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Abstract 

Approximately 8.5 million people in the UK are affected by osteoarthritis (OA), a 

multifactorial, polygenic disease characterised by articular cartilage loss. In 2012, the 

arcOGEN Consortium reported on the largest OA genome-wide association scan (GWAS) to 

date, in which five regions of the genome were significantly associated with the disease in 

Europeans. I aimed to characterise two of these regions: rs10492367 is intergenic between 

PTHLH and KLHL42, while rs9350591 is intergenic between FILIP1 and SENP6. MYO6, 

TMEM30A, COX7A2 and COL12A1 also surround rs9350591. There are no non-synonymous 

polymorphisms within either association region that could account for the signals. I first 

confirmed that the genes were expressed throughout in vitro chondrogenesis and 

osteoblastogenesis. Using quantitative real-time polymerase chain reaction, I identified the 

differential expression of PTHLH, KLHL42, SENP6, MYO6, COX7A2 and COL12A1 in 

articular cartilage stratified by disease state, joint and/or sex. There were no differences 

between the genotypic groups of either signal, corroborated by pyrosequencing which 

quantified allelic outputs. Expression quantitative trait loci, irrespective of rs9350591 

genotype, acted upon MYO6 and COL12A1. I used data from an Illumina BeadChip array to 

identify the hypermethylation of cg26466508 in rs9350591 risk allele carriers relative to non-

risk allele homozygotes. In luciferase reporter assays, the alleles of polymorphisms in high 

linkage disequilibrium with rs10492367 displayed differential enhancer activity. 

Electrophoretic mobility shift assays were used to investigate protein binding to four of these 

polymorphisms, with RELA, SUB1 and TCF3 binding to rs10492367: chromatin 

immunoprecipitation confirmed these findings. Finally, I used silencing RNAs to knockdown 

the transcription factors in human articular chondrocytes, with SUB1 depletion resulting in a 

downregulation of PTHLH. Overall, I have highlighted the complexity of characterising 

GWAS signals. The data suggest functional roles for the regions, perhaps by mediating OA 

susceptibility during joint development rather than in end-stage diseased cartilage.
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Chapter 1.  Introduction 
 

1.1 The Musculoskeletal System 

1.1.1 Introduction to the musculoskeletal system 

The musculoskeletal system exists to allow the controlled movement of the human body by 

providing structure, support and protection. It comprises the skeleton and muscles in addition 

to connective tissues such as cartilage, ligaments and tendons. Perturbations of this 

fundamental system can lead to the development of musculoskeletal disorders, the leading 

cause of long-term pain and disability worldwide (Woolf and Pfleger, 2003). There are over 

200 known musculoskeletal conditions (Arthritis Research UK, 2013) and some wide-ranging 

examples include muscular dystrophy, fibromyalgia, idiopathic lower back pain, Dupuytren’s 

contractures, ankylosing spondylitis and arthritis. 

 

1.1.2 Economic impact of musculoskeletal health 

There is an ever increasing necessity to understand musculoskeletal disease mechanisms in 

order to provide more appropriate measures to prevent, treat and manage the associated 

conditions. In the 2012-2013 financial year, the budget assigned to the National Health 

Service (NHS) for the musculoskeletal health programme was £5.34 billion (NHS England, 

2015) and it is forecast to rise in accordance with an ageing UK population. Each year, 

approximately one fifth of the UK population consult their general practitioner about a 

musculoskeletal condition (Arthritis Research UK Primary Care Centre Keele University, 

2014). In addition, it is estimated that in 2013 alone, 30.60 million UK work days were lost as 

a result of musculoskeletal conditions (Office for National Statistics, 2014). A further 

economic burden is in the form of Disability Living Allowance (DLA; also known as 

Personal Independence Payment [PIP]), a tax-free, non-means-tested benefit system to aid 

those who have personal care or mobility needs as a result of disability. As detailed in Table 

1.1, three of the top eight conditions with the highest number of claimants are directly related 

to musculoskeletal disorders (Department for Work and Pensions, 2015). Over half a million 

people in the UK claim DLA for arthritis, with an average weekly benefit of £88. Individuals 

with diseases of the muscles, bones or joints account for 173,530 claimants, receiving an 

average of £79 per week in benefits, while unspecified back pain accounts for 155,040 of 

claimants, each receiving an average of £87 per week. Other notable conditions not listed 

individually include spondylosis (80,600 claimants, £85/week), multiple sclerosis (64,080 

claimants, £110/week), Parkinson’s disease (17,530 claimants, £108/week) and motor 
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neurone disease (1,580 claimants, £113/week). These figures clearly highlight the financial 

need for the continued research into musculoskeletal disorders. 

 

Disabling condition 
Number of 
claimants 

Average weekly 
amount of benefit (£) 

Arthritis 532,920 88 
Learning difficulties 448,300 78 

Psychosis 256,000 71 
Disease of the muscles, bones or joints 173,530 79 

Psychoneurosis 172,150 59 
Back pain – other/precise diagnosis not specified 155,040 87 

Neurological diseases 134,340 97 
Heart disease 106,260 88 

Other conditions 1,199,710 91 
Total 3,178,300 - 

   
Table 1.1. Number of individuals in the UK who are in receipt of disability living 
allowance and the average benefit claimed per individual per week. The top eight 
conditions are listed individually, all of which have over 100,000 claimants each. Other 
conditions (total of 47 listed conditions each with less than 100,000 claimants). Data as of 
November 2014 (Department for Work and Pensions, 2015). 

 

1.2 Defining Osteoarthritis 

1.2.1 Introduction to arthritis 

Arthritis is a disease of the joints and accounts for the greatest number of claimants of DLA 

for an individual disabling condition in the UK. The OANation 2012 report, commissioned by 

Arthritis Care, suggests that arthritis affects 10 million people in the UK alone (Arthritis Care, 

2012). The two main forms of arthritis are osteoarthritis (OA) and rheumatoid arthritis (RA), 

both of which display the hallmark features of pain, stiffness and inflammation at an affected 

joint, but with different underlying causes and disease mechanisms. 

 

1.2.2 Rheumatoid arthritis and other arthritis-related conditions 

RA is the second most common form of arthritis, affecting over 400,000 people in the UK 

(Symmons et al., 2002). The onset of RA is often seen between the ages of 40 and 50 years 

old, with women three times more likely to develop the disease than men. This chronic 

autoimmune disease is characterised by the inflammation of the outer membrane which 

surrounds a synovial joint. This causes irritation and swelling of the affected joint and 

consequently leads to changes in joint shape alongside bone and cartilage breakdown.  
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Other less common forms of arthritis include psoriatic arthritis (associated with the 

development of psoriasis), enteropathic arthritis (associated with inflammatory bowel 

disorders), reactive arthritis (short-term disorder following an infection), secondary arthritis 

(following joint damage or injury) and gout (episodic incidences caused by build-up of 

sodium urate crystals around the joint).  

 

Around 15,000 children and young adults are also known to be affected by arthritis (Sacks et 

al., 2007), specifically termed juvenile idiopathic arthritis (JIA). The two most common types 

of JIA are oligoarthritis and polyarthritis. Oligoarthritis accounts for around 60% of JIA, with 

the often mild symptoms affecting the knees. Polyarthritis is more widespread, affecting the 

joints of the hips, knees, hands, neck and jaw. Other forms of JIA include enthesitis-related 

JIA (at sites where bone and tendon connect), psoriatic arthritis (often affecting fingers and 

toes) and systemic-onset JIA (part of a more general illness that includes lethargy and weight 

loss). Generally, the symptoms of JIA improve with age. 

 

1.2.3 Osteoarthritis epidemiology and prevalence 

Affecting approximately 8.50 million people in the UK, OA is the most common form of 

arthritis, with this number predicted to rise to 17 million people by 2030 (Arthritis Care, 

2012) in accordance with an ageing population (Office for National Statistics, 2015). Given 

the overlap between musculoskeletal disorders, the variations in disease definition, the wide 

range of affected joint sites and the extensive diversity between populations, the exact 

prevalence of OA is often difficult to calculate (Lawrence et al., 2008). Estimates from the 

Global Burden of Disease Study 2010 (Cross et al., 2014) suggest that the worldwide 

prevalence of radiographically-confirmed symptomatic knee OA (3.80%) is vastly greater 

than that of hip OA (0.85%). In both cases, the age-standardised prevalence was higher in 

females than in males (Table 1.2).  

 

 Knee OA Hip OA 
Worldwide prevalence 

(male; female) 
3.80% (2.80%; 4.80%) 0.85% (0.70%; 0.98%) 

Prevalence peak 50 years of age Consistent increase with age 
Highest prevalence Asia Pacific high income North America high income 
Lowest prevalence South Asia, south east Asia North Africa, Middle East, east Asia 

   
Table 1.2. Estimates of the worldwide prevalence of osteoarthritis. The estimates were 
made as part of the Global Burden of Disease Study 2010 (Cross et al., 2014); high income 
areas are deemed as such by the authors; OA (osteoarthritis). 
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1.2.4 Osteoarthritis diagnosis 

OA is characterised by the progressive degradation of articular cartilage, the connective tissue 

that covers the joint surfaces and functions to allow smooth articulation. This causes pain and 

inflammation at the affected site and subsequently leads to diminished joint function and 

mobility. Other indications that may be present at an affected joint include effusion, 

tenderness, crepitus and locking. The disease primarily affects synovial joints that are subject 

to excessive or repeated mechanical loading such as the hands, knees, hips and spine (Felson, 

2006).  

 

OA can be classified into one of two subcategories, primary OA or secondary OA. This is 

dependent on the underlying cause of the disease. When a specific cause is unknown and the 

OA is most likely due to the sustained and repeated use of a joint that simply occurs with age, 

the disease is considered to be primary OA. OA can also develop after joint trauma or as a 

result of an underlying medical condition, in which case it is termed secondary OA (Altman et 

al., 1986). 

 

A diagnosis of OA is generally based on a physical examination by a general practitioner in 

order to identify any of the noted indications. The National Institute for Health and Care 

Excellence (NICE) guidelines published in 2014 recommend that OA should be diagnosed if 

a patient is i) 45 years old or over, ii) has activity-related joint pain and iii) experiences no 

morning joint-related stiffness or stiffness that lasts no longer than 30 minutes (National 

Institute for Health and Care Excellence, 2014). If further investigation is required, the 

clinical assessment can be performed in combination with X-rays. A radiographic procedure 

allows the detection of clinical features such as narrowing of the joint space, subchondral 

bone sclerosis, osteophyte formation and an overall change in joint structure (Arden and 

Nevitt, 2006). Although used less frequently, a further option is the use of magnetic resonance 

imaging (MRI) scans, which can detect early morphological changes during the development 

of OA (Agnesi et al., 2008).  

 

The Kellgren-Lawrence (K-L) grading system is a tool used to assess the severity of knee OA 

from radiographic images (Kellgren and Lawrence, 1957). This ranges from 0 (no 

radiographic evidence of OA) to 4 (osteophyte formations, joint space narrowing, subchondral 

bone sclerosis and deformed bone structure), whereby a score of 2 or greater lends itself to a 

definite classification of OA. A clinical study found that the K-L scores of patients with knee 

OA significantly and positively correlated with age and disease duration (Cubukcu et al., 
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2012). The Western Ontario and McMaster Universities (WOMAC) Osteoarthritis Index is a 

validated set of questionnaires used to measure the clinical pain associated with hip and knee 

OA. This is a self-reporting questionnaire that considers the pain, stiffness and functional 

limitations of an individual. However, the correlation between radiographic disease severity 

and pain perception has been reported to be variable and oftentimes discordant (Hannan et al., 

2000; Felson, 2006). This may be due to the subjective nature of the pain scoring or perhaps 

due to the WOMAC OA Index capturing a more widespread suffering of pain and not 

specifically at the affected joints. Overall, a correct diagnosis of OA can be difficult to 

achieve due to the subjective nature of the condition and the variation in the presenting 

clinical symptoms. 

 

1.2.5 Management and treatment of osteoarthritis 

It is recommended that a holistic approach is taken when assessing the best course of action in 

treating an individual who has been diagnosed with OA (Figure 1.1), as living with such a 

disabling condition can lead to an individual’s inability to work, reliance on others, isolation 

and depression (Lin, 2008). There are three main, non-surgical avenues discussed in the NICE 

guidelines (National Institute for Health and Care Excellence, 2014) that can be explored in 

the management of OA: pharmacological, non-pharmacological, and education and self-

management. 

 

Clinicians are advised to encourage positive behavioural changes and to offer ongoing verbal 

and written information on OA in order to help enhance a patient’s understanding and 

management of the disease. Aerobic exercise and local muscle strengthening is central in the 

management of OA, regardless of the presentation or stage of disease, in order to achieve 

reduced pain and enhanced joint function. Similarly, weight loss of overweight or obese 

individuals is very strongly recommended. Assistive devices such as walking aids and 

appropriate footwear can also be offered. 

 

Should these approaches be insufficient, pharmacological interventions can be considered but 

do carry potential off-target effects. Paracetamol and acetaminophen are usually the first 

analgesics to be offered, but where they prove to be ineffective, nonsteroidal anti-

inflammatory drugs (NSAIDs) can be used as second-line agents. Non-selective NSAIDs 

target both isoforms of the cyclooxygenase enzyme (COX-1 and COX-2) and by inhibiting 

their catalysis of prostanoid biosynthesis (Simmons et al., 2004), the inflammation and pain 

of arthritis can be alleviated. Specifically, COX-2 modulates inflammatory responses 
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(Willoughby et al., 2000) and it is this isoform that more recent NSAIDs are targeted towards. 

COX-2-selective inhibitors such as celecoxib have the benefit of a reduced incidence of 

NSAID-associated gastrointestinal complications (Bensen et al., 1999). Although previously 

thought to be suitable treatments for OA, glucosamine and chondroitin products are not 

recommended as therapeutics, as administration both alone and in combination did not result 

in a reduction of joint pain or of joint space narrowing compared to a placebo treatment 

(Sawitzke et al., 2010). Moreover, intra-articular corticosteroid injections are similarly not 

recommended as only short-term benefits have been established (Arroll and Goodyear-Smith, 

2004).  

 

Surgical intervention will be considered if the management strategies fail to delay disease 

progression or to improve the patient’s quality of life. Options include arthroscopic lavage to 

remove joint debris, osteotomy to realign the joint, and arthroplasty to replace the affected 

joint (Ronn et al., 2011). Although minimally invasive, it has been shown that the outcome 

post-arthroscopic lavage was no different to a placebo surgery (Moseley et al., 2002). In 

addition, the benefit of an osteotomy procedure is limited as it is reserved only for cases of 

unicompartmental OA. Total joint replacement is the only approach that can alter the 

progression of the disease. Although the management of OA can be largely tailored to suit the 

specific needs of an individual, there is currently no therapeutic intervention that can 

completely treat or prevent OA. 

 

Current research into the treatment of OA focusses on cell-based therapies. One such 

approach is the use of autologous chondrocyte implantation (ACI), whereby chondrocytes are 

isolated from a cartilage biopsy and expanded ex vivo before transplantation back into the 

same individual (Ruano-Ravina and Jato Diaz, 2006). A more recent development is that of 

three dimensional (3D)-ACI, where extracted chondrocytes are embedded into a scaffold, 

such as the commercially available collagen type I matrix, before expansion and re-

implantation (Kuroda et al., 2011). However, as of yet this has not been translated into 

humans and approved for clinical use. In addition, the requirement of a substantial number of 

cells combined with the damage sustained by healthy cartilage means this technology is not 

considered suitable for routine OA treatment (Oldershaw, 2012). An alternative cell source 

can be found in the bone marrow of a patient where multipotent mesenchymal stem cells 

(MSCs) exist. MSCs can also be isolated from tissues such as synovium or muscle (De Bari et 

al., 2001; Peng and Huard, 2004), making their isolation more accessible. In appropriate 

conditions, MSCs can differentiate into cells of a mesenchyme lineage, such as bone, 
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cartilage, tendon and ligament (Qi et al., 2012), and it is this that can be exploited to generate 

ex vivo chondrocyte cultures. Akin to the procedure of ACI, the chondrocyte cultures can then 

be transplanted into the donor patient, with the aim of recapitulating healthy articular 

cartilage. Overall, despite the promising research, the success of cell therapies are disputed 

and as such are currently not recommended for treatment of OA in the UK. 

 

 

 

7 



 

Figure 1.1. Considerations when assessing an individual with osteoarthritis. The key factors include the health, social and economic impact of 
the disease; comorbidities; and health beliefs including expectations and understanding of the disease. OA (osteoarthritis); adapted from the NICE 
guidelines (National Institute for Health and Care Excellence, 2014). 
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1.3 Synovial Joint Structure and Function 

1.3.1 Introduction to the synovial joint 

A synovial joint, or diarthrosis, allows free articulation of the skeletal structure and is defined 

by the presence of a surrounding fibrous capsule. Several tissues comprise a diarthrosis within 

the synovium and include subchondral bone, articular cartilage, synovial fluid, tendon and 

ligament. The maintenance and correct functioning of a synovial joint is entirely reliant upon 

both the individual contributions of each of these tissues and the interplay between them as an 

entire organ. It is when the integrity of the joint is impaired through the damage of one of the 

elements that the correct functioning is affected. Phenotypic changes can be observed in 

several of the joint tissues when an individual has OA, such as osteophyte formation, 

degradation of articular cartilage and damaged menisci (Figure 1.2). Because of this, OA is 

now more readily classified as a disease of the entire joint rather than only of the cartilage 

(Poole, 2012). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) B) 

Figure 1.2. Comparison of the structure of a normal synovial joint structure with a joint 
displaying hallmark characteristics of osteoarthritis. A) Articular cartilage and synovial 
fluid provide protection and support to allow smooth movement of the joint. B) Damaged 
articular cartilage, osteophyte formation and narrowing of the joint space contribute to a 
painful and inflamed joint with restricted movement. OA (osteoarthritis); adapted from 
(Felson, 2006).  
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1.3.2 Articular cartilage 

Within a synovial joint, articular cartilage is found as a 3-5 mm thick covering over the ends 

of bones. Its purpose is to provide smooth, frictionless movement of the joint, and to absorb 

and dissipate load in order to resist compressive stresses (Wieland et al., 2005). Articular 

cartilage does not have a nervous, lymphatic or vascular system (Poole, 1997), and the only 

cell type to exist in this anaerobic tissue is the chondrocyte. MSC differentiation into 

chondroblasts is followed by a series of mitotic divisions that result in the production of 

extracellular matrix (ECM) components and the maturation of chondrocytes (Deng et al., 

2008). Chondrocytes are sparse in population, accounting for 2% of the volume of articular 

cartilage (Alford and Cole, 2005), and therefore do not form cell-cell interactions. The 

purpose of the metabolically-active chondrocytes is to maintain the surrounding ECM, and it 

is the composition and architectural arrangement of this that is responsible for the mechanical 

properties of the tissue. The principle components of the ECM, in order of contribution to the 

wet weight of articular cartilage, are water (65-85%), collagen (12-24%) and proteoglycans 

(3-6%) (Figure 1.3.A).  

 

Type II collagen is the most abundant structural protein within the ECM, although other 

collagen types do contribute to the cartilage composition. Members of the collagen family are 

individually composed of three alpha-chain polypeptides that form a triple helix and then in 

turn, fibrils. The fibrils interact and form an overall mesh throughout the ECM, generating the 

characteristic tensile strength of articular cartilage (Responte et al., 2007). This also supports 

the position of macromolecules within the matrix. To strengthen the overall fibril mesh, two 

additional collagens covalently interact with type II collagen. On the surface layers of the 

mesh, type IX collagen binds and, as a result of the outward COL3 and NC4 domain 

projections, permits interactions with other ECM proteins. Within the fibrillar structure, type 

XI collagen binds the core type II collagen (Buckwalter and Mankin, 1998). Other non-

collagenous proteins, such as cartilage oligomeric matrix protein (COMP), have the ability to 

bind and stabilise the structure of the collagen fibrils (Rosenberg et al., 1998). 

 

A proteoglycan is formed by a central protein core to which linear glycosaminoglycans 

(GAGs) attach. Common GAGs present in articular cartilage include hyaluronan, chondroitin 

sulfate and keratan sulfate (Esko et al., 2009). Aggrecan is both the most abundant and the 

largest proteoglycan in the articular cartilage ECM and is comprised of three globular 

domains (G1, G2 and G3). G1 binds hyaluronan and link proteins, while the interglobular 

domain between G2 and G3 covalently bind over 100 chondroitin sulfate and keratan sulfate 
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chains (Knudson and Knudson, 2001). Aggrecan aggregates are formed by non-covalently 

binding hyaluronan, stabilised by link proteins, meaning the large protein structures are 

retained in the collagenous mesh. Smaller, non-aggregating proteoglycans include decorin, 

biglycan and fibromodulin. It is postulated that decorin and fibromodulin interact with type II 

collagen, while biglycan has a tendency to interact with type VI collagen near the surface of 

chondrocytes (Roughley and Lee, 1994). 

 

Nutrient transport is a vital role of the water contained in the articular cartilage ECM. In 

addition, the presence of water allows for a pressure within the ECM to be generated, which 

therefore creates the resistance necessary to withstand loading. The retention of water is 

largely due to the containment structures physically created by the collagenous mesh and the 

interacting macromolecules; but also due to the negative charges of chondroitin sulfate and 

keratan sulfate (Jerosch, 2011). Overall, the interactions of the main components of articular 

cartilage all contribute to the unique biomechanical properties of the tissue. 

 

The morphology and organisation of the ECM components are not uniform throughout the 

layer of articular cartilage. The tissue is composed of non-calcified and calcified cartilage, 

discernible by the presence of a tidemark marking the boundary of calcification (Figure 

1.3.B). The calcified cartilage represents a transition between the overlying articular cartilage 

and the underlying subchondral bone (Suri and Walsh, 2012), where type X collagen is the 

primary collagenous component (Madry et al., 2010). Cells of this region are smaller with a 

presumed lower metabolic activity than the non-calcified tissue (Buckwalter et al., 2005). The 

histological appearance of the tidemark suggests an accumulation of macromolecules, 

although the exact nature of the basophilic line is unclear (Buckwalter et al., 2005; Suri and 

Walsh, 2012). Within the non-calcified cartilage, there are a further three sub-divisions 

determined by their structural appearance: the deep, middle and superficial zones. The deep 

zone represents approximately 30% of the total cartilage thickness. Here, the chondrocytes 

align in a columnar formation, parallel to the collagen fibrils which are perpendicular to the 

subchondral bone. The collagen fibrils anchor the non-calcified cartilage in position by 

extending through the tidemark into the calcified zone (Buckwalter et al., 2005). The middle 

zone represents approximately 40-60% of the total cartilage thickness and has a more 

randomly organised collagen structure with sparsely distributed chondrocytes. The superficial 

zone is the region in closest physical proximity to the synovial space and represents 10-20% 

of the total cartilage thickness. This zone is responsible for the first line of protection against 

stresses on the joint, and as such collagen fibrils are densely packed in a formation parallel to 
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the plane of the articular cartilage surface (Responte et al., 2007), while the chondrocytes are 

ellipsoid in shape (Buckwalter et al., 2005). In addition, cells of the superficial zone 

synthesise and secrete the lubricant proteoglycan 4 (also known as lubricin) into the synovial 

space (Grogan et al., 2013). Relative to the middle and deep zones, the content of both 

collagen and water is highest in the superficial zone, while the content of aggrecan is lowest 

(Buckwalter and Mankin, 1998; Buckwalter et al., 2005).  
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Articular 
surface

Superficial zone 
(10-20%)
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(40-60%)

Deep zone 
(30-40%)

Calcified zone
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Chondrocyte Cancellous bone
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B) 

Figure 1.3. The structure of the articular cartilage of synovial joints. A) Within the 
extracellular matrix of articular cartilage, three classes of protein exist: collagens, 
proteoglycans and non-collagenous proteins. Tensile strength is created by the interaction 
between type II collagen and small, negatively charged proteoglycans. Image taken from 
(Chen et al., 2006a). B) Non-calcified cartilage comprises three distinct zones, the 
superficial zone, the middle zone and the deep zone. Cells in the deep zone are aligned 
perpendicular to the subchondral bone plate; cells in the middle zone are sparse, retaining a 
similar shape to those of the deep zone; and cells of the superficial zone are elongated and 
lie parallel to the articular cartilage surface. The tidemark separates the hyaline cartilage 
from the calcified cartilage. Calcified cartilage is present at the interface between the non-
calcified cartilage and the subchondral bone. Image taken from (Buckwalter et al., 1994). 
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1.3.3 Subchondral bone 

The subchondral bone lies directly beneath the articular cartilage, and can be classified into 

two distinct layers defined by their structure and function. The layer closest to the calcified 

zone of articular cartilage is termed the subchondral bone plate and beneath this is the 

cancellous bone. Through specialised channels, the subchondral bone serves as a route for the 

nervous and vascular systems to supply vital nutrients to the chondrocytes in the calcified 

cartilage (Madry et al., 2010). A further primary function of the bone is to support the joint 

structure and dissipate stresses (Li et al., 2013), which is achieved by the structure of the two 

layers. Type I collagen fibrils, the primary collagenous protein in the subchondral bone, is 

arranged into sheets within the subchondral bone plate (Madry et al., 2010), while the 

cancellous bone is composed of precisely-orientated trabeculae (Li et al., 2013). The 

subchondral bone matrix is mineralised by calcium hydroxyapatite crystals which intersperse 

the type I collagen fibrils (Wehrli, 2007). The dynamic nature of the subchondral bone is 

maintained by an equilibrium between the actions of osteoblasts that can deposit new bone, 

and osteoclasts that are involved in bone resorption (Wehrli, 2007). 

 

1.3.4 Joint capsule, synovial membrane and other tissues of the synovial joint 

The capsule surrounding a synovial joint is a fibrous tissue that physically connects the bones 

of a joint to add structure and stability. Within this, the synovial membrane is found, which is 

a lining made of two cell types that have discreet characteristics. Type A cells arise from a 

macrophage lineage and function to maintain an aseptic environment through the endocytosis 

of invading pathogens. Type B synoviocytes, on the other hand, are fibroblast-like and are 

responsible for the production of lubricin, an essential joint lubricant, and hyaluronan, a key 

ECM constituent that increases the viscosity of the synovial fluid (de Sousa et al., 2014). The 

function of the synovial fluid is three-fold: to facilitate the transport of nutrients to the 

articular cartilage, to provide a lubricating medium through which the articulating 

components of a joint can move, and to supress the stresses and strains absorbed by the joint 

(Allan, 1998). 

 

Tendons (connecting muscle to bone) and ligaments (connecting bone to bone) are both 

primarily composed of type I collagen and they act to stabilise the synovial joint structure 

(Benjamin and Ralphs, 1998). The presence of the infrapatellar fat pad additionally enhances 

stability as its flexibility allows for its adaptation to fit the contours of the joint, while its 

position allows for the absorption of excessive loads (Vahlensieck et al., 2002). Finally, the 

functional unit of the menisci, composed mainly of type I collagen, acts to dissipate stress 
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evenly over the cartilage surface and to balance the loading of the joint (Messner and Gao, 

1998). 

 

1.4 Joint Homeostasis 

1.4.1 Introduction to joint homeostasis 

The maintenance of a healthy joint requires a fine balance of anabolic and catabolic factors 

that can be either mechanical or biochemical. Each of the different tissues within a synovial 

joint contribute to this overall equilibrium. The onset of OA is associated with a disruption of 

this dynamic balance to favour catabolism, observed by the resulting loss of articular cartilage 

integrity (Aigner et al., 2006). Often, the mechanisms involved in anabolism and catabolism 

overlap and therefore do not have independent functions.   

 

1.4.2 Anabolic factors 

Anabolism refers to the promotion of tissue generation. Growth factors are particularly 

important in the synthesis and maintenance of joint tissue and include proteins such as 

transforming growth factor (TGF-β1, TGF-β2 and TGF-β3), bone morphogenetic protein 

(BMP), fibroblast growth factor (FGF-2, FGF-4 and FGF-8) and insulin-like growth factor 

(IGF-I). The anabolic function of the active forms of TGF-β is to regulate chondrocyte 

proliferation and stimulate the synthesis of type II collagen and aggrecan of the ECM 

(Finnson et al., 2012). Additionally, TGF-β can promote the action of tissue inhibitors of 

metalloproteinases (TIMPs) to further inhibit catabolic proteases, while also inhibiting the 

catabolic interleukin-1 (IL-1) and tumour necrosis factor (TNF) (Hui et al., 2001; Finnson et 

al., 2012). Other members of the TGF-β superfamily include BMPs, which stimulate 

chondrocyte growth and bone formation (Martel-Pelletier et al., 2008). FGFs and IGFs act to 

stimulate the synthesis of the ECM proteoglycans and type II collagen (Martel-Pelletier et al., 

2008). Other anabolic factors include cartilage-derived morphogenetic protein (CDMP), 

connective tissue growth factor (CTGF) and hepatocyte growth factor (HGF) (Martel-Pelletier 

et al., 2008). 

 

1.4.3 Catabolic factors 

Catabolism refers to the promotion of tissue degeneration. Central to articular cartilage 

catabolism are active matrix metalloproteinases (MMPs), which are stimulated by the 

inflammatory cytokines IL-1, IL-17, IL-18 and TNF to target the cleavage of ECM proteins 

such as collagen and aggrecan (Sandell and Aigner, 2001). These cytokines, synthesised by 

articular cartilage and synovium, also inhibit the actions of TIMPs. Collagenases (MMP-1, -8 
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and -13), gelatinases (MMP-2 and -9), stromelysins (MMP-3, -10 and -11), membrane-type 

MMPs (MT-MMPs) and adamalysins (a disintegrin and metalloproteinase [ADAM] and a 

disintegrin and metalloproteinase with thrombospondin motifs [ADAMTS]) are all classified 

into the MMP family (Martel-Pelletier et al., 2008). 

 

1.5 Development of the Synovial Joint Structure 

1.5.1 Introduction to skeletogenesis 

The origin of a mammalian bone can be one of three lineages which determines the nature of 

the skeletal components that are created. The paraxial mesoderm gives rise to the axis 

skeleton, the lateral plate mesoderm forms bones of the appendicular skeleton and the neural 

crest is the origin of facial bones (Hojo et al., 2010). To form the skeletal structures, there are 

two types of osteogenesis that can occur: intramembranous and endochondral. 

Intramembranous ossification is a one-step process whereby mesenchymal cells directly 

differentiate into the bone-forming osteoblast cells; in contrast, endochondral ossification is a 

two-step process that involves the intermediate formation of a cartilage template from which 

bone is then generated. Endochondral ossification is the typical process by which the axis and 

appendicular bones are formed (Hojo et al., 2010).  

 

1.5.2 Synovial joint determination and formation 

During skeletogenesis, the individual bones of a synovial joint originate from one initial 

structure formed by a condensation of mesenchymal cells that assume the configuration of the 

bones (Yasuda and de Crombrugghe, 2009), which is mediated, in part, by cell adhesion 

molecules (Archer et al., 2003). Joint site determination and bone formation occur 

concurrently. The site of an eventual joint is demarcated by a thin layer of flat mesenchymal 

cells that align perpendicular to the bone axis (Pacifici et al., 2005), which forms across the 

plane of the cartilaginous template and is hence called an interzone (Decker et al., 2014). This 

is specified by a number of factors including the activation of the expression of the TGF-β 

family member GDF5 (growth differentiation factor 5); the downregulation of the 

chondrogenic marker SOX9 (SRY [sex determining region] Y-box 9) and its target COL2A1 

(collagen, type II, α1); the expression of FGF2, FGF4 and FGF13; the upregulation of the 

transcription factor ERG (v-ets avian erythroblastosis virus E26 oncogene homolog); and the 

increased activity of the Wnt/β-catenin signalling pathway (Pacifici et al., 2005; Yasuda and 

de Crombrugghe, 2009). In addition, the expression of the TGF-β family members BMP2 and 

BMP4, and the BMP antagonists CHRD (chordin) and NOG (noggin) are all upregulated at 

the interzone. In combination, this functions to determine a separate cell fate by preventing 
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the progenitor cells differentiating into chondrocytes in accordance with the surrounding 

mesenchymal cell condensation. The progression of joint formation involves the separation of 

the structure to form the synovial cavity followed by a morphogenic process that gives rise to 

the shape of the joint (Figure 1.4). The exact mechanisms of this are unclear, however it is 

likely to be a combination of GDF5-driven chondrogenic growth at the tip of the distal end 

and enhanced cell proliferation around the neck of the proximal end. The outcome is the 

protrusion of a convex distal end into a concave proximal end, which forms a complementary 

joint structure, the individual elements of which can then mature to complete joint formation 

(Pacifici et al., 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

1.5.3 Endochondral ossification 

Concurrent with the development of a joint from the mesenchymal cell condensation, the 

bones of a synovial joint are formed by endochondral ossification. Long bones can be divided 

into three zones: the diaphysis (the narrow central shaft), the metaphyses (the wider neck 

portions) and the epiphyses (the rounded ends). The growth plate is a layer of cartilage found 

within the metaphyses and acts to separate the diaphysis and epiphyses, such that the two 

Figure 1.4. Schematic representation of the formation of a synovial joint. A) A 
mesenchymal cell condensation forms at the site of bone formation and B) the site of a joint 
is indicated by the alignment of flat mesenchymal cells. C) An interzone forms where the 
formation of a joint will occur, and a synovial cavity is also created here. D) A morphogenic 
process is initiated that leads to the generation of a definite joint structure before the E) 
maturation of the individual elements form a final joint. Adapted from (Pacifici et al., 
2006). 
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regions have separate centres of endochondral ossification (Mackie et al., 2008). This allows 

the uninterrupted development of long bones through diaphysis elongation without affecting 

the formation of the joints.  

 

Endochondral ossification begins by the differentiation of mesenchymal cells into 

chondrocytes, known as chondrogenesis, in order to generate a cartilage template (Figure 1.5). 

In the core, the characteristic markers of cartilage turnover are expressed, such as type II 

collagen and aggrecan (Hojo et al., 2010), while the cells at the periphery differentiate into 

perichondrial cells before forming a bone collar of osteoblasts. The chondrocytes in the core, 

or primary ossification centre, cease proliferation and thereby become hypertrophic, 

synthesising type X collagen and mineralising the surrounding matrix. The invasion of a 

vasculature system is stimulated by the expression of ‘markers’ such as VEGF (vascular 

endothelial growth factor), as the chondrocytes undergo apoptosis and the cartilaginous 

matrix is degraded by chondroclasts. Bone matrix is deposited in place of the cartilage 

template, to form the precursor to trabecular bone, following the carryover of osteoblasts by 

the vasculature system from the bone collar. Overall, a similar process occurs at the secondary 

ossification centre within the epiphyses. The growth plate is essential in the longitudinal 

growth of long bones, remaining a place of transient chondrocyte proliferation, hypertrophy, 

mineralisation and bone deposition until early adulthood (Baron, 2000). 
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1.6 Pathology of Osteoarthritis 

1.6.1 Introduction to the pathology of osteoarthritis 

Although the classic hallmark of OA is the loss of articular cartilage, it is in fact considered a 

disease of the entire joint as multiple tissues can be affected (Poole, 2012). The stress that 

initiates disease onset can be through one of two mechanisms: either there is abnormal 

loading on a normal joint structure, or there is normal loading on an abnormal joint structure. 

This causes cartilage degradation and subchondral bone sclerosis, however it is unclear as to 

which occurs first in an osteoarthritic joint (Bailey and Mansell, 1997). Subsequent 

biochemical and biomechanical changes then cause joint homeostasis to be unstable and thus 

affect other tissues (Samuels et al., 2008). The pathological changes that occur are dependent 

upon the tissue that is affected and upon the stage of disease.  

 

1.6.2 Changes of articular cartilage and subchondral bone in osteoarthritis 

Healthy articular cartilage is pearly white and extremely smooth, however when damaged, 

macroscopic changes include cartilage softening, yellowing, surface irregularities, fibrillations 

and later, advanced fissures (Buckwalter et al., 2005). In addition, the tidemark that normally 

Figure 1.5. The stages of endochondral ossification. From a mesenchymal cell 
condensation, a cartilage template is formed. A bone collar is generated around hypertrophic 
chondrocytes at the primary ossification centre. A vasculature system is established and the 
cartilage template is mineralised before degradation and bone matrix deposition. A similar 
sequence occurs at the secondary ossification centre at the epiphyses. The bone continues to 
grow longitudinally at the growth plate until early adulthood. Adapted from (Baron, 2000). 

Cartilage 
template

Bone 
collar

Primary 
ossification 

centre

Chondrocyte 
hypertrophy

Secondary 
ossification 

centre

Secondary 
ossification 

centre

Epiphysis

Epiphysis

Growth plate

Growth plate

Diaphysis

Metaphysis

Metaphysis

Mesenchymal 
condensation

19 
 



marks the calcification boundary appears to be multiplied, while vascular invasion is also 

common (Bonde et al., 2005). Advancement of the tidemark indicates increased calcification 

and overall thinning of articular cartilage, although the mechanisms behind this are not fully 

understood (Goldring and Goldring, 2010). Eventually, cartilage degradation is so advanced 

that the underlying, exposed subchondral bone becomes sclerotic and eburnated. 

 

It is the imbalance of anabolic and catabolic factors that cause the pathological changes of 

OA. Initial attempts are made to recapitulate the healthy homoeostatic balance, where the 

usually quiescent chondrocytes respond to cartilage damage by proliferating. This causes 

areas of cell clustering contrasted with regions of sparsely populated cells. Additionally, the 

synthesis of ECM proteins is increased in response to cartilage degradation. Ultimately, the 

anabolic activity cannot be maintained and so catabolism predominates, which leads to the 

further tissue destruction observed in advanced OA (Goldring and Goldring, 2010). 

Established catabolic degradation of the articular cartilage is associated with increased 

expression of aggrecanases and collagenases, such as MMP1, MMP13, ADAMTS4 and 

ADAMTS5 (Murphy and Nagase, 2008). The degradation and disorganisation of key ECM 

components cause a decrease in hydrostatic pressure and tensile strength, leading to the loss 

of cartilage integrity. 

 

There are two aspects of subchondral bone changes during OA: the first is initiated prior to 

disease onset, and the second occurs in response to disease progression. Subchondral bone 

sclerosis occurs in response to abnormal stress placed on the joint, and can in some cases 

precede detectable changes in articular cartilage. Abnormal stress induces an attempt to 

remodel the cancellous bone structure resulting in an increase in trabeculae number and 

thickness, and therefore bone volume (Buckland-Wright, 2004). In addition, the subchondral 

bone plate thickens such that the subchondral bone loses its specific biomechanical integrity 

(Goldring and Goldring, 2010). Associated with disease progression is the alteration of 

underlying bone architecture. For example, osteophytes occur at joint margins, which are 

bony outgrowths covered with a fibrocartilage cap (Junker et al., 2015). It has been reported 

that the presence of large osteophytes in knee OA confers no risk to disease progression 

(Felson et al., 2005), with their purpose purported to be to stabilise the osteoarthritic joint 

(Goldring and Goldring, 2010). Finally, subchondral bone cysts are cavities that are found in 

the advanced stages of the disease. Cysts are found specifically in regions of uneven, 

excessive loading caused by damaged overlying articular cartilage (Ondrouch, 1963). 
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1.6.3 Changes of other synovial joint tissues 

The products of cartilage breakdown, such as proteoglycan and type II collagen fragments, are 

able to diffuse into the synovial fluid. Their presence can elicit a mild immune response by 

synoviocytes, which is secondary to the disease. Catabolic factors such as MMPs and 

cytokines are secreted, including IL-1 and TNF (Scanzello and Goldring, 2012), which in turn 

promote the synthesis of further catabolic factors and cartilage destruction. Changes in the 

synovium include synovitis, thickening, increased vasculature and inflammatory cell (B cell 

and T cell) infiltration (Wenham and Conaghan, 2010). Structural changes may be apparent in 

the menisci, such as tears or maceration, and can precede or follow the development of knee 

OA (Englund et al., 2009). Furthermore, the joint capsule may become calcified, shortened 

and less pliable, while the surrounding muscle becomes fibrotic (Lloyd-Roberts, 1953) and 

the ligaments thicken (Tan et al., 2006). 

 

1.7 Risk Factors for Osteoarthritis 

1.7.1 Introduction to factors that affect disease susceptibility, predisposition and 

progression 

OA is a multifactorial disorder with the relative significance of each element dependent on 

confounding factors, disease state and joint site (Zhang and Jordan, 2010). Risk factors can be 

systemic such as age, ethnicity, sex, nutrition, genetic and hormone; or local such as injury, 

deformity, obesity, occupation and muscle weakness (Felson et al., 2000).  

 

1.7.2 Age 

The greatest risk factor for the development of OA is age, however, this is an association 

rather than a definitive inevitability. Mechanical changes that occur with age can affect 

disease predisposition, including altered proprioception and gait. However, biochemical 

changes within the ECM are the pivotal factors in the age-related tendency to develop OA. In 

accordance with increasing age, the structural organisation of the ECM is disrupted, which is 

associated with the number and size of aggrecan molecules diminishing. Moreover, advanced 

glycation end (AGE) products accumulate and are responsible for the increased abundance of 

cross-linked type II collagen fibrils, causing the articular cartilage to become stiffer (Martel-

Pelletier et al., 2008). Chondrocytes become senescent, have a diminished response to 

anabolic factors and ultimately lose their ability to maintain the ECM homeostasis (Loeser, 

2009). Although age has a strong association with OA development, other factors are 

involved. Indeed, the observed association of disease prevalence with age may in part be a 

manifestation of the cumulative effects of other risk factors. 
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1.7.3 Sex-specific differences 

In addition to an increased prevalence relative to males, post-menopausal females have a 

more severe OA phenotype (Srikanth et al., 2005). An obvious assumption would be that this 

correlation can be explained by hormonal differences. However, the effect of oestrogen on 

OA development and the efficacy of post-menopausal oestrogen replacement therapy is 

widely debated (Wluka et al., 2000). As viewed using MRI scans, females have consistently 

thinner articular cartilage than males (Maleki-Fischbach and Jordan, 2010), which could be 

the origin of the sex-specific differences although the mechanisms are not yet understood. 

 

1.7.4 Environmental factors 

Obesity is a considerable risk factor in the development of OA, highlighted by the NICE 

guidelines which strongly recommend weight loss for a first-line management of the disease. 

The implications of obesity are two-fold: an increased strain exerted on the load-bearing joints 

forces a responsive change in the joint architecture, while metabolic changes may account for 

enhanced ECM destruction. There is a strong correlation between obesity and knee OA 

(Sowers and Karvonen-Gutierrez, 2010), while there is moderate evidence for an association 

with hip OA (Lievense et al., 2002). Increased body mass index (BMI) is also strongly 

correlated with the onset of knee OA (Blagojevic et al., 2010), providing further evidence for 

an association between excessive load and OA onset. However, obesity has also been 

positively correlated with an increased risk of developing hand OA, which implies that a 

metabolic mechanism could be in effect (Carman et al., 1994). Such an influence could be 

modulated by local obesity-associated gene expression, for example leptin. An increased 

expression of leptin is known to correlate with obesity, and the gene has also been shown to 

be expressed by cells of various synovial joint tissues including adipocytes and chondrocytes, 

and thus could trigger a cytokine signalling cascade that leads to the degradation of articular 

cartilage (Dumond et al., 2003). Naturally, an unbalanced, unhealthy diet contributes to the 

progression of obesity and therefore indirectly increases OA susceptibility. To date, it remains 

unclear as to whether specific dietary factors, such as vitamin C, D, E and K, can influence 

disease progression more directly (Zhang and Jordan, 2010). 

 

Certain occupations exert greater and more repetitive physical strains on the joints than that 

seen as a result of general joint use and movement. For example, male farmers after ten or 

more years of agricultural work were more likely to suffer from severe hip OA (classified as 

requiring hip replacement or with a joint space of less than or equal to 1.50 mm), as were 

individuals who stood for long periods of time or who routinely performed heavy lifting 
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(Croft et al., 1992). In addition, local joint damage resulting from sporting injuries or 

accidents can predispose an individual to OA. Damage to the joint ligament, for example a 

common injury to the anterior cruciate ligament sustained by athletes (Beynnon et al., 2005), 

has been shown to precede knee OA (Lohmander et al., 2007). 

 

1.8 Genetics of Osteoarthritis 

1.8.1 Introduction to the genetics of osteoarthritis 

OA is a multifactorial, heterogeneous disease with a complex, non-Mendelian pattern of 

inheritance. Many small-effect loci contribute to overall disease susceptibility, either 

individually or in combination with other variants (Figure 1.6). The heritability of OA is 

estimated to be at least 50% (Spector and MacGregor, 2004), meaning that around half of the 

variance in the occurrence of OA within the population can be attributed to genetics. There 

are several different approaches to understand the contribution of genetics to disease 

susceptibility including family studies, candidate gene approaches and genome-wide 

association scans (GWAS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. The liability threshold model. In the general population, the majority of 
individuals harbour an average number of susceptibility loci for osteoarthritis and have an 
average number of factors that confer osteoarthritis risk. If this number reaches a critical 
threshold, either solely susceptibility loci or in combination with risk factors, the individual 
will be affected. Adapted from (van Dongen et al., 2012). 

Threshold

AffectedUnaffected

Risk factors/susceptibility loci

N
um

be
r o

f i
nd

iv
id

ua
l i

n 
th

e 
ge

ne
ra

l p
op

ul
at

io
n

23 
 



1.8.2 Family and twin studies 

The first report to associate genetics with OA was from a family study published in 1941, in 

which it was found that Heberden’s nodes, a common sign of hand OA, occurred more 

frequently in mothers and sisters of affected women compared to the general population 

(Stecher, 1941). Subsequent studies in the UK continued in the same vein (Kellgren et al., 

1963), confirming that OA of various synovial joints had a genetic component (Fernandez-

Moreno et al., 2008). Family studies are a good approach to investigate the contribution of 

genetics and environment to a disease, exploring if related individuals have disproportionate 

likelihoods of being affected by OA relative to the general population. However, this is 

sensitive to the natural differences between family members, including physical activity and 

age (Spector and MacGregor, 2004). 

 

To circumvent such differences, twin studies are an alternative approach to estimate 

heritability, with a main advantage being that it corrects for age. Twin studies compare the 

disease concordance in monozygotic and dizygotic twins, where monozygotic twins share 

100% of their genes and dizygotic twins share an average of 50% of their genes. If, for 

example, there was incomplete concordance in monozygotic twins, it could be concluded that 

environmental factors were also contributing to disease susceptibility. In a classic twin study, 

it was estimated that the heritability of female hand and knee OA was 39% – 65% (Spector et 

al., 1996). Heritability of hip OA is somewhat more difficult to estimate given the lower 

prevalence of the disease. Nevertheless, joint space narrowing of female hip OA was shown 

to be influenced by genetics, with heritability estimated to be around 60% (Spector et al., 

1996). Finally, disc degeneration of the spine was assessed by MRI in 172 and 154 

monozygotic and dizygotic twins, respectively, estimating a genetic influence of 73% – 74% 

(Sambrook et al., 1999). A summary of the heritability estimates from various twin studies is 

detailed in Figure 1.7. 
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1.8.3 Candidate gene studies 

Candidate gene studies are a hypothesis-led approach aimed to identify the specific genes that 

account for the heritability of a trait. Genes are selected based on the expression profile, 

protein function or association with other similar traits. In the case of OA, candidate genes 

may encode structural components of the ECM, be involved in joint development, or have a 

role in joint homeostasis. 

 

An obvious candidate gene is COL2A1, which encodes the α1 polypeptide chain of type II 

collagen. The VDR (vitamin D receptor) gene is similarly encoded in this region, 68 kb 

downstream of COL2A1, and so the genes are often interrogated together. Polymorphisms 

within VDR have been implicated in variations of bone mineral density (Lambrinoudaki et al., 

2011), while COL2A1 mutations have been linked with skeletal phenotypes seen in disorders 

such as spondyloepiphyseal dysplasia congenita (Donahue et al., 2003). However, various 

studies of this region have not yielded any conclusive association with OA (Loughlin et al., 

1994; Aerssens et al., 1998). 

 

The most promising candidate gene to date is GDF5. Mutations in this gene have been linked 

to skeletal disorders such as brachydactyly type C and chondrodysplasias (Farooq et al., 

2013). The protein encoded by the gene is a member of the TGF-β superfamily and is pivotal 

in the determination and differentiation of joint sites. Based on its role in skeletogenesis, its 

association with OA was examined. It was found that in an Asian population, the 5′ 

untranslated region (UTR) single nucleotide polymorphism (SNP) rs143383 was associated 

Figure 1.7. Estimates of osteoarthritis heritability at different joint sites from twin 
studies. Heritability of spine osteoarthritis is the highest at around 70%, while around 
half of the variation in knee osteoarthritis is due to genetics. Taken from (Spector and 
MacGregor, 2004). 
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with hip and knee OA (Miyamoto et al., 2007). Subsequent luciferase reporter assays implied 

an influence of the SNP on the expression of GDF5, with the associated allele (T) 

corresponding to a reduced transcriptional activity (Miyamoto et al., 2007). Furthermore, in a 

case-control study based on UK and Spanish populations, a reduction in the expression of the 

GDF5 risk allele transcript relative to the minor (C) allele was observed (Southam et al., 

2007). Additional functional studies have continued to expand the understanding of the 

genetic basis of GDF5 and its OA association (Egli et al., 2009; Dodd et al., 2013; Syddall et 

al., 2013). Despite this success, candidate studies generally have limited power as they rely on 

current knowledge of functional associations and thus may omit more significant associations. 

As such, an alternative approach, in the form of a hypothesis-free methodology, is required.  

 

1.8.4 Linkage studies 

The aim of a linkage study is to interrogate the genomes of individuals within a family to 

identify if any regions co-segregate with the disease phenotype. Due to the age-association of 

OA, however, studying affected parents and their offspring, or affected individuals and their 

parents, is often impossible. Therefore, affected sibling pairs are more widely utilised 

(Loughlin et al., 2002a).  

 

The results of an early OA linkage study identified the female-specific association of a region 

on chromosome 11q with the disease (Chapman et al., 1999), and linkage studies have since 

continued to similarly identify other associations with OA. In fact, the associations of twelve 

chromosomes (1, 2, 4, 6, 7, 9, 11, 12, 13, 16, 19 and X) with OA have been reported 

(Fernandez-Moreno et al., 2008). Although this has not directly resulted in the identification 

of OA-associated genes, in-depth probing of the linkage regions have yielded promising 

results. For example, a genome-wide linkage scan followed by fine-mapping of the region 

revealed chromosome 6p12.3–q13 as being linked to female hip OA (Loughlin et al., 1999; 

Loughlin et al., 2002b). A subsequent analysis of the region presented evidence to suggest 

that the gene coding for BMP-5, a TGF-β superfamily member that is involved in modulating 

chondrocyte activity (Bailon-Plaza et al., 1999), could be associated with female hip OA 

(Southam et al., 2004). 

 

1.8.5 Genome-wide association scans 

A powerful advancement in the identification of genetic risk loci has been the development of 

GWAS, an unbiased, population-based methodology that uses large sample sizes and involves 

independent replication (Reynard and Loughlin, 2013). A GWAS allows for the examination 
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of up to 1 million polymorphisms across the genome of thousands of unrelated individuals 

(Bush and Moore, 2012), commonly using microarray platforms such as Affymetrix (Santa 

Clara, CA, USA) and Illumina (San Diego, CA, USA). The aim of a GWAS is to identify 

alleles of the genotyped SNPs that occur more frequently in a case group compared to a 

control group. 

 

The human genome contains approximately 10 million variants with a minor allele frequency 

(MAF) of at least 1%, which is an average of 1 SNP per 300 bases (International HapMap 

Consortium, 2003). This means that physically, only a fraction of the SNPs are captured by a 

GWAS. However, the lawn of hybridised deoxyribonucleic acid (DNA) probes on the solid-

surface microarray chip are specifically selected to target polymorphisms that allows for a 

much greater coverage, by exploiting the redundancy of SNPs across the genome 

(International HapMap Consortium, 2005). This so-called redundancy is caused by a co-

inheritance of alleles, known as linkage disequilibrium (LD), between which there would be 

little or no genetic recombination. LD is a measure of the association between alleles at two 

given loci; there are two forms of this value that are generally reported. D′ (ranges from 0.00 

to 1.00) considers the recombination rate only, such that complete LD (D′ = 1.00) denotes no 

recombination between the two loci. r2 (ranges from 0.00 to 1.00) considers both the 

recombination rate and the allelic frequencies, such that perfect LD (D′ = 1.00, r2 = 1.00) 

denotes identical allelic frequencies of the two loci between which there is no recombination. 

Therefore, in the case of perfect LD, the genotype of additional SNPs can be inferred from the 

genotype of a SNP that is captured on the array (Figure 1.8). Generally, a positive 

identification of association between an allele and the disease is distinguished by a genome-

wide significance threshold of p < 5.00 x 10-8, which accounts for the multiple comparisons 

performed, although this is not an absolute value in all studies (Panagiotou et al., 2012). In 

addition, as GWAS signals can oftentimes be nominally significant but not so after 

accounting for the multiple tests performed, a replication phase is a necessary component in 

order to corroborate the initial findings of the discovery cohort. Following the identification 

of an association between an allele and the disease, the region must be interrogated to identify 

the causal SNP and the mechanisms of its action. 
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To date, four separate GWAS have been reported that aimed to identify OA susceptibility 

loci. The first genotyped over 500,000 SNPs in a total of 14,938 cases and 39,000 controls of 

a Dutch population (Kerkhof et al., 2010). The study identified the C allele of rs3815148 as 

conferring a 1.14-fold increased risk of knee and/or hand OA (p = 8.00 x 10-8). The SNP is 

located within an intron of COG5 (component of oligomeric Golgi complex 5) on 

chromosome 7q22, with PRKAR2B (protein kinase, cAMP-dependent, regulatory type II β), 

HBP1 (HMG-box transcription factor 1), GPR22 (G protein-coupled receptor 22), DUS4L 

(dihydrouridine synthase 4-like) and BCAP29 (B-cell receptor-associated protein 29) also 

mapping to this locus. A subsequent meta-analysis recognised this region as being associated 

with knee OA (Evangelou et al., 2011), although the predominating SNP was rs4730250 (p = 

9.20 x 10-9). rs470250 resides within an intron of DUS4L, and is separated from rs3815148 by 

269 kb with an r2 of 0.82 and a D′ of 1.00. Characterisation of this locus revealed that carriage 

of the OA-associated allele conferred a significant reduction of HBP1 expression in cartilage 

and synovium, and of DUS4L in fat pad (Raine et al., 2012). 
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Figure 1.8. Example of the expansion of microarray coverage by exploiting the co-
inheritance of alleles. A) The three SNPs of interest are highlighted on the chromosomes of 
four unrelated individuals. B) Between SNPs where there is no recombination, haplotypes 
are generated; that is, a particular set of polymorphisms that are always inherited together. 
C) Genotyping specific polymorphisms, known as ‘tag SNPs’, allows the genotypes of all 
the SNPs in this haplotype to be identified. For example, if the chromosome pattern of the 
tag SNP is G-T-C, this matches the haplotype of individual 3. Although humans are diploid 
organisms, for simplicity, only one chromosome is shown; SNP (single nucleotide 
polymorphism). Adapted from (International HapMap Consortium, 2003). 
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The results of the second OA GWAS were published one month later, and this reported on the 

genotyping of approximately 450,000 SNPs in a total of 1,073 cases and 3,743 controls of a 

Japanese population (Nakajima et al., 2010). The study found rs7775228 (p = 2.43 x 10-8) and 

rs10947262 (p = 6.73 x 10-8) to be associated with knee OA. The SNPs are located on 

chromosome 6p21, with rs7775228 intergenic upstream of HLA-DQB1 (major 

histocompatibility complex, class II, DQ β1) and rs10947262 within an intron of BTNL2 

(butyrophilin-like 2). Also at this locus are HLA-DRA (major histocompatibility complex, 

class II, DR α), HLA-DRB5 (major histocompatibility complex, class II, DR β5), HLA-DRB1 

(major histocompatibility complex, class II, DR β1), and HLA-DQA1 (major 

histocompatibility complex, class II, DQ α1). The associations of the SNPs with knee OA 

were not replicated in an independent European cohort (Valdes et al., 2011). 

 

The largest OA GWAS was a two-stage study performed by the Arthritis Research UK 

Osteoarthritis Genetics (arcOGEN) Consortium. Each individual in the case groups had 

radiographic evidence of OA, and over 80% of those had also undergone hip or knee 

replacement surgery. The first stage of the study involved a total of 13,702 cases (3,177 of 

which were in the discovery cohort) and 53,286 controls (4,894 of which were in the 

discovery cohort) of a population of European descent (Panoutsopoulou et al., 2011). The 

interim analysis reported that there were no SNPs associated with OA with genome-wide 

significance: the strongest signal for knee and/or hip OA was rs2277831 (p = 2.30 x 10-5), an 

intronic SNP within MICAL3 (microtubule associated monooxygenase, calponin and LIM 

domain containing 3) on chromosome 22q11. When stratified by joint site, the strongest 

signal for knee OA was rs11280 within Corf130 (p = 3.20 x 10-5) on chromosome 6p21, while 

the strongest for hip OA was rs2615977 in an intron of COL11A1 (collagen, type XI, α1; p = 

1.10 x 10-5) on chromosome 1p21. Similarly, a meta-analysis highlighted two independent 

signals within COL11A1 that were associated with hip OA (Rodriguez-Fontenla et al., 2014). 

Nevertheless, characterisation of the loci revealed that there was no correlation between gene 

expression at either the chromosome 22q11 locus and rs2277831 genotype (Ratnayake et al., 

2012), or the 1p21 locus and rs2615977 genotype (Raine et al., 2013).  

 

When searching for small-effect loci, false-negative results may be generated as a result of a 

lack of power. The second stage of the arcOGEN study with a much larger discovery cohort 

was implemented to overcome this (arcOGEN Consortium et al., 2012). This involved a total 

of 14,883 cases (7,410 of which were in the discovery cohort) and 53,947 controls (11,009 of 

which were in the discovery cohort). Overall, the arcOGEN study analysed over 1.40 million 
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SNPs, which were either directly genotyped or imputed. Five regions were identified as being 

associated with OA with genome-wide significance, and a further three almost achieved 

genome-wide significance (p < 5.00 x 10-8; Table 1.3). rs11177, a missense variant within an 

exon of GNL3 (guanine nucleotide binding protein-like 3), and rs6976, a 3′ UTR SNP within 

GLT8D1 (glycosyltransferase 8 domain containing 1), were the strongest signals. Both SNPs 

are located at chromosome 3p21.1 and are in perfect LD with each other (r2 = 1.00), meaning 

they represent the same OA-associated locus. The signal was associated with severe hip and 

knee OA, as defined by a requirement for total joint replacement surgery. The remaining 

genome-wide significant loci were associated with hip OA, with rs4836732 in an intron of 

ASTN2 (astrotactin 2) at chromosome 9q33 being female-specific. The propensity of signals 

to emerge only following stratification by sex and joint site highlights the multifactorial 

nature of the disease. 

 

SNP Locus Stratum Nearest gene(s) p value OR (95% CI) 
rs6976* 3p21.1 TJR GLT8D1 7.24 x 10-11 1.12 (1.06-1.12) 

rs11177* 3p21.1 TJR GNL3 1.25 x 10-10 1.12 (1.08-1.16) 
rs4836732 9q33.1 THR-F ASTN2 6.11 x 10-10 1.20 (1.13-1.27) 
rs9350591 6q14.1 Hip FILIP1, SENP6 2.42 x 10-9 1.18 (1.12-1.25) 

rs10492367 12p11.22 Hip PTHLH, KLHL42 1.48 x 10-8 1.14 (1.09-1.20) 
rs835487 12q23.3 THR CHST11 1.64 x 10-8 1.13 (1.09-1.18) 

rs12107036 3q28 TKR-F TP63 6.71 x 10-8 1.21 (1.13-1.29) 
rs8044769 16q12.2 F FTO 6.85 x 10-8 1.11 (1.07-1.15) 

rs10948172 6p21.1 M SUPT3H, CDC5L 7.92 x 10-8 1.14 (1.09-1.20) 
      

Table 1.3. Loci significantly associated with osteoarthritis as identified by the arcOGEN 
study (arcOGEN Consortium et al., 2012). Five regions were significantly associated with 
osteoarthritis and a further three were just below the threshold for genome-wide significance 
(p < 5.00 x 10-8). Data represent the combined discovery and replication analyses. * same 
signal, r2 = 1.00. TJR (total joint replacement; severe end-stage of the disease), THR (total hip 
replacement; severe end-stage of the disease), TKR (total knee replacement; severe end-stage 
of the disease), F (female), M (male); hip (all cases of hip osteoarthritis; THR and 
radiographic evidence combined); OR (odds ratio); CI (confidence interval). 

 

As a consequence of the arcOGEN Consortium findings, several studies have begun to 

functionally dissect the reported association signals. For example, it has been shown that 

carriage of the OA risk alleles of rs11177 and rs6976 correlate with a decrease in GNL3 and 

SPCS1 expression (Gee et al., 2014). Another documented characterisation is that of 

rs835487, which is in an intron of CHST11 (carbohydrate [chondroitin 4] sulfotransferase 11) 

on chromosome 12q23. CHST11 catalyses the transfer of sulphate in the generation of 

chondroitin sulphate in the cartilage ECM. In relation to the OA signal, differential binding of 
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the transcription factors SP1 (Sp1 transcription factor), SP3 (Sp3 transcription factor) and 

SUB1 (SUB1 homolog [S. cerevisiae]) between the alleles of rs835487 has been shown 

(Reynard et al., 2014), which could directly implicate the polymorphism in the OA 

susceptibility of the region. 

 

The fourth and most recent OA GWAS was performed using an Icelandic discovery cohort of 

623 cases of hand OA and 69,153 population-based controls (Styrkarsdottir et al., 2014). 

Following replication in cases and controls of European ancestry, two SNPs emerged as being 

significantly associated with hand OA. rs4238326 is located in an intron of ALDH1A2 

(aldehyde dehydrogenase 1 family, member A2) on chromosome 15q21 (p = 8.60 x 10−11) and 

rs3204689 is a synonymous variant in an exon of the same gene (p = 1.11 x 10−11). 

 

Overall, if large, unrelated cohorts can be obtained, GWAS provide an unbiased, hypothesis-

free approach to identifying risk loci: to date, several loci have been associated with OA 

(Reynard and Loughlin, 2013). However, the polygenic nature of the disease remains a 

limiting factor in the subsequent functional analyses and characterisations of the regions. It is 

apparent that stratification of data by ethnicity, joint site, disease stage and sex are often 

required in identifying risk alleles, and this will no doubt be vital in further understanding the 

genetic association of OA in the future. 

 

1.9 Cis-Acting Polymorphisms 

1.9.1 Expression quantitative trait loci (eQTL) 

A SNP that emerges as significantly associated with a disease phenotype from a GWAS study 

marks a region of association in which a number of other polymorphisms could reside. 

Typically, an arbitrary r2 of 0.80 or greater is assigned as high LD between two SNPs (Dai et 

al., 2013), and these polymorphisms are thus considered potential causal variants. Once the 

region has been narrowed down and the causal SNP identified, the mechanisms behind the 

association must be dissected. The polymorphism could be non-synonymous, causing an 

amino acid change that alters the encoded protein structure or function; the variant could be 

synonymous but leads to aberrant transcription or splicing; or the SNP could be non-coding, 

either intronic or intergenic, and act as a regulatory polymorphism to modulate gene 

expression. When the expression of a gene is regulated by the genomic locus, the SNP is 

referred to as an expression quantitative trait locus (eQTL), and if the genomic locus maps in 

close proximity to the regulated gene, it is known as a cis-eQTL (Franke and Jansen, 2009). 
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The understanding of how SNPs operate as regulators of nearby gene expression is ever 

expanding. The functionality of a specific polymorphism can traditionally be attributed to 

differential transcription factor binding between the alleles, which causes altered enhancer or 

promoter activity (Miyamoto et al., 2007; Syddall et al., 2013). Alternatively, the differential 

protein binding could instead control the conformation of the overall three-dimensional 

structure of the chromatin and in turn affect the binding of transcription factors to a nearby 

regulatory element (Gaffney et al., 2012). Moreover, overall gene expression levels can be 

influenced through the regulation of transcript stability (Cheadle et al., 2005). Ultimately, the 

mechanisms result in the regulation of target gene expression. A relatively recent 

development in the understanding of how cis-eQTLs function is the investigation into the role 

of methylation as an intermediate step between a cis-eQTL and gene expression. DNA 

methylation is mediated by DNA methyltransferases (DNMT) and it is commonly found 

within regulatory elements such as the transcription start sites of genes. Potentially, genetic 

variation at cis-eQTLs could regulate the binding and functioning of DNMT enzymes at the 

CpG sites thereby altering methylation. As such, the differential methylation may then 

regulate the target gene expression (Bell et al., 2011). Overall, there are several known 

mechanisms by which disease association can be modulated, the dissection of which requires 

a thorough investigatory approach. For the purpose of my Ph.D, such mechanisms will be 

investigated for two of the arcOGEN OA association signals, rs9350591 and rs10492367. 

 

1.10 Genes Surrounding rs9350591 on Chromosome 6q14.1 

1.10.1 Introduction to rs9350591 

The rs9350591 C to T SNP marks a region of the genome that is significantly associated with 

hip OA, as identified by the arcOGEN study (arcOGEN Consortium et al., 2012) and detailed 

in Table 1.3. rs9350591 is an intergenic SNP 38 kb upstream of FILIP1 (filamin A interacting 

protein 1) and 70 kb upstream of SENP6 (SUMO1/sentrin-specific peptidase 6). A further five 

genes reside within 1 Mb upstream or downstream of the polymorphism (Table 1.4 and 

Figure 1.9). In addition, rs9350591 is upstream of two uncharacterised long non-coding 

ribonucleic acids (RNAs), LOC100506804 and LOC101928540; and is within 103 kb of a 

predicted micro RNA (miRNA), MIR4463. As there are no amino acid changes that could 

account for the association signal, I postulate that rs9350591 marks a SNP in high LD with it 

that in some way regulates the expression of one of these genes on chromosome 6q. 
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Gene symbol Gene name Distance from rs9350591 
FILIP1 Filamin A interacting protein 1 38 kb downstream 
SENP6 SUMO1/sentrin-specific peptidase 6 70 kb downstream 
MYO6 Myosin VI 217 kb downstream 

TMEM30A Transmembrane protein 30A 247 kb downstream 
COX7A2 Cytochrome c oxidase subunit VIIa polypeptide 2 288 kb downstream 
COL12A1 Collagen, type XII, α1 325 kb downstream 

IMPG1 Interphotoreceptor matrix proteoglycan 1 390 kb upstream 
   

Table 1.4. Genes within 1 Mb upstream and 1 Mb downstream of rs9350591. Seven 
genes reside in this region, with FILIP1 and SENP6 being the two genes in closest physical 
proximity to the SNP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.10.2 Filamin A interacting protein 1 (FILIP1) 

Filamin is an actin binding protein that is present in the cytosol of non-muscle tissue, with 

filamin A being one of three isoforms (Feng and Walsh, 2004). Filamins are primarily 

involved in bridging cortical actin into an overall three-dimensional cytoskeletal structure, 

aiding cell structure and motility. As the nomenclature suggests, the protein encoded by 

FILIP1 interacts with filamin A, and could therefore be involved in its functions. Indeed, 

evidence supports this, with the encoded protein, FILIP1, functioning downstream of a master 

regulator of actin and cytoskeletal dynamics, RhoD (Nussinov, 2013). 

 

To date, the known functions of FILIP1 are rather limited to the research initially performed 

by a laboratory in Japan. This group have linked FILIP1 to cell motility in the neocortex of 

Wistar rats, proposing that FILIP1 mediates the initiation of cell migration in the brain 

causing the degradation of filamin A and thus inhibiting its interaction with actin (Nagano et 

Figure 1.9. UCSC Genome Browser screenshot of the osteoarthritis association region 
marked by the polymorphism rs9350591 on chromosome 6q14.1. rs9350591 is an 
intergenic polymorphism upstream of FILIP1, SENP6, MYO6, TMEM30A, COX7A2, 
COL12A1 and downstream of IMPG1. The red box marks the boundaries of the association 
interval; all SNPs with an r2 > 0.8 relative to rs9350591 reside in this region. 
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al., 2002). In the fibroblast-like COS-7 cells, exogenous FILIP1 did suppress ventricular cell 

motility, and in addition, they reported an increase in FILIP1 expression in in situ pre-

migratory ventricular cells. Further to this, an established role of FILIP1 and filamin A in 

corticogenesis has since been supported, showing their requirement in maintaining cell 

polarity during migration (Nagano et al., 2004; Sato and Nagano, 2005). As a potential link to 

its corticogenesis function, deletions in the 6q14 region have been associated with intellectual 

disability (Becker et al., 2012). This may prove to be a vital link to translate FILIP1 

expression into a role in disease pathology. However, the deletions are not uniform 

throughout affected individuals, and therefore FILIP1 remains only one of several candidate 

genes in the region. 

 

Although the literature primarily focusses on the role of FILIP1 in cortical cell migration 

without any associated phenotypes, the known pathologies of filamin A are diverse and are 

not limited to brain tissue. It is therefore worthy of investigation in order to dissect the 

potential significance of FILIP1, however this of course is speculation only. Indeed, 

mutations within filamin A have been reported in a skeletal dysplasia called otopalatodigital 

syndrome (Clark et al., 2009), where it seems that a gain-of-function mutation leads to an 

enhanced affinity for actin. However, it is currently unclear how this translates into the 

characteristic features of the disorder, which include limited joint flexibility, wide-set eyes 

and a small, flat nose. This is in contrast to neuronal disorders associated with filamin A loss-

of-function mutations such as periventricular heterotopia. In this disorder, displaying the 

hallmark feature of seizures with an onset in young adults, a mutation in filamin A hinders 

neuronal cell migration (Fox et al., 1998). Overall, there have been no reports on the function 

of FILIP1 in skeletal development, although current knowledge is limited. In combination 

with a consideration of filamin A function, further investigations may one day confirm that 

FILIP1 has a more diverse role than is currently understood. 

 

1.10.3 SUMO1/sentrin-specific peptidase 6 (SENP6) 

Small ubiquitin-like modifier (SUMO) proteins can covalently attach to target proteins in a 

fashion analogous to ubiquitination. In contrast to the often common degradative fate of 

ubiquitin-bound proteins however, sumoylation directs localisation and stability of the 

SUMO-bound protein (Geiss-Friedlander and Melchior, 2007). SENP6 encodes a protein that 

is responsible for modulating the activity of sumoylation, and its function is two-fold. Firstly, 

SENP6 can mature SUMO proteins by cleaving the C terminal tail in order to process the 

precursor protein; and secondly, SENP6 can deconjugate SUMO proteins from their targets 
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by hydrolysing the isopetidic bond (Alegre and Reverter, 2011). Studies indicate that SENP6 

has a preferred specificity for the poly- SUMO2 and SUMO3 isoform chains (Lima and 

Reverter, 2008). Moreover, there is evidence to suggest that SENP6 is involved in 

kinetochore dynamics. It has been reported that a depletion of the protein is associated with 

defective spindle morphology and metaphase progression (Mukhopadhyay et al., 2010). 

 

Sumoylation has been linked to a number of human diseases, although a role of SENP6 is yet 

to be associated with these. For example, sumoylation was shown to be required for Myc-

dependent tumorigenesis (Kessler et al., 2012), which is in contrast to its loss as part of a 

MITF (microphthalmia-associated transcription factor) loss-of-function mutation that is 

associated with renal cell carcinoma and sporadic melanoma (Bertolotto et al., 2011). In 

addition, aberrant sumoylation of the ATP2A2a (ATPase Ca++ transporting cardiac muscle 

slow twitch 2a) protein is associated with heart failure (Kho et al., 2011). With a link to 

skeletal development, the T/G polymorphism rs9360921 (r2 = 0.81 relative to rs9350591), 

approximately 46 kb upstream of SENP6, has been associated with height (Lango Allen et al., 

2010). Interestingly, there is an emerging role of sumoylation in arthritis. SENP3 

overexpression in primary chondrocytes, for instance, has been reported to be associated with 

an increased expression of the catabolic factors ADAMTS-4 and MMP-13 (Yan et al., 2010). 

However, the association with OA and cartilage has not extended specifically to SENP6 and 

therefore remains speculative. 

 

1.10.4 Myosin VI (MYO6) 

MYO6 encodes the unconventional actin-based myosin VI motor protein, whereby the 

functional protein does not form filaments (Kalhammer and Bahler, 2000). The genetic 

structure is such that exons 1 to 20 encode the head domain, exons 21 to 23 encode the neck 

domain and exons 24 to 32 encode the tail domain (Ahituv et al., 2000). Exon 30 can be 

alternatively spliced to generate two isoforms, both of which have been detected in brain 

tissue; the isoform without exon 30 is widely expressed throughout other tissues such as 

skeletal muscle, cardiac muscle and the cochlea (Avraham et al., 1997). A putative casein 

kinase II phosphorylation site is within this exon, which could prove significant in the 

different functions of the isoforms. Within each of the three domains exist specific elements 

that allow myosin VI to perform its unique function (Figure 1.10). Firstly, the head domain 

contains an adenosine triphosphate (ATP) binding domain corresponding to exon 5, which is 

necessary for ATP hydrolysis, in addition to an actin binding domain corresponding to exon 

19, which is needed for the cytoskeletal interactions. Also found here is a threonine residue 
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that has the potential to be phosphorylated. The neck region contains a converter domain and 

an isoleucine [I] glutamine [Q] (IQ) motif: the converter allows for the movement towards the 

minus end of the actin filament (Wells et al., 1999), while the IQ motif presents a sequence 

for calmodulin binding. Finally, the tail region contains a coiled-coil domain to modulate 

dimerisation and a unique globular domain that is important for localisation (Frank et al., 

2004). The cellular function of myosin VI is primarily as a motor to carry vesicles and 

proteins along an actin track, and is reported to be involved in cell migration (Geisbrecht and 

Montell, 2002), endocytosis (Buss et al., 2001) and the modulation of RNA polymerase II-

mediated gene transcription (Vreugde et al., 2006). For these purposes, it is localised to the 

Golgi complex, endocytic vesicles, the cytosol and membrane ruffles (Buss et al., 1998).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The expression of MYO6 in the inner ear makes it an ideal candidate for a functional role in 

auditory disorders: indeed, mutations of MYO6 are typically associated with deafness (Ahmed 

et al., 2003; Sanggaard et al., 2008). Moreover, the homozygous Snell’s waltzer (sv) mouse 

displays deafness and spinning caused by a null mutation of MYO6 (Avraham et al., 1995). 

Given the nature of the protein function, MYO6 may have wide-reaching implications in 

cellular physiology and disease pathology. This is exemplified by the diverse functionality of 

myosin VI in the sv mouse, where it has been shown that the protein is required for the correct 

tethering of the intestinal epithelial cell brush-border membrane (Hegan et al., 2012). In 

addition, elevated expression of MYO6 has been associated with cellular alterations observed 

in prostate cancer (Wei et al., 2008), and its overexpression in high-grade ovarian carcinoma 

Figure 1.10. Gene and protein structure of MYO6. The gene comprises 32 exons, with 
exon 30 being alternatively spliced in brain tissue. The head domain is encoded by exons 1 
to 20, the neck domain is encoded by exons 21 to 23, and the tail domain is encoded by 
exons 24 to 32. The functional MYO6 protein contains an ATP binding site, a threonine 
residue for potential phosphorylation, an actin binding site, a converter domain for 
movement towards the minus end of actin, an IQ (isoleucine [I] glutamine [Q]) domain for 
calmodulin binding, and a tail containing a coiled-coil and a globular domain. Adapted 
from (Ahituv et al., 2000).  
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has been shown to accelerate cell migration and subsequent tumour dissemination (Yoshida et 

al., 2004). Such a fundamental role of MYO6 in cellular physiology and its diverse disease 

pathologies mean it may prove to be relevant in OA development; however, as of yet this has 

not been established. 

 

1.10.5 Transmembrane protein 30A (TMEM30A) 

TMEM30A, also known as CDC50A (cell division cycle 50A), encodes the membrane-

spanning β-subunit of the P4 family of adenosine triphosphatase (ATPase) flippase 

heterodimers (Katoh and Katoh, 2004; Folmer et al., 2012). The purpose of the flippase 

complex, by coupling the process with ATP hydrolysis, is to maintain a bilayer asymmetry by 

translocating phospholipids from the exoplasmic domain to the cytosolic domain of the cell 

membrane (Paulusma and Oude Elferink, 2005). A knockdown of TMEM30A confirmed this 

role by showing a reduction in the level of phospholipid import (Chen et al., 2011). 

TMEM30A is the most abundantly expressed out of the three family members (Folmer et al., 

2012; van der Mark et al., 2013), and can interact with several of the fourteen members of the 

P4-ATPase catalytic domain family (van der Velden et al., 2010), named from ATP8A1 

through to ATP11C (Sebastian et al., 2012).  

 

The range of interactions between the ATPase and TMEM30 proteins therefore suggest a 

wider functional role of TMEM30A than solely the maintenance of bilayer asymmetry. For 

example, studies of the interaction between ATP8A1 and TMEM30A suggest that the 

complex is necessary for cell migration. A depletion of either subunit resulted in diminished 

cell motility, and furthermore, its translocation of phosphatidylethanolamine was necessary 

for correct ruffle formation – a factor required to promote cellular migration (Kato et al., 

2013). In addition, ATP8A2 has been shown to act synergistically with TMEM30A to 

regulate neurite outgrowth of rat hippocampal neurons (Xu et al., 2012a).  

 

The role of the transmembrane protein complex has been exploited by pharmaceutical 

companies. TMEM30A expression was upregulated in primary prostate cancer (Romanuik et 

al., 2009) making this an ideal target as a route of entry for anti-cancer therapies. For 

example, the functional unit created by TMEM30A and an as of yet unidentified P4-ATPase 

aids the uptake of the alkyl-phospholipid anti-cancer drug perifosine (Munoz-Martinez et al., 

2010), which functions to inhibit the action of Akt. However, no overall benefit in survival 

was reported in patients with metastatic colorectal cancer (Bendell et al., 2012); in addition, 

the drug did not significantly alter the course of multiple myeloma and so resulted in the 
37 

 



discontinuation of its phase III clinical trial (Aeterna Zentaris Inc., 2013). Edelfosine is a pro-

apoptotic anti-cancer drug, and its uptake is similarly mediated by TMEM30A (van 

Blitterswijk and Verheij, 2008; Chen et al., 2011). 

 

There is limited knowledge pertaining to mutations within TMEM30A, however those of the 

ATPases could be suggestive of a functional role of TMEM30A. A mouse knockout of 

ATP8A1 results in impaired hippocampus-dependent learning (Levano et al., 2012), while 

mutations in ATP8B1 are associated with cholestasis, characterised by a decrease in bile flow 

to the duodenum (Klomp et al., 2004). It seems that TMEM30A expression has the potential to 

mediate a range of cellular functions, however, its physiological functions do not currently 

extend further than its use in cancer therapy. 

 

1.10.6 Cytochrome c oxidase subunit VIIa polypeptide 2 (COX7A2) 

Cytochrome c oxidase, an integral membrane protein, is the terminal enzyme of the electron 

transport chain of cellular respiration (Van Beeumen et al., 1990). Through the coupling of 

the electron transport chain to proton transfer within the mitochondria, energy in the form of 

ATP is generated. Cytochrome c oxidase is composed of nuclear- and mitochondrial- encoded 

subunits, which are thought to function as structural and catalytic components, respectively. 

COX7A2 is a nuclear-encoded subunit of the cytochrome c oxidase complex (Little et al., 

2010). This isoform is expressed in all tissue types, while polypeptide 1 is specific to cardiac 

and skeletal muscle (Arnaudo et al., 1992).  

 

A number of studies have implicated COX7A2 in various physiological presentations. For 

example, as testosterone production in aged men was downregulated, COX7A2 expression 

was found to be upregulated (Xin et al., 2003). Further investigations have revealed that 

COX7A2 negatively affects steroidogenesis in murine Leydig cells, potentially acting through 

an increase in reactive oxygen species production to inhibit testosterone production (Chen et 

al., 2006b). Using data obtained from a Diabetes Genetic Initiative GWAS, the G allele of 

rs1323070 (r2 = 0.00 relative to rs9350591), approximately 8 kb upstream of COX7A2, was 

identified as being associated with a decrease in glucose-stimulated insulin secretion (Olsson 

et al., 2011). Given the importance of ATP production in the regulation of this process, it is 

reasonable to suggest COX7A2 is involved in the mechanism through which this association 

occurs, and therefore could be implicated in type II diabetes. Finally, using matrix-assisted 

laser desorption/ionisation imaging (MALDI) mass spectrometry, a decrease in COX7A2 
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expression has been reported to be a prognostic marker in Barrett’s adenocarcinoma (Elsner et 

al., 2012).  

 

Perhaps the requirement of ATP in the chondrocyte-mediated maintenance of the ECM 

(Wolff et al., 2013) and the production of ATP in the electron transport chain may implicate 

COX7A2 in OA susceptibility (Martin et al., 2012).  

 

1.10.7 Collagen, type XII, α1 (COL12A1) 

COL12A1 encodes a homotrimeric protein of α1-chain polypeptides that is classified as a 

fibril-associated collagen with interrupted triple helices (FACIT) collagen. As illustrated in 

Figure 1.11, the structure is such that it has two triple-helical collagenous (COL1 and COL2) 

domains interspaced by non-collagenous, non-triple helical (NC1, NC2 and NC3) domains 

and a thrombospondin N-terminal-like (TSPN) region. The NC3 domain is globular and has 

repeating von Willebrand factor A-like (vWA) and fibronectin type III (FN3) domains (Bader 

et al., 2009). It is the NC3 domain that differs by approximately 100 kDa between the two 

splice variants of collagen type XII, long (XIIA) and short (XIIB), which are known to exist 

in mammals (Bohme et al., 1995). Type XII collagen has been identified in cartilage (Watt et 

al., 1992), tendon (Dublet et al., 1989), bone and ligament (Oh et al., 1993). It is understood 

to localise with type I collagen (Walchli et al., 1994), perhaps to act as a bridge or anchor for 

the collagen fibrils, however its exact function remains unclear (Gerecke et al., 1997). 

 

 

 

 

 

 

 

 

 

Type XII collagen could be a marker for cancer progression as an upregulation of COL12A1 

was observed in colon cancer cells (Karagiannis et al., 2012). However, given the expression 

of various collagens in the bone and ECM of synovial joints, it is reasonable to predict a more 

relevant role for type XII collagen somewhere during skeletal development or function. In 

wild type mice, type XII collagen is secreted by osteoblasts in regions of bone formation; 

knockout mice, on the other hand, have disorganised osteoblasts which generate lower levels 

Figure 1.11. Structure of the type XII collagen α1 polypeptide. Two collagenous domains 
(COL1 and COL2) are interrupted by three non-collagenous domains (NC1, NC2 and NC3). 
A TSPN domain separates COL2 and NC3. The globular NC3 is composed of repeating vWA 
domains and FN3 repeats. Adapted from (Ricard-Blum and Ruggiero, 2005). 
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of bone matrix deposition and thus display a short stature phenotype with skeletal 

abnormalities (Izu et al., 2011). Moreover, an upregulation of COL12A1 in a murine 

osteoblast cell line was identified in response to stretch stress, however, this was not 

replicated by the group in other murine cell line cultures (Arai et al., 2008). In humans, a loss-

of-function mutation within COL12A1 presents symptoms including joint hyperlaxity, which 

is reminiscent of connective tissue disorders such as Bethlem myopathy and Ehlers-Danlos 

syndrome (Zou et al., 2014). Finally, the A/G SNP rs970547 (r2 = 0.00 relative to rs9350591) 

within COL12A1 was significantly associated with anterior cruciate ligament ruptures in 

females (Posthumus et al., 2010). These studies imply that COL12A1 is involved in 

skeletogenesis, trauma response and the overall correct functioning of synovial joints, which 

could therefore perhaps extend to a role in OA. 

 

1.10.8 Interphotoreceptor matrix proteoglycan 1 (IMPG1) 

IMPG1 encodes a glycoprotein component of the interphotoreceptor matrix of retinal rod and 

cone cells (Felbor et al., 1998; Lee et al., 2000). The protein helps to maintain the 

homeostasis of the extracellular matrix surrounding photoreceptors, and perhaps functions as 

a scaffold component to retain the environmental integrity (Acharya et al., 1998a). 

Additionally, evidence suggests that IMPG1 could be integral in the adhesion of the neural 

retina to the retinal pigmented epithelium (Kuehn and Hageman, 1999). In accordance with its 

expression in the interphotoreceptor matrix, IMPG1 has been linked to a role in human 

retinopathies. For example, some forms of vitelliform macular dystrophy, characterised by 

deteriorating central vision related to an accumulation of lipofuscin, have been reported to be 

associated with mutations within IMPG1 (Manes et al., 2013). Furthermore, genetic linkage 

analyses have mapped retinal dystrophies, such as North Carolina macular dystrophy, to this 

region (Small et al., 1992); however it has since been shown that there is no apparent 

correlation (Gehrig et al., 1998). 

 

Naturally, the fact that IMPG1 encodes an ECM proteoglycan and that it possesses a 

functional hyaluronan binding domain (Acharya et al., 1998b) advocates its potential role in 

articular cartilage ECM homeostasis. However, the interphotoreceptor matrix is unique from 

the well-documented cartilage ECM (Ishikawa et al., 2015), and thus IMPG1 is unlikely to 

emerge as a functional proteoglycan here. In addition, data from Prof. Loughlin’s group 

(Institute of Cellular Medicine, Newcastle University) have shown that gene expression was 

not detectable in articular cartilage, fat pad, meniscus, synovium, tendon, ligament or 

osteophyte (arcOGEN Consortium et al., 2012). 
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1.11 Genes Surrounding rs10492367 on Chromosome 12p11.22 

1.11.1 Introduction to rs10492367 

The rs1049267 G to T SNP marks a region of the genome that is significantly associated with 

hip OA, as identified by the arcOGEN study (arcOGEN Consortium et al., 2012) and detailed 

in Table 1.3. rs10492367 is an intergenic SNP 59 kb downstream of KLHL42 (kelch-like 

family member 42) and 96 kb downstream of PTHLH (parathyroid hormone-like hormone). A 

further thirteen genes reside within a 1 Mb span upstream or downstream of the 

polymorphism (Table 1.5 and Figure 1.12). In addition, rs10492367 is 415 kb upstream of the 

long non-coding RNA ARNTL2-AS1 (ARNTL2 antisense RNA 1). As there are no amino acid 

changes that could account for the association signal, I postulate that rs10492367 marks a 

SNP in high LD with it that in some way regulates the expression of one of these genes on 

chromosome 12p. 

 

Gene symbol Gene name Distance from rs9350591 
KLHL42 Kelch-like family member 42 59 kb downstream 
PTHLH Parathyroid hormone-like hormone 96 kb downstream 
ASUN Asunder spermatogenesis regulator 924 kb downstream 

FGFR1OP2 FGFR1 oncogene partner 2 901 kb upstream 
TM7SF3 Transmembrane 7 superfamily member 3 848 kb downstream 
MED21 Mediator complex subunit 21 831 kb upstream 

C12orf71 Chromosome 12 open reading frame 71 780 kb downstream 
STK38L Serine/threonine kinase 38 like 536 kb upstream 
ARNTL2 Aryl hydrocarbon receptor nuclear 

translocator-like 2 
436 kb upstream 

SMCO2 Single-pass membrane protein with 
coiled-coil domains 2 

360 kb upstream 

PPFIBP1 PTPRF interacting protein, binding 
protein 1 [liprin β1] 

166 kb upstream 

REP15 RAB15 effector protein 164 kb upstream 
MRPS35 Mitochondrial ribosomal protein S35 106 kb upstream 
MANSC4 MANSC domain containing 4 91 kb downstream 
CCDC91 Coiled-coil domain containing 91 40 kb downstream 

   
Table 1.5. Genes within 1 Mb upstream and 1 Mb downstream of rs10492367. Fifteen 
genes resided at this locus, with PTHLH and KLHL42 being the two genes in closest physical 
proximity to the SNP. 
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1.11.2 Parathyroid hormone-like hormone (PTHLH) 

PTHLH encodes the protein parathyroid hormone-related protein (PTHrP), which was first 

discovered nearly three decades ago (Burtis et al., 1987). The protein was purified from a 

tumour of a patient with breast carcinoma and humoral hypercalcaemia of malignancy 

(HMM), and it was shown to be characteristically comparable to parathyroid hormone (PTH). 

Increased levels of secreted PTHrP by malignant tumours cause excessive bone resorption 

and therefore hypercalcaemia, mimicking the innate effect of PTH, which is a key regulator of 

calcium homeostasis (Nakajima et al., 2013). In fact, eight of the first 13 amino acids of the 

N-terminal domain are identical between PTH and PTHrP (Wysolmerski, 2012), meaning 

their shared structural homology allows for a shared G protein-coupled receptor, parathyroid 

hormone type 1 receptor (PTH1R). 

 

The PTHLH gene is orientated on the reverse strand of genomic DNA (gDNA) and comprises 

nine exons with three different promoters. It is the variation in promoter use, in addition to 

alternative splicing, which generates three distinct isoforms of the prohormone: PTHrP 139, 

PTHrP 141 and PTHrP 173 (Figure 1.13). The intervening intron between exons 5 and 6 is 

spliced in all variants, and this is the basis for PTHrP 139. Alternatively, additional spicing 

events can draw together this region to the coding sequence of exon 8 for PTHrP 173, or the 

coding sequence of exon 9 to create PTHrP 141. Consequently, these resulting isoforms have 

Figure 1.12. UCSC Genome Browser screenshot of the OA association region marked 
by the polymorphism rs10492367 on chromosome 12p11.22. rs10492367 is an intergenic 
polymorphism downstream of PTHLH and KLHL42. The red box marks the boundaries of 
the association interval; all SNPs with an r2 > 0.8 relative to rs10492367 reside in this 
region. 
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largely similar sequences, and differ mainly in the 3′-most region of the molecule. The 

significance of possessing three different isoforms is not clearly understood, although it is 

known that the expression of PTHrP 173 is human-specific (Sellers et al., 2004). 

 

 

 

 

 

 

 

 

 

 

Post-translational modifications mature the secretory prohormones into various proteins 

(Figure 1.14), which have distinct physiological roles mainly in paracrine signalling 

pathways. The primary protein forms are PTHrP (1-36), which shares sequence homology 

with the N-terminal of PTH (Mundy and Edwards, 2008); PTHrP (38-94), which has a known 

role in the activation of intracellular calcium transport, particularly through the placenta from 

the maternal to the foetal circulation (Kovacs et al., 1996); and PTHrP (107-139), which has 

been shown to inhibit bone resorption and stimulate osteoblast function (Cornish et al., 1997; 

Cornish et al., 1999). In general, however, the individual biological relevance of the separate 

regions are not fully understood. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.13. Genetic structure of PTHLH. The gene comprises nine exons, of which there 
are four coding regions. The use of three different promoters (P1, P2 and P3) and alternative 
splicing of the mRNA transcript result in three initial translation products of 139, 141 or 173 
amino acids (dotted lines). Grey boxes represent the 5′ UTR and black boxes represent the 3′ 
UTR. Red boxes denote the coding exons. Adapted from (Bouizar et al., 1999). 
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Figure 1.14. Post-translational proteolytic processing of the PTHrP 139 prohormone. 
NLS (nuclear localisation signal). Adapted from (Atlas of Genetics and Cytogenetics in 
Oncology and Haematology, 2015). 
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In addition to the secretory forms, PTHrP also has an intracrine role. In some cases, 

translation may be initiated downstream to the usual start site which causes the signal peptide 

sequence to be truncated (Wysolmerski, 2012). This means the prohormone remains in the 

cytosol, localises to the cell nucleus on the strength of its nuclear localisation signal (NLS), 

and therefore bypasses direction into endoplasmic reticulum for secretion (Nguyen et al., 

2001). The exact position of the NLS is debated, although definitions are generally within the 

mid-region peptide between amino acids 88 and 106 (Fiaschi-Taesch and Stewart, 2003). The 

function of nuclear PTHrP is unclear, however it has been suggested that it acts to regulate the 

transcription of ribosomal genes (Nguyen et al., 2001). 

 

The secreted form of PTHrP functions during endochondral ossification to promote long bone 

growth before skeletal maturity and the closure of the growth plate (Jiang et al., 2008). 

Prehypertrophic chondrocytes secrete Indian hedgehog (IHH) which signals to 

undifferentiated chondrocytes at the end of long bones to stimulate PTHrP secretion (St-

Jacques et al., 1999). This then signals to prehypertrophic chondrocytes (Figure 1.15), which 

express the cognate receptor PTH1R in order to inhibit their hypertrophic differentiation 

(Hirai et al., 2011). By way of a negative feedback loop, IHH secretion is consequently 

reduced given the maintenance of a proliferative state, causing PTHrP secretion to decrease 

and thus stimulate hypertrophy (Vortkamp et al., 1996; Deng et al., 2008). Indeed, PTHrP-

deficient mice have reduced chondrocyte proliferation and die at birth (Miao et al., 2002). 
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Within articular cartilage, reports of the expression of PTHLH are often conflicting. For 

example, it has been demonstrated that cellular interactions, mediated by PTHrP, between 

superficial zone and deep zone cells regulate chondrocyte mineralisation in a co-culture (Jiang 

et al., 2008). Perhaps this control is lost following articular cartilage degradation, further 

perpetuating the development of OA. In addition, the authors describe low PTHLH expression 

in the superficial zone cell culture. This is largely in contrast to an observed increase in 

PTHLH expression in articular chondrocytes relative to the osteophytic chondrocytes used to 

recapitulate the transient phenotype of those destined to be mineralised during endochondral 

ossification (Gelse et al., 2012). In terms of OA, an upregulation of PTHrP has been reported 

in OA knee cartilage relative to the non-OA controls (Terkeltaub et al., 1998). In addition to 

PTHLH expression in skeletal tissues, the gene is also known to be expressed in a variety of 

cell types including endothelial cells, smooth muscle cells and those of the cardiovascular 

system (Liu et al., 2011). 

 

The administration of exogenous PTH and PTHrP induce entirely different biological effects 

(Esbrit and Alcaraz, 2013). Continuous administration of PTH leads to bone resorption, while 

Figure 1.15. The negative feedback loop between PTHrP and IHH in the regulation of 
growth plate chondrocyte differentiation. The role of PTHrP is to keep chondrocytes 
proliferating. PTHrP is secreted by cells at the end of long bones which acts to inhibit IHH, a 
key driver of chondrocyte hypertrophy. IHH inhibition signals to decrease PTHrP secretion 
and therefore lead to hypertrophy. Adapted from (Alman, 2015) . 
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continuous administration of PTHrP favours bone formation (Lippuner, 2012). The 

biochemical function of PTHrP has been exploited by the biopharmaceutical industry, with 

subcutaneous injections of a synthetic analogue of the N-terminal domain (PTHrP [1-34]) 

being trialled for the treatment of osteoporosis. Osteoporosis is characterised by weak and 

fragile bones caused by an imbalance of bone formation and bone resorption. The therapy, 

known as Abaloparatide or BA058 (Radius Health Inc., Cambridge, MA, USA), has been 

reported to increase the bone mineral density of the lumbar spine, femoral neck and the total 

hip of post-menopausal women in a randomised placebo-controlled trial (Leder et al., 2015).  

 

To support the evidence of a non-redundant role of PTHrP signalling in the correct 

development of a skeletal phenotype, GWAS have identified polymorphisms within or nearby 

PTHLH to be associated with bone mineral density (Estrada et al., 2012) and height (Lango 

Allen et al., 2010). Moreover, Blomstrand chondrodysplasia, caused by a loss-of-function 

mutation of PTH1R, is characterised by advanced endochondral ossification resulting in a 

short-limbed stature, premature birth and neonatal death (Jobert et al., 1998). Jansen’s 

metaphyseal chondrodysplasia, on the other hand, is caused by a ligand-independent 

activating mutation of PTH1R and presents with short stature, joint swelling and 

hypercalcaemia (Mannstadt et al., 1999). The opposing nature of the mutations causing 

similar phenotypes suggests that a fine balance of PTHrP signalling is required for correct 

long bone development. Finally, an association of Brachydactyly Type E, a disorder 

displaying characteristic short digits, with the balanced translocation t(8;12)(q13;p11.22) has 

been reported and correlates with a decreased PTHLH expression (Maass et al., 2010).  

 

The diverse nature of the gene structure, expression and the regulatory roles of its encoded 

protein make understanding PTHLH extremely complex. Overall, however, the role of PTHrP 

in endochondral ossification and the associated skeletal phenotypes makes PTHLH an ideal 

candidate gene for OA susceptibility. 

 

1.11.3 Kelch-like family member 42 (KLHL42) 

Very little is currently known about KLHL42 or the function of its encoded protein. The 

member of the kelch superfamily has recently been reclassified from KLHDC5 (kelch domain 

containing 5) to KLHL42 based on emerging information with regards to its structure (Figure 

1.16). Standard KLHL family members have a bric à brac, tamtrack and broad-complex 

(BTB) domain, a BTB and C-terminal kelch (BACK) domain, and five to six kelch domain 
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repeats (Dhanoa et al., 2013). This is in contrast to KLHDC family members that have no 

BTB or BACK domains. 

 

 

 

 

 

 

 

The domains of KLHL42 appear to offer unique functionality to the protein. For example, 

other BTB domain-containing proteins facilitate ubiquitination by forming cullin-based E3 

ligase complexes (Furukawa et al., 2003; Pintard et al., 2004). While there is no definitive 

function for the BACK domain, it is speculated to be necessary for the correct cullin-based E3 

ligase complex formation with BTB (Stogios and Prive, 2004). Finally, kelch domains are 

known to be required for cellular morphology and cytoskeleton organisation through direct 

and indirect actin binding (von Bulow et al., 1995; Kim et al., 1999; Adams et al., 2000). 

Each kelch repeat forms a 4-stranded β-sheet, which then, in combination with the 

surrounding kelch repeats, folds into a conformation that creates a β-propeller structure 

around a central axis (Adams et al., 2000), as depicted in Figure 1.17. This structure certainly 

fits the proposed function of KLHL42 based on the individual domain functions: the central 

core might be a key factor in the binding of the protein to regulatory or cytoskeletal proteins.  
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Figure 1.16. Re-annotation of KLHDC5 has shown the typical domains of a KLHL family 
member. KLHL42 contains one BTB, one BACK and six kelch domains. Adapted from 
(Dhanoa et al., 2013). 
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One of the very few publications relating to KLHL42 was only six years ago, in which 

through a two-hybrid screen, KLHL42 was shown to interact with cullin-3, a core component 

of the E3 ligase complex that is involved in target protein ubiquitination and degradation 

(Cummings et al., 2009). This process occurs during mitosis to sequester and remove the 

microtubule-severing complex p60/katanin; naturally, overexpression of KLHL42 resulted in 

an increased density of microtubules, while protein knockdown led to a loss of the 

microtubule framework.  

 

Aside from this, there is sparse published data pertaining specifically to KLHL42 or the 

function of its protein. In fact, a detailed literature search for “KLHL42” using the National 

Center for Biotechnology Information (NCBI) database (http://www.ncbi.nlm.nih.gov/), 

which includes PubMed and PubMed Central, yielded only three publications. One of these 

was an update on kelch-like gene family members as previously referenced (Dhanoa et al., 

2013), while the remaining two publications did not report on the structure or function of 

KLHL42 (Silveira et al., 2014; Ross et al., 2015). A similar database search for “KLHDC5” 

yielded a modest 57 publications, however apart from the research discussed here, none of the 

papers were primary research publications that advanced the current knowledge of KLHL42 

acting as an adapter for cullin-based E3 ligases. The standout publications include GWAS that 

identify disease susceptibility loci nearby, but not specifically at, KLHL42; for example, type 

Figure 1.17. Structure of KLHL42. A bird’s eye view of the protein clearly shows the six β-
sheets created by the individual kelch repeats. The resulting structure is a cone that has a 
central core, potentially to aid protein binding and interactions. Numbers 1 – 6 highlight the 
individual 4-stranded β-sheets. Image created using the SWISS-PDB Viewer 4.0.4 (Guex and 
Peitsch, 1997) available at http://www.expasy.org/spdbv/. 
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2 diabetes (Morris et al., 2012), bone mineral density (Kemp et al., 2014), OA (arcOGEN 

Consortium et al., 2012), and discussions thereof. Overall, there appears to be no evidence to 

date that may imply a relevant functional role for KLHL42 in OA susceptibility. 

 

1.11.4 Other genes within 1Mb upstream or downstream of rs10492367 

Conventionally, cis-eQTLs are classified as such if they reside within 1 Mb of the 

transcription start site of the regulated gene (Nica and Dermitzakis, 2013). Aside from 

PTHLH and KLHL42, as already noted a further thirteen genes plus a long non-coding RNA 

can be found within the 2 Mb window of rs10492367. There is limited published data with 

regards to these genes. 

 

According to data derived from RNA sequencing (Xu et al., 2012b), the following genes from 

amongst the thirteen are not, or are very lowly, expressed in OA and non-OA hip cartilage: 

ARNTL2, SMCO2, REP15, MANSC4, CCDC91 and C12orf71. These genes also have limited 

published knowledge with regards to their function, with no obviously relevant reference to 

joint structure or function. For example, ARNTL2 is a core component of the circadian clock, 

a 24 hour system of oscillations in gene expression that is translated into a metabolic rhythm 

(Ciarleglio et al., 2008); REP15 co-localises to the endocytic recycling compartment with 

RAB15-GTP to facilitate transferrin recycling (Strick and Elferink, 2005); and CCDC91 is 

involved in the trans-Golgi network of membrane trafficking, and has been implicated in the 

maintenance of the microstructure of the white matter in the brain (Sprooten et al., 2014). 

 

Amongst the genes that are known to be expressed in cartilage (Xu et al., 2012b), PPFIBP1 is 

a liprin (LAR protein-tyrosine phosphatase-interacting protein) family member, also known as 

liprin β1. Liprins are known to interact with transmembrane PTPRF (protein tyrosine 

phosphatase, receptor type F; also known as LAR) proteins, which mediate axon guidance 

(Ensslen-Craig and Brady-Kalnay, 2004), however the involvement of liprin β1 in this 

process is not well studied. It has been reported that the metastasis-associated protein S100A4 

(S100 calcium binding protein A4) binds liprin β1, which could potentially affect cell 

adhesion through interactions with PTPRF (Kriajevska et al., 2002). Liprin β1 has also been 

implicated in the regulation of lymphatic vasculature integrity in Xenopus tadpoles (Norrmen 

et al., 2010).  

 

MRPS35 encodes a mitochondrial ribosome protein subunit that aids protein synthesis. 

Studies have suggested that an overexpression of MRPS35 is involved in testicular germ cell 
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tumours (Rodriguez et al., 2003), while a mutation in the gene in S. cerevisiae is associated 

with increased lipid droplet size (Fei et al., 2011) and perhaps, therefore, could be implicated 

in metabolic syndromes that present the hallmark accumulation of lipid droplets. 

 

FGFR1OP2 has been implicated in the 8p11 myeloproliferative syndrome through its fusion 

to the FGFR1 (fibroblast growth factor receptor 1) gene, resulting in the activation of the 

FGFR1 tyrosine kinase, unregulated haemopoiesis and a subsequent enhanced disease 

pathogenesis (Grand et al., 2004). In addition, it has been postulated that the gene may 

promote wound closure through cytoskeletal interactions and enhanced cell migration (Lin et 

al., 2010).  

 

There is even less known about ASUN, TM7SF3, MED21 and STK38L. ASUN modulates the 

correct progression through the mitotic cell cycle, particularly prophase, by recruiting dynein 

to the nuclear surface as the nucleus couples to the centrosome (Jodoin et al., 2012). TM7SF3, 

meanwhile, is a seven-span transmembrane protein (Akashi et al., 2000) that is thought to act 

as an inhibitor of cytokine-induced pancreatic β cell death, resulting in the rescue of 

associated diminished insulin secretion (Beck et al., 2011). MED21 forms a co-activating 

complex to regulate the expression of RNA polymerase II-controlled genes (Baumli et al., 

2005), and implications of its expression have been linked to keratinocyte proliferation and 

differentiation control (Oda et al., 2010). Finally, STK38L is a protein kinase that possesses a 

diverse range of functions. For example, it is involved in cell cycle progression (Cornils et al., 

2011), hippocampal neuron polarisation (Yang et al., 2014) and tumour cell invasion and 

survival (Suzuki et al., 2006).  

 

Overall, PTHLH appears to be the strongest candidate gene for the OA susceptibility of this 

region. However, the lack of knowledge with regards to the functionality of the remaining 

genes is not reason enough to discount them entirely. 

 

1.12 Summary 

OA is the most common form of arthritis, characterised by articular cartilage degradation at 

the end of long bones within synovial joints. This presents as joint pain, stiffness and a lack of 

mobility, with effective treatments currently limited to pain management and total joint 

replacement.  
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The disease is multifactorial and polygenic: the primary causes of OA are age, lifestyle, 

environment, sex and genetics. Various techniques have been implemented to ascertain the 

extent to which the disorder is caused by genetics. Through the arcOGEN GWAS, several 

regions of the genome have been associated with OA including chromosome 12p11.22 

marked by rs10492367, and chromosome 6q14.1 marked by rs9350591. 

 

PTHLH and KLHL42 are the genes in closest physical proximity to rs10492367, although 

there are several others within a 2 Mb span of the SNP. PTHLH is the strongest candidate 

gene for OA association at this locus, and it could transpire that rs10492367 marks a 

regulatory polymorphism that modulates gene expression. SENP6 and FILIP1 are the two 

genes in closest physical proximity to rs9350591, although again, several other genes reside at 

this locus, including COL12A1, any of which could mediate the OA association of this region. 

 

Functionally characterising the two loci will help dissect the OA association signals, 

providing an understanding of disease mechanisms and potentially furthering the diagnostic 

and treatment technologies currently available. 

 

1.13 Overall Aims 

The overall aim of this research is to characterise the two OA association signals marked by 

the polymorphisms rs10492367 and rs9350591.  

 

This will be achieved by investigating: 

• gene expression 

• DNA methylation 

• transcription factor binding and function 
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Chapter 2. Materials and Methods 
 

2.1 Database Searches to Characterise the Association Signals 

Two databases were utilised for the initial characterisations of the association signals: the 

UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/hgGateway; (Kent et al., 2002)) and 

RegulomeDB (http://regulomedb.org/; (Boyle et al., 2012)). RegulomeDB annotates 

intergenic polymorphisms that have known or predicted regulatory activity, while the UCSC 

Genome Browser acts as a portal through which a vast array of data can be accessed. This 

includes the NCBI RefSeq collection (Pruitt et al., 2005) of annotated gene transcripts, and 

data generated by the ENCODE Consortium (Encode Project Consortium, 2012). The 

ENCODE Project utilises data from 147 cell types, with nine common cell lines capturing 

eight different tissue types (blood, embryonic stem cell, liver, breast, muscle, blood vessel, 

skin and lung) and therefore the mesoderm, inner cell mass, endoderm and ectoderm lineages. 

 

2.2 Human Mesenchymal Stem Cell (MSC) Differentiation Down a Chondrogenic 

Lineage 

In vitro chondrogenesis was performed by three members of Prof. Loughlin’s research group 

(Institute of Cellular Medicine, Newcastle University) – Dr Madhushika Ratnayake, Maria 

Tselepi and Emma Rogers – and by Dr Mathew Barter (Institute of Cellular Medicine, 

Newcastle University), following a well-established differentiation model for Transwell 

cultures (Tew et al., 2008). Briefly, MSCs were cultured at 37oC in Dulbecco’s Modified 

Eagle Medium supplemented with 100 IU/ml penicillin, 100 μg/ml streptomycin and 2 mM of 

L-glutamine (Sigma-Aldrich, UK). The medium also contained: 40 μg/ml proline, 10 ng/ml 

TGF-β3 (PeproTech, UK), 100 mM dexamethasone (Sigma-Aldrich, UK), 50 μg/ml ascorbic 

acid-2-phosphate (Sigma-Aldrich, UK), 1 x insulin, transferrin, selenium, linoleic acid premix 

(ITS+L; BD Biosciences, Oxford, UK) and 4.50 g/l glucose (Lonza, UK). Cells were cultured 

in Corning Costar 24-well cell culture plates (Sigma-Aldrich, UK) using Millicell 0.40 μm 

hanging polyethylene terephthalate cell culture inserts (Merck Millipore, UK). RNA was 

extracted at various time points using TRIzol® Reagent (Life Technologies, UK) following 

the manufacturer’s protocol: the Loughlin group extracted RNA at days 3, 7 and 14, and Dr 

Barter extracted RNA at days 0, 1, 3, 6, 10 and 14. Dr Barter subsequently used an Illumina 

Human HT-12 V4 expression array to profile a range of gene expressions during 

chondrogenesis (Barter et al., 2015). 
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2.3 Human Mesenchymal Stem Cell (MSC) Differentiation Down an 

Osteoblastogenic Lineage 

Osteoblastogenesis was performed by Dr Rodolfo Gomez (Institute of Cellular Medicine, 

Newcastle University). Briefly, MSCs at a density of 17,500 cells/cm2 were cultured at 37oC 

for 48 hours in Mesenchymal Stem Cell Growth Medium (Lonza, UK) supplemented with 5 

ng/ml FGF-2 (R&D Systems, UK). The medium was replaced with Dulbecco’s Modified 

Eagle Medium supplemented with 10% volume/volume (v/v) foetal bovine serum (FBS), 10 

nM dexamethasone (Sigma-Aldrich, UK), 5 mM β-glycerol phosphate and 50 mg/ml ascorbic 

acid-2-phosphate. Cells were cultured in 60 mm Corning tissue-culture treated culture dishes 

(Sigma-Aldrich, UK) for 21 days to achieve full mineralisation. RNA was extracted at days 0 

and 21 using TRIzol® Reagent (Life Technologies, UK) following the manufacturer’s 

protocol. The RNA was used by Dr Gomez to profile a range of gene expressions during 

osteoblastogenesis on an Illumina Human HT-12 V4 expression array. 

 

2.4 Tissue Sample Collection 

Informed written consent for the use of joint tissue was provided by each patient who had 

undergone elective total joint replacement for OA of the knee or hip, and by patients who had 

total hip replacements due to neck of femur (NOF) fractures. Surgeries were performed at the 

Freeman Hospital and the Royal Victoria Infirmary, Newcastle-upon-Tyne. Ethical approval 

was granted by the Newcastle and North Tyneside Research Ethics Committee (REC 

reference number 09/H0906/72). Post-surgery, samples were stored in Hank’s Balanced Salt 

Solution supplemented with penicillin, streptomycin and nystatin at 4oC. Articular cartilage, 

infrapatellar fat pad and synovium were excised from the joints and were snap frozen at -80oC 

on the day of surgery. The OA cartilage samples had visible lesions and were screened to 

exclude other pathologies, while cartilage from the NOF control joints did not show 

macroscopic damage or visible signs of OA.  

 

2.5 Nucleic Acid Extraction from Joint Tissue 

Under liquid nitrogen, 1 g – 3 g of frozen tissue was ground in a Retsch Mixer Mill MM 200 

(Retsch, Leeds, UK). To 250 mg of ground tissue, 1 ml of TRIzol Reagent (Ambion, Life 

Technologies, UK) was added before thorough homogenisation by vortexing. Samples were 

incubated for 15 minutes (min) at room temperature followed by a 3 min centrifugation at 

13,000 revolutions per minute (rpm) at 4oC. The supernatant was transferred to a fresh 

microcentrifuge tube containing 200 µl chloroform, shaken vigorously for 15 seconds (sec) 

and incubated for 3 min at room temperature. The gDNA, total RNA and protein phases were 
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separated by centrifugation for 15 min at 13,000 rpm and 4oC. The top aqueous phase 

containing total RNA was transferred to a fresh microcentrifuge tube and the total RNA 

extracted using an RNeasy kit (QIAGEN, Crawley, UK) according to the manufacturer’s 

instructions. The remaining phases were discarded. gDNA was extracted from 250 mg of 

ground tissue using an E.Z.N.A.® DNA/RNA Isolation Kit (Omega Bio-Tek, Georgia, USA). 

The manufacturer’s protocol was followed with only slight modifications. Briefly: the ground 

tissue was vortexed with 700 µl GTC Lysis Buffer and centrifuged for 5 min at 11,700 rpm. 

The supernatant was transferred to a HiBind® column and centrifuged at 10,300 rpm for 1 

min. The centrifugation was repeated following the addition of HB Buffer, and again upon the 

addition of DNA Wash Buffer. The membrane in the column was dried by centrifugation at 

13,000 rpm for 2 min and the DNA subsequently eluted in 100 µl Elution Buffer. 

 

2.6 Polymerase Chain Reaction (PCR) Optimisation 

The polymerase chain reaction (PCR) annealing conditions of all primer pairs were optimised 

before use (Appendix A: Table A.1 and Table A.2). For the basic PCR reactions of 

genotyping, pyrosequencing and cloning, AmpliTaq Gold® Taq Polymerase (Applied 

Biosystems, Life Technologies, USA) was used, and for bisulfite converted DNA samples, 

Titanium® Taq DNA Polymerase (Clontech Laboratories, Inc., France) was used. 

 

2.6.1 Polymerase chain reaction (PCR) optimisation using AmpliTaq Gold® Taq 

Polymerase 

The optimal MgCl2 concentration was tested (1 mM, 1.50 mM or 2 mM) over a range of 

annealing temperatures from 55oC to 70oC. Each 15 µl PCR reaction contained 1 x PCR 

Buffer II (Applied Biosystems, Life Technologies, USA), 0.50 µM forward primer (Sigma-

Aldrich, UK), 0.50 µM reverse primer (Sigma-Aldrich, UK), 200 µM deoxynucleotide 

triphosphates (dNTPs; Bioline, UK), 0.40 U AmpliTaq Gold® Taq Polymerase (Applied 

Biosystems, Life Technologies, USA), MgCl2 (Applied Biosystems, Life Technologies, 

USA) and 50 ng gDNA. PCR conditions were: initialisation for 14 min at 94oC, denaturation 

for 30 sec at 94oC, annealing for 30 sec, and extension for 1 min per 1 kb of template at 72oC. 

Denaturation, annealing and extension steps were repeated for a further 35 cycles before a 

final elongation step for 5 min at 72oC. Correct amplification was confirmed by gel 

electrophoresis, loading 4 µl of the PCR products onto a 2% weight/volume (w/v) agarose 

Tris/borate/EDTA (TBE) gel containing 20 µg ethidium bromide per 100 ml total volume. 

Amplimers were visualised under ultraviolet (UV) light using a G:BOX gel visualisation 

system (Syngene, UK). 
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2.6.2 Polymerase chain reaction (PCR) optimisation using Titanium® Taq DNA 

Polymerase 

The annealing temperature of each primer pair was optimised over a temperature gradient 

from 55oC to 70oC. Each 20 µl reaction mix contained: 1 x Titanium® Taq PCR Buffer 

(Clontech Laboratories, Inc., France), 0.20 µM forward primer (Sigma-Aldrich, UK), 0.20 

µM reverse primer (Sigma-Aldrich, UK), 200 µM dNTPs (Bioline, UK), 1 x Titanium® Taq 

DNA Polymerase (Clontech Laboratories, Inc., France) and 50 ng bisulfite converted DNA 

(Chapter 2.25). Thermal cycling conditions were: initialisation for 5 min at 95oC, denaturation 

for 30 sec at 95oC, annealing for 30 sec, and extension for 1 min at 68oC. Denaturation, 

annealing and extension steps were repeated for a further 35 cycles before a final elongation 

step for 5 min at 68oC. Correct amplification was confirmed by gel electrophoresis, loading 4 

µl of the PCR products onto a 2% (w/v) agarose TBE gel containing 20 µg ethidium bromide 

per 100 ml total volume. Amplimers were visualised under ultraviolet UV light using a 

G:BOX gel visualisation system (Syngene, UK).  

 

2.7 Complementary DNA (cDNA) Synthesis 

2.7.1 Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) 

A final reaction volume of 20 µl was used to reverse transcribe 1 µg of total RNA. To remove 

contaminating DNA, total RNA was incubated at 37oC for 30 min with 1 U TURBOTM DNase 

(Invitrogen, Life Technologies, UK) and 1 x TURBOTM DNase Buffer (Invitrogen, Life 

Technologies, USA), followed by DNase inactivation at 75oC with 100 mM EDTA for 10 

min. Total RNA was incubated at 65oC for 5 min with 1 µg random primers (Invitrogen, Life 

Technologies, USA), 10 µM dNTP mix and made up to 8 µl with diethylpyrocarbonate 

(DEPC)-treated water (Invitrogen, Life Technologies, USA). Each reaction was incubated for 

1 min at 25oC with 1 x First Strand Buffer (Invitrogen, Life Technologies, USA), 5 mM 

MgCl2 (Applied Biosystems, Life Technologies, USA), 10 mM DTT (Invitrogen, Life 

Technologies, USA) and 40 U RNaseOUTTM (Invitrogen, Life Technologies, USA). Total 

RNA was reverse transcribed into complementary DNA (cDNA) following the addition of 

200 U SuperScriptTM II Reverse Transcriptase (Invitrogen, Life Technologies, USA) for 10 

min at 25oC, 50 min at 42oC and 10 min at 70oC. To degrade any complementary RNA, 2 U 

E. coli RNase H (Invitrogen, Life Technologies, USA) was incubated with each reverse 

transcriptase polymerase chain reaction (RT-PCR) sample for 20 min at 37oC. The cDNA was 

stored at -20oC. 
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2.7.2 Polymerase Chain Reaction (PCR) to assess complementary DNA (cDNA) integrity 

Following cDNA synthesis, the integrity of the cDNA was assessed via PCR amplification of 

HBP1. The primers specific for this region (Appendix A: Table A.1) are located within two 

different exons of HBP1, meaning that cDNA and residual gDNA contamination can be 

distinguished. PCR was performed as previously described (Chapter 2.6.1), with 0.50 µl of 

cDNA added to a 14.50 µl master mix containing 2 mM MgCl2. The annealing temperature 

was 60oC. Only cDNA that had no contaminating gDNA was carried forward for downstream 

applications. 

 

2.8 Quantitative Real-Time Polymerase Chain Reaction (qPCR) 

In MicroAmp Fast Optical 96-well Reaction Plates (Applied Biosystems, Life Technologies, 

USA), PrimeTime Quantitative Real-Time-PCR (qPCR) Assays (Appendix A: Table A.3; 

Integrated DNA Technologies [IDT], Iowa, USA) were used in 10 µl total reactions with 

TaqMan Fast Universal 1 x PCR Master Mix (Applied Biosystems, Life Technologies, USA) 

and 2.50 µl of cDNA diluted 1:20. Gene expression was analysed in real-time for three 

replicates per sample per gene using the ABI PRISM 7900HT Sequence Detection System 

(Applied Biosystems, Life Technologies, USA). Thermal cycling conditions were: 95°C for 

20 sec followed by 40 cycles of 95°C for 1 sec and 60°C for 20 sec. The housekeeper genes 

18S, GAPDH (glyceraldehyde 3-phosphate dehydrogenase) and HPRT1 (hypoxanthine 

phosphoribosyltransferase 1) were also analysed following this protocol. For each of the three 

replicates for each patient for each gene, delta Ct (ΔCt) was calculated using the formula: ΔCt 

= Ct (test gene) – Ct (mean of control genes). Relative gene expression of the test gene 

compared to the housekeeper genes was analysed using the 2-ΔCt method. Significance was 

assessed using a Mann-Whitney U test (two groups) or a Kruskal-Wallis one-way analysis of 

variance (three or more groups). 

 

2.9 Online Database Search for Transcript Single Nucleotide Polymorphisms (SNPs) 

Transcript SNPs of each gene were identified using the online software from the UCSC 

Genome Browser (http://genome.ucsc.edu/cgi-bin/hgGateway; (Kent et al., 2002)). The Broad 

Institute (http://www.broadinstitute.org/mpg/snap/; (Johnson et al., 2008)) online software 

was used to conduct pairwise searches to identify the LD between the transcript SNPs and the 

association SNPs. 
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2.10 Restriction Fragment Length Polymorphism (RFLP) Primer Design 

The DNA sequences flanking approximately 200 bp either side of the SNPs were obtained 

from the UCSC Genome Browser. Forward and reverse primers specific for each SNP were 

designed using the Primer3 Input online software (http://primer3.wi.mit.edu/; (Rozen and 

Skaletsky, 2000)). A BLAST-like alignment tool (BLAT) search of the primers was 

performed using the UCSC Genome Browser BLAT software (Kent, 2002) to ensure 

specificity for the region of interest. The NEBcutter online software 

(http://tools.neb.com/NEBcutter2/; (Vincze et al., 2003)) was used to identify restriction 

enzymes which cut at the SNP sites. A restriction fragment length polymorphism (RFLP) 

assay could not be designed for rs10492367 and so rs11049204, which is in perfect LD with 

rs10492367, was used as a proxy SNP. 

 

2.11 Restriction Fragment Length Polymorphism (RFLP) Assay 

DNA was amplified as per primer optimisation, replacing the temperature gradient and MgCl2 

concentration with the optimised conditions (Appendix A: Table A.1). PCR controls 

contained no template DNA. In a 15 µl final volume, 7.50 µl of amplified DNA was digested 

with 5 U of the restriction enzyme (New England BioLabs, UK) appropriate to the SNP of 

interest and 1 x reaction buffer (New England BioLabs, UK) as recommended by the 

manufacturer. After 3 hours at the appropriate temperature, the resulting DNA fragments were 

electrophoresed through a 3% (w/v) agarose TBE gel containing 20 µg ethidium bromide per 

100 ml total volume. Restriction fragments were visualised under UV light in a G:BOX gel 

visualisation system (Syngene, UK). Patient details and genotypes are listed in Appendix D: 

Table D.1. 

 

2.12 Allelic Quantification by Pyrosequencing 

Pyrosequencing primers (Appendix A: Table A.1) were designed using PyroMark Assay 

Design Software 2.0 (QIAGEN, Crawley, UK), and the PCR conditions optimised for the 

primers (Sigma-Aldrich, UK) as detailed previously (Chapter 2.6.1). Cartilage DNA and 

cDNA samples were PCR amplified, 12 µl of which was added to separate wells of a 0.20 ml 

24-well PCR plate (STARLAB, Milton Keynes, UK). Each 15 µl PCR sample was agitated 

using a 96-well plate shaker with a mix of 40 µl PyroMark binding buffer (QIAGEN, 

Crawley, UK), 2 µl streptavidin-coated sepharose beads (GE Healthcare, UK) and 28 µl 

deionised water for 10 min. Using a PyroMark Q24 Vacuum Workstation (QIAGEN, 

Crawley, UK), the sepharose beads were captured with the filter probes before 5 sec 

aspirations of 70% ethanol, 0.20 M sodium hydroxide and PyroMark wash buffer (QIAGEN, 
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Crawley, UK). The beads were released into a PyroMark Q24 24-well plate (QIAGEN, 

Crawley, UK) containing 24.75 µl PyroMark annealing buffer (QIAGEN, Crawley, UK) and 

0.75 µl sequencing primer (Sigma-Aldrich, UK) per well. Denaturation proceeded for 2 min 

at 80oC followed by primer annealing for 5 min at room temperature. A PyroMark Cassette 

(QIAGEN, Crawley, UK) was loaded with the appropriate volumes of PyroMark Gold Q24 

Reagents (QIAGEN, Crawley, UK), followed by pyrosequencing in a PyroMark Q24 

Pyrosequencing machine (QIAGEN, Crawley, UK). The capacity of all assays to differentiate 

between allelic quantities was validated in duplicate prior to use by comparing known 

synthetic allelic ratios with the ratios detected by the Pyrosequencing machine (Appendix B: 

Figure B.1). Each allelic expression imbalance (AEI) reaction was assayed in triplicate for 

DNA and cDNA. Significance was assessed using a Mann-Whitney U test. 

 

2.13 Cloning of DNA into pGL3-Promoter Luciferase Reporter Vectors 

2.13.1 Amplification of DNA fragments containing alleles of the polymorphisms of interest 

gDNA of known major allele and minor allele homozygotes for each SNP of interest was 

used as starting material. Using the optimised PCR conditions, DNA fragments were PCR 

amplified with SNP-specific primers (Appendix A: Table A.2) containing an enforced 

restriction site for either MluI or BglII to allow ligation into the multiple cloning site of the 

pGL3-promoter vector (Appendix C: Figure C.1; Promega, UK). The reactions were purified 

using a QIAquick Gel Extraction kit (QIAGEN, Crawley, UK) according to the 

manufacturer’s instructions.  

 

2.13.2 Digestion of DNA fragments with MluI and BglII 

The purified PCR products were digested in a master mix containing: 1 x NEBuffer 3.1 (New 

England BioLabs, UK), 10 U MluI (New England BioLabs, UK), 10 U BglII (New England 

BioLabs, UK), 1 µg DNA, and made up to 40 µl total volume with DEPC-treated water 

(Invitrogen, Life Technologies, UK). The reactions were incubated overnight at 37oC. The 

samples were electrophoresed through a 1% (w/v) agarose TBE gel containing 20 µg 

ethidium bromide per 100 ml total volume. Amplimers were visualised under UV light, 

excised from the gel and purified using a QIAquick Gel Extraction kit (QIAGEN, Crawley, 

UK) according to the manufacturer’s instructions. The pGL3-promoter vector was also 

digested and purified in this manner. 
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2.13.3 Ligation of purified DNA fragments into pGL3-promoter vectors 

The purified DNA was ligated into the pGL3-promoter vector in a 3:1 DNA to plasmid molar 

ratio. This was performed overnight at 16oC with 1 x T4 DNA Ligase Reaction Buffer (New 

England BioLabs, UK) and 400 U T4 Ligase (New England BioLabs, UK), and made up to a 

total volume of 20 µl.  

 

2.13.4 Transformation of pGL3-promoter vector constructs into chemically competent cells 

Two microlitres of the pGL3-promoter vector constructs were transformed into One Shot 

Mach1 T1 Phage-Resistant Chemically Competent E.coli cells (Invitrogen, Life 

Technologies, USA) according to the manufacturer’s instructions. Transformed cells were 

spread onto agar plates supplemented with 100 µg/ml ampicillin (Sigma-Aldrich, UK) and 

incubated overnight at 37oC. Three millilitres of lysogeny broth (LB) medium supplemented 

with 100 µg/ml ampicillin (Sigma-Aldrich, UK) was inoculated with unique clones that were 

picked from distinct colonies, and incubated at 37oC with shaking overnight. Glycerol stocks 

were made by combining 300 µl bacterial culture with 300 µl glycerol, and stored at -80oC. 

Plasmid cultures were purified using a PureYieldTM Plasmid Miniprep System (Promega, UK) 

according to the manufacturer’s guidelines. The identity of the DNA insert was confirmed 

using sequencing performed by Source BioScience, UK.  

 

2.14 Site-Directed Mutagenesis 

Site-directed mutagenesis was performed using the QuikChange II Site-Directed Mutagenesis 

kit (Agilent Technologies, UK) according to the manufacturer’s guidelines, with minor 

changes. Briefly, a 50 µl reaction contained: 1 x Reaction Buffer, 125 ng forward primer and 

125 ng reverse primer (Appendix A: Table A.2), 0.01 mM dNTP mix, 2.50 U PfuUltra High-

Fidelity DNA polymerase, 3 µl QuikSolution and 50 ng plasmid DNA. The PCR steps were 

an initial 95oC for 1 min followed by 18 cycles of denaturation at 95oC for 50 sec, annealing 

at 60oC for 50 sec and extension at 68oC for 7 min. Samples were treated with 10 U of DpnI 

to digest the parental DNA and were incubated at 37oC for 1 hour. Plasmid DNA was 

transformed into XL10-Gold Ultracompetent Cells (Agilent Technologies, UK), spread onto 

agar plates supplemented with 100 µg/ml ampicillin (Sigma-Aldrich, UK) and incubated 

overnight at 37oC according to the manufacturer’s instructions. Positive colonies were picked, 

cultured, purified and sequenced as previously described (Chapter 2.13.4). 
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2.15 Cell Line Culture 

All cell culture was performed under sterile conditions. SW1353 cells are an immortalised 

chondrosarcoma cell line taken from the humerus of a 72 year old female Caucasian. Cells 

were cultured in Dulbecco’s Modified Eagle Medium with a 1:1 ratio of Ham’s F-12 nutrient 

mixture (GIBCO, Life Technologies, UK) supplemented with 10% (v/v) FBS, 100 IU/ml 

penicillin, 100 μg/ml streptomycin and 2 mM of L-glutamine (Sigma-Aldrich, UK). U2OS 

cells are an immortalised osteosarcoma cell line taken from the tibia of a 15 year old female 

Caucasian. Cells were cultured in Dulbecco’s Modified Eagle Medium (GIBCO, Life 

Technologies, UK) supplemented with 10% (v/v) FBS, 100 IU/ml penicillin, 100 μg/ml 

streptomycin and 2 mM of L-glutamine (Sigma-Aldrich, UK). For each cell line, a vial of one 

million cells was resurrected from liquid nitrogen and warmed in a 37oC water bath until 

defrosted. The cells were transferred to Corning vented 75 cm2 cell culture flasks (Sigma-

Aldrich, UK) containing 9 ml of the respective media and cultured at 37oC with 5% CO2. 

After 4 hours, the medium was changed and the cells then cultured to 80% confluency. Upon 

reaching 80% confluency, the medium for each cell line was aspirated and the cells washed in 

PBS before incubation with 0.05% trypsin-EDTA solution (Sigma-Aldrich, UK) for 5 min at 

37oC with 5% CO2. Once fully detached, the cells were passaged 1 in 3 and cultured as 

before. 

 

2.16 Transfection of Cell Lines with pGL3-Promoter Luciferase Reporter Vectors 

In Corning Costar 96-well cell culture plates (Sigma-Aldrich, UK), SW1353 cells were 

seeded at a density of 6,000 cells per well and U2OS cells at a density of 10,000 cells per 

well, and incubated for 24 hours at 37oC with 5% CO2. Cells were transfected with 1.50 ng 

pRL-TK Renilla Luciferase Reporter Vector (Appendix C: Figure C.2; Promega, UK) and 50 

ng plasmid DNA using FuGENE HD Transfection Reagent (Promega, UK) in a total volume 

of 100 µl. Six wells were transfected as technical replicates per condition of an overall 

individual replication. Following a 24 hour incubation at 37oC with 5% CO2, cells were 

washed in 1 x phosphate-buffered saline (PBS) and lysed in 30 µl 1 x passive lysis buffer 

(Promega, UK) for 20 min with constant rocking. Twenty microlitres of the lysate were taken 

to quantify the luciferase and Renilla luciferase activities using the Dual Luciferase Reporter 

Assay System (Promega, UK) with a MicroLumat Plus LB96V luminometer (Berthold 

Technologies, UK). All luciferase values were normalised to the corresponding Renilla 

luciferase values. These were then normalised to the mean of the corresponding empty vector 

controls, which were given an arbitrary value of 1. Significance was assessed using a Mann-

Whitney U test (two groups). 
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2.17 Human Articular Chondrocyte (HAC) Cell Culture 

Excised cartilage samples were sliced and digested with three enzymes in order to extract the 

chondrocytes, with intervening washes with PBS: i) to digest hyaluronan, the tissue was 

incubated for 15 min at 37oC with 1 mg/ml hyaluronidase in PBS (5 ml/g of cartilage); ii) to 

digest aggrecan, the sample was incubated for 30 min at 37oC with 2.50 mg/ml trypsin in PBS 

(5 ml/g of cartilage); and iii) to digest collagen, the sample was incubated overnight at 35.5oC 

with 2.00 mg/ml collagenase in Dulbecco’s Modified Eagle Medium (GIBCO, Life 

Technologies, UK) containing 10% (v/v) FBS (3 ml/g of cartilage). The digested sample was 

then filtered through a 100 µm cell strainer (BD Biosciences, Oxford, UK) and the cells 

pelleted at 1,200 rpm for 7 min. The cell pellet was washed in PBS and centrifuged once 

more. Chondrocytes were seeded at a density of 40,000 cells/cm2 in Corning vented 75 cm2 

cell culture flasks (Sigma-Aldrich, UK) containing Dulbecco’s Modified Eagle Medium 

(GIBCO, Life Technologies, UK) supplemented with 10% (v/v) FBS, 2mM L-glutamine, 200 

IU/ml penicillin, 200μg/ml streptomycin and 40 IU/ml nystatin until 90% confluent.   

 

2.18 Nuclear Protein Extraction 

2.18.1 Preparation of buffers 

Hypotonic buffer (10 mM HEPES pH 7.60, 1.50 mM MgCl2, 10 mM KCl, 1 mM DTT, 10 

mM NaF, 1 mM Na3VO4, 0.10% [v/v] NP-40, 1 x complete protease inhibitor cocktail tablet 

per 50 ml of buffer [Roche, UK]) and high salt buffer (20 mM HEPES pH 7.90, 420 mM 

NaCl, 20% [v/v] glycerol, 1 mM DTT, 10 mM NaF, 1 mM Na3VO4, 1 x complete protease 

inhibitor cocktail tablet per 50 ml of buffer [Roche, UK]) were prepared prior to protein 

extraction.  

 

2.18.2 Preparation of cells 

SW1353 cells were seeded onto Corning 500 cm2 square cell culture dishes (Sigma-Aldrich, 

UK) at a density of 12 x 106 cells per plate. U2OS cells were seeded onto Corning 500 cm2 

square cell culture dishes (Sigma-Aldrich, UK) at a density of 20 x 106 cells per plate. Human 

articular chondrocytes (HACs) were seeded at a density of 3 x 106 cells per Corning vented 75 

cm2 cell culture flask (Sigma-Aldrich, UK). 

 

2.18.3 Protein extraction from SW1353 and U2OS cell lines 

When 80% confluency was reached, cells were washed in 5 ml ice cold PBS. Cells were 

detached from the plate using a Corning cell scraper (Sigma-Aldrich, UK), collected in 5 ml 

fresh ice cold PBS and centrifuged at 10,000 rpm for 30 sec at 4oC. The cell pellet was 
61 

 



resuspended in 1 ml hypotonic buffer and incubated on ice for 15 min with regular vortexing. 

Cells were centrifuged at 10,000 rpm for 30 sec at 4oC and the supernatant containing 

cytosolic protein was snap-frozen on dry ice before storage at -80oC. In order to fractionate 

the nuclei, the remaining pellet was resuspended in 1 ml hypotonic buffer supplemented with 

0.25 M sucrose. Cells were centrifuged as before and the pellet resuspended in 0.80 µl high 

salt buffer per cm2 originally seeded. The sample was incubated on ice for 30 min with 

regular vortexing, followed by a final centrifugation at 10,000 rpm for 2 min at 4oC. The 

supernatant containing nuclear protein was snap-frozen on dry ice before storage at -80oC. 

After quantification of the protein (Chapter 2.19), the purity was assessed by western blot 

analysis (Chapter 2.20) using antibodies against lamin A/C (1:4,000) to detect the nuclear 

fractions and GAPDH (1:40,000) to detect the cytosolic fractions. 

 

2.18.4 Protein extraction from human articular chondrocytes (HACs) 

Protein was extracted from HACs in an identical manner, with only a slight modification. 

Rather than directly scraping the cells into 5 ml PBS upon reaching 80% confluency, HACs 

were instead detached by incubation for 5 min at 37oC with 0.05% trypsin-EDTA solution 

(Sigma-Aldrich, UK). 

 

2.19 Bradford Assay to Quantify Protein 

A bovine serum albumin (BSA) standard curve was set up from 0.00 mg/ml to 1.50 mg/ml, 

using 2 mg/ml BSA stock solution (ThermoScientific, Surrey, UK) diluted in the lysis buffer 

used for protein extraction. Extracted protein was diluted in the respective lysis buffer. To 

each sample, 300 µl of Bradford Ultra (Expedeon, UK) was added and incubated for 5 min at 

room temperature. Absorbances were read at 595 nm using a Tecan Sunrise Microplate 

Absorbance Reader (Tecan, Reading, UK). 

 

2.20 Western Blot for Protein Detection 

Ten micrograms of protein was heated to 95oC for 5 min with 1 x Laemmli sample buffer 

(0.10 M Tris-HCl, 0.35 M SDS, 20% [v/v] glycerol, 0.01% [v/v] bromophenol blue and 5% 

[v/v] β-mercaptoethanol) and then resolved on an 8% (w/v) SDS polyacrylamide gel. By 

electroblotting in a Scie-Plas V20-SDB 20 cm x 20 cm semi-dry blotter (Scie-Plas, 

Cambridge, UK), proteins were transferred to an Immobilon-P polyvinylidene fluoride 

membrane. The membrane was blocked for non-specific protein binding for 30 min at room 

temperature in 1 x PBS containing 5% (w/v) Marvel milk and 0.02% (v/v) Tween-20. 

Following a 5 min wash with 1 x PBS containing 0.02% (v/v) Tween-20, the membrane was 
62 

 



incubated at 4oC overnight with a primary antibody diluted in 1 x PBS containing 5% (w/v) 

Marvel milk and 0.02% (v/v) Tween-20. All primary antibodies were used at a 1:2,000 

dilution unless otherwise stated. The membrane was washed as before, followed by a 1 hour 

incubation at room temperature with the required secondary antibody: polyclonal goat anti-

rabbit (1:2,000) or polyclonal goat anti-mouse (1:10,000) horseradish peroxidase (HRP)-

conjugated antibodies (Dako, Denmark). Protein was detected using either Immobilon 

Western Chemiluminescent HRP Substrate (Millipore, UK), or ECL or ECL Select Western 

Blotting Substrate (GE Healthcare, Lille Chalfont, UK) in a G:BOX gel visualisation system 

(Syngene, UK). The antibodies used are listed in Appendix E: Table E.1 and Table E.2. 

 

2.21 Prediction of Protein Binding Sites 

Three publicly available online search tools were used to predict protein binding to each allele 

of the SNPs of interest: PROMO version 3.0 (http://alggen.lsi.upc.es; (Messeguer et al., 2002; 

Farre et al., 2003)), JASPAR version 5.0 (http://jaspar.binf.ku.dk; (Sandelin et al., 2004)) and 

TFSEARCH version 1.3 (http://www.cbrc.jp/research/db/TFSEARCH; (Heinemeyer et al., 

1998)). In addition, the UCSC Genome Browser (http://genome.ucsc.edu/cgi-bin/hgGateway; 

(Kent et al., 2002)) was used as a predictor of protein binding based on experimental cell line 

chromatin immunoprecipitation (ChIP) assays with sequencing (ChIP-Seq) data from 

ENCODE (Encode Project Consortium, 2012).  

 

2.22 Selection of Transcription Factors for Functional Analysis 

To assess whether a transcription factor should be included in electrophoretic mobility shift 

assay (EMSA) investigations, the gene had to be expressed in cartilage (Xu et al., 2012b): of 

those that were expressed, any transcription factors that were predicted to bind only one allele 

of the SNP were selected. From the remaining transcription factors, the ones carried forward 

were selected based on the experimental evidence of binding and on the number of databases 

in which the protein was predicted to bind (Figure 2.1). Consensus sequences were found 

through a combination of literature searches and database searches, as detailed previously in 

Chapter 2.21, in addition to utilising data from the GeneCards website (www.genecards.org; 

(Safran et al., 2010)).  
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2.23 Electrophoretic Mobility Shift Assay (EMSA) 

2.23.1 Preparation of probes and buffers 

Fluorescently-labelled (5′DY682) oligonucleotides (Eurofins MWG Operon, Ebersberg, 

Germany) spanning 15 bp upstream and 15 bp downstream of each allele, for both the + and – 

strands, of the SNPs of interest were resuspended in water to a concentration of 100 pmol/µl. 

The complementary oligonucleotides were heated to 95oC for 5 min with annealing buffer 

(100 mM Tris-HCl, 500 mM NaCl, 10 mM EDTA) and allowed to cool to room temperature 

for 2 hours in order for the + and – strands to anneal. A stock 5 x TBE buffer (445 mM Tris, 

445 mM boric acid, 10 mM EDTA pH 8) and a native 5% (v/v) acrylamide gel (1 x TBE, 

Figure 2.1. Flow diagram of the selection process for transcription factors known or 
predicted to bind the SNP of interest. The transcription factor must be expressed in 
cartilage to be appropriate for the selection process. Subsequently, the considerations are the 
number of alleles it is predicted to bind, the existing experimental evidence for binding, and 
the number of databases on which binding is predicted. 
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1:1,000 TMED and 0.07% [v/v] ammonium persulfate) were prepared in advance, and the gel 

allowed to set overnight at 4oC. The gel was pre-run for 30 min at 4oC in 0.50 x TBE buffer 

before samples were loaded: this was to guarantee a constant gel temperature, to remove 

traces of ammonium persulfate and to equilibrate ions in the running buffer.  

 

2.23.2 Binding reaction and electrophoresis 

The binding reactions were prepared using the components of an Odyssey Infrared EMSA kit 

(LiCor Biosciences, Cambridge, UK) and incubated at room temperature for 20 min in the 

dark. All 20 µl reactions contained 200 fmol of labelled probe. For competition EMSAs, 

unlabelled competitors were at 5 x (1 pmol), 10 x (2 pmol), 25 x (5 pmol), and 50 x (10 pmol) 

that of the labelled probe concentration. Supershift EMSAs contained either 3 µg or 6 µg of 

antibody (Appendix E: Table E.1 and Table E.2). Where appropriate, control reactions 

contained either i) no competitor or ii) a species-matched IgG antibody. Orange G loading dye 

was added to a final 1 x concentration and the samples then loaded onto the gel. 

Electrophoresis was at 100 V for 3 hours at 4oC in the dark, and the protein binding was 

visualised using a LiCor Odyssey Infrared Imager (LiCor Biosciences, Cambridge, UK).  

 

2.24 Chromatin Immunoprecipitation (ChIP) 

ChIP was repeated six times in total. This constituted two independent rounds of cross-

linking, cell harvesting and sonication (Chapter 2.24.2), followed by three 

immunoprecipitation repeats for each sonication (Chapter 2.24.3 and Chapter 2.24.4). 

 

2.24.1 Buffers  

Prior to ChIP, the following buffers were prepared: FA lysis buffer (50 mM HEPES-NaOH 

pH 7.50, 140 mM NaCl, 1 mM EDTA pH 8, 1% Triton X-100, 0.10% sodium deoxycholate, 

0.10% SDS, 1 x complete protease inhibitor cocktail tablet per 100 ml of buffer [Roche, 

UK]), RIPA buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 2 mM EDTA pH 8, 1% NP-40, 

0.50% sodium deoxycholate, 0.10% SDS, 1 x complete protease inhibitor cocktail tablet per 

100 ml of buffer [Roche, UK]), wash buffer (0.10% SDS, 1% Triton X-100, 2 mM EDTA pH 

8, 150 mM NaCl, 20 mM Tris-HCl pH 8), final wash buffer (0.10% SDS, 1% Triton X-100, 2 

mM EDTA pH 8, 500 mM NaCl, 20 mM Tris-HCl pH 8) and elution buffer (1% SDS, 100 

mM NaHCO3). 
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2.24.2 Cross-linking, cell harvesting and sonication 

SW1353 cells were seeded at a density of 2 x 106 cells per 10 cm circular Corning cell culture 

dish (Sigma-Aldrich, UK), and incubated for 24 hours at 37oC with 5% CO2. Proteins were 

cross-linked to the DNA by the addition of formaldehyde (Sigma-Aldrich, UK) to a final 

concentration of 0.75% and the plates rotated for 10 min at room temperature. To quench the 

formaldehyde, glycine was then added to the medium to a final concentration of 125 mM and 

incubated for 5 min at room temperature with shaking. Following two washes in ice cold 

PBS, the cells were scraped into fresh PBS and centrifuged for 5 min at 2,000 rpm at 4oC. The 

cell pellet was resuspended in 750 µl FA lysis buffer per 1 x 107 cells. To shear the DNA to 

an average fragment size of 100-200 bp, the cell lysates were sonicated for 20 cycles of 30 sec 

intervals and 20 sec rest periods using a Bioruptor Standard (Diagenode, Belgium). The 

sonicated lysates were centrifuged at 4oC for 30 sec at 8,000 rpm and the supernatant removed 

to a fresh tube. Fifty microlitres of the supernatant was retained as the input sample.  

 

2.24.3 Immunoprecipitation, elution and reverse cross-linking 

The concentration of protein in the supernatant was quantified using a Bradford assay 

(Chapter 2.19). For each immunoprecipitation reaction, 50 µg of protein was diluted 1:10 in 

RIPA buffer and 10 µg of the required antibody added. Acetyl-histone H3 was used as a 

positive control, while IgG was used as a species-matched control. The samples were 

incubated overnight with rotation at 4oC with 20 µl protein A beads (Santa Cruz 

Biotechnology, USA). The beads were pelleted for 1 min at 5,000 rpm and washed in 3 x 1 ml 

wash buffer followed by 3 x 1 ml final wash buffer. The beads were incubated at 30oC for 15 

min in 120 µl elution buffer and then pelleted as above. At this stage, 400 µl of Tris-buffered 

saline (TBS) was added to the input sample and was hereafter treated in the same manner as 

the immunoprecipitated samples.  

 

2.24.4 Phenol-chloroform extraction of DNA 

To initiate DNA extraction by degrading the protein, each sample was incubated overnight at 

65oC with 20 mg/ml proteinase K. Equal volumes of the organic phase of acid-phenol: 

chloroform (Ambion, Life Technologies, UK) was added to the eluates, vortexed for 20 sec 

and centrifuged for 5 min at 13,000 rpm. The upper aqueous phase was vortexed for 20 sec 

with 2 x volume of 100% ethanol and incubated for 30 min at -20oC. The DNA was pelleted 

at 13,000 rpm for 30 min at 4oC, washed in 70% ethanol and centrifuged for a further 5 min at 

13,000 rpm. The DNA pellet was resuspended in 50 µl water and stored at -20oC. 
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2.24.5 Quantification of DNA by quantitative real-time polymerase chain reaction (qPCR) 

Primers were designed to the DNA spanning no more than 100 bp (Appendix A: Table A.3). 

To quantify the DNA pulled-down with the protein of interest, a 7.50 µl master mix of 

KiCqStart® SYBR® Green qPCR ReadyMix™ (Sigma-Aldrich, UK), 0.20 µM forward primer, 

0.20 µM reverse primer and DEPC-treated water (Invitrogen, Life Technologies, UK) was 

added to 2.50 µl DNA. Each reaction was performed in triplicate using the ABI PRISM 

7900HT Sequence Detection System (Applied Biosystems, Life Technologies, USA). 

Thermal cycling conditions were: 95oC for 10 min followed by 40 cycles of 95oC for 3 sec 

and 60oC for 30 sec, before a final sequence of 95oC, 60oC and 95oC each for 15 sec. For each 

of the six repeats, the mean Ct values of the three technical replicates were normalised to the 

mean of the IgG control replicates. The normalised values were combined and significance 

was assessed using the Student’s t test. 

 

2.25 Bisulfite Conversion of DNA 

Prior to bisulfite conversion, DNA was extracted from hip cartilage using the E.Z.N.A.® 

DNA/RNA Isolation Kit (Omega Bio-Tek, Georgia, USA) as detailed in Chapter 2.5. DNA 

was bisulfite converted using an EZ DNA Methylation™ Kit (Zymo Research, California, 

USA) according to the manufacturer’s protocol. To 500 ng of DNA, 5 µl of M-Dilution 

Buffer was added and the volume adjusted to 50 µl with water. Following a 15 min incubation 

at 37oC, 100 µl CT Conversion Reagent was mixed with the sample and incubated in the dark 

for 16 cycles of: 95oC for 30 sec and 50oC for 60 min. Four hundred microlitres of M-Binding 

Buffer was added to a Zymo-Spin™ IC Column containing the sample, and the column 

centrifuged for 30 sec at 13,000 rpm. Centrifugation was repeated following the addition of 

100 µl M-Wash Buffer, and repeated again following a 20 min incubation with 200 µl M-

Desulphonation Buffer. The column was washed twice with 200 µl M-Wash Buffer and the 

DNA eluted in 25 µl M-Elution Buffer. 

 

2.26 Quantification of DNA Methylation by Pyrosequencing 

Bisulfite converted DNA was amplified as per primer optimisation (Chapter 2.6.2), replacing 

the temperature gradient with the optimised annealing temperatures. Each reaction was 

performed in duplicate and pyrosequencing was carried out as previously described (Chapter 

2.12). The mean of the duplicates was calculated and significance was assessed using a Mann-

Whitney U test (two groups) or a Kruskal-Wallis one-way analysis of variance (three or more 

groups). 
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2.27 Cloning of DNA into pCpGL-Basic/EF1 Luciferase Reporter Vectors 

2.27.1 Amplification of DNA fragments containing alleles of the polymorphisms of interest 

DNA fragments were PCR amplified from the previously-generated pGL3-promoter vector 

constructs. This used the optimised PCR conditions for the SNP-specific primers that 

contained enforced restriction site for either PstI or SpeI (Appendix A: Table A.4), to allow 

for ligation into the multiple cloning site of the pCpGL-basic luciferase reporter vector that 

contained an EF1 promoter (Appendix C: Figure C.3; (Klug and Rehli, 2006)). The reactions 

were purified using a QIAquick Gel Extraction kit (QIAGEN, Crawley, UK) according to the 

manufacturer’s instructions.  

 

2.27.2 Digestion of DNA fragments with PstI and SpeI 

The purified PCR products were digested in a master mix containing: 1 x NEBuffer 2 (New 

England BioLabs, UK), 4 µg BSA, 10 U PstI (New England BioLabs, UK), 10 U SpeI (New 

England BioLabs, UK), 1 µg DNA, and made up to 40 µl total volume with DEPC-treated 

water (Invitrogen, Life Technologies, UK). The reactions were incubated overnight at 37oC. 

The samples were electrophoresed through a 1% (w/v) agarose TBE gel containing 20 µg 

ethidium bromide per 100 ml total volume. Amplimers were visualised under UV light, 

excised from the gel and purified using a QIAquick Gel Extraction kit (QIAGEN, Crawley, 

UK) according to the manufacturer’s instructions. The pCpGL-basic/EF1 vector was also 

digested and purified in this manner.  

 

2.27.3 Ligation of purified DNA fragments into pCpGL-basic/EF1 vectors 

The purified DNA was ligated into the pCpGL-basic/EF1 vector in a 3:1 DNA to plasmid 

molar ratio. This was performed for 1 hour at 25oC with 1 x T4 DNA Ligase Reaction Buffer 

(Invitrogen, Life Technologies, UK), 0.10 U T4 Ligase (Invitrogen, Life Technologies, UK), 

and made up to a total volume of 20 µl.  

 

2.27.4 Transformation of pCpGL-basic/EF1 vector constructs into chemically competent 

cells 

Two microlitres of the pGL3-basic/EF1 vector constructs were transformed into ChemiComp 

GT115 E. coli Cells (Invivogen, France) according to the manufacturer’s instructions. 

Transformed cells were spread onto agar plates supplemented with 30 µg/ml zeocin 

(Invitrogen, Life Technologies, UK) and incubated overnight at 37oC. Three millilitres of LB 

medium supplemented with 30 µg/ml zeocin (Invitrogen, Life Technologies, UK) was 

inoculated with unique clones that were picked from distinct colonies, and incubated at 37oC 
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with shaking overnight. Glycerol stocks were made by combining 300 µl bacterial culture and 

300 µl glycerol, and stored at -80oC. Plasmid cultures were purified using a PureYieldTM 

Plasmid Miniprep System (Promega, UK) according to the manufacturer’s guidelines. The 

identity of the DNA insert was confirmed using sequencing performed by Source BioScience, 

UK. Two hundred and fifty millilitres of LB medium supplemented with 30 µg/ml zeocin 

(Invitrogen, Life Technologies, UK) was inoculated with 5 µl of the glycerol stocks from the 

positive clones and incubated at 37oC with shaking overnight. Plasmid cultures were purified 

using a PureYieldTM Plasmid Maxiprep System (Promega, UK) according to the 

manufacturer’s guidelines. 

 

2.28 Methylation of pCpGL-Basic/EF1 Luciferase Reporter Vectors 

Prior to transfection, all pCpGL-basic/EF1 luciferase reporter vector constructs were 

methylated and mock-methylated. For both treatments, 5 µg of plasmid DNA was mixed with 

1 x NEBuffer 2 (New England BioLabs, UK) and 1600 µM S-adenosylmethionine (SAM; 

New England BioLabs, UK). The constructs were methylated by the addition of 4 U M.SssI 

(New England BioLabs, UK), or were mock-treated with DEPC-treated water (Invitrogen, 

Life Technologies, USA). The 30 µl reactions were incubated for 4 hours at 37oC followed by 

20 min at 65oC, and the DNA precipitated. Briefly, the reactions were incubated at -80oC for 

20 min with 100 µl 100% ethanol followed by centrifugation for 10 min at 13,000 rpm. After 

the supernatants were removed, the pellets were resuspended in 500 µl 70% ethanol followed 

by centrifugation for 5 min at 13,000 rpm. The supernatants were again removed. The pellets 

were then left to air dry for 5 min before resuspension in 40 µl DEPC-treated water 

(Invitrogen, Life Technologies, USA). Methylation was confirmed by digesting 250 ng of 

plasmid DNA with a relevant methylation-sensitive enzyme. DNA was diluted to 50 ng/µl 

and stored at -20oC. 

 

2.29 Transfection of Cell Lines with pCpGL-Basic/EF1 Luciferase Reporter Vectors 

Transfection of the pCpGL-basic/EF1 luciferase reporter vectors was performed as previously 

described for the pGL3-promoter vectors (Chapter 2.16), but instead using 100 ng of plasmid 

DNA per well rather than 50 ng per well. Luciferase/Renilla values were normalised to the 

corresponding empty vectors. 
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2.30 RNA-Mediated Interference (RNAi) 

2.30.1 Gene knockdown using small interfering RNA (siRNA) 

HACs were cultured as detailed in Chapter 2.17. After reaching 90% confluency, cells were 

seeded in Corning Costar 6-well cell culture plates (Sigma-Aldrich, UK) at a density of 

120,000 cells per well and incubated for 24 hours at 37oC with 5% CO2. In serum-free 

medium, 3.25 µl per well of DharmaFECT 1 Transfection Reagent (Dharmacon, GE 

Healthcare, UK) was diluted. Separately, SMARTpool ON-TARGETplus small interfering 

RNA (siRNA; Dharmacon, GE Healthcare, UK) was diluted in serum-free medium in an 

intermediate step to provide a final concentration of 100 nM. After a 5 min incubation at room 

temperature, the mixes were combined and the cells transfected for 48 hours at 37oC with 5% 

CO2. The siRNAs are listed in Appendix E: Table E.3. 

 

2.30.2 Total RNA and protein extraction and quantification 

Total RNA and protein were extracted simultaneously using a NucleoSpin® RNA/Protein 

Extraction Kit (Macherey-Nagel, Germany) following the manufacturer’s protocol. The 

extracted protein was quantified using a Bradford assay (Chapter 2.19), and a western blot 

(Chapter 2.20) was carried out to confirm protein depletion. One microgram of the RNA was 

reverse transcribed into cDNA (Chapter 2.7) before qPCR was used to assess gene 

knockdown (Chapter 2.8) using the assays predesigned by Integrated DNA Technologies 

[IDT], Iowa, USA, detailed in Appendix A: Table A.3. ΔCt was calculated using the formula: 

ΔCt = Ct (test gene) – Ct (mean of control genes). Relative gene expression of the test gene 

compared to the housekeeper genes was analysed using the 2-ΔCt method. The mean of the 2-

ΔCt values for each knockdown was normalised to the non-targeting control. The normalised 

values for the three biological repeats were combined and significance was assessed using the 

Student’s t test. 

 

2.31 Co-Transfection of Small Interfering RNA (siRNA) and pGL3-Promoter 

Luciferase Reporter Vectors 

For each condition, six wells of a Corning Costar 96-well cell culture plate (Sigma-Aldrich, 

UK) were transfected for quantification of the luciferase and Renilla reporter genes, and one 

well of a Corning Costar 6-well cell culture plate (Sigma-Aldrich, UK) was transfected for 

gene expression quantification. SW1353 cells were cultured and seeded as previously 

described (Chapter 2.15), with 6,000 cells per well of a 96-well plate and 120,000 cells per 

well of a 6-well plate. Transfections with the pGL3-promoter vector constructs were as 

detailed previously (Chapter 2.16), additionally using 90 ng of pRL-TK Renilla Luciferase 
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Reporter Vector (Promega, UK) and 3 µg of plasmid DNA per well of a six-well plate. After 

a 5 hour incubation at 37oC with 5% CO2, the cells were transfected with siRNAs as 

previously detailed (Chapter 2.30.1), with 0.26 µl of DharmaFECT 1 Transfection Reagent 

(Dharmacon, GE Healthcare, UK) used per well of a 96-well plate. Subsequently, the 

luciferase and Renilla expressions were quantified and the data analysed as before. Similarly, 

the total RNA and protein were extracted, quantified and analysed as detailed previously 

(Chapter 2.30.2).
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Chapter 3.  Characterisation of the 6q14.1 Locus Marked by the 

Polymorphism rs9350591 

 
3.1 Introduction 

One of the five genome-wide significant loci identified as being associated with OA in the 

arcOGEN GWAS was marked by the C/T polymorphism rs9350591 on chromosome 6q14.1 

(arcOGEN Consortium et al., 2012). The minor allele (T; MAF = 0.14) was significantly 

associated with hip OA in patients of European descent compared to the population-based 

controls, with an odds ratio (OR) of 1.18 and a p value of 2.42 x 10-09 (Table 3.1). There was 

a weaker significance in the association for all cases of OA, with an OR of 1.09 and a p value 

of 2.78 x 10-04. 

 

Discovery  Replication  Discovery and replication 
OR       

(95% CI) p value 
 OR        

(95% CI) p value 
 OR       

(95% CI) p value 

1.20    
(1.11-1.30) 2.49 x 10-06 

 1.16     
(1.07-1.25) 1.64 x 10-04 

 1.18         
(1.12-1.25) 2.42 x 10-09 

 

Table 3.1. Association statistics from the arcOGEN GWAS for rs9350591 in the hip 
stratum only. Odds ratio (OR), confidence interval (CI), genome-wide significance p value = 
5 x 10-08. Adapted from (arcOGEN Consortium et al., 2012). 

 

The association interval, defined as the region in which all SNPs in an LD of > 0.80 with 

rs9350591 reside, spans 240 kb and encompasses SENP6. There are no non-synonymous 

transcript polymorphisms that are in high LD (> 0.80) with rs9350591 and as such, it is 

unlikely that the OA association is mediated by a change in the coding sequence of any of the 

nearby genes. Instead, the causal SNP could be mediating its effect by regulating gene 

transcription. Gene expressions were quantified by Dr Madhushika Ratnayake and Dr Emma 

Raine of Prof. Loughlin’s group (Institute of Cellular Medicine, Newcastle University) prior 

to the commencement of this project. The results confirmed that all of the genes at this locus, 

excluding IMPG1, were expressed in the following human joint tissues: articular cartilage, fat 

pad, synovium, meniscus, tendon and ligament (arcOGEN Consortium et al., 2012). This 

chapter will therefore characterise the OA-associated region marked by rs9350591 by 

investigating the expression of FILIP1, SENP6, MYO6, TMEM30A, COX7A2 and COL12A1.  
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3.2 Aim 

The aim of this chapter was to characterise the OA association signal marked by the 

polymorphism rs9350591. This was achieved by: 

 

• performing database searches to characterise the association region  

• examining the expression profiles of FILIP1, SENP6, MYO6, TMEM30A, COX7A2 

and COL12A1 during chondrogenesis using RNA generated by Dr Madhushika 

Ratnayake, Maria Tselepi and Emma Rogers  

• analysing FILIP1, SENP6, MYO6, TMEM30A, COX7A2 and COL12A1 expression 

throughout chondrogenesis as assayed on a microarray performed by Dr Matthew 

Barter 

• analysing FILIP1, SENP6, MYO6, TMEM30A, COX7A2 and COL12A1 expression 

throughout osteoblastogenesis as assayed on a microarray performed by Dr Rodolfo 

Gomez 

• quantitatively analysing the expression of FILIP1, SENP6, MYO6, TMEM30A, 

COX7A2 and COL12A1 in synovial joint tissues  

• characterising the expression profiles of FILIP1, SENP6, MYO6, TMEM30A, COX7A2 

and COL12A1 in OA hip, OA knee and NOF cartilage, using data previously 

generated by Dr Madhushika Ratnayake and Dr Emma Raine 

• replicating the gene expression quantification experiments in an independent group of 

OA hip cartilage samples 

• characterising the expression profiles of FILIP1, SENP6, MYO6, TMEM30A, COX7A2 

and COL12A1 in fat pad and synovium samples 

• investigating if rs9350591 marks a cis-eQTL by producing an allelic expression 

imbalance of the transcription of FILIP1, SENP6, MYO6, TMEM30A, COX7A2 and/or 

COL12A1 

• analysing CpG methylation levels in hip and knee cartilage 1 Mb upstream and 1 Mb 

downstream of rs9350591 as assayed on a microarray performed by Dr Michael 

Rushton
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3.3 Results 

3.3.1 Initial database searches to characterise the rs9350591 locus 

The UCSC Genome Browser (Kent et al., 2002) collates information regarding the reference 

sequence of the human genome (Chapter 2.1); Figure 3.1 is a screenshot from the website 

covering the 6q14.1 locus. The first track displays RefSeq genes (Pruitt et al., 2005), showing 

rs9350591 as an intergenic SNP 38 kb upstream of FILIP1 and 70 kb upstream of SENP6. A 

further five genes reside within 1 Mb upstream or downstream of the polymorphism: MYO6 

(217 kb downstream), TMEM30A (247 kb downstream), COX7A2 (288 kb downstream), 

COL12A1 (325 kb downstream) and IMPG1 (390 kb upstream). In addition, rs9350591 is 

upstream of two uncharacterised long non-coding RNAs, LOC100506804 and 

LOC101928540; and is within 103 kb of a provisional (that is, not independently reviewed) 

miRNA, MIR4463. Using ChIP-Seq data, the chromatin state of the region was modelled 

using a multivariate Hidden Markov Model (Ernst and Kellis, 2010; Ernst et al., 2011). It is 

apparent, denoted by a grey shaded area, that the SNP resides in a region of heterochromatin. 

Furthermore, there are no transcription factors known to bind the polymorphism (Gerstein et 

al., 2012; Wang et al., 2012; Wang et al., 2013), and the SNP is not in a DNase I 

hypersensitive region. This implies that the polymorphism is not mediating the OA 

association by affecting direct transcription factor binding; nor is it a regulatory element, 

which are generally identified as DNase I-sensitive loci (Song and Crawford, 2010). Finally, 

in order to characterise the three-dimensional structure of the genome, chromatin interaction 

analysis with paired-end tag (ChIA-PET) sequencing was undertaken as part of the ENCODE 

project (Fullwood et al., 2010). Loci that are in close physical proximity with each other are 

cross-linked and ligated together, the graphical representation of which is denoted by blocks 

connected by horizontal lines. Based on this dataset it seems rs9350591 does not interact with 

other genomic loci. This is the same for all SNPs in high LD with rs9350591, but due to the 

large size of the association region (231 kb), only rs9350591 is depicted in Figure 3.1.B. 
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As rs9350591 is not necessarily causal in mediating the OA association of this region, any 

SNPs in high LD with the polymorphism could instead account for the signal. In total, there 

are 39 SNPs with an r2 of > 0.80 relative to the association SNP, nine of which are in perfect 

LD with rs9350591. A search of the RegulomeDB online database (Boyle et al., 2012) shows 

that some SNPs have transcription factors known to bind or reside in functional regions in 

relevant cell lines (Table 3.2). One of the 39 SNPs, rs9360921, was discussed in Chapter 1: 

following a meta-analysis of GWAS data and in silico replication, the polymorphism was 

Figure 3.1. UCSC Genome Browser screenshots of the OA association region marked by 
the polymorphism rs9350591 on chromosome 6q14.1. A) rs9350591 is an intergenic 
polymorphism upstream of FILIP1, SENP6, MYO6, TMEM30A, COX7A2, COL12A1 and 
downstream of IMPG1. The red box marks the boundaries of the association interval; all 
SNPs with an r2 > 0.80 relative to rs9350591 reside in this region. B) The SNP does not 
reside in a predicted regulatory region, denoted by grey boxes within the Chromatin State 
Segmentation track [1]. No transcription factors have been identified as binding over the 
polymorphism within the Transcription Factor ChIP-Seq tracks [2], nor is it within a DNase 
I-hypersensitive region of the DNase I Hypersensitivity Clusters track [3]. The SNP has not 
been identified as interacting with other genomic loci in the Chromatin Interaction Analysis 
Paired-End Tags track [4]. The images were obtained using the hg19 reference genome. 
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significantly associated with adult height in individuals of European descent (Lango Allen et 

al., 2010). Such signals highlight the association of this region with skeletal development and 

perhaps could ultimately prove to be of relevance to OA susceptibility.    
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       Chromatin State 

SNP 

Distance from 
rs9350591 

(bp) 

r2 relative 
to 

rs9350591 

D′ relative 
to 

rs9350591 

Genotyped 
on arcOGEN 

array 
SNP 

location 
Transcription factor 

binding 

Bone marrow-
derived cultured 

MSCs 

MSC-derived 
chondrocyte 
cultured cells 

Osteoblast 
primary cells 

rs12211255 53,197 0.810 1.000 No Intronic No data No data No data No data 
rs10943249 42,308 1.000 1.000 No Intronic No data No data No data No data 
rs35985089 39,845 1.000 1.000 No Intronic No data Weak 

transcription 
Weak repressed 

polycomb 
Weak repressed 

polycomb 
rs9343292 38,871 1.000 1.000 No Intronic ATF2, NFKB1, POLR2A, 

TBP, NR3C1, USF1 
Weak 

transcription 
Flanking active 

TSS 
Repressed 
polycomb 

rs11964634 21,727 1.000 1.000 No Intergenic No data No data No data No data 
rs9360913 17,208 0.935 1.000 No Intergenic No data Quiescent/low Quiescent/low Quiescent/low 
rs9359125 10,223 0.872 1.000 No Intergenic No data Quiescent/low Quiescent/low Quiescent/low 
rs12190734 9,543 0.935 1.000 No Intergenic No data No data No data No data 
rs9343297 6,830 0.935 1.000 No Intergenic EP300, TCF7L2, TRIM28, 

ZNF263, GATA3, REST 
Enhancer Enhancer Enhancer 

rs9341526 5,138 0.935 1.000 No Intergenic ARID3A, CTCF, CEBPB, 
FOXM1, JUND, SMC3, 
YY1, RAD21, RUNX3 

Quiescent/low Quiescent/low Weak repressed 
polycomb 

rs12200169 4,406 1.000 1.000 No Intergenic No data Quiescent/low Quiescent/low Weak repressed 
polycomb 

rs12207675 3,786 0.935 1.000 No Intergenic No data Quiescent/low Quiescent/low Weak repressed 
polycomb 

rs12202443 2,913 0.935 1.000 No Intergenic CTCF Quiescent/low Quiescent/low Weak repressed 
polycomb 

rs13192994 2,265 0.935 1.000 No Intergenic No data No data No data No data 
rs9343299 1,682 0.935 1.000 No Intergenic No data No data No data No data 
rs9352215 1,646 0.935 1.000 No Intergenic No data No data No data No data 
rs9350591 0 1.000 1.000 Yes Intergenic No data Weak repressed 

polycomb 
Quiescent/low Weak repressed 

polycomb 
          

Table 3.2. All SNPs in high linkage disequilibrium (r2 > 0.80) with rs9350591. Out of the thirty nine polymorphisms, nine were in perfect linkage 
disequilibrium with this association SNP. Transcription start site (TSS). Continued overleaf. 
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       Chromatin State 

SNP 

Distance from 
rs9350591 

(bp) 

r2 relative 
to 

rs9350591 

D′ relative 
to 

rs9350591 

Genotyped 
on arcOGEN 

array 
SNP 

location 
Transcription factor 

binding 

Bone marrow-
derived cultured 

MSCs 

MSC-derived 
chondrocyte 
cultured cells 

Osteoblast 
primary cells 

rs117337795 3,443 0.935 1.000 No Intergenic No data No data No data No data 
rs7756065 5,985 1.000 1.000 Yes Intergenic No data Weak repressed 

polycomb 
Weak repressed 

polycomb 
Weak repressed 

polycomb 
rs9359127 6,118 1.000 1.000 No Intergenic No data Weak repressed 

polycomb 
Repressed 
polycomb 

Weak repressed 
polycomb 

rs9359128 8,929 1.000 1.000 No Intergenic No data Weak repressed 
polycomb 

Weak repressed 
polycomb 

Weak repressed 
polycomb 

rs11963619 11,538 1.000 1.000 No Intergenic No data No data No data No data 
rs9352217 17,598 0.810 1.000 No Intergenic No data Quiescent/low Quiescent/low Weak repressed 

polycomb 
rs9360921 24,115 0.810 1.000 No Intergenic USF1 Quiescent/low Weak repressed 

polycomb 
Weak repressed 

polycomb 
rs12201305 42,095 0.810 1.000 No Intergenic No data No data No data No data 
rs12213476 49,846 0.810 1.000 No Intergenic No data Quiescent/low Quiescent/low Quiescent/low 
rs9360926 58,467 0.810 1.000 No Intergenic No data No data No data No data 
rs9359133 84,148 0.810 1.000 No Intronic No data Quiescent/low Quiescent/low Quiescent/low 
rs67016585 88,824 0.810 1.000 No Intronic GATA1 Flanking active 

TSS 
Enhancer Enhancer 

rs33997653 91,407 0.810 1.000 No Intronic No data No data No data No data 
rs12214738 102,256 0.810 1.000 No Intronic No data Strong 

transcription 
Strong 

transcription 
Strong 

transcription 
rs9360930 139,150 0.810 1.000 No Intronic No data Strong 

transcription 
Strong 

transcription 
Strong 

transcription 
          

Table 3.2. All SNPs in high linkage disequilibrium (r2 > 0.80) with rs9350591. Out of the thirty nine polymorphisms, nine were in perfect linkage 
disequilibrium with this association SNP. Transcription start site (TSS). Continued overleaf.  
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       Chromatin State 

SNP 

Distance from 
rs9350591 

(bp) 

r2 relative 
to 

rs9350591 

D′ relative 
to 

rs9350591 

Genotyped 
on arcOGEN 

array 
SNP 

location 
Transcription factor 

binding 

Bone marrow-
derived cultured 

MSCs 

MSC-derived 
chondrocyte 
cultured cells 

Osteoblast 
primary cells 

rs9350596 139,519 0.810 1.000 No Intronic No data No data No data No data 
rs9341531 140,538 0.810 1.000 No Intronic No data Strong 

transcription 
Strong 

transcription 
Weak 

transcription 
rs9360932 146,410 0.810 1.000 No Intronic No data No data No data No data 
rs12192223 156,682 0.810 1.000 No Intronic No data No data No data No data 
rs9343320 174,156 0.810 1.000 No Intronic No data Weak 

transcription 
Strong 

transcription 
Weak 

transcription 
rs12208368 176,259 0.810 1.000 No Intronic No data Strong 

transcription 
Strong 

transcription 
Weak 

transcription 
rs12212171 178,209 0.810 1.000 No Intronic No data Strong 

transcription 
Enhancer Weak 

transcription 
rs17792773 186,968 0.810 1.000 No Intergenic No data Strong 

transcription 
Strong 

transcription 
Quiescent/low 

          
Table 3.2. All SNPs in high linkage disequilibrium (r2 > 0.80) with rs9350591. Out of the thirty nine polymorphisms, nine were in perfect linkage 
disequilibrium with this association SNP. Transcription start site (TSS).  
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3.3.2 Examination of the expression profiles of FILIP1, SENP6, MYO6, TMEM30A, 

COX7A2 and COL12A1 during chondrogenesis 

As the association signal resides in a region suggested to be functional, I first sought to 

investigate the expression of the surrounding genes throughout the development of cartilage. I 

hypothesised that the functional effects of the association signal could be exerted at early 

stages of joint development, resulting in altered joint structure and thus predisposing an 

individual to developing OA later in life. I tracked overall gene expression throughout 

chondrogenesis, irrespective of rs9350951 genotype, to clarify whether the genes were 

expressed and had the potential to contribute to joint development and OA susceptibility. Dr 

Madhushika Ratnayake, Maria Tselepi and Emma Rogers of Prof. Loughlin’s group (Institute 

of Cellular Medicine, Newcastle University) performed in vitro chondrogenesis to replicate 

cartilage development (Chapter 2.2): I performed the qPCR (Chapter 2.8), data analysis and 

genotyping (Chapter 2.11). A summary of the donor information is detailed in Table 3.3. 

qPCR primer and probe sequences can be found in Appendix A: Table A.3, and the assay 

positions are detailed in Figure 3.2 (housekeeping genes) and Figure 3.3 (target genes). The 

probes and primers were designed to the cDNA sequences, and thus excluded intronic 

regions. For all of the genes, every known protein-coding transcript was covered by the 

assays.  

 

Donor ID Sex Age at donation (years) Joint rs9350591 genotype 
52 F 61 Hip CC 
93 F 51 Hip No data 
225 M 55 Hip CC 
276* F 41 Iliac crest CC 
277* F 24 Iliac crest CC 
278* M 25 Iliac crest CC 

     
Table 3.3. Characteristics and genotype at rs9350591 for donors used in chondrogenesis. 
The donors marked with an asterisk (*) were donors with an unknown OA status purchased 
from Lonza, UK. There was no DNA available to genotype donor 93. 
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Figure 3.2. Location of qPCR primers and probes used for quantitative gene expression 
analysis. Assays were designed to the exons of A) GAPDH, B) HPRT1 and C) 18S. Every 
transcript (numbered 1 to 4) of GAPDH was covered by the assays. The images were 
obtained using the hg19 reference genome. 
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Gene expressions were quantified at three time points throughout chondrogenesis: day 3, day 

7 and day 14. At day 0, the MSCs would be undifferentiated; by day 7 the cells would have 

undergone rapid proliferation and differentiation; and by day 14 there would be evidence of 

an established collagen fibril network (Murdoch et al., 2007). To confirm that chondrogenesis 
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Figure 3.3. Location of qPCR primers and probes used for quantitative gene expression 
analysis. Assays were designed to the exons of A) FILIP1, B) SENP6, C) MYO6, D) 
TMEM30A, E) COX7A2 and F) COL12A1. Every transcript of each gene was covered by the 
assays, excluding transcript variant 3 of FILIP1, which is annotated as non-coding. Transcript 
isoforms are numbered for each gene; COL12A1 isoforms are annotated short (S) and long 
(L). The images were obtained using the hg19 reference genome. 

82 
 



had progressed, the expressions of the chondrogenic markers ACAN (aggrecan), COL2A1 and 

SOX9 (Bhang et al., 2011) were confirmed at each time point by Dr Madhushika Ratnayake, 

Maria Tselepi and Emma Rogers (data not shown). All six genes under study were expressed 

throughout the chondrogenesis time course (Figure 3.4). There were no defined patterns of 

expression associated with the stage of cartilage development, nor were there distinct 

differences in expression between cells from Lonza donors and OA patients. The inter-

individual variability and dynamic patterns of gene expression suggest that any of the genes 

could function at any of the stages of chondrogenesis to contribute to OA susceptibility.  
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Figure 3.4. Expression of FILIP1, SENP6, MYO6, TMEM30A, COX7A2 and COL12A1 
during chondrogenesis. MSCs were differentiated into chondrocytes and gene expression 
was quantified at various time points throughout chondrogenesis. A) FILIP1, B) SENP6, C) 
MYO6, D) TMEM30A, E) COX7A2 and F) COL12A1 were all expressed throughout the time 
course of chondrogenesis. The inter-individual variation and the dynamic expression patterns 
imply that any of the genes have the potential to function during cartilage development. 
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3.3.3 Analysis of FILIP1, SENP6, MYO6, TMEM30A, COX7A2 and COL12A1 

expression throughout chondrogenesis as assayed on a microarray 

All six genes were shown to be expressed during chondrogenesis in the preceding 

investigation (Chapter 3.3.2). As an additional approach to validate these results, I acquired 

normalised data from a microarray performed and analysed by Dr Matthew Barter (personal 

communication). MSCs from a 22 year old female (Lonza, UK) were differentiated into 

chondrocytes and, using RNA extracted at days 0, 1, 3, 6, 10 and 14, an Illumina Human HT-

12 V4 expression array was used to profile a range of gene expressions (Barter et al., 2015). 

Table 3.4 details the day 14 relative to day 0 expression fold change of the genes surrounding 

rs9350591 and of the chondrogenic markers ACAN, COL2A1 and SOX9 (Bhang et al., 2011). 

Confirming that chondrogenesis had progressed, the chondrogenic markers were all 

significantly upregulated by day 14 relative to day 0. Similarly, TMEM30A, COX7A2 and 

COL12A1 had significantly increased levels of expression by day 14. Conversely, MYO6 and 

SENP6 were downregulated relative to day 0; however the difference was not significant for 

SENP6 expression. FILIP1 was not included in the data set due to failure to meet the quality 

control standards. The microarray output generates a detection p value, a measure of how 

confident the detection of a signal is. If a particular probe was anomalous or the gene was not 

expressed, the p value would be > 0.01 and therefore considered not detected. In addition to 

day 14 relative to day 0, I also considered the gene expression at each individual time point 

for this donor (Figure 3.5) in order to independently corroborate the findings presented in 

Figure 3.4. All six genes were expressed throughout chondrogenesis, often at comparable 

levels to the chondrogenic markers. 
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Probe Gene 
Day 14 vs day 0 
log2 fold change 

Average 
expression 

Adjusted p 
value 

5080215 SENP6 -0.026 8.566 0.816 
1430497 MYO6 -0.554 7.033 1.148 x 10-4 

1240039 TMEM30A 0.811 8.458 1.516 x 10-6 

540491 COX7A2 0.247 13.017 0.015 
3060095 COL12A1 (short variant) 1.767 11.520 7.449 x 10-12 
4850129 COL12A1 (long variant) 0.225 6.680 0.031 
4480747 ACAN (variant 1) 2.237 7.445 7.573 x 10-13 
6770470 ACAN (variant 2) 3.851 8.518 2.217 x 10-16 
4010136 COL2A1 (variant 1) 8.044 11.288 7.762 x 10-20 
650113 COL2A1 (variant 1) 3.937 8.690 7.969 x 10-14 
4230475 SOX9 3.276 10.895 1.574 x 10-14 

     
Table 3.4. Comparison of day 14 and day 0 normalised gene expression during 
chondrogenesis at the rs9350591 locus. MYO6 was significantly downregulated by day 14 
relative to day 0, while TMEM30A, COX7A2 and COL12A1 were significantly upregulated. 
There was no significant difference in SENP6 expression between day 14 and day 0. The 
chondrogenic markers were all significantly upregulated throughout the chondrogenesis time 
course. Both isoforms of COL12A1 and ACAN were captured by the array, while two probes 
captured the same variant of COL2A1. 
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Figure 3.5. Expression of SENP6, MYO6, TMEM30A, COX7A2 and COL12A1 during 
chondrogenesis. MSCs were differentiated into chondrocytes and gene expression was 
quantified at various time points throughout chondrogenesis on an Illumina Human HT-12 
V4 expression array. A) SENP6, MYO6, TMEM30A, COX7A2 and COL12A1 and B) the 
chondrogenic markers ACAN, COL2A1 (covered by two probes [4010136, black x; and 
650113, green triangle]) and SOX9 were all expressed throughout the time course of 
chondrogenesis. The levels of expression imply that any of the genes at the 6q locus have the 
potential to function during cartilage development. 
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3.3.4 Analysis of FILIP1, SENP6, MYO6, TMEM30A, COX7A2 and COL12A1 

expression throughout osteoblastogenesis as assayed on a microarray 

As OA is increasingly becoming recognised as a disease of the entire synovial joint and not 

specifically of cartilage, I sought to investigate the expression of the genes during 

osteoblastogenesis. I hypothesised that, akin to the diverse expression patterns observed 

throughout chondrogenesis, any of the genes could in fact contribute to disease susceptibility 

by affecting joint development and structure by acting during osteoblastogenesis. I acquired 

normalised data from a microarray performed and analysed by Dr Rodolfo Gomez (personal 

communication). MSCs from a 19 year old female and a 24 year old female (Lonza, UK) were 

differentiated into osteoblasts and, using RNA extracted at days 0 and 21, an Illumina Human 

HT-12 V4 expression array was used to profile a range of gene expressions (Chapter 2.3). By 

day 21, mineralisation should be established, oftentimes having begun by day 17 (Matthews 

et al., 2014). Table 3.5 details the day 21 relative to day 0 expression fold change of the genes 

surrounding rs9350591 and of the osteogenic markers ALPL (alkaline phosphatase, 

liver/bone/kidney) and DCN (decorin) (Waddington et al., 2003; Graneli et al., 2014). The 

osteogenic markers were both significantly upregulated by day 21 relative to day 0, 

confirming that osteoblastogenesis had progressed. Similarly, FILIP1, SENP6, MYO6 and 

TMEM30A were upregulated by day 21, although this difference was only significant for 

MYO6. Conversely, COX7A2 and COL12A1 were downregulated relative to day 0, with the 

difference only significant for COL12A1 (short variant). This is in contrast to the differences 

observed during chondrogenesis (Chapter 3.3.3). COX7A2 and COL12A1 (short variant) had 

the highest overall levels of expression, whereas COL12A1 (long variant) and FILIP1 had the 

lowest expression levels. SENP6, MYO6 and TMEM30A had very similar levels of 

intermediate expression. Overall, all genes were expressed throughout osteoblastogenesis, 

often at comparable levels to the osteogenic markers. The upregulation of MYO6 and the 

downregulation of COL12A1 during osteoblastogenesis imply that either of these genes could 

contribute to OA susceptibility by affecting joint structure. 
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Probe Gene 
Day 21 vs day 0 
log2 fold change 

Average 
expression 

Adjusted p 
value 

6200600 FILIP1 0.174 7.120 0.517 
5080215 SENP6 0.130 8.748 0.654 
1430497 MYO6 0.734 8.321 0.011 
1240039 TMEM30A 0.290 9.037 0.383 
540491 COX7A2 -0.241 12.936 0.347 
3060095 COL12A1 (short) -1.706 12.711 0.001 
4850129 COL12A1 (long) -0.183 7.191 0.507 
6100356 ALPL 2.071 11.788 0.007 
50368 DCN (variant A1) 0.786 11.061 0.033 

5550719 DCN (variant A2) 1.495 11.857 5.75 x 10-06 
7650296 DCN (variant A2) 0.909 14.067 0.003 

     
Table 3.5. Comparison of day 21 and day 0 normalised gene expression during 
osteoblastogenesis at the rs9350591 locus. MYO6 was significantly upregulated by day 21 
relative to day 0, while COL12A1 was significantly downregulated. There were no significant 
differences in the expression of the remaining genes between day 21 and day 0. The 
osteogenic markers were both significantly upregulated throughout the osteoblastogenesis 
time course. Both isoforms of COL12A1 and DCN were captured by the array. 

 

3.3.5 Quantitative expression analysis of FILIP1, SENP6, MYO6, TMEM30A, COX7A2 

and COL12A1 in synovial joint tissues 

Since Chapter 3.3.1 indicated that the association signal resides in a region that is functional, 

and Chapters 3.3.2 – 3.3.4 confirmed that all of the six genes are expressed during 

chondrogenesis and osteoblastogenesis, I next aimed to characterise the expression of the 

genes in primary joint tissues. Following the publication of the arcOGEN GWAS in 2012 

(arcOGEN Consortium et al., 2012) and prior to the start of my Ph.D, expression datasets 

pertaining to the genes surrounding the 6q14.1 locus were generated by Dr Madhushika 

Ratnayake and Dr Emma Raine, two members of Prof. Loughlin’s group (Institute of Cellular 

Medicine, Newcastle University). qPCR was performed using OA hip, OA knee and non-OA 

hip (NOF) cartilage samples (Chapter 2.4 – Chapter 2.8). Similarly, I performed qPCR using 

fat pad and synovium tissue originating from the knees of OA patients: all reactions were 

performed in triplicate and each reaction was normalised to the mean of the housekeeping 

genes 18S, GAPDH and HPRT1. 

 

In all of the joint tissues tested, expression of the six genes was detected (Figure 3.6): for a 

more in-depth analysis, the gene expression datasets for cartilage were separated into OA hip, 

OA knee and NOF cartilage. FILIP1 and COL12A1 were most highly expressed in fat pad 

relative to the other tissues tested. SENP6, MYO6, TMEM30A and COX7A2 were most highly 
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expressed in OA knee cartilage. In addition, SENP6 was also very highly expressed in NOF 

cartilage. The expression of COX7A2 was lowest in fat pad, while the expressions of the 

remaining genes were all lowest in synovium. Importantly, the expression of each of the six 

genes was detected in the synovial joint tissues tested. This strengthens the hypothesis that 

any of the genes could contribute to joint structure and development, and potentially OA 

susceptibility. 
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Figure 3.6. Average gene expression in the joint tissues assayed. FILIP1 had the lowest overall expression of all the genes in OA hip, OA knee and 
NOF cartilage. In fat pad and synovium, MYO6 had the lowest overall expression of the genes. SENP6 was the most highly expressed gene in OA hip 
cartilage, NOF cartilage and synovium, while COL12A1 was the most highly expressed gene in OA knee cartilage and fat pad. Tissues tested: OA 
knee cartilage (K; n < 53), OA hip cartilage (H; n < 21), NOF cartilage (N; n < 19), fat pad (FP; n < 25) and synovium (Sy; n < 21). Error bars 
represent the standard error of the mean (SEM). 
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3.3.6 Characterising the expression profiles of FILIP1, SENP6, MYO6, TMEM30A, 

COX7A2 and COL12A1 in cartilage: comparisons of disease state, sex, skeletal site and age 

For each donor I compiled the following information: genotype at rs9350591, age (in years) at 

joint replacement, sex and joint replaced (Appendix D: Table D.1). I subsequently analysed 

the expression profiles of FILIP1, SENP6, MYO6, TMEM30A, COX7A2 and COL12A1 in 

cartilage using various stratifications (Table 3.6 – Table 3.11). As differences in gene 

expression depending on disease state have previously been shown in the context of OA-

associated regions (Raine et al., 2012), I included a comparison of OA and NOF. In addition, 

as discussed in Chapter 1, there are sex-specific differences in the prevalence of OA. Finally, 

given that OA is an age-associated disease, a comparison of gene expression relative to age 

was performed. For these analyses, solely due to the availability of tissue, all NOF donors 

were female. Only the statistically significant comparisons are included in the graphical 

representations (Figure 3.7 – Figure 3.10).  

 

Stratification for FILIP1 qPCR data p value 
All OA (n = 68) vs NOF (n = 14) 0.635 
OA hip (n = 19) vs NOF (n = 14) 0.600 

OA female (n = 38) vs NOF female (n = 14) 0.557 
OA female (n = 38) vs OA male (n = 30) 0.377 

OA knee (n = 49) vs OA hip (n = 19) 0.891 
OA female knee (n = 24) vs OA female hip (n = 14) 0.728 

OA male knee (n = 25) vs OA male hip (n = 5) 0.404 
All OA age: 50 (n = 13) vs 60 (n = 22) vs 70 (n = 24) vs 80 (n = 9) 0.314 

  
Table 3.6. Analysis of FILIP1 expression in OA hip, OA knee and NOF cartilage. There 
were no significant differences in gene expression for any of the stratifications. Statistical 
significance was assessed using a Mann-Whitney U test for two-way comparisons and a one-
way analysis of variance for a comparison of more than two groups; n represents the number 
of individuals in the comparison group. 
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Stratification for SENP6 qPCR data p value 
All OA (n = 74) vs NOF (n = 19) 0.001 
OA hip (n = 21) vs NOF (n = 19) 0.005 

OA female (n = 40) vs NOF female (n = 19) 0.007 
OA female (n = 40) vs OA male (n = 34) 0.736 

OA knee (n = 53) vs OA hip (n = 21) 0.502 
OA female knee (n = 25) vs OA female hip (n = 15) 0.468 

OA male knee (n = 28) vs OA male hip (n = 6) 0.946 
All OA age: 50 (n = 13) vs 60 (n = 23) vs 70 (n = 28) vs 80 (n = 10) 0.651 

  
Table 3.7. Analysis of SENP6 expression in OA hip, OA knee and NOF cartilage. 
Expression of SENP6 was significantly lower in OA cartilage relative to NOF cartilage when 
comparing all OA vs NOF, OA hip vs NOF and OA female vs NOF. Statistical significance 
was assessed using a Mann-Whitney U test for two-way comparisons and a one-way analysis 
of variance for a comparison of more than two groups; n represents the number of individuals 
in the comparison group. 

 

Stratification for MYO6 qPCR data p value 
All OA (n = 74) vs NOF (n = 19) 0.214 
OA hip (n = 21) vs NOF (n = 19) 0.026 

OA female (n = 40) vs NOF female (n = 19) 0.303 
OA female (n = 40) vs OA male (n = 34) 0.948 

OA knee (n = 53) vs OA hip (n = 21) 0.047 
OA female knee (n = 25) vs OA female hip (n = 15) 0.288 

OA male knee (n = 28) vs OA male hip (n = 6) 0.061 
All OA age: 50 (n = 13) vs 60 (n = 23) vs 70 (n = 28) vs 80 (n = 10) 0.779 

  
Table 3.8. Analysis of MYO6 expression in OA hip, OA knee and NOF cartilage. 
Expression of MYO6 was significantly lower in OA hip cartilage relative to both NOF 
cartilage and OA knee cartilage. Statistical significance was assessed using a Mann-Whitney 
U test for two-way comparisons and a one-way analysis of variance for a comparison of more 
than two groups; n represents the number of individuals in the comparison group. 
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Stratification for TMEM30A qPCR data p value 
All OA (n = 74) vs NOF (n = 19) 0.128 
OA hip (n = 21) vs NOF (n = 19) 0.176 

OA female (n = 40) vs NOF female (n = 19) 0.107 
OA female (n = 40) vs OA male (n = 34) 0.676 

OA knee (n = 53) vs OA hip (n = 21) 0.774 
OA female knee (n = 25) vs OA female hip (n = 15) 0.867 

OA male knee (n = 28) vs OA male hip (n = 6) 0.288 
All OA age: 50 (n = 13) vs 60 (n = 23) vs 70 (n = 28) vs 80 (n = 10) 0.697 

  
Table 3.9. Analysis of TMEM30A expression in OA hip, OA knee and NOF cartilage. 
There were no significant differences in gene expression for any of the stratifications. 
Statistical significance was assessed using a Mann-Whitney U test for two-way comparisons 
and a one-way analysis of variance for a comparison of more than two groups; n represents 
the number of individuals in the comparison group. 

 

Stratification for COX7A2 qPCR data p value 
All OA (n = 74) vs NOF (n = 19) 0.030 
OA hip (n = 21) vs NOF (n = 19) 0.390 

OA female (n = 40) vs NOF female (n = 19) 0.091 
OA female (n = 40) vs OA male (n = 34) 0.725 

OA knee (n = 53) vs OA hip (n = 21) 0.291 
OA female knee (n = 25) vs OA female hip (n = 15) 0.534 

OA male knee (n = 28) vs OA male hip (n = 6) 0.456 
All OA age: 50 (n = 13) vs 60 (n = 23) vs 70 (n = 28) vs 80 (n = 10) 0.939 

  
Table 3.10. Analysis of COX7A2 expression in OA hip, OA knee and NOF cartilage. 
COX7A2 expression was significantly increased in all OA cartilage relative to NOF cartilage. 
Statistical significance was assessed using a Mann-Whitney U test for two-way comparisons 
and a one-way analysis of variance for a comparison of more than two groups; n represents 
the number of individuals in the comparison group. 
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Stratification for COL12A1 qPCR data p value 
All OA (n = 74) vs NOF (n = 19) 0.010 
OA hip (n = 21) vs NOF (n = 19) 0.144 

OA female (n = 40) vs NOF female (n = 19) 0.021 
OA female (n = 40) vs OA male (n = 34) 0.733 

OA knee (n = 53) vs OA hip (n = 21) 0.140 
OA female knee (n = 25) vs OA female hip (n = 15) 0.118 

OA male knee (n = 28) vs OA male hip (n = 6) 0.946 
All OA age: 50 (n = 13) vs 60 (n = 23) vs 70 (n = 28) vs 80 (n = 10) 0.315 

  
Table 3.11. Analysis of COL12A1 expression in OA hip, OA knee and NOF cartilage. 
COL12A1 expression was significantly increased in all OA cartilage relative to NOF cartilage. 
Expression was also significantly increased in OA female cartilage relative to NOF cartilage. 
Statistical significance was assessed using a Mann-Whitney U test for two-way comparisons 
and a one-way analysis of variance for a comparison of more than two groups; n represents 
the number of individuals in the comparison group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Statistically significant differences in the expression of SENP6. Gene 
expression was significantly decreased in A) all OA cartilage relative to NOF cartilage, B) OA 
hip cartilage relative to NOF cartilage, and C) OA female cartilage relative to NOF female 
cartilage. Statistical significance was assessed using a Mann-Whitney U test; n represents the 
number of individuals in the comparison group; * p < 0.05; ** p < 0.01; error bars represent 
the mean + SEM. 
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Figure 3.8. Statistically significant differences in the expression of MYO6. Gene 
expression was significantly decreased in A) OA hip cartilage relative to NOF cartilage and 
B) OA hip cartilage relative to OA knee cartilage. Statistical significance was assessed using 
a Mann-Whitney U test; n represents the number of individuals in the comparison group; * p 
< 0.05; error bars represent the mean + SEM. 

Figure 3.9. Statistically significant difference in the expression of COX7A2. Gene 
expression was significantly increased in A) all OA cartilage relative to NOF cartilage. 
Statistical significance was assessed using a Mann-Whitney U test; n represents the number of 
individuals in the comparison group; * p < 0.05; error bars represent the mean + SEM. 
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From the analysis of these data, I identified differential expression of SENP6, MYO6, 

COX7A2 and COL12A1. Expression of SENP6 was decreased in cartilage from all OA, OA 

hip and OA female relative to NOF cartilage. MYO6 was similarly decreased in cartilage from 

OA hip relative to both NOF and OA knee cartilage. Conversely, the expression of COX7A2 

was increased in all OA cartilage relative to NOF cartilage, while COL12A1 expression was 

increased in OA female cartilage relative to NOF female cartilage. 

 

3.3.7 Characterising the expression profiles of FILIP1, SENP6, MYO6, TMEM30A, 

COX7A2 and COL12A1 in cartilage: comparisons of rs9350591 genotype 

The stratification necessary to investigate if an eQTL is operating at this locus is the 

comparison of gene expression between the genotypic groups of rs9350591; that is CC, CT 

and TT. However, due to the low MAF (0.14) of rs9350591, it was not feasible in the 

timeframe of my Ph.D to acquire enough individuals that were TT at the association signal. 

As such, T allele carriers (CT and TT genotypes) were grouped together and compared to CC 

homozygotes. From these data, it was not possible to identify the actions of an eQTL 

influencing the expression of any of the genes tested (Figure 3.11 – Figure 3.16). 

 

 

 

 

 

Figure 3.10. Statistically significant differences in the expression of COL12A1. Gene 
expression was significantly increased in A) all OA cartilage relative to NOF cartilage and B) 
OA female cartilage relative to NOF cartilage. Statistical significance was assessed using a 
Mann-Whitney U test; n represents the number of individuals in the comparison group; * p < 
0.05; error bars represent the mean + SEM. 
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Figure 3.11. Analysis of FILIP1 expression in OA hip and OA knee cartilage. There were 
no significant differences in gene expression between the genotypic groups of rs9350591 in A) 
all OA cartilage (hip and knee combined), B) OA knee cartilage, or C) OA hip cartilage. 
Statistical significance was assessed using a Mann-Whitney U test; n represents the number of 
individuals in the comparison group; error bars represent the mean + SEM. 
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Figure 3.12. Analysis of SENP6 expression in OA hip and OA knee cartilage. There were 
no significant differences in gene expression between the genotypic groups of rs9350591 in A) 
all OA cartilage (hip and knee combined), B) OA knee cartilage, or C) OA hip cartilage. 
Statistical significance was assessed using a Mann-Whitney U test; n represents the number of 
individuals in the comparison group; error bars represent the mean + SEM. 
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Figure 3.13. Analysis of MYO6 expression in OA hip and OA knee cartilage. There were 
no significant differences in gene expression between the genotypic groups of rs9350591 in 
A) all OA cartilage (hip and knee combined), B) OA knee cartilage, or C) OA hip cartilage. 
Statistical significance was assessed using a Mann-Whitney U test; n represents the number 
of individuals in the comparison group; error bars represent the mean + SEM. 

99 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CC T carriers
0.0

0.1

0.2

0.3

0.4 p = 0.904

n = 50 n = 24

2-∆
C

t

CC T carriers
0.0

0.1

0.2

0.3

0.4 p = 0.768

n = 36 n = 17

2-∆
C

t

CC T carriers
0.0

0.1

0.2

0.3

0.4 p = 0.970

n = 14 n = 7

2-∆
C

t

A) B) 

C) 

Genotype at rs9350591 Genotype at rs9350591 

Genotype at rs9350591 

Figure 3.14. Analysis of TMEM30A expression in OA hip and OA knee cartilage. There 
were no significant differences in gene expression between the genotypic groups of 
rs9350591 in A) all OA cartilage (hip and knee combined), B) OA knee cartilage, or C) OA 
hip cartilage. Statistical significance was assessed using a Mann-Whitney U test; n 
represents the number of individuals in the comparison group; error bars represent the mean 
+ SEM. 
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Figure 3.15. Analysis of COX7A2 expression in OA hip and OA knee cartilage. There 
were no significant differences in gene expression between the genotypic groups of 
rs9350591 in A) all OA cartilage (hip and knee combined), B) OA knee cartilage, or C) OA 
hip cartilage. Statistical significance was assessed using a Mann-Whitney U test; n represents 
the number of individuals in the comparison group; error bars represent the mean + SEM. 
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3.3.8 Replication of the gene expression quantification experiments in an independent 

group of OA hip cartilage samples 

As rs9350591 marks a region of association in hip OA, I replicated the gene expression qPCR 

in an independent group of OA hip cartilage donors to confirm the findings presented in 

Chapter 3.3.7. It was not appropriate to combine these data with the corresponding data of 

Chapter 3.3.7 as there were no common samples in the cohorts to which the data could be 

normalised. As observed previously, none of the differences were statistically significant 

(Figure 3.17). 
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Figure 3.16. Analysis of COL12A1 expression in OA hip and OA knee cartilage. There 
were no significant differences in gene expression between the genotypic groups of 
rs9350591 in A) all OA cartilage (hip and knee combined), B) OA knee cartilage, or C) OA 
hip cartilage. Statistical significance was assessed using a Mann-Whitney U test; n 
represents the number of individuals in the comparison group; error bars represent the mean 
+ SEM. 
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3.3.9 Characterising the expression profiles of FILIP1, SENP6, MYO6, TMEM30A, 

COX7A2 and COL12A1 in OA fat pad and OA synovium: comparisons of sex and age 

From the hip and knee tissues supplied after joint replacement surgery, our laboratory was 

able to collect cartilage, fat pad and synovium from knee samples and cartilage from hip 

Figure 3.17. Independent replication of gene expression in OA hip cartilage. Expressions 
of A) FILIP1, B) SENP6, C) MYO6, D) TMEM30A, E) COX7A2 and F) COL12A1 were 
quantified in OA hip cartilage and normalised to the housekeeping genes 18S, GAPDH and 
HPRT1. Statistical significance was assessed using a Mann-Whitney U test; n represents the 
number of individuals in the comparison group; error bars represent the mean + SEM. 
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samples. Although originating from patients with OA of the knee, gene expressions in fat pad 

and synovium were investigated for this hip OA-associated locus. These tissues are also 

present around the hip joint and contribute to normal joint function (Okada et al., 1989; 

Manaster, 2000). By quantifying such gene expressions, it might be possible to detect 

differences that could be translated into hip OA susceptibility. I first compared levels of gene 

expression between female and male donors and then between ages (Table 3.12 – Table 3.17). 

Through these analyses, there were no significant differences of expression in fat pad or 

synovium. 

 

Tissue Stratification for FILIP1 qPCR data p value 
FP Female OA (n = 15) vs male OA (n = 10) 0.390 
FP All OA age: 50 (n = 3) vs 60 (n = 11) vs 70 (n = 9) vs 80 (n = 2) 0.165 
Sy Female OA (n = 9) vs male OA (n = 10) 0.905 
Sy All OA age: 50 (n = 6) vs 60 (n = 3) vs 70 (n = 8) vs 80 (n = 2) 0.956 

   
Table 3.12. Analysis of FILIP1 expression in OA fat pad and synovium. There were no 
significant differences in gene expression for either of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test for two-
way comparisons and a one-way analysis of variance for a comparison of more than two 
groups; n represents the number of individuals in the comparison group. 

 

Tissue Stratification for SENP6 qPCR data p value 
FP Female OA (n = 15) vs male OA (n = 7) 0.833 
FP All OA age: 50 (n = 2) vs 60 (n = 9) vs 70 (n = 9) vs 80 (n = 2) 0.279 
Sy Female OA (n = 11) vs male OA (n = 10) 0.916 
Sy All OA age: 50 (n = 6) vs 60 (n = 5) vs 70 (n = 9) vs 80 (n = 1) 0.636 

   
Table 3.13. Analysis of SENP6 expression in OA fat pad and synovium. There were no 
significant differences in gene expression for either of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test for two-
way comparisons and a one-way analysis of variance for a comparison of more than two 
groups; n represents the number of individuals in the comparison group. 
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Tissue Stratification for MYO6 qPCR data p value 
FP Female OA (n = 15) vs male OA (n = 7) 0.778 
FP All OA age: 50 (n = 2) vs 60 (n = 9) vs 70 (n = 9) vs 80 (n = 2) 0.996 
Sy Female OA (n = 10) vs male OA (n = 10) 0.436 
Sy All OA age: 50 (n = 5) vs 60 (n = 4) vs 70 (n = 9) vs 80 (n = 2) 0.454 

   
Table 3.14. Analysis of MYO6 expression in OA fat pad and synovium. There were no 
significant differences in gene expression for either of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test for two-
way comparisons and a one-way analysis of variance for a comparison of more than two 
groups; n represents the number of individuals in the comparison group. 

 

Tissue Stratification for TMEM30A qPCR data p value 
FP Female OA (n = 14) vs male OA (n = 10) 0.573 
FP All OA age: 50 (n = 3) vs 60 (n = 11) vs 70 (n = 8) vs 80 (n = 2) 0.165 
Sy Female OA (n = 11) vs male OA (n = 10) 0.751 
Sy All OA age: 50 (n = 6) vs 60 (n = 4) vs 70 (n = 9) vs 80 (n = 2) 0.659 

   
Table 3.15. Analysis of TMEM30A expression in OA fat pad and synovium. There were 
no significant differences in gene expression for either of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test for two-
way comparisons and a one-way analysis of variance for a comparison of more than two 
groups; n represents the number of individuals in the comparison group. 

 

Tissue Stratification for COX7A2 qPCR data p value 
FP Female OA (n = 14) vs male OA (n = 5) 0.105 
FP All OA age: 50 (n = 2) vs 60 (n = 8) vs 70 (n = 7) vs 80 (n = 2) 0.245 
Sy Female OA (n = 11) vs male OA (n = 10) 0.597 
Sy All OA age: 50 (n = 6) vs 60 (n = 5) vs 70 (n = 9) vs 80 (n = 1) 0.829 

   
Table 3.16. Analysis of COX7A2 expression in OA fat pad and synovium. There were no 
significant differences in gene expression for either of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test for two-
way comparisons and a one-way analysis of variance for a comparison of more than two 
groups; n represents the number of individuals in the comparison group. 
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Tissue Stratification for COL12A1 qPCR data p value 
FP Female OA (n = 14) vs male OA (n = 10) 0.977 
FP All OA age: 50 (n = 3) vs 60 (n = 11) vs 70 (n = 8) vs 80 (n = 2) 0.400 
Sy Female OA (n = 10) vs male OA (n = 10) 0.190 
Sy All OA age: 50 (n = 6) vs 60 (n = 4) vs 70 (n = 8) vs 80 (n = 2) 0.655 

   
Table 3.17. Analysis of COL12A1 expression in OA fat pad and synovium. There were no 
significant differences in gene expression for either of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test for two-
way comparisons and a one-way analysis of variance for a comparison of more than two 
groups; n represents the number of individuals in the comparison group. 

 

3.3.10 Characterising the expression profiles of FILIP1, SENP6, MYO6, TMEM30A, 

COX7A2 and COL12A1 in OA fat pad and OA synovium: comparisons of rs9350591 

genotype 

As for the analyses in cartilage, the stratification necessary to investigate if an eQTL is 

operating at this locus is the comparison of gene expression between the genotypic groups of 

rs9350591. Again, T allele carriers (TT and CT genotypes) were grouped together and 

compared to CC homozygotes. From these data, it was not possible to identify the actions of 

an eQTL influencing the expression of any of the genes tested. However, this interpretation 

must be with caution as i) the n numbers are low compared to previous qPCR analyses, such 

that statistical tests were often not possible, and ii) rs9350591 is specifically an OA-associated 

locus in the hip stratum of the arcOGEN study, whereas these tissues originate from the joints 

of patients with knee OA.  

 

Tissue Stratification for FILIP1 qPCR data p value 
FP All OA CC (n = 19) vs all OA T carriers (n = 6) 0.824 
FP OA female CC (n = 12) vs OA female T carriers (n = 2) - 
FP OA male CC (n = 6) vs OA male T carriers (n = 4) 1.000 
Sy All OA CC (n = 16) vs all OA T carriers (n = 3) 0.955 
Sy OA female CC (n = 7) vs OA female T carriers (n = 2) - 
Sy OA male CC (n = 9) vs OA male T carriers (n = 1) - 

   
Table 3.18. Analysis of FILIP1 expression in OA fat pad and synovium. There were no 
significant differences in gene expression for any of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test; n 
represents the number of individuals in the comparison group. Statistical tests were not 
performed on datasets with <2 individuals. 
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Tissue Stratification for SENP6 qPCR data p value 
FP All OA CC (n = 17) vs all OA T carriers (n = 5) 0.060 
FP OA female CC (n = 12) vs OA female T carriers (n = 2) - 
FP OA male CC (n = 4) vs OA male T carriers (n = 3) 0.400 
Sy All OA CC (n = 18) vs all OA T carriers (n = 3) 0.880 
Sy OA female CC (n = 9) vs OA female T carriers (n = 2) - 
Sy OA male CC (n = 9) vs OA male T carriers (n = 1) - 

   
Table 3.19. Analysis of SENP6 expression in OA fat pad and synovium. There were no 
significant differences in gene expression for any of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test; n 
represents the number of individuals in the comparison group. Statistical tests were not 
performed on datasets with <2 individuals. 

 

Tissue Stratification for MYO6 qPCR data p value 
FP All OA CC (n = 17) vs all OA T carriers (n = 5) 0.754 
FP OA female CC (n = 13) vs OA female T carriers (n = 2) - 
FP OA male CC (n = 4) vs OA male T carriers (n = 3) 0.400 
Sy All OA CC (n = 17) vs all OA T carriers (n = 3) 0.459 
Sy OA female CC (n = 8) vs OA female T carriers (n = 2) - 
Sy OA male CC (n = 9) vs OA male T carriers (n = 1) - 

   
Table 3.20. Analysis of MYO6 expression in OA fat pad and synovium. There were no 
significant differences in gene expression for any of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test; n 
represents the number of individuals in the comparison group. Statistical tests were not 
performed on datasets with <2 individuals. 

 

Tissue Stratification for TMEM30A qPCR data p value 
FP All OA CC (n = 18) vs all OA T carriers (n = 6) 0.583 
FP OA female CC (n = 12) vs OA female T carriers (n = 2) - 
FP OA male CC (n = 6) vs OA male T carriers (n = 4) 0.629 
Sy All OA CC (n = 18) vs all OA T carriers (n = 3) 0.514 
Sy OA female CC (n = 9) vs OA female T carriers (n = 2) - 
Sy OA male CC (n = 9) vs OA male T carriers (n = 1) - 

   
Table 3.21. Analysis of TMEM30A expression in OA fat pad and synovium. There were 
no significant differences in gene expression for any of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test; n 
represents the number of individuals in the comparison group. Statistical tests were not 
performed on datasets with <2 individuals. 
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Tissue Stratification for COX7A2 qPCR data p value 
FP All OA CC (n = 14) vs all OA T carriers (n = 5) 0.247 
FP OA female CC (n = 12) vs OA female T carriers (n = 2) - 
FP OA male CC (n = 2) vs OA male T carriers (n = 3) - 
Sy All OA CC (n = 18) vs all OA T carriers (n = 3) 0.725 
Sy OA female CC (n = 9) vs OA female T carriers (n = 2) - 
Sy OA male CC (n = 9) vs OA male T carriers (n = 1) - 

   
Table 3.22. Analysis of COX7A2 expression in OA fat pad and synovium. There were no 
significant differences in gene expression for any of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test; n 
represents the number of individuals in the comparison group. Statistical tests were not 
performed on datasets with <2 individuals. 

 

Tissue Stratification for COL12A1 qPCR data p value 
FP All OA CC (n = 18) vs all OA T carriers (n = 6) 0.665 
FP OA female CC (n = 12) vs OA female T carriers (n = 2) - 
FP OA male CC (n = 6) vs OA male T carriers (n = 4) 0.914 
Sy All OA CC (n = 17) vs all OA T carriers (n = 3) 0.597 
Sy OA female CC (n = 8) vs OA female T carriers (n = 2) - 
Sy OA male CC (n = 9) vs OA male T carriers (n = 1) - 

   
Table 3.23. Analysis of COL12A1 expression in OA fat pad and synovium. There were no 
significant differences in gene expression for any of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test; n 
represents the number of individuals in the comparison group. Statistical tests were not 
performed on datasets with <2 individuals. 

 

3.3.11 Investigating the effect of the rs9350591 association signal on the allelic output of 

the transcripts of FILIP1, SENP6, MYO6, TMEM30A, COX7A2 and COL12A1 

In the overall gene expression analysis discussed in the preceding sections of this chapter, I 

have observed no evidence for rs9350591 marking a cis-eQTL at this locus in any of the end-

stage OA tissue samples tested. However, inter-individual variability could be masking the 

effect of the polymorphism, with differences in the output of the gene transcript in fact being 

more subtle. As this would be detected with a more specific investigatory approach, I used 

pyrosequencing to quantify the allelic output of the gene transcripts. In order to do this for the 

intergenic association signal, transcript SNPs for each of the genes were required as markers 

of messenger RNA (mRNA) output (Figure 3.18).  
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Each gene was searched for transcript SNPs using the UCSC Genome Browser (Kent et al., 

2002) and a SNAP Pairwise LD (Johnson et al., 2008) search was performed for all of the 

polymorphisms to assess the degree of correlation with rs9350591 (Chapter 2.9). The 

heterozygote frequencies were obtained from the dbSNP online database (Sherry et al., 2001): 

Figure 3.18. Schematic diagram of the expected results if there is a correlation between 
association SNP genotype and the allelic expression imbalance of a gene when the 
polymorphisms are not in high linkage disequilibrium. As the frequency of 
recombination between the two polymorphisms is high, there are two haplotypes that can 
occur in compound heterozygotes: in this case, TA/CG or TG/CA. If the intergenic 
polymorphism is acting as an eQTL, a resulting imbalance of allelic transcripts would be 
detected. Whether this would be observed as a greater transcription of the A allele or G 
allele of the transcript SNP would be dependent on the haplotype of each individual. 
Clustering would become apparent for compound heterozygotes, which would indicate the 
actions of an eQTL. 
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AEI analysis requires transcript SNP heterozygotes in order to investigate differential allelic 

outputs. FILIP1 had two known transcript SNPs, however the heterozygote frequencies were 

< 5%, meaning that acquiring a sufficient number of heterozygotes to allow for a robust 

analysis was not feasible (Table 3.24). In addition, there were no known transcript 

polymorphisms within COX7A2. There were no transcript SNPs in high LD (r2 > 0.80) with 

rs9350591 in the remaining four genes. Therefore, in order to maximise the sample sizes, two 

transcript SNPs for each of the four genes were selected (Table 3.25 – Table 3.28). All donors 

were genotyped at the association SNP using an RFLP assay (Chapter 2.10 and Chapter 2.11), 

and transcript SNPs were genotyped using pyrosequencing (Chapter 2.12). 

 

SNP 
r2 relative to 
rs9350591 

D′ relative to 
rs9350591 

Heterozygote 
frequency (%) Genetic location 

rs112839775 0.005 1.000 4.88 Intron/3′ UTR 
rs62415695 0.003 1.000 3.34 Exon 

     Table 3.24. Transcript polymorphisms within FILIP1. Both SNPs have heterozygote 
frequencies < 5% and so were not used for allelic expression imbalance analysis. The multiple 
genetic loci for rs112839775 reflects the position on different transcript isoforms. 

 

SNP 
r2 relative to 
rs9350591 

D′ relative 
to rs9350591 

Heterozygote 
Frequency (%) Genetic location 

rs17414086 0.085 1.000 45.01 Exon 
rs17414687 0.085 1.000 45.01 Exon 

rs9250 0.085 1.000 44.42 Exon 
rs7385 0.225 0.724 42.47 3′ UTR 

rs276683 0.225 0.724 41.35 3′ UTR 
rs276684 0.035 1.000 27.82 3′ UTR 

rs71561434 0.746 0.925 23.10 5′ UTR 
rs507662 0.145 1.000 4.30 Exon 

rs16886792 0.048 1.000 1.59 Exon 
     

Table 3.25. Transcript polymorphisms within SENP6. rs17414687 and rs71561434 were 
selected as markers for mRNA output in AEI analysis. 
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SNP 
r2 relative to 
rs9350591 

D′ relative to 
rs9350591 

Heterozygote 
Frequency (%) Genetic location 

rs699186 0.079 1.000 45.91 Exon 
rs12606 0.076 1.000 42.08 Intron/3′ UTR 

rs7746476 0.036 0.237 32.95 3′ UTR 
rs1045758 0.426 0.715 28.90 3′ UTR 
rs11756446 0.02 1.000 18.00 Exon 
rs9360957 0.024 0.226 13.88 3′ UTR 
rs7741414 0.005 1.000 4.88 3′ UTR 
rs2273857 0.048 1.000 3.34 Exon 

     
Table 3.26. Transcript polymorphisms within MYO6. rs699186 and rs1045758 were 
selected as markers for mRNA output in AEI analysis. The multiple genetic loci for rs12606 
reflects the position on different transcript isoforms. 

 

SNP 
r2 relative to 
rs9350591 

D′ relative to 
rs9350591 

Heterozygote 
Frequency (%) Genetic location 

rs240375 0.012 0.202 43.08 5′ UTR 
rs240374 0.041 0.255 15.39 Exon 

rs41269315 0.110 0.522 12.50 3′ UTR 
rs414624 0.001 0.428 11.46 3′ UTR 
rs117512 0.001 0.428 10.22 3′ UTR 
rs654428 0.001 0.428 9.50 3′ UTR 
rs397039 0.001 0.428 8.41 3′ UTR 
rs381141 0.001 0.428 8.41 3′ UTR 
rs638590 0.001 0.428 8.41 3′ UTR 

rs45596238 0.006 0.872 8.05 3′ UTR 
rs15616 0.001 0.428 6.38 3′ UTR 

     
Table 3.27. Transcript polymorphisms within TMEM30A. rs41269315 and rs240375 were 
selected as markers for mRNA output in AEI analysis. 

 

SNP 
r2 relative to 
rs9350591 

D′ relative to 
rs9350591 

Heterozygote 
Frequency (%) Genetic location 

rs240736 0.000 0.020 39.88 Exon 
rs970547 0.000 0.009 33.98 Exon 
rs594012 0.018 1.000 16.70 Exon 

rs35523808 0.006 1.000 6.40 Exon 
rs560250 No data No data 0.70 3′ UTR 

     Table 3.28. Transcript polymorphisms within COL12A1. rs240736 and rs594012 were 
selected as markers for mRNA output in AEI analysis. 
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Pyrosequencing uses a third primer in addition to the forward and reverse primers of a 

standard PCR. The sequencing primer binds nearby the polymorphism and is extended over 

the SNP toward the direction of the captured biotinylated primer. It is necessary to validate 

the ability of sequencing primers to distinguish between allelic ratios at specified 

polymorphisms. This is achieved by combining the DNA of major and minor allele 

homozygotes in order to generate known allelic ratios before comparing the values detected 

experimentally to the expected outcome (Appendix B: Figure B.1). The low MAFs for 

rs594012 (COL12A1), rs41269315 (TMEM30A) and rs71561434 (SENP6) meant that the 

generation of allelic ratios was limited to heterozygotes and major allele homozygotes, that is, 

ratios containing < 50% of the minor allele. All of the validations had a positive correlation 

between observed and expected ratios, each with a goodness of fit r2 > 0.90, and therefore 

were considered suitable for AEI analysis. Reactions were performed in triplicate and the 

mean of the cDNA allelic ratios was normalised to the corresponding gDNA ratios. There was 

excessive variability in the cDNA technical replicates for rs240375 (TMEM30A) in addition 

to failing quality control checks, and as a result this assay was removed from the 

investigation. Primer sequences for the remaining assays can be found in Appendix A: Table 

A.1, and the assay positions detailed in Figure 3.19. 

 

A GWAS performed in an Icelandic population found that a region within ALDH1A2 was 

significantly associated with hand OA (Styrkarsdottir et al., 2014). Despite examining meta-

analysis data to investigate the association of the locus with hip and knee OA, the association 

remained unique to hand OA. However, in hip and knee cartilage, the risk allele of the 

association SNP rs3204689 was transcribed at lower levels relative to the non-risk allele. 

Thus, despite being specifically associated with hand OA, AEI was observed in knee and hip 

cartilage. Accordingly, I analysed hip OA, knee OA and NOF samples collectively for AEI 

correlations with rs9350591 genotype. The low MAF of the association SNP meant that minor 

allele homozygotes were scarce, and as such, the analyses were restricted to rs9350591 CC 

and CT individuals. 
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Figure 3.19. Location of pyrosequencing primers used for allelic expression analysis. 
Assays were designed to A) rs17414687 of SENP6, B) rs71561434 of SENP6, C) rs699186 of 
MYO6, D) rs1045758 of MYO6, E) rs41269315 of TMEM30A, F) rs240736 of COL12A1 and 
G) rs594012 of COL12A1. Every transcript of each gene was covered by the assays. Red 
arrows () indicate transcript SNP positions. Transcript isoforms are numbered for each gene; 
COL12A1 isoforms are annotated short (S) and long (L). The images were obtained using the 
hg19 reference genome. 
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There was no evidence to indicate rs9350591 correlates with a cis-eQTL acting on SENP6 

(Figure 3.20.A), MYO6 (Figure 3.20.B), TMEM30A (Figure 3.20.C) and COL12A1 (Figure 

3.20.D) in cartilage. However, an eQTL was operating on the COL12A1 transcript, with more 

of the minor allele transcribed relative to the major allele. An eQTL was also operating on the 

MYO6 transcript causing more of the major allele to be transcribed relative to the minor allele: 

this significance is likely to be caused by the large spread of data observed in the CC 

homozygotes. As neither of the imbalances fit the model detailed in Figure 3.18, it is likely 

that they are not relevant to the OA association signal at this locus, but instead are mediated 

by another eQTL operating here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.20. Allelic expression imbalance of SENP6, MYO6, TMEM30A and COL12A1 in 
hip and knee cartilage stratified by rs9350591 genotype. There was no distinct clustering 
of compound heterozygote donors that would imply a correlation between rs9350591 
genotype and an imbalance of mRNA output of A) SENP6, B) MYO6, C) TMEM30A or D) 
COL12A1. An eQTL was operating on MYO6 causing a greater output of the major allele 
transcript, while an eQTL was causing a greater output of the minor allele transcript of 
COL12A1. These did not correlate with association SNP genotype, as the imbalances occurred 
in both rs9350591 genotype groups. OA knee (blue circles), OA hip (red squares) and NOF 
(green triangles) cartilage. Statistical significance was assessed using a Mann-Whitney U test; 
n represents the number of individuals in the comparison group; * p < 0.05. 
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3.3.12 Analysis of methylation levels at CpG sites surrounding the 6q14.1 locus in hip and 

knee cartilage 

An underlying cause of the OA association marked by rs9350591 could be differential 

methylation of the surrounding genomic region. Epigenetic regulation has been shown to be 

tissue-specific (Davies et al., 2012) and variations in genomic sequences are known to 

contribute to differences in methylation profiles (Bell et al., 2011). It is therefore possible that 

the association signal could impact upon the methylation levels of the surrounding region, 

perhaps by affecting the binding of DNA methyltransferases. In turn, differential methylation 

may either directly impede or strengthen binding of transcription factors, or it could lead to 

changes in chromatin formation through the recruitment of chromatin remodelling proteins. 

The result of such changes would be observed as differences in target gene expression, 

potentially as a ‘signature’ of a previous effect earlier in joint development. As I have shown 

thus far, however, there is no correlation between rs9350591 genotype and nearby gene 

expression. Nevertheless, an analysis of the epigenetic profile of the region surrounding 

rs9350591 would allow for a more detailed characterisation of the OA-associated locus. 

Particularly, if methylation is affecting gene expression, this may have been overlooked in the 

allelic expression analysis of Chapter 3.3.11, for example, as FILIP1 and COX7A2 were 

omitted from the investigation. As such, I acquired data generated by Dr Michael Rushton, a 

member of Prof. Loughlin’s research group (Institute of Cellular Medicine, Newcastle 

University), whereby genome-wide methylation levels were assessed on an Illumina Infinium 

HumanMethylation450 BeadChip array (Rushton et al., 2014). I extracted the data for all 164 

CpG sites that were annotated within 2 Mb of rs9350591: ranging from cg20428196 

(1,064,579 bp downstream of rs9350591) to cg15162000 (1,023,383 bp upstream of 

rs9350591). For every CpG site, the cartilage methylation profiles of 17 hip OA (14 CC, 3 T 

carriers), 63 knee OA (50 CC, 13 T carriers) and 35 NOF (29 CC, 6 T carriers) donors were 

included in the various comparisons that I performed. To correct for multiple comparisons, a 

new significance threshold was calculated (Equation 3.1).  

 

significance threshold  =       p value   = 0.05 = 0.000305 

                                      number of CpG sites  164 

Equation 3.1. Bonferroni correction used to counteract the multiple tests performed for 
the methylation microarray analysis. A new significance threshold of 0.000305 was 
calculated: p values must be less than this to be considered statistically significant. 
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Specifically, as rs9350591 is a hip OA locus, it is these samples that are of particular 

relevance to the characterisation of the 6q14.1 locus. When comparing the average levels of 

methylation in OA hip donors with NOF donors, 13 CpG sites remained significantly 

different between the two groups after Bonferroni correction, eight of which had a difference 

in methylation > 5% between the two groups (Figure 3.21.A). Subsequently, the average 

levels of methylation for the 164 CpG sites were compared between hip OA CC and OA hip 

T carriers (Figure 3.21.B). In this case, cg26466508 was the only CpG site to remain 

significantly different between the two groups following Bonferroni correction and, as in the 

hip OA versus NOF comparison, had a difference in methylation > 5% between the two 

groups.  
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Figure 3.21. Scatter plots to compare the levels of methylation in OA hip and NOF 
donors. One hundred and sixty four CpG sites, all within 2 Mb of rs9350591, were analysed 
for differential methylation in A) hip OA vs NOF donors and B) hip OA CC vs hip OA T 
carriers. Eight of the thirteen CpG sites that remained significant after Bonferroni correction 
also differed by > 5%, marked by orange circles. One of these CpG sites was cg26466508, 
marked by a red diamond. The methylation levels of cg26466508 were also significantly 
different between hip OA CC and hip OA T carriers. Statistical significance was assessed 
using the Student’s t test. Horizontal dotted lines represent the significance threshold after 
Bonferroni correction. 
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Due to a lack of overlapping data, it was not possible to investigate any correlation between 

methylation at cg26466508 and the expressions of the genes at this locus. However, a 

database search as performed in Figure 3.1 indicated that cg26466508 resides in a functional 

region. In fact, the CpG site is 53 bp upstream of FILIP1 in a region predicted to have 

enhancer activity with transcription factor binding. In addition, cg26466508 is 942 bp 

upstream of the FILIP1 intronic SNP rs9343292 and 16,202 bp downstream of the intergenic 

SNP rs11964634: both SNPs are in perfect LD with rs9350591.  

 

In OA hip cartilage, cg26466508 was significantly (p < 0.000305) hypermethylated relative to 

NOF cartilage (Table 3.29). Statistical significance did not endure following a Bonferroni 

correction for methylation levels at this CpG site in OA hip cartilage relative to OA knee 

cartilage, nor for NOF cartilage relative to OA knee cartilage. When stratified by rs9350591 

genotype, cg26466508 was hypermethylated in the cartilage of T carriers relative to the 

respective CC individuals for OA hip cartilage: this was not statistically significant in OA 

knee or NOF cartilage (Table 3.30). The statistically significant differences for which 

methylation levels differ by 5% or greater are shown in the graphical representations of 

Figure 3.22. Such differences imply that methylation may be key in regulating gene 

expression at this OA-associated locus: perhaps it is acting to regulate FILIP1 expression, a 

result that could have been overlooked in the previous characterisation sections of this 

chapter. 

 

Stratum β value Difference (%) p value 
OA knee (n = 63) 0.255 5.55 0.0004 
OA hip (n = 17) 0.310 

OA knee (n = 63) 0.255 3.40 0.0008 
NOF (n = 35) 0.221 

OA hip (n = 17) 0.310 8.95 1.552 x 10-07 

NOF (n = 35) 0.221 
    

Table 3.29. Analysis of the methylation profile of cg26466508 in OA hip, OA knee and 
NOF cartilage. The only analysis with differences in methylation greater than 5% that 
endured after Bonferroni correction (p = 0.000305) was OA hip cartilage relative to NOF 
cartilage (highlighted in bold). Statistical significance was assessed using the Student’s t test. 
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Stratum β value Difference (%) p value 
OA hip, OA knee and NOF CC (n = 93) 0.245 3.90 0.004 

OA hip, OA knee and NOF T carriers (n = 22) 0.284 
OA hip and NOF CC (n = 43) 0.239 6.22 0.008 

OA hip and NOF T carriers (n = 9) 0.302 
OA hip  CC (n = 14) 0.287 13.41 2.656 x 10-04 

OA hip T carriers (n = 3) 0.421 
OA knee  CC (n = 50) 0.250 2.19 0.165 

OA knee T carriers (n = 13) 0.272 
NOF CC (n = 29) 0.217 2.54 0.138 

NOF T carriers (n = 6) 0.242 
    

Table 3.30. Analysis of the methylation profile of cg26466508 in OA hip, OA knee and 
NOF cartilage. The only analysis with differences in methylation greater than 5% that 
endured after Bonferroni correction (p = 0.000305) was OA hip cartilage CC relative to OA 
hip cartilage T carriers (highlighted in bold). Statistical significance was assessed using the 
Student’s t test. 
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Figure 3.22. Statistically significant differences in the methylation profile of cg26466508 
in OA hip, OA knee and NOF cartilage. Methylation at cg26466508 was significantly 
increased in A) OA hip cartilage relative to NOF cartilage and B) carriers of the risk allele of 
rs9350591 in OA hip cartilage only. Statistical significance was assessed using the Student’s 
t test; n represents the number of individuals in the comparison group; error bars represent 
the mean + SEM. 
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3.4 Discussion 

The aim of the research in this chapter was to characterise the OA association locus marked 

by the polymorphism rs9350591. It is widely known that GWAS signals often mark the 

actions of other polymorphisms, commonly affecting the process of transcription or the 

stability of the resulting transcript (Montgomery and Dermitzakis, 2011). I hypothesised that 

rs9350591 marks a functional polymorphism that acts to regulate the expression of at least 

one of the genes at this locus. This investigation was to be achieved by interrogating the 

expression profiles of the six genes that reside within 1 Mb upstream and 1 Mb downstream 

of the SNP in order to identify if rs9350591 genotype correlates with differences in gene 

expression in synovial joints. It was not necessary to genotype any other polymorphisms. If 

the true causal SNP was in high enough LD with rs9350591 to cause its effect to be detected 

on the arcOGEN GWAS, then any correlations should also be detected through rs9350591 in 

these investigations (Styrkarsdottir et al., 2014). 

 

I first postulated that the association signal could be mediating its effects during joint 

development. I utilised microarray data that quantified gene expression during MSC 

differentiation down a chondrogenic lineage and an osteoblastic lineage, showing that all the 

genes were expressed throughout the time courses. Chondrogenesis was independently 

investigated using qPCR, and again confirmed the dynamic gene expression patterns, overall 

suggesting that any one of the genes have the potential to modulate OA susceptibility. 

 

I then analysed data that were generated prior to the beginning of my Ph.D to confirm that the 

genes were expressed in primary articular cartilage. Additionally, I quantified the expressions 

in fat pad and synovium. Taken as a whole, FILIP1 and MYO6 had the lowest expression 

levels, while the remaining genes were all highly expressed in the joint tissues. The 

expression patterns bear no relevance to the known functions of any of the genes as discussed 

in Chapter 1, yet the results do support the evidence that the gene expressions are not isolated 

to specific tissue types. Once I had confirmed that all genes were expressed in the synovial 

joint tissues tested, I was able to begin to investigate the OA association signal.  

 

The two main ways to investigate gene expression and genotype correlations are overall gene 

expression quantification and allelic expression quantification. The quantification of overall 

gene expression allows all samples, irrespective of genotype, to be used. It is, however, 

vulnerable to the natural fluctuation in gene expression between individuals, making it liable 

to false negatives. Since investigating the allelic expression is internally controlled (that is, the 
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allelic output of one allele is quantified relative to the other) and comparisons are within an 

individual, it is not affected by the variation between different donors. This approach, 

however, is limited by the heterozygote frequency of the transcript SNP under investigation, 

as only transcript SNP heterozygotes can be studied. 

 

Previous overall gene expression studies have considered OA as a disease of the entire joint 

and have therefore investigated tissues other than solely cartilage (Raine et al., 2012). Based 

on this, fat pad, synovium and cartilage excised from the knee of OA donors were included 

alongside hip cartilage analyses. In all tissue types, there were no significant differences in 

any of the overall gene expressions relative to the OA association SNP genotype. 

Nevertheless, SENP6, MYO6, COX7A2 and COL12A1 were all differentially expressed in 

cartilage depending on the disease state and joint site. This suggests that the genes could 

contribute to joint-specific OA development (Karlsson et al., 2010) but are acting 

independently of the OA association signal detected by the arcOGEN study. For example, a 

downregulation of SENP6 in OA hip cartilage relative to NOF cartilage could be associated 

with aberrant sumoylation (Chapter 1.10.3) and therefore affect ECM homeostasis. 

Alternatively, the changes could simply be a consequence of OA, rather than a cause, and so 

the exact mechanisms of action would need to be established.  

 

The aim of AEI analysis is to identify if there are differences in the mRNA outputs that 

correspond to the different alleles of a heterozygote individual (Wang and Elbein, 2007). In 

this case, for example, even though the overall abundance of a gene may be comparable 

between individuals, an allelic imbalance within this may be apparent. Similar routes of 

investigation have previously been followed and have yielded positive results in the 

identification of cis-eQTLs (Bos et al., 2012; Raine et al., 2012; Gee et al., 2014). Despite 

rs9350591 being associated with only hip OA, it is possible to detect AEI in more than one 

joint tissue (Egli et al., 2009; Styrkarsdottir et al., 2014; Gee et al., 2015), and so knee 

cartilage was combined with hip cartilage is this study. However, following this in-depth 

approach of investigating AEI, there were still no significant differences in gene expression 

that could be attributed to rs9350591 genotype. The most notable outcome of this 

investigation was the significant difference between rs9350591 major allele homozygotes and 

minor allele carriers for the MYO6 allelic outputs. This, however, can be accounted for by the 

large allelic ratio spread in the major allele homozygotes. In addition, an eQTL operating on 

the COL12A1 gene transcript was also identified, causing more of the minor allele transcript 

to be produced relative to the major allele. Again, this did not correlate with rs9350591 
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genotype, and so it was concluded that there was no OA association with these genes in the 

cartilage samples tested. Importantly, it was not possible to interrogate FILIP1 and COX7A2 

and so a correlation between their expressions and the OA association of this region cannot be 

ruled out. 

 

DNA methylation is now an established mechanism through which the genome can be 

regulated and has been reported to correlate with DNA sequence variations (Bell et al., 2011; 

Smith et al., 2014). It would therefore be remiss not to explore this as a part of the 

characterisation of this locus. Indeed, analysis of data from a microarray that included 164 

CpG sites across a 2 Mb span of the region in OA hip, OA knee and NOF cartilage yielded 

promising results. cg26466508 was hypermethylated in both OA hip relative to NOF and in 

OA hip rs9350591 T carriers relative to OA hip rs9350591 CC individuals. Moreover, the 

difference in methylation was greater than 5%, a threshold value considered to strengthen the 

biological relevance of detected signals (Hall et al., 2014). Although the n number for T 

carriers was rather low, the significance survived Bonferroni correction and so can be 

considered robust. Perhaps the T allele of rs9350591 permits the recruitment of DNA 

methyltransferase enzymes that methylate cg26466508. In turn, the aberrant methylation 

could prevent transcription factor binding and thus regulate gene expression. This may indeed 

be the mechanism by which the cis-eQTL is modulating OA association, and it is because 

FILIP1 and COX7A2 could not be interrogated through AEI that it has been overlooked. 

 

Despite a number of the genes at this locus being differentially expressed in cartilage, it is 

clear that the association signal does not modulate its effects in the end-stage OA synovial 

joint tissues tested. Nevertheless, the genes are all dynamically expressed throughout 

chondrogenesis and osteoblastogenesis, which imply a potential role for any of the genes at 

earlier stages of joint development. Moreover, differential methylation was observed between 

the rs9350591 genotype groups in OA hip cartilage at a CpG site that resides 53 bp upstream 

of FILIP1. Overall, this chapter highlights the huge amount of diversity at this OA association 

locus, and shows that there is scope to further investigate the functional region and its 

association to OA.
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Chapter 4. Characterisation of the 12p11.22 Locus Marked by the 

Polymorphism rs10492367 
 

4.1 Introduction 

Another of the five genome-wide significant loci identified as being associated with OA in the 

arcOGEN GWAS was marked by the G/T polymorphism rs10492367 on chromosome 

12p11.22 (arcOGEN Consortium et al., 2012). The minor allele (T; MAF = 0.21) was 

significantly associated with hip OA in patients of European descent compared to the 

population-based controls, with an OR of 1.14 and a p value of 1.48 x 10-08 (Table 4.1). There 

was a weaker significance in the association for all cases of OA, with an OR of 1.06 and a p 

value of 9.02 x 10-04. 

 

Discovery  Replication  Discovery and replication 
OR     

(95% CI) p value 
 OR        

(95% CI) p value 
 OR       

(95% CI) p value 

1.18    
(1.11-1.27) 1.20 x 10-06 

 1.11     
(1.04-1.18) 1.18 x 10-03 

 1.14         
(1.09-1.20) 1.48 x 10-08 

  
 

  
 

  
Table 4.1. Association statistics from the arcOGEN GWAS for rs10492367 in the hip 
stratum only. Odds ratio (OR), confidence interval (CI), genome-wide significance p value = 
5 x 10-08. Adapted from (arcOGEN Consortium et al., 2012). 

 

The association interval, defined as the region in which all SNPs in an LD of > 0.80 with 

rs10492367 reside, spans an intergenic region of 21 kb. There are no non-synonymous 

transcript polymorphisms that are in high LD (r2 > 0.80) with rs10492367 and as such, it is 

unlikely that the OA association is mediated by a change in the coding sequence of any of the 

nearby genes. Instead, the causal SNP could be mediating its effect by regulating gene 

transcription. PTHLH and KLHL42 expressions were quantified by Dr Madhushika 

Ratnayake and Dr Emma Raine of Prof. Loughlin’s group (Institute of Cellular Medicine, 

Newcastle University) prior to the commencement of this project. The results confirmed that 

the genes were expressed in the following human tissues: articular cartilage, fat pad, 

synovium, meniscus, tendon and ligament (arcOGEN Consortium et al., 2012). This chapter 

will therefore characterise the OA-associated region marked by rs10492367 by investigating 

the expression of PTHLH and KLHL42. 
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4.2 Aim 

The aim of this chapter was to characterise the OA association signal marked by the 

polymorphism rs10492367. This was achieved by: 

 

• performing database searches to characterise the association region 

• examining the expression profiles of PTHLH and KLHL42 during chondrogenesis 

using RNA generated by Dr Madhushika Ratnayake, Maria Tselepi and Emma Rogers  

• analysing PTHLH and KLHL42 expression throughout chondrogenesis as assayed on a 

microarray performed by Dr Matthew Barter 

• analysing PTHLH and KLHL42 expression throughout osteoblastogenesis as assayed 

on a microarray performed by Dr Rodolfo Gomez 

• quantitatively analysing the expression of PTHLH and KLHL42 in synovial joint 

tissues  

• characterising the expression profiles of PTHLH and KLHL42 in OA hip, OA knee 

and NOF cartilage, using data previously generated by Dr Madhushika Ratnayake and 

Dr Emma Raine 

• replicating the gene expression quantification experiments in an independent group of 

OA hip cartilage samples 

• characterising the expression profiles of PTHLH and KLHL42 in fat pad and synovium 

samples 

• investigating if rs10492367 marks a cis-eQTL by producing an allelic expression 

imbalance of the transcription of PTHLH and/or KLHL42 

• analysing CpG methylation levels in hip and knee cartilage 1 Mb upstream and 1 Mb 

downstream of rs10492367 as assayed on a microarray performed by Dr Michael 

Rushton 

• identifying if differential methylation of CpG sites within 20 bp upstream or 

downstream of rs10492367, or any SNP in high LD with it, correlates with 

rs10492367 genotype 

• identifying if differential methylation of CpG sites within 20 bp upstream or 

downstream of rs10492367, or any SNP in high LD it, affects the enhancer activity of 

the regions 
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4.3 Results 

4.3.1 Initial database searches to characterise the rs10492367 locus 

Figure 4.1 is a screenshot from the UCSC Genome Browser website (Kent et al., 2002) 

covering the 12p11.22 locus. The first track displays RefSeq genes (Pruitt et al., 2005), 

showing rs10492367 as an intergenic SNP 59 kb downstream of KLHL42 and 96 kb 

downstream of PTHLH. A further thirteen genes reside within a 1 Mb span upstream or 

downstream of the polymorphism: ASUN (924 kb downstream), FGFR1OP2 (901 kb 

upstream), TM7SF3 (848 kb downstream), MED21 (831 kb upstream), C12orf71 (780 kb 

downstream), STK38L (536 kb upstream), ARNTL2 (436 kb upstream), SMCO2 (360 kb 

upstream), PPFIBP1 (166 kb upstream), REP15 (164 kb upstream), MRPS35 (106 kb 

upstream), MANSC4 (91 kb downstream) and CCDC91 (40 kb downstream). In addition, 

rs10492367 is 415 kb upstream of the long non-coding RNA ARNTL2-AS1. Due to the 

comparatively small size of the association region, only a 1 Mb region is shown in Figure 4.1, 

rather than 2 Mb. Using ChIP-Seq data, the chromatin state of the region was modelled using 

a multivariate Hidden Markov Model (Ernst and Kellis, 2010; Ernst et al., 2011). It is 

apparent that the functionality of this region is dependent on the cell line under investigation, 

with the green boxes of the track representing an area of active transcription, the grey boxes 

denoting a region of heterochromatin and the orange boxes denoting a region with strong 

enhancer activity. Furthermore, there are several transcription factors known to bind 

rs10492367 (Gerstein et al., 2012; Wang et al., 2012; Wang et al., 2013) – including RELA 

(v-rel avian reticuloendotheliosis viral oncogene homolog A), TCF3 (transcription factor 3) 

and TCF12 – and the signal is also in a DNase I hypersensitivity region (Song and Crawford, 

2010). The sensitivity to DNase I digestion implies that the region is in an open conformation 

and could therefore be exposed to transcription factor binding that could regulate nearby gene 

expression. Finally, based on the ChIA-PET dataset (Fullwood et al., 2010), it seems 

rs10492367 does not interact with genomic loci outside this region. This is the same for all 

SNPs in high LD with rs10492367, but due to the large size of the association region (21 kb), 

only rs10492367 is depicted in Figure 4.1.B. 
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As rs10492367 is not necessarily causal in mediating the OA association of this region, any 

SNPs in high LD with the polymorphism could instead account for the signal. In total, there 

Figure 4.1. UCSC Genome Browser screenshot of the OA association region marked by 
the polymorphism rs10492367 on chromosome 12p11.22. A) rs10492367 is an intergenic 
polymorphism downstream of PTHLH and KLHL42. The red box marks the boundaries of 
the association interval; all SNPs with an r2 > 0.80 relative to rs10492367 reside in this 
region. B) The SNP resides in a predicted enhancer in the GM12878 cell line, denoted by an 
orange box within the Chromatin State Segmentation track [1]. Transcription factors have 
been identified as binding the polymorphism within the Transcription Factor ChIP-Seq 
tracks [2], and it is within a DNase I-hypersensitive region of the DNase I Hypersensitivity 
Clusters track [3]. The SNP has not been identified as interacting with other genomic loci in 
the Chromatin Interaction Analysis Paired-End Tags track [4]. The images were obtained 
using the hg19 reference genome. 
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are nine SNPs with an r2 of > 0.80 relative to the association SNP, three of which are in 

perfect LD with rs10492367. A search of the RegulomeDB online database (Boyle et al., 

2012) shows that some SNPs, including rs10492367, have transcription factors known to bind 

or reside in functional regions in relevant cell lines (Table 4.2). Currently, aside from 

rs10492367, there is no published literature relating any of the SNPs to an OA or 

musculoskeletal phenotype. 
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SNP 

Distance 
from 

rs10492367 
(bp) 

r2 relative to 
rs10492367 

D′ relative 
to 

rs10492367 

Genotyped 
on 

arcOGEN 
array 

SNP 
location 

Transcription factor 
binding 

Chromatin State 
Bone marrow-

derived 
cultured 
MSCs 

MSC-derived 
chondrocyte 
cultured cells 

Osteoblast 
primary cells 

rs58649696 10,617 0.853 1.000 No Intergenic IRF1, HNF4A, EP300, 
GATA2 

Quiescent/low Quiescent/low Quiescent/low 

rs57380671 4,563 0.806 1.000 No Intergenic No data Quiescent/low Quiescent/low Quiescent/low 
rs61916489 1,682 0.853 1.000 No Intergenic No data Quiescent/low Quiescent/low Quiescent/low 
rs11049204 1,407 1.000 1.000 No Intergenic No data Quiescent/low Quiescent/low Quiescent/low 
rs10492367 0 1.000 1.000 Yes Intergenic FOXM1, ATF2, IKZF1, 

EP300, NFATC1, NFKB1, 
NFIC, GATA2, MEF2A, 
MEF2C, TCF3, BCL11A, 
PAX5, TCF12, ZNF143 

Quiescent/low Enhancer Quiescent/low 

rs10743612 421 0.865 1.000 No Intergenic No data Quiescent/low Enhancer Quiescent/low 
rs11049206 531 1.000 1.000 No Intergenic No data Enhancer Enhancer Quiescent/low 
rs11049207 3,683 0.853 1.000 No Intergenic CEBPB, FOS, MYC, 

STAT3 
Enhancer Enhancer Enhancer 

rs79881709 4,054 0.853 1.000 No Intergenic No data No data No data No data 
rs10843013 10,226 1.000 1.000 Yes Intergenic No data Quiescent/low Quiescent/low Quiescent/low 

          
Table 4.2. All SNPs in high linkage disequilibrium (r2 > 0.80) with rs10492367. Out of the nine polymorphisms, three were in perfect linkage 
disequilibrium with this association SNP, one of which was also genotyped on the arcOGEN microarray. 
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4.3.2 Examination of the expression profiles of PTHLH and KLHL42 during 

chondrogenesis 

As the association signal resides in a region suggested to be functional, I first sought to 

investigate the expression of PTHLH and KLHL42 throughout the development of cartilage. 

As for Chapter 3, I hypothesised that the functional effects of the association signal could be 

exerted at early stages of joint development, resulting in altered joint structure and thus 

predisposing an individual to developing OA later in life. I therefore sought to replicate the 

overall gene expression quantification experiments throughout chondrogenesis irrespective of 

rs10492367 genotype. This would clarify whether the genes were expressed and whether they 

had the potential to contribute to joint development and OA susceptibility. Dr Madhushika 

Ratnayake, Maria Tselepi and Emma Rogers of Prof. Loughlin’s group (Institute of Cellular 

Medicine, Newcastle University) performed in vitro chondrogenesis to replicate cartilage 

development: I performed the qPCR, data analysis and genotyping (Table 4.3). Primer and 

probe sequences can be found in Appendix A: Table A.3, and the assay positions for PTHLH 

and KLHL42 are detailed in Figure 4.2. The assays for 18S, GAPDH and HPRT1 were the 

same as those used for the qPCR of Chapter 3 (Figure 3.2). The probes and primers were 

designed to the cDNA sequences, and thus excluded intronic regions. For all of the genes, 

every known protein-coding transcript was covered by the assays. 

 

 

Donor ID Sex Age at donation (years) Joint rs10492367 genotype 
52 F 61 Hip GG 
93 F 51 Hip GG 
225 M 55 Hip GG 
276* F 41 Iliac crest GG 
277* F 24 Iliac crest GG 
278* M 25 Iliac crest GG 

     
Table 4.3. Characteristics and genotype at rs10492367 for donors used in 
chondrogenesis. The donors marked with an asterisk (*) were donors with an unknown OA 
status purchased from Lonza, UK. 
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Gene expressions were quantified at three time points throughout chondrogenesis: day 3, day 

7 and day 14. Both genes were expressed throughout the chondrogenesis time course (Figure 

4.3), although PTHLH was variable with low levels of expression. To confirm that 

chondrogenesis had progressed, the expressions of the chondrogenic markers ACAN, COL2A1 

and SOX9 (Bhang et al., 2011) were confirmed at each time point by Dr Madhushika 

Ratnayake, Maria Tselepi and Emma Rogers (data not shown). Table 4.4 details the mean 2-

ΔCt values for PTHLH, highlighting the difficulty in calculating the fold change of gene 

expression relative to day 3. There were no distinct differences in expression depending on 

the disease state, nor were there defined patterns of expression associated with the stage of 

cartilage development. The inter-individual variability and dynamic patterns of gene 

expression suggest that either of the genes could function at any of the stages of 

chondrogenesis to contribute to OA susceptibility. 

 

 

 

 

 

 

 

 

 

 

A) 

B) 

4 
1 
2 

3 

Figure 4.2. Location of qPCR primers and probes used for quantitative gene expression 
analysis. Assays were designed to the exons of A) PTHLH and B) KLHL42. Every transcript 
of PTHLH was covered by the assays. Variants 1 to 4 are numbered as such for PTHLH. The 
images were obtained using the hg19 reference genome. 
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 Donor 
Day 52 93 225 276 277 278 

3 9.287 x 10-5 2.280 x 10-3 8.196 x 10-5 Undetermined 2.645 x 10-6 1.845 x 10-5 
7 Undetermined Undetermined Undetermined Undetermined 3.436 x 10-6 1.005 x 10-5 

14 4.057 x 10-4 5.625 x 10-4 Undetermined 2.936 x 10-5 3.038 x 10-5 Undetermined 
       

Table 4.4. Calculated mean 2-ΔCt values for PTHLH for each donor at the three time 
points that gene expression was quantified. At many time points, the gene expression was 
undetected. 

 

4.3.3 Analysis of PTHLH and KLHL42 expression throughout chondrogenesis as assayed 

on a microarray 

Both genes were shown to be expressed during chondrogenesis in the preceding investigation 

(Chapter 4.3.2), albeit at low levels particularly for PTHLH. As an additional approach to 

validate these results, I acquired normalised data from a microarray performed and analysed 

by Dr Matthew Barter (personal communication). MSCs from a 22 year old female (Lonza, 

UK) were differentiated into chondrocytes and, using RNA extracted at days 0, 1, 3, 6, 10 and 

14, an Illumina Human HT-12 V4 expression array was used to profile a range of gene 

expressions (Barter et al., 2015). Table 4.5 details the day 14 relative to day 0 expression fold 

change of the genes surrounding rs10492367 and of the chondrogenic markers ACAN, 

COL2A1 and SOX9 (Bhang et al., 2011). The analysis included all genes within 1 Mb 

upstream or downstream of the association SNP, and the genes that failed to meet the quality 
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A) B) 

Figure 4.3. Expression of PTHLH and KLHL42 during chondrogenesis. MSCs were 
differentiated into chondrocytes and gene expression was quantified at various time points 
throughout chondrogenesis. A) PTHLH expression was very low throughout chondrogenesis 
and quantification was not possible at several time points. B) KLHL42 was expressed 
throughout the time course of chondrogenesis in all donors. 
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control standards were not included. The chondrogenic markers were all significantly 

upregulated by day 14 relative to day 0. Similarly, STK38L, REP15 and variant 1 of PPFIBP1 

were all upregulated by day 14. Conversely, PTHLH, MRPS35 and TM7SF3 were 

downregulated relative to day 0. In addition, I also considered the overall gene expression at 

each individual time point (Figure 4.4) in order to independently corroborate the findings 

presented in Figure 4.3. In this donor, akin to the pattern observed previously, KLHL42 has a 

higher overall expression compared to PTHLH. The remaining genes were also similarly 

expressed, and so overall, it can be concluded that the genes at this locus were expressed 

throughout chondrogenesis. 

 

Probe Gene 
Day 14 vs day 0 
log2 fold change 

Average 
expression 

Adjusted p 
value 

6900414 PTHLH (variant 1) -0.248 6.764 0.014 
1980593 PTHLH (variant 3) -0.244 6.442 0.015 
4490273 KLHL42 -0.146 9.116 0.171 
1340681 FGFR1OP2 -0.018 7.864 0.866 
130672 MED21 0.101 6.884 0.313 
2760653 STK38L 2.980 8.500 2.82 x 10-15 
3390364 PPFIBP1 (variant 1) 0.665 7.224 1.23 x 10-05 
4010414 PPFIBP1 (variant 1) 0.355 9.148 0.002 
1940450 PPFIBP1 (variant 2) -0.079 6.752 0.515 
2680131 PPFIBP1 (variant 1) -0.041 7.369 0.740 
20753 REP15 0.292 6.901 0.005 

7380270 MRPS35 -0.263 9.144 0.012 
2340594 CCDC91 -0.190 8.388 0.081 
2070474 TM7SF3 -0.338 8.292 0.002 
4480747 ACAN (variant 1) 2.237 7.445 7.57 x 10-13 
6770470 ACAN (variant 2) 3.851 8.518 2.22 x 10-16 
4010136 COL2A1 (variant 1) 8.044 11.288 7.76 x 10-20 
650113 COL2A1 (variant 1) 3.937 8.69 7.97 x 10-14 
4230475 SOX9 3.276 10.895 1.57 x 10-14 

     
Table 4.5. Comparison of day 14 and day 0 normalised gene expression during 
chondrogenesis at the rs10492367 locus. PTHLH, MRPS35 and TM7SF3 were significantly 
downregulated by day 14 relative to day 0, while STK38L, REP15 and PPFIBP1 variant 1 
were significantly upregulated. There were no significant differences in KLHL42, 
FGFR1OP2, MED21 or CCDC91 expressions between day 14 and day 0. The chondrogenic 
markers were all significantly upregulated throughout the chondrogenesis time course. Both 
isoforms of PPFIBP1 and ACAN were captured by the array, while two probes captured the 
same variant of COL2A1. Two of the four PTHLH isoforms were captured by the microarray. 
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4.3.4 Analysis of PTHLH and KLHL42 expression throughout osteoblastogenesis as 

assayed on a microarray 

As OA is increasingly becoming recognised as a disease of the entire synovial joint and not 

specifically of cartilage, I sought to investigate the expression of the genes during 

osteoblastogenesis. In addition, PTHLH has an established role in endochondral ossification 

and so I hypothesised that this gene, or perhaps KLHL42, could in fact contribute to disease 

susceptibility by affecting joint development and structure by acting during 
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Figure 4.4. Expression of genes at the rs10492367 locus during chondrogenesis. MSCs 
were differentiated into chondrocytes and gene expression was quantified at various time 
points throughout chondrogenesis on an Illumina Human HT-12 V4 expression array. A) all 
genes within 2 Mb of rs10492367, B) PTHLH and KLHL42 only and C) the chondrogenic 
markers ACAN, COL2A1 (covered by two probes [4010136, black x; and 650113, green 
triangle]) and SOX9 were all expressed throughout the time course of chondrogenesis. The 
levels of expression imply that any of the genes at the 12p11.22 locus have the potential to 
function during cartilage development. 
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osteoblastogenesis. I acquired normalised data from a microarray performed and analysed by 

Dr Rodolfo Gomez (personal communication). MSCs from a 19 year old female and a 24 year 

old female (Lonza, UK) were differentiated into osteoblasts and, using RNA extracted at days 

0 and 21, an Illumina Human HT-12 V4 expression array was used to profile a range of gene 

expressions. Table 4.6 details the day 21 relative to day 0 expression fold change of the genes 

surrounding rs10492367 and of the osteogenic markers ALPL and DCN (Waddington et al., 

2003; Graneli et al., 2014). The osteogenic markers were both significantly upregulated by 

day 21 relative to day 0, confirming that osteoblastogenesis had progressed. Out of the genes 

of interest, only TM7SF3 significantly differed by day 21, with its expression upregulated 

relative to day 0. Overall, all genes were expressed throughout osteoblastogenesis, which 

implies that any of the genes, particularly TM7SF3, could contribute to OA susceptibility by 

affecting joint structure. 

 

Probe Gene 
Day 14 vs day 0 
log2 fold change 

Average 
expression 

Adjusted p 
value 

6900414 PTHLH 0.133 7.205 0.639 
4490273 KLHL42 0.074 9.834 0.802 
5270451 ASUN -0.074 7.210 0.808 
6400082 ASUN -0.075 8.570 0.801 
1340681 FGFR1OP2 0.183 7.875 0.499 
2760653 STK38L -0.081 7.615 0.781 
4010414 PPFIBP1 0.427 9.301 0.106 
2680131 PPFIBP1 0.275 8.449 0.392 
20753 REP15 0.069 7.276 0.813 

7380270 MRPS35 0.286 8.386 0.267 
2340594 CCDC91 0.355 7.855 0.157 
2070474 TM7SF3 0.583 9.365 0.028 
6100356 ALPL 2.071 11.788 0.007 
50368 DCN (variant A1) 0.786 11.061 0.033 

5550719 DCN (variant A2) 1.495 11.857 5.75 x10-06 
7650296 DCN (variant A2) 0.909 14.067 0.003 

     
Table 4.6. Comparison of day 21 and day 0 normalised gene expression during 
osteoblastogenesis at the rs10492367 locus. TM7SF3 was the only gene to be significantly 
upregulated by day 21 relative to day 0. There were no significant differences in the 
expression of the remaining genes between day 21 and day 0. The osteogenic markers were 
both significantly upregulated throughout the osteoblastogenesis time course. Both isoforms 
of DCN were captured by the array. 
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4.3.5 Quantitative expression analysis of PTHLH and KLHL42 in synovial joint tissues 

Since Chapter 4.3.1 indicated that the association signal resides in a region that is functional, 

and Chapters 4.3.2 – 4.3.4 confirmed that the genes are expressed during chondrogenesis and 

osteoblastogenesis, I next aimed to characterise the expression of the genes in primary joint 

tissues. Following the publication of the arcOGEN GWAS in 2012 (arcOGEN Consortium et 

al., 2012) and prior to the start of my Ph.D, expression datasets pertaining to PTHLH and 

KLHL42 were generated by Dr Madhushika Ratnayake and Dr Emma Raine, two members of 

Prof. Loughlin’s group (Institute of Cellular Medicine, Newcastle University). Given that 

PTHLH is such a strong candidate gene and KLHL42 is the closest gene physically to 

rs10492367, characterisation efforts focussed on these two genes. qPCR was performed using 

OA hip, OA knee and NOF cartilage samples. Similarly, I performed qPCR using fat pad and 

synovium tissue originating from the knees of OA patients: all reactions were performed in 

triplicate and each reaction was normalised to the mean of the housekeeping genes 18S, 

GAPDH and HPRT1.  

 

In all of the joint tissues tested, expression of the genes was detected (Figure 4.5): for this 

analysis, the gene expression datasets for cartilage were separated into OA hip, OA knee and 

NOF. The expression of both genes was lowest in the synovium samples. KLHL42 was most 

highly expressed in fat pad, while PTHLH was most highly expressed in OA knee cartilage. 
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Figure 4.5. Average gene expression at the12p11.22 locus in all joint tissues assayed. Both genes were expressed in all tissues tested. The highest 
expression of PTHLH was in OA knee cartilage, and the lowest expression was in OA synovium. The highest expression of KLHL42 was in OA fat 
pad, and the lowest expression was in OA synovium. Tissues tested: OA knee cartilage (K; n < 52), OA hip cartilage (H; n < 21), NOF cartilage (N; n 
< 18), fat pad (FP; n < 26) and synovium (Sy; n < 22). Error bars represent the SEM. 
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4.3.6 Characterising the expression profiles of PTHLH and KLHL42 in cartilage: 

comparisons of disease state, sex, skeletal site and age  

For each donor I compiled the following information: genotype at rs10492367, age (in years) 

at joint replacement, sex and joint replaced (Appendix D: Table D.1). I subsequently analysed 

the expression profiles of PTHLH and KLHL42 in cartilage using various routes of 

stratification (Table 4.7 and Table 4.8, respectively). As differences in gene expression 

depending on disease state have previously been shown in the context of OA-associated 

regions (Raine et al., 2012), I included a comparison of OA and NOF. In addition, as 

discussed in Chapter 1, there are sex-specific differences in the prevalence of OA. Finally, 

given that OA is an age-associated disease, a comparison of gene expression relative to age 

was performed. For these analyses, solely due to the availability of tissue, all NOF donors 

were female. Only the statistically significant comparisons are included in the graphical 

representations (Figure 4.6 and Figure 4.7).  

 

Stratification for PTHLH qPCR data p value 
OA hip and OA knee (n = 72) vs NOF (n = 18) 0.075 

OA hip (n = 21) vs NOF (n = 18) 0.330 
OA female (n = 40) vs NOF female (n = 18) 0.021 

OA female (n = 40) vs OA male (n = 32) 0.080 
OA knee (n = 51) vs OA hip (n = 21) 0.552 

OA female knee (n = 25) vs OA female hip (n = 15) 0.889 
OA male knee (n = 26) vs OA male hip (n = 6) 0.201 

All OA age: 50 (n = 13) vs 60 (n = 22) vs 70 (n = 27) vs 80 (n = 10) 0.988 

  Table 4.7. Analysis of PTHLH expression in OA hip, OA knee and NOF cartilage. 
Expression of PTHLH was significantly upregulated in female OA cartilage relative to female 
NOF cartilage. Statistical significance was assessed using a Mann-Whitney U test for two-
way comparisons and a one-way analysis of variance for a comparison of more than two 
groups; n represents the number of individuals in the comparison group. 
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Stratification for KLHL42 qPCR data p value 
OA hip and OA knee (n = 72) vs NOF (n = 18) 0.265 

OA hip (n = 20) vs NOF (n = 18) 0.027 
OA female (n = 39) vs NOF female (n = 18) 0.350 

OA female (n = 39) vs OA male (n = 33) 0.964 
OA knee (n = 52) vs OA hip (n = 20) 0.040 

OA female knee (n = 25) vs OA female hip (n = 15) 0.356 
OA male knee (n = 26) vs OA male hip (n = 6) 0.018 

All OA age: 50 (n = 13) vs 60 (n = 22) vs 70 (n = 27) vs 80 (n = 10) 0.256 

  Table 4.8. Analysis of KLHL42 expression in OA hip, OA knee and NOF cartilage. 
Expression of KLHL42 was significantly downregulated in OA hip cartilage relative to NOF 
cartilage and OA knee cartilage. Expression in male OA hip cartilage was significantly 
decreased relative to male OA knee cartilage. Statistical significance was assessed using a 
Mann-Whitney U test for two-way comparisons and a one-way analysis of variance for a 
comparison of more than two groups; n represents the number of individuals in the 
comparison group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. Statistically significant difference in the expression of PTHLH. Gene 
expression was significantly increased in A) female OA cartilage relative to female NOF 
cartilage. Statistical significance was assessed using a Mann-Whitney U test; n represents the 
number of individuals in the comparison group; * p < 0.05; error bars represent the mean + 
SEM. 
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From the analysis of these data, I identified differential expression of both genes. Expression 

of PTHLH was significantly increased in cartilage from all OA females relative to female 

NOF cartilage. KLHL42 was significantly decreased in cartilage from OA hip relative to both 

NOF and OA knee cartilage. In addition, the expression of KLHL42 was increased in the 

cartilage from the knees of OA males relative to male hip OA cartilage. Overall, the genes 

had relatively low levels of expression, but expression was confirmed in synovial joint 

cartilage. 

 

4.3.7 Characterising the expression profiles of PTHLH and KLHL42 in cartilage: 

comparisons of rs10492367 genotype 

The stratification necessary to investigate if an eQTL is operating at this locus is the 

comparison of gene expression between the genotypic groups of rs10492367; that is GG, GT 

Figure 4.7. Statistically significant differences in the expression of KLHL42. Gene 
expression was significantly decreased in A) OA hip cartilage relative to NOF cartilage, B) 
OA hip cartilage relative to OA knee cartilage, and C) male OA hip cartilage relative to male 
OA knee cartilage. Statistical significance was assessed using a Mann-Whitney U test; n 
represents the number of individuals in the comparison group; * p < 0.05; error bars represent 
the mean + SEM. 
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and TT. However, as for rs9350591, due to the low MAF (0.21) of rs10492367, it was not 

feasible in the timeframe of my Ph.D to acquire enough individuals that were TT at the 

association signal for hip OA and NOF donors. As such, T allele carriers (GT and TT) were 

grouped together and compared to GG homozygotes in all cases where TT n < 3. From these 

data, it was not possible to identify the actions of an eQTL influencing the expression of any 

of the genes tested (Figure 4.8 and Figure 4.9). 
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Figure 4.8. Analysis of PTHLH expression in OA hip and OA knee cartilage. There were 
no significant differences in gene expression between the genotypic groups of rs10492367 in 
A) all OA cartilage (hip and knee combined), B) OA knee cartilage, or C) OA hip cartilage. 
Statistical significance was assessed using a Mann-Whitney U test (two groups) or a Kruskal-
Wallis one-way analysis of variance (three groups); n represents the number of individuals in 
the comparison group; error bars represent the mean + SEM. 
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4.3.8 Replication of the gene expression quantification experiments in an independent 

group of OA hip cartilage samples 

As rs10492367 marks a region of association in hip OA, I replicated the gene expression 

qPCR in an independent group of OA hip cartilage donors to confirm the findings presented 

in Chapter 4.3.7. Again, the genes had low levels of expression, and the carriage of the risk 

allele of rs10492367 did not cause a significant difference in the expression of either of the 

genes (Figure 4.10). 
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Figure 4.9. Analysis of KLHL42 expression in OA hip and OA knee cartilage. There 
were no significant differences in gene expression between the genotypic groups of 
rs10492367 in A) all OA cartilage (hip and knee combined), B) OA knee cartilage, or C) OA 
hip cartilage. Statistical significance was assessed using a Mann-Whitney U test (two groups) 
or a Kruskal-Wallis one-way analysis of variance (three groups); n represents the number of 
individuals in the comparison group; error bars represent the mean + SEM. 
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4.3.9 Characterising the expression profiles of PTHLH and KLHL42 in OA fat pad and 

OA synovium: comparisons of sex and age 

As for the hip locus in Chapter 3, knee fat pad and synovium were considered in this 

investigation. I first compared levels of gene expression between female and male donors and 

then between ages (Table 4.9 and Table 4.10). Through these analyses, there were no 

significant differences of expression in fat pad or synovium. 

  

 

Tissue Stratification for PTHLH qPCR data p value 
FP Female OA (n = 15) vs male OA (n = 11) 0.756 
FP All OA age: 50 (n = 4) vs 60 (n = 11) vs 70 (n = 9) vs 80 (n = 2) 0.533 
Sy Female OA (n = 11) vs male OA (n = 11) 0.860 
Sy All OA age: 50 (n = 6) vs 60 (n = 3) vs 70 (n = 9) vs 80 (n = 3) 0.630 

 
  Table 4.9. Analysis of PTHLH expression in OA fat pad and synovium. There were no 

significant differences in gene expression for either of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test for two-
way comparisons and a one-way analysis of variance for a comparison of more than two 
groups; n represents the number of individuals in the comparison group. 

 

 

 

 

 

Figure 4.10. Independent replication of gene expression in OA hip cartilage. Expressions 
of A) PTHLH and B) KLHL42 were quantified in OA hip cartilage and normalised to the 
housekeeping genes 18S, GAPDH and HPRT1. Statistical significance was assessed using a 
Mann-Whitney U test; n represents the number of individuals in the comparison group; error 
bars represent the mean + SEM. 
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Tissue Stratification for KLHL42 qPCR data p value 
FP Female OA (n = 15) vs male OA (n = 10) 0.718 
FP All OA age: 50 (n = 3) vs 60 (n = 11) vs 70 (n = 9) vs 80 (n = 2) 0.267 
Sy Female OA (n = 10) vs male OA (n = 10) 0.739 
Sy All OA age: 50 (n = 5) vs 60 (n = 4) vs 70 (n = 9) vs 80 (n = 2) 0.763 

   
Table 4.10. Analysis of KLHL42 expression in OA fat pad and synovium. There were no 
significant differences in gene expression for either of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test for two-
way comparisons and a one-way analysis of variance for a comparison of more than two 
groups; n represents the number of individuals in the comparison group. 

 

4.3.10 Characterising the expression profiles of PTHLH and KLHL42 in OA fat pad and 

OA synovium: comparisons of rs10492367 genotype 

As for the analyses in cartilage, the stratification necessary to investigate if an eQTL is 

operating at this locus is the comparison of gene expression between the genotypic groups of 

rs10492367. Again, T allele carriers (GT and TT genotypes) were grouped together and 

compared to GG homozygotes (Table 4.11 and Table 4.12). From these data, it was not 

possible to identify the actions of an eQTL influencing the expression of either of the genes 

tested, however, this interpretation must be with caution as rs10492367 is specifically an OA-

associated locus in the hip stratum of the arcOGEN study, whereas these tissues originate 

from the joints of patients with knee OA. 

 

Tissue Stratification for PTHLH qPCR data p value 
FP All OA GG (n = 16) vs all OA T carriers (n = 10) 0.200 
FP OA female GG (n = 9) vs OA female T carriers (n = 6) 0.224 
FP OA male CC (n = 7) vs OA male T carriers (n = 4) 0.649 
Sy All OA GG (n = 12) vs all OA T carriers (n = 9) 0.749 
Sy OA female GG (n = 6) vs OA female T carriers (n = 5) 0.931 
Sy OA male GG (n = 6) vs OA male T carriers (n = 4) 0.914 

   
Table 4.11. Analysis of PTHLH expression in OA fat pad and synovium. There were no 
significant differences in gene expression for any of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test; n 
represents the number of individuals in the comparison group. 
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Tissue Stratification for KLHL42 qPCR data p value 
FP All OA GG (n = 16) vs all OA T carriers (n = 9) 0.843 
FP OA female GG (n = 9) vs OA female T carriers (n = 6) 0.776 
FP OA male CC (n = 7) vs OA male T carriers (n = 3) 0.517 
Sy All OA GG (n = 12) vs all OA T carriers (n = 8) 0.671 
Sy OA female GG (n = 6) vs OA female T carriers (n = 4) 1.000 
Sy OA male GG (n = 6) vs OA male T carriers (n = 4) 0.610 

   
Table 4.12. Analysis of KLHL42 expression in OA fat pad and synovium. There were no 
significant differences in gene expression for any of the stratifications in fat pad (FP) or 
synovium (Sy). Statistical significance was assessed using a Mann-Whitney U test; n 
represents the number of individuals in the comparison group. 

 

4.3.11 Investigating the effect of the rs10492367 association signal on the allelic output of 

the transcripts of PTHLH and KLHL42 

In the overall gene expression analysis discussed in the preceding sections of this chapter, I 

have observed no evidence for rs10492367 marking a cis-eQTL at this locus in any of the 

end-stage OA tissue samples tested. As an additional approach to investigate this, the allelic 

outputs of the gene transcripts were quantified. Transcript SNPs for each of the genes were 

required as markers of mRNA output, the premise of which is explained in Figure 3.18. Each 

gene was examined for transcripts SNPs (Table 4.13 and Table 4.14) using the UCSC 

Genome Browser (Kent et al., 2002), and a SNAP Pairwise LD (Johnson et al., 2008) search 

was performed for all of the polymorphisms to assess the degree of correlation with 

rs10492367. The heterozygote frequencies were obtained from the dbSNP online database 

(Sherry et al., 2001) and one transcript SNP per gene was selected. 

 

SNP 
r2 relative to 
rs10492367 

D′ relative to 
rs10492367 

Heterozygote 
Frequency (%) Genetic location 

rs6246 0.013 0.146 42.00 Intron/5′ UTR 
rs6253 0.003 0.068 42.00 Intron/3′ UTR 
rs6244 0.008 0.160 13.88 Intron/3′ UTR 
rs6252 0.008 0.160 12.33 3′ UTR 
rs6245 No data No data 12.33 Intron/3′ UTR 
rs2796 0.008 0.160 12.33 Intron/3′ UTR 

     
Table 4.13. Transcript polymorphisms within PTHLH. rs6253 was selected as a marker 
for mRNA output in AEI analysis. The multiple genetic loci for some of the SNPs reflect the 
position on different transcript isoforms. 
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SNP 
r2 relative to 
rs10492367 

D′ relative to 
rs10492367 

Heterozygote 
Frequency (%) Genetic location 

rs17224065 0.045 0.436 49.88 3′ UTR 
rs17801400 0.039 0.410 49.78 3′ UTR 
rs1050287 0.011 0.228 49.50 3′ UTR 
rs1050288 0.021 0.170 39.14 3′ UTR 

rs9029 0.054 0.769 38.30 3′ UTR 
rs7971518 0.046 0.240 35.42 3′ UTR 
rs11613049 0.004 1.000 3.34 3′ UTR 
rs11609108 0.004 1.000 3.34 3′ UTR 
rs61244584 0.004 1.000 3.34 3′ UTR 
rs12301204 0.004 1.000 3.34 3′ UTR 
rs11614346 0.004 1.000 3.34 3′ UTR 

     
Table 4.14. Transcript polymorphisms within KLHL42. rs9029 was selected as a marker 
for mRNA output in AEI analysis. 

 

It was necessary to validate the ability of the sequencing primers to distinguish between 

allelic ratios at the polymorphisms by combining the DNA of major and minor allele 

homozygotes in order to generate known allelic ratios before comparing the values detected 

experimentally to the expected outcome (Appendix B: Figure B.1). There were no donors 

available who were homozygous for the minor allele at rs9029, and so this meant that the 

generation of allelic ratios was limited to heterozygotes and major allele homozygotes. Both 

of the validations had a positive correlation between observed and expected ratios, each with a 

goodness of fit r2 > 0.90, and therefore were considered suitable for AEI analysis. Reactions 

were performed in triplicate and the mean of the cDNA allelic ratios was normalised to the 

corresponding gDNA ratios. Primer sequences for the assays can be found in Appendix A: 

Table A.1, and the assay positions detailed in Figure 4.11. The low MAF of the association 

SNP meant that minor allele homozygotes were scarce, and as such, the analyses were 

restricted to rs10492367 GG and GT individuals. As for the AEI analyses of Chapter 3, hip 

OA, knee OA and NOF cartilage were analysed collectively.  
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A caveat of the AEI performed for PTHLH is that only two (variants 2 and 3) of the four 

RefSeq transcripts were captured by the assay. This was impossible to avoid as no other SNPs 

were present in all of the transcripts. The addition of another transcript SNP into the 

investigation was not achievable, the first reason being due to the physical position of the 

SNPs. rs6246, the only other SNP with a high heterozygote frequency, was present in variants 

3 and 4, meaning that this combined with rs6253 would still leave variant 1 without any 

quantification. Secondly, the low heterozygote frequencies of the transcript SNPs rs6244, 

rs6252, rs6245 and rs2796 meant that the compound heterozygote frequencies with 

rs10492367 would not allow for a large enough n number to be gathered.  

 

There was no evidence to indicate rs10492367 correlates with a cis-eQTL acting on PTHLH 

(Figure 4.12.A) or KLHL42 (Figure 4.12.B) in cartilage. Despite some isolated allelic 

imbalances, on the whole, unlike the trends observed for COL12A1 and MYO6 (Figure 3.20.D 

and Figure 3.20.B, respectively), there were no cis-eQTLs operating on the gene transcripts 

that were unrelated to the OA association signal: both genotype groups clustered around a 1:1 

output ratio (y = 1). Neither of the differences between the genotype groups were statistically 

significant. 

 

 

 

Figure 4.11. Location of pyrosequencing primers used for allelic expression analysis. 
Assays were designed to the exons of A) rs6253 of PTHLH and B) rs9029 of KLHL42. There 
were no polymorphisms that could be used to cover every transcript variant of PTHLH. Red 
arrows () indicate transcript SNP positions. Variants 1 to 4 are numbered as such for 
PTHLH. The images were obtained using the hg19 reference genome. 

A) 

B) 

4 

3 

1 
2 

146 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.12 Analysis of methylation levels at CpG sites surrounding the 12p11.22 locus in hip 

and knee cartilage 

As discussed in Chapter 3.3.12, an underlying cause of the OA association signals could be 

differential methylation of the surrounding genomic regions. It is possible that rs10492367 

could impact upon the methylation levels of the surrounding region, perhaps by affecting the 

binding of DNA methyltransferases. Although I have shown thus far that there is no 

correlation between rs10492367 genotype and nearby gene expression, a similar analysis of 

the epigenetic profile of this region to that of Chapter 3.3.12 would allow for a more detailed 

characterisation. Particularly, if methylation is affecting gene expression, this may have been 

overlooked so far in this chapter as genes that have been omitted from the investigation also 

reside at this locus. As such, I acquired data generated by Dr Michael Rushton (personal 

communication), a member of Prof. Loughlin’s research group (Institute of Cellular Medicine, 

Newcastle University), whereby genome-wide methylation levels were assessed on an 

Illumina Infinium HumanMethylation450 BeadChip array (Rushton et al., 2014). I extracted 

the data for all 212 CpG sites that were annotated within 2 Mb of rs10492367: ranging from 

cg09778963 (982,321 bp downstream of rs10492367) to cg27198040 (897,375 bp upstream 

of rs10492367). For every CpG site, the cartilage methylation profile of 17 hip OA (13 GG, 4 

T carriers), 63 knee OA (46 GG, 17 T carriers) and 35 NOF (29 GG, 6 T carriers) donors 

Figure 4.12. Allelic expression imbalance of PTHLH and KLHL42 in hip and knee 
cartilage stratified by rs10492367 genotype. There was no distinct clustering of compound 
heterozygote donors that would imply a correlation between rs10492367 genotype and an 
imbalance of mRNA output of A) PTHLH or B) KLHL42. OA knee (blue circles), OA hip 
(red squares) and NOF (green triangles) cartilage. Statistical significance was assessed using 
a Mann-Whitney U test; n represents the number of individuals in the comparison group. 
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were included in the various comparisons that I performed. To correct for multiple 

comparisons, a new significance threshold of 0.0002 was calculated using Equation 3.1. 

 

When comparing the average levels of methylation in hip OA donors with NOF donors, 15 

CpG sites remained significant after Bonferroni correction, ten of which had a difference in 

methylation > 5% between the two groups (Figure 4.13.A). Subsequently, the average levels 

of methylation for the 212 CpG sites were compared between hip OA GG and hip OA T 

carriers (Figure 4.13.B). In this case, no significant differences in methylation at any of the 

CpG sites endured following Bonferroni correction, and so there is no evidence to suggest 

methylation is a mechanism by which rs10492367 modulates OA susceptibility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
148 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13. Scatter plots to compare the levels of methylation in hip OA and NOF 
donors. Two hundred and twelve CpG sites, all within 2 Mb of rs10492367, were analysed 
for differential methylation in A) hip OA vs NOF donors and B) hip OA GG vs hip OA T 
carriers. Ten of the fifteen CpG sites that remained significant after Bonferroni correction also 
differed by > 5%, marked by orange circles. None of these CpG sites significantly differed 
between hip OA GG and hip OA T carriers. Statistical significance was assessed using the 
Student’s t test. Horizontal dotted lines represent the significance threshold after Bonferroni 
correction. 
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4.3.13 Identification of CpG sites within 20 bp upstream or downstream of rs10492367 or 

any polymorphism in high linkage disequilibrium with it 

Although the Illumina Infinium HumanMethylation450 BeadChip array covers 99% of 

RefSeq genes, with 96% coverage of CpG islands, the average number of CpG sites per gene 

region included on the array is only 17. This means that when performing an epigenome-wide 

association scan, a considerable proportion of the 28 million CpG sites of the human genome 

will be missed. Therefore, rather than acting through a CpG site captured on the array, it may 

be that this region modulates OA susceptibility through another CpG site in close proximity to 

the association SNP or a SNP in high LD with it. During the final year of my Ph.D, I designed 

a research project for an undergraduate student, Brooke Reed, to investigate this. The work 

detailed in the following sub-section (Chapter 4.3.14) was performed by Brooke under my 

supervision. 

 

Firstly, a 40 bp region (20 bp upstream and 20 bp downstream) surrounding rs10492367 and 

each of the SNPs in an LD of > 0.80 with it were scanned for CpG sites (Table 4.15). 

rs10743612 had a CpG site at -2 bp relative to the polymorphism, while rs11049207 created a 

polymorphic CpG site. These CpG sites from the two regions were selected for subsequent 

analyses. 

 

SNP 40 bp sequence surrounding SNP (5′-3′) 
rs58649696 GCATTCATCTGCCTCTTTCA[C/T]TTTCCTAATGGGACTTTGTA 
rs57380671 ACAACTGCTTTTGGCATTTT[C/T]CTCATGAATTTTTTGCCCAT 
rs61916489 ACAGCTGTCAATTATGTAAA[A/G]TGTAAATGATATGAAACTGG 
rs11049204 CATTTTAAAAAATGAAACTG[A/G]ATAGAAAGATCATAGGCAAA 
rs10492367 GTTCTACTTATTATTAGACC[C/A]AGAGTGCTAGAGAGAAAGTG 
rs10743612 CTGGGCCTTTCTGCCATGCG[G/A]CACCATAAAAATAAGAGATG 
rs11049206 GTTTGTTTTGCTGGTGTTTG[G/C]TTTATACATAAACATGAGTG 
rs11049207 TTGGTGCTTGTGTGTGTGGC[G/A]GTTCTATCTTCTAGGAGGAA 
rs79881709 ATGGTTTCCTGAACTGGAAG[G/A]ATCTCACTCTCCAACTTGGT 
rs10843013 GATAGAGCAGTACCAGTTTT[A/C]ACTAGCACAGAAGTACTTGA 

  
Table 4.15. DNA sequences surrounding the SNPs in high LD (> 0.80) with rs10492367. 
Sequences were analysed for CpG sites (underlined in red text) within 40 bp of the SNPs (in 
[square] brackets). 
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4.3.14 Characterisation of the methylation profiles of CpG sites within 20 bp upstream or 

downstream of rs10743612 and rs11049207 

The first aim of this investigation was to assess if the CpG sites surrounding rs104743612 and 

at rs11049207 were differentially methylated in the cartilage of hip OA, knee OA and NOF 

donors. Secondly, the data were to be stratified by rs10492367 genotype to assess if 

methylation of the CpG sites correlated with the association SNP genotype. gDNA extracted 

from the cartilage samples was bisulfite converted, a treatment that converts unmethylated 

cytosine bases to thymine bases: methylated cytosine bases are protected from this process 

(Chapter 2.25). Therefore, pyrosequencing can be used to sequence the region and detect 

levels of methylation at these sites, detailing the proportion of protected cytosine bases 

relative to converted thymine bases (Chapter 2.26). Primers were designed to the bisulfite 

converted sequences of the three regions (Appendix A: Table A.4). 

 

Methylation at the CpG site -2 bp of rs10743612 was significantly lower in NOF cartilage 

relative to hip OA and knee OA cartilage (Figure 4.14.A), however this did not correlate with 

rs10492367 genotype in the cartilage samples analysed (Figure 4.14.B) or when only hip OA 

cartilage was studied (Figure 4.14.C). Similarly, methylation at the polymorphic rs11049207 

CpG site was significantly lower in NOF cartilage relative to knee OA cartilage (Figure 

4.15.A), however, again this did not correlate with rs10492367 genotype (Figure 4.15.B and 

Figure 4.15.C). Both CpG sites had greater than 50% methylation. 
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Figure 4.14. Analysis of the levels of methylation in OA hip, OA knee and NOF cartilage 
at the CpG site 2 bp upstream of rs10743612. Methylation at the CpG site in cartilage was 
quantified using pyrosequencing and compared between A) hip OA, knee OA and NOF. 
Levels were significantly decreased in NOF relative to both hip OA and knee OA. The data 
were stratified by genotype at rs10492367 in B) all donors and C) hip OA donors only. There 
were no significant correlations between rs10492367 genotype and methylation. Error bars 
represent the SEM. Statistical significance was assessed using the Mann-Whitney U test. * p < 
0.05; ** p < 0.01. 
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4.3.15 Investigation into the effects on enhancer activity of the CpG sites surrounding 

rs10743612 and rs11049207 

To further characterise the methylation profile of the two regions, I sought to investigate the 

effect methylation has on enhancer activity. Regions surrounding the CpG sites were cloned 

into pCpGL-basic/EF1 luciferase reporter vectors (Chapter 2.27). To achieve this, the 

fragments that were cloned into pGL3-promoter vector constructs (discussed in Chapter 5.3.3) 

were ligated into the PstI and SpeI restriction sites of the pCpGL-basic/EF1 vector (Appendix 

C: Figure C.3), using the primers listed in Appendix A: Table A.4. Sequencing confirmed the 

correct ligation of the fragments into the plasmids, and revealed the presence of an additional 

two CpG sites in each of the allelic constructs compared to the smaller fragments used in 

Chapter 4.3.14. Treatment with the methyltransferase enzyme M.SssI consequently only 

methylated the CpG sites of the inserted fragments, and not the CpG-free vector backbone, 

Figure 4.15. Analysis of the levels of methylation in hip OA, knee OA and NOF cartilage 
at the CpG site at rs11049207. Methylation at the CpG site in cartilage was quantified using 
pyrosequencing and compared between A) hip OA, knee OA and NOF. Levels were 
significantly decreased in NOF relative to knee OA. The data were stratified by genotype at 
rs10492367 in B) all donors and C) hip OA donors only. There were no significant 
correlations between rs10492367 genotype and methylation. Error bars represent the SEM. 
Statistical significance was assessed using the Mann-Whitney U test. * p < 0.05. 
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meaning a direct comparison of this methylation relative to the corresponding mock-

methylated vector was possible (Chapter 2.28). The methylation treatments were confirmed 

for all rs10743612 and rs11049207 constructs by digesting the vectors with methylation-

sensitive enzymes. A representative example is shown in Figure 4.16, where methylation at 

the restriction site protected the vector from digestion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All vectors were transfected into the SW1353 chondrosarcoma and U2OS osteosarcoma cell 

lines followed by quantification of the luciferase reporter gene expression after 24 hours 

(Chapter 2.29). The luciferase/Renilla absorbances of the M.SssI-treated and mock-

methylated vectors were normalised to the correspondingly treated empty vectors (Figure 

4.17). One of the most notable activities of the constructs was the overall heightened enhancer 

activity of rs11049207 for all constructs relative to the empty vector controls in the SW1353 

cell line. In terms of investigating the effects of methylation, there were no significant 

differences in the enhancer activity of the methylated form of either allele construct of 

rs10743612 relative to the non-methylated controls. Similarly, there were no differences in 

either cell line for the G allele constructs of rs11049207. When methylated, the A allele 

construct rs11049207 had a significantly lower enhancer activity relative to the non-

methylated control in both cell lines. This is particularly interesting as the A allele of 

rs11049207 replaces the G of the polymorphic CpG site, and thus there is no CpG site to be 

Figure 4.16. Gel electrophoresis of the digested products of the pCpGL rs10743612 A 
allele construct after in vitro methylation with M.SssI and mock methylation. The pCpGL 
constructs were digested with BceAI. Undigested and digested samples were electrophoresed 
through a 1% agarose TBE gel. Mock-methylation does not protect the product marked by an 
asterisk (*) from digestion. The banding pattern for the undigested methylated vector mirrors 
that of the mock-methylated construct. When the methylated vector is treated with BceAI, the 
monomer is protected from digestion. M (marker), mock (mock-methylated), meth. (in vitro 
methylated with M.SssI), un. (undigested product), dig. (digested product). 
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methylated. Instead, it may be the case that the genotype of rs11049207 correlates with the 

methylation of a distal CpG site that was captured in the cloned fragment. Overall, therefore, 

by methylating the A allele construct of rs11049207, the A allele could influence the binding 

of DNA methyltransferases at the distal CpG site, and in turn cause a decrease in enhancer 

activity: the G allele may not have such an influence. 
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Figure 4.17. Investigation into the effects of methylation on the enhancer activity of 
rs10743612 and rs11049207. Fragments surrounding the alleles of the polymorphisms were 
excised from the previously created pGL3-promoter vector constructs and ligated into 
pCpGL-basic/EF1 luciferase reporter vectors. The constructs were either methylated with 
M.SssI or mock-methylated before transfection into A) SW1353 and B) U2OS cell cultures. 
The activity of the luciferase gene downstream of the inserts was quantified after 24 hours. 
All absorbances were read at 595 nm and the luciferase readings normalised to the internal 
control (Renilla). Luciferase/Renilla values were normalised to the basal levels of activity 
measured in the empty vector controls with the corresponding treatments (y = 1). Six 
technical replicates were performed per three independent replicates for both cell line 
transfections. Error bars represent the SEM. Statistical significance was assessed using the 
Mann-Whitney U test. *** p < 0.001. 
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4.4 Discussion 

The aim of the research in this chapter was to characterise the OA association locus marked 

by the polymorphism rs10492367. This was achieved by mirroring the rationale and practical 

investigations of the 6p14.1 locus (Chapter 3). I hypothesised that the association SNP marks 

a functional polymorphism that acts to regulate the expression of at least one of the genes at 

this locus. Prior to the start of my Ph.D, the expressions of PTHLH and KLHL42 were 

quantified by Dr Madhushika Ratnayake and Dr Emma Raine, with PTHLH being an 

excellent candidate gene for OA susceptibility. As such, I continued with the subsequent 

characterisation of this locus, meaning that that genes distal to PTHLH and KLHL42 were 

excluded. As for rs9350591, it was not necessary to genotype any polymorphism other than 

the association signal, as the nature of LD meant that functional correlations of other SNPs 

should be detected through rs10492367 (Styrkarsdottir et al., 2014). 

 

I first postulated that the association signal could be mediating its effects during joint 

development, particularly as PTHLH has a well-established role in endochondral ossification. 

I utilised microarray data that quantified gene expression during MSC differentiation down a 

chondrogenic lineage and an osteoblastic lineage, showing that both genes were expressed 

throughout the time courses. I additionally considered the other genes within 1 Mb upstream 

and 1 Mb downstream of rs10492367 for both time courses. For chondrogenesis, the 

expression of STK38L, REP15 and PPFIBP1 were increased by day 14 of differentiation, 

while the expression of PTHLH, MRPS35 and TM7SF3 were decreased. Particularly for 

PTHLH, this could explain why its expression was so low in synovial joint tissues. Only 

TM7SF3 was significantly upregulated during osteoblastogenesis, which is in contrast to its 

chondrogenic profile and is not substantiated by any known roles of the gene. Chondrogenesis 

was independently investigated using qPCR for PTHLH and KLHL42 only, and again 

confirmed the dynamic gene expression patterns, overall suggesting that either of the genes 

have the potential to modulate OA susceptibility.  

 

I then analysed data that were generated prior to the beginning of my Ph.D to confirm that the 

genes were expressed in articular cartilage; additionally, I confirmed the expressions in fat 

pad and synovium. Both PTHLH and KLHL42 were expressed at relatively low levels, 

however their diverse expression profiles support the evidence that the genes are not tissue-

specific. Once I had confirmed that both genes were expressed in the synovial joint tissues 

tested, I was able to begin to investigate the OA association SNP.  
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The two main ways to do this, as discussed in Chapter 3, are overall gene expression 

quantification and allelic expression quantification. The former technique considers the 

overall total abundance of the gene transcripts, while the latter method interrogates the genes 

in a much more in-depth manner. Investigating the allelic expression allows the quantification 

of mRNA transcripts and thus focusses on whether the association signal specifically 

modulates this output. 

 

Fat pad, synovium and cartilage excised from the knee of OA donors were included alongside 

hip cartilage analyses for overall gene expression quantification. In all tissue types, there were 

no significant differences in either of the gene expressions relative to the OA association SNP 

genotype. Nevertheless, PTHLH and KLHL42 expressions were differentially expressed in 

cartilage depending on the disease state and joint site. This suggests that the genes might 

contribute to joint-specific OA development (Karlsson et al., 2010) but are acting 

independently of the OA association signal detected by the arcOGEN study. For example, 

PTHLH expression was increased in OA female cartilage relative to non-OA control cartilage, 

an observation similarly reported in OA knee cartilage (Terkeltaub et al., 1998). 

 

The aim of AEI analysis is to identify if there are differences in the mRNA outputs that 

correspond to the different alleles of a heterozygote individual (Wang and Elbein, 2007). 

Although the AEI investigation of Chapter 3 yielded no correlations with association SNP 

genotype, other studies have previously shown positive results in the identification of cis-

eQTLs (Bos et al., 2012; Raine et al., 2012; Gee et al., 2014). Despite rs10492367 being 

associated with only hip OA, it is possible to detect AEI in more than one joint tissue (Egli et 

al., 2009; Bos et al., 2012; Styrkarsdottir et al., 2014), and so knee cartilage was combined 

with hip cartilage is this study. However, following this in-depth approach of investigating 

AEI, there were still no significant differences in gene expression that could be attributed to 

rs10492367 genotype. An explanation for this could be that the association marked by 

rs10492367 may be regulating the expression of a gene other than those characterised, as cis-

eQTLs can act at up to megabase distances (Nica and Dermitzakis, 2013). 

 

DNA methylation is now an established mechanism through which the genome can be 

regulated and has been reported to correlate with DNA sequence variations (Bell et al., 2011; 

Smith et al., 2014). Unlike the 6q14.1 locus, however, analysis of the CpG sites across a 2 Mb 

span of the region did not implicate methylation in the modulation of OA association. 

Following this, I designed an undergraduate project to further probe the region, as the 
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microarray used for this investigation could have excluded functional CpG sites. The project 

interrogated CpG sites surrounding the association SNP and those in high LD with it, and had 

three aims: i) to characterise methylation in hip OA, knee OA and NOF cartilage, ii) to 

identify any correlation with rs10492367 genotype, and iii) to investigate the effect of CpG 

site methylation on enhancer activity. Stratification by disease state often correlated with 

differential methylation of the CpG sites suggesting, as for overall gene expression, that these 

loci could be modulating OA susceptibility but are unrelated to the association signal. 

However, the assays need to be validated to ensure these results are robust, as this was not 

attainable in the timeframe of the undergraduate project. 

 

The final aim of investigating the methylation of this region was to identify if differential 

methylation of the CpG sites affected the enhancer activity of the region. pGL3-promoter 

vector constructs were already generated (Chapter 5) that contained the CpG sites of interest, 

and so the inserts were taken from the constructs and ligated into CpG-free pCpGL-basic/EF1 

luciferase reporter vectors. A caveat of this approach is that the fragments were not identical 

to those used in the pyrosequencing, meaning an additional two CpG sites were captured in 

each of the inserts. It is impossible, therefore, to rule out the effects of additional CpG sites on 

the differential enhancer activities observed. This is exemplified by rs11049207, where 

methylation of the A allele construct caused a significantly decreased enhancer activity 

relative to the non-methylated control, even though the presence of the A allele replaces the G 

allele of the CpG site. Overall, these results reinforce the functional effects that methylation 

could have on the OA association of this region. 

 

It is clear that, like the signal studied in Chapter 3, the association signal marked by 

rs10492367 does not modulate its effects in the end-stage OA cartilage, fat pad or synovium 

tissues tested. Nevertheless, the genes at this locus are all dynamically expressed throughout 

chondrogenesis and osteoblastogenesis, which implies a potential role for any of the genes to 

act at earlier stages of joint development. Moreover, differential methylation at CpG sites at 

or near SNPs in high LD with rs10492367 was observed between joint site and disease state, 

while methylation of the A allele construct of rs11049207 appeared to regulate enhancer 

activity of the 12p11.22 locus. Overall, this chapter highlights the huge amount of diversity at 

this OA association locus, and shows that there is scope to further investigate the functional 

region and its association to OA. 
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Chapter 5. Functional Studies of the 12p11.22 Locus Marked by the 

Polymorphism rs10492367 
 

5.1 Introduction 

Although there was no correlation observed between the carriage of the risk allele of 

rs10492367 and expression of either PTHLH or KLHL42 in the end-stage OA cartilage tested, 

it by no means implies that the region is not functional in OA susceptibility. The association 

signal may exert its effects in other tissue types, at a different stage of development or by 

modulating gene expression outside the region of LD. Indeed, Table 4.2 suggests several of 

the SNPs are in a functionally active state in bone marrow-derived cultured MSCs, MSC-

derived cultured cells and osteoblast primary cells. It was therefore necessary to functionally 

dissect the association signal, by investigating the potential of the region to modulate 

enhancer activity in relevant cell lines. Based on this, I hypothesised that rs10492367, or a 

polymorphism in high LD with it, is functional in regulating the enhancer activity of the 

region. Should differential activity be observed, it would be necessary to further investigate 

the identity and function of trans-acting factor binding that could account for such 

differences. 
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5.2 Aim 

The aim of this chapter was to characterise the functionality of the association signal marked 

by rs10492367. This was achieved by: 

 

• cloning DNA fragments of each allele of rs10492367 and of the polymorphisms in 

high LD with it into pGL3-promoter vectors 

• investigating if there is allele-specific differential enhancer activity of the regions in 

chondrosarcoma and osteosarcoma cell lines 

• creating a set of criteria that allows a ranking system to identify the SNP(s) that should 

be carried forward for further functional analysis 

• characterising protein binding to the selected SNP(s) using EMSAs 

• confirming protein binding in vitro in a chondrosarcoma cell line using ChIP 

• investigating the effect of protein binding on target gene expression by knocking-

down the transcription factors in a primary cell line 

• assessing if knocking-down transcription factors in a chondrosarcoma cell line has 

differential effects depending on which allele of rs10492367 is present  
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5.3 Results 

5.3.1 Selection of polymorphisms for functional characterisation of the region 

Following the database searches detailed in Figure 4.1 and Table 4.2, it was clear that the OA 

association SNP resides in a predicted enhancer region with transcription factors known to 

bind in various cell lines, including MSC-derived chondrocytes. In addition to this, there are 

nine polymorphisms that are known to be in an LD of > 0.80 with rs10492367, all of which 

are intergenic (Table 5.1). I therefore hypothesised that rs10492367, or a SNP in high LD (r2 

> 0.80) with it, acts on target gene expression in an allele-specific manner by regulating the 

enhancer activity of the region.  

 

SNP 
bp from 

rs10492367 
r2 relative to 
rs10492367 

D′ relative to 
rs10492367 

Major/minor 
allele MAF 

rs58649696 10,617 0.853 1.000 C/T 0.183 
rs57380671 4,563 0.806 1.000 C/T 0.233 
rs61916489 1,682 0.853 1.000 G/A 0.183 
rs11049204 1,407 1.000 1.000 A/G 0.208 
rs10492367 0 1.000 1.000 G/T 0.208 
rs10743612 421 0.865 1.000 G/A 0.233 
rs11049206 531 1.000 1.000 G/C 0.208 
rs11049207 3,683 0.853 1.000 G/A 0.183 
rs79881709 4,054 0.853 1.000 G/A 0.183 
rs10843013 10,226 1.000 1.000 A/C 0.208 

      
Table 5.1. SNPs in high LD (r2 > 0.80) with rs10492367. All of the SNPs are intergenic 
between PTHLH and KLHL42, three of which are in perfect LD with the association SNP. 
The association signal is highlighted by a dotted box. 

 

Before commencing on any functional analyses of the region, it was important to identify 

whether or not the SNPs in Table 5.1 were themselves genotyped on the arcOGEN array, or if 

they were in perfect LD with other SNPs that were captured by the array. The cut-off r2 used 

in this selection was > 0.80 relative to rs10492367, the premise being that any of the SNPs 

could be causal in the OA association of the region, but with the effects detected via 

rs10492367 as this was the SNP genotyped on the microarray. Therefore, if any of the 

polymorphisms are in high LD with another SNP genotyped on the array, and the r2 is greater 

than the r2 relative to the association SNP, it is likely that the OA association would have 

additionally been detected by that SNP. As such, I performed a SNAP Proxy Search for each 

of the SNPs (Table 5.2), and identified that none of the r2 values were greater than those 

relative to rs10492367. It was therefore reasonable to carry forward all the SNPs for 

characterisation of the region. 
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SNP in LD > 
0.80 with 

rs10492367 
SNP genotyped on 

the arcOGEN array 

Distance from 
SNP of 

interest (bp) 

r2 relative 
to SNP of 
interest 

D′ relative to 
SNP of 
interest 

rs58649696 

rs258394 533 0.853 1.000 
rs258396 1,301 0.853 1.000 

rs10492367 10,617 0.853 1.000 
rs10843013 20,843 0.853 1.000 

rs57380671 rs10492367 4,563 0.806 1.000 
rs10843013 14,789 0.806 1.000 

rs61916489 

rs10492367 1,682 0.853 1.000 
rs258396 7,634 0.853 1.000 
rs258394 8,402 0.853 1.000 

rs10843013 11,908 0.853 1.000 

rs11049204 
rs10492367 1,407 1.000 1.000 
rs10843013 11,633 1.000 1.000 

rs10492367 
rs10492367 0 1.000 1.000 
rs10843013 10,226 1.000 1.000 

rs10743612 

rs10492367 421 0.865 1.000 
rs258396 9,737 0.865 1.000 

rs10843013 9,805 0.865 1.000 
rs258394 10,505 0.865 1.000 

rs11049206 rs10492367 531 1.000 1.000 
rs10843013 9,695 1.000 1.000 

rs11049207 

rs10492367 3,683 0.853 1.000 
rs10843013 6,543 0.853 1.000 
rs258396 12,999 0.853 1.000 
rs258394 13,767 0.853 1.000 

rs79881709 

rs10492367 4,054 0.853 1.000 
rs10843013 6,172 0.853 1.000 
rs258396 13,370 0.853 1.000 
rs258394 14,138 0.853 1.000 

rs10843013 rs10843013 0 1.000 1.000 
rs10492367 10,226 1.000 1.000 

     
Table 5.2. List of SNPs that are in high LD (r2 > 0.80) with rs10492367, detailing the 
polymorphisms that are both in high LD with them and that were genotyped by the 
arcOGEN study (arcOGEN Consortium et al., 2012). None of the SNPs had a higher LD 
with the other polymorphisms than that relative to rs10492367 (in bold). 

 

5.3.2 Selection of cell lines and characterisation of their expressions of PTHLH and 

KLHL42 

To functionally characterise the region, I decided to perform luciferase reporter assays. These 

assays involve the transfection of reporter vectors into a relevant cell line in order to quantify 
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the resulting expression of the encoded luciferase gene. Given that OA is thought to be 

primarily a disease of cartilage, the SW1353 chondrosarcoma cell line was selected for use in 

the luciferase reporter assays. In addition, as PTHLH has a widely known role in 

endochondral ossification (Wysolmerski, 2012) the U2OS osteosarcoma cell line was also 

selected. As transcription factors are a likely modulator of gene expression, which will be 

investigated should differential enhancer activity be observed, it was important to confirm that 

PTHLH and KLHL42 were expressed. Moreover, as future experiments could be directed 

more toward primary chondrocytes, I also investigated the gene expressions in five HAC 

donors (Figure 5.1). Cell culture conditions are detailed in Chapter 2.15 and Chapter 2.17. 

Gene expression was detected in all cell lines. It was therefore inferred that the transcription 

factors potentially modulating the expressions were also expressed in the cell lines. 

Genotyping of DNA extracted from SW1353 and U2OS cell cultures revealed both cell lines 

were homozygous for the major allele of rs10492367. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.3 Investigating the allele-specific effects on the enhancer activity of rs10492367 and 

the polymorphisms with an r2 > 0.80 relative to it 

To assess if the region is functional in regulating enhancer activity, I performed luciferase 

reporter assays. As the total distance covered by the polymorphisms was almost 21 kb from 

rs58649696 to rs10843013, it was not possible to investigate the functionality of the region as 

a whole. As such, I designed primers (Appendix A: Table A.2) covering regions of no more 

than 650 bp surrounding each individual polymorphism and used genomic DNA from major 

Figure 5.1. Expression of PTHLH and KLHL42 in SW1353, U2OS and HAC cells. Both 
genes were expressed in SW1353 (S), U2OS (U) and HAC (H) cells. RNA was extracted 
from cultures of SW1353 and U2OS cells, cDNA synthesised and three technical repeats 
used for qPCR to assess gene expression. RNA was extracted from five HAC donors, cDNA 
synthesised and three technical repeats performed for qPCR per donor. Error bars represent 
the SEM. 
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and minor allele homozygotes for the allele templates. At this stage, the repetitive nature of 

the surrounding DNA meant that a single, specific amplimer for rs57380671 could not be 

produced and was therefore excluded from the experiment. Due to technical difficulties 

experienced in identifying minor allele homozygotes, site-directed mutagenesis was used to 

generate minor allele amplimers for rs11049204 and rs79881709 (Chapter 2.14). The regions 

were ligated into pGL3-promoter vectors (Appendix C: Figure C.1) that contained an SV40 

promoter and a multiple cloning site upstream of the luciferase gene, and crucially did not 

possess an enhancer (Chapter 2.13). All vectors were co-transfected with a Renilla control 

vector into chondrosarcoma and osteosarcoma cell lines, followed by quantification of the 

luciferase and Renilla reporter gene expressions after 24 hours (Chapter 2.16). The empty 

pGL3 promoter vector was used as a control, and the luciferase divided by Renilla value of 

this control plasmid gives an arbitrary value of 1. 

 

Taken as a whole, it was apparent that the regions assayed had functional activities 

particularly in the chondrosarcoma cell line (Figure 5.2). rs61916489, rs11049204, 

rs10743612 and rs11049207 had normalised y-axis values > 1, suggesting an increase in 

levels of enhancer activity relative to the basal levels of the empty vector. Conversely, 

rs58649696 and rs10843013 both had apparent repressive activities relative to the basal empty 

vector levels. In the osteosarcoma cell line, the values more closely resembled the activity of 

the empty vector. There were no significant differences in either cell line between the alleles 

of rs61916489, rs11049204 and rs10743612. rs58649696 and rs11049206 were the only 

polymorphisms that were significantly different in both cell lines. There was a decrease in 

enhancer activity in the presence of the minor allele of rs58649696 (p = 0.0009 [SW1353] and 

p < 0.0001 [U2OS]), and this was mirrored by rs11049206 (p = 0.002) in the osteosarcoma 

cell line. Conversely, the presence of the minor allele of rs11049206 (p = 0.0003) in the 

chondrosarcoma cell line caused an increase in enhancer activity. The remaining 

polymorphisms – rs10492367 (p < 0.0001), rs11049207 (p = 0.019), rs79881709 (p < 0.0001) 

and rs10843013 (p = 0.037) – all differed in the chondrosarcoma cell line only. The minor 

alleles of rs11049207 and rs79881709 both caused a decrease in enhancer activity relative to 

the major alleles, whereas the minor alleles of the association SNP and rs10843013 caused an 

increase in enhancer activity. 
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Figure 5.2. Investigation into the allelic effects of rs10492367 and the SNPs in high LD 
with it. Fragments surrounding the alleles of the association SNP and SNPs in high LD with 
it were ligated into pGL3-promoter vectors. The constructs were transfected into C) the 
SW1353 chondrosarcoma cell line and D) the U2OS osteosarcoma cell line, and after 24 
hours the activity of the luciferase gene downstream of the inserts was quantified. All 
absorbances were read at 595 nm and the luciferase readings normalised to the internal 
control (Renilla). Luciferase/Renilla values were normalised to the basal levels of activity 
measured in the empty vector control (y-axis = 1). A) Transcription Factor ChIP-Seq track 
and B) Chromatin State Segmentation track both taken from the UCSC Genome Browser: a 
black or grey box in A) indicates transcription factor binding and an orange or yellow box in 
B) indicates the region is predicted to have enhancer activity. Six technical replicates were 
performed per six independent replicates for SW1353 transfections and four independent 
replicates for U2OS transfections. Error bars represent the SEM. Statistical significance was 
assessed for the C) SW1353 and D) U2OS cell line luciferase assay results using the Mann-
Whitney U test. * p < 0.05; ** p < 0.01; *** p < 0.001. 
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5.3.4 Selection of polymorphisms for further functional analysis 

The dynamic functionality of the region certainly warranted further investigation, with the 

aim of the next step being to identify transcription factors that bind the polymorphisms. It 

would not be realistic to investigate all the polymorphisms, or even the six SNPs that showed 

differential allelic enhancer activity, and so it was necessary to narrow the field of 

investigation. To do this, I designed a set of criteria that would allow the selection of only the 

most promising polymorphisms. The factors that I deemed most important in determining 

whether a polymorphism could be contributing to the association signal were: 

 

• the r2 relative to rs10492367: an ideal situation would be an r2 of 1.000 

• chromatin state: based on the ENCODE dataset, if the region is predicted to have 

enhancer activity (as detailed in Figure 5.2), it could be more likely to be functional in 

vivo in regulating gene expression 

• transcription factor binding: any relevant indications of protein binding from the 

ENCODE dataset would be a necessary consideration 

• significant differences in enhancer activity between alleles in the SW1353 cell line 

(Figure 5.2.C): significant differences in allelic activity could translate into an in vivo 

disease susceptibility locus 

• significant differences in enhancer activity between alleles in the SW1353 cell line in 

the same direction as rs10492367: that is, increased enhancer activity with the risk 

allele (Figure 5.2.C) 

• significant differences in enhancer activity between alleles in the U2OS cell line 

(Figure 5.2.D) 

 

Each polymorphism was scored on these criteria, and those that had a total score of > 3 out of 

a possible 6 were selected for further analysis (Table 5.3). Based on these criteria, 

rs58649696, rs10492367, rs11049206 and rs10843013 were identified as the most promising 

candidates.
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SNP 

r2 relative to 
association 

SNP 

Perfect LD 
(r2 = 1) with 
rs10492367 

Resides in 
predicted 
enhancer 

Transcription 
factors known 

to bind 

Significant 
difference 
in SW1353 

Same direction 
as association 

SNP in SW1353 

Significant 
difference 
in U2OS 

Overall 
score ( /6) 

rs58649696 0.853       3 
rs57380671 0.806    No data No data No data 0 
rs61916489 0.853       1 
rs11049204 1.000       2 
rs10492367 1.000       5 
rs10743612 0.850       1 
rs11049206 1.000       5 
rs11049207 0.853       1 
rs79881709 0.853       1 
rs10843013 1.000       3 

         
Table 5.3. Criteria used for selecting SNPs to carry forward for investigating protein:DNA binding using EMSAs. One point was given for each 
match of the following criteria: i) an LD relative to the association SNP of 1.00, ii) located within a predicted enhancer region, iii) transcription factors 
known to bind; iv) significant allelic differences in luciferase activity in the SW1353 cell line, v) significant differences in luciferase activity in 
SW1353 cells in the same direction as rs10492367 (that is, increased enhancer activity with the risk allele), and vi) significant allelic differences in 
luciferase activity in the U2OS cell line. All polymorphisms with a score of 3 or above were selected for investigation using EMSAs: rs58649696, 
rs10492367, rs11049206 and rs10843013. The association signal is highlighted by a dotted box. 
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5.3.5 Assessing the purity of nuclear protein extracts from SW1353 cells, U2OS cells and 

human articular chondrocytes (HACs) 

Having identified differential enhancer activity between the alleles of polymorphisms within 

the association interval, I next aimed to investigate the transcription factors that could be 

responsible for the functional effects. EMSAs are a technique used to investigate protein 

binding to specific DNA sequences, and requires the extraction of nuclear protein from the 

cell lines of interest. Nuclear protein from SW1353, U2OS and five HAC donor cell cultures 

was extracted and the purity of the extracts assessed using anti-lamin A/C and anti-GAPDH 

antibodies on a western blot (Chapter 2.18 – Chapter 2.20). Lamins are structural components 

of the nuclear membrane whereas GAPDH is involved in glycolysis in the cell cytosol. Lamin 

A/C was detected in all three nuclear extracts and GAPDH was abundant in the cytosolic 

extracts (Figure 5.3).  

 

 

 

 

 

 

 

 

 

 

 

5.3.6 Investigating transcription factor binding to rs10492367 using chondrosarcoma and 

osteosarcoma cell line nuclear protein 

I have shown that the risk (T) allele of rs10492367 caused an increase in enhancer activity 

relative to the non-risk (G) allele. EMSA conditions were first optimised for 5 µg of protein 

binding to 200 fmol fluorescently-labelled G and T allele probes (Chapter 2.23), using NP-40 

and glycerol as optional additional components that have the potential to stabilise and 

strengthen the protein:DNA complexes (Appendix F: Figure F.1). Protein binding to the G 

and T allele probes produced seven distinct complexes, highlighted by the numbered arrows, 

with little difference between the two conditions. Therefore, NP-40 was selected as the only 

additional component in the EMSA reaction mixes for rs10492367. 

 

Figure 5.3. Assessment of the purity of the nuclear protein extract from SW1353, 
U2OS and HAC cell cultures using immunoblotting. The presence of lamin A/C is an 
indicator of nuclear (Nuc.) protein, while GAPDH indicates cytosolic (Cyt.) protein.  
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Following optimisation of the binding conditions, the specificity and affinity of the protein 

complexes to the G and T allele probes were tested. This required the use of increasing 

concentrations of unlabelled competitors identical to the labelled probes. These competition 

assays were performed with a 5-, 10-, 25- or 50- fold excess of unlabelled competitor relative 

to the labelled probe (Figure 5.4). Most strikingly, protein binding to both allele probes in 

complexes 1, 2, 4 and 5 were outcompeted at lower concentrations of the G allele competitor 

compared to the T allele competitors. This suggests the protein in these complexes bind more 

avidly to the G allele than the T allele of rs10492367. Moreover, complex 7 appeared to bind 

the T allele probe specifically, with only a shadowing of a band with the G allele probe. In 

addition, increasing competition with the T allele competitor with both allele probes caused 

an increase in the band intensity of complex 4, which could be caused by an increasing 

availability of the probe from an outcompeted protein:DNA complex.  
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Figure 5.4. Competition EMSAs to investigate allele-specific binding of SW1353 and U2OS nuclear extract to the G and T alleles of 
rs10492367. The concentrations of unlabelled competitors were increased from 0 to 50 times that of the labelled probes. The protein:probe complexes 
marked by arrows 3, 6 and 7 were not noticeably disrupted upon increasing competitor concentrations. Protein binding to both allele probes in 
complexes 1 and 2 were outcompeted by the G allele competitor, and to less of a degree with the T allele competitor. Complexes 4 and 5 were 
similarly disrupted over the concentration gradient of the G allele competitor, whereas increasing competition with the T allele competitor in both 
allele probes caused an increase in the band intensity. Concentration = 0, 5, 10, 25, 50 x probe concentration. 
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The region of the labelled probe that was involved in binding the protein was investigated by 

using competitor sequences that consisted of one region identical to the labelled probe and the 

remaining sequence entirely random (Table 5.4). The random sequence had no effect on 

protein binding to either allele probe, indicating that the protein:DNA complexes are specific 

for the probe sequences (Figure 5.5). Complexes 2 and 4 binding to the G allele probe were 

outcompeted by competitor 3, indicating that it is likely to be the 3'-most sequence of the G 

allele probe that is required for protein binding. The increased protein binding in complexes 6 

and 7 with competitor 1 with the T allele probe may have been caused by a new protein 

binding site being generated by the combination of sequences. 

 

Sequence name Probe sequence (5'-3') 
Random primer full length ATGGGGCGTGCGATCGTACTGCCTACGGTGG 

G allele probe and competitor TCTCTCTAGCACTCTGGGTCTAATAATAAGT  
T allele probe and competitor TCTCTCTAGCACTCTTGGTCTAATAATAAGT 

Competitor 1: G allele TCTCTCTAGCACTCTGGACTGCCTACGGTGG 
Competitor 1: T allele TCTCTCTAGCACTCTTGACTGCCTACGGTGG 
Competitor 2: G allele ATGGGGCGTCACTCTGGGTCTACTACGGTGG 
Competitor 2: T allele ATGGGGCGTCACTCTTGGTCTACTACGGTGG 
Competitor 3: G allele ATGGGGCGTGCGATTGGGTCTAATAATAAGT 
Competitor 3: T allele ATGGGGCGTGCGATTTGGTCTAATAATAAGT 

  
Table 5.4. Primer sequences used for competition EMSAs to investigate the regions of 
the G and T allele probes of rs10492367 to which the SW1353 and U2OS nuclear 
extracts bind. Each primer was annealed to its reverse complement, creating double stranded 
DNA (dsDNA), prior to use in EMSAs. The original competitor sequences are underlined in 
red; the random sequences are in black text. 
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Figure 5.5. Competition EMSAs to investigate the regions of the G and T allele probes of rs10492367 to which the SW1353 and U2OS 
nuclear extracts bind. The protein:probe mixes were incubated with unlabelled competitors that had random sequences replacing the original 
competitor sequence. An entirely random competitor (full) had no effect on any of the protein:probe complexes. The G allele probe binding to the 
protein in complexes 2 and 4 were outcompeted by competitor 3. Competitor 1 caused the band intensity to increase for complexes 5, 6 and 7 with 
the T allele probe. Concentration = 0, 10, 25 x probe concentration. Competitor = 31 bp random competitor (full); 3′-most region of the competitor 
replaced by a 14 bp random sequence (1);  the central 13 bp region flanked either side by a 9 bp random sequence (2); 5′-most region of the 
competitor replaced by a 14 bp random sequence (3). 
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Searches of four databases – UCSC Genome Browser, PROMO, JASPAR and TFSEARCH – 

yielded an extensive list of transcription factors that were either known or predicted to bind 

rs10492367 (Chapter 2.21 – Chapter 2.22). Predictions were based solely on the probe 

sequences, whereas known binding was based on experimental evidence from the 

Transcription Factor ChIP-Seq from ENCODE track available on the UCSC Genome 

Browser. In order to prioritise those that were most likely to bind in vivo, it was necessary to 

implement the selection criteria detailed in Figure 2.1. As a result, nine transcription factors 

were selected for competition EMSAs to investigate the identity of the protein complexes 

binding to rs10492367 (Table 5.5). For each trans-acting factor, a competitor sequence was 

designed that included the consensus sequence at the position predicted to bind, flanked by a 

random sequence. The majority of the predicted binding sites were 5' to the SNP or in the 

central region, which is contradictory to the region predicted to be necessary for protein 

binding to the G allele probe (Figure 5.5). 

 

Factor Database Competitor sequence (5'-3') Key 
C/EBPβ PROMO CCACCGTAGGCAGGCAAATCGCACGCCCCAT 1 
MEF2A UCSC; 

JASPAR 
CCATATTTTTGGCTACGATCGCACGCCCCAT 1 

MEF2C UCSC; 
JASPAR 

CCCTAAAAATAGGTACGATCGCACGCCCCAT 2 

NFIC UCSC; 
PROMO 

CCACCGTAGGCAGCCAAACGCCACGCCCCAT 1 

NFκB UCSC CCACCGGGAAAGTCCCGATCGCACGCCCCAT 3 
RELA UCSC CCACCGGAGTTTCCCCTATCGCACGCCCCAT 1 
RXRα PROMO CCACCGTAGTGAACCCGATCGCACGCCCCAT 1 
TCF3 UCSC CCACCGTAGGCAGTACAGCTGCACGCCCCAT 4 
TCF12 UCSC CCACCGTAGGCAGTACAGCTGCACGCCCCAT 4 

    
Table 5.5. Nine transcription factors selected for competition EMSAs to investigate the 
identity of the protein complexes binding to rs10492367. After selecting the most 
promising transcription factors, competitor sequences were designed to include the protein 
consensus sequence at the site predicted to bind, flanked by a random sequence. Transcription 
factor consensus sequences are underlined in red, the random sequences are in black text. 
Origin of consensus sequences are numbered in the key: 1 (PROMO), 2 (Milligan and Jolly, 
2012), 3 (Pierce et al., 1988) and 4 (GeneCards). 

 

Initially, the basic reaction mixture was incubated with competitors at 10 x and 25 x the 

concentration of the fluorescently-labelled probe (Appendix F: Figure F.2) in order to select 

those necessitating a more detailed competition EMSA (Figure 5.6 and Figure 5.7). From both 

the intermediate and the full competition EMSAs, the most compelling results were: i) the 
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TCF3/12 consensus sequence outcompeting complexes 2 and 4 with both allele probes with 

SW1353 nuclear protein, and ii) complex 4 binding to both alleles being outcompeted by the 

MEF2A consensus sequence. The remaining consensus sequences resulted in subtle, less 

defined competitions, including RxRα which appeared to have no effect on protein binding. 
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Figure 5.6. Competition EMSAs to investigate the consensus sequences necessary for SW1353 and U2OS nuclear extract binding to the G and 
T alleles of rs10492367. The protein:probe mixes were incubated with a full concentration range of unlabelled competitors that contained the 
consensus sequences for selected transcription factors predicted to bind the G or T allele probes. The results confirmed the preliminary indications 
that competition with the MEF2A and MEF2C consensus sequences caused changes in band intensity. Competition of the T allele probe with the 
RELA consensus sequence appeared to increase the band intensity of complex 4 with the U2OS nuclear extract. Concentration = 0, 5, 10, 25, 50 x 
probe concentration. 

SW1353 
nuclear 
protein 
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Figure 5.7. Competition EMSAs to investigate the consensus sequences necessary for SW1353 and U2OS nuclear extract binding to the G 
and T alleles of rs10492367. The protein:probe mixes were incubated with a full concentration range of unlabelled competitors that contained the 
consensus sequences for selected transcription factors predicted to bind the G or T allele probes. The results confirmed the preliminary indications 
that competition with TCF3/12 and C/EBPβ consensus sequences caused changes in band intensity. Competition with NFκB caused disruption of 
the protein binding to the T probe in complexes 2 and 4. Concentration = 0, 5, 10, 25, 50 x probe concentration. 
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Based on the competition EMSAs, the binding of RELA, MEF2A, MEF2C, TCF3, TCF12 

and C/EBPβ were further investigated by means of supershift EMSAs. This involved the 

addition of antibodies raised against the specific transcription factors, with the premise being 

that the antibody would bind the trans-acting factor:DNA complex, causing the complex to 

migrate more slowly through the gel which would be observed as a ‘supershift’. The binding 

of each transcription factor was investigated in this manner, in addition to a panel of trans-

acting factors that are known to be expressed in cartilage (Appendix E: Table E.1). To test the 

concentration of antibody required for the supershift EMSAs, the basic reaction mixes were 

incubated with either 2 or 6 µg of antibody. 

 

A supershift was observed for TCF3, marked by an asterisk in Figure 5.8, for both alleles with 

both nuclear extracts. The supershift can be observed more clearly with 6 µg of antibody in 

the SW1353 nuclear protein. In addition, complex 4 binding to the T allele probe with the 

SW1353 nuclear extract became smeared upon the addition of the RELA antibody. There 

were no other supershifts observed for the remaining predicted transcription factors (Figure 

5.8 and Figure 5.9). Of the panel of trans-acting factors known to be expressed in cartilage 

that were tested, SUB1 (also known as PC4) caused complex 1 to disappear (Appendix F: 

Figure F.3 – Figure F.7). Other transcription factors that appeared to cause supershifts were 

AR, Deaf1 and Ets1/2, although these could not be replicated. For TCF3, RELA and SUB1, 

the supershifts were repeated and replicated with both SW1353 and U2OS nuclear protein, 

before confirmation using HAC nuclear extract (Figure 5.10). The supershift for RELA was 

rather ambiguous, and subsequent repeats of this experiment produced equally unclear results. 

It is unclear which band supershifted to produce the banding pattern observed for TCF3; 

however competition EMSAs did suggest the protein in complex 2 was TCF3. For RELA, 

competition EMSAs caused complex 4 to become more intense, and it was this complex that 

was affected by incubation with the RELA antibody. SUB1, RELA and TCF3 were selected 

as candidates for further functional analysis (Chapter 5.3.10 – 5.3.13). The competition and 

supershift EMSA results of transcription factors binding to rs10492367 are summarised in 

Table 5.6.
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Figure 5.8. Supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to the G and T alleles of 
rs10492367. The protein:probe mixes were incubated with either 2 µg or 6 µg of antibody. The results confirmed the preliminary indications that 
RELA and TCF3 interacted with the fluorescently labelled DNA. Bands 4 – 7 of the G allele probe were fainter when incubated with 6 µg RELA 
antibody relative to the species-matched IgG control antibody. A supershift, marked by an asterisk (*), was observed for both alleles after incubation 
with the TCF3 antibody. No changes in the banding patterns were observed after incubation with C/EBPβ or MEF2C antibodies. Control (IgG species-
matched antibody). 
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Figure 5.9. Supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to the G and T alleles of 
rs10492367. The protein:probe mixes were incubated with either 2 µg or 6 µg of antibody. No changes in the banding patterns were observed after 
incubation with TCF12 or MEF2A antibodies relative to the control antibody. Control (IgG species-matched antibody). 

SW1353 
nuclear 
protein 

180 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. Supershift EMSAs to investigate the transcription factors of HAC nuclear 
extract binding to the G and T alleles of rs10492367. The protein:probe mixes were 
incubated with 6 µg of antibody. The results confirmed the SW1353 and U2OS indications 
that PC4 and TCF3 interacted with the fluorescently labelled DNA. Band 1 becomes fainter 
for both alleles after incubation with the PC4 antibody relative to the species-matched IgG 
control. A supershift, marked by an asterisk (*), was observed for both alleles after 
incubation with the TCF3 antibody. The results were less clear for RELA, where previously 
bands 4 – 7 were seen to become fainter relative to the IgG control antibody. Control (IgG 
species-matched antibody). Lanes irrelevant to this analysis have been removed. 
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 Competition EMSA  Supershift 
Transcription factor Nuclear protein Allele Effect Complex  Nuclear protein Allele Complex 

C/EBPβ SW1353 and U2OS G and T Outcompeted 4  No effect No effect No effect 
MEF2A SW1353 and U2OS G and T Outcompeted 4  No effect No effect No effect 
MEF2C SW1353 and U2OS G and T Outcompeted 4  No effect No effect No effect 
NFIC No effect No effect No effect No effect  No effect No effect No effect 
NFκB SW1353 and U2OS T only Outcompeted 2 and 4  No effect No effect No effect 
RELA U2OS T only Stronger binding 4  SW1353 and HAC T only 4 
RXRα No effect No effect No effect No effect  No effect No effect No effect 
TCF3 SW1353 G and T Outcompeted 2 and 4  SW1353, U2OS and HAC G and T 2 
TCF12 SW1353 G and T Outcompeted 2 and 4  No effect No effect No effect 

SUB1 (PC4) No data No data No data No data  SW1353, U2OS and HAC G and T 1 

         
Table 5.6. Summary of competition and supershift EMSAs to investigate transcription factor binding to rs10492367. All transcription factors, 
apart from SUB1 (PC4), were predicted to bind the SNP. RELA and TCF3 were positively identified as binding rs10492367 through supershift 
EMSAs, in addition to SUB1 (PC4). RELA, TCF3 and SUB1 (PC4) were selected for further functional analysis. The nuclear protein extracts for 
which effects were observed are listed in the ‘Nuclear protein’ column. 
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5.3.7 Investigating transcription factor binding to rs58649696 using chondrosarcoma and 

osteosarcoma cell line nuclear protein 

The luciferase reporter assays of Chapter 5.3.3 have demonstrated that the risk (T) allele of 

rs58649696 had a decreased enhancer activity relative to the non-risk (C) allele. EMSA 

conditions were first optimised using NP-40 and glycerol as optional additional components 

(Appendix F: Figure F.1). Protein binding to the C and T allele probes produced six distinct 

complexes, highlighted by the numbered arrows, with little difference between the two 

conditions. Therefore, NP-40 was selected as the only additional component in the EMSA 

reaction mixes for rs58649696. 

 

Following optimisation of the binding conditions, the specificity and affinity of the protein 

complexes to the C and T allele probes were tested using unlabelled competitors (Figure 

5.11). The resulting banding patterns were markedly different both between the alleles and the 

nuclear extract used. For example, complex 1 was present with both allele probes, but only 

with the U2OS cell line nuclear extract; and complex 3 was T allele-specific. Protein binding 

to the C allele probe in complex 2 appeared stronger than to the T allele probe, and was 

disrupted more readily by the C allele competitor. The protein binding to complexes 4 and 6 

were stronger to the T allele probe than the C allele probe. In addition, the T allele competitor 

strongly outcompeted these complexes, suggesting that the proteins have an increased binding 

specificity for the T allele rather than the C allele. An additional protein complex, marked by 

an asterisk in Figure 5.11, appeared upon increasing C allele competitor concentration for 

both alleles, which could be a result of the probe from a different complex being freed to bind 

another protein and make a new complex. 
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Figure 5.11. Competition EMSAs to investigate allele-specific binding of SW1353 and U2OS nuclear extract to the C and T alleles of 
rs58649696. The concentrations of unlabelled competitors were increased from 0 to 50 times that of the labelled probes. The protein:probe complexes 
marked by arrows 1, 3 and 5 were not noticeably disrupted upon increasing competitor concentrations. Protein binding to the C allele probe in 
complex 2 was disrupted by the C allele competitors and to less of a degree with the T allele competitor. Complexes 4 and 6 binding to the T allele 
probe were outcompeted by the T allele competitor only. A protein complex, marked by an asterisk (*), appeared upon increasing C allele competitor 
concentration for both alleles. Concentration = 0, 5, 10, 25, 50 x probe concentration. 
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The region of the labelled probe that was involved in binding the protein was next 

investigated using competitors containing random sequences adjacent to probe sequences 

(Table 5.7). The random sequence had no effect on protein binding to either allele probe, 

indicating that the protein:DNA complexes are specific for the probe sequences (Figure 5.12). 

Complex 5 binding to the C allele probe was outcompeted by competitor 2, which contained a 

central region that was homologous to the probe sequence, while complex 6 binding to the T 

allele probe was outcompeted by competitor 1. This suggests that the middle section and the 

5'-most sequence of the probes are required for protein binding to the C and T allele probes, 

respectively. Lack of competition for the other complexes suggests that the entire probe 

sequence is important for binding. 

 

Sequence name Probe sequence (5'-3') 
Random primer full length CCACCGTAGGCAGTACGATCGCACGCCCCAT 

C allele probe and competitor CATCTGCCTCTTTCACTTTCCTAATGGGACT 
T allele probe and competitor CATCTGCCTCTTTCATTTTCCTAATGGGACT 

Competitor 1: C allele CATCTGCCTCTTTCACTATCGCACGCCCCAT 
Competitor 1: T allele CATCTGCCTCTTTCATTATCGCACGCCCCAT 
Competitor 2: C allele CCACCGTAGCTTTCACTTTCCTACGCCCCAT 
Competitor 2: T allele CCACCGTAGCTTTCATTTTCCTACGCCCCAT 
Competitor 3: C allele CCACCGTAGGCAGTACTTTCCTAATGGGACT 
Competitor 3: T allele CCACCGTAGGCAGTATTTTCCTAATGGGACT 

  
Table 5.7. Primer sequences used for competition EMSAs to investigate the regions of 
the C and T allele probes of rs58649696 to which the SW1353 and U2OS nuclear 
extracts bind. Each primer was annealed to its reverse complement, creating dsDNA, prior to 
use in EMSAs. The original competitor sequences are underlined in red; the random 
sequences are in black text. 

 

185 
 



 

Figure 5.12. Competition EMSAs to investigate the regions of the C and T allele probes of rs58649696 to which the SW1353 and U2OS 
nuclear extracts bind. The protein:probe mixes were incubated with unlabelled competitors that had random sequences replacing the original 
competitor sequence. An entirely random competitor (full) had no effect on any of the protein:probe complexes. The aberrant strength of complex 2 
with the C allele probe was likely due to a technical error. The C allele probe binding to the protein in complexes 5 and 6 were outcompeted by 
competitor 2. Competitors 1 and 3 caused the band intensity to increase for complex 5. Concentration = 0, 10, 25 x probe concentration. Competitor 
= 31 bp random competitor (full); 3′-most region of the competitor replaced by a 14 bp random sequence (1);  the central 13 bp region flanked either 
side by a 9 bp random sequence (2); 5′-most region of the competitor replaced by a 14 bp random sequence (3). 
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Database searches identified five transcription factors that had predicted, or evidence to 

suggest, binding over rs58649696. These proteins were selected for competition EMSAs, 

using probes that had binding sites in the central region of the probe (Table 5.8), as was 

shown to be important for protein binding to the C allele in Figure 5.12.  

 

Factor Database Competitor sequence (5'-3') Key 
IRF1 UCSC; 

TFSEARCH; 
JASPAR 

CCACCGTAGGTTTCCCTTTCGCACGCCCCAT 1 

IRF2 PROMO; 
TFSEARCH; 

JASPAR 

CCACCGTAGGCATCACTTTCGCACGCCCCAT 1 

POU2F2 JASPAR CCACCGTAGGGCGGATTTGCATATTCCCCAT 1 
TCF4 JASPAR CCACCGTACCTTTGATGATCGCACGCCCCAT 2 
XBP1 PROMO CCACCGTAGGCGTCATGATCGCACGCCCCAT 1 

    
Table 5.8. Five transcription factors selected for competition EMSAs to investigate the 
identity of the protein complexes binding to rs58649696. After selecting the most 
promising transcription factors, competitor sequences were designed to include the protein 
consensus sequence at the site predicted to bind, flanked by a random sequence. Transcription 
factor consensus sequences are underlined in red, the random sequences are in black text. 
Origin of consensus sequences are numbered in the key: 1 (PROMO) and 2 (Hatzis et al., 
2008). 

 

Initially, the basic reaction mixture was incubated with competitors at 10 x and 25 x the 

concentration of the fluorescently-labelled probe (Appendix F: Figure F.8) in order to select 

those necessitating a more detailed competition EMSA (Figure 5.13). From both the 

intermediate and the full competition EMSAs, the most compelling results were for IRF2 and 

XBP1, where complexes 2, 4 and 6 binding to the T allele probe were outcompeted by the 

unlabelled competitors. These complexes were shown to be allele-specific in Figure 5.11. 

Competition of the C allele probe with the TCF4 consensus sequence appeared to slightly 

decrease the band intensity of complex 6 with the SW1353 nuclear extract. There was no 

observed competition with the consensus sequence for IRF1.
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Figure 5.13. Competition EMSAs to investigate the consensus sequences necessary for SW1353 and U2OS nuclear extract binding to the C 
and T alleles of rs58649696. The protein:probe mixes were incubated with a full concentration range of unlabelled competitors that contained the 
consensus sequences for selected transcription factors predicted to bind the C or T allele probes. The results confirmed the preliminary indications 
that competition with the XBP1, IRF2, TCF4 and POU2F2 consensus sequences caused changes in band intensity. Concentration = 0, 5, 10, 25, 50 
x probe concentration. 
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Based on the competition EMSAs, the binding of IRF2, POU2F2, TCF4 and XBP1 were 

further investigated by means of supershift EMSAs. The binding of each transcription factor 

was investigated in this manner, in addition to a panel of trans-acting factors that are known 

to be expressed in cartilage (Appendix E: Table E.1). The basic reaction mixes for the 

transcription factors predicted to bind were incubated with either 2 or 6 µg of antibody. 

 

There were no supershifts observed with either cell line nuclear extract for any of the 

transcription factors that were predicted to bind the polymorphism (Figure 5.14). However, 

incubation of the T allele probe with antibodies for PAX9 and SUB1 (PC4), neither of which 

were predicted to bind, caused a band to appear with both cell line nuclear extracts (Appendix 

F: Figure F.9 – Figure F.11). The supershift for SUB1 (PC4) was repeated and replicated with 

both SW1353 and U2OS nuclear extracts before confirmation using HAC nuclear extract, 

however that of PAX9 was not replicated (Figure 5.15). It is unclear which band supershifted 

to produce the banding pattern observed for SUB1 (PC4), and moreover, it cannot be deduced 

from the competition EMSAs as it was not predicted to bind the SNP. Nevertheless, this is a 

positive identification of protein binding to rs58649696. The competition and supershift 

EMSA results of transcription factors binding to rs58649696 are summarised in Table 5.9.
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Figure 5.14. Supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to the C and T alleles 
of rs58649696. The protein:probe mixes were incubated with either 2 µg or 6 µg of antibody. No changes in the banding patterns were observed after 
incubation with any of the antibodies. Control (IgG species-matched antibody). 
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Figure 5.15. Supershift EMSAs to confirm the transcription factors of SW1353, U2OS and HAC nuclear extract binding to the C and T alleles 
of rs58649696. The protein:probe mixes were incubated with 2 µg of antibody. The results confirmed the SW1353 and U2OS indications that PC4 
interacted with the fluorescently labelled T allele probe in all cell line nuclear extracts, causing a band to appear as marked by an asterisk (*). A repeat 
of the PAX9 supershifts did not result in any observable supershifts in with SW1353, U2OS or HAC nuclear protein. Control (IgG species-matched 
antibody). Lanes irrelevant to this analysis have been removed. 
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 Competition EMSA  Supershift 
Transcription factor Nuclear protein Allele Effect Complex  Nuclear protein Allele Complex 

IRF1 No effect No effect No effect No effect  No effect No effect No effect 
IRF2 SW1353 and U2OS T only Outcompeted 2, 4 and 6  No effect No effect No effect 

POU2F2 SW1353 T only Outcompeted 2, 4 and 6  No effect No effect No effect 
TCF4 SW1353 C only Outcompeted 6  No effect No effect No effect 
XBP1 SW1353 and U2OS T only Outcompeted 2, 4 and 6  No effect No effect No effect 
PAX9 No data No data No data No data  U2OS T only Below 5 

SUB1 (PC4) No data No data No data No data  SW1353, U2OS and HAC T only Below 6 
         

Table 5.9. Summary of competition and supershift EMSAs to investigate transcription factor binding to rs58649696. All transcription factors, 
apart from PAX9 and SUB1 (PC4), were predicted to bind the SNP. PAX9 and SUB1 (PC4) were positively identified as binding rs58649696 through 
supershift EMSAs. The nuclear protein extracts for which effects were observed are listed in the ‘Nuclear protein’ column. 
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5.3.8 Investigating transcription factor binding to rs11049206 using chondrosarcoma and 

osteosarcoma cell line nuclear protein 

In luciferase assays performed in the SW1353 cell line, the risk (C) allele of rs11049206 

caused an increase in enhancer activity relative to the non-risk (G) allele, while the converse 

was observed for the U2OS cell culture. Optimisation of the EMSA binding conditions for 

this SNP using NP-40 with or without glycerol produced seven distinct complexes, 

highlighted by the numbered arrows, with little difference between the two conditions 

(Appendix F: Figure F.1). Therefore, NP-40 was selected as the only additional component in 

the EMSA reaction mixes for rs11049206. Due to technical difficulties in extracting nuclear 

protein, extracts at a higher passage were used for this optimisation. As used for the 

experiments in Chapter 5.3.6, Chapter 5.3.7 and Chapter 5.3.9, extracts from a lower passage 

were used for the remaining EMSAs. 

 

Following optimisation of the binding conditions, the specificity and affinity of the protein 

complexes to the C and G allele probes were tested (Figure 5.16). The protein of complex 1 

binding to both allele probes was outcompeted by both unlabelled competitors, although this 

band is comparatively fainter with the SW1353 extract. In addition, the binding of the protein 

in complex 4 was outcompeted by both the C and G allele competitors. The protein of 

complex 5 binding to the G allele probe was outcompeted primarily by the G allele 

competitor, with some competition at the higher concentrations of the C allele competitor 

with the U2OS nuclear extract. Since returning to use nuclear extracts at a lower passage, an 

additional band appeared beneath complex 3. Although it could be forming a doublet with 

complex 3, this protein seemed to bind more strongly to the C allele with SW1353 nuclear 

extracts, with only faint shadowing in the presence of the G allele. Similarly, it was non-

specific with the U2OS nuclear extract, however the strength of binding between the alleles 

was more comparable.
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Figure 5.16. Competition EMSAs to investigate allele-specific binding of SW1353 and U2OS nuclear extract to the C and G alleles of 
rs11049206. The concentrations of unlabelled competitors were increased from 0 to 50 times that of the labelled probes. The protein:probe 
complexes marked by arrows 2, 6 and 7 were not noticeably disrupted upon increasing competitor concentrations. Protein binding to both allele 
probes in complex 1 was outcompeted by both allele competitors in the U2OS nuclear extract. Complex 4 was disrupted over the concentration 
gradient of the respective competitors for both allele probes, whereas complex 5 was outcompeted by the G allele competitor for the G allele probe 
only. A band appeared beneath complex 3, which seemed to bind more strongly to the C allele than the G allele with SW1353 nuclear extract. 
Concentration = 0, 5, 10, 25, 50 x probe concentration. 

194 
 



The region of the labelled probe that was involved in binding the protein was next 

investigated using competitors containing random sequences adjacent to probe sequences 

(Table 5.10). The random sequence had no effect on protein binding to either allele probe, 

indicating that the protein:DNA complexes are specific for the probe sequences (Figure 5.17). 

Complex 1 binding to the C allele probe was outcompeted by competitors 1 and 2, meaning 

that it is likely to be the 5′-most and central region of the DNA probe that is required for 

protein binding in this complex. Additionally, the intensity of the protein binding to 

complexes 5, 6 and 7 for both allele probes was increased upon the addition of competitor 3. 

This could be due to the generation of a new binding site with a greater sequence similarity to 

the protein consensus sequence than that of the original probe sequence. 

 

Sequence name Probe sequence (5'-3') 
Random primer full length CCACCGTAGGCAGTACGATCGCACGCCCCAT 

C allele probe and competitor ATGTTTATGTATAAACCAAACACCAGCAAAA 
G allele probe and competitor ATGTTTATGTATAAAGCAAACACCAGCAAAA 

Competitor 1: C allele ATGTTTATGTATAAACCATCGCACGCCCCAT 
Competitor 1: G allele ATGTTTATGTATAAAGCATCGCACGCCCCAT 
Competitor 2: C allele CCACCGTAGTATAAACCAAACAACGCCCCAT 
Competitor 2: G allele CCACCGTAGTATAAAGCAAACAACGCCCCAT 
Competitor 3: C allele CCACCGTAGGCAGTACCAAACACCAGCAAAA 
Competitor 3: G allele CCACCGTAGGCAGTAGCAAACACCAGCAAAA 

  
Table 5.10. Primer sequences used for competition EMSAs to investigate the regions of 
the C and G allele probes of rs11049206 to which the SW1353 and U2OS nuclear 
extracts bind. Each primer was annealed to its reverse complement, creating dsDNA, prior to 
use in EMSAs. The original competitor sequences are underlined in red; the random 
sequences are in black text. 
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Figure 5.17. Competition EMSAs to investigate the regions of the C and G allele probes of rs11049206 to which the SW1353 and U2OS 
nuclear extracts bind. The protein:probe mixes were incubated with unlabelled competitors that had random sequences replacing the original 
competitor sequence. An entirely random competitor (full) had no effect on any of the protein:probe complexes. The C allele probe binding to the 
protein in complex 1 was outcompeted by competitors 1 and 2. Competitor 3 caused the band intensity to increase for complexes 5, 6 and 7. 
Concentration = 0, 10, 25 x probe concentration. Competitor = 31 bp random competitor (full); 3′-most region of the competitor replaced by a 14 bp 
random sequence (1);  the central 13 bp region flanked either side by a 9 bp random sequence (2); 5′-most region of the competitor replaced by a 14 
bp random sequence (3). 
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Database searches identified seven transcription factors that had predicted, or evidence to 

suggest, binding over rs11049206. These proteins were selected for competition EMSAs, 

using probes that included the consensus sequence at the position predicted to bind, flanked 

by a random sequence (Table 5.11). 

 

Factor Database Competitor sequence (5'-3') Key 
FOXP1 JASPAR CCACCGTAGGCAGTAATAAATAACGCCCCAT 1 
FOXA2 TFSEARCH CCACCGTAGGCAGAAGCAAACAATTCCCCAT 2 
MEF2A JASPAR CTATTTTTGGCTGTACGATCGCACGCCCCAT 2 
NFIC PROMO CCACCGTAGGCAGTACCAAACGCCGCCCCAT 2 
NFYA JASPAR CCACCGTAGGCAGTACCAAACACCGCCCCAT 2 
NFYB JASPAR CCACCGTAGGCAGTACCAATGCACGCCCCAT 2 

RUNX2 JASPAR CCACCGTAGGCAGTACCACAGCACGCCCCAT 3 

    
Table 5.11. Six transcription factors selected for competition EMSAs to investigate the 
identity of the protein complexes binding to rs11049206. After selecting the most 
promising transcription factors, competitor sequences were designed to include the protein 
consensus sequence at the site predicted to bind, flanked by a random sequence. Transcription 
factor consensus sequences are underlined in red, the random sequences are in black text. 
Origin of consensus sequences are numbered in the key: 1 (Wang et al., 2003); 2 (PROMO); 
3 (Little et al., 2012). 

 

Initially, the basic reaction mixture was incubated with competitors at 10 x and 25 x the 

concentration of the fluorescently-labelled probe (Appendix F: Figure F.12) in order to select 

those necessitating a more detailed competition EMSA (Figure 5.18 and Figure 5.19). From 

both the intermediate and the full competition EMSAs, the most compelling results were for 

FOXP1, MEF2A and NFYA, while NFIC had a minimal effect and FOXA2 caused no 

observed competition. Briefly, complexes 1, 3, 4 and 6 were outcompeted with the FOXP1 

consensus sequence, protein binding to the C allele probe of complexes 4 and 5 appeared to 

be decreased upon competition with MEF2A, complexes 4 and 6 were outcompeted by NFYA 

and complex 2 binding to both allele probes was outcompeted by RUNX2.

197 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 5.18. Competition EMSAs to investigate the consensus sequences necessary for SW1353 and U2OS nuclear extract binding to 
the C and G alleles of rs11049206. The protein:probe mixes were incubated with a full concentration range of unlabelled competitors that 
contained the consensus sequences for selected transcription factors predicted to bind the C or G allele probes. The results confirmed the 
preliminary indications that competition with NFIC, MEF2A, FOXP1 and NFYB caused changes in band intensity. Additionally, the 
competitions for NFIC, MEF2A and NFYB were replicated with the U2OS nuclear protein. Concentration = 0, 5, 10, 25, 50 x probe 
concentration. 
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Figure 5.19. Competition EMSAs to investigate the consensus sequences necessary for SW1353 and U2OS nuclear extract binding to the C 
and G alleles of rs11049206. The protein:probe mixes were incubated with a full concentration range of unlabelled competitors that contained the 
consensus sequences for selected transcription factors predicted to bind the C or G allele probes. The results confirmed the preliminary indications that 
competition with NFYA and RUNX2 caused changes in band intensity. Additionally, competition with NFYA caused complexes 4 and 5 to be 
outcompeted in both allele probes and SW1353 nuclear extract. Concentration = 0, 5, 10, 25, 50 x probe concentration. 
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Based on the competition EMSAs, the binding of FOXP1, MEF2A and NFYA were further 

investigated by means of supershift EMSAs. The binding of each transcription factor was 

investigated in this manner, in addition to a panel of trans-acting factors that are known to be 

expressed in cartilage (Appendix E: Table E.1). The basic reaction mixes for the transcription 

factors predicted to bind were incubated with either 2 or 6 µg of antibody. There were no 

supershifts observed with either cell line nuclear extract for any of the transcription factors 

that were predicted to bind the polymorphism (Figure 5.20). However, incubation of the G 

allele probe with the antibody for RELA (NFκβ p65) caused bands 4 and 5 to disappear with 

the U2OS cell line nuclear extracts (Appendix F: Figure F.13 and Figure F.14). This 

supershift was not replicated using the SW1353 or HAC cell line nuclear extracts (Appendix 

F: Figure F.15). Additionally, the appearance of the protein beneath complex 3 was not 

supershifted by the antibodies, meaning its identity could not be revealed. The competition 

and supershift EMSA results of transcription factors binding to rs11049206 are summarised in 

Table 5.12.
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Figure 5.20. Supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to the C and G alleles 
of rs11049206. The protein:probe mixes were incubated with either 2 µg or 6 µg of antibody. No changes in the banding patterns were observed after 
incubation with any of the antibodies. Control (IgG species-matched antibody). 
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 Competition EMSA  Supershift 
Transcription factor Nuclear protein Allele Effect Complex  Nuclear protein Allele Complex 

FOXP1 SW1353 and U2OS C and G Outcompeted 1, 3, 4 and 6  No effect No effect No effect 
FOXA2 No effect No effect No effect No effect  No effect No effect No effect 
MEF2A SW1353 and U2OS C only Outcompeted 4 and 5  No effect No effect No effect 
NFIC SW1353 and U2OS C only Outcompeted 4 and 5  No effect No effect No effect 
NFYA SW1353 C and G Outcompeted 4 and 5  No effect No effect No effect 
NFYB SW1353 and U2OS C and G Outcompeted 4 and 5  No effect No effect No effect 

RUNX2 SW1353 C and G Outcompeted 2  No effect No effect No effect 
RELA No data No data No data No data  U2OS G only 4 and 5 

         
Table 5.12. Summary of competition and supershift EMSAs to investigate transcription factor binding to rs11049206. All transcription factors, 
apart from RELA, were predicted to bind the SNP. RELA was positively identified as binding rs11049206 through supershift EMSAs. The nuclear 
protein extracts for which effects were observed are listed in the ‘Nuclear protein’ column. 
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5.3.9 Investigating transcription factor binding to rs10843013 using chondrosarcoma and 

osteosarcoma cell line nuclear protein 

I have shown that the risk (C) allele caused an increased enhancer activity relative to the non-

risk (A) allele of rs10843013 in the SW1353 cell line. Importantly, this regulation mirrored 

that observed for rs10492367. EMSA conditions were first optimised using glycerol, NP-40, 

KCl, MgCl2 and EDTA as optional additional components (Appendix F: Figure F.1). Protein 

binding to the A and C allele probes produced seven distinct complexes, highlighted by the 

numbered arrows, with little difference between the conditions. Therefore, NP-40 was 

selected as the only additional component in the EMSA reaction mixes for rs10843013. 

 

Following optimisation of the binding conditions, the specificity and affinity of the protein 

complexes to the A and C allele probes were tested (Figure 5.21). Even without competitors, 

the banding pattern was more intense for the A allele probe than for the C allele probe, 

suggesting that the proteins bind more avidly to the A allele. This was confirmed for complex 

3, which required a higher concentration of its competitor to outcompete binding than the C 

allele probe. Moreover, protein binding to the A allele probe of complexes 1 and 6 was 

outcompeted by the A allele competitor, while complex 2 was specific to the U2OS nuclear 

extract. 
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Figure 5.21. Competition EMSAs to investigate allele-specific binding of SW1353 and U2OS nuclear extract to the A and C alleles of 
rs10843013. The concentrations of unlabelled competitors were increased from 0 to 50 times that of the labelled probes. Protein binding to the A 
allele probe in complex 1 was outcompeted by the A allele competitor. Complex 2 is only present with the U2OS nuclear extract and was 
outcompeted at lower concentrations of the A allele competitor relative to the C allele competitor. Protein in complex 3 was binding more strongly to 
the A allele probe as a greater concentration of competitor was required to outcompete binding. Binding of complex 6 to both allele probes was 
disrupted upon the addition of the A allele competitor with both nuclear extracts. Concentration = 0, 5, 10, 25, 50 x probe concentration. 
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The region of the labelled probe that was involved in binding the protein was investigated by 

incubating the basic reaction mix with competitors that consisted of one region identical to the 

labelled probe and the remaining sequence entirely random (Table 5.13). The random 

sequence had no effect on protein binding to either allele probe, indicating that the 

protein:DNA complexes are specific for the probe sequences (Figure 5.22). Competitors 1 and 

3 both caused the intensity of complex 7 to increase in addition to the appearance of bands 

beneath this complex for the C allele probe only. Competitor 2 outcompeted complex 2 with 

the U2OS nuclear extract only, meaning the central portion of the probe is required for protein 

binding in this complex. 

 

Sequence name Probe sequence (5'-3') 
Random primer full length CCACCGTAGGCAGGACGAACAGTTGCCCCAT 

A allele probe and competitor AGCAGTACCAGTTTTAACTAGCACAGAAGTA  
C allele probe and competitor AGCAGTACCAGTTTTCACTAGCACAGAAGTA  

Competitor 1: A allele AGCAGTACCAGTTTTAAAACAGTTGCCCCAT 
Competitor 1: C allele AGCAGTACCAGTTTTCAAACAGTTGCCCCAT 
Competitor 2: A allele CCACCGTAGAGTTTTAACTAGCTTGCCCCAT 
Competitor 2: C allele CCACCGTAGAGTTTTCACTAGCTTGCCCCAT 
Competitor 3: A allele CCACCGTAGGCAGGTAACTAGCACAGAAGTA 
Competitor 3: C allele CCACCGTAGGCAGGTCACTAGCACAGAAGTA 

  
Table 5.13. Primer sequences used for competition EMSAs to investigate the regions of 
the A and C allele probes of rs10843013 to which the SW1353 and U2OS nuclear 
extracts bind. Each primer was annealed to its reverse complement, creating dsDNA, prior to 
use in EMSAs. The original competitor sequences are underlined in red; the random 
sequences are in black text. 
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Figure 5.22. Competition EMSAs to investigate the regions of the A and C allele probes of rs10843013 to which the SW1353 and U2OS 
nuclear extracts bind. The protein:probe mixes were incubated with unlabelled competitors that had random sequences replacing the original 
competitor sequence. An entirely random competitor (full) had no effect on any of the protein:probe complexes. Competitor 2 caused the band 
intensity of complex 2 to decrease with the U2OS nuclear extract. Competitors 1 and 3 caused the band intensity of complex 7 with the C allele 
probe to increase and additional bands to appear, marked by asterisks (*). Concentration = 0, 10, 25 x probe concentration. Competitor = 31 bp 
random competitor (full); 5′-most region of the competitor replaced by a 14 bp random sequence (1);  the central 13 bp region flanked either side by 
a 9 bp random sequence (2); 3′-most region of the competitor replaced by a 14 bp random sequence (3). 
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There were no transcription factors that were known or predicted to bind rs10843013 

following database searches. As a result, only the panel of trans-acting factors that were 

known to be expressed in cartilage (Appendix E: Table E.1) were tested by means of 

supershift EMSAs (Appendix F: Figure F.16, Figure F.17 and Figure F.18). The basic 

reaction mixes were incubated with 2 µg of antibody. Incubation of the C allele probe with an 

antibody for RELA (NFκβ p65) appeared to cause complexes 6 and 7 to become fainter with 

the SW1353 nuclear extract. Additionally, complex 2 became fainter and complex 1 more 

intense upon the incubation of both allele probes with an antibody for XBP1, which is 

suggestive of a positive supershift. The EMSAs could not be replicated for the RELA (NFκβ 

p65) incubation, while the XBP1 supershifts were only replicated with the U2OS nuclear 

extract (Figure 5.23). The supershift EMSA results of transcription factors binding to 

rs10843013 are summarised in Table 5.14. 

 

Overall, the EMSA investigations in this and the preceding sections (Chapter 5.3.6, Chapter 

5.3.7 and Chapter 5.3.8) have identified a number of transcription factors that bind the most 

promising functional polymorphisms within the association interval. Again, it would not be 

realistic to further investigate all four of these polymorphisms, and so the focus of this 

investigation must be narrowed further. Of the EMSA experiments, the most compelling 

results were for rs10492367, as typical supershifts were observed and replicable. Therefore, 

this SNP and the proteins identified as binding to it, were selected for the next stage of this 

investigation.
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Figure 5.23. Supershift EMSAs to confirm the transcription factors of SW1353, U2OS and HAC nuclear extract binding to the A and C alleles 
of rs10843013. The protein:probe mixes were incubated with 2 µg of antibody. The results showed that RELA (NFκβ p65) of both nuclear extracts 
does not interact with the fluorescently labelled DNA. An extremely slight supershift of band 2, causing band 1 to become more intense with the XBP1 
antibody, was seen with the U2OS nuclear extract only. Control (IgG species-matched antibody).  Lanes irrelevant to this analysis have been removed. 

SW1353 
nuclear 
protein 

208 
 



 Competition EMSA  Supershift 
Transcription factor Nuclear protein Allele Effect Complex  Nuclear protein Allele Complex 

RELA No data No data No data No data  SW1353 C only 6 and 7 
XBP1 No data No data No data No data  U2OS A and C 1 and 2 

         
Table 5.14. Summary of supershift EMSAs to investigate transcription factor binding to rs10843013. No transcription factors were predicted to 
bind the SNP. RELA and XBP1 were positively identified as binding to rs10843013 in a cell line-specific manner. The nuclear protein extracts for 
which effects were observed are listed in the ‘Nuclear protein’ column. 
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5.3.10 Characterisation of trans-acting factor expression profiles in SW1353, U2OS and 

human articular chondrocyte (HAC) cell cultures 

Since SUB1, RELA and TCF3 were identified as binding to rs10492367 and were selected as 

the most promising candidates for further functional characterisation, it was necessary to 

confirm the presence of the trans-acting factors in the cell lines that were used in the EMSA 

experiments. Firstly, the expressions of the genes were confirmed in SW1353 and U2OS cell 

lines, and additionally in five HAC donors using qPCR assays detailed in Figure 5.24 

(sequences are listed in Appendix A: Table A.3). All transcription factors were expressed: 

SUB1 was the most highly expressed (Figure 5.25). The variability of the HAC gene 

expression was presumably caused by inter-individual differences in gene expression – this is 

not seen in the SW1353 cell line or the U2OS cell line, as the replicates originate from the 

same cell culture.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.24. Location of qPCR primers and probes used for quantitative gene expression 
analysis. Assays were predesigned to the exons of A) SUB1, B) RELA and C) TCF3. Primer 1 
for RELA and TCF3 spanned an intron in each gene, targeting only the coding exons. 
Transcript isoforms are numbered for RELA and TCF3. The images were obtained using the 
hg19 reference genome. 
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To corroborate these findings, the protein levels were also investigated. All three transcription 

factors were present in each of the cell line extracts (Figure 5.26). RELA was most abundant 

in the HAC nuclear protein, while SUB1 was most abundant in the SW1353 extract. These 

observations confirmed the gene expression data. TCF3 was most abundant in the U2OS 

nuclear protein and was only detected in the HAC extract when a stronger exposure was used, 

which was not in keeping with the expression levels detected. A cause of the differences may 

be that firstly, the HAC donors used for gene expression quantification were not the same as 

those used for protein detection; secondly, the protein and total RNA were not extracted 

simultaneously from the SW1353 and U2OS cell cultures; and thirdly, the different cell types 

may have differing transcript stabilities, translation efficiencies or protein stabilities. Finally, 

as this was a qualitative assessment of protein levels, a loading control was not used, and so 

the discrepancies could be caused by different amounts of protein in each lane. Nevertheless, 

the purpose of the western blot was achieved, simply confirming the presence of each of the 

transcription factors in the protein extracts.  

 

 

 

 

 

Figure 5.25. Expression of SUB1, RELA and TCF3 in SW1353, U2OS and HAC cells. 
All transcription factors were expressed, with SUB1 the most highly expressed, while RELA 
and TCF3 were more lowly expressed. RNA was extracted, cDNA synthesised and three 
technical repeats used for qPCR to assess gene expression for the SW1353 and U2OS cell 
lines. RNA was extracted from five HAC donors, cDNA synthesised and three technical 
repeats performed for qPCR per donor. S (SW1353), U (U2OS) and H (HAC). Error bars 
represent the SEM. 
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5.3.11 Validation of SUB1, RELA and TCF3 binding to rs10492367 using chromatin 

immunoprecipitation (ChIP) 

Having putatively shown that SUB1, RELA and TCF3 bind the association SNP in in vitro 

EMSAs, I next aimed to corroborate these findings in vivo using ChIP (Chapter 2.24). This 

technique involves cross-linking the protein to the DNA in situ in the cell, allowing the 

detection of transcription factor binding to the endogenous genomic loci in vivo. As 

differential activity between the alleles of rs10492367 was observed in SW1353 cells, and the 

transcription factors were identified as binding the SNP in the nuclear extract from this cell 

line, the chondrosarcoma cell line was selected for ChIP. The cross-linked chromatin was first 

sonicated to fragments of 100 – 300 bp in size (Figure 5.27). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26. Detection of protein levels of TCF3, RELA and SUB1 in HAC, SW1353 and 
U2OS nuclear protein. The trans-acting factors were detected in all nuclear extracts. A 
stronger exposure of the TCF3 blot allowed the detection of the protein in HAC nuclear 
extracts. 
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In order to pull-down the proteins of interest, the sonicated chromatin was incubated with 

antibodies specific for SUB1, TCF3, RELA and acetyl-histone H3. Acetyl-histone H3 is a 

marker of active gene transcription, so combined with a constitutively active housekeeping 

gene, in this case GAPDH, this acted as positive control. In addition, IgG was used as a 

species-matched control to measure the basal levels of non-specific antibody binding to the 

chromatin. Following the pull-down, the cross-links between the protein and DNA were 

reversed and the DNA purified. The DNA was quantified by qPCR, investigating if the 

rs10492367 locus was enriched in the DNA immunoprecipitated by the different antibodies 

(Figure 5.28.A). Additionally, the same quantification was carried out for the GAPDH locus 

(Figure 5.28.B) and a testis-specific locus (protamine 2 [PRM2]; Figure 5.28.C) as positive 

and negative controls, respectively. The qPCR primer and probe sequences are listed in 

Appendix A: Table A.3. All data were normalised to the non-specific binding of the species-

matched IgG and repeated three times for each of the two rounds of sonication.  

 

 

 

 

 

Figure 5.27. Gel electrophoresis of the sonicated chromatin extracted from an SW1353 
cell culture. The chromatin was sonicated to fragment sizes of 100 – 300 bp prior to ChIP. 
The sample was electrophoresed through a 2% agarose TBE gel. M (DNA marker). 
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Figure 5.28. Fold enrichment of the trans-acting factors SUB1, RELA and TCF3 at 
rs10492367 and the GAPDH and PRM2 loci. Protein:DNA complexes from sonicated 
SW1353 chromatin were captured using antibodies specific for the transcription factors 
SUB1, RELA and TCF3, and the controls acetylated histone H3 and IgG. qPCR was used to 
assess if the proteins were enriched at A) rs10492367, B) the GAPDH active promoter, and 
C) the testis-specific PRM2 gene. SUB1, RELA and TCF3 were enriched at rs10492367 
although these did not reach statistical significance relative to IgG. The positive control of 
acetyl-histone H3 was enriched at the GAPDH locus, but was not significant. None of the 
proteins were enriched at the PRM2 locus. Three independent replicates were performed for 
each of the two independent cell culture and sonications. Error bars represent the SEM. 
Statistical significance was assessed using the Student’s t test.  

A)  

B) 

C) 

rs10492367 

GAPDH 

PRM2 
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None of the transcription factors were significantly enriched at the rs10492367 locus, 

although there was a trend of enrichment relative to the non-specific binding of IgG. This 

could be due to the SW1353 cell line being homozygous for the major allele of rs10492367. 

Perhaps the trans-acting factors bind more strongly to the T allele in vivo, and as such, a 

significant enrichment was not observed. Acetyl-histone H3 was considerably enriched at the 

GAPDH locus, however variation in the biological replicates meant that this was not 

significant. Crucially, the transcription factors were depleted at the PRM2 locus. Overall, the 

ChIP investigations showed promising, but not definite, trends of protein binding. 

 

5.3.12 Knockdown of SUB1, RELA and TCF3 in human articular chondrocytes (HACs) 

Since protein binding to rs10492367 was identified using EMSAs and ChIP, the next stage of 

investigation was to characterise if the trans-acting factors function to modulate PTHLH 

and/or KLHL42 expression. As all transcription factors were shown to be expressed in HACs, 

I aimed to deplete the expression of each gene and assess the resulting influence on PTHLH 

and KLHL42. Chondrocytes from the knee cartilage of three OA donors (Table 5.15) were 

extracted, cultured and transfected with siRNAs targeted to SUB1, RELA or TCF3 (Chapter 

2.30). A non-targeting siRNA was also included as a transfection control.  

 

Donor Sex 
Age at joint 

replacement (years) Joint rs10492367 
226 F 58 Knee GT 
227 M 67 Knee GG 
228 F 74 Knee GT 

     
Table 5.15. Characteristics and genotype at rs10492367 for donors used in the HAC 
knockdowns of SUB1, RELA and TCF3. 

 

Following total RNA and protein extraction from each condition, gene expressions were 

quantified for SUB1, RELA and TCF3 in the corresponding knockdowns and in the non-

targeting control condition. All genes were significantly downregulated (p < 0.0001 [SUB1], p 

= 0.001 [RELA], p = 0.010 [TCF3]) after targeted siRNA knockdown relative to their 

expressions in the non-targeting siRNA control (Figure 5.29.A). Moreover, the resulting 

levels of protein after the siRNA knockdowns were assessed by a western blot. As previously 

shown in Figure 5.25 and Figure 5.26, the protein level of TCF3 and SUB1 were low in 

HACs. Accordingly, it was with difficulty that protein levels of the knockdowns were 

detected. Figure 5.29.B is a representation of the knockdowns, using the clearest images for 
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this figure. Nevertheless, a depletion of each transcription factor was observed, with the 

loading controls confirming this was not an artefact of unequal quantities of protein between 

conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the siRNAs successfully decreased the expressions of the trans-acting factors, which was 

also confirmed at the protein level, the expressions of PTHLH and KLHL42 were next 

assessed. In every condition, the gene expression levels were quantified by qPCR and 

normalised to the corresponding values in the non-targeting siRNA controls: the non-targeting 

control represents an arbitrary value of 1. After normalisation, there was considerable 

variation in PTHLH and KLHL42 expression between the biological replicates for the RELA 

and TCF3 knockdowns. However, knockdown of SUB1 resulted in a consistent, significant (p 

= 0.018) downregulation of PTHLH (Figure 5.30). 

 

Figure 5.29. Knockdown of the trans-acting factors SUB1, RELA and TCF3 in human 
articular chondrocytes (HACs). Chondrocytes, after isolation from the cartilage of OA 
donors who had undergone knee replacement surgery, were transfected with non-targeting 
siRNA, or siRNA specifically targeting SUB1, RELA or TCF3. A) Gene expression for each 
condition was quantified using qPCR and normalised to the corresponding expression in the 
non-targeting siRNA control (y-axis = 1). Gene expression was significantly downregulated 
relative to the expression in the non-targeting control for all conditions. n = knockdown of 
three independent donors (biological replicates) with one technical replicate each. qPCR 
was performed as standard, including three technical replicates. Error bars represent the 
SEM. Statistical significance was assessed using a paired Student’s t-test. * p < 0.05; ** p < 
0.01; *** p < 0.001. B) Western blot to confirm protein depletion. Each of the three 
knockdowns resulted in a decrease at the protein level. The loading controls are shown 
directly beneath the corresponding knockdowns. GAPDH was the loading control used for 
the SUB1 and TCF3 knockdowns. The loading control for the RELA knockdown was 
TCF3. SUB1 and TCF3 are from patient 277, and RELA is from patient 226. NT (non-
targeting siRNA control). 

A) B) 
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5.3.13 Assessing if the knockdown of SUB1, RELA or TCF3 has differential effects on the 

enhancer activity of pGL3-promoter vectors containing the alleles of rs10492367 

The final route of my investigation to characterise the OA association region was to assess the 

combined effects of transcription factor knockdown on the differential enhancer activity of 

rs10492367. The previous luciferase studies (Chapter 5.3.3) demonstrated that the allelic 

differences in rs10492367 activity were functional only in the SW1353 cell line, and so for 

the following characterisation, this chondrosarcoma cell line was utilised. The pGL3-

promoter vector constructs containing the alleles of rs10492367 (previously generated in 

Chapter 5.3.3) were similarly used for this investigation. Five hours post-transfection with 

each allele construct, the cell populations were transfected with the SUB1, RELA, TCF3 

siRNAs or the non-targeting siRNA control (Chapter 2.31). The luciferase activities were 

quantified after 24 hours and for each vector construct, the values were normalised to those of 

the corresponding vectors that had been transfected with the non-targeting siRNA control. 

Figure 5.30. PTHLH and KLHL42 expression after knockdown of the trans-acting 
factors SUB1, RELA and TCF3 in human articular chondrocytes (HACs). Chondrocytes, 
after isolation from the cartilage of OA donors who had undergone knee replacement surgery, 
were cultured until confluent and then transfected with non-targeting siRNA, or siRNA 
specifically targeting SUB1, RELA or TCF3. PTHLH and KLHL42 expression for each 
condition was quantified using qPCR and normalised to the corresponding expression in the 
non-targeting siRNA control (y-axis = 1). PTHLH was significantly downregulated following 
knockdown of SUB1 relative to the expression in the non-targeting control. n = three 
independent biological replicates. Error bars represent the SEM. Statistical significance was 
assessed using a paired Student’s t-test. * p < 0.05. 
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Firstly, the expressions of SUB1, RELA and TCF3 were quantified using qPCR to ensure the 

knockdowns were successful (Figure 5.31). All siRNA transfections resulted in the significant 

downregulation of the targeted gene relative to the corresponding non-targeting control. Due 

to insufficient yields of protein extracted from the cells, it was not possible to confirm 

knockdown at the protein level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Since the knockdowns were confirmed at the gene level, I quantified the luciferase activities 

of the constructs. Knockdown of SUB1, RELA and TCF3 had no significant effect on 

enhancer activity for either of the constructs relative to the corresponding non-targeting 

control. In addition, there were no differences in enhancer activity between the allelic 

constructs following SUB1 and RELA knockdown. However, the construct containing the G 

allele of rs10492367 had significantly lower levels of enhancer activity relative to the T allele 

construct (p = 0.004) after TCF3 knockdown. Overall, this investigation revealed that in vitro, 

Figure 5.31. Knockdown of the trans-acting factors SUB1, RELA and TCF3 in the 
SW1353 cell line. pGL3-promoter vectors contained either the G or the T allele of 
rs10492367. After transfection for 5 hours with the luciferase reporter vectors, cells were 
transfected for 24 hours with SUB1, RELA, TCF3 or non-targeting (NT) siRNA. Gene 
expression for each condition was quantified using qPCR and normalised to the 
corresponding expression in the non-targeting siRNA control (y-axis = 1). Gene expression 
was downregulated relative to the expression in the non-targeting control for all conditions. n 
= three independent biological replicates. Error bars represent the SEM. Statistical 
significance was assessed using a paired Student’s t-test. * p < 0.05; ** p < 0.01; *** p < 
0.001. 
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a lack of TCF3 correlated with an increase in enhancer activity of rs10492367 only in the 

presence of the risk (T) allele.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.32. Co-transfection of pGL3-promoter vector constructs for rs10492367 and 
siRNA targeting SUB1, RELA and TCF3 in the SW1353 cell line. pGL3-promoter vectors 
contained either the G or the T allele of rs10492367. After transfection for 5 hours with the 
luciferase reporter vectors, cells were transfected for 24 hours with SUB1, RELA, TCF3 or 
non-targeting siRNA before the activity of the luciferase gene downstream of the inserts was 
quantified. All absorbances were read at 595 nm and the luciferase readings normalised to 
the internal control (Renilla). Luciferase/Renilla values were normalised to the basal levels 
of activity measured with the corresponding vector co-transfected with a non-targeting 
control (y-axis = 1). When transfected with TCF3 siRNA, the activity of the G allele 
construct was significantly lower than the T allele construct. Error bars represent the SEM. 
Statistical significance was assessed using the Mann-Whitney U test. ** p < 0.01. 
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5.4 Discussion 

In Chapter 5, I aimed to functionally dissect the OA association of the 12p11.22 signal 

marked by the polymorphism rs10492367. I performed luciferase reporter assays to assess 

differential allelic activity of the SNPs in high LD with the association signal, EMSAs to 

identify differential transcription factor binding, and siRNA knockdowns to characterise the 

effect of the identified transcription factors on PTHLH and KLHL42 expression. 

 

I began with a panel of ten intergenic polymorphisms that could be responsible for the OA 

association of the region, one of which was rs10492367 itself: the remaining nine SNPs all 

had an LD of at least 0.80 with rs10492367. Luciferase reporter assays are an established 

technique used to identify differential allelic activities (Egli et al., 2009), and so I similarly 

used this to investigate the enhancer activities of the SNPs in this region. A limitation that 

could not be avoided was the exclusion of rs57380671 from the investigation, as specific 

constructs representing this region could not be generated. This was despite different Taq 

polymerases, PCR conditions and annealing temperatures being used during the amplification 

stage. Nevertheless, the remaining nine SNPs were investigated for differential enhancer 

activity, the diverse results of which required the design of a set of criteria to shortlist the 

most promising functional candidates. As a result, rs10492367 and three other polymorphisms 

were carried forward to investigate protein binding.  

 

I hypothesised that differential transcription factor binding to the SNPs could regulate gene 

expression in an allele-specific manner. As is commonly performed to characterise 

protein:DNA interactions, I used EMSAs as the basis to investigate this (Syddall et al., 2013). 

To summarise: RELA (NFκβ p65) in the U2OS nuclear extract was identified as binding to 

the G allele of rs11049206; XBP1 in the U2OS nuclear extract was identified as binding to 

both alleles of rs10843013; SUB1 (PC4) in all cell line nuclear extracts was identified as 

binding the T allele of rs58649696; and SUB1 (PC4), TCF3 and RELA (NFκβ p65) in all cell 

line nuclear extracts were identified as binding to rs10492367. Although the banding patterns 

for each SNP were similar between cell line extracts, the fact that some of the supershifts 

were cell line-specific suggests that the complexes are not composed of the same proteins. 

This could also explain the differences observed between cell lines for the luciferase reporter 

assays. Despite numerous replications, some of the EMSA results were inconsistent, a 

possible result of the artificial conditions of the experiment. The labelled probe DNA is linear 

and is thus not representative of the native three-dimensional conformation of the chromatin, 

which could influence the avidity of transcription factor binding. For example, therefore, 
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SUB1 (PC4) may in fact only bind one allele of rs10492367 in vivo but appears to bind both 

alleles in the EMSA conditions. Additionally, using nuclear protein extracted at different cell 

passages appeared to affect the EMSA banding patterns. While this did not influence the 

outcome of these investigations, it highlights that transcription factors can have differential 

activity with different population doublings. Perhaps the activities can change or different 

complements of trans-acting factors are present depending on the passage number of the cells. 

Overall, I have identified that the SNPs under study were functional, with a range of 

transcription factors binding in the assays used. 

 

To further assess the protein:DNA binding, ChIP was used because it offers a native 

representation of the cellular interactions, allowing the study of transcription factor binding to 

the endogenous loci rather than the artificial conditions produced in the EMSA experiments. 

For both the ChIP and the subsequent knockdown experiments, the four SNPs under 

investigation were further reduced to only one. This would allow for a more in-depth analysis 

in the timeframe available. It was rs10492367 that was selected as differential enhancer 

activity was observed in addition to the identification of three potential transcription factors 

binding. Although none of the results reached significance, ChIP did indicate that the 

transcription factors were enriched at rs10492367 in the SW1353 cell line, with enrichment 

beginning to approach similar levels observed for other loci and proteins (Verzi et al., 2010; 

Ouma et al., 2015). As this was using only SW1353 cell cultures, further experiments could 

utilise other cells such as HACs, which may have different abundances of protein present or 

different regulatory mechanisms. Additionally, it would be prudent to investigate cell lines 

that are heterozygous or minor allele homozygous for the association SNP, which could affect 

the avidity of protein binding and could be reflected in the ChIP enrichment. 

 

The results yielded in the experiments thus far indicated that SUB1 (PC4), TCF3 and RELA 

had the potential to bind rs10492367. As it was unclear whether this was directly relevant to 

the association signal, I sought next to investigate whether the proteins had an effect on 

PTHLH or KLHL42 expression. I successfully knocked-down the transcription factors at the 

gene and protein levels, and indeed, observed a consistent downregulation of PTHLH 

following SUB1 (PC4) depletion. Although this did not implicate a particular genotype of 

rs10492367 as controlling gene expression through the action of differential SUB1 (PC4) 

binding, it did show that the transcription factor modulates PTHLH expression in vivo in HAC 

cell cultures. An MSC chondrogenesis or osteoblastogenesis model could be used to 

investigate if the effects of SUB1 (PC4) depletion on PTHLH act throughout MSC 
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differentiation and also whether this has a direct effect on joint development. By using cell 

cultures each with a different rs10492367 genotype, the effect of the polymorphism on the 

SUB1 (PC4) regulation of PTHLH could be established. 

 

To investigate if the genotype of rs10492367 affected protein activity, I performed co-

transfections with the constructs used for the luciferase reporter assays of Chapter 5.3.3. 

Again, this was using artificial conditions and so is only suggestive of possible correlations. A 

significant difference was observed between the alleles of rs10492367 following the 

knockdown of TCF3. This suggested that in the presence of the risk (T) allele of rs10492367, 

knocking-down TCF3 caused an increase in downstream luciferase expression relative to the 

non-risk (G) allele. There were no significant differences for SUB1 (PC4) and RELA. 

 

SUB1 (PC4) mediates interactions between proteins and DNA thereby acting as a 

transcriptional coactivator (Conesa and Acker, 2010). The binding of SUB1 (PC4) to another 

OA-associated SNP has recently been investigated, and it was found to bind both alleles of 

the GDF5 5′ UTR polymorphism rs143383 (Syddall et al., 2013). As for rs10492367, protein 

binding could not be linked to association SNP genotype. Crucially, the protein did not exert 

any significant effects in isolation, and so it was hypothesised that it instead acts as a linker in 

a larger protein complex. This could be explained by the lack of a definitive consensus 

sequence, meaning that the protein was not predicted to bind the DNA directly, yet supershift 

EMSAs revealed its presence at the SNP site. In addition, as it is a coactivator, it may well 

bind the alleles of rs10492367 with equal affinity and avidity, but it could have differential 

effects on binding other proteins. This could achieve overall differential transcription factor 

binding to the alleles of rs10492367, yet it would not be reflected in the binding of SUB1 

(PC4). 

 

TCF transcription factors are involved in the downstream cascade of the Wnt/β-catenin 

signalling pathway. This pathway has been implicated in OA progression (Corr, 2008), and so 

to this end, TCF proteins are of interest in OA aetiology. Should the protein be associated 

with OA progression, an upregulation of MMPs upon protein overexpression, resulting in the 

degradation of the cartilage ECM, would likely be observed. Conversely, however, a potential 

link between TCF3 and the mechanisms of OA was shown following the overexpression of 

the protein in HACs, where this resulted in a reduced MMP-1, -3 and -13 mRNA expression 

(Ma et al., 2013). Overall, having shown that TCF3 binds rs10492367 yet does not correlate 

with genotype, the role of TCF3 in OA remains unclear. 
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RELA is the p65 subunit of the essential, widely-expressed transcription factor NFκβ, and 

represents the most obvious candidate protein of the three identified. Several studies have 

implicated RELA in cartilage homeostasis and the development of OA. For example, it has 

been reported that RELA has the capacity to activate anabolic factors such as SOX9, forming 

part of a network that can induce chondrogenic differentiation (Ushita et al., 2009). Moreover, 

the protein is a reported activator of HIF-2α, which itself targets genes, such as COL10A1, 

that are involved in endochondral ossification (Saito et al., 2010). RELA has also been shown 

to co-localise with MMP-3 in macrophages and smooth muscle cells (Souslova et al., 2010), 

suggesting that perhaps it could regulate MMP-3 induction during cartilage degradation. 

Further evidence for the involvement of RELA in cartilage homeostasis is its activation of the 

ADAMTS5 aggrecanase, most likely as part of a larger molecular network (Kobayashi et al., 

2013). The authors consequently hypothesised that the protein induces aggrecanase activity in 

chondrocytes throughout OA development, highlighting its relevance in the dissection of the 

rs10492367 association signal. 

 

In summary, the involvement of additional proteins cannot be excluded, given that SUB1 

(PC4) was itself not predicted to bind rs10492367, yet is displaying the most promising 

results to date. In order to investigate whether the proteins interact with each other to enhance 

the effects on gene expression, an additional approach could be to perform co-

immunoprecipitations. In addition, it may prove that the in vivo analyses proposed earlier in 

the discussion could reveal such enhanced effects as well as allele-specific differences in 

protein binding.
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Chapter 6.  General Discussion 
 

6.1 Perspective 

OA is an age-associated, multifactorial arthritis characterised by the progressive loss of 

articular cartilage in synovial joints. Through candidate gene studies, linkage studies and 

GWAS approaches, several regions of the genome have been identified as being associated 

with the polygenic disorder. The challenge that faces researchers, however, is to dissect the 

signals to such a degree that the OA association is fully understood and characterised. One 

mechanism through which polymorphisms can modulate disease susceptibility is by causing a 

change in the coding amino acid sequence and thus, altering protein function. Alternatively, 

SNPs can act as eQTLs to modulate gene expression, a strong example of which is the GDF5 

5′ UTR polymorphism rs143383. This is the most robust OA signal that has been functionally 

studied to date, with the SNP mediating gene expression through the binding of Sp1, Sp3, and 

DEAF-1 (Syddall et al., 2013). 

 

The most powerful OA GWAS yet is the 2012 study by the arcOGEN Consortium (arcOGEN 

Consortium et al., 2012). Five regions of the human genome were identified as being 

associated with the disease, two of which are the primary focus of the research discussed in 

this thesis. Despite likely candidate genes residing at the two loci, both rs10492367 and 

rs9350591 are novel in their association with OA. Other group members have interrogated the 

remaining three signals. Firstly, GNL3 and SPCS1 were shown to be subject to the actions of 

a cis-eQTL that correlated with the association SNP genotype (Gee et al., 2014); the signal at 

CHST11 is postulated to mediate OA susceptibility through differential protein binding 

(Reynard et al., 2014); and finally, while no eQTL has been identified at the ASTN2 locus, the 

signal is speculated to regulate PAPPA expression during joint development (unpublished 

data; personal communication).  

 

Both rs10492367 and rs9350591 have so far remained largely unstudied, and have not 

previously been annotated in the context of musculoskeletal disorders. Indeed, of the nine 

polymorphisms that are in high LD with rs10492367, none have been associated with a 

musculoskeletal disease phenotype. For the SNPs in high LD with rs9350591, rs9360921 was 

reported to be associated with height in individuals of European descent (Lango Allen et al., 

2010). Not in LD with the association signal, but still at the locus of interest, the A allele of 

rs7953528, 2 kb upstream of rs10492367 and 94 kb downstream of PTHLH, is associated 

with variations in bone mineral density (Estrada et al., 2012). This association is not 
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surprising given the known function of PTHLH in endochondral ossification and its presence 

as a strong candidate gene in this thesis. Similarly, the COL12A1 exonic polymorphism 

rs970547 is not in LD with rs9350591 but has been reported to be associated with a 

predisposition to anterior cruciate ligament ruptures in a female cohort (Posthumus et al., 

2010; O'Connell et al., 2015). Emerging evidence for the involvement of the two regions with 

skeletal development, together with the results presented in this thesis, suggest that the OA 

signals could ultimately prove to be linked with OA susceptibility during joint development 

rather than in end-stage diseased tissue. 

 

6.2 Key Results 

The overall aim of my Ph.D was to functionally dissect the two hip OA-associated loci that 

emerged from the arcOGEN GWAS (arcOGEN Consortium et al., 2012). The key findings of 

this research are: 

 

• despite the discovery of several significant differences between gene expressions 

stratified by disease state or joint site, in the end-stage disease tissue tested there were 

no correlations between the association SNP genotypes and the respective gene 

expressions at the two loci  

• all genes were expressed during chondrogenesis and osteoblastogenesis 

• the CpG dinucleotide cg26466508, 53 bp upstream of FILIP1, was hypermethylated in 

OA hip cartilage T (risk) allele carriers relative to major allele homozygotes 

• the region of association marked by rs10492367 is functional in regulating enhancer 

activity, can significantly differ between alleles of the same SNP, and can differ 

depending on the tissue of origin of the cell 

• transcription factors were found to bind all four SNPs that were carried forward for 

EMSA investigations into protein:DNA interactions, however this was often 

dependent on the origin of the nuclear extract 

• ChIP confirmed an enrichment of TCF3, SUB1 (PC4) and RELA at rs10492367 

• knockdown of SUB1 (PC4) in HACs resulted in a consistent and significant 

downregulation of PTHLH 

 

The data presented here highlight the diverse nature both of signals that are generated from 

GWAS and of OA susceptibility. The particular results of this thesis will allow for subsequent 

research to be focussed on the effect of the OA association regions on joint development and 
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cell differentiation rather than end-stage diseased tissue. In addition, continued functional 

work to investigate the nature of protein binding to rs10492367 will be key in fully 

understanding this locus. 

 

6.3 Assessing the Correlation of Gene Expressions and the Respective Association 

Single Nucleotide Polymorphism (SNP) Genotypes 

In Chapter 3 and Chapter 4, I confirmed that there were no non-synonymous polymorphisms 

that could account for the association signals. I therefore hypothesised that rs10492367 and 

rs9350591 instead mark the actions of cis-eQTLs that modulate nearby gene expression, and 

thereby contribute to OA susceptibility. As cis-eQTLs can act on genes from up to 1 Mb from 

the transcription start site (Nica and Dermitzakis, 2013), the identification of the specific gene 

upon which the association signal acts often requires the analysis of several genes within and 

surrounding the disease-associated region. For example, in a study investigating susceptibility 

to childhood asthma, the expressions of a total of 14 genes within or near the association 

region at chromosome 17q21 were first considered before a positive correlation was identified 

between the transcript levels of ORMDL3 (ORMDL sphingolipid biosynthesis regulator 3) 

and the disease-associated markers (Moffatt et al., 2007). In addition, susceptibility variants 

within a 1.25 Mb region associated with Crohn’s disease on chromosome 5p13.1 were found 

to contribute to the variance in expression of PTGER4 (prostaglandin E receptor 4), a gene 

270 kb away from the associated region (Libioulle et al., 2007). 

 

Through overall gene expression and AEI analysis, several functional studies have reported 

OA-associated signals to be marking eQTLs similarly acting on nearby genes (Reynard and 

Loughlin, 2013). This is exemplified at the 7q22 locus, a region of association in Dutch 

Caucasians marked by the polymorphisms rs3815148 (Kerkhof et al., 2010) and rs4730250 

(Evangelou et al., 2011), whereby the OA-associated alleles correlate with a reduced 

expression of HBP1 and DUS4L (Raine et al., 2012). Moreover, at the 14q31.1 locus, AEI 

indicated that the OA-associated allele of rs225014 correlates with an increased transcript 

output of DIO2 (Bos et al., 2012). Finally, as previously discussed in Chapter 3, the risk allele 

of the hand OA-associated SNP within ALDH1A2 was significantly associated with knee and 

hip OA (Styrkarsdottir et al., 2014). To investigate my hypothesis, I similarly quantified the 

gene expressions in diseased and non-diseased hip cartilage; however there were no such 

correlations observed with the association SNP genotypes. This typifies the complexity of 

dissecting regions of OA association where investigations, such as that of the OA-associated 
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SNP rs2277831 and MICAL3 expression (Ratnayake et al., 2012), oftentimes do not yield 

positive results. 

 

Interestingly, the expressions of SENP6 and MYO6 from the rs9350591 locus and KLHL42 

from the rs10492367 locus were all decreased in OA hip cartilage relative to NOF cartilage. 

This suggests that these genes might be required for normal cartilage homeostasis, 

irrespective of the association SNP genotypes: simply, a lack of the encoded proteins could 

contribute to the onset or progression of OA. While there is little published literature about 

KLHL42, and pathologies associated with MYO6 include autosomal dominant hearing loss 

(Sanggaard et al., 2008), SENP6 is a more likely candidate gene. Firstly, the gene resides 

within the region of high LD with rs9350591, and secondly, its protein function has a 

potential link with OA susceptibility. Through sumoylation, the covalent attachment of 

SUMO proteins is a reversible regulator of target protein function. The protein encoded by 

SENP6 is able to regulate sumoylation by deconjugating the SUMO proteins from their 

targets (Lima and Reverter, 2008). There is emerging evidence to suggest that sumoylation 

plays a role in arthritis (Yan et al., 2010), and consequently, a decrease in SENP6 expression 

might be a mechanism through which OA progresses. 

 

A caveat to studying overall gene expression is that an eQTL might be tissue-specific, such as 

that detected at the 7q22 locus (Raine et al., 2012). To overcome this, I included an analyses 

of fat pad and synovium samples to ensure an eQTL acting in these tissues was not 

overlooked. Similarly, I analysed OA knee cartilage to safeguard against false negative 

results. Again, this yielded no correlation with association SNP genotype. A further limitation 

of studying overall gene expression is that inter-individual differences could be masking true 

correlations. Indeed, AEI was observed at the Type 2 diabetes-associated locus at 

chromosome 1q21-24 for IVL (involucrin), XCL1 (chemokine [C motif] ligand 1), and 

TMCO1 (transmembrane and coiled-coil domains 1), yet overall gene expression did not 

correlate with association signal genotype (Mondal et al., 2013). By similarly implementing 

AEI in Chapter 3 and Chapter 4, a more detailed assessment of gene expression can be made; 

however, for this study, AEI was not without its own limitations. Firstly, FILIP1 and 

COX7A2 were omitted from the analyses due to the lack of transcript polymorphisms; and 

secondly, the lack of informative OA hip patient samples meant a substantial n number was 

not achievable. Therefore, particularly for the rs9350591 6q14.1 locus, an eQTL operating in 

end-stage diseased tissues could have gone undetected. 
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With the knowledge that all genes are expressed during chondrogenesis and 

osteoblastogenesis, the most likely reason for why the actions of an eQTL were not detected 

is that the effects could instead be exerted at earlier stages of development. Perhaps the causal 

SNP is functional in OA susceptibility and progression rather than at the end-stage of the 

disease where a total joint replacement was necessary. In particular, PTHLH has a well-

established role in endochondral ossification (Wysolmerski, 2012), and could therefore be 

regulated by an eQTL that predisposes an individual to developing OA later in life. Overall, 

both gene expression analyses and AEI failed to detect any correlation with the association 

SNP genotypes. It can be concluded that the OA associations marked by the polymorphisms 

rs10492367 and rs9350591 do not contribute to disease susceptibility by modulating the 

tested genes in end-stage diseased synovial joint tissue. Alternatively, the OA-associated 

signals could mark trans-eQTLs, modulating gene expression beyond the regions currently 

investigated (Fehrmann et al., 2011), or eQTLs that act during joint development. 

 

6.4 Differential Methylation as a Mechanism to Mediate Osteoarthritis Susceptibility 

DNA methylation is a widely characterised mechanism through which epigenetics can 

regulate the human genome, and has been studied in a variety of diseases such as cancer 

(Esteller et al., 2000), metabolic disorders (Nilsson et al., 2014) and Alzheimer’s disease (De 

Jager et al., 2014). Until relatively recently, however, DNA methylation has been largely 

overlooked in the context of genome-wide OA susceptibility. From approximately 27,000 

CpG sites, the first OA-specific genome-wide investigation into methylation identified 91 

differentially methylated loci between the cartilage of donors with knee OA and healthy 

controls (Fernandez-Tajes et al., 2014). A matter of months later, approximately 480,000 

CpG sites were interrogated by Dr Michael Rushton, a member of Prof. Loughlin’s research 

group (Institute of Cellular Medicine, Newcastle University), in the cartilage of OA hip, OA 

knee and healthy controls, identifying differentially methylated loci depending on both the 

disease state and the joint site (Rushton et al., 2014). Prior to the publication of the latter 

paper, I accessed the raw data in order to conduct my own investigations into the methylation 

levels of a 2 Mb span at each of the two loci. Despite not detecting an eQTL in the end-stage 

diseased tissues tested, it was important that methylation as a regulatory mechanism in OA 

should still be considered. Firstly, FILIP1 and COX7A2 were excluded from the in-depth AEI 

investigations, meaning that although not detected, an eQTL could still be functional here. 

Moreover, differential methylation of the region may mark a historical event that is no longer 

functional, with the activity of regulatory regions known to act at specific stages of cellular 

differentiation (West et al., 2014). For example, differential DNA methylation between young 
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adult rhesus macaques was associated with a response to events earlier in life (Provencal et 

al., 2012). In addition, the methylation mark could be present and detected in cartilage, yet it 

might not be functional: perhaps the functionality is only apparent in the presence of tissue-

specific transcription factors. 

 

The identification of differentially methylated CpG sites dependent on the disease state and 

the joint site at both loci suggests, akin to the gene expression analyses, that methylation 

could be key in modulating OA susceptibility (den Hollander et al., 2012; Bomer et al., 

2015). Crucially for the dissection of the OA signals, however, cg26466508 was 

hypermethylated in OA hip cartilage risk allele (T) carriers of rs9350951 relative to the non-

risk CC homozygotes. As this CpG site is 53 bp upstream of FILIP1 in a region predicted to 

have enhancer activity, its function in OA cartilage may have been missed since AEI was not 

studied for this gene. A mechanism of action of cg26466508 might be that relative to the non-

risk allele, the T allele of rs9350591 creates a more open chromatin conformation such that 

DNA methyltransferase enzymes can more readily bind cg26466508 (Robertson et al., 2004). 

The increased methylation of the CpG site could then affect transcription factor binding to the 

region, causing differential regulation of target gene expression. One mode of action is 

through the direct inhibition of transcription factor binding due to the altered binding site 

(Tate and Bird, 1993). An alternative mode of action is through the recruitment of histone 

deacetylase complexes which cause a change in chromatin structure, and thus modulates the 

accessibility of the binding site (Jones et al., 1998). Of course, the causal SNP could be one in 

high LD with the association signal: in fact rs9343292 is in perfect LD with rs9350591 and 

resides less than 1 kb downstream of cg26466508. In the context of myogenic tumours, a 

CpG island surrounding the transcription start site of PAX3 (paired box 3) was found to be 

hypermethylated in embryonal rhabdomyosarcomas (common in young children) relative to 

alveolar rhabdomyosarcomas (common in older children), while an inverse correlation existed 

between a particular site within this island and PAX3 expression in both forms (Kurmasheva 

et al., 2005). The authors postulated that the decreased gene expression is caused by inhibited 

transcription factor binding by the hypermethylation, which could thus result in abnormal 

development and tumorigenesis. It would be essential for subsequent investigations of the 

6q14.1 region to similarly quantify FILIP1 expression and correlate this with methylation 

levels at cg26466508. 

 

For the methylation analysis of the CpG sites spanning the 12p11.22 locus, there were no 

significant correlations with rs10492367 genotype. As differential methylation can be tissue-
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specific (Lokk et al., 2014), performing a similar microarray investigation using alternative 

synovial joint tissues might reveal differentially methylated sites. As an additional 

interrogation of this region, I designed an undergraduate project to quantify methylation at 

CpG sites in close physical proximity to SNPs in high LD with rs10492367. Although 

methylation did not correlate with rs10492367 genotype, the CpG site at rs11049207 was 

hypermethylated in OA knee cartilage relative to NOF cartilage, while the CpG site at 

rs10743612 was hypomethylated in NOF cartilage relative to both OA hip and OA knee 

cartilage. These were intriguing significant findings that could be important in modulating the 

development of OA, irrespective of the association signal at this locus. Overall, however, this 

requires further investigation to both validate the assay and increase the n number. 

 

6.5 Differential Transcription Factor Binding as a Mechanism to Mediate 

Osteoarthritis Susceptibility 

The aim of Chapter 5 was to characterise the region of association marked by rs10492367 

primarily by investigating its functionality. Although regulation of gene expression was not 

identified, it does not imply that the region is not functional. Differential transcription factor 

binding has previously been identified in the context of OA (Syddall et al., 2013), and so I 

hypothesised that rs10492367 could function in a similar manner. It was necessary to shortlist 

the functional polymorphisms prior to performing EMSAs in order to focus on only the most 

likely causal variants. While the EMSAs indicated protein binding to the SNPs, none of the 

supershifts were allele-specific. An explanation for this could be that the EMSA probes are 

linear and do not provide a true representation of the natural chromatin conformation. For 

functionality, a particular haplotype or three-dimensional conformation might be required, 

which is lacking in this artificial environment (Knight, 2005). Moreover, the difference 

between the allelic probes of each SNP is one base pair – it is conceivable that, regardless of 

any in vivo allelic specificity of the transcription factors, the linear presentation of the probes 

are so similar that the protein could in fact bind both. Combined with ChIP, the EMSA results 

for rs10492367 are suggestive of transcription factor binding. Although the EMSA results 

imply the proteins do not differentially bind the alleles of the SNP, this might again be an 

artefact of the linear nature of the EMSA probes. The most compelling result was SUB1 

(PC4), which when knocked-down in HACs caused a significant downregulation of PTHLH.  

 

Currently, the connections between SUB1 (PC4) and OA, synovial joint development and 

joint homeostasis are limited. Rather, it has been more widely studied as a general 

transcriptional coactivator (Conesa and Acker, 2010). SUB1 (PC4) has been reported to 
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activate non-homologous end joining of double-stranded DNA breaks (Batta et al., 2009), 

damage that is commonly caused by ionising radiation during cancer therapy. Knockdown of 

SUB1 (PC4) in oesophageal squamous cell carcinoma cells increased the sensitivity of the 

cells to radiation, meaning that the presence of the protein might be associated with a poorer 

response of the patient to radiotherapy (Qian et al., 2014). The protein is also essential for 

embryogenesis, with SUB1 (PC4) knockout mice being lethal despite normal development 

until E5.5 (Li, 2010). More relevant to OA, SUB1 (PC4) has been reported to be functional in 

chromatin organisation. The transcription factor interacts with histones H3 and H2B to 

condense the chromatin, while its knockdown leads to cell cycle arrest (Das et al., 2006). As 

discussed in Chapter 5, SUB1 (PC4) could be central in the formation of a larger complex, 

with other unidentified proteins mediating allele-specific differences at rs10492367. 

Similarly, the protein was identified as a component of a multi-protein complex that binds the 

OA-associated SNP rs143383 (Syddall et al., 2013). Together with its regulation of PTHLH, 

the wide-ranging function and expression of SUB1 (PC4) means that this has the potential to 

be equally important in the mediation of OA susceptibility.  

 

Understanding a link between transcription factor binding and the association signal is vital if 

this is to be exploited through therapeutic interventions. I propose that SUB1 (PC4), in 

combination with other unidentified transcription factors, binds to the non-risk (G) allele of 

rs10492367 in vivo, increasing PTHLH expression and thus stimulating chondrocyte 

proliferation and inhibiting hypertrophy. This regulation could be lacking with the risk (T) 

allele, and so accelerated terminal differentiation of chondrocytes, a hallmark of OA (van der 

Kraan and van den Berg, 2012), would be induced. The fact that SUB1 (PC4) is widely-

expressed means that targeting this in the treatment or prevention of OA would be difficult, 

particularly as off-target effects must be considered. Increasing the amount of SUB1 (PC4) 

within a patient that is susceptible to developing OA could be achieved by either 

administering exogenous protein (Gil-Bernabe et al., 2012) or by stimulating its endogenous 

expression by targeting upstream effectors in its metabolic pathway. Should it be the case that 

the actions of SUB1 (PC4) need to be inhibited, several established mechanisms could be 

explored (Gambari, 2011). For example, the expression of the gene encoding the protein 

could be targeted using an antisense oligonucleotide (AON). The purpose of an AON is to 

induce exon skipping within the gene transcript, which overall achieves a downregulation of 

the full length protein (Kemaladewi et al., 2014). Alternatively, exogenous mutated protein 

with a dominant negative effect can be introduced to effectively override the native protein 

function (Attardi et al., 1993). Moreover, double-stranded oligonucleotides can be used as 
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decoys by mimicking the target sequence and therefore competing directly for binding to the 

transcription factor (Mann, 2005). Overall, the functional findings of this chapter illustrates 

how diverse the region is and highlights the huge potential for its modulation in targeted 

therapies. 

 

6.6 Future Work 

By tailoring the experiments to be more specific for the loci under investigation, the existing 

data could be made considerably more robust. Firstly, a basic enhancement in Chapter 3 and 

Chapter 4 would be to increase the number of hip cartilage samples for the gene expression, 

AEI and methylation analyses. Of course, validating the assays used in the undergraduate 

project to investigate differential methylation is essential in order to draw any reliable 

conclusions from the data. Additionally for the 6q14.1 locus, it would be prudent to explore 

functionality by following the same route of investigation as was performed for rs10492367 

in Chapter 5. The associated volume of work, however, meant that this was not possible in the 

timeframe of my Ph.D. For both the loci, it would then be worthwhile performing additional 

luciferase reporter assays using HAC cell cultures, although through personal communication 

with colleagues, I was advised that such transfections would be difficult to achieve (Syddall, 

2013). Likewise, the EMSA and ChIP experiments of Chapter 5 could be improved by using 

nuclear protein extracted specifically from hip cartilage. The probes that were used for the 

EMSAs were a standard length and were considered a suitable size to capture transcription 

factors binding directly over the polymorphism. However, this could limit the experiments 

and exclude proteins that bind over larger distances. Thus increasing the length of the probes, 

although perhaps capturing non-specific binding, might allow additional proteins to be 

identified. Finally, a limitation of using SW1353 and U2OS cell lines for the luciferase 

reporter assays, EMSAs and ChIP is that both cell lines are homozygous for the major allele 

of rs10492367. It is possible that transcription factors that bind the risk allele are less 

abundant, or even absent, in these cell cultures and so a true representation of functionality is 

not provided. A way to correct this would be to use a heterozygous chondrosarcoma or 

osteosarcoma cell line, however there were no such cell lines available in our research group. 

The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system is a 

technique that uses customised nucleases to target and edit specific regions of the genome and 

could be utilised to generate the necessary genotype of the association SNP (Sander and 

Joung, 2014). 
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The findings discussed in this thesis provide a basis for further dissecting the association loci. 

Several additional experiments would be vital in achieving this, particularly for the functional 

analysis of the rs10492367 locus in Chapter 5. Firstly, despite the luciferase reporter assays 

allowing a shortlist of functional variants to be identified, this differed depending on the cell 

line under investigation. Therefore, a thorough investigation into protein binding to all of the 

functional SNPs, by performing EMSAs and ChIP, would ensure that no variants were 

missed. Moreover, EMSAs and ChIP are two different techniques that ultimately investigate 

the same principle, with mass spectrometry being another complementary method that could 

be employed (Glish and Vachet, 2003). Here, oligonucleotide pull-down assays – whereby 

allele-specific regions surrounding rs10492367 would be amplified with biotinylated primers, 

incubated with nuclear protein and separated by electrophoresis – could precede mass 

spectrometry which would then identify the proteins binding the DNA (Syddall, 2013; 

Syddall et al., 2013). 

 

If functionality of the association signal could be identified, the next step of investigation 

would be to identify at what stage of disease susceptibility this occurs. It is likely that in end-

stage diseased cartilage, the region is not exerting its maximum functionality given that the 

disease is so far advanced. Instead, the region could be functional during joint development, 

and so a strong approach to investigate this would be to quantify gene expression and AEI 

during chondrogenesis and osteoblastogenesis. Furthermore, to develop the identification of 

SUB1 (PC4) binding to rs10492367, knocking-down this protein during MSC differentiation 

would allow its function during joint development, specifically on PTHLH expression, to be 

investigated. In addition, combination knockdowns to include RELA and TCF3 would show 

whether the proteins act in isolation or as a larger protein complex. Despite showing that the 

transcription factors were expressed in the cell lines of interest, the levels of expression were 

often low. As such, a similar set of experiments to the knockdowns could be performed, but 

instead the transcription factors could be overexpressed in HACs and MSCs. It is imperative 

that the focus should be on understanding the link between SUB1 (PC4) binding to 

rs10492367, the knockdown of SUB1 (PC4) causing a downregulation of PTHLH, and the 

role of PTHLH in OA susceptibility. 

 

The vital limitation of the experiments discussed in this thesis is that the entire premise is 

based on the hypothesis that the association signals mark cis-eQTLs. Therefore, the present 

investigations have been limited to only the regions surrounding the signals. An alternative 

methodology could be to utilise a gene expression array, where gene-specific probes are 
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hybridised to a solid support to capture nucleic acids in a sample preparation, giving a 

snapshot of the transcriptome composition (Macgregor and Squire, 2002). Additionally, rather 

than being targeted only to known genes, RNA-Seq involves the ligation of adaptors to all 

fragments of a cDNA library before high-throughput sequencing is performed (Wang et al., 

2009). Both technologies could enhance the present study, and performing subsequent eQTL 

investigations could be useful in further investigations. Moreover, employing chromosome 

conformation capture (3C) in relevant cell types such as HACs would elucidate the in vivo 

physical conformation of the chromatin and identify whether the regions interact with other 

genomic loci (Gavrilov et al., 2009). From this, the investigation could be directed towards 

more appropriate genes. Finally, if evidence implies that the functional polymorphism acts in 

combination with other SNPs, it would be important to assess the effects of haplotypes rather 

than the SNPs in isolation as has so far been done. 

 

6.7 Summary 

In summary, I have fulfilled the aim of my Ph.D, which was to functionally analyse the OA 

association signals marked by the polymorphisms rs10492367 and rs9350591. Although the 

functionality of the regions could not be correlated with the respective OA association signal 

genotypes, the research presented here provides a foundation for the understanding of these 

loci. The polymorphisms do not mark the actions of cis-eQTLs in end-stage diseased tissue, 

but more likely, the OA associations are modulated at an earlier stage of development or in 

different synovial joint tissues. 
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Appendix A. Primer Sequences 

SNP Forward primer (5′ - 3′) Reverse primer (5′ - 3′) Sequencing primer (5′ - 3′) 
MgCl2 
(mM) 

Anneal 
(oC) 

rs6253 [Btn]CGTCACCCAACATCAATCC GGTGTGAGAGTAAGGGGAAGAA TGAGAGTAAGGGGAAGAA 2.0 55 
rs9029 [Btn]AGCTGTCCCTGCAATGTTTTC GGGTATTTCATAGGCATTCTTGTA ATGTTTACACTTTTAAGCTA 2.0 64 

rs594012 ACGCGATATTGCAGCACA [Btn]ACACCTAACAGCCTCGATGTTC CAGCACAGGTCCTGG 2.0 55 
rs240736 [Btn]CTTGTGTTGTTAAGATAGGCA TGAACCCCAACACCATCTAT AGTCAGAAAGTGATGACCTG 2.0 55 

rs41269315 [Btn]CAGGAGAGGTAGCAGGCTGAAC ACTAGTGAGGAGGAGCAGCTGAG GAGAGATAGGGTCAGTGAA 2.0 64 
rs1045758 CCGCTGTAATTCCCAAAACTC [Btn]ACTGCAAAGGAGGAAAAAAATAGA CACTAATGTTTTGGTCTGAA 2.0 55 
rs699186 [Btn]GGCATATTCTGATGTTTCTCATCC AGTGCCTTGATCATTTTAAGTGGT GTACTGTGCCATCCTTAA 2.0 55 

rs71561434 CAAAGGCCTCCGCTGATG [Btn]GCCCCTAGCTCGTTCTGCA CACGCCTGGGCGGGGT 1.0 62 
rs17414687 [Btn]CACCATCCACTGGAAAAGTAGAA TTCTGGAATGCTTCGTAGTTCA TCTGCAAGTATTTTCATTTA 1.0 60 

      

SNP Forward primer (5′ - 3′) Reverse primer (5′ - 3′) Restriction enzyme 
MgCl2 
(mM) 

Anneal 
(oC) 

rs9350591 CATAAGAAAGGCATGTTGC CAGCTTTCATTGTATAACAAC MspI  2.0 55 
rs11049204 GCTCTTAACCATCTTTCAACC CATATAGATTTACAAAAGGC BsrI 2.0 55 

      

Gene Forward primer (5′ - 3′) Reverse primer (5′ - 3′) 
cDNA/gDNA fragment size 

(bp) 
MgCl2 
(mM) 

Anneal 
(oC) 

HBP1 TCGAAGAGTGAACCAGCCTT GAAGGCCAGGAATTGCACCATCC 152/570 2.0 55 
      

Table A.1. Primer sequences and conditions used for PCR, restriction digest and pyrosequencing. Top panel: primer sequences used for 
genotyping and allelic expression imbalance analysis by pyrosequencing. Middle panel: primer sequences and restriction enzymes used for genotyping 
by restriction fragment length polymorphism analysis. Bottom panel: primer sequences used for validation of cDNA synthesis. 
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SNP Forward primer (5′ - 3′) Reverse primer (5′ - 3′) 
MgCl2 
(mM) 

Anneal 
(oC) 

rs10492367 GGGGACGCGTATTTTAAACTGCTGGTTCCCACT GGGGAGATCTTTCCATTGACTTCTTAACCCAAA 1.5 55 
rs11049206 GGGGACGCGTACTAAAATGCCAGTTTAACCACC GGGGAGATCTCAAATCCTCATGAGCTGTCCTG 2.0 70 
rs11049204 GGGGACGCGTTGTTCCATTTCTGTTGTTACCCC GGGGAGATCTAGGGAAGCTGTCATAAGGAAGAT 2.0 66 
rs10843013 GGGGACGCGTGTGTTGTTGGATAGAGCAGTACC AACCAAAAGCTAGATCTGCCTTT 2.0 66 
rs10743612 GGGGACGCGTACTGAGTTAGGTGATCAGAGTGG GGGGAGATCTACTGGCATTTTAGTTATGAGCCA 1.5 70 
rs61916489 GGGGACGCGTGAATCACCTCCCCAGTAAACAAC GGGGAGATCTCAAGTCACTATGGGAAGGAACAC 2.0 66 
rs11049207 GGGGACGCGTCCTTGAACTACCCAAAGATGGTA GGGGAGATCTGAATCAAAACCTTCTTCCCTGTT 1.5 55 
rs79881709 GGGGACGCGTTAAAGTGCAAACAGGGAAGAAGG GGGGAGATCTGCCTGTGGTTCCATCAAATCTTA 2.0 66 
rs58649696 GGGGACGCGTGCAGACATTCTTACTCATCCAGC GGGGAGATCTCTCCCCTCACATTACCTTTGTTC 2.0 66 

     
SNP Forward primer (5′ - 3′) Reverse primer (5′ - 3′)   

rs58649696 CATCTGCCTCTTTCATTTTCCTAATGGGAC GTCCCATTAGGAAAATGAAAGAGGCAGATG   
rs11049204 CATTTTAAAAAATGAAACTGGATAGAAAGATCATAG CTATGATCTTTCTATCCAGTTTCATTTTTTAAAATG   
rs79881709 GGTTTCCTGAACTGGAAGAATCTCACTCTCCAAC GTTGGAGAGTGAGATTCTTCCAGTTCAGGAAACC   

     
Table A.2. Primer sequences used for the cloning of fragments into pGL3 promoter vector constructs. Top panel: PCR primers and conditions 
used for standard cloning into pGL3 vectors between the restriction sites MluI and BglII; the restriction sites are underlined in red text preceded by a 5′ 
GGGG. The rs10843013 fragment contained a naturally-occurring BglII restriction site. Bottom panel: primer sequences used for site-directed 
mutagenesis. 
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Gene Probe sequence (5′-3′) Primer 1 (5′-3′) Primer 2 (5′-3′) 
18S 56-FAM/TCCTTTGGTCGCTCGCTCCTCTCCC/TAMRA TATTAGCTCTAGAATTACCACAGTTATCC CGAATGGCTCATTAAATCAGTTATGG 

COL12A1 56-FAM/TCCCCTGTG/ZEN/GAAGGCTGATAAGTGA/3IABkFQ CGGTGATAGTGTAAGGAGTGTC TGGTCGTGTGCAGAAATATAGG 

COX7A2 56-FAM/AGATTGGGC/ZEN/AGAGGACGATAAGCAC/3IABkFQ TGGTCAGTAACAGCCAAGATG TTTTAAAATGCCTGCGGGAAG 

FILIP1 56-FAM/ACAACGTCA/ZEN/TCTGCTCGAGGAACC/3IABkFQ AGCACTATCACCATAACACCG CTTTTGACATAGGAATGCGGG 

GAPDH 56-FAM/AAGGTCGGAGTCAACGGATTTGGTC/IABkFQ/36-TAMSp TGTAGTTGAGGTCAATGAAGGG ACATCGCTCAGACACCATG 

HPRT1 56-FAM/AGGACTGAACGTCTTGCTCGAGATG/36-TAMSp ACAGAGGGCTACAATGTGATG TGCTGAGGATTTGGAAAGGG 

KLHL42 56-FAM/CGCCACAAA/ZEN/ATTCCACGCATCCT/3IABkFQ TGCAAAATGTTCATGTTCCGG TTGAGTGTTACAACCCCGAG 

MYO6 56-FAM/TGGCGTCCT/ZEN/GCACCTTGGAAATA/3IABkFQ CCAAACCCAGTAATTCAGCAC AAAGCTTGATCTCTTCCGGG 

PTHLH 56-FAM/CCGCCTCAA/ZEN/AAGAGCTGTGTCTGAA/3IABkFQ CAGCGGAGACTGGTTCAG ATGGACTTCCCCTTGTCATG 

RELA 56-FAM/CCCAACACT/ZEN/GCCGAGCTCAAGAT/3IABkFQ ACCTCAATGTCCTCTTTCTGC CCTGTCCTTTCTCATCCCATC 
SENP6 56-FAM/CTGTAAGGT/ZEN/TAAGTCGGCTCCAAGGT/3IABkFQ TCCTCTTAATTTCAGGCTCCAC AAAGAATACCCACCTCATGTCC 
SUB1 56-FAM/CGAAGCGAT/ZEN/GCCTAAATCAAAGGAACTT/3IABkFQ GTCAGAATCACTGCCAGAAGAG CGAGCGAACGACCAAGAG 

TCF3 56-FAM/TCCTGGACT/ZEN/TCAGCATGATGTTCCC/3IABkFQ GTCCTCAAGACCTGAACCTC GCACAGACAAGGAGCTCAG 

TMEM30A 56-FAM/TGTGACATT/ZEN/CAAAGAGTATCGGCCAGC/3IABkFQ CAGCATTACCTACTTTTCGCAAG TCATCCGTTTTCGTCCATCAA 

    
Locus Probe sequence (5′-3′) Primer 1 (5′-3′)  

rs10492367 AGCTCAAACTGATGAAACCATGT CAGCTGTTGGTTGTCACACT 
 

GAPDH CGTAGCTCAGGCCTCAAGAC GCTGCGGGCTCAATTTATAG 
 

PRM2 GGCGCAGACACTGCTCTC CCTTCTGCAGGAGCGATG 
 

    
Table A.3. Primer and probe sequences used for qPCR. Top panel: primer and probe sequences used for quantification of gene expression. Bottom 
panel: primer sequences used for DNA quantification in chromatin immunoprecipitation.  
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SNP Forward primer (5′ - 3′) Reverse primer (5′ - 3′) 
Sequencing primer 

(5′ - 3′) 
Anneal 

(oC) 
rs11049207 TGTGTGTATATGTTTGGTGTT [Btn]TCCAACAAAAATACACTATAA GTGTTTGTGTGTGTG 56 
rs10743612 GGTATTTGGATATTTATTTG [Btn]AACATTTTAATTATAAACCA GGGTTTTTTTGTTAT 56 

     

SNP Forward primer (5′ - 3′) Reverse primer (5′ - 3′) MgCl2 (mM) 
Anneal 

(oC) 
rs11049207 GGGGACTAGTCCTTGAACTACCCAAAGATGGTA GGGGCTGCAGGAATCAAAACCTTCTTCCCTGTT 1.5 55 
rs10743612 GGGGACTAGTACTGAGTTAGGTGATCAGAGTGG GGGGCTGCAGACTGGCATTTTAGTTATGAGCCA 1.5 55 

     
Table A.4. Primer sequences and conditions used for PCR, methylation quantification and the cloning of fragments into pCpGL-basic/EF1 
vectors. Top panel: primer sequences used for methylation quantification by pyrosequencing; primers target bisulfite converted DNA. Bottom panel: 
PCR primers and conditions used for standard cloning into pCpGL-basic/EF1 vectors between the restriction sites PstI and SpeI; the restriction sites are 
underlined in red text preceded by a 5′ GGGG. 
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Appendix B. Pyrosequencing Validations 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1. Validation of pyrosequencing assays used for genotyping and allelic 
expression imbalance. Known artificial allelic ratios were generated by mixing the PCR 
products of major allele homozygotes with minor allele homozygotes (or heterozygotes in the 
absence of minor allele homozygotes) in duplicate for A) PTHLH, B) KLHL42, C) SENP6, D) 
MYO6, E) TMEM30A and F) COL12A1. For validations that used heterozygotes, the plots 
begin at 50%. The allelic ratios, as determined by the pyrosequencer, were compared to the 
expected ratios. All assays were considered suitable for use. The detected ratios closely 
mirrored the expected outcome, with a positive correlation particularly between 40% and 60% 
of the major allele (dotted lines) where allelic imbalance is likely to be observed. Error bars 
represent the SEM. 
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Appendix C. Reporter Vector Constructs 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1. Map of the pGL3-promoter vector. The vector contains an ampicillin 
resistance gene for selection, a multiple cloning site for fragment ligation, an SV40 promoter 
to initiate transcription and a luciferase gene for use as a reporter of enhancer activity. Image 
taken from the Promega Corporation website (http://www.promega.co.uk/). 

Figure C.2. Map of the pRL-TK vector. The vector contains an ampicillin resistance gene 
for selection, an HSV TK promoter to initiate transcription and a Renilla luciferase gene for 
use as a reporter of enhancer activity. Image taken from the Promega Corporation website 
(http://www.promega.co.uk/). 
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Figure C.3. Map of the pCpGL-basic/EF1 vector. The vector backbone is CpG-free. The 
construct contains a zeocin resistance gene for selection, a cloning site for fragment ligation, 
an EF1 promoter to initiate transcription and a luciferase gene for use as a reporter of 
enhancer activity. Image adapted from (Klug and Rehli, 2006). 
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Appendix D. Patient Details and Genotypes 
 

Donor Sex Age (years) Joint rs9350591 rs10492367 S1 S2 M1 M2 T1 T2 C1 C2 P1 K1 
1 F 75 H CC GG           
2 F 67 K CT GT CT  AG  GA  TT  CT GC 
3 M 69 K CC GT           
4 F 77 H CT GT           
5 F 73 K CC GT CC  AA  GG  TA  CC GC 
6 M 71 K CC GG           
7 F 73 K CC GG           
8 F 51 H CT GT           
9 M 71 H CC GT           
10 F 60 K CC GG CC  AA  GG  TT  CC GC 
11 F 76 K CT GT           
12 F 78 H CT GG CC  AA  GG  TT  TT GG 
13 M 74 K CC GT CC  AG  GG  TT  CC GC 
14 F 83 H CT GG CC  AG  GG  TT  CC GC 
15 M 50 K CC TT CC  AA  GG  TT  CC GC 
16 F 76 H TT TT           
17 F 71 K CT GG           
18 F 67 H CC GT           
19 F 70 H CC GT           

                
Table D.1.Characteristics and genotypes of all donors whose tissues have been used. Transcript SNPs are named S1 (rs71561434), S2 
(rs17414687), M1 (rs1045758), M2 (rs699186), T1 (rs41269315), T2 (rs240375), C1 (rs594012), C2 (rs240736), P1 (rs6253) and K1 (rs9029). Donors 
1-230 OA, donors 231-275 NOF. Age (age at joint replacement); rs9350591and rs10492367 (association SNPs). The donors marked with an asterisk 
(*) were young, non-OA donors purchased from Lonza, UK. Continued overleaf. 
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Donor Sex Age (years) Joint rs9350591 rs10492367 S1 S2 M1 M2 T1 T2 C1 C2 P1 K1 
20 F 70 H CC GG           
21 F 60 H CC TT           
22 F 78 H CT GG           
23 F 81 K CT GG           
24 M 76 K CC GG CC GA AA TC GG GG TA  TT GG 
25 M 82 K CT GT CT  AG  GG  TT  CC GG 
26 M 63 K CT GT           
27 M 57 K CC GG CC GG AG  GG AA TT TT CC GC 
28 M 57 H CC GG           
29 M 69 K CC GT CC AA AA TT GG GA TT TT CC GC 
30 M 74 K CC GT CC  AA  GG  TT  CT GC 
31 F 67 K CT GG CC GA AG  GA  TT TT CC GG 
32 F 69 K CC GG           
33 M 57 K CT GG           
34 F 61 H CC TT CC  AA  GG  TA  CT GG 
35 F 60 K CC GG CC  AA  GG  TT TT CC GC 
36 F 66 K CT GG CC  AA  GG  TT  CT GG 
37 M 63 K CC GG           
38 M 77 K CT GG CT  AG  GG  TT TC CT CC 
39 M 82 K CT GT CC  AA  GG  TT  TT GG 
40 F 78 K CC GG        TT   
                Table D.1. Characteristics and genotypes of all donors whose tissues have been used. Transcript SNPs are named S1 (rs71561434), S2 

(rs17414687), M1 (rs1045758), M2 (rs699186), T1 (rs41269315), T2 (rs240375), C1 (rs594012), C2 (rs240736), P1 (rs6253) and K1 (rs9029). Donors 
1-230 OA, donors 231-275 NOF. Age (age at joint replacement); rs9350591and rs10492367 (association SNPs). The donors marked with an asterisk 
(*) were young, non-OA donors purchased from Lonza, UK. Continued overleaf. 
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Donor Sex Age (years) Joint rs9350591 rs10492367 S1 S2 M1 M2 T1 T2 C1 C2 P1 K1 
41 M 82 K CC GG           
42 M 56 K CC GG     GG   TT   
43 M 56 K CC GG           
44 F 54 K CC GT CC  AA  GG  TA  CC GG 
45 M 71 K CC GT        TC   
46 F 58 H CC GT           
47 F 69 H CC GG           
48 M 63 K CT GT CC  AG  GA  TT  CT GG 
49 F 71 H CT GT           
50 M 70 K CC GG CC  AA  GG  TT  CC GC 
51 M 67 K CC GG CC  AA  GG  TT  CT GC 
52 F 61 H CC GG           
53 M 86 K CC GT CC GG AA TC GG GG TT TC CT GC 
54 F 80 K TT GG CC  AA  GG  TT TT CT GG 
55 F 67 K CC GG CC  AA  GG  TT  CT GG 
56 M 71 K CT GG           
57 F 46 K CC GT           
58 F 62 K CC GT           
59 F 67 K CC GT CC  AA  GG  TA  CT GG 
60 F 58 K CC GG            

Table D.1. Characteristics and genotypes of all donors whose tissues have been used. Transcript SNPs are named S1 (rs71561434), S2 
(rs17414687), M1 (rs1045758), M2 (rs699186), T1 (rs41269315), T2 (rs240375), C1 (rs594012), C2 (rs240736), P1 (rs6253) and K1 (rs9029). Donors 
1-230 OA, donors 231-275 NOF. Age (age at joint replacement); rs9350591and rs10492367 (association SNPs). The donors marked with an asterisk 
(*) were young, non-OA donors purchased from Lonza, UK. Continued overleaf. 

 

 

244 
 



Donor Sex Age (years) Joint rs9350591 rs10492367 S1 S2 M1 M2 T1 T2 C1 C2 P1 K1 
61 M 59 K CT GG           
62 M 64 K CT GG        CC   
63 F 81 K CT GG CT  AG  GG  TA  TT GC 
64 F 80 K CC GG CC  AG  GG  TT TT CC GG 
65 F 55 K CT GG CC  AG  GG  TT  CT GG 
66 F 64 K CC GG CC  AA  GA  AA TC CT GC 
67 F 78 K CC GG           
68 F 61 K CC GT CC  AA  GG  TT  CC GG 
69 F 80 K CT GT CC  AA  GA  TT  CC GC 
70 F 80 K CT TT           
71 F 59 K CC GT CC  AA  GG  TT TC CC GC 
72 F 71 H CT GT     GG      
73 M 74 K CC GT CC  AA  GG  TA  CC GC 
74 F 74 H CT GG           
75 M 72 K CC GG CC  AA  GG  TT  CC GG 
76 M 72 K CC GT        TT   
77 M 70 H CC GT     GG      
78 F 72 H CT GG           
79 F 63 H CC GG CC  AA  GG  TT  CC GC 
80 M 77 K CC GT CC  AA  GG  TT  CC GG 

                Table D.1. Characteristics and genotypes of all donors whose tissues have been used. Transcript SNPs are named S1 (rs71561434), S2 
(rs17414687), M1 (rs1045758), M2 (rs699186), T1 (rs41269315), T2 (rs240375), C1 (rs594012), C2 (rs240736), P1 (rs6253) and K1 (rs9029). Donors 
1-230 OA, donors 231-275 NOF. Age (age at joint replacement); rs9350591and rs10492367 (association SNPs). The donors marked with an asterisk 
(*) were young, non-OA donors purchased from Lonza, UK. Continued overleaf. 
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Donor Sex Age (years) Joint rs9350591 rs10492367 S1 S2 M1 M2 T1 T2 C1 C2 P1 K1 
81 M 71 H CC GG CC  AA  GG  TA  CT GC 
82 M 71 H CT GT CT  AG  GG  TA  CC GG 
83 F 73 K CC GT CC  AA  GG  TA  CT GC 
84 F 82 K CT GG        TT   
85 M 71 K CC GG CC  AA  GG  TT  CC GG 
86 M 80 K CC GG CC  AG  GG  TT  CT GC 
87 M 66 H CC GG CC  AA  GG  TT TT CT GG 
88 M 69 K CC GG CC  AA  GG  TT  CT GC 
89 F 58 K CC GG CC  AA  GG  TT  TT GC 
90 F 60 K CC GG CC  AA  GG  TT TT CC GC 
91 F 62 K CC TT CC  AA  GG  TA  CT GG 
92 F 67 H CT GT CC  AA  GG  TT  CC GC 
93 F 51 H  GG           
94 M 53 K CC GG CC  AA  GG  TT TC CT GG 
95 M 65 K CC GG CC  AG  GG  TT  CC CC 
96 M 85 H CC GG CC GA AA TC GG GA TT TC TT GC 
97 F 79 K CC GT CC  AA  GG  TT  CC GG 
98 F 88 K CC GG CC GG AA CC GG AA TT TT TT GC 
99 M 65 K CC GT CC  AA  GG  TT  CT GG 
100 F 76 H CC GG CC  AA  GG  TT  CT GC 

                Table D.1. Characteristics and genotypes of all donors whose tissues have been used. Transcript SNPs are named S1 (rs71561434), S2 
(rs17414687), M1 (rs1045758), M2 (rs699186), T1 (rs41269315), T2 (rs240375), C1 (rs594012), C2 (rs240736), P1 (rs6253) and K1 (rs9029). Donors 
1-230 OA, donors 231-275 NOF. Age (age at joint replacement); rs9350591and rs10492367 (association SNPs). The donors marked with an asterisk 
(*) were young, non-OA donors purchased from Lonza, UK. Continued overleaf. 
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Donor Sex Age (years) Joint rs9350591 rs10492367 S1 S2 M1 M2 T1 T2 C1 C2 P1 K1 
101 F 68 H CC GG CC GG GG TT GG GA TT TT CT GG 
102 M 69 K CC GG CC  AA  GG  TT  CC GC 
103 M 63 K CT GG CC  AA  GG  TT CC CC CC 
104 F 76 H CC GG           
105 F 71 K CC GG CC  AA  GA  TT  CT CC 
106 M 49 K CT GG CT  GG TT GG GA TT TT CC GG 
107 F 61 K CC GG CC  AA  GG  TT TT TT GG 
108 F 64 K CC GG           
109 F 62 H CC GT CC GG AA TC GG GG TT TC CT GG 
110 M 83 K CC GG           
111 M 67 K CC GG CC AA AA TC GG GG TT TT CT GG 
112 F 60 K CC GG           
113 F 64 K CC GG CC GA AA TC GG GG TT TT CT GG 
114 M 59 H CC GT CC  AA  GG  TT TT CC GG 
115 M 65 K CC GG CC  AA  GA  TT TT CT GC 
116 M 68 K CC GG CC GG AA CC GG AA TT TT CT GG 
117 F 72 K CT GT CT  AG  GG  TT  TT GG 
118 F 70 K CC GG CC  AA  GG  TT  CC GG 
119 M 85 K CC GG CC  AA  GG  AA TT TT GC 
120 F 54 K CT GT CT  AA  GG  TT  CC GG 

                Table D.1. Characteristics and genotypes of all donors whose tissues have been used. Transcript SNPs are named S1 (rs71561434), S2 
(rs17414687), M1 (rs1045758), M2 (rs699186), T1 (rs41269315), T2 (rs240375), C1 (rs594012), C2 (rs240736), P1 (rs6253) and K1 (rs9029). Donors 
1-230 OA, donors 231-275 NOF. Age (age at joint replacement); rs9350591and rs10492367 (association SNPs). The donors marked with an asterisk 
(*) were young, non-OA donors purchased from Lonza, UK. Continued overleaf. 
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Donor Sex Age (years) Joint rs9350591 rs10492367 S1 S2 M1 M2 T1 T2 C1 C2 P1 K1 
121 F 76 K CC GG CC  AA  GG  TT  CC GG 
122 F 72 K CT GG CT  AG  GG GA TT TC CC GG 
123 F 76 H CC GG CC GA AA TC GG AA TA  CC GG 
124 F 71 K CC GG CC GA AA TT GG GG TT TC CC GC 
125 F 72 K CC GT CC  AA  GG  TT  CC GG 
126 M 48 H CT TT CT  AG  GG  TT  CC CC 
127 F 59 H CC GG CC GA AA TC GA  TA  CT CC 
128 M 90 H CC GG CC  AA  GG  TT  TT GC 
129 F 52 H CT GG  GG  TC GG AA  TT CC GC 
130 F 73 K CC GG CC GG AA TC GG GG TT TT CT GC 
131 F 68 K CC GG CC  AA  GG  TT  CT GG 
132 F 63 K CT GG CC  AA  GG  TT TT TT GG 
133 F 64 K CC GG CC GA AG  GG GA AA TC CT GC 
134 M 81 K CC GT CC AA AA TT GG GA TT CC CT GC 
135 F 82 K CC GG CC  AA  GG  TT  CT GG 
136 M 69 K CC GT CC GA AA CC GG GG TT TT CT GC 
137 F 68 K CT GT CT  AG  GA  TT CC CT GG 
138 F 86 K CC GT CC  AA  GG  TT  CT GG 
139 M 76 K CC GG CC  AA  GG  TT  CT GG 
140 F 34 K CC GT CC  AA  GG  TT TT CT GG 

 

Table D.1. Characteristics and genotypes of all donors whose tissues have been used. Transcript SNPs are named S1 (rs71561434), S2 
(rs17414687), M1 (rs1045758), M2 (rs699186), T1 (rs41269315), T2 (rs240375), C1 (rs594012), C2 (rs240736), P1 (rs6253) and K1 (rs9029). Donors 
1-230 OA, donors 231-275 NOF. Age (age at joint replacement); rs9350591and rs10492367 (association SNPs). The donors marked with an asterisk 
(*) were young, non-OA donors purchased from Lonza, UK. Continued overleaf. 
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Donor Sex Age (years) Joint rs9350591 rs10492367 S1 S2 M1 M2 T1 T2 C1 C2 P1 K1 
141 F 73 H CC GG CC  AA  GG  TT  CT GG 
142 M 78 H CT GG CT  GG  GA  TT  CT GG 
143 F 88 K CT GT CT  AG  GG  TT TC CT GG 
144 F 69 K CC GG CC  AA  GG  TT TT CT GG 
145 F 61 K CC GT  GA  CC GG GA  TT  GC 
146 F 70 H CT GG  GG  TT GA GA  TC CC GG 
147 F 76 K CC GG  AA  TC GG GG  TC  GC 
148 M 58 H CC GG  GA  TT GG GA  TT CT GC 
149 M 54 K CT GG  GG  TC GG AA  TT  GG 
150 M 54 K CT GG  GG  TC GG AA  TT  GG 
151 F 62 K CT GT           
152 F 66 K CC      GG   TC   
153 F 78 K CC GG  GA  TC GG GA  TT  GG 
154 M 73 K CC GG  AA  TT GG GG  TC  CC 
155 F 67 H CC GG  AA  CC GG GG  TC CT GG 
156 M 58 K CC GG  GG  TC GG GA  TC  GC 
157 F 45 H CC GG  GA  TT GG GA  TC CT GG 
158 F 70 K CC GG  GG  CC GG GG  TT  GC 
159 F 67 H CC GT  GG  TC GG GG  TC CC GC 
160 F 45 H CC GG  GA  TT GG GG  TC TT GG 

 

Table D.1. Characteristics and genotypes of all donors whose tissues have been used. Transcript SNPs are named S1 (rs71561434), S2 
(rs17414687), M1 (rs1045758), M2 (rs699186), T1 (rs41269315), T2 (rs240375), C1 (rs594012), C2 (rs240736), P1 (rs6253) and K1 (rs9029). Donors 
1-230 OA, donors 231-275 NOF. Age (age at joint replacement); rs9350591and rs10492367 (association SNPs). The donors marked with an asterisk 
(*) were young, non-OA donors purchased from Lonza, UK. Continued overleaf. 
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Donor Sex Age (years) Joint rs9350591 rs10492367 S1 S2 M1 M2 T1 T2 C1 C2 P1 K1 
161 F 68 K CC GG  AA  TC GG AA  TC  GG 
162 M 82 K CC GT  GG  TC GG AA  TC  GG 
163 F 60 K CT GT  GA  TT GG AA  TT  GG 
164 M 79 K CT GG  GA  TT GA GA  TT  GC 
165 M 67 K CC GT  GA  TC GG GA  TT  GG 
166 F 68 H CC GG  GG  TC GG GA  TC CC GC 
167 F 63 K CC GT     GG GA  TC  GG 
168 F 87 K  GT  GA  TT GG GG  TT  GG 
169 F 57 K CC GG     GG GG  TC   
170 M 59 K CC      GG   TT   
171 F 69 K CC GG      GA  CC   
172 M 68 K CC GG     GG GG  TC   
173 M 75 K CC GG     GG GA  TC   
174 F 57 K CC GG     GG   TC   
175 M 55 K CC GT     GG GG  TC  GG 
176 M 62 K CC      GG   TC   
177 F 61 K CT      GA   TT   
178 M 54 K CC      GG   TT   
179 F 74 K CT GT  GA  TT GA   TT  GG 
180 M 64 K CT GG     GG GG  TT    

Table D.1. Characteristics and genotypes of all donors whose tissues have been used. Transcript SNPs are named S1 (rs71561434), S2 
(rs17414687), M1 (rs1045758), M2 (rs699186), T1 (rs41269315), T2 (rs240375), C1 (rs594012), C2 (rs240736), P1 (rs6253) and K1 (rs9029). Donors 
1-230 OA, donors 231-275 NOF. Age (age at joint replacement); rs9350591and rs10492367 (association SNPs). The donors marked with an asterisk 
(*) were young, non-OA donors purchased from Lonza, UK. Continued overleaf. 
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Donor Sex Age (years) Joint rs9350591 rs10492367 S1 S2 M1 M2 T1 T2 C1 C2 P1 K1 
181 F 54 K CC GG     GG GG  TC   
182 M 55 K CC GG     GG GA  TC   
183 M 50 K CC GG  AA  TT GG GA  TC  GG 
184 F 56 K CC GT     GG GG  TC  GG 
185 F 73 K CC GG    CC GG   TC   
186 F 61 K CC GG     GG GA  TT   
187 M 82 K        AA     
188 F 73 K CC GG     GG GA  TC   
189 F 56 K CT GG     GG GA  TC   
190 F 77 K CC GT     GG AA  TT  GC 
191 F 66 H CC GG  GA  TC GG GA  CC TT GC 
192 F 76 K CC GG     GG   TC   
193 M 55 K CC GT     GG   TT   
194 F 89 H CC GG  GA  TT GG   TT CC GG 
195 M 81 K CC GG     GG   TT   
196 M 65 H CC GG  GA  TT GG   TC CT GG 
197 F 72 H CC GG  GG  CC GG   TC CT GG 
198 F 64 K CC GT     GG   TC   
199 F 59 H  GG           
200 F 59 H CC GT  GA  TT GG   CC CT GG 

 

Table D.1. Characteristics and genotypes of all donors whose tissues have been used. Transcript SNPs are named S1 (rs71561434), S2 
(rs17414687), M1 (rs1045758), M2 (rs699186), T1 (rs41269315), T2 (rs240375), C1 (rs594012), C2 (rs240736), P1 (rs6253) and K1 (rs9029). Donors 
1-230 OA, donors 231-275 NOF. Age (age at joint replacement); rs9350591and rs10492367 (association SNPs). The donors marked with an asterisk 
(*) were young, non-OA donors purchased from Lonza, UK. Continued overleaf. 

 

 

251 
 



Donor Sex Age (years) Joint rs9350591 rs10492367 S1 S2 M1 M2 T1 T2 C1 C2 P1 K1 
201 M 74 H CT GT    TC GA   TC CC GC 
202 F 72 H CC GT  GG  TT GG   TT CT GG 
203 F 67 K CC GT     GG   CC   
204 F 76 H CC GG  GA  TC GG   TC CC GC 
205 F 68 K CC GG     GG   TC   
206 F 77 H CC GG  GA  TT GG AA  TT TT GC 
207 F 62 H CC GG  AA  TC GG GA  TT CT GC 
208 F 79 H CT GG  GG  TC GG   TT CT GC 
209 F 51 H CC GT  GA  TC GG   TT CC CC 
210 F 36 K       GG    CT  
211 M 63 H CT GG  GA  TC GG   TC TT GC 
212 M 73 H CC GG  AA  TT GG GG  CC CT GC 
213 F 51 H CC GG  AA  TT GG   TC CC GC 
214 M 64 H CC GG  AA  TC GG   TT CT GC 
215 F 31 H CC GG  GG  TT GA   TC CT GC 
216 F 64 H CT GG  GG  TC GA   CC CC GG 
217 F 58 H CC GG  GG  TT GA   TT TT GC 
218 F 58 H CC GG           
219 F 79 H CC GT  AA  TT GG   CC CT GG 
220 F 76 H CC GT  GA  TC GG   CC CC GG 

 

Table D.1. Characteristics and genotypes of all donors whose tissues have been used. Transcript SNPs are named S1 (rs71561434), S2 
(rs17414687), M1 (rs1045758), M2 (rs699186), T1 (rs41269315), T2 (rs240375), C1 (rs594012), C2 (rs240736), P1 (rs6253) and K1 (rs9029). Donors 
1-230 OA, donors 231-275 NOF. Age (age at joint replacement); rs9350591and rs10492367 (association SNPs). The donors marked with an asterisk 
(*) were young, non-OA donors purchased from Lonza, UK. Continued overleaf. 
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Donor Sex Age (years) Joint rs9350591 rs10492367 S1 S2 M1 M2 T1 T2 C1 C2 P1 K1 
221 F 50 H CC GT  AA  TC GG   TC CC GG 
222 F 62 H CC GT           
223 M 67 H CC GG           
224 M 84 H CC GT           
225 M 55 H CC GG           
226 F 58 K CC GT           
227 M 67 K CT GG           
228 F 74 K CC GT           
229 M 68 K CT GT        TC  GC 
230 M 75 K CT GG        TT   
231 F 69 H CT GT CC  AG  GG  TT  CC GG 
232 F 71 H CC GG CC  AG  GG  TT  CC GC 
233 F 81 H CC GG CC  AA  GG  TT  CT GC 
234 F 72 H CC GG CC  AA  GG  TT  CC GC 
235 F 84 H CT GG CC  AG  GA  TT  CC GC 
236 F 79 H CC GG CC  AA  GG  TT  CT GC 
237 F 94 H CC GG CC  AA  GA  TT  CT GC 
238 F 84 H CC GG CC  AG  GG  TT  CT GG 
239 F 84 H CC GG CC  AA  GG  TA  CT GG 
240 F 52 H CC GG CC  AA  GG  TT  CC CC 

 

Table D.1. Characteristics and genotypes of all donors whose tissues have been used. Transcript SNPs are named S1 (rs71561434), S2 
(rs17414687), M1 (rs1045758), M2 (rs699186), T1 (rs41269315), T2 (rs240375), C1 (rs594012), C2 (rs240736), P1 (rs6253) and K1 (rs9029). Donors 
1-230 OA, donors 231-275 NOF. Age (age at joint replacement); rs9350591and rs10492367 (association SNPs). The donors marked with an asterisk 
(*) were young, non-OA donors purchased from Lonza, UK. Continued overleaf. 
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Donor Sex Age (years) Joint rs9350591 rs10492367 S1 S2 M1 M2 T1 T2 C1 C2 P1 K1 
241 F 80 H CC GG CC  AA  GG  TT  TT GC 
242 F 86 H CC GG CC  AA  GG  TT  CT GC 
243 F 89 H CC GT CC  AG  GG  TT  CC GC 
244 F 91 H CC GT CC  AG  GG  TA  CC GG 
245 F 82 H CT GG CT  AG  GG  TT  CT GC 
246 F 80 H CC GG CC  AG  GG  TT  TT GC 
247 F 83 H CC GG CC  AA  GG  TT  TT GG 
248 F 80 H CC GG CC  AA  GA  TA  CT GG 
249 M 84 H CC GG CC  AG  GG  TT  CT GC 
250 F 82 H CC GT CC  AG  GG  TA  CC GC 
251 F 91 H CC GT CC  AA  GG  TT  CT GG 
252 M 85 H CC GG  GA  TT GG   TC CC GG 
253 M 85 H CC GG  GA  CC GG   TT CC GC 
254 M 78 H CC GG  GG  CC GG AA  TT CC CC 
255 F 80 H CC GG  GA  TT GG GG  TT CC CC 
256 M 62 H CT TT  GG  TT GG GG  TT CC GG 
257 F 95 H CC GG  GA  TT GG AA  TT CC CC 
258 M 75 H CC GG  GA  TC GG AA  TC CC GC 
259 M 79 H CC GG  GA  TT GG GG  TT CT GC 
260 F 81 H CT TT  GG  TT GA GA  TC TT GG 

 

Table D.1. Characteristics and genotypes of all donors whose tissues have been used. Transcript SNPs are named S1 (rs71561434), S2 
(rs17414687), M1 (rs1045758), M2 (rs699186), T1 (rs41269315), T2 (rs240375), C1 (rs594012), C2 (rs240736), P1 (rs6253) and K1 (rs9029). Donors 
1-230 OA, donors 231-275 NOF. Age (age at joint replacement); rs9350591and rs10492367 (association SNPs). The donors marked with an asterisk 
(*) were young, non-OA donors purchased from Lonza, UK. Continued overleaf. 
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Donor Sex Age (years) Joint rs9350591 rs10492367 S1 S2 M1 M2 T1 T2 C1 C2 P1 K1 
261 F 77 H CC GG  GA  TT GG   TT CT GC 
262 M 86 H CC GG  AA  TC GG   TC CT GC 
263 F 72 H CC GT    CC GG AA  TT CT GG 
264 F 62 H CC GG  GA  TC GG   TT CC GC 
265 F 81 H CC GG  GG  TT GG   TT CC GC 
266 F 62 H CC GG  AA  TC GG GG  CC CT GG 
267 F 87 H CC GG  GA  TC GG AA  TC CT GG 
268 F 71 H CC GG  GG  CC GG AA  TT CT CC 
269 F 86 H CC GG  GA  TT GG GG  TT CC GG 
270 F 80 H CC GG  AA  TC GG   TC TT GC 
271 F 83 H CC TT  GG  TT GA   TT CC GC 
272 F 92 H CC GG  GA  TT GG   TC TT GC 
273 F 73 H CC GG  GA  TC GG   TT CC GG 
274 M 69 H CT GG           
275 F 66 H CC GG  GA  TT GG GA  CC CT GC 
276* F 41 H CC GG           
277* F 24 H CC GG           
278* M 25 H CC GG            

Table D.1. Characteristics and genotypes of all donors whose tissues have been used. Transcript SNPs are named S1 (rs71561434), S2 
(rs17414687), M1 (rs1045758), M2 (rs699186), T1 (rs41269315), T2 (rs240375), C1 (rs594012), C2 (rs240736), P1 (rs6253) and K1 (rs9029). Donors 
1-230 OA, donors 231-275 NOF. Age (age at joint replacement); rs9350591and rs10492367 (association SNPs). The donors marked with an asterisk 
(*) were young, non-OA donors purchased from Lonza, UK.  
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Appendix E. Antibodies and siRNAs 
 

Antibody Cat. No. rs10492367 rs58649696 rs11049206 rs10843013 
apCREB 06-519 Stock - - - 

AR sc-816 Stock Stock Stock Stock 
C/EBPβ sc-150 Predicted Stock Stock Stock 
DABP sc-98411 - - - Stock 
Deaf1 AP2711b  Stock Stock Stock Stock 

E2A.E12 
(TCF3) 

sc-349 Predicted Stock - Stock 

E2F1 sc-193 Stock - - - 
Egr1 sc-20689 Stock Stock - - 

Ets1/2 sc-112 Stock - - - 
FOXP1 sc-66896 - - Predicted Stock 

GR sc-1003 Stock Stock Stock Stock 
HEB (TCF12) sc-357 Predicted Stock Stock Stock 

HLF sc-367607 - - - Stock 
HNF4a sc-8987 Stock Stock Stock Stock 
IRF2 sc-498 - Predicted - Stock 

KLF16 sc-131168 Stock Stock Stock Stock 
LEF1 sc-28687  Stock Stock Stock Stock 

MEF2A sc-10794 Predicted Stock Predicted Stock 
MEF2C sc-13268 Predicted Stock Stock Stock 

NFATC3 sc-1152 Stock Stock Stock Stock 
NFkB p65 
(RELA) 

sc-372 Predicted Stock Stock Stock 

NFYA sc-10779 - - Predicted Stock 
Nkx3.2 sc-25066  Stock Stock Stock Stock 

Oct2 
(POU2F2) 

sc-25400 - Predicted - Stock 

Pax5 sc-1975  Stock Stock Stock Stock 
Pax9 sc-7746  Stock Stock - Stock 
PC4 sc-48778  Stock Stock Stock Stock 
PR sc-538 Stock Stock Stock Stock 

Sox9 sc-20095 Stock Stock Stock Stock 
Sp1 sc-59 Stock Stock - Stock 
Sp3 sc-644  Stock Stock Stock Stock 

TCF4 sc-13027 Stock Predicted Stock Stock 
XBP1 sc-7160 - Predicted - Stock 

      
Table E.1. Antibodies used for supershift EMSAs to investigate protein binding to 
rs10492367, rs58649696, rs11049206 and rs10843013. Stock = transcription factor not 
predicted to bind the polymorphism; predicted = transcription factor predicted to bind to the 
polymorphism; - = binding of transcription factor not investigated. All antibodies with 
catalogue numbers (Cat. No.) “sc-” were purchased from Santa Cruz Biotechnology (USA), 
apCREB from Millipore (UK) and Deaf1 from Abgent (USA). 
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Antibody Cat. No. Manufacturer Use 
α-acetyl-histone H3 06-599 Millipore, UK ChIP: positive control 

α-GAPDH MAB374 Millipore, UK Western blot: cytosolic protein 
α-lamin A/C 2032 CST, USA Western blot: nuclear protein 

Goat IgG I5256 Sigma-Aldrich, UK EMSA: IgG control 
Rabbit IgG I5006 Sigma-Aldrich, UK EMSA: IgG control 

    
Table E.2. Additional antibodies used in ChIP, western blot and EMSA experiments. 

 

 

siRNA Catalogue number 
SMARTpool: ON-TARGETplus RELA siRNA L-003533-00 
SMARTpool: ON-TARGETplus SUB1 siRNA L-009815-00 
SMARTpool: ON-TARGETplus TCF3 siRNA L-009384-00 

ON-TARGETplus Non-targeting Pool D-001810-10 
  

Table E.3. siRNA (Dharmacon, GE Healthcare, UK) used for the knockdown of RELA, 
SUB1, and TCF3. 
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Appendix F. Electrophoretic Mobility Shift Assays 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.1. Optimisation of the protein binding conditions for rs10492367, rs58649696, 
rs11049206 and rs10843013 EMSA probes. Fluorescently labelled probes were incubated with 
SW1353 and U2OS nuclear extract in the presence of glycerol and NP-40 for A) rs10492367, B) 
rs58649696 and C) rs11049206; and glycerol, NP-40, KCl, MgCl2 and EDTA for D) rs10843013. 
The numbered arrows indicate protein:probe complexes. The strongest banding pattern for all 
SNPs was observed with NP-40 and so this was selected as the only additional binding mixture 
component. Lanes irrelevant to these analyses have been removed. 

A) B) C) 

D) 
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Figure F.2. Competition EMSAs to investigate the consensus sequences necessary for SW1353 and U2OS nuclear extract binding to the G and 
T alleles of rs10492367. The protein:probe mixes were incubated with unlabelled competitors that contained the consensus sequences for transcription 
factors predicted to bind the G or T allele probes. With both nuclear extracts, the G and T allele probe binding to the protein in complex 4 was disrupted 
by the MEF2A competitor, whereas the T allele probe binding to the protein in complex 2 was disrupted by the MEF2C competitor with the U2OS 
nuclear extract. The G allele probe binding to the U2OS nuclear extract in complex 2 was disrupted by competition with the NFκB consensus sequence. 
Competition with TCF3/12 caused disruption of complex 2 for both alleles in both cell lines. C/EBPβ appeared to cause a slight decrease in band 
intensity of complex 1 of the T allele probe with both nuclear extracts. Concentration = 0, 10, 25 x probe concentration. 
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Figure F.3. Supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to the G and T alleles of 
rs10492367. The protein:probe mixes were incubated with either 2 µg or 6 µg of antibody. Band 4 binding to the G allele probe with SW1353 nuclear 
protein was outcompeted when incubated with AR. Band 4 binding to the T allele probe with SW1353 nuclear protein was outcompeted when 
incubated with Deaf1 and Ets1/2. No changes in the banding patterns were observed after incubation with the remaining antibodies.  
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Figure F.4. Supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to the G and T alleles of 
rs10492367. The protein:probe mixes were incubated with either 2 µg or 6 µg of antibody. No changes in the banding patterns were observed after 
incubation with any of the antibodies. 
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Figure F.5. Supershift EMSAs to investigate the transcription factors of SW1353 and 
U2OS nuclear extracts binding to the G and T alleles of rs10492367. The protein:probe 
mixes were incubated with either 2 µg or 6 µg of antibody. No changes in the banding 
patterns were observed after incubation with any of the antibodies. 

SW1353 
nuclear 
protein 

262 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure F.6. Supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to the G and T 
alleles of rs10492367. The protein:probe mixes were incubated with either 2 µg or 6 µg of antibody. Nuclear protein binding to both allele 
probes in complex 1 was outcompeted by PC4. Incubation with Sox9 caused bands 4, 5, 6 and 7 of the T allele probe to become fainter with 
the U2OS nuclear extract. No changes in the banding patterns were observed after incubation with the remaining antibodies. 
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Figure F.7. Replication supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to 
the G and T alleles of rs10492367. The protein:probe mixes were incubated with either 2 µg or 6 µg of antibody that showed supershifts or 
were ambiguous previously. PC4, RELA and TCF3 supershifts were replicated. A supershift, marked by an asterisk (*), was observed for 
both alleles after incubation with the TCF3 antibody. No changes in the banding patterns were observed after incubation with the remaining 
antibodies. 
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Figure F.8. Competition EMSAs to investigate the consensus sequences necessary for SW1353 and U2OS nuclear extract binding to the C 
and T alleles of rs58649696. The protein:probe mixes were incubated with unlabelled competitors that contained the consensus sequences for 
transcription factors predicted to bind the C or T allele probes. With both nuclear extracts, the T allele probe binding to the protein in complexes 4 
and 6 was disrupted by the XBP1, IRF2 and POU2F2 competitors. Competition of the C allele probe with the TCF4 consensus sequence appeared to 
slightly decrease the band intensity of complex 6 with the SW1353 nuclear extract. There was no observed competition with the consensus sequence 
for IRF1. Concentration = 0, 10, 25 x probe concentration. 
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Figure F.9. Supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to the C and T alleles 
of rs58649696. The protein:probe mixes were incubated with 2 µg of antibody. No changes in the banding patterns were observed after incubation 
with any of the antibodies. 
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Figure F.10. Supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to the C and T alleles 
of rs58649696. The protein:probe mixes were incubated with 2 µg of antibody. A supershift, marked by an asterisk (*), with PC4 and PAX9 was 
observed for the T allele probe with both cell line nuclear extracts. No changes in the banding patterns were observed after incubation with the 
remaining antibodies. 
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Figure F.11. Supershift EMSAs to investigate the transcription factors of SW1353 and 
U2OS nuclear extracts binding to the C and T alleles of rs58649696. The protein:probe 
mixes were incubated with 2 µg of antibody. No changes in the banding patterns were observed 
after incubation with any of the antibodies. 
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Figure F.12. Competition EMSAs to investigate the consensus sequences necessary for SW1353 and U2OS nuclear extract binding to the C 
and G alleles of rs11049206. The protein:probe mixes were incubated with unlabelled competitors that contained the consensus sequences for 
transcription factors predicted to bind the C or G allele probes. Complex 1 was outcompeted with both nuclear extracts and in both alleles with the 
FOXP1 consensus sequence. Protein binding to the C allele probe appeared to be decreased upon competition with MEF2A (complexes 4 and 5), 
FOXP1 (complexes 3, 4 and 6), NFYA (complex 2) and RUNX2 (complex 2). Competition of the C allele probe with the NFYB competitor caused 
a slight decrease in band intensity of complexes 4 and 5 in both cell lines. Complexes 2, 4 and 5 were slightly outcompeted by the NFIC competitor 
with the U2OS nuclear protein in the C allele probe. There was no observed competition with the consensus sequence for FOXA2. Concentration = 
0, 10, 25 x probe concentration. 
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Figure F.13. Supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to the C and G alleles of 
rs11049206. The protein:probe mixes were incubated with 2 µg of antibody. Incubation with the NFκβ p65 antibody caused bands 4 and 5 to become 
fainter in the G allele probe with the U2OS nuclear extract. No changes in the banding patterns were observed after incubation with the remaining 
antibodies. 
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Figure F.14. Supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to the C and G alleles of 
rs11049206. The protein:probe mixes were incubated with 2 µg of antibody. No changes in the banding patterns were observed after incubation with 
any of the antibodies. 
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Figure F.15. Supershift EMSAs to investigate the transcription factors of human 
articular chondrocyte (HAC) nuclear extract binding to the C and G alleles of 
rs11049206. The protein:probe mixes were incubated with 2 µg of antibody. The results 
confirmed that, unlike with U2OS nuclear protein, NFκβ p65 of HAC nuclear protein does 
not interact with the fluorescently labelled DNA. Control (IgG species-matched antibody). 
Lanes irrelevant to this analysis have been removed. 
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Figure F.16. Supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to the A and C alleles 
of rs10843013. The protein:probe mixes were incubated with 2 µg of antibody. No changes in the banding patterns were observed after incubation 
with any of the antibodies. 
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Figure F.17. Supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to the A and C alleles 
of rs10843013. The protein:probe mixes were incubated with 2 µg of antibody. Complexes 6 and 7 were outcompeted following incubation with the 
NFκβ p65 antibody with the SW1353 nuclear protein and the C allele probe. No changes in the banding patterns were observed after incubation 
with the remaining antibodies. 

SW1353 
nuclear 
protein 

274 
 



Figure F.18. Supershift EMSAs to investigate the transcription factors of SW1353 and U2OS nuclear extracts binding to the A and C alleles 
of rs10843013. The protein:probe mixes were incubated with 2 µg of antibody. Band 2 appeared to become fainter and band 1 more intense after 
incubation with the XBP1 antibody for both nuclear extracts and both allele probes. No changes in the banding patterns were observed after 
incubation with the remaining antibodies. 
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Presentations and Publications 

 

Presentations 

• March 2014: Arthritis Research UK Annual Fellows’ Meeting, Loughborough, UK 

(poster presentation) 

• April 2014: World Congress on Osteoarthritis, Paris, France (poster presentation) 

• June 2014: Institute of Cellular Medicine Research Day, Newcastle University, UK  

(poster presentation) 

• September 2014: UK-German Connective Tissue Meeting, Allendale, UK  (oral 

presentation) 

• October 2014: North East Postgraduate Conference, Newcastle, UK (oral 

presentation) 

• March 2015: Arthritis Research UK Annual Fellows’ Meeting, Loughborough, UK 

(oral presentation) 

• October 2015: American Society of Human Genetics Annual Meeting, Baltimore, 

Maryland, USA (poster presentation) 

 

Publications 

• Johnson K., Reynard L. N. and Loughlin J. (2014) Functional analysis of the 

osteoarthritis susceptibility locus marked by the polymorphism rs10492367. 

Osteoarthritis Cartilage. 22: S236-S237 

• Johnson K., Reynard L. N. and Loughlin J. (2015) Functional characterisation of the 

osteoarthritis susceptibility locus at chromosome 6q14.1 marked by the polymorphism 

rs9350591. BMC Med Genet. 16: 81 

• Johnson K., Reynard L. N. and Loughlin J. (2015) Functional characterisation of the 

osteoarthritis susceptibility locus marked by the polymorphism rs10492367 at 

chromosome 12p11.22; programme number 853. Presented at the 65th Annual Meeting 

of The American Society of Human Genetics, 9th October 2015, Baltimore, MD 

• Johnson K., Reynard L. N. and Loughlin J. The identification of trans-acting factors 

that regulate the expression of PTHLH via the osteoarthritis susceptibility SNP 

rs10492367 (manuscript in preparation)
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