Implementation and Analysis of
the Generalised New Mersenne
Number Transforms for

Encryption

Newcastle
<y niversity

Nick Rutter

Newrcastle University

Newcastle upon Tyne, UK.

A thesis submitted for the degree of
Doctor of Philosophy

October 2015

Declaration

I declare that this thesis is my own work and it has not been previously submitted,
either by me or by anyone else, for a degree or diploma at any educational institute,
school or university. To the best of my knowledge, this thesis does not contain any
previously published work, except where another person’s work used has been cited

and included in the list of references.

Nick Rutter

I dedicate this thesis to my family for all of their support and
inspiration; in particular Yingpei Li Rutter, Lucy Li Rutter, Jackie
Rutter and especially Donald Rutter (1920 — 2010), who inspired me
with his invaluable involvement with the Bombe and encouraged me to

pursue this area of research.

With all my love.

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my
first supervisor, Prof. Said Boussakta, for the opportunity to undertake
this Ph.D. study and research and along with my second supervisor,
Dr. Alex Bystrov with his abundance of patience, enthusiasm and
motivation. For identifying key areas requiring attention within this
thesis, I would especially like to express my appreciation to Prof.

Ahmed Bouridane and Dr. Charalampos Tsimenidis.

I would like to thank all the other members of staff that I have
had the pleasure to know and work with, particularly Dr. Martin
Johnson, Dr. Patrick Degenaar and Prof. Patrick Briddon. Dr.
Johnston has provided me with significant support during my time
undertaking my research, including his guidance in pursuing additional
areas of research and the opportunity to be involved as co-investigator
in two projects: KH148843 and KH135892. Dr. Degenaar gave me
the impetus to pursue research in general-purpose graphics processing
unit computing from his involvement with his own research, which
profoundly sparked my interest in techniques and development in this
exciting area of computation. Prof. Briddon shared my enthusiasm for

parallel processing and we frequently discussed ideas and techniques.

I would also like to acknowledge all those who that have supported
me in any respect during the completion of the project; especially my

family for their continual support.

Finally, I would like to thank the European Physical Science Research
Council (EPSRC) for financing this research under grant number

EP /P50502X /1.

Abstract

Encryption is very much a vast subject covering myriad techniques to conceal
and safeguard data and communications. Of the techniques that are available,
methodologies that incorporate the number theoretic transforms (NTTs) have gained
recognition, specifically the new Mersenne number transform (NMNT). Recently, two
new transforms have been introduced that extend the NMNT to a new generalised
suite of transforms referred to as the generalised NMNT (GNMNT). These two
new transforms are termed the odd NMNT (ONMNT) and the odd-squared NMNT
(O2NMNT).

Being based on the Mersenne numbers, the GNMNTs are extremely versatile with
respect to vector lengths. The GNMNTs are also capable of being implemented
using fast algorithms, employing multiple and combinational radices over one or
more dimensions. Algorithms for both the decimation-in-time (DIT) and -frequency
(DIF) methodologies using radix-2, radix-4 and split-radix are presented, including

their respective complexity and performance analyses.

Whilst the original NMNT has seen a significant amount of research applied to it
with respect to encryption, the ONMNT and O?NMNT can utilise similar techniques
that are proven to show stronger characteristics when measured using established
methodologies defining diffusion. Analyses in diffusion using a small but reasonably
sized vector-space with the GNMNTs will be exhaustively assessed and a comparison
with the Rijndael cipher, the current advanced encryption standard (AES) algorithm,

will be presented that will confirm strong diffusion characteristics.

Implementation techniques using general-purpose computing on graphics processing
units (GPGPU) have been applied, which are further assessed and discussed. Focus
is drawn upon the future of cryptography and in particular cryptology, as a
consequence of the emergence and rapid progress of GPGPU and consumer based

parallel processing.

vil

Contents

Nomenclature

List of Symbols

1

2

Introduction
1.1 Motivation L
1.2 Aims and Objectives of the Thesis.
1.3 Contributions
1.4 Publications Arising From This Research
1.5 Thesis Outline
Background
2.1 Introduction
2.2 Encryption Applications
2.3 Encryption Types
2.3.1 Symmetric Keys. 0o
2.3.2 Asymmetric Keys o o
2.3.2.1 Factorisation Problem
2.3.2.2 Discrete Logarithm Problem
2.3.2.3 Diffie-Hellman Key Exchange
2.3.24 ElGamal Encryption
2.3.2.5 Elliptic Curve Discrete Logarithm Problem
24 Cipher Types
2.4.1 Stream Ciphers
2411 A5/l ...
24.2 Block Ciphers Lo
2.4.2.1 Substitution Boxes

1X

xxi

XXV

CONTENTS

2.5

2.6
2.7
2.8

3 The
3.1
3.2
3.3
3.4
3.5
3.6

3.7

3.8

2.4.2.2 Permutation Boxes 23

2.4.2.3 Feistel Networks 23

2424 Transformso 24

2.4.2.5 Data Encryption Standard 24

2.4.2.6 Advanced Encryption Standard 28
Mode Types e 29
2.5.1 Electronic Code Book 30
2.5.2 Cipher Block Chaining 30
2.5.3 The Initialisation Vector and Streams 32
2.5.4 Cipher Feedback 32
2.5.5 Output Feedback 33
25.6 Counter 33
Hashes o 34
General Purpose Graphics Processing Unit Processing 35
Conclusion 36
Generalised New Mersenne Transform 39
Introduction 39
The NMNTo o 40
The ONMNT o 42
Odd-Squared-NMNT (O*NMNT) 44
Derivation of Transform Parameters 49
Cyclic Convolution of the GNMNT 50
3.6.1 Cyclic convolution of NMNT 50
3.6.2 Cyclic convolution of ONMNT 54
3.6.3 Cyclic convolution of O>NMNT 57
Encryption Example using the GNMNT 60
3.7.1 Encryption using the NMNT 62
3.7.2 Encryption using the ONMNT 64
3.7.3 Encryption using the O?NMNT 64
3.7.4 Encryption using the GNMNT 65
The GNMNT Kernel Components 66
3.8.1 The NMNT Kernel Components 67
3.8.2 The ONMNT Kernel Components 69

CONTENTS

3.8.3 The O?’NMNTKernel Components 69
3.8.4 Proving the Detriments of Zero-Elements within the GNMNT 73
3.8.5 Demonstration of the Proof 76
3.9 Conclusion 7
Fast Algorithms of the GNMNT 79
4.1 Introduction 79
4.2 Radix-2 ONMNT 79
421 Radix-2DIT. 80
422 Radix-2DIF 83
4.3 Radix-4 ONMNT 85
4.3.1 Radix-4DIT. 86
4.3.2 Radix-4DIF 90
4.4 Split-Radix ONMNT o 96
4.4.1 Split-Radix DIT o o 97
4.4.2 Split-Radix DIF o 99
4.5 Complexity Analysis o 102
4.5.1 Higher Radices of the GNMNT 108
4.6 Performance Analysis of the One-Dimensional Derivations 109
4.7 Conclusion 111
The Row-Column GNMNT 113
5.1 Introduction 113
5.2 RC-NMNT 114
5.3 RC-ONMNT 118
54 RC-O?NMNT 123
5.5 Complexity Analysis 125
5.6 The 2D Cyclic Convolution for the GNMNT 129
5.6.1 Cyclic Convolution for the 2D-NMNT 129
5.6.2 Cyclic Convolution for the 2D-ONMNT 130
5.6.3 Cyclic Convolution for the 2D-O?NMNT 131
5.6.4 Verification using Cyclic Convolution 131
5.7 Encryption Applications oL 136
5.7.1 RC-GNMNT Implementations 137

x1

CONTENTS

5.7.1.1 RC-NMNT o 138
5.71.2 RC-ONMNT, 139
5.71.3 RC-O?NMNT 140
5.7.1.4 Comparison of RC-Encryption Characteristics 141
5.7.2 2D-GNMNT Implementations 142
5.7.2.1 2D-NMNTo 143
5.7.2.2 2D-ONMNT 143
5.7.2.3 2D-O®NMNT 144
5.7.2.4 Comparison of 2D-Encryption Characteristics 144

5.7.3 Imposing a Single-Bit Error using the RC- and 2D-GNMNT . 145

5.8 Conclusion 152

6 The Avalanche Effect of the GNMNT 155
6.1 Introduction 155
6.2 The Strict Avalanche Criterion 155
6.3 Methodology 156
6.3.1 Applying and Testing the SAC 156

6.3.2 AES Implementation 160

6.3.3 GNMNT Implementation 161

6.4 Assessing the Default Configuration 161
6.4.1 Assessing the AES oL 163

6.4.2 Assessing the NMNT 165

6.4.3 Assessing the ONMNT 166

6.4.4 Assessing the O°NMNT 166

6.5 Assessing the Modified Configuration 167
6.5.1 Assessing the NMNT (Shuffled) 167

6.5.2 Assessing the ONMNT (Shuffled) 168

6.5.3 Assessing the O?NMNT (Shuffled) 168

6.5.4 Exhaustive Analysis of the GNMNT 169

6.6 Conclusion 174

7 Conclusion and Future Work 177
A Radix-2 GNMNT Algorithms 181

xii

CONTENTS

B Parallel GNMNT Algorithms 193

References 207

xl1il

CONTENTS

Xiv

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11

3.12

Taxonomy of the GNMNT 4
Addition and Doubling Operations in the Elliptic Curve 16
The Field of Elliptic Curve Points for p=19,a =2,0=2 17
A5/1 Cipher Scheme o L. 21
Selection of Feistel Networks 23
The DES Algorithm 25
Initial and Inverse Permutate Functions 26
The F-Box in DES Feistel Network with Round Key 27
An S-Box from DESo 28
The Five Confidentiality Encryption Modes Ratified for AES 31
Convolution Process Structure for the NMNT 53
Convolution Process Structure for the ONMNT 56
Convolution Process Structure for the O°NMNT 59
Encrypted Cameraman using NMNT, N =8 and Mp = 131071 . .. 63
Encrypted Cameraman using ONMNT, N =8 and Mp = 131071 . . 64

Encrypted Cameraman using O?NMNT, N = 8 and Mp = 131071 . . 65
Decrypted Cameraman Error using GNMNT, N = 8 and Mp = 131071 66

Consistency of Trivial Elements in the NMNT Kernel 67
Consistency of Trivial Elements in the ONMNT Kernel 68
Decrypted 256 x 256 Cameraman Bit Error using NMNT with
N =8,16,32,64,128, Mp=131071 70
Decrypted 256 x 256 Cameraman Bit Error using ONMNT with
N =8,16,32,64,128, Mp=131071 71
Decrypted 256 x 256 Cameraman Bit Error using O?NMNT with
N =8,16,32,64,128, Mp=131071 72

XV

LIST OF FIGURES

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

5.1
5.2
5.3
5.4
2.5

5.6
5.7
5.8
5.9

5.10

5.11

5.12
5.13
5.14
5.15
5.16

Radix-2 1D-ONMNT In-Place DIT Butterfly 81
Radix-2 1D-ONMNT In-Place DIF Butterfly 85
Radix-4 1D-ONMNT In-Place DIT Butterfly 89
Radix-4 In-Place DIT Flow Diagram, N =16 91
Radix-4 1D-ONMNT In-Place DIF Butterfly 94
Split-Radix DIT Structure 97
Split-Radix 1D-ONMNT In-Place DIT Butterfly 98
Split-Radix 1D-ONMNT In-Place DIF Butterfly 100
Split-Radix In-Place DIF Flow Diagram, N =16 101
Complexity of Different Radices by Total Operations 105
Processing Time for Vectors of Length 2V 106
Time to Process ~ 101° bits Using Vectors of Length 2V 107
Example of 2D-NMNT using Row-Column Method 117
Example of 2D-ONMNT using Row-Column Method 122
Example of 2D-O?NMNT using Row-Column Method 124
Complexity of Different Radices for Row-Column by Total Operations 127

Complexity of Different Radices for Row-Column with Separable

Algorithm by Total Operations 128
Convolution Process Structure for the 2D-NMNT 129
Convolution Process Structure for the 2D-ONMNT 130
Convolution Process Structure for the 2D-O?2NMNT 131

Convolution using Sobel Filter for Edge Detection using Cameraman

Image with NMNT 132
Convolution using Sobel Filter for Edge Detection using Lena Image

with ONMNT o 133
Convolution using Sobel Filter for Edge Detection using Baboon

Image with O?NMNT 134
Image from which the selected 2D key is obtained 136
Encrypted Cameraman using RC-NMNT, N =8 x 8 and Mp = 131071138

Encrypted Camerman using RC-ONMNT, N = 8x 8 and Mp = 131071139
Encrypted Camerman using RC-O?2NMNT, N = 8x8 and Mp = 131071140
Decrypted Cameraman Error using RC-GNMNT, N = 8 x 8 and

Mp=131071 141

xvi

LIST OF FIGURES

5.17
5.18
5.19
5.20

5.21

5.22

0.23

5.24

0.25

5.26

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Encrypted Cameraman using 2D-NMNT, N = 8 x 8 and Mp = 131071142
Encrypted Camerman using 2D-ONMNT, N = 8 x 8 and Mp = 131071143
Encrypted Camerman using 2D-O?NMNT, N = 8x8 and Mp = 131071144
Decrypted Cameraman Error using 2D-GNMNT, N = 8 x 8 and

Mp=131071 145
Decrypted Bit Error using RC-NMNT with N = 8,16,32,64,128

and Mp=131071 146
Decrypted Bit Error using RC-ONMNT with N = §8,16,32, 64,128

and Mp=131071 147
Decrypted Bit Error using RC-O?NMNT with N = 8,16, 32,64, 128

and Mp=131071 148
Decrypted Bit Error using 2D-NMNT with N = 8,16, 32,64, 128 and

Mp=131071 149
Decrypted Bit Error using 2D-ONMNT with N = 8,16, 32,64, 128

and Mp=131071 150
Decrypted Bit Error using 2D-O?2NMNT with N = 8,16, 32, 64, 128

and Mp =131071 151
Avalanche Assessment Process L. 157
AES Analysis 162
NMNT Analysis 163
ONMNT Analysis o o 164
O2NMNT Analysis 165
NMNT Analysis (Shuffled)o 168
ONMNT Analysis (Shuffled)o ... 169
O2NMNT Analysis (Shuffled) 170
GNMNT Exhuastive Analysis: p=5N=8 171
GNMNT Vector Analysis with Multiple Configurations 172
GNMNT Bit Position Analysis with Multiple Configurations 173

Xvil

LIST OF FIGURES

xXviii

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1
4.2
4.3
4.4
4.5

5.1
5.2
2.3

Letter Indexing for Caesar Cipher with Key =3 9
Encryption Using Vigenere Cipher 10
Decryption Using Vigenere Cipher 10
NIST Recommended Key Sizes 11
Elliptic Curve Multiplication (13 x P) using Double and Add 18
NIST Prime Elliptic Curve P-192 18
LFSR Clocking Behaviour for A5/1 21
Votes for AES Selection 0oL 29
The NMNT Kernel for N =16 and Mp =127 41
The ONMNT Kernel for N =16 and Mp=127 42
The IONMNT Matrix for N =16 and Mp =127 43
The O?NMNTKernel for N =16 and Mp =127 45
Values of a7 and ay According to p for NMNT 45
Values of a; and as According to p and N for NMNT 46
Values of a; and gy According to p and N for ONMNT A7
Values of o; and ap According to p and N for O2NMNT 48
GNMNT Transform Selection 49
ONMNT Radix-2 Complexity 102
ONMNT Radix-4 Complexity 103
ONMNT Split-Radix Complexity 103
ONMNT Fused-Split-Radix Complexity 104
Available Lengths N = r® According to Radix 108
Effective Lengths of 1D and 2D GNMNTs 135
Pixel Values of 2D Key without Concatenation 137
Pixel Values of 2D Key with Concatenation 137

Xix

Nomenclature

6.1 Modification of fg forp =3, N =4 158
6.2 Resultant Values of t forp=3, N=4 158
6.3 Differences Between t and t forp =3, N =4 159
6.4 AES Metrics - Vector / Bit Position 162
6.5 NMNT Metrics - Vector / Bit Position 163
6.6 ONMNT Metrics - Vector / Bit Position 164
6.7 O2NMNT Metrics - Vector / Bit Position 165
6.8 NMNT Metrics - Vector / Bit Position (Shuffled) 168
6.9 ONMNT Metrics - Vector / Bit Position (Shuffled) 169
6.10 O?NMNT Metrics - Vector / Bit Position (Shuffled) 170
6.11 GNMNT Exhuastive Analysis: p=5N=8 171
6.12 Multiple Configuration Analysis of the GNMNT 172

Nomenclature

Acronyms
2FA
3DES
AES
ASCII
AVX
CBC
CCM
CFB
CMEA
COA
COTS
CPU
CTR
CUDA
DC
DCT
DES

DH

Two Factor Authentication

Triple DES

Advanced Encryption Standard

American Standard Code for Information Interchange
Advanced Vector Extensions

Cipher Block Chaining

Cipher Block Chaining-Message Authentication Code
Cipher Feedback

Cellular Message Encryption Algorithm

Cipher-Only Attacks

Commercial Off-The-Shelf

Central Processing Unit

Counter

Compute Unified Device Architecture

Differential Cryptanalysis

Discrete Cosine Transform

Data Encryption Standard

Diffie-Hellman Standard

xx1

Nomenclature

DIF

DIT

DLP

DSA

EB

ECB

ECC

ECDLP

ECDSA

EFF

EiB

FIPS

FNT

GB

GF

GFLOPS

GiB

GNMNT

GPGPU

GPU

GSM

IoT

IV

Decimation-in-Frequency
Decimation-in-Time

Discrete Logarithm Problem

Digital Signature Algorithm

Exabyte (10'®)

Electronic Code Book

Elliptic Curve Cryptography

Elliptic Curve Discrete Logarithm Problem
Elliptic Curve Digital Signature Algorithm
Electronic Frontier Foundation

Exbibyte (2)

Federal Information Processing Standards
Fermat Number Transform

Gigabyte (10%)

Galois Field

10° Floating Point Operations per Second
Gibibyte (2%9)

Generalised NMNT

General-Purpose computing on Graphics Processing Units
Graphics Processing Unit

Global System for Mobile Communications

formally Groupe Spécial Mobile
Internet of Things

Initialisation Vector

xxil

Nomenclature

KB

KiB
KPA
LAN

LC
LFSR
MAC
MB

MiB
MIC
MMX
MNT
NIST
NMNT
NTT
O2NMNT
OFB
ONMNT
OpenCL
OoTP
PAN

PB

PHT

PiB

Kilobyte (10%)

Kibibyte (219)

Known Plaintext Attack
Local Area Network

Linear Cryptanalysis
Linear-Feedback Shift Register
Message Authentication Code
Megabyte (10°)

Mebibyte (229)

Many Integrated Core
Multimedia Extensions
Mersenne Number Transform
National Institute of Standards and Technology
New Mersenne Number Transform
Number Theoretic Transform
Odd-Squared NMNT

Output Feedback

Odd NMNT

Open Compute Language
One-Time Pad

Personal Area Network
Petabyte (10'%)
Pseudo-Hadamard Transform
Pebibyte (2°°)

xxiii

Nomenclature

RC Row-Column

RSA Rivest-Shamir-Adleman Cryptosystem
SAC Strict Avalanche Criterion

SDK Software Development Kit

SIMD Single-Instruction Multiple-Data

SPN Substitution-Permutation Network
TB Terabyte (10'%)

TDEA Triple Data Encryption Algorithm
TDES Triple DES

TiB Tebibyte (21°)

WAN Wide Area Network

WHT Walsh-Hadamard transform

XEX XOR Encrypt XOR

XOR Exclusive-OR

XTS XEX Tweakable Block Cipher with Ciphertext Stealing
7ZB Zettabyte (1021)

ZiB Zebibyte (270)

XX1v

List of Symbols

S > > > ™ 2

Q

Generator for g

Kernel generator used in deriving GNMNTs
Difference between vectors expressed in bits
Difference between vectors expressed as a percentage

Normalisation factor, mults to adds

Representation of beta quantities, 2’“2—“

Standard deviation

Normalised standard deviation expressed in bits

2n+1
2

Representation of beta quantities,
Euler’s totient function

Arbitrary decryption algorithm
Arbitrary encryption algorithm
GNMNT transform

Set of integers

Field of integers modulo p
Multiplicative field of integers modulo p
Cardinality of the set E

Cipher vector

Modified cipher vector

Cipher vector in GNMNT domain

Set of elliptic curve points

Galois field

Mersenne prime

kth element in the GNMNT domain
Encryption key

nth element in the number domain

XXV

Nomenclature

8

Mo

o

3

NO B 8’ b >

- >Mp

Length of a vector

generator for Mp, Mp = 2P — 1
Recovered plaintext vector
Alternate recovered plaintext vector
Recovered plaintext vector in GNMNT domain
Plaintext vector

Alternate plaintext vector

Plaintext vector in GNMNT domain
Vector in the number domain

Mean value

Vector in the NMNT domain

Vector in the ONMNT domain

Vector in the O2NMNT domain
Bitwise AND operation

Bitwise Exclisive-Or (XOR) operation
Point-by-point multiplication
Convolution operator

Convolution operator using the GNMNT
Modulo Mp

XXV1

Chapter 1

Introduction

1.1 Motivation

The perpetual evolution of technology continues to erode current encryption
algorithms owing to performance increases and evolving architectures. Universally,
more and more devices are being invented that rely upon the ability to communicate
wirelessly [1-4] to name but a few. Whilst there are methodologies in place to
help protect these devices from unauthorised access, this does not imply that
such methodologies and their underlying algorithms are infallible to breaches of
security. In fact, the strongest algorithm will always be a victim of its weakest
component, which for proven algorithms is invariably the user’s choice of password.
Unfortunately, there is no amount of research that is comparable to spending time
instructing the user of the importance of deriving and applying passwords that are
both robust and varied.

Historically, encryption was generally reserved for communications where
messages were to be either sent or broadcast across an unsecured channel. In
this instance, a channel can mean any medium, including transportation and
radio-wave. With the large amounts of data that companies began to accrue,
commercial encryption found its way into storage mediums that are accessible to
one or more individuals. Subsequently, this led to consumer-based encryption,
allowing the home user to encrypt files for their protection should a device be
lost or stolen. With the advance of the mobile phone revolution - where both
communications and storage are encrypted - the number of such online devices will

soon outnumber the world’s population, it can be said now that the requirement

1. INTRODUCTION

for encryption is ubiquitous.

There are two aspects to protecting one’s communication and data: security
and cryptography. Whilst security follows a protocol that determines what goes
where, when and how, cryptographic algorithms that encrypt and decrypt provide
the methods of applying such security. An example of how the security aspect is
applied could be as simple as which algorithm to use when sending a key to decrypt
the data, or in writing policies that direct users how to derive new keys and how
frequently they should be derived (usually always) and, importantly, ensuring that
all keys are kept confidential. The encryption algorithm on the other hand, is
usually publically known and often heavily analysed, both ensuring and asserting
the robustness of such algorithms. The strongest algorithms have a completely
transparent architecture that neither hides secrets nor provides ‘back doors’ that
will offer a way to bypass the security and allow decryption without a valid key.

The current de facto algorithm for providing encryption and decryption is the
advanced encryption algorithm (AES), which has been in used since its ratification
in 2001 [5]. Since this time, despite numerous attacks and analyses directed at
this algorithm, it continues to show resilience. The obvious question is why should
alternatives be sought if the original AES has not yet been compromised? As
previously highlighted, the effects of new technology continue to diminish current
techniques, albeit at an exceedingly slow rate. Nevertheless, if a method is
discovered to break the algorithms that are currently in use, a requirement to
switch to backup algorithms would be precluded if no viable alternatives can be
readily accessed. In addition, with the ever increasing size of data that is retained
by both industry and the consumer, dependence in stronger methods that can
better serve to protect this data may be required in future.

There are many types of encryption algorithms, which are selected depending
on the task at hand. These types fall into two main categories: symmetric (private
key) and asymmetric (public key). Symmetric based encryption algorithms are
usually based upon stream or block ciphers, where speed is a major requirement
without sacrificing security. Such algorithms will use the same key to decrypt
as that used to encrypt. However, asymmetric based encryption algorithms are
usually derived through a mathematical problem where numbers (or keys) are
paired using a mathematical technique. While such techniques are extremely

resilient to attacks and analysis, they are notoriously slow in contrast to their

1.2 Aims and Objectives of the Thesis

symmetric counterparts. They do however offer unique functions such as signing

and key exchange operations.

1.2 Aims and Objectives of the Thesis

The aims and objectives of this work are to first analyse work that has previously
been undertaken in this subject. This analysis will dictate the direction of
the research and help to inform the development of new transforms that can
also provide and extend the properties of the original new Mersenne number
transform (NMNT) [6,7], with the benefits of making it more resilient to
cryptanalysis. These new transforms are known as the odd-NMNT (ONMNT) and
the odd-squared-NMNT (O?NMNT), which extends the original NMNT into the
generalised new Mersenne number transform (GNMNT) [8], the taxonomy of which
is shown in Figure 1.1.

These transforms have a long and versatile power of two, which is unfound
in other transforms like the Fermat number transform (FNT) [9] and the original
Mersenne number transform (MNT) [10]. The latter transforms have short
transform lengths that are rigid and inflexible in size and thus have very limited
scope.

Like the NMNT, the GNMNTs can be derived using fast algorithms. Although
there has been previous development with deriving fast algorithms for the new
transforms of the GNMN'T - particularly in the one dimensional aspect - supporting
literature is extremely limited and consequently incomplete [8,11]. Current work
aims to address these shortcomings by deriving fast algorithms that include the
radix-2, radix-4 and split-radix using both decimation-in-time (DIT) and -frequency
(DIF) methodologies. Complexity analysis will be provided and, together with
performance metrics, these algorithms will be further analysed.

In addition to the fast algorithms for applications using single-dimensional
implementations, row-column implementations have been derived to provide
two-dimensional implementations through inclusion of the separable algorithm.
These algorithms are validated using two dimensional convolution techniques
followed by demonstrations using two-dimensional encryption examples.

A major technique used in cryptanalysis is assessing the diffusion properties

known as the strict avalanche criterion (SAC) [12-14]. These properties will

1. INTRODUCTION

GNMNT

NTT

Figure 1.1: Taxonomy of the GNMNT

be performed in the first instance by doing an exhaustive test, simulating every
possible vector input of a pre-determined size and applying the series of tests on
each vector. Previously, this would have taken approximately 8.5 years using C
and a single processor thread. However, with the advent of parallel processing
techniques that are available using consumer grade graphics cards [15,16], such

tests become a very much more realistic goal in terms of a modest two days.

1.3 Contributions

There are four main areas that have been addressed within this thesis, which are:

e The new transforms collectively known as the GNMNT, including fast

algorithms applied to the one-dimensional case
e Derivation of the ONMNT for two-dimensional applications

e Assessment of the diffusion as an exhaustive simulation and against a series

1.4 Publications Arising From This Research

of vectors using the relevant aspects of the advanced encryption algorithm

(AES) for comparison

e Implementations of the GNMNT using graphics processing units (GPUs) for

parallel processing techniques.

1.4 Publications Arising From This Research

1. Boussakta, S.; Hamood, M.T.; Rutter, N., “Generalized New Mersenne
Number Transforms,” Signal Processing, IEEE Transactions on, vol.60, no.5,

pp.2640-2647, May 2012.

2. Rutter, N.; Boussakta, S.; Bystrov, A., “Assessment of the One-Dimensional
Generalized New Mersenne Number Transform for Security Systems,”
Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th, pp.1-5, 2-5
June 2013.

1.5 Thesis Outline

This thesis consists of seven chapters, each of which is described in this section.
Chapter 2 will introduce the background of cryptography. During the course of
this chapter, different types of methodologies will be covered along with their
appropriate applications. This chapter will briefly touch upon the NMNT, which
has previously been researched for use in encryption techniques.

After this brief introduction, Chapter 3 will formally introduce the NMNT and
the new GNMNT transforms that were developed in [8]. During this chapter, notes
of particular interest will be presented that will be relevant in proceeding chapters.

Chapter 4 will expand upon previous work that was undertaken during the
development of the fast algorithms by introducing new techniques that build from
radix-2 including radix-4 and split-radix DIT and DIF derivations. This chapter
will also assess the complexities and performances of each of these new derivations
and compare the findings with previous methodologies.

A natural progression is to expand the fast algorithms to row-column derivations,

where work that was presented in Chapter 4 will be applied and converted to

1. INTRODUCTION

two-dimensions in using newly adapted separable algorithms for the GNMNT in
Chapter 5.

Chapter 6 introduces cryptanalysis techniques and introduce the SAC. Using
the SAC, the new transforms will be assessed for their suitability for inclusion
within encryption algorithms. Initially, an assessment over a small but practical
and exhaustive range of vectors will be undertaken. Upon comparing the results, a
stripped down version of the AES will then be tested alongside the GNMNT using
identical vectors. This implementation of the AES does not contain any password
or round key functions so as to attain a true raw diffusion measurement.

Finally, conclusions and suggestions for further work will be presented in

Chapter 7.

Chapter 2

Background

2.1 Introduction

This chapter will introduce a small cross-section of applications that rely upon
encryption, during which some examples will be provided including some best
practices. A breakdown of the composition of encryption system will presented,
including key, cipher and mode types. The discussion includes the process of
determining the AES and a brief breakdown of each cipher. This chapter will also
introduce new and emerging technologies that could undermine current and future

systems prior to presenting a summary.

2.2 Encryption Applications

Security is ubiquitous in todays emerging technology. Encryption algorithms can be
found in many devices that are taken for granted on a day to day basis, frequently
and most likely without the user’s knowledge that it has ever been implemented in
the first place. As an example, use of mobile phones now extends to approximately
7 billion reported users and 3.5 billion reported unique subscribers [17], representing
approximately 50% of the global population [18]. A vast majority of these users
will not even consider the concept of encryption, never mind whether or not their
phone calls are protected or not. Additionally, we can also find encryption in
wireless sensors and electronic wearable devices such as the smart watches and
heart-rate monitors for example [2,19]; such devices are a fast-growing trend and

mobile smart phones are regularly used to process the signals. However, there

2. BACKGROUND

are also reports that these sensor signals are currently not being encrypted, which
could potentially be exposing both private data and processing devices that may
otherwise be unprotected and vulnerable to attacks [20].

In addition to the requirements of security within a communicational
environment, there is also a requirement for the encryption of stored data,
whether it is for personal or commercial usage. Within a commercial environment,
the protection of documents containing strategies and financial accounts that are
pertinent to the livelihood of the business is not only desirable, but may well be
a requirement by law, depending on the actual type of data and particularly if it
relates to client information [21-23]. This need will become more prevalent with
the evolution of cloud computing, where consumer computing requirements will be
virtualised and processed across the Internet, including cloud storage [24-28].

However, it is still important that local storage is adequately protected, whether
it is encrypted databases, implementing hard drives with built-in encryption or
even backup solutions. The importance of such is exemplified with the data storage
trends that are now referred to as big data [29], where electronic data is being
generated and stored at an exponential rate [30]. This trend has opened new
markets and research where new types of technologies are being researched and
developed to accommodate our ever expanding storage requirements. According
to [31], this is growing at a rate of approximately 2.5 EB / day and where [30]
believes that the digital universe will reach a size of 40 ZB by the year 2020. As we
are connecting more devices to the internet [32] and using increasingly faster link
speeds, the amount of data that we are moving is also increasing [33]. These trends
can and will no doubt impact on the way we manage data, which should obviously
be protected using encryption.

The most important aspects of encryption are to use using the appropriate
scheme and degree of security for the job and to always use different keys. For
example, long-term security requires strong encryption whereas short-term security
should use a less secure system. The reason for this is through building cribs or
clues from intercepted messages where known cipher texts had their corresponding
plaintexts known. This opens up the cipher to a known plaintext attack (KPA). An
example of this was when the same extremely strong encryption that was used for
priority communications was also used for encrypting weather and status reports

during World War II where messages were often duplicated using different daily

2.3 Encryption Types

keys [34]. Likewise, having an important understanding on the application of keys
is paramount, namely that keys should be both strong and unique, consist of many
unique and special characters wherever possible and be unique to each site, message
or application. Thus, should a key be compromised, damage would be limited to
the site, message or application that is attributed to that key. This practice is
further exemplified in [35], which goes on to emphasise that this is generally the
weakest part of an encryption scheme and that users should be trained accordingly

about the importance of key management.

2.3 Encryption Types

Encryption systems are generally categorised as falling into two distinct fields;
symmetric (private key) and asymmetric (public key). The symmetric system uses
the same key to decrypt that was used to encrypt and is always kept private, hence
the reason it is also called private key encryption. Conversely, systems that are
derived using asymmetric keys use two keys; a private key and a public key, which
give name to these types of systems as the public key encryption schemes. Systems

that were first derived used symmetric keys and so will be covered first.

2.3.1 Symmetric Keys

Systems using symmetric keys date all the way back to ancient times, where it has
been shown that Julius Caesar used encryption for communications. This is known
today as the Caesar Cipher [36]. It is a letter substation system where letters
of the message were substituted by letters a number of places either forwards or
backwards: modulo 26. This offset was the key and literature records that Julius
Caesar’s preference was to use a key that was three letters to the right. All that
was then required to decrypt the message would be to reverse the operation by
substituting the letters in the opposite direction, which in Caesars case would be

three letters to the left. An example of this cipher is shown in Table 2.1.

Table 2.1: Letter Indexing for Caesar Cipher with Key = 3

o

314

In |[A|B|C|D|E
Out | D|FE|F|G|H

6|7 (89 |10[11]|12|13 |14 15|16 |17 |18|19|20|21|22|23 |24

G/H|T|J|/K|LIM|IN|JO|PIQ|R|S|T|U|V| W|X|Y
JIK|LIM|N|O|P|Q|R|S|T|U|V|W|X|Y |Z|A|B

[\
ot

~ /M|

QN

2. BACKGROUND

A major problem with this scheme, other than the existence of such a weak key,
was that cryptanalysis would be easy by determining letter substitutions through
letter frequencies. This was overcome with the Vigenere Cipher, where a repeating
passphrase was used instead, the cipher was later broken by Babbage [37]. Whilst it
was a much stronger system in comparison to the Caesar Cipher, it will nevertheless
still be regarded as a toy system by todays standards. Examples of this cipher
system in operation can be seen in Tables 2.2 and 2.3. Further dissemination of

this encryption type will be provided further in block ciphers in Section 2.4.2.

2.3.2 Asymmetric Keys

The asymmetric encryption scheme uses two keys; a public key to encrypt, hence
the moniker public key encryption, and the corresponding private key to decrypt.
It was invented in 1978 by [38] where an algorithm called RSA was developed and
published, based on the initial of each of the inventors surnames. A similar system
was invented in 1975 but because it was developed under classified circumstances,
there was no mention of it until it was declassified in 1997 [39]. Although it is
not as fast as symmetric encryption, owing to the complexity of the calculations,
for applications where a reasonably small encryption message, such as a key for
a symmetric system that is required to be communicated, it is an ideal solution
for communicating over an exposed public channel. Similar schemes have been
developed that significantly increase security, such as the elliptic curve encryption
system as shown in Table 2.4 from [40]. However, one of the biggest issues with
this system that can also be obtained from [40] is that it is an inaccessible system

to implement given that it is protected by over 130 patents.

Table 2.2: Encryption Using Vigenere Cipher

t h i s i s t o p s e ¢ r e ¢t

P A S S W O R D P AS S W O R +

t h a k e g kK r e s w u n s k
Table 2.3: Decryption Using Vigenere Cipher

vt h a k e g k r e s w u n s k

P A S S W O R D P AS S W O R -

t h i s i s t o p s e ¢ r e ¢t

10

2.3 Encryption Types

2.3.2.1 Factorisation Problem

The factorisation problem is based around a large modulus whose generation is
based upon two prime numbers. During the operation of constructing the modulus,
two keys are created that are linked to the modulus within a finite field. This is
best described by using the RSA algorithm, which demonstrates the fundamentals
behind this type of encryption system. It is based on the factorisation problem
where two primes are selected, p and ¢; the product of these primes is calculated

such that
n = pq. (2.1)

The modulus for all future computations within the encryption algorithm will be

n. The totient is then calculated so that

p={@-1)(¢—-1). (2.2)

A public key e is selected such that e < n and the greatest common divisor of e

and ¢ is equal to 1 such that
ged(e,) = 1. (2.3)

-1

The private key d is calculated as the inverse of the public key, e™" modulo the

totient ¢ as

d=e"! mod ¢. (2.4)

Encryption is performed using

¢ =m® mod n (2.5)
and similarly, decryption is performed by

m = ¢! mod n. (2.6)

Table 2.4: NIST Recommended Key Sizes

Key Size (bits)
Symmetric | RSA and Diffie-Hellman | Elliptic Curve
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

11

2. BACKGROUND

This algorithm is relatively simple to implement, with the main requirement being
the ability to perform calculations on very large numbers based upon the size of the
modulus being used. It is a fairly fast algorithm when used with small key sizes,
although the security of RSA is weak in contrast to symmetric based encryption
algorithms due to the size of the key required to offer comparable strength in
security. For example, a symmetric key size of 256 bits would be comparable to an

RSA key size of 15360 bits as previously shown from [40] in Table 2.4.

2.3.2.2 Discrete Logarithm Problem

The discrete logarithm problem (DLP) is another asymmetric method [41].
However, instead of building problems based upon factorisation it is instead based

around logarithms. To demonstrate, the DLP is based upon solving the problem
o’ = mod p (2.7)

for x such that

x = log, f mod p (2.8)

having previously disclosed «, 8 and p. The problem of solving = is deemed to
be very difficult. When this problem is applied over a cyclic finite group Z/pZ
over modulo p, which has been created using a generator, then there exists a
multiplicative inverse that is difficult to derive as each element is the result of
raising the generator to a power up to p — 2 modulo p. For example, if o = 2,
r =7 and p = 17 then 27 = 128, which results in 27 = 17. The multiplicative field
(Z/pZ)" is defined as

(Z/pZ)" ={1,2,...,p—1}. (2.9)

This field is computed from a® to o?~2 providing p — 1 elements using generator «
as

(Z/pZ)* = {a°,at, ... ,aP7?} . (2.10)

The field is calculated up to p — 2 because

o?~! =1 mod p. (2.11)

12

2.3 Encryption Types

Should, for example, p = 17 with (Z/pZ)" = {1,2,...,p — 1} and generator o = 7

is used then
(Z/pZ)* = {7°,74,72, 73,74, 75,76, 77,78, 79,710, 711 712 713 714 7151 (2.12)
When this field is calculated over mod p, it becomes
(Z/pZ)* = {1,7,15,3,4,11,9,12,16,10,2,14,13,6,8,5} . (2.13)

When z = 11 is applied to (2.7) then 7' = 14 mod 17. The problem then lies
within solving x with knowledge of alpha, S and p such that

x = log, mod p. (2.14)
However, as p increases it becomes extremely difficult to derive x from « and £.

2.3.2.3 Diffie-Hellman Key Exchange

One of the most common applications for asymmetric cryptography is the
Diffie-Hellman (DH) key exchange protocol that was first published by [42]. Again
like RSA [43], a similar system was developed previously but as it was developed
under classified circumstances, it was unable to be published at that time [39].
The DH scheme is usually used to exchange symmetric keys, which are generally
preferred over asymmetric keys as they are typically faster than asymmetric
systems. Based on the DLP, it provides a method for two parties to communicate
with each other without exposing decryption keys. Both parties will decide upon
a multiplicative field over a prime, (Z/pZ)" and a generator, o. Each party will
derive an ephemeral or temporary key in the range 1 < k < p — 1 and apply it to
the generator as

Ky=a" modpfor0<k,<p—1 (2.15)

and

Kp = o mod p for 0 < ky < p— 1. (2.16)

Each party sends each other K4 and Kp and by applying their private keys they

can both derive the same shared session key

(Ka)f* = S = (Kp)™. (2.17)

13

2. BACKGROUND

This works because

(a’%)k” - (aka)kb. (2.18)

This method of key exchange is very secure and underpins how private
communications are established across the Internet, albeit in RSA form where

it has been adapted to the factorisation problem.

2.3.2.4 ElGamal Encryption

In 1985, Taher ElGamal developed an encryption scheme that was based on the
DLP [44]. Being based on the DLP, it also shares similarities with the DH key
exchange system [42], particularly the sharing of the ‘secret’. Both Alice and Bob
agree upon a large prime p and generator o over the multiplicative group (Z/pZ)".
Alice then selects a random integer k, such that 1 < k, < p — 1 and sends to Bob
the derivation of

K4 =" mod p (2.19)

Bob receives the value derived in (2.19) and himself derives a random key k;, from
1 < ky < p—1. Representing the message m in the range 0,1,...,p — 1 he then
derives

v = a* mod p (2.20)

and

d = ijlff mod p (2.21)

sending ¢ = (v,) to Alice. Upon receiving ¢, Alice uses her private key a to derive
1 mod p (222

which because

AP = e (2.23)

this operation is equivalent to deriving a~*e¥». Alice can now decode the message
by

m =% mod p. (2.24)
2.3.2.5 Elliptic Curve Discrete Logarithm Problem
Elliptic curve cryptography (ECC) was developed in 1985 independently by [45]

and [46]. Schemes using elliptic curves are based around the elliptic curve discrete

14

2.3 Encryption Types

logarithm problem (ECLDP). Similar to the LDP, the ECC uses a logarithm
problem. However, it accomplishes this by using points that exist along an elliptic
curve defined as

E:y?’=24ar+bmodp (2.25)

where a,b € 7Z/pZ are user parameters used to define the curve over a field defined
by prime Z/pZ, p > 3. This field contains coordinate pairs (z,y) € Z/pZ and an
imaginary point O, which is used to denote the point at infinity. The validity of

the curve is dependent on satisfying
4a® + 27b* # 0 mod p. (2.26)

All the calculations for determining the coordinates of the points are carried out
from G, which is provided to define G, and G, . This is the generator point and is
used to define all of the other points. The problem is then defined as

Q = dG mod p (2.27)

where d is selected randomly and is in the range 2 < d < p — 2. Equation
(2.27) then produces @, the public key. Determining d with only knowledge of
Q@ is therefore intractable if the field is large enough. It should be noted that
technically points are not multiplied directly but instead repetitively added, for
which there are two distinct operations: adding and doubling. However, these
are not straightforward operations, as may be implied, as the line must first be

characterised by its gradient. This can accomplished by first deriving s as

Y2 —U0n
T2 — 1

S

mod p (2.28)

if the point is to be added with another point or

373+ a
S =

mod 2.29
o p (2.29)

if the point is to be doubled, i.e. P 4+ P or 2P. These operations can be better
visualised in Figure 2.2. Addition is shown by adding points P and () and drawing
a line that intersects these points and continues until it hits the next part of the
curve. At the point where the line meets the next part of the curve, a vertical line

is drawn through the y = 0 axis until it reaches the curve again, denoting the actual

15

2. BACKGROUND

~

Figure 2.1: Addition and Doubling Operations in the Elliptic Curve

position of the addition. Point doubling is shown by drawing a line at a tangent to
the point V' and continuing until it reaches the curve once more, characterised by
point E in Figure 2.2. Like the point addition, a vertical line is drawn through the
y = 0 axis until it reaches the curve once more, indicating the point 2V.

An important aspect of the division operations in (2.28) and (2.30) is that
because the operations are performed within a field, the division should be
performed by multiplying with the multiplicative inverse instead. This can easily

be undertaken using the extended Euclidean algorithm or
2=t = 2zP72 mod p. (2.30)

The line characterised by s connects the two points that are to be added and
where the line intersects the curve, is the point mirrored across the z-axis. While
point doubling only uses a single point, the line is derived by forming a tangent
to the curve at the point, again noting where the line intersects the curve. These

operations are better visualised in Figure 2.1. The new point can then be then be

16

2.3 Encryption Types

12 13 14 15 16 17 18
L 4

9 10 M
*—o

8
®

"
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Figure 2.2: The Field of Elliptic Curve Points for p =19, =2,b =2

derived by
r3 =35> -1 — 22 mod p (2.31)

and

y3 = s (x1 — x3) mod p. (2.32)

Subtraction can be achieved by using the reflective point and then adding the two
points together such that if
P = (x1,y1) mod p (2.33)

then
—P = (z1,—y1) mod p (2.34)

17

2. BACKGROUND

such that

Q — P = (22,%2) — (z1,y1) mod p
(2.35)

= (22,92) + (71, —y1) mod p.
The method for providing multiplication is provided by point addition and doubling,
where the number of steps is equivalent to the number of bits in the prime. This is
accomplished using the left to right method and is exemplified in Table 2.5. This
multiplication technique is applied as shown in (2.27) where Alice and Bob both

select a random private key 1 < k£ < g and performs

K4 = koG mod p (2.36)

and

Kp = kG mod p (2.37)

Sending each other their public keys, Alice and Bob apply their private keys similar
to (2.17) such that
koK p mod p = Si = ky K4 mod p. (2.38)

Where Sj becomes the shared session key. Using curve P-192 that was defined by
the National Institute of Standards and Technology (NIST) [47] shown in Table

Table 2.5: Elliptic Curve Multiplication (13 x P) using Double and Add

’ Step ‘ Operation ‘ Result ‘ Representative ‘
1 - P 15P
2a | Double P+ P 2P 10, P
2b | Add 2P+ P 3P 11, P
3 Double 3P + 3P 6P 1104 P
4a | Double 6P +6P | 12P 1100, P
4b | Add 12P+ P | 13P 1101, P

Table 2.6: NIST Prime Elliptic Curve P-192

Pig2 = 6277101735386680763835789423207666416083908700390324961279
a = 6277101735386680763835789423207666416083908700390324961276
b = 2455155546008943817740293915197451784769108058161191238065
G, = 6020462823 75688656758213480587526111916698976636884684818
G, = 17405033229362203140485755228021941036402348892738665064 1

18

2.3 Encryption Types

2.6, we can perform the following example where

Ka=k,G mod p
= 354684134338427178248341788335664844735957824203528261950
X (602046282375688656758213480587526111916698976636884684818, 230
174050332293622031404857552280219410364023488927386650641) (239
= (2933140742448625203731641248407683827818026042006007265108,

1342160346315844524113810504268757567486830356720401950124)

Kp = kG mod p
= 1799075742360715006265099004488067778762135129614130234431
X (602046282375688656758213480587526111916698976636884684818, 040
174050332293622031404857552280219410364023488927386650641) 240
= (4147123246579862628199761933154009809426422151451232702766,

4754143181055516863572102753585715493405392185760408272858)

Sy = ko Kp mod p
= 354684134338427178248341788335664844735957824203528261950
x (4147123246579862628199761933154009809426422151451232702766,
4754143181055516863572102753585715493405392185760408272858)
= (472803943651158730618988180737355535665961855491617197373,
4253469622903940143028516631910075165803201780065008295480) 041
= kK4 mod p 241
= 1799075742360715006265099004488067778762135129614130234431
x (2933140742448625203731641248407683827818026042006007265108,
1342160346315844524113810504268757567486830356720401950124)
= (472803943651158730618988180737355535665961855491617197373,
4253469622903940143028516631910075165803201780065008295480)
As (2.41) shows that a common point on the curve has been established, the next
step would be to take the x-coordinate and process it through a typical hashing
algorithm, currently SHA-1. The resultant hash will then be used as the symmetric
key.

Of particular interest are reports that have been circulating recently suggesting

19

2. BACKGROUND

that the curves offered by the NIST [47] have tainted curves and that they
contain known weaknesses or backdoors [48-50]. This has not only brought about
the removal of the perpetrated curve and technique, but also led to companies
posting advisories and removing support for these curves from their products and
applications, with the focus moving to curves that have been developed by the

cryptographic community [51-54].

2.4 Cipher Types

There are two distinct methods that underpin how a cipher text is produced. These
methods are stream or block ciphers. Each method has an appropriate method of

use and will be discussed accordingly.

2.4.1 Stream Ciphers

Stream ciphers are derived by combining the plaintext and the key to derive a
cipher text, one bit at a time. This requires combining a key stream by adding it
to the plaintext modulo-2 or using the exclusive-or (XOR) operation. The main
focus therefore is how the key stream is derived. The most secure way of deriving
the key is via the one-time pad (OTP) where the key is pre-computed and used
only once. However, deriving one-time pads must be undertaken in advance and
will obviously require storage.

Another method, which is more commonly used, is the linear feedback shift
register (LFSR) and applications may use one or more of these. The LFSR works
by shuffling a series of bits through a register, the length of which will contribute
to determining the periodicity of the register. Taps are taken at certain points of
the register and these values are added together modulo-2. The resultant value is
then placed at the beginning of the register when all the bits shuffle to the next
position. The key would therefore be determined by the initial state of the LFSR
prior to the commencement of the operation. All LFSRs are cyclic or periodic and
depending on their design determines their length and whether they can utilise the
full space, which would be 2" — 1 values, where n is the number of bits it contains.
The only value that a running LFSR cannot produce is the value zero, as there

would be no way otherwise to change this value.

20

2.4 Cipher Types

{bm bi7| bis| bis| bra| bis| b1z b11|b10 by [bg | b7 | be | bs | bs | bs | b2 | by boFﬁ
’ Yy v VR
D el 'l
VAN U
y
Kblt‘—g b21| b2o| big| big| biz| big| bis| bia| biz| biz| byi[bio | be | bs | br | bs | bs | bsa | bs | bz | by | bo Fﬁ
A
) 4
(N
U
4‘ boo| b21| bao| big| big| biz| big| bis| bia| bia| brz| byi|[bio | be | bs | by | be | bs | bsa | bs | by | by boFf
’) 4 AY)4
ALY WAL A
VAN U

Figure 2.3: A5/1 Cipher Scheme
2.4.1.1 A5/1

The A5/1 cipher that was initially used with GSM mobile phones was designed
using three different LFSRs of varying bit sizes [55]. It combines the output of
three LFSRs that are built of varying sizes and configuration that are derived from

the following polynomials

LFSRy =2 + 2%+ 2% + o +1 (2.42)
LFSRy = 2> +x+1 (2.43)
LFSR3 =a® + 2% + 2 42 + 1. (2.44)

The LFSRs are constructed by using the first term, the degree of the polynomial,
to determine the length of the LFSR and taking the taps at positions determined
by the remaining terms, applying it to the LE'SR by reading left to right. Therefore
(2.42) would produce an LFSR with bit taps at positions 18, 17, 16 and 13. The
output from each LFSR is, as well as being used as a feedback, combined with the

outputs of the other LFSRs using addition modulo-2. The resultant bit is then used

Table 2.7: LFSR Clocking Behaviour for A5/1

Clocking Bit Movement
LFSR; \ LFSR, \ LFSR3 || LFSR, \ LFSR, \ LFSR;
0 0 0 1 1 1
0 0 1 1 1 0
0 1 0 1 0 1
0 1 1 0 1 1
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

21

2. BACKGROUND

as a key bit to apply to the plaintext stream. The configuration of this scheme is
shown in Figure 2.3 where the shaded bits are identified as the clocking bits. Each
LFSR is clocked according to the value of its clocking bit against the values of the
clocking bits in the other LFSRs. Movement occurs for an LFSR if its clocking bit
matches the clocking bit of one or more of the other LEFSRs. How this would affect

the movement is shown in Table 2.7.

2.4.2 Block Ciphers

Block ciphers are currently the most common type of cipher in use today. While a
stream cipher encrypts the plaintext on a bit-by-bit basis, changing one of the bits
can only have an impact on that one bit. However, a block cipher is encrypted as
a group of bits and because of this, a change to any of the bits within the block
should have an impact on the remaining bits. An example of an encryption scheme
that uses this type of scheme is the data encryption standard (DES) [56].
Techniques relating to block encryption have previously been described as falling
into two distinct categories; confusion and diffusion [12]. The confusion aspect is
generally regarded as replacing the bytes in the plaintext such that there is little
to no relationship with the key. This is either undertaken by a pre-calculated
lookup table where values have maximal separable distance, or functions that have
a non-linear element that will appear to sever the relationship. Diffusion is the
process of using each input byte to affect and impact the other bytes in the input
and corresponding cipher text. The result of this would mean the smallest change
in the cipher text, or slightest alteration in the key would have a devastating

impact upon the rest of the cipher text and resultant plaintext.

2.4.2.1 Substitution Boxes

The substitution box or S-box is the core of the confusion operation, proving
a method to reversibly transpose incoming data. This can be in the form
of a mathematical function, for example where data is swapped-out with its
multiplicative inverse so that the original data can be retrieved by reversing the
process. Typically, these types of operations are carried out using a Galois field
(GF). In addition, they may also include processes that are non-linear so as to

resist linear analysis.

22

2.4 Cipher Types

LA [B | (A [__ B |

Me

L B | [A | [B] | A |

Classical Feistel Unbalanced Feistel

(Al B [c][D] [A][B][C][D] IAIIBIIE\IIDI
_icp»@‘@»@@»@

(8] [c] o)Al [B]J[c][D][A] [B]J[C][D][A]

D D D

Type-| Feistel Type-Il Feistel Type-lll Feistel

Figure 2.4: Selection of Feistel Networks

2.4.2.2 Permutation Boxes

The job of the permutation box or P-box is to mix the bytes of the cipher text
around so that individual bits within each byte are spread and swapped with
the bits of the other bytes. This results in changes in a single bit having a
catastrophic impact on the whole of the cipher text. When used in conjunction
with S-boxes over a number of stages they are together usually referred to as a

substitution-permutation network (SPN) and are usually found in Feistel networks.

2.4.2.3 Feistel Networks

Feistel networks are structures that split the incoming cipher text into two or more
parts that are typically applied to one or more functions at each stage depending on
their classification, as generalised by [57]. The function facilitates the development
of new transforms based on these structures, and can incorporate many techniques
including S-boxes, Boolean functions and even transforms. The Feistel network was
implemented in the DES, which was ratified for use in 1977 and uses what is now
known as a classical Feistel network [56]. Other Feistel constructions include the
unbalanced, type-I, type-1I and type-III Feistel networks [57] and are illustrated in
Figure 2.4.

23

2. BACKGROUND

2.4.2.4 Transforms

Another example that can be used as both a method of confusion and diffusion are
transforms. These include the Walsh-Hadamard transform (WHT) as used in [58],
the pseudo-Hadamard transform (PHT) as used in [59,60] and the number theoretic
transform (NTT) as used in [61], particularly the NMNT. Typically, the NTT is
a transform that is defined over a finite field modulo a prime. The NMNT uses a
Mersenne prime, which while can be implemented using simple shifts and additions,
serves to be a very effective operator without the need for time-consuming divide
algorithms.

Recently, there is evidence of encryption systems that are derived using S-boxes
and P-boxes, which are substitution and permutation boxes respectively. These
methodologies are based around Shannon’s ideals of message encryption to be based
on confusion and diffusion [12]. The S-box, being the confusion aspect, replaces
a byte within the message with another byte that is determined by the function
of the box and the key. In order to resist cryptanalysis, it is important that this
stage is non-linear, otherwise a linear cryptanalysis (LC) attack could potentially
be applied. The importance of the P-box would be to then mix around the bits of
the cipher text so that individual bits within each byte become dependent on the
bits of other bytes that were also being encrypted. This helps to resist differential
cryptanalysis (DC).

2.4.2.5 Data Encryption Standard

The DES was developed by IBM [62] and has since been extensively studied since
its publication for use in 1977 [63]. It is based on the classical Feistel construction
where the incoming code is split into two equal sized blocks and a single function
element is used to process each alternate block every round as shown in Figure 2.5.
Consisting of 16 rounds for each block, it is a very secure algorithm, even though it
uses a key that is too short by today’s standards.

This algorithm was in use for over 20 years and precedes the advanced
encryption standard (AES). Curiously, whilst it uses a 64-bit block and takes a
64-bit key, it utilises only 56 bits of the key. The bits that aren’t used as part of
the key are deemed parity bits, although it can be seen from the design that they

literally are not used.

24

2.4 Cipher Types

’ Input ‘ ’ Key ‘
o4 { 64
y
’ Initial Permutation ‘ ’ Pe- ‘
\
y 32 32 ! ’ Co D, ‘
Permuted
Input ’ Lo ‘ ’ Ro ‘ 28 28

{ {

y Ki+— ’ LS, I LS, ‘
E% ® 48 { 28 { 28
>—< PC-2 C | D, ‘
’ L1=Ro ‘ ’ R1=LoA f(Ro,K1) ‘ > 28 28

) 28 Ko +— ’ LS, | LS, ‘
EW 48 { 28 { 28
>—< PC-2

[N N | :f
L=R4 Ro=L:Af(R1,Kz) 28 28
L___r___J L___r___J R

DT s b P -
q%—ﬁagﬁ\f}« ——- j ;st 728
::EE——::::_J i__PCZ__]rfL#'__ Cn__[_ __]I
v v - 6 ——T—— —-
’ Lis=Rus ‘] Ris=L 1A {(R1s,Krs) ‘ (28 (28
v Al — ’ LS16 | LS16 ‘
é}%@i 48 28 28
0% l 4
Preoutput ’ Rig=L1sA f(Rys,K16) ‘ ’ Li=Ris ‘ pc-2 Cro I Do ‘

56

— |

’ Inverse Initial Permutation

64

I

Figure 2.5: The DES Algorithm

The algorithm begins with a permutation function and ends with the inverse
permutation function as shown in Figure 2.6, helping to spread the bits across the
block during the encryption process and thus strengthening its diffusion properties.
Following this, the algorithm then falls through 16 rounds of Feistel networks where
32 block bits are processed at any one time. The function depicted in Figure 2.7
consists of block expansion, where the 32 block bits being processed are expanded
to 48 bits. The key is processed as two 28-bit halves, where 56 bits are selected
from the initial key and permutated; the unused parts have no connections and are
shown as shaded. A new key is derived each round and this is achieved by rotating
each half and selecting a total of 48 bits from both halves via another permutation;

again showing the unused parts with no connections as shaded. This round key is

25

2. BACKGROUND

Permutate——— > e Inverse Permutate:wwes >

Figure 2.6: Initial and Inverse Permutate Functions

added to the expanded block text modulo-2. The intermediately processed 56-bit
key is reused for repeating the rotation and permutation for each successive round
serving as the round key. After the key has been applied to the block, the result
is fed into eight six-input S-boxes that each have four outputs. This reduces the
cipher back to 32 bits. The S-box works by using the outer-most bits of the
input to select a row of a lookup table within. After selecting one of the four
rows using the outer bits, the inner four bits are then used to select the column
that contains the output. This is shown more clearly in Figure 2.8. The DES
encryption scheme has been one of the most studied encryption systems to date
and has emphasised new areas of cryptanalysis with respect to DC and LC [64—66].
However, these techniques were described in [67] where DC was previously known as
a “T attack”. Additionally, all of the attention that DES has received has resulted
in ways to measure advances in technology and techniques in methodologies and
implementations where there have been repeated attempts to defeat DES in the

shortest amount of time possible using brute force attacks [68-71].
Prior to the introduction of AES, moves were made to strengthen DES,
accomplished by applying the algorithm three times in succession using three

different keys. This methodology was known as the triple data encryption

26

2.4 Cipher Types

7L

afl
)

9l
9l

N I I I 0
174
o
4

QI I T T T I T T I T T T T T T T I T I T I T T I TTTTTITTITTITTITTITITTITITT]]

so|\

7

[} -
g > ><q%
N —
g A— gl e
- Q
2

45
2
e

\

o¥
oy

Pl P ey ®
o I AR ! :’\)
/’)‘%«(&\‘\"{ \E &
I B S B VAN
N Y /X \\ L
~
;

9§

R

Figure 2.7: The F-Box in DES Feistel Network with Round Key

algorithm (TDEA) and triple-DES (TDES) or (3DES) and effectively increased the
key size to 168 bits. This works by using three separate keys and by applying

¢ = DES {Ey,, DES[Dy,, DES (Ej,,m)]} (2.45)

27

2. BACKGROUND

0 0 0 1 0 1

S S S

v |0123456789abcdef | |
00|e4d12fb83a6c5907 |00
Sy 01|0f74e2d126cb9538 |01
10|(41e8d62bfc973a50 |10
11|fc8249175b3eal6d |11

ooy

0 1 1 1
Figure 2.8: An S-Box from DES

for encryption and

m = DES{Dy,, DES [Ey,, DES (Dy,, ¢)]} (2.46)

for decryption where Fj, and Dy, represent the different encryption and decryption
keys respectively. This makes DES a significantly stronger algorithm and remains

one of the more robust algorithms developed.

2.4.2.6 Advanced Encryption Standard

While DES was coming to its end of life, the department of Federal Information
Processing Standards (FIPS) announced the development of the AES [72]. The
standard stated that the algorithm to be used was to be a block cipher that had a
128-bit block and variable keys sizes that include 128-, 192- and 256-bit derivations.
Rather than developing a standard behind closed doors that could possibly contain
any number of potential weaknesses, an open and inclusive approach was adopted
in the development of the standard by inviting the current leaders in the field to
submit their ideas. As a result, twenty-one algorithms were submitted and fifteen
were short-listed for the first round [73]. By 2000 this number was reduced to five
finalists [60,74-78]. One month after the final conference in 2000, NIST announced
that Rijndael had been selected according to the cumulative decisions by the
attendees as shown in Table 2.8 [79] and it was adopted as the new encryption
standard [80].

As AES has now superseded DES as the accepted encryption standard for
United States commerce by NIST, it is seeing significant attention. Probably one

of the biggest criticisms is that it doesnt contain enough rounds and that there

28

2.5 Mode Types

should be at least 16, 20 or 28 rounds depending on whether the key is 128-, 192-
or 256-bits in size [81]. Nevertheless, it now remains the standard against which all
emerging encryption systems must measure themselves.

Rijndael uses the SPN and runs over 10, 12 or 14 rounds depending whether
the key size if 128-; 192- or 256-bits accordingly. It is arranged as a 4x4 block of
bytes and uses an S-box developed over GF(2%) with an affine transform. Diffusion
is further applied using the mix-rows and mix-columns, which entails the rotation
of each row by a successive number of times followed by an invertible matrix
multiplication of each column. Significantly, Rijndael has been developed as a
series of byte operations rather than using full 32-bit words like other finalists.
This makes the algorithm very attractive for devices with limited processing. It
also allows for the majority of the calculations to be pre-processed in advance and
referred to in lookup tables.

The AES algorithm will be discussed more in depth in Chapter 6 where a
stripped-down version will be used without the password functionality in order to

measure it against other diffusion techniques.

2.5 Mode Types

The encryption modes are techniques that are used within the encryption process
to make the resultant cipher more robust. Without these modes, cipher texts
would be easier to attack owing to techniques such as KPAs or known cipher-only
attacks (COA). This section will present the five confidentiality modes that have
been ratified as applicable for use with AES [82]. Additional modes have been
ratified for use with AES depending on the purpose including: authentication [83],
authenticated encryption [84], high-throughput authenticated encryption [85] and

storage [86]. As well as presenting the methodologies associated with each of the

Table 2.8: Votes for AES Selection

’ Algorithm \ Yes \ No \ Score ‘

Rijndael | 86 | 10 76
Serpent 59 | 7 52
Twofish 31 | 21 10
RC6 23 | 37 | -14
MARS 13 | 84 | -T1

29

2. BACKGROUND

confidentiality modes, these modes are also depicted in Figure 2.9.

2.5.1 Electronic Code Book

The electronic code book (ECB) mode is the simplest of all the modes. It processes
the plain text one block at a time before encrypting it and therefore each cipher
block is completely independent from the others. This mode is not particularly
secure as patterns can occur should identical plaintext blocks be encrypted, which
will result in the production of identical cipher blocks. This is particularly prevalent
with content that is uncompressed where repetition is more common. The use of
ECB is strongly discouraged as it opens the underlying encryption system to KPAs.
The procedure for using ECB is

C;=Ek (P)) forj=1,2,....n (2.47)

for encryption and

P; = Dk (Cj) for j =1,2,...,n (2.48)

for decryption.

2.5.2 Cipher Block Chaining

Cipher block chaining (CBC) mode is similar to ECB mode except that before the
plaintext block is encrypted, it is added modulo-2 to the previous cipher text block.
However, In the case of the first block where no previous cipher block yet exists,
an Initialisation Vector (IV) is used to ensure the integrity of the first block. Both
ECB and CBC modes require that the underlying encryption system is capable of
decryption as well as encryption. The formula for using this mode is based on the

first block being index as j = 1 and apply for encryption

Co=1V
(2.49)
Cj = EK(P] @Cj_l) forj=1,2,...,n
and for decryption
Co=1V
(2.50)

P; =Dk (Cj)® Cj_y for j =1,2,...,n.

30

2.5 Mode Types

Unsecure
Channel

’ Plaintext H ENCk H Ciphertext }—» Ciphertext H DECk H Plaintext ‘

| Electronic Code Book |

Ciphertext Ciphertext

ENCk Ciphertext Ciphertext

R

b4).
GH ENCk Ciphertext Unsecure Ciphertext H DECk }—»6}

X Channel

- N

A

L—»| Plaintext

| Cipher Block Chaining |

e me o v

Plaintext
Plaintext

Ciphertext

Unsecure
Channel

Ciphertext

y
Plaintext

| Cipher Feedback |

Ciphertext
Plaintext

Ciphertext
Plaintext

Ciphertext
Plaintext

Ciphertext
Plaintext

Plaintext

| Output Feedback |

Unsecure
Channel

e me ol em |
e o o { e |

Ciphertext
Ciphertext

Unsecure
Channel

Plaintext

Plaintext

| Counter |

Figure 2.9: The Five Confidentiality Encryption Modes Ratified for AES

A major disadvantage with this mode is that while the ECB mode will lose a
block should as little as a single bit be changed, with CBC mode the current and

following blocks will be destroyed. This would make it more sensitive in noisy

31

2. BACKGROUND

channels. However, if the bit has been changed through cryptanalysis then this is

obviously going to be an advantage.

2.5.3 The Initialisation Vector and Streams

The CBC mode introduced a new variable, in the IV; its role is to apply
cryptographic ‘salt’ that is a random number to be used only once. As such, this
may also be known as a ‘nonce’ indicating that it is a number to be used only
once. When used correctly, it works as a safeguard to ensure integrity of the cipher
should the user choose the same password. The remaining three confidentiality
modes will also use an IV, including the CTR mode where it will use each block,
incrementing each time. Protecting the IV is not necessary and it may well be
transmitted with the cipher. However, if it is desired that the IV is concealed,
using a public key system can help maintain confidentiality. The following three
confidentiality modes are designed such that the plaintext is applied to the system
after the block has been encrypted. As such, these modes can be used as steam
modes where only a desired number of bits will be taken from the encrypted
block and added modulo-2 to the plaintext to create the cipher. This means that
these modes require that the encryption system uses the encrypting algorithm only
because the decryption process is simply the repeat of the encryption process, but
with the desired number of bits from the encrypted block modulo-2 to the cipher,
thus producing the original plaintext. Therefore the decryption function in systems

using these modes is ultimately redundant.

2.5.4 Cipher Feedback

Cipher Feedback (CFB) mode is a very similar process to CBC mode but rather
than adding the plaintext and previous ciphertext (or the IV if it is the first
block) modulo-2 prior to encryption, it is instead performed after encryption of the

previous cipher text (or IV if first block). Encryption is performed

Co=1V
(2.51)
Cj = EK(Cj_l) @Pj forj=1,2,...,n.

32

2.5 Mode Types

and decryption as

Co=1V
(2.52)
.Pj = EK(ijl)@Cj forj=1,2,...,n.

2.5.5 Output Feedback

The output feedback (OFB) mode is similar to CFB mode but with a minor
distinction that the output of the encrypted block is used in conjunction with the
key in subsequent encryption blocks rather than the resultant cipher. Again, it is
the result of these encrypted blocks that are added modulo-2 with plaintext block.
Alternatively, a selected number of bits may be used instead, which could therefore
turn this block encryption system into a stream encryption system. To process this

mode the following operations are used to set up the system

Op = IV
(2.53)
O;j = Eg (0j_1) for j=1,2,...,n.
then
C;=P;®O; (2.54)
for encryption and
Pj = Cj ©® Oj (2.55)

for decryption.

2.5.6 Counter

The counter (CTR) mode is a method utilising an IV as the input to an encryption
system and subsequently incrementing it at each round. Like the CFB and OFB
modes, the encrypted block is added modulo-2 to the plaintext to create the cipher.
There are therefore no feedback operations in this mode, which means that many
ciphers can be processed in parallel. Encryption is performed

I1=1v

(2.56)
CJZEK(I—Fj—l))@P] forj=1,2,...,n

33

2. BACKGROUND

and decryption as

I1=1Vv
(2.57)
Pi=ExI+j—-1)&Cjforj=1,2,...,n

2.6 Hashes

Depending on the nature of the application, there are additional types of encryption
that may not necessarily perform a reversible operation in a manner that is expected.
These encryption types are referred to as hashes. Hashes are one-way methods,
typically containing between 128 and 512 bits and are used whenever a user sends or
receives content that requires confirmation of message integrity or authentication.
Typical examples of this are the message digests MD4 and MD5 [87,88], the secure
hash algorithms, SHA1 and SHA2 [89] and the newly ratified SHA3 [90], which
is currently in draft format. The hash operation is synonymous to encrypting a
message block by block and cumulatively combining the encrypted outputs, thus
resulting in what should be an irreversible process. The security of the hash value
and its underlying algorithm is the assurance that the hash value from one message
cannot be duplicated by manipulating a different message. When a method is
discovered to reproduce values this is called a collision and rapidly degrades the
value of the algorithm.

Hashes, when used with public key cryptography, can serve as an important
method of authentication as well as proving integrity. This is accomplished with
the sender first deriving the hash of a message using the same previous methods.
However, upon deriving the hash, it is encrypted using the senders private key.
By decrypting the hash using the senders public key and verifying the hash, both
message integrity and authentication of source can be proven. For example, a user
may request a connection with a secure service and in doing so he sends his public
key to the service. The service responds by encrypting a session key with the
users public key, using previously agreed techniques relating to public key exchange
and requesting that the user provides authenticating details using the session key.
The user may then decrypt the session key using his matching private key and
encrypting his password with the provided session key. The encrypted password is
then passed through a hash function so that he can then send his user identification

and hash to the service. The service will be able to reliably verify the hash by

34

2.7 General Purpose Graphics Processing Unit Processing

recreating the same process using the users stored password. This adds enhanced
security by avoiding the actual password from traversing an unsecured channel.
The use of hashes in this manner is typically referred to as a message authentication

code (MAC) and embodies the integrity and authentication operation.

2.7 General Purpose Graphics Processing Unit
Processing

In 2006, NVIDIA announced the software development kit (SDK) to their
proprietary compute unified device architecture (CUDA) [91], inspiring researchers
and developers to push the boundaries of their developments to new architectures
using graphics cards [92-94]. Meanwhile, AMD were working on their solution, close
to metal, which was released in November the same year [95]. Two years later the
Khronos Compute Working Group was formed [96] leading to the release of their
Open Computer Language (OpenCL) [97], which although originally developed
by Apple, was supported by both AMD and NVIDIA. These two architectures
epitomise what we know today as general processing graphics processing unit
(GPGPU) processing.

Cell processors in the Sony Playstation 3, which contain accessible compute
engines for the graphics, were also discovered to be fully available to system
developers [98]. In 2008, a researcher in the field of astrophysics formed a cluster, in
which eight of these units were interconnected, costing less than two simulations on
an available supercomputer [99]. Unfortunately, while Sony once participated and
encouraged the use of their platforms for this purpose, they have since shut down
this resource to developers [100], currently leaving CUDA and OpenCL as the two
main contenders. However, the topic of GPGPU is currently an extremely vibrant
area, with frequent publications describing new achievements; such as the ability to
brute force every Windows NTLM hash derived from every possible eight-character
password, based upon 52 letters (upper- and lower-case), 10 digits and 31 special
characters [101]. This is a very realistic supposition as should the hacker gain
access to the Windows password file, then they would be able to process some 93°
guesses in under 6 hours to determine the containing passwords.

GPGPU processing involves using a number of graphics cards, between one

35

2. BACKGROUND

and four, within a desktop computer as a single host that can execute a users
program. Kernels are developed using the appropriate development system and
uploaded to the graphics card(s) along with datasets and parameters, including
the number of threads that are to be executed. These kernels can be executed
either synchronously, where the host program waits for the kernel to complete; or
asynchronously, where an interrupt can be generated within the host program upon
completion. Using graphics cards in this manner can be extremely beneficial as they
are naturally highly parallel by design for their primary function to process graphical
requirements; they are compact and have very low power requirements as opposed
to their thoroughbred supercomputer counterparts [102]. Moreover, because these
graphics cards are designed to be implemented in reasonably low-power hosts,
they are massively energy efficient in terms of giga floating point operations per
second (GFLOPS) per Watt, in comparison to other supercomputing topologies.
Applications that exploit the potential of GPGPU are known as heterogeneous
computing, owing to the significant processing workloads that can be offloaded to
one or more GPUs from the CPU.

Between the rapid development of GPGPU technology and associatively low
cost, the requirement for strong encryption has become a necessity, especially with
the vast amount of ongoing research and development to create GPGPU-based
algorithms to defeat security. Therefore, it is the balance in the critique between
the security strength of encryption algorithms and the evaluation of that strength

in terms of technological development.

2.8 Conclusion

This chapter has emphasised the scope and demand for secure methods of
communication and storage. Through advances in technology and techniques,
encryption processes are being broken and made redundant. Whilst there is
a demand for emerging techniques to be processed quickly and efficiently, care
and consideration must be taken into account with respect to the life span of
the development of new techniques. Parallel processing has been brought to the
consumer through affordable graphics cards where the advent of GPGPU processing
has made a significant impact in the field of cryptanalysis. Techniques using this

subject will be presented in Chapter 6 where simulations and analysis will be

36

2.8 Conclusion

undertaken using GPGPU processing.

37

2. BACKGROUND

38

Chapter 3

The Generalised New Mersenne

Transform

3.1 Introduction

There are many different transforms that are applicable for use in signal-processing,
such as the Fourier-, cosine-, sine- and wavelet-transforms to name a few.
These techniques have applications that include image- and audio-processing and
communications. While fundamental, these transforms are error-prone as they
are built upon irrational functions that are subject to rounding and truncation
errors, which therefore have limited use for applications in cryptography. A
separate branch of transforms called NTTs are built over a residue field modulo a
prime, such as the Fermat number (FNT), MNT and the NMNT. These particular
transforms incorporate Fermat and Mersenne prime numbers respectively, which
allow for extremely fast calculations using shifts and additions. As these transforms
are produced using modulo operations, the results they provide are exact as they
contain no irrational functions and therefore result in no rounding or truncation
errors.

One of the more recently created NTTs is the GNMNT, which was developed
by expanding the kernel parameters of the original NMNT, during which two
new transforms were invented; ONMNT and the O?NMNT. The GNMNT, like
the NMNT is built over a field modulo a Mersenne prime and shares similar
properties such as cyclic convolutions. Contrary to previous techniques such as

the FNT and MNT, it has both long and versatile transform lengths that are

39

3. THE GENERALISED NEW MERSENNE TRANSFORM

defined over a power of two, making it suitable for application development using
fast algorithms. Like the original NMNT) it too has applications in image-, audio-
and signal-processing where techniques involve one- (1D) and two-dimensional (2D)
correlation and convolutions for matching and filtering, as well as applications in
cryptography. This chapter will start by introducing the NMNT algorithm followed
by the ONMNT and O?NMNT algorithms. The derivation of the transform
parameters will be briefly discussed followed by the selection of the GNMNT
parameters and the taxonomy of the GNMNT will be included. The GNMNT
kernel components will be discussed and how key components can influence the
results will be discussed. Finally, examples of using the GNMNT to undertake

tasks for encryption will be demonstrated before providing conclusions.

3.2 The NMNT

The NMNT is the original transform derived in this suite and as such, there
are already significant developments in its use within signal- [6,103-105] and
image-processing [7,106-108], cryptography [61,109-111] for example, as well as

being the topic of focus for implementations [112-115]. Its derivation is

N-—1
X(k) = <Z x(n)ﬁ(nk)> for k=0,1,2,...N — 1 (3.1)
Mp

n=0

where (.),,, denotes modulo Mp, Mp = 2P —1 is a Mersenne prime for p =
2,3,5,7,13,17,19, 31, ..., etc and N is a power of two where N < 2P. The transform
kernel [is given by

B(n) = (Bi(n) + Ba(n))ar, (3.2)
where
Bi(n) = (Re(an + jaz)") ppp » B2(n) = (Im(ar + jaz)") (3.3)
for
ay =£(2%,,, ag =+ (=39, and g = 2V? (3.4)

and Re(.) and Im(.) denote the real and imaginary parts of the enclosed terms

respectively. For transform lengths equal to %, By and By can be calculated as

Bi(n) = <Re [(041 +ja2)d}n>Mp (3.5)

40

3.2 The NMNT

Table 3.1: The NMNT Kernel for N = 16 and Mp = 127

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 82 111 82 1 3 0 124 126 45 16 45 126 124 0 3
1 111 1 0 126 16 126 0 1 111 1 0 126 16 126 0
1 82 0 45 126 3 111 3 126 45 0 82 1 124 16 124
1 1 126 126 1 1 126 126 1 1 126 126 1 1 126 126
1 3 16 3 1 45 0 82 126 124 111 124 126 82 0 45
1 0 126 111 126 0 1 16 1 0 126 111 126 0 1 16
1 124 0 3 126 82 16 82 126 3 0 124 1 45 111 45
1 126 1 126 1 126 1 126 1 126 1 126 1 126 1 126
1 45 111 45 1 124 0 3 126 82 16 82 126 3 0 124
1 16 1 0 126 111 126 0 1 16 1 0 126 111 126 0
1 45 0 82 126 124 111 124 126 82 0 45 1 3 16 3
1 126 126 1 1 126 126 1 1 126 126 1 1 126 126 1
1 124 16 124 1 82 0 45 126 3 111 3 126 45 0 82
1 0 126 16 126 0 1 111 1 0 126 16 126 0 1 111
1 3 0 124 126 45 16 45 126 124 0 3 1 82 111 82
and

fa(n) = (Tm [(ar + jaz)d}n>Mp (3.6)

where d = % is an integer power of two and the term (a; + jas) is of the order

2P+l The inverse NMNT is defined as

N—-1
z(n) = <N1 > X(k)8 (nk)> for n =0,1,2,..., N — 1. (3.7)
k=0 Mp

It can be seen that (3.1) is the same as its inverse (3.7) except for the scale
factor N~!. This indicates that both the forward and inverse transforms can
be implemented by the same algorithm with minimal intervention to differentiate

between the two. This can easily be verified by
<9N9NN71>MP =1 (3.8)

where Gy is an NMNT transform matrix of length N, N1 is the corresponding
scaling factor and [is the identity matrix. Moreover, it can be further observed
that the NMNT is its own transpose because Gy = 9% and therefore it is also
orthogonal. An example of an NMNT transform matrix is shown in Table 3.1

where N = 16 and p = 7 thus producing Mp = 127. The NMNT, as well as being

41

3. THE GENERALISED NEW MERSENNE TRANSFORM

Table 3.2: The ONMNT Kernel for N = 16 and Mp = 127

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
72 19 19 72 5 99 28 122 55 108 108 55 122 28 99
82 82 3 124 45 45 124 3 82 82 3 124 45 45 124
19 5 122 108 28 72 72 28 108 122 5 19 99 55 55 9
111 0 16 0 111 0 16 0 111 0 16 0 111 0 16 0
19 122 122 19 28 55 72 99 108) 5 108 99 72 55 28
82 45 3 3 45 82 124 124 82 45 3 3 45 82 124 124
72 108 19 55 5 28 28 5 55 19 108 72 122 99 99 122
1 126 1 126 1 126 1 126 1 126 1 126 1 126 1 126
5 28 28 5 55 19 108 72 122 99 99 122 72 108 19 55
3 3 45 82 124 124 82 45 3 3 45 82 124 124 82 45
99 72 55 28 19 122 122 19 28 55 72 99 108 5 5 108
0 111 0 16 0 111 0 16 0 111 0 16 0 111 0 16
28 72 72 28 108 122 5 19 99 55 55 99 19 5 122 108
124 3 82 82 3 124 45 45 124 3 82 82 3 124 45 45
122 28 99 5 72 19 19 72 5 99 28 122 55 108 108 55

© W ot =

orthogonal is also symmetric, producing a kernel that looks like

B0) B(0) 5(0) 5(0) 5(0)

BO) B 52 5(3) BN - 1)

BO0) B2 B) 5(6) BR(N —1)]
M=150) 5@ 5(6) 5(9) BBV -1 |- (39)

BO) B 5(®) 512) BN ~1)]

5(0) BIN-1) BR2(N-1)] BB -1] ... B(N-1)X-1)]

3.3 The ONMNT

The ONMNT is the first new transform of the GNMNT. Unlike the NMNT, it has
individual forward and inverse transforms, where the inverse can easily be obtained
by transposing the ONMNT matrix. This is analogous to the discrete cosine
transform (DCT), where the type-11I is the inverse of the type-II. The maximum
transform length is slightly shorter than the NMNT and is defined as 2P~!. The
kernel is derived by replacing £ from the NMNT with 2’“2—“, which therefore defines

the forward transform as

N-1
Xo(k) = <Z 2(n)B <2k2+ 1n>> for k= 0,1,2,.... N — 1. (3.10)
Mp

n=0

42

3.3 The ONMNT

The kernel that is produced looks like

N[—

N

o X T @ ™

B e N N
—

~— ~—_ — ~— —

(25

5 (0) 5(0)
B(3) B(3)
B(3) B(5)
5(3) 7)
B (6) 8 (10)
) BH%Aq ﬁﬁﬁﬂ

| o[

B(2N —1)

3 [3(21\21—1)}

BBEN 1)

5(0)
5 (351

(3.11)

Subsequently, the inverse ONMNT (IONMNT) is derived by replacing n from the

NMNT with 2”2—+1 while retaining the original k£ term so that the inverse transform

is a transpose of the forward transform. This inverse transform of the ONMNT can

formally be defined as

/o N-1
z(n) = (N"" Xo(k)B
n=0

72
19
19
72

99
28
122
25
108
108
25
122
28
99
S

— = = e e e e e e e e e e e e

82
82
3
124
45
45
124
3
82
82
3
124
45
45
124
3

19
)
122
108
28
72
72
28
108
122
5
19
99
95
95
99

111
0
16
0
111
0
16
0
111
0
16
0
111
0
16
0

19
122
122

19

28

55

72

99
108

5
5
108

99

72

95

28

82
45
3

3
45
82
124
124
82
45

45
82
124
124

2n+1

2

72
108
19
55
5
28
28
5
55
19
108
72
122
99
99
122

1
126
1
126
1
126
1
126
1
126
1
126
1
126
1
126

43

)
28
28

)
95
19

108
72
122
99
99
122
72
108
19
95

3

3
45
82
124
124
82
45

45
82
124
124
82
45

99
72
95
28
19
122
122
19
28
95
72
99
108
5

)
108

0
111
0
16
0
111
0
16
0
111
0
16
0
111
0
16

k>> forn=0,1,2,.... N — 1.
Mp

Table 3.3: The IONMNT Matrix for N = 16 and Mp = 127

28
72
72
28
108
122

19
99
55
55
99
19

122
108

124

82
82

124
45
45

124

82
82

124
45
45

(3.12)

122
28
99

72
19
19
72

99
28
122
95
108
108
95

3. THE GENERALISED NEW MERSENNE TRANSFORM

As expected, this transform produces a matrix that is the transpose of the forward

transform kernel. This produces a kernel that looks like

BO) B(3) B(1) B(3) B (55

BO) B() BB 5(3) 8|25

BO) 8G) 8G) 8% 8 [0
Ml=180) B(E) M B(R) 6 [1Y (3.13)

BO) BB B8O B(F) 8 |45

8(0) B(2FL) BeN-1) p[22=0] . g [REDENED]

(SoSON"1) =1 (3.14)

where Gp is an ONMNT transform matrix of length N, GJ is the transpose of the
ONMNT transform matrix, N~! is the corresponding scaling factor and I is the
identity matrix. Examples of the ONMNT and IONMNT transform matrices are

shown in Tables 3.2 and 3.3 respectively using N = 16 and p = 7.

3.4 0dd-Squared-NMNT (O>NMNT)

The O2NMNT is the third and final new transform of the GNMNT. The O?NMNT is
unique to the GNMNT in that its construction contains no trivial elements that are
present in the NMNT, ONMNT and the IONMNT. The details and the implications

of these characteristics will be discussed further in Section 3.8.1. The derivation of

the O2NMNT is

N—-1
Xpa (k) = <Zm(n)ﬂ [(Q”Jrll(%“)w for k=0,1,2,...N—1 (3.15)
n=0 Mp

and the inverse is defined as

N-1
z(n) = <N_1 ZXOQ(k)B [(2n+1l(2k+1)]> forn=0,1,2,...., N —1. (3.16)
k=0 Mp

Like the NMNT, the O?NMNT shares a similar advantage in that the inverse
transform is the same as the forward transform, meaning that as well as being
orthogonal, their kernels are also symmetrical. In addition to k being replaced by
2kl 50 n is also replaced by 2%t Grtl)Cntl) - Ay

2 2 4
example of the O?NMNT kernel is provided in Table 3.4 where N = 16 and p = 7.

2k+1

, which when combined produces

44

3.4 Odd-Squared-NMNT (O*NMNT)

15
56
106
105
105
106
96
15
83
26
14
36
91
113
101
44

56
105
15
14
113
112
22
71
101
36
83
106
106
83
36
101

Table 3.4: The O?NMNTKernel for N = 16 and Mp = 127

106
15
91
71
71
91
15

106
14
44
22

101
26

105
83

113

105
14
71
44
83
56

113
22
91

106
26

112

112
26

106
91

105
113
71
83
83
71
113
105
91
21
26
15
112
101
106
36

106
112
91
56
71
36
15
21
14
83
22
26
26
22
83
14

56
22
15
113
113
15
22
56
101
91
83
21
106
44
36
26

15
71
106
22
105
21
56
112
83
101
14
91
91
14
101
83

83
101
14
91
91
14
101
83
112
56
21
105
22
106
71
15

26

36

44
106

21

83

91
101

56

22

15
113
113

15

22 1

56 1

14
83
22
26
26
22
83
14
21
15
36
71
56
91
12
06

36
106
101
112

15

26

21

91
105
113

71

83

83

71
113
105

91
106
26
112
112
26
106
91
22
113
56
83
44
71
14
105

113
83
105
26
101
22
44
14
106
15
91
71
71
91
15
106

Table 3.5: Values of oy and s According to p for NMNT

p] o | |
3 1 2
5 8 20
7 16 88
13| 128 181
17| 512 87260
19| 1024 | 385302
31 || 65536 | 1268011823

101
36
83

106

106
83
36

101
71
22

112

113
14
15

105
96

44
101
113

91

36

14

26

83

15

96
106
105
105
106

56

15

As the O?NMNTis symmetrical, like the NMNT, the forward and inverse kernels

are derived as

8(1) 8(3) 8(3)
B(1) 8(1) 8(%)
8(3) (%) B (%)
8(%) 8(%) 8(%2)
8(3) (%) B(%)
3 (2]\2—1) 3 [3(21;1—1)} 3 [5(21Z—1)

45

—~
>~
~—

~— ~— ~— ~—

A2 el aE eR

B!

D e @

" T ——r
o
RS
=

4

2N—1)(2N—1)

|

(3.17)

3. THE GENERALISED NEW MERSENNE TRANSFORM

CI9TTLEOGT- | G86TLLEVO | TVIESVLVIC- | & 8V9E/VLY 1T
T60TELV- 9GGCALTYTIT | 86SE8VLVIC | 67 : : Ye8IvLELOT
8TEIVIEIV- | 6CLIEBERIT | 9V8BLVLVIC- | TOSY C160L89€4
SOV90TV0T- | TPTLLEETOT | 9VPIRETOTE | T0C6609¥ : . 9GVGET89C
8VLOTYIYTIT- | 668290€00T | GESTIIVGTT- | CIRTTS8T6 . 8TLLITYET
GLCTIE0CTC- | TLETCILT 6TLGT6TLT- | 8T6LISGLGT 79880129
TTETGIEE0T- | 9EETERETTT | 0LLEIPSIVT- | LLIGTO6GTE . . CEVEGEe
C89LL8TLG- | G96909VLST | 98T€EGTS0T- | T9V0S6C6 9TCLLLIT
€COGPT99€ET- | PCISECT8L | 691C0GTVP- | 8LV8LESGOLT : : 80988¢8
P88EIVTI6T- | €IL6TO98T | 009579998~ | LVOSEVISTT VOEV6TY
896GL88LET- | 6L9L0989L | 9€00L89TC- | TT9ETI0E6T : : ¢S1L60T
0T9ETPRGT- | LEOOLOGSST | LOGSLSTET- | OVLVOIVILT . 9L4870T
LV86L6678- | 008E0GL6TT | 6E9IELEVET | BOOLVLEIL | 9TLLLY- | 1999V | C8CVCTS- | ¢ 88¢VCS
CI889ELI6T- | G8LVITOIT | 92E60888ET- | TCEFLISGL | LLI8G- | 0T999F | 8E€CYTS- | 67 . . V1292
990L8TT6ST- | T8S96CGSS | €86S69T691- | PIIL8LAGY | 9LVLOG- | TIRIT | 98V61S- | TO8Y C819€- | 688V6 | 9901€T- | G : : : : CLOTET
G009TE880T- | ¢FILIGSSOT | €I6VETIET- | PRIS|CITOC | PLITO- | €T1EIY | GG08E- | CETI8Y | 8LI66- | €6ETE | CCOIET- | 6F : : 9€449
PP8GT8IGOT- | €08LG9G60T | 999L90T6S- | E86GTFIGST | LOL6ET- | 08SFRT | 92961€E- | TI9V0T | 06169~ | T88T9 | 0LT9ZT- | TO8Y 89.L2€
8GTTCLILL- | 68VCILGLET | GEOOTLETY- | CT9EILEELT | 9TETRI- | T96IVE | LITVCh- | OCTIO0T | ¢SG¥6- | 6199¢ | T6LLE- | 08CE6 : . 8€EIT
6ELT8TISTT- | 806000169 | 0999T6EFIT- | L86IISGEOS | S66TET- | T6CT6T | POLIST- | €6VCVE | 0V648- | TETSY | CP60TT- | 62T0C | 0T8T | T8ESG | 9818 | ¢ . T618
164299€€91- | 9980C8ETS | 986L9L98C- | T99GTLO98T | 00VLOT- | L88ITY | 0808TE- | LOTI0T | VOVCT- | L9980T | CTL8G- | 69€TL | LoGE- | V99V | VI8~ | 67 9607
T8€0TL0S0T- | 992€9L96 6TLLIEOVTT- | 8T6SITLOO0T | 9926¥F- | TC0GL | TTLLIE- | GLE9ST | 91868~ | GSTIV | CF99- 6CVSeT | ¥TIT- | L999 | 06E€- | TOST . 8702
8TEVLERIE- | 6TEG068LLT | €690L98C- VG6CI88ITC | 0TEVLY- | L966F | 8LTEVE- | 600TVT | 66888~ | TLLTCY | 6L19€- | C68V6 | GL19- | 910C | 8E6L- | €4C : : : ' : jg4us
LLTEESV66- | 0LV0S9CETT | GECCI99ITLT- | CIVICR0EY | 08GCOT- | LOLTIEE | 68L06- | 8GVIEY | PC6LY- | LVIES | COOTP- | 69006 | 6LLE- | CI¥F | 6€0€- | 241G : [48
L0LTTO00LS- | OP60LVLLST | PPLSLETT6I- | €06V0TIET | 689097 | 869€9 | L8TG8- | 00T6EV | 8ITEL- | €06LSG | 99€9€- | GTLV6 | €669 | 86TT | G98L- | 9€€ 942
LLOEVPEIC- | 0LS0V0SE6T | CESPEVIVOT- | ST16S090C | €CC9- 908TG | P8OLRT- | €0CLEE | GPETTT- | 9CL6T | 8CYES- | €PGLL | €G8G- | 8EET | LGGE- | V€9V | GOT-| ¢C | ¢Cl- | ¢ : 8¢1
0L68TETTIC- | LLIVITIT 8T8TVSGG0S- | 6T8OV6TFIT | 06£SGET- | L6888 | 89CTIRE- | 6TOETT | GLLTOT- | 9686 | ¥CIT9- | LVF69 | CO8F- | 68€E | €69S- | 86VC | #€- | €6 | 8L~ | 67 . 79
T66L7LL96- | 999GEL6LTT | 6L89LC906- | 89ELOCIFCT | TOLETS- | 984 GTEL6T- | ©L69CE | TLS09- | 00S0L | GTVG- 999GeT | PPGL- | LV9 | LLOE- | PITG | 06~ | L6 | G&- | ¢OT | 1¢-| 0T | 9¢- |G 49
FLTCT688ITT- | €LET6SBLE | PGERILO6S- | €6CSTLIGST | €TITV- | PLITISY | POGTCIT- | €8LT9E | GTFIT- | 9VIVOT | 69€GL- | CTLSS | CI8- | 6LEL | GELT- | 9979 | ¥&- | €0T | Te- | 90T | ¥~ | L | €1~ | 8T 91
6L809VLVTC- | 89LCE 6L80GVLV1C- | 89LCE GLLETS- | C14 GLLETS- | T14 94¢- GT80ET | ST8OET- | 95T ¥9- LTI8 | LCI8 | 9 8- 61T | 8- 6IT | L& |V |V |LE |9 |C |C |9 |8
IVIESVLYTC | T LY9E8VLYIC | O 98¢ves- | 1 L8¢¥CS- | 0 1- 0LOTET | TLOTET- | O 1- 0618 | T618- | 0 9¢l- | T L21- 1 0 -]0€|{T€ |0 | T-]9 |L|0 ||V
LV9ESVLYTC | O 1- IVIESVLYTC | L8TVCTS- | 0 1- 98¢ves | TLOTET- | 0 T- 0LOTET | T6T8-| 0 T- 0618 | L&TI- | O 1- 9¢T | T€- |0 [T~ |0€|L- |0 |T-]9 |C

) 29 o o 2] 29 o 2 2] 28 o) ko) 29 o W | @ || | ™| % |||, %, h|W N

1e=d 61=d L1=d e1=d L =d c=d c=d

INIJAN 0] N pue d 0} Surpiosoy o pue o Jo sen[eA :9'¢ 9[qe],

46

=
z
=
£
=2
=
z
=
z
g
Q
5
=
o
92]
g
o)
S
-
[\p)

TO9TTLEOST- | GRGTLLEVD | TVOESVLYIG | G : : VZ8IVLELOT
T60TELY- 9GGTCLTITT | 86CE8TLYTE | 6F : : 2160289
8I6IPIEIP- | 6TLIESERIT | 9V8BLYLYIL- | T08F 9GTSEPRIT
SOPI0TFOG- | TFCLLESFET | 9FFFRETOTE- | T0T6609F : : 8CLLITHET
8PLOCYIPIT- | 6682906001 | SESTIIRGTT- | CI8TTS8Y6 : : : : : : : : : : : : | o : 79880129
GLTTICOTTT | CLETTILE | BTLSTBILI- | 8T6LISGLET : : TEVIeses
TIETCIEE0T- | 9EETESETTT | OLLEIFSIRI- | LL86T06CE 91622291
T89LL80LG- | G96G09FLST | 98TEECHS0T- | T9V0S6C6 : : 80988€8
€TGGTTIOET- | PCTREET]L | 69TSOSTFF- | 8LPSLESOLT : : POET6TY
V8SEIVTI6I- | €IL6T098T | 009579598 | LFOSESTSTT 2S1L60C
896GLSSLET- | 629L0989L | 9800L89TE- | TTIETI0E6T : : 9LG870T
0T9€TP8GT- | LEOOLO6SKT | LO68LSTET- | OFLFOIFTLI : : : : : : : : : : : : : : e O N N 88¢FTS
LV86L66T8- | 008E0GL6TT | 6€99ELESET- | 8O0LVLEIL | 9TLLLY- | T9G9V | C8THES- | & : : PV1E9e
T9889EL8GT- | GRLFTTOIT | 9ZE60SS/ET- | TCEFLISGL | LLISG- | 0T9SIV | 8€CHes- | 6F TLOTET
990L8126GT- | 18G96EGSS | €86G69T69T- | PIILSLGGY | 9LVL0G- | TISIT | 98P61G- | T08F | T8I9€- | 6886 | 9901€T- | G : : 9£559
G009TS8R0T- | TFILIGRSOT | €IGTETIET- | FRISSTITOL | PLITY- | €TTEIF | GC08E- | CETISY | 8LIGG- | €6ETE | TLOIET- | 6F : : 89.¢¢
PPRSERISOT- | €08LSIG60T | G99L90T6G- | G86STFISST | LOL6ET- | 08GFST | 9961€- | T99V0T | 06169~ | 18819 | 0L2951- | 108F ¥8EIT
8GTTCLILL- | GSPCILGLET | CEO0CLETF- | CTOEILEELT | 9TELRT- | T96TFE | LOTFTH- | 0ETO0T | CSGF6- | 6TC9E | T6LLE- | 082E6 : : 618
6€LT8VISFT- | 806000169 | 0999T6EFIT- | L869ICEOS | G66GEE- | C6G16T | FELIST- | €6VCHE | 0F6S8- | TETSH | CP60TI- | 6210¢ | 018Z- | 18€S | 9818~ | & : : : S N N N 9607
T6L299€€9T- | 9980C8ETS | 986L9.98¢- | T99STLOIST | 00FLOT- | L88IT¥ | 080STE- | LOTI0T | #OVTT- | L9980T | C1L8S- | 6966, | L2Se- | #99V | ¢v18- | 6F : 8V0%
1820TL0G0G- | 992€9L96 | BTLLIEOFTT- | 8C6SITL00T | 9926FF- | TC0SL | 12198~ | GLG9ST | 91868~ | SSoI¥ | ¢P9S- | 6GPSTT | Fo91- | L9S9 | 06€€- | T0SF ¥201
87E8LERIE- | BTES068LLT | €690L982- | PS6TISSIIE | 0TEVLY- | LOGGY | 8LZE8E- | 600TFL | 66888 | TLLTY | 6L196- | T68¥6 | GL19- | 9T0C | 8€6L- | €5C : f4ts
LLTEEST66- | 0LFOSITSTT | CETTIIITLI- | CTFIER0ET | 08CT6T- | LOLTEE | 68,86~ | 86VIEY | ¥e6LF~ | LFPTE] | c0OTF- | 69006 | 6LLE- | GTFF | 6€0€- | CSTS : 9%
LOLTTO0LG- | OV60LFPLLST | PPLSLETTGI- | €06F0TIET | 689097~ | 8669 | L81G8- | 00T6EY | 8ITEL- | €06LG | 9S€9€- | GILF6 | €669~ | 86TT | GG8L- | 9€€ 821
LLOSVFETT- | 0LGOFOSEGT | CESFEFIFOT- | CTT6C090C | €889 | POOSTS | FROLST- | €0TLEE | GPETTT- | 92L6T | 8TCES- | €FCLL | €G8G- | 8EET | LSGE- | FEIF | OT- | & | Tol-| ¢ : 79
0L6STETTTC | LLOFITIZ | 8T8THGS0S- | 6T8OFGTFIT | 06ESET- | L6888 | 89TI8E- | 6TOEFT | GLLTOT- | 966C | ¥TIT9- | LFF69 | ¢O8¥- | 68€E | €69~ | 86¥C | #e- | €6 | 8L~ | 6% | - | - N N N 48
T66LVLL96- | 9G9GEL6LTT | 6L89LT906- | 89ELOTIFET | T0LETS- | 98S CTEL6T- | TL69TE | TLG09- | 00S0L | GTWG- | 999GCT | PPGL- | LP9 | LLOE- | PIIG | 06~ | 26 | &~ | @OT | 1g- | OT | 92 | G 91
PLTI6889TI- | €LETOSRLE | PSESILO6S- | €6TSTLIGCT | €195F- | PLOISY | FOGTIT- | €8L19E | STF9C- | OFIVOT | 6GEGL- | CILSS | TGI8~ | 6LEL | GELT-| 9SF9 | ¥o- | €0T | Te- | 90T | ¥&-| L | €1-|8I 8
6L80CTLV TG | 89LTE 6L80CTLV TG | 89LTE GLLETS | T1SG CLLETS | T1S 95¢- GIS0ET | STS0ET- | 95T V9~ | LTI8 | LTI8- | V9 |8 | 6IL |8 |6IT|Le- |V |V [L8|G |C |& |G |V
OF9E8TLYTE | T LV9ESTLYTE- | O 98e¥ee- | T L8EeS- | 0 1- 0LOTET | TLOTET- | 0 1- 0618 | T618- | 0 9gT-| T | Lgl-|0 |T- |0g|Te- |0 |T-|9 |L- |0 |¢C

29} 2%} To o 0 (29} To 0 0 29} To 0 (4] (2%} 1o 0 k) 2%} o | || |Ww|w||n|

1e=d 6r=d Li=d er=d L=d ¢=d g=d

ILNIANO 10} N pue d 03 SUIpiodny

¢o pue o jo sonfep :)°¢ 9[qer],

47

T99TTLEOCT- | G86TLLEFO | CPISSFLYIG- | © : Z160L898¢S
160TELF- 9GGTGLEVTT | 86SESVLYTC- | 6F : : : : 9GHCERRIT
QTGITIEIF- | 6CLIESERIT | OFSSLFLFTC- | TOSF : : : : 8TLLITHET
GOPO0TFOG- | GFGLLEEF6T | OFFFRETOTG- | T0T6609F : : : 7988019
8PLOCFFIT- | 6682908001 | GESTIISGTT- | TISTTS]TE : : : : zerpeces
GLTZIE0CTT- | TLETTILT | 6TLGTGILI- | 8G6LIGGLET : : 91GLLLIT
TTETGIEE0T- | 9ETESETTT | 0LLEIFRTIRT- | LLSGTO6TE : : : : 80988¢€8
789L280LG- | G96G09FLCT | 98TEECFS0T- | T9F0S626 : : : : FOSFOTF
€TCSFTI9ET- | POISEETSL | 69TCOCTFF- | SLFSLGSOLT : : T81L60%
P8SEIFTI6T- | €IL6TOIST | 009GF9G98- | LF0SESTISTT : : 9268701
806CLSSLET- | 629209892 | 9800,891%- | TT9ETI0EGT : : : 88C1CC
0T9ETFRST- | LE00LOGSST | LOGSLSTEF- | OFLFOIFTLT : : : : PF129C
LP86L66T8- | 008E0SL6TT | 6E99ELESET- | SOOLFLEIL 1959% 4 : TL01ET
T9889€L86T- | GSLPTTOIT | 9ZE60SSSET- | TGEPLIRGL 0199 6 9£6G9
990L8TG6GT- | T8S96CGGE | €86G69169T- | FI9LILEGK 11891 T08F | 28198~ | 688¥6 G 8912€
G009TS8R0T- | TFILIBRSOT | E96FETIST- | F8ISSETTOT £11e9¥F TETI8Y | 8L966- | €6€T1E 6 78691
FF8GT8TIS0T- | €08LGIS60T | G99L90T6S- | C86STHICST 08578¢ T9970C | 06T69- | TS]TY T08F 7618
8GTTCLILL- | 6SFCILGLET | GEO0TLETH- | GI9EILEELT 1961¥¢ 02100T | 6856~ | 61S9€ 0826 9607
6£LE8FISPT- | 806000169 | 0999T6EFIT- | L86IIGEOS 263163 C6Vehe | 0V6Ss- | 181CH 6510 186¢ : : 870%
T6L299€€9T- | 998028ETS | 98629.98C- | T99GTL09ST L889T¥ L0290 | 70Vee- | L9980T 6562L 799¥ 7201
T8€0CL0G0G- | 998£9296 | 6TLLIEOFTT- | 826G9TL00T 1206 GLGOCT | 9T868- | CSTTF 6ereTT 1989 At
87E8LC89E- | 6TEG068LLT | €690L98G- | $S6EISSTIG L966F GOOTHT | 66788~ | GLLTF 26876 910% 96
LLTEEST66- | 0LF0CITSTT | GEET999TLI- | GIFITS0ET LoLiee S6VIEY | FC6LY- | LPTES 69006 [N 8TT
L0L8T00LG- | OP6OLVLLGT | PFL8LETI6I- | €06F0T9EE 86429 00T6EY | 89TEL- | €06LG GILV6 86TT 79
LL0SFPETG- | 0LSOPOSE6T | ceChehIF6T- | CTT6S090C 790816 €0CLEE | CPETTT- | 92161 EFCLL 8667 ¢ | cel- €
0L6STETCTC- | LLOFITIT | 8TSEFSC0S- | GTROFETFIT L6888 GTOSFT | GLLTOT- | 96568 L¥F69 68€¢ €6 | 8L- 9T
T66LFLLI6- | 9G9GEL6LTT | 6LT9LTI06- | 89ELOTTFGT 98¢ TL69TE | TLG09- | 00S0L 969621 179 16 | Sz 8
PLTI6SS9TT- | £L8T6C8L6 | PGE89L06S- | £6CSTLIGCT 7L918¥ €8L19€ | GTP9Z- | 9PITOT z1Les 6LEL €01 | Te- i
6.80GFLV1C- | 89.2€ 6L80GFLV1C- | 89L€ s z1s 96¢- GT808T 962 1218 61T | 8- 4

20 149} To o [45) o 0 [45) o 20 0 o N

1e=d 6r=d L1=d er=d L=d

3. THE GENERALISED NEW MERSENNE TRANSFORM

ININNO 10} N pue d 0y SUIpPI02OY

to pue o Jo soneA :8°¢ 9[qe],

48

3.5 Derivation of Transform Parameters

Table 3.9: GNMNT Transform Selection

S o[k
NMNT | 0|0
ONMNT | 0 | 1
TONMNT | 1 | 0
O2NMNT | 1 | 1

3.5 Derivation of Transform Parameters

This section outlays the taxonomy of the GNMNT and demonstrates how
the transform parameters are derived for the NMNT, ONMNT and O?NMNT,
including consideration of their respective maximal transform lengths. For all
transforms of the GNMNT, the initial values of a; and ay are calculated by
selecting the appropriate value of ¢ according to p for (3.4). The values that are
subsequently obtained with respect to p are shown in Table 3.5.

With appropriate starting values selected for of a; and as, they both require
adjustment according to the transform length to produce the initial values of 3,
and . This is calculated as shown in (3.5) and (3.6) accordingly. The first notable
difference between the GNMNTs is through the derivation of N according to the
length % for d is a power of two, which is 2P*1 for NMNT, 27 for ONMNT and
27=1 for O2NMNT. A comprehensive list of final values of a; and asy according to
the field derived by p and the transform length N for the NMNT, ONMNT and
O?NMNTis shown in Tables 3.6, 3.7 and 3.8 respectively. The taxonomy of the
GNMNT that was first shown in Figure 1.1 illustrates how all of the GNMNT

transforms are interlinked with each other. These transforms are generalised as

N—-1
X (k) = <Z 2 (n) B [(2” + ”0)4(% il ko>]> for k=0,1,.,N —1 (3.18)
Mp

and

N-1
z(n) = <N—1 > X (k)B [(2” + ”(’)4(% i ko)] > forn=0,1,..,N—1 (3.19)
k=0 Mp

where the variables ng and kg are selected to denote which transform is to be used
from the GNMNT according to the configuration shown in Table 3.9, which is
described in more detail in [11]. All transforms are orthogonal and when ny = kg

when either the NMNT or O?2NMNT are selected then the transforms are also

49

3. THE GENERALISED NEW MERSENNE TRANSFORM

symmetrical.

3.6 Cyclic Convolution of the GNMNT

Convolution is widely used in signal processing and image processing. There are
three types of convolution that have been defined, which are linear convolution,
cyclic convolution and the skew-cyclic convolution [116,117]. When the input
sequence is z (n) and the impulse response is h (n), which has the same length N,
the length of the linear convolution output y, . (n) is 2N — 1 [116,117]. The output

of the linear convolution is shown as

Ype(n) = (n) ®h(n)
N-1
= kzox(k)h(n k) (3.20)
N-1
= x(n—Fk)h(k)
k=0

where ® denotes convolution and the length of the cyclic convolution output y,.(n)

is N shown as

Yoo (n) =z (n) ® h(n)
N-1
= x (k)h (n—k mod N)
k=0
N—-1 (3.21)
= @(n—kmod N)h (k)
k=0
n N-1
=Y a(k)h(n—k)+ Y z(k)h(n—k+N).
k=0 k=n+1
Finally, the skew-cyclic convolution output y,.. (n) is shown as
Ysco(n) =z (n) ® h(n)
n N-1 (3.22)
=> z(k)h(n—k)— > x(k)h(n—k+N).
k=0 k=n+1

3.6.1 Cyclic convolution of NMNT

As shown in (3.20) and (3.21), the output lengths are different. However, the
cyclic convolution can be derived from the linear convolution by padding with zeros

so that it can reach the required length of 2N — 1. The cyclic convolution can

20

3.6 Cyclic Convolution of the GNMNT

therefore be calculated by
9N [Wee(n)] = Gn [z (n) ® h(n)]

N-1N-1
- < > Z_: z(n —m)h(m) 5 (nk) >Mp (3.23)

Mp

where s = m — n, and Gy denotes the NMNT transform. According to the NMNT
definition, S(sk + mk) term in (3.23) can be simplified as

Mp

N1 N1
- < h(m) By (mk) Y a(s)B (sk) (3.24)
N
+

Due to the relationships between f51(n) and S(n), S2(n) and B(n) where

) = (5150 + ﬁ(—n)]>M (3.25)
and
pai) = 3 1800) - 5<—n>]>M (3.26)

then applying (3.25) and (3.26) to (3.24) produces

N-1 N-1 N—-1 N-1
< D h(m)Bi(mk) Y w(s)B(sk)+ Y h(m)Ba (mk) Y w(s)8 (—sk) >
m=0 s=0 m=0 s=0 Mp
N-1
B B (mk) + B (—mk)
- <£h(m)[> }X(k:) (3.27)

N-1
£ hm [LR = Bmb k>>
m=0 Mp

where X (k) and X(N — k) are defined by NMNT property, as well as H(k) and
H(N — k), which are

—_

< . x(s)5 (sk) > =X (k), (3.28)

Mp

51

3. THE GENERALISED NEW MERSENNE TRANSFORM

N—1
<z w(S)ﬁ(—sk)> _ X (k)
Mp

5=0 (329)
=X (N —k)
and
N-1
< > h(m) B (mk) > = H (k), (3.30)
m=0 Mp
N-1
< > h(m)ﬁ(—mk)> = H (—Fk)
m=0 Mp (3.31)
= H(N—F).
Therefore, applying (3.30) and (3.31) into (3.27) produces
<H(k) FH)y HEIH Ry oy k)>
Mp
_ <{ [H (k) + H (N — k)] X (k) + [H (k) — H(N — k)] X (N — k) }zp—1> (3.32)
M
— Y (k). ’
where
% _ < 2p—1>Mp' (3.33)
Splitting H (k) into even and odd parts as
H (k) + H (—k)
H (k) =
< 2 >MP (3.34)
=(H®) +H R
and
HOd(k) _ H(k) — H(_k)
< 2 >Mp (3.35)
— ([H ()= H (R 21,

Then applying (3.34) and (3.35) to (3.32) produces the desired equation in order to

derive the cyclic convolution using the NMNT as

9N [Yeoe (n)] = Sn [x (n) ® h (n)]
= H® (k) X (k) + H* (k) X (N — k) (3.36)

=Y (k).

92

3.6 Cyclic Convolution of the GNMNT

x(n)— NMNT AXQ‘A‘

@ (k) y| NMNT' > y(n)

hin)— NunT [HKA

Figure 3.1: Convolution Process Structure for the NMNT

This is shown in Figure 3.1, where the ® operator is defined as

Y (k) = X (k) ® H(k)
(3.37)
= H® (k) X (k) + H°? (k) X (N — k).

An example using the NMNT to obtain the cyclic convolution ycoc, generating x
and h randomly to represent the input and impulse response signals respectively,

with p = 13 and length N = 8 is first shown as

z(n) = (1,1,0,1,1,0,0, 1] (3.38)

and

h(n) =[1,1,0,1,1,0,1,0]. (3.39)

The resulting NMNT representations are

X (k) = [5,923,0,6019, 3, 2547, 8063, 7492, 8190, 7268, 0, 2176, 1, 5644, 128, 703], (3.40)

H (k) = [5,8063, 8064, 5096, 1, 128, 8062, 1848, 1,8063, 129, 3099, 1, 128,127, 6347]. (3.41)

Applying the cyclic convolution algorithm produces

Y (k) = [25,4354, 126, 7994, 3, 4795, 0, 2271, 8190, 3315, 8061, 459, 1, 3898, 0, 5670], (3.42)

and applying the inverse NMNT results the first 2V — 1 elements as

yee =[1,2,1,2,4,2,2,4,2,1,2,1,0,1,0]. (3.43)

23

3. THE GENERALISED NEW MERSENNE TRANSFORM

Confirming the results with the built in function of MATLAB produces

conv(x, h) =1[1,2,1,2,4,2,2,4,2,1,2,1,0,1,0]. (3.44)

3.6.2 Cyclic convolution of ONMNT

Following similar steps to derive the NMNT cyclic convolution computation, the

ONMNT cyclic convolution can be calculated as

B N—1N-— 2]{:4_ 1
= < 2 x(n —m)h(m) B < 5 n> >Mp (3.45)
1
< 2 2

hm) S 2(5)3 (2k+15+2k+1m>>
Mp

where s = m —n, and Gp denotes the ONMNT transform. From the § identities in
provided in [7], the 8 (s + 252 m) term in (3.45) can be simplified as

<N§_jlh<m>N_1x<s> [ﬁl) 5 (2570) s oy 5 (- 271 >Mp

m=0 s=0
T Eonfei
+:§j::h<m> o (5 m) J::dsw (-%5%) >Mp-

Applying (3.25) and (3.26) now into (3.46), produces

<Zh ', (Qk;1m>Nz_:x(s)ﬁ (2k2+18)

s=0

i, 2% +1 \ = 2% + 1

+m0h(m)ﬁz< L, sow(sw(— .)>N

N-1 2k+1,, _2kt1,,

_<Zh(m) [5() O)]Xo<k> (3.47)

m=0
+N_1h(m) [B(%;lm)_ﬁ(_%;lm)]XO<N_k_l)>

m=0 2 Mp

o4

3.6 Cyclic Convolution of the GNMNT

where X (k) and Xo(IN — k) are defined by ONMNT variables, as are Ho(k) and
Ho(N — k), which are

N-1
< > a(s)8 <2’“ as 15) > — Xo (k), (3.48)
s= Mp
plesy 2% + 1 >
x(s)B | — s =Xo(—k—-1
< s= () < 2) Mp O() (349)
= Xo (N —k — 1)
and
N-1
<Zh<m>ﬁ<2k2“m)> — Ho (k), (3.50)
m=0 Mp
<th<m>5 (-5) > — Ho(~k~1)
im0 2 My (3.51)
— Ho(N —k—1).
Thus, substituting (3.50) and (3.51) into (3.47) generates
Nl 2kl — 2kt
< S h(m) !B() O)]Xo(k)
m=0
N-1
+ 3 hm) [5 om0 (_%;Im)]Xo (N k1) >
m=0 Mp
_ <Ho (k) + HO2(N “K-D
+Ho(k)_HO(N_k_1>XO(N—k—1)> (3.52)
2 Mp
- <{ [Ho () + Ho (N — k = 1)] Xo (k)
+[Ho (k) — Ho (N —k —1)] Xo (N —k — 1) }2p1>
Mp
— Yo (k).
Splitting Ho (k) into even and odd parts produces
Hgv(k) _ <HO (k> +2HO (_k)>
Mp (3.53)

= (10 09 + o (-2

Mp

95

3. THE GENERALISED NEW MERSENNE TRANSFORM

x(n)—| oNwmnT [Xolk

@ Yolkly] |ONUNT | — > y(n)

hin)—»| oNwnT [Holk) ¥

Figure 3.2: Convolution Process Structure for the ONMNT

and

Hé))d(]{i) _ <HO (k) _2HO (_k)>M

(3.54)
= < [Ho (k) — Ho (—k)] 2p‘1>

Mp

Then applying (3.53) and (3.54) into (3.52) produces the desired equation to
process the cyclic convolution using the ONMNT as

90 [Yee (n)] = Go [z (n) ® h(n)]
= HY (k) X (k) + HZ (k) X (N — k) (3.55)

=Yo (k).
The ® operator in Figure 3.2 is defined as

Yo (k) = Xo(k) © Ho(k)

= Hg' (k) Xo (k) + HE' (k) Xo (N — k).

(3.56)

In Figure 3.2, the ® operator has the same function as it does in Figure 3.1. An
example of a cyclic convolution using the ONMNT given where all of the variables

that were used for the NMNT have the same purpose such that

z(n)=[1,1,1,1,0,0,0,0], (3.57)

h(n) =[0,0,0,1,1,1,1,1]. (3.58)

The resulting ONMNT representations are

Xo(k) =[2309, 5366, 5554, 2448, 5584, 3903, 2196, 3490, ()
3.59

790, 7921, 4485, 7591, 7703, 7387, 4151, 2857),

o6

3.6 Cyclic Convolution of the GNMNT

and

Ho (k) = [4977,770, 6362, 1669, 1920, 1344, 235, 4305,

(3.60)
117, 4068, 8174, 433, 1177, 1497, 1611, 2296].
Applying the circular convolution algorithm produces
Yo(k) = [5515, 2526, 5538, 5146, 4799, 6275, 8100, 146, -
3.61
319, 7307, 357, 7850, 5737, 7453, 2375, 4276],
and applying the inverse ONMNT results in the first 2V — 1 elements as
yCC: [07 07 07 1?2? 37 47 4’ 3’ 2’]"07 07 07 0]' (3'62)
Confirming the results with the built in function of MATLAB produces
conv(x, h) =[0,0,0,1,2,3,4,4,3,2,1,0,0,0,0]. (3.63)

3.6.3 Cyclic convolution of O?’NMNT

The O?NMNT can also be applied to compute the cyclic convolution. As previously

defined in (3.15), the O?NMNT kernel matrix is derived from j [(#H) (2]

and is therefore implemented as

Vor) <NZ_1NZ_1:n(n—m)h(m)5 (%5 (5] >
Mp

(3.64)

where

s=m —n. (3.65)

The O?*NMNT defines Hp: (k) and Hp2 (N — k — 1) by

<:Z:::h(m)6 K?k;u) (2m2+1>} >Mp:H02 (k) (3.66)

o7

3. THE GENERALISED NEW MERSENNE TRANSFORM

and

(Sl), s

= —Hpe (N —k—1).

Applying m, s to the term in (3.64), produces
2k+1 2n+1 2k+1 2m +1 2k+1
A5 () o1 C5) () 5] o
and substituting (3.68) into (3.64) produces
ey 2%+ 1\ (2m+1 2k+1
Yoo (k <Zh z [(5)(5 + 5 3)}>M
p

§ s)B
:<i§h(m)§x({ K%z 1) <2m2+1)} <2I<:+1)
)

a5 () (25)),
— <:Z:)h(m)61 [<2k2+1> <2m2+ 1)]]§$(S)B <2k:2+18>
+:§:;h(m)ﬁ2 [<2k2+1> <2m2+ 1)}]:_le@)g <_2k2+18> >Mp_

To simplify (3.69) according to (3.66), (3.67) and (3.48), then (3.49) yields

Vou (1) = (o2 = Mot =KDy,
+Ho2(k)+H022(N k—)XO(N—k—1)>
Mp (3.70)
<{ [Hps (k) — Ho2 (N — k —1)] Xo (k)
+

[HO2 (k)—‘rHoz (N k‘—l)]XO(N kE—1) }2p 1>
Mp

The function operator ® as shown in Figure 3.3 is defined as

Yoz (k) = Xo (k) © Ho2 (k)
= (HE (k)Xo (k) (3.71)

FHGBRXo (N =k))

o8

3.6 Cyclic Convolution of the GNMNT

x(n) —> ONMNT

@ York)y! oNMNT' > y(n)

hin)—»| o’NwNT [Ho(k) 7

Figure 3.3: Convolution Process Structure for the O?NMNT

where
G2 (k) = ([Hoz (k) + Ho2 (=K)] 2P71), (3.72)
and
HEh(k) = ([Hoz (k) = Hoz (—R)] 2771, . (3.73)

An example of using the O2NMNT to perform a cyclic convolution is shown as

z(n) = [1,0,0,0,0,1,1,0], (3.74)

h(n) = [0,1,0,0,1,0,1, 1]. (3.75)

The resulting O?NMNT representations are

Xo(k) = [3454, 6272, 3545, 18,6333, 3215, 6685, 7957,

1642, 7015, 2802, 1830,4957, 8075, 3354, 6581], 370
and
Hp2(k) = [1973,5938, 6361, 2277, 1222, 606, 3763, 4807, -
7005, 5958, 225, 7841, 2599, 4844, 464, 5500]. 77
Applying the circular convolution algorithm produces
Yoz (k) = [7595,4072, 3529, 543, 963, 3337, 7814, 2753, -

4813, 6359, 3429, 4057, 6479, 7859, 2744, 8088|,

29

3. THE GENERALISED NEW MERSENNE TRANSFORM

and applying the inverse O?NMNT results in the first 2N — 1 elements as

yce =1[0,1,0,0,1,0,2,2,0,1,1,1,2,1,0]. (3.79)

Confirming the results with the built in function of MATLAB produces
conv(x, h) =10,1,0,0,1,0,2,2,0,1,1,1,2,1,0]. (3.80)

Again, the variables x and h are input signal and impulse response accordingly,
which are generated randomly and y_, is the resultant cyclic convolution using the

O2NMNT. The result was verified using the built-in functions of MATLAB.

3.7 Encryption Example using the GNMNT

This section demonstrates the use of the GNMNT transforms as part of an
encryption application. As a demonstration, this is a basic implementation to
show some application techniques and the performance of each transform. There
are no additional rounds and operations that one would usually find in general
encryption schemes. This process can also be considered as a straightforward ECB
implementation, which is the simplest form of encryption and, as previously noted
in Section 2.5.1, is not a recommended technique for general use implementations.
The algorithm will take the plaintext equivalent and transform it to the associate
domain by

Ts=G(t) (3.81)

where ¢ is the plaintext, and Tg is the transformed plaintext using one of the

GNMNT transforms denoted by G. The key is randomly chosen as
K = {0x3e41, Ox1add, 0x273f, 0xf670, 0x39f4, Oxea3e, Oxddcl, 0x99a0} (3.82)

and to test the effect of using an incorrect key, an alternate random key will be

used shown as

K = {0x9ef7, 0x2913, 0x7503, Oxf2cc, 0x0ea8, 0xd934, Oxaabl, 0x2903}. (3.83)

60

3.7 Encryption Example using the GNMNT

The cipher is then created by
Cg = <T9 ® K>Mp (3.84)

and

c=G(Cq)" (3.85)

where G (-)~" denotes the matching inverse GNMNT transform to what was used
in (3.81) and ® denotes point-by-point multiplication. The inverse keys are then
derived by

K1 = (KMp=2)

ap (3.86)

K= <K’MP*2>MP. (3.87)

The unadulterated key from (3.86) is the used to decrypt ¢ to recover r, which

represents the original plaintext ¢ by first deriving Rg as

Rg=(Cg@ K1), (3.88)
and then
r=9(Rg)"’ (3.89)
noting that
r=t. (3.90)

In addition, should we also wish to see the resultant plaintext with the use of a

different key then we compute

Ry = (Cg® f(—1>Mp (3.91)

and then
P=g (1%9)71 . (3.92)

We can then display ¢, ¢, 7 and r, which are the results for each stage. This type
of encryption will be ECB mode, which is the simplest form of encryption where
each block will be independent from all others. This will in due course also serve
to show the inherent weakness of the ECB mode, the use of which is strongly
discouraged. Additionally, each cipher will be produced using a single round and
a single operation, not the several rounds and further operations that are usually

expected from a typical symmetric encryption system.

61

3. THE GENERALISED NEW MERSENNE TRANSFORM

3.7.1 Encryption using the NMNT

Earlier research has been undertaken using the NMNT, where the transform has
been proposed for use as a component within an encryption system [61,110,111,118].
The methodology used in this example is achieved by first considering the
parameters of the transform; N = 8 and p = 17 to derive Mp = 131071. The first
16 pixels to be encrypted are then obtained by

t = {Oxce, 0xd0, 0xd1, Oxcf, Oxd1l, Oxd1, Oxcf, Oxd1,

(3.93)
0xd0, Oxcf, 0xd0, Oxd1, 0xd3, 0xd1, 0xd0, Oxd2}
and concatenating subsequent pairs of bytes so that
t = {Oxced0, Oxdlcf, Oxd1d1, Oxcfdl, OxdOcf, 0xd0d1, Oxd3d1, 0xd0d2}. (3.94)

Applying the NMNT to the vector ¢t we obtain

T = {0x08887, 0x00202, 0x1{7ff, 0x00000, 0x001fe, Ox1fdff, Ox1fbf9, 0x1{801} (3.95)
and subsequently after applying the key from (3.82) in (3.84) we get

Cg = {0x16Ce0, 0xOcebd, 0x00763, 0x00000, 0x17451, 0x18315, 0x1c7bb, 0x030da}.
(3.96)

The resultant cipher ¢ is then produced by applying (3.96) to the inverse NMNT in
(3.85) to obtain

¢ = {0x1665e, 0x02da3, 0x0de24, 0x09f5d, 0x145b5, 0x1c096, 0x0e660, 0x06eb0}. (3.97)

Reverting ¢ to the GNMNT domain Cg allows recovery of the plaintext r, which can
be obtained by using the inverse key (3.86) with Cg in (3.89). Similarly, recovering
the alternate plaintext 7 using the alternate key from (3.83) can be obtained by
applying the inverse of the altered key (3.87) to Cg in (3.91) to respectively produce

Figures 3.5(a)-3.5(d) for the cameraman image.

Rg = {0x02c52, 0x0dcca, 0x06606, 0x00000, 0x149ec, 0x13a3a, 0x12ac2, 0x191e3}
(3.98)

62

3.7 Encryption Example using the GNMNT

(¢c) Incorrect Key (d) Correct Key

Figure 3.4: Encrypted Cameraman using NMNT, N =8 and Mp = 131071
and
= {0x015fe, 0x0edd6, 0x12c0a, 0x19fc0, Oxlabc3, Ox1fbfl, Oxlcd52, Ox0e7a9}. (3.99)

Using the public domain image of the cameraman, the results are shown for the
original image as the plaintext pr, ciphered image cr, the recovered image using
incorrect key 77 and the recovered image using the correct key rp in Figures

3.4(a)-3.4(d) respectively.

63

3. THE GENERALISED NEW MERSENNE TRANSFORM

(¢) Incorrect Key (d) Correct Key

Figure 3.5: Encrypted Cameraman using ONMNT, N = 8 and Mp = 131071

3.7.2 Encryption using the ONMNT

The application of the ONMNT as part of an encryption scenario is a very new
concept. While much has been published with the NMNT on this subject, the
only research to date using the ONMNT can be found in [119]. The results of the

encryption effectiveness can be shown in Figures 3.5(a)-3.5(d).

3.7.3 Encryption using the O?’NMNT

Like the ONMNT, the application of the O?NMNT within the field of encryption is
very recent. However, there is a stronger interest in O?NMNT as characteristics of

this transform appear to show that it is extremely resilient according to [119]. The

64

3.7 Encryption Example using the GNMNT

(¢c) Incorrect Key (d) Correct Key
Figure 3.6: Encrypted Cameraman using O?NMNT, N = 8 and Mp = 131071

results of the process using the O*NMNT are provided in Figures 3.6(a)-3.6(d).

3.7.4 Encryption using the GNMNT

From the initial assessment of the processes covered, it can be seen that all
transforms appear to perform equally. This is shown by depicting an unrecoverable
image upon decrypting using the incorrect key for each transform, which have been
collated in Figures 3.7(a)-3.7(d). However, in order to get a little insight into how
the transforms actually perform, the kernel components must be investigated a

little more deeply.

65

3. THE GENERALISED NEW MERSENNE TRANSFORM

(¢) ONMNT (d) O2NMNT

Figure 3.7: Decrypted Cameraman Error using GNMNT, N = 8 and Mp = 131071

3.8 The GNMNT Kernel Components

The kernel components can be seen as the heart of the transform. These
components are quite easily observed in the GNMNT matrices and as such, can
give an indication as to how these attributes will reinforce or diminish the security
properties of the transform. One of the significant metrics of an encryption
system is how its diffusion characteristics perform. The characteristics that govern
this aspect will be covered in greater detail later in Chapter 6. However, it
would be relevant to describe the observed characteristics of each transform kernel

observation while the kernels have recently been presented.

66

3.8 The GNMNT Kernel Components

100 | I I
. s
90+ O's
s
JTotal

70

60

Trivial Elements in Kernel Formation %
[9]]
o
T
|

40 |§ —
30r 1 n
20 n
10F :
ol J::Jl:l-—-

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Transform Length log 2N

Figure 3.8: Consistency of Trivial Elements in the NMNT Kernel

3.8.1 The NMNT Kernel Components

The NMNT kernel is both orthogonal and symmetric. As such, it is its own inverse
when used with the corresponding scaling factor. One of the characteristics that
was observed with the NMNT was a potential weakness in its diffusion properties,
which when used with encryption, are shown to be very linear. While [110]
and [111] provide an intensive study in this area, the work focused more upon the
changing of the elements rather than the effect upon the bits. As such, a significant
amount of information can be gained through the manipulation of a single bit; this
will be discussed further in Chapter 6. However, one of the biggest attributes to
this observable problem may well be the construction of the matrix itself in that
it contains a significant amount of trivial elements, i.e. one, zero and the field

equivilant of minus one in quantities that can be determined by
#{(Sn,m (1))} = N [logy(N) + 0.5] (3.100)

#{(Sn,m (0))} = N [logy(N) — 2 (3.101)

67

3. THE GENERALISED NEW MERSENNE TRANSFORM

100 '

| I
B s
90+t L l0os
O1s
:'Total
80F -

70

60

50 T

40

301 n

20

Trivial Elements in Kernel Formation %

10f .

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Transform Length log 2N

Figure 3.9: Consistency of Trivial Elements in the ONMNT Kernel

and

#{(Sn,m (=1))} = N [logy(N) - 0.5], (3.102)

where Gy denotes the NMNT kernel matrix and the field equivalent of a minus
one is Mp — 1. Figure 3.8 better illustrates how these elements are dispersed
throughout the kernel.

Elements containing either a one or a minus one can potentially be a means to
attack the system using cribs, particularly where both the first row and column
contain ones, indicating that the first element in the transformed vector is the sum
of the initial vector, modulo the Mersenne prime. However, the greatest threat
appears to be the number of zeros contained within the NMNT kernel. This can be
shown by using the same implementation and process as Section 3.7 but decrypting
using a very slightly modified key to that shown in (3.83), where the final bit in
the final element of the key has changed to reflect

K= {0x3e41, Oxladd, 0x273f, 0xf670, 0x39f4, Oxeade, Oxddcl, 0x99al}. (3.103)

68

3.8 The GNMNT Kernel Components

The result of decrypting the image with the NMNT by using a key that differs by
a single bit is shown in Figure 3.10(b), where it can quite easily be observed that
part of the image has been recovered. However, it can be further observed that
this effect diminishes as the transform length and subsequent key length increases
as show in Figures 3.10(c)-3.10(f), where increasingly longer keys were derived
randomly. The reason why part of the image has been recovered using a key

differing by a single bit will be explained later in this chapter.

3.8.2 The ONMNT Kernel Components

Using the same methods that were used with the NMNT, we can derive the
consistency of trivial elements for the ONMNT. As the IONMNT is a transpose of
the ONMNT, the same formulae will work between both transforms for determining

the number of ones, zeros and minus ones in quantities that can be determined by

#((S0.m (1)} = 2 (3.104)
#{(G0,m(0))} =N (3.105)

and
#{(Gn,m(-1))} = g (3.106)

From Figure 3.11 it can be observed that the ONMNT also suffers from the same
inherent problems as the NMNT where part of the image has been recovered using
a decryption key that differs from the encryption key by a single bit. It can again be
further observed that this effect diminishes as the transform length and subsequent
key length increases as show in Figures 3.11(b)-3.11(f), where increasingly longer

keys were derived randomly. Proof of this will be provided later in this chapter.

3.8.3 The O’NMNTKernel Components

There is a unique aspect with the O2NMNT in that it does not contain any
of the trivial elements whatsoever. As will be analysed later, this suggests that
the O2NMNT would perform very well for security applications as there are no
components in the kernel to copy or invert elements from the input vector to
potentially perform attacks using cribs. More importantly, there are no elements

that nullify the effects of the key during the decryption process, as shown in Figure

69

3. THE GENERALISED NEW MERSENNE TRANSFORM

E.E_EHEE_EHEEE T
L e T
?E%_.ﬁﬂmﬁgwﬁﬂnﬂ

¥ BT T A SR TR S AR TS
u!ﬂﬂﬁﬂnﬂg_ng._uﬁm%ﬁnr

g ik]

o e R B .uﬁuunym..ﬂa.-ﬁ!“a._ﬂ

8

(b) NMNT Bit Error N

Original Image

)

a

(

32

(d) NMNT Bit Error N

16

(¢) NMNT Bit Error N

(f) NMNT Bit Error N = 128

64

(e) NMNT Bit Error N

Decrypted 256 x 256 Cameraman Bit Error using NMNT with

Figure 3.10:

128, Mp = 131071

8,16, 32,64,

N =

70

3.8 The GNMNT Kernel Components

dET e o & o P

(c) ONMNT Bit Error N = 16

(e) ONMNT Bit Error N = 64 (f) ONMNT Bit Error N = 128

Figure 3.11: Decrypted 256 x 256 Cameraman Bit Error using ONMNT with
N =8§,16,32,64,128, Mp = 131071

71

3. THE GENERALISED NEW MERSENNE TRANSFORM

& LA

(e) O2NMNT Bit Error N = 64 (f) O2NMN

1, AT o

T Bit Error N = 128

Figure 3.12: Decrypted 256 x 256 Cameraman Bit Error using O?NMNT with
N =8,16,32,64,128, Mp = 131071

72

3.8 The GNMNT Kernel Components

3.12. The resultant image using the O?NMNT shows significant promise over the
NMNT and ONMNT counterparts, where a similar level of performance appears to

have been reached when using a completely different key in Section 3.7.3.

3.8.4 Proving the Detriments of Zero-Elements within the
GNMNT

The effects of the phenomenon where stripes can be observed are easily described
where earlier claims were made indicating that the zero-elements within the kernel

matrices were the cause.

Proof. 1f we first show the input vector x as

x = [x0,T1,...,TN-1] (3.107)
and the NMNT kernel as
B (nk) Bln(k+1) Bln(k+)] BIn(N—k—1)]
Bln+1)k Bln+1) (k+1)] Bln+1) (k+7) oo Blln+ 1) (N —k—1)]
M = Bl(n+1)k] Bln+1) (k+1)] Bln+1) (k+)] Blln+1i)(N—k—1)]
BIN—-n—-1)kl B[(N-n-1)k+D] BI(N-n-1)(k+5] ... B[(N-—n-1)(N—-k-1)
(3.108)
where
0<i,j<N-1 (3.109)
then by applying
X = <xM>Mp (3.110)

where the transformed vector X is similarly constructed as

X =[Xo, X1,..., Xn_1] (3.111)

the derivation of each element of X as a result from applying the NMNT to = can

73

3. THE GENERALISED NEW MERSENNE TRANSFORM

be shown as

Xo = 208 (nk) + 718 [(n + 1) K]

+ziB(n+i)kl+...+axNy_pn1B[(N —n—1)k]
Xi=wzoBn(k+1)]+x18[(n+1)(k+1)]

+ziBl(n+i) (k+ 1)) +... +any_n1B[(N —n—1) (k+1)]
Xj=zoB[n(k+j)+z18[(n+1)(k+))

+zifln+i)(k+j)]+... .+ annaB[(N—n—1)(k+j)]

Xn-p—1=z0B[n (N —k—1]+z18[(n+1) (N —k—1)]
+ 2B+ (N—k—1)]+... 428 1B[(N—n—1)(N—k—1).
(3.112)

If we define & as a copy of vector x where a single element has been changed shown

as 2, then we obtain a new transformed vector by

X = (&M),,

) (3.113)

and can show that
X; = X; when &; #x; < B[(n+1)(k+3)] =0, (3.114)

where the unaffected resultant vector element(s) correspond to the matrix column(s)

that have a zero at the same row position as the modified key element. O]

Similarly, we can show that this also works with the ONMNT by applying the

matrix transpose, which for the NMNT yields the same matrix kernel.

Proof. Representing the transformed vector X as Y and derive the inverse

y= <N el >Mp (3.115)

noting that
y=u (3.116)

then defining Y as a copy of Y where a single element has been changed shown as

74

3.8 The GNMNT Kernel Components

Y; and transforming the modified vector out of the NMNT domain by
= (L [YM’} (3.117)

we can show that
gj =y; when V; #Y; <= B[(n+1i)(k+j)] =0, (3.118)

where again the unaffected resultant vector element(s) correspond to the matrix

column(s) that have a zero at the same row position as the modified key element. [

This corresponds to the diminishing number of zero-elements in the NMNT
kernel as described in (3.101) illustrated in Figure 3.8 and depicted in Figure
3.10 building upon the alternate key (3.103). This can be further verified when
considering the NMNT kernel that was constructed using the «; and @y values

from Table 3.6

_1 1 1 1 1 1 1 1]

1 512 1 0131070 130559 131070 0

1 1 131070 131070 1 1 131070 131070

- 1 0 131070 512 131070 0 1 130559 (3.119)

1 131070 1 131070 1 131070 1 131070

1 130559 1 0 131070 512 131070 0

1 131070 131070 1 1 131070 131070 1

1 0 131070 130559 131070 0 1 512

and noting that changing the last element of the key will have no bearing on the
resultant operation owing that

N 5N
Miyj:OfOI"L':N—l,jE{ —_—

i } and 8 < N < 2P, (3.120)

Remembering that there are two pixels in each element would further explain the
recovery of the presented parts of the images.

This phenomenon can also be demonstrated with the ONMNT using the same
methods and conditions but replacing (3.119) with the appropriate version of the

kernel for the IONMNT that was constructed using the «; and @3 values from

75

3. THE GENERALISED NEW MERSENNE TRANSFORM

Table 3.7
1 82137 512 82137 1 29287 0 101784
1 82137 0 48934 131070 29287 512 29287
1 29287 130559 29287 1 48934 0 82137
1 101784 0 29287 131070 82137 130559 82137
M= (3.121)
1 48934 512 48934 1 101784 0 29287
1 48934 0 82137 131070 101784 512 101784
1 101784 130559 101784 1 82137 0 48934
1 29287 0 101784 131070 48934 130559 48934
and this time noting that
. . N
Mi,j:()forz:N—l,]:Zand4§N§2p (3.122)

would correspond the shortcomings of Figure 3.11. This again would correspond
to the diminishing number of zero-elements in the ONMNT kernel as described in
(3.105) illustrated in Figure 3.9. Therefore the only way that these anomalies can
be avoided is by applying multiple rounds to the process and shuffling the result of

each round prior to supplying it as an input to the next round.

3.8.5 Demonstration of the Proof

We can provide an overall demonstration using a simple matrix unrelated to the

GNMNTs as follows.

Proof. Using N = 4 we define an arbitrary matrix

(95 70 69 94
68 121 O 44
M = (3.123)
42 113 79 104
_105 0 101 3 |
and vector
z = [52,92,99, 46] (3.124)

76

3.9 Conclusion

so that

X = (zM)
2 (3.125)
— [118,51, 53, 66].

Reusing the vector in (3.124) and changing the last value of the input vector &3 = 3

shown as
& = [52,92,99, 3] (3.126)
results in
X = (@M)
2 (3.127)
= [48,51,21, 64]

so that there is no change in the second value of the output vectors between (3.125)
and (3.127), which can be shown as X; = X;. Similarly, reusing the vector in

(3.124) and changing the second value of the input vector £; = 3 shown as
& = [52,3,99, 46] (3.128)

results in

A~

X = ([52,3,99,46] M)
2 (3.129)
= [35,77, 53, 87]
so that there is no change in the third value of the output vectors between (3.125)

and (3.129), which can be shown as X, = X,. O

3.9 Conclusion

This chapter has introduced the new transforms of the GNMNT and demonstrated
that they are easily adaptable for applications based upon convolution, verifying
their capability and value in signal-processing. Moreover, while the original NMNT
has seen a relevant amount of success and acceptance in the field of security,
the extension of the NMNT to the GNMNT offers new and potentially stronger
transforms for security applications. The preliminary examples of encryption within
this chapter show that the GNMNT, particularly the O?NMNT transforms to have

comparable initial results in this field, which will be later explored in Chapter 6.

77

3. THE GENERALISED NEW MERSENNE TRANSFORM

78

Chapter 4

Fast Algorithms of the GNMNT

4.1 Introduction

Fast algorithms have been a prime focus of research since the inception of the fast
Fourier transform [120], which has initiated myriad pursuits in this area. Naturally,
the quicker such processes can be undertaken, the greater throughputs can be
achieved. Lowering typical power consumption and having a wider applicability
further increases their attractiveness. In this section we will show how the GNMNT
can be derived using fast algorithms like other transforms before it, such as
the original NMNT, fast Fourier transform [120], fast Hartley transform [121],
etc. Firstly, the radix-2 algorithms will be derived, followed by the radix-4 and
split-radix algorithms. A complexity analysis will also be developed and timings

for each algorithm will be included in order to compare and contrast.

4.2 Radix-2 ONMNT

The radix-2 algorithm is the simplest of the fast algorithms to both describe and
derive. It works by splitting an N-length algorithm into two smaller %—length
algorithms. The significance of this approach is quite profound when looking at
metrics based on the Fourier transform, which reduces an O(N?) problem to an
O(N log, N) problem. When N = 1024 then this represents a saving in processing
of over 90%. This process can be repeated log, N times meaning that any length

that is a power of two can use this process.

79

4. FAST ALGORITHMS OF THE GNMNT

4.2.1 Radix-2 DIT

The first of the two radix-2 algorithms is the DIT algorithm. It is derived by

splitting the N-length transform into two smaller %—length transforms representing

even and odd parts. This can easily be visualised when taking into consideration

the methods of indexing, which is X, for even indexing and X,,.; for odd

indexing. This decomposes the ONMNT algorithm

X (k) = <NZ_1;U(n)B <2k2+ 1n>>
Mp

n=0

nto

X (k) = X (k) + X°U (k).

The even and odd components in (4.2) can be further expressed as

-1

XU (k) = < > z(2n+1)8 [Qk; 1 (2n + 1)]>
n=0

Simplifying £ in (4.4) produces

and N
2

ﬁ[Qk—i-l 2k +1 2k+1>

(2n+1)] :5< 5 2n + 5
Using the identity given in [7] where
B(a+0b)=pi(a)B(b)+ B2(a)B(-b)

then (4.5) can be rewritten as

ﬁ<2k2+12n+2k2+1> 5 (%;1)6(%;1%)

+ 8 (2k2+1>ﬁ(—2k2“2n>.

To obtain a general odd form we get

N
51

Xomer (k) = < S 220+ 1)8 (2’“; 12n>>

n=0

Mp

30

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

4.2 Radix-2 ONMNT

X(k) X(k)

X(N/2-k)

X(N/2-k)

X(k+N/2) — N X(k+N/2)

Figure 4.1: Radix-2 1D-ONMNT In-Place DIT Butterfly

and N

S
Xopy1 (N — k) = <

~ a(an 4 1)8 (— %; 12n>> . (4.9)

n=0 Mp

Before combining (4.7) and (4.8) we first need to correct the final term in (4.7),

which because of the periodic properties of the transform, can be expressed as

xod — <61 <2k + 1) Xomet (k) + B <2k + 1) Xome1 (N — k)> | (4.10)

2 2 My

Combining (4.8) and (4.10) produces the first point k as

X (k) = <X2n (k) + By <2k2+1>x2n+1 (k) + B2 <2k2+1>x2n+1 (N—k)> C@11)

Mp

In radix-2 there are four points: k, % —k, k+ % and N — k. Equation (4.11) shows
the point k. Defining subsequent points is a little more involved and requires k
to be replaced with the point position that is currently being derived. Similarly,
it can be easy to get all equations at different point by replacing k. For example

point % —k, % — ks % — k — 1 by definition, then

N
5[2(2_k_1)+12 —B<N_2k_12n> (4.12)
2 2
N
5 2(k+22)+1n —B<N+Zk+12n> (4.13)
and
3 [2(1\[_’“2_ 1)“24 — 3 (m_;k_lzn> (4.14)

According to the 8 in each point derived in (4.12)-(4.14), the following points can

be derived by the respective processes as

81

4. FAST ALGORITHMS OF THE GNMNT

2§ —k—-1)+1

5 -1
X2n+1 (% — k‘) = < Z .%'(271 + 1)6

2n
n=0 2 >Mp
P 2%k + 1 (4.15)
— <Z z(2n+1)p (— 5 2n>>
n=0 Mp
= Xont1 (N — k)
i 2(k+%)+1
X2n+1(k+g):<z z(2n +1)8 + n >
§:—01 - 4.16
:<Zx(2n+1)ﬁ<2k2+12n>> (4.16)
n=0 Mp
= Xon+1 (k)
and
N _
2] 2(N—k—1)+1
X2n+1 (N — k) = .%'(271 + 1),3 |: 5 n]
n=0 Mp
37! 2%k + 1 (4.17)
= <Z z(2n + 1) (— 5 2n>>
n=0 Mp
= Xons1 (N — k).
The point (% — k:) is derived as
X -8) = (X - 4 3y -)
Mp
N 2(¥—k—-1)+1
= < z(2n)p (7 -) + 2n
n:]% 2
27! N _p_
+ > a(2n+1)8 2(3 kQ 1)+1(2n+1) >
n=0 Mp
N .
—<X2n(2—/€)+51 2(3 k:2 b+1 Xont1 (5 — k) (4.18)

2
= <X2n (N —k)— B <2k+ 1) Xont1 (N — k)
2k +1
52(5 >X2n+1 (k’)>Mp

82

4.2 Radix-2 ONMNT

Similarly, in addition to equations (4.11) and (4.18) the rest of the points will be

derived respectively as

2k+1
2

X(k+) = <X2n (k) - B, () Xons1 (F)

B <2k2+1>X2n+1 (N—k)> Y
Mp
and
X(N—k)= <X2n (N —k)+ B (2’“;1> Xons1 (N — k)
3 (2/<: 2+ 1) Xoni1 (k)> -
Mp

The radix-2 ONMNT DIT butterfly is shown in Figure 4.1.

4.2.2 Radix-2 DIF

The radix-2 DIF algorithm is the complement of the DIT. With the NMNT, the
DIT transform also serves to calculate the forward and inverse transforms, as
does the DIF. However, with the ONMNT the transform effectively transposes
the kernel, which essentially rules out the ability to use the same transformation
technique for the inverse. As such, the inverse ONMNT must therefore rely
upon the DIF algorithm. It too breaks the N-length transform into two smaller
%—length transforms but this time representing left and right sequences. This is so
represented by the indexing, which is x(n) for the left part and x(n + %) for the
right part.

The DIF starts with a variation of equation (4.1)

N—-1
X (k) = <Z 2(n)B (2”; 1/<;>> (4.21)
Mp

n=0

and is split into left and right components where

X (k) = X'/t (2k) 4+ XT9M 2k + 1), (4.22)

83

4. FAST ALGORITHMS OF THE GNMNT

which expands to

X(k):<22x(n)ﬁ(2n+l) NZ (2"+1k>> (4.23)

n=0 _

2 Mp

noting that where we previously used (2’“2—+1n) in DIT, we swap n and k to obtain
15} (2”—;1/@) as the direct algorithm produces a transposed kernel, so we need to
invert the transpose during the inverse procedure through the DIF. We can now

begin to use a common sequence where

N N

21 71 N
2n + 1 N 2(n+3)+1
n=0 n=0 Mp
The next step is to solve the last term of 3 so
2 M +1
B Mk =3 <N+2n+1k> (4.25)
2 2
and subsequently
5(N+22"+1k>=5<]\;k+2”;1k>. (4.26)

Applying the identity from [7], equation (4.26) can be written as

5 <Nk:>5<2n2+1) 5 (Nk>ﬁ<_2n2+1k) @)

By combining (4.24) and (4.27) we then get

X(k:):<]2vz§[(n)+51<A;k>x(n+]2v)+52<]V2k)x(N—n)]5<2”2+1k>> .
n= Mp

(4.28)

Assessing (5 in

(4.28) it is clear to see that due to the periodicity of % and that for
all Nk then (&) =

= 0. The final term cancels out leaving

N
Yo

X (k) = <n0 [:U(n) + B (ﬁ’“) . <n+ Zﬂ 8 <2"2+ 1k>>Mp. (4.29)

Substituting 2k and 2k + 1 into (4.29) and replacing k,

xen= (X [ron e (59) o e)] o (B2)) o

Mp

84

4.3 Radix-4 ONMNT

X(k) X(k)

X(N/2-k) X(N/2-k)

Figure 4.2: Radix-2 1D-ONMNT In-Place DIF Butterfly

where (%) = 1 producing

X (2k) = <1§§—:1 [w(n) o (n + Z)] 3 (2"; 12k>> (4.31)

n=0 Mp
and
N1
e (5 froren [(12 o []
n=0 Mp
(4.32)
Using the identities in [7] equation (4.32) results in
1
X (2k+ 1) = <Z {x(n) iy <n+ ‘Z)] 8 <2“2+ Lok + 2”; 1)> (4.33)
n=0 Mp

and finally produces

X1 <J2VZ {61 (2n2+1> [x(n)—x<n+]§>]

n=0

The radix-2 ONMNT DIF butterfly is shown in Figure 4.2.

4.3 Radix-4 ONMNT

The main idea of radix-4 is to split the transform into four discrete parts and
process them at the same time. These attributes provide additional improvements
in terms of complexity and subsequently speed. However, the downside is that
only lengths that are derived as a power of four may be used. Therefore sequence

lengths of 8, 32, 128, 512, etc. cannot be processed using this method.

85

4. FAST ALGORITHMS OF THE GNMNT

4.3.1 Radix-4 DIT

According to the radix-2 ONMNT, equation (4.1) can be decomposed into

N_

X (k) = < 2219@(271)5 <2k2+ 12n> >Mp

n=0 (4.35)
= Xon (k)
and N
X (k) = <§:§x(2n+1)5 [2’“2“ (2n+1)]>Mp. (4.36)

Thus, when 2n turns into 4n and 4n + 2, 2n + 1 turns into 4n + 1 and 4n + 3, then
we have the requisite points to derive a radix-4 ONMNT. Again, noting that Xs,

is even indexing and Xy, is odd indexing, then

g 41
Xon (k) = <Z x(4n)p <2k; 14n> + Z z(dn +2)B [2k2+ ! (4n + 2)]> . (4.37)
n=0 n=0 Mp
Decomposing the final 5 term in (4.37) produces
3 {2’” ! (4n—|—2)} — B0 (2k+1) + (2k + 1)) (4.38)

and further decomposition produces

2k+1 2k+1
B2n (2k +1) 4 (2k 4+ 1)] :51(2k+1)5(; 4n> +B:(2k+1)8 (- ; 4n> .
(4.39)
Applying (4.39) into (4.37) then produces the even part

X1
Xon (k) = <Z z(4n)p <2k2+ 14n>
n=0
2k + 1 -
+ b1 (2+ 2>

+52(2k2+12> Zm(4n+2)ﬁ (—2k;14n>> .
Mp

n=0

NP3

2(4n +2)3 (2’“ - 14n) (4.40)

3
Il
o

NP3
_

In order to simplify (4.40) we define

N
N1

Xun (k) = < > w(4n)B <2kz+ 14n) > (4.41)

n=0

36

4.3 Radix-4 ONMNT

and
N_q

Xan (N — k) = <4§: x(4n)pB <—2k2+ 14n>> . (4.42)
Mp

n=0

Applying (4.41) and (4.42) to (4.40) now produces

2k+1 2k +1

2

Xon (k‘) = Xyun (k)-i—,@l (X 2) Xinto (k)-f-ﬁg (X 2> Xynt2 (N —]{?) . (4.43)

The odd part is denoted as

N_q

x°4 (k) :< S a(an +1)8 [2’“ Ly 1)]

2
n=0

(4.44)

N
N

+ 3 a(4n+3)B [2]‘7; ! (4n + 3)} >

n=0

Mp

Simplifying both terms in (4.44), produces

5[2k2+1(4n+1)] :ﬂ<2k+14n+2k+1>

2 2
_61<2k2+1>6<2k2+14n) (4.45)

\ By <2k2+1>5(_2k2+14n>

2k +1 2k +1 2k +1
B[; (4n+3)]:,8< ;4n—|— 2+ ><3>

s <2k2+1 x3>6<2k2+14n> (4.46)

+52<2k+1 Xg)ﬁ<_2k2+14n>_

and

2

Applying equations (4.45) and (4.46) into (4.44) produces

X (k) = <51 <2k2+ 1> z(4n +1)p (Qk; 14n>

(4.47)

4. FAST ALGORITHMS OF THE GNMNT

Similar to (4.41), define

N_1

n=0 Mp
and
b1
Xunys (k) = < > a(dn+3)B (2’“ ;L 14n> > (4.49)
n=0 Mp

then by applying (4.48) and (4.49) into (4.47) we get the odd part

X% (k) =<51 <2k2+ 1) Xany1 (k) + B2 <2k2+ 1) Xans1 (N — k)

+ 5 <2k2+1 x 3> Xinss (k) + Ba <2k2+1 x 3) Xinss (N—k:)>

Mp
(4.50)
The equation of ONMNT radix-4 at point & is
X (k) = X (k) + X° (k) (4.51)

and in the decomposed form becomes

X (k) = <X4n)40 (258 % 2) Kansa)+ 62 (2

+51 <2k+ 1> Xan+1 (k) + B2 <2k+ 1) Xin+1 (N — k)

X 2> X4n+2 (N — k‘)

2 2

8 (2’“2*1 ‘ 3) Xanrs (k) + B (%Q“ ‘ 3> Xinss <N—k>>

Mp
(4.52)

In radix-4 there are eight points: k, % —k, k+ %, % —k, k+ %, % —k, k+ % and

N — k. Equations (4.51) and (4.52) show the point k.

Similarly, it can be easy to get all equations at different point by replacing k.
For example point % —k, % -k % — k — 1 by definition, then

_N N,
X (K) 5 Xan (5 =) = <42: z(4n)B [2 G-k-n+1

2

> . (4.53)
Mp

n=0

38

4.3 Radix-4 ONMNT
X(k) X(k)
X(N/4-K) \/\ / X(N/4-K)
X(k+N/4) (20)= - —><= - - V/ X(k+N/4)
v

X(N/2-K) o= === — - - (20)=————— == V‘%‘%‘V X(N/2-K)

X(k+N/2) (o) - Q‘Q X(k+N/2)
X(3N/4-K) o ===~ — - ()~ _ ~N\- > X(3N/4-k)
X(k+3N/4) v@ “7 ——— =\~ X(k+3N/4)

X(N-k) o= === ===) N/] X(N-k)

Figure 4.3: Radix-4 1D-ONMNT In-Place DIT Butterfly

Decomposing the 5 term in (4.53) produces

ﬁ[2(ﬁ{-k—1)+14

n
2 2 (4.54)
:B(—%;lzln)
We can identify the following S identities:
N __
61[2(4 k2 1)+1X2]:_51<2k2+1><2> (455)
2(X—k—-1)+1] 2k + 1
B2 5 X 2 :ﬁ2< 5 ><2> (4.56)
(N]
B 2(3 5)1 :ﬁ2<2k2+1> (4.57)
S]
B 2(3 5)+ —ﬁ1<2k2+1> (4.58)
N __
61[2(4 k2 1)+1X3]__52<2k2+1><3> (459)
and N
52[2(4—k2—1)+1><3]:_51<2k2+1x3> (460)

Substituting the identities (4.55)-(4.60) into (4.52) will derive the point % — k. The

2k+1
2

rest of the points can be shown as follows, where we substitute with 6 for ease of

89

4. FAST ALGORITHMS OF THE GNMNT

reference _)) i
X (k) A+ By + By + Bs
X4 -k) A+ By + By — B
X(k‘+%) A—B;—B1+Bs
XYk A-B,+ B +B;
(F-8)_ o (4.61)
X(k+3) A+ B;— B — Bs
X(3N — k) A+By— Bi+ B
X (k+ 3 A—By+ B —Bs
X (N — k) A-B,—-B - B;
where
A= Xy (k) (4.62)
A=Xun(§ - k) (4.63)
By = ([81 (0m) Xanm (k) + B2 (0m) X (§ = %)]) 3, (4.64)
and
By = ([B2 (0m) Xantm (k) = B1 (0m) Xanrm (§ —F)] >Mp (4.65)

for m € {1,2,3}. The radix-4 ONMNT DIT butterfly is shown in Figure 4.3.

4.3.2 Radix-4 DIF

Using the variation of the original algorithm shown in (4.21), the whole sequence is

evenly divided into sequences that are of length % as

X (k) = <Jzz_:lx(n)ﬁ (2”; 1k:> +]sz_lm(n)ﬂ <2”2+ 1k>

_N
n=s

Adjusting the range in (4.66) we then obtain

§ .
xS o (20w (ne) oL 250
n=0
2N 3N
b (e 220 PO (g 2 |2, }> |
Mp

(4.67)

90

4.3 Radix-4 ONMNT

v KK
WIIANNNS=SZ6:
7 NSRS
V/ARRNVAZANN
AR VAN

Figure 4.4: Radix-4 In-Place DIT Flow Diagram, N = 16

91

4. FAST ALGORITHMS OF THE GNMNT

and can be simplified as
N

X (k) = <§_: [x(n)ﬁ (2”2+1k;> b g <n+JZ>B (2n2+1k+11k)

n=0

N 2n+1 N 3N 2n+1 3N
p

(4.68)

The (3 terms in (4.68) can decomposed as
2n+1 N N 2n+1 N 2n+1
3 (Skt 2k> - (2k> 3 (. k) + B (2k> 8 (— . k) (4.69)
noting that the 35 term in (4.69) will always equate to zero, we further obtain
2n+1 N N 2n+1 N 2n+1
3 (—k+ 4k)) (4k> 3 < > k:) + By <4k:> 3 (— > k:> (4.70)
and
2n+1 3N 3N 2n+1 3N 2n+1
3 (F 1 04) i (04) 5 (B00) 4 (204) o (2500).

Substituting (4.69)-(4.71) into (4.68) produces
4
X (k) = <Z

2 z(n) + B (];fk> T <n + g)
+ B <]Zk> x (n + JZ) + B2 <]Zk) x (Z - n) (4.72)
+ B <3flvk;> . <n+ ?’f) b <3flvk> x(N—n)]B <2”2+ 1k:>>Mp.

In radix-4, after reducing the length to %, we have even parts: 4k, 4k + 2 and odd

N 1

parts: 4k + 1 and 4k + 3 . In terms of the even parts, we get the following identities
similar to (4.55)-(4.60), by first substituting 4k into (4.72) replacing k:

8 (]2V4k> _1 (4.73)
B, (JZM@) —1 (4.74)
B (]Zzug) —0 (4.75)

92

4.3 Radix-4 ONMNT

and 4k + 2 into (4.72) replacing k:

A [‘2] (4k + 2)] =1 (4.76)

b H (4k + 2)} =-1 (4.77)
and

B2 []Z (4k + 2)] = 0. (4.78)

Putting equations (4.73)-(4.75) back into (4.72) we get

&
X (4k) = <Z

o va (e)

n=0 (479)
+ (n+ JZ) +x (n—k?)flv)lﬁ <2n2+14k)>M
P
and also replacing equations (4.76)-(4.78) we get
&
X (4k+2) = <Z x(n) + <n+2>
n=0
—x (n—f—JZ) —x <n+3jlv)]/3 <2n2+14k+ 2n2—|—1 X 2>>M
P
N_q
\ 2n + 1 N
:<nz:;]{ﬁl< 5 ><2> [x(n)+a:<n+2> (4.80)

o (2 02) o (Y) e (2)

In terms of the odd parts, we get the following identities similar to (4.73)-(4.78),
by first substituting 4k + 1 again into (4.72) replacing k:

B Bf (4k + 1)} =1 (4.81)
b []Z (4k + 1)] =0 (4.82)
B2 []Z (4k + 1)] =1 (4.83)

93

4. FAST ALGORITHMS OF THE GNMNT

X(k) \ /v X(k)
X(N/4-k) X(N/4-k)

X(k+N/4) ‘ ——————— 26)s X(k+N/4)
X(N/2-k) VAV RN (26)» X(N/2-k)

X(k+N/2) 8)e X(k+N/2)

X(k+3N/4) &~ —#f —— - X(k+3N/4)

X(NK)Lmmm e = T 2 X(N-k)

Figure 4.5: Radix-4 1D-ONMNT In-Place DIF Butterfly

and finally 4k 4 3 into (4.72) replacing k:

B [];[(4k + 3)} =1 (4.84)
S []Z (4k + 3)] =0 (4.85)
B2 [351\7 (4k + 3)] =1 (4.86)

94

4.3 Radix-4 ONMNT

Putting equations (4.81)-(4.83) back into (4.72) we get

|
<XMk+1%:<§:{x@ﬁﬂmg%luk+n}

2(n—|—%)—|—1

+x<n—|—jz>ﬁ (4k+1)
N
t+u n+N> 2m+5§+1@k+n

2(n+) +1
2

(4k +1)

..

(4.87)

D)),

and replacing (4.84)-(4.86) into (4.72) we get

N_q

<XMk+3y—<§:{x@ﬁ{mg%luk+$}

n=0

+x<n+JZ>B

2(n+%)+1
2

(4k + 3)

2(n+%)+1

(4k + 3)

(4.88)

95

4. FAST ALGORITHMS OF THE GNMNT

The equations of the radix-4 ONMNT DIF can be shown as a condensed representation,

similar to equations (4.61)-(4.65) but this time substituting 24 with ¢ for ease of
reference .)))))
X (4k) A+ B C+D
X (4k + 1) A-B C-D
=pi(gm) | _| +B2(om) | _ _ (4.89)
X (4k + 2) A+C D-B
| X (4k +3) | |A-C]| D+ B
where
N
A=xz(n)+zx n—|—2> (4.90)
A=z(n)—x n—|—];[> (4.91)
B:x<n+N>+x<n+3N> (4.92)
4 4
B:a:(n—i-]Z)—a;(n—i-BiV) (4.93)
N 3N
_ N 3N
C—m<4—n)—x<4—n) (4.95)
D=x Z—n)—i—x(l\f—n) (4.96)
D=x <J;[) —n). (4.97)
and m is derived from X (4k +m) for m € {0,1,2,3}. The radix-4 ONMNT DIF

butterfly is shown in Figure 4.5.

4.4 Split-Radix ONMNT

The split-radix, which is sometimes referred to as radix-2/4, combines the versatility
of the radix-2 with the efficiency of the radix-4 and manages to further reduce
the number of operations in the process. It accomplishes this by using L shaped
butterflies, which are based on radix-4 that interlock against each other until two
points remain. These L shaped butterflies can have either a single twiddle stage or
a dual twiddle stage, which are denoted in Figure 4.6. When there is no further
room to implement an L-butterfly, which typically encompasses two sub-stages

of butterflies and a sub-stage for the twiddle, a radix-2 butterfly is then used.

96

4.4 Split-Radix ONMNT

Split-Radix

Radix-2 Butterfly L1 Butterfly

s

Split-Radix
L2 Butterfly

Figure 4.6: Split-Radix DIT Structure

This section will show how combining algorithms from the radix-2 and radix-4

implementations can derive the split-radix DIT and DIF algorithms.

4.4.1 Split-Radix DIT

The split-radix combines radix-2 and radix-4, specifically the even part of radix-2

and the odd parts of radix-4. Therefore we decompose the initial ONMNT

algorithm in (4.1) into

X (k) = X (k) + X° (k)

2n> >Mp (4.99)

where N

and

97

(4.98)

(4.100)

Qn) >Mp (4.101)

4. FAST ALGORITHMS OF THE GNMNT

X(k)

X(N/4-k) \ /
X(k+N/4) \ /
X(N/2-k) X(N/2-k)

X(k+N/2) (o) “ — > X(k+N/2)
X(3N/4-k)»>§; - — N\ X(3N/4-k)

X(k+3N/4) — N X(k+3N/4)

X(N-K) = += - -) X(N-k)

Figure 4.7: Split-Radix 1D-ONMNT In-Place DIT Butterfly

point Xy, 41(k) as

Xyn+1 (k) = < z(dn+1)8 (Qk;— 14n> > (4.102)
n=0 Mp
and point Xy, 3(k) as
N
S 2k +1
Xan+s (k) = x(4n + 3)8 (5 4n> (4.103)
n=0 Mp

we can then apply (4.101) into (4.99) and (4.102)-(4.103) into (4.100) to produce

the recursive equation

X (k) = <X2n)+ 81 (Z5) X (04 82 (252 X ()
6 (2’“; L 3) Kinys (k) + B (2’“; L 3) Kines <k>>
Mp
(4.104)

98

4.4 Split-Radix ONMNT

Equations for all points of the split-radix ONMNT DIT butterfly can now be

derived from

A+B1+B3

X (k)

X(§ k) A+ By — Bs

X(k+7¥)| |A-Bi+Bs

N -
X(z=k) | _ | A+ Bt By (4.105)

X(k+ %) A— B — Bs

X -1 |[A-Bi+T

X(k+2F)| |A+Bi-Bs

X (N — k) A-B - B

where

A= Xo (k) (4.106)
A= Xon(§ k) (4.107)
By = ([B1 (6m) Xapam (k) + B2 (0m) Xansm (§ = 5)]) 0y, (4.108)
B = ([(9m) X (k) = B2 (0m) Xansm (5 = F)]) 1y, (4.109)

and m € {1,3}. The split-radix ONMNT DIT butterfly is shown in Figure 4.7.

4.4.2 Split-Radix DIF

Similar to the DIT split-radix, we initially start from (4.1) and subsequently derive
X (k) = X"t (k) + XTi9ht (k) (4.110)

where X'/t (k) is the left part. More specifically it comes from the radix-2 ONMNT
DIF. Additionally, X" (k) contains the right parts of the radix-4 ONMNT DIF.
Thus, the left sequence that is first shown in (4.31) as

N_1

X (2k) = <2Z [x(n) +a <n+ g)] 8 (2”; 12k>> (4.111)

Mp

99

4. FAST ALGORITHMS OF THE GNMNT

X(k)+ X(k)

X(N/4-k) X(N/4-k)
X(k+N/4)\\// X(k+N/4)
XX/

X(N/2-k)

X(N/2-k)

X(k+N/2)

X(k+N/2) & -

X(3N/4-k) £ - X(3N/4-k)

X(k+3N/4) &£ - X(k+3N/4)

X(NK)Lmm N s 2 X(N-k)

Figure 4.8: Split-Radix 1D-ONMNT In-Place DIF Butterfly

Similarly, the right parts of the radix-4 ONMNT DIF (4.87) and (4.88) as

()

and

2
(V) (W _n>] .
1 B <2”2+1 ><3> [x <]2V—n> —2(N—n)
(e §) o () fo ()

The split-radix ONMNT DIF butterfly is shown in Figure 4.8.

100

4.5 Complexity Analysis

e

XK

N\ /
e

£/ RRRKAXN

L/,

NN

AN

J//ARNN\N

J/ERNN

/ \,

16

Figure 4.9: Split-Radix In-Place DIF Flow Diagram, N

101

4. FAST ALGORITHMS OF THE GNMNT

4.5 Complexity Analysis

Using the direct methods, similar to the discrete Fourier transform, the complexity
is represented as N? multiplications and N(N — 1) additions. This is typical of
multiplying a vector with a matrix. Applying the fast algorithm techniques that
were proposed by [120] can have a significant impact in reducing this complexity.
Using the fast algorithms significantly reduces this computation complexity as
shown in Table 4.1. However, focusing on implementations where it is common for
CPUs to take longer performing multiplication in comparison to additions, so the
number of multiplications will be doubled to reflect this in respect of [122] as a
typical example. Therefore, in order to integrate this adjustment and normalise the
complexity, an adjust factor of A = 2 will be applied to derive the complexities of
multiplication and fused-multiply-add operations with respect to complexity. The

complexity for the radix-2 ONMNT can be shown to be

M(N) = N (logg N — 1) A (4.114)

and

3 N
A(N) = INlogy N + 5, (4.115)

taking note that the first round of twiddle calculations can be reduced to trivial

additions and this has therefore been reflected in the calculation of the number

Table 4.1: ONMNT Radix-2 Complexity

Radix-2 Direct Improvement %
N Mults ‘ Adds ‘ Total Mults ‘ Adds ‘ Total || Mults ‘ Adds ‘ Total
4 8 14 22 32 12 44 || 75.00 | -16.67 | 50.00
32 40 72 128 56 184 || 75.00 | 28.57 | 60.87
16 96 104 200 512 240 752 || 81.25 | 56.67 | 73.40
32 256 256 512 2048 992 3040 || 87.50 | 74.19 | 83.16
64 640 608 1248 8192 4032 12224 || 92.19 | 84.92 | 89.79
128 1536 1408 2944 32768 16256 49024 || 95.31 | 91.34 | 93.99
256 3584 3200 6784 131072 65280 196352 || 97.27 | 95.10 | 96.54
512 8192 7168 15360 524288 261632 785920 || 98.44 | 97.26 | 98.05
1024 18432 15872 34304 2097152 1047552 3144704 | 99.12 | 98.48 | 98.91
2048 40960 34816 75776 8388608 4192256 12580864 || 99.51 | 99.17 | 99.40
4096 90112 75776 165888 33554432 16773120 50327552 | 99.73 | 99.55 | 99.67
8192 || 196608 | 163840 360448 134217728 67100672 201318400 || 99.85 | 99.76 | 99.82
16384 || 425984 | 352256 778240 536870912 268419072 805289984 || 99.92 | 99.87 | 99.90
32768 || 917504 | 753664 | 1671168 2147483648 | 1073709056 3221192704 || 99.96 | 99.93 | 99.95
65536 || 1966080 | 1605632 | 3571712 8589934592 | 4294901760 | 12884836352 || 99.98 | 99.96 | 99.97
131072 || 4194304 | 3407872 | 7602176 || 34359738368 | 17179738112 | 51539476480 || 99.99 | 99.98 | 99.99
262144 || 8912896 | 7208960 | 16121856 || 137438953472 | 68719214592 | 206158168064 || 99.99 | 99.99 | 99.99

102

4.5 Complexity Analysis

Table 4.2: ONMNT Radix-4 Complexity

Radix-4 Radix-2 Improvement %
N Mults ‘ Adds ‘ Total Mults ‘ Adds ‘ Total || Mults ‘ Adds ‘ Total
4 8 10 18 8 14 22 0.00 | 28.57 | 18.18
16 80 84 164 96 104 200 | 16.67 | 19.23 | 18.00
64 512 512 1024 640 608 1248 || 20.00 | 15.79 | 17.95
256 2816 2752 5568 3584 3200 6784 || 21.43 | 14.00 | 17.92

1024 14336 13824 28160 18432 15872 34304 || 22.22 | 12.90 | 17.91
4096 69632 66560 136192 90112 75776 165888 || 22.73 | 12.16 | 17.90
16384 | 327680 | 311296 638976 | 425984 | 352256 778240 | 23.08 | 11.63 | 17.89
65536 || 1507328 | 1425408 | 2932736 || 1966080 | 1605632 | 3571712 || 23.33 | 11.22 | 17.89
262144 || 6815744 | 6422528 | 13238272 || 8912896 | 7208960 | 16121856 || 23.53 | 10.91 | 17.89

of multiplications and additions respectively in (4.114) and (4.115). The radix-4
ONMNT improves upon this complexity by significantly reducing the number of
operations through halving the number of stages. However, this requires a further
sub-stage to be calculated for each stage, which results in N more additions taking
place. Depending on how this sub-stage is handled, a further re-ordering may be
required so as typically there will be % signal lines that will be derived out of place,
which can be clearly seen in Figure 4.3. The complexity of the radix-4 transform

can be shown to be

M(N) = g (3log, N —1)| A (4.116)
and
N
A(N) = 7 (11logy N — 1), (4.117)
Table 4.3: ONMNT Split-Radix Complexity
Split-Radix Radix-4 Improvement % Radix-2 Improvement %
N Mults Adds Total Mults Adds Total || Mults | Adds | Total Mults Adds Total | Mults | Adds | Total
4 8 10 18 8 10 18 0.00 | 0.00 | 0.00 8 14 22 0.00 | 28.57 | 18.18
8 24 30 54 32 40 72 | 25.00 | 25.00 | 25.00
16 72 82 154 80 84 164 || 10.00 | 2.38| 6.10 96 104 200 | 25.00 | 21.15 | 23.00
32 184 206 390 256 256 512 || 28.13 | 19.53 | 23.83
64 456 498 954 512 512 1024 || 10.94 | 2.73| 6.84 640 608 1248 || 28.75 | 18.09 | 23.56
128 1080 1166 2246 1536 1408 2944 || 29.69 | 17.19 | 23.71
256 2504 2674 5178 2816 2752 5568 || 11.08 | 2.83 | 7.00 3584 3200 6784 || 30.13 | 16.44 | 23.67
512 5688 6030 11718 8192 7168 15360 || 30.57 | 15.88 | 23.71
1024 12744 13426 26170 14336 13824 28160 | 11.10 | 2.88 | 7.07 18432 15872 34304 || 30.86 | 15.41 | 23.71
2048 28216 29582 57798 40960 34816 75776 | 31.11 | 15.03 | 23.73
4096 61896 64626 126522 69632 66560 136192 || 11.11| 291 | 7.10 90112 75776 165888 || 31.31 | 14.71 | 23.73
8192 134712 | 140174 274886 196608 | 163840 360448 || 31.48 | 14.44 | 23.74
16384 291272 | 302194 593466 327680 | 311296 638976 || 11.11| 2.92| 7.12 425984 | 352256 778240 | 31.62 | 14.21 | 23.74
32768 626232 | 648078 | 1274310 917504 | 753664 | 1671168 | 31.75 | 14.01 | 23.75
65536 || 1339848 | 1383538 | 2723386 | 1507328 | 1425408 | 2932736 || 11.11 | 2.94 | 7.14 || 1966080 | 1605632 | 3571712 | 31.85 | 13.83 | 23.75
131072 || 2854456 | 2941838 | 5796294 4194304 | 3407872 | 7602176 | 31.94 | 13.68 | 23.75
262144 || 6058440 | 6233202 | 12291642 | 6815744 | 6422528 | 13238272 || 11.11 | 2.95| 7.15 || 8912896 | 7208960 | 16121856 || 32.03 | 13.54 | 23.76

103

4. FAST ALGORITHMS OF THE GNMNT

Table 4.4: ONMNT Fused-Split-Radix Complexity

Fused-Split-Radix Split-Radix Improvement %

N Mults Adds FMAs Total Mults Adds Total || Mults | Adds | FMAs | Total
4 4 8 4 16 8 10 18 || 50.00 | 20.00 | -22.22 | 11.11

8 12 24 12 48 24 30 54 || 50.00 | 20.00 | -22.22 | 11.11
16 36 64 36 136 72 82 154 || 50.00 | 21.95 | -23.38 | 11.69
32 92 160 92 344 184 206 390 || 50.00 | 22.33 | -23.59 | 11.79
64 228 384 228 840 456 498 954 || 50.00 | 22.89 | -23.90 | 11.95
128 540 896 540 1976 1080 1166 2246 || 50.00 | 23.16 | -24.04 | 12.02
256 1252 2048 1252 4552 2504 2674 5178 || 50.00 | 23.41 | -24.18 | 12.09
512 2844 4608 2844 10296 5688 6030 11718 || 50.00 | 23.58 | -24.27 | 12.14

1024 6372 10240 6372 22984 12744 13426 26170 || 50.00 | 23.73 | -24.35 | 12.17
2048 14108 22528 14108 50744 28216 29582 57798 || 50.00 | 23.85 | -24.41 | 12.20
4096 30948 49152 30948 111048 61896 64626 126522 || 50.00 | 23.94 | -24.46 | 12.23
8192 67356 | 106496 67356 241208 || 134712 | 140174 274886 || 50.00 | 24.03 | -24.50 | 12.25
16384 | 145636 | 229376 | 145636 520648 || 291272 | 302194 593466 || 50.00 | 24.10 | -24.54 | 12.27
32768 || 313116 | 491520 | 313116 | 1117752 | 626232 | 648078 | 1274310 | 50.00 | 24.16 | -24.57 | 12.29
65536 || 669924 | 1048576 | 669924 | 2388424 | 1339848 | 1383538 | 2723386 || 50.00 | 24.21 | -24.60 | 12.30
131072 || 1427228 | 2228224 | 1427228 | 5082680 || 2854456 | 2941838 | 5796294 || 50.00 | 24.26 | -24.62 | 12.31
262144 || 3029220 | 4718592 | 3029220 | 10777032 || 6058440 | 6233202 | 12291642 | 50.00 | 24.30 | -24.64 | 12.32

representing multiplication and addition respectively, with representations of these
complexities shown for different lengths of N in Table 4.2. Using the radix-4
significantly improves upon the radix-2. However, there is a penalty for this in that
the radix-4 algorithm can only process lengths that are themselves a power of four.
This may well mean that these bounds are too big to adequately and efficiently
process a radix-4 length. Representing the final derivation of a fast ONMNT
implementation, the complexity for the split-radix ONMNT can be shown to be

2 4 4
M(N) = §Nlog2N—§N+§(—1)1092N A (4.118)

and while the number of additions can be expressed as

4 2 2
A(N) = 3Nlogy N = oN + §(—1)1092N. (4.119)

At the cost of a little inconvenience in processing the split-radix, we gain both
an improvement in the processing complexity and the ability to process all vector
lengths that are available to radix-2 as shown in Table 4.3. Typically, a critical
evaluation of complexity analysis in current architectures usually shows that there
is an emphasis in contrasting algorithms between the multiplication and addition
operations, rather than considering the total number of operations and how they
can be grouped and implemented. With current architectures, a multiplication

operation can be typically processed in the same time as it takes to perform an

104

4.5 Complexity Analysis

18 T T T T T T T T T
—*— Radix-2
Radix—4
—+— Split-Radix
—o— Fused-Split—-Radix

14

Total Number of Operations

5 6 7
Vector Length: IogZN

Figure 4.10: Complexity of Different Radices by Total Operations

addition operation [123]. Also, operators are now available that can combine
three operands into a fused multiplication and accumulate (FMA), a process first
introduced in [124]. Such operators have been implemented in many architectures
including [123], [125] and [126] for example, which can be carried out at regular
addition speeds within the constraints of the word size [123]. Using these types of
architectures, it would therefore be possible to combine half of the multiplicative
operations of the ONMNT with an equal number of addition operations using
fused multiply and accumulate operators. This would significantly reduce the total
number of operations that are required by half of the number of multiplications.
By implementing on appropriate architecture, the number of operations would be
reflected to those shown in Table 4.4. A modified complexity calculation can

therefore be shown to be

1 2 2

F(N) = L})Nlog2 N - SN+ 9(—1)’092]@ A, (4.120)
1 2 2

M(N) = [3N10g2 N-5N+ 9(—1)1092N} A (4.121)

105

4. FAST ALGORITHMS OF THE GNMNT

2.5 T T T T T
—>— Radix-2
Radix-4
—+— Split-Radix
2 -
m
o
c
3
o 151
L
[}
=
|_
()]
=
@ 1r
[}
(8]
e
o
0.5
0% ¥ ¥ ‘
10 12 14 16 18 20 22
Vector Length: IogzN
Figure 4.11: Processing Time for Vectors of Length 2
and

A(N) = Nlog, N, (4.122)

representing the FMA operations and discrete multiply and addition operations

respectively. The total number of operations is calculated by

2\ + 3 AN 4N
_ AT NlogQN—jN—F—(—l)log?N.

T(N) -

(4.123)

The improvement in reducing processing complexity that this process can provide
is shown in Figure 4.10. This is further demonstrated by observing and example of

a typical implementation in Listing A.6.

Listing 4.1: Typical Implementation

unsigned int t00, t11, t10, tO01, inO, inl, outO, outil;

unsigned int B1[N], B2[N];

t00 = in0 * Bil[thetal];
t11 = inl * Bil[thetal;
t10 = inl * B2[thetal;

106

4.5 Complexity Analysis

180 T T T T T
—»— Radix-2
160 Radix-4 /]
—+— Split-Radix
140 s

120

100

80

Processing Time (seconds)

60

40-

2 0 | | | | |
10 12 14 16 18 20 22

Vector Length: IogzN

Figure 4.12: Time to Process ~ 10'° bits Using Vectors of Length 2

t01 = in0 * B2[thetal;

outO t00 + t10;

outl t1l - t01;

By removing half of the multiplications and the equivalent number of additions to
implement the FMA commands, we can see that not only has the complexity been

reduced but also the number of operations as shown in Listing 4.2.

Listing 4.2: Fused-Multiply-Accumulate Implementation

unsigned int tO, t1, inO, inl, outO, outl;
unsigned int B1([N], iB[N], B2[N];

t0 = in0 * Bl[thetal;

t1 = inl * iB1[thetal;

fma(inl, B2[thetal, t0);

outO

outl fma(in0, B2[theta], t1);

In this updated variation, there remains the requirement to provide the requisite

subtraction operation. However, this minor issue can be overcome by implementing

107

4. FAST ALGORITHMS OF THE GNMNT

twos-complement negation equivalent table for 8; (shown in 4.2 as iB1[theta]) and
would reduce the processing time from six-cycles to four-cycles per butterfly for a
33.3% processing improvement, at a cost of introducing an additional table of size
log, N. At worst, performing the extra subtraction to the variable t1 in order to
save memory may be preferable, in which case this processing time is only reduced

to five-cycles, which would improve the processing time by only 16.7%.

4.5.1 Higher Radices of the GNMNT

While there are clearly tangible benefits in terms of reduced complexity to be
obtained in developing the radix-4 and split-radix-2/4, this comes at a cost
of implementation complexity, which becomes progressively more difficult with
successive increases of the radices. Moreover, increasing the radix also restricts the
flexibility of the transform as it constrains the available lengths of the transform
to multiples of N = r® where r is the selected radix and s is the exponent used
to configure the length, which is shown more clearly in Table 4.5. To incorporate
higher radices with lengths that aren’t directly supported by these radices as
shown in Table 4.5 would require that the implementation consist of a split-radix
scheme. However, this would impede the implementation with respect to structural

complexity, which can also have a negative impact on resource constrained devices

Table 4.5: Available Lengths N = r®* According to Radix

r
2 4 8 16

2 - - -

3 - - -

4 16 16 - -

5 32 - - -

6 64 64 64 -

s 7 128 - - -
8 256 | 256 - 256

9 012 - 512 -

10 || 1024 | 1024 - -

11 || 2048 - - -
12 || 4096 | 4096 | 4096 | 4096

108

4.6 Performance Analysis of the One-Dimensional Derivations

where program and memory sizes are primary concerns. What is unintuitive
with Table 4.5 is that some lengths are unavailable owing to the butterfly for the
particular radix consisting of 2r points, therefore suggesting that the minimum

implementation size would be 7% and not .

4.6 Performance Analysis of the One-Dimensional
Derivations

A significant factor governing implementation should be taken into consideration
by using languages such as OpenCL [127] and other architectures incorporating
features such as advanced vector extensions (AVX) [126], where it is possible
to combine similar operations across multiple signal lines within vector variables
simultaneously. These types of techniques are encompassed by single-instruction
multiple-data (SIMD) described in [128], which debuted in Intels processer with
multimedia extensions (MMX) [129]. An example how this would benefit a butterfly

implementation using OpenCL is shown in Listing 4.3.

Listing 4.3: Vectorised Fused-Multiply-Accumulate Implementation

unsigned int2 tO, in, out;
unsigned int B1[N], iB[N], B2[N];
t = (unsigned int2) (in.0 * Bi[theta], in.1 * iB1[theta]);

out = fma(in.10, (unsigned int2) (B2[thetal), t);

This new method would further reduce the processing time to only two cycles
when using the additional negated (3; table or three-cycles if incorporating the
extra subtraction, resulting in a overall performance improvements of 66.7% and
50% respectively. Such methodologies imply natural parallelism where a small
number of operations can be unrolled out of loops into vectors. However, there
are limits imposed upon such practices with respect to the maximum allowable
size of the vector and the optimum size before the hardware incurs penalties. The
latter imposition is a reflection to how the architecture is addressing memory. For
example, the AMD 7970 is able to manipulate up to 16 elements and can access
128 bits of memory using a single variable without incurring any performance
penalties. These constraints reflect configurations of 16 x 8-bit chars, 8 x 16-bit

shorts, 4 x 32-bit integers / single precision floats or 2 x 64-bit long integers

109

4. FAST ALGORITHMS OF THE GNMNT

/ double precision floats without any performance penalties. Further constraints
would be imposed if one or more data words are accessed that cross a 128-bit
boundary, which would likely to be similar to an unaligned memory access. Aside
from these constraints, it would be possible to process, depending on the word size
being used, a number of operations simultaneously in the time it would normally
take to process a single operation, thereby increasing the processing performance
even further. This would obviously require additional implementation planning as
where a loop would be designed to process N lines within a stage, the loop could
N N N N

o5 1y g Or evenl |«

potentially be reduced by depending on the capabilities and
versatilities of the architecture and implementation respectively. The next step in
enhancing the performance is naturally to employ parallel processing techniques on
parallel capable devices. With respect to the current development of CPUs, there
is already scope at least to incorporate multiple processing cores. Going further
would utilise available streams within a CPU that are dedicated to the onboard
GPU. Increasing performance even more would either suggest using more CPUs,
which can be costly and require specialised hardware to incorporate multiple CPUs
on the same board, or to use other options such as discrete GPUs or CPU cards.
Using additional discrete hardware can by far be the most versatile solution and
sometimes the cheapest. While a CPU card, such as the many integrated core
(MIC) architecture offered by Intel [130] offer the greatest versatility, but the
highest cost. A cheaper alternative would be to use a GPU that is applicable for
GPGPU computing.

There are many benefits with following the GPGPU route in that there are
usually a significantly greater number of cores available with GPGPU computing
typically than MIC solutions. Respectively, this currently represents a ratio of
36:1 with respect to available stream processors / cores. Additionally, the GPUs
are significantly cheaper than MICs. However, GPGPUs are more specialised
and require a significant amount of application development to fully realise their
potential, whereas MICs, being more general purpose, are typically more adaptable.

Of course, should one go fully down the parallel route, it may turn out that the
fastest method to implement by far would be the direct method, as depending on
the size of N and the constraints of the architecture, so all of the multiplications

would occur simultaneously. Subsequently, there would be log, N reduction stages

that would add all of the appropriate results. This would suggest a significant

110

4.7 Conclusion

improvement over a sequence involving 2log, N — 1 radix-2 or 3log, N radix-4 /
split-radix total sub-stages. In addition to this, there would be a delay of at least
two successive operations in each twiddle sub-stage; one to perform the initial
multiplication of either 5, or fs, followed by combining the result with a fused
multiply accumulate of the composite signal path. However, in order to perform
a vector by matrix multiplication simultaneously in parallel, the involvement of

operating with twiddles would be completely removed.

4.7 Conclusion

This chapter has introduced complete developments of the radix-2, radix-4 and
split-radix algorithms for the ONMNT, in both DIT and DIF. The importance in
developing fast and efficient implementations is to ensure that economical, fast and
versatile methods exist such that applications for real-time systems are tenable.
These implementations have been assessed according to the number of mathematical
operations that they require and tested to confirm the successive improvements in
execution time. Additionally, methods using new architectures have been included
to signify the impact that the architectures have in the future development of
new algorithms. While no direct comparisons in terms of speed by incorporating
these new architectures have been made, they have been implemented in a parallel
processing capacity, which was used to provide the exhaustive assessments in

Chapter 6.

111

4. FAST ALGORITHMS OF THE GNMNT

112

Chapter 5

The Row-Column GNMNT

5.1 Introduction

In the previous chapters, the 1D GNMNT has been presented and shown that it
can be calculated either as a fast algorithm or by the direct method. However,
there are also a number of areas where 2D processing is relevant, particularly in
image- and signal-processing applications where there are many areas that thrive
on such techniques and also on cryptography [104,131-134]. As such, there are
many algorithms to facilitate the wealth of applications including the 2D-Fourier
Transform, 2D-Wavelet Transform and the 2D-Hartley Transform, to name but
few [135-137].

This chapter introduces the 2D-GNMNT using the row-column (RC) method,
including the extra calculations that are required in order to use the RC technique,
which is a non-separable algorithm used to attain a true 2D-algorithm. The RC
method of processing an N x N area can be seen as one of the most convenient
methods of using a single-dimensional algorithm to provide the functionality of a
two-dimensional algorithm. The RC achieves this by first transforming the desired
matrix row-by-row and then transforming the resultant rows in a column-by-column
fashion. However, the RC algorithm on its own will not provide the desired results
when using the GNMNT because the [term is not separable when used in this
manner and therefore the RC method must be further processed. The initial
two-dimensional algorithm is shown for each of the GNMNTSs, beginning with the
NMNT for an introductory point of reference, where steps to derive the forward and

inverse 2D transforms; also included are the steps required to enable the transforms

113

5. THE ROW-COLUMN GNMNT

to be separable are provided.

5.2 RC-NMNT

The standard algorithm for the 2D-NMNT is

1 N-1

kl,kg <Z Z Tll,nz nlkl,ngk2)> for k’l,kg :0,1,2,...,N—1. (51)
n1=0mn92=0 Mp

However, as the 8 term in the 2D-NMNT is non-separable due to its characteristic,

then it can be shown that processing the NMNT using the RC method actually

yields the following algorithm

1 N—1
Xpe(ky, ko) = <Z > x(n1,n2)8 nlkl)ﬂ(n2k2)> for k1, ky =0,1,2,...,N — L.
n1=0mn9=0 Mp
(5.2)
This is obviously a different algorithm because it is clear that
B (nik1,naks) # B (n1k1) B (n2kz) . (5.3)

Therefore, in order to achieve the separable version of the NMNT an additional step
is required, which was first described in [138]. This step is achieved by breaking
down the § (niky, noks) term to

B (nik1,noks) = (B (niki, noka) + B2 (n1ki, naks)) py, - (5.4)

where we can further derive 8; and [, by their definitions as

ﬁl (nlkrl, ngkig) = <Re (041 +ja2)n1k1+n2k2> (5.5)
Mp

and

52 (nlk:l, ngk‘g) = <Im (Otl + ja2)n1k1+n2k2> . (56)
Mp

Equations (5.5) and (5.6) can be further processed by expanding the exponential

term as

B1 (nik1, noks) = <Re [(041 + jaz)™F (o +j042)n2k2} >Mp (5.7)

and

Ba (niki, noks) = <Im [(041 + jaz)™ (ay +j042)n2k2} >Mp- (5.8)

114

5.2 RC-NMNT

Simplifying the 51 term in (5.7) produces

51 (nlkl,ngkg) = Re< [Re (Oq —i—jag)nlkl +jIm (Oq —i—jag)nlkl]

X [Re (a1 + jaz)"* + jIm (o +ja2)n2k2} >M
p

Re<51 (n1k1) B1 (n2k2) + jB1 (niky) B (ko)

+ jB1 (n2ka) B2 (nik1) — B2 (n1ky) B2 (naks) >Mp

= 01 (n1k1 + noka)

and similarly

B2 (ni1ki,noks) = Ba (nik1 + noks) .

Substituting (5.9) and (5.10) into (5.4) produces

B (niki,noks) = <ﬁ1 (n1k1 + naks) + B2 (n1k1 + noks) >Mp

= [(n1k1 + noka)
= <ﬁ1 (n1k1) B (na2ka) + B2 (n1k1) B (—naks) >

Mp

because

B1 (niky) = <5 (n1k1) — Ba (n1k1) >M

p

and

B1(=niky) = p1 (n1ky)
= <5 (=n1k1) + B2 (n1k1) >M

p

Combining (5.12) and (5.13) produces

261 (n1ky) = <5 (nik1) + B (—n2k2) >

Mp
thus
1
B (niky) = <2 [ﬂ (nik1) + B (—”2k2)] >
Mp
and
1
B2 (n1k1) = <2 [5 (nik1) — B (—”2k2)] >
Mp

115

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

5. THE ROW-COLUMN GNMNT

Substituting (5.15) and (5.16) into (5.11) produces

B (niki,noks) = <51 (n1k1) B (noka) + B2 (nik1) B (—na2ks) >

Mp

— <; [6 (n1k1) + 8 (—nlkl)}ﬁ (n2ks)

+ g[8 k) - ﬂ(—nlkl)}6<—n2k2>> (517)

Mp

= <{5 (n1k1) B (n2kz) + B (—nik1) B (n2ks)
+ B (n1k1) B (—noka) — B (—n1ky) B (—noks) } 2p—1>

Mp'

Applying Xge (K1, k2) to (5.1) produces the full separable 2D transform for the
NMNT and can therefore be written as

N-1 N-1
X (k1, ko) = <) (na,ng {{ (n1k1) B (ngka) + B (—nik1) B (n2ks)

n1=0mn2=0

(5.18)
+ B (nik1) B (—nak2) — B (—nik1) B (—n2kz) } 2p_1}>
Mp
and further simplified as
X (K1, k2) :< [XRC (k1,k2) + Xgo (—Fk1, k2)
(5.19)

+ Xgo (k1, —k2) — Xge (—k1, —k2)] 2p71>Mp'

A demonstration of how this is presented is shown in Figure 5.1, which started by
reducing the cameraman image to an 8 x 8 array and using the RC technique to
transform the data to a 2D-NMNT, using N = 8, p = 13 and Mp = 8191. The data

is shown as it progresses through the various stages of the process, both forwards

and backwards.

116

5.2 RC-NMNT

150 158 166 172 171 161 154 146
166 182 172 89 152 178 166 154

169 128 38 60 106 163 163 149

. 165 48 7 21 91 166 162 150
Original Data 150 57 8 71 122 154 163 146
104 14 20 99 122 98 120 108

125 29 38 109 134 116 119 117

120 58 74 128 125 125 119 114

7529 2694 481 4482 193 7035 485 2675

7002 1040 469 6771 4793 7249 6809 1345

V 115 7364 43 2416 8142 965 8146 5741

843 6700 7642 4925 7343 3853 2856 994

RC-NMNT 295 2738 83 2628 8078 5555 63 5445
1625 850 7890 7230 3514 5915 926 1396

657 4701 8012 175 45 2912 8076 8114

349 4362 8144 7137 688 1067 5419 3910

7529 2694 481 4482 193 7035 485 2675

vV 7002 5514 906 1854 4793 3975 6372 5062

115 4846 8158 322 8142 3059 31 68

2D-NMNT via 843 3574 540 951 7343 7827 1767 4120
Separable Algorithm | 295 2738 83 2628 8078 5555 63 5445
1625 3976 6801 3013 3514 1941 2015 6461

657 7219 8088 2269 45 818 8000 5596

349 8079 7707 3863 688 4341 5856 193

150 158 166 172 171 161 154 146

166 140 4242 135 152 132 4287 196

v 169 4190 60 108 106 115 141 4278

165 52 4130 94 91 93 4230 146

Inverse RC-NMNT 150 57 8 71 122 154 163 146
104 10 4088 26 122 171 4243 112

125 4158 16 61 134 164 141 4179

120 100 4195 82 125 171 4189 72

150 158 166 172 171 161l 154 146

V 166 182 172 89 152 178 166 154
169 128 38 60 106 163 163 149

Original Data via 165 48 7 21 91 166 162 150
Separable Algorithm 150 57 8 71 122 154 163 146
104 14 20 99 122 98 120 108

125 29 38 109 134 116 119 117
120 58 74 128 125 125 119 114

Figure 5.1: Example of 2D-NMNT using Row-Column Method

117

5. THE ROW-COLUMN GNMNT

5.3 RC-ONMNT

The 2D-ONMNT is similar to the 2D-NMNT; however to obtain the full
2D-ONMNT using the RC method, there are two distinct procedures that

must be derived for the forward and inverse transforms. The forward transform

uses 3 (21tln,, 2E2tly,) shown as

N—1 N-—1
2k +1 2ko + 1
X (k1, ko) = <Z Z$n17n2 < 12 ni, 22 n2>>
n1=0n2=0 Mp (520)
for kl,k‘g = 0,1,2,...,N— 1.

As the negative instances of k were replaced with N — k in the NMNT, they
must now be replaced by N — k — 1 for the ONMNT otherwise negating k£ would

otherwise produce

520V - k 1] — 2%k +1
[]BEQZ;M 21<;+>1)
:5(ok > (5.21)

This detail is necessary when using negative k in the fractional part of the index so

that correct index is maintained by

5 2(N—k—1)+1n] :ﬁ(2N—2k—2+1n>
2 2
_ 5 <2Nn N —2k — 1n)
2 2
(5.22)
_ﬁ<—2k—1n)
N 2
:ﬂ<—2k2+1n>
The RC definition for the 2D-ONMNT is
N—1 N-1
2k1 +1 2ko + 1
Xpe(k, k) = <Z > w(ni,ng)B (12 nl)ﬁ(22 n2>>
n1=0n2=0 Mp (523)

for k1,ke =0,1,2,...,. N —1

118

5.3 RC-ONMNT

and the full separable equation that was shown in (5.18) now becomes

1 N-1
X (s, k) = <Z S o () [(2k1+1 >5<2k22+1n2>

n1=0mn2=0

1+1 2k2 +1 (5:24)
R,
_ 3 <_2k12+ 1n1) 3 <_2k‘22+ 1n2) :|2p—1> ‘
Mp

In order to obtain 3 (—%THnl) from (%Tﬂnl), changing the indices that contain

—ki to —k; — 1 is necessary, this is shown as

3 <2k1 + 1n1> b=N—la-1, g [2 (N =k —1)+ 1n1}

2 2

_ 8 <2N — zkl — 1n1) (5.25)

o <_2k:12+ 1n1)

and can be represented by using Xgzc so that

X (k1,k2) = <[XRC (k1,k2) + Xro (k1 — 1, k2)
(5.26)
+ Xpe (ky, ks — 1) — Xpo (—k1 — 1, ks — 1)]2p1>

Mp

The IONMNT begins by first applying ﬁ(%kl,%k@) to the original
2D-ONMNT formula and using X to indentify that the IONMNT transform
is currently selected. The standard equation for the IONMNT then becomes

N—-1 N-1
2n1 +1 2no +1
(klakQ <N 2 Z Z X n17n2 (12 k1> 22 k2>>
n1=0mn2=0 Mp (527)
for]{?1, kg = 0, 1, 2, ceey N -1
where the RC method is defined as
N—-1 N-1
— _ 2n1 +1 2no +1
XRc(k‘l,kQ) = <N 2 Z Z l’(nl,ng)ﬁ (12]i'l) B < 22 k‘2>>
n1=0n2=0 Mp (528)

for kl,]ﬁz = 0, 1,2, ...,N — 1.

119

5. THE ROW-COLUMN GNMNT

As previously shown from (5.17), it is obvious that g (%kl, 2”22—“14:2) is applied

to (5.11) so that

2n1 +1 2ng +1
»3< 12 k1, 22 k2>=

2
+% p <2n12+ 1k1> s <_2n12—|— 1k1)]
x 3 <—2"22+ 1k2> > (5.29)
Mp
_< p <2n12+ 1k1> 5 <2n22+ 1k2>
s <_2n12+1k1> 5 <2n22+ 1k2>
5 (2n12+ 1k1> 5 (_ 2n22+ 1k2>

(-*; :
s <2n1 +1k1) 5 (_2n2+1k2) (5.30)
(

However, as k; and ks are not part of the fractional part then (5.30) can further be

simplified to

X (k1, ko) = < [YRC (k1,k2) + X re (—k1, ko)
(5.31)

+ X ge (k1, —k2) — Xre (—k1, —k2)] 2p_1>
Mp

However, as the ONMNT kernel is not a symmetrical transform, it must

120

5.3 RC-ONMNT

therefore rely upon the transpose of itself to obtain the inverse. Pre-processing is
required for the 2D-ONMNT transform using the RC method.
According to the identity in 2D-ONMNT, the basic formula for forward

transform is

1

N—1 N—1
2k1 +1 2ky + 1
X (ki, ko) = <Z Z x(ni,ng) (12 ni, 22 n2)>
n1=0mn2=0 Mp (532)

for k1,ke =0,1,2,...,. N —1

(k1, ko) can be deemed as different positions throughout a matrix, thus, when

k1 = 0, which represents the first column, then (5.32) can be written as

N—-1 N-1
2ko +1
Ok'Q <Z anl,ng < 22+ n2)>
Mp

n1=0mn9=0

(5.33)
for ky = 0,1,2,..., N — 1.

Similarly, when ko = 0, which represents the first row, then (5.32) can be written

as

(5.34)
for k1 = 0,1,2,..., N — 1.

As shown in (5.32) and (5.34), both X(0, k2) and X (k;,0) have identical values
by changing k; and k;. However at position (1,1) and (N — 1, N — 1) produce

transposed numbers in terms of the kernel matrix shown as

N-1 N-1 3 3
<Z anl,m (71172 2)>
M

n1=0mn2=0

) (5.35)

When calculating position (N — 1, N — 1), the actual position in the ONMNT is
(N—1—1,N —1—1) due to its identity, so that

N-1N-1 3 3
X(N-1,N-1) <Z anl,ng <—2n1,—2n2>>
M

n1=0n2=0

. (5.36)

Comparing (5.35) and (5.36), the value in S terms at the position X(1,1) and

121

5. THE ROW-COLUMN GNMNT

Original Data

v
RC-ONMNT

V

2D-ONMNT via
Separable Algorithm

\Y
Inverse RC-ONMNT

V

Original Data via
Separable Algorithm

150 158 166 172 171 161 154 146
166 182 172 89 152 178 166 154
169 128 38 60 106 163 163 149
165 48 7 21 91 166 162 150
150 57 8 71 122 154 163 146
104 14 20 99 122 98 120 108
125 29 38 109 134 116 119 117
120 58 74 128 125 125 119 114
7007 1805 2072 3936 4963 2994 1827 6656
3083 7303 4667 7806 7961 5437 7293 5493
16 8154 7274 8006 1676 2376 7053 4374
5980 4263 5467 6222 5775 5108 5847 2357
1841 443 5708 5652 4654 4843 3343 5705
212 1685 5711 2169 5286 7518 1545 3260
684 6826 2325 4880 7511 6602 2886 5155
75 1872 2054 1200 4334 7489 4254 1930
150 158 166 172 171 lel 154 146
166 140 4242 135 152 132 4287 196
169 4190 60 108 106 115 141 4278
165 52 4130 94 91 93 4230 146
150 57 8 71 122 154 163 146
104 10 4088 26 122 171 4243 112
125 4158 16 61 134 164 141 4179
120 100 4195 82 125 171 4189 72
150 158 166 172 171 161 154 146
166 182 172 89 152 178 166 154
169 128 38 60 106 163 163 149
165 48 7 21 91 166 162 150
150 57 8 71 122 154 163 146
104 14 20 99 122 98 120 108
125 29 38 109 134 116 119 117
120 58 74 128 125 125 119 114
150 158 166 172 171 161 154 146
166 182 172 89 152 178 166 154
169 128 38 60 106 163 163 149
165 48 7 21 91 166 162 150
150 57 8 71 122 154 163 146
104 14 20 99 122 98 120 108
125 29 38 109 134 116 119 117
120 58 74 128 125 125 119 114

Figure 5.2: Example of 2D-ONMNT using Row-Column Method

122

5.4 RC-O’NMNT

position X (N — 1, N — 1) is negated. Moreover, these positions can be represented
as the positions X (ki, ko) and X (N — ki, N — ky), when k; or ko are not zero values.
Thus, the pre-process step is to flip over and negate the input matrix, apart from
first row and first column. A demonstration of how this is presented is shown in
Figure 5.2, which started by reducing the cameraman image to an 8 X 8 array
and using the RC technique to transform the data to a 2D-ONMNT, using N = 8,
p =13 and Mp = 8191. The data is shown as it progresses through the various

stages of the process, both forwards and backwards.

5.4 RC-O’NMNT

As discussed in the previous chapter, the GNMNT consists of the NMNT, ONMNT
and the O?NMNT. Therefore, the 2D-O?NMNT using the RC method will be
derived in this section. The O?NMNT has a symmetrical and orthogonal kernel
matrix, which has been described in Chapter 3, and therefore the basic equation
of forward 2D-O2NMNT and inverse 2D-O?NMNT are the same other than the

scaling factor, shown as

N—-1 N-1
2 1)(2 1 2 1) (2 1
X (k1, ko) = < E x(ny,ng) [1t)4(m),(b2t)4(n2 ¥)]>

n1=0n2=0 Mp (5.37)

for kl,kQ = O, 1,2, ...,N -1

and
N-1 N-1
2k +1) (201 +1) (ks +1) (200 + 1
X (K1, ko) :<N 22 anl,m [(1)4(n1)7(2)4(N9)}>
n1=0n2=0 At
for k1,ke =0,1,2,..,N —1
(5.38)
respectively. The RC definition for the 2D-O?NMNT is
N-1 N—1
(2k; + 1) (2n; + 1 %y +1) (209 + 1
Xrco(k, ko) = <Z Z 2(n1,m2) [1)4(ny)] 5 [(9)4(no)]>
n1=0n2=0 Vi

for k1,ke =0,1,2,..., N — 1.
(5.39)

123

5. THE ROW-COLUMN GNMNT

Original Data

V
RC-O’NMNT

v

2D-O°NMNT via
Separable Algorithm

v
Inverse RC-O°NMNT

v

Original Data via
Separable Algorithm

150 158 166 172 171 lel 154 146
166 182 172 89 152 178 166 154
169 128 38 60 106 163 163 149
165 48 7 21 91 166 162 150
150 57 8 71 122 154 163 146
104 14 20 99 122 98 120 108
125 29 38 109 134 116 119 117
120 58 74 128 125 125 119 114
6369 2526 6957 6406 6828 1123 7131 7442
7046 4108 6223 7810 1877 2225 3747 3642
4915 7986 3956 279 4174 1463 5526 1254
3810 5103 %3 4742 5036 6544 4623 3575
4341 1657 6535 5159 4162 2913 1531 6198
2250 4247 6319 2299 2699 260 3158 2601
6009 4214 7901 8104 5408 8034 4751 499
5832 6204 1261 1761 7147 3917 7787 2977
142 4037 2712 3924 1119 5368 5620 5478
8099 3659 62 2096 7591 195 4196 2589
2909 3205 5739 6122 6522 7871 2116 3260
2764 4926 1019 1292 295 5588 4800 4621
5387 1834 5579 418 712 3869 1354 5152
4256 837 4536 4647 351 2043 6568 595
4956 4663 5871 5627 7885 1873 4302 1552
3868 4693 5506 4243 4665 7863 1107 4941
151 4221 138 173 170 189 4282 145
164 129 136 108 133 214 219 156
157 4188 4157 4167 4190 4235 4294 161
4255 52 4109 4126 4177 4255 158 4251
4251 53 4097 4157 4227 4256 167 4236
116 4145 4092 4183 4229 4217 4180 96
127 82 74 90 153 80 66 115
119 4186 102 127 126 97 4182 115
150 158 166 172 171 lel 154 146
NS 182 172 89 152 178 166 154
169 128 38 60 106 163 163 149
165 48 7 21 91 166 162 150
150 57 8 71 122 154 163 146
104 14 20 99 122 98 120 108
125 29 38 109 134 116 119 117
120 58 74 128 125 125 119 114

Figure 5.3: Example of 2D-O?2NMNT using Row-Column Method

124

5.5 Complexity Analysis

(2k1+1)(2n1+1) (2k2+1)(2n2+1)
4) 4

Following the same procedure in (5.29), 6[] can be

calculated as

4 ’ 4
_5 [(2/€1 +1)(2n1 4+ 1) n (2k2 + 1) (2ng + 1)}

(2k1 +1) (2n1 +1) (2kz +1) (2n2 + 1)
d |

_ < [5 [(Qk:l —:11)4(2711 n 1)} 5 [(2k24+ 1)4(2n2 + 1)}
Lal- k] 5 [(21@ + 1)4(2712 + 1)]
48 [(2k1 + 1)4(2n1 + 1)] 5 [(2ko + 1)4(2n2 + 1)]

C (2 4 1) (200 £ 1) (2ks + 1) (202 + 1)
B 1 1 1 :|ﬁ|:_ 2 1 2 :|

(2k1 + 1) (2711 + 1)

(5.40)

2P—1> .
Mp

Finally, applying (5.41) to (5.37) and combing with X rc produces

X (ki k2) =([Xnc (ko) + X (k1 =1, k2) >
4 Xre (i, —ks — 1) = Xpe (—k1 — 1, —ky — 1)}2p—1>Mp. 41
A demonstration of how this is presented is shown in Figure 5.3, which started
by reducing the cameraman image to an 8 x 8 array and using the RC technique
to transform the data to a 2D-O?NMNT, using N = 8, p = 13 and Mp = 8191.

The data is shown as it progresses through the various stages of the process, both

forwards and backwards.

5.5 Complexity Analysis

Calculating the complexity of using the RC method and subsequent separable
algorithm to obtain the 2D-GNMNT can easily be achieved by applying a series of
modifications to the complexities of the 1D counterparts provided in Section 4.5.
By noting that the RC method will in fact invoke a 1D method 2N times for each

of the N rows and then N columns, we can respectively obtain
Mprc(N) = 2N?% (logy N — 1) A (5.42)

and

Arc(N) = 3N?logy N 4 N2 (5.43)

125

5. THE ROW-COLUMN GNMNT

for the radix-2 implementation;
Mpc(N) = [N? (3logy N — 1)] A (5.44)

and
2

Agrc(N) = N7 (11logy N — 1) (5.45)

for the radix-4 implementation;

4
Mpc(N) = gN2 logy N — SNQ + SN(—l)logzN A (5.46)

and
Apc(N) = gz\ﬂ logy N — gNZ + gN(—1)1°gzN. (5.47)

for the split-radix implementation. The results using A = 2 to normalise the
multiplications against the additions can be observed in Figure 5.4. In Section
4.5, the notion of using more up to date instructions that combine more than one
operator was introduced using the FMA command. Applying this technique for the
RC method using the split-radix algorithm produces

Fro(N) = Ez\ﬂ logy N — gj\ﬂ + gN(—1)1°g2 N] A, (5.48)
2 4 4
Mpe(N) = [3N2 logy N — §N2 + §N(—1)log2 N] A (5.49)
and
Apc(N) = 2N?log, N, (5.50)
to produce a total operational count of
Tro(N) = 4A; 6 n2 logy N — %NQ + %N(—l)bg?N. (5.51)

To complete the process of taking the results from the RC algorithm to the 2D
algorithm requires the application of the separable algorithm. This stage has
a significant impact, as shown in Figure 5.5, owing that the multiplication and
three additions that are required for each point. Therefore, applying a further

modification of N? multiplications and 3N? additions to (5.42) and (5.43) produces

Mg(N) =2N*(logy N — 1) A (5.52)

126

5.5 Complexity Analysis

x 10
14 T T T T T T T T T
—— Radix-2
12| Radix—4 |

—+— Split-Radix
—6— Fused-Split—-Radix

2

5 101

[<

]

o

O 8r

©

O

o

E 6

S

Z

It

o L

e 4

2 -
0® & & & & & —
2 3 4 5 6 7 8

Vector Length: IogZN

Figure 5.4: Complexity of Different Radices for Row-Column by Total Operations

and

Ag(N) =9N*logy N 4 3N*

for the radix-2 implementation; to (5.44) and (5.45) produces
Mg(N) = [N*(3log, N — 1)] A

and

N4
As(N) = 20 (11log N — 1),

for the radix-4 implementation and finally to (5.46) and (5.47) produces

4 8 8
Mg(N) = §N4 log, N — §N4 + §N3(_1)logzN A

and

4 4
Ag(N) =8N%logy N — gN4 + gN3(—1)1°g2N

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

for the split-radix implementation of the separable algorithm. As the separable

algorithm consists of three additions then a multiplication, applying this adjustment

127

5. THE ROW-COLUMN GNMNT

16

x 10
45 T T T T T T T T T
—— Radix-2
ab Radix-4
—+— Split-Radix
—6— Fused-Split-Radix
3.5F
0
c
Q
g 3
)
o
O 25}
o
3
E 2l
S
Z
< 15
o
|_
1 -
0.5
0% & & & & & & &
2 3 4 5 6 7 8 9

Vector Length: IogZN

Figure 5.5: Complexity of Different Radices for Row-Column with Separable
Algorithm by Total Operations

to the FMA version in (5.48)-(5.51) is limited to the multiplications and additions
without offloading operations to the FMA operator. Therefore, adjusting (5.49)

with an additional N2 multiplications produces

2 4 4
Mg(N) = gN4 log, N — §N4 + §N?’(—1)1°g2N A, (5.58)

adjusting (5.51) with an additional 3N? multiplications produces
Ag(N) =6N*log, N, (5.59)

and combining (5.48) with (5.58) and (5.59) produces a total operational count of

Ts(N) _2A¥3 logy N — %N”‘ + %N?’(—l)bgz N
(5.60)
+ %NQ logy N — %NQ + %N(—l)bg?N.

128

5.6 The 2D Cyclic Convolution for the GNMNT

5.6 The 2D Cyclic Convolution for the GNMNT

The 1D cyclic convolution for the GNMNT was discussed previously in Chapter 3.
A common application of the 2D cyclic convolution is image processing, where filters
can be applied quickly and efficiently. The derivations for the various convolutions
forthwith were first derived by [7] for the NMNT and [8,139] for the expansion
to the GNMNT, and have been included here for the sake of completeness with
further insights and demonstrations. Typically, the signals x (ny,n2) and h (nq,ns)
are the inputs containing the image and filter of size N x N, while y_. (n1,n2)

provides the output of the 2D convolution using the GNMNT.

5.6.1 Cyclic Convolution for the 2D-NMNT

Denoting X (k1,k2), H (k1,k2) and Y. (ki,k2) as the signal values within the
NMNT domain of x(ny,ny), h(ni,n2) and y,. (n1,n2), the 2D-NMNT Cyclic

Convolution is calculated as

Yo (ki ko) = <2p*1 [H (k1. k) + H (N — k1, N — k2)] X (k1, k2)
(5.61)

+ 2PV [H (ky, ko) — H(N — ki, N — k)] X (N — ki, N — ky) >Mp

As previously described in [7], a new operator can be used to simplify (5.61), for

which ® will be used, so that

YCC (k‘l,]{72) =X (kl, kg) OH (kl, kg)
= (H (1, k2) X (k1 k) (5.62)

od _ _
£ HY ey k)X (N — ki, N k:2)>Mp

where H(ky, ky) and H°(ky, ko) are the even and odd parts of H (ki,ks) shown

respectively as

HE (ky, ko) = < [H (k1 ko) + H (N — k1, N — k»)] 2p—1>Mp (5.63)

xinyn)— Nunt [Xekd g | Xadkika) |

@ Yikyks) | NMNT! Yeclkykz) | RC > y(nyn;)

hinyn)— NunT [Hbekd o ge | Hadkuka)

Figure 5.6: Convolution Process Structure for the 2D-NMNT

129

5. THE ROW-COLUMN GNMNT

x(ngy,n;)— ONMNT Xolkyks) RC MR

@ Yolkykz) | 1onuNT 1 Yedkuka) | Re —»y(ny,n,)

hinyn)—» OoNwNT [Hotkuka o e | Hadkuks)

Figure 5.7: Convolution Process Structure for the 2D-ONMNT

and

H ey, key) = < [H (k1 k) — H (N — k1, N — k»)] 2P*1>Mp. (5.64)

Figure 5.6 further illustrates the process of the 2D-NMNT cyclic convolution, which
shows two RC blocks that are slightly different from the 1D convolution owing to
the RC method being applied to the 2D-GNMNT.

5.6.2 Cyclic Convolution for the 2D-ONMNT

The variables Xo (k1,k2), Ho (ki1,k2) and Y,

vee (b1, ko) are the signals x (nq, na),

h (ni,n2) and y,, (n1,n9) that are within the ONMNT domain. The operation to
derive the ONMNT result Y, .. (k1,k2) is processed using Xo (k1, ko), Ho (k1, k2)
by

Yoceo (K1, k2) = Xo (k1, ke) © Ho (k1, k2)
- <H5v(k1,k2)xo (1, ko) (5.65)

+ HZ (k1 k)Xo (N —ky — 1, N — kg — 1) >
Mp

where HE (ki, ko) and HZ(ky, k2) stand for even and odd parts of Ho (ki, ks)

respectively as

HE (k1,k2) = < [Ho (k1,k2) + Ho (N — k1 —1,N — ka — 1)] 2p_1>Mp (5.66)
and
HY' (1, ko) = < [Ho (k1,k2) — Ho (N — k1 — 1, N — ky — 1)] 2p71>Mp- (5.67)

The process of computing the 2D cyclic convolution for the ONMNT is shown in
Figure 5.7.

130

5.6 The 2D Cyclic Convolution for the GNMNT

xnyny)—»| onNmnT [Xolkukad o e M)j‘

O [Hethekdol otnunr Yadkikel ol gt s yinyny)

hinyn)—»| oNunT (Hotkukaly | pe | Hidkuks)

Figure 5.8: Convolution Process Structure for the 2D-O?2NMNT

5.6.3 Cyclic Convolution for the 2D-O’NMNT

Transforming into the O?NMNT domain, the input and output signals (ny,ns),
h(ni,ny) and y.. (n1,n2) are represented by Xz (ki,ke), Hoe (ki, ko) and
Y (k1, ko) respectively and processed as

o2cc

Y oo (k1 k2) = Xo (1, k2) © Hoz (K1, ko)
= (g5 k2)Xo i) (5.68

FHS (k)Xo (N~ ki = LN~k = 1))

where Hgj(ki, ko) and HZL(ky, ko) stand for even and odd parts of Hpz (ky, ko)

respectively as

Hes (k1 k) = < [Hoz (k1,k2) + Hoz (N — k1 — 1, N — ky — 1)] 2p_1>Mp (5.69)
and
Hh(kr. k) = ([Hoz (ki ko) = Hox (N —ky = LN —ky = 1]27Y) . (5.70)

Figure 5.8 shows the process of computing 2D cyclic convolution for O?NMNT.

5.6.4 Verification using Cyclic Convolution

An example application for using convolution would be to apply the Sobel filter to

an image, which is used to provide edge detection [140]; this is configured as

H=|0 o o0]. (5.71)
-1 -2 -1

Using the NMNT to process the required convolutions is shown Figure 5.9, where
the original image Figure 5.9(a) is first processed using MATLAB for reference,
producing Figure 5.9(b). Applying the Sobel filter to the image Y via convolution

131

5. THE ROW-COLUMN GNMNT

LAy e ¥ { g ¥
i i ! " e Al
£t B VI Ve o el s Gt ;'-%ﬂ.

(d) Sobel Filter y-Axis Derivative

(e) Magnitude using xy-Derivatives

Figure 5.9: Convolution using Sobel Filter for Edge Detection using Cameraman
Image with NMNT

132

5.6 The 2D Cyclic Convolution for the GNMNT

c¢) Sobel Function x-Axis Derivative

(e) Magnitude using xy-Functions

Figure 5.10: Convolution using Sobel Filter for Edge Detection using Lena Image
with ONMNT

133

5. THE ROW-COLUMN GNMNT

)5 _.: I
‘%{m)
Gy

Sy SR
‘«‘@ "s"‘“ 7

3

Sobel Function x-Axis Derivative

(c

~

(e) Magnitude using xy-Functions

Figure 5.11: Convolution using Sobel Filter for Edge Detection using Baboon
Image with O?NMNT

134

5.7 Encryption Applications

across the x- and y-axes produces
G =H®Y (5.72)

and

G,=H @Y. (5.73)

The results of (5.72) and (5.73) using the NMNT are shown in Figures 5.9(c) and
5.9(d) respectively. The gradient map in Figure 5.9(e) is obtained by combining

G=,/G,2+ GyQ (5.74)

The process concludes by defining a threshold level, which in this case was

the two direction sources by

accomplished by calculating the mean of the gradient map
Te =G (5.75)

and applying this threshold to define the boundaries for G yields Figure 5.9(f).
It appears that MATLAB may use additional processing techniques such as line
thinning for example [141]. Figures 5.10 and 5.11 depict the same processes using

the ONMNT and O2NMNT respectively, thus validating the implementations.

Table 5.1: Effective Lengths of 1D and 2D GNMNT's

1D Block and Key Size 2D Block and Key Size
p p

N 5 7 13 17 19 5 7 13 17 19
4 20 28 52 68 76 80 112 208 272 304
8 40 56 104 136 152 320 448 832 1088 1216
16 80* | 112 208 272 304 || 1280* 1792 3328 4352 4864
32 || 160% | 224 416 544 608 || 5120% 7168 13312 17408 19456
64 - 448* 832 | 1088 | 1216 - 28672* 53248 69632 77824
128 - 896% | 1664 | 2176 | 2432 - 114688% 212992 278528 311296
256 - - 3328 | 4352 | 4864 - - 851968 | 1114112 | 1245184
512 - - 6656 | 8704 | 9728 - - 3407872 | 4456448 | 4980736
1024 - - 13312 | 17408 | 19456 - - 13631488 | 17825792 | 19922944

* NMNT and ONMNT, # NMNT Only

135

5. THE ROW-COLUMN GNMNT

5.7 Encryption Applications

An application for using the 2D algorithm of the GNMNT for encryption is where
two people have the same image. This can be combined with a password for an
implementation of the two-factor authentication (2FA) protocol that is applied to
encryption: something you know and something you have [142]. Selecting a random
area of the image and transferring the coordinates produces an ephemeral-type
key, which can be communicated to the receiving party using similar techniques to
those used to transmit the password. However, in order to safeguard the integrity
of the encryption, it would be advisable to transfer the image attributes and the
regular password using two distinct public key techniques. Such techniques enhance
security by adding an additional layer of security. There are a number of methods
used to provide 2FA including documentation, text message, email, hardware token
or even software [143], which have become highly adopted by many industries,
particularly by the finance sector.

This section will provide examples on this methodology by incorporating an
encryption system that uses a 2D key from an image that both parties are known to
have. The method of image selection, image key could well be communicated using

a public key encryption system such as RSA or ECC. Once an image and image

Figure 5.12: Image from which the selected 2D key is obtained

136

5.7 Encryption Applications

Table 5.2: Pixel Values of 2D Key without Concatenation

Oxbl 0x7e 0x9e 0x87 0x71 0x80 0x95 0x63 O0xb0 0x76 O0x7b 0x68 O0Ox6a Ox7a 0x97 0xal
0x90 0x80 0x9d 0x9f O0x8e 0x79 0x8a Oxbe Oxad 0x92 0x90 Ox4b 0x9a 0x8d 0x78 0x5f
0x42 0x6f O0x5f 0x75 O0x6d Oxab Oxa8 Oxaf 0x95 0x58 Ox4e 0x85 0x82 0x86 0x73 0x9c
0x94 0x51 0x37 0x39 Oxde Ox7f 0x82 0x86 Ox44 Oxbf 0x88 0x64 0xa9 O0x87 Oxbe Oxal
0x78 0x69 0x94 0x9b 0x36 0x62 O0xb4d O0x57 O0x72 O0x45 O0x40 O0x8b Oxa6 0x6d 0x87 0x77
0x44 0x64 0Oxa6 Ox6b 0x32 Oxba 0x47 Ox4f 0x87 0x68 O0x5b 0x3c 0x49 0x55 O0x6b 0x6b
0x72 0x91 0x55 Oxle O0x68 Oxde 0x78 Oxac 0x48 0x39 0x86 O0Oxbl O0xbb 0x3f 0x8d Oxad
0x67 0x76 0x59 Oxle O0x38 0x74 0x9¢ Oxa0 0x46 0x72 0x80 0x87 Ox3a 0x64 0x99 0x61

Table 5.3: Pixel Values of 2D Key with Concatenation

Oxbl7e 0x9e87 0x7180 0x9563 0xb076 0x7b68 0Ox6a7a 0x97a0
0x9080 0x9d9f 0x8e79 0x8abe 0xad92 0x904b 0x9a8d 0x785f
0x426f 0xbf75 0Ox6dadb Oxa8af 0x9558 0x4e85 0x8286 0x739c
0x9451 0x3739 Ox4e7f 0x8286 0x445f 0x8864 0xa987 Oxbeal
0x7869 0x949b 0x3662 0x5457 0x7245 0x408b Oxa66d 0x8777
0x4464 0xa66b 0x325a 0x474f 0x8768 0xHb3c 0x4955 0x6b6b
0x7291 0x55le 0x684e 0x78ac 0x4839 0x86bl 0x5b3f 0x8dad
0x6776 0x591le 0x3874 0x9cal0 0x4672 0x8087 0x3a64 0x9961

position have been selected, this will then act as a private session key between the

two parties.

5.7.1 RC-GNMNT Implementations

One of the advantages of the NMNT and GNMNT transforms are their highly
adaptable lengths [7,8]. However, irrespective of these lengths, limitations are still
put in place with respect to the prime that is defined by p. Using a 2D algorithm
allows even greater versatility by essentially squaring the lengths over the same
value of p, thereby providing significant increases in these lengths as shown in Table
5.1. In the following examples, a key of size based on an image area of 16 x 8 in
size has been selected from the image shown in Figure 5.12. This key is shown
numerically in Table 5.2 as it was extracted from the greyscale image and again
in Table 5.3 after the concatenation process has taken place. Data within the key
was concatenated in pairs to reduce the size from 16 columns to 8 so that the
length N = 8 could be assigned to a square area. A value of p = 17 was selected
to derive a Mersenne prime number of 131071, which completes the configuration

of the encryption system. The system uses a similar procedure that was defined in

137

5. THE ROW-COLUMN GNMNT

1%

(¢) Incorrect Key (d) Correct Key

Figure 5.13: Encrypted Cameraman using RC-NMNT, N = 8 x 8 and Mp = 131071

(3.81)-(3.91) adapted as a 2D system using a 2D key for all examples, where only

the transform type was changed according to the appropriate subsection.

5.7.1.1 RC-NMNT

The results of encrypting the cameraman image using the RC-NMNT and a
2D key are shown in Figure 5.13. As anticipated from previous results using
1D-implementations, it can be seen that the NMNT has performed at a comparable
level. The decryption using a different key has rendered the resultant deciphering
operation completely worthless with no information apparently being released.
Moreover, it would appear that there may not be a necessary requirement in

computing the separable algorithm in order to completely process the image using

138

5.7 Encryption Applications

(¢c) Incorrect Key (d) Correct Key

Figure 5.14: Encrypted Camerman using RC-ONMNT, N = 8x8 and Mp = 131071

the RC method.

5.7.1.2 RC-ONMNT

Using the first of the two new transforms for RC encryption suggests that there are
very promising results. Deciphering the image has rendered it worthless, similar to
the results obtained from the NMNT. After applying the correct key, it is shown
in Figure 5.14 that the system correctly deciphered the image, suggesting that

encryption system is working as expected.

139

5. THE ROW-COLUMN GNMNT

(¢) Incorrect Key (d) Correct Key

Figure 5.15: Encrypted Camerman using RC-O?2NMNT, N = 8 x 8 and Mp =
131071

5.7.1.3 RC-O’NMNT

The second of the two new transforms applied for encryption using the RC method
is the O2NMNT. Like its counterparts, the O?NMNT has successfully encrypted
and decrypted the image using the correct key, while failing to decipher the image
using the incorrect key as shown in Figure 5.15. Again, this would initially suggest

that the system using the O?NMNT would be applicable for use in the field of

cryptography.

140

5.7 Encryption Applications

R

trd

(c) ONMNT (d) O2NMN

Figure 5.16: Decrypted Cameraman Error using RC-GNMNT, N = 8 x 8 and
Mp = 131071

5.7.1.4 Comparison of RC-Encryption Characteristics

The different variations of the enciphered images using the same key but different
transforms is depicted in Figure 5.16. Whilst there is nothing to be gained directly
from observing this image, it is presented to demonstrate that the results from
using each transform to decrypt the image using the same alternate key and also
that they have provided different results according to each transform. Each of the
images was previously shown to correctly encrypt and decrypt the image when

using the same key.

141

5. THE ROW-COLUMN GNMNT

1%

(¢) Incorrect Key (d) Correct Key

Figure 5.17: Encrypted Cameraman using 2D-NMNT, N = 8 x 8 and Mp = 131071

5.7.2 2D-GNMNT Implementations

This section is similar to the RC-GNMNT except that the additional separable
algorithm has been applied to provide a true 2D transformation of the image in
each system. While no further processing has been done in respect to 2D signal-
or image-processing, the underlying implementation has been developed and tested
to ensure compatibility throughout these transforms. The development of true
2D algorithms in cryptography opens many opportunities to further incorporate
different methods such as filtering to enhance the framework of a developed

encryption system.

142

5.7 Encryption Applications

(¢c) Incorrect Key (d) Correct Key

Figure 5.18: Encrypted Camerman using 2D-ONMNT, N = 8 x8 and Mp = 131071

5.7.2.1 2D-NMNT

Like the RC-NMNT, the 2D-NMNT has correctly encrypted and decrypted the
image using the same key. When using the alternate key to decrypt, again like the
RC-GNMNT, the results yielded an unusable image where no information of the

original contents appears to be obtainable, as shown in Figure 5.17.

5.7.2.2 2D-ONMNT

Using the first of the new transforms and the separable algorithm has again yielded
favourable results as shown in Figure 5.18. The results that were obtained from
the result of the RC-ONMNT appear to be comparable to the 2D variant using the

separable algorithm.

143

5. THE ROW-COLUMN GNMNT

1%

(¢) Incorrect Key (d) Correct Key

Figure 5.19: Encrypted Camerman using 2D-O*NMNT, N = 8x8 and Mp = 131071

5.7.2.3 2D-O’NMNT

The final example of 2D encryption shows in Figure 5.19 that the second new
transform has also demonstrated favourable results. The encryption and decryption
process using the same key to obtain the original image and using different keys to
show that recovering the original image is unobtainable has reached expectations
and, like the other implementations of the GNMNT in these simulations, the
O?NMNT has performed comparably.

5.7.2.4 Comparison of 2D-Encryption Characteristics

The final image in these simulations again shows in Figure 5.20 the comparison

of the resulting images using the 2D transforms where the same alternate

144

5.7 Encryption Applications

Figure 5.20: Decrypted Cameraman Error using 2D-GNMNT, N = 8 x 8 and
Mp = 131071

decrypting keys were used instead of the same encrypting keys. Similar to the RC
implementations, there is no direct information to be obtained from these images
other than to show that by using the same key to encrypt and using the same

incorrect key to decrypt, each of the transforms used has produced different results.

5.7.3 Imposing a Single-Bit Error using the RC- and
2D-GNMNT

With previous respect to Section 3.8.1, it would be remiss to ignore the results of

changing a single bit of the GNMNT using the RC method to assess whether there

145

5. THE ROW-COLUMN GNMNT

..Hx.. " f;.i;unn.:.nnna?.:x.:_..
uunm-m.,:.:....ﬁ,....,..“mﬁmu-—:mu_uun.___..rum-u.. B ERGCERARB AL
Bog h et BRSNS

8 N RUARERCIT Ak

EHEIRENE LY

e

ENTEE TR ARERE « bR L2 T A TPl

LELELEET AES- SRR,

: WL 3 >."ﬂunwmm.nuﬁ_

ST LT B 1 b

LI SETTE PR

REDE L s BRNRANED

U S ARTETET

L
SRR

-«n.-uwmu. TR AU

Jeiy Hhad TS

SR
iaRgnEcy |SRRL
HREERATE - 1TET5e4E
LR ERE S B El e X 183
AR R A A R TN R el
EES SRR RS Bt Si it b LR S L SR
IEEPTRL TR e Rt S 1 RG] Ftd |
ALEGUEARERE) aRgra gy - SARERRE

8

NMNT Bit Error N =

b) RC-

(

Original Image

)

a

(

et
e e ot
_mmmmmmwmmmmmmmm

mmmmwmmmmmMWWGﬁ%mmm it S

L o IAESED

32

(d) RC-NMNT Bit Error N

16

(c) RC-NMNT Bit Error N

(f) RC-NMNT Bit Error N = 128

= 64

(e) RC-NMNT Bit Error N

32,64, 128 and

Y

Figure 5.21: Decrypted Bit Error using RC-NMNT with N = 8,16

Mp = 131071

146

5.7 Encryption Applications

EE AR R
BESE egandB ciesRuREuE
HERE haE mwwmmm.
mmmmmmmm

e
T

A, R IO et Sl e B e Y R B IR o Y e e e PR R T A ol

ONMNT Bit Error N =8

RC

Original Image

)

a

(

P STl O
x

ONMNT Bit Error N = 32

) RC-

d

(

ONMNT Bit Error N = 16

) RC-

C

(

RC-ONMNT Bit Error N = 128

)

ONMNT with N = 8,16, 32, 64, 128

(f

ONMNT Bit Error N = 64

) RC-

e

(

Figure 5.22: Decrypted Bit Error using RC

and Mp

131071

147

5. THE ROW-COLUMN GNMNT

o A oy e B

(d) RC-O?>NMNT Bit Error N = 32

(e) RC-O?NMNT Bit Error N = 64 (f) RC-O2NMNT Bit Error N = 128

Figure 5.23: Decrypted Bit Error using RC-O?NMNT with N = 8,16, 32,64, 128
and Mp = 131071

148

5.7 Encryption Applications

: R
(b) 2D-NMNT Bit Error N =8

(e) 2D-NMNT Bit Error N = 64 (f) 2D-NMNT Bit Error N = 128

Figure 5.24: Decrypted Bit Error using 2D-NMNT with N = 8,16, 32,64, 128 and
Mp = 131071

149

5. THE ROW-COLUMN GNMNT

At L A

2D-ONMNT Bit Error N = 32

F
L4 bt adlt o i.'

(e) 2D-ONMNT Bit Error N = 64 (f) 2D-ONMNT Bit Error N = 128

Figure 5.25: Decrypted Bit Error using 2D-ONMNT with N = 8,16, 32, 64, 128 and
Mp = 131071

150

5.7 Encryption Applications

o

: g
(b) 2D-O2NMNT Bit Error

e T i}

(c) 2D-O2NMNT Bit Error N = 16 (d) 2D-O2NMNT Bit Error N = 32

(e) 2D-O2NMNT Bit Error N = 64 (f) 2D-O?NMNT Bit Error N = 128

Figure 5.26: Decrypted Bit Error using 2D-O?NMNT with N = 8,16, 32,64, 128
and Mp = 131071

151

5. THE ROW-COLUMN GNMNT

are similar characteristics that were observed with the NMNT and ONMNT. In
doing so, a random key is this time selected and concatenated and again, the last
bit of the final element is changed. The results for the bit error RC-GNMNT are
shown in Figures 5.21-5.23 where it can be observed that the effects are greatly
exacerbated. The reason for this relates to the nature of the processing as the
method essentially utilises N keys rather than an N x N key because of the way
the RC-GNMNT is processed. As such, more of the image can still be recovered as
clearly observed, although this diminishes as the transform length and subsequent
key length increases. Interestingly, the O?NMNT result in Figure 5.23 appears
to be defining the processing blocks rather than producing a random collection
of pixels. There should therefore be caution in implementing a technique using
the RC-O2NMNT, ensuring that any schemes employing this transform contain
multiple rounds and non-linear operations.

Addressing this technique with the 2D-GNMNT using a random key for
encryption with subsequent bit error in the key for decryption produces results that
can be observed in Figures 5.24-5.26. There is again evidence within the respective
images from each technique that information has been recovered, albeit somewhat
skewed, which again diminishes as the transform length and subsequent key length
increases. The skewing artefacts are no doubt a result of the separable algorithm
being applied to the RC method, which would emphasise how the transform
is being processed. As the implementation has been proven already using the
convolution techniques, there is no doubt that this skewing condition is confined
to the application of the RC and separable algorithm methods. Moreover, the
outline of the cameraman can be observed in Figure 5.26, indicating that even the

O?NMNT is not infallible with respect in this instance.

5.8 Conclusion

This chapter has developed and demonstrated the RC-GNMNT and its respective
separable algorithms, specifically the ONMNT, IONMNT and O?NMNT for
developing 2D algorithms. Examples using the cyclic convolution have been
shown and demonstrated using the Sobel filter to provide edge detection through
2D convolution, thereby verifying its implementation. Example RC and 2D

core encryption systems have been developed and presented to demonstrate

152

5.8 Conclusion

the capabilities of these new transforms. Moreover, the simulations of the
encryption system show that it is not necessarily required to complete the full 2D
transformation in order to achieve favourable results, but maximising the transform
length and subsequent key length would certainly be advantageous. However,
there is a definite emphasis from the results that further steps are mandated when
implementing the GNMNT within an encryption system, particularly shuffling,
non-linear operations and multiple rounds. Whilst there were comparable results
between the RC and 2D methods and the RC method may serve as a faster
implementation, there may well be further benefits in completing the full 2D
process as other opportunities are presented that could incorporate additional
functionality to an encryption system. For example, part of an encryption system
may consist of filtering parts of the data either as a pre- or post-operation to the

underlying encryption system.

153

5. THE ROW-COLUMN GNMNT

154

Chapter 6

The Avalanche Effect of the
GNMNT

6.1 Introduction

The continual pace of technological development has accelerated the need for
stronger and more resilient encryption schemes. These schemes should offer
flexibility with respect to scalability, depending on needs and requirements. The
current standard [144] is currently halfway through its second decade of ratification
and while it has shown significant resilience so far, that is not to say it will
continue to do so. Reflecting how DES has been continually attacked with the
production of faster and more powerful GPUs highlighting the need for development
of similar systems that can be developed like deep crack, but using only commercial

off-the-shelf (COTS) components.

6.2 The Strict Avalanche Criterion

The avalanche effect is primarily influenced by diffusion that was noted by Shannon
when he first suggested that the two core concepts of security are confusion and
diffusion [12]. The key principle behind the avalanche model is that should a single
bit in the cipher text be out of place when applied to the decryption algorithm,
then it will yield a catastrophic effect upon the decoded plaintext. This theory
was developed further by Feistel and the ideas of confusion and diffusion were more

commonly referred to and implemented as networks incorporating substitution and

155

6. THE AVALANCHE EFFECT OF THE GNMNT

permutation respectively [13]. Webster and Travers developed the avalanche effect
further still by introducing the SAC [14]. The SAC states that when a single bit is
changed in the cipher text, the effect of this change should influence the resultant
bits after the decryption process ideally by a probability of 0.5. We can therefore
measure the resultant plaintext of such an event and compare it with the original
plaintext where we should ideally observe that 50% of the bits between the two
plaintexts differ.

6.3 Methodology

There were a number of configurations and variations used for the development
of this simulation that include the simulation algorithm to apply conditions to
test and measure the SAC, the AES algorithm and the GNMNT transforms. The
simulations involved 10° iterations for each of the GNMNT transforms and the
AES algorithm, where either 136 or 128 bits were manipulated respectively during
each iteration. The implementation for each process will be described in greater

detail in Sections 6.3.2 and 6.3.3 for AES and GNMNT respectively.

6.3.1 Applying and Testing the SAC

The method used to undertake these measurements was designed to probe each
and every bit of the cipher text to identify not only consistency but also areas that
potentially exhibit undesirable characteristics: these may manifest as results that
contain excessively low or high metrics or exhibit consistent patterns. The process
used to accomplish this process was previously described in [119], beginning with
the obtaining of a cipher text ¢ by applying an encryption operation € (-) to a
plaintext ¢ by

c=E&(t). (6.1)

We can then change a single bit in ¢ by selecting a bit position n and performing
ém=c®2" for 0 <n < pN (6.2)

where ¢,, is the indexed state from the original cipher text where the bit that has
been modified n = m, & denotes a bitwise XOR operation, p is the size of each

element and N represents the number of elements in the cipher. Using n to select

156

6.3 Methodology

5l 6mli] = ((tle]D fle])>>B) A 1
0se<N,0sb<p, > Am=26m(1) > O
el - <to® 2> m=p-e+b, i=p-e+b
t " t=G(0)] %2e<N,QOSb<Zp] f:gl(fw —
6alm] = ((t[e]D fle])>>b) A 1
0se<N,0sbB<p, > A=25,(h) > D,
> m=p-e+b,n=p-e+b

Figure 6.1: Avalanche Assessment Process

a bit and treating the vector as if it were an N size element, it can be better
visualised as

n=pe+b for0<e< Nand 0<b<p, (6.3)

which converts n into an element that is index by e and the associated bit of that
element referenced by 2°. We then decrypt the altered cipher text é,, to obtain an
alternate plaintext t,, by

tm = D(ém) (6.4)

where D (+) refers to the corresponding decryption algorithm from (6.1). The bits

that have changed can be easily detected by developing a small function

1, if) A2 £
() — TN (6.5)
0

using A to denote a bitwise AND operation to process each bit in £,,. We can then

represent the total change in the resultant vector £,, by

A, = L% > 5m(n)] x 100. (6.6)

As (6.5) and (6.6) provide a methodology to measure the differential change in
the vector, so we can also measure the differential bit positions from the resultant

vector by applying a transpose. This will provide

Lif (t®) A2m#£0

5(n) = (6.7)
0
and
A, = Z%p; 5n(m)] % 100. (6.8)

157

6. THE AVALANCHE EFFECT OF THE GNMNT

This process is further illustrated in Figure 6.1.
We can demonstrate a small exhaustive example using p = 3 and N = 4 and

begin by selecting four numbers at random for ¢ producing

t={3,2,1,2}. (6.9)

Table 6.1: Modification of g for p =3, N =4

e | b | i3] | i5[2) | ig[1] | 5[0]
0|0 001 010| 000 | 011
01 001 | 010 | 000 | 000
012 001 | 010 | 000 | 110
110 001] 010 001 | 010
11 001 | 010 | 010 | 010
12 001 | 010 | 100 | 010
2101 001 011] 000 | 010
2111 001] 000| 000 | 010
2121 001| 110 | 000 | 010
3101 000| 010 | 000 | 010
311 011 | 010 | 000 | 010
3|2 101 | 010 | 000 | 010

Table 6.2: Resultant Values of ¢ for p =3, N =4

pe+0b || £[3] | [2] | t[1] | ¢[0]
101 | 100 | 110 | 000
110 | 101 | 101 | 110
100 | 011 | 000 | 001
101 | 000 | 011 | 000
000 | 101 | 101 | 101
100 | 001 | 010 | 001
101 | 000 | 110 | 100
110 | 110 | 101 | 101
100 | 001 | 000 | 011
001 | 000 | 110 | 000
000 | 110 | 101 | 110
100 | 011 | 010 | 011

O 0| N[OO |k]|W| N |+~ |O

—
(@]

—_
—_

158

6.3 Methodology

However, for the sake of clarity in this example we shall instead represent values in
binary, which results in

t = {0115,0105, 0015, 0105} (6.10)

Transforming this vector using the NMNT produces the vector
Ty = {0015,0104, 000, 010} (6.11)

Now we can produce a loop using e and b, which were defined in (6.3) to change
each bit of Ty in sequence resulting in p/N new transformed vectors denoted by Tg.
These altered values of Ty are shown in Table 6.1. Applying the inverse NMNT
transform to each of the Ty and record them in #,,, where m was defined in (6.4).
These resultant values of £ are shown in Table 6.2. Finally, applying (6.5) and (6.6)
using t and each ¢ produces values for 6,, and A,, respectively. While this method
assess the bits that have changed in each vector and can be seen as a row-by-row
approach, using the resultant vectors we can also examine each column. Applying

the similar (6.7) and (6.8) produces values for d,, and A, respectively. The results

Table 6.3: Differences Between ¢ and ¢ for p =3, N =4

on A, m
1j1(01j1{0|1j1(1|0]1|O0 8 0
1{0(1|1j1f{1)1]0[0|1]0|0O0 7 1
1j1j1)40j0}1)40j0}1)0]1]1 7 2
1{1]0)0}1{0)011]0}0]1|0 5 3
oOo(1r|1f1f1|1}1y0jo0y}11]1 9 4

¢ 1j1(1{o0j1(1}O0j1|1]0]1]|1 9 5)
Shrlrjofoftfofftfrf1ft]{t]o]| 8 6
1j0j1y41j0j0y1j0j0y1]1]1 7 7
1{1(1}0j1|1}0]0|1]0]0]|1 7 8
o(1jo0pojryo0y1j1rjryo0f1)0 6 9
Oj(1{1{f1{0(0y1j0]0f1]0]O0 5) 10
1j1j1)40j0}1)40]1]1)0]0]1 7 11
Jle|2|e|w|wo|o|~|o|~|w]on|o & 4
N

v‘@

c|TdIS oo~ |lo||wv|t|on|a|—~|o ZAm //4/
5

159

6. THE AVALANCHE EFFECT OF THE GNMNT

of the XOR operation between ¢ and each ¢ that produces the respective § and A
values that can be seen in Table 6.3. This table also shows the sums of the two
sequences of A, which naturally should be equal. Calculating the mean T can be
achieved by using either A,, or A, for 0 < m,n < N as both yield the same value.
In fact, this is a measure to verify that the results have been both recorded and
processed correctly. Measuring the standard deviation is again a straight forward

process as

=

m=0

1 =
o= > (A —2)% (6.12)

As the data has been processed to provide a percentage for the results, the standard
deviation is also expressed as a percentage. To reflect the impact this has on the
actual block, a small adjustment must be made to change from a percentage to the
relevant number of bits. We denote this new measurement as o, and calculate it
thus:

o, = (pNo) % ﬁ (6.13)

6.3.2 AES Implementation

The AES implementation uses a slightly stripped-down version of the algorithm
that has the password functionality removed so as to better compare the algorithm
with the GNMNT where any influence of the passwords is removed; this is
essential for measuring the raw diffusion characteristics. To fully exploit the main
implementation characteristics of AES, which was designed to run on eight-bit
processors, all of the functions have been replaced with lookup tables. This has
a minimal impact in terms of storage as only eight tables of 256 bytes each are
required to accomplish this implementation: SubBytes, inverse SubBytes, 2n, 3n,
9n, 11n, 13n and 14n. This results in a total of 2,048 bytes of storage in total with
only 16 lookups / round for the SubBytes function and 64 lookups with 48 XOR
operations that combine the ShiftRows and MixColumns functions for each round.
Finally, when simulations were undertaken using the AES algorithm, they ran from
between one and 16 rounds, the total number of elements in the cipher block. This
was so that as well as the common 10, 12 and 14 rounds that are usually applied,

further configurations could be applied and analysed.

160

6.4 Assessing the Default Configuration

6.3.3 GNMNT Implementation

The configuration for the GNMNT simulations was selected as p = 17 and N = §,
which provided a block size of 136 bits that was as close as possible to the 128-bit
block size of AES. The same vector that was derived for the AES was used but each
element contained two elements from AES that were concatenated. Assessments
using the GNMNT implementation were initially accomplished using the relevant
straightforward transforms with no further operations applied. These simulations
ran from one to a maximum of eight rounds, the number of elements in the
GNMNT cipher block. In the second set of simulations, the elements were rotated
one place in between each round during the forward encryption phase. During
the inverse decryption phase, the elements were rotated in the opposite direction
in between each round. This rationale for doing this will be explained further in

Section 6.5 where its relevance can be better appreciated.

6.4 Assessing the Default Configuration

The results from each simulation are shown both graphically and statistically.
Whilst it is more common to disseminate such results statistically, the graphical
representation provides significantly more information that otherwise would be
missing in the statistics. The metrics obtained within the statistics include the
minimum, maximum and the range of bits that were affected expressed as a
percentage, the standard deviation o that was observed to serve as a tolerance, also
as a percentage and the standard deviation o, that was expressed as the affected
number of bits. The average number of bits affected was also the same which,
as expected, was consistent whether observing the diffusion over the vector or
the bit position. The default results demonstrate each process with no additional

interference.

161

6. THE AVALANCHE EFFECT OF THE

GNMNT

Amount of Change %

(a) Vector Analysis:

20 30

40 50

60 70

Diffusion %

T
1 Round

—+— 2 Rounds
~—©&— 3 Rounds
—%— 4 Rounds
= = =5Rounds []
= + =6 Rounds
~ © =7 Rounds
— % -8 Rounds
* 9 Rounds
*+ -+ 10 Rounds |
© 11 Rounds

%+ 12 Rounds
= =13 Rounds
—+= 14 Rounds ||
~0~ 15 Rounds
16 Rounds

——

Rounds 1-16

Amount of Change %

40 50
Diffusion %

(c) Vector Analysis: Rounds 3-16

60 70

T T
~—©— 3 Rounds
—%— 4 Rounds
= = =5Rounds
- + -6 Rounds ||
~ © - 7Rounds
= % = 8Rounds
“““ 9 Rounds H
++ - 10 Rounds
© 11 Rounds

%+ 12 Rounds
=+ =13 Rounds |
—+=14 Rounds
~0- 15 Rounds
—x= 16 Rounds | |

80 90 100

T T
1 Round

—+— 2 Rounds
~—©&— 3 Rounds
—%— 4 Rounds

w IS
] 3
T T

Amount of Change %

N
S
T

- - -5Rounds %
= + =6 Rounds
—~ © - 7Rounds
— % -8 Rounds
“““ 9 Rounds
*+ 10 Rounds ||
O 11 Rounds
%+ 12 Rounds
= =13 Rounds
—+- 14 Rounds ||
~0O- 15 Rounds
—%= 16 Rounds

50.6

L L L
16 24 32 40 48 56

L L
64 72

Bit Position

(b) Bit Position Analysis: Rounds 1-16

L
80 88 96 104 112 120

50.51

5031

Amount of Change %

5011

T T T
~—&— 3 Rounds
—— 4 Rounds
= = =5Rounds
— + -6 Rounds ||
~ © -7 Rounds
= % -8Rounds
“““ 9 Rounds
++ 10 Rounds
© 11 Rounds [
%+ 12 Rounds
== 13 Rounds
—+= 14 Rounds
~0~ 15 Rounds ||
—x= 16 Rounds

Figure 6.2: AES Analysis

L L L L
16 24 32 40 48

L L L
56 64 72 80 88 96

Bit Position

(d) Bit Position Analysis: Rounds 3-16

Table 6.4: AES Metrics - Vector / Bit Position

104 112 120

Rounds A% Ay, bits | A% | A, bits A%
Min ‘ Max ‘ Range ‘ o o T o o ‘ Range ‘ Max ‘ Min
1 0.7813 | 6.2500 | 5.4688 | 0.1252 | 0.1600 3.1447 | 0.0030 | 0.0022 | 0.1745 | 3.2239 | 3.0495
2 3.1250 | 23.4375 | 20.3125 | 0.3406 | 0.4360 | 12.5521 | 0.0110 | 0.0086 | 0.0219 | 12.5613 | 12.5394
3 25.7813 | 74.2188 | 48.4375 | 0.9190 | 1.1760 | 50.1963 | 0.0440 | 0.0345 | 0.0293 | 50.2137 | 50.1844
4 25.0000 | 73.4375 | 48.4375 | 0.9085 | 1.1630 | 49.9995 | 0.0440 | 0.0344 | 0.0216 | 50.0107 | 49.9891
5 25.0000 | 73.4375 | 48.4375 | 0.9085 | 1.1630 | 49.9996 | 0.0440 | 0.0344 | 0.0248 | 50.0143 | 49.9895
6 25.0000 | 75.0000 | 50.0000 | 0.9085 | 1.1630 | 50.0002 | 0.0440 | 0.0344 | 0.0237 | 50.0095 | 49.9858
7 25.0000 | 75.7813 | 50.7813 | 0.9085 | 1.1630 | 50.0005 | 0.0440 | 0.0344 | 0.0240 | 50.0120 | 49.9879
8 25.0000 | 73.4375 | 48.4375 | 0.9086 | 1.1630 | 50.0006 | 0.0440 | 0.0344 | 0.0244 | 50.0123 | 49.9880
9 25.7813 | 75.0000 | 49.2188 | 0.9086 | 1.1630 | 49.9998 | 0.0440 | 0.0344 | 0.0206 | 50.0107 | 49.9901
10 26.5625 | 74.2188 | 47.6563 | 0.9086 | 1.1630 | 50.0004 | 0.0440 | 0.0344 | 0.0254 | 50.0119 | 49.9865
11 25.7813 | 73.4375 | 47.6563 | 0.9085 | 1.1630 | 50.0002 | 0.0440 | 0.0344 | 0.0197 | 50.0101 | 49.9904
12 25.0000 | 76.5625 | 51.5625 | 0.9085 | 1.1630 | 49.9996 | 0.0440 | 0.0344 | 0.0242 | 50.0117 | 49.9875
13 25.0000 | 75.0000 | 50.0000 | 0.9086 | 1.1630 | 49.9999 | 0.0440 | 0.0344 | 0.0226 | 50.0119 | 49.9893
14 25.7813 | 75.0000 | 49.2188 | 0.9085 | 1.1630 | 49.9996 | 0.0440 | 0.0344 | 0.0274 | 50.0146 | 49.9871
15 26.5625 | 74.2188 | 47.6563 | 0.9085 | 1.1630 | 49.9999 | 0.0440 | 0.0344 | 0.0208 | 50.0133 | 49.9926
16 24.2188 | 75.0000 | 50.7813 | 0.9085 | 1.1630 | 50.0006 | 0.0440 | 0.0344 | 0.0196 | 50.0103 | 49.9907

162

6.4 Assessing the Default Configuration

100 T 20 T
1Round 1 Round
—+— 2 Rounds —+— 2 Rounds
90 —&— 3 Rounds [18- —&— 3 Rounds
—*— 4 Rounds —%— 4 Rounds
= = =5Rounds = = =5Rounds
80 : : - + -6 Rounds|] 16 - + -6 Rounds||
= © -7Rounds —~ © - 7Rounds
— % -8 Rounds — % -8 Rounds
70 : : 14
8 E
o] o
= 60 2 12
I ©
< <
O 5 4 ST
S S
£ £
o 40 q o 8r ~
£ £
< <
30 B 6 o
20 E ar .
10H g 2t s
o > 0 I I I I I I I
10 20 30 40 50 60 70 80 90 100 0 17 34 51 68 85 102 119
Diffusion % Bit Position
(a) Vector Analysis: Rounds 1-8 (b) Bit Position Analysis: Rounds 1-8
10 T 20 T
— 1Round 1 Round
® —6— 3 Rounds —6— 3 Rounds
or 7 : - - -5Rounds|] 8 - - -5 Rounds|]|
— © - 7Rounds — © - 7Rounds

16 .l

14 .

124

10

Amount of Change %
Amount of Change %

0 L L L L L L L
10 20 30 40 50 60 70 80 90 100 0 17 34 51 68 85 102 119

Diffusion % Bit Position
(c) Vector Analysis: Rounds 1,3,5 and 7 (d) Bit Position Analysis: Rounds 1,3,5 and 7

Figure 6.3: NMNT Analysis

Table 6.5: NMNT Metrics - Vector / Bit Position

Rounds A% A, bits | A% | A, bits A%

Min ‘ Max Range ‘ o [z [o ‘ Range ‘ Max ‘ Min
1 4.4118 | 38.9706 | 34.5588 | 0.2121 | 0.2880 | 10.2982 | 0.0170 | 0.0126 | 2.9737 | 11.7906 | 8.8169
2 0.7353 | 11.7647 | 11.0294 | 0.0628 | 0.0850 0.7353 | 0.0010 | 0.0005 | 0.0000 | 0.7353 | 0.7353
3 4.4118 | 38.9706 | 34.5588 | 0.2121 | 0.2880 | 10.2982 | 0.0170 | 0.0126 | 2.9737 | 11.7906 | 8.8169
4 0.7353 | 11.7647 | 11.0294 | 0.0628 | 0.0850 0.7353 | 0.0010 | 0.0005 | 0.0000 | 0.7353 | 0.7353
5 4.4118 | 38.9706 | 34.5588 | 0.2121 | 0.2880 | 10.2982 | 0.0170 | 0.0126 | 2.9737 | 11.7906 | 8.8169
6 0.7353 | 11.7647 | 11.0294 | 0.0628 | 0.0850 0.7353 | 0.0010 | 0.0005 | 0.0000 | 0.7353 | 0.7353
7 4.4118 | 38.9706 | 34.5588 | 0.2121 | 0.2880 | 10.2982 | 0.0170 | 0.0126 | 2.9737 | 11.7906 | 8.8169
8 0.7353 | 11.7647 | 11.0294 | 0.0628 | 0.0850 0.7353 | 0.0010 | 0.0005 | 0.0000 | 0.7353 | 0.7353

6.4.1 Assessing the AES

The results for the AES up to 16 rounds is shown graphically in Figures 6.2(a)
and 6.2(b), which depict the diffusion rate that was obtained using the default
implementation. It can be observed that it took three rounds for AES to settle to

a desirable rate and four rounds to consistently reach the ideal rate. The statistics

163

6. THE AVALANCHE EFFECT OF THE GNMNT

—— 1Round —‘1 Round
—+— 2 Rounds 80 —+— 2 Rounds
—©— 3 Rounds ~—&— 3 Rounds
—*— 4 Rounds —— 4 Rounds
0r - = -5Rounds|] 70 - = -5Rounds
= + -6 Rounds - + -6 Rounds
— © -7 Rounds — © - 7Rounds
— % -8 Rounds — % -8 Rounds
s 8 < 60
5 ° I TG u R ‘“J‘"J‘"
2
i N | IR I
30 | ‘ \‘
2 2 i I
| |
o 10 20 30 ‘ 50 60 . 70 80 90 1 'U 0 1‘7 34 5‘1 6‘5 3‘5 102 119
Diffusion % Bit Position
(a) Vector Analysis: Rounds 1-8 (b) Bit Position Analysis: Rounds 1-8
8 T T
~—©6— 3 Rounds ~—©6— 3 Rounds
—»— 4 Rounds 80~ —— 4 Rounds []
= = =5Rounds = = =5Rounds
T - + -6 Rounds] - + - 6 Rounds
T e o or o i nones]]
o T
60~
g g
Sat S
gl g
< <
301
oL
20
A
101
10 0 1‘7 3‘4 5‘1 G‘B 8‘5 1&2 119
Diffusion % Bit Position
(c) Vector Analysis: Rounds 3-8 (d) Bit Position Analysis: Rounds 3-8
Figure 6.4: ONMNT Analysis
Table 6.6: ONMNT Metrics - Vector / Bit Position
A% A,, bits | A% | A, bits A%
Rounds
Min ‘ Max ‘ Range ‘ o o z o o ‘ Range ‘ Max ‘ Min
1 21.3235 | 54.4118 | 33.0882 | 0.6781 | 0.9220 | 30.9032 | 0.2230 | 0.1642 | 47.1186 | 52.9952 | 5.8766
2 31.6176 | 72.7941 | 41.1765 | 0.8713 | 1.1850 | 46.9111 | 0.1190 | 0.0877 | 35.7798 | 53.3721 | 17.5924
3 27.9412 | 72.7941 | 44.8529 | 0.7971 | 1.0840 | 47.2102 | 0.0480 | 0.0354 | 8.8330 | 50.6216 | 41.7886
4 32.3529 | 72.0588 | 39.7059 | 0.9238 | 1.2560 | 49.3714 | 0.0440 | 0.0327 | 4.9214 | 52.2194 | 47.2980
5 29.4118 | 75.0000 | 45.5882 | 0.8292 | 1.1280 | 49.0878 | 0.0510 | 0.0376 | 8.7430 | 53.7353 | 44.9923
6 29.4118 | 73.5294 | 44.1176 | 0.8571 | 1.1660 | 49.9016 | 0.0540 | 0.0395 | 9.2530 | 54.7078 | 45.4548
7 31.6176 | 75.0000 | 43.3824 | 0.8556 | 1.1640 | 49.5020 | 0.0480 | 0.0349 | 6.3323 | 53.2010 | 46.8686
8 32.3529 | 76.4706 | 44.1176 | 0.8882 | 1.2080 | 50.2657 | 0.0490 | 0.0360 | 7.8730 | 54.0375 | 46.1644

obtained for this simulation are shown in Table 6.4, which shows the total bits
affected within the vectors tested on the left-hand side of the table and the bit
positions affected within the vectors tested on the right-hand side. However, the
statistics suggest that the best scenario would be at least four rounds to ensure
consistency.

It can be observed in Figure 6.2(b) that this would be the ideal

starting point, where the remaining rounds consistently yield results that are both

164

6.4 Assessing the Default Configuration

100 T T
1 Round 1 Round
—+— 2 Rounds 80 : —+— 2 Rounds]
90 —&— 3 Rounds [| —&— 3 Rounds
—#— 4 Rounds —*— 4 Rounds
= = =5Rounds 701 = = =5Rounds H
80 - + -6 Rounds|] - + -6 Rounds
— © -7 Rounds — © - 7Rounds
— % -8 Rounds — % -8 Rounds
70 60 H
8 £
o | o
& 60 5 sof g
© ©
g 2
O 5 1 o
5} S a0 il
£ £
o 40 b =]
£ £
< < 301 n|
30 —
20+ —
20H -
101 10 1
O » 0
10 20 30 40 50 60 70 80 90 100 0 17 34 51 68 85 102 119
Diffusion % Bit Position
(a) Vector Analysis: Rounds 1-8 (b) Bit Position Analysis: Rounds 1-8
9 T T
1 Round 1 Round
—6— 3 Rounds 51.465 —©— 3 Rounds |
s db - — -5Rounds |{ - - -5Rounds
— © -7 Rounds ~ © -7 Rounds
51.46
< 8 ®
Q [} ®
= o Q
2 o .
g g d ® @
3} O 514551 - I ‘
S S B
5 5 b To 0t ol ho[Lie hol b
g g i 7 A i I f
3 <] e Mg ied) l i i ‘ i
Z g f AV ‘ f i i
51.45 °y © ' 110
o n‘ ol é
W 60
:
514451 - ©
il . Il Il Il Il Il Il Il
10 20 30 40 50 60 70 80 90 100 0 17 34 51 68 85 102 119
Diffusion % Bit Position
(c) Vector Analysis: Rounds 1,3,5 and 7 (d) Bit Position Analysis: Rounds 1,3,5 and 7

Figure 6.5: O?NMNT Analysis

Table 6.7: O?NMNT Metrics - Vector / Bit Position

Rounds A% A, bits | Apn% | A, bits A%
Min ‘ Max ‘ Range ‘ o o, T o, o ‘ Range ‘ Max ‘ Min
1 36.0294 | 76.4706 | 40.4412 | 1.0047 | 1.3660 | 51.4521 | 0.0440 | 0.0323 | 0.0153 | 51.4593 | 51.4440
2 0.7353 | 11.7647 | 11.0294 | 0.0628 | 0.0850 0.7353 | 0.0010 | 0.0005 | 0.0000 | 0.7353 | 0.7353
3 36.0294 | 76.4706 | 40.4412 | 1.0047 | 1.3660 | 51.4521 | 0.0440 | 0.0323 | 0.0153 | 51.4593 | 51.4440
4 0.7353 | 11.7647 | 11.0294 | 0.0628 | 0.0850 0.7353 | 0.0010 | 0.0005 | 0.0000 | 0.7353 | 0.7353
5 36.0294 | 76.4706 | 40.4412 | 1.0047 | 1.3660 | 51.4521 | 0.0440 | 0.0323 | 0.0153 | 51.4593 | 51.4440
6 0.7353 | 11.7647 | 11.0294 | 0.0628 | 0.0850 0.7353 | 0.0010 | 0.0005 | 0.0000 | 0.7353 | 0.7353
7 36.0294 | 76.4706 | 40.4412 | 1.0047 | 1.3660 | 51.4521 | 0.0440 | 0.0323 | 0.0153 | 51.4593 | 51.4440
8 0.7353 | 11.7647 | 11.0294 | 0.0628 | 0.0850 0.7353 | 0.0010 | 0.0005 | 0.0000 | 0.7353 | 0.7353

close to one another and at the ideal 50% threshold.

6.4.2 Assessing the NMNT

Figures 6.3(a) and 6.3(b) show the results of the NMNT, which unfortunately
have yielded very unfavourable results; In fact findings suggest that in some cases

there was virtually no change. The statistics in Table 6.5 show that every even

165

6. THE AVALANCHE EFFECT OF THE GNMNT

round that has been processed has resulted in an extremely low performance. A
quick calculation on the mean to convert the value from a percentage to bit count
consistently produces a figure of 2.0425 bits on average that have been changed.
Observation of the NMNT processed over the odd rounds shows only a marginal

improvement, with a consistent average of 10.3

6.4.3 Assessing the ONMNT

An initial observation of Figures 6.4(a) and 6.4(b) shows that the ONMNT has
produced very promising results. Although Figure 6.4(a) shows that the first round
is relatively weaker than the rest and Figure 6.4(b) shows that in fact the first
two rounds are potentially the weakest. Removing the first two rounds from these
results produces Figures 6.4(c) and 6.4(d) where the is a marked and significant
improvement. Table 6.6 shows statistically that after overcoming the first two
rounds the transform produces consistently desirable results as can be seen in the
range variation across the bit positions. While it is not as good as the AES

algorithm, it is a significant baseline from which to develop.

6.4.4 Assessing the O’NMNT

On first impressions, the results that are provided by the O2NMNT transform
appear to be ambiguous. While there is a significant improvement in the diffusion of
both the vector total bits and over the bit positions that reach the ideal threshold,
the result is similar to the NMNT where the odd rounds are similar to each other.
Similarly, the even rounds are also similar to each other and, like the NMNT,
exhibit extremely undesirable results. This is confirmed statistically, where all the
odd and even rounds yield identical results. Regardless of the negative aspects
however, we can see both statistically in Table 6.6 and graphically in Figures 6.5(c)
and 6.5(d) that from the very first round, not only has the objective almost been
achieved, but in some areas it yields results that exceed the AES in terms of the
amount of change at peak, the difference in bit range and the reflective smaller bit
tolerance. Moreover, these positive results are reflected across the bit positions,
indicating that the transform produces a strong diffusion factor in respect to the
total number of bits affected and shows a consistent metric across all bit positions.

Aside from the initial weakness, the O?NMNT shows very desirable characteristics

166

6.5 Assessing the Modified Configuration

in its very first round.

6.5 Assessing the Modified Configuration

This section addresses the configurations that were first introduced in the
methodology and builds upon the default results. The AES shows, from four
rounds and beyond, an unfaltering convergence to the desirable characteristics to
confirm its resilience and integrity in the measurement of this metric. However,
while the ShiftRows and MixColumns functions are very linear in construction,
it would make an interesting study to ascertain the amount of influence that the
SubBytes function has with respect to diffusion. This is particularly interesting
as Rijndaels S-Box, which is essentially what the SubBytes function is, can be
reconfigured in many different ways during use; a new irreducible polynomial
can be used as can a different affine transform. Addressing the result of the
GNMNT suggests that an additional operation should be introduced that will have
a minimal impact upon the transforms, yet offer enough influence to address the
poor performance that was observed in successive rounds. The first round of the
O?NMNT was particularly favourable, which suggests that the modification should
therefore be made as an additional process after the first round. As introduced in
the methodology, this additional process is a function that rotates the elements by
one place in between rounds of the forward transform and reverses the direction
during the inverse transform over successive rounds. Whilst there are myriad
ways that these elements can be rotated, shuffled, flipped or mirrored, it would be
appropriate for the change to have as little impact to the structure as possible so
as not to introduce undetectable weaknesses that would be missed through overly

complex processes.

6.5.1 Assessing the NMNT (Shuffled)

The results shown in the newly modified NMNT are marginally better at best.
While the original default transform alternated the results according to whether
or not the current round was an even or odd iteration, the modified version now
repeats every converging round. For example it can be observed in Table 6.8 that

the first round is almost identical to the seventh round, the second round is almost

167

6. THE AVALANCHE EFFECT OF THE GNMNT

100

90

80

Amount of Change %

S§5555555
aaaazaaaa
e aGa

T T

8
40 50

60 70

Diffusion %

80

(a) Vector Analysis: Rounds 1-8

90

14

Amount of Change %

i

il

nnnnnnnnnnnnnn

uuuuuuuuuuuuuu

AR

N

A

nnnnnnnnnnnn

nnnnnnnnnn

00

nnnnnnnnnnnnnn

»»»»»»»»

UULUULLLUULULLULLUUUULLUULUGUUULUUULUUUULULUULICY

Al

il

)

A

i

i

I

I

il l

L
17 34

L
51

L L
68 85

Bit Position

L
102

(b) Bit Position Analysis: Rounds 1-8

Figure 6.6: NMNT Analysis (Shuffled)

Table 6.8: NMNT Metrics - Vector / Bit Position (Shuffled)

Rounds A% Ay, bits | Apn% | A, bits A%
Min ‘ Max Range ‘ o o z o o ‘ Range ‘ Max ‘ Min
1 4.4118 | 38.9706 | 34.5588 | 0.2121 | 0.2880 | 10.2982 | 0.0170 | 0.0126 | 2.9737 | 11.7906 | 8.8169
2 0.7353 | 13.9706 | 13.2353 | 0.0567 | 0.0770 1.8382 | 0.0110 | 0.0082 | 2.2089 | 2.9442 | 0.7353
3 2.9412 | 32.3529 | 29.4118 | 0.1627 | 0.2210 7.3698 | 0.0160 | 0.0118 | 3.0593 | 8.9365 | 5.8772
4 1.4706 | 13.9706 | 12.5000 | 0.0956 | 0.1300 2.9411 | 0.0030 | 0.0018 | 0.0069 | 2.9442 | 2.9373
5 2.9412 | 33.8235 | 30.8824 | 0.1627 | 0.2210 7.3696 | 0.0160 | 0.0118 | 3.0676 | 8.9425 | 5.8750
6 0.7353 | 13.9706 | 13.2353 | 0.0567 | 0.0770 1.8383 | 0.0110 | 0.0082 | 2.2086 | 2.9438 | 0.7353
7 4.4118 | 38.9706 | 34.5588 | 0.2121 | 0.2880 | 10.2981 | 0.0170 | 0.0126 | 2.9842 | 11.7976 | 8.8134
8 0.7353 | 11.7647 | 11.0294 | 0.0628 | 0.0850 0.7353 | 0.0010 | 0.0005 | 0.0000 | 0.7353 | 0.7353

identical to the sixth round, the third with the fifth and the fourth and eight rounds

show certain attributes that are either multiples of two or four in some cases.

6.5.2 Assessing the ONMNT (Shuffled)

Modifying the ONMNT does not appear to have brought any noticeable benefits. It
doesnt appear to have brought any noticeable degradation either as the transform
still demonstrates that a minimum of three rounds are required before the transform
starts producing optimal results. In this respect, adding the shuffle function has

had an overall neutral effect.

6.5.3 Assessing the O’NMNT (Shuffled)

The O?2NMNT has probably shown the greatest benefits of applying such a simple
routine. Figure 6.8(a) clearly shows the benefits that have been gained, where the

characteristic that was first observed with the NMNT has now been eradicated.

168

6.5 Assessing the Modified Configuration

90

T T
— 1Round 1 Round
—+— 2 Rounds —+— 2 Rounds
3 Rounds 80 3 Rounds
—%— 4 Rounds —%— 4 Rounds
= = =5Rounds | = = =5Rounds
= + -6 Rounds 70 = + =6 Rounds
7 Rounds 7 Rounds
— % -8 Rounds — % -8 Rounds

Amount of Change %
Amount of Change %

" i L e 0 L L L L L L
10 20 30 40 50 60 70 80 90 100 0 17 34 51 68 85 102 119
Diffusion % Bit Position

(a) Vector Analysis: Rounds 1-8 (b) Bit Position Analysis: Rounds 1-8

Figure 6.7: ONMNT Analysis (Shuffled)

Table 6.9: ONMNT Metrics - Vector / Bit Position (Shuffled)

Rounds A% A,, bits | Ana% | A, bits A%
Min ‘ Max ‘ Range ‘ o o z o o ‘ Range ‘ Max ‘ Min
1 21.3235 | 54.4118 | 33.0882 | 0.6781 | 0.9220 | 30.9032 | 0.2230 | 0.1642 | 47.1186 | 52.9952 | 5.8766
2 30.8824 | 72.0588 | 41.1765 | 0.8599 | 1.1690 | 47.5942 | 0.1210 | 0.0888 | 35.4079 | 52.9872 | 17.5793
3 32.3529 | 73.5294 | 41.1765 | 0.9342 | 1.2710 | 49.6727 | 0.0450 | 0.0330 | 4.4809 | 52.0231 | 47.5422
4 31.6176 | 75.0000 | 43.3824 | 0.8695 | 1.1830 | 50.1399 | 0.0510 | 0.0373 | 8.7159 | 55.0933 | 46.3773
5 30.8824 | 72.7941 | 41.9118 | 0.8649 | 1.1760 | 49.3147 | 0.0460 | 0.0341 | 6.1181 | 52.2781 | 46.1601
6 29.4118 | 73.5294 | 44.1176 | 0.8182 | 1.1130 | 49.7799 | 0.0470 | 0.0344 | 6.1096 | 53.3335 | 47.2238
7 32.3529 | 74.2647 | 41.9118 | 0.8741 | 1.1890 | 49.9703 | 0.0480 | 0.0350 | 6.5114 | 52.9310 | 46.4196
8 29.4118 | 73.5294 | 44.1176 | 0.8664 | 1.1780 | 49.9853 | 0.0490 | 0.0357 | 8.8204 | 54.6907 | 45.8702

However, there is still room for improvement with respect to diffusion across the bit
positions that are shown by their fairly heavy fluctuations as in Figure 6.8(b). The
statistics in Table 6.10 confirm that the first round still offers the best performance

of the GNMNT with noticeable improvement over the remaining seven rounds.

6.5.4 Exhaustive Analysis of the GNMNT

This section covers the scenario where every bit in a 40-bit space GNMNT
configuration using p = 5 and N = 8 is permutated and manipulated as shown
previously in (6.1)-(6.13). The vector space that this configuration spans

2 -1V =(2°-1)°

(6.14)
= 852,891,037,441 permutations.

In order to undertake an exhaustive analysis, we must also take p/N = 40 bits into

consideration as well as the three forward #G and three inverse #G~! operations,

169

6. THE AVALANCHE EFFECT OF THE GNMNT

9 64 T

1 Round 1 Round
—+— 2 Rounds —+— 2 Rounds
~—&— 3 Rounds |{ 621 —&— 3 Rounds]
—%— 4 Rounds —%— 4 Rounds
= = =5Rounds = = -5Rounds
- + -6 Rounds | 60 - + -6 Rounds|]|

= © -7 Rounds = © -7Rounds

— % -8 Rounds — % -8 Rounds
[~ ¥ ~oRounds] sl

Amount of Change %
Amount of Change %

A AR
pm«w m A

504 51l e l ! 4
, .4 .,5 ik u,, r %, *p' ‘.i,,,.'“l, “'&' 't" ..
48 l M 7 3 K
*;, w,' .v,w,#lw,
1 4611 ' L R HRRRR IEER EEE RER SR |
oN ¥ L 'Y 44 L L L L L L L
10 20 30 40 50 60 70 80 90 100 0 17 34 51 68 85 102 119
Diffusion % Bit Position
(a) Vector Analysis: Rounds 1-8 (b) Bit Position Analysis: Rounds 1-8

Figure 6.8: O*NMNT Analysis (Shuffled)

Table 6.10: O*NMNT Metrics - Vector / Bit Position (Shuffled)

Rounds A% A, bits | A% | A, bits A%
Min Max Range o o, T o, o Range Max Min
1 36.0294 | 76.4706 | 40.4412 | 1.0047 | 1.3660 | 51.4521 | 0.0440 | 0.0323 | 0.0153 | 51.4593 | 51.4440
2 36.7647 | 75.0000 | 38.2353 | 1.0448 | 1.4210 | 53.0417 | 0.0470 | 0.0344 | 3.0756 | 54.4265 | 51.3509
3 31.6176 | 75.0000 | 43.3824 | 0.9280 | 1.2620 | 51.7577 | 0.0500 | 0.0367 | 7.6145 | 54.1491 | 46.5346
4 33.0882 | 73.5294 | 40.4412 | 0.9400 | 1.2780 | 51.6110 | 0.0490 | 0.0357 | 6.0566 | 53.4523 | 47.3958
5 30.8824 | 73.5294 | 42.6471 | 0.8507 | 1.1570 | 50.2736 | 0.0510 | 0.0374 | 8.5247 | 54.2704 | 45.7457
[§ 33.8235 | 73.5294 | 39.7059 | 0.9242 | 1.2570 | 51.1050 | 0.0480 | 0.0350 | 6.1917 | 55.8871 | 49.6954
7 33.0882 | 74.2647 | 41.1765 | 0.9354 | 1.2720 | 49.8996 | 0.0440 | 0.0326 | 3.6158 | 51.3236 | 47.7077
8 32.3529 | 74.2647 | 41.9118 | 0.8571 | 1.1660 | 49.6516 | 0.0490 | 0.0360 | 7.1228 | 54.0376 | 46.9148

resulting in

4G {pN [(21’ . 1)N} } ERCES| {pN [(2? _ 1)N} } — 204, 693, 848, 985, 840 operations.
(6.15)
However, we can mitigate almost half of these operations by reusing the forward

part of the algorithm so that we then have
4G [(QP - 1)N} 4 4G {pN [(2? — 1)N} } — 104, 905, 597, 605, 243 operations. (6.16)

Unfortunately, developing a test application in C running on a single core of a
fairly recent 3 GHz CPU [145] yields a peak processing performance of 272,586,000
vectors / second. While this appears to be a significant processing metric, when
put into context with the amount of work to be completed, it then means that
the analysis will be completed in approximately 40,343 hours or slightly less than
4.61 years. The performance of this particular CPU is rated at 22.17 GFLOPs and
consumes 65 Watts [146]. Over the projected time period, this CPU would likely

170

6.5 Assessing the Modified Configuration

: :
—— NMINT NMNT
—— ONMNT L —— ONMINT ||
—— OPNMINT| —— O°NMNT

Amount of Change %

Amount of Change %
!

w
S
T

N
&
T

n
3
T

=
&

. i i f | h 1 . | | | | I I I
0 10 20 30 40 50 60 70 80 £ 100 0 5 10 15 20 25 30 35
Diffusion % Bit Position

(a) Vector Analysis (b) Bit Position Analysis
Figure 6.9: GNMNT Exhuastive Analysis: p =5, N =8

Table 6.11: GNMNT Exhuastive Analysis: p =5, N =8

A% A, bits | A% | A, bits A%
Min Max Range o or z or o Range Max Min
NMNT | 15.0000 | 97.5000 | 82.5000 | 1.2298 | 0.4920 | 33.8703 | 0.0720 | 0.1792 | 9.6986 | 38.7218 | 29.0232
ONMNT || 27.5000 | 85.0000 | 57.5000 | 2.0142 | 0.8060 | 43.5483 | 0.1740 | 0.4358 | 38.7181 | 58.0729 | 19.3548
O2NMNT | 35.0000 | 97.5000 | 62.5000 | 2.6331 | 1.0530 | 56.1284 | 0.0880 | 0.2191 | 0.0121 | 56.1350 | 56.1229

S

consume approximately 2.62 MWh of power to complete the simulation. Using the
relatively new architecture of GPGPU, we can substantially reduce the processing
time. As graphic cards are developed using parallel techniques inherently, a large
amount of research and development has resulted in this new type of processing
using consumer grade equipment. For this application, an AMD HD7970 graphics
card was used containing 2,048 streams (effective cores); it runs at a clock speed of
1 GHz and is capable of a peak single precision throughput of 4,300 GFLOPs [147],
consuming 218 Watts at full load [148]. From an initial viewpoint and taking into
consideration of the additional processing resources and clock speed, we should

expect to see an increase in performance by a factor of 682 calculated by

coresgpy X Clockgpy

Increase Factor = (6.17)

corescpy X Clockcpy’

which should reduce the expected completion time to approximately 59 hours and
6 minutes.

Containing commands such as the fused-multiply-add that can simultaneously
perform a 24-bit multiply and a 32-bit addition using four-element vector variables
in a single clock cycle, the actual time that the HD7970 took to complete the

simulation was a little over 52 hours and 19 minutes. This completion time shows

171

6. THE AVALANCHE EFFECT OF THE GNMNT

Table 6.12: Multiple Configuration Analysis of the GNMNT

Diffusion and Tolerance %

Diffusion and Tolerance %

N
s | 16 | 32 | 61 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192
1,2,3] 1,2 1 - - - - - - - -
7001,2,311,2,3(1,2,3| 1,2 1 - - - - - -
130/1,2,3(1,2,3/1,2,3/1,2,3[1,2,3|1, 1,2,311,2,31,2,3| 1,2 1
p
17(1,2,3(1,2,3/1,2,3]1,2,3/1,2,3(1,2,3[1,2,3[1,2,3(1,2,3(1,2,3|1,2,3
1901,2,31,2,3/1,2,3]1,2,3]1,23/1,23/1,23/1,2,3(1,2,3(1,2,3(1,2,3
31(1,2,3/1,2,3/1,2,3/1,2,3/1,2,3(1,2,3(1,2,3[1,2,3|1,2,3|1,2,3|1,2,3
55T T T T 60—
! } } ! } 1
|H+ N |
451 1
a0+ L | L 7 iso— }' |‘I"H"'" pree |,|-|.|-»-.. PR
} Lt L
a f
30+ %45* —
251 'é I
201 EAO’
15+
35
10
5 ‘5 ‘7 13 17 19 31 o é 7‘ 13 17 19 31
Configuration p for N=8,16,32,64,128,256,512,1024,2048,4096,8192 Configuration p for N=8,16,32,64,128,256,512,1024,2048,4096,8192
(a) NMNT (b) ONMNT
65 70
60 4
60 v’w‘ |
o SOF e
Py
55 7 gw : B B 4
L e T P |
i : "5
20
451 1
10
BT " 19 a %71 17 18w st1s 17 19 3 w13 17 18 a1

Configuration p for N=8,16,32,64,128,256,512,1024,2048,4096,8192 Configuration p for N=8,16,32,64,128,256,512,1024,2048,4096,8192

(¢c) O2NMNT (d) GNMNT - NMNT, ONMNT, O2NMNT

Figure 6.10: GNMNT Vector Analysis with Multiple Configurations

an actual speed increase by a factor of 771. During the course of the simulation

it was anticipated that the GPU had a power consumption of approximately 11.41
kWh, which is 0.49% of the power that the CPU would have required. This
could possibly be further improved upon as the implementation was designed to
process the metrics using atomic operations that naturally introduce bottlenecks

in the processing when memory accesses run into contention. The design of the

172

6.5 Assessing the Modified Configuration

70T T T T T T 70—

. } “HHF }HHH HHH HHH } HWH_ HHHH. “HHH- HHH»

Diffusion and Tolerance %
Diffusion and Tolerance %

L I I
13 17 31 5 7 13 17 19 31
Configuration p for N=8,16,32,64,128,256,512,1024,2048,4096,8192 Configuration p for N=8,16,32,64,128,256,512,1024,2048,4096,8192

(a) NMNT (b) ONMNT

70T T T T T 70T

I I
5 7

60 b

lhh»-lllp.»-

@
S

sohHHHH“-H-Hw.»...}hl_l-nh..-HI-H,.”._-

S
S5}

Diffusion and Tolerance %
@
8

Diffusion and Tolerance %

.
1)
T
=
S

I I 11 I I I I I I I I I I
0 57 13 17 19 31 0 57 13 17 19 31 57 13 17 19 31 513 17 19 31
Configuration p for N=8,16,32,64,128,256,512,1024,2048,4096,8192 Configuration p for N=8,16,32,64,128,256,512,1024,2048,4096,8192

(c) O2NMNT (d) GNMNT - NMNT, ONMNT, O2NMNT

Figure 6.11: GNMNT Bit Position Analysis with Multiple Configurations

implementation could be rearranged so that the program minimised the number of
atomic operations. However, this would certainly imply the use of slower memory
in order to cope with the volume of data that would be presented in addition to
the complex data consolidation requirements. However, with the myriad different
ways to approach a problem then obviously more time could be spent searching
for superior solutions than to disseminate the actual results already obtained. The
results of this simulation are depicted in Figures 6.9(a) and 6.9(b). Looking closer
at the statistics that have been produced in Table 6.11, it is interesting to note that
this configuration has produced notably different results: the NMNT has increased
in performance to almost 34%, the ONMNT has dropped in performance to 43.5%
and the O?NMNT has increased to a little over 56%. In fact, there is a very simple
explanation for this profound shift in performance, which is that the configuration
has maximised the transform length in retrospect to the selected Mersenne prime

for which the transform has been configured. As such, there is a stronger pull for

173

6. THE AVALANCHE EFFECT OF THE GNMNT

all transforms to converge to the ideal 50% threshold, although simulating every
possible vector permutation doesnt necessarily indicate this. However, this effect
can be shown by defining similar vectors across different transform parameters.
Using values for p and N that define a more manageable vector range then a more
accurate performance of the GNMNT can be measured. For the final configuration,
a multiple set of configurations is defined and shown in Table 6.12, which refers
to the following transforms: 1 - NMNT, 2 - ONMNT and 3 - O?NMNT. Each
simulation is executed four times using various different vector values that provide
a wide range of values across the entire vector. The results that are obtained
are then combined to produce an average set of results. Using these results,
various plots are produced as shown in Figure group 6.10 that depicts the diffusion
effect across the vectors and 6.11 that depicts the diffusion effect down the bit
positions. The plots show the mean value that was observed and the application
of the standard deviation to show the upper and lower boundaries. It can be
seen in these plots, particularly with values of p = 13 and greater, that as the
length N approaches the maximum length according to p then typically the ideal
characteristics are obtained. This would appear to collaborate the results that
were depicted in Figures 3.10-3.12, 5.21-5.23 and 5.24-5.26 for the 1D, RC and 2D
methods respectively, where it was observed that the longer the transform length

the better the transform appeared to perform.

6.6 Conclusion

This chapter has introduced methodologies to apply existing techniques to the
GNMNT, which have enabled such a diverse and thorough examination of these
transforms and where they have also been compared against the industry standard.
The AES has repeatedly shown that it has extremely robust characteristics with
respect to diffusion, where it manages to obtain peak performance after only four
rounds. The transform from the GNMNT that characteristically better matched
to AES was the O?2NMNT, which was able do so in only one round. However, a
number of potential weaknesses were exposed within the GNMNT, including the
O?NMNT that show that it is not a transform that can be used solely for encryption
purposes. Whilst it is able to perform to the ideal specifications, it is not able to do

so consistently without any further intervention. However, the addition of a simple

174

6.6 Conclusion

function did make a difference to the O?NMNT in such a way that coupled with a
round key generator, it could be possible to derive a fairly crude yet fairly robust
encryption system without too much effort. An exhaustive analysis was undertaken
on the GNMNT using a comparatively conservative configuration. Whilst this
configuration was certainly not enough to withstand the rigor of resources that
are currently available, the availability of a new type of computing was able to
provide an insight into the performance of the GNMNT over all possible vector
permutations that were previously out of reach. Moreover, while the configuration
used was different to the simulations that were run against the AES, the results
brought additional insight that suggested the value of further investigation into a
broader configuration range. The final simulation set encompassed a configuration
range that spanned common usable ranges and beyond, where it was shown that
there are significant advantages to configure p so that the longest value of N can
be used. Finally, this study has shown that while there may initially be negative
results using particular transforms and configurations, they should not be dismissed
without exploring the potential to change to more suitable configurations and

applying additional functionality.

175

6. THE AVALANCHE EFFECT OF THE GNMNT

176

Chapter 7

Conclusion and Future Work

It can be seen that the rate of progress with respect to both the development and
defeat of methodologies is perpetual and fuelled by theoretical and technological
advances. The development of security algorithms was presented in Chapter 2
where it was shown that provided with enough impetus, the amounts of resources
that organisations/hackers are prepared to invest to address/defeat security issues
could potentially be limitless. Technological advances will also mean that hardware
becomes very cheap very quickly and also more reusable.

Newly developed transforms have been implemented and applied as part of an
encryption algorithm, where both random keys and similar keys were used to see
how effective the raw algorithm was. Unwanted effects manifested from the NMNT
and ONMNT algorithms using similar keys that differed by a single bit and proofs
were provided to validate the implementation. Initial results suggested that there
was particular interest with the O?NMNT transform as it appeared to resist the
similar key attack very well.

The GNMNT has also been fully realised as fast algorithms for one-dimensional
applications. Complexity analysis has shown that there are substantial improvements
to be gained, especially in consideration of other architectures that possess emerging
instructions and techniques to merge operations into a single command and employ
parallelism through vector operations. However, depending on the size of the work
required, particularly the length when relating to fast algorithms for transforms,
it may prove more fortuitous to revert back to direct methods when considering
parallel techniques.

The development of separable algorithms for the row-column approach of the

177

7. CONCLUSION AND FUTURE WORK

newly developed GNMNT has empowered this suite by not requiring fully developed
two-dimensional algorithms. Implementations were verified using the Sobel filter
on a number of images before conducting encryption assessments using RC and
2D techniques. Results appeared to lean towards caution upon application of the
similar key attack. However, it is well known that encryption systems employ many
rounds and techniques and in particular, non-linear operations.

The GNMNT algorithms were implemented using parallel techniques on a
consumer based graphics card. In doing so, simulations that were previously out of
reach in terms of years were accomplished in hours. The focus on security continues
to grow, especially with the development of new architectures and advances in
cryptanalysis.

The incorporation of GPGPU computing in this research facilitated the in-depth
analysis of the SAC, which has been performed and assessed alongside the algorithm
used in the AES. The O?NMNT was shown to yield comparable results to the AES
and suggests that there is potential scope to use it within an encryption system.
While the exhaustive analysis of the diffusion aspects for the NMNT and in part
the ONMNT are perhaps not as good as expected, consideration must be taken
into account where these results were obtained without any confusion techniques.
Moreover, obtaining an initial assessment into how well the GNMNT performs
within RC and 2D applications, it is clear to see that such an encryption system

would benefit from non-linear operations and shuffling, as well as multiple rounds.

Future Work

The development and subsequent assessment of the GNMNT has demonstrated
that there is sufficient scope to develop the algorithm further. Areas where this

could be feasible and advantageous are:

e further research into the GNMNT for development of new techniques
and algorithms that are based upon one- or two-dimensions; examples of
using two-dimensional techniques have demonstrated the circular convolution
properties of these new transforms, making these transforms accessible to
other disciplines such as image-, video- and signal-processing to name but a

few

178

e develop a method of encryption that can incorporate additional functionality;
it has previously been demonstrated the strengths of the GNMNT in
convolutions, therefore it may well be that an encryption system that would

envelop additional convolution-based functionality should also be feasible

e development of adaptable and configurable S-Boxes for encryption systems
based upon the GNMNT that are comparable to the S-Boxes used with
AES so as to i) add additional and reconfigurable security and ii) derive a
secure methodology that can addresses the potential weaknesses that were

discovered in Chapter 6

e research new techniques for medical applications to piece and process images
from different sources; the advent of mobile technology has fuelled the desire
to incorporate many different types of sensors that can measure all sorts of
attributes including pulse, heat and humidity and piece together an analysis
to how healthy the user may be - such techniques could well be applicable to

other sensors and disciplines that may have medical benefits.

179

7. CONCLUSION AND FUTURE WORK

180

Appendix A

Radix-2 GNMNT Algorithms

Listing A.1: Beta Generation

// Generate betal and beta2 for transforms

void betaGen(unsigned long long *B1, unsigned long long *B2,
unsigned long long *C1, unsigned long long *C2,
unsigned long long *E1, unsigned long long *E2,

unsigned int p, unsigned int log2N)

unsigned long long d, *Al, *A2;
long long al, a2, tl1, t2;

A1l = (unsigned long longx)malloc(sizeof(unsigned long long) * fN);
A2 = (unsigned long long*)malloc(sizeof(unsigned long long) * fN);

al = 2;
a2 = 3;

d =p — log2N — 1;
if (d == 0)
d=1;

for (loop = 0; loop < (p — 2); loop++)

{

al = mods(al * al, p);
a2 = mods(a2 x a2, p);

181

A. RADIX-2 GNMNT ALGORITHMS

for (loop = 05 loop < d; loop++)

{
t1 = mods((al * al) — (a2 * a2), p);
t2 = mods(2 * al * a2, p);
al = tl;
a2 = t2;
}
A1[0] = 1;
A2[0] = 0;

for (loop = 0; loop < fNmm; loop++)

{

Alfloop + 1] = mods((al * Al[loop]) — (a2 * A2[loop]), p);
A2[loop + 1] = mods((al * A2[loop]) + (a2 * Al[loop]), p);

for (loop = 0; loop < N; loop++)

{
Bl[loop] = Alfloop << 2J;
B2[loop] = A2[loop << 2J;
C1[loop] = Al[loop << 1J;
C2[loop] = A2[loop << 1J;
El[loop] = Al[(loop << 1) + 1J;
E2[loop] = A2[(loop << 1) + 1];

}

free (A2);

free (A1);

182

Listing A.2: Bit Reversal

// Perform Bit Reverse Order to a vector

// Derived from: http://graphics.stanford.edu/ seander /bithacks.html#ReverseParallel

void bitrevorder (unsigned long long xvec, unsigned char log2N)

{

unsigned long long newpos, temp;

for (loop = 0; loop < log2N; loop ++)
{
newpos = loop;
newpos = ((newpos >> 1) & 0x55555555) | ((newpos & 0x55555555) << 1);
newpos = ((newpos >> 2) & 0x33333333) | ((newpos & 0x33333333) << 2);
newpos = ((newpos >> 4) & 0xOFOFOFOF) | ((newpos & 0xOFOFOFOF) << 4);
newpos = ((newpos >> 8) & 0x00FFOOFF) | ((newpos & 0x00FFO0FF) << 8);
newpos >>= (16 — log2N);
if (loop < newpos)
{
temp = vec[loop];
vec[loop| = vec[newpos];

vec[newpos] = temp;

183

A. RADIX-2 GNMNT ALGORITHMS

Listing A.3: Radix-2 NMNT (DIT)

// Forward and Inverse Radix—2 NMNT (DIT)
void nmnt(unsigned long long *oldvec, unsigned long long *vec,
unsigned long long *bl, unsigned long long *b2,

unsigned long long inverse)

unsigned int i, j, k, n, io2, ts, tmask, linel, line2, betaz, offset ;
unsigned int log2N, p;
long long t1, t2;

i =2
io2 = 1;
ts = N >>1;

tmask = ts — 1;

for(n =0; n < N; n++)

vec[n] = oldvec[n];

bitrevorder (vec, log2N);

for(j =1;j <= log2N; j++)
{
for(k = 0; k < (ts & tmask); k++)
{
linel = (1 << (j—1)) + (k<<j)+ 1
line2 = (1 <<j) + (k <<j) — 1L
offset = ((N >> (ts >> 1)) = (k + 1)) — 1);
offset = ((k + 1) << (log2N — (ts >> 1))) — 1;
for(n =0;n < ((1 << (j — 2))); n++)
{
betaz = n << (ts >> 1);
t1 = mods((vec[linel] x bl[betaz]) + (vec[line2| * b2[betaz]), p);
t2 = mods((vec|linel] x b2[betaz]) — (vec[line2] x bl[betaz]), p);
vec[linel] = t1;
vec[line2] = t2;

linel ++;

184

line2 = offset — n;

}
for(k =0; k < N; k +=1)
for(n = 0; n < i02; n++)
{
t1 = veclk + nJ;
t2 = veclk + n + io2][;
vec[k + n] = mods(t1 + t2, p);
vec[k + n + i02] = mods(tl — t2, p);
}
i02 =i
| <<= 1;
ts >>=1;
}
for(j =0;j <N;j++)

vec[j] = mods(vec[j] * inverse, p);

185

A. RADIX-2 GNMNT ALGORITHMS

Listing A.4: Radix-2 ONMNT (DIT)

// Forward Radix—2 ONMNT (DIT)
void onmnt(unsigned long long *oldvec, unsigned long long *vec,

unsigned long long xbl, unsigned long long xb2)

unsigned int i, j, k, n, io2, ts, tmask, linel, line2, betaz, step;
unsigned int log2N, p;
long long t1, t2;

i=2;
io2 =1;
ts =N >> 1;

tmask = ts — 1;
betaz = N >> 1;
linel = 0;
line2 = 1;

for(n = 0; n < N; n4++)

vec[n] = oldvec[n];

bitrevorder (vec, log2N);

for(j =0;j < log2N; j++)
{
for(k =j; k < 1; k++)
for(n =1;n < N; n += 2)
vec[n] = mods(vec[n] * b2[betaz], p);
for(k = 0; k < (ts & tmask); k++)
{
linel = (1 <<j)+ (k<< (+ 1))
line2 = linel + (1 << j) — 1;
step = N >> j;
betaz = step >> 1;
for(n = 0; n < (unsigned int)(1 << (j — 1)); n++)
{

t1 = mods((vec[linel] * bl[betaz]) + (vec[line2| % b2[betaz]), p);

186

t2 = mods((vec[linel] x b2[betaz]) — (vec[line2] * bllbetaz]), p);
vec[linel ++] = t1;
vec[line2 ——] = t2;

betaz += step;

}
for(k =0; k < N; k +=1)
for(n = 0; n < i02; n++)
{
t1 = veclk + nJ;
t2 = veclk + n + io2];
vec[k + n] = mods(tl + t2, p);
vec[k + n + i02] = mods(t1l — t2, p);

i02 =1i;
i <<=1;

ts >>=1;

187

A. RADIX-2 GNMNT ALGORITHMS

Listing A.5: Radix-2 ONMNT (DIF)

// Inverse Radix—2 ONMNT (DIF)
void ionmnt(unsigned long long *oldvec, unsigned long long *vec,

unsigned long long xbl, unsigned long long %b2)

unsigned int i, j, k, n, io2, ts, tmask, linel, line2, betaz, step;
unsigned int log2N, p;
long long t1, t2;

i =N;

i02 =i >> 1;

ts = 1;

tmask = (N >> 1) — 1;
linel = 0;

line2 = 1;

for(n = 0; n < N; n++)

vec[n] = oldvec[n];

for(j =1og2N;j > 0; j——)
{
for(k = 0; k < N; k +=1)
for(n = 0; n < i02; n++)

{
t1 = veck + nJ;
t2 = veclk + n + i02];
veclk + n] = mods(tl + t2, p);
vec[k + n + i02] = mods(tl — t2, p);
}
for(k = 0; k < (ts & tmask); k++)

{
linel = (1 << (—1)) + (k<<j);
line2 =linel + (1 << (j—1)) — 1;
step =N >> (j — 1);
betaz = step >> 1;

for(n = 0; n < (unsigned int)(1 << (j — 2)); n++)

188

t1 = mods((vec[linel] % bl[betaz]) + (vec[line2] % b2[betaz|), p);
t2 = mods((vec|linel] x b2[betaz]) — (vec[line2] x bl[betaz]), p);
vec[linel ++] = t1;
vec[line2 ——] = t2;

betaz += step;

}
}
for(k =j; k < 2; k++)
{
betaz = N >> 1;
for(n =1;n < N; n += 2)
vec[n] = mods(vec[n] x b2[betaz], p);
}
i = i02;
02 >>=1;
ts <<= 1;

for(j =0;j <N;j++)

vec[j] = mods(vec[j] * sn, p);

bitrevorder (vec, log2N);

189

A. RADIX-2 GNMNT ALGORITHMS

Listing A.6: Radix-2 O?NMNT (DIT)

// Forward and Inverse Radix—2 O2NMNT (DIT)

void o2nmnt(unsigned long long xoldvec, unsigned long long xvec,
unsigned long long *bl, unsigned long long *b2,
unsigned long long *xel, unsigned long long *e2,

unsigned long long inverse)

unsigned int i, j, k, n, io2, ts, tmask, linel, line2, betaz, step;
unsigned int log2N, p;
long long t1, t2;

i=2;
i02 = 1;
ts =N >> 1;

tmask = ts — 1;
betaz = N >> 1;
linel = 0;
line2 = 1;

for(n =0; n < N; n++)

vec[n] = oldvec[n];

bitrevorder (vec, log2N);

for(j =1; j <=1og2N; j++)
{
for(k = j; k < 2; k++)
for(n =1;n < N;n += 2)

{
vec[n] = mods(vec[n] x b2[betaz], p);
}
for(k = 0; k < (ts & tmask); k++)

{
linel = (1<<(j—1)) + (k<<j);
line2 =linel + (1 << (j—1)) — 1;
step =N >> (j — 1);

190

betaz = step >> 1;

for(n=0;n < ((1 << (j — 2))); n++)

{
t1 = mods((vec[linel] % bl[betaz]) + (vec[line2] * b2[betaz]), p);
t2 = mods((vec[linel] x b2[betaz]) — (vec[line2] * bllbetaz]), p);
vec[linel | = t1;
vec[line2 | = t2;
linel ++;
line2 ——;
betaz += step;
}

}
for(k =0; k < N; k +=1i)
for(n = 0; n < i02; n++)

{
t1 = veclk + nJ;
t2 = veclk + n + i02];
vec[k + n] = mods(tl + t2, p);
vec[k + n + i02] = mods(t1 — t2, p);
}
02 = i;
i <<=1;
ts >>=1;
¥
linel = 0;
line2 =N — 1;

for(n=0;n < (N >>1); nt++)

{
t1 = mods((vec[linel] % el[linel|) + (vec[line2] * e2[linel]), p);
t2 = mods((vec[line2] x el[line2]) + (vec[linel] * e2[line2]), p);
vec[linel] = t1;
vec[line2| = t2;
linel ++;
line2 ——;

}

191

A. RADIX-2 GNMNT ALGORITHMS

for(j =0;j <N;j++)

vec[j] = mods(vec[j] * inverse, p);

192

Appendix B

Parallel GNMNT Algorithms

Listing B.1: OpenCL GPGPU Code for Exhaustive GNMNT Assessment

#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable

#define LOCK(a) atom_cmpxchg(a, 0, 1)
#define UNLOCK(a) atom_xchg(a, 0)

#define DATA SIZE 144
#define STORE DATA SIZE * 6
#define MP 31

#define BITS 5

#define SCALE 4

#define b18x50 1
#define b18x51 27
#define b18x52 0
#define b18x53 4
#define b28x50 0
#define b28x51 4
#define b28x52 30
#define b28x53 4

#define b108x50 1

#define b108x51 18
#define b108x52 27
#define b108x53 24

193

B. PARALLEL GNMNT ALGORITHMS

#define b208x50 0
#define b208x51 7
#define b208x52 4
#define b208x53 13

#define b10S8x50 5

#define b10S8x51 20
#define b10S8x52 2

#define b10S8x53 21
#define b20S8x50 10
#define b20S8x51 29
#define b20S8x52 11
#define b20S8x5H3 26

uint mod]1(uint input)

{
__private uint output;
output = input & MP;
output = (output != MP) ? output : 0;
output += ((input >> BITS) & MP);
return((output + ((output < MP) 7 0: 1)) & MP);
}

uint2 mod2(uint2 input)

{

__private uint2 output;

output = input & MP;

output = (output != MP) ? output : 0;

output += ((input >> BITS) & MP);

return ((output + ((output < MP) ? (uint)0 : (uint)1)) & MP);
}

uint3 mod3(uint3 input)

{

194

return (uint3)(mod2(input.s01), mod1(input.s2));

uint4 ~ mod4(uint4 input)

{

return (uint4)(mod2(input.s01), mod2(input.s23));

uint8 mod8(uint8 input)

{

return (uint8)(mod2(input.s01), mod2(input.s23), mod2(input.s45), mod2(input.s67));

uint8 nmnt(uint8 stage)
{
__private uint4 temp;

__private uint2 temp2;

stage = stage.s04261537;

// Stage 1

temp = stage.s1357;

stage.s1357 = mod4(((uint4)stage.s0246 + (uint4)MP — (uint4)temp));

stage.s0246 = mod4(((uint4)stage.s0246 + (uint4)temp));

// Stage 2a

temp2 = mod2(mul24((uint2)stage.s37, (uint2)(MP — b18x52, MP — b18x52)));

stage.s37 = mod2(mad24((uint2)stage.s37, (uint2)(b28x52), (uint2)temp2));

// Stage 2b

temp = (uint4)stage.s2367;

stage.s2367 = mod4(((uint4)stage.s0145 + (uint4)MP — (uint4)temp));

stage.s0145 = mod4(((uint4)stage.s0145 + (uint4)temp));

// Stage 3a

stage.sb67 = mod3(mad24((uint3)stage.s765, (uint3)(b28x51, b28x52, b28x53), \
mod3(mul24((uint3)stage.sh67, \
(uint3) (b18x51, MP — b18x52, b18x53))))):;

// Stage 3b

temp = (uint4)stage.s4567;

195

B. PARALLEL GNMNT ALGORITHMS

stage.s4567 = mod4(((uint4)stage.s0123 + (uint4)MP — (uint4)temp));
stage.s0123 = mod4(((uint4)stage.s0123 + (uint4)temp));

return stage;

uint8 inmnt(uint8 stage)

{

stage = nmnt(stage);
stage = mod8((stage * (uint8)(SCALE)));

return stage;

uint8 onmnt(uint8 stage)

{

__private uint4 temp;

// ONMNT (DIT)

// Bit Reverse

stage = stage.s04261537;

// Stage la

stage.s1357 = mod4(mul24(stage.s1357, (uint4)(30)));

// Stage 1b

temp = stage.s1357;

stage.s1357 = mod4((stage.s0246 — temp + MP));

stage.s0246 = mod4((stage.s0246 + temp));

// Stage 2a

temp = mod4(mul24(stage.s2367, (uint4)(b108x52, MP — b108x52, \
b108x52, MP — b108x52)));

stage.s2367 = mod4(mad24(stage.s3276, (uint4)(b208x52), temp));

// Stage 2b

temp = stage.s2367;

stage.s2367 = mod4((stage.s0145 — temp + MP));

stage.s0145 = mod4((stage.s0145 + temp));

// Stage 3a

temp = mod4(mul24(stage.s4567, (uint4)(b108x51, b108x53, MP — b108x53, \

MP — b108x51)));

196

stage.s4567 = mod4(mad24(stage.s7654, \
(uint4) (b208x51, b208x53, b208x53, b208x51), temp));
// Stage 3b
temp = stage.s4567;
stage.s4567 = mod4((stage.s0123 — temp + MP));
stage.s0123 = mod4((stage.s0123 + temp));

return stage;

uint8 ionmnt(uint8 stage)

{

__private uint4d temp;

// iONMNT (DIF)
// Stage 3b
temp = stage.s4567;
stage.s4567 = mod4((stage.s0123 — temp + MP));
stage.s0123 = mod4((stage.s0123 + temp));
// Stage 3a
temp = mod4(mul24(stage.s4567, (uint4)(b108x51, b108x53, \

MP — b108x53, MP — b108x51)));
stage.s4567 = mod4(mad24(stage.s7654, \

(uint4) (b208x51, b208x53, b208x53, b208x51), temp));
// Stage 2b
temp = stage.s2367,;
stage.s2367 = mod4((stage.s0145 — temp + MP));
stage.s0145 = mod4((stage.s0145 + temp));
// Stage 2a
temp = mod4(mul24(stage.s2367, (uint4)(b108x52, MP — b108x52, \
b108x52, MP — b108x52)));

stage.s2367 = mod4(mad24(stage.s3276, (uint4)(b208x52), temp));
// Stage 1b
temp = stage.s1357;
stage.s1357 = mod4((stage.s0246 — temp + MP));
stage.s0246 = mod4((stage.s0246 + temp));
// Stage la

197

B. PARALLEL GNMNT ALGORITHMS

stage.s1357 = mod4(mul24(stage.s1357, (uint4)(30)));
// Bit Reverse

stage = stage.s04261537,

// Scale

stage = mod8((stage * (uint8)(SCALE)));

return stage;

uint8 osnmnt(uint8 stage)

{

__private uint4 temp, tempa, tempb;

// OSNMNT
// Bit Reverse
stage = stage.s04261537;
// Stage la
stage.s1357 = mod4(mul24(stage.s1357, (uint4)(30)));
// Stage 1b
temp = stage.s1357;
stage.s1357 = mod4((stage.s0246 — temp + MP));
stage.s0246 = mod4((stage.s0246 + temp));
// Stage 2a
temp = mod4(mul24(stage.s2367, (uint4)(b108x52, MP — b108x52, \
b108x52, MP — b108x52)));
stage.s2367 = mod4(mad24(stage.s3276, (uint4)(b208x52), temp));
// Stage 2b
temp = stage.s2367;
stage.s2367 = mod4((stage.s0145 — temp + MP));
stage.s0145 = mod4((stage.s0145 + temp));
// Stage 3a
temp = mod4(mul24(stage.s4567, (uint4)(b108x51, b108x53, \
MP — b108x53, MP — b108x51)));
stage.s4567 = mod4(mad24(stage.s7654, (uint4)(b208x51, b208x53, \
b208x53, b208x51), temp));
// Stage 3b
temp = stage.s4567;

198

stage.s4567 = mod4((stage.s0123 — temp + MP));
stage.s0123 = mod4((stage.s0123 + temp));
// Convert ONMNT to OSNMNT
temp = stage.s7654;
tempa = mod4(mul24(stage.s0123, (uint4)(b10S8x50, b10S8x51, \
b10S8x52, b10S8x53))):
tempb = mod4(mul24(stage.s7654, (uint4)(MP — b10S8x50, MP — b10S8x51, \
MP — b10S8x52, MP — b10S8x53)));
stage.s7654 = mod4(mad24(stage.s0123, (uint4)(b20S8x50, b20S8x51, \
b20S8x52, b20S8x53), tempb));
stage.s0123 = mod4(mad24(temp, (uint4)(b20S8x50, b20S8x51, \
b208S8x52, b20S8x53), tempa));

return stage;

uint8 iosnmnt(uint8 stage)

{

stage = osnmnt(stage);
stage = mod8((stage * (uint8)(SCALE)));

return stage;

void latInc(-_local uint xsource, uint data)

{

if (data & 16 == 16)
atomic_inc(source);

if (data & 8 == 8)
atomic_inc(source + 1);

if (data & 4 == 4)
atomic_inc(source + 2);

if (data & 2 == 2)
atomic_inc(source + 3);

if (data & 1 == 1)

atomic_inc(source + 4);

199

B. PARALLEL GNMNT ALGORITHMS

void atomicStat(__local uint xsource, uint8 data, uint8 diffAbs, uint data2)

{
atomic_add(source, data.s0);

)

atomic_add(source + 1, data.sl

atomic_add(source + 2, data.s2);

9

atomic_add(source + 5, data.sb);

atomic_add(source + 6, data.s6);

(

()

()
atomic_add(source + 3, data.s3)
atomic_add(source + 4, data.s4);

()

()

()

atomic_add(source + 7, data.s7);
atomic_inc(source + 8 + data.s0);

atomic_inc(source + 14 + data.s1);
atomic_inc(source + 20 + data.s2);
atomic_inc(source + 26 + data.s3);
atomic_inc(source + 32 + data.s4);
atomic_inc(source + 38 + data.s5);
()
()

atomic_inc(source + 44 4 data.s6);

atomic_inc(source + 50 + data.s7);
atomic_inc(source 4+ 56 + data2);

latInc (source + 97, diffAbs.s0);
latInc (source + 102, diffAbs.sl);

latInc (source + 107, diffAbs.s2

)

3);
4);
5);
6);

7);

latInc (source + 112, diffAbs.

latInc (source + 122, diffAbs.

(

(

(

(

latInc (source + 117, diffAbs.

(

latInc (source + 127, diffAbs.
(

s
s
s
s
s

latInc (source + 132, diffAbs.s

__kernel void gnmntAvN8p5(__constant uint *inVec,
__global uint kxoutBuffer,
__local uint xdataStore,

__local uint *eVal,

200

_local uint xbitVal)

__private uint8 in, stage, domain, diffAbs, diff;

_private uint lid = get_local_id (0);

__private uint gid = get_group_id(0);

__private uint gbl = get_global_id (0);

__private uint V;

_private uint transform; // 0 — NMNT, 1 — ONMNT, 2 — OSNMNT

__private uint e0, el;

__private uchar ill 5
__private uchar length;

__private uchar dolnv;

if(lid ==0) // Setup Local Variables

{
for(y = 0; y < STORE; y++)
dataStore[y] = 0;
for(y = 0; y < 40; y++)

{
eVally] =y /5;
bitVal[y] =1 << (4 — (y % 5));

if ((gid < 744) || (lid < 31))
{

barrier (CLK_LOCAL_MEM _FENCE);

dolnv = 0;

in = vload8(0, inVec);

201

B. PARALLEL GNMNT ALGORITHMS

// Translate vector course

// range 0 to 961 or 10 bits worth

in.s2 = mod1(gbl);
gbl = (gbl — in.s2) / MP;
in.s3 = mod1(ghl);
gbl = (gbl — in.s3) / MP;
in.s4 = mod1(gbl);

el = 0;

while(el < 31)
{
// Translate vector medium
in.sl = el;
el = 0;
while(e0 < 31)
{
// Translate vector fine

in.s0 = e0;

transform = 3;
while(transform > 0)
{
transform——;
stage = in;

switch((transform << 1) | dolnv)

{
case 0:
// NMNT
stage = nmnt(stage);
break;
case 1:
// iINMNT

stage = inmnt(stage);

break;

202

case 2:
// ONMNT (DIT)
stage = onmnt(stage);
break;

case 3:
// iIONMNT (DIF)
stage = ionmnt(stage);
break;

case 4:
// OSNMNT
stage = osnmnt(stage);
break;

case O
// iOSNMNT
stage = losnmnt(stage);
break;

default :
break;

domain = stage;
length = 40;
while(length > 0)
{

length——;

stage = domain;

switch(eVal[length])

{

case T:
stage.s0 "= bitVal[length];
ill =1 — (stage.s0 = MP);
break;

case 6:

stage.sl "= bitVal[length];
ill =1 — (stage.sl != MP);
break;

203

B. PARALLEL GNMNT ALGORITHMS

case b:
stage.s2 "= bitVal[length];
ill =1 — (stage.s2 = MP);
break;

case 4:
stage.s3 "= bitVal[length |;
ill =1 — (stage.s3 |= MP);
break;

case 3:
stage.s4 "= bitVal[length |;
ill =1 — (stage.s4 |= MP);
break;

case 2:
stage.sb "= bitVal[length];
ill =1 — (stage.sb != MP);
break;

case 1:
stage.s6 “= bitVal[length|;
ill =1 — (stage.s6 = MP);
break;

case 0:
stage.s7 "= bitVal[length];
ill =1 — (stage.s7 |= MP);
break;

default :
break;

switch((transform << 1) | dolnv)

{
case 0:
// iINMNT
stage = inmnt(stage);
break;
case 1:
// NMNT

204

¥
}
e0++;
¥
el++;

stage = nmnt(stage);
break;

case 2:
// iIONMNT (DIF)
stage = ionmnt(stage);
break;

case 3:
// ONMNT (DIT)
stage = onmnt(stage);
break;

case 4:
// iIOSNMNT
stage = iosnmnt(stage);
break;

case d:
// OSNMNT
stage = osnmnt(stage);
break;

default:
break;

diffAbs = stage ~ in;
diff = popcount(diffAbs);

atomicStat(&dataStore[(((transform << 1) | ill) = \
DATA SIZE)], diff, diffAbs, diff .s0 + diff.sl + \
diff .s2 + diff .83 + diff .s4 + \
diff .s5 + diff.s6 + diff.s7);

205

B. PARALLEL GNMNT ALGORITHMS

barrier (CLK_LOCAL_MEM_FENCE);

if (lid == 0)
{
gid x= STORE;
for(y = 0; y < STORE; y++)
outBuffer[gid + y] = dataStore[y];

206

References

1]

A. Wagan, B. Mughal, and H. Hasbullah, “VANET Security Framework for
Trusted Grouping Using TPM Hardware,” in Communication Software and
Networks, 2010. ICCSN ’10. Second International Conference on, February
2010.

Will Coldwell, The Independent, “The 10 Best Smart
Watches,” Internet: http://www.independent.co.uk/life-style/fashion/
features/the-10-best-smart-watches-8854593.html, October 2013, [5th July
2014].

Jeremy Hsu, IEEE Spectrum Magazine, “How Google
Glass Can Improve ATM Banking Security,” Internet:
http://spectrum.ieee.org/tech-talk /consumer-electronics/gadgets/
how-google-glass-can-improve-atm-banking-security, ~March 2014, [5th
July 2014].

J. Rivera and R. van der Meulen, “Gartner Says the Internet of Things
Installed Base Will Grow to 26 Billion Units By 2020,” Internet: http:
//www.gartner.com/newsroom/id /2636073, December 2013, [5th July 2014].

Announcing the Advanced Encryption Standard (AES), National Institue of
Standards and Technology, 2001.

S. Boussakta and A. G. J. Holt, “Filtering Employing a New Transform,” in
OCFEANS °94. ’Oceans Engineering for Today’s Technology and Tomorrow’s
Preservation.’ Proceedings, vol. 1, Sep 1994, pp. 1/547-1/553 vol.1.

S. Boussakta and A. Holt, “New Transform Using the Mersenne Numbers,”
Vision, Image and Signal Processing, IFE Proceedings, vol. 142, no. 6, pp.
381-388, Dec 1995.

207

REFERENCES

8]

[10]

[11]

[15]

[16]

[18]

S. Boussakta, M. Hamood, and N. Rutter, “Generalized New Mersenne

7

Number Transforms,” Signal Processing, IEEE Transactions on, vol. 60,

no. H, pp. 26402647, May 2012.

R. Agarwal and C. Burrus, “Fast Convolution Using Fermat Number
Transforms with Applications to Digital Filtering,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 22, no. 2, pp. 87-97, 1974.

C. M. Rader, “Discrete Convolutions via Mersenne Transforms,” IEEE Trans.

Comput., vol. C-21, pp. 1269-1273, 1972.

M.T. Hamood, “Development of Efficient Algorithms for Fast Computation
of Discrete Transforms,” Ph.D. Thesis, School of Electrical, Electronic and

Computer Engineering, Newcastle University, 2012.

C. E. Shannon, “Communication Theory of Secrecy Systems,” Bell System

Technical Journal, vol. 28, no. 4, pp. 656-715, 1949.

H. Feistel, “Cryptography and Computer Privacy,” Scientific American, vol.
228, no. 5, pp. 1523, 1973.

A. F. Webster and S. E. Tavares, “On the Design of S-Boxes,” in Advances
in Cryptology CRYPTO 2003, ser. Lecture Notes in Computer Science, vol.
218. London, UK, UK: Springer-Verlag, 1986, pp. 523-534.

Advanced Micro Devices, Inc., “OpenCL Zone, AMD Developer Central,”
Internet: http://developer.amd.com/tools-and-sdks/opencl-zone/, April
2014, [18th April 2014].

NVIDIA Corporation, “CUDA Parallel Computing, GPU Computing
on the CUDA Architecture,” Internet: http://www.nvidia.co.uk/object/
cuda-parallel-computing-uk.html, April 2014, [18th April 2014].

Groupe Speciale Mobile Association (GSMA), “Understanding 7 Billion:
Counting Connections and People,” Internet: http://www.gsma.com/
newsroom /understanding-7-billion-counting-connections-and-people/, April

2014, [12th June 2014].

United States Census Bureau, “World Population - Total Midyear Population
for the World: 1950-2050,” Internet: http://www.census.gov/population/

208

REFERENCES

[20]

[21]

[22]

[26]

[27]

28]

international /data/worldpop/table_population.php, December 2013, [20th
May 2014).

Samsung, “Samsung Heart Rate Monitor Band,” Internet:
http://www.samsung.com/uk/consumer/mobile-devices/smartphones/
smartphone-accessories/ EI-HHIONNBEGWW, August 2014, [6th August
2014].

Symantec, “Security Response: How Safe Is Your
Quantified Self? Tracking, Monitoring, and Wearable
Tech.” Internet: http://http://www.symantec.com/connect/blogs/

how-safe-your-quantified-self-tracking-monitoring-and-wearable-tech, July

2014, [6th August 2014].

Sophos, “TJ Maxx Retail Giant Admits Hackers Stole 45 Million Credit
Card Details,” Internet: http://www.sophos.com/pressoffice/news/articles/
2007/03/tjx.html, March 2007, [19th January 2011].

——, “Millions of British Families at Risk of Identity Theft After HMRC Data
Loss, Sophos offers advice,” Internet: http://www.sophos.com/pressoffice/
news/articles/2007/11/hmre-id-theft.html, November 2007, [19th January
2011].

H. M. Government, “Data Protection Act 1998,” The Crown, Tech. Rep.,
1998.

Microsoft, “OneDrive,” Internet: https://onedrive.live.com/about/en-gh/,
August 2014, [6th August 2014].

Google, “Google Drive,” Internet: https://www.google.com/intl/en/drive/,
August 2014, [6th August 2014].

Dropbox, “Dropbox,” Internet: https://www.dropbox.com/, August 2014,
[6th August 2014].

JustCloud, “JustCloud,” Internet: http://www.justcloud.com/, August 2014,
[6th August 2014].

ZipCloud, “ZipCloud,” Internet: http://www.zipcloud.com/, August 2014,
[6th August 2014].

209

REFERENCES

[29]

[30]

[31]

32]

[33]

[36]

[37]

David Selinger (Forbes), “Big Data: Getting Ready for the 2013
Big Bang,” Internet: http://www.forbes.com/sites/ciocentral/2013/01/15/
big-data-get-ready-for-the-2013-big-bang/, January 2013, [9th April 2014].

Charles McLellan (ZDNet), “Storage in 2014: An Overview,” Internet: http:
//www.zdnet.com/storage-in-2014-an-overview-7000024712/, January 2014,
[11th May, 2014].

Mike Lynch (BBC), “Data Wars: Unlocking the Information Goldmine,”
Internet: http://www.bbc.co.uk/news/business-17682304, April 2012, [9th
April 2014].

S. C. Mukhopadhyay, Ed., Internet of Things: Challenges and Opportunities.
Springer, 2014.

Cisco Systems Inc., “Cisco Visual Networking Index: Global Mobile
Data Traffic Forecast Update,” Internet: http://www.cisco.com/c/
en/us/solutions/collateral /service-provider /visual-networking-index-vni/

white_paper_c11-520862.pdf, February 2014, [11th May, 2014].
P. Calvocoressi, Top Secret Ultra. Knopf Doubleday Publishing Group, 1981.

BBC, originally Jim Finkle (Reuters), “Russia Gang Hacks 1.2
Billion Usernames and Passwords,” Internet: http://www.bbc.co.uk/news/

technology-28654613, August 2014, [6th August 2014].

S. Singh, The Code Book: How to Make it, Break it, Hack it, Crack it.
Delacorte Press, 2001.

——, The Code Book: The Evolution of Secrecy from Mary Queen of Scots to

Quantum Cryptography. First Anchor Books, 2000.

R. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems,” Communications of the ACM,
vol. 21, pp. 120-126, 1978.

A. Bogdanowicz, “Cryptography Breakthrough Is 100th Milestone: Public-key
cryptography receives its due,” The Institute, the IEEE News Source, 2010.

210

REFERENCES

[40]

[41]

[42]

[43]

[44]

National Security Agency, “The Case for Elliptic Curve
Cryptography,” Internet: http://www.nsa.gov/business/programs/elliptic_
curve.shtml, January 2009, [6th August 2014].

L. Adleman, “A Subexponential Algorithm for the Discrete Logarithm
Problem with Applications to Cryptography,” in Foundations of Computer
Science, 1979., 20th Annual Symposium on, Oct 1979, pp. 55-60.

W. Diffie and M. E. Hellman, “New Directions in Cryptography,” [EFEE
Trans on Inf. Theory, vol. 22, no. 6, pp. 644-654, November 1976.

R. Rivest, A. Shamir, and L. Adleman, “Cryptographic Communications
System and Method,” Sep. 20 1983, US Patent 4,405,829. [Online]. Available:
http://www.google.com /patents/US4405829

T. ElGamal, “A Public-Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms,” IEEE Trans on Inf. Theory, vol. 31, no. 4, pp.
469-472, July 1985.

V. S. Miller, “Use of Elliptic Curves in Cryptography,” Advances in
Cryptology, vol. 218, pp. 417-426, 1985.

2

N. Koblitz, “Elliptic Curve Cryptosystems,
vol. 48, pp. 203-209, 1987.

Mathematics of Computation,

NIST, “Recommended Elliptic Curves for Federal Government Use,” National
Institue of Standards and Technology, Tech. Rep., July 1999.

Glenn Greenwald (The Guardian, “Revealed: How US and UK Spy Agencies
Defeat Internet Privacy and Security,” Internet: http://www.theguardian.
com/world /2013 /sep/05 /nsa-gchg-encryption-codes-security, September
2013, [6th August 2014].

Nicole Perlroth et al. (The New York Times), “N.S.A. Able to Foil Basic
Safeguards of Privacy on Web,” Internet: http://www.nytimes.com/2013/
09/06/us/nsa-foils-much-internet-encryption.html?pagewanted=1& r=1&,
September 2013, [6th August 2014].

211

REFERENCES

[50]

[51]

[52]

[54]

[55]

[56]

[57]

[58]

Entrust, “Zero to Dual_EC_DRBG in 30 minutes,” Internet:
http://www.entrust.com/wp-content /uploads/2014/02/WP _Zero-to-Dual
EC_DRBG_April2014.pdf, April 2014, [6th August 2014].

Jennifer Huergo (NIST), “NIST Removes Cryptography Algorithm from
Random Number Generator Recommendations,” Internet: http://www.nist.

gov/itl/csd/sp800-90-042114.cfm, April 2014, [6th August 2014].

Kim Zetter (WIRED, ¢“RSA Tells Its Developer Customers: Stop
Using NSA-Linked Algorithm,” Internet: http://www.wired.com/2013/09/
rsa-advisory-nsa-algorithm/, September 2013, [6th August 2014].

Lucian Constantin (PC Workd), “Silent Circle
ditches NIST cryptographic standards to thwart NSA
spying,” Internet: http://www.pcworld.com/article/2051380/
silent-circle-moves-away-from-nist-cryptographic-standards-cites-uncertainty.

html, October 2013, [6th August 2014].

SafeCurves, “SafeCurves: Choosing Safe Curves for Elliptic-Curve
Cryptography,” Internet: http://safecurves.cr.yp.to/, January 2014, [6th
August 2014].

M. Briceno, I. Goldverg, and D. Wagner, “A Pedagogical Implementation of
the GSM A5/1 and A5/2 Voice Privacy Encryption Algorithms,” Internet:
Availableonlineathttp://cryptome.org/gsm-a512.htm, October 1999, [5th July
2014).

National Institute of Standards and Technology (NIST), “Announcing Draft
Federal Information Processing Standard (FIPS) 46-3, Data Encryption
Standard (DES), and Request for Comments,” Internet: http://csrc.nist.gov/
groups/STM /cavp/documents/des/fr990115.htm, January 1999, [4th July
2014].

V. T. Hoang and P. Rogaway, “On Generalized Feistel Networks,” in Advances
in Cryptology CRYPTO 2010, ser. Lecture Notes in Computer Science, vol.
6223. Springer-Verlag, 2010, pp. 613-630.

D. Sharmila and R. Neelaveni, “A Proposed SAFER Plus Security
Algorithm Using Fast Walsh Hadamard Transform for Bluetooth Technology,”

212

REFERENCES

[59]

[60]

[61]

[64]

[65]

International Journal of Wireless €& Mobile Networks (IJWMN), vol. 1, no.
80-88, November 2009.

J. L. Massey, G. H. Khachatrian, and M. K. Kuregian, “SAFER+ Cylink
Corporations Submission for the Advanced Encryption Standard,” in First

AES Candidate Conference (AES1), August 1998, [6th August 2014].

R. L. Rivest, M. Robshaw, R. Sidney, and Y. Yin, “The RC6 Block Cipher,”
Internet: http://people.csail.mit.edu/rivest/pubs/RRSY98.pdf, August 1998,
[4th July 2014].

X. B. Yang, S. Boussakta, M. Al-Gailani, and R. Ngadiran, “A New
Development of Cryptosystem Using New Mersenne Number Transform,” in
Communication Systems Networks and Digital Signal Processing (CSNDSP),
2010 7th International Symposium on, 2010, pp. 701-705.

Federal Information Processing Standards, “Data Encryption Standard
(DES),” Intenet: http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf,
October 1999, [4th July 2014].

D. E. Denning, “The Data Encryption Standard - Fifteen Years of Public
Scrutiny,” in Proceedings of the Sizth Annual Computer Security Applications
Conference. TEEE Computer Society, December 1990.

E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption
Standard. London, UK, UK: Springer-Verlag, 1993.

M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” in
Workshop on the Theory and Application of Cryptographic Techniques
on Advances in Cryptology, ser. EUROCRYPT ’93. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 1994, pp. 386-397,
http://dl.acm.org/citation.cfm?id=188307.188366.

[66) ——, “The First Experimental Cryptanalysis of the Data Encryption

Standard,” in Advances in Cryptology CRYPTO 94, ser. Lecture Notes

in Computer Science, vol. 839. Springer-Verlag, 1994, pp. 1-11.

213

REFERENCES

[67]

[68]

[69]

[70]

[71]

73]

[74]

D. Coppersmith, “The Data Encryption Standard (DES) and its Strength
Against Attacks,” IBM Journal of Research and Development, vol. 38, no. 3,
pp- 243-250, May 1994.

DESCHALL (Press Release), “Internet Linked Computers Challenge Data
Encryption Standard,” Internet: https://archive.today/72SUJ, June 1997,
[4th July 2014].

Distributed.Net (Press Release), “Secure Encryption Challenged by
Internet,” Internet: http://www.distributed.net/images/d/da/19980223_-_
PR_-_DES2-1.pdf, February 1998, [21st January 2011].

Electronic Frontier Foundation (Press Release), “EFF DES Cracker Machine
Brings Honesty to Crypto Debate: Electronic Frontier Foundation Proves
that DES is not Secure,” Internet: http://w2.eff.org/Privacy/Crypto/Crypto-
misc/DESCracker/HTML /19980716 _eff_descracker_pressrel.html, July 1998,
[21st January 2011].

RSA Laboratories (Questions and Answers), “Historical: Cryptographic
challenges: Des challenge iii,” Internet: http://www.emc.com/emc-plus/

rsa-labs/historical /des-challenge-iii.htm, January 1999, [4th July 2014].

National Institute of Standards and Technology, “Announcing Development
of a Federal Information Processing Standard for Advanced Encryption,”
Internet: http://csre.nist.gov/archive/aes/pre-roundl/aes_ 9701.txt, January
1997, [4th July 2014].

J. Nechvatal, E. Barker, D. Dodson, M. Dworkin, J. Foti, and E. Roback,
“Status Report on the First Round of the Development of the Advaned

Encryption Standard,” National Institute of Standards and Technology, Tech.
Rep., 1997.

C. C. Burwick, D. Coppersmith, E. DAvignon, R. Gennaro,
S. Halevi, C. Jutla, S. M. M. Jr., L. OConnor, M. Peyravian,
D. Safford, and N. Zunic, “MARS - a candidate cipher for
AES,” Internet: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
35.6084&rep=repl&type=pdf, September 1999, [4th July 2014].

214

REFERENCES

[75]

[76]

[77]

(78]

[81]

[82]

[33]

J. Daemen and V. Rijmen, “AES Proposal: Rijndael (ammended),”
Internet: http://csre.nist.gov/archive/aes/rijndael /Rijndael-ammended.pdf,
September 1999, [4th July 2014].

R. Anderson, E. Biham, and L. Knudsen, “Serpent: A Proposal for the
Advanced Encryption Standard,” Internet: http://www.cl.cam.ac.uk/~rjald/
Papers/serpent.pdf, June 1998, [4th July 2014].

B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall, and N. Ferguson,
“Twofish: A 128-Bit Block Cipher,” Internet: https://www.schneier.com/
paper-twofish-paper.pdf, June 1998, [4th July 2014].

National Institute of Standards and Technology, “The Third Advanced
Encryption Standard Candidate Conference,” in AES A Crypto Algorithm
for the 21st Century, April 2000.

Miles Smid, CygnaCom Solutions, “AES Round 2 Comments,” Internet: http:
//csre.nist.gov /archive/aes/round2/comments/20000523-msmid-2.pdf, May
2000, [4th July 2014].

National Institute of Standards and Technology (NIST), “Federal Information
Processing Standards (FIPS) Publication 197 Announcing the Advanced
Encryption Standard (AES),” Internet: http://csrc.nist.gov/publications/
fips/fips197 /fips-197.pdf, November 2001, [20th January 2011].

Bruce Schneier (Schneier on Security), “Another New AES Attack,”
Internet: https://www.schneier.com/blog/archives/2009/07 /another new_
aes.html, July 2009, [17th August 2010].

Morris Dworkin (NIST), “Recommendation for Block Cipher Modes of
Operation: Methods and Techniques, Special Publication 800-38A,” National
Institue of Standards and Technology, Tech. Rep., December 2001.

——, “Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication, Special Publication 800-38B,” National Institue of
Standards and Technology, Tech. Rep., May 2005.

215

REFERENCES

[84]

[85]

[36]

[87]

[90]

[91]

[92]

——, “Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality, Special Publication 800-38C,”
National Institue of Standards and Technology, Tech. Rep., July 2007.

——, “Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC, Special Publication 800-38D,”
National Institue of Standards and Technology, Tech. Rep., November 2007.

——, “Recommendation for Block Cipher Modes of Operation: The XTS-AES
Mode for Confidentiality on Storage Devices, Special Publication 800-38E,”

National Institue of Standards and Technology, Tech. Rep., January 2010.

R. Rivest, “The MD4 message digest algorithm,” in Advances in Cryptology -
Crypto “90, ser. Lecture Notes in Computer Science, vol. 537. Springer-Verlag,
1991, pp. 303-311.

——, “The MD5 Message-Digest Algorithm,” Internet Engineering Task
Force: Network Working Group, RFC 1321, April 1992.

National Institute of Standards and Technology (NIST), “Federal Information
Processing Standards (FIPS) Publication 180-4 Secure Hash Standard
(SHS),” Internet: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.
pdf, March 2012, [6th August 2014].

——, “Federal Information Processing Standards (FIPS) Publication Draft
202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output
Functions,” Internet: http://csre.nist.gov/publications/drafts/fips-202/fips_
202_draft.pdf, May 2014, [7th August 2014].

NVIDIA Corporation (Press Release), “New NVIDIA Computing
Architecture Enables Data Processing on the GPU for Next-Generation
Commercial Applications, Technical Computing, and Advanced Gaming,”
Internet: http://www.nvidia.com/object/I0_37226.html, November 2006,
[19th July 2014].

Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis, Evangelos
P. Markatos, and Sotiris loannidis, “Gnort: High Performance Network

Intrusion Detection Using Graphics Processors,” in Proceedings of the 11th

216

REFERENCES

(93]

[94]

[95]

[96]

[97]

[99]

[100]

[101]

International Symposium on Recent Advances in Intrusion Detection (RAID),

2008.

M. Schatz, C. Trapnell, A. Delcher, and A. Varshney, “High-Throughput
Sequence Alignment Using Graphics Processing Units,” BMC' Bioinformatics
8:474, 2007.

S. A. Manavski and G. Valle, “CUDA Compatible GPU Cards as Efficient
Hardware Accelerators for Smith-Waterman Sequence Alignment,” BMC

Bioinformatics 9, 2008.

Tony Smith (The Register), “AMD Ships Stream Chip and Coding Kit,”
Internet: http://www.theregister.co.uk/2006/11/14/amd_ships_ctm_ stream/,
November 2006, [19th July 2014].

Khronos, “Khronos Launches Heterogeneous Computing Initiative,” Internet:
http://www.khronos.org/news/press/2008/06, June 2008, [14th December
2012].

——, “The Khronos Group Releases OpenCL 1.0 Specification,”
Internet: http://www.khronos.org/news/press/2008/12, December 2008,
[14th December 2012].

Technologies, “The PlayStation 3 for High-Performance Scientific
Computing,” Internet: http://icl.cs.utk.edu/news_pub/submissions/c3tech.
pdf, May/June 2008, [20th August 2012].

Wired, “Astrophysicist Replaces Supercomputer with Eight PlayStation
3s,” Internet: http://www.wired.com/techbiz /it /news/2007/10/ps3_
supercomputer, October 2007, [20th August 2012].

CNET, “Say Goodbye to Linux on the PS3,” Internet: http://news.cnet.
com/8301-13506-3-10471356-17.html, March 2010, [20th August 2012].

Dan Goodwin, ars technica, “Risk Assessment / Security and
Hacktivism,” Internet: http://arstechnica.com/security /2012/12/
25-gpu-cluster-cracks-every-standard-windows-password-in-6-hours/,

December 2012, [10th December 2012].

217

REFERENCES

[102]

103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

Timothy Prickett Morgan (The Register), “Top 500 supers - The Dawning
of the GPUs,” Internet: http://www.theregister.co.uk/2010/05/31/top-500-
supers_jun2010/, May 2010, [12th December 2012].

O. Alshibami, S. Boussakta, and M. Aziz, “Fast Algorithm for the 2-D

Wi

New Mersenne Number Transform,” Signal Processing, vol. 81, no. 8, pp.

1725-1735, 2001.

S. Boussakta, O. Alshibami, and A. Bouridane, “Vector radix-4x4 for Fast
Calculation of the 2-D New Mersenne Number Transform,” Signal Processing,

pp. 2231-2244, 2004.

M. T. Hamood and S. Boussakta, “Efficient Algorithms for Computing the
New Mersenne Number Transform,” Digital Signal Processing, vol. 25, pp.

280-288, 2014.

S. Boussakta and A. G. J. Holt, “Number Theoretic Transforms and their
Applications in Image Processing,” Adv. Imag. Electron Phys., vol. 111, pp.
1-90, 1999.

S. Boussakta, O. Aziz, and A. Holt, “3-D Vector Radix Algorithm for the 3-D
New Mersenne Number Transform,” Vision, Image and Signal Processing,

vol. 148, no. 2, pp. 115-125, 2001, TEE Proceedings.

M. Aziz, D. McLernon, and S. Boussakta, “The Implementation of a New
3-D Parallel Filtering Algorithm on the SHARC ADSP21060 Platform,” in
Visual Information Engineering, VIE 2003, 2003, pp. 270-273.

X. B. Yang and S. Boussakta, “A New Development of Symmetric Key
Cryptosystem,” in International Conference on Communications. 1CC 08,

2008, pp. 1546-1550.

M. F. Al-Gailani and S. Boussakta, “Evaluation of One-Dimensional NMNT
for Security Applications,” in Communication Systems Networks and Digital
Signal Processing (CSNDSP), 2010 7th International Symposium on, 2010,
pp. 715-720.

218

REFERENCES

[111]

112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

——, “New Mersenne Number Transform Diffusion Power Analysis,”

American Journal of Engineering and Applied Sciences, vol. 4, pp. 461-469,
2011.

O. Alshibami, S. Boussakta, M. Aziz, and D. Xu, “Split-Radix Algorithm
for the New Mersenne Number Transform,” in The 7th IEEE International
Conference on FElectronics, Circuits and Systems, vol. 1. ICECS, 2000, pp.
583-586.

O. Nibouche, S. Boussakta, and M. Darnell, “Radix-4
Decimation-in-Frequency Algorithm for the New Mersenne Number
Transform,” in 10th IEEE International Conference on FElectronics, Circuits

and Systems, vol. 3. ICECS, Dec 2003, pp. 1133-1136.

——, “Pipeline Architectures for Radix-2 New Mersenne Number Transform,”
IEEE Trans. on Circuits and Systems, vol. 56, no. 8, pp. 1668-1680, Aug
2009.

S. Boussakta and M. T. Hamood, “Rader-Brenner Algorithm for Computing
New Mersenne Number Transform,” IEEE Trans. on Circuits and Systems,

vol. 58, no. 8, pp. 532-536, Aug 2011.

J. H. McClellen and C. M. Rader, Number Theory in Digital Signal Processing.
Prentice-Hall PTR, 1979.

S. A. Martucci, “Symmetric Convolution and the Discrete Sine and Cosine
Transforms,” IEEE Trans. Signal Process., vol. 42, no. 5, pp. 10381051,
1994.

S. Talhah, “Advanced Encryption Techniques Using New Mersenne Number
Transforms,” Ph.D. dissertation, School of Electronic and Electrical

Engineering: Leeds University, 2005.

N. Rutter, S. Boussakta, and A. Bystrov, “Assessment of the One-Dimensional
Generalized New Mersenne Number Transform for Security Systems,”
in Proceedings of the 77th IEEE Vehicular Technology Conference,
VTC Spring 2013, Dresden, Germany, June 2-5, 2013, pp. 1-5,
http://dx.doi.org/10.1109/VTCSpring.2013.6692461.

219

REFERENCES

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127)

[128]

J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation
of Complex Fourier Series,” Math. Comp., vol. 19, no. 90, pp. 297-301, 1965.

R. Bracewell, “The Fast Hartley Transform,” Proceedings of the IEEE, vol. 72,
no. 8, pp. 1010 — 1018, 1984.

Atmel Corporation, “Atmel AVR 8-bit Instruction Set,” Internet: http:
//www.atmel.com/images/atmel-0856-avr-instruction-set-manual.pdf, July

2014, [30th April 2015).

AMD Developer Central, “AMD Accelerated Parallel Processing
OpenCL Programming Guide (rev 2.3),” Internet;: http:
//developer.amd.com/wordpress/media/2013/07/AMD_Accelerated Parallel
Processing_OpenCL_Programming_Guide-rev-2.7.pdf, November 2013, [18th
July 2014].

R. Montoye, E. Hokenek, and S. Runyon, “Design of the IBM RISC
System /6000 floating-point execution unit,” IBM Journal of Research and
Development, vol. 34, no. 1, pp. 59-70, Jan 1990.

NVIDIA, “CUDA C Programming Guide (version 6),” Internet: http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/, February 2014, [18th
July 2014].

Intel, “Intel 64 and I[A-32 Architectures Optimization Reference
Manual,” Internet: http://www.intel.com/content/dam/www /public/us/en/

documents/manuals/64-ia-32-architectures-optimization-manual.pdf, March

2014, [18th July 2014].

Khronos OpenCL Working Group, “The OpenCL Specification (version 1.2
revision 19),” Internet: https://www.khronos.org/registry/cl/specs/opencl-1.
2.pdf, November 2012, [17th August 2013].

M. Flynn, “Some Computer Organizations and Their Effectiveness,”
Computers, IEEE Transactions on, vol. C-21, no. 9, pp. 948-960, Sept
1972.

220

REFERENCES

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Intel, “Datasheet: Embedded Pentium Processor with MMX Technology,”
Internet: http://download.intel.com/support/processors/pentiummmx/sb/

24318504.pdf, June 1997, [19th July 2014].

 — “Intel Many Integrated Core Architecture (Intel MIC
Architecture) - Advanced,” Internet: http://www.intel.co.uk/
content /www /uk/en/architecture-and-technology /many-integrated-core/

intel-many-integrated-core-architecture.html, June 2014, [18th July 2014].

D. Zhang, W.-K. Kong, J. You, and M. Wong, “Online Palmprint
Identification,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 25, no. 9, pp. 1041-1050, Sept 2003.

J-A. Lin and C.-S. Fuh, “2D Barcode Image Decoding,” Mathematical
Problems in Engineering, vol. 2013, p. 10, 2013.

A. A, Belal and M. A. Abdel-Gawad, “2D Encryption
Mode,” Internet: http://csrc.nist.gov/groups/ST /toolkit/BCM /documents/
proposedmodes/2dem /2dem-spec.pdf, March 2001, [8th August 2014].

M. Mohammed, S. Matilia, and L. Nozal, “Fast 2D Convolution Filter based
on Look Up Table FFT.” in Industrial Electronics, 1992., Proceedings of the
IEEE International Symposium on, vol. 1, May 1992, pp. 446-449.

S. Bouguezel, M. Ahmad, and M. Swamy, “A Split-Radix Algorithm for 2-D
DFT,” in Circuits and Systems, 2003. ISCAS °03. Proceedings of the 2003
International Symposium on, vol. 3, May 2003, pp. 698-701.

J. Daugman, “Complete discrete 2-D Gabor transforms by neural networks
for image analysis and compression,” Acoustics, Speech and Signal Processing,

IEEFE Transactions on, vol. 36, no. 7, pp. 1169-1179, Jul 1988.

J. L. Wu and S.-c. Pei, “The Vector Split-Radix Algorithm for 2D DHT)”
Signal Processing, IEEE Transactions on, vol. 41, no. 2, pp. 960-965, Feb
1993.

7

S. Boussakta and A. Holt, “New Separable Transform,” Vision, Image and

Signal Processing, IEE Proceedings, vol. 142, no. 1, pp. 27-30, Feb 1995.

221

REFERENCES

[139)]

[140]

141]

142]

[143]

[144]

[145]

[146]

[147)

148

M. Hamood, “Development of Efficient Algorithms for Fast Computation of
Discrete Transforms,” Ph.D. dissertation, School of Electrical, Electronic and

Computer Engineering, Newcastle University, 2012.

S. Kay and G. Lemay, “Edge Detection Using the Linear Model,” Acoustics,
Speech and Signal Processing, IEEE Transactions on, vol. 34, no. 5, pp.
1221-1227, Oct 1986.

O. Baruch, “Line Thinning by Line Following,” Pattern Recognition Letters,
vol. 8, no. 4, pp. 271 — 276, 1988.

F. Aloul, S. Zahidi, and W. El-Hajj, “Two Factor Authentication Using
Mobile Phones,” in Computer Systems and Applications, 2009. AICCSA
2009. IEEE/ACS International Conference on, May 2009, pp. 641-644.

J. Davis, “Two Factor Auth (2FA),” Internet: https://twofactorauth.org/,
December 2014, [4th December 2014].

FIPS197, Advanced Encryption Standard. Federal Information Processing
Standards Publication, 2001.

Intel, “Intel Core2 Duo Processor E8400,” Internet: http://ark.
intel.com/products/33910/Intel-Core2-Duo- Processor- E8400-6M-Cache-3_
00-GHz-1333-MHz-FSB, 2009, [13th December 2012].

PCSTATS, “Intel Core 2 Duo E8400 3.0GHz 1333MHz FSB Processor
Review,” Internet: http://www.pcstats.com/articleview.cfm?articleid=

2394&page=>5, May 2009, [13th December 2012].

Advanced Micro Devices, Inc., “AMD Radeon HD7970 GHz
Edition,” Internet: http://www.amd.com/us/products/desktop/graphics/
7000/7970ghz/Pages/radeon-7970GHz.aspx\#/3, 2012, [31st August 2012].

The Guru of 3D, “Radeon HD7970 GHz edition review,”
Internet;: http://www.gurudd.com/articles_pages/radeon_hd_7970_ghz_
edition_review,8.html, June 2012, [13th December 2012].

222

