular membranes, DHPR interact with RyR receptors present in sarcoplasmatic reticulum. As a result, Ca\(^{2+}\) is released into cytoplasm initiating the interaction of actin and myosin (cross-bridges formation). Multiple cycles of actin-myosin interaction occur (increasing or shortening the muscle) (Huxley and Niedergerke, 1954a, Huxley and Niedergerke, 1954b) until Ca\(^{2+}\) sequestering by SERCA exceeds release. As a result, the sarcomere returns to normal length (Hopkins, 2006).
The activation of muscle fibres can result in three types of contractions: isometric, shortening and lengthening (Faulkner, 2003). Isometric contractions occur when the external load is equal to the force developed (or immovable load) and fibre length remains unchanged. When the load is lower, the muscle shortens (concentric contractions), and when it is greater the muscle lengthens (eccentric contractions). During shortening contractions muscle performs work and the velocity is load-dependent. By contrast, during lengthening contractions the energy expenditure drops and the intensity of muscular effort is lower (Faulkner, 2003).

1.2.5 Muscle metabolism

Muscle contraction requires a lot of energy. Cross-bridge movement is dependent on myosin ATPase, Ca$^{2+}$ sequestering relies on SERCA and the restoration of Na$^+$ and potassium (K$^+$) concentrations across the plasmalemma on Na$^+/K^+$ ATPase (MacIntosh et al., 2006). During short-term intense exercise, energy consumption can increase up to 1000-fold (Baker et al., 2010). The energy expenditure rate (which is a function of the load and velocity) is dependent on the breakdown ATP. Since muscle fibres (like all cells) do not store ATP in large quantity, they rely mainly on three metabolic systems to replenish ATP levels (MacIntosh et al., 2006, Baker et al., 2010).

The immediate energy system relies on the form of phosphocreatine (PCr). ATP is derived from phosphocreatine by creatine (Cr) kinase (ADP + PCr = ATP + Cr) sustaining intense muscle contraction for brief periods of time (10-15 seconds). This system regenerates ATP at an extremely rapid rate (Baker et al., 2010). The short-term energy system relies on the anaerobic metabolism of glucose. It is activated during more prolonged activity and starts with an increase in glucose levels through blood uptake and glycogenolysis (mobilisation of muscle glycogen). Glucose is cleaved into pyruvate by a series of enzymes (glycolysis) leading to a rapid ATP formation close to the required sites (MacIntosh et al., 2006). Pyruvate is subsequently converted into lactate (NADH + H$^+$ + pyruvate = lactate + NAD$^+$), by lactate dehydrogenase; this reaction is essential to remove excessive pyruvate, regenerate nicotinamide adenine dinucleotide (NAD$^+$) and fuel further glycolysis. Both Cr and pyruvic acid end-products stimulate mitochondrial oxidative metabolism, the long-term energy system (covered in detailed in 1.1.4.1 Mitochondria oxidative metabolism) (Baker et al., 2010).

Any reduction in muscle ATP or ATP turnover results in the development of fatigue. This is characterised by decreased force production, slower force development and slower relaxation of the muscle (Baker et al., 2010).
1.3 The ageing skeletal muscle

During ageing (between the 20s and 70s), skeletal muscle undergoes a decline in total muscle mass by 25-40% (Young et al., 1984, Young et al., 1985, Lexell et al., 1988). This reduction has been associated with a preferential atrophy of type II fibres (Grimby et al., 1984, Lexell et al., 1988) and a decline in the number of muscle fibres (Lexell et al., 1988, Lexell, 1993), with the number of both type I and II fibres being reduced by 50% between the ages of 20 and 90 years old. Functionally, muscle strength was shown to decrease by 25-40% during both isometric and shortening contractions in 70-80 aged individuals falling to 50% after 90 years of age (Larsson et al., 1979, Young et al., 1984, Young et al., 1985, Vandervoort and McComas, 1986). Also, shortening velocities were shown to become higher, leading to slower movements and reduced power (Bassey et al., 1992).

Due to the high metabolic demand of skeletal muscle, dysfunctional muscle mitochondria are thought to be an important driver of muscle functional decline with age. First evidence of mitochondrial involvement in ageing muscle arose with studies using electron microscopy which demonstrated a decrease in the total number of mitochondria, in the number of cristae and increase in size of individual organelles in aged mice and rats myocardium (Miquel et al., 1980). Subsequent histochemical, biochemical, and molecular studies provided more evidence for the role of mitochondria in ageing (Hiona and Leeuwenburgh, 2008). The next section highlights a selection of important studies performed in this field which support the association of mitochondrial dysfunction and muscle functional decline with ageing.

1.3.1 Biochemical and in vivo and in vitro studies

Several studies performed in healthy ageing individuals have shown a decline in muscle mitochondrial bioenergetics. Trounce et al. were the first to report a reduction in mitochondrial respiratory chain function with age in human muscle (16-92 years old) (Trounce et al., 1989). Subsequently, Cooper et al. showed that complex I and IV activities decline by 59% and 47% between the 20-30 and 60-90 age ranges, respectively (Cooper et al., 1992). These findings are consistent with reductions in ATP flux. In that respect, the in vitro ATP synthesis measured from isolated mitochondria was shown to decline at a rate of 5% per decade between 18 and 78 years old (Short et al., 2005). Also, further in vivo studies using phosphorous magnetic resonance spectroscopy indicated a 50% reduction in muscle oxidative capacity of aged individuals (69 years of age), which was related to a decline of mitochondrial density by 30%, and a reduction in mitochondrial oxidative capacity by 50% (Conley et al.,
2000). Besides the bioenergetic decline, in vivo rates of mitochondrial protein synthesis were also shown to be reduced by 40% in middle-aged (≈54) and in older (≈72) individuals (Rooyackers et al., 1996). These results support the functional decline observed in the ageing muscle – which include a reduction in force production and increased fatigue.

1.3.2 Histochemical studies

In 1990, Muller-Hocker et al. demonstrated that segments of fibres showing no COX activity were randomly distributed in ageing muscle creating a mosaic appearance (Muller-Hocker, 1990). This results from the focal accumulation of mutated mtDNA within individual muscle fibres, as demonstrated by cytochrome c oxidase (COX) and succinate dehydrogenase (SDH) histochemistry (Figure 1.6) (Old and Johnson, 1989); fibres appearing brown show normal COX activity whereas those appearing blue are devoid of COX activity despite normal levels of mitochondria.

![Figure 1.6 Mosaic deficiency of the mitochondrial respiratory chain in ageing muscle.](image)

Left panel shows young skeletal muscle; all muscle fibres show normal COX activity. Right panel shows an aged muscle section; some fibres show normal COX activity (brown fibres), whereas some fibres present no COX activity (blue fibres).

COX deficient fibres are a hallmark of mitochondrial dysfunction and were later shown to accumulate with age in several species. In rhesus monkeys vastus lateralis, the percentage of COX deficient fibres was shown to increase from 4% up to 60% between 11 and 34 years of age (Lopez et al., 2000). Also, some abnormal fibres exhibiting subsarcolemmal accumulation of mitochondria (called ragged-red fibres, RRF (Egger et al., 1981)) were observed. Similar results were observed in rat’s rectus femoris and human vastus lateralis. In rats, abnormal fibres showing RRF phenotype increased from non-detectable levels up to 42% between 5 and 38 months (Wanagat et al., 2001); in humans, they increased from 6% to 31% between the ages
of 49 and 92 years (Bua et al., 2006). The increased overall mitochondrial mass in RRF is associated with the activation of sub-sarcolemma mitochondrial biogenesis as a compensatory response to the respiratory chain defect and energy failure (Moraes et al., 1992).

1.3.3 Molecular studies

Mutations in mtDNA were shown to accumulate with age in diaphragm muscle (Hayakawa et al., 1991) and cardiac muscle (Cortopassi and Arnheim, 1990), among other tissues (Yen et al., 1991, Taylor et al., 2003). Although deletions, point mutations and depletion of mtDNA have been reported (Fayet et al., 2002, Welle et al., 2003, Short et al., 2005) the ageing muscle predominantly accumulates deletions (Cortopassi and Arnheim, 1990, Cortopassi et al., 1992).

Initial studies performed by Simonetti et al. in human muscle homogenates underestimated the impact of mtDNA deletions. These assessed mtDNA mutation load in homogenised muscle and found that mutated mtDNA constituted only up to 0.1% of total mtDNA (Simonetti et al., 1992). Later studies analysing individual muscle fibres provided evidence that mtDNA deletions accumulated focally to high levels within a subset of muscle fibres. This was observed in laser microdissected fibres displaying mitochondrial dysfunction from aged rhesus monkey (34 years old) (Schwarze et al., 1995), humans (75-90 years old) (Brierley et al., 1998) (49-92 years old) (Bua et al., 2006) and rats (38 months old) (Cao et al., 2001, Wanagat et al., 2001). Further quantitative PCR analysis in both aged human vastus lateralis and rat quadriceps (36 months) showed that mutated mtDNA accumulate to detrimental levels, higher than 90% (Bua et al., 2006, Herbst et al., 2007). Interestingly, studies performed in rodents revealed that regions accumulating high levels of mtDNA deletions co-localize with dysfunctional cellular phenotypes such as atrophic fibres, and fibres displaying splitting and breakage (Wanagat et al., 2001, Herbst et al., 2007). Also, RRF were shown to be more frequent in rat type II fibres (Wanagat et al., 2001) and in muscles showing a higher muscle mass loss, such as vastus lateralis when compared to the soleus or adductor longus muscles (Bua et al., 2002). These results suggest that accumulation of mtDNA mutations in ageing muscle fibres correlates with fibre atrophy and degeneration.

1.3.4 Studies in animal models

In 2004, Trifunovic et al. provided more evidence for the association between mitochondria and ageing with the generation of the mutator mice. These mice harbour a knock-in mutation
in the proofreading region of mtDNA polymerase gamma which impairs the fidelity of mtDNA replication (Trifunovic et al., 2004). Consequently, the mutator mice accumulate high levels of mtDNA point mutations (3 to 5 fold higher, (Trifunovic et al., 2004)) and deletions (7 to 11 fold, (Vermulst et al., 2008)), and interestingly, exhibit a premature ageing phenotype and sarcopenia (Trifunovic et al., 2004, Hiona et al., 2010).

In this mouse model, mtDNA mutations accumulating in muscle fibres were shown to induce a decline in total content of complexes I, III and IV and a severe respiratory chain dysfunction. Also, both oxygen consumption and ATP production were shown to be reduced (Trifunovic et al., 2004, Trifunovic et al., 2005, Hiona et al., 2010). Due to the impaired oxidative metabolism these mice present a higher reliance on glycolysis as a mean of energy production (Saleem et al., 2015).

Although some studies did not find correlations between mtDNA mutations and enhanced ROS production, mtDNA oxidative damage and up-regulation of the antioxidant system (Kujoth et al., 2005, Hiona et al., 2010) some contradictory results were recently published. Kolesar et al. using a newly developed method to measure mtDNA replication and oxidative damage in intact mtDNA, found that the mutator skeletal muscle had lower levels of mitochondrial proteins and increased levels of 8-OHdG (marker of oxidative damage) within the mtDNA of muscle (Kolesar et al., 2014). Also, Logan et al. used a new method (mitochondria-targeted mass spectrometry probe MitoB) to measure H$_2$O$_2$ within mitochondria in living mice. They found an increased production of ROS in skeletal muscle of the aged mutator group (35-42 weeks) when compared to the young mutator group (6-20 weeks) - a trend not observed in ageing control mice (Logan et al., 2014).

Finally mtDNA mutations in cardiac and skeletal muscle were shown to trigger apoptosis (Zhang et al., 2003, Kujoth et al., 2005, Hiona et al., 2010). This suggests that mtDNA mutations, and the consequent decrease in respiratory chain function, may lead to energy defects and ultimately to programmed cell death, with fibre loss being the phenotypic hallmark.

Although many studies have already documented the accumulation of mitochondrial dysfunction in ageing muscle, a more rigorous study using accurate quantification tools was needed. For that purpose, a novel assay was developed and extensively optimised using muscle samples from patients with mitochondrial disease. The following section gives an overview of mitochondrial diseases.
1.4 The skeletal muscle in mitochondrial diseases

Mitochondrial diseases are a group of heterogeneous disorders that arise from defects of the OXPHOS system. The prevalence of 1 in 4300 people has been reported for the North East of England (Schaefer et al., 2008). These diseases are caused by mutations in either mitochondrial or nuclear genomes. Mitochondrial DNA mutations were shown to account for 9.6 in 100,000 and nuclear mutations to account for 2.9 in 100,000 of the adult cases in the North East of England (Gorman et al., 2015). This section will overview the most common mitochondrial and nuclear defects - which are relevant to this research. Rare defects will only be covered in chapter 5.

1.4.1 Clinical presentations

Mitochondrial disorders are characterised by a wide spectrum of clinical presentations: they can affect either a single structure such as the optic nerve in Leber’s hereditary optic neuropathy, a whole organ such as seen in myopathies, cardiomyopathies and encephalopathies or multiple organs (Chinnery, 2014). Due to its high metabolic demand, muscle is commonly affected, either exclusively or predominantly in patients with a multi-systemic phenotype. Common clinical features include ptosis, proximal myopathy and exercise intolerance, cardiomyopathy, external ophthalmoplegia, deafness, optic atrophy and diabetes (Chinnery and Hudson, 2013).

Despite the heterogeneity of mitochondrial disorders, some well-defined syndromes have been characterised such as Kearns-Sayre syndrome (KSS), chronic progressive ophthalmoplegia (CPEO), Pearson syndrome (PS), mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), myoclonus epilepsy with ragged-red fibres (MERRF), Leber’s hereditary optic neuropathy (LHON), neuropathy, ataxia and retinitis pigmentosa (NARP) and maternally inherited Leigh syndrome (MILS) (Chinnery, 2014). Description of these symptoms are summarised in Table 1.3 and Table 1.4. It is important to mention that not all patients fall neatly into just one category.
<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Common genotypes</th>
<th>Affected organs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point mutations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Mitochondrial encephalopathy, lactic acidosis and stroke-like episode (MELAS) | m.3243A>G MT-TL1
m.3271T>C MT-TL1
m.9957T>C MT-CO3
m.12770A>G MT-ND5 | Brain (stroke-like episodes, encephalopathy, migraines), skeletal muscle (myopathy, lactic acidosis), heart, pancreas, ear and gut | Onset in late childhood or adult life. Characterised by stroke-like episodes with seizures commonly leading to visual fields defects. |
| Myoclonic epilepsy and ragged red fibres (MERRF) | m.8344A>G MT-TK
m.8356T>C MT-TK | Skeletal muscle (myoclonus and myopathy), brain (cerebellar ataxia, deafness and dementia), heart | Onset in late childhood or adult life. Progressive neurodegenerative disease characterised mainly by myoclonus (involuntary twitching of muscle), myopathy, proximal muscle wasting and neurological features (generalised epilepsy, cerebellar ataxia, optic atrophy, hearing loss) |
| Neuropathy, ataxia and retinitis pigmentosa (NARP) | m.8993T>G MT-ATP6 | Brain (ataxia), eye | Onset in late childhood or adult life. Characterised mainly by peripheral neuropathy. Development delay, seizures and dementia may occur. |
| Leber’s hereditary optic neuropathy (LHON) | m.3460G>A MT-ND1
m.11778G>A MT-ND4
m.14484T>C MT-ND6 | Brain (brainstem, diencephalon and basal ganglia), peripheral nerve, skeletal muscle | Eye (central vision loss), heart
Onset in late childhood or adult life (around 24 years). Most common mtDNA-related disorder, affecting predominantly men. Organ-specific disease characterised by acute visual loss (unilateral and progressing to bilateral). Mutations are usually homoplasmic. |
| Leigh syndrome | m.10158T>C MT-ND3 | Onset in early infancy. Neurodegenerative condition affecting mainly brainstem, diencephalon and basal ganglia. Common clinical features include: development delay, respiratory abnormalities, ataxia, dystonia and early death | |
| **Single deletions** | | |
| Kearns-Sayre Syndrome (KSS) | Single large-scale mtDNA deletion | Extra-ocular skeletal muscle (progressive paralysis) heart (cardiomyopathy), brain (cerebellar ataxia, deafness), eye | Onset in early infancy/childhood: <20 years. Characterised by retinitis pigmentosa and PEO before age of twenty. |
| Pearson’s Syndrome (PS) | Single large-scale mtDNA deletion | Bone-marrow, exocrine pancreas, skeletal muscle and brain.
Onset in early infancy. A blood disorder characterised by sideroblastic anemia and exocrine pancreatic failure. It causes either early death or development of KSS clinical feature in patients that survive. |
| Chronic progressive external ophthalmoplegia (CPEO) | Single large-scale mtDNA deletion
m.3243A>G MT-TL1 | Extra-ocular skeletal muscle (progressive weakness/paralysis and ptosis), proximal skeletal muscles (muscle weakness and wasting), exercise intolerance, heart | Onset in late childhood or adult life (most common presentation of mtDNA disease in adults). Characterised by a progressive paralysis of eye muscles causing impaired eye movement and ptosis (asymmetrical or bilateral) |

(Zeviani and Di Donato, 2004, Tuppen et al., 2010, Ylikallio and Suomalainen, 2012)
Table 1.4 Common syndromes caused by mutations in nuclear DNA.

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Gene mutated</th>
<th>Affected organs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genes encoding structural and assembly factors</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Leigh syndrome | NDUFS1-4, NDUFS6-8, NDUFY1-2, NDUFA1 (Complex I subunits) | Brain (brainstem, diencephalon and basal ganglia), peripheral nerve, skeletal muscle
Onset in early infancy/childhood. Neurodegenerative condition affecting mainly brainstem, diencephalon and basal ganglia. Common clinical features include: development delay, respiratory abnormalities, ataxia, dystonia and early death |
| | SURF1, SCO1, LRPPRC (Complex IV assembly factors) | | |
| **Genes involved in mtDNA maintenance** | | |
| mtDNA depletion syndrome | POLG, PEO1 (replicosome machinery) | Skeletal muscle (muscle weakness), progressive encephalopathy or liver failure.
Onset in early infancy/childhood. Clinical features depend on the organ affected by mtDNA depletion. |
| | SLC25A4, RRM2B (dNTPs metabolism) | | |
| Progressive external ophthalmoplegia (PEO) | POLG, PEO1 (replicosome machinery) | Extra-ocular skeletal muscle (progressive weakness/paralysis and ptosis), proximal skeletal muscles (muscle weakness and wasting), exercise intolerance, heart
Onset in late childhood or adult life. Characterised by a progressive paralysis of eye muscles causing impaired eye movement and ptosis (asymmetrical or bilateral) |
| | SLC25A4, RRM2B (dNTPs metabolism) | | |
| **Genes involved in transcript maturation and mtDNA translation** | | |
| Myopathy, lactic acidosis, sideroblastic anemia | PUS1 (tRNAmodification) | Skeletal muscle, bone-marrow
Onset in early infancy/childhood. Characterised by mitochondrial myopathy and sideroblastic anemia |
| Infantile hepatocerebral syndrome | GFM1 (Elongation factor) | Brain, liver
Onset in early infancy. Characterised by severe lactic acidosis and rapidly progressive, fatal encephalopathy. |
| Fatal neonatal lactic acidosis | MRPS16, MRPS22 (Ribosomal proteins) | MRPS16: brain (corpus callosum)
MRPS22: heart, kidney
Onset in early infancy. Characterised by severe, infantile, lactic acidosis, development defects in the brain and hipotonia. MRPS16: facial dimorphisms; MRPS22: fatal neonatal hypertrophic cardiomyopathy and kidney tubulopathy. |
| Leukoencephalopathy, brainstem and spinal cord involvement, lactic acidosis | DARS2 (Aminoaecyl-tRNA synthase) | Brain
Onset in childhood disorder. Characterized by slowly progressive pyramidal, cerebellar and dorsal column dysfunction. Some affected children have learning problems, and some affected adults experience mild mental decline. |
| **Genes involved in protein and RNA import** | | |
| Progressive mitochondrial myopathy | GFER (protein import into IMS) | Skeletal muscle (progressive myopathy), eye
Onset in early infancy. Characterised by congenital cataract, progressive muscular hipotonia, sensorineural hearing loss, and developmental delay. |
| Deafness | PNPT1 | Brain (severe hearing impairment)
Onset in early childhood. Characterised by a severe hearing impairment and consequently inability to acquire normal speech. |
| **Genes involved in mtDNA dynamics** | | |
| Dominant optic atrophy | Autosomal-dominant OPA1 | Brain (optic atrophy, hearing loss), Extra-ocular skeletal muscle (progressive weakness/paralysis and ptosis)
Characterised by optic atrophy and visual failure. Sensorineural hearing loss, and ophthalmoplegia can also occur. |

Data shown here serves merrily to illustrate the variety of symptoms caused by secondary mitochondrial defects. (Zeviani and Di Donato, 2004, Tuppen et al., 2010, Ylikallio and Suomalainen, 2012)
1.4.2 Hallmarks of mitochondrial disease

Patients with OXPHOS defects can present with increased lactic acid production. This can be detected in blood and cerebrospinal fluid (Jackson et al., 1995) in severely affected patients. This increased production results from the up-regulation of glycolysis and the accumulation of pyruvate; due to the OXPHOS impairment, pyruvate is no longer imported into mitochondria to feed the TCA cycle after its decarboxylation. Instead it remains in the cytoplasm where it is converted into lactic acid. This overproduction is commonly associated with lactic acidosis – a condition of global low pH in blood and body tissues (Schon et al., 2012).

![Figure 1.7 Mosaic deficiency of the mitochondrial respiratory chain in muscle from patients with mitochondrial disease.](image)

Left panel shows a muscle section from a patient with multiple deletions in muscle. Right panel shows a muscle section from a patient with a single large-scale mtDNA deletion. Brown fibres show normal COX activity (brown fibres), blue fibres are devoid of COX activity.

Additionally, patients usually display other biochemical and morphological features. The activity of one or more complexes is commonly reduced (Taylor et al., 2004). Similar to what occurs in the ageing muscle, involvement of mtDNA (as point mutations in tRNAs, single or multiple DNA deletions) lead to a mosaic pattern of COX deficiency in muscle (Johnson et al., 1983, Sciacco et al., 1994) (Figure 1.7). RRF are also common, however these can either be COX normal (in MELAS) or COX deficient (in CPEO, KSS or MERRF) (Petruzella et al., 1994). Involvement of nuclear DNA (other than mutations in genes leading to multiple deletions) can only be detected using COX/SDH histochemistry if the defect impairs complex IV activity and in this case, the defect is usually uniformly expressed across all muscle fibres. The impairment of remaining complexes can be detected by performing biochemical studies on muscle homogenates (Taylor et al., 2004).
Most of the functional and cellular consequences of specific mutations have been studied using transmitochondrial cytoplasmic cybrid cells; these are immortalised human cell lines depleted of their own mtDNA that are repopulated with patients’ mutated mtDNA (King and Attardi, 1989). This system allows testing of different levels of heteroplasmy and the resulting impact on ATP production, ROS production and calcium homeostasis. It was shown that when one or more respiratory chain complexes are compromised, oxygen consumption and ATP production are usually decreased (Trounce et al., 1994, Hofhaus et al., 1996, Pallotti et al., 2004, Gong et al., 2014). This could explain why mitochondrial patients commonly experience fatigue, muscle weakness and exercise intolerance, which is characterised by incapacity to produce force during sustained muscle contraction (Haller et al., 1978). Additionally, other mitochondrial functions may be impaired. For instance ROS production and cell death were shown to be upregulated in cybrid cells containing specific pathogenic mutations in complex I and V (Wong et al., 2002, Mattiazzi et al., 2004). A perturbation of calcium homeostasis, as reported by elevated cytosolic Ca\(^{2+}\) due to a reduced capacity of calcium sequestering, was also detected in fibroblasts from patients with MELAS and complex I deficiencies caused by nuclear mutations (Mattiazzi et al., 2004, Willems et al., 2008).

1.4.3 Mitochondrial defects

First pathogenic mutations in mtDNA were identified in 1988. Single large-scale mtDNA deletions of up to 7kb were detected in patients with encephalomyopathy (mitochondrial myopathy and KSS) (Holt et al., 1988, Zeviani et al., 1988) and a single base alteration in the mitochondrial gene encoding ND4 was found in patients with LHON (Wallace et al., 1988a). Since then many more mutations and rearrangements of mitochondrial genome have been reported (Mitomap). Table 1.3 summarises and characterises common syndromes observed in patients with mitochondrial defects.

1.4.3.1 Point mutations

Pathogenic point mutations are present in the adult population with a prevalence of 1 in 5000 (Schaefer et al., 2008, Gorman et al., 2015). They are typically maternally inherited and most of them (50%) have been reported in tRNAs genes; 40% were located in structural genes and only 2% within rRNAs genes (Schon et al., 2012).
Point mutations are usually heteroplasmic and require high thresholds (80-90%) to express mitochondrial dysfunction (Chomyn et al., 1992, Mariotti et al., 1994). However, some exceptions have been found with some mutations causing disease at low threshold. Two studies detected: a 25% mutation load in clinically affected tissues of patients with the m.5545C>T within the tryptophan tRNA (MT-TW) gene (Sacconi et al., 2008) and 7% mutation load in patients with the m.14723T>C in the glutamic acid tRNA (MT-TE) gene (Alston et al., 2010). Also, some cases of homoplasmy have been reported in structural genes of complex I (Wallace et al., 1988a) and within the mitochondrial serine 1 tRNA gene (m.7445T>C MT-TS1) (Reid et al., 1994); these mutations were associated with organ-specific symptoms such as blindness and deafness, respectively.

Common point mutations include those occurring within mitochondrial lysine (m.8344A>G MT-TK) and leucine (3243 A>G MT-TL1) tRNAs – first identified in patients with MERRF (Shoffner et al., 1990) and MELAS (Goto et al., 1990, Kobayashi et al., 1990), respectively. The m.3243A>G MT-TL1 mutation is the most prevalent (7.8 in 100,000) point mutation in the North East of England (Gorman et al., 2015). Although 80% of the patients display a MELAS syndrome (Goto et al., 1990), CPEO (Moraes et al., 1993) and myopathy (Karppa et al., 2005) are also frequent. The m.8344A>G MT-TK mutation associated with MERFF (Shoffner et al., 1990) is rarer in the North East of England (0.7 in 100,000) (Gorman et al., 2015). Mutations in tRNAs can affect mitochondrial protein synthesis through several mechanism such as altered aminoacylation, altered three-dimensional structure and incorrect folding or decoding. Regardless of the underlying mechanism, mutations in tRNAs commonly lead to a decline in oxygen consumption rate, decreased activity of multiple OXPHOS complexes (such as I and IV) and increased lactate production (Mariotti et al., 1994).

Pathogenic point mutations in all mitochondrial subunits of complex I, IV and V genes have been associated with disease (Ylikallio and Suomalainen, 2012). For instance, three common mutations in mitochondrial ND1 (m.3460G>A), ND4 (m.11778G>A) and ND6 (m.14484T>C) were shown to cause LHON (Wallace et al., 1988b, Howell et al., 1991, Johns et al., 1992).

1.4.3.2 Single deletions

Most rearrangements of mtDNA consist of single large-scale mtDNA deletions (1.5 in 100,000) (Gorman et al., 2015). They typically occur sporadically (either in the mother’s germ line or early embryogenesis) and can remove from 1.3 kb up to 10 kb of mtDNA, encompassing at least one tRNA gene (Pitceathly et al., 2012). A common deletion of 4,977 bp (with
breakpoints at nucleotides: 8470 and 13477) is frequently reported (Schon et al., 1989). Although individual single deletions may vary between patients, each patient harbours only one deleted genome species within affected tissues. These are heteroplasmic, and require lower pathological threshold (60%) to manifest dysfunction when compared to point mutations (Hayashi et al., 1991). Patients can present variable clinical phenotypes (PEO, KSS and PS) which can be predicted by the mtDNA deletion size and mutation load (Grady et al., 2014).

1.4.3.3 Duplications

Duplications of mtDNA were first identified in 1989 in blood from patients with mitochondrial myopathy and a multi-systemic disorder (Poulton et al., 1989). More cases have been reported since then (Rotig et al., 1992, Poulton et al., 1994). There is still some uncertainty whether these larger genomes result from the insertion of individual deletion genome into a wild type molecule, or they result from the combination of two partially deleted molecules (Poulton et al., 1989). Also, their effects on mitochondrial functions are unclear since duplications do not lack any tRNAs, rRNAs or structural genes, and no oxidative impairment has been reported in these patients (Manfredi et al., 1997, Odoardi et al., 2003). Interestingly, mtDNA duplications are found with combination in single deletions in patients with an early-onset KSS disease, representing an hallmark of KSS (Poulton et al., 1994).

1.4.4 Nuclear defects

The nuclear genome contributes to mitochondrial function in many different ways: through the structure or assembly of OXPHOS complexes, maintenance of mtDNA, transcription and translation of mtDNA, mitochondrial fusion and fission and last but not least, import of nuclear-encoded RNA and proteins into mitochondria (Schon et al., 2012).

The first pathogenic mutation in a nuclear gene was identified in 1995. Bourgeron et al. reported a mutation in a nuclear-encoded subunit of the succinate dehydrogenase (SDH) in two sisters with complex II deficiency (Bourgeron et al., 1995). Since then, molecular and sequencing approaches made the identification of novel mutant nuclear genes possible (Calvo et al., 2012). Table 1.4 characterises syndromes observed in patents with nuclear defects; some of the defects are mentioned to illustrate the heterogeneity and complexity of this disease. As opposed to mitochondrial defects, nuclear mutations present a Mendelian inheritance.
1.4.4.1 Mutations in nuclear-encoded structural subunits or assembly factors

The nuclear genome encodes 70 (out of 83) polypeptides of the OXPHOS complexes. Mutations in nuclear-encoded subunits of all OXPHOS complexes have been identified (Schon et al., 2012). Those affecting complex I are most common, and have been described in 16 out of 45 nuclear structural genes. By contrast, mutations in nuclear-encoded subunits of complex IV are less frequent and have only been described in 2 out of the 11 nuclear structural genes. These mutations in nuclear-encoded structural genes usually cause severe disorder, sometimes are even lethal during infancy, and manifest at birth or soon after (DiMauro et al., 2013). Apart from structural genes, the nuclear genome encodes assembly factors which are strictly required for proper assembly and stability of the holocomplexes. Mutations in assembly factors of all OXPHOS complexes have also been reported (Tiranti et al., 1998, Zhu et al., 1998, Visapaa et al., 2002, Ghezzi et al., 2009, Calvo et al., 2010).

1.4.4.2 Mutations in genes involved in mtDNA maintenance

Several nuclear-encoded proteins are directly (POLG and Twinkle) (Lestienne, 1987, Spelbrink et al., 2001) or indirectly (p53R2 subunit, and ANT1) (Neckelmann et al., 1987, Tanaka et al., 2000) responsible for mtDNA maintenance and regulation of mtDNA copy number - either by composing the replisome or by supplying dNTPs to mitochondria. Mutations in these genes are commonly associated with a severe onset multisystemic disease (mtDNA depletion syndrome), or with a mild adult-onset autosomal-recessive or autosomal-dominant PEO (with accumulation of multiple mtDNA deletions and no effect on mtDNA copy number) (Ylikallio and Suomalainen, 2012).
1.5 Aims

Due to the increasing prevalence of sarcopenia, with great impacts on both the quality of life and health care costs, there was a need to explore the biology of the ageing skeletal muscle. For this reason, this study was originally designed to investigate the following areas:

1. Changes occurring in selected skeletal muscles during ageing;
2. Mechanisms driving muscle wasting in ageing;
3. Potential therapeutic interventions which could be offered to the elderly.

COX/SDH histochemistry and immunohistochemistry were initially used to investigate the ageing muscle. However, soon after, I realised that these methods presented serious limitations. To overcome these problems, I developed a new method to accurately quantify the level of mitochondrial damage - initially using COX/SDH histochemistry and subsequently using immunofluorescence. In order to optimise the new assay, I assessed patients with mitochondrial disease, and during this process, it became evident that this assay could greatly benefit patients with mitochondrial diseases. For this reason, this research was then redirected to meet the following aims:

1. Devise an assay that allows accurate quantification of mitochondrial dysfunction in diseased and healthy ageing muscle,
2. Improve diagnosis of patients and explore mitochondrial disease mechanisms,
3. Use the developed assay to investigate the effectiveness of potential therapeutic interventions which could be offered to patients with mitochondrial disease.
Chapter 2. Materials and methods

2.1 Materials

Equipment

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axio Imager M1 microscope</td>
<td>Carl Zeiss</td>
</tr>
<tr>
<td>Apotome Axio Imager Z2 microscope</td>
<td>Carl Zeiss</td>
</tr>
<tr>
<td>AxioCam MRm monochrome digital camera</td>
<td>Carl Zeiss</td>
</tr>
<tr>
<td>AxioCam MRc colour digital camera</td>
<td>Carl Zeiss</td>
</tr>
<tr>
<td>AxioVision (release.4.8.2) image capture software</td>
<td>Carl Zeiss</td>
</tr>
<tr>
<td>Balance: sartorius basic</td>
<td>Sartorius</td>
</tr>
<tr>
<td>Binder general purpose incubator</td>
<td>Philip Harris</td>
</tr>
<tr>
<td>CCD colour camera</td>
<td>Olympus</td>
</tr>
<tr>
<td>Cyostat (Cryo-star HM 560M)</td>
<td>Microm International</td>
</tr>
<tr>
<td>Dry heat block</td>
<td>Techne</td>
</tr>
<tr>
<td>Excel</td>
<td>Microsoft</td>
</tr>
<tr>
<td>Image J – image analysis software</td>
<td>Public Domain, NIH</td>
</tr>
<tr>
<td>Imaris - image analysis software</td>
<td>Bitplane</td>
</tr>
<tr>
<td>Laminar flow hood</td>
<td>Jencons-PLS</td>
</tr>
<tr>
<td>Minitab 16</td>
<td>Minitab Inc.</td>
</tr>
<tr>
<td>Olympus BX51 light microscope</td>
<td>Olympus</td>
</tr>
<tr>
<td>Prims 5</td>
<td>GraphPad Software Inc.</td>
</tr>
<tr>
<td>3510 pH meter</td>
<td>Jenway</td>
</tr>
<tr>
<td>Stereology software (Stereo Investigator, MBF)</td>
<td>Bioscience</td>
</tr>
<tr>
<td>Vortex Genie</td>
<td>Scientific Industries</td>
</tr>
<tr>
<td>Zen 2011 (blue edition) image capture software</td>
<td>Carl Zeiss</td>
</tr>
</tbody>
</table>

Consumables

<table>
<thead>
<tr>
<th>Consumables</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosol resistant pipette tips</td>
<td>Star lab</td>
</tr>
<tr>
<td>Coverslips (22 x 22mm, 22 x 40mm, 22 x 50mm)</td>
<td>Merck</td>
</tr>
<tr>
<td>Eppendorf tubes (0.6ml, 1.5ml, 2.0ml)</td>
<td>Star lab</td>
</tr>
<tr>
<td>Falcon tubes (15ml, 50ml)</td>
<td>BD Biosciences</td>
</tr>
<tr>
<td>Gilson pipetteman (P2, P10, P20, P200, P1000)</td>
<td>Anachem</td>
</tr>
<tr>
<td>Pasteur pipettes</td>
<td>VWR</td>
</tr>
</tbody>
</table>
Superfrost slides | Merck
Slide tray and box | Thermo Scientific
Whatman filter paper | Fisher Scientific

Reagents: tissue preparation

Iso-pentane | Merck
Liquid Nitrogen | BOC
OCT cryo-embedding matrix | Raymond Lamb

Reagents: Histology and immunohistochemistry

Catalase | Sigma-Aldrich
Cytochrome c | Sigma
3,3 Diaminobenzidine tetrahydrochloride | Sigma
3,3 Diaminobenzidine tetrahydrochloride tablets | Sigma
DPX mounting media | BDH
Bovine serum albumin (BSA) | Sigma
Ethanol | Fisher Scientific
Haematoxylin | Raymond A Lamb
Histoclear™ | National Diagnostics
Hydrochloric acid | VWR
Hydrogen peroxide 30% | Sigma
Hydrophobic pen | Daido Sangyo
Methanol analar | Merck
MenaPath detection system | Menarini diagnostics
Nitroblue tetrazolium | Sigma-Aldrich
Normal goat serum (NGS) | Sigma
4% Paraformaldehyde (PFA) | Santa Cruz Biotechnology
Phenazine methosulphate | Sigma-Aldrich
Phosphate Buffered saline (PBS) tablets | Sigma-Aldrich
Prolong gold mounting media | Life Technologies
Sodium azide | Sigma-Aldrich
Sodium succinate | Sigma-Aldrich
Sodium chloride (NaCl) | Sigma-Aldrich
Sudan black | VWR International (342013F)
Trizma base | Sigma-Aldrich
Tween-20 | Sigma-Aldrich
<table>
<thead>
<tr>
<th>Reagents: Primary antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse IgG2a MTCOI</td>
</tr>
<tr>
<td>Mouse IgG2b NDUFA13</td>
</tr>
<tr>
<td>Mouse IgG1 SDHA</td>
</tr>
<tr>
<td>Mouse IgG1 NDUFB8</td>
</tr>
<tr>
<td>Mouse IgG2b Porin</td>
</tr>
<tr>
<td>Polyclonal Rabbit IgG Laminin α-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reagents: Secondary antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti- mouse IgG2a Fluorescein – 488nm</td>
</tr>
<tr>
<td>Anti- mouse IgG2b Rhodamine – 546nm</td>
</tr>
<tr>
<td>Anti- mouse IgG1 Alexa fluor – 647nm</td>
</tr>
<tr>
<td>Anti- mouse IgG1 Rhodamine - 546nm</td>
</tr>
<tr>
<td>Anti- mouse IgG2b Alexa fluor – 647nm</td>
</tr>
<tr>
<td>Anti- mouse IgG1 Alexa fluor – 488nm</td>
</tr>
<tr>
<td>Anti- mouse IgG2a Alexa fluor – 546nm</td>
</tr>
<tr>
<td>Anti- mouse IgG2b Alexa fluor – 633nm</td>
</tr>
<tr>
<td>Anti- mouse IgG2b Alexa fluor – 488nm</td>
</tr>
<tr>
<td>Anti- mouse IgG1 Alexa fluor – 546nm</td>
</tr>
<tr>
<td>Anti- mouse IgG2a Alexa fluor – 647nm</td>
</tr>
<tr>
<td>Anti- mouse IgG2a Biotin</td>
</tr>
<tr>
<td>Streptavidin – 647nm</td>
</tr>
<tr>
<td>Anti-rabbit IgG Alexa fluor 405nm</td>
</tr>
<tr>
<td>Anti- mouse IgG2a Alexa fluor – 488nm</td>
</tr>
<tr>
<td>Anti- mouse IgG2b Alexa fluor – 546nm</td>
</tr>
<tr>
<td>Anti-mouse IgG1 Biotin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate buffered saline (PBS)</td>
</tr>
<tr>
<td>Tris buffered saline with tween (concentrated 5x) (TBST, pH 7.6)</td>
</tr>
<tr>
<td>(concentrated 5x)</td>
</tr>
<tr>
<td>(TBST, pH 7.6)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* Jackson IR Lab: Jackson ImmunoResearch Laboratories
2.2 Methods

2.2.1 Ethical approval

Ethical approval for this research was granted by the Newcastle and North Tyneside Local Research Ethics Committees (reference 09/H0906/75). Ethical approval for the use of post-mortem tissue and surplus tissue taken for diagnostic purposes in research studies (through a written informed consent) was granted by Newcastle and North Tyneside 1 REC (reference 2002/205).

2.2.2 Muscle biopsies

Clinical muscle biopsies from cases of suspected mitochondrial disease were taken from the mid-portion of the *vastus lateralis* using the needle biopsy technique. Post-mortem tissue (biceps, *vastus laterali* and psoas muscle) from healthy aged controls were collected with a maximum delay of 72h and processed immediately. Transversely orientated muscle blocks were snap-frozen in an isopentane bath pre-cooled to -160°C in liquid nitrogen. Subsequently, frozen muscle was embed on Whatman filter paper using OCT cryo-embedding matrix and finally stored at -80°C.

2.2.3 Cryostat sections

Serial sections from transversely orientated muscle blocks were obtained using a Cryo-star HM 560M cryostat. Frozen muscle blocks were cut at -20°C into sections of 10µm-thick and collected onto superfrost slides (Merck). Sections were allowed to air dry at room temperature (RT) for 1h and then stored at -80°C for subsequent use.

2.2.4 Mayer's Haematoxylin counter-staining

Haematoxylin stain (Mayer 1904) was used to visualise muscle nuclei. Haemotoxylin is a compound that binds to arginine-rich nucleoproteins such as histones. This binding oxidises haematoxylin to hemalum, which has a blue colour.
2.2.5 Cytochrome c oxidase (COX) / Succinate dehydrogenase (SDH)

Sequential cytochrome c oxidase (COX) and succinate dehydrogenase (SDH) histochemistry is the gold standard methodology to assess mitochondrial respiratory chain activity in muscle cryo-sections (Old and Johnson, 1989). COX reaction measures complex IV activity and SDH reaction measures complex II activity, in individual muscle fibres. Since complex IV is partially mitochondrial encoded, mtDNA mutations will most likely affect COX activity. However, complex II is fully nuclear encoded and therefore it measures overall mitochondrial mass.

The reaction of COX relies on the oxidation of diaminobenzine (DAB) by active cytochrome. Active complex IV oxidises DAB which forms a brown precipitate that saturates cells. The reaction of SDH, on the other hand, relies on the reduction of nitroblue tetrazolium by succinate dehydrogenase (SDHA and SDHB) and the subsequent production of a blue precipitate. By combining both reactions in a single slide, identification of cells with mitochondrial dysfunction is easy. COX positive cells appear brown (due to the oxidation of DAB); COX deficient fibres appear blue (due to the absence of oxidised DAB during the incubation with COX reaction and formation of the blue precipitate during the incubation with SDH reaction).

For both COX and SDH solutions preparation, reagents were defrosted at 55°C. COX reaction was prepared by adding 800µl of 4mM 3,3′-diaminobenzidine tetrahydrochloride (DAB), 200µl of 100µM cytochrome c and a pinch of catalase, in 0.2M phosphate buffered saline solution (PBS, pH 7.0), and vortexed quickly. SDH was prepared by adding 800µl of 1.5mM nitrobluetetrazolium, 100µl of 130mM sodium succinate, 100µl of 0.2mM phenazine methosulfate and 10µl of 0.1mM sodium azide in 0.2M PBS (pH7.0), and vortexed quickly.

COX/SDH histochemistry was carried out on transverse muscle sections (10µm). Serial sections were taken from the freezer and allowed to air dry for 1h at RT. After rehydrating in PBS, sections were incubated with either 100µl of COX solution (for 45min at 37°C) or 100µl of SDH solution (for 40min at 37°C) in a humidified chamber. For the combined COX/SDH histochemistry a section was incubated with COX reaction for 45min followed by the SDH reaction for 40min with a brief wash in PBS in between. Following the staining procedure the sections were washed with PBS, dehydrated in ascending ethanol gradients (70%, 95%, 100%, 100%) and cleared in two washes in histoclear. Sections were mounted in DPX medium and covered with a cover slip.
2.2.6 Immunohistochemistry

Immunohistochemistry was carried out on transverse muscle sections (10µm) using antibodies detecting subunits of mitochondrial respiratory chain complexes. Each method’s chapter will provide information about the type of antibodies used, incubation times and conditions. Two systems were used to detect primary antibodies: chromogen and fluorescence. For both, the initial steps of the immunohistochemical protocol were similar, and as follow:

Briefly, muscle sections were taken from the freezer and allowed to dry for 1h at RT. Approximately 10 min before initiating the protocol, sections were encircled using a hydrophobic pen; this prevents the leakage of incubation medium from muscle sections. The sections were fixed in cold 4% paraformaldehyde (PFA) at room temperature (RT) and washed in tris buffered saline with tween (TBST, 1x). This fixation step is frequently essential because it cross-links proteins ensuring unaltered tissue morphology, and preserves tissue for further processing.

Sections were then permeabilised in a gradient of methanol as follows: 10min in 70% methanol, 10min in 95% methanol, 20min in 100% methanol, 10min in 95% methanol and 10min in 70% methanol. This step was required since most investigated antigens were intracellular proteins. The methanol gradient dissolves lipids from cell membranes, and therefore allows antibodies to access the inside of muscle fibres.

After washing in TBST (1x) the sections were incubated with protein blocking solution; this is a solution of normal serum from the species in which secondary antibodies were raised. This step prevents non-specific binding of secondary antibodies to endogenous antigens. Primary antibodies were diluted in the protein blocking solution to the correct concentrations and were applied onto the sections. Sections were incubated overnight at 4°C in a humidified chamber. Secondary antibodies/reagents incubation and the subsequent detection steps are explained in detail below.

2.2.6.1 Chromogen-based immunohistochemistry

For chromogen-based immunohistochemistry, the protocol was performed as described above with one incorporated change: 0.3% of H₂O₂ was added to the 95% methanol pot. Hydrogen peroxide allows blocking endogenous peroxidase activity. This is crucial since primary antibodies were detected using MenaPath kit (Menarini Diagnostics) which relies on horseradish peroxidase enzymatic detection. This system uses a specific universal probe to
detect mouse antibodies and a second probe - a polymer coupled with horseradish peroxidase (polymer-HRP) - to increase labelling intensity and sensitivity. The hydrogen peroxide step prevents therefore non-specific background due to active endogenous peroxidase.

Following the primary antibodies incubation and subsequent washes in TBST (1x), the sections were incubated with universal probe (MenaPath) for 30 min. Having washed the slides in TBST (1x), polymer-HRP was applied onto the sections (MenaPath). Finally DAB was prepared by dissolving 1 silver and 1 gold tablet in 5ml of distilled water (according to the manufacturer’s instructions, Sigma) and applied onto the sections; DAB is a substrate of HRP. The development of brown precipitate was monitored under the microscope until satisfactory signal appeared. Sections were counter-stained with Mayer’s Haematoxylin (see 2.2.4 Mayer’s Haematoxylin counter-staining) by immersing slides in haematoxylin for 10min. Subsequently, sections were washed in tap water until the water turned clear, dehydrated in in ascending ethanol gradients (70%, 95%, 100%, 100%) and cleared in two washes in histoclear. Sections were mounted in DPX medium and covered with a cover slip.

2.2.6.2 Fluorescence-based immunohistochemistry

For fluorescence-based immunohistochemistry, primary antibodies were detected using secondary antibodies coupled with fluorophores. An important aspect of this technique is the ability to visualise several epitopes at the same time, using a single sample. This is possible due to the multitude of: gamma Ig (IgG) isotypes (IgG1, IgG2a, IgG2b), of host species donating antibodies (mouse, rabbit, chicken, among others), and of fluorophores available.

Double, triple and quadruple immunofluorescence was performed in this study. In all, sections were incubated with a cocktail of diluted primary antibodies (of two, three or four primary antibodies). After washing in TBST (1x), the sections were incubated with a cocktail of diluted secondary antibodies (two, three or four secondary antibodies). The sections were washed in TBST (1x) and mounted in mounting medium and covered with a cover slip (further details will be provided in chapters 3 and 4).

2.2.7 Imaging

Brightfield and fluorescent images were acquired at 10x or 20x magnification using Zeiss Microscope (Axio Imager M1) and Zen 2011 (blue edition) software. The microscope was
equipped with both colour and monochrome Digital Cameras (AxioCam MRC, AxioCam MRm) and appropriate filter cubes that allow detection of 488nm, 546nm and 647nm fluorescence. The exposure times for each channel were set to avoid pixel saturation and kept constant between cases (unless stated otherwise). Sections were imaged (with a safety gap between scanned areas to avoid overlapping) and stored as 16-bit fluorescent tagged image file format (TIFF) and czi files.
3.1 Introduction

Mitochondrial dysfunction occurs in patients with mitochondrial disease and as part of the ageing process, predominantly affecting tissues with high metabolic requirements such as brain and muscle (Müller-Hocker, 1989, Cortopassi and Arnheim, 1990, Chinnery et al., 2002). Mutations in the mtDNA usually lead to mosaic deficiency of the mitochondrial respiratory chain that results from the accumulation of mutated mtDNA in a subset of muscle fibres (Taylor et al., 2004).

COX/SDH histochemistry is currently the standard method to assess mitochondrial respiratory chain function in muscle cryo-sections (Old and Johnson, 1989, Sciacco and Bonilla, 1996). This technique interrogates complex IV (COX) and II (SDH) activities. Since COX activity is proportional to mitochondrial mass in a healthy cell, any reduction or loss of COX activity with preserved SDH activity indicates mtDNA damage. This is a particularly valuable method for evaluating cases with mosaic pattern of COX deficiency. In these instances, biochemical assays in muscle homogenates are not sensitive enough to detect subtle respiratory chain deficiency especially when only a few muscle fibres are involved (Taylor et al., 2004).

Conventional analysis of COX/SDH histochemistry relies on visual classification of muscle fibres by a researcher based on the colour intensity. This makes the assessment subjective and inconsistent, and therefore prone to inter- and intra-researcher variability (Taylor and Levenson, 2006, Choudhury et al., 2010, Rizzardi et al., 2012, Chatterjee et al., 2013). Also it makes the assessment inaccurate; whereas a complete loss of COX reactivity is easily detected, subtle changes may not be visible to the human eye (Arechavala-Gomez et al., 2010). This can lead to miss-classification (Ellis et al., 2005) and ultimately to under- or over-estimation of mitochondrial dysfunction. Last but not least, COX/SDH histochemistry is limited to measuring complex IV activity and it does not provide any information about other complexes of the OXPHOS system.

Recently, an objective assessment based on a combination of COX/SDH histochemistry and NDUFB8 immunohistochemistry was developed. The intensities of individual COX, SDH and NDUFB8 reactivity from single muscle fibres were used to determine the respiratory status of
muscle fibres ((COX*NDUFB8)/SDH)/100 (Murphy et al., 2012). This allows differentiating fibres with normal COX-I activity and NDUFB8 levels from those with: a progressive loss of COX and NDUFB8 and preserved SDH, or from those exhibiting: a complete loss of both COX-I and NDUFB8 and high levels of mitochondrial mass (judged by SDH activity).

Other groups have also explored the use of immunohistochemical techniques to detect mitochondrial respiratory chain deficiency. Mahad et al. developed a new method to quantify COX-I and porin levels following COX histochemistry in single cells of the central nervous system and muscle. This provided insights on the functional and structural impairment of mitochondrial dysfunction (Mahad et al., 2009). De Paepe et al. developed a chromogen-based immunohistochemical approach to assess other OXPHOS complexes (I, III and V) in serial muscle sections. This was particularly valuable to detect complex I deficiency in single fibres which is not possible using COX/SDH histochemistry (De Paepe et al., 2009). Similarly, Hanson et al. set out a double fluorescent-based immunohistochemistry to assess levels of OXPHOS complexes (I, II, III, IV and V) in relation to porin levels, in cultured fibroblasts (Hanson et al., 2002). Although very useful, all these studies present some limitations: immunohistochemistry was either performed in serial muscle sections (Rahman et al., 2000, De Paepe et al., 2009) and/or immunoreactivity of cells was qualitatively assessed (Rahman et al., 2000, Hanson et al., 2002, De Paepe et al., 2009).

3.2 Aim

The aim of this chapter was to develop an objective assessment of mitochondrial respiratory chain function in single muscle fibres that would allow quantifying accurately mitochondrial deficiency in a sarcopenic cohort and patients with mitochondrial disease.

3.3 Methods

3.3.1 Cohort - clinical characteristics

Archived frozen muscle samples derived from either post-mortem tissue or clinical muscle biopsies (taken for diagnostic purposes) were assessed. Table 3.1 summarises relevant clinical information. The three aged control were assessed in order to quantify mitochondrial respiratory chain dysfunction accumulating with age. The young disease control (DC1) was previously investigated for suspected neuromuscular disease but showed normal muscle histology, oxidative enzyme histochemistry and normal respiratory chain biochemical activities.
(Kirby et al., 2007); he was used as a “negative control” since mitochondrial dysfunction was not expected to be found. Patients P1 and P2 harboured the common m.3243A>G MT-TL1 mutation and P3 multiple deletions in muscle (due to a mutation in a nuclear gene involved in mtDNA maintenance). P1 and P2 muscle biopsies’ showed a mosaic COX deficiency which was challenging to visually classify, therefore they were used to quantify subjectivity of visual classification. P3 muscle biopsy also presented a mosaic COX deficiency, which was easy to visually classify, therefore he was used to validate the objective classification based on COX-I and SDHA immunodetection.

Table 3.1. Clinical information from subjects included in this study

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Gender</th>
<th>Age</th>
<th>Genetic defect</th>
<th>Histochemical findings</th>
<th>Biopsy type (PM delay)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aged controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC1</td>
<td>Male</td>
<td>75y</td>
<td>n.r.</td>
<td>n.d.</td>
<td>PM (72h)</td>
</tr>
<tr>
<td>AC2</td>
<td>Female</td>
<td>76y</td>
<td>n.r.</td>
<td>n.d.</td>
<td>PM (48h)</td>
</tr>
<tr>
<td>AC3</td>
<td>Female</td>
<td>86y</td>
<td>n.r.</td>
<td>n.d.</td>
<td>PM (48h)</td>
</tr>
<tr>
<td>Disease control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC1</td>
<td>Male</td>
<td>4y</td>
<td>n.r.</td>
<td>Normal</td>
<td>Diagnostic (n.r.)</td>
</tr>
<tr>
<td>Patient with known mitochondrial disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>Female</td>
<td>40y</td>
<td>m.3243A>G MT-TL1 mutation;>30% COX deficient, 10% RRF; also COX positive RRF</td>
<td>Diagnostic (n.r.)</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>Male</td>
<td>53y</td>
<td>m.3243A>G MT-TL1 mutation;45% COX deficient fibres; 20% RRF</td>
<td>Diagnostic (n.r.)</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>Male</td>
<td>60y</td>
<td>Multiple mtDNA deletions;20% COX deficient fibres; 7% RRF</td>
<td>Diagnostic (n.r.)</td>
<td></td>
</tr>
</tbody>
</table>

Key: PM: post-mortem; n.d. = not determined; n.r.: not relevant; y: years old; RRF: ragged-red fibres.

3.3.2 Cryosectioning

Serial sections (10µm thickness) from transversely orientated muscle blocks were obtained as previously described in section 2.2.3 from chapter 2.

3.3.3 COX/SDH histochemistry

Individual and combined COX/SDH histochemistry was carried out according to the protocol described in section 2.2.5 from chapter 2.
Immunohistochemistry was performed using antibodies detecting subunits of mitochondrial respiratory chain complexes. Complex I abundance was detected using antibodies against either NDUFB8 or NDUFA13 subunits. These are nuclear-encoded subunits of complex I which are required for complex I assembly and electron transfer activity (Perales-Clemente et al., 2010). To detect complex IV abundance we used an antibody to the mtDNA encoded complex IV subunit I (COX-I). To enable assessment of overall mitochondrial mass we used an antibody against the subunit A of the nuclear-encoded complex II or against porin (VDAC) (Mannella, 1998), commonly used as mitochondrial mass markers (Mahad et al., 2009, Grunewald et al., 2014).

3.3.4.1 Chromogen-based immunohistochemistry

Briefly, the sections were fixed in 4% PFA for 15min at RT and permeabilised in a gradient of methanol. Following TBST washes, the sections were incubated with 1% bovin serum albumin (BSA) for 30min and then incubated with the primary antibodies in a humidified chamber at 4°C overnight (Table 3.2). Following TBST washes, the sections were incubated with universal probe (for 30min at RT), and subsequently, incubated with polymer-HRP (for 30 min at RT) (MenaPath). Finally DAB was prepared and applied to the sections until satisfactory signal appeared. Sections were counter-stained with Mayer’s Haematoxylin, dehydrated in ethanol gradient and cleared in histoclear before mounting in DPX.

3.3.4.2 Fluorescent-based immunohistochemistry

Briefly, the sections were fixed in 4% PFA for 3min and permeabilised in a gradient of methanol. Following TBST washes, sections were blocked with 1% normal goat serum (NGS) for 30min at RT and incubated with a primary antibody cocktail in a humidified chamber at 4°C overnight (Table 3.3). Subsequently to TBST washes, the sections were incubated with a cocktail of secondary antibodies for 1h at RT (Table 3.3). Finally, the sections were immersed in sudan black for 10 min at room temperature, to quench auto-fluorescence. Sections were washed in TBST and mounted in Prolong Gold mounting medium (Life Technologies).
3.3.5 Imaging

Brightfield and fluorescent images were acquired at 10x magnification (unless stated otherwise) using Zeiss Microscope (see section 2.2.7 from chapter 2). For the acquisition of fluorescent images, the exposure times for each channel were adjusted for each individual case.

3.3.6 Assessing mitochondrial respiratory chain dysfunction

3.3.6.1 Visual Classification of COX/SDH histochemistry

To assess mitochondrial dysfunction in different muscles from aged control AC3, muscle fibres reacted for COX/SDH histochemistry were visually classified using a stereological workstation with a modified light microscope (Olympus, Japan), motorized stage, CCD colour camera and stereology software (Stereo Investigator, MBF Bioscience, USA).

To assess the limitations of COX/SDH histochemistry (intra- and inter-observer variability), a third investigator imaged different areas of two biopsies and selected 100 muscle fibres for each patient. Both investigators 1 and 2 visually classified labelled muscle fibres in COX/SDH histochemistry images (at 20x magnification).

3.3.6.2 Visual classification of chromogen-based immunohistochemistry

To further explore the profile of abnormal fibres from aged control AC3, matching muscle fibres in: COX/SDH histochemistry, NDUFA13 immunohistochemistry and COX-I immunohistochemistry images, were visually classified into one of the following categories: ND (fibres presenting intermediate or absent COX activity and no detectable changes in complex IV abundance), NDUFB8↓/COX-I + (fibres with preserved COX activity and levels but down-regulated NDUFB8 levels), NDUFB8+/COX-I↓ (fibres with preserved NDUFB8 but down-regulated COX activity and levels) or NDUFB8↓/COX-I↓(fibres with down-regulated NDUFB8 and both COX activity and levels).
Table 3.2. Primary and secondary antibodies used for chromogen-based immunohistochemistry

<table>
<thead>
<tr>
<th>Antibodies</th>
<th>Host</th>
<th>Dilution</th>
<th>Company (Product number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTCOI (IgG2a)</td>
<td>Mouse</td>
<td>1:4000</td>
<td>Abcam (Ab14705)</td>
</tr>
<tr>
<td>SDHA (IgG1)</td>
<td>Mouse</td>
<td>1:2000</td>
<td>Abcam (Ab14715)</td>
</tr>
<tr>
<td>NDUFB8 (IgG1)</td>
<td>Mouse</td>
<td>1:300</td>
<td>Abcam (Ab110242)</td>
</tr>
</tbody>
</table>

Table 3.3. Primary and secondary antibodies used for immunofluorescence

<table>
<thead>
<tr>
<th>Antibodies</th>
<th>Host</th>
<th>Dilution</th>
<th>Company (Product number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary antibodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTCOI (IgG2a)</td>
<td>Mouse</td>
<td>1:100</td>
<td>Abcam (Ab14705)</td>
</tr>
<tr>
<td>NDUFA13 (IgG2b)</td>
<td>Mouse</td>
<td>1:100</td>
<td>Abcam(Ab110240)</td>
</tr>
<tr>
<td>SDHA (IgG1)</td>
<td>Mouse</td>
<td>1:100</td>
<td>Abcam (Ab14715)</td>
</tr>
<tr>
<td>NDUFB8 (IgG1)</td>
<td>Mouse</td>
<td>1:100</td>
<td>Abcam (Ab110242)</td>
</tr>
<tr>
<td>Porin (IgG2b)</td>
<td>Mouse</td>
<td>1:100</td>
<td>Abcam (Ab14734)</td>
</tr>
<tr>
<td>Secondary antibodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-mouse IgG2a Fluorescein – 488nm</td>
<td>Goat</td>
<td>1:300</td>
<td>Jackson IR Lab (115-095-206)</td>
</tr>
<tr>
<td>Anti-mouse IgG2b Rhodamine – 546nm</td>
<td>Goat</td>
<td>1:300</td>
<td>Jackson IR Lab (115-295-207)</td>
</tr>
<tr>
<td>Anti-mouse IgG1 Alexa fluor – 647nm</td>
<td>Goat</td>
<td>1:300</td>
<td>Life Technologies (A21240)</td>
</tr>
<tr>
<td>Anti-mouse IgG1 Rhodamine - 546nm</td>
<td>Goat</td>
<td>1:300</td>
<td>Jackson IR Lab (115-295-205)</td>
</tr>
<tr>
<td>Anti-mouse IgG2b Alexa fluor – 647nm</td>
<td>Goat</td>
<td>1:300</td>
<td>Life Technologies (A21242)</td>
</tr>
<tr>
<td>Anti-mouse IgG1 Alexa fluor – 488nm</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (A21121)</td>
</tr>
<tr>
<td>Anti-mouse IgG2a Alexa fluor – 546nm</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (A21133)</td>
</tr>
<tr>
<td>Anti-mouse IgG2b Alexa fluor – 633nm</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (A21146)</td>
</tr>
<tr>
<td>Anti-mouse IgG2b Alexa fluor – 488nm</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (A21141)</td>
</tr>
<tr>
<td>Anti-mouse IgG1 Alexa fluor – 546nm</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (A21123)</td>
</tr>
<tr>
<td>Anti-mouse IgG2a Alexa fluor – 647nm</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (A21241)</td>
</tr>
<tr>
<td>Anti-mouse IgG2a Biotin</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (M32315)</td>
</tr>
<tr>
<td>Streptavidin – 647nm</td>
<td>Goat</td>
<td>1:100</td>
<td>Life Technologies (S31556)</td>
</tr>
<tr>
<td>Anti-rabbit IgG Alexa fluor 405nm</td>
<td>Goat</td>
<td>1:100</td>
<td>Life Technologies (A31556)</td>
</tr>
</tbody>
</table>

Key: Jackson IR Lab: Jackson ImmunoResearch Laboratories
3.4 Results

3.4.1 Challenges of COX/SDH histochemistry

In order to investigate the degree of mitochondrial dysfunction in the ageing muscle, three different muscles (biceps, diaphragm and psoas) from three aged controls (AC1, AC2 and AC3 (Table 3.1)) were studied. Serial sections from each muscle were assessed using COX/SDH histochemistry and chromogen-based immunohistochemistry detecting COX-I, SDHA and NDUFB8 (AC1: Figure 3.1, AC2: Figure 3.2 and AC3: Figure 3.3). Muscle fibres were visually classified based on COX/SDH histochemistry into one of the following three categories: COX-positive, COX-intermediate (int) and COX-deficient (neg) (Murphy et al., 2012). Fibres were further classified based on immunohistochemistry of COX-I and NDUFB8 (see 3.3.6.2.). Throughout this assessment several problems and difficulties were encountered.

3.4.1.1 Underestimation of the overall mitochondrial dysfunction

All aged muscle biopsies showed some level of mitochondrial respiratory chain deficiency. Frequent abnormal fibre profiles (found in all biopsies assessed) included: fibres with absent COX activity and down-regulated COX-I and NDUFB8 (Figure 3.1, Figure 3.2 and Figure 3.3: fibres “1”), fibres with absent COX activity and COX-I immunoreactivity but preserved NDUFB8 (Figure 3.1, Figure 3.2 and Figure 3.3: fibres “2”) or fibres with normal COX activity and COX-I immunoreactivity but down-regulated NDUFB8 (Figure 3.1, Figure 3.2 and Figure 3.3: fibres “3”).

A deeper analysis was performed for aged control AC3. Stereological analysis of COX/SDH histochemistry revealed that the diaphragm was the most affected muscle (int: 4.5%, neg: 6.2%, n=674) followed by psoas (int: 3.6%, neg: 2.9%, n=100) and biceps (int: 1.1%, neg: 1.2%, n=4021) (Figure 3.4, left graphs). Following this, a population of COX deficient and intermediate fibres were selected in each muscle and further assessed for NDUFB8 and COX-I abundance. Immunohistochemistry showed that these muscles presented distinct features of mitochondrial dysfunction. The most common abnormal fibre profile in diaphragm and biceps was: absent COX activity/levels but preserved NDUFB8 (diaphragm: 55.3%, n=38 abnormal fibres, biceps: 40.8%, n=98 abnormal fibres) whereas in psoas it was: absent COX activity/levels and absent NDUFB8 (51.9%, n=27 abnormal fibres) (Figure 3.4, right graphs).
Figure 3.1: Mitochondrial dysfunction in biceps, diaphragm and psoas muscles from aged control 1. COX/SDH histochemistry and immunohistochemistry against NDUFB8 (complex I), SDHA (complex II) and COX-I (complex IV) were performed in serial sections obtained from biceps, diaphragm and psoas muscles. Selected muscle fibres demonstrate: (1) COX deficiency (COX-deficient fibres) with absent COX-I and NDUFB8 immunoreactivity, (2) COX deficiency (COX-deficient fibre) with absent COX-I immunoreactivity and normal NDUFB8 levels, (3) normal COX activity (COX-positive fibres) and COX-I levels but absent NDUFB8 immunoreactivity.
Figure 3.2: Mitochondrial dysfunction in biceps, diaphragm and psoas muscles from aged control 2.
COX/SDH histochemistry and immunohistochemistry against NDUFB8 (complex I), SDHA (complex II) and COX-I (complex IV) were performed in serial sections obtained from biceps, diaphragm and psoas muscles. Fibres from both diaphragm and psoas muscle did not react for COX histochemistry leading to a false and widespread COX deficiency. Similarly, immunohistochemistry failed in both diaphragm and psoas muscles. Selected muscle fibres demonstrate: (1) COX deficiency (COX-deficient fibres) with absent COX-I and NDUFB8 immunoreactivity, (2) COX deficiency (COX-deficient fibre) with absent COX-I immunoreactivity and normal NDUFB8 levels and (*) absent COX activity (COX-deficient fibres) but intermediate levels of COX-I.
Figure 3.3: Mitochondrial dysfunction in biceps, diaphragm and psoas muscles from aged control 3. COX/SDH histochemistry and immunohistochemistry against NDUFB8 (complex I), SDHA (complex II) and COX-I (complex IV) were performed in serial sections obtained from biceps, diaphragm and psoas muscles. Selected muscle fibres demonstrate: (1) COX deficiency (COX-deficient fibres) with absent COX-I and NDUFB8 immunoreactivity, (2) COX deficiency (COX-deficient fibre) with absent COX-I immunoreactivity and normal NDUFB8 levels, (3) normal COX activity (COX-positive fibres) and COX-I levels but absent NDUFB8 immunoreactivity, (4) absent COX activity (COX-deficient fibres) with apparently normal levels of COX-I and NDUFB8, (5) absent COX activity (COX-deficient fibres) but intermediate levels of COX-I and (6) absent COX activity (COX-deficient fibres) and COX-I immunoreactivity with intermediate levels of NDUFB8.
Figure 3.4: Mitochondrial respiratory chain profile of different muscles from Aged Control 1.

COX/SDH histochemistry and immunohistochemistry against NDUFB8 and COX-I were performed in 3 serial muscle sections obtained from (A) biceps, (B) diaphragm and (C) psoas muscles. Fibres reacted for COX/SDH histochemistry were visually classified into: COX (activity) positive (beige), intermediate (light blue) or deficient (blue) groups; left graphs show the classification results from (A) biceps (n=4021) (B) diaphragm (n=674) and (C) psoas (n=524). A population of COX-deficient and intermediate fibres were selected and assessed for NDUFB8 and COX-I abundance. Fibres were visually classified into: ND (fibres with intermediate or no COX activity and no changes in complexes levels), NDUFB8↓/COX-I + (fibres with preserved COX activity and levels but downregulated NDUFB8), NDUFB8+/COX-I↓ (fibres with preserved NDUFB8 but down-regulated COX activity and levels) or NDUFB8↓/COX-I↓ (fibres with down-regulated NDUFB8 and COX activity and levels). Right graphs show the profile of mitochondrial deficiency from abnormal fibres of (A) biceps (n=98 abnormal fibres) (B) diaphragm (n=38 abnormal fibres) and (C) psoas (n=27 abnormal fibres).
According to these results, analysing mitochondrial dysfunction just based on COX/SDH histochemistry would underestimate the overall dysfunction. Indeed, approximately 20% of abnormal fibres (those with down-regulated NDUFB8, but normal COX activity/levels - representing 18.4% in biceps, 21.1% in diaphragm and 18.5% in psoas) would not be detected if COX/SDH histochemistry was not complemented with immunohistochemistry.

3.4.1.2 Inaccuracy of visual classification and the use of serial sections

The previous analysis of serial muscle sections highlighted several inconsistencies between COX histochemistry and COX-I immunohistochemistry. For example: fibres with absent COX activity but normal COX-I immunoreactivity (Figure 3.3: fibres “4”), fibres with absent COX activity but intermediate COX-I immunoreactivity (Figure 3.2: fibre “*” and Figure 3.3: fibres “5”), or fibres with intermediate or absent COX activity but no changes in complexes levels (Figure 3.4: right graphs “ND fibres”).

One explanation for these inconsistencies could be the inaccuracy of visual assessment in detecting subtle changes in colour intensities (enzyme activity or protein levels). Fibres with normal COX activity might have been perceived as intermediate (leading to false intermediate fibres) or, alternatively, fibres with reduced COX activity might have been perceived as having preserved COX-I (leading to false normal COX-I fibres). Another possible explanation could be the use of serial sections. Combining information from serial sections to infer about a fibre profile is inaccurate since the activity and levels of complexes change along the fibre length (Matsuoka et al., 1992, Murphy et al., 2012). Therefore the information provided by each section should be specific to that 10µm domain. For this particular study 4 serial sections were used, which means the inference about the activity and levels was performed across 40µm of the fibre length.

3.4.1.3 Subjectivity: intra- and inter-observer variability

Visual assessment of aged controls AC1 and AC3 diaphragm was particularly challenging. Both post-mortem muscles presented a high number of fibres looking pale blue and grey in COX/SDH histochemistry which were very difficult to classify. The boundaries between “normal”, “intermediate” and “deficient” COX activity categories are defined by the observer, but inevitably, they can change between cases assessed, or over time.
To further illustrate how visual classification of muscle fibres based on COX/SDH histochemistry can be subjective and challenging we investigated muscle biopsies from two particular patients: P1 and P2 (Table 3.1). These biopsies presented a high proportion of COX intermediate fibres and the histochemical signal detected across muscle sections was less intense and variable. Sections were assessed using COX/SDH histochemistry and one hundred muscle fibres were selected to be visually categorised by two researchers, independently, into one of the four categories: COX positive, COX intermediate(+) (int(+)), COX intermediate(-) (int(-)) and COX deficient. Fibres were not randomly selected and therefore the results obtained are not representative of the overall respiratory deficiency in the patients.

Analysis of both patients P1 and P2 revealed marked differences in classification of fibres between the two investigators (Figure 3.5): both investigators agreed in the classification of COX-positive cells (P1: 40% and P2: 21%) but they markedly differed in remaining categories: both categories of intermediate and COX deficient fibres (Figure 3.5 A and B). Importantly, both investigators demonstrated a high degree of inconsistency. Investigator 1 underestimated COX deficiency in patient P1 and overestimated it in patient P2, whereas the opposite was true for investigator 2.

![Image of muscle fibres](image)

Figure 3.5. Inter- and intra-observer variability of visual classification.

COX/SDH histochemistry was performed in muscle sections obtained from patients (A) P1 and (B) P2. Left panels in (A) and (B) show representative images of COX/SDH histochemistry (20x). For each patient 100 muscle fibres reacted for COX/SDH histochemistry were selected and visually classified by two investigators. Bar graphs show the percentage of COX positive (beige), int(+) (light beige), int(-) (light blue) or deficient (blue) based on visual classification by an investigator 1 and 2.
3.4.2 Developing an objective classification using COX/SDH histochemistry

The following section describes the development of a new method to assess objectively the degree of mitochondrial respiratory chain dysfunction in single muscle fibres using COX/SDH histochemistry. In 2012, an objective assessment was developed using the intensity measurements of COX histochemistry, SDH histochemistry and NDUFB8 immunohistochemistry to determine the respiratory status of muscle fibres (Murphy et al., 2012). The method developed here only use COX and SDH intensity measurements decreasing the complexity (and time) of image analysis and minimising problems associated with the use of serial sections.

3.4.2.1 New model rationale

The method uses COX and SDH intensity measurements to determine the percentage of COX activity in individual fibres; it was developed assuming the following premises:

1. COX reaction measures the activity of complex IV, partially encoded by mitochondrial DNA, and SDH measures the activity of complex II, fully encoded by nuclear DNA.

2. SDH is a marker of mitochondrial mass and COX activity is proportional to SDH activity in a healthy cell.

3. Within the linear period of incubation time, COX reactivity increases proportionally with COX activity (Figure 3.6, C and D), and therefore, COX reactivity is an outcome measure of COX activity (Murphy et al. 2012).

Therefore when COX and SDH histochemical signals are both intense (Figure 3.7B, scored as “++|++”) or proportionally reduced (Figure 3.7B, scored as “+|+”) COX activity is normal. As illustrated, the ratio between COX and SDH intensities equals 1 (Figure 3.7B). However when COX histochemical signal is reduced and SDH signal is preserved (Figure 3.7C, scored as “+|++” or “+/-|+”), COX activity is decreased according to the level of mitochondrial mass. In this scenario, the ratio between COX and SDH intensities equals approximately 0.5 (Figure 3.7C). In the absence of COX signal (Figure 3.7C scored as “/-++” or “-/+”), COX activity is entirely lost; according to this scenario the ratio equals 0 (Figure 3.7). We propose that the ratio between COX intensity and SDH intensity readings reflects the degree of COX activity in individual muscle fibres.
Figure 3.6. COX reactivity is an outcome measure of COX activity. (A,B)
Both COX and SDH reactivity increase linearly within the “linear period” of incubation time; passed that point COX and SDH reactivity reach a maximum reactivity plateau. (C,D) During the “linear period” enzyme activity is proportional to COX and SDH reactivity/intensity.

Figure 3.7: Relationship between COX and SDH activities.
(A) COX histochemistry is represented in brown, SDH histochemistry is represented in blue. These colours range from light (-) to dark (++) according to the level of enzyme activity; lighter for low activity and darker for high activity. (B) Represents a scenario where COX activity is proportional to SDH activity, and so, COX activity is unaffected. (C) SDH activity is higher than the activity of COX, indicating that COX activity is reduced. (D) COX activity is lost in this muscle fibre.
3.4.2.2 Developing the objective classification

The objective classification was initially developed using a small sample of muscle fibres (19 muscle fibres from biceps of the aged control AC3, Table 3.1). Serial sections were assessed using individual and sequential COX/SDH histochemistry.

3.4.2.2.1 Optical density measurements (ODCOX, ODSDH)

The optical density (OD) of COX (ODCOX) and SDH (ODSDH) reactivity was measured in individual muscle fibres using image J. Both COX and SDH TIFF images were first converted into grey scale and the region of interest (ROI) was defined manually within individual muscle fibres using the freehand selection tool (Figure 3.8). Each new ROI was sequentially added (by pressing “t”) in the ROI manager. Following this, the mean OD was measured for individual ROI. Grey scale range from 0 (darkest pixels) to 255 (brightest pixels).

![Representative print-screen images showing the main steps of COX and SDH densitometry in individual fibres.](image)

Figure 3.8. Representative print-screen images showing the main steps of COX and SDH densitometry in individual fibres.

Individual (A) COX and (B) SDH histochemistry were converted into grey scale, (C) and (D) respectively, and then the region of interest (ROI) was traced within muscle fibres (red tracing). Areas 20, 21 and 22 were also sampled and measure the background noise (ODbackground). The software then automatically measured the optical density of each ROI.
3.4.2.2 Correction of ODCOX and ODSDH measurements

Having measured the OD of COX and SDH in individual muscle fibres, both ODCOX and ODSDH were normalised. This correction was necessary for several reasons:

1. **Re-scaling.** The gray scale is an inverted scale with “0” representing the darkest pixels (high reactivity/activity) and “255” representing the brightest pixels (no reactivity/activity). However, according to the model (Figure 3.7), “0” indicated no COX reactivity/activity and “1” signified high COX reactivity/activity.

2. **Correct for background noise.** Fibres with no COX activity (although showing no COX reactivity) were not entirely white due to the background noise.

3. **Normalisation.** According to the model, ODCOX/ODSDH from a normal and healthy fibre equals 1. Therefore 3 normal fibres were selected to define “normality”: the standard levels of COX intensity and SDH intensity in healthy fibres.

ODCOX and ODSDH readings were therefore corrected proportionally, using the following normalisation equations:

\[
\text{Corrected ODCOX} = \frac{|(\text{ODCOX} - \text{ODbackground})|}{(\text{ODCOX “darkest intensity”} - \text{ODbackground})}
\]
\[
\text{Corrected ODSDH} = \frac{|(\text{ODSDH} - \text{ODbackground})|}{(\text{ODSDH “darkest intensity”} - \text{ODbackground})}
\]

The “darkest intensity” was calculated by averaging the 3 lowest OD values of fibres, excluding ragged-red fibres (Figure 3.8C and D: fibres 11, 14 and 18). The “brightest intensity” was calculated by averaging 3 OD measurements of background – an area close to the section without fibres (ODbackground) (Figure 3.8C and D: areas 20, 21 and 22).

3.4.2.3 Calculating the relative percentage of COX activity

The ratio \((\text{corrected ODCOX/corrected ODSDH})*100\) (yielding COX/SDH ratio, occasionally abbreviated to ratio) was calculated, providing a relative percentage of COX activity. Categories were arbitrary defined and fibres were classified into one of the following groups: COX deficient (≤25% COX/SDH ratio), COX intermediate (int, 25%< COX/SDH ratio <75%) and COX positive (COX/SDH ratio ≥75%) groups. Since COX intermediate group encompassed a wide range of different levels of COX activity, this group was further subdivided into COX int(+), (50%≤ COX/SDH ratio <75%) and COX int(-) (25%< COX/SDH ratio <50%).
Figure 3.9. Objective classification of muscle fibres from aged control 3 according to the COX/SDH ratio.

Serial sections were reacted for combined COX/SDH histochemistry, individual COX histochemistry, individual SDH histochemistry and again, combined COX/SDH histochemistry. Top images show the combined COX/SDH histochemistry performed (A) at the beginning and (B) end (in the serial sections). (C) Table shows the subjective and objective classification of fibres. The visual method categorizes fibres into positive (pos), intermediate (int) and deficient (neg) fibres. The objective classification based on the COX/SDH ratio fall into four major classes: positive (pos, ratio ≥75%), int(+) (50%≤ ratio <75%), int(-) (25%< ratio <50%) and deficient (neg, ≤25% ratio).

<table>
<thead>
<tr>
<th>Fibre</th>
<th>Subjective classification</th>
<th>Ratio (%)</th>
<th>Objective classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Neg</td>
<td>16</td>
<td>Neg</td>
</tr>
<tr>
<td>2</td>
<td>Neg</td>
<td>15</td>
<td>Neg</td>
</tr>
<tr>
<td>3</td>
<td>Pos</td>
<td>97</td>
<td>Pos</td>
</tr>
<tr>
<td>4</td>
<td>Int / Neg</td>
<td>37</td>
<td>Int(-)</td>
</tr>
<tr>
<td>5</td>
<td>Pos / Int</td>
<td>77</td>
<td>Pos</td>
</tr>
<tr>
<td>6</td>
<td>Neg</td>
<td>8</td>
<td>Neg</td>
</tr>
<tr>
<td>7</td>
<td>Neg</td>
<td>14</td>
<td>Neg</td>
</tr>
<tr>
<td>8</td>
<td>Int</td>
<td>31</td>
<td>Int(-)</td>
</tr>
<tr>
<td>9</td>
<td>Int/ Neg</td>
<td>21</td>
<td>Neg</td>
</tr>
<tr>
<td>10</td>
<td>Int/ Neg</td>
<td>41</td>
<td>Int(-)</td>
</tr>
<tr>
<td>11</td>
<td>Pos</td>
<td>89</td>
<td>Pos</td>
</tr>
<tr>
<td>12</td>
<td>Pos</td>
<td>90</td>
<td>Pos</td>
</tr>
<tr>
<td>13</td>
<td>Pos</td>
<td>118</td>
<td>Pos</td>
</tr>
<tr>
<td>14</td>
<td>Pos</td>
<td>105</td>
<td>Pos</td>
</tr>
<tr>
<td>15</td>
<td>Int</td>
<td>50</td>
<td>Int(+)</td>
</tr>
<tr>
<td>16</td>
<td>Pos</td>
<td>122</td>
<td>Pos</td>
</tr>
<tr>
<td>17</td>
<td>Pos</td>
<td>88</td>
<td>Pos</td>
</tr>
<tr>
<td>18</td>
<td>Pos</td>
<td>106</td>
<td>Pos</td>
</tr>
<tr>
<td>19</td>
<td>Pos</td>
<td>74</td>
<td>Int(+)</td>
</tr>
</tbody>
</table>

3.4.2.2.4 Preliminary results

The objective classification based on the ratio of COX/SDH measurements was in agreement with the subjective classification (visual classification) (Figure 3.9). Visual classification is currently the only method available to analyse COX activity, and therefore, the only method...
available to validate any new analysis. Both methods categorized fibres in the same groups (Figure 3.9, fibres 1 and 2). But importantly, the objective classification highlighted difficulties connected to the human eye error and improved the analysis (Figure 3.9, fibres 5 and 9).

3.4.2.3 Optimising the objective classification

3.4.2.3.1 Methods tested

Whilst examining larger number of muscle fibres to further validate the new objective assessment, a concern arose regarding the method of calculating COX activity. Deducting corrected ODCOX from ODSDH was recognised as an alternative: (correctedODSDH-correctedODCOX)*100 (yielding SDH-COX difference, and abbreviated occasionally to difference). Therefore both: COX/SDH ratio and SDH-COX difference were tested in order to determine which value was more accurate in identifying COX activity in single fibres. Furthermore, when other areas of the same biopsy were assessed, a second concern arose regarding the normalisation method. Consequently, different normalisation methods were tested in order to ensure the highest accuracy of this new method;

1. **Normalisation method 1**: fibres chosen to normalise ODCOX and ODSDH measurements were those presenting the darkest COX intensities (lowest ODCOX values), excluding ragged red fibres (Figure 3.10 A, fibres 1, 2 and 3). Also, a normalisation equation was produced for each area covered (snap) from a given section (normalisation equation/area/section),

2. **Normalisation method 2**: fibres chosen to normalise ODCOX and ODSDH measurements were also those presenting the darkest COX intensities, excluding ragged red fibres (Figure 3.10 B, fibres 1, 2 and 3). However, a unique normalisation equation was produced per section (normalisation equation/section),

3. **Normalisation method 3**: fibres chosen to normalise ODCOX and ODSDH measurements were those having the darkest COX and SDH intensities, respectively. Therefore fibres chosen to normalise ODCOX measurements (Figure 3.10 C, fibres 1, 2 and 3) may have been different from those normalising ODSDH measurements (Figure 3.10A, fibres 4, 5 and 6). Also, a unique normalisation equation was produced per section (normalisation equation/section).
3.4.3.2 Methodology developed to compare the tested methods

Excel was used to compare the 6 different methods of determining COX activity (ratio versus difference each with the 3 normalisation method) with visual classification. Excel cells were conditionally formatted in order to be colour coded according to the COX/SDH ratio and SDH-COX difference values, and therefore, according to the category of fibre (Figure 3.11A): beige for COX positive, light beige for int(+), light blue for int(-) and blue for COX deficient.
In order to assess the sensitivity of the different methods tested, a scoring scale was developed to evaluate the agreement between the objective classification (OC) and the visual/subjective classification (SC). Each method was given a score, as follows:

1. Score 1 was given when subjective and objective classification agreed, categorizing fibres in the same group. For example: when both SC and OC classified a fibre as COX positive (Figure 3.11B, fibre 11: all methods tested) or when both classified a fibre as COX deficient (Figure 3.11B: fibre 1: ratio M1, M2 and M3).

2. Score 0 was given when objective classification categorised the fibre in the immediate flanking groups of subjective classification. For example: when SC classified a fibre as COX deficient but OC determined COX int(-) (Figure 3.11B, fibre 1: difference M1 and M2) or when SC classified a fibre as COX intermediate but OC determined COX positive (Figure 3.11B: fibre 15: difference M3). This decreased the impact of a wrong visual classification.

3. Score -1 was given whenever objective classification categorized the fibre in other groups than situation (1) and (2). For example when SC classified a fibre as COX deficient but OC classified it as int(+) (Figure 3.11B, fibre 1: difference M3), or the opposite: when SC determined COX positive but OC classified it as COX int(-) or deficient (not shown in Figure 3.11B).

4. Subjective classification did not discriminated between int(+) and int(-). Therefore score 1 was given to both COX int(+) and int(-) fibres when subjective classification classified a fibre as an COX intermediate, (Figure 3.11B, fibre 8: ratio M1, M2 and M3, difference M1 and M2). Rules (2) and (3) were applied on the following groups. For example score 0 was given when SC classified a fibre as COX intermediate but OC classified it as COX positive (Figure 3.11B, fibre 8: difference M3).

5. When visual classification was not easy, a range of 2 groups was determined, with score 1 being given to both groups. For example when SC classified a fibre as deficient/intermediate (Figure 3.11B, fibre 9) – score 1 was given when OC classified it as deficient or int(-) (Figure 3.11B, fibre 9: ratio M1, M2 and M3) and score 0 was given when OC classified it as int(+) (Figure 3.11B, fibre 9: difference M3).
Figure 3.11. Methodology developed to compare the different normalisation methods.
(A) Excel cells were colour coded according to the COX/SDH ratio or SDH-COX difference values, each colour corresponding to the category of fibres: COX-positive (beige), int(+) (light beige), int(-) (light blue) or deficient (blue). (B) Table shows for each fibre, the subjective classification and the objective classification based on ratio or difference value when calculated using the different normalisation methods (M1, M2 and M3 columns); cells containing values for ratio or difference were colour coded as shown in (A) to be easily visualized. The “S” columns show the score (-1, 0 or 1) given to each method if they agreed (or not) with the subjective classification.

3.4.2.3.3 Evaluation of different methods

To evaluate the accuracy of each method in determining COX activity, muscle biopsies from aged controls AC1 (psoas), AC2 (biceps) and AC3 (biceps, diaphragm and psoas) were reassessed (Table 3.1). Different areas of sections were imaged and only a selection of muscle fibres was visually classified. Following this, the same muscle fibres were objectively classified using the different methods.

Table 3.4 shows the counts of “1” scores given to each method - discriminated by muscle assessed or as a total. The method which reached the highest scores was the COX/SDH ratio with normalization method 3 (Table 3.4); 801 out of 849 muscle fibres scored “1”. Also, it did not count any “-1” scores indicating absence of misclassifications (Table 3.4). By contrast, the difference (irrespective of the normalisation method) had consistently lower total scores “1” and some “-1” scores (Table 3.4). Unlike the ratio method, the objective classification of fibres
provided by the difference method detected fewer deficient fibres and most of the abnormal fibres were classified as intermediate (+) (Figure 3.12C).

The frequency distribution of both COX/SDH ratio and SDH-COX difference were plotted (Figure 3.12). Both distributions presented three distinct peaks that corresponded to the positive, intermediate and deficient groups of fibres (Figure 3.12A and B). However, the individual peaks of the COX/SDH ratio distribution were more symmetrical than the peaks from the SDH-COX difference distribution. Taken together, these results suggested that the COX/SDH ratio appears to be more accurate and sensitive in classifying fibres than the SDH-COX difference.

Table 3.4. Agreement between the objective classification and subjective classification when using different normalisation methods

<table>
<thead>
<tr>
<th></th>
<th>Ratio</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>n (fibres)</td>
</tr>
<tr>
<td>“1” scores AC1 psoas</td>
<td>137</td>
<td>115</td>
<td>139</td>
<td>133</td>
<td>122</td>
<td>138</td>
<td>152</td>
</tr>
<tr>
<td>“1” scores AC2 biceps</td>
<td>206</td>
<td>208</td>
<td>232</td>
<td>199</td>
<td>202</td>
<td>188</td>
<td>236</td>
</tr>
<tr>
<td>“1” scores AC3 biceps</td>
<td>178</td>
<td>170</td>
<td>191</td>
<td>178</td>
<td>172</td>
<td>173</td>
<td>209</td>
</tr>
<tr>
<td>“1” scores AC3 diaphragm</td>
<td>85</td>
<td>90</td>
<td>90</td>
<td>82</td>
<td>88</td>
<td>86</td>
<td>91</td>
</tr>
<tr>
<td>“1” scores AC3 psoas</td>
<td>132</td>
<td>131</td>
<td>151</td>
<td>134</td>
<td>138</td>
<td>149</td>
<td>161</td>
</tr>
<tr>
<td>Total “-1” scores</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>849</td>
</tr>
<tr>
<td>Total “1” scores</td>
<td>738</td>
<td>714</td>
<td>803</td>
<td>726</td>
<td>722</td>
<td>734</td>
<td></td>
</tr>
</tbody>
</table>

M1, M2 and M3 indicate normalisation methods 1, 2 and 3 respectively; n(fibres), the total number of fibres assessed; total “-1” scores, the total number of “-1” each method counted in all analysed muscles; total “1” scores, the total number of “1” scores each method counted in all analysed muscles.

Figure 3.12. Objective classification given by the ratio and difference values when using the normalisation method 3.

Densitometry was performed biceps muscle from aged control 2 and corrected ODCOX and ODSDH readings were used to calculate either the COX/SDH ratio or SDH-COX difference. (A, B) Graphs show the frequency distribution of the (A) ratio and (B) difference values normalised by method 3 (M3). (C) Bar graph show the percentage of COX-positive (beige), int(+) (light beige), int(-) (light blue) or deficient (blue) based on the ratio (left bar) or difference (right bar), normalised by method 3.
3.4.3 Developing an objective classification using immunofluorescence

The following section describes the development of a new method to objectively assess the degree of mitochondrial respiratory chain dysfunction in single muscle fibres using fluorescence-based immunohistochemistry. This technique allows labelling multiple epitopes in a single section, avoiding the problems associated with the use of serial sections, and simplifying image analysis. Importantly, it allows investigating complex I levels in individual muscle fibres, overcoming the absence of histochemical techniques to measure complex I activity.

3.4.3.1 Double fluorescence-based immunohistochemistry

In order to assess the levels of complex IV and complex I in individual muscle fibres, double immunofluorescence of COX-I (FITC - 488nm, green) and NDUFA13 (Rhodamine - 546nm, red) (Table 3.3) was performed in a biceps muscle section obtained from aged control AC2 (Figure 3.14A).

3.4.3.1.1 Optical density measurements

The OD of COX-I (ODCOX-I) and NDUFA13 (ODNDUFA13) was measured in individual muscle fibres using image J (Figure 3.13). TIFF images were first opened individually and corrected to remove the background noise. This was achieved by increasing the threshold until the background value equalled zero. Subsequently, images from individual channels were imported as image sequence and the ROI was defined manually within individual muscle fibres using the freehand selection tool (Figure 3.13). The mean OD was recorded for all created individual ROI.
Figure 3.13. Representative print-screen images showing the main steps of COX-I and NDUFA13 densitometry in individual fibres.
Individual TIFFs of (A) COX-I and (B) NDUFA13 channels were imported as an image sequence and the region of interest (ROI) was traced within muscle fibres (red tracing).

Figure 3.14. Complex I and IV protein abundance in aged bicep muscle.
Double immunofluorescence was performed in a muscle sections obtained from aged control AC2. Fluorescent detection was used to visualise: complex IV subunit I (COX-I) - green (Fluorescein – 488nm) and complex I subunit (NDUFA13) - red (Rhodamine – 546nm). (A) Shows a representative image of the double immunofluorescence. (B) Top panel shows muscle fibres selected for densitometry (n=100); lower panel shows the levels of COX-I and NDUFA13 in each muscle fibre. Selected muscle fibres (or plotted points) demonstrate: “blue” normal COX-I and NDUFA13 abundance, “red”: down-regulated COX-I abundance, “green”: down-regulated NDUFA13 abundance.
3.4.3.1.2 Preliminary data

A selection of 100 muscle fibres were assessed in terms of COX-I and NDUFA13 levels and both ODCOX-I and ODNDUFA13 from individual fibres were plotted (Figure 3.14B). The scatterplot showed 3 distinct populations of muscle fibres, which was consistent with the judgement of immunofluorescence by eye. Plotted points from “healthy appearing” muscle fibres (Figure 3.14B top panel: for example fibres marked “32”, “83” and “92”) were lining up above the extracted linear regression (Figure 3.14B lower panel: blue plotted points); in these fibres, COX-I and NDUFA13 were strongly and positively correlated/associated in a 1 to 1 proportion (Figure 3.14B lower panel: linear regression - \(y = 1.105x + 1.08 \), \(R^2 = 0.9 \)). By contrast plotted points from fibres appearing green (Figure 3.14B top panel: fibres marked “60” and “84”) appeared plotted above the linear regression (Figure 3.14B lower panel: green plotted points); they presented 3 times less NDUFA13 than the expected, according to COX-I levels. Similarly, plotted points from fibres appearing red (Figure 3.14B top panel: fibres marked “17” and “30”) appeared plotted below the linear regression (Figure 3.14B lower panel: red plotted points); these fibres presented 2 times less COX-I than the expected according to NDUFA13 level.

This analysis was incomplete as the abundance of complex I and IV subunits were not normalised to the mitochondrial content. This could be leading to the under-estimation of mitochondrial dysfunction. For example, this approach did not discriminate between healthy fibres with unaffected complex I and IV and abnormal fibres with both COX-I and NDUFA13 equally down-regulated to intermediate levels. Also it did not discriminate between fibres with no COX-I and normal NDUFA13 and fibres with no COX-I and intermediate NDUFA13 abundance (Figure 3.14B: red fibres/ red plotted points).

3.4.3.2 Triple fluorescence-based immunohistochemistry

Triple immunofluorescence was performed in order to improve the assessment of mitochondrial respiratory chain components in individual muscle fibres. The third variable assessed, mitochondrial mass, was crucial to assess the relative levels of COX-I and NDUFA13.
3.4.3.2.1 Developing the objective classification

A diaphragm muscle section obtained from aged control AC1 was assessed by triple immunofluorescence to detect COX-I (FITC - 488nm, green), NDUFA13 (Rhodamine - 546nm, red) and SDHA (Alexa fluor 647nm, blue) (Table 3.3) and the OD of each mitochondrial marker (ODCOX-I, ODNDUFA13 and ODSDHA) was measured in individual muscle fibres (imageJ) (Figure 3.15).

ODCOX-I and ODNDUFA13 were plotted against each other (Figure 3.15B: top graph). The scatterplots showed a positive association between complex I and complex IV abundance. The estimated linear regression showed that COX-I and NDUFA13 in “healthy appearing” fibres were moderately correlated in a 1.3 to 1 proportion, respectively (Figure 3.15B top graph: linear regression - y= 1.29x+ 3.17, R²=0.7). Moreover, the linear regressions from both ODCOX-I and ODSDHA plot (Figure 3.15B: middle graph) and ODNDUFA13 and ODSDHA plot (Figure 3.15B: lower graph) showed that, in “healthy appearing” fibres, both COX-I and NDUFA13 were positively correlated with SDHA. SDHA was associated in a 1 to 1 proportion with COX-I (y=0.93x + 0.53, R²=0.7) and in a 0.6 to 1 with NDUFA13 (y=0.61x + 0.30, R²=0.7).

With the added mitochondrial mass variable, it was possible to distinguish between healthy fibres with normal complex I and IV (Figure 3.15B: grey plotted points) and abnormal fibres with both COX-I and NDUFA13 equally down-regulated (Figure 3.15B: orange plotted points). It was also possible to distinguish among fibres with absent COX-I (Figure 3.15B middle panel: red plotted points) those presenting normal, intermediate or absent NDUFA13 (Figure 3.15B lower panel: red plotted points).

In order to investigate if ODCOX-I and ODSDHA could be used to calculate the percentage of COX protein levels, the ratio (ODCOX-I/ODSDHA)*100 (yielding COX-I/SDHA ratio) was calculated and muscle fibres were classified into one of the following classes: COX-I deficient (≤25% COX-I/SDHA ratio), int(-) (25%< COX-I/SDHA ratio <50%) and int(+) (50%≤ COX-I/SDHA ratio <75%) and COX-I positive (COX-I/SDHA ratio ≥75%) groups. Following this, fibres were visually assessed.

The objective classification based on the COX-I/SDHA ratio was in agreement with the subjective classification (visual classification, n=430 fibres) (Figure 3.16B). All fibres appearing COX-I deficient in triple immunofluorescence consistently showed a COX-I/SDHA ratio value lower than 25%. Similarly, fibres appearing normal always showed a COX-I/SDHA ratio higher than 75%. Unfortunately, fibres objectively classified as COX-I intermediate were more difficult to visually validate.
Triple immunofluorescence was performed in a muscle sections obtained from aged control AC1. Fluorescent detection was used to visualise: complex IV subunit I (COX-I) - green (Fluorescein – 488nm), complex I subunit (NDUFA13) - red (Rhodamine – 546nm) and complex II subunit A (SDHA) - blue (Alexa fluor 647nm). (A) Shows a representative image of the triple immunofluorescence. 430 muscle fibres were selected for densitometry. (B) The top graph plots ODCOX-I and ODNDUFA13 from individual muscle fibres, the middle graph plots ODCOX-I and ODSDHA, and the lower graph ODNDUFA13 and ODSDHA. Selected plotted points demonstrate: “red”: down-regulated COX-I abundance, “orange”: down-regulated COX-I and NDUFA13 abundance.

Figure 3.15: Complex I, II and IV protein abundance in aged diaphragm muscle.
Figure 3.16. Objective classification of muscle fibres according to the COX-I/SDHA ratio.
(A) Shows one of the selected areas of the triple immunofluorescence assessed by densitometry. (B) The table shows the subjective classification and objective classification based on the ratio between ODCOX-I and ODSHDA measurements, from a sample of 19 fibres. The visual method categorized fibres into positive (pos), intermediate (int) and deficient (neg) fibres. The objective classification divided the fibres between 4 major classes: positive (pos, ratio ≥75%), int(+) (50%≤ ratio <75%), int(-) (25%< ratio <50%) and deficient (neg, 25%≤ ratio). (C) Bar graph shows the percentage of COX-positive (beige), int(+) (light beige), int(-) (light blue) or deficient (blue) based on the COX-I/SDHA ratio (n=430).
Validation of the new method

To investigate whether COX-I protein levels could be used to infer COX activity, COX/SDH histochemistry and triple immunofluorescence to detect COX-I (FITC - 488nm, green), NDUFA13 (Rhodamine - 546nm, red) and SDHA (Alexa fluor 647nm, blue) (Table 3.3) were performed in muscle sections obtained from a young disease control (DC1), an aged control (AC3) and a patient with a diagnosed mitochondrial disorder (P3) (Figure 3.17). Only COX-I levels were validated since there is no histochemical assay to validate NDUFB8 levels against. A selection of fibres was objectively assessed based on COX/SDH histochemistry (COX/SDH ratio) and immunofluorescence (COX-I/SDHA ratio or NDUFA13/SDHA ratio).

In both young disease and old control, the objective classification provided by the COX/SDH and COX-I/SDHA ratios presented slight differences (Figure 3.18A and B, left and middle bars). However, in the young disease control DC1 not all fibres assessed using COX/SDH histochemistry (n=306) were re-assessed using immunofluorescence (n=224); this was due to either lost areas (during cryostat sectioning) or folded areas. Also, in the old control AC2, the SDH histochemistry was not uniform across the section, with some areas more pale. These are believed to be tissue artefacts, and not a true decrease in SDH activity. By contrast, in patient P3 the objective classification provided by COX/SDH ratio (n=619) and COX-I/SDHA ratio (n=571) were in complete agreement (Figure 3.18C, left and middle bars). These results suggested that COX-I levels reflect COX activity, validating its use to infer mitochondrial respiratory chain dysfunction.

This new method allowed quantification of the level of complex IV and I dysfunction in single muscle fibres (Figure 3.18, middle bars). The mitochondrial patient showed the highest accumulation of muscle fibres with down-regulated COX-I (25.5% abnormal fibres, 18.2% deficient fibres, n=571) followed by the aged control (15.4% abnormal fibres, 5.8% deficient fibres, n=481) and the young disease control (0.4% abnormal fibres: all int(+), n=224) (Figure 3.18A, right bar). A similar trend was observed for complex I (Figure 3.18, right bars): the mitochondrial patient showed the highest percentage of fibres with down-regulated NDUFA13 (49% of abnormal fibres, 13.6% of deficient fibres, n=571, Figure 3.18C right bar), followed by the aged control (58.3% of abnormal fibres, 3.4% deficient fibres, n= 481, Figure 3.18B, right bar) and the young disease control (2.7% abnormal fibres: all int(+), n=224, Figure 3.18A, right bar) (Figure 3.18).
Figure 3.17. Comparing COX/SDH histochemistry with complex I, II and IV protein abundance in young, aged and diseased skeletal muscle.

COX/SDH histochemistry and triple immunofluorescence were performed in serial muscle sections obtained from young DS1, aged control 3 and patient P3. Fluorescent detection was used to visualise: complex IV subunit I (COX-I) - green (Fluorescein – 488nm), complex I subunit (NDUFA13) - red (Rhodamine – 546nm) and complex II subunit A (SDHA) – blue (Alexa fluor 647nm). DC1 is a paediatric control and therefore presents a reduced fibre size.
Figure 3.18. Objective classification of fibres based on COX/SDH histochemistry and COX-I/SDHA and NDUFA13/SDHA immunodetection in young, aged and diseased skeletal muscle. COX/SDH histochemistry and triple immunofluorescence were performed in serial muscle sections obtained from (A) young disease control (DC1), (B) aged control 3 (AC3) and (C) patient (P3). Graphs show the classification results from the objective classification based on COX/SDH ratio (left bars) and objective classification based on COX-I/SDHA (middle bar) and NDUFA13/SDHA (right bar) ratios. Fibres were classified into COX (activity/protein level) positive (beige), int(+) (light beige), int(-) (light blue), and deficient (blue) groups.

One surprising finding was the amount of fibres with intermediate NDUFA13 levels in the old control; this raised a concern: whether or not this down-regulation was real. In fact, the exposure time used to image NDUFA13 channel was extremely high and this channel showed a high level of background noise. This could account for the abnormally high complex I deficiency noted for this older adult, highlighting the need for further optimisation.

3.4.3.3 Optimising triple fluorescence-based immunohistochemistry

To optimise the assessment of mitochondrial respiratory chain components in individual muscle fibres, a triple immunofluorescence detecting COX-I and other mitochondrial markers, NDUFB8 and porin, was performed. NDUFB8 antibody binds its epitope with a higher affinity than NDUFA13, providing stronger signal; porin is a voltage-gated ion channel located in the outer mitochondrial membrane (Mannella, 1998), and it is commonly used to assess the overall mitochondrial mass (Mahad et al., 2009, Grunewald et al., 2014).
3.4.3.3.1 New mitochondrial markers

A diaphragm muscle section obtained from aged control AC1 (a serial section from that shown in Figure 3.15) was assessed using triple immunofluorescence to detect COX-I (FITC - 488nm, green), NDUFB8 (Rhodamine - 546nm, red) and porin (Alexa fluor 647nm, blue) (Table 3.3) and the OD of each mitochondrial marker (ODCOX-I, ODNDFB8 and ODporin) was measured in individual muscle fibres (imageJ) (Figure 3.19).

ODCOX-I and ODNDFB8 were plotted against each other (Figure 3.19: top graph). The scatterplot showed (as previously with NDUFA13) a positive association in “healthy appearing” fibres; COX-I and NDUFB8 were moderately correlated in a 1.3 to 1 proportion, respectively (Figure 3.19, top graph: y= 1.319x+ 0.195, R^2=0.6). Moreover, both COX-I and NDUFB8 in “healthy appearing” fibres were positively correlated with porin: in a 3 to 2 proportion for COX-I (Figure 3.19, middle graph: y=1.500x, R^2=0.7) and 1 to 1 for NDUFB8 (Figure 3.19, lower graph: y=1.0695x, R^2=0.6). These results confirmed therefore that NDUFB8 antibody is stronger and provides better signal than NDUFA13 antibody.

To also validate the use of porin as a mitochondrial mass marker, matching fibres in COX-I, NDUFA13 and SDHA immunofluorescence (Figure 3.15) and COX-I, NDUFB8 and porin immunofluorescence (Figure 3.19) were first identified (Figure 3.20A and B). Following identification, their ODSHDA and ODporin were plotted together. The scatter of plotted points showed that porin was strongly correlated with SDHA, in a 2 to 1 proportion (Figure 3.20C, y=0.490x, R^2=0.8), confirming that porin can be used to infer about the overall mitochondrial mass in muscle fibres.

Consequently, the objective assessment of complex IV provided by the COX-I/SDHA ratio (normal: 83.7%, int(+): 8.6%, int(-): 2.1% and deficient= 5.6%) and the COX-I/porin ratio (normal: 88.0%, int(+): 3.0%, int(-): 4.0% and deficient= 5.0%) were not significantly different (Z test for two populations proportions, p<0.05). However, the objective assessment of complex I showed marked differences, especially among the normal and intermediate groups. The objective classification based on the NDUFA13/SDH ratio (normal: 10.7%, int(+): 73.4%, int(-): 12.4% and deficient: 3.5%) over-estimated mitochondrial dysfunction when compared to the objective classification based on the NDUFB8/porin ratio (normal: 88.0%, int(+): 4.0%, int(-): 6.0% and deficient: 2.0%).
Figure 3.19. Complex I, complex IV and porin protein abundance in aged diaphragm muscle.
Triple immunofluorescence was performed in a muscle sections obtained from aged control AC1. Fluorescent detection was used to visualise: complex IV subunit I (COX-I) - green (Fluorescein – 488nm), complex I subunit (NDUF8) - red (Rhodamine – 546nm) and porin - blue (Alexa fluor 647nm). (A) Shows a representative image of the triple immunofluorescence. 200 muscle fibres were selected for densitometry. (B) Top graph plots ODCOX-I and NDUFB8 from individual muscle fibres, middle graph plots ODCOX-I and ODporin, and lower graph ODNDUF8 and ODSDHA.
Figure 3.20. Correlation between SDHA and porin.
Triple immunofluorescence against (A) NDUFA13, COX-I and SDHA and (B) NDUFB8, COX-I and porin was performed in serial diaphragm muscle sections obtained from aged control AC1. (C) Graph plots the ODporin and ODSDHA measured in matching fibres (n=33). (D) Graphs show the classification results based on COX-I/SDHA and NDUFA13/SDHA (left double bars) and based on COX-I/porin and NDUFB8/SDHA (right bar) ratios. Fibres were classified into positive (beige), int(+) (light beige), int(−) (light blue), and deficient (blue) groups.

These results showed that NDUFB8 provided more signal than NDUFA13, when using the same exposure time (6.0s, Table 3.5). Also, they showed that porin provided more signal than SDHA, since SDHA required a longer exposure time than porin (5.0s to image SDHA and 2.4s to image porin). Still, the exposure times used remained high, especially for the NDUFB8 and porin channels.

Table 3.5. Exposure times used to image the different channels

<table>
<thead>
<tr>
<th>Channel</th>
<th>Primary antibody</th>
<th>Exposure time</th>
<th>Primary antibody</th>
<th>Exposure time</th>
</tr>
</thead>
<tbody>
<tr>
<td>FITC (488nm)</td>
<td>COX-I</td>
<td>1.7s</td>
<td>COX-I</td>
<td>1.7s</td>
</tr>
<tr>
<td>Rhodamine (546nm)</td>
<td>NDUFA13</td>
<td>6.0s</td>
<td>NDUFB8</td>
<td>6.0s</td>
</tr>
<tr>
<td>Cy (647nm)</td>
<td>SDHA</td>
<td>5.0s</td>
<td>porin</td>
<td>2.4s</td>
</tr>
</tbody>
</table>
3.4.3.3.2 New combination of secondary antibodies

Experimental optimisations were undertaken to decrease the exposure times needed to image the different channels and still achieve an acceptable signal (especially for NDUFB8 and porin channels). Serial diaphragm muscle sections obtained from aged control AC1 were assessed in terms of triple immunofluorescence, but different combinations of primary and secondary antibodies were used to detect COX-I, NDUFB8 and porin, as follows:

1. **Combination 1**: Alexa fluor488: NDUFB8, Alexa fluor 546: COX-I, Alexa fluor 633: porin
2. **Combination 2**: Alexa fluor 488: porin, Alexa fluor 546: NDUFB8, Alexa fluor 647: COX-I

All dyes (used so far) were replaced by the equivalent Alexa fluor (Table 3.3). These produce greater fluorescent output and are more photostable than the other spectrally similar conjugates. The concentration of the secondary antibodies was changed from 1:300 to 1:200, and sections were incubated for 2h at RT (instead of 1h). Also, muscle sections were pre-incubated with 5%NGS (instead of 1%NGS) for 1h at RT (instead 30min). One source of background signal is the non-specific binding of secondary antibodies to endogenous Fc receptors, therefore increasing the concentration and time of the protein block helps reducing unwanted background. Finally, all images were acquired at 20x instead of 10x. When using a higher magnification, the amount of light that penetrates through the objective is higher, therefore, the exposure time needed to obtain an optimal fluorescence, decreases.

The four changes made to the protocol had a positive impact on the exposure times needed to image sections (Figure 3.21: left and middle columns). For example, the exposure time used for the 488nm channel was reduced from 1.7s to 300-500 ms. Furthermore, it was observed that the lowest exposure time needed to image NDUFB8 channel was achieved when the primary antibody was coupled with Alexa fluor 546 (ET(Alexa fluor 488)= 480ms; ET(Alexa fluor 546)= 180ms, Figure 3.21). Similarly, an acceptable exposure time to image porin was achieved when it was coupled with Alexa fluor 488 (ET(Alexa fluor 488)= 320ms; ET(Alexa fluor 647)= 3100ms, Figure 3.21).

The combination 2 tested (when COX-I, NDUFB8, porin were couple with Alexa fluor 647, 546 and 488 respectively) showed that the secondary antibody providing the weakest signal was Alexa fluor 647. A final optimisation was hence performed to amplify COX-I signal, using the complex biotin/streptavidin method. Briefly, streptavidin is a purified protein from *Streptomyces avidinii* bacteria which presents strong affinity (4 binding sites) to bind vitamin biotin. In this indirect method, a biotinylated secondary antibody links the primary antibody and streptavidin conjugated with 647 fluorophore.
Figure 3.21 Optimisation undertaken to decrease the exposure times needed to image the different channels (20x).

Triple immunofluorescence detecting COX-I, NDUFB and porin was performed in serial diaphragm muscle sections obtained from aged control AC1. Different combinations of primary and secondary antibodies were tested. Combination 1: NDUFB8/Alexa fluor 488 (green), COX-I/Alexa fluor 546 (red), porin/Alexa fluor 633 (purple). Combination 2: porin/Alexa fluor 488 (green), NDUFB8/Alexa fluor 546 (red), COX-I/Alexa fluor 647 (purple). Combination 3: porin/Alexa fluor 488 (green), NDUFB8/Alexa fluor 546 (red) and COX-I/biotin/Streptavidin 647 (purple). For this particular experiment, slides were counter-stained with DAPI.
Since several streptavidin proteins can bind biotin, this complex offers signal amplification. A serial diaphragm muscle section obtained from aged control AC1 was assessed using triple immunofluorescence detecting porin (Alexa fluor 488, green), NDUFB8 (Alexa fluor 546, red) and COX-I (biotin/Streptavidin 647). The protocol incorporated the previous optimisation with the following changes: the first incubation with secondary antibodies (Alexa fluor 488, Alexa fluor 546, biotinylated antibody) for 2h at RT and the second incubation with only Streptavidin conjugated with 647 for 1h at RT (Table 3.3) (Figure 3.21, right column: combination 3). In combination 2, the exposure time needed to image COX-I (ET=900ms) was almost threefold higher than the exposure time set to image porin (ET=320ms) (Figure 3.21 middle column). By contrast, in combination 3, the exposure time needed to image COX-I (ET=440ms) was lower than the exposure time set to image porin (ET=520ms) (Figure 3.21 right column). These results showed that the amplification of COX-I using the complex biotin/streptavidin proved to be efficient and lowered the exposure time needed to reach optimal fluorescence of COX-I signal.

3.5 Discussion

Mitochondrial defects are often challenging to quantify. The common mosaic pattern of deficiency restricts the use of several techniques to COX/SDH histochimistry and immunohistochemistry. This chapter highlights the problems associated with these assays and describes the development of a novel method to objectively assess mitochondrial respiratory chain function in individual muscle fibres.

3.5.1 Challenges of COX/SDH histochemistry

In order to quantify mitochondrial dysfunction in the ageing skeletal muscle, different muscles obtained from healthy aged individuals were investigated for the activity and abundance of mitochondrial respiratory chain components. Consistent with previous studies (Cooper et al., 1992), all muscles showed some level of mitochondrial dysfunction with both complexes I and IV affected. Interestingly, different muscles showed different degrees of mitochondrial pathology and different patterns. For example diaphragm muscle from aged control AC3 showed higher levels of mitochondrial deficiency than psoas or biceps. Also, deficiency in individual muscle fibres was either isolated (preserved NDUFB8 and down-regulated COX-I or preserved COX-I and down-regulated NDUFB8) or combined (both complexes down-regulated).
Whilst assessing mitochondrial function in these muscle samples, it became apparent that the methods used to assess mitochondria in human muscle sections had several limitations. For example, around 20% of muscle fibres had isolated complex I deficiency. These were not detected in COX/SDH histochemistry but were only identified using NDUFB8 immunohistochemistry. These results highlighted the importance of assessing complex I together with complex IV in order to have a real overview of the overall mitochondrial deficiency.

Also, visual classification showed a degree of subjectivity. The boundaries between “normal”, “low” or “absent” activity/levels groups are difficult to establish and, inevitably, they change between days or even between sections. This intra-observer variability also arises from tissue-specific artefacts (such as uneven labelling) and limitations of the human eye. Indeed when two investigators visually assessed the same fibres reacted for COX/SDH, classification results differed markedly. The investigators counted the same number of cells in the COX positive group. However, a higher inter-variability was detected for the middle and lower categories, suggesting higher mis-classifications in these groups. Also, both investigators were internally inconsistent, over- and under-estimating mitochondrial dysfunction in samples from different patients.

Lastly, visual classification also showed some inaccuracy. A significant proportion of muscle fibres showed contradictory results between COX/SDH histochemistry and COX-I immunohistochemistry. For example some fibres demonstrated intermediate or absent COX activity and preserved COX-I levels. These inconsistencies could result from incorrect visual assessment of muscle fibres due to incapacity of human eye to detect subtle colour changes (while judging the activity or levels of complex IV). Alternatively, they could result from the use of serial muscle sections. Since COX respiratory chain deficiency is segmental (Matsuoka et al., 1992, Elson et al., 2002, Murphy et al., 2012), the analysis of serial sections might be confounded by the changes in enzyme activity and levels along fibre length. Regardless of the underlying cause, these results showed that visual assessment and the use of serial sections were leading to wrong classification of fibres.

3.5.2 The objective classification based on COX/SDH histochemistry

The unreliable and biased results from visual classification stressed the importance of developing an objective and quantitative method to determine COX activity in single fibres. Murphy et al. had developed a method to determine objectively the respiratory status of
muscle fibres (Murphy et al., 2012). However, this method is limited by several disadvantages. It is subject to inaccurate inference (Taylor and Levenson, 2006) due to the changing biochemical profile along the fibre length. It is also time consuming as individual muscle fibres have to be identified manually in each of the three tissue sections used. Additionally, the respiratory status value is not compared to a group of positive fibres, or a control group. Therefore, the intensities of individual COX and SDH histochemistry may vary between cases (due to tissue history, or uneven precipitation of chromogens (Choudhury et al., 2010)) shifting the boundaries between normal and abnormal profiles. Finally, the respiratory status does not discriminate the individual levels/activity of complex I and complex IV.

To overcome the above limitations, a new assay was developed to assess mitochondrial respiratory chain deficiency. This approach used just COX and SDH intensity measurements to determine the relative percentage of COX activity in single muscle fibres. ODCOX and ODSDH were corrected for the background noise and normalised to internal controls (the ODCOX and ODSDH of normal appearing fibres). This normalisation approach has been used previously in other research fields and it takes advantage of reference structures present in the biological sample (Ronneberger et al., 2008). Different muscle biopsies were assessed in order to evaluate which method - COX/SDH ratio or difference SDH-COX - was more reliable determining COX activity in individual muscle fibres. Results showed that the COX/SDH ratio was more accurate in classifying correctly fibres than the SDH-COX difference; the classification provided by the ratio agreed closely with visual classification (quantified as scores “1”) and showed less false classifications (quantified as scores “-1”). These results demonstrated that the new objective classification allows accurate classification of fibres.

3.5.3 The objective classification based on immunofluorescence

The previous objective assessment improved the classification of muscle fibres, but still presented some lacunas, such as the lack of complex I assessment and the use of 2 serial sections. In order to overcome these, the use of a similar quantitative approach for protein levels was explored, using fluorescence-based immunohistochemistry. This approach presents several advantages. It allows multiple labelling using a single muscle section, avoiding the concerns associated with the use of serial sections: changing biochemical profile, time consuming analysis and variability in intensity across muscle sections due to variations in muscle slice thickness (due to un-even cutting) (Taylor and Levenson, 2006). Also, the image analysis is performed in an image stack (with the different channels superimposed). Therefore,
the region of interest delimiting fibres is the same for the different complexes investigated, and image analysis is largely simplified.

Given these advantages, double immunofluorescence was initially performed in order to assess complex I and IV levels simultaneously in individual muscle fibres. However, the importance of additional labelling of fibres with a mitochondrial mass marker became rapidly evident. This labelling is crucial to assess complex I and IV levels relative to the amount of mitochondria and differentiate fibres with normal complexes levels from those with down-regulated levels. In order to validate the use of COX-I as a marker for assembled/functional complex IV, objective classifications using COX/SDH histochemistry and COX-I/SDHA were compared in three muscle samples: a young disease control, an aged control and a patient with known mitochondrial disease. Both COX/SDH and COX-I/SDHA ratio provided the same results when no uneven labelling was detected across muscle sections. This positive correlation between COX activity and COX-I immunoreactivity is consistent with previous studies showing a selective and restricted loss of COX-I abundance in COX deficient fibres (Oldfors et al., 1992, Rahman et al., 2000, Mahad et al., 2009).

Furthermore, the assessment of these three muscle biopsies confirmed the sensitivity of the triple immunofluorescence assay. Assuming that somatic mutations in mtDNA accumulate with age, this assay should not detect any COX deficient fibres in the young disease control. By contrast a small proportion was expected to be detected in the aged control, and a higher proportion in the patient. The results were in line with this. The young disease control did not present any fibres with down-regulated COX-I levels whereas the aged control and the patient demonstrated 15% and 26% of fibres with down-regulated levels, respectively. In terms of complex I, there is no histochemical assay available to validate the use of NDUFB8 as a marker for functional complex I. However, it has been extensively used by others as a marker of assembled complex I (Perales-Clemente et al., 2010; Murphy et al., 2012). Finally, the use of porin as a marker of the overall mitochondrial mass was validated by showing that SDHA and porin were strongly and positively correlated ($R^2=0.8$).

Finally, it is important to mention some concerns regarding the objective classification based on protein levels. In this approach, measurements were not normalised to internal controls (as performed for objective assessment based on COX/SDH histochemistry) though the objective classification based on COX-I/SDHA agreed entirely with visual classification. Also, the exposure times for image acquisition were adjusted to each case limiting the comparison between cases. This highlighted the need of further optimisation and refinement of the objective classification.
Chapter 4. Optimising the novel assay to become a reliable high-throughput and computer-based tool

4.1 Introduction

The replacement of observer-based qualitative assessment by computer-based quantitative assessment is increasing in many fields (cancer, neurology, muscle and many other) (Ellis et al., 2005, Taylor and Levenson, 2006, Arechavala-Gomeza et al., 2010, Kodiha et al., 2011). Computer-based quantification presents major advantages: it avoids human subjectivity by eliminating intra and inter-observer variation and allows higher accuracy and consistency (Thomson et al., 2001, Kloppel et al., 2008, Rizzardi et al., 2012, Alvarenga et al., 2013).

The novel method to assess mitochondrial function in muscle sections introduced in the previous chapter requires further optimisation to become a computer-based quantitative tool. A specific cell membrane marker has to be included in the immunohistochemical protocol in order to automate the detection of individual muscle fibres in tissue sections by imaging software. Several groups have adopted a similar approach by labelling sub-plasmalemmal proteins such as spectrin (Arechavala-Gomeza et al., 2010, Taylor et al., 2012) or dystrophin (Mula et al., 2013) and using variety of imaging software platforms (Briguet et al., 2004, Arechavala-Gomeza et al., 2010, Taylor et al., 2012).

Furthermore, objective classification of fibres necessitates refinement. In certain mitochondrial conditions a mosaic pattern of mitochondrial defect is observed, where dysfunctional cells coexist with their healthy counterparts containing normal levels of COX-I and NDUFB8. This mosaicism allowed normalization of individual OD measurements to “internal positive controls” (fibres appearing healthy, as previously described in chapter 3 for the objective assessment based on COX/SDH histochemistry) (Ronneberger et al., 2008). In other conditions, however, muscle tissue shows wide-spread mitochondrial deficiency and normal fibres are absent. This stresses the importance of comparing patients and elderly individuals to a young control group.
4.2 Aim

The aims of this chapter were to:

1. Semi-automate image analysis,
2. Refine the objective assessment of individual muscle fibres,
3. Validating the novel assay by demonstrating it is reliable and reproducible.

4.3 Methods

4.3.1 Cohort clinical characteristics

Archived frozen muscle specimens derived from healthy controls, disease controls and twelve patients with clinically and genetically-characterised mitochondrial disease of either mtDNA or nuclear genetic origin were used. Table 4.1 summarises relevant clinical information. The healthy control samples were obtained during orthopaedic surgery; the five disease controls were previously investigated for suspected neuromuscular disease but showed normal muscle histology, oxidative enzyme histochemistry and normal respiratory chain biochemical activities (Kirby et al., 2007). Patients P1, P12 and P11 were chosen as they harbour a specific (nuclear or mitochondrial) genetic defect affecting extensively either respiratory chain complex IV or I (P1 and P2) or both (P11). Remaining patients harboured single large-scale mtDNA deletion, multiple deletions (due to a mutation in a nuclear gene involved in mtDNA maintenance) or point mutations in mitochondrial encoded tRNAs. These patients were selected because they all (except P8 and P9) exhibited a clear mosaic pattern of COX deficiency in muscle tissue.

4.3.2 Cryo-sectioning

Serial sections (10µm thickness) from transversely orientated muscle blocks were obtained as previously described in section 2.2.3 from chapter 2.

4.3.3 COX/SDH histochemistry

Individual and combined COX/SDH histochemistry was carried out according to the protocol described in section 2.2.5 from chapter 2.
Table 4.1. Clinical information from subjects included in this study

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Gender</th>
<th>Age</th>
<th>Genetic defect</th>
<th>Histochemical findings</th>
<th>Biopsy type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC1</td>
<td>Female</td>
<td>20y</td>
<td>n.r.</td>
<td>Normal enzyme histochemistry</td>
<td>Surgery</td>
</tr>
<tr>
<td>HC2</td>
<td>Male</td>
<td>21y</td>
<td>n.r.</td>
<td>Normal enzyme histochemistry</td>
<td>Surgery</td>
</tr>
<tr>
<td>Disease controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC1</td>
<td>Male</td>
<td>4y</td>
<td>n.r.</td>
<td>Normal enzyme histochemistry</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>DC2</td>
<td>Male</td>
<td>18y</td>
<td>n.r.</td>
<td>Normal enzyme histochemistry</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>DC3</td>
<td>Male</td>
<td>20y</td>
<td>n.r.</td>
<td>Normal enzyme histochemistry</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>DC4</td>
<td>Male</td>
<td>20y</td>
<td>n.r.</td>
<td>Normal enzyme histochemistry</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>DC5</td>
<td>Female</td>
<td>38y</td>
<td>n.r.</td>
<td>Normal enzyme histochemistry</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>Patients with known mutations affecting complex I and IV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>Male</td>
<td>1y</td>
<td>Compound heterozygous LRPPRC mutations;</td>
<td>Global COX deficiency</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>P2<sup>a</sup></td>
<td>Male</td>
<td>20y</td>
<td>m.4175G>A (p.Trp290*) MT-ND1 mutation;</td>
<td>COX-positive, RRF</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>Patients accumulating (single or multiple) mtDNA deletions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>Female</td>
<td>39y</td>
<td>single, large-scale mtDNA deletion;</td>
<td>15% COX deficient fibres, 4% RRF</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>P4<sup>b</sup></td>
<td>Female</td>
<td>43y</td>
<td>multiple mtDNA deletions;</td>
<td>>40% COX deficient fibres/RRF</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>P5</td>
<td>Male</td>
<td>47y</td>
<td>multiple mtDNA deletions;</td>
<td>25% COX deficient fibres, 8% RRF</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>P6<sup>c</sup></td>
<td>Male</td>
<td>60y</td>
<td>multiple mtDNA deletions;</td>
<td>20% COX deficient fibres, 7% RRF</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>Patients with point mutations in mitochondrial encoded tRNAs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>Female</td>
<td>25y</td>
<td>m.3243A>G MT-TL1 mutation;</td>
<td>20% COX deficient, 8% RRF</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>P8<sup>a</sup></td>
<td>Female</td>
<td>40y</td>
<td>m.3243A>G MT-TL1 mutation;</td>
<td>>30% COX deficient, 10% RRF; also COX positive RRF</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>P9<sup>a</sup></td>
<td>Male</td>
<td>53y</td>
<td>m.3243A>G MT-TL1 mutation;</td>
<td>45% COX deficient fibres, 20% RRF</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>P10<sup>f</sup></td>
<td>Female</td>
<td>13y</td>
<td>m.5690A>G MT-TN mutation;</td>
<td>13% COX deficient, 5% RRF</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>P11</td>
<td>Female</td>
<td>18y</td>
<td>Novel MT-TP mutation;</td>
<td>98% COX deficient, SDH-positive fibres</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>P12</td>
<td>Male</td>
<td>33y</td>
<td>m.10010T>C MT-TG mutation;</td>
<td>>90% COX deficient fibres</td>
<td>Diagnostic</td>
</tr>
</tbody>
</table>

Key: age = age when biopsied; y = years old; mtDNA = mitochondrial DNA; PEO = progressive external ophthalmoplegia; CPOE = chronic CPEO; BMI = body mass index; RRF: ragged-red fibres, n.r.: not relevant; a,b,c,d published cases: a=Gorman et al. (2015) in press, b=P20 in Pitceathly et al. (2012), c=P3 in Blakely et al. (2013); #cases assessed in chapter 3: current P6, P8 and P9 were P3, P1 and P2, respectively.
4.3.4 Fluorescence-based immunohistochemistry

Fluorescence-based immunohistochemistry (detecting NDUFB8, COX-I, porin and laminin α-1) (Table 4.2) was carried out according to the protocol described in section 3.3.4.2 from chapter 3, with minor changes highlighted in bold:

Following fixation and permeabilisation, sections were blocked with 5% NGS for 1h at RT and then incubated with a primary antibody cocktail (Table 4.2). Subsequently, the sections were incubated with a secondary antibody cocktail for 2h at RT (anti-rabbit IgG Alexa fluor 405, anti-mouse IgG2b Alexa fluor 488, anti-mouse IgG1 Alexa fluor 546, and anti-mouse IgG2a biotinylated antibody, (Table 4.2)) following a final incubation with streptavidin 647 for 1h at RT (Table 4.2)). Sections were washed in TBST and mounted in Vectashield hard set mounting medium (Vector laboratories).

Table 4.2 Primary and secondary antibodies used for immunofluorescence

<table>
<thead>
<tr>
<th>Antibodies</th>
<th>Host</th>
<th>Dilution</th>
<th>Company (Product number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary antibodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTCOI (IgG2a)</td>
<td>Mouse</td>
<td>1:100</td>
<td>Abcam (Ab14705)</td>
</tr>
<tr>
<td>NDUFB8 (IgG1)</td>
<td>Mouse</td>
<td>1:100</td>
<td>Abcam (Ab110242)</td>
</tr>
<tr>
<td>Porin (IgG2b)</td>
<td>Mouse</td>
<td>1:100</td>
<td>Abcam (Ab14734)</td>
</tr>
<tr>
<td>Laminin α-1 (rabbit IgG polyclonal)</td>
<td>Rabbit</td>
<td>1:50</td>
<td>Sigma-Aldrich (L9393)</td>
</tr>
<tr>
<td>Secondary antibodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-rabbit IgG Alexa fluor 405nm</td>
<td>Goat</td>
<td>1:50</td>
<td>Life Technologies (A31556)</td>
</tr>
<tr>
<td>Anti-mouse IgG2b Alexa fluor ~ 488nm</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (A21141)</td>
</tr>
<tr>
<td>Anti-mouse IgG1 Alexa fluor ~ 546nm</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (A21123)</td>
</tr>
<tr>
<td>Anti-mouse IgG2a Biotin</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (M32315)</td>
</tr>
<tr>
<td>Anti-mouse IgG2a Alexa fluor ~ 488nm</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (A21131)</td>
</tr>
<tr>
<td>Anti-mouse IgG2b Alexa fluor ~ 546nm</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (A21143)</td>
</tr>
<tr>
<td>Anti-mouse IgG1 Biotin</td>
<td>Goat</td>
<td>1:200</td>
<td>Jackson IR Lab (115-065-205)</td>
</tr>
<tr>
<td>Streptavidin ~ 647nm</td>
<td>Goat</td>
<td>1:100</td>
<td>Life Technologies (S31556)</td>
</tr>
</tbody>
</table>

Key: Jackson IR Lab: Jackson ImmunoResearch Laboratories

4.3.5 Imaging

Brightfield and fluorescent images were acquired at 20x magnification using Zeiss Microscope (see section 2.2.7 from chapter 2).
4.4 Results

4.4.1 Automation of image analysis

In order to simplify image analysis and accelerate assessment of mitochondrial respiratory chain dysfunction in individual muscle sections, a polyclonal antibody detecting laminin α-1 was included in the immunohistochemical protocol. As laminin is a major glycoprotein of the basement membrane (Sanes, 1982), its labelling marked the boundaries of individual muscle fibres and allowed automated object recognition by the imaging software IMARIS. To develop the new image analysis protocol using IMARIS, a section from patient P6 was labelled with a cocktail of antibodies recognising COX-I (biotin/streptavidin 647, purple), NDUFB8 (Alexa fluor 546, red), porin (Alexa fluor 488, green) and laminin α-1 (Alexa fluor 405, white) (Figure 4.1A).

Images acquired using a fluorescent microscope were opened in IMARIS as 16-bit czi files and segmentation was performed in order to detect individual muscle fibres (Figure 4.1B). 405 channel (labelling laminin α-1) was corrected for background noise using the option “background subtraction” (Figure 4.1 B1-B2). A first surface was created over 405 channel (Figure 4.1 B3-B4) and laminin was masked (Figure 4.1 B5). Following this, a second surface was created based on the masked 405 channel. As a result, multiple surfaces were formed over individual muscle fibres (Figure 4.1 B26). Unwanted areas were removed in a filtering step (Figure 4.1 B7), but an area of the section devoid of fibres was sampled (in order to measure the background). The mean intensity of 488, 546 and 647 nm channels from individual muscle fibres (ODCOX-I, ODNDUFB8 and ODporin) and the area devoid of fibres (OD488, OD549 and OD647) were automatically measured in a scale ranging from 0 (brightest pixels) to 65,535 (darkest pixels) intensity units (Figure 4.1 B8). For each muscle fibre ODCOX-I, ODNDUFB8 and ODporin were corrected for background signal by subtracting the mean OD647, OD546 and OD488, respectively.

4.4.2 Classification of fibres using COX-I/porin and NDUFB8/porin ratios

In order to develop an objective classification based on standard deviation limits, quadruple immunofluorescence was performed in muscle sections obtained from four disease controls (DC1, DC3, DC4 and DC5) and three patients (P1, P2 and P11) (Figure 4.3). These patients were selected for the following reasons: P1 showed isolated and wide-spread complex IV deficiency, P2 showed isolated and wide-spread complex I deficiency and P11 combined complex I and IV deficiencies. The ODCOX-I, ODNDUFB8 and ODporin were measured, corrected (subtracting
the background as described above) and the ratios (ODCOX-I/ODporin)*100 (yielding COX-I/porin ratio) and (ODNDUF88/ODporin)*100 (yielding NDUF88/porin ratio) were calculated.

Figure 4.1 Image analysis using IMARIS software.

(A) Representative images of quadruple immunofluorescence detecting COX-I, NDUFB8, porin and laminin α-1. (B) Representative screenshots showing main steps of segmentation: (1) Images were opened on IMARIS software as 16-bit czi files (2) Background noise of 405 channel was removed using “background subtraction” tool and the intensity of laminin signal was increased manually. (3-4) A first surface was created over 405 channel and used to create a (5) laminin mask. (6) A second surface was created over the masked 405 channel thereby filling the area of muscle fibres. (7) Using edit tool bar, unwanted areas such as background were removed. (8) The software measures automatically the optical density of the different channels in each muscle fibre.
Figure 4.2 Representative images of complex I and IV levels in skeletal muscle sections from controls and patients.

Quadruple immunofluorescence was performed in muscle sections and fluorescent detection was used to visualise: COX-I – purple (biotin/streptavidin 647nm), NDUFB8 – red (Alexa fluor 546nm), porin – green (Alexa fluor 488nm) and laminin α-1 – white (Alexa fluor 405nm). Representative images of respiratory-normal tissue (disease controls DC1, DC3, DC4 and DC5) and mitochondrial deficiency: compound heterozygous LRPPRC mutations (P1, widespread complex IV deficiency), m.4175G>A MT-ND1 mutation (P2, widespread complex I deficiency), and a novel MT-TP mutation (P11, widespread complex I and IV deficiency).
4.4.2.1 Control population

The control group was created by combining data from all control muscle fibres DC1 (n=447), DC3 (n=252), DC4 (n=318) and DC5 (n=289). The distribution of COX-I/porin was approximately symmetric (skewness = 0.37) but the distribution of NDUFB8/porin was right skewed (skewness = 1.1) (Figure 4.3 A and B: left graphs) and none of the distributions passed the normality tests (both Shapiro-Wilk and D’Agostino-Pearson’s omnibus test, p<0.001).

The Box-Cox transformation (Box and Cox, 1964) identified the fourth root - x^(1/4) - and the negative reciprocal square root (-1/SQRT(x)) transformations as optimal to achieve normality of the COX-I/porin and NDUFB8/porin control data, respectively. This was confirmed using both visual inspection (Figure 4.3 A and B: right graphs) and statistical methods: kurtosis and skewness numerical measures of shape for COX-I/porinT (skewness= -0.03 and kurtosis= -0.40) (Geourge and Mallery, 1999) and D’Agostino-Pearson’s omnibus test for NDUFB8/porinT (p>0.05).

Figure 4.3 Control population.
Graphs show the frequency distribution of (A) COX/porin (graph on the left) and COX/porinT (graph on the right) (B) NDUFB8/porin (graph on the left) and NDUFB8/porinT (graph on the right) ratios from the control population (DC1 (n=447), DC3 (n=252), DC4 (n=318) and DC5 (n=289)).
4.4.2.2 Classification of muscle fibres

The parameters: mean and standard deviations (SD) describing the distribution of COX-I/porinT and NDUFB8/porinT ratios in the control population (yielding meanCOX-I, meanNDUFB8, SDCOX-I and SDNDUFB8) were determined to calculate COX-I_sd and NDUFB8_sd for all fibres, as follows:

\[
\text{COX-I}_{\text{sd}} = \frac{(\text{COX-I}/\text{porinT} - \text{meanCOX-I})}{\text{SDCOX-I}};
\]
\[
\text{NDUFB8}_{\text{sd}} = \frac{(\text{NDUFB8}/\text{porinT} - \text{meanNDUFB8})}{\text{SDNDUFB8}}.
\]

COX-I_sd and NDUFB8_sd are a measure of how much the COX-I/porinT ratio (or NDUFB8/porinT ratio) from a given fibre deviates from the meanCOX-I (or meanNDUFB8) of the control group. Following this, both COX_sd and NDUFB8_sd were used to classify fibres into different categories of COX-I and NDUFB8 levels, respectively. Three set of standard deviation limits defining the categories (positive, int(+), int(-) and deficient), were tested (Table 4.3). For example, in the 2nd set tested (Table 4.3), a fibre was classified as COX-I positive if COX-I_sd was higher than -2SD; int(+) if this value ranged from -2SD to -3SD; int(-) if this value ranged from -3SD to -2SD; or deficient if this value was lower than -4SD.

<table>
<thead>
<tr>
<th>Set of SD limits</th>
<th>Positive</th>
<th>Int(+)</th>
<th>Int(-)</th>
<th>Deficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st set</td>
<td>> -3SD</td>
<td>-3SD to -4SD</td>
<td>-4D to -5SD</td>
<td>< -5SD</td>
</tr>
<tr>
<td>2nd set</td>
<td>> -2SD</td>
<td>-2SD to -3SD</td>
<td>-3D to -4SD</td>
<td>< -4D</td>
</tr>
<tr>
<td>3rd set</td>
<td>> -1SD</td>
<td>-1SD to -2SD</td>
<td>-2D to -3SD</td>
<td>< -3D</td>
</tr>
</tbody>
</table>

Key: underlined SD limits highlight the upper boundaries of the categories.

4.4.2.3 Preliminary results

The three sets of standard deviation limits were tested in both controls and patients. When -3SD, -4SD and -5SD limits defined the upper boundaries of the int(+), int(-) and deficient categories (Table 4.3: 1st set), patient P1 showed a very mild COX-I deficiency. Only 31% of the fibres had intermediate levels of COX-I; remaining 69% showed preserved COX-I (n=486). These findings were not consistent with the known biochemical defect and sufficient to reject these standard deviation limits.
Figure 4.4 Classification of muscle fibres based on the mean and standard deviation of COX-I/porinT and NDUFB8/porinT from the control population.

Tables show the percentage of fibres with positive, int(+) and deficient COX-I (columns) and NDUFB8 (row) levels in patients (A) P1 (n=486), (B) P2 (n=417) and (C) P11 (n=559), when using -2SD, -3SD and -4SD (left tables) or -1SD, -2SD and -3SD (right tables) limits to define the upper boundaries of the int(+), int(-) and deficient categories.

When the limits -2SD, -3SD and -4SD were used (Table 4.3: 2nd set), the objective classification detected patients P2 and P11 expected deficiencies. Yet, it only revealed a mild complex IV deficiency in patient P1; more fibres (68%) had intermediate levels of COX-I but only 2% of fibres showed no COX-I (Figure 4.4C left graphs).

The best approximation with the expected results was achieved when using the -1SD, -2SD and -3SD limits (Table 4.3: 3rd set). Indeed patient P1 showed wide-spread and isolated COX-I deficiency with only 3% of the fibres presenting preserved COX-I (int(+)= 26%, int(-)= 39%, deficient= 31%, n=486) (Figure 4.4A right graph). Also, patient P2 demonstrated wide-spread complex I deficiency with 86% of the fibres lacking NDUFB8 (n=417, Figure 4.4B right graph), and patient P11 displayed a combined complex I and IV deficiency with 87% of fibres devoid of COX-I and NDUFB8 (n=559, Figure 4.4C right graph). Unfortunately, when using these SD limits, several controls showed some degree of deficiency. For example, in disease control DC3: 11%
of muscle fibres presented intermediate levels of NDUFB8 \((n=252)\); in control DC5: 39% of fibres showed intermediate levels of NDUFB8 and 34% of fibres exhibited intermediate levels of COX-I \((n=289)\). The classification results from controls were incorrect, and therefore, these SD limits were also rejected.

These results showed that COX-I/porinT and NDUFB8/porinT ratios were not a good measure to assess COX-I and NDUFB8 abundance in individual muscle fibres; they were leading to misclassifications. Furthermore, the COX-I/porinT and NDUFB8/porinT did not provide any information about the overall mitochondrial mass (assessed by porin), missing an important aspect of this analysis. Therefore, another approach for the objective assessment was considered: using linear regressions of ODCOX-I and ODNDUF8B8 (dependent variables) against ODporin (independent variable).

4.4.3 Optimizing NDUFB8 signal

In order to allow comparison of different muscle sections, the linear regressions of ODCOX-I and ODNDUF8B8 (dependent variables) against ODporin (dependent variable) have to present zero intercepts. The following section describes the optimisation undertaken in order to achieve that.

4.4.3.1 Background correction using an area of the section devoid of fibres

In order to develop an objective classification using COX-I and NDUFB8 linear regressions, quadruple immunofluorescence was performed in muscle sections obtained from disease control DC5 and three patients (P6, P9 and P10). These patients were selected because their muscle biopsy had a mosaic pattern of COX deficiency. The optical densities: ODCOX-I, ODNDUF8B8 and ODporin were measured and corrected (subtracting the background as previously described) and the linear regression of ODCOX-I against ODporin and ODNDUF8B8 against ODporin were created (Figure 4.5).

COX-I linear regression from disease control DC5 \((y=2.06x)\) had a \(y\)-axis intercept of zero, whereas NDUFB8 linear regression \((y=0.81+325.8)\) did not, intercepting at \(y=325.8\) (Figure 4.5A). Also, in patients P6, P9 and P10, fibres deficient for NDUFB8 (visually inspected) showed a low value of ODNDUF8B8 recorded by IMARIS (Figure 4.5 B, C and D: left graphs). These results suggested that ODNDUF8B8 was not correctly adjusted for the background.
Figure 4.5 COX-I and NDUFB8 versus porin signals background corrected using an area of the section devoid of fibres.

Graphs on the left plot the corrected ODCOX-I versus corrected ODporin and Graphs on the right plot the corrected ODNDFB8 versus corrected ODporin from (A) disease control DC4 (n=147) and patients: (B) P6 (n=300), (C) P9 (n=240) and (D) P10 (n=300).
The signal measured as specific to the antibody binding was still combined with some residual background noise, explaining why NDUFB8 linear regression was shifted up (the baseline at y=325.8). This approach however, discriminated fibres with normal levels of porin from those with very high levels of porin (Figure 4.5D: fibres with a correctedODporin higher than 800 intensity units). This was not previously possible when assessing fibres based on the COX-I/porinT and NDUFB8/porinT ratios

4.4.3.2 Background correction using a no primary antibody control

There was a suspicion that the high background noise in NDUFB8 channel was being caused by non-specific binding of Alexa fluor 546 secondary antibody to endogenousFc receptors. To explore this, quadruple immunofluorescence was performed in muscle sections obtained from two controls (HC1 and DC1) and two patients (P2 and P6). A no primary antibody control (NPC, incubated only with anti-laminin α-1 antibody) was included for each case. IMARIS image analysis was conducted for NPC sections from all four cases, and the background noise of different channels (measuring the non-specific binding of secondary antibodies, OD488, OD546 and OD647) was determined in individual muscle fibres. The optical densities ODCOX-I, ODNDFB8 and ODporin were measured in cocktail antibody-labelled serial sections and values were corrected by subtracting the mean OD of the fluorescent channels: meanOD647, meanOD546 and meanOD488, respectively. The linear regression of ODCOX-I against ODporin and ODNDFB8 against ODporin were created (Figure 4.6).

COX-I linear regressions from HC1 and DC1 showed an intercept near zero (HC1: y=1.89x+4.77, n=440; DC1: y=2.58x-24.6 n=1500, Figure 4.6A and B: left graphs) whereas NDUFB8 linear regressions crossed y axis at negative values (Figure 4.6A and B: right graphs). Surprisingly, in patients P2 and P6, fibres with low levels of porin showed negative values of ODNDFB8 whereas fibres with high levels of porin presented some levels of ODNDFB8 (Figure 4.6C and D: right graphs). This highlighted increased background signal especially in fibres with high mitochondrial content.
Figure 4.6 COX-I and NDUFB8 versus porin signals background corrected using the NPC.
Graphs on the left plot the corrected ODCOX-I versus corrected ODporin and graphs on the right plot the corrected ODNDUFB8 versus corrected ODporin from (A) healthy control HC1 (n=440), (B) disease control DC1 (n=1500) and patients (C) P2 (n=570) and (D) P6 (n=780).
To explore this issue, all background measurements: OD488, OD546 and OD647 measured in individual fibres were plotted together (Figure 4.7). All cases showed low and constant background measurements of Alexa fluor 488 (HC1: meanOD488=39.2, Coefficient of variation: CV=1.0%; DC1: meanOD488=39.8, CV=1.8%; P2: meanOD488=43.5, CV=5.4%; P6: meanOD488=41.0, CV=2.3%) (Figure 4.7: green plots) and Biotin/Streptavidin647 (HC1: meanOD647=48.0, CV=3.0%; DC1: meanOD647=50.0, CV=4.4%; P2: meanOD647=57.2, CV=10.7%; P6: meanOD647=50.3, CV=11.3%) (Figure 4.7: purple plots). However, Alexa fluor 546 presented high and extremely variable background measurements across the NPC (HC1: meanOD546=151.7, CV=12.0%; DC1: meanOD546=152.6, CV=9.7%; P2: meanOD546=135.0, CV=10.5%; P6: meanOD546=137.3, CV=16.3%) (Figure 4.7: red plots). The variability of OD546 was present in all cases but reached the highest level in control HC1 and patient P6 (Figure 4.7 A and D). These results demonstrated that the background measurement of Alexa fluor 546 was repeatedly high and that the signal-to-noise ratio – which compares the level of NDUFB8 signal with the level of Alexa fluor 546 background noise, was likely to be very low.

Figure 4.7 Background noise from secondary antibodies measured across the NPC section. Graphs plot the OD546 (red), OD647 (purple) and OD488 (green) (y axis) measured in individual muscle fibres (x axis) from (A) healthy control HC1 (n=240), (B) disease control DC1 (n=1200), and patients (C) P2 (n=400) and (D) P6 (n=380).
4.4.3.3 Optimization of NDUFB8 signal

In order to combat the low NDUFB8 signal and the excessive background emerging from the non-specific binding of Alexa fluor 546 antibody, several optimisation steps were carried out. HC1 was used for all experimental tests as it presented a highly variable Alexa fluor 546 background. For all conditions tested in the following section, immunofluorescence and a NPC were performed in serial sections, and the same areas of the muscle section (for both immunofluorescence and matching NPC) were imaged, where possible. Consequently, the same fibres were assessed allowing a more direct and accurate comparison. To be able to directly compare the different conditions, two measures were calculated: the signal-to-noise ratio (S/N) and the signal-to-noise range ratio (RS/RN):

\[
S/N = \frac{\text{meanODsignal}}{\text{meanODnoise}}
\]
\[
RS/RN = \frac{(95\% \text{ODsignal} - 5\% \text{ODsignal})}{(95\% \text{ODnoise} - 5\% \text{ODnoise})}
\]

Where ODsignal corresponds to ODNDUFB8, ODCOX-I or ODPorin, and the ODnoise corresponds to the respective channel/secondary antibody (OD546, OD647 and OD488). A higher S/N ratio means higher desired signal in comparison to the background noise. The signal-to-noise range ratio provides information about how far apart signal and noise distributions are; higher RS/RN means distant and non-overlapping distributions.

4.4.3.3.1 Titration of Alexa fluor 546 secondary antibody

Double immunofluorescence detecting NDUFB8 (Alexa fluor 546, red) and laminin α-1 (Alexa fluor 405) was performed in four serial sections from HC1 and different dilutions of Alexa fluor 546 secondary antibody: 1:200, 1:600, 1:1000 and 1:1500 were tested (Figure 4.8).

Increasing the dilution of Alexa Fluor 546 from 1:200, to 1:600, 1:1000 and 1:1500 did not have a positive impact on the S/N and RS/RN ratios, which remained lower than 1.2 (Figure 4.8). For all conditions tested, the distribution of ODNDUFB8 (Figure 4.8: dark red) and OD546 (Figure 4.8: light red) measurements were not significantly separated. Particularly in dilutions 1:200, (meanODNDUFB8= 312.7, meanOD546= 331.4, Figure 4.8A), 1:1000 (meanODNDUFB8= 128.2, meanOD546= 157.5, Figure 4.8C) and 1:15000 (meanODNDUFB8= 99.8, meanOD546=108.8, Figure 4.8D), the distributions occasionally overlapped and inversed positions (OD546 > ODNUFB8).
4.4.3.3.2 Changes to the immunofluorescence protocol

Several changes to the immunofluorescence protocol were made in order to reduce the background noise of Alexa Fluor 546: sections were blocked with 10% NGS (instead of 5% NGS), incubated with secondary antibodies for 2h at 4°C (instead of 2h at RT) and were mounted with Prolong Gold (Life technologies) mounting medium (instead of Veactashield hard set) (Figure 4.9).

As shown (Figure 4.9), the background of Alexa Fluor 546 (meanOD546=114.6, CV=9.4) remained higher than the background of Alexa Fluor 647 (Figure 4.8: light purple plots, meanOD647=71.7, CV=5.6%) and Alexa Fluor 488 (Figure 4.8: light green plots, meanOD488=62.4, CV=4.1%) but it was constant across the NPC section. Also, these changes lead to a higher S/N and SR/NR ratios, with a greater difference between the signal of NDUFB8 and the background of Alexa546 (RS/RN=4.8) (Figure 4.8B).
The impact of changing the protein block (10%NGS), incubation of secondary antibodies (2h at 4°C) and mounting medium (Prolong Gold) on the signal-to-noise ratio.

Graphs plot (A) ODCOX-I (measured in immunofluorescently labelled section, dark green) and OD488 (measured in NPC section, light green) (B) ODNDFB8 (dark red) and OD546 (light red) and (C) ODPorin (dark purple) and OD647 (light purple) (y axis) measured in individual muscle fibres (x axis) (n=300). S/N: Signal/Noise, RS/RN: signal-to-noise range ratio.

4.4.3.3 Testing multiple quenching protocols

Multiple quenching protocols using sudan black and/or ammonia (known to quench tissue autofluorescence) were tested in order to explore if they could improve the S/N ratio. For sudan black quenching: sections were immersed in sudan black solution (0.5% in 70% ethanol) for 10min following the last incubation with antibodies. For ammonia quenching: sections were immersed in ammonia (0.5% in 70% ethanol) for 10 min prior to the protein blocking step. Quenching with ammonia decreased the signal of NDUFB8 and showed no major effect on the background OD546 (Figure 4.10A (no quenching): meanODNDUF8=224.6, meanOD546=114.6; Figure 4.10B (ammonia): meanODNDUF8=162.1, meanOD546=116.1); quenching with sudan black, decreased both ODNDFB8 and OD546 (Figure 4.10C, meanODNDUF8=136.2, meanOD546=83.8). The combination of ammonia and sudan black quenching protocols had a negative effect on both signal and noise (Figure 4.10D: meanODNDUF8=112.4, mean OD546=79.6). Overall, quenching with either ammonia (S/N=1.5, RS/RN=2.1), sudan black (S/N=1.6, RS/RN=3.6) or both (S/N=1.5, RS/RN=2.8) caused a decline in both S/N and RS/RN ratios when compared with the non-quenched control (S/N=2.0, RS/RN=4.8) (Figure 4.10).
4.4.3.3.4 Changing the combinations of primary and secondary antibodies

Since Alexa fluor 546 presented the highest background, multiple combinations of NDUFB8 with secondary antibodies were tested:

2. Alexa fluor 488: COX-I, Alexa fluor 546: porin, **Biotin/Streptavidin 647: NDUFB8**

Testing new combinations of primary and secondary antibodies showed that coupling NDUFB8 with Biotin/Streptavidin 647 (S/N=2.7, RS/RN=14.3) provided the highest S/N ratio; also, distributions of signal and background showed a greater separation than when NDUFB8 was coupled with either Alexa fluor 546 (S/N=2.0, RS/RN=4.8) or Alexa fluor 488 (S/N=2.2, RS/RN=9.6) (Figure 4.11). Importantly, COX-I coupled with Alexa fluor 488 (S/N= 6.3, RS/RN= 40.6) and porin coupled with Alexa fluor 546 (S/N= 4.7, RS/RN= 13.7) (Figure 4.12), also showed high S/N and RS/RN ratios validating this combination of antibodies as optimal.
Figure 4.11 The impact of coupling NDUFB8 with different secondary antibodies on the signal-to-noise ratio.
Graphs plot (A) ODNDUF8 signal (measured in immunofluorescently labelled section, dark red) and OD546 noise (measured in NPC section, light red), (B) ODNDUF8 (dark purple) and OD647 (light purple) and (C) ODNDUF8 (dark green) and OD488 (light green) (y axis) measured in individual muscle fibres (x axis) (n=300). S/N: Signal/Noise, RS/RN: signal-to-noise range ratio.

Figure 4.12 COX-I and porin signal-to-noise ratios when coupled with Alexa fluor 488 and Alexa fluor 546 antibodies respectively.
Graphs plot (A) ODCOX-I signal (measured in immunofluorescently labelled section, dark green) and OD488 noise (measured in NPC section, light green), (B) ODporin (dark red) and OD546 (light red) (y axis) measured in individual muscle fibres (x axis) (n=300). S/N: Signal/Noise, RS/RN: signal-to-noise range ratio.
4.4.3.3.5 Testing different incubation times

In order to assess the impact of different incubation times and temperatures of secondary antibodies on the signal-to-noise ratio, quadruple immunofluorescence detecting COX-I (Alexa fluor 488, green), porin (Alexa fluor 546, red), NDUFB8 (Biotin/Streptavidin 647) and laminin α-1 (Alexa fluor 405, white) was performed in serial sections from HC1. Different incubation times of secondary antibodies were tested,

1. Control condition: 1st incubation (secondary antibodies cocktail): 2h at 4°C; 2nd incubation (Streptavidin 647): 2h at 4°C
2. 1st incubation: 24h at 4°C, 2nd incubation: 2h at 4°C
3. 1st incubation: 24h at 4°C, 2nd incubation: 1h at RT
4. 1st incubation: 12h at 4°C, 2nd incubation: 1h at RT

Increasing the time of the 1st incubation from 2h to 24h at 4°C did not affect the signal of NDUFB8 but increased the background of Biotin/Streptavidin 647 (Figure 4.13A: meanODNDUFB8=376.2, meanOD647=102.2; Figure 4.13B: meanODNDUFB8=375.8, mean OD647=116.3). Decreasing the incubation of streptavidin 647 from 2h at 4°C to 1h at RT, had no impact on the background of Biotin/Streptavidin 647, which remained higher than the control condition, but increased the signal of NDUFB8 (Figure 4.13B: meanODNDUFB8=375.8, meanOD647=116.3; Figure 4.13C: meanODNDUFB8=411.9, mean OD647=115.0). Decreasing the time of 1st incubation from 24h to 12h at 4°C affected neither NDUFB8 signal nor the background (Figure 4.13C: mean ODNDUFB8=411.9, mean OD647=115.0; Figure 4.13D: mean ODNDUFB8=411.8, mean OD647=115.8). These results suggested that the incubation time of the biotinylated anti-IgG1 antibody affects the background of Alexa647 whereas the incubation of streptavidin influences the signal of NDUFB8. Regardless, increasing the incubation times of Alexa fluor 488, Alexa fluor 546 and Biotin (from 2h to 12h or 24h at 4°C) and performing the incubation of streptavidin647 for 1h at room temperature (instead of 2h at 4°C) provided lower S/N and RS/RN ratios when compared with the previously used protocol (Figure 4.13).
Figure 4.13 The impact of different incubation conditions (secondary antibodies) on the NDUFB8 signal-to-noise ratio.

Graphs plot ODNDUFB8 (measured in immunofluorescently labelled section, dark purple) and OD647 (measured in NPC section, light purple) when (A) all secondary antibodies were incubated 2h at 4°C, when (B) Alexa fluor 488, Alexa fluor 546 and anti-IgG1 Biotinylated were incubated for 24h at 4°C and streptavidin 647 2h at 4°C, when (C) Alexa fluor 488, Alexa fluor 546 and anti-IgG1 Biotinylated were incubated for 24h at 4°C and Streptavidin 647 1h at room temperature and when (D) Alexa fluor 488, Alexa fluor 546 and anti-IgG1 Biotinylated were incubated for 12h at 4°C and Streptavidin 647 1h at room temperature (n=300). RT: room temperature, S/N: Signal/Noise, RS/RN: signal-to-noise range ratio.

4.4.4 Classification of fibres based on COX-I and NDUFB8 linear regressions

4.4.4.1 The new objective assessment

Quadruple immunofluorescence, as previously optimised, was performed in serial muscle sections from a healthy control (HC2), disease controls (DC1, DC2, DC3) and mitochondrial patients (P1, P2, P6, P9, P10 and P11). A NPC section was included for each case.

4.4.4.1.1 Background correction

For each muscle fibre ODCOX-I, ODNDUFB8 and ODporin were corrected for background signal. ODCOX-I and ODporin values were corrected by subtracting the mean OD488 and mean OD546 measured in NPC, respectively. However, fibres with high mitochondrial mass exhibited
proportionally high level of background signal in the 647nm spectrum. Therefore a different background correction was required for that channel. Fibres were sorted into one hundred groups according to the ODporin percentile, and corrected using the mean OD647 of the matching ODporin percentile group from the NPC. This allowed correcting the ODNDUFB8 measurements according to the levels of mitochondrial mass; i.e. ODNDUFB8 values from fibres with very high levels of porin were corrected using the highest values of background.

4.4.4.1.2 Transformation of the corrected data

The Box-Cox transformation identified the log transformation as optimal to achieve normality of the background corrected data. This was confirmed using both visual inspection and normality tests (Shapiro-Wilk and D’Agostino-Pearson’s omnibus test). Background corrected OD values were log transformed (yielding ODCOX-I, ODNDUFB8, and ODporin) to normalize the data.

4.4.4.1.3 Control group

Initially, ODCOX-I versus ODporin; and ODNDUFB8 versus ODporin; from all four control muscle biopsies (healthy and disease controls) were plotted together (Figure 4.14A). The combined data from individual controls clustered and were consistent, presenting similar individual linear regressions. Later on, the creation of control group was refined. The control group was created by simple random sampling of equal numbers of fibres from each of the control subject. The control with the lowest number of fibres was determined and used to set the number of fibres randomly chosen in remaining controls. This created a more balanced group with all controls carrying the same weight. From the selected fibres, ODCOX-I versus ODporin; and ODNDUFB8 versus ODporin; were plotted (Figure 4.14).

Linear regressions of ODCOX-I and ODNDUFB8 (dependent variables) against ODporin (independent variable) were performed, validated to ensure the residuals of the regression were normally distributed (Figure 4.15) and the standard error of estimate was determined; this enabled the estimate of deviation of COX-I and NDUFB8 levels in each fibre from the predicted level according to the porin level Figure 4.16.
Initially, (A) all corrected ODCOX-IT versus corrected ODporinT (left graph) and all corrected ODNDUF8BT versus ODporinT (right graph) from controls were plotted together: HC2 (blue circles and trend line, n=226), DC1 (red circles and trend line, n=767) DC2 (green circles and trend line, n=595) and DC3 (black circles and trend line, n=128). (B) To get a balanced control group 128 fibres from each healthy and disease controls were randomly selected and both ODCOX-IT versus ODporinT (left graph) and ODNDUF8BT versus ODporinT (right graph) from selected fibres were plotted together. HC2 (blue circles and trend line, n=128), DC1 (red circles and trend line, n=128) DC2 (green circles and trend line, n=128) and DC3 (black circles and trend line, n=128).

The residual plots from (A) ODCOX-IT linear regression and (B) ODNDUF8BT linear regression showed a normal distribution validating the linear regression.
4.4.4.1.4 Data analysis

The parameters (mean and standard deviation) describing the distribution of ODpirin\textsubscript{T} in the control population (meanPorin, SDporin), as well as parameters describing the linear relationship between ODCOX-I\textsubscript{T} versus ODpirin\textsubscript{T} and ODNDFUB8\textsubscript{T} versus ODpirin\textsubscript{T} were used to determine the standard scores (Z-scores) for ODpirin\textsubscript{T} (porin\textsubscript{Z}), COX-I (COX-I\textsubscript{Z}) and NDFUB8 (NDUF8\textsubscript{Z}); based on the expected level of each, according to the porin level (Figure 4.16):

\begin{align*}
\text{COX-I}_Z &= \frac{(ODCOX-I_T - \text{predicted ODCOX-I}_T)}{\text{standard error of prediction of ODCOX-I}_T} \\
\text{NDUF8}_Z &= \frac{(ODNDFUB8_T - \text{predicted NDFUB8}_T)}{\text{standard error of prediction of NDFUB8}_T} \\
\text{porin}_Z &= \frac{(ODpirin_T - \text{meanPorin})}{\text{SDporin}}
\end{align*}

Fibres were classified into different groups relative to porin levels based on standard deviation limits (SD): fibres were considered to have "very low" levels of porin if porin\textsubscript{Z} was 3 SD below the mean of control group (reference value), "low" levels if porin\textsubscript{Z} was between 2 to 3 SD below the reference value, "normal" levels if porin\textsubscript{Z} was within 2 SD below and 2 SD above the reference value, "high" levels if porin\textsubscript{Z} was within 2 to 3 SD above and "very high" levels of porin levels if porin\textsubscript{Z} was 3 SD above the reference value. Fibres were similarly classified based on SD limits into groups of NDFUB8 and COX-I levels (normal if Z-scores > -3SD; int(+) if Z-scores between -3SD to -4.5SD; int(-) if Z-scores between -4.5SD to -6SD; deficient if Z-scores < -6 SD). The upper SD boundary of COX-I and NDFUB8 deficient groups were defined by determining the highest NDFUB8\textsubscript{Z} and COX-I\textsubscript{Z} of red appearing fibres on quadruple immunofluorescence (staining for porin but with absent COX-I and NDFUB8) from patients P10 and P6. These limits were confirmed and validated when immunofluorescence was performed in a serial section on a different day for the purpose of assessing reproducibility of the technique. The lower SD boundaries of COX-I and NDFUB8 positive groups were defined by the distribution of the control group.

4.4.4.1.5 Graphing: MRC profiles

To have a better understanding of mitochondrial pathology, a novel graphical way to present the data (Figure 4.17 lower graph) was developed. This shows NDFUB8 and COX-I protein levels in conjunction with mitochondrial mass in individual muscle fibres. Each dot represents the measurement from an individual muscle fibre, colour coded according to its mitochondrial content (very low: blue, low: light blue, normal: light orange, high: orange and very high: red).
Figure 4.16 Deviation of COX-I and NDUFB8 levels in each fibre from the expected levels, according to porin level.
Graphs (A) plot corrected ODCOX-I versus corrected ODporin and (B) corrected ODNDUFB8 versus ODporin (right graph) from control group (grey circles, n=512), and P6 (white circles, n=509).

Figure 4.17 Summary graphical outputs of the R programming supporting tool.
Bar graphs show the percentage of muscle fibres with positive (beige), int(+) (light beige), int(-) (light blue) or deficient (blue) abundance of COX-I (top left graph) and NDUFB8 (top middle graph), and the frequency distribution of porin_z highlights the range of porin_z and abundance per class. Lower and central graph presents in a comprehensive way: COX-I and NDUFB8 abundance in conjunction with the mitochondrial content in all the muscles fibres from an individual patient biopsy.
The position of dots along the axis determines the respective level of COX-I and NDUFB8. For instances, all dots (fibres) contained within the beige square have normal levels of COX-I and NDUFB8, clustering in the same area as the control population’s muscle fibres. The dots located towards the left display down-regulated NDUFB8; the dots located towards the bottom present down-regulated COX-I. Dots contained within the blue square, have entirely lost COX-I and NDUFB8 proteins. Such graphical approach allows recognition of distinct patterns of mitochondrial respiratory chain dysfunction and enables precise quantification of the deficiency degree. This graphical representation will be, from now on, referred to as the mitochondrial respiratory chain (MRC) profile.

4.4.4.1.6 R programming

A supporting tool was written in R (Team, 2014) to automate the evaluation of the control population distributions of porin, NDUFB8, and COX-I, perform the linear regressions, calculate Z-scores for each of the proteins in each muscle fibre, and produce summary graphical outputs. The summary graphical output is a pdf file (Figure 4.17) showing the MRC graphs, and additionally, two bar graphs providing more details about complex I and IV and an histogram showing the frequency distribution of porin_z.

4.4.4.1.7 Preliminary results

All patients assessed showed varying proportions of COX-I and/or NDUFB8 deficiency and presented different patterns of mitochondrial deficiency (Figure 4.18). Patient P1 showed a severe and isolated complex IV deficiency, P2 showed a severe and isolated complex I deficiency and P11: a balanced down-regulation of both COX-I and NDUFB8 (Figure 4.18 A, B and F, respectively). Both patients P9 and P10 presented fibres with normal COX-I levels but down-regulated NDUFB8 that followed an asymmetrical trend towards down-regulation of both complexes (Figure 4.18 D and E). Patient P6 presented a population of fibres with normal COX-I but down-regulated NDUFB8 and a population of fibres with a gradual and balanced down-regulation for both complexes (Figure 4.18 C).
108

Figure 4.18 Mitochondrial respiratory chain expression profile linking complex I, complex IV and porin levels in patients with mitochondrial disease.

Patients with (A) isolated complex IV deficiency (LRPPRC mutations, P1, n= 424), (B) isolated complex I deficiency (m.4175G>A MT-ND1 mutation, P4, n = 1062), (C) multiple mtDNA mutations (P6, n= 509), (D) m.3243A>G MT-TL1 (P9, n=392), (E) m.5690A>G MT-TN mutation (P10, n= 315) and (F) novel MT-TP mutation (P11, n= 489) were assessed in terms of COX-I, NDUFB8 and porin protein levels. Each dot represents an individual muscle fibre, colour coded according to its mitochondrial mass (very low: blue, low: light blue, normal: light orange, high: orange and very high: red). Thin black dashed lines indicate the SD limits for the classification of fibres, lines next to x and y axis indicate the levels of NDUFB8 and COX-I respectively (beige: normal, light beige: int(+), light blue: int(-) and blue: deficient). Bold dashed lines indicate the mean abundance level of normal fibres.

4.4.4.2 Correlation between COX activity and COX-I levels

To assess the correlation between respiratory chain enzyme activity and mitochondrial protein levels, four different patients (P3, P5, P7 and P12) were investigated. These patients were carefully selected because their muscle biopsies showed a very clear pattern of COX/SDH reactivity allowing relatively simple classification of COX deficient and COX intermediate reacting fibres. Serial sections from these four patients were subjected to COX/SDH histochemistry and quadruple fluorescent immunohistochemistry. Muscle fibres were visually classified by an experienced investigator based on the COX/SDH enzymatic reactions into one of the four groups: COX positive, COX int(+), COX int(-) and COX deficient. Subsequently, the immunofluorescently labelled serial section was objectively classified based on COX-I and porin (Figure 4.19, Table 4.4).
Figure 4.19 Correlation between COX activity and COX-I immunodetection.

(A) COX/SDH histochemistry (top) and quadruple immunofluorescence (bottom) detecting COX-I – green (Alexa fluor 488nm), NDUFB8 – purple (biotin/Streptavidin 647nm), porin – red (Alexa fluor 405nm) and laminin α-1 – white (Alexa fluor 405nm) were performed on serial muscle sections from patients P3, P5, P7 and P12. (B) Graphs show the results from visual classification (based on COX/SDH histochemistry) and objective classification (based on COX-I and porin immunodetection). Fibres were classified as COX (activity/protein abundance) positive (beige), int(+) (light beige), int(-) (light blue) or deficient (blue). Fibres counted (n=visual/immunodetection): P3 (n=1103/841); P5: (n=1395/1071); P7: (n=1887/1740) and P12: (n=956/769). Scale bars measure 50µm. Image taken from Rocha et al. (2015).
Table 4.4 Correlation of COX activity and COX-I levels

<table>
<thead>
<tr>
<th>Patients</th>
<th>Complex IV</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pos</td>
<td>Int(+)</td>
</tr>
<tr>
<td>P3 (Single mtDNA deletion)</td>
<td>VC</td>
<td>90.5%</td>
</tr>
<tr>
<td></td>
<td>OC</td>
<td>92.9%</td>
</tr>
<tr>
<td></td>
<td>E(VC-OC)</td>
<td>-2.4%</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.06</td>
</tr>
<tr>
<td>P5 (Multiple mtDNA deletions)</td>
<td>VC</td>
<td>67.0%</td>
</tr>
<tr>
<td></td>
<td>OC</td>
<td>69.3%</td>
</tr>
<tr>
<td></td>
<td>E(VC-OC)</td>
<td>-2.3%</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.21</td>
</tr>
<tr>
<td>P7 (m.3243A>G MT-TL1)</td>
<td>VC</td>
<td>83.6%</td>
</tr>
<tr>
<td></td>
<td>OC</td>
<td>82.2%</td>
</tr>
<tr>
<td></td>
<td>E(VC-OC)</td>
<td>1.4%</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.25</td>
</tr>
<tr>
<td>P12 (m.10010T>C MT-TG)</td>
<td>VC</td>
<td>13.1%</td>
</tr>
<tr>
<td></td>
<td>OC</td>
<td>11.6%</td>
</tr>
<tr>
<td></td>
<td>E(VC-OC)</td>
<td>1.5%</td>
</tr>
<tr>
<td></td>
<td>p-value</td>
<td>0.34</td>
</tr>
</tbody>
</table>

Key: VC = visual classification based on COX/SDH histochemistry; OC = objective classification based on quantitative immunofluorescence; E(VC-OC) = estimate for difference between VC and OC; Z test for 2 population proportions.

The difference between the objective classification (OC) based on COX-I levels and visual classification (VC) based on COX/SDH histochemistry was always lower than 5 percentage points (Table 4.4). In patient P5, the visual classification was consistent with the objective classification. Remaining patients showed some differences; visual classification overestimated COX deficient fibres by 3.6 percentage points in patient P3 (COX deficient: VC=6.3%, OC=2.7%), whereas it underestimated this group by 4.4 percentage points in patient P3 (COX deficient: VC=82.6%, OC=87.0%), and by 4.1 percentage points in patient P7 (COX deficient: VC=8.0%, OC=12.0%), as compared to objective classification.

4.4.4.3 Reliability of the technique

In order to evaluate the reliability of the method, quadruple fluorescent immunohistochemistry was performed on a muscle section from patient P4, and data was collected on two separate occasions by two investigators (Investigator 1: I1, Investigator 2: I2) at a 15-day interval. Data collection included imaging the muscle section (approximately the same area) and performing IMARIS analysis.
The analysis from the same muscle section provided comparable results when data was collected by two investigators (Figure 4.20, Table 4.5). Indeed, the objective classification results based on COX-I levels from I1 (pos= 67.7%, int(+)=4.7%, int(-)=2.8%, neg=24.9%, n=470) and I2 (pos= 71.6%, int(+)=1.5%, int(-)=2.3%, neg=24.6%, n=528) were almost identical; the greatest difference of less than 4 percentage points was noted for COX-I positive (p=0.18) and int (+) groups (p<0.05) (Figure 4.20A). For NDUFB8 levels, the results from I1 (pos= 65.7%, int(+)=6.0%, int(-)=4.7%, neg=23.9%, n=470) and I2 (pos= 62.9%, int(+)=3.8%, int(-)=4.0%, neg=29.4%, n=528) did not differ significantly though the maximum discrepancy within COX deficient fibres was 5.7 percentage points (p=0.04) (Figure 4.20B).

![Figure 4.20 Inter-observer variability of quadruple immunofluorescence.](image)

Quadruple immunofluorescence was performed in a muscle section taken from P4 and approximately the same area of the biopsy was assessed by investigator 1 (n = 528 fibres analysed) and investigator 2 (n = 470 fibres analysed). The assessment included imaging the selected area of the muscle section by each investigator on a separate occasion (15 days apart) and performing subsequent IMARIS analysis. Bar graphs show the percentage of fibres with normal (beige), int(+) (light beige), int(-) (light blue), and deficient (blue) levels of (A) COX-I and (B) NDUFB8, when assessed by investigators 1 and 2. Image taken from Rocha et al. (2015).

Patient P4	COX-I / NDUFB8 levels	Invest. 1	Invest. 2	E(I1-I2)												
	Pos	Int(+)	Int(-)	Neg	n	Pos	Int(+)	Int(-)	Neg	n						
COX-I levels																
Invest. 1	67.7%	4.7%	2.8%	24.9%	470	Invest. 2	71.6%	1.5%	2.3%	24.6%	528	E(I1-I2)	-3.9%	3.2%	0.5%	0.3%
p-value	0.18	<0.05	0.62	0.92												
NDUFB8 levels																
Invest. 1	65.7%	6.0%	4.7%	23.6%	470	Invest. 2	62.9%	3.8%	4.0%	29.4%	528	E(I1-I2)	2.9%	2.2%	0.7%	-5.7%
p-value	0.35	0.11	0.59	0.04												

Key: Invest. 1 = investigator 1; Invest. 2 = investigator 2; E(I1-I2) = estimate for difference between investigator 1 and investigator 2; Z test for 2 population proportions.
4.4.4.4 Reproducibility of the technique

In order to evaluate the reproducibility of the method, serial muscle sections from previously assessed five patients (P1, P2, P6, P10 and P11) were processed through the same methodological protocol (quadruple immunofluorescence, followed by muscle section imaging and IMARIS analysis) on two separate occasions (“day 1” and “day 2”), 2 months apart.

The analysis of serial muscle sections from same patients provided consistent results (Figure 4.21). Quantification of COX-I and NDUFB8 levels showed similar results between the two separate experiments for patients: P1, P2 and P10 ($p<0.05$, two proportions test). In patient P6, quantification of COX-I protein level did not show any difference between days whereas quantification of NDUFB8 showed on “day 2”, a lower proportion of positive fibres (Day1: 63.4%, n=1589; Day 2: 54.4%, n=2400, $p<0.001$, two proportions test) and a higher proportion of int(+) (Day1: 12.4%, n=1589; Day 2: 19.0%, n=2400, $p<0.001$, two proportions test) and deficient fibres (Day1: 19.6%, n=1589; Day 2: 22.5%, n=2400, $p=0.028$, two proportions test).

The estimated difference in the proportions of NDUFB8 positive, int(+) and deficient fibres between days was 8.96%, -6.64% and -2.89%, respectively. Similarly in patient P11, quantification of COX-I did not show any difference between days whereas quantification of NDUFB8 showed on “day 2” a slightly lower proportion of int(-) fibres (Day1: 4.4%, n=1012; Day 2: 2.2%, n=1689, $p=0.002$, two proportions test) together with a higher proportion of fibres with absent NDUFB8 (Day1: 94.7%, n=1012; Day 2: 97.2%, n=1689, $p=0.002$, two proportions test). The estimate difference in the proportions of int(-) and deficient fibres between days was 2.3% and -2.5%, respectively. The estimate difference between days is a measure of variability and is more valuable in assessing the reliability of immunofluorescence assay since with such high number of fibres analysed any small difference is statistically significant. Last but not least, the objective assessment of COX-I from all patients showed, again, a complete agreement with the visual classification from the Mitochondrial Diagnostics Service pathologist.

4.4.4.5 Advantage of the novel assay over COX/SDH histochemistry

In chapter 3 (section 3.4.1.3), patients P8 and P9 muscle biopsies’ were used to illustrate how visual classification of muscle fibres can be subjective and challenging. That analysis revealed marked differences in classification of fibres between the two investigators (I1 and I2). However, since these biopsies were challenging to visually classify, there was some uncertainty regarding the validity of results.
Figure 4.21 Reproducibility of quadruple immunofluorescence.

COX-I and NDUFB8 protein levels were quantified in 2 different time points (Day 1, Day 2) using two serial muscle sections from patient with (A) LRPPRC mutations (P1, n\text{day} 1= 424, n\text{day} 2=1258), (B) m.4175G>A MT-ND1 mutation (P2, n\text{day} 1=823, n\text{day} 2=932), (C) multiple mtDNA deletions (P6, n\text{day} 1=1589, n\text{day} 2= 2400), (D) m.5690A>G MT-TN mutation (P10, n\text{day} 1= 362, n\text{day} 2= 1512) and (E) novel MT-TP mutation (P11, n\text{day} 1=1012, n\text{day} 2=1689). Bars indicate the percentage of muscle fibres with: normal levels of either COX-I or NDUFB8 (beige), int(+) (light beige), int(-) (light blue), and deficient (blue).

To illustrate how visual classification can lead to misleading classifications, serial muscle sections from P8 and P9 were assessed using quadruple immunofluorescence and the same 100 muscle fibres were objectively classified based on COX-I and porin levels (Figure 4.22). The objective classification showed that in patient P8 both investigators identified the majority of COX positive cells correctly (40% versus 42% using immunofluorescence) but differed in remaining categories and underestimated significantly COX deficient fibres (I1=28%, I2=36% and OC=50%). The objective classification showed that in patient P9, both investigators underestimated COX positive fibres (I1=22%, I2=20% and OC=37%), and overestimated COX deficient fibres (I1=49%, I2=29% and OC=33%), particularly investigator 1 who counted twice as many cells as revealed by the immunofluorescent technique. Both investigators were internally inconsistent (Figure 4.22).
Figure 4.22 Inter- and intra-observer variability of visual classification.
(A) COX/SDH histochemistry (top panels) and quadruple immunofluorescence (bottom panels) detecting COX-I (green), NDUFB8 (purple), porin (red) and laminin α-1 (white) were performed in two serial muscle sections obtained from patients P8 and P9. For each patient 100 muscle fibres reacted for COX/SDH histochemistry were selected and visually classified by two investigators. The same 100 fibres were objectively assessed using quadruple immunofluorescence. (B) Bar graphs show the percentage of COX-positive (beige), int(+) (light beige), int(-) (light blue) or deficient (blue) based on visual classification by an investigator 1 and 2 (first two bars) or objective classification of immunofluorescence (last bar). Image adapted from Rocha et al. (2015).

4.5 Discussion

This chapter describes a novel quadruple immunofluorescence, high-throughput and computer-based assay. It enables accurate quantification of key OXPHOS protein levels (complex I and complex IV) and a mitochondrial mass marker (porin) in individual muscle fibres, using a 10µm tissue section. The use of laminin to define cell boundaries enables semi-automatic quantification of a large number of muscle fibres. The analysis has minimal human intervention and is solely based on OD measurements. This reduces the variability and eliminates subjectivity and inconsistencies of results, which are common in currently available methods used to assess mitochondrial function in human muscle sections. This chapter also demonstrates that this technique is sensitive and reliable in detecting and quantifying focal mitochondrial deficiency in human muscle.
4.5.1 Advantages of the novel method

Previous studies have elegantly explored the involvement of multiple respiratory chain complexes using immunohistochemistry for the diagnosis and understanding of mitochondrial pathology (Tritschler et al., 1991, Rahman et al., 2000, Hanson et al., 2002, De Paepe et al., 2009, Mahad et al., 2009), but only a few quantified the deficiency (Mahad et al., 2009, Murphy et al., 2012, Grunewald et al., 2014). This novel quadruple immunofluorescent method quantifies accurately mitochondrial COX-I and NDUFB8 abundance in a single muscle section. Several optimisation steps were carried out in order to achieve that: by increasing the concentration of the protein blocking step, selecting the best combination of primary and secondary antibodies and by determining the optimal conditions and times of incubations. All conditions tested were carefully investigated by assessing the same group of fibres through densitometry, when possible. This allowed calculating S/N and RS/RN ratio to supporting each decision objectively (selecting the one providing higher S/N and RS/RN values) and not based on visual inspection. This together with the meticulous background signal correction approach guarantees an optimal detection of true COX-I, NDUFB8 and porin signals, which reflect the protein levels.

It was demonstrated that in cases of obvious COX deficiency, the visual classification of fibres was comparable with the objective classification based on the immunofluorescent technique. In these instances, COX-I protein levels correlated well with complex IV activity, validating the use of immunohistochemical techniques to assess mitochondrial biochemical profile in individual muscle fibres. However, in cases with a high proportion of COX-intermediate fibres or where histochemical signal detected was less intense and variable, visual classification of muscle fibres proved to be challenging and significantly differed between investigators. Also it significantly differed from the objective assessment confirming that visual assessment is prone to errors.

By contrast, this novel assay demonstrated to be subjectivity-devoid, reliable and reproducible. Reliability of quantification was tested through collecting data (image acquisition and IMARIS analysis) on two separate occasions by two investigators. Results showed that the magnitude of inter-observer variability of immunofluorescent technique was significantly low. The two investigators differed in objective classification by a maximum of 6 percentage points whereas the same two investigators had differed in their visual categorisation by as much as 20 percentage points. Reproducibility of quantification was formally tested by processing sections through the methodological protocol (quadruple immunofluorescence, image acquisition and IMARIS analysis) on two separate occasions. The difference in the classification of fibres
between days was always within 9 percentage points. Additionally, the large numbers of experimental replicates carried out also supports the reproducibility of this technique; the controls demonstrated consistent and comparable levels of protein. Importantly, some patients demonstrated at least a small population of fibres that appeared normal and healthy, with Z-scores centred appropriately around the mean NDUFB8 and COX-I levels observed in the controls.

Due to high accuracy and precision, this novel assay quantifies focal mitochondrial deficiency in tissue muscle sections. Results from all patients (with genetically-characterized mitochondrial disease) assessed were consistent with the respective genetic mutation and histochemical findings. Interestingly, results also showed that different genetic defects might present different patterns of COX-I and NDUFB8 deficiency. A detailed analysis of these patients will be provided in the next chapter.

4.5.2 Technical methodology

A major problem in immunofluorescence assays is signal from non-specific binding of secondary antibodies. To overcome this, groups usually set an intensity threshold to identify positive cells (Brey et al., 2003, Goedkoop et al., 2005), which is itself subjective. Here, the intensities measured in the quadruple immunofluorescence were background corrected by subtracting the non-specific signal measured in the NPC. Despite that, the secondary antibody (IgG1 biotinylated) coupled with NDUFB8 showed a higher affinity in RRF, evident from the high fluorescence intensity from these fibres detected in the serial NPC section. This non-specific binding was associated with the anti-IgG1 secondary antibody, since exchanging the secondary antibody fluorophores lead to the switching of increased NPC signal to the alternate fluorophore (Alexa fluor 546).

To compensate for this effect and ensure the NDUFB8 values represented true signal, the ODNDUF8 signal measured in the quadruple immunofluorescence was corrected according to mitochondrial mass. This approach was validated by the fact that without correction, ragged red fibres demonstrated constant basal levels of COX-I signal but ODNDUF8 signal proportional to the ODporin. With correction the ODNDUF8 in ragged red fibres was at a constant basal level, consistent with the COX-I levels and no increasing trend with ODporin was observed.
4.5.3 Potential applications

The novel quadruple immunofluorescent assay has a great potential to become broadly applied. It could play an important role in supporting the current diagnostic techniques, given the ability to detect complex I deficiency in individual muscle fibres. More investigation is required to evaluate if a specific mitochondrial defect demonstrates a unique pattern of respiratory chain dysfunction, as preliminary results from patients seem to indicate. Also, this assay is sensitive enough to detect and quantify subtle changes in protein abundance; it is therefore anticipated that it could be valuable in studying slowly progressing conditions, ageing, or assessing the impact of therapeutic interventions for mitochondrial diseases (Rocha et al., 2015)
Chapter 5. Mitochondrial respiratory chain profile of patients with different mitochondrial genetic defects

5.1 Introduction

Mitochondrial respiratory chain defects are found in a wide range of human pathologies. They can occur as a primary cause of disease - through genetic defects involving the mitochondrial or nuclear genome (Gorman et al., 2015b) or as secondary when there are other prominent pathological processes such as inflammation (Oldfors et al., 1992) or degenerative features Reeve (Reeve et al., 2008).

Mitochondrial diseases are a group of disorders which are clinically heterogeneous. Some affect a single organ whereas others are multi-systemic (usually affecting central nervous and muscular systems). Skeletal muscle is commonly involved, either exclusively or as a predominant feature in multisystem phenotypes (Taylor et al., 2004, McFarland et al., 2010), due to both mitochondrial and nuclear defects. Mitochondrial myopathies are progressive and clinical features include chronic progressive external ophthalmoplegia, rhabdomyolysis, muscle fatigue and severe proximal weakness (Pitceathly and McFarland, 2014).

Both mitochondrial and nuclear genetic defects can lead to either isolated enzyme deficiencies (affecting one complex of the mitochondrial respiratory chain) or combined deficiencies (affecting multiple complexes). Isolated complex I deficiencies are the most common OXPHOS defects accounting for up to a third of all OXPHOS disorders (Loeffen et al., 2000), followed by isolated complex IV deficiencies (Diaz, 2010). These are generally caused by mutations in either structural genes (mitochondrial or nuclear genes encoding subunits of OXPHOS complexes) or nuclear-encoded factors required for the proper assembly of OXPHOS complexes. Combined deficiencies are generally caused by large-scale deletions in the mtDNA, point mutations in mitochondrial-encoded tRNAs or rRNAs required for mitochondrial protein synthesis (Chinnery et al., 2000). Furthermore, they can also arise by mutations in nuclear genes encoding proteins involved in mtDNA maintenance, mitochondrial transcription and translation, import of nuclear-encoded proteins or RNAs into the mitochondria or mitochondrial biogenesis (Smits et al., 2010).

Current diagnostic algorithms for investigating and diagnosing mitochondrial disease rely on histochemical and biochemical assessment of OXPHOS activities in clinically-affected tissues.
(Kirby et al., 2007). Biochemical assays measure the activity of each individual OXPHOS enzyme complex (complex I–V) in homogenised muscle tissue (Kirby et al., 2007). Although very useful for identifying wide-spread mitochondrial defects, they have several limitations. They require substantial quantities of muscle (>50mg) and they may fail to detect subtle OXPHOS deficiencies, especially when only a subset of muscle fibres are affected.

The histochemical assessment of cytochrome c oxidase (COX) and succinate dehydrogenase (SDH) activities are standard methods to assess mitochondrial function in tissue muscle sections (Old and Johnson, 1989, Sciacco and Bonilla, 1996). Although valuable for detecting the mosaic pattern of mitochondrial deficiency, the classification of muscle fibres is subjective, qualitative and prone to inter-observer variability (Choudhury et al., 2010, Rizzardi et al., 2012). Furthermore, there are no histochemical assays to investigate other OXPHOS complexes, namely complex I.

5.2 Aims

The aims of this chapter were to:

1. Characterise the MRC profile of individual muscle fibres in a broad range of primary and secondary mitochondrial genetic defects.
2. Validate the use of quadruple immunofluorescence as a tool to diagnose and investigate the underlying pathogenic mechanisms of mitochondrial diseases.

5.3 Methods

5.3.1 Cohort clinical characteristics

Forty five patients with clinically and genetically-characterised mitochondrial disease were studied: two patients with a specific genetic defect affecting only one respiratory chain complex (isolated complex I or complex IV deficiency); seventeen patients with single-large scale mtDNA deletion; five patients with autosomal disorders of mtDNA maintenance leading to the generation of multiple mtDNA deletions in muscle; fifteen patients with point mutations in mitochondrial-encoded tRNAs; five patients with mutations in nuclear genes involved in mitochondrial RNA processing translation (ELAC2, GFM2), mitochondrial RNA import (PNPT1) and mitochondrial protein import (GEFR). Five patients with suspected mitochondrial disease were also assessed for diagnostic purposes. Table 5.1 summarises relevant clinical information.
The healthy control sample was obtained during orthopaedic surgery (HC: female, 20 years old). The three disease controls were previously investigated for suspected neuromuscular disease but showed normal muscle histology, oxidative enzyme histochemistry and normal respiratory chain biochemical activities (Kirby et al., 2007). Approval for this research was granted by the Newcastle and North Tyneside Local Research Ethics Committees (reference 09/H0906/75).

5.3.2 Cryo-sectioning

Serial sections (10µm thickness) from transversely orientated muscle blocks were obtained as previously described 2.2.3 from chapter 2.

5.3.3 Immunofluorescence

Fluorescence-based immunohistochemistry was carried out according to the protocol described in section 3.3.4.2 from chapter 3, with minor changes highlighted in bold:

Following fixation and permeabilisation, sections were blocked with 10% NGS for 1h at RT and then incubated with a primary antibody cocktail (Table 5.2). Subsequently, the sections were incubated with a secondary antibody cocktail for 2h at 4°C (anti-rabbit IgG Alexa fluor 405, anti-mouse IgG2a Alexa fluor 488 nm, anti-mouse IgG2b Alexa fluor 546 nm, and anti-mouse IgG1 biotinylated antibody, Table 5.2) following a final incubation with streptavidin 647 for 2h at 4°C (Table 5.2). Sections were washed in TBST and mounted in Prolong Gold (Life Technologies). A NPC was processed for each muscle sample used in the study.
<table>
<thead>
<tr>
<th>Patients</th>
<th>Sex</th>
<th>Age</th>
<th>Clinical information</th>
<th>Genetic defect</th>
<th>Biochemical findings</th>
<th>Mutation load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients with known mutations affecting complex I and IV specifically</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>M</td>
<td>1y</td>
<td>Encephalopathy, seizures, hypotonia, developmental delay, central apnoeas</td>
<td>Compound heterozygous LRPPRC mutations (manuscript in preparation)</td>
<td>Isolated CIV deficiency in muscle</td>
<td>n.d.</td>
</tr>
<tr>
<td>P2*</td>
<td>M</td>
<td>20y</td>
<td>Exercise-induced muscle weakness and lactic acidosis</td>
<td>m.4175G>A (p.Trp290*) MTND1 mutation</td>
<td>Isolated CI deficiency in muscle</td>
<td>90%</td>
</tr>
<tr>
<td>Single, large-scale mtDNA deletion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>F</td>
<td>22y</td>
<td>CPEO</td>
<td>Deletion size ~ 7.1 bp Breakpoints: 8543-15672</td>
<td>n.d.</td>
<td>7.0%</td>
</tr>
<tr>
<td>P4</td>
<td>M</td>
<td>25y</td>
<td>Ptosis, CPEO, some fatigable weakness. Ultra peculiar patient</td>
<td>Deletion size ~ 4.7 kb Breakpoints: 10946-15598</td>
<td>n.d.</td>
<td>85%</td>
</tr>
<tr>
<td>P5</td>
<td>F</td>
<td>25y</td>
<td>CPEO</td>
<td>Deletion size ~ 3.0 kb (breakpoints not mapped)</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>P6</td>
<td>F</td>
<td>26y</td>
<td>CPEO, mitochondrial myopathy</td>
<td>Deletion size ~ 4.9 kb Breakpoints: 10747-15598</td>
<td>n.d.</td>
<td>65%</td>
</tr>
<tr>
<td>P7</td>
<td>F</td>
<td>29y</td>
<td>CPEO, bilateral ptosis</td>
<td>Deletion size ~ 4.4 kb Breakpoints: 8929-13301</td>
<td>n.d.</td>
<td>53%</td>
</tr>
<tr>
<td>P8</td>
<td>F</td>
<td>36y</td>
<td>CPEO, myopathy</td>
<td>Deletion size ~ 5.0 kb (breakpoints not mapped)</td>
<td>n.d.</td>
<td>79%</td>
</tr>
<tr>
<td>P9</td>
<td>M</td>
<td>39y</td>
<td>CPEO, myopathy</td>
<td>Deletion size ~ 4.1 kb Breakpoints: 11262-15375</td>
<td>n.d.</td>
<td>72%</td>
</tr>
<tr>
<td>P10</td>
<td>F</td>
<td>39y</td>
<td>CPEO, diplopia</td>
<td>Deletion size ~ 7.5 kb Breakpoints: 7130-14628</td>
<td>n.d.</td>
<td>28%</td>
</tr>
<tr>
<td>P11</td>
<td>F</td>
<td>40y</td>
<td>CPEO, muscle atrophy, weakness, retinal pigmentary changes, increased resting lactate</td>
<td>Deletion size ~ 2.3 kb Breakpoints: 12113-14421</td>
<td>n.d.</td>
<td>87%</td>
</tr>
<tr>
<td>P12</td>
<td>F</td>
<td>41y</td>
<td>CPEO, myopathy</td>
<td>n.d.</td>
<td>n.d.</td>
<td>42%</td>
</tr>
<tr>
<td>P13</td>
<td>F</td>
<td>43y</td>
<td>CPEO, myopathy</td>
<td>Deletion size ~ 5.0 kb Breakpoints: 8482-13460</td>
<td>n.d.</td>
<td>78%</td>
</tr>
<tr>
<td>P14</td>
<td>F</td>
<td>44y</td>
<td>CPEO, myopathy</td>
<td>Deletion size ~ 4.2 kb Breakpoints: 9486-13723</td>
<td>n.d.</td>
<td>81%</td>
</tr>
<tr>
<td>Case</td>
<td>Sex</td>
<td>Age</td>
<td>Symptoms</td>
<td>Deletion Size</td>
<td>Breakpoints</td>
<td>Other Information</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>----------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>P15</td>
<td>F</td>
<td>47y</td>
<td>Ptosis, CPEO, jaw aching with chewing</td>
<td>~ 2.3 kb</td>
<td>12112-14412</td>
<td>n.d. 76%</td>
</tr>
<tr>
<td>P16</td>
<td>F</td>
<td>48y</td>
<td>CPEO, myopathy</td>
<td>~ 4.2 kb</td>
<td>9498-13739</td>
<td>n.d. 39%</td>
</tr>
<tr>
<td>P17</td>
<td>F</td>
<td>61y</td>
<td>CPEO</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>P18</td>
<td>M</td>
<td>61y</td>
<td>CPEO</td>
<td>~ 5.0 kb</td>
<td>8482-13460</td>
<td>n.d. 3%</td>
</tr>
<tr>
<td>P19</td>
<td>F</td>
<td>74y</td>
<td>CPEO</td>
<td>~ 4.9 kb</td>
<td>7205-12090</td>
<td>n.d. 34%</td>
</tr>
</tbody>
</table>

Autosomal disorders of mtDNA maintenance

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex</th>
<th>Age</th>
<th>Symptoms</th>
<th>Deletion Size</th>
<th>Breakpoints</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>P20</td>
<td>M</td>
<td>36y</td>
<td>Severe PEO, ptosis, proximal muscle weakness, facial weakness, scapulae winging, low BMI, hypogonadism and osteoporosis.</td>
<td>multiple mtDNA deletions; autosomal recessive p.(Thr144Ile) and p.(Gly273Ser) RRM2B mutations</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>P21</td>
<td>F</td>
<td>43y</td>
<td>Severe PEO, asymmetrical ptosis, proximal and distal muscle weakness, ataxia, SNHL, facial weakness, low BMI, leukoencephalopathy and depression</td>
<td>multiple mtDNA deletions; autosomal recessive p.(Arg186Gly) and p.(Thr218Ile) RRM2B mutations</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>P22</td>
<td>M</td>
<td>47y</td>
<td>CPEO, bilateral ptosis</td>
<td>multiple mtDNA deletions; autosomal dominant p.(Asp104Gly) SLC25A4 mutation</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>P23</td>
<td>F</td>
<td>54y</td>
<td>CPEO, ptosis, muscle weakness</td>
<td>autosomal dominant p.(Gln458His) PEO1 mutation</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>P24</td>
<td>M</td>
<td>60y</td>
<td>CPEO, bilateral ptosis</td>
<td>multiple mtDNA deletions; nuclear basis unresolved</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Point mutations in mitochondrial-encoded tRNA leucine 1 (MT-TL1)

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex</th>
<th>Age</th>
<th>Symptoms</th>
<th>Mutation</th>
<th>Other Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>P25</td>
<td>F</td>
<td>25y</td>
<td>Exercise intolerance, ptosis</td>
<td>m.3243A>G MT-TL1 mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>P26</td>
<td>F</td>
<td>38y</td>
<td>Mild exercise intolerance, diabetes</td>
<td>m.3243A>G MT-TL1 mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>P27</td>
<td>F</td>
<td>40y</td>
<td>Exercise intolerance, mild deafness</td>
<td>m.3243A>G MT-TL1 mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>P28</td>
<td>F</td>
<td>42y</td>
<td>Epilepsy, bilateral sensorineural hearing loss, diabetes, gastrointestinal complications</td>
<td>m.3243A>G MT-TL1 mutation</td>
<td>Isolated CI deficiency in muscle 52%</td>
</tr>
<tr>
<td>P29</td>
<td>F</td>
<td>43y</td>
<td>Mild exercise intolerance, diabetes</td>
<td>m.3243A>G MT-TL1 mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>ID</td>
<td>Age</td>
<td>Gender</td>
<td>Symptoms</td>
<td>Mutation</td>
<td>CI, CIII, CIV Deficiency</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>--------</td>
<td>---</td>
<td>---------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>P30</td>
<td>F</td>
<td>47y</td>
<td>Modest exercise intolerance</td>
<td>m.3243A>G MT-TL1 mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>P31</td>
<td>M</td>
<td>53y</td>
<td>CPEO</td>
<td>m.3243A>G MT-TL1 mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>P32</td>
<td>M</td>
<td>76y</td>
<td>Muscle pain and weakness</td>
<td>m.3243A>T MT-TL1 mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Point mutations in other mitochondrial-encoded tRNAs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P33</td>
<td>F</td>
<td>13y</td>
<td>CPEO, ptosis, proximal myopathy</td>
<td>m.5690A>G MT-TN mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>P34</td>
<td>F</td>
<td>35y</td>
<td>Mild weakness</td>
<td>m.14709T>C MT-TE mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>P35</td>
<td>F</td>
<td>58y</td>
<td>Myopathy</td>
<td>m.14709T>C MT-TE mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>P36</td>
<td>F</td>
<td>18y</td>
<td>Seizures, deafness, retinopathy</td>
<td>Novel m.16021_16022detCT MT-TP mutation (unpublished)</td>
<td>n.d.</td>
</tr>
<tr>
<td>P37</td>
<td>M</td>
<td>33y</td>
<td>Mitochondrial myopathy</td>
<td>m.10010T>C MT-TG mutation</td>
<td>Cl, CIII and CIV deficiency in muscle</td>
</tr>
<tr>
<td>P38</td>
<td>M</td>
<td>63y</td>
<td>Pure exercise intolerance, prominent exertional dyspnea</td>
<td>m.5543T>C MT-TW mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>P39</td>
<td>M</td>
<td>4y</td>
<td>Developmental delay, progressive white matter loss on brain MRI; raised serum and CSF lactates</td>
<td>(unpublished) Novel m.7483C>A MT-TS1 anticodon mutation</td>
<td>Severe CI and CIV defects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mutations in other nuclear genes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P40</td>
<td>M</td>
<td>18y</td>
<td>Myopathy, cardiomyopathy, cataracts</td>
<td>p.(Arg192Gly) and p.(Arg194His) GFER variants</td>
<td>Severe CI, CIII and CIV defects</td>
</tr>
<tr>
<td>P41</td>
<td>M</td>
<td>26y</td>
<td>CPEO, ptosis, cataracts, cardiomyopathy</td>
<td>p.(Arg67Glyfs*83) and p.(Arg196Cys) GFER variants</td>
<td>Evidence of CI deficiency and mild CIV</td>
</tr>
<tr>
<td>P42</td>
<td>M</td>
<td>27y</td>
<td>CPEO, ptosis, cataracts, cardiomyopathy</td>
<td>p.(Arg67Glyfs*83) and p.(Arg196Cys) GFER variants</td>
<td>Evidence of CI deficiency and mild CIV defect</td>
</tr>
<tr>
<td>P43</td>
<td>F</td>
<td>4y</td>
<td>Cardiomyopathy and developmental delay; normal serum lactate</td>
<td>Recessive c.297-2_297delinsTG, p.? and p.(Arg781His) ELAC2 variants</td>
<td>Mild CI defect</td>
</tr>
<tr>
<td>P44</td>
<td>F</td>
<td>4y</td>
<td>Developmental delay, deafness, brain MRI changes and elevated serum lactate levels</td>
<td>Novel p.(Arg136His) PNTPT1 variant</td>
<td>Mild CIV deficiency (UCLH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>P45</td>
<td>M</td>
<td>6y</td>
<td>IUGR, developmental delay, symmetrical high signal changes in caudate and cerebellar dentate nucleus</td>
<td>p.(Glu213Argfs*3) and p.(Arg190Gln) GFM2 variants</td>
<td>Mild CI and CIV defects</td>
</tr>
</tbody>
</table>

Patients with suspected mitochondrial disease investigated for diagnostic purposes

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P46</td>
<td>F</td>
<td>4y</td>
<td>Myopathy, deafness</td>
<td>Not known</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>P47</td>
<td>F</td>
<td>18y</td>
<td>Myopathy; limb girdle weakness, raised CK</td>
<td>Not known</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>P48</td>
<td>M</td>
<td>24y</td>
<td>Lipid storage myopathy, neuropathy, endocrinopathy, elevated lactates</td>
<td>Not known</td>
<td>Low CI, CII and CIV activities in muscle</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>P49</td>
<td>F</td>
<td>39y</td>
<td>Fatigue, GI problems, diabetes, sensory and autonomic neuropathy; serum lactates elevated</td>
<td>Not known</td>
<td>n.d.</td>
<td>n.d.</td>
<td></td>
</tr>
<tr>
<td>P50</td>
<td>F</td>
<td>46y</td>
<td>Axonal neuropathy, liver and renal abnormalities, deafness, raised serum lactates</td>
<td>Not known</td>
<td>Low CI, CII, CIII and CIV activities in muscle</td>
<td>n.d.</td>
<td></td>
</tr>
</tbody>
</table>

Key: age = age when biopsied; y = years old; mtDNA = mitochondrial DNA; PEO = progressive external ophthalmoplegia; CPEO = chronic CPEO; BMI = body mass index; IUGR = intrauterine growth restriction; CK = creatine kinase; MRI = magnetic resonance imaging, GI = gastrointestinal, n.d. = not determined, a,b,c published cases: a Gorman et al. (2015), b P19 and c P20 in Pitceathly et al. (2012), d P3 in Blakely et al. (2013).
Table 5.2 Primary and secondary antibodies used for immunofluorescence

<table>
<thead>
<tr>
<th>Antibodies</th>
<th>Host</th>
<th>Dilution</th>
<th>Company (Product number)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary antibodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTCOI (IgG2a)</td>
<td>Mouse</td>
<td>1:100</td>
<td>Abcam (Ab14705)</td>
</tr>
<tr>
<td>NDUFB8 (IgG1)</td>
<td>Mouse</td>
<td>1:100</td>
<td>Abcam (Ab110242)</td>
</tr>
<tr>
<td>Porin (IgG2b)</td>
<td>Mouse</td>
<td>1:100</td>
<td>Abcam (Ab14734)</td>
</tr>
<tr>
<td>Laminin α-1 (rabbit IgG polyclonal)</td>
<td>Rabbit</td>
<td>1:50</td>
<td>Sigma-Aldrich (L9393)</td>
</tr>
<tr>
<td>Secondary antibodies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-rabbit Alexa Fluor 405 nm</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (A31556)</td>
</tr>
<tr>
<td>Anti-mouse IgG2a Alexa Fluor 488 nm</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (A21131)</td>
</tr>
<tr>
<td>Anti-mouse IgG2b Alexa Fluor 546 nm</td>
<td>Goat</td>
<td>1:200</td>
<td>Life Technologies (A21143)</td>
</tr>
<tr>
<td>Anti-mouse IgG1 biotin</td>
<td>Goat</td>
<td>1:200</td>
<td>Jackson IR Lab (115-065-205)</td>
</tr>
<tr>
<td>Streptavidin Alexa Fluor 647 nm</td>
<td>Goat</td>
<td>1:100</td>
<td>Life Technologies (S31556)</td>
</tr>
</tbody>
</table>

Key: Jackson IR Lab = Jackson ImmunoResearch Laboratories

5.3.4 Imaging

Brightfield and fluorescent images were acquired at 20x magnification using Zeiss Microscope (see section 2.2.7 from chapter 2).

5.3.5 Densitometry measurements

Fluorescent images were analysed using IMARIS software (Bitplane). Segmentation was performed in order to measure the OD from individual muscle fibres (ODCOXI, ODNDUFB8 and ODPorin or OD488, OD546 and OD647), as described in section 4.4.1 from chapter 4.

5.3.6 Data analysis

Data analysis (background correction, creation of control group, and calculation of Z scores for porin, NDUFB8 and COX-I) and classification of fibres was performed as previously described in chapter 4 (see section 4.4.4.1).
5.4 Results

Quadruple immunofluorescence was performed in muscle sections from forty five patients with genetically-determined mitochondrial disease (P1-P45) in order to characterise their MRC phenotype. Muscle sections from five patients with suspected mitochondrial disease (P46-P50) were also investigated and included in this chapter to show the potential of this technique as a diagnostic tool.

5.4.1 MRC profile from patients with known mutations affecting complex I or IV activities specifically

Patient P1 (compound heterozygous LRPPRC mutations, Figure 5.1A) showed isolated COX-I deficiency with 99.8% of fibres down-regulated for COX-I and 99.6% of fibres with preserved NDUFB8 levels. Patient P2 (m.4175G>A MT-ND1 mutation, Figure 5.1B) showed isolated NDUFB8 deficiency with 88.1% of fibres with down-regulated NDUFB8 and 99.9% of fibres with preserved COX-I levels. These patients demonstrated different MRC profiles – an “I” shape in patient P1 (Figure 5.1A) and a “—” shape in P2 (Figure 5.1B). These results are in agreement with the biochemical defects assessed by spectrophotometric enzyme assay from the diagnostic laboratory (Table 5.3).

![Figure 5.1 MRC profile linking complex I, complex IV and porin levels from patients showing isolated complex I or IV deficiency.](image)

Patients with: (A) isolated complex IV deficiency (compound heterozygous LRPPRC mutations, P1, n = 1258), (B) isolated complex I deficiency (m.4175G>A MT-ND1 mutation, P2, n = 1062) were assessed in terms of COX-I, NDUFB8 and porin protein levels. Each dot represents the measurement from an individual muscle fibre, colour coded according to its mitochondrial mass (very low: blue, low: light blue, normal: light orange, high: orange and very high: red). Thin black dashed lines indicate the SD limits for the classification of fibres, colour lines next to x and y axis indicate the levels of NDUFB8 and COX-I respectively (beige: normal, light beige: int(+), light blue: int(-) and blue: deficient). Bold dashed lines indicate the mean expression level of normal fibres, which cluster in the same area as the control population’s muscle fibres.
Table 5.3 Activity of the respiratory chain complexes measured in muscle homogenates

<table>
<thead>
<tr>
<th>Patients</th>
<th>Complex I/CS</th>
<th>Complex II/CS</th>
<th>Complex III/CS</th>
<th>Complex IV/CS</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 (LRPPRC mutations)</td>
<td>0.062</td>
<td>0.096</td>
<td>0.472</td>
<td>0.242</td>
</tr>
<tr>
<td>P2 (m.4175G>A MT-ND1)</td>
<td>0.001</td>
<td>0.070</td>
<td>0.634</td>
<td>1.216</td>
</tr>
<tr>
<td>Control (n=25)</td>
<td>0.104±0.036</td>
<td>0.145±0.047</td>
<td>0.554±0.345</td>
<td>1.124±0.511</td>
</tr>
</tbody>
</table>

Enzyme activities are expressed as nmols NADH oxidised.min⁻¹.unit citrate synthase (CS)⁻¹ for complex I, nmols DCPIP reduced.min⁻¹.unit citrate synthase⁻¹ for complex II and the apparent first-order rate constant (K).sec⁻¹.unit citrate synthase⁻¹ for complexes III and IV (x 10³). Control values are shown as mean±standard deviation. DCPIP = 2,6-dichlorophenolindophenol.

5.4.2 MRC profile from patients with single large-scale mtDNA deletions

All patients harbouring single, large-scale mtDNA deletions (P3-P19: Figure 5.2, Figure 5.3 and Figure 5.4, Table 5.4) showed decreased levels of both complex IV and complex I. However, 3 distinct MRC profiles were detected, and therefore patients were grouped accordingly. The first group of patients (8 out of 17 patients) showed both complexes I and IV equally and simultaneously down-regulated (Figure 5.2, Table 5.4) – the MRC graphs showed a “/” shape. This contrasted with the second group of patients (6 out of 17) which showed a “Γ” MRC shape – with an early and more pronounced involvement of complex I over complex IV (Figure 5.3, Table 5.4). The third group of patients (3 out of 17) presented a “)” MRC shape – with a slightly more pronounced and earlier involvement of complex IV deficiency (Figure 5.4, Table 5.4).
Figure 5.2 MRC profile from patients harbouring single, large-scale mtDNA deletions that show a specific pattern of both complex I and IV equally affected. Plots show complex I and IV expression profile from (A) P3 (n = 1027), (B) P4 (n = 631), (C) P7 (n = 1228), (D) P8 (n = 322), (E) P13 (n = 853), (F) P14 (n = 609), (G) P16 (n = 942) and (H) P18 (n = 388). Each dot represents an individual muscle fibre colour coded according to its mitochondrial mass (very low: blue, low: light blue, normal: beige, high: orange and very high: red).
Figure 5.3 MRC profile from patients harbouring single, large-scale mtDNA deletions that show a specific pattern of complex I more affected than complex IV.
Plots show complex I and IV expression profile from (A) P5 (n = 322), (B) P6 (n = 579), (C) P9 (n = 272), (D) P11 (n = 1118), (E) P15 (n = 606) and (F) P17 (n = 283). Each dot represents an individual muscle fibre colour coded according to its mitochondrial mass (very low: blue, low: light blue, normal: beige, high: orange and very high: red).

Figure 5.4 MRC profile from patients harbouring single, large-scale mtDNA deletions that show a specific pattern of complex IV more affected than complex I.
Plots show complex I and IV expression profile from (A) P10 (n = 841), (B) P12 (n = 283) and (C) P19 (n = 779). Each dot represents an individual muscle fibre colour coded according to its mitochondrial mass (very low: blue, low: light blue, normal: beige, high: orange and very high: red).
Table 5.4 Quantification of both COX-I and NDUFB8 deficiency in patients with single large-scale mtDNA deletion

<table>
<thead>
<tr>
<th></th>
<th>COX-I levels</th>
<th>NDUF88 levels</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pos</td>
<td>Int(+)</td>
<td>Int(-)</td>
</tr>
<tr>
<td>Group 1: complexes I and IV equally down-regulated</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>92.6%</td>
<td>4.3%</td>
<td>2.7%</td>
</tr>
<tr>
<td>P4</td>
<td>53.7%</td>
<td>6.0%</td>
<td>3.8%</td>
</tr>
<tr>
<td>P7</td>
<td>92.7%</td>
<td>4.4%</td>
<td>1.3%</td>
</tr>
<tr>
<td>P8</td>
<td>42.5%</td>
<td>5.4%</td>
<td>3.1%</td>
</tr>
<tr>
<td>P13</td>
<td>51.3%</td>
<td>6.8%</td>
<td>4.9%</td>
</tr>
<tr>
<td>P14</td>
<td>46.0%</td>
<td>16.3%</td>
<td>7.1%</td>
</tr>
<tr>
<td>P16</td>
<td>81.7%</td>
<td>2.5%</td>
<td>1.5%</td>
</tr>
<tr>
<td>P18</td>
<td>96.4%</td>
<td>1.2%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Group 2: earlier and more pronounced involvement of complex I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>92.9%</td>
<td>0.9%</td>
<td>0.9%</td>
</tr>
<tr>
<td>P6</td>
<td>75.3%</td>
<td>6.4%</td>
<td>5.7%</td>
</tr>
<tr>
<td>P9</td>
<td>69.1%</td>
<td>7.4%</td>
<td>5.5%</td>
</tr>
<tr>
<td>P11</td>
<td>62.3%</td>
<td>10.8%</td>
<td>6.2%</td>
</tr>
<tr>
<td>P15</td>
<td>81.4%</td>
<td>6.9%</td>
<td>3.1%</td>
</tr>
<tr>
<td>P17</td>
<td>89.0%</td>
<td>1.4%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Group 3: earlier and more pronounced involvement of complex IV</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P10</td>
<td>92.6%</td>
<td>2.3%</td>
<td>2.3%</td>
</tr>
<tr>
<td>P12</td>
<td>80.2%</td>
<td>7.1%</td>
<td>2.5%</td>
</tr>
<tr>
<td>P19</td>
<td>81.5%</td>
<td>2.1%</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

Key: n = number of fibres quantified, %DR = percentage of muscle fibres with down-regulated protein levels, either int(+) or int(-) or neg, DS = deletion size.
To explore the underlying genetic causes of the distinct MRC profiles, the sizes of individual mtDNA deletions within each group were plotted together. Interestingly, the different groups of patients tended to harbour slightly different deletion sizes with bigger deletions in patients from group 1 and 3 (Figure 5.5), suggesting a possible correlation between the observed MRC profile and the nature of the genes removed.

![Deletion size among the different groups of patients.](image)

Figure 5.5 Deletion size among the different groups of patients.
Graph shows the size of the deletion from patients belonging to group 1, 2 and 3. Each dot corresponds to a patient. Dashed lines show the average deletion size in each group.

A deeper analysis was performed in order to determine if the number and type of genes removed could explain the different MRC profiles found between the groups. As most patients (7 patients from group 1, 4 patients from group 2, and 2 patients from group 3) had the deletion breakpoints mapped, the genes removed by the deletion were determined for each patient, using the mitomap website tool (Table 5.5).

Patients within the same group presented a similar pattern of genes removed. In group 1, individual mtDNA deletions consistently removed 5-6 tRNAs genes, 4-5 complex I genes and 1 complex IV gene, whereas complex III and V genes were only occasionally removed. In group 2, deletions tended to be smaller, removing 3-4 tRNAs genes and 3-4 complex I genes; one complex III gene was occasionally removed and complex IV genes were consistently preserved. In group 3, deletions tended to be larger, removing 8-5 tRNAs genes, 4-2 complex I genes, 2 complex V genes and all complex IV genes. Patient P4 was excluded from this analysis. This patient was studied in the past by two other PhD students, who detected some inconsistencies and requested a repeated sequencing of the mtDNA genome. This has not been performed to date.
Table 5.5 Genes removed by the deletion in patients from group 1, 2 and 3.

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P3</td>
<td>P4</td>
<td>P7</td>
</tr>
<tr>
<td>MT-COI</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>tRNA serine 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC nucleotides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tRNA aspartic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-COII</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NC nucleotides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tRNA lysine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-ATP8</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>MT-ATP6</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>MT-COIII</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>tRNA glycine</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>MT-ND3</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>MT-ND4L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MT-ND4</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>tRNA histidine</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>tRNA serine2</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>tRNA leucine2</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>MT-ND5</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>MT-ND6</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>MT-CYB</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>tRNAs removed</td>
<td>6 4</td>
<td>5 5</td>
<td>5 5</td>
</tr>
<tr>
<td>CI genes removed</td>
<td>5 3</td>
<td>4 4</td>
<td>4 4</td>
</tr>
<tr>
<td>CIV genes removed</td>
<td>1 -</td>
<td>1 1</td>
<td>1 1</td>
</tr>
<tr>
<td>CIII genes removed</td>
<td>1 1</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>CV genes removed</td>
<td>2 - 1</td>
<td>2 - 2</td>
<td>- -</td>
</tr>
<tr>
<td>Mutation load (%)</td>
<td>7.0 85</td>
<td>56 78</td>
<td>81 39</td>
</tr>
<tr>
<td>%DR (COX-I) fibres</td>
<td>7.4 46</td>
<td>7.3 49</td>
<td>54 18</td>
</tr>
<tr>
<td>%DR (NDUFB8) fibres</td>
<td>6.9 48</td>
<td>3.7 51</td>
<td>52 21</td>
</tr>
</tbody>
</table>

NC nucleotides = non-coding nucleotides; %DR (COX-I) fibres = percentage of fibres with down-regulated levels of COX-I; %DR (NDUFB8) fibres = percentage of fibres with down-regulated levels of NDUFB8.
Moreover, patients lacking the same mitochondrial genes not only belonged to the same

group but also the degree of deficiency was consistent with the mutation load. For example, in

group 1, P14 showed a higher mutation load (81%) and higher levels of deficiency (54% fibres
with down-regulated COX-I; 52% fibres with down-regulated NDUFB8) than P16 (39% mutation
load; 18% fibres with down-regulated COX-I; 21% fibres with down-regulated NDUFB8).
Similarly in group 2, P11 had a higher mutation load (87%) and higher levels of deficiency (38% fibres
with down-regulated COX-I; 93% fibres with down-regulated NDUFB8) than P15 (76% mutation
load; 19% fibres with down-regulated COX-I; 68% fibres with down-regulated NDUFB8).

To further explore if mutation load correlated with degree of deficiency, the percentage of
fibres with down-regulated COX-I and NDUFB8 (i.e. the sum of int(+), int(-) and deficient fibres)
was plotted against the mutation load for each group. In group 1, where both complex I and IV
are equally down-regulated, both percentage of muscle fibres with down-regulated COX-I
(y=1.5x+2, R²=0.9) and percentage of muscle fibres with down-regulated NDUFB8 (y=1.5x-0.5,
R²=0.9) showed a strong correlation with the mutation load (Figure 5.6). In group 2, where
complex I is more affected than complex IV, the percentage of muscle fibres with down-
regulated NDUFB8 showed a strong correlation (y=0.6x+29, R²=0.9) with the mutation load
whereas the percentage of muscle fibres with down-regulated COX-I only showed a weak
correlation (R²=0.3). The linear regression of NDUFB8 deficiency, however, did not present a
zero intercept. These results suggest that in group 2 the mutation load might be predicted by
multiple independent variables of NDUFB8 and COX-I deficiency. Due to the low number of
patients in group 3, it was not possible to investigate the correlation between mutation load
and degree of deficiency in this particular group.

Figure 5.6 Correlation between mitochondrial respiratory chain deficiency and mutation load in
patients from group 1.
Graphs plot the (A) percentage of fibres with down-regulated COX-I and (B) percentage of fibres with
down-regulated NDUFB8 against the percentage of mutated mtDNA relative to wild-type mtDNA
(mutation load) measured in muscle homogenates.
5.4.3 MRC profile from patients with mutations in nuclear genes involved in mtDNA maintenance

Patients diagnosed with a nuclear-driven disorder leading to the accumulation of multiple mtDNA deletions in muscle (P20-P24, Figure 5.7, Table 5.6) showed a greater proportion of fibres deficient in complex I than complex IV. All five patients presented a similar MRC profile: a discrete population of fibres that showed decreased NDUFB8 expression without concomitant complex IV deficiency and a further, distinct population of muscle fibres, in which subunits of complexes I and IV were equally down-regulated (Figure 5.7). It is interesting to notice that patients with the SLC25A4 (P22) and PEO1 (P23) mutations showed an almost identical MRC profile - “Z” shape (Figure 5.7 C and D) -, which was slightly different from the MRC profile detected in patients with the RRM2B mutation (P20 and P21) and the unresolved nuclear defect (P24) - “7” shape (Figure 5.7 A, B and E). In both P22 and P23 complex IV appears to plateau at a level much higher than observed in patients P20, P21 and P23.

![Figure 5.7 MRC profile from patients harbouring multiple mtDNA deletions in muscle.](image)

Plots show complex I and IV expression profile from (A) P20 (n = 526), (B) P21 (n = 528), (C) P22 (n = 1071), (D) P23 (n = 1118) and (E) P24 (n = 2400). Each dot represents an individual muscle fibre colour coded according to its mitochondrial mass (very low: blue, low: light blue, normal: beige, high: orange and very high: red).
5.4.4 MRC profile from patients with mutations in mitochondrial-encoded tRNA leucine 1 (MT-TL1)

All patients with a mutation in MT-TL1 gene (Figure 5.8, Table 5.7) – either a transition A>G (P25-31) or a transversion A>T (P32) - presented a similar profile of deficiency: a distinctive “Γ” shape. In all: complex I was much more severely affected than complex IV and was always affected prior to complex IV deficiency.

Figure 5.8 MRC profile from patients with the m.3243A>G MT-TL1 mutation.
Plots show complex I and IV expression profile from (A) P25 (n = 1328), (B) P26 (n = 615), (C) P27 (n=499), (D) P28 (n = 1441), (E) P29 (n=212), (F) P30 (n = 741), (G) P31 (n = 918) and (H) P32 (n = 1042). Each dot represents an individual muscle fibre colour coded according to its mitochondrial mass (very low: blue, low: light blue, normal: beige, high: orange and very high: red).
Table 5.6 Quantification of COX-I and NDUFB8 deficiency in patients with multiple mtDNA deletions

<table>
<thead>
<tr>
<th></th>
<th>COX-I levels</th>
<th>NDUFB8 levels</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pos</td>
<td>Int(+)</td>
<td>Int(-)</td>
</tr>
<tr>
<td>P20</td>
<td>60.1%</td>
<td>3.4%</td>
<td>3.8%</td>
</tr>
<tr>
<td>P21</td>
<td>71.6%</td>
<td>1.5%</td>
<td>2.3%</td>
</tr>
<tr>
<td>P22</td>
<td>69.0%</td>
<td>10.2%</td>
<td>6.3%</td>
</tr>
<tr>
<td>P23</td>
<td>72.4%</td>
<td>5.1%</td>
<td>3.4%</td>
</tr>
<tr>
<td>P24</td>
<td>71.2%</td>
<td>5.2%</td>
<td>2.7%</td>
</tr>
</tbody>
</table>

Key: n = number of fibres quantified, %DR = percentage of muscle fibres with down-regulated protein levels, either int(+), int(-) or neg.

Table 5.7 Quantification of COX-I and NDUFB8 deficiency in patients with m.3243A>G point mutation in MT-TL1

<table>
<thead>
<tr>
<th></th>
<th>COX-I levels</th>
<th>NDUFB8 levels</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pos</td>
<td>Int(+)</td>
<td>Int(-)</td>
</tr>
<tr>
<td>P25</td>
<td>83.7%</td>
<td>2.5%</td>
<td>1.8%</td>
</tr>
<tr>
<td>P26</td>
<td>82.8%</td>
<td>2.0%</td>
<td>3.9%</td>
</tr>
<tr>
<td>P27</td>
<td>69.1%</td>
<td>11.0%</td>
<td>9.4%</td>
</tr>
<tr>
<td>P28</td>
<td>90.6%</td>
<td>4.4%</td>
<td>1.8%</td>
</tr>
<tr>
<td>P29</td>
<td>99.1%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>P30</td>
<td>89.1%</td>
<td>3.0%</td>
<td>1.3%</td>
</tr>
<tr>
<td>P31</td>
<td>67.0%</td>
<td>16.7%</td>
<td>7.0%</td>
</tr>
<tr>
<td>P32</td>
<td>89.6%</td>
<td>2.9%</td>
<td>1.8%</td>
</tr>
</tbody>
</table>

Key: n = number of fibres quantified, %DR = percentage of muscle fibres with down-regulated protein levels, either int(+), int(-) or neg.
5.4.5 MRC profile from patients with mutations in other mitochondrial-encoded tRNAs

Patients with mutations in the mitochondrial-encoded asparagine and glutamic acid tRNAs: P33 (m.5690A>G MT-TN mutation, Figure 5.9A), P34 and P35 (m.14709T>C MT-TE mutation, Figure 5.9B and C) presented a pattern of deficiency similar to patients with m.3243A>G MT-TL1 mutation. Complex I deficiency was higher than complex IV deficiency, however in these patients (P33, P34 and P35) there was more evidence of complex IV involvement. By contrast, patients with mutations in the mitochondrial-encoded proline, glycine, tryptophan and serine1 tRNAs: P36 (Novel MT-TP mutation, Figure 5.9D), P37 (m.10010T>G MT-TG mutation, Figure 5.9E), P38 (m.5543T>C MT-TW mutation, Figure 5.9F) and P39 (m.7483C>A MT-TS1 mutation, Figure 5.9G) all demonstrated a severe deficiency of both complexes. These results are in agreement with the spectrophotometric enzyme assays carried out by the diagnostic laboratory (P37 and P39, Table 5.1). Interestingly, the patient harbouring the MT-TW mutation demonstrated a different pattern of complex IV deficiency. Here, complex IV appeared to plateau at a much higher level than reported for other mitochondrial-encoded tRNA point mutations.

The degree of pathogenicity of different tRNA mutations was also explored where such data was available. This was performed by comparing the observed degree of deficiency caused by different mutations, only when mutated mtDNA was present in a similar proportion relative to wild type mtDNA (Table 5.8). For instance, the m.14709T>E MT-TE mutation led to a milder COX-I and NDUFB8 deficiency (P35: 11%, 17%, respectively) than the m.10010T>G MT-TG mutation (P37: 88%, 89%, respectively) or m.7483C>A MT-TS1 mutation (P39: 100%, 100%, respectively) when the mutation load was within the same range (83-89%). Also, m.7483C>A MT-TS1 (P39) mutation led to a similarly severe degree of COX-I and NDUFB8 deficiency as seen in the novel MT-TP mutation (P36: 100%, 100%, respectively), though at a lower mutation load.
Figure 5.9. MRC profile from patients with mutations in other mitochondrial-encoded tRNAs.

Plots show complex I and IV expression profile from patients with (A) m.5690A>G MT-TN mutation (P33, n = 1512), (B-C) m.14709T>C MT-TE mutation (B: P34, n = 1782; C: P35, n = 1510), (D) novel MT-TP mutation (P36, n = 1012), (E) m.10010T>C MT-TG mutation (P37, n = 769), (F) m.5543T>C MT-TW mutation (P38, n = 447) and (G) m.7483C>A MT-TS1 mutation (P39, n = 447). Each dot represents an individual muscle fibre colour coded according to its mitochondrial mass (very low: blue, low: light blue, normal: beige, high: orange and very high: red).
Table 5.8 Quantification of COX-I and NDUFB8 deficiency in patients with other point mutation in mitochondrial-encoded tRNAs.

<table>
<thead>
<tr>
<th></th>
<th>COX-I levels</th>
<th></th>
<th>NDUFB8 levels</th>
<th></th>
<th></th>
<th>ML</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pos</td>
<td>Int(+)</td>
<td>Int(-)</td>
<td>Neg</td>
<td>%DR</td>
<td>Pos</td>
<td>Int(+)</td>
</tr>
<tr>
<td>P33</td>
<td>91.5%</td>
<td>1.1%</td>
<td>1.2%</td>
<td>6.2%</td>
<td>8.5%</td>
<td>81.2%</td>
<td>5.9%</td>
</tr>
<tr>
<td>P34</td>
<td>74.1%</td>
<td>5.7%</td>
<td>4.8%</td>
<td>15.5%</td>
<td>25.9%</td>
<td>58.0%</td>
<td>3.3%</td>
</tr>
<tr>
<td>P35</td>
<td>89.4%</td>
<td>3.2%</td>
<td>2.3%</td>
<td>5.2%</td>
<td>10.6%</td>
<td>83.8%</td>
<td>4.6%</td>
</tr>
<tr>
<td>P36</td>
<td>0.5%</td>
<td>1.1%</td>
<td>2.5%</td>
<td>95.9%</td>
<td>99.5%</td>
<td>0.4%</td>
<td>0.5%</td>
</tr>
<tr>
<td>P37</td>
<td>11.6%</td>
<td>0.8%</td>
<td>0.7%</td>
<td>87.0%</td>
<td>88.4%</td>
<td>13.5%</td>
<td>2.2%</td>
</tr>
<tr>
<td>P38</td>
<td>13.6%</td>
<td>5.1%</td>
<td>3.6%</td>
<td>77.6%</td>
<td>86.4%</td>
<td>14.3%</td>
<td>15.2%</td>
</tr>
<tr>
<td>P39</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.4%</td>
<td>99.6%</td>
<td>99.9%</td>
<td>0.1%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

Key: n = number of fibres quantified, %DR = percentage of muscle fibres with down-regulated protein levels, either int(+), int(-) or neg, ML = mutation load, n.a. = not assessed.

5.4.6 MRC profile from patients with mutations in other nuclear genes

Patients with mutations in GFER gene (P40, P41 and P42) showed down-regulation of complexes I and IV (Figure 5.10A, B and C) (Table 5.9). This was consistent with the biochemical findings reported by the diagnostic laboratory (Table 5.1). Interestingly, P41 presented an additional population of fibres, showing complex I more affected than complex IV, which was not evident in patients P40 and P42. The patient with the novel PNPT1 mutation (P44) showed both complexes affected, with a higher involvement of complex IV (Figure 5.10E, Table 5.9). Patients with ELAC2 (P43) and GFM2 (P45) mutations showed isolated and mild complex I and complex IV deficiency, respectively (Figure 5.10D and F, Table 5.9). These results were, however, not consistent with the spectrophotometric enzyme analysis, which reported the contrasting findings (Table 5.1).
Figure 5.10 MRC profile from patients with different nuclear genetic defects.
Plots show complex I and IV expression profile from patients with GEFR mutations: (A) P40 (n = 524), (B) P41 (n = 627), (C) P42 (n=685), and other nuclear DNA mutations including (D) ELAC2 mutations in P43 (n = 2191), (E) a novel PNPT1 mutation in P44 (n=797) and (F) GFM2 mutations in P45 (n = 1784). Each dot represents an individual muscle fibre colour coded according to its mitochondrial mass (very low: blue, low: light blue, normal: beige, high: orange and very high: red).

Table 5.9 Quantification of both COX-I and NDUFB8 deficiency in patients with other nuclear genetic defects

<table>
<thead>
<tr>
<th></th>
<th>COX-I levels</th>
<th></th>
<th>NDUFB8 levels</th>
<th></th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pos</td>
<td>int(+)</td>
<td>int(-)</td>
<td>Neg</td>
<td>%DR</td>
</tr>
<tr>
<td>P40</td>
<td>40.6%</td>
<td>24.0%</td>
<td>19.3%</td>
<td>16.0%</td>
<td>59%</td>
</tr>
<tr>
<td>P41</td>
<td>28.1%</td>
<td>23.6%</td>
<td>24.2%</td>
<td>24.1%</td>
<td>71%</td>
</tr>
<tr>
<td>P42</td>
<td>54.7%</td>
<td>26.0%</td>
<td>13.0%</td>
<td>6.3%</td>
<td>45%</td>
</tr>
<tr>
<td>P43</td>
<td>99.9%</td>
<td>0.1%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.1%</td>
</tr>
<tr>
<td>P44</td>
<td>19.8%</td>
<td>22.7%</td>
<td>15.6%</td>
<td>41.9%</td>
<td>80%</td>
</tr>
<tr>
<td>P45</td>
<td>0.1%</td>
<td>11.9%</td>
<td>69.8%</td>
<td>18.2%</td>
<td>99.9%</td>
</tr>
</tbody>
</table>

Key: n = number of fibres quantified, %DR = percentage of muscle fibres with down-regulated protein levels, either int(+), int(-) or neg.
5.4.7 MRC profile from patients with suspected mitochondrial disease investigated for diagnostic purposes

All diagnostic patients presented combined OXPHOS defects, with both complex I and IV affected (Figure 5.11, Table 5.10), confirming mitochondrial disease diagnosis. In patients P46, P49 and P50, the decline in both complexes was simultaneous (Figure 5.11A, D and E). This pattern contrasted with those found in patients P47 and P48. Patient P47 showed a polarised pattern of deficiency with a complete absence of complex I in all muscle fibres, and some evidence of complex IV deficiency (Figure 5.11B). Patient P48 presented a wider range of deficiency, from fibres with more evidence of complex I or complex IV deficiency to fibres with both complexes I to IV equally down-regulated (Figure 5.11C).

Figure 5.11 MRC expression profile from patients with suspected mitochondrial disease. Plots show complex I and IV expression profile from (A) P46 (n = 2918), (B) P47 (n = 417), (C) P48 (n = 811), (D) P49 (n = 1126) and (E) P50 (n = 1140). Each dot represents an individual muscle fibre colour coded according to its mitochondrial mass (very low: blue, low: light blue, normal: beige, high: orange and very high: red).
Table 5.10 Quantification of both COX-I and NDUFB8 deficiency in patients with suspected mitochondrial disease

<table>
<thead>
<tr>
<th></th>
<th>COX-I levels</th>
<th>NDUFB8 levels</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pos</td>
<td>Int(+)</td>
<td>Int(-)</td>
</tr>
<tr>
<td>P46</td>
<td>75.0%</td>
<td>4.0%</td>
<td>2.7%</td>
</tr>
<tr>
<td>P47</td>
<td>70.7%</td>
<td>28.8%</td>
<td>0.5%</td>
</tr>
<tr>
<td>P48</td>
<td>15.7%</td>
<td>35.1%</td>
<td>23.6%</td>
</tr>
<tr>
<td>P49</td>
<td>74.5%</td>
<td>15.5%</td>
<td>7.9%</td>
</tr>
<tr>
<td>P50</td>
<td>63.6%</td>
<td>22.9%</td>
<td>9.0%</td>
</tr>
</tbody>
</table>

Key: n = number of fibres quantified, %DR = percentage of muscle fibres with down-regulated protein levels, either int(+), int(-) or neg.

5.5 Discussion

This chapter shows that different mitochondrial genotypes – both mtDNA and nuclear DNA driven - exhibit distinctive signatures of mitochondrial dysfunction distinguishable by their MRC profiles. This highlights the great potential for this technique not only as a diagnostic tool but also as a means to study mechanisms of disease.

5.5.1 Patients with isolated complex deficiencies

The patient harbouring compound heterozygous LRPPRC mutations (P1) showed isolated COX deficiency, in agreement with the spectrophotometric measurements performed in muscle homogenates (Table 5.3). The nuclear-encoded LRPPRC protein is involved in translation and/or stability of COX mRNA transcripts derived from mtDNA and is required for the assembly of complex IV (Xu et al., 2004). It is therefore not surprising that mutations in LRPPRC gene result in a wide-spread deficiency of complex IV (Merante et al., 1993, Mootha et al., 2003, Debray et al., 2011).

The patient carrying the m.4175G>A MT-ND1 truncating mutation (P2) (Gorman et al., 2015a) showed an isolated complex I deficiency, consistent with the biochemical studies in muscle (Table 5.3). MT-ND1 is a mitochondrial gene that encodes the most conserved structural subunit of complex I (Fearnley and Walker, 1992, Kirby et al., 2004). Several other pathogenic mutations have been reported in this gene all associated with a decline in fully assembled complex I and ultimately leading to a complex I-specific biochemical defect (Howell et al., 1991, Huoponen et al., 1991, Kirby et al., 2004, Swalwell et al., 2011), mirroring what we observed in our patient.
5.5.2 Patients with single large-scale mtDNA deletion

Single large-scale deletions of mtDNA (Holt et al., 1988) are a common cause of adult and paediatric mtDNA related mitochondrial disease. They are considered sporadic events that arise during replication of mitochondrial genome. Although the location and size of the deletion may vary, the majority of patients harbour the common 4977bp deletion (Schon et al., 1989). A variable number of genes encoding subunits of complex I, III, IV and V, rRNAs or tRNAs are removed by the deletion leading to multiple OXPHOS defects (Pitceathly et al., 2012a).

All patients with single, large-scale mtDNA deletions assessed in this study (P3-P19) showed a combined complex I and IV deficiency. This is consistent with previous findings (Schröder et al., 2000) and with the removal of several mitochondrial-encoded structural subunits and mt-tRNAs by the deletion. However, these patients showed differences in the MRC profiles suggesting differential rates of COX-I decline in comparison to NDUFB8. Patients were therefore classified in three groups according to the MRC profile. The majority of patients (group 1) presented a simultaneous loss of both complex I and complex IV. By contrast, in some patients (group 2) complex I deficiency preceded complex IV deficiency, whereas in others (group 3) complex IV deficiency preceded complex I deficiency. These results are in agreement with previous reports of either combined complex I and complex IV deficiency, or isolated complex I deficiency (Holt et al., 1988, Yamamoto et al., 1991, Oldfors et al., 1992).

The different MRC defects reflected a relationship between the site of deletion and the type of genes removed, as previously reported (Grady et al., 2014). In all three groups, tRNA genes and complex I genes were removed. However, the number of deleted complex IV differed between patients: in group 1 only one complex IV gene was removed, in group 2 all complex IV genes were preserved and in group 3 all complex IV genes were deleted.

The MRC defect also correlated with the mutation load. In group 1, where complexes I and IV are equally affected, the percentage of fibres with down-regulated COX-I and NDUFB8 strongly correlated with the mutation load. In group 2, the correlation was stronger for NDUFB8 than for COX-I deficiency, consistent with the more severe defect of complex I in these patients. Previous studies have provided contradictory results demonstrating either significant (Goto et al., 1990, Fassati et al., 1994, Schröder et al., 2000, Gellerich et al., 2002), weak (Yamamoto et al., 1991, Laforet et al., 1995) or no (Kiyomoto et al., 1997) correlation between the percentage of COX deficient fibres and the degree of mtDNA heteroplasmy. One explanation for these inconsistencies could be the assessment of all single deletions patients together. In such studies it was assumed that single deletion patients were a homogenous group. The
present study has, however, shown the opposite and stressed the importance of analysing patients separately, according to the MRC profile. Another possible explanation could be the use of COX/SDH histochemistry. This technique does not allow accurate quantification of COX deficiency, and therefore might not have revealed the true extent of COX deficiency in such studies. Moreover, the present study highlighted the relevance of taking into consideration complex I deficiency, which is the major predictor of the mutation load in a subset of patients. Patients with single large-scale deletions present a wide spectrum of clinical phenotypes and it has been shown that the percentage and location of the deletion (Lopez-Gallardo et al., 2009) or the size of the deletion, with regards to the number of tRNA genes removed, (Yamashita et al., 2008) are predictive of the syndrome. It would be interesting to explore a larger cohort of patients and assess whether the pattern of complex I and complex IV deficiency could also be indicative of distinct clinical features.

5.5.3 Patients with mutations in nuclear genes involved in mtDNA maintenance

Several nuclear-encoded proteins are directly or indirectly responsible for mtDNA maintenance and regulation of mtDNA copy number. The helicase Twinkle, encoded by PEO1, (Spelbrink et al., 2001) is an essential mtDNA replisome component and an example of a protein directly involved in mtDNA replication (Longley et al., 2010). Autosomal dominant and recessive mutations have been reported in this gene leading to multiple mtDNA deletions (Spelbrink et al., 2001) and depletion (Sarzi et al., 2007), respectively. The p53R2 subunit, encoded by RRM2B (Tanaka et al., 2000), and ANT1, encoded by SLC25A4, (Neckelmann et al., 1987) supply dNTPs to mitochondria and are examples of proteins indirectly involved in mtDNA replication. Mutations in these genes were reported to cause a shortage or imbalance of the dNTP pool thereby interfering with mtDNA replication. Consequently, they can lead to mtDNA depletion (Bourdon et al., 2007, Bornstein et al., 2008) and generation of multiple deletions (Kaukonen et al., 2000, Tyynismaa et al., 2009).

Patients with mutations in nuclear genes which regulate maintenance of mtDNA demonstrated a similar pattern of mitochondrial deficiency, regardless of the underlying molecular genetic defect. Two populations of muscle fibres were detected: one showed a simultaneous and equal loss of both complexes I and IV, whereas the other presented complex I predominantly affected. The presence of fibres with complex I deficiency is consistent with reports of the loss of structural genes of complex I in the deleted molecules (Pitceathly et al., 2012b).
All patients shared a similar pattern of deficiency, however some slight differences were observed. Patients with SLC25A4 (P22) and PEO1 (P23) mutations showed a “Z” shape MRC profile, whereas patients with RRM2B mutations (P20 and P21) demonstrated a “7” shape MRC profile. These findings were surprising because similarities would be expected between SLC25A4 and RRM2B mutations as both encoded-proteins are ultimately involved in the same pathway controlling the mitochondrial dNTP pool. The observed resemblance could reflect the different mode of inheritance: SLC25A4 and PEO1 mutations are dominantly inherited whereas RRM2B mutations are recessively inherited.

Also, though speculative, the pattern of deficiency in SLC25A4 and PEO1 mutations seemed milder than that caused by RRM2B mutations. In the former, both COX-I and NDUFB8 Z scores plateaued at a higher level than in the latter mutations. This is in agreement with previous studies that demonstrated that autosomal recessive mutations such as RRM2B lead to more severe clinical phenotypes (Pitceathly et al., 2011, Pitceathly et al., 2012b).

5.5.4 Mutations in mitochondrial-encoded tRNAs

Pathogenic mutations in mitochondrial-encoded tRNAs are associated with multiple OXPHOS defects that can arise from multiple deleterious effects such as defective transcription termination, defective tRNA maturation, impaired tRNA post-transcription modification, conformational alteration of tRNA, reduced tRNA stability, decreased amynoacylation, reduced interaction with the mitoribosome and disturbed codon reading. These effects lead to an overall decline in the rate of mitochondrial protein synthesis, usually affecting multiple OXPHOS complexes (Abbott et al., 2014).

5.5.4.1 Mitochondrial-encoded tRNA leucine 1 (MT-TL1) point mutations

The m.3243A>G mutation in MT-TL1 gene (Goto et al., 1990) is one of the most common mutations, affecting the structure and function of the tRNA^{Leu(UUR)}. This mutation was shown to induce decreased aminoacylation rate, reduced tRNA stability, and reduced binding capacity of the mutant tRNA to mitoribosomes, underlyng the decreased mitochondrial protein synthesis (Chomy et al., 2000, Yasukawa et al., 2000, Sasarman et al., 2008). Also the loss of the post-transcriptional taurine modification (at the first (wobble) position of the anticodon) which is required for accurate translation has been reported (Yasukawa et al., 2000). This loss was
shown to lead to a severe decoding defect of leucine at UUG codons and misincorporation of leucine at non-cognate codons (Jacobs, 2003, Kirino et al., 2004).

Patients with the common m.3243A>G MT-TL1 (P25-P31), were shown to have combined complex I and IV deficiencies, as previously reported (Koga et al., 2000). Interestingly, the pattern of mitochondrial deficiency - a “Γ” shape - suggests that complex IV deficiency was only acquired after complex I deficiency was established, and that the deficiency is smoothly graduated from normal to deficient levels of both complexes. These results are in agreement with some observations of a primarily complex I defect caused by m.3243A>G MT-TL1 mutation (Morgan-Hughes et al., 1995, James et al., 1996, Fornuskova et al., 2008). ND6 mRNA presents an unusually high density of UUG codons when compared with the remaining mitochondrial-encoded proteins and therefore is more prone to be affected by the decoding defect (Kirino et al., 2004, Sasarman et al., 2008). This explains the marked reduction of ND6 translation reported in several studies (Kirino et al., 2004, Sasarman et al., 2008). Although most patients present with maternally inherited deafness and diabetes (MIDD), the m.3243A>G MT-TL1 mutation is associated with a variety of clinical phenotypes ranging from the severe MELAS syndrome to milder single tissue presentations) (Nesbitt et al., 2013). It would be interesting to explore if the MRC phenotype detected in muscle is able to provide greater insight into the underlying mechanisms causing this variability.

The patient carrying a transversion mutation at this site - m.3243A>T MT-TL1 - (P32) showed the same pattern of mitochondrial deficiency seen with m.3243A>G MT-TL1. This observation is interesting because the transversion mutation has been reported to induce a higher deleterious effect on translation (Shaag et al., 1997), severely reducing aminoacylation efficiency to approximately 1% wild-type level, whereas the common transverse mutation has a more moderate negative effect (Sohm et al., 2003).

5.5.4.2 Other rarer mitochondrial-encoded tRNAs point mutations

Unlike the m.3243A>G mutation, other mutations in mt-tRNAs are relatively rare and have only been described in single or few families to date (Mitomap website).

The mutations studied in MT-TN (P33) and MT-TE (P34 and P35) genes, encoding the mitochondrial asparagine and glutamic acid tRNAs respectively, showed the same pattern of OXPHOS deficiency as seen in the MT-TL1 mutations, namely complex I deficiency preceding complex IV deficiency. The m.5690A>G MT-TN variant (occurring within the anticodon stem)
has only been reported in one patient, and was suggested to disrupt the tRNA secondary structure (Blakely et al., 2013). The m.14709T>C MT-TE variant (occurring within the anticodon loop) has been previously investigated using biochemical and immunohistochemical studies in muscle which revealed a reduction of complex I and IV activities and levels (Hanna et al., 1995, Hao et al., 1995, Mancuso et al., 2005). Our investigations resulted in similar findings for patients P34 and P35, who had the same genetic defect. Additionally, measurements of activity of mitochondrial respiratory chain complexes in fibroblasts from six patients with this defect have shown a severe reduction in complex I activity and a mild decrease in complex IV activity (Perucca-Lostanlen et al., 2002, McFarland et al., 2004). This further supports the finding that complex I deficiency precedes complex IV deficiency. The proposed molecular mechanisms underlying this translation defect include a decoding defect of glutamate at the GAA/GAG codons and/or reduced steady state levels of aminoacylated tRNA^Glu_ (Perucca-Lostanlen et al., 2002), though it has been suggested that mutated tRNA still have some residual function.

The mutations studied in MT-TG (P37) and MT-TP (P36) genes, encoding the mitochondrial glycine and proline tRNAs respectively, showed a simultaneous and severe decline in both complex I and complex IV protein levels. The m.10010T>C MT-TG variant is located in the D stem, and biochemical studies in muscle also showed a decrease in both complexes I and IV activities (Bidooki et al., 1997, Nishigaki et al., 2002). The MT-TP variant with a 2 base pair deletion reported, is located in the middle of the acceptor stem and has never been identified to date. Point mutations in this region have been detected in other mt-tRNA, and were suggested to impair both tRNA secondary structure and binding of aminoacyl-tRNA synthases (Blakely et al., 2013). A similar effect could explain the severe complex I and IV defects seen in patient P36. The patient carrying the novel m.7483C>A MT-TS1 mutation (P39), also exhibited a severe complex I and IV deficiency, with all fibres lacking complex I and IV. However, this patient is unusual because the variant he harbours is located in one of the anticodon bases. Mutations occurring at this site tend to destroy the tRNA function and are likely to be incompatible with embryogenesis and development (Suzuki et al., 2011).

A third distinctive pattern was seen in the MT-TW mutation (P38), affecting the mitochondrial tryptophan tRNA. A severe deficiency was observed in both complex I and complex IV, however the deficiency in complex IV appeared to plateau at a much higher level than observed in other mt-tRNA point mutations. Also, fibres with complex IV deficiency showed a wide and gradual range of complex I deficiency. These results suggest that the relative rate of decline in complex I and complex IV protein levels varies considerably from fibre to fibre for
this mutation, an effect not observed in other mt-tRNA point mutations. The 5543T>C MT-TW variant (located in the anticodon loop) has only been reported in few patients (Anitori et al., 2005, Alston et al., 2011), and biochemical studies in muscle reported severe deficiencies of complexes I and IV (Alston et al., 2011), similar to what we detected in muscle samples from patient P38.

For all mt-tRNAs mutations, future investigations are required to correlate the observed MRC profile with heteroplasmic levels. Furthermore, it would be interesting to explore associations between the MRC profile detected for each of these mt-tRNAs mutations and the relative amounts of the composite amino acids within each of the mitochondrial-encoded complex I and IV proteins.

5.5.5 Mutations in other nuclear genes

Nuclear genetic defects can cause mitochondrial disease not only by impairing mtDNA maintenance as described previously, but also by affecting other mechanisms such as mitochondrial translation, protein and RNAs translocation across mitochondrial inner and outer membranes or proteins promoting mitochondrial biogenesis (Ylikallio and Suomalainen, 2012).

The mitochondrial Disulphide Relay System Protein (GFER), is located in the mitochondrial intermembrane space and is involved in the translocation of several proteins relevant to COX biogenesis and TIM chaperones across the mitochondrial outer membrane (Di Fonzo et al., 2009, Fischer and Riemer, 2013). Three patients with GFER mutations (P40, P41 and P42) were assessed, and all showed both complexes equally affected. However, in patient P41, a higher range of complex I and IV deficiency was observed. Mutations in GFER gene have been previously reported (Di Fonzo et al., 2009, Calderwood et al., 2015). The lowest stability of the mutated protein was shown to affect the protein content of the mitochondrial intermembrane space, including some proteins involved in COX biogenesis. This was shown to ultimately lead to a either moderate complex IV deficiency in muscle and fibroblast, or combined complex I and IV deficiency in muscle and myoblast (Di Fonzo et al., 2009). These results are compatible with the present findings in patients P40, P41 and P42, and it is possible that GFER mutations affect the import of components or assembly factors essential for not only complex IV, but also complex I.
The polynucleotide phosphorylase (PNPT1 or PNPase) is a component of the import machinery also localised in the mitochondrial intermembrane space. It is involved in the transport of nuclear-encoded RNAs into mitochondria (5S rRNA, RNase P RNA, MRP RNA and other tRNAs) which are required for proper replication and transcription of mtDNA (Wang et al., 2010, Mimaki et al., 2012). The patient with PNPT1 mutations assessed here (P44) showed a combined complex I and IV deficiency, with complex IV more affected. Two other studies reported mutations in this gene. These showed a disturbed capacity of the mutant protein to assemble into higher-order trimeric PNPase complexes, impairing mitochondrial RNA import (Vedrenne et al., 2012, von Ameln et al., 2012). A complex IV deficiency has been reported in liver homogenate, and a translational defect has been detected in fibroblasts due to a decreased import of 5S rRNA to mitochondrial (Vedrenne et al., 2012). This study concluded similar findings for patient P44, who clearly presents a translation defect.

ELAC2 gene encodes mitochondrial tRNase Z, an endonuclease that participates in the maturation of the long polycistronic transcripts by cleaving the 3´end of tRNAs. The presence and stability of tRNase Z is crucial for the efficient synthesis of mitochondrial-encoded proteins (Rossmanith and Karwan, 1998, Brzezniak et al., 2011). The patient with *ELAC2* mutations (P43) assessed in the present study showed an isolated complex I deficiency, consistent with previous reports of reduced complex I activities in muscle homogenates (Haack et al., 2013). However, the pattern of deficiency found in this patient was slightly different from the one found in the patient carrying the *MT-ND1* mutation (P2) who also showed an isolated complex I deficiency. In P2, a subset of fibres still showed normal levels of complex I, consistent with a threshold effect theory. It is possible to speculate that in the remaining normal fibres, the levels of mutated mtDNA had not reached the threshold to express a biochemical defect. By contrast, in the MRC graph from *ELAC2* patient P43 the cloud of muscle fibres were all left-shifted, suggesting that all muscle fibres were equally affected by the mutation. The impaired activity of the mutated RNase Z was shown to lead to a 400-fold increase in levels of 3´end unprocessed mt-tRNAs precursors (Brzezniak et al., 2011, Haack et al., 2013) and ultimately to a reduced synthesis of mtDNA-encoded OXPHOS subunits (Haack et al., 2013). The reason why this mutation affects specifically complex I is still not known. It is, however, possible to speculate that the 3´end processing defects could predominantly affect complex I since this complex has a higher number of mitochondrial-encoded subunits and therefore more complex I mRNA transcripts are required to be translated.

The mitochondrial elongation factor G2 (mtEFG2, encoded by *GFM2* gene) has a central role in ribosome recycling (Tsuboi et al., 2009). Surprisingly, the patient with this genetic defect (P45)
only showed a mild complex IV deficiency, with no evidence of a complex I defect. Also, in the MRC graph from this patient, the cloud of muscle fibres were all down-shifted suggesting that all fibres were equally affected by the mutation, similar to what was observed in patient P43 with the \textit{ELAC2} mutations. These results were not in agreement with the biochemical studies which detected an additional mild complex I deficiency. Two possible causes could underlie this discrepancy. Firstly, the mild complex I deficiency could be real and was not revealed by this assay. Alternatively, the results from this assay are real and some error occurred throughout the biochemical experiment. Since this mutation does not occur in a structural gene, the first hypothesis is less probable. It is important to mention that only mutations occurring in structural genes and affecting solely the activity of the complexes might not be detected by this assay. These are uncommon mutations that do not disturb complex assembly.

5.5.6 Diagnostic patients

Patients with suspected mitochondrial disease are still undergoing investigation and have not been genetically characterised. However, it is possible to narrow-down the underlying cause based on the MRC profiles obtained in this study.

Since all patients showed multiple OXPHOS defects, mutations in mitochondrial and nuclear-encoded structural genes or assembly factors of OXPHOS complexes are excluded. Furthermore, point mutations in leucine, asparagine and glutamate mitochondrial-encoded tRNAs (characterised by left-rotated “L” shape MRC profile) or multiple mtDNA deletions (characterized by “Z” or “7” shape MRC profile) are also excluded.

This leaves the diagnosis of single large-scale mtDNA deletion, point mutations in tRNAs leading to equal loss of both complexes, or point mutations in nuclear-genes involved in pathways such as transcription, translation or import of proteins/rRNAs into mitochondria. For patient P46, it is possible to speculate a diagnosis of single large-scale mtDNA deletion, since this patient presents a MRC profile very similar to a group of patients with this defect.

5.6 Conclusions

This work has provided important insights into the nature of the defects in patients with mitochondrial disease. It has shown how this new assay has important implications in terms of diagnosis of mitochondrial disease (Figure 5.12). It allows detection of complex I deficiencies at
the single fibre level. Also, since different genotypes exhibit different MRC profiles, this tool can support the current diagnostic setting. Figure 5.12 only references MRC profiles from common genetic defects but illustrates how valuable this assay is in helping screening the underlying genetic cause based on the MRC profile of diagnostic patients.

Figure 5.12 MRC profiles from common primary and secondary mitochondrial genetic defects.
Chapter 6. Therapeutic effect of a six months endurance training program in patients with mitochondrial myopathy

6.1 Introduction

Adult mitochondrial myopathies are frequently caused by heteroplasmic mtDNA mutations resulting from either single large-scale mtDNA deletions or point mutations in either tRNAs or protein coding genes (Schaefer et al., 2008, Gorman et al., 2015). These genetic defects in mtDNA often impair oxidative phosphorylation and, subsequently, cellular ATP production in muscle (Mariotti et al., 1994, Pallotti et al., 2004). As a consequence, patients usually present with exercise intolerance, whereby trivial levels of activity which are easily tolerated by healthy individuals result in muscle weakness, fatigue, lactic acidosis and tachycardia (Haller et al., 1978, Haller et al., 1989).

The spectrum of exercise intolerance in mitochondrial myopathies varies from mild to debilitating (Taivassalo et al., 2003). Exercise intolerance is associated with a decreased capacity of working muscle to extract available oxygen from arterial blood. By contrast, cardiovascular capacity to deliver oxygen is usually preserved and comparable to healthy subjects (in the absence of significant cardiac muscle involvement). The degree of exercise intolerance exhibited by patients was shown to correlate directly with the severity of impaired muscle oxygen extraction, which itself is proportional to the mutation load (Taivassalo et al., 2003).

Exercise intolerance promotes a sedentary lifestyle, which leads to further downregulation of muscle oxidative phosphorylation, enhancing muscle disability. Given the lack of effective therapeutic treatments, exercise training has been explored as a means to improve mitochondrial respiratory chain function and ultimately improve quality of life (Taivassalo and Haller, 2005).

6.1.1 Endurance training in healthy population

Regular and sustained endurance training taken up by a healthy individual was shown to induce adaptation of the cardiovascular and skeletal muscle systems in order to increase exercise capacity and utilisation of oxygen by muscle.
Cardiovascular adaptations enhance the delivery of oxygen and nutrients to working muscles by increasing cardiac output (total volume of blood pumped by the left ventricle per minute), respiratory rate (the number of inspiration/expiration cycles per minute), and muscle vasodilatation (relaxation of blood vessels) (Saltin, 1986, Cox, 1991). Muscle vasodilatation is crucial to redistribute and increase blood flow to areas of high energy demand, such as active muscles.

Increased capillary density and mitochondrial oxidative capacity in skeletal muscle allow for more efficient extraction of oxygen from blood in this tissue (Holloszy, 1967, Holloszy and Booth, 1976). The increase in mitochondrial oxidative capacity is generated through mitochondrial biogenesis. Several intracellular signals (calcium, AMP) produced during the acute phase of exercise cause the transient activation of PC1-α (Pilegaard et al., 2003). This in turn activates transcription of both mitochondrial and nuclear DNA leading to an increased synthesis of mitochondrial proteins, and therefore, to higher overall mitochondrial activity and content (Holloszy, 1967). As a result, the metabolic efficiency of skeletal muscle is improved due to an increase in fatty acid oxidation and reduced carbohydrate oxidation, or glycolysis (Henriksson, 1992).

Conversely, the cessation of exercise (known as deconditioning or detraining), has been shown to cause a reduction in cardiovascular fitness (as measured by a fall in cardiac output due to reduced blood volume), and a decrease in capillary density, in mitochondrial activity and in mitochondrial content (Coyle et al., 1984, Coyle et al., 1985, Saltin, 1986, Neufer, 1989). The consequent reverse in training-induced adaptations leads to a higher carbohydrate oxidation and glycolysis, and therefore to muscle fatigue and a decline in work capacity (Neufer, 1989).

6.1.2 Endurance training in mitochondrial myopathies

In the past decade several studies have consistently reported significant beneficial effects of endurance training in patients with mitochondrial myopathy. Early studies performed by Taivassalo et al. in 1996 and 1998 showed an increase in aerobic capacity, (by 71%, 30%, respectively) and muscle oxidative capacity (by 2.8 fold, 60%, respectively) in patients with mitochondrial myopathy following a 14 and 8 week training program (3-4 times a week, 20-30min per session). Also, blood lactate concentrations decreased (by 50%, 30%, respectively) and both fatigue and exercise performance improved (Taivassalo et al., 1996, Taivassalo et al., 1998). These results demonstrated that this form of exercise was well tolerated and could benefit patients presenting with this condition.
Subsequent studies using cycling and treadmill exercise regimens further confirmed these findings (Taivassalo et al., 1999, Siciliano et al., 2000, Cejudo et al., 2005, Voet et al., 2010). Both Cejudo et al. and Voet et al. went further, and designed a combined endurance and resistance exercise programme which resulted in a significant increase in both endurance and muscle strength of participants.

In 2001, Taivassalo et al. further explored the mechanisms underlying the improved physiological responses (Taivassalo et al., 2001). They showed an improved ability of muscle to extract available oxygen (by 20%) and confirmed higher muscle oxidative capacity in patients with mitochondrial myopathy following 14 weeks of aerobic training (cycling 3-4 times a week, 30-40 min per session). The rise in cytrate synthase (CS – enzyme of the TCA cycle commonly used as a mitochondrial mass marker) and SDH activity by 50% and 40%, respectively, indicated an increase in mitochondrial proliferation. Also, biochemical studies showed an increase in the activity of the respiratory chain complexes affected by the mutation, with the exception of two patients with complex III defects. Unexpectedly, analysis of mitochondrial mutation load revealed a significant increase in the percentage of mutant relative to wild-type mtDNA after completion of the training program in 9 out of the 12 patients assessed. This raised concerns regarding the safety of exercise (Taivassalo et al., 2001).

Later studies, however, did not detect changes in overall mutation load after 12 or 14 weeks of endurance exercise (Jeppesen et al., 2006, Taivassalo et al., 2006, Jeppesen et al., 2009), or after 14 weeks or 12 months of deconditioning (Taivassalo et al., 2006, Jeppesen et al., 2009). Also, further studies have found only a mild increasing trend in the activity of mitochondrial respiratory chain complexes and no changes to the percentage of COX deficient fibres after aerobic exercise. Deconditioning of 8 or 14 weeks was shown to induce a loss of the physiological and biochemical adaptation to pre-training values, and consequently, a reduction in muscle capacity for oxidative phosphorylation (Jeppesen et al., 2006, Taivassalo et al., 2006).

The majority of studies have exclusively addressed the effects of short-term exercise regimens ranging from 8-14 weeks duration. Jeppesen et al. was the only group evaluating and comparing the effects of short-term (3 months, cycling 5 times a week, 30-40 min per session) and long-term exercise (12months, cycling 3 times a week, 30 min per session), with a period of 12 or 18 months detraining in between, in a group of four patients with mitochondrial myopathy (Jeppesen et al., 2009). They demonstrated a consistent beneficial effect to training, with an increase in oxidative capacity by 23%. Also, no adverse effect on the mtDNA mutation load was observed over the 24 months period. Despite these promising results, further studies
assessing larger cohorts of patients are required, as well as more insight regarding the focal proportion and distribution of wild-type and mutated mtDNA within individual muscle fibres.

6.2 Aims

The aim of this chapter was to investigate whether exercise training provides a long-term, effective and safe therapy for mitochondrial myopathy, by addressing:

1. The impact of exercise on the levels of OXPHOS complexes in individual muscle fibres
2. The impact of deconditioning on the levels of OXPHOS complexes in individual muscle fibres

6.3 Methods

6.3.1 Cohort clinical characteristics

Twenty two patients with clinically and genetically-characterised mitochondrial disease (13 patients with single-large scale mtDNA deletion and 9 patients with mtDNA point mutations), with ability to exercise and that consented for four biopsies were recruited for this multicenter exercise trial. Ethical approval, patient information sheet and consent form (including a brief description of the procedures) can be found in Appendix.

These patients have been previously characterised in chapter 5, and were attributed a new number in the present chapter. Relevant information from chapter 5 is summarised in table Table 6.1. Healthy and disease control muscle biopsy samples were also included in this study (Kirby et al., 2007).

6.3.2 Endurance training program

Initial assessment of patients, training and deconditioning assessments, and biopsies were performed in the Neuromuscular Centre, Institute for Exercise and Environmental Medicine and at the University of Texas Southwestern Medical Centre, in Dallas.
Table 6.1 Clinical information from subjects included in this study

<table>
<thead>
<tr>
<th>Patients (Chapter 5)</th>
<th>MRC profile</th>
<th>Patients</th>
<th>Sex</th>
<th>Age</th>
<th>Clinical information</th>
<th>Genetic defect</th>
<th>Mutation load</th>
<th>Endurance training program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single, large-scale mtDNA deletion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| P4 | Group 1 | P1 | M | 25y | Ptosis, CPEO, some fatigable weakness. Ultra peculiar patient | Deletion size ~ 4.7 kb
Breakpoints: 10946-15598 | 85% | Group B |
| P5 | Group 2 | P2 | F | 25y | CPEO | Deletion size ~3.0 kb
(breakpoints not mapped) | n.d. | Group A |
| P6 | Group 2 | P3 | F | 26y | CPEO, mitochondrial myopathy | Deletion size ~4.9 kb
Breakpoints: 10747-15598 | 65% | Group B |
| P8 | Group 1 | P4 | F | 36y | CPEO, myopathy | Deletion size ~ 5.0 kb
(breakpoints not mapped) | 79% | Group A |
| P9 | Group 2 | P5 | M | 39y | CPEO, myopathy | Deletion size ~ 4.1 kb
(breakpoints not mapped) | 72% | Group B |
| P11 | Group 2 | P6 | F | 40y | CPEO, muscle atrophy, weakness, retinal pigmentary changes, increased resting lactate | Deletion size ~ 2.3 kb
Breakpoints: 12113-14421 | 87% | Group A |
| P12 | Group 3 | P7 | F | 41y | CPEO, myopathy | n.d. | 42% | Group A |
| P13 | Group 1 | P8 | F | 43y | CPEO, myopathy | Deletion size ~ 5.0 kb
Breakpoints: 8482-13460 | 78% | Group A |
| P14 | Group 1 | P9 | F | 44y | CPEO, myopathy | Deletion size ~ 4.2 kb
Breakpoints: 9486-13723 | 81% | Group B |
| P15 | Group 2 | P10 | F | 47y | Ptosis, CPEO, jaw aching with chewing | Deletion size ~ 2.3 kb
Breakpoints: 12112-14412 | 76% | Group B |
| P16 | Group 1 | P11 | F | 48y | CPEO, myopathy | Deletion size ~ 4.2 kb
Breakpoints: 9498-13739 | 39% | Group A |
| P17 | Group 2 | P12 | F | 61y | CPEO | n.d. | n.d. | Group B |
| P18 | Group 1 | P13 | M | 61y | CPEO | Deletion size ~ 5.0 kb
Breakpoints: 8482-13460 | 3% | Group A |

Point mutations in mitochondrial encoded tRNAs

<table>
<thead>
<tr>
<th>Patients</th>
<th>Sex</th>
<th>Age</th>
<th>Clinical information</th>
<th>Genetic defect</th>
<th>Mutation load</th>
<th>Endurance training program</th>
</tr>
</thead>
<tbody>
<tr>
<td>P25</td>
<td>n.r.</td>
<td></td>
<td>Exercise intolerance, ptosis</td>
<td>m.3243A>G MT-TL1 mutation</td>
<td>n.d.</td>
<td>Group B</td>
</tr>
</tbody>
</table>

156
<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Sex</th>
<th>Symptoms</th>
<th>mtDNA Mutation</th>
<th>n.d.</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>P26</td>
<td>n.r.</td>
<td>P15</td>
<td>F 38y</td>
<td>Mild exercise intolerance, diabetes</td>
<td>m.3243A>G MT-TL1 mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>P27</td>
<td>n.r.</td>
<td>P16</td>
<td>F 40y</td>
<td>Exercise intolerance and mild deafness</td>
<td>m.3243A>G MT-TL1 mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>P29</td>
<td>n.r.</td>
<td>P17</td>
<td>F 43y</td>
<td>Mild exercise intolerance, diabetes</td>
<td>m.3243A>G MT-TL1 mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>P30</td>
<td>n.r.</td>
<td>P18</td>
<td>F 47y</td>
<td>Modest exercise intolerance</td>
<td>m.3243A>G MT-TL1 mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>P34</td>
<td>n.r.</td>
<td>P19</td>
<td>F 35y</td>
<td>Mild weakness</td>
<td>m.14709T>C MT-TE mutation</td>
<td>n.d.</td>
</tr>
<tr>
<td>P35</td>
<td>n.r.</td>
<td>P20</td>
<td>F 58y</td>
<td>Myopathy</td>
<td>m.14709T>C MT-TE mutation</td>
<td>87%</td>
</tr>
<tr>
<td>P37</td>
<td>n.r.</td>
<td>P21</td>
<td>M 33y</td>
<td>Mitochondrial myopathy</td>
<td>m.10010T>C MT-TG mutation</td>
<td>89%</td>
</tr>
<tr>
<td>P38</td>
<td>n.r.</td>
<td>P22</td>
<td>M 63y</td>
<td>Pure exercise intolerance, prominent exertional dyspnea</td>
<td>m.5543T>C MT-TW mutation</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

Key: age = age when biopsied; y = years old; mtDNA = mitochondrial DNA; PEO = progressive external ophthalmoplegia; CPEO = chronic CPEO; Patients (chapter 5) = corresponding ID number of patients in chapter 5, MRC profile = only relevant for patients with single large-scale deletion which were classified into 3 groups according to the MRC profile; group 1 = patients showing both complexes I and IV equally and simultaneously down-regulated; Group 2 = patients showing an early and more pronounced deficiency of complex I over complex IV; Group 3 = patients showing a slightly more pronounced and earlier deficiency of complex IV over complex I; n.d. = not determined; n.r. = not relevant.
Patients were randomly assigned into group A or group B and underwent periods of activity and inactivity (Figure 6.1). Patients assigned to Group A engaged in 6 months endurance training at baseline, and detrained (only monitoring daily activity levels) for the following 6 months. Patients assigned to Group B performed no specific training for the first 6 months (only monitoring the activity levels), and engaged in endurance training for the following 6 months. At the end of the first year, patients were encouraged to carry on or resume regular endurance exercise according to the training effects on their cardiac and muscle functions. Patients advised to continue training were followed up with heart rate and activity monitors. A final evaluation was performed at the end of the exercise program (24 months).

The exercise training period comprised of 100 sessions over a period of 26 weeks on a stationary cycle. Each session lasted 30 min for the first 13 weeks and 40 min for the following 13 weeks, and exercise was performed at an intensity corresponding to 70%-80% of maximal heart rate. Both heart rate and exercise duration were continuously monitored using a chest band and a watch.

Figure 6.1 Endurance training program.
Patients were randomly assigned into group A and group B. (A) Patients in Group A engaged 6 months of endurance training at baseline, and detrained for the following 6 months. (B) Patients in Group B did not perform training during the first 6 months and engaged endurance training for the following 6 months. At the end of the first year, patients either carried on or resumed regular endurance exercise.
6.3.3 Muscle biopsies

Needle muscle biopsies were collected from the same vastus lateralis of patients at baseline (1st), 6 months (2nd), 12 months (3rd) and 24 months (4th) of the exercise trial program. Subsequently, frozen samples were sent from the centres in Dallas to the Mitochondria research group in Newcastle. The trial was still ongoing at the time these experiments were performed, therefore not all biopsies had been collected and sent. For this reason only 1st, 2nd and 3rd muscle biopsies from a selection of patients were assessed in this chapter.

6.3.4 Cryo-sectioning

Serial sections (10µm thickness) from transversely orientated muscle blocks were obtained as previously described in section 2.2.3 from chapter 2.

6.3.5 Immunofluorescence

Fluorescence-based immunohistochemistry was carried out according to the protocol described in section 5.3.3 from chapter 5.

6.3.6 Imaging

Brightfield and fluorescent images were acquired at 20x magnification using Zeiss Microscope (see section 2.2.7 from chapter 2).

6.3.7 Densitometry measurements

Fluorescent images were analysed using IMARIS software (Bitplane). Segmentation was performed in order to measure the OD from individual muscle fibres (ODCOXI, ODNDUF8 and ODporin or OD488, OD546 and OD647) as described in section 4.4.1 from chapter 4.
6.3.8 Data analysis

Data analysis, involving background correction, creation of control group, and calculation of Z scores for porin, NDUFB8 and COX-I, was performed as previously described in chapter 4 (see section 4.4.4.1).

The effects of exercise and no specific training, or detraining, were assessed using two different approaches. Both present advantages and disadvantages which will be discussed at the end of this section.

In the first approach, biopsies were compared based on the distribution of COX-I and NDUFB8 Z scores. For that, Z scores from 1st, 2nd and 3rd biopsies were separately plotted as box plots, as illustrated in Figure 6.2. Top and bottom of the box are the 1st and 3rd quartiles; the horizontal line within the box indicates the median. The whiskers represent the 5th and 95th percentiles. Results were interpreted based on the median value, whereby an increase represents a positive effect. For example, the graph shown in Figure 6.2 demonstrate that exercise training, which took place between 1st and 2nd biopsies, led to an overall increase in COX-I Z scores.

![Figure 6.2: Example of a box-plot showing the COX-I Z scores from 1st, 2nd and 3rd muscle biopsies.](image)

In the second approach, the 1st, 2nd and 3rd biopsies were compared based on COX-I and NDUFB8 levels, rather than the Z scores distribution. To quantify levels of these complexes, fibres were classified into 2 groups based on Z scores. The first, yielding “upper” class, encompassed fibres with Z scores greater than or equal to -4.5SD. The second, yielding “lower” class, included fibres with Z scores lower than -4.5 SD. The reason why fibres were classified only into 2 groups was to simplify the analysis. In short, the upper class contains the positive and int(+) fibres as classified using the previous 4 group system from earlier chapters, whereas the lower class contains the int(-) and negative fibres. The percentage of fibres in COX-I and NDUFB8 upper and lower classes was calculated and results were presented in a table as...
illustrated in Table 6.2. In addition, the percentage change in COX-I or NDUFB8 levels between 1st and 2nd biopsies or 2nd and 3rd biopsies was calculated as follows;

\% change(COX-I or NDUFB8) = \% of fibres in (COX-I or NDUFB8) upper class (2nd biopsy) - \% of fibres in (COX-I or NDUFB8) upper class (1st biopsy). The \% change between 1st and 2nd biopsies quantifies the effect of exercise in group A and the effect of no specific training in patients from group B.

\% change(COX-I or NDUFB8) = \% of fibres in (COX-I or NDUFB8) upper class (3rd biopsy) - \% of fibres in (COX-I or NDUFB8) upper class (2nd biopsy). The \% change between 2nd and 3rd biopsies quantifies the effect of deconditioning/detraining in group A and the effect of exercise in patients from group B.

Table 6.2 Example of quantification of COX-I and NDUFB8 levels

<table>
<thead>
<tr>
<th>Biopsy</th>
<th>COX-I levels</th>
<th>NDUFB8 levels</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper class</td>
<td>Lower class</td>
<td>%change</td>
</tr>
<tr>
<td>P21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>2.8%</td>
<td>97.2%</td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>12.4%</td>
<td>87.6%</td>
<td>9.6%</td>
</tr>
<tr>
<td>3rd</td>
<td>4.1%</td>
<td>95.9%</td>
<td>-8.2%</td>
</tr>
</tbody>
</table>

A positive value reflects an increase in the percentage of fibres in the upper group and therefore an increase in COX-I/NDUFB8 levels. By contrast, a negative value indicates a decrease in the percentage of fibres in the upper group due to a decline in COX-I/NDUFB8 levels. For example, the results shown in Table 6.2 demonstrate that detraining, which took place between 2nd and 3rd biopsies, induced a decline in COX-I and NDUFB8 levels.

These two approaches to analysing data were considered for the several reasons. The quantification of COX-I and NDUFB8 levels allows detection of changes in the percentage of fibres in the upper class. However, it has the disadvantage of not quantifying precisely the changes occurring in the lower class as the range of Z scores in this group is very wide (varying from -4.5SD up to -20SD). So, a deficient fibre with a Z score of -18SD that slightly improves following exercise to a value of -10SD, will still be classified in the negative group. Therefore, slight changes in the lower group may not be detected. The use of box plots to visualise data has the advantage of indicating subtle changes in the distribution of Z scores. Although very useful, the interpretation of results may be more complex in some cases, due to the amount of information conveyed by the graphs, which present medians, quartiles, and 5th and 95th percentiles.
6.4 Results

6.4.1 Patients with single large-scale mtDNA deletions

6.4.1.1 Group A

6.4.1.1.1 Distribution of COX-I and NDUFB8 Z scores

Patients P2, P4, P6, P7, P8, P11 and P13 were assigned to group A, and engaged exercise training at baseline. The distribution of COX-I and NDUFB8 Z scores in 1st, 2nd and 3rd biopsies are shown in Figure 6.3.

Patients in this group responded differently to periods of endurance exercise and detraining. Patients P6 and P8 exhibited a clear increase in COX-I and NDUFB8 Z scores following training and showed a clear decline in both Z scores after 6 months of detraining (Figure 6.3 C and E). These changes were recorded by respective increases and decreases in median, and 1st and 3rd quartile values, in addition to a narrowing of the Z scores distribution in P8. P13 also displayed an increase in both COX-I_z and NDUFB8_z following training. However, following the detraining period this patient showed an increase in COX-I_z, as seen in P6 and P8, though NDUFB8_z was shown to decrease (Figure 6.3G). This indicates a partial benefit of exercise to patient P13, with a positive effect only observed on complex I.

By contrast, exercise training induced a decline in COX-I_z, with no major changes to NDUFB8_z, in patient P4, and a decline in both COX-I_z and NDUFB8_z in P11. Both patients showed a clear increase in COX-I and NDUFB8 Z scores following the detraining period (Figure 6.3 B and F), meaning that P4 and P11 benefited more from the deconditioning phase.

Finally, patients P2 and P7 showed contradictory results (Figure 6.3 A and D). Exercise training induced an increase in COX-I Z scores, and a decline in NDUFB8 Z scores in both patients. The 6 months of detraining resulted in a decline in both Z scores for P2, whereas P7 saw an increase in both Z scores following this period. This means that exercise was partially beneficial for P2 (positive for COX-I, negative for NDUFB8) and had adverse effects on P7.
Figure 6.3 Box plots of COX-I and NDUFB8 Z scores of individual muscle fibres in 1st, 2nd and 3rd biopsies from patients with single large-scale mtDNA deletions assigned to group A (continues on the next page).

Left graphs plot COX-I Z scores, right graphs plot NDUFB8 Z scores from patients (A) P2, (B) P4, (C) P6, (D) P7, (E) P8, (F) P11 and (G) P13, which were assessed at baseline (left white box plot), following 6 months of endurance exercise (middle blue box plot), and following 6 months of deconditioning (right white box plot). The box indicates the upper and lower quartiles, and the median is represented by a horizontal black line within the box. Whiskers indicate the 5th and 95th percentiles.
Table 6.3 Quantification of COX-I and NDUFB8 levels in patients with single mtDNA deletions assigned to group A

<table>
<thead>
<tr>
<th>Biopsy</th>
<th>COX-I levels</th>
<th>NDUFB8 levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper class</td>
<td>Lower class</td>
</tr>
<tr>
<td>P2</td>
<td>1st</td>
<td>93.8%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>99.0%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>93.5%</td>
</tr>
<tr>
<td>P4</td>
<td>1st</td>
<td>47.9%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>45.6%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>54.1%</td>
</tr>
<tr>
<td>P6</td>
<td>1st</td>
<td>73.1%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>75.3%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>68.3%</td>
</tr>
<tr>
<td>P7</td>
<td>1st</td>
<td>87.3%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>91.4%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>93.9%</td>
</tr>
<tr>
<td>P8</td>
<td>1st</td>
<td>58.1%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>66.1%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>55.4%</td>
</tr>
<tr>
<td>P11</td>
<td>1st</td>
<td>84.3%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>71.3%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>80.1%</td>
</tr>
<tr>
<td>P13</td>
<td>1st</td>
<td>98.1%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>97.6%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>98.5%</td>
</tr>
</tbody>
</table>

Key: %change = difference in the percentage of muscle fibres in COX-I/NDUFB8 upper classes from 1st to 2nd biopsy and from 2nd to 3rd biopsy. Blue highlights the biopsy taken following the 6 months period of exercise.

6.4.1.1.2 Quantification of the change in COX-I and NDUFB8 levels

The results from the quantification of COX-I and NUF88 levels (Table 6.3) were, overall, in agreement with the observed changes to the distribution of COX-I and NDUFB8 Z scores. Patients P6 and P8 exhibited an increase in the percentage of fibres in COX-I and NDUFB8 upper classes - hence an increase in COX-I and NDUFB8 levels - following the 6 month period of endurance training (Table 6.3, 2nd biopsy % change). After 6 months of detraining, both patients showed a clear decline in COX-I and NDUFB8 levels (Table 6.3, 3rd biopsy % change).

Endurance training caused a decline in COX-I and NDUFB8 levels in P4 and P11, and an increase in both complexes levels following the detraining period in these patients. In patient P13, exercise training induced a decline in NDUFB8 levels, with no major effects in COX-I levels. The detraining period induced a slight increase in both complexes in this patient.

Endurance exercise in patients P2 and P7 yielded interesting results demonstrating a positive impact on complex IV levels, as revealed by an increase in COX-I levels, alongside a negative
effect on complex I. In patient P2, this adverse effect was due to a decline in NDUFB8 levels post exercise. Patient P7 actually showed an increase in NDUFB8 levels following the training phase (%change (NDUFB8) = 0.8%), however this increase was less pronounced than that recorded following detraining (%change (NDUFB8) = 3.0%). Detraining also caused contradictory results in both patients: however here a negative impact on complex IV was noted, while complex I seemed to be positively affected. Patient P7 demonstrated an increase in COX-I levels following the detraining phase (%change (COX-I) = 2.4%) , however this was less pronounced than the increase recorded in the post-exercise period (%change (COX-I) = 4.1%), creating an overall negative impact of detraining on COX-I levels.

6.4.1.2 Group B

6.4.1.2.1 Distributions of COX-I and NDUFB8 Z scores

Patients P1, P3, P5, P9, P10 and P12 were assigned to group B and only initiated endurance exercise following a 6 month period of no specific training. The distribution of COX-I and NDUFB8 Z scores in 1st, 2nd and 3rd biopsies are shown in Figure 6.4.

Patients P3, P5, and P10 exhibited a decline in COX-I and NDUFB8 Z scores following the period of no specific training and showed a clear increase in both Z scores after 6 months of exercise training (Figure 6.4 B, C and F). The box plots from these patients suggest that they all benefited from the exercise training. Similarly, patient P12 showed a slight decline in both Z scores following the no specific training period, and P9 showed an increase following the training period (Figure 6.4 D and F). Unfortunately, the 2nd and 3rd muscle biopsies from patients P9 and P12, respectively, presented a high degree of freezing artefacts not suitable for appropriate assessment.

By contrast, patient P1 recorded an increase in COX-I_z and NDUFB8_z following the no specific training period. They also showed a decline in Z scores for both complexes after the 6 months period of endurance training (Figure 6.4A), suggesting that exercise training had an adverse effect.
Figure 6.4 Box plots of COX-I and NDUFB8 Z scores of individual muscle fibres in 1st, 2nd and 3rd biopsies from patients with single mtDNA deletions assigned to group B (continues on the next page). Left graphs plot COX-I Z scores, right graphs plot NDUFB8 Z scores from patients (A) P1, (B) P3, (C) P5, (D) P9, (E) P10 and (F) P12, which were assessed at baseline (left white box plot), following 6 months of no specific training (middle white box plot), and following 6 months of endurance training (right blue box plot). The box indicates the upper and lower quartiles, and the median is represented by a horizontal black line within the box. Whiskers indicate the 5th and 95th percentiles.
6.4.1.2.2 Quantification of the change in COX-I and NDUFB8 levels

The results from the quantification of COX-I and NDUFB8 levels (Table 6.4) were in complete agreement with the observed changes in COX-I and NDUFB8 Z scores.

In patients P3, P5 and P10, six months of no specific training caused a decline in COX-I and NDUFB8 levels, indicated by a negative percentage change (Table 6.4; 2nd biopsy % change) (except for P3 which showed no major changes). By contrast, the six months endurance training induced an increase in both complexes levels in all of the patients (Table 6.4, 3rd biopsy % change). Similarly, endurance exercise induced an increase in COX-I and NDUFB8 in patient P9, and no training caused a decline in patient P12. By contrast, patient P1 showed an increase in the levels of both complex I (%change (NDUFB8) = 5.9%) and complex IV (%change (COX-I) = 6.4%) following the no specific training phase, whereas endurance training induced a decline in mitochondrial function represented by a decrease in levels of both complexes (%change (COX-I) = -8.9%; %change (NDUFB8) = -6.7%).

Table 6.4 Quantification of COX-I and NDUFB8 levels in patients with single mtDNA deletions assigned to group B

<table>
<thead>
<tr>
<th>Biopsy</th>
<th>COX-I levels</th>
<th>NDUFB8 levels</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper</td>
<td>Lower</td>
<td>%change</td>
</tr>
<tr>
<td>P1</td>
<td>1st</td>
<td>62.2%</td>
<td>37.8%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>68.6%</td>
<td>31.4%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>59.7%</td>
<td>40.3%</td>
</tr>
<tr>
<td>P3</td>
<td>1st</td>
<td>81.7%</td>
<td>18.3%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>79.8%</td>
<td>20.2%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>82.4%</td>
<td>17.6%</td>
</tr>
<tr>
<td>P5</td>
<td>1st</td>
<td>76.5%</td>
<td>23.5%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>76.2%</td>
<td>23.8%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>88.8%</td>
<td>11.2%</td>
</tr>
<tr>
<td>P9</td>
<td>1st</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>44.5%</td>
<td>55.5%</td>
</tr>
<tr>
<td>P10</td>
<td>1st</td>
<td>92.0%</td>
<td>8.0%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>88.3%</td>
<td>11.7%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>93.4%</td>
<td>6.6%</td>
</tr>
<tr>
<td>P12</td>
<td>1st</td>
<td>90.5%</td>
<td>9.5%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>89.5%</td>
<td>10.5%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Key: %change = difference in the percentage of muscle fibres in COX-I/NDUFB8 upper classes from 1st to 2nd biopsy and from 2nd to 3rd biopsy. Blue highlights the biopsy taken following the 6 months period of exercise.
6.4.1.3 Summary of results

To summarise, the impact of endurance exercise on patients with single large-scale mtDNA deletions was variable (Table 6.5). Two approaches of analysis (distribution of Z scores and quantification of complexes levels) were considered to interpret the data.

In five patients (P3, P5, P6, P8 and P10), exercise had a positive effect on COX-I and NDUFB8 levels, when compared to periods of no specific training. Both approaches of analysis also detected a beneficial effect of the training period for patient P9; however, as the 1st biopsy of this patient was not appropriate for analysis, it was not possible to assess the impact of no specific training on this patient. Since it cannot be excluded that no specific training would cause a more pronounced increase than that observed with exercise, results are not conclusive. In contrast, P1, P4, and P11 showed an adverse response to the 6 months period of endurance exercise. Patient P12 also revealed a decline in complexes levels, however, as the 3rd biopsy was also not appropriate for analysis, results are not conclusive. Interestingly, patients P2, P7 and P13 showed contradictory results regarding the effects on individual complexes. In patients P2 and P7, exercise demonstrated a positive impact on complex IV but adverse impact on complex I. Whereas in P2, both analysis approaches were in agreement, this was not the case for P7. Therefore, I had to make a judgement for this particular patient, which was based on the increase in COX-I levels. Patient P13 showed the opposite effect with an adverse impact on complex IV but positive impact on complex I levels.

This group of single deletion patients is very heterogeneous. It includes patients from both genders over a broad age range (25 to 61 years old), with biopsies displaying different MRC profiles and variable mtDNA mutation loads. Further analysis was therefore performed in order to explore if this heterogeneity could underlie the variability found in results. However, no association was found between gender and the impact of exercise. The three male patients assessed responded differently to the training programme reacting either positively (P5), partially positively (P13) or adversely (P1). The same mixed response was observed for female patients. Also, no link was found between age and effect of exercise; P3 (26 years old) and P10 (47 years old) presented beneficial reactions to exercise; P2 (25 years old) and P13 (61 years old) showed partial benefit; P1 (25 years old) and P11 (48 years old) responded negatively to training. Furthermore, there was no correlation found between the response to exercise and the MRC profile of these patients (assessed in chapter 5). Patients showing a positive response to exercise were found in both group 1 (MRC profile: complexes I and IV equally affected, P8 and P10) and group 2 (MRC profile: complex I more affected than complex IV, P6, P3 and P5). Also, the patients showing contradictory results in COX-I and NDUFB8 levels were found in
group 1 (P13), group 2 (P2) and group 3 (MRC profile: complex IV more affected; P7). Interestingly, patients responding negatively to exercise were exclusively from group 2 (P1, P4 and P11). Finally, no correlation was found between the response to exercise and the mutation load. Patients showing an improvement of mitochondrial function presented variable mutation load (ranging from 65% to 87%) and patients showing deterioration (P1, P4 and P11), harboured mutation loads of 85%, 79% and 39%, respectively.

Table 6.5 Effect of exercise in complexes IV and I levels in patients with single large-scale mtDNA deletions

<table>
<thead>
<tr>
<th>Sex (Age)</th>
<th>MRC Profile</th>
<th>Effect of exercise on complex IV</th>
<th>Effect of exercise on complex I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Z scores</td>
<td>COX-I levels</td>
</tr>
<tr>
<td>Exercise training: group A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>F (25)</td>
<td>Group 2</td>
<td>+</td>
</tr>
<tr>
<td>P4</td>
<td>F (36)</td>
<td>Group 1</td>
<td>-</td>
</tr>
<tr>
<td>P6</td>
<td>F (40)</td>
<td>Group 2</td>
<td>+</td>
</tr>
<tr>
<td>P7</td>
<td>F (41)</td>
<td>Group 3</td>
<td>-</td>
</tr>
<tr>
<td>P8</td>
<td>F (43)</td>
<td>Group 1</td>
<td>+</td>
</tr>
<tr>
<td>P11</td>
<td>F (48)</td>
<td>Group 1</td>
<td>-</td>
</tr>
<tr>
<td>P13</td>
<td>M (61)</td>
<td>Group 1</td>
<td>-</td>
</tr>
<tr>
<td>Exercise training: group B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>M (25)</td>
<td>Group 1</td>
<td>-</td>
</tr>
<tr>
<td>P3</td>
<td>F (26)</td>
<td>Group 2</td>
<td>+</td>
</tr>
<tr>
<td>P5</td>
<td>M (39)</td>
<td>Group 2</td>
<td>+</td>
</tr>
<tr>
<td>P9</td>
<td>F (44)</td>
<td>Group 1</td>
<td>+ (?)</td>
</tr>
<tr>
<td>P10</td>
<td>F (47)</td>
<td>Group 2</td>
<td>+</td>
</tr>
<tr>
<td>P12</td>
<td>F (61)</td>
<td>Group 2</td>
<td>+ (?)</td>
</tr>
</tbody>
</table>

Key: age = age when biopsied, years old; group 1 = patients showing both complexes I and IV equally and simultaneously down-regulated; Group 2 = patients showing a more pronounced deficiency of complex I than complex IV; Group 3 = patients showing a slightly more pronounced deficiency of complex IV; n.c. = not conclusive.

6.4.2 Patients with point mutations in mitochondrial-encoded tRNAs

6.4.2.1 Group A

6.4.2.1.1 Distribution of Z scores for COX-I and NDUFB8

The distributions of COX-I and NDUFB8 Z scores in 1st, 2nd and 3rd biopsies are shown in Figure 6.5. All patients assigned to group A (P18, P21 and P22) showed an increase in COX-I and NDUFB8 Z scores following endurance training (Figure 6.5A-C). This was recoded as an increase in the 1st quartile, the median value and/or the 3rd quartile. Patients P18 and P21 demonstrated a decline in both Z scores following 6 months of detraining (Figure 6.5A and B). These results suggest that exercise training was beneficial for these patients. Unfortunately, P22’s 3rd muscle section was lost during the immunofluorescence protocol.
Figure 6.5 Box plots of COX-I and NDUFB8 Z scores of individual muscle fibres in 1st, 2nd and 3rd biopsies from patients with point mutations assigned to group A.

Left graphs plot COX-I Z scores, right graphs plot NDUFB8 Z scores from patients (A) P18, (B) P21 and (C) P22, which were assessed at baseline (left white box plot), following 6 months of endurance exercise (middle blue box plot), and following 6 months of deconditioning (right white box plot). The box indicates the upper and lower quartiles, and the median is represented by a horizontal black line within the box. Whiskers indicate the 5th and 95th percentiles.
6.4.2.1.2 Quantification of the change in COX-I and NDUFB8 levels

The results from the quantification of COX-I and NDUFB8 levels (Table 6.6) were in complete agreement with the observed changes in COX-I and NDUFB8 Z scores. Patients P18, P21 and P22 exhibited an increase in COX-I and NDUFB8 levels following 6 months of endurance exercise (Table 6.6, 2nd biopsy, % change), and a decline in COX-I and NDUFB8 levels following detraining (Table 6.6, 3rd biopsy, % change, except P22).

Table 6.6 Quantification of COX-I and NDUFB8 levels in patients with point mutations assigned to group A

<table>
<thead>
<tr>
<th>Biopsy</th>
<th>COX-I levels</th>
<th>NDUFB8 levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper class</td>
<td>Lower class</td>
</tr>
<tr>
<td>P18</td>
<td>1st</td>
<td>90.6%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>92.0%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>88.5%</td>
</tr>
<tr>
<td>P21</td>
<td>1st</td>
<td>2.8%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>12.4%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>4.1%</td>
</tr>
<tr>
<td>P22</td>
<td>1st</td>
<td>17.6%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>30.9%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>-</td>
</tr>
</tbody>
</table>

Key: %change = difference in the percentage of muscle fibres in COX-I/NDUFB8 upper classes from 1st to 2nd biopsy and from 2nd to 3rd biopsy. Blue highlights the biopsy taken following the 6 months period of exercise.

6.4.2.2 Group B

6.4.2.2.1 Distribution of COX-I and NDUFB8 Z scores

The distribution of COX-I and NDUFB8 Z scores in 1st, 2nd and 3rd biopsies are shown in Figure 6.6. All patients assigned to group B (P14, P15, P16, P17, P19 and P20) showed a decline in COX-I and NDUFB8 Z scores (except P14) following 6 months of no specific training. This decline was evident from the decrease in recorded quartiles values, and in some cases from the widening of the Z scores distributions (P15 and P16). Patient P14 was the only exception as this particular case showed a general increase in both COX-I and NDUFB8 Z scores, where median, 1st and 3rd quartiles shifted up (Figure 6.6A).

In patients P14, P15 and P19, endurance training caused an increase in both COX-I (or no significant change in P19) and NDUFB8 Z scores (Figure 6.6 A, B and E). This was recorded through the increase in the quartile values or through the narrowing of distributions. This suggests that P14, P15 and P19 benefited from the training program.
Figure 6.6 Box plots of COX-I and NDUF8 B Z scores of individual muscle fibres in 1st, 2nd and 3rd biopsies from patients with point mutations assigned to group B (follows in the next page).

Left graphs plot COX-I Z scores, right graphs plot NDUF8 B Z scores from patients (A) P14, (B) P15, (C) P16, (D) P17, (E) P19 and (F) P20, which were assessed at baseline (left white box plot), following 6 months of only daily base activity with no specific training (middle white box plot), and following 6 months of endurance training (right blue box plot). The box indicates the upper and lower quartiles, and the median is represented by a horizontal black line within the box. Whiskers indicate the 5th and 95th percentiles.
In patient P16, exercise caused an increase in COX-I_z and decline in NDUFB8_z as measured by a drop in the median level (Figure 6.6C), whereas in P20 the exercise period induced a decline in COX-I_z and an increase in NDUFB8_z (Figure 6.6F). For these particular patients, results indicate that the training programme was partially beneficial. In patient P17, endurance training caused a decline in both COX-I and NDUFB8 Z scores (Figure 6.6D), meaning that exercise had adverse effects on this patient.

6.4.2.2.2 Quantification of the change in COX-I and NDUFB8 levels

The results from the quantification of COX-I and NUFB8 levels are shown in Table 6.7. All patients with point mutations assigned to group B, with the exception of P14 and P17, showed a decline in COX-I and NDUFB8 levels following 6 months of no specific training (Table 6.7, 2nd biopsy % change). Patient 14 showed no major changes to NDUFB8 levels following the no specific training period, and Patient P17 recorded no impact on COX-I levels (%change < 0.5%).

By contrast, endurance exercise induced an increase in the level of both complexes in patients P14 and P15 (Table 6.7, 3rd biopsy % change). Patient P16 showed an increase in the levels of COX-I (%change (COX-I) = 6.7%), while no major effect on NDUFB8 levels was observed, as the decline observed post exercise (%change (NDUFB8) = -5.8%) was similar to the decline recorded following no specific training (%change (NDUFB8) = -5.2%).

In patients P19 and P20, endurance exercise had an indirect positive effect. Following endurance exercise, both patients exhibited a decline in COX-I and/or NDUFB8 levels less pronounced than the decline recorded previously for periods of no specific training. For instance, in patient P19 the %change in COX-I and NDUFB8 levels after no training declined by -3.2% and -3.0%, respectively. However, following exercise the decline recorded for COX-I levels was attenuated to -1.6% and NDUFB8 levels recorded a slight increase of 0.9%. Similarly, in patient P20 the %change in COX-I and NDUFB8 levels after no training was -1.1% and -4.2%, respectively, whereas after exercise, the decline was attenuated to -0.8% and -0.8%, respectively.

In patient P17 the training period did not have a major impact on COX-I levels. However it induced a decline in NDUFB8 levels (%change (NDUFB8) = -2.3%), that surpassed the change occurring following periods of no specific training (%change (NDUFB8) = -0.8%).
<table>
<thead>
<tr>
<th>Biopsy</th>
<th>COX-I levels</th>
<th>NDUFB8 levels</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upper class</td>
<td>Lower class</td>
<td>%change</td>
</tr>
<tr>
<td>P14</td>
<td>1st</td>
<td>87.2%</td>
<td>12.8%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>85.7%</td>
<td>14.3%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>88.5%</td>
<td>11.5%</td>
</tr>
<tr>
<td>P15</td>
<td>1st</td>
<td>84.7%</td>
<td>15.3%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>83.1%</td>
<td>16.9%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>86.5%</td>
<td>13.5%</td>
</tr>
<tr>
<td>P16</td>
<td>1st</td>
<td>81.1%</td>
<td>18.9%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>75.2%</td>
<td>24.8%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>81.8%</td>
<td>18.2%</td>
</tr>
<tr>
<td>P17</td>
<td>1st</td>
<td>99.1%</td>
<td>0.9%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>98.9%</td>
<td>1.1%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>98.9%</td>
<td>1.1%</td>
</tr>
<tr>
<td>P19</td>
<td>1st</td>
<td>74.9%</td>
<td>25.1%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>71.7%</td>
<td>28.3%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>70.1%</td>
<td>29.9%</td>
</tr>
<tr>
<td>P20</td>
<td>1st</td>
<td>92.6%</td>
<td>7.4%</td>
</tr>
<tr>
<td></td>
<td>2nd</td>
<td>91.5%</td>
<td>8.5%</td>
</tr>
<tr>
<td></td>
<td>3rd</td>
<td>90.7%</td>
<td>9.3%</td>
</tr>
</tbody>
</table>

Key: %change = difference in the percentage of muscle fibres in COX-I/NDUFB8 upper classes from 1st to 2nd biopsy and from 2nd to 3rd biopsy. Blue highlights the biopsy taken following the 6 months period of exercise.

6.4.2.3 Summary of results

The impact of endurance exercise on patients with point mutations in different mitochondria-encoded tRNAs is shown in Table 6.8. In five patients (P14, P15, P18, P19 and P21), the six months of endurance exercise led to an improvement of mitochondrial function as measured by an increase in levels of COX-I and complex I. The same was found for P22 however, as the effect of no specific training was not assessed, results are not conclusive for this patient. In two of the patients (P16 and P20), exercise showed a partial positive effect, improving one of the complexes but decreasing the other. Finally, only patient P17 showed an adverse response to exercise.

Like the single deletion patients, this group of patients displayed some heterogeneity in gender, age and, specifically for this group, genotype. Unfortunately, as only one patient showed an adverse response to exercise, it is more difficult to correlate these variables and the results obtained. However it is possible to make some observations. The age does not seem to predict the impact of exercise as P17 and P18, carrying the same mutation...
(m.3243A>G MT-TL1), both females and of the same age, responded differently to the exercise regimen. Regarding gender, no males were affected adversely, however, the majority of patients were females (7 out of 9). Finally, the genotypes MT-TL1 and MT-TE do not seem to be a predictor of the effect of the training program. For example, patients P19 and P20, carrying the m.14709T>C MT-TE mutation, showed both an improvement and a deterioration of mitochondrial function, respectively, as assessed by the complexes levels. Similarly, patients P16, P17 and P18, all carrying the m.3243A>G MT-TL1 mutation, all females and within the same age range (40, 47 and 47 years old) demonstrated variable responses to exercise.

Table 6.8 Effect of endurance exercise in complexes IV and I levels in patients with point mutation in mt-tRNAs

<table>
<thead>
<tr>
<th>Sex (Age)</th>
<th>Genotype</th>
<th>Effect of exercise on complex IV</th>
<th>Effect of exercise on complex I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Z scores</td>
<td>COX-I levels</td>
</tr>
<tr>
<td>Exercise training: group A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P18</td>
<td>F (47)</td>
<td>MT-TL1</td>
<td>+</td>
</tr>
<tr>
<td>P21</td>
<td>M (33)</td>
<td>MT-TG</td>
<td>+</td>
</tr>
<tr>
<td>P22</td>
<td>M (63)</td>
<td>MT-TW</td>
<td>+ (?)</td>
</tr>
<tr>
<td>Exercise training: group B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P14</td>
<td>F (25)</td>
<td>MT-TL1</td>
<td>+</td>
</tr>
<tr>
<td>P15</td>
<td>F (38)</td>
<td>MT-TL1</td>
<td>+</td>
</tr>
<tr>
<td>P16</td>
<td>F (40)</td>
<td>MT-TL1</td>
<td>+</td>
</tr>
<tr>
<td>P17</td>
<td>F (47)</td>
<td>MT-TL1</td>
<td>-</td>
</tr>
<tr>
<td>P19</td>
<td>F (35)</td>
<td>MT-TE</td>
<td>No effect</td>
</tr>
<tr>
<td>P20</td>
<td>F (58)</td>
<td>MT-TE</td>
<td>-</td>
</tr>
</tbody>
</table>

Key: age = age when biopsied, years old; genotype = tRNA gene affected by the mutation

6.5 Discussion

Patients with mitochondrial myopathy frequently experience exercise intolerance, triggering a vicious cycle of sedentary lifestyle and muscle disability (Taivassalo and Haller, 2005). It is established that 14 weeks of endurance exercise increases aerobic capacity and quality of life of patients with mitochondrial disease (Taivassalo et al., 1996, Taivassalo et al., 1998). However less is known about the impact of long term exercise and more insights are needed into the underlying mechanisms of improved physiological responses. Quadruple immunofluorescence was used to assess muscle biopsies from patients with single large-scale mtDNA deletions and point mutations in mitochondrial encoded tRNAs that engaged in different training programmes. Muscle biopsies were obtain before the trial, after 6 months of endurance exercise and following 6 months of no specific training (only performing daily activities). Although results presented here are preliminary, this chapter shows that patients
with mitochondrial disease respond differently to endurance exercise. Three responses were found: an increase in complex I and IV; a decrease in both complexes; and an opposing effect with an increase in one complex but decline in the other. Due to the presence of freezing artefacts in most muscle biopsies, the effect of exercise on the overall mitochondrial mass was not studied.

6.5.1 The effect of endurance exercise

Previous studies have explored the changes in the activity of respiratory complexes from patients with mitochondrial disease undergoing endurance exercise. They found inconsistent results, reporting either an increase in the activity of the complexes affected by the mutation (Taivassalo et al., 2001), or only mild increasing trends in activity with no changes in the percentage of COX deficient fibres (Jeppesen et al., 2006, Taivassalo et al., 2006, Jeppesen et al., 2009). The accuracy of the quadruple immunofluorescence assay allowed quantitative assessment of the subtle changes in complexes levels before and after periods of endurance training and periods of no training, which could not be detected using current biochemical or histochemical methodologies. Although some of the changes recorded in patient’s biopsies were very subtle, it was recognised that they had practical significance. Furthermore, as the mutation load and mtDNA copy number have a direct impact on the activity and levels of respiratory complexes (Murphy et al., 2012), the results revealed by quadruple immunofluorescence can be considered a good outcome measure of the mutational load in single fibres and ultimately, an outcome measure of the effects of exercise.

The effect of exercise on patients with single large-scale mtDNA deletions was variable. Indeed, in five patients (out of 10), exercise showed beneficial effects increasing the levels of complex I and IV. In three patients no training was more beneficial, leading to an increase in complexes I and IV levels, whereas exercise caused a decline. Interestingly in three of the patients, exercise showed contradictory results, with a positive impact on one complex but negative effect on the other. The possible underlying causes of the variability of results were further explored. There was no significant association found between the response to exercise and the gender, age or mtDNA mutation load of the patient. Also, the effect of exercise did not seem to correlate with the MRC profile, though patients responding negatively to exercise were only found in profile group 2, characterised by an earlier and more pronounced deficiency of complex I. Further investigations with a larger cohort of patients balanced in terms of MRC profile are needed to confirm this observation.
The same was found for patients with point mutations in mitochondrial-encoded tRNAs. In five patients (out of nine), exercise caused an improvement in mitochondrial function, either through an increase in complex I and IV levels or through the attenuation of the decline in both complexes recorded following periods of no specific training. Two patients showed divergent results, whereas one patient showed an adverse response to exercise, with a decline in levels of both complexes. Yet again, no correlation was found between the response to exercise and the gender, age or genotype of the patient. However, further investigations with a larger and gender-balanced cohort of patients are needed.

Two patients with single deletions (P9, P12, group B) and one patient with a point mutation (P22, group A) showed no conclusive results. Although results were more convincing in some patients (P22), this chapter has shown the importance of considering effects from periods of training and no training when addressing the impact of exercise. For example in patient P7, although both periods of training and detraining led to an increase of COX-I and NDUFB8 levels, exercise attenuated that increase. By contrast, in patients P19 and P20, both periods of no training and endurance exercise led to a decline in COX-I and NDUFB8, despite attenuation of the decline following exercise. Without the assessment of the isolated effect of no training, it would be mistakenly concluded that exercise was beneficial for P7 and deleterious for both P19 and P20. In patients P9, P12 and P22 information regarding one of the effects was missing, and therefore it was not possible to assess the overall impact of exercise on these patients.

6.5.2 Weaknesses of this study

The work presented in this chapter was limited by the lack of information about the patients. A detailed report on the training intensity, patient’s commitment and/or other factors such as different degrees of sedentary behaviour prior to the trial are crucial. These could help understand some of the variability recorded in patient’s results. Furthermore, it would be interesting to correlate the results provided by the immunofluorescence assay with mtDNA mutation load, mtDNA copy number and assembly and function of respiratory complexes for each biopsy. On a larger scale, it would also be interesting to correlate the present results with the findings on skeletal muscle structure and function, as patients were assessed through magnetic resonance imaging (MRI) and spectroscopy (MRS) at the four time points.

Furthermore, not all patients recruited for the study were assessed. Forty patients participated in this study, 20 with single large-scale mtDNA deletions and 20 with point mutations in mitochondrial encoded tRNAs. Further investigations are therefore required to assess the
remaining patients. Hopefully, this will provide more insight into the underlying causes of the
different responses to exercise. Also, further studies are needed to assess the fourth biopsy
taken from each patient. This will allow investigation of the impact of exercise over a period of
two years - with exercise being performed for 12 (group A) or 18 months (group B). Finally, it
should be mentioned that results need careful interpretation. It cannot be excluded that some
of the differences revealed in this study may result from variations in the biopsy site. Perhaps a
future study should aim to quantify the variability found in biopsies collected from the same
muscle at different sites. Since this variability may also change with mutation load, different
patients with different heteroplasmy levels should be evaluated. This would determine an
expected percentage of variability for different mutation loads, which would then be taken
into account when comparing different biopsies of the same patient.

Last but not least, another weakness of this study relates to the method of analysis. The
approach used to calculate the Z scores requires further optimisation. At present, one Z score
(for each variable: COX-I, NDUFB8 and porin) is calculated based on the control population
parameters and attributed to each muscle fibre. However, since the control population is
heterogeneous, several simulations of control groups should ideally be performed. This would
allow calculating multiple Z scores for each fibre to assign an average Z score together with a
confidence interval. As a result, the percentage change in COX-I and NDUFB8 levels between
biopsies will be determined with a higher degree of precision. Furthermore, the data analysis
approach also requires improvement. The present study used a combination of Z scores
distributions and classification of fibres into broad categories (upper and lower classes) to
describe the changes occurring in mitochondrial function with exercise. However, a more
accurate analysis should be developed. Ideally this would feature an analysis based on the
distribution of Z scores, which would allow detection of subtle shifts, and quantify the density
of fibres along the distribution.
Chapter 7. Concluding remarks

Mitochondrial diseases are a group of heterogeneous disorders characterised by an impairment of the OXPHOS system and the skeletal muscle is commonly affected (Taylor et al., 2004, Kirby et al., 2007). When the mtDNA is involved, muscle often exhibits a particular feature: a mosaic pattern of COX deficiency (Johnson et al., 1983, Sciacco et al., 1994). Since only a subset of fibres is affected, deficiency is challenging to quantify. This research study was therefore aimed to (1) develop a novel assay to assess mitochondrial function in human skeletal muscle, which was then used to (2) test its use in improving the diagnosis of patients with mitochondrial disease and (3) evaluate the effectiveness of possible therapeutic approaches.

7.1 Main findings

The novel quadruple immunofluorescent assay presented in this thesis is an objective computer-based technique that allows accurate quantification of the two most commonly affected respiratory complexes - I and IV (Jackson et al., 1995). Furthermore, the new graphical representation developed (MRC graphs) convey information about the biochemical profile of individual muscle fibres (dictated by the levels of complex I, complex IV and the mitochondrial mass). This graphical output offers the opportunity to answer multiple questions such as: which complex(es) is/are affected by the mutation; Is the defect symmetrical (affecting equally both complexes), slightly asymmetrical (affecting preferentially one), or markedly asymmetrical; Is the deficiency uniform across fibres or multiple populations of deficient fibres are found; Is the defect nuclear (affecting equally all fibres) or mitochondrial (affecting only a subset of fibres) driven?

In the context of studying disease mechanisms, forty-five genetically-characterised patients were assessed using the quadruple immunofluorescence assay. This work showed evidence that groups of patients harbouring the same mitochondrial or nuclear mutation manifest a similar MRC profile, with the exception of single large-scale mtDNA deletions. Interestingly, in the later, mutations show three different MRC profiles depending on the nature of the genes removed. Furthermore, this work provided information on how deficiency progresses at the single fibre level for different genetic defects. For example, in patients carrying the common m.3243A>G MT-TL1 mutation, demonstrated that complex IV deficiency only develops after
complex I deficiency is established. By contrast, the assay showed that deficiency in patients with single mtDNA deletions progress through different paths depending on the nature of the mtDNA deletion; deficiency can affect complexes I and IV either simultaneously or asynchronously (with complex I preceding complex IV deficiency, or the opposite). Patients with multiple mtDNA deletions display a unique feature: two populations of fibres with distinct biochemical features.

The different biochemical signatures found in different genetic defects highlights the great diagnostic value of this technique. To further illustrate this, five patients with suspected mitochondrial disease were also assessed. Quadruple immunofluorescence assay allowed quantifying complex I deficiency in three of the patients where there was not enough muscle tissue to perform the biochemical studies. But importantly, it allowed narrowing-down the probable underlying genetic cause from all of these patients. This is novel and extremely valuable since such inference cannot be done using existing diagnostic tools. Currently, COX/SDH histochemistry just provides a yes/no answer and biochemical studies are only capable of detecting isolated or multiple deficiencies in cases where the defect is marked or severe.

Last but not least, the sensitivity of this technique allows detection of subtle changes, making the assessment of complexe levels revealed by this assay an important outcome measure in clinical trials aimed at improving muscle oxidative capacity. In that respect, twenty-two patients that engaged in a different endurance training programme were assessed. Quadruple immunofluorescence allowed the detection of small changes in respiratory chain levels in all patients’ biopsies, which would not be possible applying alternative methods.

7.2 Future work

This research has raised several questions and has opened several routes for future investigations. One route includes further characterisation of common genetic defects causing mitochondrial disease. In these instances, it will be interesting to explore the MRC profile from the m.3243A>G MT-TL1 (Goto et al., 1990) and from other common point mutations, such as the m.8344A>G MT-TK (Shoffner et al., 1990). This will allow investigating how the MRC profile correlates with the genotype and the clinical phenotype of patients. For the single large-scale mtDNA deletion patients, it will be crucial to investigate a bigger cohort of patients with CPEO in order to validate that the MRC profile reflects the nature of the individual mtDNA deletion. Additionally, future assessment of patients with KSS syndrome (Moraes et al., 1989) will
identify if the MRC profile can be indicative of different clinical features. Finally, further mutations in nuclear genes that lead to the generation of multiple mtDNA deletions need to be studied in order to validate their common MRC profile. Other routes of investigations include the use of this technique to study: disease progression of common genetic defects, investigate mitochondrial dysfunction in other conditions such as secondary mitochondrial diseases and ageing, assess the impact of therapeutic approaches (not exclusively exercise training programs) in patients with mitochondrial diseases and assess the impact of endurance training programs in delaying sarcopenia.

Lastly, quadruple immunofluorescence also allows the opportunity for further developments. Future work encompasses the development of an in-house software. This will accelerate image analysis and improve sampling of fibres. This is important since the current software used (IMARIS) does not allow the quantification of sub-sarcolemmal accumulation of mitochondria (one of the hallmarks of mitochondrial dysfunction). Also, when the laminin labelling is not entirely uniform, the segmentation is more laborious and more editing is needed to separate merged surfaces. Therefore tailoring the software to the present needs will overcome these technical concerns. More progress remains to be made regarding the data analysis. This includes refining the way Z scores are calculated so an average Z score with a confidence interval are assigned to each fibre. In addition, the analysis and quantification of changes in studies where multiple biopsies from same patients are assessed requires further improvement. Finally, the potential of making the quadruple immunofluorescence assay into a quintuple immunofluorescence assay is large. A secondary antibody conjugated with 750 fluorophore is commercially available and will allow detection of a fifth epitope - either a subunit of complex III or V. Future work is required to select the two primary antibodies capable of detecting complex III or V deficiencies.

7.3 Final conclusion

This work has upgraded the methods of investigating mitochondrial function in human skeletal muscle, filling the following existing gaps: the absence of a histochemical assay to evaluate complex I, the subjectivity/inaccuracy associated with COX/SDH histochemistry, and the failure to detect subtle changes in complexes activity and levels. Using this novel assay, this work provided more insights into the nature of several genetic defects, and showed evidence that it can be broadly applied - in the current diagnostic setting and in future clinical trials.
8.1 Renewal of ethics approval

From: Ahmed Idrig
Institutional Review Board Chairperson
IRB – 8843

To: Ronald Haller, Mary Childers, Elaine Salinas

Date: June 4, 2015

Re: Continuing Review Approval

IRB Number: CR00010951 / STU 092010-077

Title: Exercise Adaptations in Mitochondrial Myopathy: Therapeutic Implications

Documents: Project Summary and all smart form attachments

The UT Southwestern Institutional Review Board (IRB) reviewed the above-referenced research study at a convened meeting of the full board on May 27, 2015. Having met all applicable requirements, the research study is approved for continuation for a period of 12 months. The approval period for this research study begins on June 4, 2015 and lasts until May 26, 2016. Please note, the consent form was not considered for re-approval because enrollment is closed to new participants.

The research study cannot continue beyond the approval period without continuing review and approval by the IRB. In order to avoid a lapse in IRB approval, the Principal Investigator must apply for continuing review of the protocol and related documents before the expiration date. A reminder will be sent to you approximately 30 days prior to expiration of research study approval.

If you have any questions related to this approval letter or about IRB policies and procedures, please telephone the IRB Office at 214-648-3066.
General Instructions

To maintain IRB approval in good standing, please observe the following requirements:

1. Obtain prior IRB approval for any modifications including addition of new recruiting materials, changes in research personnel or site location, sponsor amendments or other changes to the protocol or associated documents. Only those changes that are necessary to avoid an immediate apparent hazard to a subject may be implemented without prior IRB approval.

2. Report all adverse events, protocol violations, and study closures promptly to the IRB.

3. Make study records available for inspection. All research-related records and documentation may be inspected by the IRB for the purpose of ensuring compliance with UT Southwestern policies and procedures and federal regulations governing the protection of human subjects. The IRB has authority to suspend or terminate its approval if applicable requirements are not strictly adhered to by all research study personnel.

Warning: This is a private message for authorized UT Southwestern employees only. If the reader of this message is not the intended recipient you are hereby notified that any dissemination, distribution or copying of this information is STRICTLY PROHIBITED.
8.2 Patient consent form and brief description of procedures

The University of Texas Southwestern Medical Center at Dallas
Institute for Exercise and Environmental Medicine, Presbyterian Hospital at Dallas

CONSENT TO PARTICIPATE IN RESEARCH

TITLE OF STUDY: Exercise Adaptations in Mitochondrial Myopathy: Therapeutic Implications (Patients)

SPONSOR: National Institute of Health (NIH)

INVESTIGATORS: PHONE # OFFICE NIGHTS & WEEKENDS
1. Ronald C. Holler, M.D. (214) 345-4617 (214) 362-7305
2. Marta Newby, R.N. (214) 345-4655 (214) 683-6144
3. Qi Fu, M.D. (214) 345-8125
4. Lauren Phillips, M.D. (214) 345-7112
5. Lydia Sharp, M.D. (214) 345-7112

INVITATION: You are invited to participate in this research because you have been diagnosed with a mitochondrial myopathy (a disease of the muscle) due to a mutation in mitochondrial DNA (the genes contained within mitochondria). This research study is aimed at identifying the effects of regular exercise training and of not exercising regularly upon mitochondrial (small structures within cells where oxygen is used and carbon dioxide produced in the process of energy production) function and on levels of normal versus mutant mitochondrial DNA. We are also interested in determining whether you have evidence of dysfunction of the autonomic nervous system (the part of the nervous system which controls such functions as blood pressure, heart rate, sweating, and digestion).

NUMBER OF PARTICIPANTS: It is anticipated that 108 subjects will be screened for this study. Forty-eight patients and 20 controls will be enrolled.

PURPOSE: The purpose of this study is to determine the ability of exercise training to improve muscle exercise performance and muscle mitochondrial function and to determine the effects of stopping exercise in patients with muscle mitochondrial disorders due to mutations in mitochondrial DNA. Every muscle cell contains thousands of mitochondria and each mitochondrion contains 2-5 copies of DNA. Your muscle mitochondria contain a mixture of normal and abnormal (mutant) DNA. When levels of mutant mitochondrial DNA greatly outnumber the level of normal mitochondrial DNA in skeletal muscle, the muscle cells are not able to produce energy that is needed for normal physical activity. This results in symptoms of decreased exercise ability and abnormal fatigue that may be associated with shortness of breath and rapid heart rate during minimal levels of activity. Decreased exercise capacity may also be seen in individuals who are healthy but very physically inactive. Exercise training is well known to increase exercise ability in healthy individuals by stimulating increases in mitochondria and circulatory capacity that improve muscle and heart function. This research is being done because we want to determine whether these normal changes will also occur in response to exercise training in muscle of patients with muscle energy defects due to mitochondrial DNA mutations and result in improved exercise ability and quality of life in such patients. A secondary purpose of this study is to determine whether patients affected with mitochondrial myopathy demonstrate evidence of autonomic dysfunction. The autonomic system affects many aspects of the body, including regulation of heart rate, blood pressure, sweating, and digestion. Some patients with autonomic dysfunction experience exercise intolerance and easy fatigue, and a few studies have suggested that symptoms of autonomic dysfunction can be seen in some patients with mitochondrial disease. This research is
being done because we want to determine whether there is any evidence of autonomic dysfunction in people who are known to have mitochondrial myopathy.

PROCEDURES

SCREENING: The study doctor or nurse will ask you questions on the phone about your health, medications you take, and any surgical procedures you have had. If you qualify for the study you will be scheduled for five days of exercise testing at the Neuromuscular Disease Center of the Institute for Exercise and Environmental Medicine at Presbyterian Hospital of Dallas or at the University of Texas Southwestern Medical Center.

Group Assignment: If the study doctor believes that you qualify to participate in this research, you will participate in a two year exercise training program. This program contains two groups. One group of subjects will exercise regularly for 6 months and stop regular exercise and resume normal activity for 6 months. The other group will continue their regular level of activity without regular exercise for 6 months and then will exercise regularly for 6 months. At the end of one year, both groups will be encouraged to exercise regularly. Whether you will start with regular exercise or not will be made by a process similar to flipping a coin.

Treatment: Your exercise training treatment includes 6 months of about 100 training sessions at 70-80% of your maximum heart rate. During the first 3 months you will exercise on a stationary bike for 30 minutes per session. During the second 3 months you will exercise 49 minutes per session. The training will be done at a gym of your choice and supervised by an exercise physiologist and physician.

Evaluations during the research:

The following tests will be repeated during the study to determine the benefit and safety of exercise training.

Day 1: Medical history and physical examination
Health questionnaire
Physical activity questionnaire
Maximal cycle exercise with blood sampling (using an arm venous catheter, a small thin plastic tube inserted in an arm vein) and measurement of cardiac output (the amount of blood pumped by the heart).

Day 2: Autonomic function testing (performed during one of the four exercise evaluations)
(1.5 hours)

Day 3: Moderate (submaximal) cycle exercise with blood sampling using a venous catheter

Day 4: Moderate (submaximal) cycle exercise with blood sampling using a venous catheter
Receive individualized instructions for exercise training
Get familiar with the equipment
(2-4 hours)
Day 5: Maximal cycle exercise with blood sampling using a venous catheter and measurement of cardiac output
Muscle biopsy (less than a size of a pea)
(3-4 hours)

You will be evaluated according to the above schedule 4 times: during the initial evaluation, at 6 months, at 1 year and at the end of 2 years. Less then half of a cup of blood will be taken during each of the four periods of exercise evaluation. Less than 2 tablespoons of blood will be taken during autonomic function testing.

EVALUATIONS DURING THE RESEARCH:

If you decide to participate in this two year study you are committing to 4 muscle biopsies, approximately 60 hours of testing and having two cups of blood drawn. You will undergo the following tests.

Aerobic Exercise Tests

You will be asked to exercise continuously from 5-40 minutes at several workloads on a stationary bicycle to measure the effects of exercise stress on your heart, lungs and muscles. Measures will be obtained at rest (before exercise) and during exercise, and include breathing through a mouthpiece (similar to the apparatus used in snorkeling), and the continual monitoring of your heart rate and blood pressure. You will exercise at both moderate and high intensity levels, and may stop the exercise at your own will or at the instruction of the qualified physician who will directly supervise the test. You will undergo this test three times on three separate days at the beginning, at 6 months, at 1 year and at the end of two years.

Cardiac Output (the amount of blood pumped by the heart in a minute)

We will measure the amount of blood the heart is pumping at rest and during exercise by analyzing the air you breathe. You will breathe through a mouthpiece connected to a bag full of air and a small concentration of harmless gases, including helium and acetylene for 15-20 seconds. There is no known risk to anyone doing this procedure.

Arm Venous Catheters and/or needle stick for single blood sample (Peripheral)

A thin, soft, plastic tube (catheter), will be inserted into an arm vein during each day of exercise testing to avoid repeated punctures during studies that require several blood samples or injections. Samples of blood will be removed from a vein in your arm and will be used for various analyses. A maximum of 130 ml (about a half of a cup) of blood will be withdrawn during the entire week and this will not affect your health or well-being. You will have the catheter placed for 3 days. 2 days about 50ml will be removed and 10 ml removed on the third day. During the autonomic function testing, an additional 20 ml of blood will be removed. Usually this procedure is done without difficulty, but occasionally, a bruise results. You may experience discomfort or bleeding, or feel dizzy and faint. There is a very small risk of infection and a still smaller risk of a blood clot or breakage of the catheter. The likelihood of any complications is very remote when the procedure is carried out by trained personnel and proper equipment is used.

Muscle Biopsy

This procedure will allow us to obtain a small sample of muscle from your thigh for examination of muscle histology (as examined under a microscope) and biochemistry. One or two small pieces (totaling
about 450 milligrams or approximately the size of a pea) are obtained. This is done by numbing about a 1/4 inch spot on your thigh with an injection of Lidocaine, a local anesthetic similar to Novocain used in the dentist's office. A nick in the numbed skin will be made with a scalpel; a special sharp pencil-shaped tube will be inserted a short distance into the thigh and the small piece of muscle is removed. No stitches are required to heal the opening. A very small scar may result. Rarely, slight bleeding occurs and even more rarely, requires a larger incision to find and tie off the bleeding vessel. After the Lidocaine effect wears off, the thigh will be sore for 1-2 days and usually does not interfere with normal activities. Tylenol is given for the discomfort. Strenuous exercise should be avoided for 1-2 days. Infection is a very rare complication but can be effectively treated should it occur by your PCP (Primary Care Physician) or Dr. Hafer with antibiotics.

Exercise training

This consists of participation in a two year program consisting of periods of regular exercise training and periods during which you will not perform regular exercise training. During the exercise phases of the study, you will be asked to ride a stationary bicycle 3 to 5 times a week up to a maximum of 40 minutes per training session. The level of exercise you will be asked to perform will be based on 70-90% of your maximal heart rate. You will be given a Polar Heart Rate Monitor to take home and use during training sessions. You will be instructed as to how to use this monitor which will record your heart rate throughout your exercise sessions. There is little or no risk to healthy individuals during exercise at submaximal target pulse rates. In patients with skeletal muscle disease there is the possibility of muscle pain and cramping. You should reduce your exercise level if you experience muscle pain or exceed your target heart rate. If muscle pain persists or muscle cramping occurs or if you should experience chest pain, dizziness, or irregular heartbeats you should stop exercising at once and promptly notify the investigators.

During the phase of the study where you are not exercising you will be asked to resume the level of activity that you did before participating in this research project. In order to help us determine that level of activity, we will ask you to maintain an activity diary and to wear a monitor for 2-6 weeks every 6 months that measures physical activity levels. The monitor is similar to a pager and is worn at the waist. Data will be sent to our laboratory and downloaded.

SF-36 Health Survey

At the time of your initial visit and during follow up visits, you will be asked to complete a questionnaire that will provide insight into your assessment of your level of health and well-being.

Autonomic Function Testing

(1) Height, weight, baseline sitting blood pressure and heart rate
(2) Peripheral IV placement in laying down position
(3) Apply EKG (Electrocardiogram) leads and blood pressure cuffs to arm and finger
(4) Lay flat for at least 10 minutes, then draw 1 tube of blood
(5) Breathe at rate of 12 breaths per minute for 3 minutes, and then 6 breaths per minute for 1 minute while measuring heart rate and blood pressure responses
(6) Blow into a mouthpiece at 40 mmHg for 20 seconds while measuring heart rate and blood pressure
(7) After resting for 10 minutes, proceed with 10 minute stand test: You will be asked to lay flat and quietly on an exam table for an additional 10 minutes, and then you will be asked to stand
up straight for 10 minutes. During this time, your heart rate and blood pressure will be measured and you will be asked how you feel. 1 tube of blood will be drawn from the IV 5 minutes after you stand up.

(8) Peripheral IV will be removed

INVESTIGATIONAL PROCEDURES:

While it is well known how regular exercise training and habitual inactivity affect skeletal muscle and the heart in healthy persons, the effect of these different activity patterns in patients with muscle mitochondrial disorders is poorly understood. In particular, the effects of regular physical activity or inactivity upon muscle mitochondrial function in patients who have mutations in mitochondrial DNA is not known. The tests that will be performed before and after exercise training or stopping regular exercise training will enable us to determine how your heart, muscles, and muscle mitochondria respond and will provide a basis on which to advise patients in the future about the benefits or risks of regular exercise or habitual inactivity.

RISKS AND DISCOMFORTS:

Aerobic Exercise Tests:
Exercise rarely causes any problems in normal subjects but the test may in patients with known or hidden heart disease cause chest pain, dizziness, or bouts of irregular heart rhythm. There is a very slight risk of a heart attack occurring during or after such exercise but this risk is no different than if you were performing such exercise on your own at home. Your pulse, blood pressure, and electrocardiogram (EKG) will be recorded during the test. A recent report on risks of maximal dynamic exercise testing indicated no significant complications in a population of more than 300,000 normal subjects. The risk of death in a series of 700,000 tests in patients with heart disease was less than 1/40,000 test and the risk of serious complication 1/10,000 tests.

Muscle Biopsy:
A very small scar may result. Rarely, slight bleeding occurs and even more rarely, requires a larger incision to find and tie off the bleeding vessel. Infection is a very rare complication but can be effectively treated, should it occur, by your PCP or Dr. Haller with antibiotics.

Throughout this experiment, multiple procedures may be performed. Individually each procedure should not cause you much discomfort, however it is possible that you may experience discomfort due to the sum of these procedures. The protocol is designed to reduce the likelihood of this occurring by minimizing the duration of each procedure. Nevertheless, if you experience a degree of discomfort which is greater than your expectations, we will stop the procedure(s) at your request. All tests that are to be performed have safely been used in both healthy individuals and patients with muscle disorders. Throughout the tests, you will be closely monitored by Dr. Haller or Dr. Heinicke and by a highly skilled research nurse.

Autonomic function tests:
Rarely patients who undergo autonomic function testing will experience symptoms of presyncope or syncope. Most of the time, patients tolerate these tests very well. Throughout the tests, you will be closely monitored by Dr. Haller, Dr. Phillips, or Dr. Sharp and by a highly skilled research nurse.
Pregnancy test: A pregnancy test will be performed for any woman who is able to have children and wishes to participate in this research. A pregnancy test may be repeated later. A study doctor will ask for the date when a woman’s last monthly period started.

Avoiding pregnancy: You should ask your study doctor about the effective means to avoid becoming pregnant during this research. If you change your method of avoiding pregnancy during the research, you must notify your study doctor promptly.

Pregnancy during participation in this research: If you become pregnant during this research, you must tell your study doctor immediately. Your participation in the research will stop.

UNFORESEEN RISKS: A previously unknown problem could result from your participation in this research. There could be an interaction between exercise and medications you take (prescribed or over-the-counter). It is not possible to estimate the chances of such problems or how serious the problems could be.

How you can help reduce some of the risks: During your participation in this research, the study doctor and investigators will watch closely to determine whether there are problems that need medical care. It is your responsibility to do the following:

- Ask questions about anything you do not understand.
- Keep appointments.
- Follow the study doctor's instructions.
- Let your study doctor know if your telephone number changes.
- Tell your study doctor before you take any new medication even if it is prescribed by another doctor for a different medical problem.
- Tell your regular doctor about your participation in this research.
- Talk to a family member or friend about your participation in this research.
- Carry information about the research in your purse or wallet.

What to do if you have problems: If you have problems, such as unusual symptoms or pain, at any time during your participation in the research, your study doctor can recommend treatment. Please report the problem to your study doctor promptly. Telephone numbers where any of the investigators may be reached are listed on the first page of this form. One of the investigators will be available to answer your questions about the study at any time.

If you suddenly have a serious problem (such as difficulty breathing) or severe pain, go to the nearest hospital emergency room, or call 911 (or the appropriate emergency telephone number in your area). Tell emergency personnel about your participation in this research. Ask them to telephone your study doctor immediately.

POSSIBLE BENEFITS

Benefit to you: This study may improve symptoms associated with impaired energy metabolism in your muscles and result in overall improved functional capacity. While your medical problem may get better, it also could possibly get worse. We cannot guarantee that you will benefit from participation in this research.

Benefit to other people with disorders of muscle energy metabolism: Knowledge gained from this study is expected to provide guidance with respect to the advisability of regular exercise to other people with mitochondrial myopathies. Additionally, we will learn more about whether autonomic nervous system dysfunction is seen in patients with mitochondrial myopathy.
In these ways, information gained from this research could lead to improved medical care for these patients. However, we will not know whether there are benefits to these other patients until all of the information obtained from this research has been collected and analyzed.

ALTERNATIVES TO PARTICIPATION IN THIS RESEARCH: You do not have to participate in this research to receive care for your mitochondrial myopathy. Please ask your study doctor as many questions as you wish. The doctor’s answers to your questions could help you decide whether to participate in this research. If you decide to participate in research now, and later change your mind, you may stop your participation in the research at any time.

THE STUDY DOCTOR’S DECISION TO STOP YOUR PARTICIPATION: Your study doctor or the sponsor may stop your participation in this research without your permission under any one of the following conditions:
- Your medical problem becomes worse.
- Your study doctor believes that participation in the research is no longer safe for you.
- Your study doctor believes that other treatment may be more helpful.
- The sponsor stops the research for the safety of the participants.
- The sponsor cancels the research.
- You are unable to keep appointments or to follow your study doctor’s instructions.

PROCEDURES AFTER STOPPING PARTICIPATION IN THIS RESEARCH: If you, the study doctor, or the sponsor stops your participation in the research, it is your responsibility to do the following:
- Let your study doctor know immediately that you wish to withdraw from the research.
- Return to the research center for tests that may be needed for your safety.
- Return all study equipment.
- Discuss your future medical care with your study doctor and/or your regular doctor.

PAYMENT TO TAKE PART IN THIS RESEARCH: You will not be paid to undergo exercise training as part of this research. However, certain expenses that you may incur during the study may be paid for, such as gym fee, travel or accommodations.

If you are an employee of UT Southwestern, tax will be deducted from the payment given to you for your participation in the research. UT Southwestern, as a State agency, will not be able to make any payments to you for your participation in this research if the State Comptroller has issued a “hold” on all State payments to you. Such a “hold” could result from your failure to make child support payments or pay student loans, franchise taxes, etc. Should this occur, UT Southwestern will be able to pay you for your participation in this research after you have made the outstanding payments, and the State Comptroller has issued a release of the “hold.”

COSTS TO YOU: There will be no charge for any of the procedures performed during the study. There are no funds available to pay for lost time away from work and other activities, lost wages, or child care expenses. Expenses related to standard medical care for mitochondrial myopathy are your responsibility (or the responsibility of your insurance provider or government program).

COMPENSATION FOR INJURY: Compensation for an injury resulting from your participation in this research is not available from the University of Texas Southwestern Medical Center at Dallas or the Institute for Exercise and Environmental Medicine of Presbyterian Hospital, Dallas. You retain your legal rights during your participation in this research.

Page 7 of 9
DO NOT DISCLOSE

Study ID: STU 092010-077 Date Approved: 7/1/2014 Expiration Date: 6/10/2015
VOLUNTARY PARTICIPATION IN RESEARCH: You have the right to agree or refuse to participate in this research. If you decide to participate and later change your mind, you are free to discontinue participation in the research at any time.

Refusal to participate will involve no penalty or loss of benefits to which you are otherwise entitled. Refusal to participate will not affect your legal rights or the quality of health care that you receive at this center.

NEW INFORMATION: Any new information which becomes available during your participation in the research and may affect your health, safety, or willingness to continue in the research will be given to you.

"RECORDS OF YOUR PARTICIPATION IN THIS RESEARCH: You have the right to privacy. Any information about you that is collected for this research will remain confidential as required by law. In addition to this consent form, you will be asked to sign an "Authorization for Use and Disclosure of Protected Health Information for Research Purposes."

CERTIFICATE OF CONFIDENTIALITY: To help us further protect your privacy, the investigators have obtained a Confidentiality Certificate from the Department of Health and Human Services (DHHS).

With this Certificate, the investigators cannot be forced (for example by court subpoena) to disclose research information that may identify you in any Federal, State, or local civil, criminal, administrative, legislative, or other proceedings. Disclosure will be necessary, however, upon request of DHHS for audit or program evaluation purposes.

You should understand that a Confidentiality Certificate does not prevent you or a member of your family from voluntarily releasing information about yourself or your involvement in this research. Note however, that if an insurer or employer learns about your participation, and obtains your consent to receive research information, then the investigator may not use the Certificate of Confidentiality to withhold this information. This means that you and your family must also actively protect your own privacy.

If the investigator suspects child, elder or disabled person's abuse, they will report such concerns to proper authorities as required by law.

Finally, you should understand that the investigator is not prevented from taking steps, including reporting to authorities, to prevent serious harm to yourself or others.

YOUR QUESTIONS: Ronald Haller, M.D. is available to answer your questions about this research.

The Chairman of the IRB is available to answer questions about your rights as a participant in research or to answer your questions about an injury or other complication resulting from your participation. You may telephone the Chairman of the IRB during regular office hours at 214-648-3060.
YOU WILL HAVE A COPY OF THIS CONSENT FORM TO KEEP.

Your signature below certifies the following:
• You have read (or been read) the information provided above.
• You have received answers to all of your questions.
• You have freely decided to participate in this research.
• You understand that you are not giving up any of your legal rights.

__
Participant’s Name (printed)

__
Participant’s Signature Date Time AM/PM

__
Name of person obtaining consent (printed)

__
Signature of person obtaining consent Date Time AM/PM

Page 9 of 9
DO NOT DISCLOSE

Study ID: STU 092010-077 Date Approved: 7/1/2014 Expiration Date: 6/10/2015

Cytochem 50(10): 1281-1288.

Young, A., M. Stokes and M. Crowe (1985). The size and strength of the quadriceps muscles of

