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Abstract 

Some Escherichia coli express plasmid encoded toxins called colicins to eliminate 

ecological competitors. Colicins are a diverse group of toxins, usually divided into 

three groups: nucleases, pore-formers and peptidoglycan synthesis inhibitors. In 

addition, each colicinogenic plasmid codes for an immunity protein - a self-protection 

mechanism against its own toxin. Immunity proteins are highly specific to their 

cognate toxins but it is not clearly known how immunity proteins to pore-forming 

colicins achieve protection.  

This work focuses on the immunity protein for the smallest pore-forming colicin, 

colicin N. To investigate in vitro how the Colicin N immunity protein (CNI) neutralises 

the toxin, different overexpression and purification methods were tested. The fusion 

CNI-3C-HALO7-6His yielded the most protein, when expressed in C41 E. coli cells at 

37 °C overnight in Terrific Broth. The fusion protein increases resistance to Colicin N 

dramatically and is therefore folded and localised correctly. Decyl β-D-

maltopyranoside is the most effective detergent to solubilise and stabilise the protein 

fusion. To investigate if CNI inactivates ColN by binding to it via hydrophobic α-helical 

interactions, the protein’s helical regions were defined in silico and swapped with the 

respective parts of the Colicin A immunity protein, CNI’s closest homologue, which 

provides immunity to Colicin A. The N-terminal region of CNI, including the first 

transmembrane helix, is not necessary for specific CNI-Colicin N interaction but the 

other helices are crucial for protein stability and function. CNI can be expressed in an 

active form fused to GFP for microscopy. Epifluorescent and TIRF microscopy 

revealed that CNI is localised to the cell periphery and appears to be very evenly 

distributed in the cell membrane. Colicin N addition does not affect CNI distribution. 

Single molecule tracking in TIRF microscopy showed that the diffusion rate of CNI 

does not change when ColN is added.  

Future work can pursue either of the three approaches used here to study CNI using 

in vitro structural analysis, site-directed mutagenesis of the active site or in vivo 

interaction of CNI with other E. coli inner membrane proteins. 
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What is the most resilient parasite? Bacteria? A virus? An intestinal 

worm? An idea. Resilient... highly contagious. Once an idea has taken 

hold of the brain it's almost impossible to eradicate. An idea that is fully 

formed - fully understood - that sticks; right in there somewhere.  

(Cobb, Inception) 
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Chapter 1. Introduction 

Antimicrobial agents are produced by both eukaryotic and prokaryotic organisms and 

can be broadly divided into two types, the classic enzymatically produced small 

molecule antibiotics and polypeptides produced by ribosomes. Each type differs in 

mode of action as well as ecological purpose (Chao and Levin, 1981; Riley and 

Wertz, 2002a). While small molecules antibiotics usually require micromolar 

concentrations to be effective against a broad range of targets, polypeptide 

antimicrobials are mostly targeted at members of the same species and are lethal at 

nanomolar concentrations. Antimicrobial peptides are a common weapon used by 

microbes to kill their ecological competitors, crucially influencing microbial population 

dynamics (Riley, 1993; Gordon et al., 1998; Riley, 1998; Czaran et al., 2002; Kerr et 

al., 2002; Riley and Wertz, 2002a; Riley et al., 2012). They can maintain biodiversity 

within a population by preventing one species or strain from taking over, giving a 

strain the opportunity to invade new environments or preventing the invasion of alien 

strains. However, the production of antimicrobial compounds only provides a 

competitive advantage if the antibiotic is highly efficient and able to provide an 

advantage great enough to justify its production cost. Therefore, polypeptide 

antimicrobials tend to be more prominent in nutrient rich environments and a weapon 

of choice when invading an environment (Brown et al., 2009). This advantage is 

easier to achieve in an environment where resources are not distributed randomly 

and where toxin release directly results in nutritional gain. In addition, an equally 

efficient self-defence mechanism must ensure the bacteriocin producer’s own safety 

(Alonso et al., 2000).  

Antimicrobial peptides produced by bacteria against bacteria are called bacteriocins 

and can be divided into two groups based on their producers – Gram positive and 

Gram negative bacteria (Gordon and O'Brien, 2006; Heng et al., 2007). Bacteriocins 

from Gram positive bacteria include the heat-stable lantibiotics and have become a 

source of interest because they can be efficient against multidrug-resistant 

pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) and 

vancomycin-resistant enterococcus (VRE) (Breukink and de Kruijff, 1999; Cotter et 

al., 2005; Guinane et al., 2005; Cotter et al., 2006; Diep et al., 2006; Nes et al., 2007; 

Cotter et al., 2013; Mathur et al., 2015).  
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Gram negative bacteriocin producers are mainly found amongst the 

Enterobacteriaceae, which produce antibacterial proteins (30–80 kDa) as well as 

smaller peptides (1 - 10 kDa), named microcins. Both larger bacteriocins and 

microcins are produced in response to stress, but while larger bacteriocin production 

is associated with DNA damage, the microcin production can be triggered by nutrient 

depletion (Rebuffat, 2011). The most prominently studied bacteriocins from Gram 

negative bacteria are Colicins, produced by 30–50% of the strains isolated from 

human hosts (Pugsley, 1984c; Pugsley, 1984b; James et al., 1987; Pugsley, 1987b; 

Benedetti et al., 1991b; Cascales et al., 2007; Barneoud-Arnoulet et al., 2010; 

Lloubes et al., 2012; Kim et al., 2014). Other well-studied bacteriocins from Gram 

negative bacteria include the pyocins produced in Pseudomonas aeruginosa (Michel-

Briand and Baysse, 2002). 

1.1 Potential human uses for colicins  

Colicins are an example of highly effective bacteriocins produced by Escherichia coli 

(E. coli) to kill related strains. Apart from being a valuable weapon in microbial 

warfare, colicins can be useful antimicrobial agents for human purposes. Bacteriocins 

have been and continue to be an excellent source of probiotics and antibiotics 

(Breukink and de Kruijff, 1999; Joerger, 2003; Audisio et al., 2005; Corr et al., 2007).  

Schulz et al. (2015) reported that Colicin M alone and in combination with Colicin E7 

was highly effective in reducing pathogenic E. coli load, such as enterohemorrhagic 

Escherichia coli (EHEC), on animal feedstock and human food and, therefore, could 

be an alternative to heat inactivation. EHEC is responsible for thousands of bacterial 

enteric infections worldwide, which can lead to hospitalisation and death. These 

colicins can be produced cost effectively in edible plants but commercial production 

still requires regulatory approval. In contrast to small molecule antibiotics colicins 

have a narrow target range, can be deactivated through heat and digestion and are 

bactericidal in much lower doses, suggesting that resistance would develop slower. 

Their use would not be harmful to the beneficial gut flora. As well as making 

feedstock and food more safe, colicinogenic non-pathogenic E. coli can also be 

applied onto medical equipment, like catheters, as a kind of pro-biotic. Trautner et al. 

(2005) showed that a colicinogenic E. coli K-12 strain prevents the population of 

urinary catheters by sensitive uropathogenic E. coli.  
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Colicins could also have medical applications. Brown et al. (2012) suggests the use 

of Colicin-like pyocins on Pseudomonas aeruginosa biofilms based on preliminary 

data in the Galleria mellonella caterpillar model. Biofilms are difficult to treat with 

conventional antibiotics but play a role in common diseases like chronic 

rhinosinusitis, bacterial endocarditis, Pseudomonas aeruginosa lung infection in 

patients with cystic fibrosis, recurrent urinary tract infections and Crohn’s disease. 

Brown et al. (2015) investigated the use of Colicins E1, E3, E9, and D as an 

alternative to conventional antibiotics to treat adherent-invasive Escherichia coli 

(AIEC), which are associated with bacterial dysbiosis in Crohn’s disease patients.  

Considering the many beneficial roles for bacteriocins in agriculture and medicine 

further efforts are being made to discover new bacteriocins using bioinformatics 

(Kemperman et al., 2003; Dirix et al., 2004; de Jong et al., 2006) and classical 

methods (Martirani et al., 2002; Riley et al., 2012; Balciunas et al., 2013; Mathur et 

al., 2015; Woraprayote et al., 2015).  

1.2 Colicin evolution  

In natural isolates, colicinogenic E. coli strains make up 10% - 50% of the population, 

while strains immune to colicins are more abundant, ranging from 50% - 98% 

(Cascales et al., 2007). It is more costly to produce both the toxin and an immunity 

mechanism, rather than just the immunity mechanism (Riley, 1993). Populations of 

sensitive cells are usually small when toxin producers are present and gaining 

immunity/resistance but losing the toxin production mechanism seems most 

advantageous for a natural population (Riley, 1993; Gordon et al., 1998), but without 

the toxin the plasmid has less of a selective advantage.  

Colicin evolution has mainly followed two paths, creating either pore-forming or 

enzymatic colicins (Cascales et al., 2007). Enzymatic colicins are composed of 

nucleases, Colicin D and Colicins E2-E9 (Wallis et al., 1992; Giffard et al., 1997; 

Kuhlmann et al., 2000; Kleanthous, 2010; Papadakos et al., 2011; Housden and 

Kleanthous, 2012), and Colicin M, a phosphodiesterase which inhibits murein 

synthesis by degrading peptidoglycan lipid intermediate II (Braun, 1974; Braun et al., 

1974; Braun et al., 2002; Barneoud-Arnoulet et al., 2010; Barreteau et al., 2010; 

Barreteau et al., 2012). To date, the known pore-forming colicins are ColA, ColB, 
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ColE1, ColIa, ColIb, ColK, ColN, ColU, ColV, Col5 and Col10 (Cascales et al., 2007; 

Kim et al., 2014).  

Colicin relationships and evolution have been analysed by comparing DNA and 

protein sequences, identifying DNA sequence polymorphisms in natural isolates as 

well as by experimental evolution and mathematical modelling (Cascales et al., 

2007). It is proposed that to diversify, pore-forming colicins have mainly relied on 

recombination and domain shuffling, while nuclease colicins have mainly evolved 

through single base mutations. Within their group, colicins generally share a very 

high sequence similarity, e.g. 50% to 97% DNA sequence similarity in nuclease 

colicins (Cascales et al., 2007), with the greatest differences lying in the immunity 

region. This suggests a two-step evolution model. First mutations in the immunity 

protein occur, broadening immunity and providing a survival advantage. Then 

mutations in the colicin gene change the killing mechanism, producing a new kind of 

colicin. Further mutations create a group of closely related colicins and immunity 

proteins (Riley, 1993). The creation of new pore-forming colicins by recombination 

depends on their existing abundance because it requires a certain variety and 

concentration of templates to occur together in the same cell. Enzymatic colicins 

appear to evolve by point mutation whereas homologous recombination appears to 

be more common in pore-formers (Riley and Wertz, 2002b). 

1.3 Colicin operons 

Colicins are mostly coded for on plasmids allowing for gene exchange and genome 

flexibility within a population. In close proximity to the gene for the each colicin are 

usually the genes for the cognate immunity protein and the lysis gene, which is 

responsible for the release of colicins from their producer cells. For nuclease colicins, 

all three genes are arranged together in an operon regulated by the same promoter 

(Cascales et al., 2007). Colicin M and its immunity protein are coded for on the same 

plasmid but in reverse orientation (Olschlager and Braun, 1987a). To date no lysis 

protein has been identified for ColM (Thumm et al., 1988). For pore-forming colicins, 

the colicin and the lysis gene are arranged on one strand in the same direction, while 

the immunity gene runs on the other strand in the opposite direction and is regulated 

by a separate promoter. 
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Figure 1: Relative gene locations for colicins, their immunity proteins and lysis genes 
for (A) Nuclease and (B) Pore-forming colicins. Arrows indicate relative transcription 
start positions and orientations. The immunity proteins to nuclease colicins are 
transcribed immediately behind the colicin. The immunity proteins to pore-forming 
colicins are transcribed from an independent promoter. Diagram adapted from 
Cascales et al., 2007.  

1.4 Colicin binding and translocation 

In order to kill, colicins must reach their target environment. ColM and pore-forming 

colicins translocate through the periplasmic space of target cells until they reach the 

inner membrane. ColM is active in the periplasm just above the cytoplasmic 

membrane (Barreteau et al., 2012), while pore-forming colicins form voltage-gated 

ion channels in the inner membrane to kill cells (Schein et al., 1978; Tokuda and 

Konisky, 1978b; Weiss and Luria, 1978). Nuclease colicins cross the inner 

membrane to exert their activity on RNAs and DNA in the cytosol (Papadakos et al., 

2011). Colicins are dependent on particular receptor proteins in the outer membrane 

and particular translocation systems in the periplasm (Kleanthous, 2010; de 

Zamaroczy and Chauleau, 2011; Kim et al., 2014). Colicin receptors are usually 

porins or porin-like β-barrelled outer membrane proteins which normally regulate ion 

traffic, e.g. OmpF, BtuB, Cir, FepA, Tsx and FhuA. Based on the translocation 

system they use, colicins can be divided into two groups. Group A, dependent on the 

Tol system, comprises ColA, Col E1-9, ColK, ColN and Col10 (uses TolC and TonB), 

and Group B is composed of ColB, ColIa, ColIb, ColM, ColU, ColV and Col5 and is 

dependent on the Ton system (Figure 2).  
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Figure 2 includes the main components of the Tol (consisting of Pal (peptidoglycan 

associated lipoprotein), TolB, TolA, TolQ and TolR) and the Ton (consisting of TonB, 

ExbB and ExbD) systems (Kleanthous, 2010). The key components of the two 

systems are TonB and TolA, which span the periplasm and are coupled to the proton 

motive force of the inner membrane through their inner-membrane interaction 

partners ExbB and ExbD, and TolQ and TolR, respectively. The TolQ–TolR–TolA 

complex is the functional unit of the Tol system, while TolB is the receptor which 

engages this unit for potential ligands. Pal could be considered an off-switch for the 

Tol system. The Ton system passes on energy for proton motive force-driven 

nutrients uptake through outer-membrane transporters such BtuB and FepA 

(Kleanthous, 2010). The Tol-Pal proteins are, partly due to their elongated structure, 

assumed to play an important role in connecting and stabilising the inner and outer 

membrane of Gram negative bacteria, in particular when they are recruited to the 

septum during cell division. 

Together with the outer membrane receptors, such as outer membrane porins or 

LPS, both translocation systems are essential for colicin transport through the 

periplasmic space as cells become resistant to colicins when the required 

translocation proteins are deleted. However, the cell membranes also become more 

sensitive to detergents like SDS and possibly other kinds of stress (Ridley and Lakey, 

2015) and it is suggested that the outer membrane becomes more permeable. 

Through their interaction with the Tol-Pal and the Ton-Exb systems colicins and 

bacteriophages use the energy provided by the proton motive force for translocation 

(Kleanthous, 2010). Colicin N is the smallest known pore-forming colicin (Pugsley, 

1987a; Pugsley, 1988; Wilmsen et al., 1990; Vetter et al., 1998) and is special in the 

way that it uses LPS and only one porin, OmpF, as a receptor (Jakes, 2014; Johnson 

et al., 2014). Like other A-type colicins, ColN uses the Tol system for translocation 

through the periplasm but it uses a different TolA binding site than ColA (Penfold et 

al., 2012; Ridley and Lakey, 2015). Colicin N is the only one so far whose disordered 

translocation domain is bacteriocidal independently from the rest of the protein 

(Johnson et al., 2013).  
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Figure 2: Outline showing the components of the Tol (right: Pal, TolB, TolA, TolQ and 
TolR) and the Ton (left: TonB, ExbB and ExbD) systems taken from Kleanthous 
(2010). Both systems depend on the proton motive force (pmf).  

1.5 Colicin structure 

All colicins share a common general primary structure composed of three domains, 

the translocation domain (T-domain) at the N-terminus, the receptor binding domain 

(R-domain) in the middle and the cytotoxic domain (C-domain) at the C-terminus 

(Figure 3). Each domain varies in size, sequence and structure for each colicin but 

the greatest sequence similarity is often found in the cytotoxic domain within each 

type of colicin (Parker et al., 1992).  

In nuclease proteins, the cytotoxic domain targets DNA and different kinds of RNAs, 

interfering with gene expression and protein synthesis (Osborne et al., 1996; Carr et 

al., 2000; Graille et al., 2004; Papadakos et al., 2011). In ColM, the enzymatic 

domain degrades the peptidoglycan lipid intermediates I and II, thereby inhibiting 

peptidoglycan synthesis (El Ghachi et al., 2006). In pore-forming colicins the 

cytotoxic domain is the pore-forming domain (P-domain), which kills by 

permeabilising the energised inner membrane (Guihard et al., 1993).  

 

Figure 3: General colicin structure composed of the translocation domain at the N-
terminus, the receptor binding domain in the middle and the cytotoxic domain at the 
C-terminus.  
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1.5.1 Pore – forming domains 

Pore-forming colicins are further divided into A-Type, with the type protein ColA 

(Lloubes et al., 1986; Espesset et al., 1994; Nardi et al., 2001b; Padmavathi and 

Steinhoff, 2008; Honigmann et al., 2012; Penfold et al., 2012), and E1-Type, with the 

type protein ColE1 based on the structure of their P-domain (Cramer et al., 1992; 

Zakharov et al., 1998a; Zakharov et al., 1998c; Zakharov and Cramer, 1999; Griko et 

al., 2001; Erukova et al., 2004; Sobko et al., 2004b; Sobko et al., 2005; Sobko et al., 

2006a; Sobko et al., 2006b; Ho and Merrill, 2009; Smajs et al., 2010; Ho et al., 2011; 

Ho and Merrill, 2011; Prieto and Lazaridis, 2011; Ho et al., 2013). 

P-domain structures have been solved for A-Type ColA (Parker et al., 1989) and 

ColN (Vetter et al., 1998) and E1-Type ColIa (Wiener et al., 1997), ColE1 (Elkins et 

al., 1997) and ColB (Hilsenbeck et al., 2004). They are very similar in sequence 

(Figure 5) and structure (Figure 6), leading to the assumption that their mechanism of 

action is also similar. P-domains consist of 10 α-helices, arranged so that two 

hydrophobic helices form a hydrophobic core surrounded by 8 amphipathic helices. 

This arrangement makes the P-domain water soluble until it reaches the inner 

membrane of the target cell, where it inserts and converts to a membrane protein 

(Lakey et al., 1991; Vandergoot et al., 1991; Lakey et al., 1993). Schein et al. (1978) 

showed that purified, aqueous colicin can bind pure lipid membranes and form 

voltage dependent channels without any additional target cell proteins. Interestingly, 

a similar architecture has been observed in apoptosis regulator proteins such as Bcl 

and Bax (Olschlager and Braun, 1987b; Muchmore et al., 1996; Aisenbrey et al., 

2007; Aisenbrey et al., 2008; Nedelkina et al., 2008) (Figure 4). This is intriguing 

since they operate on the membranes of mitochondria which are evolutionary related 

to Gram-negative bacteria.  
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Figure 4: Pore-forming colicins and related structures. (PDB references in 
parenthesis). For the pore-forming colicins Ia (1CII) 7 (Wiener et al., 1997), N (1A87) 
(Vetter et al., 1998), B (1RH1) (Hilsenbeck et al., 2004) & S4 (3FEW) (Arnold et al., 
2009), the helical pore-forming domain is shown in red, the receptor binding domain 
in blue and the translocation domain (which may be incomplete due to disorder e.g. 
colicin N) in yellow. The colicins E3 (3EIP) (Soelaiman et al., 2001) and M (3DA4) 
(Zeth et al., 2008) which target RNA and peptidoglycan respectively are shown with 
the same colour scheme revealing the dissimilar toxic domains. The first pore-forming 
domain to be defined, Colicin A (1COL) (Parker et al., 1989), is shown enlarged in 
two orientations with the hydrophobic helical hairpin in green. Finally, the structurally 
homologous Bcl-XL (1LXL) (Muchmore et al., 1996) apoptosis regulator protein is 
shown with the same colour scheme as colicin A. 
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S4              SMNRDRIQSDVLNKAAEVISDIGNKVGDYLGDAYKSLAREIADDVKNFQGKTIRSYDDAM 60 

ColA            SMNRDRIQSDVLNKTAEVISDIGNKVGDYLGDAYKSLAREIADDVKNFQGKTIRSYDDAM 60 

ColU            -----NDEKAVLTKASEIIISVGDKAGEYLGDKYKVLSREIADNIKNFQGKTIRSYDEAM 55 

ColY            -----NDEKAVLTKASEIIISVGDKVGEYLGDKYKALSREIAGNIKNFQGKTIRSYDEAI 55 

ColB            KKEQYNDEKAVLTKTSEVIINVGDKAGEYLGDKYRTLSREIAENIRNFQGKTIRSYDEAM 60 

ColN            ----------ALLKASELVSGMGDKLGEYLGVKYKNLAKEVANDIKNFHGRNIRSYNEAM 50 

                           * *  *     * * * ***  *  *  * *    ** *  ****  *  

 

S4              ASLNKVLSNPGFKFNRADSDALANVWRSIDAQDMANKLGNISKAFKFADVVMKVEKVREK 120 

ColA            ASLNKVLSNPGFKFNRADSDALANVWRSIDAQDMANKLGNISKAFKFADVVMKVEKVREK 120 

ColU            ASVNKLMANPDLKINAADRDAIVNAWKAFDAEDMGNKFAALGKTFKAADYVMKANNVREK 115 

ColY            ASVNKLMANPDLKINAADRDVIVNAWKAFDAEDMGNKFAALGKTFKAADYVMKANNVREK 115 

ColB            SSINKLIENPNLKINATDKEAIVNAWKAFDAKDMGNKFASLGKTFKAADYAIKANNIREK 120 

ColN            ASLNKVLANPKMKVNKSDKDAIVNAWKQVNAKDMANKIGNLGKAFKVADLAIKVEKIREK 110 

                 * **   **  * *  *     * *    * ** **     * ** **   *    *** 

 

S4              SIEGYETGNWGPLMLEVESWVLSGIASAVALGVFSATLGAYALSLGAPAIAVGIVGILLA 180 

ColA            SIEGYETGNWGPLMLEVESWVLSGIASAVALGVFSATLGAYALSLGAPAIAVGIVGILLA 180 

ColU            SIEGYQTGNWGPLMLEIESWVLSGIASAVALSFFSAIFGTFAMLGVFSTSLAGILAVILA 175 

ColY            SIEGYQTGNWGPLMREVESWVVSGIASAVALAIFSATLGAYLLAVGASAAVVGIIGIIIA 175 

ColB            SIEGYQTGNWGPLMLEIESWVLSGIASTVALGLFSTIAGSALLAVGTPPVVVGIMGVFVA 180 

ColN            SIEGYNTGNWGPLLLEVESWIIGGVVAGVAISLFGAVL-SFLPISGLAVTALGVIGIMTI 169 

                ***** *******  * ***   *    **   *                  *        

 

S4              AVVGALLDDKFADALNKEI 199 

ColA            AVVGALIDDKFADALNNEI 199 

ColU            GLVGALIDDNFVDKLNNEI 194 

ColY            SFIGALIDDKFIDRLNNEI 194 

ColB            AVVGVLIDDKFADVLNNEI 199 

ColN            SYLSSFIDANRVSNINNII 188 

                       *       *  * 

Figure 5: Amino acid alignment of A-Type Colicin P-domains. Similarities are 
indicated with a star. The hydrophobic hair-pin, including helices 8 and 9 and the 
connecting turn (underlined) are highlighted yellow. 

 

 

Figure 6: P-domains of colicins A, N, B, Ia and E1 taken from Cascales et al. (2007). 
The P-domains are structurally very similar, showing hydrophobic helices (red) 
surrounded by 8 amphipathic helices (blue).  

How the P-domain inserts into the inner membrane and forms a voltage dependent 

channel is not entirely clear but several models have been proposed. The umbrella 

model suggests that the hydrophobic helices 8 and 9 (modelled on ColA and 

coloured red in Figure 6, highlighted yellow 
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3 in Figure 5) insert into the inner membrane while the remaining helices spread out 

on top of the inner membrane, like spokes of an umbrella (Parker et al., 1989). A 

different model suggests that only helices 1 and 2 move away from the hydrophobic 

core, while the rest of the molecule sinks into the membrane, including helices 8 and 

9 (Lakey et al., 1993; Duche et al., 1994). FRET and quenching experiments with E1 

(Zakharov et al., 1998a; Zakharov et al., 1998b; Zakharov et al., 1998c; Lindeberg et 

al., 2000) have proposed a modification of the umbrella model. Supposedly, the 

molecule rearranges and unfolds before inserting helices 8 and 9 into the inner 

membrane, while the amphipathic helices remain on the membrane surface in a 

spiral-like orientation. The models agree that the structure must be flexible to allow 

insertion of helices 8 and 9 and channel formation (Zakharov and Cramer, 2002) and 

that this is a general model for protein-membrane interactions (Vandergoot et al., 

1991). Colicin A and B seem to interact with the inner membrane via a pH sensitive 

molten-globule state, losing the tertiary structure but maintaining the secondary 

structure (Vandergoot et al., 1991; Evans et al., 1996a). This form of acidic unfolding 

does not occur in colicin E1 (Schendel and Cramer, 1994), and Colicin N (Evans et 

al., 1996a).  

Despite discrepancies between the insertion models, the interactions of the 

hydrophobic hairpin with the lipid tails of the inner membrane remain undisputed and 

are supported by in vivo experiments on E1 (Song et al., 1991) and in vitro 

experiments on ColIa (Kienker et al., 1997). The interhelical turn between helix 8 and 

9 of ColIa is exposed to the cytosol in the channel’s open state and in at least some 

closed states.  

Several studies using domain swapping or deletion have attempted to determine the 

P-domain parts essential for channel formation. Helices 1-3 of ColE1 and ColA can 

be removed without losing activity and some parts of helices 4 and 5 might not be 

crucial (Collarini et al., 1987; Baty et al., 1990; Lindeberg et al., 2000; Nardi et al., 

2001b). However, some truncated P-domains form channels with different properties. 

For ColIa and A, helices 2-5 were determined as unnecessary (Qiu et al., 1996; 

Slatin et al., 2004).  
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1.6 The Colicin Immunity Proteins 

Cells carrying colicinogenic plasmids need an effective and efficient protection 

mechanism against their own toxin. This protection is provided by the highly specific 

immunity proteins which interact with the cytotoxic domain. Similarly to colicins, 

immunity proteins can be separated into three groups: immunity proteins to nuclease, 

peptidoglycan synthesis inhibitor and pore-forming colicins (Figure 7). Immunity 

proteins to pore-forming colicins can be separated into two types based on sequence 

homology and predicted structure. E1-type immunity proteins (E1, 5, K, 10, Ia, Ib) 

have three transmembrane helices, while A-type immunity proteins (A, B, N, U, Y, 

S4) have four. For E1-type colicin immunity proteins, the N-termini are in the cytoplasm 

while the C-termini are in the periplasm. For A-type colicin immunity proteins both termini are 

in the cytoplasm. Figure 7 shows an example of suggested topography in the E. coli inner 

membrane using Colicin 5 and Colicin A immunity proteins as models for E1-type and A-type 

immunity proteins.  

Immunity proteins of nuclease colicins are small proteins of ca. 10 kDa coded directly 

after them on the plasmid (Figure 1) and so are regulated by the same promoter and 

can attach to them as soon as the colicins are produced (Cascales et al., 2007). 

Enzymes are usually inactivated through an inhibitor binding to the active site or 

catalytic site. Nuclease colicins are unusual because, while some are inactivated by 

the immunity protein binding to the substrate binding site, e.g tRNase-specific 

immunity proteins like Im5 and ImD (Graille et al., 2004; Luna-Chavez et al., 2006), 

others, e.g. DNase colicins E2, E7, E9 or rRNase colicins E3, E4, E6 (Kleanthous et 

al., 1999; Kleanthous and Walker, 2001; Cheng et al., 2002), are inactivated by the 

immunity protein binding to an exosite, which lies upstream and adjacent to the 

active site. Exosite inhibitors can inactivate a protein by modifying the active site 

allosterically or through steric or electrostatic hindrance. Kleanthous and Walker 

(2001) suggest that the binding of nucleic acid to the enzyme active site is prevented 

through electrostatic repulsion by a negatively charged immunity protein as well as 

steric hindrance which does not allow a large molecule such as DNA or RNA to bind. 

Some evidence suggests that the immunity proteins attach to the colicins adjacent 

and upstream of the substrate binding site because this part of the colicin leaves the 

ribosome first, so the immunity proteins are able to inactivate the colicins before they 

have even left the ribosome completely. Free immunity proteins in the cytoplasm 

protect the cell against incoming nuclease colicins. Immunity proteins to nuclease 
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colicins protect the colicinogenic cells against cognate colicins with binding affinities 

in the femtomolar range but detach at the cell surface shortly after the colicin binds to 

its high affinity outer membrane receptor (Vankemmelbeke et al., 2009; Farrance et 

al., 2013).  

 

Figure 7: Colicin immunity proteins can are separated into three groups based on the 
function of their cognate colicins. (A) There are immunity proteins to nuclease, 
peptidoglycan synthesis inhibitor and pore-forming colicins. Immunity proteins to 
pore-forming colicins can be separated into two types based on sequence homology 
and predicted structure. E1-type immunity proteins (E1, 5, K, 10, Ia, Ib) have 3 
transmembrane domains, while A-type immunity proteins (A, B, N, U, Y, S4) have 4. 
(B) Topographical models of Colicin 5 (left) and Colicin A (right) immunity proteins as 
examples for likely E1-type and A-type immunity protein insertion into the 

Escherichia coli inner membrane. Loops (L), termini (T) and helices (H) are 
numbered. Diagramm reprinted from Cascales et al., 2007.   



14 
 

Colicin M is not released together with its immunity protein, CMI, but Colicin M 

immunity protein was found anchored to the cytoplasmic membrane in the periplasm, 

which is the site of ColM action (Olschlager and Braun, 1987a). Gerard et al. (2011) 

published an X-ray structure of CMI showing that it is composed of 4 β-strands and 4 

α-helices and also determined important residues involved in CMI stability and 

activity using site directed mutagenesis.  

1.6.1 Immunity proteins to pore forming colicins 

The immunity proteins of pore-forming proteins are located in the inner membrane 

(Goldman et al., 1985; Geli et al., 1988) and allow cells to live at a colicin 

concentration of 104 to 107 times greater than is needed to kill sensitive cells 

(Cascales et al., 2007). They are regulated by their own promoter and, based on 

evidence for colicin A immunity protein (CAI) (Lloubes et al., 1986), are expressed 

constitutively. A low number of immunity proteins to pore-forming colicins seems to 

protect cells against high numbers of exogenous colicins (Song and Cramer, 1991). 

Immunity proteins may also interact with inner membrane components of the 

translocation machinery (Figure 2) (Song and Cramer, 1991; Fridd et al., 2002). For 

CNI, these may be TolA, Q and R (Lloubes et al., 2001). However, in studies where 

T- and R-domains have been swapped between colicins depending on different 

translocation systems in order to send the P-domain through a different translocation 

system, the immunity protein cognate to the P-domain still neutralised killing (Zhang 

and Cramer, 1993). This indicates that the translocation system is not interacting 

specifically with the immunity protein. TolR/Q are homologs of ExbB and ExbD of the 

Ton system and so it can be assumed that the mechanism is similar (Figure 2).  

Based on sequence similarity, immunity proteins to pore forming colicins can be 

divided into A-type (A, B, N and U) and E1-type (E1, 5, K, 10, Ia and Ib), which 

correlates with the two groups of P-domains and their differently sized hydrophobic 

helices. The A–type is predicted to have 4 with both ends in the cytoplasm (Geli et 

al., 1989a) (Pilsl et al., 1998) and the E1-type to have 3 transmembrane domains 

(Song and Cramer, 1991); the N – terminus is located in the cytoplasm and the C-

terminus in the periplasm (Song and Cramer, 1991; Pilsl and Braun, 1995). The 

topology of CNI is unknown largely because the published sequence (Pugsley, 1988) 

has an error which alters the amino acid sequence and truncates the protein (see 
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Chapter 3 for details). The full length sequence predicts 4 transmembrane 

sequences, expected of A-type immunity proteins.  

Domain swapping experiments in Colicins Ia and Ib (Mankovich et al., 1986; 

Benedetti et al., 1991a), as well as A and E1 (Bishop et al., 1985), have shown that 

the immunity proteins interact exclusively with the P-domain and neutralise its lethal 

action through an, as yet, unknown mechanism. Espesset et al. (1994) have shown 

that cytoplasmically expressed P-domain can kill when directed from the cytoplasm to 

the inner membrane but can be inhibited by an immunity protein. Allegedly, lateral 

diffusion is enough to ensure rapid neutralisation of the pore forming domain (Geli 

and Lazdunski, 1992; Zhang and Cramer, 1993).  

Although the P- domains have a great sequence and structural (Figure 5 and Figure 

6, Parker et al. (1992)) similarity, the immunity proteins are specific to their cognate 

colicin. This specificity of immunity proteins to their cognate colicins has been used in 

sequence swapping (Geli and Lazdunski, 1992; Pilsl and Braun, 1995; Lindeberg and 

Cramer, 2001) and mutagenesis studies (Zhang and Cramer, 1993) attempting to 

determine the P-domain parts involved in interacting with the immunity protein. This 

has been difficult because the P-domain’s structural orientation during insertion and 

channel formation has not been shown beyond doubt. Also, specificity is not strictly 

confined to the cognate colicin as there is some evidence of cross-immunity between 

closely related colicins. For example, the Col10 immunity protein provides some 

resistance against ColE1, but the ColE1 immunity protein provides no measurable 

resistance against Col10 (Lindeberg and Cramer, 2001). The immunity regions are 

located in areas of high sequence divergence in P-domains which would support the 

two step evolutionary model (Figure 5). This is supported by a gradual shift in 

immunity specificity from one colicin to the other, if specificity determining residues 

are exchanged one at a time.  

The immunity proteins to ColE1 and ColA have been best studied and can be 

considered case studies for their type of immunity protein. 

1.6.2 E1-type colicin immunity proteins  

Zhang and Cramer (1993) mapped the main areas of interaction between ColE1 and 

Colicin E1 immunity protein to residues V441-W460 and A471-A488, with residues 

Ala474, Ser477, His440, Phe443 and Gly444 of ColE1 being key. Mutants in these 
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showed reduced lethality against sensitive cells but were able to kill immune cells. 

Sobko et al. (2009) identified His440 as the residue responsible for channel 

formation. The five identified residues are located in helices 6 and 7 which are 

believed to be on top of the inner membrane when the channel is in a closed state 

but their conformation may change once the channel is open (Vandergoot et al., 

1991; Evans et al., 1996a; Lakey and Slatin, 2001; Sobko et al., 2009). Colicin E1 

immunity protein is, therefore, likely to interact with ColE1 in an open state (Zhang 

and Cramer, 1993). Furthermore, the authors disprove a previous assumption (Song 

and Cramer, 1991) that charged domains of the immunity protein, i.e. the termini and 

cytosolic and periplasmic loops, are involved in interaction with ColE1. Instead, they 

suggest that the interaction may be mediated by salt bridges, hydrogen bonds or 

specific packing and interactions of non-polar residues between the hydrophobic 

helices of both molecules.  

Lindeberg and Cramer (2001) confirmed residues 419-501 on ColE1 as an important 

region for interaction. However, this study focused on finding specificity determinants 

which make Colicin E1 immunity protein specific to its colicin rather than residues 

crucial for its activity. It suggests that 448, 470, 472 and 474 are the specificity 

determinants. Unsurprisingly, they lie in the same region as the residues suggested 

by Zhang and Cramer (1993), but interestingly, they are different ones. 

1.6.3 A-type colicin immunity proteins 

For A-type colicins, the hydrophobic helical hairpin of the P-domain has been 

identified as the region of interaction with the immunity protein (Espesset et al., 1996; 

Pilsl et al., 1998; Nardi et al., 2001a). For interaction to occur, only this region needs 

to be inserted into the membrane (Espesset et al., 1996; Nardi et al., 2001a) and, in 

contrast to the E-type colicins, the opened state is not required.  

Zhang et al. (2010) give the most recent description of Colicin A immunity protein 

(CAI) structure and interaction with ColA. They show that CAI exists as a dimer in 

vivo, which is formed through disulphide bonds between helix 3 of each molecule. 

CAI has 4 cysteine residues. It is proposed that the other 3 residues form 

intramolecular bonds between either helix 1 and 2 or helix 2 and 3 to stabilise the 

molecule. All bonds are broken when ColA is added, either through external full-

length ColA or co-expression of the P-domain. Furthermore, Zhang et al. (2010) 

confirms that channel activity is not required for interaction, because an inactive P-
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domain, which can insert the hydrophobic helical hairpin into the inner membrane but 

cannot form a channel, also breaks the inter- and intramolecular disulphide bonds. 

This indicates that the immunity protein binds to ColA while the channel is in a closed 

state and might prevent opening.  

Smajs et al. (2006) investigated the CYI interaction site with CYA using domain 

swapping, followed by more precise site-directed mutagenesis of CUI residues into 

CYI residues in combination with a crude spot test assay. Colicin U is inactivated by 

CUI and CYI, but Colicin Y is only inactivated by CYI, not CUI. They obtained 

mutants of CUI that could inactivate both ColU and ColY, constituting gain of function 

mutations. The amino acids responsible for interaction with ColY are S104, S107, 

F110, A112 on helix 3 and A159 on helix 4 of CYI and are located close to the 

cytoplasmic membrane where they could interact with helix 8 and the hydrophobic 

hairpin. Interestingly, at least three mutations, in residues C104S, T107S & I159A are 

needed to confer immunity to CYI, while single mutations cause no change in 

specificity. The fact that the mutant CUI (CS104S, TS107S, IF110F, AA112V, 

IA159A) is able to inactivate both ColY and ColU suggests that conserved residues 

are responsible for binding while variable residues define specificity. This is similar to 

the observations made by for ColE1 (Zhang and Cramer, 1993; Lindeberg and 

Cramer, 2001).  

Subsequently, Smajs et al. (2008) mapped the ColY residues which interact with CYI 

by using ColY/ColU hybrids, ColY with point mutations and a crude spot test assay. 

ColY residues I578, T582 and Y586 located in helix 8 and V590 located in the 

hydrophobic hairpin were important for the interaction. This was validated by 

mutating the corresponding residues of ColB to the residues of ColY and so 

establishing immunity to this ColB mutant in a strain expressing CYI.  

Using the CYI mutants Smajs et al. (2006) in combination with ColY mutated in the 

above residues, Smajs et al. (2008) were able to identify the possible interaction 

pairs between ColY and CYI as I578 – S107, T582 – S107, T582 – S104 and Y586 – 

S104, which means that these residues are located on helix 8 and the hydrophobic 

hairpin of ColY interacts with residues on helix 3 and 4 of CYI. These pairings and a 

simulation model based on lowest energy structures and conformations led to the 

conclusion that helix-helix interactions play a crucial role in the inactivation of ColY by 

CYI. Due to the high level of amino acid and structure conservation in these residues 
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across A-type colicins, it is proposed that the general interaction mechanism between 

the colicin and its cognate immunity protein is also conserved.  

The studies of CAI and Colicin E1 immunity protein together with the investigation of 

channel formation (Sobko et al., 2009; Sobko et al., 2010) have led to the proposal of 

two different models of immunity protein action (Figure 8). 

E1-type immunity proteins are suggested to interact with colicin molecules when the 

channel is in an open state conformation because the assumed structural 

arrangement of both proteins in the membrane does not support interaction when the 

channel is in a closed state. A-type immunity proteins interact with their colicins while 

the channel is in a closed state. Both models of interaction are heavily based on the 

assumed structure of colicin molecules in the membrane and may only be validated 

when experiments showing the colicin structure beyond reasonable doubt have been 

conducted.  

All successful studies of immunity proteins to pore-forming colicins have so far been 

in vivo. In vitro data is very sparse due to the hydrophobicity of immunity proteins and 

the fact that they are integral membrane proteins. Even where overexpression and 

purification have been successful (Mankovich et al., 1986; Geli et al., 1989b; Shirabe 

et al., 1993; Taylor et al., 2000), a demonstration of activity or even interaction with 

purified colicins has been unsuccessful (Geli et al., 1989b).  
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Figure 8: Models representing transmembrane helices of E1 - and A - type colicins 
and their immunity proteins based on Zhang and Cramer (1993); Bohme et al. (2009); 
Sobko et al. (2009); Zhang et al. (2010); Honigmann et al. (2012). Cytosolic and 
periplasmic domains have been omitted for the colicins. (A) Helix 7 (red) of E1 - type 
colicins probably interacts with helix 3 (green) of the E1 – type immunity protein, 
when the channel is in an open state. (B) Helices 8 and 9 of A-type colicins and in 
some cases also the connecting turn between these two helices interact with A - type 
immunity proteins, when the channel is in a closed state. The specific site of 
interaction on the immunity protein is unknown.  
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1.7 Project Aims:  

To the best of my knowledge, the only attempt to characterise the immunity protein to 

Colicin N is mentioned by Pugsley (1988) but it has since remained unstudied. The 

aim of this project was to characterise the Colicin N immunity protein (CNI), in vivo 

and in vitro with a broad range of techniques in case one way would prove more 

successful than another. Although it is known that immunity proteins neutralise 

colicins by interacting with them, it is unclear how the colicins are inactivated with 

such remarkable speed and efficiency considering that the number of immunity 

protein molecules per cell seems to be low (Cascales et al., 2007).  

This work aimed to develop and optimise an overexpression and purification 

procedure for CNI in preparation for biophysical and structural studies, determine 

CNI location in the inner membrane and whether Colicin N attack changes it and find 

the protein- protein interaction site with ColN on CNI using chimeric proteins with 

CNI’s closest homologue Colicin A immunity protein (CAI).  

Large parts of this introduction, including Figure 5 and Figure 8, are part of Stroukova 

and Lakey, (2015, in press; see appendix). 
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Chapter 2. Materials and Methods 

All chemicals were purchased from Melford Laboratories Ltd unless otherwise stated.  

2.1 Molecular Biology 

2.1.1 Gene synthesis and sequencing 

The full CNI gene sequence was obtained by re-sequencing the plasmid pCHAP4 

(Pugsley, 1988) at GATC Biotech Ltd., The London BioScience Innovation Centre, 2 

Royal College Street, London, UK. The new sequence was used to synthesise the 

constructs Para-6His-CNI, Para-CNI-6His and Para-CNI-GFP-6His construct in a 

pBAD322 vector at GeneArt® (Life technologies Ltd., 3 Fountain Drive, Inchinnan 

Business Park, Paisley PA4 9RF, UK). Para is an arabinose inducible promoter 

(Cronan, 2006). 

2.1.2 Vectors 

Table 1 summarises all vectors used in this work and their relevant genotypes. 

Vectors based on pBAD322 and pET3a confer resistance to 100 µg/ml ampicillin. 

The pWALDO vector is based on pET28 (+) and confers resistance to 50 µg/ml 

kanamycin (Drew et al., 2006). The pOPIN CD vectors confer resistance to 50 µg/ml 

spectinomycin. Enhanced GFP is abbreviated eGFP (Patterson et al., 1997) and 

superfolder GFP is abbreviated sfGFP (Pedelacq et al., 2006). Gene expression from 

pBAD322 can be regulated with arabinose and glucose (Guzman et al., 1995; 

Cronan, 2006). The pBAD322 copy number is temperature sensitive (Cronan, 2006). 

All cultures using this plasmid were grown at 37 °C. Expression from plasmids 

containing the T7 promoter was induced with 1 mM IPTG. PCNI is the natural 

promoter from the natural pCHAP4 vector.  

Arabinose and IPTG can both be used to regulate the expression of genes from an 

operon. IPTG can be used to activate the lac operon. When no IPTG is present the 

lac operon repressor lacI binds to the operator and prevents the binding of the RNA 

polymerase to the operator region. The gene is not transcribed and the protein of 

interest is not expressed. When IPTG is added it binds allosterically to the repressor 

lacI and it can no longer bind to the operator and block transcription, so the gene is 

translated and the protein is expressed. The arabinose operon is regulated in a 

similar way. In the absence of arabinose, a dimer of the regulator protein AraC binds 
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DNA in a loop so that RNA polymerase cannot bind to the DNA. When arabinose is 

present, it binds the repressor AraC and prevents its interaction with DNA so RNA 

polymerase can bind and transcribe the protein of interest. Both operons also need 

high cAMP levels for protein expression. When cAMP levels are reduced, for 

example, through the addition of high levels of glucose, gene expression is also 

repressed. A feature of the lac operon is the “leaky” promoter, meaning that a low 

level of transcription still takes place even without the inducers IPTG or lactose. This 

can be problematic if the protein to be expressed is already toxic in low levels or its 

expression needs to be regulated very tightly for a different reason, e.g. even a small 

amount of protein has a big effect on an in vivo phenotype as is the case for the 

colicin immunity proteins. In these cases, using the arabinose regulated operon is 

advantageous because it can be much more tightly regulated by using arabinose as 

an inducer or by using glucose as a catabolite inhibitor.  

Table 1: Plasmids used in this thesis.  

Vector name Relevant 
genotype 

Source 

pBAD322 bla rop araC Para Cronan (2006) 

pBAD322-CNI-sfGFP bla Para Lakey group 

pBAD322-CNI-FLAG-TCS-sfGFP 
bla Para, thrombin 

cleavage site 
This work 

pBAD-Pcni-CNI-GFP  This work 

pET3a-ColN bla T7 Lakey group 

pISA-ColA bla T7 Gokce and Lakey (2003) 

pCHAP4 natural plasmid Pugsley (1988) 

pET3a-TolA-GFP  Lakey group 

pBAD-WALP23-GFP  Strahl (Newcastle Uni), Nyholm et al. (2007) 

pWALDO-CNI-TEV-eGFP kanR T7 Based on pET28(+), Drew et al. (2006) 

pOPINCDE specR T7 

Oxford Protein Production vector suite 
https://www.oppf.rc-
harwell.ac.uk/OPPF/protocols/cloning.jsp 

 

These vectors are available through NCBI 
under the same name. 

 

pOPINCDF specR T7 

pOPINS3C bla T7 

pOPINMSYB bla T7 

pOPINCDJ specR T7 

pOPINE-3C-eGFP bla T7 

pOPINE-3C-HALO bla T7 

pOPINCDM specR T7 

pOPINO bla T7 

pOPINP bla T7 

pOPINDsbA bla T7 

pOPINMalE bla T7 

pMHT238Δ – SuperTEV - 6His kanR MPL, Blommel and Fox (2007) 
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2.1.3 Polymerase chain reactions for site-directed mutagenesis and in 
preparation for InFusion cloning.  

All PCRs were carried out using the Biorad T100 Thermal cycler. KOD HotStart DNA 

Polymerase (Merck MilliPore) was used for all PCRs according to Merck MilliPore 

instructions. Each reaction contained 1x reaction buffer, 3 µl MgSO4, 150 µM dNTPs, 

1.5 µl 10 pM forward primer, 1.5 µl 10 pM reverse primer, 20 ng template, 1 µl KOD 

HotStart Polymerase and nuclease free water up to 50 µl total reaction volume. The 

PCRs consisted of an initial 2 min at 95 °C, followed by 20 cycles of: 30 sec at 95 °C, 

10 sec at 55 °C, 30 sec per kb (for vectors), 10 sec per kb (for inserts) 70 °C 

elongating and a final elongation step of 5 min at 70 °C. Sizes of amplification 

products and primers are detailed in Table 2 and Table 3.  

After site-directed mutagenesis where nucleotides were changed for the cysteine113 

to serine mutation or added for the thrombin cleavage site or FLAG-tag,  constructs 

were treated with 1 µl DpnI (Promega) for 1 h at 37 °C and transformed into TOP 10 

cells using the heat shock protocol (2.2.3, Table 2).  

After construct amplification for InFusion cloning (ClonTech, 2.1.4, Table 3), PCR 

products were sized with gel electrophoresis in 1% agarose gels in TBE (For 1l of 

10x TBE: 108 g Tris, pH = 8, 55 g boric acid, 40 ml of 0.5 M ETDA), cut out from the 

gel and purified with a Qiagen PCR clean up kit.  

For the insertion of the amplified CAI gene into pOPINE-3C-HALO, the vector was 

linearised with restriction enzymes NcoI and PmeI in CutSmart® buffer (NEB) at 

37°C for 20 min. Then it was purified like the amplification products with agarose gel 

electrophoresis and a Qiagen PCR clean up kit.  
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Table 2: Site directed mutagenesis: modifications and primer sequences.  

Modification construct 
Modification 

sequence 
Primers 

Thrombin 
cleavage site 
insertion to give 

pBAD322-CNI-
TCS-sfGFP 
(plasmid size ca. 
6.3 kb) 

pBAD322-CNI-
sfGFP 

Leu-Val-Pro-Arg-Gly-
Ser 

 

CTG GTT CCG CGT 
GGC TCC 

 

Thr_F: 5’- 
GAATACTCCGTCGACACCTGGTTCCGCGTGG
CTCCATGAGCAAAGGTGAAG -3’ 

 

Thr_R: 5’- 
CTTCACCTTTGCTCATGGAGCCACGCGGAAC
CAGGTGTCGACGGAGTATTC -3’ 

Flag-tag insertion 
to give pBAD322-
CNI-FLAG-TCS-
sfGFP (plasmid 
size ca. 6.3 kb) 

pBAD322-CNI-
TCS-sfGFP 

 

Asp-Tyr-Lys-Asp-
Asp-Asp-Asp-Lys 

 

gat tac aaa gat gat 
gat gat aaa 

 

FlagF: 5’- 
ggaatactccgtcgacacgattacaaagatgatgatgataaaC

TGGTTCCGCGTGGC -3’  

(upper case letters: beginning of thrombin 
cleavage site) 

 

FlagR: 5’ - 
GCCACGCGGAACCAGtttatcatcatcatctttgtaatcg

tgtcgacggagtattcc – 3’  

(upper case letters: beginning of thrombin 
cleavage site) 

C113S 
mutagenesis 

(plasmid size ca. 
6.6 kb) 

pWALDO-CNI-
TEV-eGFP 

Cys113 to Ser 

tgt to tca 

 

C113S_F: 5’- ccatgatatactcattcttgctaactgac – 3’ 

C113S_R: 5’- gtcagttagcaagaatgagtatatcatgg – 3’ 
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Table 3: Amplified inserts for InFusion cloning: insert sizes and primer sequences.  

Amplified construct source size Primers 

Helix 1 CAI 

 

Helix 2 CAI 

 

Helix 3 CAI 

 

Helix 4 CAI 

CAI from pISAColA  

H1: 162 bp 

 

H2: 114 bp 

 

H3: 150 bp 

 

H4: 129 bp 

 

Halo_H1_fwd: 5’ – caaaggagatataccATGATGAATGAACAC -3’ 

(lower case is part of vector back bones) 

H1_rev: 5’ – TGCGATGATTTTTTCAAGTAAAGCGTCTGG – 3’ 

H2_fwd: 5’–TTTCATTCATTAAACAACCCATTAATGACA-3’ 

H2_rev: 5’ – TTTTAACTCTAATTCTTTAAAGGTTAGGAT – 3’ 

H3_fwd: 5’ –ATATTCACACACAAAATCAGAAAATTAATC -3’ 

H3_rev: 5’ – TGTTTTTGATGACAATGTTAACTCAAAATT – 3’ 

H4_fwd: 5’ –GTATTAATGTCAAAAAATGACGCAACACTA-3’ 

H4_rev: 5’ – TCCTCCCCTGGTAAATAATTTAAATGCAGT –3’  

(upper case is cai gene sequence) 

CNI-HALO7-6His vector linearisation for 
insertion of 

Helix 1 CAI 

 

Helix 2 CAI 

 

Helix 3 CAI 

 

Helix 4 CAI 

CNI-HALO7-6His 6.4 kb 

H1vFwd: 5’ – GAAAAAATCATCGCATACCTATCC – 3’ 

Halo_H1vRev: 5’- ggtatatctcctttgattg – 3’ (lower case is part of vector back bones) 

H2vFwd: 5’ – GAATTAGAGTTAAAACCAAAGTCG – 3’ 

H2vRev: 5’- GTTTAATGAATGAAATCCTGGTAG – 3’  

H3vFwd: 5’ – TTGTCATCAAAAACATTTGTATTA – 3’ 

H3vRev: 5’- TTTGTGTGTGAATATGAATAAGCT – 3’  

H4vFwd: 5’ –TTTACCAGGGGAGGAATACTCCGT – 3’ 

H4vRev: 5’- TTTTGACATTAATACAAATGTTTT – 3’ (upper case is cni gene sequence) 

Natural promoter of CNI (Pcni) pCHAP4 230 bp 

Insert amplification:  

CNIproFwd: 5’ – CTGATTCGTTACCAAGGATCCTTTGATCTT – 3’ 

CNIproRev_corrected:  5’ – GTCTTTTATATCCATGTTGCTTTCTTTGGATGG – 3’ 

 

Vector linearisation:  

pBAD322_rev: 5’ – TTGGTAACGAATCAGACAATTGACG - 3’  

pBAD322_fwd: 5’ – ATGGATATAAAAGACAGAAATAAGATATCA – 3‘ 

CAI gene for cloning into pOPINE-3C-HALO-
6His 

pISAColA 
537 bp, 
20.5 kDa 

Halo_H1_fwd: 5’ – caaaggagatataccATGATGAATGAACAC -3’ 

(lower case is part of vector back bones) 

CAIrev:  5’-cagaacttccagtttCTGCCTTTTTTTTAATAATTTAAATGC-3’ 

(lower case is start of 3C protease cleavage site)  
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2.1.4 In-Fusion® HD cloning  

In-Fusion® HD cloning is a commercial cloning technology (Clontech® Laboratories, 

Inc.) which allows seamless cloning without the introduction of additional nucleotides 

into plasmids and was particularly useful here in replacing the helices of CNI with 

homologous helices from the Colicin A immunity protein (CAI). The basic principle 

involves the amplification of the insert with overhangs that match the destination site 

in the host plasmid and a linearisation of the host vector by restriction enzymes or 

PCR amplification. Amplified plasmid and linearised vector are mixed with the kit 

reagent and incubated for 15 min at 50 °C before 5 µl are used to transform 

competent cells using the heat shock method (2.2.3).  

 

Figure 9: In-Fusion® HD cloning procedure. The amplified insert with overhangs that 
match the destination site in the host plasmid and a linearised host vector are mixed 
with the kit reagent and incubated for 15 min at 50 °C and transformed into 
competent cells. The InFusion mix is supplied by Clontech® Laboratories, Inc. 



28 
 

2.2 Microbiology 

2.2.1 Bacterial strains 

The following E. coli strains were used for plasmid amplification, protein 

overexpression and fluorescent microscopy. 

TOP 10 One Shot 

TOP 10 (Invitrogen) cells were used for amplification of all plasmids used. The 

genotype is F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 araD139 

Δ(ara, leu)7697 galU galK rpsL (StrR) endA1 nupG. 

 

BL21-AITM One Shot   

BL21-AITM (Invitrogen) have the genotype F- ompT hsdSB (rB
-mB

-) gal dcm 

araB::T7RNAP-tetA. They were used for overexpression of ColN, ColA, TEV 

protease, N-terminally and C-terminally polyhistidine-tagged CNI (6His-CNI and CNI-

6His), CNI-TCS-sfGFP-6His. BL21-AI are BL21 cells which do not utilise arabinose 

as a nutrient and therefore gene expression can be induced using arabinose.  

 

Lemo21, C41, C43 and Rosetta™2(DE3) strains 

Lemo21, C41, C43 and Rosetta™2(DE3) E. coli strains were used in a protein 

production screen to determine the strain yielding the most CNI.  

Lemo21 cells (New England Biolabs) are BL21 (DE3) cells containing the Lemo 

System™, which is maintained by chloramphenicol selection. The genotype is fhuA2 

[lon] ompT gal (λ DE3) [dcm] ∆hsdS/ pLemo(CamR) 

 λ DE3 = λ sBamHIo ∆EcoRI-B int::(lacI::PlacUV5::T7 gene1) i21 ∆nin5 

pLemo = pACYC184-PrhaBAD-lysY 

The E. coli strain C41 (Cambridge Bioscience Limited) was originally characterised 

by Miroux and Walker (1996) as particularly suitable to produce toxic proteins 

(Dumon-Seignovert et al., 2004). It is derived from BL21 (DE3). The genotype is F–

 ompT gal dcm hsdSB(rB- mB-)(DE3).  

The strain C43(DE3) (Cambridge bioscience) was derived from C41(DE3) (Miroux 

and Walker, 1996) by selecting for resistance to a different toxic protein and can 

express a different set of toxic proteins to C41(DE3). The genotype is also F– ompT 
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gal dcm hsdSB(rB- mB-) (DE3). C41(DE3) and C43(DE3) can tolerate expression of 

toxic proteins because the mutations in the T7 polymerase slow down protein 

production.   

Rosetta™2(DE3) cells (Novagen) are genotype F-ompT hsdSB(rB-mB-) gal 

dcm (DE3) pRARE2 (CamR). Rosetta™2(DE3) cells are derived from BL21 cells but 

grow slower which can improve membrane protein production.  

MC1000 for microscopy 

E.coli MC1000 cells (Casadaban and Cohen, 1980) were used for epifluorescent and 

TIRF microscopy as well as single molecule tracking.  

The genotype is Δ(araA,leu)7697 [araD139]B/r Δ(codB-lacI)3 galK16 galE15(GalS) λ- 

e14- relA1 rpsL150(strR) spoT1 spoT1. This strain cannot utilise arabinose as a 

nutrient, which is useful when used in combination with arabinose inducible 

expression systems such as pBAD322.  

 

JC207 

The E. coli strain JC207 is a TolA knock out strain (ΔTolA) and was used here for 

overexpression of TolA-GFP in preparation for fluorescent microscopy. JC207 has 

the genotype metB, lacI, lky-207 (Lazzaroni et al., 1986; Ridley and Lakey, 2015).  

2.2.2 Growth media 

Lysogeny broth (LB)  

Unless otherwise stated, all cultures were grown in LB medium (Melford Ltd.). LB 

contains 10 g/l casein digest peptone, 5 g/l yeast extract, 10 g/l NaCl and was 

prepared as per manufacturer’s instructions. To prepare LB agar plates 2% agar 

were added to LB before autoclaving.  

Minimal media (M9)  

Minimal media was used when we wished to detect fluorescence in liquid cultures or 

to grow cells for fluorescent microscopy because it has a lower background 

fluorescence in comparison to coloured media like LB and TB. M9 minimal media 

was prepared in house. Components: 1X M9 salts (24 mM Na2HPO4, 10 mM 

KH2PO4, 4.3 mM NaCl, 9.4 mM NH4Cl), 1 mM thiamine hydrochloride, 0.4 % glycerol, 

0.2 % casamino acids, 2 mM MgSO4, 0.1mM CaCl2.  
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Terrific Broth 

Terrific broth was used for overexpression of CNI fusion proteins. To prepare, 12 g 

tryptone, 24 g yeast extract (powder, Melford Ltd.) and 4 ml glycerol were mixed with 

900 ml deionised water and autoclaved. Separately, a 10X potassium phosphate 

solution (0.17 M KH2PO4 and 0.72 M K2HPO4, pH = 7) was prepared and autoclaved. 

The sterile 10X potassium phosphate solution was mixed with the tryptone-yeast-

glycerol solution in a 1:9 ratio.  

2.2.3 Escherichia coli heat shock transformation 

50 ng of plasmid DNA were added to 50 µl chemically competent cells and chilled on 

ice for 30 min, then heat-shocked at 42 °C for 45 sec and cooled for 2 min on ice. 

250 µl of LB were added to the cells and they were incubated for recovery for 1 h at 

37 °C, gently shaking. Cells were spread on LB agar plates containing the 

appropriate antibiotic for transformant selection. Plates were incubated overnight at 

37 °C. Selector antibiotics were used at 100 μg/ml ampicillin, 100 μg/ml carbenicillin, 

30 μg/ml kanamycin, 30 μg/ml spectinomycin, 35 μg/ml chloramphenicol. When two 

selector antibiotics were used, the given concentration of both was halved.  

2.2.4 Para-CNI-sfGFP-6His expression toxicity assay 

The effect of arabinose addition on culture viability was monitored using a plate 

reader (FLUOstar OPTIMA, BMG Labtech) in Costar 96 well plates. Overnight 

cultures of BL21-AI cells transformed with the empty vector or pBAD322-CNI-sfGFP-

6His were used to inoculate 150 µl media in each well to a final cell count of ca. 

4x105. The media was composed of LB and 100 µg/ml ampicillin and arabinose 

concentrations of 0 %, 0.02 %, 0.05 %, 0.1 %, 0.2 %, 0.5 %, 1 % and 2 % were 

added at the beginning of culture growth 

2.2.5 Assaying CNI activity by determining the minimal inhibitory concentration 
(MIC) of ColN to sensitive and immune cells  

CNI activity was assessed through its ability to immunise otherwise sensitive cells 

against ColN, allowing them to grow at ColN concentrations sensitive cells cannot. 

The MIC of ColN was assayed using a plate reader (FLUOstar OPTIMA, BMG 

Labtech). Cells were grown in flasks to an OD600 nm = 1 and diluted to ca. 4x105 cells 
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in 150 µl media in each well of a Costar 96 well plate before 1 pM, 10 pM, 0.1 nM, 1 

nM, 10 nM, 0.1 µM, 1 µM, 10 µM ColN and no colicin as a control were added. Each 

concentration was assayed in triplicate. Cultures overexpressing CNI were induced 

with 0.2 % arabinose from the start of culture growth in flasks as well as in the plate 

reader. Growth was monitored for 24 h at 37 °C. This procedure was adapted from 

my Masters of Research project. 

2.2.6 Assaying CNI activity by spot test assay 

Flask cultures with 50 ml LB and 100 μg/ml Ampicillin were inoculated from an 

overnight culture. Protein production was not induced but solely relied on the leaky 

T7 promoter which allows enough gene expression to compare immune and 

sensitive cells. When the culture OD600 nm = 0.5, 50 μl from the flask culture were 

mixed with 5 ml LB and 100 μg/ml Ampicillin and 5 ml sloppy agar (in 100ml: 1 g 

Tryptone, 0.5 g NaCl, 0.6 g agarose; heated to 60 °C in a water bath). The mixture 

was layered onto 2 % LB agar plates containing 100 μg/ml Ampicillin and allowed to 

set and dry in the incubator (37 °C) for 1 h. Colicin N or A were spotted in 2 μl drops 

onto the set agar and allowed to dry. Plates were incubated at 37 °C overnight. The 

concentration of Colicin N and A used varied depending on the cell type and protein 

expressed and are directly indicated in the figures of the Results chapters.  

2.2.7 Assaying CNI activity with the cell survival assay in a plate reader 

A modification of the cell survival assay used in Cavard and Lazdunski (1981) and 

Cavard (1994) was used to compare the viable cell count of sensitive and immune 

cultures following treatment with ColN and ColA. This method is a less time and 

resource consuming alternative to the traditional colony counting method, where 

following antibiotic treatment of liquid cultures the remaining live cell count is 

established through counting colony forming units on agar plates. Viability in this 

assay is measured through culture tubidity or optical density at 600 nm. The plate 

ready laser (FLUOstar OPTIMA, BMG Labtech) needs a certain level of turbidity 

before regarding an optical density as not zero and recording growth. Therefore, the 

lag time seen in the viability graphs is not the time it takes for growth of viable cells to 

start again but the time it takes for this growth to cause enough turbidity to be 

measurable by the plate reader. Therefore, the time it takes for a culture to reach a 

certain turbidity is dependent on the size of the inoculum, which in turn is determined 

by how many of a given amount of cells were killed through the colicin addition. Since 
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Colicin N or A concentrations and optical density of starting cultures are the same, a 

difference in lag time is directly corelated to how potent the colicin is or how immune 

the cells are.  

From overnight cultures 50 ml LB flask cultures were inoculated in a 1:100 ratio and 

incubated at 37 °C until OD600 nm = 0.5, shaking well to allow aeration. Cultures were 

diluted 1:1 with 10 mM sodium phosphate buffer, 300 mM NaCl, pH = 7.4 and chilled 

on ice for 30 min. Colicin N or Colicin A was dispensed into a 96 well plate (flat 

bottom, Costar) and mixed with chilled cells 1:1, resulting in final approximate culture 

OD600 nm = 0.125. Colicin N and A concentrations vary depending on the experiment 

and are indicated in Results for each case. Cells were incubated with Colicin A or N 

for 30 min at 37 °C, while constantly shaking, then diluted 1:100 into a new 96 well 

plate (flat bottom, Costar) and incubated for at least 18 h at 37 °C. The OD 600 nm was 

measured every 10 min by the plate reader FLUOstar OPTIMA (BMG Labtech).  

2.2.8 Epifluorescence and Total Internal Reflection Fluorescence Microscopy 
(TIRF) 

The pBAD322 vector (Cronan, 2006) is a low copy number plasmid and has an 

arabinose inducible promoter (Para) which can be used to regulate gene expression 

depending on the amount of arabinose added and is therefore useful for fluorescent 

microscopy. Very low levels of expression are often required to avoid saturation of 

the fluorescence signal. Also, we wished to observe CNI at as close to natural levels 

as possible 

CNI-sfGFP-6His expression titration by simultaneous and delayed metabolite 

inhibition with glucose or fucose  

Glucose and fucose can be used to repress protein expression from the arabinose 

inducible Para promoter. To test how the addition of different glucose and fucose 

concentrations affects the CNI-sfGFP-6His expression levels, MC1000 cells 

transformed with pBAD322-Para-CNI-sfGFP-6His were grown in 50 ml LB and 100 

µg/ml ampicillin flask cultures until OD600 nm = 0.5 and then aliquoted into a 96 well 

plate (Costar). CNI-sfGFP-6His expression was induced with 15 mM (13 mM = 0.2 % 

arabinose) and inhibited at the same time through metabolite inhibition with 30 mM, 

15 mM, 1.5 mM, 300 µM, 150 µM, 30 µM, 15 µM, 3 µM or 1.5 µM glucose and 

fucose.  Relative fluorescence intensity was monitored at 510 nm in a FLUOstar plate 

reader OPTIMA (BMG Labtech) for 24 h at 37 °C.  
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When CNI-sfGFP-6His expression is simultaneously induced with arabinose and 

repressed with either glucose or fucose, the protein production is either on or off 

depending on the amount of repressor added and it is not possible to only reduce the 

expression. To achieve a reduced expression level, MC1000 cells were grown in 50 

ml LB and 100 µg/ml ampicillin flask cultures until OD600 nm = 0.5. CNI-sfGFP-6HIS 

expression was then induced with 0.2 % arabinose and repression by 0.2% glucose 

addition was delayed by 10 sec, 20 sec or 30 sec. Fluorescence intensity was 

observed with a Nikon Eclipse Ti-E inverted epifluorescence microscope.  

Epifluorescent and TIRF microscopy carried out in Newcastle  

MC1000 cells were used for epifluorescent microscopy. They were transformed with 

vectors pBAD322-Para-CNI-sfGFP-6His, pBAD322-PCNI-CNI-sfGFP-6His, pET3c-

TolA-eGFP-6His, WALP23-eGFP-6His or the empty vector (pBAD322) control. 

WALP23 belongs to a group of artificial peptides composed of a stretch of 

tryptophans, alanines, leucines and prolines which readily fold into artificial 

transmembrane helices and insert into lipid bilayers, such as the E. coli inner 

membrane. This man-made, artificial transmembrane helix has no known biological 

function and was originally designed to study lipid membrane fluidity and the way a 

generic transmembrane protein moves inside the lipid bilayer (Nyholm et al. 2007). 

Here, a version of WALP23 fused to eGFP has been used so that it can be observed 

in vivo using fluorescence microscopy. In this thesis, it represents a generic 

transmembrane protein which has no interaction with pore-forming colicins, immunity 

proteins or the Tol-Pal system and which has no specific localisation pattern in the 

E.coli inner membrane. It serves to determine if any potential effects on protein 

diffusion rates tested here are due to specific interactions between Colicin N and its 

immunity protein or if they are general effects on membrane protein movement or 

bilayer fluidity. 

 

Overnight cultures were diluted 1:1000, and grown in flask culture with M9 minimal 

media until OD600 nm = 0.5. Where an arabinose inducible promoter was used, 

cultures were induced with 0.2 % arabinose for 10 sec, then repressed with 0.2 % 

glucose. Where the CNI natural promoter (PCNI) was used, cultures were not induced. 

For the treatment of cells with ColN or ColA, 200 µl aliquots from the flask cultures 

were taken and a sub-lethal concentration of Colicin N or Colicin A, both at 100 pM, 

was added for 10 min at 37 °C, while the tube was gently shaking. A drop of 0.5 µl of 
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each culture was fixed on 1.2 % agarose on microscope slides and observed using a 

Nikon Eclipse Ti-E inverted epifluorescence microscope. Cells were immobilised 

using 1.2% agarose by sandwiching the cells between the agarose and a thin 

coverslip (width: 1 mm; Figure 10). The agarose was prepared by dissolving it in 

water using a microwave, cooling it to 60 °C and then applying 500 µl to a Teflon 

coated glass slide (C. A. Hendley (Essex) Ltd.). The agar was flattened using a 

second glass slide and allowed to cool and solidify. The top glass was removed and 

0.5 µl of the cell culture was applied onto agar. The drop was allowed to dry out and 

a coverslip was added for imaging. This procedure was adapted from my Masters of 

Research project.  

 

Figure 10: TIRF set up. Cells were immobilised using 1.2% agarose by sandwiching 
the cells between the agarose and a thin coverslip. The glass slide was inverted and 
placed onto the objective. The laser beam is totally internally reflected, causing an 
evanescent wave just above the cover slide which allows viewing of the bacterial 
membrane in TIRF mode.  

Two different measuring techniques were used to answer two different questions. 

Firstly, the homogeneity of each cell’s fluorescence was measured to see if addition 

of Colicin N would change the otherwise even distribution of CNI-sfGFP-6His into 

concentrated and possibly localised clusters. Cells were imaged at 30 ms per frame. 

Using the freely available image processing software Image J1 (NIH, USA), the 

fluorescence intensity was measured as a transection across each cell and plotted 

against the length of the cell.  

 

To determine if ColN addition would change the diffusion rate of CNI, a method 

called total internal reflection fluorescence with continuous bleaching (TIR-CP) was 

used (Slade et al., 2009; Strahl et al., 2014), which is similar to fluorescence recovery 

after photo bleaching (FRAP). The model to quantify the bleaching kinetics is defined 

in the appendix. Cells were imaged over time at 100 ms per frame, deliberately 

                                            
1
 http://rsb.info.nih.gov/ij/ 
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strongly bleaching the fluorescent signal. Each recording formed a stack of images 

over 20 secs. Using the image processing software Image J, all images in the stack 

were treated for background subtraction and then the overall signal intensity of each 

image was measured and plotted against time. The fluorescence intensity decays 

over time as more fluorophores are bleached than can be replenished. The 

fluorescence intensity decay was expressed in percentage, normalising the initial 

fluorescence intensity at the start of the measurement as 100 %. This allows the 

comparison of repeats of the same kind of condition, even if the fields of view do not 

contain the same amount of cells and do not have the same absolute intensity.  

 

Single Molecule Tracking at CLF, Harwell 

Single molecule tracking was carried out at Central Laser Facility, Harwell

in collaboration with the Martin-Fernandes group. The main goal of this collaboration 

was to establish if the diffusion rate of CNI changes in vivo upon ColN addition. 

Originally, it was intended to co-localise CNI and ColN, so ColN and ColA, as the 

negative control, were fluorescently labelled (see 2.3.7). The proteins TolA-eGFP-

6His, WALP23-eGFP-6His and CNI-sfGFP-6His were expressed in MC1000 cells. 

Flask cultures with 20 ml M9 minimal media and 100 µg/ml ampicillin were inoculated 

in a 1:20 ratio with overnight cultures and induced with 1 mM IPTG (for TolA-eGFP-

6His) or 0.2 % arabinose (for WALP23-eGFP-6His and CNI-sfGFP-6His) at an OD600 

nm = 0.1. The culture expressing CNI-sfGFP-6His was inhibited with 0.2 % glucose 10 

sec after induction. Cultures were then grown to an OD600 nm = 1. Aliquots (200 µl) 

were taken one at a time and mixed with ColN or ColA to give final concentrations of 

40 nM, 400 nM and 4 µM and incubated with shaking for 10 min at 37 °C, before 0.5 

µl drops were fixed on 1.2 % agarose in water as previously in Newcastle (Figure 10) 

and imaged straight away. Due to the laser light and the nutrient poor environment of 

the agarose these samples can only be imaged for a limited time and so each 

sample was prepared separately and imaged immediately. 

Imaging conditions were optimised based on the best conditions for CNI-sfGFP-6His 

and then remained consistent. Laser intensity at 488 nm was 6.5 mW, while it was 

4.43 mW at 642 nm. The microscope used was a Zeiss Axio Observer and the lasers 

used were an Omicron LightHUB equipped with a PHOXX 488 nm continuous wave 

and a PHOXX 640 nm continuous wave laser. The laser has a circular area of 100 

µm. Consecutive images were taken at 60 ms per frame. Each data set needed an 
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extensive amount of bleaching to reduce background fluorescence and reduce the 

amount of fluorescent molecules to an extent where single molecules were visible. 

This was dependent on the protein imaged as all three protein fusions have different 

characteristics. Image processing and single molecule tracking was carried out using 

specialist in house software (Rolfe et al., 2011) by Dr Daniel Rolfe, CLF, Harwell, UK. 

For a summary of the procedure, see Results Chapter 5. 
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2.3 Biochemistry 

2.3.1 Protein purification using immobilised metal affinity chromatography 
(IMAC) 

 

ColN, ColA and ColN P-domain protein purification using a Nickel ion affinity 

chromatography 

The same purification protocol was used to purify ColN, ColA and ColN P-domain. 

Plasmids coding for ColN, ColA or ColN P-domain were transformed into BL21-AI 

cells using the E. coli heat shock method (2.2.3). A single colony from a selection 

plate was used to inoculate a 50 ml LB with 100 µg/ml Ampicillin overnight culture, 

which was grown at 37 °C, well aerated. Flasks with 500 ml 2XLB and 100 µg/ml 

Ampicillin were inoculated with overnight cultures in a 1:100 ratio and incubated at 37 

°C, shaking until OD600 nm = 0.7-0.8 and then induced with 2 % arabinose 

concentration for max 3 h. Cells were harvested by centrifuging at 11300 x g (JA-10 

rotor, Beckman Coulter) for 10 min. The supernatant was discarded and the pellets 

resuspended in a cell disruption buffer which also serves as the column loading 

buffer (50 mM NaP (a mixture of monosodium and disodium phosphate to achieve 

the appropriate pH), pH=7.4, 300 mM NaCl, 10 mM imidazole, proteinase inhibitor 

cocktail (100 mg/ml AEBSF, 0.5 mg/ml aprotinin, 100 mg/ml benzamidine, 1mg/ml 

Pepstatin A, 1 mg/ml Leupeptin), 100 mg DNAse, 100 mg RNAse, 100 mg 

lysozyme). Cells were disrupted with a Constant Systems continuous cell disruptor 

(model: TS2/40/AA/AA, Constant Systems Ltd.) and the unbroken cells as well as the 

cell membrane were spun down at 140531 g (TI-70 rotor, Beckman Coulter) for 30 

min. The pellets were discarded and the supernatant applied to a 2 ml resin self-

poured Ni+-NTA column (Qiagen). The column was washed with 20x column volume 

(≈ 40 ml) wash buffer (50 mM NaP, 300 mM NaCl, 25 mM Imidazole, pH=7.4,). The 

proteins were eluted with elution buffer (50 mM NaP, 300 mM NaCl, 350 mM 

imidazole, pH=7.4). After dialysis against a phosphate buffer (50 mM NaP, 300 mM 

NaCl, pH=7.4), aliquots were frozen at -20°C.  

 

CNI purification 

An optimised purification protocol for CNI was one of the key goals of this work and 

the evidence to support changes in the procedure, e.g. SDS-PAGE gels with 

purification fractions, is covered in detail in Chapter 3. During the optimisation 
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process the expression vector, expression cells and buffer composition, including the 

detergent, varied but the general procedure remained the same. The overall 

procedure has been adapted from Bird et al. (2015) and is given below while the 

parameters changed are summarised in Table 4 for clarity.  

 

Host cells were transformed with a vector using the heat-shock protocol (2.2.3). A 

single colony from the selection plates was used to inoculate 50 ml LB with the 

appropriate antibiotic (depending on vector) and grown overnight at 37 °C, well 

aerated. Ten flasks with 500 ml of growth medium and the appropriate antibiotic 

(depending on vector) were inoculated with the overnight culture in a 1:100 ratio and 

incubated at 37 °C, shaking, until OD600 nm = 0.8 - 1 and then induced with 0.2 % 

arabinose concentration or 1 mM IPTG (depending on vector). Initially, cultures were 

grown overnight at 37 °C and harvested the next morning. For cultures with the 

pOPIN vectors during and after visiting OPPF, the growth temperature was reduced 

to 18 °C for growth overnight.  

 

Cells were harvested by centrifuging at 11300 x g for 15 min, resuspended in cell 

disruption buffer and lysed with a Constant Systems continuous cell disruptor (model: 

TS2/40/AA/AA, Constant Systems Ltd.). Unbroken cells were spun down at 11300 x 

g for 15 min and the supernatant was ultra-centrifuged at 140531 x g for 1 h at 4 °C. 

Pellets were homogenised using a glass homogeniser in chilled column loading 

buffer containing the appropriate detergents. The homogenised resuspension was 

slowly agitated on a tube roller mixer (Stuart) overnight at 4 °C to extract the 

membrane protein. In this thesis, this process is referred to as protein solubilisation. 

The cell debris was spun down at 140531 x g for 1 h at 4 °C and the protein was 

purified using a self-poured 2 ml NTA-Ni+ column (Novagen), by loading the 

solubilised protein onto the column, washing the column with the wash buffer and 

eluting with the elution buffer.  

 



39 
 

Table 4: Key changes carried out during CNI purification optimisation. While the general purification steps remained the same, the vector 
construct, host strain, growth media and purification buffer composition, including the detergents, varied.  

Vector construct Host 
strain  

Growth 
media  

Purification buffer Detergents 

6His-CNI BL21-AI LB Cell disruption: 50 mM NaP, 300 mM NaCl, 10 mM imidazole, 
pH = 7.4. Detergent added for column loading, wash and 
elution buffer. Imidazole concentration was increased to 25 
mM for wash buffer and 300 mM for elution. 

0.5% w/v n-dodecyl-β-D-maltoside (DDM), 
Genapol–X080, Triton-X100 or N- 
Lauroylsarcosine were used for the entire 
purification procedure. 

CNI-6His BL21-AI LB Cell disruption: 50 mM NaP, 300 mM NaCl, 10 mM imidazole, 
pH = 7.4. Detergent added for column loading, wash and 
elution buffer. Imidazole concentration was increased to 25 
mM for wash buffer and 300 mM for elution. 

0.5 % n-dodecyl-β-D-maltoside (DDM) were 
used for the entire purification procedure. 

pBAD332-CNI-FLAG-TCS-sfGFP-6His BL21-AI LB Cell disruption: 50 mM NaP, 300 mM NaCl, 10 mM imidazole, 
pH = 7.4. Detergent added for column loading, wash and 
elution buffer. Imidazole concentration was increased to 25 
mM for wash buffer and 300 mM for elution. 476 μM DTT and 
2.4 mM CaCl2 were added for thrombin cleavage. Dialyses 
was carried out against Tris (pH = 7.4), 300 mM NaCl, 10 % 
glycerol. 

2% n-decyl-β-D-maltoside (DM) was used in 
Newcastle. At MPL 1% DDM, DM, Cymal 6, 
Triton-X100, LDAO or lauroylsarcosine were 
used for solubilisation. For purification, 0.09 % 
Cymal 6 was used (equal to 3x the critical 
micelle concentration). 

pWALDO-CNI-TEVCS-GFP-8His 

pWALDO-CNI
C113S

-TEVCS-GFP-8His  

C41 LB Cell disruption: 50 mM NaP, 300 mM NaCl, 10 mM imidazole, 
10 % glycerol,  pH = 7.4. Detergent added for column loading, 
wash and elution buffer. Imidazole concentration was 
increased to 25 mM for wash buffer and 300 mM for elution.  

For solubilisation 1 % Cymal 6 and for IMAC 
0.09 % Cymal 6 was used. 

pOPINCDE, pOPINCDF, pOPINS3C, 
pOPINMSYB ,pOPINCDJ, pOPINCDM 

pOPINE-3C-eGFP, pOPINE-3C-HALO 

Lemo21, 
C41, C43, 
Rosetta™
2(DE3) 

TBO or 
PB 

Cell disruption: 50 mM NaP, 300 mM NaCl, 10 mM imidazole, 
10 % glycerol, pH = 7.4. Detergent added for column loading, 
wash and elution buffer. Imidazole concentration was 
increased to 25 mM for wash buffer and 300 mM for elution. 

1 % DM was used for solubilisation and was 
reduced to 0.1% for IMAC purification.  

pOPINE-3C-HALO (Expression scale-up 
in Newcastle) 

C41 Terrific 
Broth  

Cell disruption: 50 mM NaP, 300 mM NaCl, 10 mM imidazole, 
pH = 7.4. Detergent added for column loading, wash and 
elution buffer. Imidazole concentration was increased to 25 
mM for wash buffer and 300 mM for elution.  

The NaP buffer was used for initial scale up but it was decided 
to switch to a Tris buffer in preparation for 3C cleavage. The 
final buffer composition is shown in Table 5.  

For solubilisation 1% Tween and 1% DM were 
used. The concentrations were reduced to 0.1 
% for IMAC purification.  

 

The Tween was removed in the in the final 
formulation of the Tris buffer.  
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Table 5: Optimised buffer composition for CNI-Halo7-6His purification from C41 cells, 
grown in Terrific Broth medium.  

Cell disruption 
buffer 

Protein 
extraction 

buffer 

Column Wash 
buffer 

Protein elution 
buffer 

Dialysis/Desalt 
buffer 

50 mM Tris-HCl, 
pH = 7.5 

50 mM Tris-HCl, 
pH = 7.5 

50 mM Tris-HCl, 
pH = 7.5 

50 mM Tris-HCl, 
pH = 7 

50 mM Tris-HCl, 
pH = 7 

1 M NaCl 1 M NaCl 300 mM NaCl 300 mM NaCl 300 mM NaCl 

50 mM Imidazole 50 mM Imidazole 100 mM Imidazole 350 mM Imidazole  

Proteinase 
inhibitor (100 
mg/ml AEBSF, 0.5 
mg/ml aprotinin, 
100 mg/ml 
benzamidine, 
1mg/ml Pepstatin 
A, 1 mg/ml 
Leupeptin), 
DNAse, RNAse, 
lysozyme 

    

   1 mM EDTA 1 mM EDTA 

   1 mM DTT 1 mM DTT 

 1 % DM 0.1% DM 0.1% DM 0.1% DM 

 10% glycerol 10% glycerol 10% glycerol 10% glycerol 

 

TEV protease purification 

The protocol for TEV purification as well as the plasmid were provided by MPL and 

are an adaptation of the protocol used by Blommel and Fox (2007). The TEV 

protease version purified here is the SuperTEV and is expressed from the plasmid 

pMHT238Δ, which provides kanamycin resistance. It was transformed into 

Rosetta™2(DE3) cells using the heat shock protocol (2.2.3) and grown in LB at 37 

°C. When OD600 nm = 0.5, the growth temperature was reduced to 25 °C for overnight 

growth and the protein expression was induced with 0.4 mM IPTG. 

Cells were harvested by centrifuging at 11300 x g (JA-10 rotor, Beckman Coulter) for 

10 min. The pellets resuspended in a cell disruption buffer which also serves as the 

column loading buffer (1 x PBS, 150 mM NaCl, 50 mM imidazole, protease inhibitor 

(100 mg/ml AEBSF, 0.5 mg/ml aprotinin, 100 mg/ml benzamidine, 1mg/ml pepstatin 

A, 1 mg/ml leupeptin, DNase I, RNase, 0.3 mM TCEP, pH = 7.5). Cells were 

disrupted with a Constant Systems continous cell disruptor (model: TS2/40/AA/AA, 

Constant Systems Ltd.) and the unbroken cells as well as the cell membrane were 

spun down at 140 531 g (TI-70 rotor, Beckman Coulter) for 30 min. The pellets were 
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discarded and the supernatant applied to a 5 ml self-poured Ni+-NTA column 

(Novagen). The column was washed with 20x column volume (≈ 40 ml) wash buffer 

(20 mM Tris pH = 7.5, 300 mM NaCl, 50 mM imidazole, 30 % glycerol, 0.3 mM 

TCEP, pH = 7.4). The proteins were eluted with elution buffer (20 mM Tris pH =7.5, 

300 mM NaCl, 250 mM imidazole, 30 % glycerol, 0.3 mM TCEP). After dialysis 

against a Tris buffer (20 mM Tris pH = 7.5, 300 mM NaCl, 50 % glycerol, 0.3 mM 

TCEP), the protein concentration was measured using the Nanodrop 1000 

(ThermoScientific) (ε280 = 32 770 l mol-1 cm-1, MW = 28.62 kDa) and 1 mg/ml 

aliquots were flash-frozen and stored at -80 °C. SuperTEV as well as TEV tends to 

precipitate heavily, therefore, large amounts of glycerol are required and the protease 

needs centrifuging immediately before use.  

2.3.2 Sodium dodecyl polyacrylamide gel electrophoresis (SDS-PAGE) 

For SDS-PAGE, samples were mixed 1:1 with 2X SDS loading buffer (0.125 M 

TrisHCl, pH = 6.8, 15 % glycerol, 5 mM NaEDTA. 2 % SDS, 0.1 % bromophenol 

blue, 1 % β-mercaptoethanol) and loaded onto 10 %, 12 % or 15 % acrylamide SDS-

PAGE gels. The running buffer was 25 mM Tris, 192 mM glycine, 0.1 % SDS. 

Electrophoresis as carried out for 1 h at 200 V. Gels were stained with Coomassie 

stain (10 % acetic acid, 10 % propan-2-ol, Coomassie Blue) for 1 h and de-stained 

(solution: 10 % acetic acid, 10 % propan-2-ol) overnight, slowly agitated. In-gel 

fluorescence images were taken with the Typhoon™ FLA 9500 biomolecular imager 

(GE Healthcare). 

Table 6: Composition of Tris gels.  

 

10 % 12 % 15 % 

  Resolving gel 9 ml 

1.5 M Tris, 14 mM SDS (pH=6.8) (ml) 2.25 

40 % acrylamide/bis- acrylamide (ml) 2.25 2.7 3.38 

diWater (ml) 4.43 3.98 3.3 

10 % APS (µl) 50 

TEMED (µl) 20 

Stacking gel (4%) 4 ml 

1.5 M Tris, 14 mM SDS (pH=6.8) (ml) 1 

40 % acrylamide/bis- acrylamide (ml) 350 

diWater (ml) 2.59 

10 % APS (µl) 50 

TEMED (µl) 10 
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2.3.3 Western blotting 

Western blotting was performed using a wet blotting system (BioRad) for 2 h at 350 

mA using a Tris-glycine transfer buffer (20 mM Tris base, 150 mM glycine, 0.5 % 

SDS, 20 % isopropanol) onto a nitrocellulose membrane. Following overnight 

blocking with 5 % skimmed milk (dried power resuspended in 20 mM Tris-HCl, 140 

mM NaCl, 0.1% Tween-20, pH = 7.5 (TBST)), membranes were incubated for 2 h 

with 1 % milk in TBST and the anti-polyhistidine alkaline phosphatase conjugated 

antibody (Life Technologies, Anti-His (C-term)/AP Ab). Blots washed with TBST 3 x 5 

min and were revealed using SIGMAFAST™ BCIP®/NBT as substrate for the 

conjugated alkaline phosphatase.  

2.3.4 Size exclusion chromatography  

Size exclusion chromatography was carried out using a Superose 12 10/300 GL (GE 

Healthcare) column in 50 mM NaP pH = 7.4, 300 mM NaCl, 10 mM imidazole, 0.1 % 

Tween20 and 0.1 % DM using an Äkta Purifier system.  

2.3.5 Thrombin digest 

A thrombin digest was carried out after CNI-FLAG-TCS-sfGFP-6His purification 

according to the manufacturer’s instructions. 1U of thrombin (Novogen, restriction 

grade) will cleave 1 mg of protein in optimal conditions. Since detergent was added 

to the protein sample which could inhibit thrombin, 4U were used to cleave 200 µg of 

CNI-FLAG-TCS-sfGFP-6His. Thrombin was added directly to the dialysed protein 

and incubated at 20 °C overnight. In preparation for SDS-PAGE, 1% acetic acid (final 

concentration) was added to a sample of the cleaved and uncleaved protein to 

denature the protein structure.  

2.3.6 Protease cleavage with 3C (PreScission Protease) cleavage  

A commercially available version of the viral protease 3C (PreScission Protease, GE 

Healthcare) was used to cleave the CNI-HALO7-6His fusion. It specifically cleaves 

between the Gln and Gly residues of the recognition sequence of 

LeuGluValLeuPheGlnGlyPro. One unit will cleave > 90% of 100 µg of a test GST-

fusion protein in 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, pH = 7.0 at 

5 °C for 16 h. As the cleavage buffer was slightly modified (Table 5) protease 

cleavage was optimised by testing different protease amounts and different cleavage 

temperatures. To optimise protease amount 8.6 µg fusion protein was mixed with 1 
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U, 2 U, 3 U, 4 U, 5 U of PreScission Protease and incubated at 4 °C for 16 h. To 

optimise cleavage temperature, 1 U of protease was mixed with 11.2 µg and 

incubated for 16 h at 4 °C, 20 °C and 37 °C. The cleavage results were analysed 

using SDS-PAGE.  

2.3.7 Protein labelling 

ColN and ColA were fluorescently labelled for (fluorescent microscopy experiments at 

CLF, Harwell) with the CF™640R fluorescent dye (Biotium, Inc.) according to the 

manufacturer’s instructions. ColN was labelled via a maleimide reaction in either one 

or two cysteine residues at positions 3 or 94 and 179 (Figure 11), while ColA was 

labelled with CF™640R succinimidyl ester via its primary amines, mostly lysine 

residues. The dye absorbs at 280 nm as well as around 600 nm and 640 nm. The 

final concentrations of labelled proteins was 4.2 mg/ml (91.91 mM) for S3C, 7 mg/ml 

(163.28 µM) for V94C/Q179C and 2.1 mg/ml for ColA. 

>gi|116070|sp|P08083.1|CEAN_ECOLX RecName: Full=Colicin-N 

MGSNGADNAHNNAFGGGKNPGIGNTSGAGSNGSASSNRGNSNGWSWSNKPHKNDGFHSDGSYH

ITFHGDNNSKPKPGGNSGNRGNNGDGASAKVGEITITPDNSKPGRYISSNPEYSLLAKLIDAESIKGT

EVYTFHTRKGQYVKVTVPDSNIDKMRVDYVNWKGPKYNNKLVKRFVSQFLLFRKEEKEKNEKEALL

KASELVSGMGDKLGEYLGVKYKNVAKEVANDIKNFHGRNIRSYNEAMASLNKVLANPKMKVNKSD

KDAIVNAWKQVNAKDMANKIGNLGKAFKVADLAIKVEKIREKSIEGYNTGNWGPLLLEVESWIIGGV

VAGVAISLFGAVLSFLPISGLAVTALGVIGIMTISYLSSFIDANRVSNINNIISSVIR 

Figure 11: Cysteine mutations in ColN at positions 3, 94 and 179. Highlighted 
residues have been mutated to cysteines prior to this project. S3C is single mutant in 
the ColN T-domain. V94C/Q179C is a double mutant in the ColN R-domain.  
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2.4 Biophysical methods 

2.4.1 Liquid chromatography–mass spectrometry (LC-MS) 

The CNI-HALO7-6His samples were prepared for LC-MS using the final CNI-HALO7-

6His purification protocol with the Tris buffer outlined in 2.3.1. The final concentration 

of protein provided was 1.12 mg/ml. The LC-MS measurement and the data analysis 

was carried out by the LC-MS specialist Dr Joseph Gray, Newcastle University, as a 

service provided by Pinnacle Lab2. 

2.4.2 Circular Dichroism 

To open up the helix-bundle structure of ColN P-domain in preparation for the pull-

down assays (2.4.3), ColN P-domain, purified using the procedure outlined in 2.3.1, 

was incubated in a Tris buffer (10 mM Tris, 300 mM NaCl, pH=7.4) with and without 

0.1 % DM for 24 h at 4 °C. Near-UV Circular Dichroism was used to investigate 

whether the tertiary structure had changed due to the added DM (Dover et al., 2000). 

The spectra were measured on a CD Spectrometer Jasco J-810. Parameters: band 

width of 2 nm, response time: 4 sec, measurement range: 320-250 nm, data pitch: 

0.5 nm, scanning speed 20 nm/min, cell length: 1 cm, temperature: 25 °C, protein 

concentration: 3.8453 x 10-5 mol/l. The traces are an average of 9 accumulations.  

2.4.3 CNI pull-down assay 

A pull-down assay was used to assess protein-protein interaction between CNI and 

Colicin N. CNI-HALO7-6His was bound via its Halo-tag to HaloLink resin (Promega) 

according to the manufacturer’s instructions by calibrating the HaloLink resin with a 

Tris buffer (50 mM Tris-HCl, pH = 7, 300 mM NaCl, 1 mM EDTA, 1 mM DTT, 0.1 % 

DM, 10 % glycerol) and incubating the resin with CNI-HALO7-6His for 30 min at room 

temperature. Excess protein was washed off with Tris buffer and the resin was 

incubated with ColN, ColN P-domain, ColA and ColA P-domain in Tris buffers 

containing either 1.6 mM DM, 25 mM OG or 8 mM SDS at 4 °C overnight. Excess 

protein was washed off and to establish what remained bound to the beads due to 

protein-protein interaction, the beads were resuspended in protein loading buffer 

(0.125 M Tris HCl, pH = 6.8, 15 % glycerol, 5 mM NaEDTA. 2 % SDS, 0.1 % 

                                            
2
 http://www.ncl.ac.uk/camb/pinnacle/ 
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bromophenol blue, 1 % β-mercaptoethanol) and heat-denatured at 90 °C for 10 min. 

Washes and “pulled-down” proteins were analysed using SDS-PAGE.  

2.4.4 Surface Plasmon Resonance (SPR) 

In preparation for SPR, the proteins to be used here were purified with the protocols 

outlined in (2.3.1). For CNI, the CNI-Halo7-6His final purification protocol with Tris 

buffer was used. All proteins were buffer exchanged with a PD-10 column (GE 

Healthcare) against a HEPES buffer (10 mM HEPES pH = 7.5, 150 mM NaCl, 50 μM 

EDTA, different concentrations of detergents DM, OG or SDS) as used in Johnson et 

al. (2014) and incubated at 37 °C for 1 h to open up the P-domain structure with the 

detergent. The chip used for SPR was a GE Healthcare NTA Sensor Chip. The chip 

matrix consists of carboxymethylated dextran pre-immobilized with nitrilotriacetic acid 

(NTA). His-tagged proteins can be immobilised through nickel ions which bind the 

histidine imidazole rings as well as NTA.  

Before the SPR binding experiments could be carried out, the polyhistidine-tag on 

ColN, ColA, ColN P-domain and ColA P-domain had to be modified with 

diethylpyrocarbonate (DEPC; Sigma-Aldrich) to prevent these proteins from binding 

to the NTA chip. The modification method was adapted from Lundblad and Noyes, 

1984, chapter 9. A specific amount of DEPC was added to the protein solution and 

incubated at room temperature for 20 min, before quenching with an excess of 5 mM 

imidazole. It was unknown how much DEPC would be enough to modify the 

imidazole ring on the His-tag, but not disturb the protein structure and prevent 

potential protein-protein interaction. Therefore, different molar ratios were 

investigated and SPR was used to determine if the modified protein would still bind to 

the NTA-Ni+ chip. 

Here, DEPC was added in molar ratios between DEPC and histidine molecules. All 

proteins were diluted to a final concentration of 15 µM. The molar concentration of 

histidine was calculated based on the protein concentration and the amount of 

histidines per molecule. For example, for a polyhistidine-tag with 6 histidines and a 

protein concentration of 15 µM, the solution had a histidine concentration of 6 x 15 = 

90 µM. If DEPC was added in a 1:5 ratio, the final concentration of DEPC in the 

solution had to be 5 x 90 = 450 µM. ColN P-domain has 7 His, ColN has 13 His, ColA 

P-domain has 9 His and ColA has 13, all including the 6His-tag which is common to 

all these proteins. DEPC modifies the imidazole ring of histidine residues and cannot 
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discriminate between the histidine in the tag and the histidine in the main protein. The 

progress of modification was observed by measuring protein absorption at 240 nm 

and 280 nm with a UV spectrophotometer (UV-1800 Shimadzu). An optimisation 

experiment, testing if the modified protein still bound to the chip, was carried out with 

ColN P-domain, where DEPC was added in a ratio of 1:1 based on the 6 histidines in 

the tag only and based on all 7 histidines ratios of 1:1, 1:5, 1:10 and 1:25. To confirm 

1:5 ratio as the optimal ratio, a further run was carried out with ratios 1:1, 1:2, 1:3, 

1:4, 1:5, 1:6 based on all 7 histidines. 

The SPR was carried out on a BIAcore X100 at a flow rate of 5 μl/min. The NTA chip 

has two chambers, one for measuring and one for reference to detect any non-

specific binding. The chip is cleaned with 0.5 % SDS, 2 M NaCl, HEPES 

regeneration buffer (10 mM HEPES, 150 mM NaCl2, 500 mM EDTA, 5 mM CaCl2, pH 

= 8.3) and HEPES running buffer (10 mM HEPES, 150 mM NaCl2, 50 µM EDTA, 5 

mM CaCl2, pH = 7, 0.1% DM). For each binding run, the HEPES Nickel solution (0.5 

M NiCl2, 10 mM HEPES, 150 mM NaCl2, 50 µM EDTA, pH = 7.5) flows across the 

measuring cell only. Subsequently, all proteins flow across both chambers. For 

experiments where OG and SDS were added to the P-domain to open up its 

structure even further than by 0.1 % DM addition only, P-domains were modified with 

DEPC first (as above) and then incubated with OG (0, 0.1 %, 0.25 %, 0.5 %, 0.731 % 

(=CMC), 1 %, 1.5 %.) or SDS (0.4 mM, 0.8 mM, 1.6 mM, 4 mM, 8 mM (=CMC), 16 

mM) for 1 h at 37 °C. The procedure was adapted from Johnson et al. (2014). 
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Chapter 3. CNI overexpression optimisation 

3.1 Introduction 

Immunity proteins to pore-forming colicins are largely understudied, certainly in 

comparison to the immunity proteins of enzymatic colicins (Cascales et al., 2007; 

Papadakos et al., 2011; Farrance et al., 2013; Vankemmelbeke et al., 2013; Kim et 

al., 2014). Most of the literature describes in vivo characterisation and although some 

purification has been carried out, the in vitro characterisation has not made 

significant progress (Chapter 1: Introduction). Functional immunity protein 

reconstitution into artificial membranes or micelles has not been successful and 

immunity protein activity or interaction with other proteins, most notably the cognate 

colicins, has not been demonstrated ex vivo.  

The main difficulty lies in the function of the protein. The immunity protein guards the 

cell against the attack of colicins, i.e. making it “immune” to colicin attack, allowing it 

to grow and replicate. In an in vitro setting there is no cell and it is therefore difficult to 

show the immunity protein’s function. The activity of soluble proteins, like enzymes, 

can be shown through the creation of a product, while the inhibition of purified toxic 

proteins (Kleanthous et al., 1999), like colicins, can be shown through killing assays. 

It is difficult to show the activity of a protein whose main task it is to prevent the 

action of another membrane protein, hence, maintaining the integrity of the 

membrane. When immunity proteins are present, we assume that colicins cannot 

form a pore and depolarise the membrane. So, one could argue that the main task of 

the immunity protein is to prevent this pore formation and depolarization. It is 

possible to show in vitro if a membrane is depolarised (Tokuda and Konisky, 1978a) 

and, also, if pores in a membrane are formed (Wilmsen et al., 1990; Lakey and 

Slatin, 2001). Therefore, it should be possible to detect if this is prevented through 

the immunity protein. However, the difficulty lies in creating a suitable environment 

which is similar enough to the E.coli inner membrane to keep the protein active. One 

feature would require the application of an electrical membrane potential difference to 

open the channel which is formed by a colicin molecule.  
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3.1.1 Studying membrane proteins in vitro 

The possibilities of how the complex systems within a biological membrane are 

simplified and mimicked include reconstitution of the membrane protein into artificial 

membranes, such as lipid vesicles, nanodiscs created with a styrene maleic acid 

polymer (Knowles et al., 2009; Dorr et al., 2014) or membrane scaffold proteins 

(Bayburt and Sligar, 2010), or membrane like environment such as detergents or 

amphipols (Popot, 2010; Arunmanee et al., 2014; Della Pia et al., 2014; Kleinschmidt 

and Popot, 2014; Calabrese et al., 2015). A suitable detergent must outcompete the 

membrane lipids for interaction with the protein and stabilise the protein in solution 

through hydrophobic interaction with the hydrophobic part of the protein as well as 

through hydrophilic interaction with the aqueous environment (Lemmon and 

Engelman, 1994; Stangl and Schneider, 2015).  

Less complex experiments, where detergent solubilisation is sufficient, might include 

protein – protein interaction assays with potential binding partners (Helenius and 

Simons, 1975), isothermal titration calorimetry (Evans et al., 1996b), surface plasmon 

resonance (SPR)(Stora et al., 1999), pull-down assays etc. These are routinely used 

for soluble proteins, but it remains to be investigated how suitable they are for pore-

forming colicins and their immunity proteins. With these assays the binding 

specificity, binding affinity and/or possibly stoichiometry can be measured although 

binding does not necessarily translate directly into activity. Unspecific binding, for 

example, through hydrophobic interactions in an aqueous environment can lead to 

false positive results. This is potentially the case for pore-forming colicins and their 

immunity proteins based on the mutagenesis work carried out in vivo, which suggests 

that pore-forming colicins and their immunity protein interact through hydrophobic α-

helix interactions (see Chapter 1: Introduction and Chapter 4, pull down section).  

3.1.2 Difficulties with overexpressing and purifying membrane proteins 

For soluble proteins,  expression and purification is often the trivial part of the 

research project as these proteins often express well in the cytoplasm of cells and 

well established protocols are available to purify them using special affinity, e.g. 

heparin or biotin, or purification-tag chromatography, e.g. ion metal affinity 

chromatography (IMAC), in combination with separation by charge or size. Some 

particularly thermostable proteins can even be separated by denaturation of all other 

proteins with heat, such as recombinantly expressed proteins from thermophilic 
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species, like polymerases from archaea. For membrane proteins each step can be 

more complicated.  

Firstly, natural expression can be poor, and overexpression toxic, because additional 

protein is deposited into the membrane, an already tightly packed and much smaller 

environment than the cytosol. Toxicity can arise from non-specific interactions with 

essential proteins or create difficulty in maintaining the cell turgor due to increased 

permeability of the bilayer. To counteract such toxicity the cells can target these 

proteins for degradation, thus reducing yields of overexpressed proteins.  

Secondly, retrieving the protein from the membrane can be a fine balancing act 

between choosing a detergent which is able to solubilise the protein but does not 

denature the protein’s tertiary structure or obstruct potential interaction sites. 

Although a huge assortment of ionic and non-ionic detergents and surfactants is 

commercially available and has been used extensively in studies of membrane 

proteins, it remains empirical guesswork which detergent is suitable to solubilise and 

stabilise which protein (Loll, 2014). Some membrane proteins, in particular, β-barrel 

proteins, such as OmpF or OmpA, are known to refold following the replacement of 

chemical denaturants, like urea,  or denaturing detergents such as SDS with milder 

detergents (Watanabe, 2002; Visudtiphole et al., 2004; Visudtiphole et al., 2005; 

Watanabe and Inoko, 2009), while an example of an α-helical protein is 

bacteriorhodopsin (Booth, 1997; Curnow and Booth, 2007). Whether this is also 

possible with the α-helical immunity proteins to pore-forming colicins is unknown. 

Also, the most suitable detergent for extraction might not be suitable for storage or 

down-stream processing in terms of compatibility with purification columns or 

interference with UV absorbance measurements, e.g. Triton X-100. Membrane 

protein crystallography often uses a mixture of several detergents or detergent-lipid 

mixtures to stabilise and solubilise proteins and so the possibilities of what could 

constitute the perfect purification conditions are even greater than the plethora of 

detergents, surfactants and buffers.  

Finally, purification steps which usually involve a kind of chromatography can be 

difficult with membrane proteins because chromatography resins, such as the highly 

cross-linked beaded agarose in Superose® columns, can interact with hydrophobic 

parts of the protein if the wrong detergent or the wrong amount of detergent is used. 

Membrane proteins are a lot less stable in a polar/aqueous environment and tend not 
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to stay monomeric in solution. Hydrophobic interactions between proteins minimise 

the number of water molecules in contact with apolar protein surfaces, leading to 

aggregation, denaturation and precipitation. For the protein to remain monomeric, 

detergent-protein interactions must overcome protein-protein interactions. A 

successful purification, therefore, depends on the detergent properties and 

concentration (Popot, 2010).  

3.2 The sequence of the Colicin N immunity protein  

While Pugsley 1988 showed expression of the immunity protein and attempted 

overexpression of CNI immunity protein, his success was limited and there was no 

follow-up for this work. The CNI sequence on the pCHAP vector, the vector from 

which ColN, its lysis gene and CNI are naturally expressed, has been re-sequenced 

by the Lakey group. Figure 12 - Figure 16 show the alignment of the nucleotide as 

well as the amino acid sequence. Minor mistakes in Pugsley’s sequencing led to a 

frame shift and a change in amino acid sequence, consequently causing him to 

choose a wrong N-terminus for CNI (Figure 12). Based on his sequence, Pugsley 

chose the longest possible polypeptide as the sequence for CNI with 131 amino 

acids and 15 245.2 Da. We propose that the correct polypeptide starts much earlier 

but because Pugsley’s sequence contains a frame shift of two bases the amino acid 

sequence deviates from the newly proposed sequence and leads to a truncated 

polypeptide (Figure 12 and Figure 15), resulting in a polypeptide which is 11 074.0 

Da, with 96 amino acids.  

An alignment of Pugsley’s and the newly proposed amino acid sequence for CNI 

shows how the sequencing mistakes result in a truncated protein which is missing a 

large part of the N-terminus (Figure 15), including the first transmembrane helix. 

Pugsley proposed that CNI belongs to the E1-type group of colicin immunity proteins 

to pore formers because it has three transmembrane helices. Based on the revised 

sequence we propose that it belongs to the A-type group because it has 4 

transmembrane helices. This is supported by the high sequence similarity with the 

other group A colicins such as Colicin A (ColA) and Colicin B (ColB), with which 

ColN-P has clear homology.  

The newly proposed sequences (Figure 14) have been published in Stroukova and 

Lakey, 2015 (in press and attached in appendix) but not yet deposited in the NCBI 
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data base. The activity of the protein produced from this sequence was confirmed 

before this project was started by previous members of the Lakey group (Fridd et al. 

(2002) and unpublished personal communication), although, the sequencing mistake 

was only recently clarified. The preceding work benefited from the cloning of a larger 

fragment which included the full sequence of not only CNI but also the gene coding 

for Colicin N. Fridd et al. (2002) showed that the recombinant expression of Colicin A 

and N or their basic domains required the respective immunity proteins to be present 

because overexpression is otherwise toxic to the cells. However, the precise activity 

of protein produced from this newly proposed sequence has been extended and 

confirmed in this thesis.  
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Pugsley1988_NG_034343.1      ATGGATATAAAAGACAGAAATAAGATATCAAAAAAAATATCATTCAGTCT 50 

Lakey2011                    ATGGATATAAAAGACAGAAATAAGATATCAAAAAAAATATCATTCAGTCT 50 

                              

Pugsley1988_NG_034343.1      TCTGCTCTTACTTTCCCCATTCGCATTAATATTTTTCAGTTATAATAATG 100 

Lakey2011                    TCTGCTCTTACTTTCCCCATTCGCATTAATATTTTTCAGTTATAATAATG 100 

                              

Pugsley1988_NG_034343.1      CACAAT--ACACTCCTCGAAAAAATCATCGCATACCTATCCCTACCAGGA 148 

Lakey2011                    CACCAATACCACTCCTCGAAAAAATCATCGCATACCTATCCCTACCAGGA 150 

                                * **** 

Pugsley1988_NG_034343.1      TTTCATTCATTAAACAACCCGCCCCTAAGCGAAGCATTCAATCTCTATGT 198 

Lakey2011                    TTTCATTCATTAAACAACCCGCCCCTAAGCGAAGCATTCAATCTCTATGT 200 

 

Pugsley1988_NG_034343.1      TCATACAGCCCCTTTAGCTGCAACCAGCTTATTCATATTCACACACAAAG 248 

Lakey2011                    TCATACAGCCCCTTTAGCTGCAATCAGCTTATTCATATTCACACACAAAG 250 

                                                    * 

Pugsley1988_NG_034343.1      AATTAGAGTTAAAACCAAAGTCGTCACCTCTGCGGGCACTAAAGATATTA 298 

Lakey2011                    AATTAGAGTTAAAACCAAAGTCGTCACCTCTGCGGGCACTAAAGATATTA 300 

 

Pugsley1988_NG_034343.1      ACTCCTTTCACTATTCTTTATATATCCATGATATACTGTTTCTTGCTAAC 348 

Lakey2011                    ACTCCTTTCACTATTCTTTATATATCCATGATATACTGTTTCTTGCTAAC 350 

 

Pugsley1988_NG_034343.1      TGACACAGAACTAACCTTGTCATCAAAAACATTTGTATTAATAGTCAAAA 398 

Lakey2011                    TGACACAGAACTAACCTTGTCATCAAAAACATTTGTATTAAT-GTCAAAA 399 

                                                                       ** 

Pugsley1988_NG_034343.1      AACGATCTGTTTTTGTCTTTTTTCTATATAACACTATATATTGGGATATA 448 

Lakey2011                    AACGATCTGTTTTTGTCTTTTTTCTATATAACACTATATATTGGGATATA 449 

 

Pugsley1988_NG_034343.1      TATATTCACATATTTGTACTTTTGGTTCCTTATAGGAACATATAAGCTAT 498 

Lakey2011                    TATATTCACATATTTGTACTTTTGGTTCCTTATAGGAACATATAAGCTAT 499 

 

Pugsley1988_NG_034343.1      TTACCAGGGGAGGAATACTCCCCTGACAC 527 

Lakey2011                    TTACCAGGGGAGGAATACTCCGTCGACAC 528 

                                                  *** 
 

Figure 12: The resequenced CNI gene from the natural pCHAP4 vector (NCBI NG_034343.1, Pugsley (1987a) and Pugsley (1988)) 
demonstrating the mistakes in the published sequence, resulting in two frame shifts and several wrong bases. (*) indicates changes. 
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          T  K  G  S  Q  R  G  S  F  D  L  L  L  N  F  N  P  V  S  L     F1 

           Q  K  G  L  K  E  D  P  L  I  F  Y  L  I  S  T  L  L  V  W    F2 

            K  R  V  S  K  R  I  L  *  S  F  T  *  F  Q  P  C  *  S  G   F3 

        1 ACAAAAGGGTCTCAAAGAGGATCCTTTGATCTTTTACTTAATTTCAACCCTGTTAGTCTG 60 
 

          D  D  D  D  G  A  T  V  P  P  F  T  S  R  M  *  L  T  *  H     F1 

           M  M  M  M  E  Q  Q  S  L  L  S  H  H  G  C  D  *  P  D  M    F2 

            *  *  *  W  S  N  S  P  S  F  H  I  T  D  V  I  D  L  T  C   F3 

       61 GATGATGATGATGGAGCAACAGTCCCTCCTTTCACATCACGGATGTGATTGACCTGACAT 120 
 

          A  L  S  V  M  I  K  N  K  I  N  K  I  F  P  H  I  I  F  N     F1 

           H  *  V  S  *  *  K  T  R  L  I  K  F  S  H  T  *  F  S  T    F2 

            T  K  C  H  D  K  K  Q  D  *  *  N  F  P  T  H  N  F  Q  P   F3 

      121 GCACTAAGTGTCATGATAAAAAACAAGATTAATAAAATTTTCCCACACATAATTTTCAAC 180 
 

          H  P  K  K  R  T  W  I  *  K  T  E  I  R  Y  Q  K  K  Y  H     F1 

           I  Q  R  N  E  H  G  Y  K  R  Q  K  *  D  I  K  K  N  I  I    F2 

            S  K  E  T  N  M  D  I  K  D  R  N  K  I  S  K  K  I  S  F   F3 

      181 CATCCAAAGAAACGAACATGGATATAAAAGACAGAAATAAGATATCAAAAAAAATATCAT 240 
                 

          S  V  F  C  S  Y  F  P  H  S  H  *  Y  F  S  V  I  I  M  H     F1 

           Q  S  S  A  L  T  F  P  I  R  I  N  I  F  Q  L  *  *  C  T    F2 

            S  L  L  L  L  L  S  P  F  A  L  I  F  F  S  Y  N  N  A  Q   F3 

      241 TCAGTCTTCTGCTCTTACTTTCCCCATTCGCATTAATATTTTTCAGTTATAATAATGCAC 300 
                    

          N  T  L  L  E  K  I  I  A  Y  L  S  L  P  G  F  H  S  L  N     F1 

           I  H  S  S  K  K  S  S  H  T  Y  P  Y  Q  D  F  I  H  *  T    F2 

            Y  T  P  R  K  N  H  R  I  P  I  P  T  R  I  S  F  I  K  Q   F3 

      301 AATACACTCCTCGAAAAAATCATCGCATACCTATCCCTACCAGGATTTCATTCATTAAAC 360 
          

          N  P  P  L  S  E  A  F  N  L  Y  V  H  T  A  P  L  A  A  T     F1 

           T  R  P  *  A  K  H  S  I  S  M  F  I  Q  P  L  *  L  Q  P    F2 

            P  A  P  K  R  S  I  Q  S  L  C  S  Y  S  P  F  S  C  N  Q   F3 

      361 AACCCGCCCCTAAGCGAAGCATTCAATCTCTATGTTCATACAGCCCCTTTAGCTGCAACC 420 
 

          S  L  F  I  F  T  H  K  E  L  E  L  K  P  K  S  S  P  L  R     F1 

           A  Y  S  Y  S  H  T  K  N  *  S  *  N  Q  S  R  H  L  C  G    F2 

            L  I  H  I  H  T  Q  R  I  R  V  K  T  K  V  V  T  S  A  G   F3 

      421 AGCTTATTCATATTCACACACAAAGAATTAGAGTTAAAACCAAAGTCGTCACCTCTGCGG 480 
 

          A  L  K  I  L  T  P  F  T  I  L  Y  I  S  M  I  Y  C  F  L     F1 

           H  *  R  Y  *  L  L  S  L  F  F  I  Y  P  *  Y  T  V  S  C    F2 

            T  K  D  I  N  S  F  H  Y  S  L  Y  I  H  D  I  L  F  L  A   F3 

      481 GCACTAAAGATATTAACTCCTTTCACTATTCTTTATATATCCATGATATACTGTTTCTTG 540 
 

          L  T  D  T  E  L  T  L  S  S  K  T  F  V  L  I  V  K  K  R     F1 

           *  L  T  Q  N  *  P  C  H  Q  K  H  L  Y  *  *  S  K  N  D    F2 

            N  *  H  R  T  N  L  V  I  K  N  I  C  I  N  S  Q  K  T  I   F3 

      541 CTAACTGACACAGAACTAACCTTGTCATCAAAAACATTTGTATTAATAGTCAAAAAACGA 600 
 

          S  V  F  V  F  F  L  Y  N  T  I  Y  W  D  I  Y  I  H  I  F     F1 

           L  F  L  S  F  F  Y  I  T  L  Y  I  G  I  Y  I  F  T  Y  L    F2 

            C  F  C  L  F  S  I  *  H  Y  I  L  G  Y  I  Y  S  H  I  C   F3 

      601 TCTGTTTTTGTCTTTTTTCTATATAACACTATATATTGGGATATATATATTCACATATTT 660 
 

          V  L  L  V  P  Y  R  N  I  *  A  I  Y  Q  G  R  N  T  P  L     F1 

           Y  F  W  F  L  I  G  T  Y  K  L  F  T  R  G  G  I  L  P  *    F2 

            T  F  G  S  L  *  E  H  I  S  Y  L  P  G  E  E  Y  S  P  D   F3 

      661 GTACTTTTGGTTCCTTATAGGAACATATAAGCTATTTACCAGGGGAGGAATACTCCCCTG 720 
 

          T  L  I  S  S  N  N  T  R  Y  N  V  I  Y  I  R  N  S  I  C     F1 

           H  *  Y  H  R  I  T  L  D  I  M  L  F  I  F  E  T  R  F  A    F2 

            T  N  I  I  E  *  H  *  I  *  C  Y  L  Y  S  K  L  D  L  X   F3 

      721 ACACTAATATCATCGAATAACACTAGATATAATGTTATTTATATTCGAAACTCGATTTGC 780 

 

Figure 13: CNI sequence published by Pugsley (1988) translated into all 3 frames. 
Pugsley chose the longest possible polypeptide as the sequence for CNI with 131 
amino acids and 15 245.2 Da (red). The correct polypeptide starts much earlier 
(green) but using Pugsley’s sequence, is much shorter (green: 11 074.0 Da, 96 
amino acids) due to the frame shift causing an incorrect premature stop codon. 
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          R  R  K  K  G  S  Q  E  D  P  L  I  F  Y  L  I  S  T  P  V     F1 

           V  E  K  K  D  L  K  R  I  L  *  S  F  T  *  F  Q  P  L  L    F2 

            *  K  K  R  I  S  R  G  S  F  D  L  L  L  N  F  N  P  C  *   F3 

        1 CGTAGAAAAAAAGGATCTCAAGAGGATCCTTTGATCTTTTACTTAATTTCAACCCCTGTT 60 

          

          S  L  D  D  D  D  G  A  T  V  P  P  F  T  S  R  M  *  L  T     F1 

           V  W  M  M  M  M  E  Q  Q  S  L  L  S  H  H  G  C  D  *  P    F2 

            S  G  *  *  *  W  S  N  S  P  S  F  H  I  T  D  V  I  D  L   F3 

       61 AGTCTGGATGATGATGATGGAGCAACAGTCCCTCCTTTCACATCACGGATGTGATTGACC 120 

                                                                  -35 
          *  H  A  L  S  V  M  I  K  N  K  I  N  K  I  F  P  H  I  I     F1 

           D  M  H  *  V  S  *  *  K  T  R  L  I  K  F  S  H  T  *  F    F2 

            T  C  T  K  C  H  D  K  K  Q  D  *  *  N  F  P  T  H  N  F   F3 

      121 TGACATGCACTAAGTGTCATGATAAAAAACAAGATTAATAAAATTTTCCCACACATAATT 180 

                           -10                  Transcription start 
          F  N  H  P  K  K  A  T  W  I  *  K  T  E  I  R  Y  Q  K  K     F1 

           S  T  I  Q  R  K  Q  H  G  Y  K  R  Q  K  *  D  I  K  K  N    F2 

            Q  P  S  K  E  S  N  M  D  I  K  D  R  N  K  I  S  K  K  I   F3 

      181 TTCAACCATCCAAAGAAAGCAACATGGATATAAAAGACAGAAATAAGATATCAAAAAAAA 240 

                       RBS              start of coding 
          Y  H  S  V  F  C  S  Y  F  P  H  S  H  *  Y  F  S  V  I  I     F1 

           I  I  Q  S  S  A  L  T  F  P  I  R  I  N  I  F  Q  L  *  *    F2 

            S  F  S  L  L  L  L  L  S  P  F  A  L  I  F  F  S  Y  N  N   F3 

      241 TATCATTCAGTCTTCTGCTCTTACTTTCCCCATTCGCATTAATATTTTTCAGTTATAATA 300 

 

          M  H  Q  Y  H  S  S  K  K  S  S  H  T  Y  P  Y  Q  D  F  I     F1 

           C  T  N  T  T  P  R  K  N  H  R  I  P  I  P  T  R  I  S  F    F2 

            A  P  I  P  L  L  E  K  I  I  A  Y  L  S  L  P  G  F  H  S   F3 

      301 ATGCACCAATACCACTCCTCGAAAAAATCATCGCATACCTATCCCTACCAGGATTTCATT 360 

           

          H  *  T  T  R  P  *  A  K  H  S  I  S  M  F  I  Q  P  L  *     F1 

           I  K  Q  P  A  P  K  R  S  I  Q  S  L  C  S  Y  S  P  F  S    F2 

            L  N  N  P  P  L  S  E  A  F  N  L  Y  V  H  T  A  P  L  A   F3 

      361 CATTAAACAACCCGCCCCTAAGCGAAGCATTCAATCTCTATGTTCATACAGCCCCTTTAG 420 

           

          L  Q  S  A  Y  S  Y  S  H  T  K  N  *  S  *  N  Q  S  R  H     F1 

           C  N  Q  L  I  H  I  H  T  Q  R  I  R  V  K  T  K  V  V  T    F2 

            A  I  S  L  F  I  F  T  H  K  E  L  E  L  K  P  K  S  S  P   F3 

      421 CTGCAATCAGCTTATTCATATTCACACACAAAGAATTAGAGTTAAAACCAAAGTCGTCAC 480 

 

          L  C  G  H  *  R  Y  *  L  L  S  L  F  F  I  Y  P  *  Y  T     F1 

           S  A  G  T  K  D  I  N  S  F  H  Y  S  L  Y  I  H  D  I  L    F2 

            L  R  A  L  K  I  L  T  P  F  T  I  L  Y  I  S  M  I  Y  C   F3 

      481 CTCTGCGGGCACTAAAGATATTAACTCCTTTCACTATTCTTTATATATCCATGATATACT 540 

 

          V  S  C  *  L  T  Q  N  *  P  C  H  Q  K  H  L  Y  *  C  Q     F1 

           F  L  A  N  *  H  R  T  N  L  V  I  K  N  I  C  I  N  V  K    F2 

            F  L  L  T  D  T  E  L  T  L  S  S  K  T  F  V  L  M  S  K   F3 

      541 GTTTCTTGCTAACTGACACAGAACTAACCTTGTCATCAAAAACATTTGTATTAATGTCAA 600 

 

          K  T  I  C  F  C  L  F  S  I  *  H  Y  I  L  G  Y  I  Y  S     F1 

           K  R  S  V  F  V  F  F  L  Y  N  T  I  Y  W  D  I  Y  I  H    F2 

            N  D  L  F  L  S  F  F  Y  I  T  L  Y  I  G  I  Y  I  F  T   F3 

      601 AAAACGATCTGTTTTTGTCTTTTTTCTATATAACACTATATATTGGGATATATATATTCA 660 

 

          H  I  C  T  F  G  S  L  *  E  H  I  S  Y  L  P  G  E  E  Y     F1 

           I  F  V  L  L  V  P  Y  R  N  I  *  A  I  Y  Q  G  R  N  T    F2 

            Y  L  Y  F  W  F  L  I  G  T  Y  K  L  F  T  R  G  G  I  L   F3 

      661 CATATTTGTACTTTTGGTTCCTTATAGGAACATATAAGCTATTTACCAGGGGAGGAATAC 720 

 

          S  V  D  T                                                     F1 

           P  S  T  X                                                    F2 

            R  R  H                                                      F3 

      721 TCCGTCGACAC 731 

 

Figure 14: Newly proposed CNI nucleotide sequence translated into all 3 possible 
frames. Frame 3 contains the correct polypeptide sequence (indicated green). 
Transcriptional elements (-35 site, -10 site and transcription start) as well as the 
ribosome binding site (RBS) and the first amino acid are indicated bold and 
underlined. The transcriptional elements have been determined using free 
bioinformatics software3.  

                                            
3
http://www.fruitfly.org/seq_tools/promoter.html and 

http://linux1.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb 

http://www.fruitfly.org/seq_tools/promoter.html
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Green_Pugsley1988      MDIKDRNKISKKISFSLLLLLSPFALIFFSYNNA---------------QYTPRKN---- 41 

correct_Lakey2011      MDIKDRNKISKKISFSLLLLLSPFALIFFSYNNAPIPLLEKIIAYLSLPGFHSLNNPPLS 60 

 

Green_Pugsley1988      -------HRIPIPTRISFIK-----QPAPKRS-IQSLCSYSPFSCNQLIHIH-------T 81 

correct_Lakey2011      EAFNLYVHTAPLAAISLFIFTHKELELKPKSSPLRALKILTPFTILYISMIYCFLLTDTE 120 

 

Green_Pugsley1988      QRIRVKTKVVTSAGN----------------------------------------- 96 

correct_Lakey2011      LTLSSKTFVLMSKNDLFLSFFYITLYIGIYIFTYLYFWFLIGTYKLFTRGGILRRH 176 
 

Figure 15: Alignment of truncated polypeptide (green in Figure 12) and proposed amino acid sequence. The amino acid sequence 
deviates following the frame shift, which happens around 303 – 305 in the nucleotide sequence (Figure 12).  

 

Pugsley1988      -----------------------------MHN----TLLEKIIAYLSLPGFHSLNNPPLS 27 

Lakey2011        MDIKDRNKISKKISFSLLLLLSPFALIFFSYNNAPIPLLEKIIAYLSLPGFHSLNNPPLS 60 

                                                *     *********************** 

 

Pugsley1988      EAFNLYVHTAPLAATSLFIFTHKELELKPKSSPLRALKILTPFTILYISMIYCFLLTDTE 87 

Lakey2011        EAFNLYVHTAPLAAISLFIFTHKELELKPKSSPLRALKILTPFTILYISMIYCFLLTDTE 120 

                 ************** ********************************************* 

 

Pugsley1988      LTLSSKTFVLIVKKRSVFVFFLYNTIYWDIYIHIFV----LLVPYRNI--------- 131 

Lakey2011        LTLSSKTFVLMSKN-DLFLSFFYITLYIGIYIFTYLYFWFLIGTYKLFTRGGILRRH 176 

                 **********  *    *  * * * *  ***        *   *             

Figure 16: Alignment of Pugsley’s and the newly proposed amino acid sequence for CNI. (*) indicates similarities. Underlined letters 
indicate predicted transmembrane α-helices. Pugsley’s sequence is shorter and is missing the first transmembrane helix.  
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3.3 Overexpression of polyhistidine tagged CNI 

The simplest way of purifying a protein is to attach a small purification tag, like a poly-

histidine-tag, and purify the protein using affinity chromatography, like IMAC. In order 

to express CNI, the above CNI sequence was synthesised by GeneArt as a fusion 

with a 6His-tag, using pBAD322 (Cronan, 2006) as a backbone vector. As the 

insertion mechanism of CNI into the inner membrane is not known it was unclear 

whether an N-terminal or a C-terminal tag would be more beneficial or, indeed, make 

any difference for overexpression because CNI has no cleavable signal sequence, so 

both constructs were created. The pBAD322 vector is a low copy number vector 

which was designed as an expression system with an arabinose inducible promoter, 

where the amount of arabinose added regulated how much protein was expressed. 

This expression system was chosen because protein overexpression, and in 

particular membrane protein overexpression, can be a high burden to the cell 

metabolism and sometimes leads to toxic effects, resulting in poor cell growth or/and 

poor protein expression. BL21-AI E. coli cells are commercially available cells which 

are specifically designed for the overexpression of proteins from arabinose inducible 

expression systems and so these were chosen as hosts for an initial expression trial.  

3.3.1 Polyhistidine-tagged CNI activity 

The aim of the minimal inhibitory concentration (MIC) assay was to determine if the 

polyhistidine-tagged CNI is active and provides immunity against ColN to otherwise 

sensitive BL21-AI E. coli cells. The constructs pBAD322-Para-His-CNI (his-tag at N-

terminal) and pBAD322-Para-CNI-His (his-tag at C-terminal) were transformed into 

BL21-AI cells and an empty pBAD322 vector was used as a negative control.  

The MIC for CNI-6His and 6His-CNI was 100 nM ColN while it was 1000 times lower 

at 100 pM for the empty vector control. CNI-6His and 6His-CNI are both expressed 

and active. Both constructs were subsequently used for recombinant protein 

production and purification but yields sufficient for further in vitro analysis were not 

achieved. Here, purification attempts for 6His-CNI only are shown as examples.  
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Figure 17: Polyhistidine-tagged CNI is active and protects otherwise sensitive BL21-
AI cells against ColN. (A) No Colicin was added and culture growth is not significantly 
different. (B) When 10 pM of ColN were added, the culture viability of the empty 
vector control in comparison to the cultures expressing CNI is significantly reduced. 
(C) When 10 nM ColN were added, cultures expressing both versions of CNI are still 
viable while growth in the empty vector control is inhibited completely. The growth of 
BL21-AI cells expressing both versions of CNI is inhibited completely at 100 nM (not 
shown).  
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3.3.2 6HIS-CNI overexpression and protein aggregation 

After showing that 6His-CNI was active and therefore expressed in the membrane, 

purification was attempted using immobilised metal affinity chromatography (IMAC) 

with n-dodecyl-β-D-maltoside (DDM) and a sodium phosphate buffer. Various 

attempts at purifying 6His-CNI from different cultures were carried out but the yield 

was very poor and, based on SDS-PAGE and western blot analysis probing for the 

polyhistidine-tag, the purified protein was mainly aggregated. Figure 18 shows an 

example of the purification fractions. The faint band at the top of the gel may also 

result from unspecific binding to large aggregates. It was not clear if these 

aggregates are artefacts of SDS-PAGE and whether they exist in solution. Due to the 

very low yield it was difficult to assess this further. Membrane proteins are likely to 

aggregate if an unsuitable detergent is used for solubilisation and so N-

lauroylsarcosine, Genapol-X080 and Triton-X100 were used for further purification 

attempts in comparison to DDM.  

 

Figure 18: 6His-CNI purification. (A) Coomassie stained SDS-PAGE gel and (B) 
western blot of fractions samples from 6His-CNI purification using DDM. Protein 
transfer is greatly improved after protocol optimisation and the western blot probably 
shows the presence of 6His-CNI in the aggregates. 

3.3.3  Detergent scouting 

Four different detergents, n-dodecyl-β-D-maltoside, Genapol–X080, Triton-X100 and 

N-Lauroylsarcosine, were compared for their ability to solubilise 6His-CNI. The 

purification fractions were analysed using SDS-PAGE and a western blot (Figure 19). 

The Coomassie-stained SDS-PAGE gel (Figure 19A) shows differently sized bands 

in all four elutions and some bands are of approximately the expected size (21.62 
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kDa) for 6His-CNI but they could not be identified using the western blot and are 

therefore probably contaminants. The western blot only shows bands in the flow 

through lanes, which are likely caused by unspecific antibody binding (Figure 19B). 

Neither of the detergents tested seems to be particularly well suited to purify His-CNI.  

 

Figure 19: 6His-CNI purified with n-dodecyl-β-D-maltoside, Genapol–X080, Triton-
X100 and N-Lauroylsarcosine. (A) Coomassie-stained SDS-PAGE gel and (B) 
western blot probing for the polyhistidine-tag show purification fractions. Lanes: 1) 
flow-through, 2) wash, 3) elution. The expected size of 6His-CNI is 21.62 kDa. 
Although the SDS-PAGE gel shows very faint bands of approximately the right size, 
the western blot only detects very faint bands in the flow-through lanes, which are 
probably due to unspecific anti-body binding.  

In conclusion, 6His-CNI could not be purified in an amount suitable for further studies 

and purification attempts with other detergents than DDM did not lead to an improved 

yield. In fact, only in vivo activity data indicated that the protein was produced (3.3.1). 

Purification attempts with the C-terminally tagged CNI-His were also carried out but 

were equally unsuccessful (data not shown). A version of CNI fused to GFP was 

used for further purification attempts to make CNI easier to track during production 

and purification (Drew et al., 2006; Carpenter et al., 2008; Hammon et al., 2009).   

3.4 Overexpression of CNI-FLAG-TCS-sfGFP-6His and thrombin cleavage 

3.4.1 Creating CNI-FLAG-TCS-sfGFP-6His 

As well as creating a His-tagged CNI, a construct where CNI is C-terminally fused to 

superfolder GFP (sfGFP) and a polyhistidine –tag (6His) was also synthesised by 

GeneArt for in vivo localisation using fluorescent microscopy (Chapter 5). During my 
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Masters of Research Project at Newcastle University, it was established that this 

construct was active and could be overexpressed, however, purification still remained 

difficult. To continue this work, it was decided to tag CNI with a FLAG-tag and insert a 

thrombin cleavage site (TCS) between CNI-FLAG and sfGFP-6His (Figure 23) so that 

CNI could be cleaved from sfGFP-6His and characterised on its own. The thrombin 

cleavage site and the FLAG-tag were inserted using site-directed mutagenesis with 

partially annealing primers. Following successful mutagenesis, the overexpression 

was tested by assessing if it was toxic and if the produced protein was active. 

Membrane protein gene overexpression can be toxic due to the additional metabolic 

burden and the additional protein in an already crowded environment of the E. coli 

inner membrane. Culture viability is significantly reduced when CNI-FLAG-TCS-

sfGFP-6His is expressed in comparison to the empty vector control cells which do not 

express the protein fusion (Figure 20). However, the protein expressing cultures still 

grow and overexpression may still be successful although culture volumes might 

have to be increased to compensate for reduced cell growth.  
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Figure 20: CNI-FLAG-TCS-sfGFP-6His over expression is toxic. (A) No induction with 
arabinose. CNI-FLAG-TCS-sfGFP-6His expressing BL21-AI cells and the empty 
vector control grow in the same way. (B) CNI-FLAG-TCS-sfGFP-6His overexpression 
induced with 0.2 % arabinose reduces culture viability through the additional 
metabolic burden. Cultures were grown in flasks at 37 °C, induced with arabinose at 
the start of culture growth in the plates and transferred to 96 well plates and a plate 
reader for recording over 22 h.  

3.4.2 CNI-FLAG-TCS-sfGFP-6His activity 

When overexpressing and modifying a protein with tags, especially, when, like here, 

the tags are larger than the protein itself, it is essential to determine if the fusion 

protein is still active. Protein activity proves that the protein is expressed, folded 

correctly and in this case, inserted correctly into its site of action, the E. coli inner 

membrane. The activity of CNI-FLAG-TCS-sfGFP-6His has been tested with a liquid 

culture killing assay (Figure 21). When no ColN is added, cells expressing CNI-

FLAG-TCS-sfGFP-6His and the empty vector control show the same culture viability. 

Increasing ColN concentrations increased the lag times for both BL21-AI cells 
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expressing CNI-FLAG-TCS-sfGFP-6His and the empty vector control. All cultures 

initially contain the same amount of cells, estimated through optical density at OD600 

nm = 0.5. When colicin is added, the number of cells is greatly reduced, depending on 

antibiotic potency and concentration. Cultures are subsequently diluted 1:100, in 

order to dilute out the cell debris and the colicin to a hundredfold lower concentration. 

The optical density subsequently measured in the wells can almost entirely be 

attributed to living cells. The more cells are killed, the smaller is the inoculum for 

subsequent cultures during dilution and the longer it takes for visible growth, shown 

through well turbidity, to take off again. Therefore, the lethal impact of colicin addition 

is directly related to the culture’s lag time. This is comparable to but much easier and 

accurate than the cell survival assay of Cavard and Lazdunski (1981). CNI-FLAG-

TCS-sfGFP-6His activity was shown through a shorter lag time in comparison to the 

empty vector control at any ColN concentration higher than 1 pM. The greatest 

difference in lag time (ca. 8 h) between CNI-FLAG-TCS-sfGFP-6His expressing 

BL21-AI cells and the empty vector control is with 100 pM ColN. Given that the 

doubling time here is ca. 40 min, this corresponds to ca. 12 generations which 

corresponds to a factor of 212 = 4096. After treatment with 100 pM ColN, there are 

4000 times more cells in the immune culture than there are in the sensitive culture, 

which demonstrates a significant immunising effect of CNI-FLAG-TCS-sfGFP-6His. 

Cascales et al. (2007) reports that cells expressing immunity proteins protect against 

104 -107 times the concentration of colicin needed to kill sensitive cells. Here, CNI-

FLAG-TCS-sfGFP-6His protects up to 103 times the ColN concentration needed to 

kill sensitive cells. ColN concentrations higher than 1 µM have not been tested with 

this construct but have been tested with a different construct (Figure 35) and show 

that C41 cells expressing CNI-3C-Halo7-6His are killed by 5 µM. The lethal 

concentration of ColN for cells expressing CNI therefore lies between 1 µM and 5 µM 

and, while the lethal concentration of ColN to sensitive BL21-AI cells lies between 

100 pM and 1 nM. The immunising factor is therefore in the range reported by 

Cascales et al. (2007).   
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Figure 21: CNI-FLAG-TCS-sfGFP-6His protects otherwise sensitive cells against the 
lethal effect of ColN. (A) Empty vector control BL21-AI cells and (B) BL21-AI cells 
expressing CNI-FLAG-TCS-sfGFP-6His are affected by the increasing toxicity caused 
by increasing ColN concentrations. Given that the initial cell count is the same, the 
more ColN is added, the more cells are killed and the longer it takes for the cultures 
to reach a detectable exponential growth phase. Hence, increasing ColN 
concentrations lead to longer lag times. (C) CNI-FLAG-TCS-sfGFP-6His expressing 
BL21-AI cells and the empty vector control show the greatest difference in lag time 
(ca. 8 h) at 100 pM ColN. 
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3.4.3 CNI-FLAG-TCS-sfGFP-6His purification 

After establishing that toxicity caused by overexpression was tolerable and the fusion 

protein was still active, the protein fusion was purified using a sodium phosphate 

buffer containing 2 % DM (n-decyl-β-D-maltoside). Figure 22 shows samples of 

fractions from the purification of CNI-FLAG-TCS-sfGFP-6His in a Coomassie stained 

gel, an anti-polyhistidine western blot and an in-gel fluorescence image. 

Solubilisation and purification of the protein fusion were successful although the 

purified protein fusion shows some minor aggregation in the eluates while the protein 

fusion still embedded in the membrane does not (whole cell and pellet fractions). This 

might indicate that the detergent DM has limited success in mimicking the membrane 

environment of CNI. It is possible that lipids or other proteins or physical factors, such 

as a certain pH or electrical potential, are important to keep the CNI soluble. A typical 

yield from a purification using these conditions was 2 mg from 5 l of culture. For the 

first time, purification of CNI in a fusion with GFP has been successful, although the 

individual parts of the process, such as the choice of the detergent, the buffer 

composition or the expression strain need further optimising. 
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Figure 22: Purification of CNI-FLAG-TCS-sfGFP-6His. Purified from E.coli BL21-AI 
cells using 2 % DM, grown in LB at 37 °C. (A) Coomassie stained gel showing 
samples of fractions from the purification. (B) Western blot probing for the 
polyhistidine-tag at the C-terminal end of the protein fusion. (C) In-gel fluorescence 
(excitation at 485 nm for GFP) using a Typhoon imager. The purified protein fusion 
shows some minor aggregation (elutions) while the protein fusion still embedded in 
the membrane does not (whole cell and pellet). 
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3.4.4 Thrombin cleavage of CNI-FLAG-TCS-sfGFP-6His 

Even though the purified protein showed signs of aggregation in the SDS-PAGE gel 

(Figure 22), it was unclear if this was a gel artefact because the protein solution 

looked clear to the eye and did not yield any visible precipitate upon spinning at 20 

000 g in a bench top centrifuge. Therefore, protease cleavage along the previously 

introduced thrombin cleavage side (TCS, Figure 23) was carried out and anti-

polyhistidine-tag as well as anti-FLAG-tag western blots were carried out to detect 

both cleavage products and establish cleavage efficiency. A cleavage control that 

was included in the commercial kit was used as a positive control to ensure thrombin 

was still active in the detergent containing buffer. The control proteins and thrombin 

have no tags. In the cleaved control lane of the Coomassie stained gel two cleavage 

products and thrombin are clearly visible, proving that thrombin is functional in the 

protein purification buffer (Figure 23B).  

Cleavage of the protein fusion was only partially successful as some of the 

uncleaved fusion is still visible (white arrows, Figure 23). However, both cleavage 

products were also detected and more clearly visible in the blots than in the 

Coomassie-stained gel. Hence, thrombin cleavage was successful but still needed 

optimisation as some of the full length protein fusion is still present and there seems 

to be more of the sfGFP-6His-tag detected than of the cleaved CNI-FLAG protein. 

Apart from optimising the cleavage buffer composition and maybe the temperature 

during cleavage and the protease to protein fusion ratio, a more efficient protease 

may be needed.  

The Coomassie-stained gel as well as the blots contain acid-denatured sample. 

Acetic acid has been used instead of heat denaturation, which is often used for 

soluble proteins, to unfold the protein structure. Heat denaturation is not commonly 

used to denature membrane proteins, especially α-helical proteins, because it 

induces aggregation. Acid treatment with acetic acid, a relatively safe alternative to 

trifluoroacetic acid (Sagne et al., 1996), has been a useful method to unfold the 

structure of the protein fusion shortly before SDS-PAGE, allowing for a better 

detection with antibodies during the western blot and an assessment of the actual 

size of the protein. The protein bands shift up on the SDS-PAGE gel when acid is 

added and it appears as though there is, in total, more protein in the acid denatured 

lanes. In fact, the amount of protein in the first 4 lanes is the same but more protein is 
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detected in the acid treated samples because more epitopes are exposed. Acid 

treatment in the presence of SDS-PAGE loading buffer is therefore a good way of 

unfolding membrane proteins without heat. Unfortunately, the change in pH also 

leads to some aggregation but the greatly improved detection and the demonstration 

of actual size (Rath et al., 2009) outweighs the disadvantages in this case. Only the 

protein fusion and the cleaved CNI-FLAG shift up in the acid denatured samples in 

comparison to the folded samples because they contain highly hydrophobic regions, 

while sfGFP-6His is unaffected by the acid addition. It is possible that the epitopes for 

the antibodies are much more occluded either by the protein fold or detergent 

molecules when no acid is added. 
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Figure 23: Thrombin cleavage of CNI-FLAG-TCS-GFP-6His. (A) CNI-FLAG-TCS-
GFP-6His can be cleaved using thrombin at the thrombin cleavage site (TCS) 
between the FLAG-tag and sfGFP, giving products of ca. 22 kDa and ca. 27 kDa. (B) 
Coomassie stained gel showing cleaved and not cleaved CNI-FLAG-TCS-GFP-6His 
in a folded and acid denatured form. A cleavage control protein from the commercial 
kit was included to show thrombin is active in this buffer composition. A sample of 
thrombin protease was included to show it is pure and monomeric and for size 
comparison. (C) Anti-polyhistidine-tag western blot showing the protein fusion (white 
arrows) and cleaved sfGFP-6His (green circles). (D) Anti-FLAG-tag western blot 
showing the protein fusion (white arrows) and cleaved CNI-FLAG (red circles). 
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3.5 Protein solubilisation and stabilisation 

3.5.1 Detergent screening using fluorescent size exclusion chromatography  

Arguably, one of the most crucial parts in purifying membrane proteins is to choose 

the right detergent for solubilisation and stabilisation. Using a GFP-tagged version of 

CNI (CNI-FLAG-TCS-sfGFP-6His), 6 detergents were screened at the Membrane 

Proteins Laboratory (MPL, Harwell Research Complex, UK) using fluorescence size 

exclusion chromatography (FSEC, Hattori et al. (2012)), for their suitability to 

solubilise monomeric CNI. The MPL specialises in large scale membrane protein 

expression, purification and crystallization4. This GFP-tagged version of CNI is active 

in vivo (Figure 21). In preparation for FSEC, cell membranes from the same batch 

were homogenised in PBS at 4 °C. Aliquots of 900 μl were mixed with detergent (final 

concentration: 1 %), incubated and agitated for 1 h at 4 °C and ultra-centrifuged to 

pellet non-solubilised material. The supernatants containing the solubilised 

membrane protein were used in FSEC. Figure 24 shows relative fluorescence peaks 

obtained from FSEC; the higher the fluorescence the more GFP-tagged CNI has 

been solubilised. It is assumed that earlier peaks show higher order protein 

structures such as aggregates and polymers, while later peaks show monomeric 

proteins. In order of efficacy, N-Lauroylsarcosine, Cymal 6 and DM seem to be the 

best detergents, while Triton – X100, DDM and LDAO are poor at solubilising and 

stabilising the protein fusion. N-Lauroylsarcosine is not useful for most biophysical 

studies because it is likely to denature proteins. Triton – X100, DDM and N-

Lauroylsarcosine were included in this screen because they have been used in the 

previous screen with 6 His-CNI (section 3.3.3) 

 

                                            
4
 http://www.diamond.ac.uk/Beamlines/Mx/MPL.html 
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Figure 24: Solubilisation of CNI-FLAG-TCS-sfGFP using different detergents at 1 %. 
The sample solubilised by lauroylsarcosine has saturated the fluorescence detector, 
resulting in a cut off curve. In order of purification efficiency, lauroylsarcosine is the 
best detergent followed by Cymal 6, DM, DDM, Triton-X100 and LDAO. LDAO 
completely fails to solubilise CNI-Flag-TCS-sfGFP-6His. The blank is a buffer control.  

3.5.2 Purification of CNI-FLAG-TCS-sfGFP-6His with Cymal 6 and thrombin 
cleavage 

Cymal 6 is the non-denaturing detergent that solubilised the most fusion protein 

(Figure 24) and was therefore used in a large scale purification. The protein fusion 

was solubilised using a sodium phosphate buffer containing 1 % Cymal 6 and 

purified using IMAC. This high concentration of Cymal 6 was crucial to allow 

solubilisation of the protein but was subsequently reduced to 0.09%, which equals 

three times the CMC of Cymal 6, for IMAC and cleavage. To the elution (Figure 25, 

lane 9), 476 μM DTT, 2.4 mM CaCl2  and 50 U thrombin were added in order to 

cleave the fusion protein while it was dialysed against Tris (pH = 7.2), 300 mM NaCl, 

10 % glycerol, 0.09 % Cymal 6. Unfortunately, most of the protein aggregated and 

precipitated during dialysis. The aggregate was dissolved in 100 % acetic acid and 

loaded for comparison (Figure 25, lane 10). Either Cymal 6 is able to solubilise but 

not suitable to stabilise the protein or the buffer exchange or the cleavage itself 

resulted in aggregation. Another cause for aggregation may be the high 

concentration of imidazole at 500 mM in Figure 25, lane 8.  
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Figure 25: Large scale purification of CNI-FLAG-TCS-sfGFP-6His using Cymal 6, 
displayed in a Coomassie-stained 4-12 % Bis-tris SDS-PAGE gel (A), 12% 
Coomassie-stained SDS-PAGE Tris-gel (B) and in-gel fluorescence image (excitation 
at  485 nm) of the 12 % SDS-PAGE Tris-gel (C). Purification was carried out using 
IMAC on Ni2+-NTA agarose. Lanes: 1: homogenised membrane in PBS, 2: solubilised 
membrane with 1 % Cymal 6, 3: load, 4: flow-through from IMAC, 5: Wash with a 
sodium phosphate buffer including 20 mM imidazole, 6: Wash with a sodium 
phosphate buffer including 50 mM imidazole, 7: Elution with a sodium phosphate 
buffer including 250 mM imidazole, 8: Elution with a sodium phosphate buffer 
including 500 mM imidazole, 9: supernatant after cleavage with thrombin and spin, 
10: Aggregate in acetic acid. The aggregation ladder showing differently sized 
aggregates for the purified proteins (lanes 7 - 9) is visible in the Coomassie-stained 
gels (A and B) clearly originates from the CNI-FLAG-TCS-sfGFP-6His fusion as it is 
also seen when looking at in gel fluorescence (C).  

The precipitated protein was spun down to determine what remained in solution 

(Figure 25, lane 9). With the remaining material now fully dialysed into the Tris 

thrombin cleavage buffer, cleavage was attempted again. The cleavage was not 

successful and more protein precipitated, maybe because Cymal 6, in contrast to the 

DM used in section 3.4.4 and Figure 23, is unsuitable to stabilise the protein fusion 

and potential cleavage products (Figure 26). However, even without the addition of 
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thrombin the purified protein seems to be unstable as both aggregation and 

degradation products are visible.  

 

Figure 26: Thrombin cleavage of Cymal 6 purified CNI-Flag-TCS-GFP-His. (A) 
Coomassie stained SDS-PAGE and (B) in-gel fluorescence image. Lanes contain 
thrombin concentrations: 1: 100 U/ml, 2: 50 U/ml, 3: 25 U/ml, 4:12.5 U/ml, 5: 6.3 U/ml, 
6: 3.1 U/ml, 7: 1.6 U/ml, 8: 0.8 U/ml, 9: 0.4 U/ml, 10: no thrombin.  1 μl of diluted 
thrombin was mixed with 9 µl of 41ug/ml and incubated for 16 h at 4 °C.   

3.6 Overexpression of pWALDO-CNI-TEV-eGFP-6His 

Following the unsuccessful cleavage with thrombin at MPL, a new construct was 

created where CNI was cloned into MPL’s pWALDO vector using InFusion cloning 

creating a CNI-TEVCS-GFP-8His fusion protein. “TEV” indicates the location of the 

TEV cleavage site between CNI and GFP-8His. TEV is a protease from the tobacco 

etch virus and may be more efficient at cleaving the protein fusion than thrombin. It 

can also be made in large quantities in house (Figure 28). Switching the vector also 

has potential advantages for increasing the protein yield by increasing expression 

levels. While pBAD322 is a low copy number vector with an arabinose inducible 

promoter, pWALDO is a high copy number vector with an IPTG inducible T7 

promoter. Also, this fusion includes 8 histidines in the C-terminal tag and may 

therefore bind better to the Ni+-NTA resin because it is more likely to protrude outside 

of the detergent micelles.   

The protein fusion expressed from this vector was active and apart from being used 

for protein production was also used to mutate the single cysteine residue of CNI and 

assess the activity of the C113S mutant. For a demonstration of activity through the 

protection of otherwise sensitive cells, refer to Chapter 4.   
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3.6.1 CNI-TEVCS-GFP-8His and CNIC113S-TEVCS-GFP-8His purification  

CNI-TEVCS-GFP-8His and CNIC113S-TEVCS-GFP-8His were overexpressed and 

purified using the Cymal 6 protocol used to purify CNI-FLAG-TCS-sfGFP-6His at 

MPL (section 3.5.2) with 1 % Cymal 6. It was hypothesised that the serine mutant 

may be less dimerised than the WT because possible disulphide bonds are 

prevented. A Coomassie-stained SDS-PAGE gel shows that there is no difference 

between the WT and the mutated CNI in terms of purification yield and stability 

(Figure 27). Both constructs show signs of aggregation and degradation. Some of the 

protein bound to the Ni+ - NTA resin remained attached to the beads and did not 

elute from the beads so some protein was lost during the purification process, which 

indicates again that Cymal 6 is not a suitable detergent to keep the protein soluble. 

The aggregates in the eluted protein were spun down and the protein remaining in 

solution was used for protease cleavage with TEV. Due to the aggregation 

consistently observed with Cymal 6, it was decided that based on the screen 

performed at MPL (Figure 24), DM would be the next best suitable detergent for 

solubilising any CNI fusion proteins in further purification attempts as the fluorescent 

signal peak is not as high as for Cymal but was narrower and could indicate 

monomeric protein in detergent micelles.  

 

Figure 27: CNI-TEV-eGFP-8His and CNIC113S-TEV-eGFP-8His mutant purification 
with 1 % Cymal 6. There is no difference between the WT and the mutated CNI in 
terms of purification yield and stability. Both constructs show signs of aggregation and 
degradation.  
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3.6.2 Protease cleavage with TEV protease 

TEV protease cleavage was optimized using a protocol provided by MPL, which was 

adapted from Blommel and Fox (2007). A large amount of TEV-6His, in total 120 mg, 

was purified during the first IMAC from 5 l of culture and a second IMAC was 

performed to remove contaminants. The purified protease was used to cleave CNI-

TEV-eGFP-8His and CNIC113S-TEV-eGFP-8His.  

 

Figure 28: TEV-6His purification using IMAC was carried out twice. (A) First IMAC 
after cell disruption. (B) Second IMAC using the pooled elutions from the first IMAC 
as load. Total yield 120 mg from 5 l of culture.  

CNI-TEV-eGFP-8His and CNIC113S-TEV-eGFP-8His were cleaved with TEV protease 

at 4 °C for 16 h (Figure 29). Cleavage results were visualised using SDS-PAGE and 
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in-gel fluorescence. Cleavage seems to have been successful because less of the 

monomer is present the more TEV protease is added. However, it is difficult to 

determine what the cleavage products are due to the aggregation and possible 

degradation products, of which many are also visible with in-gel fluorescence and 

therefore must contain eGFP-8His. The bands that could represent CNI in the 

Coomassie stained gels are very faint and are certainly not adequate for further use. 

This is similar to the results achieved with thrombin and therefore indicates that this 

might be a general characteristic of CNI and unlikely to be caused by protease 

degradation of CNI itself. However, CNI may become unstable when cleaved from its 

tag. There is no difference in stability or aggregation between CNI-TEV-eGFP-8His 

and CNIC113S-TEV-eGFP-8His.  

 

Figure 29: TEV cleavage of CNI-TEV-eGFP-8His and CNIC113S-TEV-eGFP-8His with 
TEV protease at 4 °C for 16 h. TEV protease was mixed with CNI-TEV-eGFP-8His 
(10 μl of 0.74 mg/ml) and CNIC113S-TEV-eGFP-8His (10 μl of 0.66 mg/ml) in molar 
ratios of 1:1, 5:1 and 10:1. Coomassie stained SDS-PAGE gel (A) and in-gel 
fluorescence image (C) of CNI-TEV-eGFP-8His after cleavage. Coomassie stained 
SDS-PAGE gel (B) and in-gel fluorescence image (D) of CNIC113S-TEV-eGFP-8His 
after cleavage. 
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3.7 Optimising the expression system 

3.7.1 Screening different tags, expression strains and media at OPPF, Harwell.  

As well as attempting to find a suitable detergent for solubilisation and stabilisation of 

the protein, the expression system was also further optimised to improve overall 

yield. This included the use of protein fusions which are widely used for protein 

stabilisation and solubilisation, such as maltose binding protein (MBP), Glutathione 

S-transferase (GST) or Promega’s Halo-tag (Los et al., 2008). A screen of the 

expression levels of different tags was performed at the Oxford Protein Production 

Facility UK5 (OPPF, Harwell Science Campus, UK) (Table 7). OPPF is a high-

throughput cloning and protein production facility, focused on optimising expression 

of difficult proteins and scale-up of protein production. Except for the C-terminal His-

tag, the 3C-GFP-tag and the Halo7-tag, all tags were N-terminal. All constructs were 

cloned into OPPF pOPIN vectors using InFusion cloning (Clontech) and transformed 

into E. coli strains C41, C43, Lemo21(DE3) or RosettaTM 2. The vector abbreviations 

for CNI and CNI-TEV-GFP expression in Table 7 correspond to the OPPF 

nomenclature on their website. 

Immunity proteins are known to interact with the pore-forming domains of colicins 

(Bishop et al., 1985; Mankovich et al., 1986; Benedetti et al., 1991a), and so ColN P-

domain was periplasmically co-expressed with CNI from a separate vector in case a 

CNI – ColN P-domain complex was more stable (Table 8). The vector abbreviations 

used for P-domain expression are shown in Table 8 and correspond to the OPPF 

nomenclature on their website. For co-expression of CNI fusions and P-domain from 

two different vectors in E. coli strains C41, C43 and Lemo21(DE3), the constructs 

where CNI was fused to the N- or C-terminal His-tag, N-His-GST or N-His-MBP were 

used.  

EGFP-His and pWaldo-CNI-TEV-eGFP-6His, until then the most efficient construct, 

were used as controls. All screens were performed in two different media, Overnight 

Express™ Instant TB Medium (TBO6) and Power Broth™ (PB7), in 3 ml cultures. PB 

cultures were grown at 37 °C, induced with 1 mM IPTG at OD600 nm = 0.5 and 

incubated over night at 20 °C. TBO is an auto-induction medium, so cultures were 

                                            
5
 https://www.oppf.rc-harwell.ac.uk/OPPF/ 

6
http://www.emdmillipore.com/life-science-research/overnight-express-instant-tb-medium/EMD_BIO-

71491/p_iYSb.s1O34EAAAEjBRp9.zLX 
7
 http://www.moleculardimensions.com/shopexd.asp?id=3455 

https://en.wikipedia.org/wiki/Glutathione_S-transferase
https://en.wikipedia.org/wiki/Glutathione_S-transferase
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grown at 37 °C during the day and 25 °C overnight. Cultures were harvested and the 

fusion proteins were purified using IMAC utilising the His-tag present on all 

constructs. Protein eluates were analysed qualitatively with SDS-PAGE. Ten gels in 

total were used for analysis; an example of this kind of gel is shown in Figure 30 (for 

other gels see appendix). All protein fusions which contained GFP and were 

examined separately using in-gel fluorescence at 510 nm. An example is shown in 

Figure 31 (for other gel see appendix). In-gel fluorescence identifies which constructs 

are overexpressed, the relative level of expression in comparison to other conditions 

and highlights protein degradation and some higher order structures. It also helps 

identifying proteins without a western blot. Constructs without additional solubilisation 

tags and fusion protein partners seem to break at the fusion point more easily than 

constructs with additional proteins. It is unclear why this is the case but possible that 

the bulk of protein is somehow sterically hindering proteases or, possibly, the three 

proteins are interacting and stabilising each other. ColN P-domain co-expression 

does not improve CNI-TEV-eGFP expression levels or stability. 
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Table 7: Protein and tag combination used during the overexpression screen, 
including the tag and protein fusion sizes. Vector names refer to nomenclature used 
by OPPF8. All were cloned into pOPIN vectors with spectinomycin (pOPINCD 
vectors) or ampicillin selection.  

Vector name Tag 
Tag MW in 

Da 

MW of fusions with 
CNI (20 431 Da) in 

Da 

Fusions with CNI-
TEV-GFP (49 882 

Da) 

pOPINCDE C-His 969 21 400 x 

pOPINCDF N-His 2 158 22 589 x 

pOPINS3C N-His-SUMO3C 13 213 33 644 63 095 

pOPINMSYB N-His-MSYB 16 268 36 699 66 150 

pOPINCDJ N-His-GST 27 954 48 385 77 836 

pOPINE-3C-eGFP eGFP-6His-C 28 645 49 076 x 

pOPINE-3C-HALO HALO7-6His-C 35 343 55 774 x 

pOPINCDM N-His-MBP 42 711 63 142 92 593 

 

Table 8: Periplasmic target sequences linked to ColN P-domain (in 23 Da) in pOPIN 
vectors with ampicillin selection for co-expression with CNI fusions in pOPINCD 
vectors. Vector names refer to nomenclature used by OPPF.  

Vector  Periplasmic target sequence 

pOPINO Omp A SS (co-express with CD vectors) 

pOPINP PelB SS (co-express with CD vectors) 

pOPINDsbA Dsb A SS (co-express with CD vectors) 

pOPINMalE PelB SS (co-express with CD vectors) 

                                            
8
 http://www.oppf.rc-harwell.ac.uk/OPPF/protocols/cloning.jsp 
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Figure 30: Example of a coomassie-stained gel showing CNI protein fusions purified by IMAC from E. coli Lemo21 and C41 cells, grown in 
TBO media. Constructs showing increased expression of correctly sized protein (Table 7) are highlighted red in the upper legend and 
indicated by red arrows. Where ColN P-domain (23kDa) is co-expressed, the signal sequence is given. Although ColN P-domain is 
coexpressed (purple square), it does not improve CNI expression. The eGFP control is indicated with a green square. See appendix for full set 
of expression screen gels. Numbers at the bottom indicate lane number.  
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Figure 31: In-gel fluorescence of purified GFP-tagged CNI fusion proteins, expressed in TBO media. SDS-PAGE gel identifies which 
constructs are overexpressed, the relative level of expression in comparison to other conditions and highlights protein degradation and some 
higher order structures. CNI-TEV-GFP is the previously used reference construct. Constructs without additional solubilisation tags seem to 
break at the fusion point more easily than constructs with additional proteins. The broken off GFP-tag is around 28 kDa. Most purified proteins 
show dimerisation, which could indicate aggregation. Where ColN P-domain (23 kDa) is co-expressed, the signal sequence is given. ColN P-
domain co-expression does not improve CNI-TEV-eGFP expression levels or stability. Numbers indicate lane number. See appendix for full 
set of expression screen gels.  
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The screen intended to find a combination which showed a considerable 

improvement of expression and construct stability as well as ease of subsequent 

fusion cleavage. Some constructs were certainly better than others, most notably 

Halo- and MBP-tagged fusions, while others failed to express at all. No single one 

condition stands out as considerably better than all the others. MBP and HALO7 

linked constructs express consistently in both media and across all strains and so 

any of these could have been taken forward. Co-expression with P-domains does not 

seem to improve expression significantly. It may, however, improve CNI stability in 

solution but this was not further investigated. Based on the expression screen (Figure 

30-Figure 31), I decided to take the pOPIN-CNI-3C-HALO7-6His construct further. It 

expressed consistently well across most conditions and did not show any detectable 

degradation products. The MBP-linked constructs showed some degradation 

products, which indicated that this fusion might not be as stable as the fusion with 

HALO7-6His. The HALO7-tag is a commercial and versatile tag, commonly used in 

protein immobilisation, purification and solubilisation (Los et al., 2008) and in these 

constructs it can be cleaved by the 3C viral protease (Hedhammar et al., 2006), also 

known under its commercial name PreScission Protease (GE Healthcare). A western 

blot against the polyhistidine-tag was carried out to confirm the identity of the purified 

protein-fusions and also to compare all strains and media used for CNI-HALO7-6His 

expression in the same gel (Figure 32). Figure 32A compared the expression of CNI-

HALO7-6His (ca. 55 kDa) to CNI-TEV-eGFP-6His (ca. 48 kDa), the expression 

construct used prior to this screen. Arrows indicate the size where the purified protein 

fusion is expected. CNI-HALO7-6His is clearly expressed at a higher level than CNI-

TEV-eGFP-His, when expression strains and media are the same, and so this screen 

has achieved signifcant improvement in expression level. The lower bands detected 

on the western blot indicate that some of the fusion protein has broken down, 

resulting in a band at 35 kDa, the size of the HALO7-tag alone. However, the 

Coomassie stained gel indicates that the breakdown is exaggerated by the western 

blot. The subsequent western blot compares the expression of CNI-HALO7-6His in 

different strains and media. A Coomassie-stained SDS-PAGE gel (Figure 32B) and 

the western blot (Figure 32C) show IMAC purified protein fusions. The western blot 

confirms the identity of the purified proteins but also highlights some degradation and 

aggregation and differences in expression levels between strains and media. Based 

on this western blot it was decided to select CNI-HALO7-6His expressed in the C41 
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strain and grown in TBO media for further scale-up in Newcastle and perform 

cleavage with 3C PreScission Protease.  

 

 

Figure 32: The protein fusion CNI-3C-HALO7-6His has a higher expression level than 
the previously used fusion CNI-TEV-eGFP-6His. (A) Expression comparison between 
CNI-3C-HALO7-6His and CNI-TEV-eGFP-6His in Coomassie-stained SDS-PAGE 
gel. (B, C) The CNI-3C-HALO7-6His was overexpressed in different strains and 
media. The Coomassie stained gel (B) and the western blot (C) show IMAC purified 
protein fusions. The protein fusion product is expected to be ca. 55 kDa, the HALO7-
tag alone at ca. 35 kDa. Lanes: 1 - 4: PB, 5-8: TBO.  1 & 5: Lemo21, 2 & 6: C41, 3 & 
7: C43, 4 & 8: Rosetta 2.  
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3.7.2 Expression scale up in Newcastle 

Following successful small scale expression at OPPF, the expression was scaled up 

to 4x 500 ml in flasks in Newcastle. The fusion protein was solubilised in 1 % Tween 

and 1 % DM in a sodium phosphate buffer (50 mM NaP, 300 mM NaCl, pH = 7.4) 

and purified using IMAC. The western blot (Figure 33) shows the full length fusion at 

ca. 50 kDa and a broken off free HALO7-tag at ca. 35 kDa. However, it also shows 

some higher order structures. To examine these size exclusion chromatography was 

carried out with elution 2 of figure 3 (Figure 34). It showed that no very large 

aggregates such as those which do not enter the gel are present in solution, as there 

is no protein peak at the column void volume (ca. 6 ml). The largest protein peak 

(maximum around 11 ml) is however poorly resolved. A second smaller, peak is 

present, probably representing the broken off HALO7-6His-tag, eluting around 14.5 

ml. Any higher order structures appearing in the SDS-PAGE gel are therefore likely 

to be gel artefacts, which are commonly caused in α-helical proteins by SDS (Sagne 

et al., 1996; Kunji et al., 2008). A Coomassie-stained SDS-PAGE gel of the fractions 

6-15 from the size exclusion chromatography and the column load shows that only 

two very faint bands for fractions 8 and 9 are visible, which correspond to the broken 

off HALO7-6His-tag (size ca. 34 kDa).  

 

Figure 33: CNI-3C-HALO7-HIS was purified from C41 using 1 % DM and 1 % Tween. 
Cells were grown in TB and induced at OD600 nm = 0.5 with IPTG overnight at 37 °C. 
The Coomassie stained gel (A) and western blot (B) show purification fractions.  
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Figure 34: Size exclusion chromatography of purified CNI-3C-
HALO7-6His (Elution 2 of Figure 30). A: UV absorbance profile at 
280 nm (blue line) shows that there were no higher order structures 
present in the void volume (ca. 6 ml). It is not possible to resolve the 
broad peak around 11 ml. The second, smaller peak shows the 
presence of some broken off HALO7-6His-tag which is also present 
in the western and Coomassie stained gel (Figure 33). B: A 
Coomassie-stained SDS-PAGE gel showing the fractions 6-15 from 
size exclusion chromatography and the column load. Only two very 
faint bands for fractions 8 and 9 are visible, corresponding to the 
cleaved HALO7-6His-tag (size ca. 34 kDa).  
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3.7.3 CNI-3C-HALO7-HIS activity 

In order to show that the successfully purified fusion protein CNI-3C-HALO7-6His 

was also active in vivo, a killing assay was carried out (Figure 35). C41 cells 

expressing CNI-3C-HALO7-6His where grown to the same optical density as 

sensitive cells (empty vector control), treated with different concentrations of ColN, 

diluted to reduce the ColN amount and grown overnight at 37 °C. CNI-3C-HALO7-

6His is able to protect otherwise sensitive C41 cells, raising resistance levels from 50 

pM ColN to 500 nM. 

 

Figure 35: The killing assay in a plate shows that CNI-3C-HALO7-6His is able to 
protect otherwise sensitive C41 cells, raising resistance levels from 50 pM ColN to 
500 nM. This picture was taken 20 h after incubation at 37 °C. Clear wells indicate no 
growth, cloudy wells show cell growth. 

3.7.4 3C protease cleavage  

In preparation for PreScission Protease 3C cleavage, CNI-HALO7-6His was purified 

using a purification buffer which matched the optimum cleavage buffer (Figure 36). It 

differs from the previous buffer by being a Tris buffer rather than a sodium phosphate 

buffer and containing 1 mM DTT and 1 mM EDTA and not containing Tween20 

(Table 9). This buffer composition for CNI is the result of a long process of 

optimisation and achieves the cleanest purification result for CNI-HALO7-6His so far, 

resulting in minimal aggregation and degradation (Figure 36). Adjusting the buffer 

during purification also makes a dialysis step before cleavage redundant. The 350 

mM imidazole is removed during subsequent steps, where the PreScission Protease, 

a 3C protease GST-fusion is removed using a GST-binding resin and the cleaved 
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Halo-tag is removed with a Halo-link resin. Alternatively, a His-tagged version of 3C 

protease could be purified in house and both the cleaved HALO7-HIS-tag as well as 

the His-tagged 3C protease removed using reverse IMAC, in which the desired 

protein is found in the flow through.  

Table 9: Purification buffer components for the initial stages of purification are 
optimised for subsequent cleavage with PreScission protease. This buffer 
composition achieves the cleanest purification result for CNI-HALO7-6His with 
minimal aggregation and degradation.   

Cell disruption 
buffer 

Protein 
extraction buffer 

Column Wash 
buffer 

Protein elution 
buffer 

Dialysis/Desalt 
buffer 

50 mM Tris-HCl, 
pH = 7.5 

50 mM Tris-HCl, 
pH = 7.5 

50 mM Tris-HCl, 
pH = 7.5 

50 mM Tris-HCl, 
pH = 7 

50 mM Tris-HCl, 
pH = 7 

1 M NaCl 1 M NaCl 300 mM NaCl 300 mM NaCl 300 mM NaCl 

50 mM Imidazole 50 mM Imidazole 100 mM Imidazole 350 mM Imidazole  

Proteinase 
inhibitor, DNAse, 
RNAse, lysozyme 

    

   1 mM EDTA 1 mM EDTA 

   1 mM DTT 1 mM DTT 

 1 % DM 0.1% DM 0.1% DM 0.1% DM 

 10% glycerol 10% glycerol 10% glycerol 10% glycerol 
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Figure 36: CNI-Halo-6His purification prior to PreScission Protease cleavage. (A) 
Coomassie-stained SDS-PAGE gel and (B) western blot of CNI-HALO7-6His 
expression in C41 cells. (C) Coomassie-stained SDS-PAGE gel showing samples 
from steps in CNI-HALO7-6His purification. The pooled sample was used for 
PreScission Protease cleavage. 

According to the manufacturer one unit of PreScission Protease will cleave more 

than 90 % of 100 µg of a test GST-fusion protein in a buffer containing 50 mM Tris-

HCl, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, pH = 7.0 at 5 °C in 16 h. Here, the 

sodium chloride concentration was doubled to match the concentration previously 

used for solubilisation and DM and glycerol were added (Table 9). The increased 

sodium chloride concentration and the addition of DM and glycerol as well as the 

conformation of the protein fusion may affect protease efficiency. Two experiments 

were carried out to optimise the protease amount and the cleavage temperature 
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(Figure 37). One unit was sufficient to cleave most fusion protein, however, some 

uncleaved fusion protein still remains even with 5 units of PreScission protease 

which is a large excess. An increased temperature had no effect on the cleavage 

efficiency. There is no detectable aggregation which is a good improvement from the 

thrombin cleavage attempts (Figure 26). The cleaved HALO7-6His-tag is clearly 

visible, however, a clear band for cleaved CNI is missing. The double band 

highlighted with the red arrow could represent the cleaved CNI at around 20.5 kDa. 

Why there are two bands was not immediately clear.  

 

Figure 37: PreScission Protease 3C cleavage optimisation of the HALO7-6His-tag in 
Coomassie-stained 12 % SDS-PAGE gel. (A) Cleavage was performed for 16 h at 4 
°C with 8.6 μg of CNI-HALO7-6His-tag in each condition and different amounts of 
protease, 1-5 units. (B) Cleavage was performed for 16 h at 4 °C, 20 °C, 37 °C, with 
11.2 μg of CNI-HALO7-6His-tag and 1 unit of PreScission Protease in each condition. 
1 PreScission unit will cut 100 μg of protein in optimum conditions. Bands that 
probably represent the cleaved immunity protein are highlighted with a red arrow.  

3.7.5 LC-MS of CNI-HALO7-6His-tag and its cleavage products 

Membrane proteins are not heat-denatured before they are loaded into SDS-PAGE 

gels to avoid aggregation and so some secondary structure and tertiary structure can 

remain intact leading to multiple bands or smears in SDS-PAGE gels if some of the 

protein partially unfolds. It is also not uncommon for proteins to degrade following 

purification or during protease cleavage.  

To confirm that the protein fusion and the cleavage products are full length and the 

cleavage products have also been analysed with LC-MS (Figure 38-Figure 40). The 
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protein samples for LC-MS have been purified and cleaved using the procedure 

outlined in 3.7.4. LC-MS has been carried out as a commercial service by Dr Joseph 

Gray, Pinnacle lab, Newcastle University9. The predicted sizes are 55 541.6 Da for 

the CNI-HALO7-6His fusion protein, 34 270.2 Da for the cleaved HALO7-6HIS-tag 

and 21 289.4 Da for the cleaved CNI (20 431.4 Da for CNI and 858 Da for the 

PreScission Protease cleavage site). The purified protein fusion as well as the 

cleaved products are detected and shown to be full length, even though they may not 

run at their predicted sizes in the SDS-PAGE gels (Rath et al., 2009). This is a 

common characteristic of highly hydrophobic proteins such as membrane proteins. 

For the full length protein-fusion and cleaved CNI, two additional protein species are 

detected, both 700 Da higher than the predicted sizes. The origin of these additional 

species is unclear. Random contaminations are possible but unlikely due to the exact 

difference in size for both the full length protein-fusion and the cleavage product. 

Post-translational modifications of CNI or membrane lipid attachment are more likely 

but have not been investigated further at this point. Looking back at some of the 

purifications carried out the full length fusion protein after purification appears as a 

double band in SDS-PAGE gels, western blots and in in-gel fluorescence images but 

its visibility seems to be concentration dependent (examples in: Figure 22: pellet 

lane, Figure 23: acid modified samples, Figure 25A: lanes 7-9, Figure 29: in-gel 

fluorescence image, Figure 36: lane 8). With this characteristic occurring across so 

many different expression and purification procedures over the years it is likely that 

this double band, which according to LC-MS is spaced 700 Da apart, is a genuine 

characteristic of CNI. It is possible that this is a post-translational modification or a 

non-annular lipid but this has not been investigated beyond this point.  

3.8 Conclusions 

 An overexpression system has been developed for CNI fused to a HALO7-

6His which yields an amount of fusion protein that can be used for further 

study of the tagged version or CNI by itself after protease cleavage.  

 From the detergents and buffers screened, DM in a Tris buffer was the most 

successful in solubilising and stabilising the protein fusion.  

                                            
9
 http://www.ncl.ac.uk/camb/internal/pinnacle/contact/ 
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Figure 38: LC-MS analysis of Full length CNI-HALO7-His fusion protein. The mass spectrometry measurement matches the calculated 
size of 55 541.6 Da based on the amino acid sequence very closely, proving that the purified protein is the full length protein. A second 
protein species is detected at 56240. 55 Da, 700.49 Da higher than the full length protein. All measured values are accurate to ± 1 Da.  
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Figure 39: LC-MS analysis of CNI-HALO7-His cleavage products: The HALO7-6HIS-tag. One product is the Halo-6His-tag with a 
calculated size of 34270.2 Da which is matched closely by this LC-MS analysis confirming that cleavage was successful and was carried 
out at the correct site in the protein fusion. All measured values are accurate to ± 1 Da.   
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Figure 40: LC-MS analysis of CNI-HALO7-His cleavage products: CNI. The calculated size of CNI is 20431.4 Da, but including the 
amino acids left over after cleavage at the 3C cleavage site the calculated size is 21289.4 Da, which is matched closely by the lower 
peak detected by LC-MS. The higher peak is 702.5 Da larger than the full length cleavage product. Allowing for ±1 Da measuring error 
this matches the difference observed in Figure 38. 
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Chapter 4. In vivo and in vitro Colicin N immunity protein 
interaction with Colicin N 

4.1 Introduction 

Due to their hydrophobicity immunity proteins of pore-forming colicins are difficult to 

study in vitro. Hence, most published research (Chapter 1: Introduction) has focused 

on mutagenesis to define an interaction site in vivo, assuming a direct interaction 

between Colicin N and its immunity protein. While some immunity proteins are highly 

specific and only protect against one colicin, others provide immunity to several 

(Chapter 1: Introduction). The Colicin N immunity protein (CNI) is only known to 

provide immunity to Colicin N (ColN), while the Colicin A immunity protein (CAI) is 

only known to provide immunity to Colicin A (ColA). Inspired by mutagenesis studies 

of other Colicin immunity proteins (see Chapter 1: Introduction), this chapter focuses 

on the determination of an ColN-CNI interaction site using mutagenesis as well as 

attempts to recreate the interaction in vitro using pull-down assays and a surface 

plasmon resonance assay. 

Presumably, if residues crucial for protein-protein interaction are mutated, CNI will no 

longer protect against ColN. However, mutagenesis always involves the risk of 

changing structurally important residues, therefore abolishing function through 

structural collapse rather than the change of functionally important sidechains. 

Therefore, usually, mutated proteins must be shown to be structurally intact, using 

biophysical techniques to assess stability such as CD, DSC, fluorescence 

spectroscopy and others. Since it is very difficult to purify stable CNI (chapter 3: CNI 

overexpression), here, structural integrity must be shown in vivo. Therefore, instead 

of just abolishing activity against ColN, it was attempted to create activity against 

ColA. Residues involved in specificity are not necessarily the same as residues 

involved in activity as seen in previous mutagenesis studies (chapter 1: introduction). 

A mutated immunity protein may still be able to perform its function of providing 

immunity against a colicin, even though it can change its specificity from Colicin N to 

Colicin A, for example. However, residues responsible for specificity and activity are 

likely to be located in the same region and given that structural analysis is difficult, 

analysing specificity rather than activity it is a good alternative. Hence, the following 

mutagenesis study aimed to establish the residues responsible for CNI specific 
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interaction with ColN, which may or may not be the same residues which are 

responsible for its activity.  

Predominantly based on the hypothesis proposed by (Song and Cramer, 1991), this 

chapter tests if individual helices of CNI are involved in its interaction with Colicin N. It 

was planned to mutate whole helices first and then narrow down the interaction site 

to individual residues once the general area was known. The predicted helices of CNI 

and its closest homologue Colicin A immunity protein (CAI) have been swapped 

(Figure 41). CNI may cope well with mutagenesis of functional domains if the tertiary 

structure is flexible, but the secondary structure is fixed. The secondary structure is 

predicted to be predominantly α-helical. A diagram of the predicted topology is shown 

in Figure 42. 

 



Figure 41: Helix swap between Colicin N and Colicin A immunity proteins. Helices are 
numbered 1-4 from N- to C-terminus. Each helix of CNI is replaced by the 
homologous helix of CAI. Ligation sites were chosen in regions of high sequence 
identity.  
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Figure 42: Predicted topology for CNI (A) and CAI (B). The TMHMM tool predicts 4 
transmembrane helices spanning the E. coli inner membrane. N- and C- termini are 
located in the cytoplasm.  

The sequence alignment of Colicin A immunity protein (NCBI Reference Sequence: 

WP_008323617.1) and Colicin N immunity protein (Stroukova and Lakey, 2015, in 

press, see appendix) are shown in Figure 43. Underlined amino acids indicate the 

predicted helical structure in both proteins (Krogh et al. (2001), Sonnhammer et al. 

(1998), online prediction tool10), while coloured regions mark swapped regions 

(yellow: helix 1, green: Helix 2, blue: helix 3, magenta: helix 4). The number indicates 

which helix of CNI was swapped for a helix from CAI. Overall, the proteins share a 

high nucleotide and amino acid sequence similarity. There is no region which stands 

out with special features, like a particularly high or low sequence identity, although, 

the region around helix 3 shows the least similarity.  

Swapping a whole helix rather than individual residues not only increases the chance 

of swapping specificity but may be advantageous because a whole functional unit is 

                                            
10

 http://www.cbs.dtu.dk/services/TMHMM/TMHMM2.0b.guide.php 
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swapped, increasing the likelihood of maintaining structural integrity. In homologues 

several residues must be changed in the same region to see a change in functionality 

and specificity and no single residue seems to be more important than the others 

(Lindeberg and Cramer, 2001; Smajs et al., 2006; Smajs et al., 2008).  

The regions for swapping were chosen based on the predicted helix structure in both 

proteins (underlined in Figure 43). Maintaining the same residues at the ends of each 

region allowed a neat transition from one protein to the other. Furthermore, it was 

aimed to make the transition point in more flexible regions, like loops and turns, to 

allow tertiary structure folding and adjustment in case of steric hindrance. The 

predicted loops and turns connecting the helices were partially excluded from 

mutagenesis where possible based on previous research, which suggested that their 

role in protein – protein interaction is unlikely (Song and Cramer, 1991; Smajs et al., 

2006; Smajs et al., 2008). The effect of mutagenesis was tested using two killing 

assays, a spot test assay on agar plates and a survival assay in liquid culture.  
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A 

CAI             ATGATGAATGAACACTCAATAGATACGGACAACAGAAAGGCCAATAACGCATTGTATTTA 60 

CNI             ---ATGGAT--------ATAAAAGACAGAAATAAGATAT-CAAAAAA---AATATCATTC 45 

                   ***.**        *::*.* **.**.*:.***:*  *.**:**   *:*.*.:**. 

 

CAI             TTTATAATAATCGGATTAATACCATTATTGTGCATTTTTGTTGTTTACTACAAAACGCCA 120 

CNI             AGTCTTCTGCTCTTACTTTCCCCATTCGCATTAATATTTTTCAGTTATAATAATGCACCA 105 

                : *.*:.*..**  * *:: .*****.  .* .**:*** * . *** :* **:.*.*** 

 

CAI             GACGCTTTACTTTTACGTAAAATTGCTACAAGCACTGAGAATCTCCCGTCAATAACATCC 180 

CNI             ATACCACTCCT----CGAAAAAAT-CATCGCATACCTA-TCCCTACCAGGATTTCATTCA 159 

                .:. *: *.**    **:****:* *::*... **  * :. **.**.  *:*:..:**. 

 

CAI             TCCTACAACCCATTAATGACAAAGGTTATGGATATTTATTGTAAAACAGCGCCTTTCCTT 240 

CNI             TTAAACAACCCGCCCCTAAGCGAAGCATTCAATCTCTATGTTCATACAGCCCCTTTAGCT 219 

                * .:*******.  ..*.* ..*.* ::* .**.* ***  *.*:***** *****.  * 

 

CAI             GCCTTAATACTATACATCCTAACCTTTAAAATCAGAAAATTAATCAACAACACCGACAGG 300 

CNI             GCAATCAGCTTATTCATATTCACACACAAAGAATTAGAGTTAA-AACCAAAGTCGTCACC 278 

                **.:*.* . ***:***. *.**. : ***.:.: *.*.**** .*.***.. **:**   

 

CAI             AACACTG-TACTTAG-ATCTTGTTTATTAAGTCCATTGGTCTATGCAGCAATTGTTTATC 358 

CNI             TCTGCGGGCACTAAAGATATTAACTCCTTTCACTATT-CTTTATATATCCATGATATACT 337 

                :. .* *  ***:*. **.**.: *. *:: :* ***  * ***. * *.** .*:**   

 

CAI             TATTCT-GCTTCCGAAATTTTGAGTTAACAACAGCCGGAAGGCCTGTCAGATTAATGGCC 417 

CNI             GTTTCTTGCTAAC-TGACACAGAACTAACCTTGTCATCAAAAACATTTGTATTAATGTCA 396 

                 :**** ***:.* :.* : :**. ****.: . *.  **...*: * . ******* *. 

 

CAI             ACCAATGACGCAACACTATTGTTATTTTATATTGGTCTGTACTCAATAATTTTCTTTACA 477 

CNI             AAAAACGATCTGTTTTTGTCTTTTTTCTATATAACACTATATATTGGGATATATATATTC 456 

                *..** **   .: : *.*  **:** *****:. :**.** : :. .**:*: :*:: . 

 

CAI             ACCTATATCACGCTATTCACACCAGTCACTGCATTTAAATTATTAAAAAAAAGG------ 531 

CNI             ACATATTTGTACTTTTGGTTCCTTATAGGAACATATAAGCTATTTACCAGGGGAGGAATA 516 

                **.***:* :.  *:*  : .* :.*.. :.***:***. ****:*..*...*.       

 

CAI             --CAGTAA---- 537 

CNI             CTCCGTCGACAC 528 

                  *.**.. 

     

 

B 
 
CAI             MMNEHSIDTDNRKANNALYLFIIIGLIPLLCIFVVYYKTPDALLLRKIATSTENLPSITS 60 
CNI             -MDIK----DRNKISKKISFSLLLLLSPFALIFFSYNNAPIPLLEKIIAY--LSLPGFHS 53 
                 *: :    *..* .: : : ::: * *:  **. * ::* .** : **    .**.: * 
  
CAI             SYNPLMTKVMDIYCKTAPFLALILYILTFKIRKLINNTDRNTVLRSCLLSPLVYAAIVYL 120 
CNI             LNNPPLSEAFNLYVHTAPLAAISLFIFTHKELELKPKSSPLRALKILTPFTILYISMIYC 113 
                  ** :::.:::* :***: *: *:*:*.*  :*  ::.   .*:     .::* :::*  
  
CAI             FCFRNFELTTAGRPVRLMATNDATLLLFYIGLYSIIFFTTYITLFTPVTAFKLLKKRQ-- 178 
CNI             FLLTDTELTLSSKTFVLMSKNDLFLSFFYITLYIGIYIFTYLYFWFLIGTYKLFTRGGIL 173 
                * : : *** :.:.. **:.**  * :*** **  *:: **: ::  : ::**:.:     
  
CAI             --- 
CNI             RRH 176 

 
Figure 43: CAI and CNI alignment using ClustalW. (A) Nucleotide sequence. (B) 
amino acid sequence. Highlighted text marks swapped parts; helix 1: yellow, helix 2: 
green and red, helix 3: blue and red, helix 4: magenta. Nucleotides and amino acid 
highlighted red are the endpoint of Helix 2 in the Helix 2 mutant as well as the 
beginning of Helix 3 in the Helix 3 mutant. Underlined text indicates predicted α-
helical structure based on TMHMM (Krogh, 2001).  
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4.2 Results and Discussion 

4.2.1 Assessing the mutant activity using a spot test assay  

Different concentrations of ColN and ColA were applied as 2 μl drops onto bacterial 

lawns of C41 E. coli cells expressing WT CNI-HALO7-6His, WT CAI-HALO7-6His, 

Helix 1, 2, 3 and 4 mutants of CNI-HALO7-6His and an empty vector control (Figure 

44). Clearing zones demonstrate sensitivity. The empty vector control is equally 

sensitive to ColN (48 nM and above) and ColA (195 nM and above). WT CNI-

HALO7-6His protects against ColN (up to 195 nM) but not ColA, while WT CAI 

protects against ColA (up to 1.563 µM) but not ColN. There is no cross-immunity to 

either colicin. Neither mutant is immune to ColA, so a change in specify from ColN to 

ColA was unsuccessful. If the mutants were immune to ColA, they would provide a 

protection level higher than the empty vector control, ideally similar to WT CAI-

HALO7-6His. Helix mutants H2, H3 and H4 are also no longer resistant to ColN. The 

H1 mutant, however, still protects against ColN. This means, either the first 38 amino 

acids are not needed for specificity to ColN or their function can be replaced by the 

corresponding amino acids from CAI. It is possible that helix 1 of CAI provides 

enough structural support for the rest of the protein to still function. To investigate if 

those amino acids are important for structure and function, one would have to 

truncate the protein.  
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Figure 44: Immunity protein 

and mutant resistance to 

Colicin A and Colicin N. 

Colicin N and A were applied 

as 2 μl drops onto bacterial 

lawns of C41 cells.  Helix 

mutants 2, 3, 4 and the 

empty vector control are not 

active against ColN and 

ColA. CNI and the helix 1 

mutant are active against 

ColN, but not ColA. CAI is 

active against ColA, but not 

ColN. There is no change in 

specificity due to 

mutagenesis.   
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4.2.2 Measuring activity with the liquid culture cell survival assay 

In comparison to the spot test assay, there is a more refined and quantitative way to 

establish culture viability through the length of the lag time. All cultures start out with 

approximately the same amount of cells at the beginning, estimated through optical 

density at OD600 nm = 0.5. When colicin is added, the number of cells is greatly 

reduced, depending on antibiotic potency and concentration. Cultures are 

subsequently diluted 1:100, in order to dilute out the cell debris and the colicin to a 

hundredfold lower concentration. The optical density subsequently measured in the 

wells can almost entirely be attributed to living cells. The more cells are killed, the 

smaller is the inoculum for subsequent cultures during dilution and the longer it takes 

for visible growth, shown through well turbidity, to take off again. Therefore, the lethal 

impact of colicin addition is directly related to the culture lag time. The immunity 

protein activity is shown through a shorter lag time in comparison to the empty vector 

control (Figure 45).  
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. 

Figure 45: The effect of ColN and Col A 
concentration on the lag time of sensitive 
and immune C41 E. coli cultures. The 
higher the colicin concentration, the longer 
the lag time. A: Empty vector control with 
ColN. B: CNI-HALO7-6His with ColN. C: 
Empty vector control with ColA. D: CAI-
HALO7-6His with ColA 
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Empty vector control C41 cells do not have a known protection mechanism but as 

with other toxic compounds, Colicin N and A require a certain minimal concentration 

or a certain molecule to cell ratio to be effective. For pore-forming colicins, 

theoretically, one molecule per cell is enough (Cascales et al., 2007); practically, it 

should be around 600 molecules (Johnson et al., 2013). Therefore, even empty 

vector control cells are resistant to Colicin N and A up to a certain concentration. The 

lethal impact is more clearly displayed through increased lag time than through well 

turbidity. Even the lowest concentration of 5 pM ColN is toxic to sensitive cells of the 

empty vector control and increases lag time by ca. 1h. For the immune cells a 

significantly higher concentration of 500 pM is needed to achieve a similar effect. For 

ColA higher concentrations are needed to impact on cell growth and the effect is less 

gradual. A concentration of 500 nM is needed to affect culture growth for the empty 

vector control, while 5 µM inhibits immune cultures expressing CAI-Halo7-6His.  

4.2.3 Measuring the mutants’ activity with the liquid culture cell survival assay 

To confirm the results obtained in the spot test assay an activity assay was also 

carried out in liquid culture. For each mutant, Figure 46 (Helix 1 mutant), Figure 47 

(Helix 2 mutant), Figure 48 (Helix 3 mutant) and Figure 49 (Helix 4 mutant) show the 

results of the liquid killing assay. All cultures were grown to the same optical density 

and exposed to different concentrations of ColN and ColA for 30 min, before being 

diluted 1:100 and grown in a plate reader. An exposure time of 30 min is more than 

adequate as ColA and ColN have been shown to act within minutes (Johnson et al., 

2013). Well turbidity and length of lag time are indicators of culture viability. Turbid 

wells mean culture growth, while clear wells mean all cells have been killed. Hence, 

simply looking at the plate gives a good qualitative indication about culture viability. 

Pictures were taken at the end of each run after 18 h.  

All mutants were compared to a positive and a negative control. The empty vector 

control is a negative control as it is sensitive to both Colicin N and Colicin A. CNI-

HALO7-6His is a positive control against ColN activity and CAI-HALO7-6His is a 

positive control against ColA activity. Including CNI-HALO7-6His in ColA treatments 

and vice versa shows that there is no cross immunity. CNI does not protect against 

ColA and CAI does not protect against ColN.  

For the helix 1 mutant 500 nM ColN is toxic, just like for the positive control CNI-

HALO7-6His (Figure 46). There is no difference in lag times between the mutant and 
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wild-type, which means that they are equally active. The empty vector control and 

CAI-HALO7-6His have no protective mechanism against ColN and so are sensitive to 

500 pM and above. At 50 pM ColN, the lag times of CAI-HALO7-6His producing cells 

and the empty vector control are 6 h longer than those of CNI-HALO7-6His and the 

Helix 1 mutant, demonstrating a dramatic lethal effect of ColN on these cultures. The 

helix 1 mutant remains active against ColN which can be interpreted in two ways. 

Either, the N-terminal part of the protein is not essential for CNI-function or Helix 1 of 

CAI can replace Helix 1 of CNI without a change in activity and this part of the protein 

is not essential in the specific interaction between CNI and ColN. A truncation of the 

protein, so that the first 38 amino acids are missing, may be a way to answer this 

question.  

The helix 1 mutant is as sensitive to ColA as the empty vector control and CNI and 

so does not protect against ColA. A transfer in specificity from ColN to ColA was 

unsuccessful. Helix mutants 2, 3, and 4 are completely inactive; they do not protect 

against ColN or ColA. They are sensitive to 500 pM ColN and 5 μM ColA, just like the 

negative controls. CAI is active against ColA and shows protection against 5 μM 

ColA. None of the mutants was protective against ColA, which means that immunity 

could not be changed from ColN to ColA. Probably, mutagenesis has detrimentally 

affected protein structure, rendering the protein inactive, but without a biophysical 

analysis of the purified protein it is difficult to prove that.  

Lag times for the controls are consistent for all liquid cultures, demonstrating a high 

level of consistency and reproducibility for the method. Differences between growth 

curves are significant, showing either a qualitative result, dead or alive, or a huge 

difference in lag time of up to 6 h. Assuming a culture doubling time of 20 – 30 min, 

this is a highly significant result. Although growth curves for all wells were recorded, 

here only curves showing the biggest difference between the cultures are shown. 

Curves shown here are an average of 2-3 wells.  
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Figure 46: Helix 1 mutant is resistant to ColN but not ColA. Images of 96 well plates 
after 18 h with ColN (A) and ColA (E). Culture growth without ColN (B) and ColA (F). 
Culture growth with 500 nM ColN (C) and ColA (G). Culture growth with 5 μM ColN 
(D) and ColA (H).  
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Figure 47: Helix 2 mutant is not resistant to ColN or ColA. Images of 96 well plates 
after 18 h with ColN (A) and ColA (E). Culture growth without ColN (B) and ColA (F). 
Culture growth with 500 nM ColN (C) and ColA (G). Culture growth with 5 μM ColN 
(D) and ColA (H). 
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Figure 48: Helix 3 mutant is not resistant to ColN or ColA. Images of 96 well plates 
after 18 h with ColN (A) and ColA (E). Culture growth without ColN (B) and ColA (F). 
Culture growth with 500 nM ColN (C) and ColA (G). Culture growth with 5 μM ColN 
(D) and ColA (H). 
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Figure 49: Helix 4 mutant is not resistant to ColN or ColA. Images of 96 well plates 
after 18 h with ColN (A) and ColA (E). Culture growth without ColN (B) and ColA (F). 
Culture growth with 500 nM ColN (C) and ColA (G). Culture growth with 5 μM ColN 
(D) and ColA (H). 
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4.2.4 Mutant overexpression detection by western blot 

To show mutant proteins expression, a western blot with antibodies probing for the 

C-terminal polyhistidine-tag was carried out.  It shows that CNI-HALO7-6His, CAI-

HALO7-6His, Helix 1 mutant and Helix 4 mutant are expressed, while Helix 2 and 3 

mutants are not. The promoters and genes of Helix 2 and 3 mutants were re-

sequenced and confirmed as correct. The lack of expression must be caused by a 

problem in transcription or translation. To distinguish if genes are transcribed but not 

translated, RNA from these cells could be reverse transcribed and amplified with 

gene specific primers in a PCR using cDNA. If Helix 2 and 3 mutants are misfolded 

and unstable, they may be degraded quickly after translation. Degradation products 

would be expected in this case.  

CAI-HALO7-6His and Helix mutants 1 and 4 are expressed but are clearly more 

degraded than CNI-HALO7-6His. It is unclear why they appear less stable than CNI-

HALO7-6His and it is unclear whether this an artefact of SDS-PAGE or truly 

represents the state of the protein inside the cell. In Zhang et al. (2010), western 

blots of CAI show no degradation. Here, in agreement with Zhang et al. (2010), there 

is some dimerisation of CAI. The Helix 4 mutant seems to dimerise more than CNI-

HALO7-6His and the Helix 1 mutant, where only minimal dimerisation can be 

observed. The mutation in Helix 4 does not add further cysteines for disulphide 

bonds to the protein and so this dimerisation may be based on hydrophobic helix-

helix interaction. The visible degradation products can be attributed to the HALO7-

6His-tag (ca. 34 kDa), because the polyhistidine is attached to its C-terminal. As CNI 

has no N-terminal tag it is not possible to visualise it with the anti-Histag antibody. 

The degradation may not be a problem for cell immunity as CAI-HALO7-6His and the 

Helix 1 mutant are still active (Figure 46) and protect against ColA and ColN, 

respectively. While the lack of expression may explain the lack of activity for Helix 

mutants 2 and 3, it does not explain the lack of activity for the Helix 4 mutant. To 

continue this investigation, double and triple mutants and possibly a quadruple 

mutant could be made to test whether it is indeed the helices which interact with 

ColN and not the solvent exposed loops and termini.  
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Figure 50: Mutant protein expression in C41 cells. (A) Coomassie stained SDS-PAGE 
of unboiled C41 cells. (B) Western blot probing for the polyhistidine-tag.  CNI-HALO7-
6His, CAI-HALO7-6His, Helix 1 mutant and Helix 4 mutant are expressed. Helix 2 and 
3 mutants are not expressed. There is no protein expression in the negative empty 
vector control.  
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4.2.5 Cysteine residue mutagenesis, activity and purification 

CNI contains only one cysteine residue at position 113 (Figure 43B). Cysteine 

residues often play an important role in protein stability or activity because they are 

able to form disulphide bonds. With the absence of further cysteines in the protein, a 

role in dimerisation is more likely than intramolecular interaction. However, Zhang et 

al. (2010) shows how cysteines in CAI are important for its structure and interaction 

with ColA. Therefore, C113 was mutated to a serine, a residue of similar size but 

without the ability to form disulphide bonds.  

4.2.6 pWaldo-CNIC113S-TEV-GFP-6His mutant activity 

The ability of the C113S mutant to protect against ColN was assessed using the 

liquid culture cell survival assay in 96 well plates. The mutation was carried out in in 

the plasmid pWaldo-CNI-TEV-sfGFP-6His, which was also used for protein 

purification (Chapter 3). There is a 50-fold difference in minimal lethal concentration 

between CNI-sfGFP-6His and the empty vector control. The C113S mutant is just as 

active as the WT CNI-sfGFP-6His at 500 pM. At higher concentrations, however, 

such as 40 nM, the difference in lag time is significantly more pronounced. Here, a 

difference in lag time of 1.5 h was measured between WT CNI and the C113S 

mutant at 40 nM. There is no significant difference in growth between cultures 

expressing CNI-sfGFP-6His, the C113S mutant and the empty vector control when 

no ColN is added, demonstrating that protein expression is not toxic or a significant 

metabolic burden to the cells.  

Similar to the effect described for CAI (Zhang et al., 2010), the cysteine residue in 

CNI plays a role in protein activity, albeit the effect of the mutation is very small and 

only seen at higher ColN concentrations. It remains unclear whether the cysteine is 

involved in direct interaction with ColN or whether it has other, for example, structural 

purposes. ColN P-domain, which is the proposed site of interaction with CNI, does 

not contain any cysteine residues and so an interaction using a disulphide bond is 

not possible. 

CNI does not form clear dimers on SDS-PAGE like CAI (Figure 50). Therefore, an 

effect of ColN on CNI dimerisation, like is described in Zhang et al. (2010) for CAI, 

was not assessed using a western blot. However, clustering upon ColN addition was 

investigated in vivo (Chapter 5). No cluster formation was observed. Cysteine 
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removal could affect the amount of protein in the membrane by altering expression 

levels or protein stability. However, upon purification (Figure 52), a difference in 

amount was not observed, although the mutant seemed to be less stable than the 

WT. 

 

Figure 51: C113S mutant activity against ColN. (A) Image of 96 well plate after 18h 
with ColN. (B) Without ColN all cultures grow the same. (C) At lower concentrations, 
like 500 pM, both C113S mutant and WT CNI are similarly unaffected by the ColN, 
while the lag time of the empty vector control is significantly extended. (D) At higher 
concentrations, like 40 nM ColN, the mutant’s lag time is significantly reduced, 
demonstrating a reduced culture viability. 

A different reason to mutate the cysteine was to enable potentially easier purification 

of monomeric CNI if the potential disulphide bond leads to dimerisation. Figure 52 

shows C113S mutant expression as well as C113S mutant and CNI purification. 

Protein expression was monitored over time using SDS-PAGE. The full size of the 

fusion protein is 48 kDa, but it migrates at 37kDa (Chapter 3) if not boiled because 

the protein is not fully unfolded during SDS-PAGE (Figure 52B). The size of GFP-

6His is ca. 27 kDa, but it migrates faster, around 25 kDa, when not boiled and is 
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fluorescent inside the gel because SDS-PAGE does not unfold the fluorophore. The 

size of CNI is 20.4 kDa. As with other CNI fusion proteins, due to the low expression 

level, it is not clear from the Coomassie-stained gel if the protein is expressed (Figure 

52A). Also, there is no evident difference in the protein band pattern when comparing 

the C113S mutant with WT CNI-sfGFP-6His and the empty vector control. However, 

following purification of both proteins (Figure 52C and D) using IMAC, a very small 

amount of protein can be detected in the eluates (ca. 2 mg in total from 5 l of culture).  

No dimerisation of either protein is visible in the Coomassie stained SDS-PAGE gels 

showing purification fractions. There is also no difference in yield although there is 

more breakdown in the C113S sample. The in-gel fluorescence images taken with 

the Typhoon™ FLA 9500 biomolecular imager show fluorescent proteins excited 488 

nm and emitting at 510 nm, suitable for sfGFP at around 37 kDa for the full length 

proteins and ca. 24k Da for the broken off GFP tag (Figure 52E and F). These 

images prove the presence of sfGFP–tagged CNI and C113S mutant but also show 

considerable amounts of break down products. It seems that the C113S mutant is 

already breaking down in the load and flow-through at the start of purification, while 

CNI-sfGFP-6HIS is largely stable until it is eluted. Similar to the helix mutants, 

mutating the cysteine residue of CNI seems to destabilise it and make it more difficult 

to purify as a single intact monomer. Notably, while the GFP of the protein is clearly 

visible at ca. 25 kDa in the Coomassie stained gel and identified as sfGFP in the in-

gel fluorescence images, CNI (21 kDa) is not visible at all. It seems that it has been 

completely degraded.  
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Figure 52: Cysteine mutant expression and purification. (A) Coomassie stained SDS-
PAGE gel showing C113S expression over time and in comparison to WT CNI-
sfGFP-6HIS and the empty vector control after 8 h. An increase in expression is not 
visible. Coomassie stained SDS-PAGE gel showing C113S (C) and CNI-WT (D) 
purification. In-gel fluorescence images of SDS-PAGE gels showing C113S (E) and 
CNI-WT (F) purification. There is no difference in dimerisation between C113S and 
CNI-WT, although the C113S mutant seems to degrade more easily. Lanes: 1) 
Marker, 2) Load, 3) Flow-through, 4) Wash, 5) - 12) Eluates. 
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4.2.7 Assessing in vitro protein-protein interaction with a pull down assay 

A pull-down assay was used to assess protein-protein interaction between CNI and 

Colicin N. A protein pull down is a simple and popular method because it only 

requires minimal handling of proteins, which is particularly favourable when dealing 

with unstable membrane proteins. However, pull down assays are very prone to false 

positive and false negative results which can occur due to the change in protein 

conformation caused by the in vitro environment and the exposure of protein sites to 

each other which would not normally interact in vivo. Weak and transient interactions 

which would normally occur due to the confined space of a cell or even membrane 

are unlikely to be detected using pull-downs. Further caveats of this technique are 

discussed in Mackay et al. (2007). 

Here it was attempted to recreate the natural environment for CNI-ColN interaction 

using detergents (Figure 53). CNI was bound via its HALO7-6His-tag to HaloLink 

resin and incubated with ColN, ColN P-domain, ColA and ColA P-domain in buffers 

containing different detergents. ColN, ColN P-domain and ColA were purified for this 

experiment Figure 54. A stock of ColA P-domain was obtained from Dr Yan Huang, 

formerly Lakey group. Figure 55 shows the purity level of each protein. After 

incubation the beads were washed to remove unbound protein. To establish what 

remained bound to the beads due to protein-protein interaction, they were 

resuspended in protein loading buffer and heat-denatured at 90 °C. Washes and 

“pulled-down” proteins were analysed using SDS-PAGE. The colicins and P-domains 

do not bind to the HaloLink resin if no CNI-HALO7-6His is present. 

 

Figure 53: Desired arrangement of proteins during the pull-down assay. CNI was 
bound via its HALO7-tag to HaloLink resin and incubated with ColN, ColA and their P-
domains in buffers containing different detergents. The colicins and P-domains 
should not bind to the HaloLink resin if no CNI-HALO7-6His is present.  



117 
 

 

Figure 54: Protein purification steps of (A) ColN P-domain (23 kDa), (B) ColN, (ca. 42 
kDa) and (C) ColA (ca. 63 kDa) in Coomassie-stained SDS-PAGE gels. 
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Figure 55: Coomassie stained SDS-
PAGE of all five used proteins: CNI-Halo, 
ColN P-domain, ColN, ColA P-domain 
and ColA. The full length proteins show 
some degradation and CNI-Halo is also 
showing some aggregation.  

 

A Circular Dichroism spectrum (Figure 56) shows how a detergent like DM can 

modify the tertiary structure of ColN P-domain. A less structured and more open 

conformation of P-domain is desirable for interaction with CNI because the P-domain 

changes conformation into a more open form during its insertion into the membrane. 

A P-domain which is locked shut through disulphide bonds, so that the helices cannot 

move apart for insertion, is not able to kill cells (Duche et al., 1994). Colicin A and its 

P-domain are used as negative controls for ColN and its P-domain. Using the P-

domain as well as the entire protein can exclude potential interactions of CNI with 

ColN T-domain or R-domain. 

 

Figure 56: The effect of ColN P-domain modification with 0.1 % DM shown in a near-
UV CD spectrum which is sensitive to tertiary structure destabilisation. After 
incubation of P-domain with 0.1 % DM for 24 h at 4 °C it loses some of its tertiary 
structure and is better suited for interaction with CNI.  
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Different detergents were added to a Tris buffer to establish the ideal conditions to 

mimic the specific interaction between ColN P-domain and CNI (Figure 57). ColN P-

domain does not bind to the beads if CNI-HALO7-6His is not present. However, it 

binds to CNI in all three detergents equally well. The same amount of ColN P-domain 

and beads was used for each detergent. The washes remove all unbound protein 

before the beads are boiled and CNI-HALO7-6His and any ColN P-domain bound to 

it is released from the bead surface. Two different separation methods are possible 

to remove the complex from the bead surface – denaturing heat and 3C protease. 3C 

protease was not used at this initial stage as it is not active in SDS and it would also 

contaminate the sample with an additional band. DM is most suited to solubilise CNI-

HALO7-6His. OG is also a non-ionic detergent but has a different structure to DM 

and may improve P-domain opening. SDS is an ionic detergent known to denature 

most proteins.  

Following a successful demonstration of ColN P-domain binding to CNI-HALO7-6His 

(Figure 57), full length ColN, ColA and ColA P-domain were also used in a pull down 

assay (Figure 58). DM was chosen as the detergent because it is the detergent 

which best solubilises and stabilises CNI-HALO7-6His (chapter 3). CNI-HALO7-6His 

is bound to the HaloLink resin (Figure 58A) and does not dislodge until it is denatured 

with heat (boiled) (Figure 58 D). Full length ColN, ColA and ColA P-domain also bind 

to CNI-HALO7-6His and can only be removed when the beads are boiled. In this 

condition, there is no specific interaction between CNI-HALO7-6His with ColN P-

domain and full length ColN as it also binds to ColA and ColA P-domain. SDS is an 

ionic detergent and therefore can mask potential unspecific charge interactions. The 

pull down with ColN, ColN P-domain, ColA and ColA P-domain was repeated with 

SDS replacing DM in the Tris buffer (Figure 59). It was also assessed if ColN, ColN 

P-domain, ColA and ColA P-domain bind to the beads if CNI-HALO7-6His is not 

present. There is some artefactual binding of ColN and ColN P-domain to the beads 

if CNI-HALO7-6His is absent, while there is no binding of ColA and ColA P-domain. 

When CNI-HALO7-6His is present all tested proteins (ColN, ColN P-domain, ColA 

and ColA P-domain) bind to CNI-HALO-6His. Adding SDS to the buffer does not 

remove unspecific binding of ColA and ColA P-domain to CNI and so this does not 

recreate the in vivo conditions, where CNI specifically binds ColN P-domain only and 

no other colicin.  
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Figure 57: Screening detergents for an optimal CNI-HALO7-6His interaction with ColN P-domain (23kDa) using a pull-down assay and 
Coomassie stained SDS-PAGE. CNI-HALO7-6HIS binds to the HaloLink resin beads via the HALO7-6His-tag. ColN P-domain binds to 
CNI-HALO7-6His at 4 °C over night in Tris buffer containing 1.6 mM DM, 25 mM OG and 8 mM SDS, which corresponds to the 
detergent’s critical micelle concentrations. ColN P-domain does not bind to blank beads without CNI-HALO7-6His.  
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Figure 58: Pull down assay with various colicins in DM. Samples were incubated for 16 h at 4 °C with CNI-HALO7-6His bound to beads. 
(A) CNI-HALO7-6His binding to HaloLink resin beads and washing steps. Washing steps are continued after 24 h incubation in (D) and 
the boiled sample shows CNI-HALO7-6His eluting after the beads are boiled. (B) ColN bound to CNI-HALO7-6His, (C) ColN P-domain 
bound to CNI-HALO7-6His, (E) ColA bound to CNI-HALO7-6His (F) ColA P-domain bound to CNI-HALO7-6His. 
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Figure 59: Pull down assay with SDS. Samples were incubated for 16 h incubation at 4 °C with or without CNI-HALO7-6His bound to 
beads. (A) ColN P-domain, (B) ColA P-domain, (C) ColN, (D) ColA. CNI-HALO7-6HIS binds to all proteins; there is no specific 
interaction with ColN or ColN P-domain. However, there is some interaction of ColN and ColN P-domain even without CNI-HALO7-6His.  
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4.2.8 In vitro interaction between CNI and ColN P-domain using Surface 
Plasmon Resonance  

Unfortunately, no specific interaction between ColN and CNI could be established 

using the pull-down assay. It is possible that CNI-HALO7-6His can bind both ColN P-

domain as well as ColA P-domain but cannot neutralise ColA. As an alternative 

approach surface plasmon resonance was then used to measure the binding affinity 

of purified CNI to ColN and ColA as a way of distinguishing between the two colicins. 

It was hypothesised that CNI would bind ColN tighter than ColA as it would be a 

more specific and energetically more favourable interaction.  

Surface Plasmon Resonance is a well-established technique with many applications 

(Salamon et al., 1997b; Salamon et al., 1997a; Mariani and Minunni, 2014). 

Fundamentally, one molecule is bound to a surface and then the attachment of a 

second molecule to the first is measured through a change in the refractive index 

which is caused by increased surface density. Here, CNI-HALO7-6His was bound to 

a Ni+-saturated NTA chip via its polyhistidine-tag and ColN, ColA and their P-domains 

were injected in order to measure their binding affinity to CNI (Figure 60).  

 

Figure 60: (A) Schematic representation of CNI-HALO7-6His bound to a Ni+-NTA chip 
and ColN, ColN P-domain, ColA, ColA P-domain binding to CNI- HALO7-6His. (B) 
The polyhistidine tag was modified using diethylpyrocarbonate. 
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ColN, ColA and their P-domains have been purified using their His-tags and so, first, 

these His-tags had to be be removed so that ColN, ColA and their P-domains would 

no longer bind to the Ni+-NTA surface but only to CNI-HALO7-6His (Figure 60, Figure 

61). The histidines were modified using DEPC following a protocol adapted from 

Lundblad and Noyes (1984). ColN P-domain has one histidine in its native sequence 

and 6 additional ones at the C-terminal. When DEPC modification is successful the 

absorbance at 240 nm increases while the absorbance at 280 nm should stay the 

same. This indicates that the imidazole ring on the histidines is modified but the 

aromatic residues are not affected. Figure 61A shows ColN P-domain modifications 

with different DEPC amounts, based on the molar ratio between the histidines and 

the DEPC molecules. Figure 61A shows the end point modification over a spectrum 

of 230 nm to 320 nm, including at 240 nm and 280 nm after a 20 min reaction time. 

The curve changes depending on the concentration of DEPC, more DEPC leading to 

a bigger change in comparison to the unmodified molecules. The expected increase 

in absorbance at 240 nm is more apparent in Figure 61B, where the increase in 

absorbance at 240 nm only is measured over time. This graph shows that 

modification occurs rapidly at the beginning but then plateaus off. Again the more 

DEPC is added, the higher is the absorbance at 240 nm. As the exact molar ratio for 

histidine-tag modification was unknown, first a broad range (Figure 61 A) and then a 

more narrow range (Figure 61 B) of modifications was used.  Whether the 

modification was successful was tested by applying the modified ColN P-domains 

onto the Ni+-NTA chip, without adding CNI-HALO7-6His first. A 5:1 molar ratio, so 

adding 5 times more DEPC molecules than histidine molecules proved to be the 

optimum ratio. Saturation is reached during modification and these modified ColN P-

domains also no longer bind to the Ni+-NTA chip (Figure 61C and D). This ratio was 

therefore used for all subsequent modifications.  

When trying to deposit CNI-HALO7-6His on the Ni2+-NTA chip in preparation for the 

binding experiment it was discovered that CNI-HALO7-6His not only binds to the chip 

via the his-tag but also in a non-specific way when no Ni2+ ions are present. It also 

seems to bind to itself when it is repeatedly injected. A layer of CNI-HALO7-6His 

builds up further and further and does not dissociate. Possibly, the protein is 

aggregating on the chip. This is a major obstacle for carrying out this experiment as 

ideally a single layer of separate proteins with very few response units (R.U.) is 

needed to measure binding affinity accurately.  
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In subsequent runs, CNI-HALO7-6His was dialysed into and stored in OG and SDS 

but the result was the same. CNI-HALO7-6His built up on the surface and measuring 

binding was not possible. Figure 62 B shows the reference cell and C the measuring 

cell. CNI binds in both regardless of whether Ni+ ions are present or not. Figure 61 D 

and F show that a subtraction of the reference cell from the measuring cell with and 

without OG does not yield a net binding event and so carrying out further 

experiments with these conditions would not lead to reliable and meaningful results. 

Furthermore, ColN P-domain seems to bind to CNI-HALO7-6His in this assay. 

However, when run as a control by itself, without its binding partner CNI-HALO7-

6His, ColN P-domain also seems to bind to the chip. Binding is increased with higher 

OG concentration and so it seems that the OG may be responsible for aggregation 

and unspecific binding. The binding was repeated with SDS but the effect was that, 

firstly, CNI-HALO7-6His again aggregated on the chip and secondly, when P-domain 

in SDS buffer was added to the chip, it would wash off the aggregated CNI-HALO7-

6His from the chip.  

Under the tested conditions measuring interaction between CNI-HALO7-6His and 

ColN P-domain is unfeasible, mainly, due to the instability of CNI-HALO7-6His and its 

aggregation on the chip. This makes any measurement of binding kinetics very 

difficult to interpret and measure. 
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Figure 61: ColN P-domains modification with DEPC. (A) Histidine-tag modifications 
with DEPC; concentrations expressed as molar ratios between Histidine molecules to 
DEPC molecules. End point measurement of absorbance over a spectrum 230 nm – 
320 nm. (B) Histidine-tag modifications with DEPC, concentration expressed as molar 
ratios between Histidine molecules to DEPC molecules. Continuous absorbance 
measurement at 240 nm over 20 min at room temperature. (C) and (D) Abolished 
binding of modified ColN-P-domain to the Ni+-NTA chip. A 5:1 molar ratio, assuming 7 
histidines in the ColN P-domain, during modification is enough to abolish binding to 
the Ni+-NTA chip. 
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Figure 62: CNI-HALO7-6His aggregates on the Ni+-NTA chip and binding to ColN P-domain cannot be measured. (A) CNI-HALO7-6His 
builds with up with each 15 µM injection, indicating aggregation. (B) Reference cell of NTA-chip. CNI-HALO7-6His and ColN P-domain 
bind without Ni+ addition, demonstrating unspecific binding, not via the His-tag. (C) Measuring cell showing CNI-HALO7-6His and ColN 
P-domain binding to NTA-chip when Ni+ is added. (D) CNI-HALO7-6His and ColN P-domain binding without OG. Subtracting the 
reference cell from the measuring cell results in negative net binding. (E) CNI-HALO7-6His and ColN P-domain binding with 1.5 % G. 
Subtracting the reference cell from the measuring cell results in negative net binding. (F) Without CNI-HALO7-6His, increasing OG 
concentrations increase unspecific binding to the Ni+-NTA chip.     
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Figure 63: P-domain incubated in SDS washes CNI-HALO7-6His away. SDS is able 
to wash away aggregated CNI-HALO7-6His from the chip. A binding affinity cannot 
be measured using these conditions.  

4.2.9 Conclusions 

 Helix 1 of CNI is not needed for specific interaction with ColN. If Helix 1 is 

essential for CNI structure, Helix 1 of CAI is able to replace it.  

 Helix 2, 3 and 4 are crucial for protein stability and function, indicating that the 

CNI helices have a function and the homologous helices of CAI are not able to 

replace their function.  

 Mutagenesis of the only cysteine residue to a serine leads to a reduction in 

immunity but does not abolish protein function, indicating that the cysteine 

probably plays a structural role and that dimerisation through a disulphide 

bridge is not a crucial feature of CNI activity.  

 Specific interaction between CNI and ColN could not be demonstrated in vitro 

using SPR and pull-down assays due to protein aggregation and unspecific 

binding.  
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Chapter 5. In vivo observation of GFP-tagged Colicin N 
immunity protein.  

5.1 Introduction  

In contrast to enzymatic colicins, there is a profound lack of understanding how 

immunity proteins to pore-forming colicins work in vivo. These immunity proteins are 

located in the E. coli inner membrane and protect cells from colicin induced death 

(Cascales et al., 2007). However, there are no studies attempting to quantify the level 

of immunity and looking at the in vivo interaction of colicins and their immunity 

proteins. There have been attempts at producing immunity proteins fused to 

recognition tags (Zhang et al., 2010), solubilisation tags and fluorescent proteins 

(Smajs et al., 2008), but none of these studies have used a fluorescent tag to 

visualise the location of the immunity protein in the membrane and demonstrate 

protein-protein interaction in vivo using these tags. This chapter focuses on CNI 

localisation and how it is affected by the addition of its interaction partner Colicin N. 

5.2 Results and Discussion  

5.2.1 Expression system and fluorescent signal optimisation  

CNI was tagged C-terminally with superfolder GFP (Pedelacq et al., 2006) plus a 

6His-tag and cloned into an arabinose inducible expression system which can also 

be used for protein purification (Chapter 3). As well as stabilising the protein and 

simplifying its purification, the tag also allows CNI visualisation in vivo. Following 

arabinose addition for 2 h prior to imaging, a fluorescent signal clearly localised to the 

cell periphery was observed (Figure 64). The protein fusion CNI-sfGFP-6His is evenly 

distributed in the membrane, not favouring any particular location. No obvious 

differences between dividing and non-dividing cells, or abnormal morphology that 

would indicate toxicity, which might be expected when overexpressing a membrane 

protein, were observed. As this is an overexpression system, induction with 

arabinose may lead to unspecific localisation caused by accumulation of protein in 

the membrane, which may mask any localisation patterns that would occur with 

natural amounts of protein.  
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Figure 64: Overexpression of CNI-sfGFP-6His in MC1000 cells. Bright-field (B and D) 
and epifluorescence (A and C) images showing overexpression of CNI-sfGFP-6His in 
MC1000 cells (A and B) and the empty vector control MC1000 cells, which are not 
fluorescent (C and D). Overexpressing cells do not exhibit abnormal morphology. The 
fluorescent signal is localised to the edge of the cell, demonstrating a membrane 
localisation of the fusion protein.  

To reduce the potential masking effect of overexpression and reveal potentially 

hidden localisation patterns, it was attempted to reduce the level of expression using 

the repressors glucose and fucose (Figure 65) to a more natural level, although the 

precise natural expression is unknown. Glucose is a known repressor of the 

arabinose inducible promoter (Guzman et al., 1995) but is also a nutrient source 
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which could be broken down during cell growth and fail to repress expression at later 

stages of culture growth. Fucose is structurally very similar (Figure 65) and also 

represses expression from an arabinose inducible promoter but is not an easily 

degradable nutrient (Guzman et al., 1995). The addition of repressors glucose and 

fucose at the same time as the inducer arabinose did not lead to a titration of the 

protein amount. Instead, protein expression was either induced or repressed (Figure 

65), which is what is expected from a catabolite repression system (Lichenstein et al., 

1987; Schleif, 2000; Schleif, 2010). There was no difference in repression by glucose 

and fucose. Consequently, enough glucose (15 mM ≈ 0.2 %) was added to repress 

protein expression, even if some was used as a nutrient source. 

 

Figure 65: The effect of glucose (A) and fucose (B) addition on the expression of CNI-
sfGFP-6His as measured by the plate reader 

Another way of reducing protein expression is by delayed instead of simultaneous 

repressor addition. The repressor glucose was added at 0.2 % 10 sec, 20 sec and 30 

sec after induction with 0.2 % arabinose to allow for a limited amount of transcription 

to occur before it is repressed (Figure 66). Gene expression is completely repressed 

when fucose or glucose are added, which allows these pulse induction for 10 sec, 20 

sec or 30 sec. Protein production is visible even with a 10 sec induction, while no 

induction leads to no visible production of CNI-sfGFP-6His, meaning that the 

promoter is not significantly leaky.  
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Figure 66: Optimisation of CNI-sfGFP-6HIS expression by delayed repression. CNI-
sfGFP-6HIS expression in MC1000 cells is induced with 0.2% arabinose and 
repressed with 0.2% glucose after 10 sec, 20 sec or 30 sec.  
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Subsequently, 10 sec of arabinose induction were used prior to epifluorescent and 

Total Internal Reflection Fluorescence Microscopy (TIRF; (Axelrod, 2008; Jin et al., 

2008; Li et al., 2008; Shawkat et al., 2008; Hategan et al., 2013)) in order to observe 

the distribution and movement of CNI-sfGFP-6His in the cell (Figure 67, Figure 68). 

At this low level of production the protein still appears evenly distributed in the cell 

membrane. There is no clear patterning or clustering of the protein. This expression 

level probably can no longer be considered overexpression but since the natural level 

of expression is unknown we cannot be certain.  

The distribution of CNI-sfGFP-6His was compared to WALP23-eGFP-6His (eGFP-

tagged WALP23 is a gift by Dr H. Strahl, Newcastle University), which is an artificial 

single helix transmembrane domain without any specific function but can act as a 

model for a generic membrane protein (Weiss et al., 2003; Siegel et al., 2006; Holt et 

al., 2009; Kim and Im, 2010). Here it acts as a negative control, visualising how a 

randomly and evenly distributed, unclustered protein without an interaction partner 

would appear in vivo. WALP23-eGFP-6His is used here also to highlight any non-

specific effects colicin addition might have on membrane proteins. CNI-sfGFP-6His 

appears smoother than the more coarse WALP23-eGFP-6His or the clearly localised 

TolA-eGFP-6His. TolA is essential for A-Type colicin translocation and toxicity and is 

known to localise strongly to the septum during cell division as well as being present 

throughout the membrane (Levengood et al., 1991; Walburger et al., 2002; Gerding 

et al., 2007; Hecht et al., 2010; Penfold et al., 2012). This appearance could also be 

explained by an unusually high lateral diffusion of CNI-sfGFP-6His molecules leading 

to a blurred signal and therefore a smooth appearance.  
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Figure 67: Epifluorescence images show 3 replicates of CNI-sfGFP-6HIS, WALP23-
eGFP-6HIS and TolA-eGFP-6His. CNI-sfGFP-6HIS expression is heterogeneous 
between cells but looks very evenly distributed in the membrane. WALP23-eGFP-
6HIS expression is also heterogeneous, but is also uneven in the membrane. TolA-
eGFP-6His is present everywhere in the cell membrane but shows some clear 
localisation to the septum, which is consistent with the localisation pattern shown in 
Gerding et al. (2007).  
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Figure 68: CNI-sfGFP-6His, WALP23-eGFP-6HIS, TolA-eGFP-6His distribution in the cell as seen in TIRF microscopy. Scale bar in 
upper right corner represents 2 μm.   
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5.2.2 Expression of CNI using its natural promoter  

In an attempt to approximate natural expression levels the arabinose inducible 

promoter on pBAD322 was replaced by the natural promoter of CNI, PCNI. InFusion 

cloning (Clontech Laboratories, Inc.) was used to delete the arabinose inducible 

promoter (location determined in Cronan, 2006) and insert the natural promoter 

(amplified from pCHAP4, the natural plasmid coding for ColN) in its place at the same 

time. Both pBAD322 and pCHAP4 are low copy number plasmids and so expression 

levels should be a good approximation to the natural state. The location of the natural 

promoter was determined by Pugsley (1988) somewhere between the BamHI 

cleavage site and the start of the gene. When this region is deleted, CNI was no 

longer expressed and could no longer protect sensitive cells against ColN. The 

promoter region was resquenced before cloning and some sequencing mistakes 

were discovered (Figure 69). The differences are probably due to the sequencing 

method used in 1988 which is more prone to errors than the methods used today, 

including Sanger ABI 3730xl sequencing used by GATC Biotech Ltd in 2014. The 

promoter was resequenced with 3 different primers in 3 different colonies with the 

same result. A spot test assay (Figure 70) and a liquid culture activity assay (Figure 

71) were carried out to show promoter and protein activity. Similarly to CNI 

expressed from pBAD322-Para-CNI-sfGFP-6His, CNI regulated by its natural 

promoter (abbreviated as npCNI from here) was able to protect the cells from ColN.  
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BamHI 

 A 

gi|41117|emb|X06933.1|_NCBI_CN      ------ACAAAAGGGTCTCAAAGAGGATCCTTTGATCTTTTACTTAATTT 44 

CNI_promoter_DS24052014             CGTAGAAAAAAAGGATCTCAAG-AGGATCCTTTGATCTTTTACTTAATTT 1049 

                                          *.******.******. *************************** 

 

gi|41117|emb|X06933.1|_NCBI_CN      CAACCC-TGTTAGTCTGGATGATGATGATGGAGCAACAGTCCCTCCTTTC 93 

CNI_promoter_DS24052014             CAACCCCTGTTAGTCTGGATGATGATGATGGAGCAACAGTCCCTCCTTTC 1099 

                                    ****** ******************************************* 

 

gi|41117|emb|X06933.1|_NCBI_CN      ACATCACGGATGTGATTGACCTGACATGCACTAAGTGTCATGATAAAAAA 143 

CNI_promoter_DS24052014             ACATCACGGATGTGATTGACCTGACATGCACTAAGTGTCATGATAAAAAA 1149 

                                    ************************************************** 

                                                    -35                    -10       TS 

gi|41117|emb|X06933.1|_NCBI_CN      CAAGATTAATAAAATTTTCCCACACATAATTTTCAACCATCCAAAGAAAC 193 

CNI_promoter_DS24052014             CAAGATTAATAAAATTTTCCCACACATAATTTTCAACCATCCAAAGAAAG 1199 

                                    *************************************************  

                                                                               RBS 

gi|41117|emb|X06933.1|_NCBI_CN      GAACATGGATATAAAAGACAGAAATAAGATATCAAAAAAAATATCATTCA 243 

CNI_promoter_DS24052014             CAACATGGATATAAAAGACAGAAATAAGATATCAAAAAAAATATCATTCA 1249 

                                     ************************************************* 

                                         

gi|41117|emb|X06933.1|_NCBI_CN      GTCTTCTGCTCTTACTTTCCCCATTCGCATTAATATTTTTCAGTTATAAT 293 

CNI_promoter_DS24052014             GTCTTCTGCTCTTACTTTCCCCATTCGCATTAATATTTTTCAGTTATAAT 1299 

                                    ************************************************** 

 

gi|41117|emb|X06933.1|_NCBI_CN      AATGCACAAT--ACACTCCTCGAAAAAAT------------ 320 

CNI_promoter_DS24052014             AATGCACCAATACCACTGCCTGAAAAATCATGCTACTACAC 1340 

                                    *******.*:  .**** *  ******:              

 

B 

 

Figure 69: CNI natural promoter sequence and cloning diagram. (A) Promoter sequence 
alignment of Pugsley (1988), NCBI GenBank: X06933.1, and re-sequenced CNI Promoter 
data (2014). According to Pugsley (1988) the promoter lies between the BamHI site (green) 
and the start of the protein coding sequence. The new, here proposed, promoter sequence 
is underlined. Differences between sequences are highlighted in magenta. The proposed 
start of the protein coding sequence is highlighted with a yellow (Pugsley, 1988) and blue 
(DS, 2014) arrow and text highlight. Transcriptional elements (-35 site, -10 site and 
transcription start) as well as the ribosome binding site (RBS) and the start codon are 
indicated bold. The transcriptional elements have been determined using free 
bioinformatics software11. (B) The natural promoter of CNI was amplified from pCHAP4 and 
inserted in front of the CNI-sfGFP-6 gene into the pBAD322 plasmid using InFusion cloning 
technology. Spot test assay to show activity of the new construct npCNI-sfGFP-6His 

                                            
11

http://www.fruitfly.org/seq_tools/promoter.html and 
http://linux1.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb 
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A spot test assay was used to show that the newly created construct npCNI-sfGFP-6His 

was as effective in providing immunity against ColN as the previously used overexpression 

construct pBAD322-Para-CNI-sfGFP-6His and npCNI without a GFP –tag. ColA was used 

as a specificity control because npCNI-sfGFP should protect against ColN but not ColA. In 

the spot test assay, lethal ColN amounts caused clearing zones in the bacterial lawns 

(Figure 70). Generally, lethality depends on the concentration of colicin in the 2 µl drop, the 

colicin’s ability to diffuse through the agar and the resistance of the cells. Therefore, 

clearing zones of different colicins used at the same concentration are not necessarily 

comparable. Cells expressing npCNI-sfGFP are protected against 600 nM Colicin N and 

Colicin A, while twice this concentration (1.25 µM) was lethal. Sensitive cells were also 

sensitive to 600 nM ColA but much lower concentrations of ColN (150 nM) were sufficient 

to kill sensitive cells. This 4 fold difference in potency between ColN and ColA has also 

been observed in spot test assays by Ridley and Lakey (2015) and is probably caused by 

differences in the translocation mechanism between ColA and ColN, as well as a down 

regulation of BtuB expression in rich media like LB. BtuB is the primary outer membrane 

receptor for ColA (Lundrigan et al., 1987; Ravnum and Andersson, 1997; Lei et al., 2011; 

Kim et al., 2014) and its expression is regulated by vitamin B12 addition. The spot test 

results prove the activity of both the cloned natural promoter and the protein fusion. This 

assay also shows that npCNI-sfGFP activity is specific to ColN as it does not increase the 

immunity against ColA in comparison to sensitive cells. The activity levels of npCNI-

sfGFP-6His are the same as npCNI without GFP, showing that GFP does not influence 

activity despite its size of ca. 28 kDa. The arabinose induced sample seems less resistant 

than npCNI-sfGFP-6His. This is probably due to the short induction time and because the 

agar does not contain arabinose or glucose so the level of protection essentially equals 

that of uninduced cells. This might not be an optimal assay to compare induced and 

naturally regulated CNI because the amount of resistant cells will depend on the timing of 

the pulse induction and for how long the culture is allowed to grow afterwards. WALP23-

eGFP and the empty vector control show no resistance to ColN or ColA. As expected, all 

cultures are equally sensitive to ColA at ca. 1.25 μM, which indicates a specific interaction 

between CNI and ColN. CNI specifically protects against ColN to a certain extend and 

does not protect against a closely related protein.   
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Figure 70: Naturally regulated (npCNI) and arabinose induced CNI (Para-CNI-sfGFP-6His) 
specifically protect MC1000 cells against ColN. Spot test assay to determine CNI specific 
activity against 10 μM, 5 μM , 2.5 μM, 1.25 μM, 0.6 μM, 0.3 μM and 0.15 μM ColN. Para-
CNI-sfGFP-6His was induced for 10 sec with 0.2% arabinose, then repressed with 0.2% 
glucose. CNI does not protect against Colicin A. The GFP-tag has no impact on protein 
activity. WALP23-eGFP-6His does not provide protection against Colicin N.  

5.2.3 Liquid culture cell survival assay demonstrates activity of the new construct 
npCNI-sfGFP-6His 

To confirm the spot test assay results, the activity of npCNI-sfGFP-6His was also tested in 

liquid culture (Figure 71). When no ColN or ColA was added, all cultures (expressing CNI, 

WALP, TolA or not) grew similarly, meaning that membrane protein production is not 

significantly toxic. In liquid culture, npCNI-sfGFP-6His can protect cells up to 1 nM ColN, 

before culture viability is affected by an increase in lag time before log phase growth starts. 

This concentration is a lot smaller than what was measured on agar plates and highlights 

the differences in these two assays. Liquid cultures are constantly shaking, distributing the 

ColN evenly and allowing it to reach and kill more cells, while a drop placed on agar is 

more constrained. Therefore, the liquid culture assay is able to determine ColN impact on 

culture viability more accurately.  
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All MC1000 cells are sensitive to ColA above 100 pM (Figure 71D). Interestingly, even 1 

μM ColN does not kill all CNI producing cells in liquid culture. The clearing zone created by 

1.25 µM ColN in 2 µl on agar is not completely clear either although killing activity is clearly 

evident (Figure 70). Although the colicin makes a considerable impact in both assays, it 

fails to completely prevent growth. At 1 μM ColN, all empty vector control cells are killed 

(Figure 71C). CNI-sfGFP-6His expressed from an arabinose inducible promoter provides a 

higher level of protection than npCNI-sfGFP-6His. As in the spot test assay, GFP has no 

impact on immunity protein activity (Figure 71C). 

 

Figure 71: Activity of npCNI-sfGFP-6HIS in liquid culture. (A) When no ColN was added, all 
cultures grew similarly. (B) MC1000 cells expressing npCNI-sfGFP-6HIS with different 
Colicin N concentrations. npCNI-sfGFP-6His protects cells up to 1 nM ColN, before culture 
viability starts being affected. (C) At 1 μM ColN all empty vector control cells are killed. 
npCNI with and without GFP provides the same level of protection, while Para-CNI-sfGFP-
6His provides a higher level of culture viability. (D) MC1000 cells are sensitive to ColA 
concentrations above 100 pM; cells expressing npCNI are shown as an example.  
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5.2.4 Monitoring protein production in vivo using the sfGFP fusion protein 

As well as measuring resistance to ColN, protein production was also monitored using the 

fluorescence of sfGFP as a quantifiable reporter. Culture growth and protein production 

were monitored at the same time by measuring culture optical density at 600 nm and 

sfGFP fluorescence at 510 nm in the same culture over time. As cells have a certain level 

of auto-fluorescence around the 500 nm wavelength due to mildly fluorescent molecules 

like NADH and flavins (Bao et al., 2008; Yang et al., 2012), it is important to show that the 

increase in fluorescence at 510 nm is not only due to an increase in culture optical density. 

All three types of cultures have the same OD600 nm (Figure 72 A), indicating that each of 

them contains approximately the same amount of cells. The expression of GFP-tagged 

npCNI, however, leads to a significantly higher fluorescence level at 510 nm than in the 

two controls, confirming once more the expression of the GFP-tagged CNI and the activity 

of the cloned natural promoter. The same method was used to show that CNI-sfGFP-6His 

expression and intracellular amount do not change when increasing concentrations of 

ColN are added (Figure 72 B), at least, not to an extent that can be measured by the plate 

reader. This suggests that CNI expression is not upregulated and the CNI turnover rate is 

not reduced as a consequence of ColN addition. It also agrees with the hypothesis of 

constitutive expression proposed for immunity proteins to pore-forming colicins and is a 

crucial prerequisite for the subsequent experiments investigating CNI diffusion rate in vivo.  

 

Figure 72: (A) MC1000 cells which express GFP-tagged CNI, are significantly more 
fluorescent than MC1000 cells that do not express CNI or the untagged version. The cloned 
natural promoter is therefore active. (B) The fluorescence of MC1000 cells expressing 
npCNI-sfGFP-6His does not increase with increased concentrations of ColN.  
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5.2.5 Colicin N and Colicin A have no effect on the distribution and diffusion rate of 
the Colicin N immunity protein 

Following on from killing assays in Chapter 4 and this chapter, sections 0 and 5.2.3, where 

CNI activity was demonstrated through the increased viability of a culture, this section 

focuses on the demonstration of the interaction between CNI and ColN in vivo using 

fluorescent microscopy.  

Figure 73 illustrates the difference between epifluorescent and Total Internal Reflection 

Fluorescence (TIRF) microscopy. In epifluorescent microscopy, light enters the cell and 

excites most GFP molecules within the whole cell. As a result, the cell membrane, which 

contains the CNI-sfGFP-6His fusion, appears brighter than the rest of the cell. It appears 

as if one is viewing a cross-section of the cell although actually one is looking completely 

through the cell. In TIRF microscopy, the laser angle is adjusted so that the light is totally 

reflected by the cover slide but creates an evanescent wave, a kind of energy wave, at the 

interface of the glass slide and the cell membrane or the agarose gel due to the change in 

refractive index. The angle is chosen for each slide individually so that the signal is a local 

maxima in intensity but the angle remains the same for repeats of the same condition 

which are on the same slide. The evanescent wave excites fluorophores close to the 

surface of one side of the cell, mostly within 200 nm from the cover slip, which allows 

viewing of the bacterial membrane in a quasi-plane with very little noise from the cytosol. 

The evanescent wave intensity decreases exponentially with increasing distance from the 

coverslip, so only the region of the bacterial membrane facing the laser is observed 

(Figure 73B). As the ends of rod shaped bacteria such as Escherichia coli are curved, they 

lie outside of the evanescent wave and cannot be seen in TIRF microscopy, but they are 

visible in epifluorescence microscopy. Therefore, bacterial cells in epifluorescence 

microscopy appear longer than in TIRF microscopy at any given magnification.  
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Figure 73: The difference between epifluorescent microscopy and TIRF microscopy. Laser 
angle adjustment (A) and signal strength (B) for epifluorescent microscopy and TIRF 
microscopy. In epifluorescent microscopy the fluorescent signal is stronger than in TIRF. 
The ridges of the cell appear brighter than the middle of the cell because it is a top-down 
view and the signal is mainly located in the cell membrane. In TIRF, a perfect angle is 
determined for each sample by adjusting until only the side of the cell nearest the slide, i.e. 
the membrane, is visible and signal strength reaches a local maximum (B). (C) The same 
field of view in epifluorescence and TIRF microscopy as an example for the difference in 
imaging between the methods. 
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Consistent with previous epifluorescence microscopy images CNI-sfGFP-6His appears to 

be uniformly distributed in the membrane when viewed using TIRF microscopy (Figure 74) 

and addition of ColN and ColA does not seem to obviously change distribution. While a 

drastic change in localisation cannot be observed by eye, it is still possible that the 

addition of ColN has an effect on CNI diffusion rate and clustering.  

 

Figure 74: npCNI-sfGFP-6His distribution does no change upon addition of ColN or ColA in 
an obvious way.  MC1000 cells expressing npCNI-sfGFP-6His.  
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Figure 75: CNI may associate with the P-domain of ColN in the inner membrane. ColN in 
turn is bound to TolA through its TolA binding site (Ridley and Lakey, 2015). Figure is a 
reprint from Stroukova and Lakey, 2015 (in press, see appendix).  

5.2.6 Investigating a change in diffusion rate using Total Internal Reflection 
Fluorescence Microscopy with Continuous Photobleaching (TIR-CP) 

A change in diffusion rate can be tested by how fast a bleached site is replenished by 

unbleached molecules from other parts of the membrane. This is a principle used by 

fluorescence recovery after photo bleaching (FRAP) in eukaryotic cells (Reits and Neefjes, 

2001; Rayan et al., 2010) but is difficult to apply to bacteria because of their small size, 

because a laser applied in epifluorescence mode would illuminate and bleach the entire 

bacterial cell rather than just a small portion. Therefore, bleaching kinetics were observed 

instead using Total Internal Reflection Fluorescence Microscopy with Continuous 

Photobleaching (TIR-CP), a method described by Slade et al. (2009) and used by Strahl et 

al. (2015) to investigate the diffusion rates of membrane proteins. The model to quantify 

the bleaching kinetics is defined in the appendix. 

Here, TIR -CP was used to determine whether ColN addition would, firstly, slow down the 

overall diffusion rate of npCNI-sfGFP-6His through the membrane, and, secondly, induce 

CNI clustering around ColN entry sites. Colicin A and WALP23-eGFP were used as 

controls to highlight specific CNI-ColN interactions and to exclude any general effects the 

addition of a pore-forming colicin might have on the E. coli inner membrane.  
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Cells were grown in at 37 °C until OD600 nm = 0.5 before aliquots were taken and treated 

with sub-lethal concentrations of Colicin N or Colicin A (both at 100 pM). WALP23-eGFP 

cultures were induced with 0.2 % arabinose 2 h prior to harvest and colicin treatment. 

npCNI-sfGFP-6His expression was not artificially induced. A drop of 0.5 µl of each culture 

was fixed on 1.2 % agarose on microscope slides and imaged over time at 100 ms per 

frame. Using the image processing software Image J, all images in the stack, which is 

composed of a series of single pictures taken 100 ms apart, were treated for background 

subtraction and then the overall signal intensity of each image was measured and plotted 

against time. The fluorescence intensity decays over time as more fluorophores are 

bleached than can be replenished. The fluorescence intensity decay was expressed in 

percentage, normalising the initial fluorescence intensity at the start of the measurement 

as 100 %. This allows the comparison of repeats of the same kind of condition, even if the 

stacks do not contain the same amount of cells and do not have the same absolute 

intensity. The curves in Figure 76 were fitted as a two phase exponential decay as per 

Slade et al. (2009) and Strahl et al. (2014), assuming that initial intensity = 100 %, the 

curves decay to 0 % and the initial fast decay rate is the same. Table 10 summarises how 

well the curves fit a two phase decay, giving the fast (Kfast, initial bleaching of resident 

molecules) and slow (Kslow, diffusion limited bleaching of molecules entering the TIRF field 

from the diminishing general pool), the standard error of the curve fit for both phases, the 

degrees of freedom and the goodness of fit (R2). The goodness of fit values are very high, 

meaning that the curves are very likely to follow a two-phase decay. The model to quantify 

the bleaching kinetics is defined in the appendix.   

 

Both npCNI-sfGFP-6His and WALP23-eGFP-6His bleaching curves can be fitted to a two-

phased fluorescence decay when photo bleaching at 488 nm (Figure 76 and Table 10). 

The first phase is dominated by rapid bleaching of all GFP molecules already at one side 

of the bacteria and any background fluorescence. This step looks largely the same for both 

CNI-sfGFP-6His and WALP-eGFP-6His, although the GFP versions (sfGFP and eGFP) 

are different and therefore have different bleaching kinetics and fluorophore stability 

(Pedelacq et al., 2006; Strahl et al., 2014). When trying to fit the bleaching kinetics to a 

two-phase decay this was set to be the same/global (Table 10). During the second part, 

proteins which replenish the bleached area from other parts of the membrane are mainly 

bleached. Here, bleaching is limited by the diffusion efficiency of new GFP molecules 

entering the area visible in TIRF mode. The bleaching kinetics of this second part give the 
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best indication of how fast a protein diffuses because the speed of bleaching is inversely 

related to how fast this area is replenished. If molecules move fast into the bleached area, 

the area is quickly replenished and the overall bleaching is slower. If molecules move 

slower, the area is replenished slower and so the area is bleached faster. At the Colicin N 

and A concentration used here the diffusion rate of npCNI-sfGFP-6HIS and WALP23-

eGFP-6His does not change significantly.  

 

Furthermore, it appears as though CNI-sfGFP-6His bleaches slower than WALP23-eGFP-

6His and therefore moves faster in the membrane. However, a comparison between the 

diffusion rates of WALP23-eGFP-6His and CNI-sfGFP-6His might not be meaningful 

because the speed of bleaching is not only determined by the diffusion rate of the proteins 

but also by their size and their abundance in the membrane, which is determined by 

protein expression levels and stability. The higher the protein density in the membrane, the 

faster a bleached area will be replenished. Expression levels are responsible for how well 

a membrane is replenished with proteins from the cytosol and determines to a certain 

extent how many molecules in total there are in the membrane and, therefore, how fast 

they move into the bleached spot. The bleaching happens much faster than the 

replenishing from the cytosol, so here the differences between the expression levels are 

irrelevant. However, if in a given space there are, in total, more protein molecules, the void 

is replenished faster than if there are fewer protein molecules, even if they have the same 

diffusion rate. Standardising to the initial fluorescence intensity to 100 % is a way to 

determine a starting and an end point. While a comparison between ColA, ColN or no 

colicin addition can be made, it cannot necessarily be made between CNI-sfGFP-6His and 

WALP23-eGFP-6His. Proteins are only comparable if one assumes similar expression 

levels, equally efficient transport to the membrane and equal stability in the membrane. 

These assumptions are very unlikely to be true for CNI and WALP23 because CNI-sfGFP-

6His is a functioning protein regulated by its natural promoter and with potential interaction 

partners in the membrane, while WALP23-eGFP-6His is an artificial transmembrane helix 

which is transcribed from an arabinose inducible promoter and has no function. Therefore, 

WALP23-eGFP-6His could appear slower than CNI-sfGFP-6His if it is less abundant or 

less stable, even if it has the same or a faster diffusion rate. Also, the GFP versions used 

here are different. Superfolder GFP (sfGFP) is much more photostable than enhanced 

GFP (eGFP) and therefore has different bleaching kinetics (Pedelacq et al., 2006; Strahl et 

al., 2014). 
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Furthermore, in contrast to my previous assumption, WALP23-eGFP-6His might not be a 

suitable control for random movement as its distribution appears very coarse in Figure 68, 

as if it forms random clusters with itself. Why these supposed clusters are formed and 

whether the clusters are permanent and caused by WALP23-eGFP-6His interaction with 

lipids or something else has not been investigated further.  

 

Figure 76: Fluorescence decay of CNI-sfGFP-6His is not significantly affected by the 
addition of ColN and ColA. MC1000 cells expressing npCNI-sfGFP-6His (A and C) and 
WALP23-eGFP-6His (B and D) treated with 1 nM ColN and 100 pM ColA. (A) and (B) show 
standard error, (C) and (D) show superimposed and fitted model of two phase exponential 
decay (dashed black line). Images taken every 100 ms, normalised to the same 
background and assessed for overall intensity over time, where fluorescence at t = 0 was 
equalised to 100 %. Fluorescence intensity corresponds to average intensity of all cells in 
one image over time (in sec). For each treatment 4 fields of view were averaged. All fields 
of view contain approximately the same number of cells. The model to quantify the 
bleaching kinetics is defined in the appendix.  
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Table 10: Summary of two-phase decay fit values for WALP23-eGFP-6His and CNI-sfGFP-6His. Assuming the first bleaching phase 
(Kfast) is the same for WALP23-eGFP-6His and CNI- sfGFP-6His and fluorescence intensity bleaches from 100 % to 0 %, all curves fit a 
two-phase decay with high probability. Kfast indicates initial bleaching of GFP molecules already present in the TIRF area. Kslow indicates 
bleaching which is limited by the diffusion rate of the protein and therefore is an indirect estimate of molecule diffusion rate. Kfast and 
Kslow are given as 1 percent of fluorescence per second and are measured over the entire 20 sec. The model to quantify the bleaching 
kinetics is defined in the appendix. 

WALP untreated WALP + ColN WALP +ColA Global (shared) CNI untreated CNI + ColN CNI + ColA Global (shared)

Best-fit values

Kfast in 1% fluorescence/sec (bleaching) 1.337 1.337 1.337 1.337 1.452 1.452 1.452 1.452

Kslow in 1% fluorescence/sec (diffusion limited) 0.061 0.059 0.056 0.019 0.019 0.023

Std. Error

KFast 0.023 0.023 0.023 0.023 0.014 0.014 0.014 0.014

KSlow 0.00028 0.00031 0.00027 0.00015 0.00016 0.00016

95% Confidence Intervals

KFast 1.292 to 1.383 1.292 to 1.383 1.292 to 1.383 1.292 to 1.383 1.425 to 1.479 1.425 to 1.479 1.425 to 1.479 1.425 to 1.479

KSlow 0.060 to 0.062 0.058 to 0.060 0.055 to 0.056 0.019 to 0.020 0.018 to 0.019 0.023 to 0.024

Goodness of Fit

Degrees of Freedom 581 581

R² 0.997 0.998 0.998 0.998 0.996 0.995 0.996 0.996
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5.2.7 CNI does not form clusters upon ColN addition 

ColN requires the Tol-Pal system for translocation and so ColN molecules may 

attract CNI molecules to its site of entry, i.e. TolA, in the inner membrane (Figure 75). 

TolA is a slow moving protein itself  and slows down even further with the addition of 

ColN and ColA (Figure 91, Figure 92, Table 11, Table 12). Therefore, if npCNI-

sfGFP-6His becomes attracted by and attached to a TolA-bound ColN, this may lead 

to a reduction in movement and clustering of npCNI-sfGFP-6His molecules around 

the ColN entry site. 

 

Cells were prepared as previously but imaged at 30 ms per frame. For each cell, a 

fluorescence intensity profile was created in ImageJ across the length of the cell 

(Figure 77B). The mean intensity and variance of each trace was calculated. The 

mean represents how much fluorescence is present in each cell and the variance 

indicates whether this fluorescence is evenly distributed along a line or fluctuates 

greatly around this mean which would indicate clustering (Figure 77A). As overall 

fluorescence intensity does not change upon ColN addition (Figure 72), the mean 

fluorescence in each treatment must be the same (Figure 77 B). If CNI became more 

clustered upon Colicin N addition a difference in variance would be apparent (Figure 

77C). A cell with clusters would have a higher variance around the mean than a cell 

where npCNI-sfGFP-6His molecules are not clustered but evenly distributed. Figure 

77C shows that all means and variances do not differ significantly in all three 

conditions. Hence, npCNI-sfGFP-6His does not form detectable clusters around 

potential entry sites or other locations upon addition of Colicins N and A, and, also, 

does not form randomly moving, unlocalised clusters (Figure 77). 

 

In conclusion, npCNI-sfGFP-6His is evenly distributed in the cell membrane, while 

most of TolA is localised at the septum during cell division. Increasing Colicin N 

addition does not induce clustering of npCNI-sfGFP-6His in the membrane and does 

not increase the overall amount of molecules in a cell. npCNI-sfGFP-6His has a high 

diffusion rate in the cell membrane and is not slowed down significantly when Colicin 

N or Colicin A are added. 
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Figure 77: npCNI-sfGFP-6His does not cluster when ColN or ColA are added. (A) 
Schematic demonstration how protein clustering changes the detection of florescence 
intensity across the length of the cells. From each trace the average pixel intensity 
and the variance of pixel intensity are calculated. If clustering occurs, the variance will 
increase while the average pixel intensity remains the same. (B) The fluorescence 
intensity was measured along a three pixel line down the length of the cell, resulting 
in intensity plots. As npCNI-sfGFP-6His molecules move randomly in the cell, the 
signal is also fluctuating randomly. (C) The average pixel intensity of each intensity 
plot is represented as a dot. There is no significant difference between the means of 
average pixel intensities and there is no significant difference between the means of 
variances of pixel intensities. The number of cells analysed for each condition was 
219 for untreated, 226 for ColN treated, 230 for ColA treated. 
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5.2.8 Single molecule tracking of Para-CNI-sfGFP-6His in the E. coli inner 
membrane 

To directly quantify the diffusion rate of CNI and investigate the in vivo effect of ColN 

addition on single CNI-SFGFP-6HIS molecules, single molecule tracking was used to 

record the movement of Para-CNI-sfGFP-6His molecules in the inner membrane. 

Detecting and recording the movement of individual molecules is a direct measure of 

mobility in contrast to an indirect method like FRAP or the bleaching method 

described earlier (section 5.2.5, Chapter 5). Most importantly, it allows the 

comparison of different proteins with different expression levels and properties as 

well as the comparison of different GFP versions with different fluorophore stabilities 

(Pedelacq et al., 2006), which is not possible with the previously described bleaching 

method. The Central Laser Facility at Research Complex Harwell, Oxford, provides 

the opportunity to image and track the single protein molecules in live cells. The 

principle of single molecule tracking is to take 400 - 1000 high resolution images of 

the same set of cells with a very high frame rate. Then complex image analysis 

software is used to identify single sources of fluorescence as single moving 

molecules and track their displacement from frame to frame. The software analyses 

where the source of light is in comparison to where it was in the previous image and 

connects the locations, creating a track. The length of each track is dependent on the 

durability of the signal, which in turn depends on the stability of the fluorophore, the 

laser strength and how long the molecules remains in the field of view. From the 

recording of a particular track in a given time, the mean square displacement can be 

calculated, from which the average diffusion rate of the molecule, given in µm2/sec, 

can be calculated. The main challenge of this method is to achieve a high enough 

spatial and temporal resolution. For the software to track each single molecule 

accurately the sources of fluorescence need to be spaced far enough apart. 

Otherwise, the software will not be able to determine from frame to frame if a source 

of light is the continuation of a track or a separate molecule. If the equipment permits 

it, the frame rate should be as fast as possible to achieve temporal resolution, 

because this provides more data points within a track and makes the tracking more 

precise. This type of imaging has repeatedly been carried out with eukaryotic cells 

but bacteria, due to their small size (ca. 1 µm x 2 µm for E. coli), still remain a 

challenge. The software has been developed by the CLF team and a more in depth 

description of the software can be found in Rolfe et al. (2011). My part in this work 

was to prepare cells expressing GFP-tagged CNI, TolA and WALP23, label the 
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colicins with CFTM640R fluorescent dye, treat the MC1000 E. coli cells with labelled 

ColN or ColA, prepare the samples for imaging and record the images. Image 

analysis and MSD calculation have been carried out by Dr Daniel J. Rolfe, CLF, 

Harwell.  

5.2.9 Protein labelling 

The imaging facility at CLF allows for the simultaneous imaging of up to 3 different 

fluorophores, so initially, it was intended to carry out a co-localisation experiment with 

ColN and CNI as well as measuring the diffusion rate of CNI for which only one 

channel would be needed. As CNI was already fused to GFP, a red dye (CFTM640R) 

was chosen for ColN and ColA. This is a commercial dye which absorbs at 642 nm 

and emits at 662 nm and is sold with different linking groups and so can be used to 

label proteins through thioester bonds to cysteine residues or ester bonds to amines. 

ColN was labelled via a maleimide reaction in either one or two cysteine residues at 

positions 3 or 94 and 179 (Figure 80), while ColA was labelled with CFTM640R 

succinimidyl ester via its primary amines, mostly lysine residues. 

ColN does not naturally contain cysteine residues and so mutants were used, which 

were created using site-directed mutagenesis by Dr C. L. Johnson, a previous 

member of the Lakey group, for a different experiment. These existing plasmids were 

used to express the single mutant (S3C) and double mutant (V94C/Q179C) and then 

purified (Figure 79) and labelled (Figure 80 C). The dye absorbs at 280 nm as well as 

around 600 nm and 640 nm. 2 mg of S3C (concentration of 4.2 mg/ml = 91.91 mM) 

and 3 mg of V94C/Q179C (concentration of 7 mg/ml  = 163.28 μM) were labelled.  

>gi|116070|sp|P08083.1|CEAN_ECOLX RecName: Full=Colicin-N  

MGSNGADNAHNNAFGGGKNPGIGNTSGAGSNGSASSNRGNSNGWSWSNKPHKNDGFH

SDGSYHITFHGDNNSKPKPGGNSGNRGNNGDGASAKVGEITITPDNSKPGRYISSNPEYSL

LAKLIDAESIKGTEVYTFHTRKGQYVKVTVPDSNIDKMRVDYVNWKGPKYNNKLVKRFVS

QFLLFRKEEKEKNEKEALLKASELVSGMGDKLGEYLGVKYKNVAKEVANDIKNFHGRNIR

SYNEAMASLNKVLANPKMKVNKSDKDAIVNAWKQVNAKDMANKIGNLGKAFKVADLAIK

VEKIREKSIEGYNTGNWGPLLLEVESWIIGGVVAGVAISLFGAVLSFLPISGLAVTALGVIGI

MTISYLSSFIDANRVSNINNIISSVIR 

Figure 78: Cysteine mutations in ColN at positions 3, 94 and 179. Highlighted 
residues have been mutated to cysteines. S3C is single mutant in the ColN T-domain. 
V94C/Q179C is a double mutant in the ColN R-domain.   



155 
 

 

Figure 79: ColN mutant expression and purification profiles. (A) SC3; (B) 
V94C/Q179C. Coomassie stained SDS-PAGE gels show how both mutants are 
expressed by BL21-AI cells one hour after induction with 0.2 % arabinose. 
Purification fractions demonstrate successful purification.  
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Figure 80: Colicin N mutant protein labelling. Both mutants were labelled with 
CFTM640R maleimide via a thioester and separated from the free dye using a PD-10 
column ((A) S3C, (B) V94C/Q179C). (C) An absorbance spectrum was measured 
between 250 nm – 700 nm to calculate labelling efficiency. (D) Typhoon imaging of 
fluorescent labelled protein and free dye at 640 nm (right). The free dye is invisible in 
the Coomassie-stained images (left).  
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ColA for which I do not have cysteine mutants (purified for Chapter 4, Figure 54), was 

labelled on exposed Lysine residues with CFTM640R succinimidyl ester and excess 

dye was removed with a PD-10 column. The labelling success was evaluated with a 

Coomassie-stained SDS-PAGE gel and in-gel fluorescence imaging (Figure 81). In 

total, 4 mg of ColA (concentration of 2.1 mg/ml) were labelled. Even before the gel is 

stained with Coomassie dye, the labelling with CFTM640R is visible within the gel 

(Figure 81). The loading buffer dye front is on the bottom while the labelled protein is 

at ca. 63 kDa, the expected size for ColA. Fluorescence is confirmed through in-gel 

fluorescence imaging. A free CFTM640R dye front is at the bottom of the gel while 

fluorescent ColA is separated at its predicted size. For subsequent experiments 

purification fraction 2 was used as it has the least amount of free dye.  

 

Figure 81: ColA (ca. 63 kDa) labelling with CFTM640R Succinimidyl ester via its lysine 
residues. (A) SDS-PAGE gel before staining. Labelled protein is visible. (B) 
Coomassie-stained SDS-PAGE gel. All protein is visible. (C) In-gel fluorescence 
imaged with Typhoon imager. Labelled protein and free dye front are visible.  
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5.2.10 Protein activity  

None of the ColN Cys mutations used for labelling are located in the P-domain, the 

part which causes cytotoxicity and is most likely to interact with CNI (see Chapter 1: 

Introduction), so it is assumed that this protein assumes the same pore conformation 

in the inner membrane as the wild-type protein. With the mutations located in the 

translocation and receptor binding domain the small dye molecule may interfere with 

binding to the receptor and translocator protein OmpF (Johnson et al., 2013) or the 

LPS layer in the outer membrane (Johnson et al., 2014) or the translocation partner 

TolA (Gokce et al., 2000). Therefore, the activity of the labelled proteins was tested 

using a spot test assay (Figure 82).  

Unlabelled ColN kills sensitive MC1000 cells and MC1000 cells expressing npCNI-

sfGFP-6His. MC1000 cells which produce npCNI-sfGFP-6His are less sensitive to 

ColN than cells which do not. Both labelled ColN mutants kill MC1000 E. coli cells 

expressing TolA-eGFP-6His and npCNI-sfGFP-6His as well as ΔTolA E. coli cells 

(strain: JC207) complemented with TolA-eGFP-6His. Hence, the CFTM640R label 

does not affect the activity of either labelled ColN mutants. It also does not affect 

ColN interaction with CNI, because CNI is still able to immunise cells against both 

mutants. When using the same concentration of ColN, the double mutant seems to 

be more active than the single mutant. This may be because the single mutation is in 

the ColN OmpF binding site (Johnson et al., 2013) and, therefore, this may affect 

translocation. For subsequent single molecule tracking experiments, the double 

mutant was used as its activity corresponds more closely to the WT ColN. The 

activity of labelled ColA activity was also tested using a spot test assay (Figure 83). 

CFTM640R labelled ColA is just as active as unlabelled ColA on MC1000 cells 

expressing TolA-eGFP-6His and npCNI-sfGFP-6His.  
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Figure 82: Labelled ColN mutants are as active as unlabelled ColN. Spot test assay 
testing the expression of TolA-eGFP-6His and npCNI-sfGFP-6His and the activity of 
labelled ColN mutants. (A) Unlabelled ColN kills sensitive MC1000 cells and MC1000 
cells expressing npCNI-sfGFP-6His. (B) MC1000 cells which produce npCNI-sfGFP-
6His are less sensitive to ColN than cells which do not. Both labelled ColN mutants 
kill MC1000 E. coli cells expressing TolA-eGFP-6His and npCNI-sfGFP-6His as well 
as ΔTolA E. coli cells (strain: JC207) complemented with TolA-eGFP-6His. 

 

Figure 83: Labelled Colicin A activity assay. Labelled ColA is just as active as 
unlabelled ColA on MC1000 cells expressing TolA-eGFP-6His and npCNI-sfGFP-
6His, demonstrating that ColA labelling with CFTM640R succinimidyl ester via its 
lysine residues does not interfere with the colicin’s lethal activity.  
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5.2.11 TIRF imaging optimization 

In order to image the movement of Para-CNI-sfGFP-6His, WALP23-eGFP-6His and 

TolA-eGFP-6His, TIRF microscopy was used as it has advantages over 

epifluorescent microscopy for imaging membrane proteins (previously described in 

this chapter, section 5.2.5). Para-CNI-sfGFP-6His, WALP23-eGFP-6His and TolA-

eGFP-6His are all expressed from an arabinose inducible promoter and were 

induced with 0.2 % arabinose. As previously, Para-CNI-sfGFP-6His  was induced 

with 0.2 % arabinose only for 10 sec and then suppressed with 0.2 % glucose for 2 h 

to prevent overexpression. Subsequently, a series of 1000 pictures was taken with 

60 ms exposure time for each image and a software designed by Dr Daniel J. Rolfe, 

Harwell Campus, Oxford, tracked the displacement (D) of each molecule from picture 

to picture. An example of how the software detects the single molecules in the image 

is shown in Figure 85.  

Finally, knowing how many pixels each molecule has travelled within a given time, a 

mean square displacement curve (MSD) can be calculated. This MSD is the average 

squared displacement (position difference) as a function of time interval between all 

pairs of points within a molecule track. MSD curves were produced pooling 

measurements for each molecule separately, and also pooling all measurements 

from all tracks for a particular condition (Figure 87 - Figure 94). The gradient at the 

start of this curve is a measure of the diffusion coefficient on short timescales 

(instantaneous D). For clarification, the working process is depicted in a simplified 

form in Figure 84 and Figure 85. 

The MSDs of Para-CNI-sfGFP-6His, TolA-eGFP-6His and WALP23-eGFP-6His were 

measured, with and without ColN and ColA addition. Similarly to previous 

experiments it was hypothesised that the addition of ColN would change the diffusion 

rate of CNI, i.e. increase the MSD, while ColA might not. TolA-eGFP-6His and 

WALP23-eGFP-6His were used as the positive and negative control, respectively. 

TolA-eGFP-6His should bind both ColN and ColA, while WALP23-eGFP-6His should 

bind neither but highlight any general and unspecific effects which colicin addition 

might have on inner membrane proteins, e.g. through the dissipation of membrane 

potential. ColA was the specificity control for ColN, as it should behave similarly 

towards WALP23-eGFP-6His, TolA-eGFP-6His and the cell membrane but not be 

neutralised by Para-CNI-sfGFP-6His.  
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Figure 84: Simplified representation of steps carried out in preparation for and during 
single molecule tracking. Rolfe et al. (2011) 

 



162 
 

5.2.12 Co-localisation of Para-CNI-sfGFP-6His and ColN is unfeasible with the 
current methodology 

While optimising imaging conditions, I discovered that it was possible to image ColN 

attachment to the cells in epifluorescence but not in TIRF mode (Figure 86). ColN not 

only sticks to the cells but also to the coverslip which was used to immobilise the 

cells. When viewed in TIRF ColN is evenly and randomly distributed on the slide and 

not necessarily attached to the cells and so any attempt to co-localise ColN with CNI 

would result in unreliable data. Co-localisation relies on the non-random distribution 

of both molecules, i.e. their dependence on each other. Two molecules can only be 

considered co-localized when they are found together more often than by chance. 

This condition is not achieved due to the random localisation of ColN on the cover 

slip as well as the cells and, therefore, co-localisation was not carried out. It is not 

feasible to carry out co-localisation in epifluorescent mode as the whole cell, not just 

one side of the membrane, is visible in this mode. Molecules which are separated in 

the 3rd dimension (z-axis) in the 3D space of a cell may falsely appear as co-localised 

in the 2D plane (x- and y – axes) of an image.  

Furthermore, I discovered that extensive bleaching is needed to image 

overexpressed proteins, in particular Para-CNI-sfGFP-6His, because it is otherwise 

impossible to visually and technically separate one protein molecule from another 

and therefore track it. However, extensive bleaching may lead to false negative 

results. Although some Para-CNI-sfGFP-6His molecules may be bleached and 

invisible, they could still be in the membrane and may still interact with labelled ColN. 

Equally, visible Para-CNI-sfGFP-6His molecules may interact with invisible, 

unlabelled ColN molecules, because the labelling efficiency is not 100 %. Both cases 

would not lead to a successful detection of a co-localisation. It was therefore decided 

not to pursue co-localisation further but to focus on detecting a change in diffusion 

rate/MSD. Even if the bleaching could be avoided through a reduction in expression 

levels, which has already been attempted here, the inner membrane is a crowded 

space. Therefore, it is difficult to balance between having too many molecules in the 

membrane causing random collision and difficulties in separating single molecules 

and not having enough molecules to calculate a statistically significant co-

localisation. 
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Figure 85: Examples of TIRF images of Para-CNI-sfGFP-6His, WALP23-eGFP-6His and TolA-eGFP-6His without colicin addition. 
Detected single molecules (circled) were tracked over time and used to calculate mean square displacement. Still images of Para-CNI-
sfGFP-6His, WALP23-eGFP-6His and TolA-eGFP-6His expressed in MC1000 cells with ColN or ColA appear very similar and are not 
shown here as only tracking through time using a software reveals a difference. It is particularly difficult to detect single molecules for 
Para-CNI-sfGFP-6His and extensive bleaching is necessary to bleach background fluorescence.  
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Figure 86: The difference between TIRF and epifluorescence for the red (ColN or 
ColA, 642 nm) and green (Para-CNI-sfGFP-6His, 510 nm) channels. In 
epifluorescence, the ColN or ColA molecules are attached to the cell membrane, 
while TIRF shows the glass cover slip indiscriminately covered in free colicin 
molecules. The green channel here is given for reference and shows continuity with 
Figure 73.  

5.2.13 Mean square displacement - method assumptions and limitations  

The single molecule tracking software (Rolfe et al., 2011) detects all fluorescent 

molecules and tracks them whether they are moving or not. It is important to consider 

which molecules are pooled when calculating the MSD and values from it, since it will 

average the behaviours of the included molecules, and will thus be affected by the 

distribution of motions of those molecules, for example the proportion of moving and 

non-moving molecule included. Therefore, it is essential to consider the contribution 

of moving and non-moving sources of signal to the overall average. The total number 

of tracks and the number of tracks from moving molecules are indicated in Table 11, 

Table 12 and Figure 87 - Figure 94.  
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Here, we define a molecule as moving if its instantaneous D > sig(D) (in µm2/sec). 

Sig(D) is one standard deviation of the diffusion rate “instantaneous D”. The 

instantaneous D is estimated from the gradient of the first two points in the MSD 

curve. In Figure 87 - Figure 94 it is shown with a dashed line. The average value is 

more reliable the more tracks are measured and, ideally, a similar number of tracks 

for each treatment would make the data more comparable. This is not the case for 

Para-CNI-sfGFP-6His where 3 times more tracks were measured for 400 nM ColA 

and ColN and 4 µM ColA and ColN than for 40 nM ColA and ColN and many more 

tracks were measured for Para-CNI-sfGFP-6His  without ColN. The track numbers 

clearly show how in some cases only a very small number of moving tracks actually 

contributes to the MSD. Whether one needs to consider all tracks or just the tracks 

from moving particles is a matter of definition and it is difficult to make a decision 

because there is still a lack of biological knowledge about this system. It is also 

unclear what the molecules that do not move are, i.e. whether they are immobile 

fluorescent proteins, artefacts from lysed cells or fluorescent non-protein artefacts on 

the slide. Comparing total track numbers is not meaningful as the track number is 

largely defined by how many cells are in a frame and how many data sets were 

taken. Also, cell sizes are different and expression is usually not homogeneous 

throughout a culture. Therefore, no conclusion can be made about whether addition 

of ColN or ColA changes the track number per cell.  

Looking at the graphs where only moving particles are analysed the instantaneous D 

is much higher for all treatments. The general trend, however, remains the same. 

Overall, there is no significant difference between treatments and even at higher 

concentrations there is no significant difference between ColN and ColA. Overall, it is 

therefore more likely that the “slowing down” effect is a general effect on the 

membrane due to colicin addition, rather than one caused by specific protein-protein 

interaction. Here, it is crucial to consider the controls TolA-eGFP-6His and WALP23-

eGFP-6His. TolA-eGFP-6His and WALP23-eGFP-6His were only observed with 40 

nM of ColA and ColN due to time constraints and also because this concentration is 

already a lot higher than the minimal inhibitory concentration (MIC) of MC1000 cells 

(see chapter 4 for the MIC of sensitive cells). ColA and ColN will dissipate membrane 

potential and so may influence membrane fluidity and other proteins in the 

membrane. Because the membrane is such a crowded and tightly packed 



166 
 

environment, simply the presence of a colicin P-domain may lead to unspecific 

effects.  

It is unknown if, upon binding to ColN, CNI slows down or stops entirely. Even if free 

diffusion is limited it is still likely to be moving around a little due to the membrane 

fluidity at 37 °C. It is unknown how many of the protein molecules are moving around 

or sitting still. It is also unknown what happens to ColN once it has entered the 

membrane, for example, whether it is neutralised by CNI and just stays there until it is 

removed in the general turnover of the inner and outer membrane. Since these 

mechanisms involve a lot of proteases it is conceivable that a neutralised ColN 

molecule could be degraded and removed during the general growth cycle. ColN is 

cytotoxic rather than cytostatic, so if the cell does not die, there should be no 

obstacle for it to stop growing, remodelling and dividing, as is demonstrated in the 

liquid culture killing assays in Chapter 4.  

While it is easy to define mathematically what “stationary” means, it is difficult to do 

this biologically as the membrane is in constant movement and so in theory all 

proteins should be moving. Fundamentally, it seems to be a case of definition, 

whether one excludes “non-moving” sources of signal as false positives. Therefore, 

all results are given for all detected as well as all moving molecules. To exclude 90% 

of the signal is a rather large number and it is entirely possible and evident that not 

all molecules, even of the same kind, are in the same condition. However, it can be 

argued that, within this set up, I was trying to observe a change in diffusion rate and 

so must be observing something that is diffusing in the first place. When considering 

objects that are by definition not moving, it is not possible to observe a slowing down 

effect. And to observe the biggest possible effect of colicin binding I must focus on 

the moving molecules.  

Finally, although I obtained quantitative numbers for the instantaneous D of Para-

CNI-sfGFP-6His, TolA-eGFP-6His and WALP23-eGFP-6His, these proteins would 

probably have faster diffusion rate without the GFP fusion protein (ca. 27k Da). 

However, CNI and TolA can still carry out their biological function and so the 

measured diffusion rate should be a good approximation of the real movement. 
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5.2.14 Mean square displacement - the effect of colicin addition on membrane 
protein movement  

Based on images like those shown in Figure 85, Dr Rolfe calculated the MSD for all 

treatments. The calculated values of mean square displacement and track numbers 

are summarised in Table 11, Table 12 and shown in Figure 87 - Figure 94.  

When considering all detected molecules for Para-CNI-sfGFP-6His, both ColN and 

ColA addition slows down movement as the sample without colicin is the fastest with 

instantaneous D = 0.025 + 0.002 µm 2/sec (Table 12). ColN and ColA addition 

reduces diffusion rates to ca. 50% with 40 nM and 25% with 400 nM and 4 µM, so 

generally, the more colicin is added, the slower the protein. There is no significant 

difference between ColA and ColN at lower concentration of 40 nM and 400 nM. A 

significant difference is only apparent at the highest used concentration of 4 µM, 

where Para-CNI-sfGFP-6His treated with ColA is twice as fast as when treated with 

ColN. Indicating that CNI binds ColN and therefore slows down, while it does not bind 

ColA. However, when considering only the moving molecules there is no significant 

difference in instantaneous D upon colicin addition and there is no significant 

difference between adding ColN or ColA, even at 4 µM. This observation could lead 

to the conclusion that ColN addition causes a higher proportion of Para-CNI-sfGFP-

6His molecules to become non-motile than ColA. Comparing the proportions of 

mobile molecules to all molecules between ColA (67/1247x100 = 5.37 % motile) and 

ColN (27/1046x100 = 2.58 % motile), this conclusion is only true for 4 µM. When no 

colicin is added the proportion of motile to all molecules for WALP23-eGFP-6His and 

TolA-eGFP-6His is ca. 10 % and 7 % for CNI-sfGFP-6His. When colicin is added this 

proportion remains at 10 % for WALP23-eGFP-6His and TolA-eGFP-6His, while it 

drops to ca. 3 % for CNI-sfGFP-6His. Whether this has any biological relevance is as 

yet unclear.  

WALP23-eGFP-6His moves much faster than the proteins Para-CNI-sfGFP-6His and 

TolA-eGFP-6His, which is expected because it is not a protein but an artificial 

transmembrane helix (Figure 89 and Figure 90). Addition of ColA or ColN slows down 

WALP23-eGFP-6His to approximately 60 - 70 % percent of its original diffusion rate 

and so this is a considerable reduction. As expected there is no significant difference 

between ColA and ColN, as WALP23-eGFP-6His does not interact with either of the 

colicins in a specific way.  
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TolA-eGFP-6His is the positive control because it is an essential binding partner for 

both ColA and ColN during translocation through the periplasm and necessary in 

order to reach the inner membrane. TolA deletion impacts cells growth negatively but 

allows complete resistance to ColA and ColN. TolA is a large, elongated protein (ca. 

43 kDa) with 3 domains. Domain I is anchored in the inner membrane while domains 

2 and 3 are protruding into the periplasm and interacting with other proteins. In 

comparison to Para-CNI-sfGFP-6His and WALP23-eGFP-6His it is therefore a 

relatively slow moving protein which is reflected in the MSDs (Figure 91 and Figure 

92). TolA-eGFP-6His follows a similar pattern as CNI-sfGFP-6His and WAL23-eGFP-

6His in the way it reacts to ColN and ColA. When either colicin at 40 nM is added, the 

protein slows down. When considering all detected molecules the MSD of TolA-

eGFP-6His is reduced by ColA from 0.0153± 0.0008 µm2/sec to 0.0092 ± 0.0007 

µm2/sec, and to 0.0069 ± 0.0004 µm2/sec by ColN, which corresponds to a reduction 

by ca. 40% and ca. 55 %, respectively. When considering only the moving 

molecules, the MSD of TolA-eGFP-6His is reduced by ColA from 0.033 ± 0.003 

µm2/sec to 0.023 ± 0.002 µm2/sec, and to 0.016 ± 0.002 µm2/sec by ColN, which 

corresponds to a reduction by ca. 30% and ca. 50 %, respectively.  

It is certainly noteworthy that the reduction is not the same with both colicins and in 

fact bigger with ColN than with ColA, although ColA is the bigger protein. This 

suggests further that it may not be the physical addition of bulk which slows down 

TolA but the effect the colicins have on the membrane overall, and hence an 

unspecific effect. This is supported further by the observation that WALP23-eGFP-

6His is also slowed down by colicin addition, although there is no known or 

anticipated interaction with either of the colicins.  

In conclusion, using single molecule tracking for diffusion rate quantification had 

several advantages over TIR-CP. Single molecule tracking is a direct rather than an 

indirect measure of diffusion rate, which allowed the comparison of different protein 

fusions and demonstrated the variety of diffusion rates for the same protein in the 

same condition, leading to the conclusion that the diffusion rate measured with TIR-

CP is actually an average of different diffusion rates. A significant drawback to this 

method is that nearly 90 % of the molecules which emit fluorescence do not move, 

which is a considerable issue when trying to measure the replenishment of an area, 

as was attempted with TIR-CP.  
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5.3 Conclusions 

 Several methods were developed to observe GFP labelled CNI in the 

membrane of expressing cells by epifluorescent and TIRF microscopy.  

 The mobility of CNI and WALP were compared by bleaching methods in the 

presence and absence of added ColN and ColA 

 Fluorescently labelled ColN and ColA were prepared but adhere non-

specifically to the slides preventing co-localisation studies. 

 Single particle tracking was used to compare the diffusion rate (instantaneous 

D) of CNI, WALP and TolA in the membrane. 

 The magnitude of instantaneous D was greater for WALP than CNI and TolA, 

and greater for CNI than TolA. 

 The diffusion rate of all three proteins decreases on addition of ColN or ColA  



170 
 

Table 11: Instantaneous D (diffusion rate) values of Para-CNI-sfGFP-6His, WALP23-eGFP-6His and TolA-eGFP-6His (in µm2/sec), 
when only moving molecules are considered, where D >1σ (D).  

 

 

Table 12: Instantaneous D (diffusion rate) values of Para-CNI-sfGFP-6His, WALP23-eGFP-6His and TolA-eGFP-6His (in µm2/sec), 
when all molecules are considered. 

 

no ColN 
40 nM 400 nM 4 μM 

 
ColN ColA ColN ColA ColN ColA 

Para-CNI-sfGFP-6His 

0.025 
± 0.002 

n = 5961 

0.013 
± 0.004 
n = 257 

0.013 
± 0.005 
n = 301 

0.006 
± 0.001 

n = 1164 

0.008 
± 0.002 

n = 2197 

0.007 
± 0.002 

n = 1046 

0.013 
± 0.002 

n = 1247 

WALP23-eGFP-6His 

0.064 
± 0.003 

n = 3721 

0.033 
± 0.003 

n = 2380 

0.050 
± 0.003 

n = 5313 

    

TolA-eGFP-6His 
0.0153 

± 0.0008 
n = 10103 

0.0069 
± 0.0004 
n = 5487 

0.0092 
± 0.0007 
n = 3718 

    

 no ColN 
40 nM 400 nM 4 μM 

 
ColN ColA ColN ColA ColN ColA 

Para-CNI-sfGFP-6His 

0.043 
± 0.004 
n = 431 

0.060 
± 0.020 
n = 8 

0.030 
± 0.020 
n = 10 

0.031 
± 0.006 
n = 51 

0.034 
± 0.006 
n = 138 

0.040 
± 0.010 
n = 27 

0.045 
± 0.007 
n = 67 

WALP23-eGFP-6His 

0.095 
± 0.006 
n = 379 

0.061 
± 0.006 
n = 256 

0.071 
± 0.003 
n = 628 

    

TolA-eGFP-6His 
0.033 

± 0.003 
n = 1091 

0.016 
± 0.002 
n = 659 

0.023 
± 0.002 
n = 312 

    



171 
 

 

Figure 87: The effect of ColN and ColA on Para-CNI-sfGFP-6His MSD within the 

inner membrane. ColN and ColA were added at 4µM, 400 nM, and 40 nM. Colicin 
addition decreases diffusion rates but there is no significant difference between ColN 
and ColA. (A) MSD curves of moving particles, where displacement is higher than 1 
standard deviation (D >1σ (D)). Instantaneous D is plotted with dashed line. (B) 
Normalised frequency of particles for each treatment based on their diffusion rate, 
when displacement is higher than 1 standard deviation (D >1σ (D)) and number of 
tracks for each treatment.  
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Figure 88: The effect of ColN and ColA on Para-CNI-sfGFP-6His MSD within the 
inner membrane. ColN and ColA were added at 4µM, 400 nM, and 40 nM. Colicin 
addition decreases diffusion rates but there is no significant difference between ColN 
and ColA. (A) MSD curves of all determined particle tracks. Instantaneous D is 
plotted with dashed line. (B) Normalised frequency of particles for each treatment 
based on their diffusion rate, and number of tracks for each treatment. 
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Figure 89: The effect of 40 nM ColN or ColA on WALP23-eGFP-6His MSD within the 
inner membrane. Colicin addition decreases diffusion rate but there is no significant 
difference between ColN and ColA. (A) MSD curves of moving particles, where 
displacement is higher than 1 standard deviation (D >1σ (D)). Instantaneous D is 
plotted with dashed line. (B) Normalised frequency of tracks for each treatment based 
on their diffusion rate, when displacement is higher than 1 standard deviation (D >1σ 
(D)) and number of tracks for each treatment.  
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Figure 90: The effect of 40 nM ColN or ColA on WALP23-eGFP-6His MSD within the 
inner membrane. Colicin addition decreases diffusion rate but there is no significant 
difference between ColN and ColA. (A) MSD curves of all determined particle tracks. 
Instantaneous D is plotted with dashed line. (B) Normalised frequency of particles for 
each treatment based on their diffusion rate, and number of tracks for each treatment. 
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Figure 91: The effect of 40 nM ColN or ColA on TolA-eGFP-6His MSD within the 
inner membrane. Colicin addition decreased the diffusion rate but there is no 
significant difference between ColN and ColA. (A) MSD curves of moving particles, 
where displacement is higher than 1 standard deviation (D >1σ (D)). Instantaneous D 
is plotted with dashed line. (B) Normalised frequency of tracks for each treatment 
based on their diffusion rate, when displacement is higher than 1 standard deviation 
(D >1σ (D)) and number of tracks for each treatment.  
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Figure 92: The effect of 40 nM ColN or ColA on TolA-eGFP-6His MSD within the 
inner membrane. Colicin addition decreased the diffusion rate but there is no 
significant difference between ColN and ColA. (A) MSD curves of all determined 
particle tracks. Instantaneous D is plotted with dashed line. (B) Normalised frequency 
of particles for each treatment based on their diffusion rate and number of tracks for 
each treatment. 
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Figure 93: A comparison of MSD between Para-CNI-sfGFP-6His, WALP23-eGFP-
6His and TolA-eGFP-6His at 40 nM ColN and ColA. For all treatments, the diffusion 
rate of Para-CNI-sfGFP-6His lies in between WALP23-eGFP-6His and TolA-eGFP-
6His, as expected. (A) MSD curves of moving particles, where displacement is higher 
than 1 standard deviation (D >1σ (D)). Instantaneous D is plotted with dashed line. 
(B) Normalised frequency of tracks for each treatment based on their diffusion rate, 
when displacement is higher than 1 standard deviation (D >1σ (D)), and number of 
tracks for each treatment.  
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Figure 94: A comparison of MSD between Para-CNI-sfGFP-6His, WALP23-eGFP-
6His and TolA-eGFP-6His at 40 nM ColN and ColA. For all treatments, the diffusion 
rate of Para-CNI-sfGFP-6His lies in between WALP23-eGFP-6His and TolA-eGFP-
6His, as expected. (A) MSD curves of all determined particle tracks. Instantaneous D 
is plotted with dashed line. (B) Normalised frequency of particles for each treatment 
based on their diffusion rate, and number of tracks for each treatment. 
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Chapter 6. Discussion, Conclusions and Future work  

6.1 Discussion 

Colicins are an interesting and important field of study because they have diverse 

mechanisms of function, interacting with nucleic acids, peptidoglycan precursors, 

lipids and proteins of the inner and outer membrane (Cascales et al., 2007; Kim et 

al., 2014). Considering this breadth of function it is not surprising how common they 

are in natural microbial populations. Also, it is not unexpected that humans have 

started to consider their agricultural and medicinal applications as well as studying 

them academically as model systems for protein-nucleic acid interaction, protein-

protein interaction and membrane translocation. However, the problem with all 

antimicrobial agents is the eventually emerging immunity and so more bacteria 

produce colicin immunity proteins than colicins (Riley, 1993; Gordon et al., 1998), 

which is why colicin immunity proteins should also be studied. 

When starting this work on the Colicin N immunity protein, only its sequence and 

general function were known, published knowledge on homologues was limited and 

the fundamental question of how colicinogenic bacteria protect themselves against 

their highly potent pore-forming toxin was and still remains unanswered. While for 

nuclease colicins, the mode of immunity protein binding and release as well as the 

force of affinity have been established, the interaction mechanism of pore-forming 

colicins and their immunity protein is unknown although most literature points 

towards a direct interaction. To test this hypothesis, in vitro interaction studies are 

crucial and so the first aim of this project was to express and purify CNI. 

6.1.1 Fusion proteins improve CNI overexpression 

The natural expression level of immunity proteins to pore-forming colicins is assumed 

to be constitutive and very low (Pugsley, 1988; Cascales et al., 2007), and thus all 

previous work on immunity proteins to pore-forming colicins has used overexpression 

systems. Overexpressing membrane proteins requires a fine balance between a 

system that produces enough protein for purification but minimises the toxicity and 

metabolic burden. In nature, colicins as well as their lysis and immunity proteins are 

encoded on a plasmid, so expression from a well-characterised vector is an obvious 
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approach. In this work, a great variety of constructs with different promoters, plasmid 

copy numbers, fusion tags and fusion proteins was investigated. Ultimately, a CNI-

HALO7-6His fusion expressed in C41 E. coli cells and purified using a DM containing 

Tris buffer was chosen as the optimal combination to produce the most stable 

monomeric protein. However, overexpression initially started with a polyhistidine-

tagged version of CNI which should have given a product that did not require 

protease cleavage. Unfortunately, N- or C-terminally polyhistidine-tagged CNI could 

not be expressed in detectable quantities using either arabinose induction from a 

pBAD322 system or IPTG induction from a pOPIN vector in any of the tested 

conditions. Also, while CNI fusions with larger proteins, such as GFP, HALO7 or MBP 

and the cleaved tags were easily detected using Coomassie-stained gels, western 

blots and in the case of GFP-tags also in-gel fluorescence, the cleaved CNI protein 

was hardly detected. CNI cleaved from its fusion protein was only visible as very faint 

bands on Coomassie-stained SDS-PAGE gels and a western blot. LC-MS analysis of 

protease cleavage products confirmed that cleaved CNI was present and not 

degraded by the protease, but can give no indication of amounts. Cleaved CNI could 

be purified and concentrated by ion exchange chromatography but high salt 

concentrations can be a problem for membrane proteins because they require higher 

detergent concentrations for micelle formation. It is unclear why larger fusion protein 

tags were more beneficial for expression than smaller tags, but it may be related to a 

naturally high turnover rate of CNI, which is somehow inhibited by the large tag. Cell 

survival assays showed that cultures become more immune when the level of 

expression is increased by changing the promoter and plasmid copy number from 

arabinose induced expression using a Para promoter to a IPTG induced T7 

promoter. The pCHAP4 and pBAD322 plasmids are low copy number while all the 

other plasmids used are high copy number plasmids. It may also be that the protein 

is not very stable and the tag provides a stabilising scaffold.   

The difficulties of producing CNI by itself or with a small tag indicate that the larger 

fusion proteins are crucial in stabilising the protein outside of the membrane. CNI, 

therefore, seems to be amongst the many proteins which benefit from expression as 

a fusion. Fusions with larger proteins, especially GFP, are a popular approach to 

improve stability, solubility, detection, purification optimisation (Hammon et al., 2009; 

Bird et al., 2015) and even crystallography (Carpenter et al., 2008; Suzuki et al., 

2010).  
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6.1.2 Alternative approaches to mimicking the inner membrane environment 

These difficulties leave three routes for further characterisation. Some techniques, 

particularly biophysical ones, like cryo-electron microscopy (Zeev-Ben-Mordehai et 

al., 2014) or small angle x-ray scattering (Gilbert et al., 1999; Firer-Sherwood et al., 

2011; Breyton et al., 2013) which determine the protein’s shape, structure or rigidity, 

require as much pure protein as possible so further ways of purifying and stabilising 

CNI in a monomeric form are required. Past attempts all included overexpression of 

the immunity protein from a constructed system and purification with reducing agent, 

such as the DTT used in this work, and detergents like Triton X-100 (Mankovich et 

al., 1986; Geli et al., 1989b; Shirabe et al., 1993) or solvents like butanol (Taylor et 

al., 2000). However, none demonstrates specific in vitro interaction between the 

colicin and its immunity protein, indicating that the difficulty to achieve specific 

interaction is common to several immunity proteins.  

After Weaver et al. (1981) determined the activity of the Colicin Ia and Ib immunity 

proteins (both E1-type) in vivo using vesicles produced from cells immune to Colicin 

Ia and Ib, Mankovich et al. (1986) determined the sequence of Colicin Ia and Ib 

immunity proteins and constructed an overexpression system because the natural 

expression levels were too low to attempt purification. Mankovich et al. (1986) 

extracted the Colicin Ia and Ib immunity proteins using a 10 mM Tris (pH = 8) buffer 

containing 1 % Triton – X 100, 20 mM MgCl2, 100 mM 2-mercaptoethanol and 

purified them using an isoelectric focusing column. It is noteworthy that a reducing 

agent was used, just like DTT was used in this work, although it is not explained why 

it was added. The level of expression and purification yields were assessed using 

SDS-PAGE and autoradiography Following overexpression 31 μg of pure protein 

from 2.1 g (wet weight) of cells was produced. Mankovich et al. (1986) do not report 

any structural studies, in vitro interaction studies with the cognate colicins or attempts 

to reconstitute the immunity proteins. However, based on amino acid sequence 

analysis alone, they propose that immunity proteins interact directly with the 

hydrophobic region of the colicin molecules.  

Geli et al. (1989b) tagged the Colicin A immunity protein (CAI) with an epitope from 

ColA for which a monoclonal antibody was available. They used a 75 mM Tris – 

acetate buffer (pH = 9.3) containing 1 % Triton X-100, 1.5 mM EDTA, 0.5 mM N-ethyl 

maleimide and 0.2 mM phenylmethyl sulfonyl fluride for purification, however, during 

the following chromatofocusing and immunoadsorbant chromatography the Triton X-
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100 concentration was reduced to 0.1 %. This reduction in detergent concentration is 

the same approach that has been adopted in this work with DM and Cymal 6. The 

purified CAI protein has then been reconstituted into lipid vesicles by Geli et al. 

(1989b) but specific interactions with ColA and, therefore, activity of CAI could not be 

shown. Geli et al. (1989b) discuss various reasons why a specific interaction could 

not be demonstrated, including surface pressure of the vesicles, orientation of the 

reconstituted CAI protein and the lack of membrane potential. They also point out 

that there was unspecific binding of ColA to the lipid vesicles, which can be expected, 

because ColA would form pores in a membrane whether CAI is present or not. 

Perhaps this method could be improved by quantifying the binding affinity using more 

modern techniques such as SPR and determining a difference in binding affinity 

between ColA and vesicles and ColA and CAI in vesicles. Also, Geli et al. (1989b) 

uses very dramatic pH changes during their purification procedure, from alkaline to 

acidic and back to alkaline, which could cause the protein to denature or aggregate. 

This work (Chapter 3) shows how acetic acid can unfold properly folded and 

aggregated CNI prior to SDS-PAGE and western blotting to improve detection by the 

antibodies and it is possible that hydrochloric acid has the same effect on CAI. Geli et 

al. (1989b) does not demonstrate that the structure of CAI is intact after purification. 

Shirabe et al. (1993) overexpressed Colicin E1 immunity protein using a specially 

constructed overexpression system and a tac promoter. The protein was solubilised 

using 0.5 % Brij® 58, a non-ionic detergent with varying chain length, and further 

purified with a hydroxyapatite gel and reverse phase chromatography. 360 μg of 

purified protein were obtained from 1 l culture. Other detergents were also tested for 

solubilisation (data not published) but only Triton X-100 and Brij® 58 were effective 

and Brij® 58 was more effective than Triton X-100. When the purified Colicin E1 

immunity protein was added to solute-loaded liposomes, small but significant lytic 

activity was observed which demonstrated the hydrophobic nature of the protein. An 

interaction with Colicin E1 was not tested.  

Taylor et al. (2000) overexpressed the immunity protein to Colicin E1 using a T7 

promoter in BL21(DE3) cells, just like has been done in this work for CNI. Taylor et 

al. (2000) report that purification of the Colicin E1 immunity protein using several 

detergents was unsuccessful and that, therefore, purification with solvents was 

attempted instead. They report a lengthy and harsh purification procedure which 

involves gel filtration, ion-exchange chromatography, desiccation and a final refolding 
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step in chloroform/methanol/ H2O (4:4:1). Using near-UV CD and NMR they 

confirmed that the protein was folded into a bundle of α-helices, as expected, and 

suggest that the protein’s tertiary structure was dependent on helix-helix interactions. 

In this work, an increased degradation was observed in the chimeric proteins, where 

individual CNI helices have been replaced with homologous helices from CAI, which 

suggests that the chimeric CNI proteins have lost their WT structure and are 

therefore more prone to degradation. Similarly, to the Colicin E1 immunity protein it is 

therefore possible that the structure of CNI is determined by helix-helix interactions. 

Despite obtaining a purified and folded Colicin E1 immunity protein, an interaction 

with Colicin E1 is not reported by Taylor et al. (2000). 

Potential different ways to stabilise CNI in a membrane-like environment could 

include styrene maleic acid lipid particle systems (Rodger et al., 2002; Knowles et al., 

2009; Dorr et al., 2014; Overduin, 2014; Paulin et al., 2014; Postis et al., 2015) and 

lipid-detergent mixtures, like those already used for lipid-cubic phase in membrane 

protein crystallography (Siegel et al., 2006; Li and Caffrey, 2011; Caffrey et al., 2012; 

Warren et al., 2013; Li and Caffrey, 2014; Weierstall et al., 2014). 

6.1.3 Stabilising CNI through ColN P-domain 

Another approach to improve stability could be to replace the fusion partner with a 

biological binding partner, such as the P-domain or full length ColN. This could be 

carried out as a continuation of the pull-down assays in this work. The fusion protein 

tag would remain bound to the beads, while CNI and P-domain could be cleaved 

using a PreScission protease, which in turn can be removed using GST-binding 

resin.  

There is ample evidence suggesting that immunity proteins to pore-formers directly 

interact with the hydrophobic loop of the P-domain (Geli and Lazdunski, 1992; Zhang 

and Cramer, 1993). In this work, it was attempted to show specific interaction 

between CNI and ColN or ColN P-domain using SPR and pull-down assays, 

however, none of the conditions tested could imitate the inner membrane adequately. 

CNI is highly hydrophobic, which is explained by its amino acid sequence, its 

predicted secondary structure and the bioinformatics prediction that a large majority 

of the protein is embedded in the inner membrane. Size exclusion chromatography, 

SPR and, to a limited extent, pull-down assays were greatly hindered by CNI binding 

to the Superose 12 column, the SPR chip and ColA unspecifically and aggregating in 
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the HEPES buffer at room temperature during SPR. This suggests that the detergent 

was not able to mask the hydrophobic residues sufficiently, either because it is an 

unsuitable detergent or because 0.1% is not an adequate concentration. It was also 

observed that the CNI aggregates faster at room temperature than at 4 °C. A suitable 

detergent must therefore mask the hydrophobic areas and stop aggregation but still 

allow CNI and ColN to interact using those sites. This would be achieved when CNI 

has a greater affinity for ColN than for the detergent. In vivo, the interaction between 

the immunity proteins and colicins is greater than their interaction with lipids so a 

similar situation has to be achieved in vitro.  

SPR can be carried out with lipid vesicles (Besenicar et al., 2006), which could 

contain reconstituted immunity protein. However, reconstitution requires a large 

amount of protein since not all the proteins will be in the correct orientation. It could 

be possible to reconstitute the protein while it is tagged and cleave the tag 

afterwards. For CNI both N- and C- terminal are on the same side (the cytoplasmic 

side) and so if the protein inserts in the correct orientation, the tag will point inside the 

vesicle. If it is in the wrong orientation, with termini pointing outside of the vesicle, it 

will be cleavable using a protease and hence unspecific interactions between the tag 

and the binding partner, e.g. ColN P-domain, can be avoided. It has previously been 

hypothesised that lipids play a role in pore-formation (Sobko et al., 2004a; Sobko et 

al., 2004b; Sobko et al., 2005; Sobko et al., 2006a; Sobko et al., 2006b; Sobko et al., 

2006c; Sobko et al., 2010) because P-domain alone cannot form a pore as large as 

has been measured by electrophysiology. Therefore, it is possible that lipids are also 

important in the interaction of the colicin and its immunity protein.  

6.1.4 Characterising tagged CNI using mutagenesis 

In the absence of sufficient untagged CNI, a third approach of characterising CNI is 

by considering how it can be characterised while it is tagged, and overexpressed or 

regulated by its natural promoter. The caveat of using a tagged protein is always 

whether the tag somehow influences the protein’s natural behaviour and possibly 

interferes with its function, especially if the tag is bigger than the protein. In this work, 

the activity of each new construct has been tested thoroughly and proven that tagged 

CNI maintains its function. There is no evidence which shows that the tags inhibit 

function or that the increased amount of protein in the membrane is significantly 

detrimental to the cells. Using CNI regulated by its natural promoter, a comparison 
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between tagged and untagged CNI was made using a spot test, which proved that 

tagged and untagged CNI provides the same level of protection against ColN. It is 

assumed that this is also the case for overexpressed CNI. In this work, pull-down 

assays and SPR have used the tags as anchors to solid surfaces but, as previously 

discussed, establishing specific interactions was not successful.  

A tagged version of CNI has also been used to create mutants and assess their 

activity in vivo. Zhang and Cramer (1993) proposed pore-forming colicins and their 

immunity proteins interact through hydrophobic helix-helix interactions. Since then, 

this hypothesis has been supported by Sobko et al. (2009), Smajs et al. (2006), 

Smajs et al. (2008), Pilsl et al. (1998), Zhang et al. (2010) for homologous colicins. 

Based on this hypothesis, chimeric proteins were created where each predicted helix 

of CNI was swapped with the corresponding predicted helix in CAI, with the aim of 

changing the specific immunity from ColN to ColA. Although, a change in specify was 

not achieved, three other conclusions could be drawn. Firstly, CNI Helix 1 is not 

necessary for the specific interaction with ColN because the Helix 1 mutant still 

protects against ColN. Whether Helix 1 is entirely redundant for protein function or if 

CAI Helix 1 replaced its function could be determined in future through a truncation. 

Geli et al. (1988) replaced the first 12 amino acids of CAI with a part of ColA or β-

galactosidase, which is similar to a truncation, and found that CAI was still functional, 

indicating that the N-terminal was not required for function. However, the first 12 

amino acids are not part of the first helix of CAI as the helix starts with residue 17 

and so the first helix of CAI could still replace the function of the first helix of CNI. 

Secondly, when Helix 2 and 3 of CNI were mutated in this thesis, no protein was 

produced. It was confirmed through sequencing that the promoter sequence and as 

well as the gene sequence do not contain unintended mutations, so whether the 

protein was transcribed but not translated is unclear and can only be resolved by 

analysing the cell RNA content.  

Finally, following the hazy appearance of Coomassie stained bands from purified and 

cleaved CNI on SDS-PAGE gels, it may be that CNI is a very flexible protein, with a 

well-defined α-helical secondary structure connected through flexible loops or turns 

but no fixed tertiary structure. It was therefore hypothesised that helix swapping 

would have a minimally detrimental effect on protein structure. However, a western 

blot showed increased degradation in the mutants when compared with the WT CNI 
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and CAI proteins, indicating that Helix 1 and 4 are important in overall integrity of the 

protein and that therefore the protein must have a defined tertiary structure.  

CNI contains only one cysteine residue, located in the predicted 3rd helix, and it was 

hypothesised to be involved in protein function or possibly lead to a dimerisation of 

the protein, like is observed with CAI (Zhang et al., 2010). However, the CNIC113S 

mutant fusion remained active, albeit was less effective than the WT CNI. There is no 

evidence to suggest that it is not a dimer in vivo, which could be tested by SDS-

PAGE with a loading buffer that does not contain a reducing agent, but this potential 

dimerisation probably plays a minimal role in protein activity. The mutation also does 

not affect purification yields in a significant way. It is likely that the cysteine has a 

structural purpose, possibly in stabilising Helix 3, and, therefore, mutating it to serine 

only has a limited effect.   

Possibly, the purified and cleaved CNI protein is unstable because it has been 

delipidated when extracted from the membrane using detergents. Lipid-protein 

interactions are crucial for membrane proteins because the lipids contribute 

significantly to the membrane characteristics, such as fluidity, lateral pressure, bilayer 

thickness and surface charge (Stangl and Schneider, 2015). Lipids can interact with 

membrane proteins in many ways, affecting their function and polymerisation state. 

Lipids and membrane proteins can interact through the polar lipid head groups and 

the polar part of the membrane loops or turns. For example, negatively charged lipid 

head groups bind to stretches of basic amino acids. In addition, the hydrophobic 

transmembrane domains of the protein, in case of CNI the helices, can bind to the 

hydrophobic fatty acid chains of the lipid.  

There are three types of interactions between lipids and membrane proteins (Stangl 

and Schneider, 2015). Firstly, the bulk lipids that surround the protein loosely and 

make up the general environment. Secondly, the shell of annular or boundary lipids 

that associate loosely with the protein and the composition of which is determined by 

the local architecture of the protein (Yeagle, 2014). Thirdly, the non-annular lipids 

that bind closely and specifically to the membrane protein, usually in clefts, cavities 

and hydrophobic binding pockets and could be decisive for correct protein folding. 

Non-annular lipids often remain bound to membrane proteins even after purification 

with detergents and can sometimes even be co-crystallised with the protein.   
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The LC-MS and SDS-PAGE data in this work suggests that at least one such non-

annular lipid (approximately 700 Da in size) is probably attached to CNI and co-

purifies with approximately 50 % of the CNI molecules when non-ionic detergents are 

used. Both annular and non-annular lipids can play a crucial role in protein 

polymerisation, acting as a glue, or the prevention of polymerisation, acting as a 

shield or repellent (Stangl and Schneider, 2015). It is, therefore, possible that CNI 

appears smooth rather than clustered in vivo and shows no signs of dimerisation 

despite the cysteine residue because it is surrounded by lipids. Proteins may 

preferentially interact with specific lipids, possibly based on the length of the fatty 

acid chain. Therefore, a suitable detergent should have tails which match the lipids 

surrounding that membrane protein (Stangl et al., 2012). 

As well as playing a structural role within the molecule and aiding polymerisation, 

lipids can also aid in the interaction between different proteins and may be an 

alternative to disulphide bonds in a nonpolar environment. It has repeatedly been 

suggested that colicins and their immunity proteins interact through helix-helix 

interactions. Helix-helix interactions can be caused by van der Waals interactions, 

hydrogen bonds and intercalating aromatic residue interactions and so it is essential 

that interacting helices have complementary surfaces (Lemmon and Engelman, 

1994; Cymer et al., 2012). 

In this work, a lot of non-specific binding was observed, although in vivo data shows 

that CNI interacts specifically with ColN. Possibly, the absence of lipids from the SPR 

and pull-down assays which used largely delipidated protein could be an explanation. 

CNI is highly hydrophobic and may be highly prone to bind unspecifically and 

ultimately aggregate but could be shielded from these non-specific interactions by 

lipids. DM used at 0.1 % may not be suitable to imitate this shielding effect and this is 

why there is so much unspecific interaction. Proteins may preferentially interact with 

specific lipids, possibly based on the length of the fatty acid chain. Therefore, a 

suitable detergent should have tails which match the lipids surrounding that 

membrane protein.  

Considering that lipids are hypothesised to be involved in pore formation, CNI may 

be interacting with those same lipids to prevent pore-formation (Yeagle, 2014). As 

well as potentially being important in channel formation by ColN, lipids have been 

shown to be involved in the formation of the potassium channel Kir2.1 (Soom et al., 
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2001). For the Kir 2.1 channel lipid binding induces a conformational change in a 

flexible linker region, which results in reorganisation of the entire channel structure 

and finally in channel activation (Hansen et al., 2011). It is possible that ColN channel 

formation works according to a similar principle.  

Proteins may preferentially interact with specific lipids, possibly based on the length 

of the fatty acid chain (Stangl et al., 2012; Stangl and Schneider, 2015). Therefore, a 

suitable detergent should have tails which match the lipids surrounding that 

membrane protein. Possibly, none of the detergents tested here are perfect 

substitutes for non-annular lipids which would support the intramolecular structure of 

the protein as well as annular lipids which would prevent non-specific binding and 

aggregation.   

Investigating the lipids associated with CNI would be interesting future work, which 

could be carried out with the creation of nanodiscs using SMALPs (Dorr et al., 2014), 

followed lipid analysis using HPLC or thin layer chromatography. Also, an NMR 

structure may resolve the question if the additional 700 Da are a non-fuller lipid and 

what other lipids are associated with CNI.  

When carrying out the spot and cell survival assay with ColN as well as ColA it was 

noticed that compared to ColN higher concentrations of ColA were needed to kill the 

cells. This could have a variety of reasons. ColA is prone to degradation and may 

have degraded or aggregated during handling and the samples may therefore 

contain fewer active molecules. However, Ridley and Lakey (2015) also reported a 

difference between ColA and ColN potency in spot test and cell survival assays, 

which are related to the differences in translocation through periplasm. 

6.1.5 In vivo CNI observation using fluorescent microscopy 

A GFP-tagged version of CNI proved particularly useful in characterising CNI. It 

allowed tracking the CNI-sfGFP-6His fusion during purification, was used to screen 

detergents for solubilisation and was also used in fluorescent microscopy and single 

molecule tracking. Although a GFP-tagged version of Colicin K immunity protein 

(Mulec et al., 2003) has been created and observed using epifluorescent microscopy 

before, CNI is the first immunity protein to be clearly localised to the cell periphery. 

Furthermore, Mulec et al. (2003) does not demonstrate CKI-GFP activity, while CNI-

sfGFP-His activity has been shown extensively in this work. It is also the first time an 
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immunity protein has been observed in TIRF and analysed for how its behaviour 

changes in vivo when ColN is added.  

So far expression of immunity proteins to pore-forming colicins has always assumed 

to be constitutive and low (Cascales et al., 2007), but a quantitative count of the 

molecules has not been carried out. When viewing the cells in TIRF for the single 

molecule tracking experiments, it was also attempted to image cells which express 

CNI regulated by its natural promoter PCNI. However, it was very difficult to see any 

fluorescent molecules at all (data not shown). A low signal to noise ratio is largely 

responsible for that but it also certainly indicates that the expression is very low. To 

quantify expression better, quantitative PCR could be used to establish transcription 

levels and establish if they are influenced by similar stresses as colicin expression. 

This work showed, using a liquid culture fluorescence assay (Chapter 5), that 

addition of sublethal ColN amounts did not increase the total amount of npCNI-

sfGFP-6His in the cell, which means that expression was not upregulated and there 

was no increased stabilisation of the protein, like a protection from breakdown 

through ColN binding. This is further evidence suggesting that the CNI is 

constitutively expressed in nature and the few molecules that are present are 

extremely efficient at patrolling the inner membrane and protecting the cell. However, 

other factors such as culture density, temperature (growth temperature, heat or cold 

shock) and nutrient change or starvation, and other factors that can trigger Colicin N 

production naturally, such as DNA damage, for example, through mytomycin C, were 

not examined (Tsao and Goebel, 1969; Hausmann and Clowes, 1971; Nakazawa 

and Tamada, 1972; Pugsley, 1984a). This technique might not be accurate or 

sensitive enough to detect minor changes in expression or protein stability.  

In addition to the in vitro experiments with SPR and the pull-down assay, single – 

molecule tracking and TIR-CP (total internal reflection fluorescent microscopy with 

continuous photo-bleaching) were used to show a direct and specific interaction of 

CNI with ColN in vivo. TIR-CP was used to assess ColN induced clustering, while 

single molecule tracking looked for a change in diffusion rate upon ColN addition.  

Generally, the E. coli inner membrane is a dynamic structure, mainly due to constant 

cell growth, membrane turn over and random movement. Despite these dynamics, 

some membrane proteins can still maintain a certain degree of localisation within this 

environment, which is usually determined by their function. TolA, for example, is a 
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large, periplasmic space spanning protein which is anchored in the inner membrane 

but also interacts with Pal in the outer membrane (Ridley and Lakey, 2015). It 

localises to the cell septum late in cell division (Gerding et al., 2007). The Tol system 

plays a prominent role in colicin translocation for several colicins, including ColA and 

ColN. Therefore, we hypothesised that CNI may co-localise with TolA and wait for 

ColN to reach the inner membrane before it inactivates it or somehow interfere with 

ColN binding to TolA. TIR-CP microscopy and single molecule tracking have not 

provided any evidence to support this hypothesis. CNI is, in comparison to TolA, 

more evenly distributed in the cell membrane and, overall, diffuses faster than TolA, 

therefore making a permanent interaction unlikely, although a transient interaction is 

still possible. It is remains unclear if CNI has any other interaction partners apart from 

ColN. Gerding et al. (2007) showed the distribution of other components of the Tol 

system but none resembles the distribution observed for CNI.  

ColN P-domain goes through a dramatic transformation and helix rearrangement 

when inserting into the inner membrane, following the umbrella (Parker et al., 1992; 

Padmavathi and Steinhoff, 2008; Bohme et al., 2009) or penknife model (Lakey et al., 

1993; Massotte et al., 1993; Duche et al., 1996) or something in between, and so it 

was hypothesised that CNI could dramatically change distribution or diffusion in the 

membrane when ColN is added. A measurement of overall culture fluorescence 

showed that overall CNI abundance is not increased through a reduction in turnover 

or expression upregulation. Surprisingly, neither clustering, specific localisation nor a 

specific reduction in diffusion rate is observed. Interestingly, there was an overall, 

non-specific effect on protein diffusion rates in the membrane when ColN and ColA 

were added, which might be related to the dissipation of membrane potential. To test 

this hypothesis a membrane dissipating small molecule like Carbonyl cyanide m-

chlorophenyl hydrazone (CCCP) could be used (Kasianowicz et al., 1984).  

Apart from the previously discussed difficulties in determining how to analyse the 

data and whether to include non-moving particles in the calculation of diffusion rates 

(Chapter 5), one fundamental discovery included that moving particles of the same 

type move at different diffusion rates. The frequency distribution plots in Chapter 5 

show that the diffusion rate of a protein in a given condition can vary from 0 to 0.3 

μm/sec. This discovery is important because it questions the purpose of citing a 

quantitative number for the diffusion coefficient, an average of speeds which are in 

terms of statistics not normally distributed. This work shows that the distribution is 



191 
 

dramatically skewed towards the slow and non-moving end of the spectrum. Also, the 

statistical distribution of speeds as well as the speed itself is unlikely to be the same 

for any two proteins because it is determined by the protein function and properties, 

such as size and shape, unless these proteins form a heterodimer.  This discovery 

also highlights the well-known fact that the membrane is not a homogeneous 

environment, consisting of less and more rigid areas caused by different protein and 

lipid compositions, thereby influencing the molecules’ movement within (Zerrouk et 

al., 2008; Papanastasiou et al., 2013; Bramkamp and Lopez, 2015). Interestingly, 

WALP23-eGFP, an artificial non-functional transmembrane helix appears to be more 

clustered than CNI, which makes it a poor negative control within the experiment but 

also poses the question how CNI is so evenly distributed in a non-homogeneous 

environment. This property may be essential for its ability to protect the entire inner 

membrane. 

The underlying assumption for these in vivo measurements of clustering and speed 

is a direct interaction between CNI and ColN, but it is still unknown whether pore-

forming colicins and their immunity proteins interact permanently and in a 1:1 

stoichiometry or whether more molecules of an immunity protein are needed to 

neutralise a single colicin molecule. While a change in speed, if there is one, should 

be observable, it is doubtful if a clustering effect upon ColN addition can be seen if 

the ratio is indeed 1:1, as a cluster is defined as the accumulation of more than one 

molecule of CNI-sfGFP-6His in a given location. Whether a fluorescent signal is 

coming from one or several molecules can be determined by the way it bleaches 

under laser light. One molecule shows a sharp drop in signal, characteristic for an 

on/off switch, while several molecules would show a slower decrease in 

fluorescence, which looks like descending stairs, where one molecule is bleached at 

a time.   

6.2 Conclusions 

To the best of my knowledge, the only attempt to characterise the immunity protein to 

Colicin N is mentioned by Pugsley (1988) and has until now remained unstudied.  

This works presents a revised sequence for the cni gene and its promoter PCNI , 

which reclassifies CNI into an A-type immunity protein with 4, not 3, transmembrane 

helices. Recombinant expression and purification of CNI was optimised and its 
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activity characterised, concluding that expression as a fusion with a stabilising C-

terminal HALO7-6His tag yielded the most protein when expressed in C41 E. coli 

cells at 37 °C overnight in Terrific Broth. The fusion protein increased resistance to 

Colicin N by a factor of 1000 and is therefore folded and localised correctly. A variety 

of detergents were screened to effectively solubilise and stabilise CNI and decyl β-D-

maltopyranoside was determined to be the most effective detergent.  

The creation of CNI/CAI chimeric proteins showed that all helices were crucial for 

protein stability and indicated that CNI has a fixed tertiary structure. The first helix is 

not essential for CNI specificity to ColN and the only cysteine residue of the protein 

has no significant role in protein function. An in vitro condition for specific CNI-ColN 

interaction in pull-down assays or SPR could not be created.  

A fusion with sfGFP was used to determine CNI behaviour in vivo when ColN was 

added using TIR-CP and single molecule tracking. CNI is active when fused to sfGFP 

and localised to the cell periphery but does not compartmentalise or form clusters, in 

fact it is the most evenly distributed protein among those investigated here. CNI does 

not experience a change in diffusion rate specific to when ColN is added, although 

there seems to be a general effect on membrane protein mobility when a pore-

forming colicin is added, possibly caused by the dissipation of membrane potential. 

This work has found no evidence of CNI interacting with any other membrane 

proteins, most notably TolA.  

6.3 Future work  

Future work could pursue any of the three approaches used here to study CNI. In 

vitro work should explore alternative methods of mimicking the cell membrane, such 

as membrane scaffold proteins, nanodiscs or lipid-detergents mixtures. The CNI 

capture after protease cleavage could also certainly be optimised. 

Site-directed mutagenesis could be used to narrow down residues essential in CNI 

specificity to ColN. The hypothesis of hydrophobic helix-helix interaction between 

pore forming colicins and their immunity proteins could be tested further by creating a 

chimeric protein where all 4 helices are swapped.  

In vivo work with sfGFP-tagged GFP could consider CNI localisation in mutant 

strains, such as ΔTolA strain. Continuing from the general effect observed on 
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membrane proteins when ColN is added, CCCP could be used to test if this change 

in diffusion rate is caused by membrane potential dissipation (Strahl and Hamoen, 

2010).  
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Appendix  

Supplementary figures for Chapter 3: CNI overexpression optimization 

The below figures show the full overexpression optimization screen carried out at OPPF, Harwell, UK.  

Below is a repeat of the protein fusion sizes for convenience.  

Table 13: Protein and tag combination used during the overexpression screen, including the tag and protein fusion sizes. Vector names 
refer to nomenclature used by OPPF12. All were cloned into pOPIN vectors with spectinomycin (pOPINCD vectors) or ampicillin 
selection.  

Vector name Tag Tag MW in Da 
MW of fusions with CNI (20 

431 Da) in Da 
Fusions with CNI-TEV-GFP 

(49 882 Da) 

pOPINCDE C-His 969 21 400 x 

pOPINCDF N-His 2 158 22 589 x 

pOPINS3C N-His-SUMO3C 13 213 33 644 63 095 

pOPINMSYB N-His-MSYB 16 268 36 699 66 150 

pOPINCDJ N-His-GST 27 954 48 385 77 836 

pOPINE-3C-eGFP eGFP-6His-C 28 645 49 076 x 

pOPINE-3C-HALO HALO7-6His-C 35 343 55 774 x 

pOPINCDM N-His-MBP 42 711 63 142 92 593 

 

Table 14: Periplasmic target sequences linked to ColN P-domain (in 23 Da) in pOPIN vectors with ampicillin selection for co-expression 
with CNI fusions in pOPINCD vectors. Vector names refer to nomenclature used by OPPF.  

Vector  Periplasmic target sequence 

pOPINO Omp A SS (co-express with CD vectors) 

pOPINP PelB SS (co-express with CD vectors) 

pOPINDsbA Dsb A SS (co-express with CD vectors) 

pOPINMalE PelB SS (co-express with CD vectors) 

                                            
12

 http://www.oppf.rc-harwell.ac.uk/OPPF/protocols/cloning.jsp 
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Figure 95: Coomassie-stained gel showing CNI protein fusions purified by IMAC from E. coli Lemo21 cells, grown in PB media. 
Constructs showing increased expression of correctly sized protein (Table 7) are highlighted red in the legend and indicated by red 
arrows. Where ColN P-domain (23kDa) is co-expressed, the signal sequence is given. Although ColN P-domain is coexpressed (purple 
square), it does not improve CNI expression.  
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Figure 96: Coomassie-stained gel showing CNI protein fusions purified by IMAC from E. coli Lemo21 and C41 cells, grown in PB media. 
Constructs showing increased expression of correctly sized protein (Table 7) are highlighted red in the legend and indicated by red 
arrows. Where ColN P-domain (23kDa) is co-expressed, the signal sequence is given. Although ColN P-domain is coexpressed (purple 
square), it does not improve CNI expression. The eGFP control is indicated with a green square. 
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Figure 97: Coomassie-stained gel showing CNI protein fusions purified by IMAC from E. coli C41 and C43 cells, grown in PB media. 
Constructs showing increased expression of correctly sized protein (Table 7) are highlighted red in the legend and indicated by red 
arrows. Where ColN P-domain (23kDa) is co-expressed, the signal sequence is given. Although ColN P-domain is coexpressed (purple 
square), it does not improve CNI expression. The eGFP control is indicated with a green square. 
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Figure 98: Coomassie-stained gel showing CNI protein fusions purified by IMAC from E. coli C43 cells, grown in PB media. Constructs 
showing increased expression of correctly sized protein (Table 7) are highlighted red in the legend and indicated by red arrows. Where 
ColN P-domain (23kDa) is co-expressed, the signal sequence is given. Although ColN P-domain is coexpressed (purple square), it does 
not improve CNI expression. The eGFP control is indicated with a green square. 
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Figure 99: Coomassie-stained gel showing CNI protein fusions purified by IMAC from E. coli Rosetta 2 cells, grown in PB media. 
Constructs showing increased expression of correctly sized (Table 7) are highlighted red in the legend and indicated by red arrow. The 
eGFP control is indicated with a green square. 
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Figure 100: In-gel fluorescence of purified GFP-tagged CNI fusion proteins, expressed in PB media. SDS-PAGE gel identifies which 
constructs are overexpressed, the relative level of expression in comparison to other conditions and highlights protein degradation and 
some higher order structures. CNI-TEV-GFP is the previously used reference construct. Constructs without additional solubilisation tags 
seem to break at the fusion point more easily than constructs with additional proteins. The broken off GFP-tag is around 28 kDa. Most 
purified proteins show dimerisation, which could indicate aggregation. Where ColN P-domain (23 kDa) is co-expressed, the signal 
sequence is given. ColN P-domain co-expression does not improve CNI-TEV-eGFP expression levels or stability. Numbers indicate lane 
number.  
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Figure 101: Coomassie-stained gel showing CNI protein fusions purified by IMAC from E. coli Lemo21 cells, grown in TBO media. 
Constructs showing increased expression of correctly sized protein (Table 7) are highlighted red in the legend and indicated by red 
arrows. Where ColN P-domain (23kDa) is co-expressed, the signal sequence is given. Although ColN P-domain is coexpressed (purple 
square), it does not improve CNI expression.  
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Figure 102: Coomassie-stained gel showing CNI protein fusions purified by IMAC from E. coli Lemo21 and C41 cells, grown in TBO 
media. Constructs showing increased expression of correctly sized protein (Table 7) are highlighted red in the legend. Where ColN P-
domain (23kDa) is co-expressed, the signal sequence is given. Although ColN P-domain is coexpressed (purple square), it does not 
improve CNI expression. The eGFP control is indicated with a green square. 
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Figure 103: Coomassie-stained gel showing CNI protein fusions purified by IMAC from E. coli C41 and C43 cells, grown in TBO media. 
Constructs showing increased expression of correctly sized protein (Table 7) are highlighted red in the legend and indicated by red 
arrows. Where ColN P-domain (23kDa) is co-expressed, the signal sequence is given. Although ColN P-domain is coexpressed (purple 
square), it does not improve CNI expression. The eGFP control is indicated with a green square. 
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Figure 104: Coomassie-stained gel showing CNI protein fusions purified by IMAC from E. coli C43 cells, grown in TBO media. 
Constructs showing increased expression of correctly sized protein (Table 7) are highlighted red in the legend and indicated by red 
arrows. Where ColN P-domain (23kDa) is co-expressed, the signal sequence is given. Although ColN P-domain is coexpressed (purple 
square), it does not improve CNI expression. The eGFP control is indicated with a green square. 
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Figure 105: Coomassie-stained gel showing CNI protein fusions purified by IMAC from E. coli Rosetta 2 cells, grown in TBO media. 
Constructs showing increased expression of correctly sized protein (Table 7) are highlighted red in the legend and indicated by red 
arrows. The eGFP control is indicated with a green square. 
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Figure 106: In-gel fluorescence of purified GFP-tagged CNI fusion proteins, expressed in TBO media. SDS-PAGE gel identifies which 
constructs are overexpressed, the relative level of expression in comparison to other conditions and highlights protein degradation and 
some higher order structures. CNI-TEV-GFP is the previously used reference construct. Constructs without additional solubilisation tags 
seem to break at the fusion point more easily than constructs with additional proteins. The broken off GFP-tag is around 28 kDa. Most 
purified proteins show dimerisation, which could indicate aggregation. Where ColN P-domain (23 kDa) is co-expressed, the signal 
sequence is given. ColN P-domain co-expression does not improve CNI-TEV-eGFP expression levels or stability. Numbers indicate lane 
number.  

 

 



207 
 

Supplementary formula for Chapter 5: In vivo observation of GFP-tagged Colicin N immunity protein 

Model to quantify bleaching kinetics 

To determine if there is a change in CNI mobility due to the addition of ColN or ColA, the bleaching kinetics of sfGFP  fused to CNI 

have been calculated using the formula used in Strahl et al. (2014), which is based on the principles explained in detail in Slade et 

al. (2009). The normalised and background-subtracted fluorescence intensity decay of CNI-sfGFP is calculated using  

𝑦 = 𝑦0 × 𝑒(−𝐾𝑓𝑎𝑠𝑡 × 𝑥) + 𝑦0 × 𝑒(−𝐾𝑠𝑙𝑜𝑤 × 𝑥) , 

where y is fluorescence intensity (starting at 100 % and decreasing towards 0 %), y0 is fluorescence intensity at t = 0 (beginning of 

bleaching), Kfast is the constant associated with bleaching sfGFP molecules within the reach of the evanescent wave, and Kslow is 

the constant determined by diffusion limited bleaching of molecules entering the TIRF field from the diminishing general pool. 
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