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Abstract

Encryption is very much a vast subject covering myriad techniques to conceal

and safeguard data and communications. Of the techniques that are available,

methodologies that incorporate the number theoretic transforms (NTTs) have gained

recognition, specifically the new Mersenne number transform (NMNT). Recently, two

new transforms have been introduced that extend the NMNT to a new generalised

suite of transforms referred to as the generalised NMNT (GNMNT). These two

new transforms are termed the odd NMNT (ONMNT) and the odd-squared NMNT

(O2NMNT).

Being based on the Mersenne numbers, the GNMNTs are extremely versatile with

respect to vector lengths. The GNMNTs are also capable of being implemented

using fast algorithms, employing multiple and combinational radices over one or

more dimensions. Algorithms for both the decimation-in-time (DIT) and -frequency

(DIF) methodologies using radix-2, radix-4 and split-radix are presented, including

their respective complexity and performance analyses.

Whilst the original NMNT has seen a significant amount of research applied to it

with respect to encryption, the ONMNT and O2NMNT can utilise similar techniques

that are proven to show stronger characteristics when measured using established

methodologies defining diffusion. Analyses in diffusion using a small but reasonably

sized vector-space with the GNMNTs will be exhaustively assessed and a comparison

with the Rijndael cipher, the current advanced encryption standard (AES) algorithm,

will be presented that will confirm strong diffusion characteristics.

Implementation techniques using general-purpose computing on graphics processing

units (GPGPU) have been applied, which are further assessed and discussed. Focus

is drawn upon the future of cryptography and in particular cryptology, as a

consequence of the emergence and rapid progress of GPGPU and consumer based

parallel processing.
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Chapter 1

Introduction

1.1 Motivation

The perpetual evolution of technology continues to erode current encryption

algorithms owing to performance increases and evolving architectures. Universally,

more and more devices are being invented that rely upon the ability to communicate

wirelessly [1–4] to name but a few. Whilst there are methodologies in place to

help protect these devices from unauthorised access, this does not imply that

such methodologies and their underlying algorithms are infallible to breaches of

security. In fact, the strongest algorithm will always be a victim of its weakest

component, which for proven algorithms is invariably the user’s choice of password.

Unfortunately, there is no amount of research that is comparable to spending time

instructing the user of the importance of deriving and applying passwords that are

both robust and varied.

Historically, encryption was generally reserved for communications where

messages were to be either sent or broadcast across an unsecured channel. In

this instance, a channel can mean any medium, including transportation and

radio-wave. With the large amounts of data that companies began to accrue,

commercial encryption found its way into storage mediums that are accessible to

one or more individuals. Subsequently, this led to consumer-based encryption,

allowing the home user to encrypt files for their protection should a device be

lost or stolen. With the advance of the mobile phone revolution - where both

communications and storage are encrypted - the number of such online devices will

soon outnumber the world’s population, it can be said now that the requirement
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1. INTRODUCTION

for encryption is ubiquitous.

There are two aspects to protecting one’s communication and data: security

and cryptography. Whilst security follows a protocol that determines what goes

where, when and how, cryptographic algorithms that encrypt and decrypt provide

the methods of applying such security. An example of how the security aspect is

applied could be as simple as which algorithm to use when sending a key to decrypt

the data, or in writing policies that direct users how to derive new keys and how

frequently they should be derived (usually always) and, importantly, ensuring that

all keys are kept confidential. The encryption algorithm on the other hand, is

usually publically known and often heavily analysed, both ensuring and asserting

the robustness of such algorithms. The strongest algorithms have a completely

transparent architecture that neither hides secrets nor provides ‘back doors’ that

will offer a way to bypass the security and allow decryption without a valid key.

The current de facto algorithm for providing encryption and decryption is the

advanced encryption algorithm (AES), which has been in used since its ratification

in 2001 [5]. Since this time, despite numerous attacks and analyses directed at

this algorithm, it continues to show resilience. The obvious question is why should

alternatives be sought if the original AES has not yet been compromised? As

previously highlighted, the effects of new technology continue to diminish current

techniques, albeit at an exceedingly slow rate. Nevertheless, if a method is

discovered to break the algorithms that are currently in use, a requirement to

switch to backup algorithms would be precluded if no viable alternatives can be

readily accessed. In addition, with the ever increasing size of data that is retained

by both industry and the consumer, dependence in stronger methods that can

better serve to protect this data may be required in future.

There are many types of encryption algorithms, which are selected depending

on the task at hand. These types fall into two main categories: symmetric (private

key) and asymmetric (public key). Symmetric based encryption algorithms are

usually based upon stream or block ciphers, where speed is a major requirement

without sacrificing security. Such algorithms will use the same key to decrypt

as that used to encrypt. However, asymmetric based encryption algorithms are

usually derived through a mathematical problem where numbers (or keys) are

paired using a mathematical technique. While such techniques are extremely

resilient to attacks and analysis, they are notoriously slow in contrast to their
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symmetric counterparts. They do however offer unique functions such as signing

and key exchange operations.

1.2 Aims and Objectives of the Thesis

The aims and objectives of this work are to first analyse work that has previously

been undertaken in this subject. This analysis will dictate the direction of

the research and help to inform the development of new transforms that can

also provide and extend the properties of the original new Mersenne number

transform (NMNT) [6, 7], with the benefits of making it more resilient to

cryptanalysis. These new transforms are known as the odd-NMNT (ONMNT) and

the odd-squared-NMNT (O2NMNT), which extends the original NMNT into the

generalised new Mersenne number transform (GNMNT) [8], the taxonomy of which

is shown in Figure 1.1.

These transforms have a long and versatile power of two, which is unfound

in other transforms like the Fermat number transform (FNT) [9] and the original

Mersenne number transform (MNT) [10]. The latter transforms have short

transform lengths that are rigid and inflexible in size and thus have very limited

scope.

Like the NMNT, the GNMNTs can be derived using fast algorithms. Although

there has been previous development with deriving fast algorithms for the new

transforms of the GNMNT - particularly in the one dimensional aspect - supporting

literature is extremely limited and consequently incomplete [8, 11]. Current work

aims to address these shortcomings by deriving fast algorithms that include the

radix-2, radix-4 and split-radix using both decimation-in-time (DIT) and -frequency

(DIF) methodologies. Complexity analysis will be provided and, together with

performance metrics, these algorithms will be further analysed.

In addition to the fast algorithms for applications using single-dimensional

implementations, row-column implementations have been derived to provide

two-dimensional implementations through inclusion of the separable algorithm.

These algorithms are validated using two dimensional convolution techniques

followed by demonstrations using two-dimensional encryption examples.

A major technique used in cryptanalysis is assessing the diffusion properties

known as the strict avalanche criterion (SAC) [12–14]. These properties will

3
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Figure 1.1: Taxonomy of the GNMNT

be performed in the first instance by doing an exhaustive test, simulating every

possible vector input of a pre-determined size and applying the series of tests on

each vector. Previously, this would have taken approximately 8.5 years using C

and a single processor thread. However, with the advent of parallel processing

techniques that are available using consumer grade graphics cards [15, 16], such

tests become a very much more realistic goal in terms of a modest two days.

1.3 Contributions

There are four main areas that have been addressed within this thesis, which are:

• The new transforms collectively known as the GNMNT, including fast

algorithms applied to the one-dimensional case

• Derivation of the ONMNT for two-dimensional applications

• Assessment of the diffusion as an exhaustive simulation and against a series

4



1.4 Publications Arising From This Research

of vectors using the relevant aspects of the advanced encryption algorithm

(AES) for comparison

• Implementations of the GNMNT using graphics processing units (GPUs) for

parallel processing techniques.

1.4 Publications Arising From This Research

1. Boussakta, S.; Hamood, M.T.; Rutter, N., “Generalized New Mersenne

Number Transforms,” Signal Processing, IEEE Transactions on, vol.60, no.5,

pp.2640-2647, May 2012.

2. Rutter, N.; Boussakta, S.; Bystrov, A., “Assessment of the One-Dimensional

Generalized New Mersenne Number Transform for Security Systems,”

Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th, pp.1-5, 2-5

June 2013.

1.5 Thesis Outline

This thesis consists of seven chapters, each of which is described in this section.

Chapter 2 will introduce the background of cryptography. During the course of

this chapter, different types of methodologies will be covered along with their

appropriate applications. This chapter will briefly touch upon the NMNT, which

has previously been researched for use in encryption techniques.

After this brief introduction, Chapter 3 will formally introduce the NMNT and

the new GNMNT transforms that were developed in [8]. During this chapter, notes

of particular interest will be presented that will be relevant in proceeding chapters.

Chapter 4 will expand upon previous work that was undertaken during the

development of the fast algorithms by introducing new techniques that build from

radix-2 including radix-4 and split-radix DIT and DIF derivations. This chapter

will also assess the complexities and performances of each of these new derivations

and compare the findings with previous methodologies.

A natural progression is to expand the fast algorithms to row-column derivations,

where work that was presented in Chapter 4 will be applied and converted to
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two-dimensions in using newly adapted separable algorithms for the GNMNT in

Chapter 5.

Chapter 6 introduces cryptanalysis techniques and introduce the SAC. Using

the SAC, the new transforms will be assessed for their suitability for inclusion

within encryption algorithms. Initially, an assessment over a small but practical

and exhaustive range of vectors will be undertaken. Upon comparing the results, a

stripped down version of the AES will then be tested alongside the GNMNT using

identical vectors. This implementation of the AES does not contain any password

or round key functions so as to attain a true raw diffusion measurement.

Finally, conclusions and suggestions for further work will be presented in

Chapter 7.
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Chapter 2

Background

2.1 Introduction

This chapter will introduce a small cross-section of applications that rely upon

encryption, during which some examples will be provided including some best

practices. A breakdown of the composition of encryption system will presented,

including key, cipher and mode types. The discussion includes the process of

determining the AES and a brief breakdown of each cipher. This chapter will also

introduce new and emerging technologies that could undermine current and future

systems prior to presenting a summary.

2.2 Encryption Applications

Security is ubiquitous in todays emerging technology. Encryption algorithms can be

found in many devices that are taken for granted on a day to day basis, frequently

and most likely without the user’s knowledge that it has ever been implemented in

the first place. As an example, use of mobile phones now extends to approximately

7 billion reported users and 3.5 billion reported unique subscribers [17], representing

approximately 50% of the global population [18]. A vast majority of these users

will not even consider the concept of encryption, never mind whether or not their

phone calls are protected or not. Additionally, we can also find encryption in

wireless sensors and electronic wearable devices such as the smart watches and

heart-rate monitors for example [2, 19]; such devices are a fast-growing trend and

mobile smart phones are regularly used to process the signals. However, there
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are also reports that these sensor signals are currently not being encrypted, which

could potentially be exposing both private data and processing devices that may

otherwise be unprotected and vulnerable to attacks [20].

In addition to the requirements of security within a communicational

environment, there is also a requirement for the encryption of stored data,

whether it is for personal or commercial usage. Within a commercial environment,

the protection of documents containing strategies and financial accounts that are

pertinent to the livelihood of the business is not only desirable, but may well be

a requirement by law, depending on the actual type of data and particularly if it

relates to client information [21–23]. This need will become more prevalent with

the evolution of cloud computing, where consumer computing requirements will be

virtualised and processed across the Internet, including cloud storage [24–28].

However, it is still important that local storage is adequately protected, whether

it is encrypted databases, implementing hard drives with built-in encryption or

even backup solutions. The importance of such is exemplified with the data storage

trends that are now referred to as big data [29], where electronic data is being

generated and stored at an exponential rate [30]. This trend has opened new

markets and research where new types of technologies are being researched and

developed to accommodate our ever expanding storage requirements. According

to [31], this is growing at a rate of approximately 2.5 EB / day and where [30]

believes that the digital universe will reach a size of 40 ZB by the year 2020. As we

are connecting more devices to the internet [32] and using increasingly faster link

speeds, the amount of data that we are moving is also increasing [33]. These trends

can and will no doubt impact on the way we manage data, which should obviously

be protected using encryption.

The most important aspects of encryption are to use using the appropriate

scheme and degree of security for the job and to always use different keys. For

example, long-term security requires strong encryption whereas short-term security

should use a less secure system. The reason for this is through building cribs or

clues from intercepted messages where known cipher texts had their corresponding

plaintexts known. This opens up the cipher to a known plaintext attack (KPA). An

example of this was when the same extremely strong encryption that was used for

priority communications was also used for encrypting weather and status reports

during World War II where messages were often duplicated using different daily
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keys [34]. Likewise, having an important understanding on the application of keys

is paramount, namely that keys should be both strong and unique, consist of many

unique and special characters wherever possible and be unique to each site, message

or application. Thus, should a key be compromised, damage would be limited to

the site, message or application that is attributed to that key. This practice is

further exemplified in [35], which goes on to emphasise that this is generally the

weakest part of an encryption scheme and that users should be trained accordingly

about the importance of key management.

2.3 Encryption Types

Encryption systems are generally categorised as falling into two distinct fields;

symmetric (private key) and asymmetric (public key). The symmetric system uses

the same key to decrypt that was used to encrypt and is always kept private, hence

the reason it is also called private key encryption. Conversely, systems that are

derived using asymmetric keys use two keys; a private key and a public key, which

give name to these types of systems as the public key encryption schemes. Systems

that were first derived used symmetric keys and so will be covered first.

2.3.1 Symmetric Keys

Systems using symmetric keys date all the way back to ancient times, where it has

been shown that Julius Caesar used encryption for communications. This is known

today as the Caesar Cipher [36]. It is a letter substation system where letters

of the message were substituted by letters a number of places either forwards or

backwards: modulo 26. This offset was the key and literature records that Julius

Caesar’s preference was to use a key that was three letters to the right. All that

was then required to decrypt the message would be to reverse the operation by

substituting the letters in the opposite direction, which in Caesars case would be

three letters to the left. An example of this cipher is shown in Table 2.1.

Table 2.1: Letter Indexing for Caesar Cipher with Key = 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

In A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Out D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

9
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A major problem with this scheme, other than the existence of such a weak key,

was that cryptanalysis would be easy by determining letter substitutions through

letter frequencies. This was overcome with the Vigenère Cipher, where a repeating

passphrase was used instead, the cipher was later broken by Babbage [37]. Whilst it

was a much stronger system in comparison to the Caesar Cipher, it will nevertheless

still be regarded as a toy system by todays standards. Examples of this cipher

system in operation can be seen in Tables 2.2 and 2.3. Further dissemination of

this encryption type will be provided further in block ciphers in Section 2.4.2.

2.3.2 Asymmetric Keys

The asymmetric encryption scheme uses two keys; a public key to encrypt, hence

the moniker public key encryption, and the corresponding private key to decrypt.

It was invented in 1978 by [38] where an algorithm called RSA was developed and

published, based on the initial of each of the inventors surnames. A similar system

was invented in 1975 but because it was developed under classified circumstances,

there was no mention of it until it was declassified in 1997 [39]. Although it is

not as fast as symmetric encryption, owing to the complexity of the calculations,

for applications where a reasonably small encryption message, such as a key for

a symmetric system that is required to be communicated, it is an ideal solution

for communicating over an exposed public channel. Similar schemes have been

developed that significantly increase security, such as the elliptic curve encryption

system as shown in Table 2.4 from [40]. However, one of the biggest issues with

this system that can also be obtained from [40] is that it is an inaccessible system

to implement given that it is protected by over 130 patents.

Table 2.2: Encryption Using Vigenère Cipher

t h i s i s t o p s e c r e t
P A S S W O R D P A S S W O R +
i h a k e g k r e s w u n s k

Table 2.3: Decryption Using Vigenère Cipher

i h a k e g k r e s w u n s k
P A S S W O R D P A S S W O R −
t h i s i s t o p s e c r e t
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2.3.2.1 Factorisation Problem

The factorisation problem is based around a large modulus whose generation is

based upon two prime numbers. During the operation of constructing the modulus,

two keys are created that are linked to the modulus within a finite field. This is

best described by using the RSA algorithm, which demonstrates the fundamentals

behind this type of encryption system. It is based on the factorisation problem

where two primes are selected, p and q; the product of these primes is calculated

such that

n = pq. (2.1)

The modulus for all future computations within the encryption algorithm will be

n. The totient is then calculated so that

φ = (p− 1)(q − 1). (2.2)

A public key e is selected such that e < n and the greatest common divisor of e

and φ is equal to 1 such that

gcd(e, φ) = 1. (2.3)

The private key d is calculated as the inverse of the public key, e−1 modulo the

totient φ as

d = e−1 mod φ. (2.4)

Encryption is performed using

c = me mod n (2.5)

and similarly, decryption is performed by

m = cd mod n. (2.6)

Table 2.4: NIST Recommended Key Sizes

Key Size (bits)
Symmetric RSA and Diffie-Hellman Elliptic Curve

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

11
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This algorithm is relatively simple to implement, with the main requirement being

the ability to perform calculations on very large numbers based upon the size of the

modulus being used. It is a fairly fast algorithm when used with small key sizes,

although the security of RSA is weak in contrast to symmetric based encryption

algorithms due to the size of the key required to offer comparable strength in

security. For example, a symmetric key size of 256 bits would be comparable to an

RSA key size of 15360 bits as previously shown from [40] in Table 2.4.

2.3.2.2 Discrete Logarithm Problem

The discrete logarithm problem (DLP) is another asymmetric method [41].

However, instead of building problems based upon factorisation it is instead based

around logarithms. To demonstrate, the DLP is based upon solving the problem

αx ≡ β mod p (2.7)

for x such that

x = logα β mod p (2.8)

having previously disclosed α, β and p. The problem of solving x is deemed to

be very difficult. When this problem is applied over a cyclic finite group Z/pZ

over modulo p, which has been created using a generator, then there exists a

multiplicative inverse that is difficult to derive as each element is the result of

raising the generator to a power up to p − 2 modulo p. For example, if α = 2,

x = 7 and p = 17 then 27 = 128, which results in 27 ≡ 17. The multiplicative field

(Z/pZ)∗ is defined as

(Z/pZ)∗ = {1, 2, . . . , p− 1} . (2.9)

This field is computed from α0 to αp−2 providing p− 1 elements using generator α

as

(Z/pZ)∗ =
{
α0, α1, . . . , αp−2

}
. (2.10)

The field is calculated up to p− 2 because

αp−1 ≡ 1 mod p. (2.11)
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Should, for example, p = 17 with (Z/pZ)∗ = {1, 2, . . . , p− 1} and generator α = 7

is used then

(Z/pZ)∗ =
{
70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 710, 711, 712, 713, 714, 715

}
. (2.12)

When this field is calculated over mod p, it becomes

(Z/pZ)∗ = {1, 7, 15, 3, 4, 11, 9, 12, 16, 10, 2, 14, 13, 6, 8, 5} . (2.13)

When x = 11 is applied to (2.7) then 711 ≡ 14 mod 17. The problem then lies

within solving x with knowledge of alpha, β and p such that

x = logα mod p. (2.14)

However, as p increases it becomes extremely difficult to derive x from α and β.

2.3.2.3 Diffie-Hellman Key Exchange

One of the most common applications for asymmetric cryptography is the

Diffie-Hellman (DH) key exchange protocol that was first published by [42]. Again

like RSA [43], a similar system was developed previously but as it was developed

under classified circumstances, it was unable to be published at that time [39].

The DH scheme is usually used to exchange symmetric keys, which are generally

preferred over asymmetric keys as they are typically faster than asymmetric

systems. Based on the DLP, it provides a method for two parties to communicate

with each other without exposing decryption keys. Both parties will decide upon

a multiplicative field over a prime, (Z/pZ)∗ and a generator, α. Each party will

derive an ephemeral or temporary key in the range 1 < k < p − 1 and apply it to

the generator as

KA = αka mod p for 0 < ka < p− 1 (2.15)

and

KB = αkb mod p for 0 < kb < p− 1. (2.16)

Each party sends each other KA and KB and by applying their private keys they

can both derive the same shared session key

(KA)
ka = Sk = (KB)

kb . (2.17)
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This works because (
αkb

)ka
=

(
αka

)kb
. (2.18)

This method of key exchange is very secure and underpins how private

communications are established across the Internet, albeit in RSA form where

it has been adapted to the factorisation problem.

2.3.2.4 ElGamal Encryption

In 1985, Taher ElGamal developed an encryption scheme that was based on the

DLP [44]. Being based on the DLP, it also shares similarities with the DH key

exchange system [42], particularly the sharing of the ‘secret’. Both Alice and Bob

agree upon a large prime p and generator α over the multiplicative group (Z/pZ)∗.

Alice then selects a random integer ka such that 1 < ka < p− 1 and sends to Bob

the derivation of

KA = αka mod p (2.19)

Bob receives the value derived in (2.19) and himself derives a random key kb from

1 < kb < p − 1. Representing the message m in the range 0, 1, . . . , p − 1 he then

derives

γ = αkb mod p (2.20)

and

δ = mKkb
A mod p (2.21)

sending c = (γ, δ) to Alice. Upon receiving c, Alice uses her private key a to derive

γp−1−ka mod p (2.22)

which because

γp−1−ka = γ−ka (2.23)

this operation is equivalent to deriving α−kakb . Alice can now decode the message

by

m = γ−aδ mod p. (2.24)

2.3.2.5 Elliptic Curve Discrete Logarithm Problem

Elliptic curve cryptography (ECC) was developed in 1985 independently by [45]

and [46]. Schemes using elliptic curves are based around the elliptic curve discrete
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logarithm problem (ECLDP). Similar to the LDP, the ECC uses a logarithm

problem. However, it accomplishes this by using points that exist along an elliptic

curve defined as

E : y2 ≡ x3 + ax+ b mod p (2.25)

where a, b ∈ Z/pZ are user parameters used to define the curve over a field defined

by prime Z/pZ, p > 3. This field contains coordinate pairs (x, y) ∈ Z/pZ and an

imaginary point O, which is used to denote the point at infinity. The validity of

the curve is dependent on satisfying

4a3 + 27b2 ̸≡ 0 mod p. (2.26)

All the calculations for determining the coordinates of the points are carried out

from G, which is provided to define Gx and Gy . This is the generator point and is

used to define all of the other points. The problem is then defined as

Q = dG mod p (2.27)

where d is selected randomly and is in the range 2 ≤ d < p − 2. Equation

(2.27) then produces Q, the public key. Determining d with only knowledge of

Q is therefore intractable if the field is large enough. It should be noted that

technically points are not multiplied directly but instead repetitively added, for

which there are two distinct operations: adding and doubling. However, these

are not straightforward operations, as may be implied, as the line must first be

characterised by its gradient. This can accomplished by first deriving s as

s =
y2 − y1
x2 − x1

mod p (2.28)

if the point is to be added with another point or

s =
3x21 + a

2y1
mod p (2.29)

if the point is to be doubled, i.e. P + P or 2P . These operations can be better

visualised in Figure 2.2. Addition is shown by adding points P and Q and drawing

a line that intersects these points and continues until it hits the next part of the

curve. At the point where the line meets the next part of the curve, a vertical line

is drawn through the y = 0 axis until it reaches the curve again, denoting the actual
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Figure 2.1: Addition and Doubling Operations in the Elliptic Curve

position of the addition. Point doubling is shown by drawing a line at a tangent to

the point V and continuing until it reaches the curve once more, characterised by

point E in Figure 2.2. Like the point addition, a vertical line is drawn through the

y = 0 axis until it reaches the curve once more, indicating the point 2V .

An important aspect of the division operations in (2.28) and (2.30) is that

because the operations are performed within a field, the division should be

performed by multiplying with the multiplicative inverse instead. This can easily

be undertaken using the extended Euclidean algorithm or

x−1 = xp−2 mod p. (2.30)

The line characterised by s connects the two points that are to be added and

where the line intersects the curve, is the point mirrored across the x-axis. While

point doubling only uses a single point, the line is derived by forming a tangent

to the curve at the point, again noting where the line intersects the curve. These

operations are better visualised in Figure 2.1. The new point can then be then be
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Figure 2.2: The Field of Elliptic Curve Points for p = 19, a = 2, b = 2

derived by

x3 = s2 − x1− x2 mod p (2.31)

and

y3 = s (x1 − x3) mod p. (2.32)

Subtraction can be achieved by using the reflective point and then adding the two

points together such that if

P = (x1, y1) mod p (2.33)

then

−P = (x1,−y1) mod p (2.34)
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such that

Q− P = (x2, y2)− (x1, y1) mod p

= (x2, y2) + (x1,−y1) mod p.
(2.35)

The method for providing multiplication is provided by point addition and doubling,

where the number of steps is equivalent to the number of bits in the prime. This is

accomplished using the left to right method and is exemplified in Table 2.5. This

multiplication technique is applied as shown in (2.27) where Alice and Bob both

select a random private key 1 < k < g and performs

KA = kaG mod p (2.36)

and

KB = kbG mod p (2.37)

Sending each other their public keys, Alice and Bob apply their private keys similar

to (2.17) such that

kaKB mod p = Sk = kbKA mod p. (2.38)

Where Sk becomes the shared session key. Using curve P-192 that was defined by

the National Institute of Standards and Technology (NIST) [47] shown in Table

Table 2.5: Elliptic Curve Multiplication (13× P ) using Double and Add

Step Operation Result Representative

1 - P 12P
2a Double P + P 2P 102P
2b Add 2P + P 3P 112P
3 Double 3P + 3P 6P 1102P
4a Double 6P + 6P 12P 11002P
4b Add 12P + P 13P 11012P

Table 2.6: NIST Prime Elliptic Curve P-192

p192 = 6277101735386680763835789423207666416083908700390324961279
a = 6277101735386680763835789423207666416083908700390324961276
b = 2455155546008943817740293915197451784769108058161191238065
Gx = 602046282375688656758213480587526111916698976636884684818
Gy = 174050332293622031404857552280219410364023488927386650641
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2.6, we can perform the following example where

KA = kaG mod p

= 354684134338427178248341788335664844735957824203528261950

× (602046282375688656758213480587526111916698976636884684818,

174050332293622031404857552280219410364023488927386650641)

= (2933140742448625203731641248407683827818026042006007265108,

1342160346315844524113810504268757567486830356720401950124)

(2.39)

KB = kbG mod p

= 1799075742360715006265099004488067778762135129614130234431

× (602046282375688656758213480587526111916698976636884684818,

174050332293622031404857552280219410364023488927386650641)

= (4147123246579862628199761933154009809426422151451232702766,

4754143181055516863572102753585715493405392185760408272858)

(2.40)

Sk = kaKB mod p

= 354684134338427178248341788335664844735957824203528261950

× (4147123246579862628199761933154009809426422151451232702766,

4754143181055516863572102753585715493405392185760408272858)

= (472803943651158730618988180737355535665961855491617197373,

4253469622903940143028516631910075165803201780065008295480)

= kbKA mod p

= 1799075742360715006265099004488067778762135129614130234431

× (2933140742448625203731641248407683827818026042006007265108,

1342160346315844524113810504268757567486830356720401950124)

= (472803943651158730618988180737355535665961855491617197373,

4253469622903940143028516631910075165803201780065008295480)

(2.41)

As (2.41) shows that a common point on the curve has been established, the next

step would be to take the x-coordinate and process it through a typical hashing

algorithm, currently SHA-1. The resultant hash will then be used as the symmetric

key.

Of particular interest are reports that have been circulating recently suggesting
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that the curves offered by the NIST [47] have tainted curves and that they

contain known weaknesses or backdoors [48–50]. This has not only brought about

the removal of the perpetrated curve and technique, but also led to companies

posting advisories and removing support for these curves from their products and

applications, with the focus moving to curves that have been developed by the

cryptographic community [51–54].

2.4 Cipher Types

There are two distinct methods that underpin how a cipher text is produced. These

methods are stream or block ciphers. Each method has an appropriate method of

use and will be discussed accordingly.

2.4.1 Stream Ciphers

Stream ciphers are derived by combining the plaintext and the key to derive a

cipher text, one bit at a time. This requires combining a key stream by adding it

to the plaintext modulo-2 or using the exclusive-or (XOR) operation. The main

focus therefore is how the key stream is derived. The most secure way of deriving

the key is via the one-time pad (OTP) where the key is pre-computed and used

only once. However, deriving one-time pads must be undertaken in advance and

will obviously require storage.

Another method, which is more commonly used, is the linear feedback shift

register (LFSR) and applications may use one or more of these. The LFSR works

by shuffling a series of bits through a register, the length of which will contribute

to determining the periodicity of the register. Taps are taken at certain points of

the register and these values are added together modulo-2. The resultant value is

then placed at the beginning of the register when all the bits shuffle to the next

position. The key would therefore be determined by the initial state of the LFSR

prior to the commencement of the operation. All LFSRs are cyclic or periodic and

depending on their design determines their length and whether they can utilise the

full space, which would be 2n − 1 values, where n is the number of bits it contains.

The only value that a running LFSR cannot produce is the value zero, as there

would be no way otherwise to change this value.
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Figure 2.3: A5/1 Cipher Scheme

2.4.1.1 A5/1

The A5/1 cipher that was initially used with GSM mobile phones was designed

using three different LFSRs of varying bit sizes [55]. It combines the output of

three LFSRs that are built of varying sizes and configuration that are derived from

the following polynomials

LFSR1 = x19 + x5 + x2 + x+ 1 (2.42)

LFSR2 = x22 + x+ 1 (2.43)

LFSR3 = x23 + x15 + x2 + x+ 1. (2.44)

The LFSRs are constructed by using the first term, the degree of the polynomial,

to determine the length of the LFSR and taking the taps at positions determined

by the remaining terms, applying it to the LFSR by reading left to right. Therefore

(2.42) would produce an LFSR with bit taps at positions 18, 17, 16 and 13. The

output from each LFSR is, as well as being used as a feedback, combined with the

outputs of the other LFSRs using addition modulo-2. The resultant bit is then used

Table 2.7: LFSR Clocking Behaviour for A5/1

Clocking Bit Movement
LFSR1 LFSR2 LFSR3 LFSR1 LFSR2 LFSR3

0 0 0 1 1 1
0 0 1 1 1 0
0 1 0 1 0 1
0 1 1 0 1 1
1 0 0 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1
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as a key bit to apply to the plaintext stream. The configuration of this scheme is

shown in Figure 2.3 where the shaded bits are identified as the clocking bits. Each

LFSR is clocked according to the value of its clocking bit against the values of the

clocking bits in the other LFSRs. Movement occurs for an LFSR if its clocking bit

matches the clocking bit of one or more of the other LFSRs. How this would affect

the movement is shown in Table 2.7.

2.4.2 Block Ciphers

Block ciphers are currently the most common type of cipher in use today. While a

stream cipher encrypts the plaintext on a bit-by-bit basis, changing one of the bits

can only have an impact on that one bit. However, a block cipher is encrypted as

a group of bits and because of this, a change to any of the bits within the block

should have an impact on the remaining bits. An example of an encryption scheme

that uses this type of scheme is the data encryption standard (DES) [56].

Techniques relating to block encryption have previously been described as falling

into two distinct categories; confusion and diffusion [12]. The confusion aspect is

generally regarded as replacing the bytes in the plaintext such that there is little

to no relationship with the key. This is either undertaken by a pre-calculated

lookup table where values have maximal separable distance, or functions that have

a non-linear element that will appear to sever the relationship. Diffusion is the

process of using each input byte to affect and impact the other bytes in the input

and corresponding cipher text. The result of this would mean the smallest change

in the cipher text, or slightest alteration in the key would have a devastating

impact upon the rest of the cipher text and resultant plaintext.

2.4.2.1 Substitution Boxes

The substitution box or S-box is the core of the confusion operation, proving

a method to reversibly transpose incoming data. This can be in the form

of a mathematical function, for example where data is swapped-out with its

multiplicative inverse so that the original data can be retrieved by reversing the

process. Typically, these types of operations are carried out using a Galois field

(GF ). In addition, they may also include processes that are non-linear so as to

resist linear analysis.
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2.4.2.2 Permutation Boxes

The job of the permutation box or P-box is to mix the bytes of the cipher text

around so that individual bits within each byte are spread and swapped with

the bits of the other bytes. This results in changes in a single bit having a

catastrophic impact on the whole of the cipher text. When used in conjunction

with S-boxes over a number of stages they are together usually referred to as a

substitution-permutation network (SPN) and are usually found in Feistel networks.

2.4.2.3 Feistel Networks

Feistel networks are structures that split the incoming cipher text into two or more

parts that are typically applied to one or more functions at each stage depending on

their classification, as generalised by [57]. The function facilitates the development

of new transforms based on these structures, and can incorporate many techniques

including S-boxes, Boolean functions and even transforms. The Feistel network was

implemented in the DES, which was ratified for use in 1977 and uses what is now

known as a classical Feistel network [56]. Other Feistel constructions include the

unbalanced, type-I, type-II and type-III Feistel networks [57] and are illustrated in

Figure 2.4.
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2.4.2.4 Transforms

Another example that can be used as both a method of confusion and diffusion are

transforms. These include the Walsh-Hadamard transform (WHT) as used in [58],

the pseudo-Hadamard transform (PHT) as used in [59,60] and the number theoretic

transform (NTT) as used in [61], particularly the NMNT. Typically, the NTT is

a transform that is defined over a finite field modulo a prime. The NMNT uses a

Mersenne prime, which while can be implemented using simple shifts and additions,

serves to be a very effective operator without the need for time-consuming divide

algorithms.

Recently, there is evidence of encryption systems that are derived using S-boxes

and P-boxes, which are substitution and permutation boxes respectively. These

methodologies are based around Shannon’s ideals of message encryption to be based

on confusion and diffusion [12]. The S-box, being the confusion aspect, replaces

a byte within the message with another byte that is determined by the function

of the box and the key. In order to resist cryptanalysis, it is important that this

stage is non-linear, otherwise a linear cryptanalysis (LC) attack could potentially

be applied. The importance of the P-box would be to then mix around the bits of

the cipher text so that individual bits within each byte become dependent on the

bits of other bytes that were also being encrypted. This helps to resist differential

cryptanalysis (DC).

2.4.2.5 Data Encryption Standard

The DES was developed by IBM [62] and has since been extensively studied since

its publication for use in 1977 [63]. It is based on the classical Feistel construction

where the incoming code is split into two equal sized blocks and a single function

element is used to process each alternate block every round as shown in Figure 2.5.

Consisting of 16 rounds for each block, it is a very secure algorithm, even though it

uses a key that is too short by today’s standards.

This algorithm was in use for over 20 years and precedes the advanced

encryption standard (AES). Curiously, whilst it uses a 64-bit block and takes a

64-bit key, it utilises only 56 bits of the key. The bits that aren’t used as part of

the key are deemed parity bits, although it can be seen from the design that they

literally are not used.
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Figure 2.5: The DES Algorithm

The algorithm begins with a permutation function and ends with the inverse

permutation function as shown in Figure 2.6, helping to spread the bits across the

block during the encryption process and thus strengthening its diffusion properties.

Following this, the algorithm then falls through 16 rounds of Feistel networks where

32 block bits are processed at any one time. The function depicted in Figure 2.7

consists of block expansion, where the 32 block bits being processed are expanded

to 48 bits. The key is processed as two 28-bit halves, where 56 bits are selected

from the initial key and permutated; the unused parts have no connections and are

shown as shaded. A new key is derived each round and this is achieved by rotating

each half and selecting a total of 48 bits from both halves via another permutation;

again showing the unused parts with no connections as shaded. This round key is
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Figure 2.6: Initial and Inverse Permutate Functions

added to the expanded block text modulo-2. The intermediately processed 56-bit

key is reused for repeating the rotation and permutation for each successive round

serving as the round key. After the key has been applied to the block, the result

is fed into eight six-input S-boxes that each have four outputs. This reduces the

cipher back to 32 bits. The S-box works by using the outer-most bits of the

input to select a row of a lookup table within. After selecting one of the four

rows using the outer bits, the inner four bits are then used to select the column

that contains the output. This is shown more clearly in Figure 2.8. The DES

encryption scheme has been one of the most studied encryption systems to date

and has emphasised new areas of cryptanalysis with respect to DC and LC [64–66].

However, these techniques were described in [67] where DC was previously known as

a “T attack”. Additionally, all of the attention that DES has received has resulted

in ways to measure advances in technology and techniques in methodologies and

implementations where there have been repeated attempts to defeat DES in the

shortest amount of time possible using brute force attacks [68–71].

Prior to the introduction of AES, moves were made to strengthen DES,

accomplished by applying the algorithm three times in succession using three

different keys. This methodology was known as the triple data encryption
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Figure 2.7: The F-Box in DES Feistel Network with Round Key

algorithm (TDEA) and triple-DES (TDES) or (3DES) and effectively increased the

key size to 168 bits. This works by using three separate keys and by applying

c = DES {Ek3 , DES [Dk2 , DES (Ek1 ,m)]} (2.45)
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for encryption and

m = DES {Dk1 , DES [Ek2 , DES (Dk3 , c)]} (2.46)

for decryption where Ekn and Dkn represent the different encryption and decryption

keys respectively. This makes DES a significantly stronger algorithm and remains

one of the more robust algorithms developed.

2.4.2.6 Advanced Encryption Standard

While DES was coming to its end of life, the department of Federal Information

Processing Standards (FIPS) announced the development of the AES [72]. The

standard stated that the algorithm to be used was to be a block cipher that had a

128-bit block and variable keys sizes that include 128-, 192- and 256-bit derivations.

Rather than developing a standard behind closed doors that could possibly contain

any number of potential weaknesses, an open and inclusive approach was adopted

in the development of the standard by inviting the current leaders in the field to

submit their ideas. As a result, twenty-one algorithms were submitted and fifteen

were short-listed for the first round [73]. By 2000 this number was reduced to five

finalists [60,74–78]. One month after the final conference in 2000, NIST announced

that Rijndael had been selected according to the cumulative decisions by the

attendees as shown in Table 2.8 [79] and it was adopted as the new encryption

standard [80].

As AES has now superseded DES as the accepted encryption standard for

United States commerce by NIST, it is seeing significant attention. Probably one

of the biggest criticisms is that it doesnt contain enough rounds and that there
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should be at least 16, 20 or 28 rounds depending on whether the key is 128-, 192-

or 256-bits in size [81]. Nevertheless, it now remains the standard against which all

emerging encryption systems must measure themselves.

Rijndael uses the SPN and runs over 10, 12 or 14 rounds depending whether

the key size if 128-, 192- or 256-bits accordingly. It is arranged as a 4x4 block of

bytes and uses an S-box developed over GF (28) with an affine transform. Diffusion

is further applied using the mix-rows and mix-columns, which entails the rotation

of each row by a successive number of times followed by an invertible matrix

multiplication of each column. Significantly, Rijndael has been developed as a

series of byte operations rather than using full 32-bit words like other finalists.

This makes the algorithm very attractive for devices with limited processing. It

also allows for the majority of the calculations to be pre-processed in advance and

referred to in lookup tables.

The AES algorithm will be discussed more in depth in Chapter 6 where a

stripped-down version will be used without the password functionality in order to

measure it against other diffusion techniques.

2.5 Mode Types

The encryption modes are techniques that are used within the encryption process

to make the resultant cipher more robust. Without these modes, cipher texts

would be easier to attack owing to techniques such as KPAs or known cipher-only

attacks (COA). This section will present the five confidentiality modes that have

been ratified as applicable for use with AES [82]. Additional modes have been

ratified for use with AES depending on the purpose including: authentication [83],

authenticated encryption [84], high-throughput authenticated encryption [85] and

storage [86]. As well as presenting the methodologies associated with each of the

Table 2.8: Votes for AES Selection

Algorithm Yes No Score

Rijndael 86 10 76
Serpent 59 7 52
Twofish 31 21 10
RC6 23 37 -14

MARS 13 84 -71
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confidentiality modes, these modes are also depicted in Figure 2.9.

2.5.1 Electronic Code Book

The electronic code book (ECB) mode is the simplest of all the modes. It processes

the plain text one block at a time before encrypting it and therefore each cipher

block is completely independent from the others. This mode is not particularly

secure as patterns can occur should identical plaintext blocks be encrypted, which

will result in the production of identical cipher blocks. This is particularly prevalent

with content that is uncompressed where repetition is more common. The use of

ECB is strongly discouraged as it opens the underlying encryption system to KPAs.

The procedure for using ECB is

Cj = EK (Pj) for j = 1, 2, . . . , n (2.47)

for encryption and

Pj = DK (Cj) for j = 1, 2, . . . , n (2.48)

for decryption.

2.5.2 Cipher Block Chaining

Cipher block chaining (CBC) mode is similar to ECB mode except that before the

plaintext block is encrypted, it is added modulo-2 to the previous cipher text block.

However, In the case of the first block where no previous cipher block yet exists,

an Initialisation Vector (IV) is used to ensure the integrity of the first block. Both

ECB and CBC modes require that the underlying encryption system is capable of

decryption as well as encryption. The formula for using this mode is based on the

first block being index as j = 1 and apply for encryption

C0 = IV

Cj = EK (Pj ⊕ Cj−1) for j = 1, 2, . . . , n
(2.49)

and for decryption

C0 = IV

Pj = DK (Cj)⊕ Cj−1 for j = 1, 2, . . . , n.
(2.50)
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Figure 2.9: The Five Confidentiality Encryption Modes Ratified for AES

A major disadvantage with this mode is that while the ECB mode will lose a

block should as little as a single bit be changed, with CBC mode the current and

following blocks will be destroyed. This would make it more sensitive in noisy
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channels. However, if the bit has been changed through cryptanalysis then this is

obviously going to be an advantage.

2.5.3 The Initialisation Vector and Streams

The CBC mode introduced a new variable, in the IV; its role is to apply

cryptographic ‘salt’ that is a random number to be used only once. As such, this

may also be known as a ‘nonce’ indicating that it is a number to be used only

once. When used correctly, it works as a safeguard to ensure integrity of the cipher

should the user choose the same password. The remaining three confidentiality

modes will also use an IV, including the CTR mode where it will use each block,

incrementing each time. Protecting the IV is not necessary and it may well be

transmitted with the cipher. However, if it is desired that the IV is concealed,

using a public key system can help maintain confidentiality. The following three

confidentiality modes are designed such that the plaintext is applied to the system

after the block has been encrypted. As such, these modes can be used as steam

modes where only a desired number of bits will be taken from the encrypted

block and added modulo-2 to the plaintext to create the cipher. This means that

these modes require that the encryption system uses the encrypting algorithm only

because the decryption process is simply the repeat of the encryption process, but

with the desired number of bits from the encrypted block modulo-2 to the cipher,

thus producing the original plaintext. Therefore the decryption function in systems

using these modes is ultimately redundant.

2.5.4 Cipher Feedback

Cipher Feedback (CFB) mode is a very similar process to CBC mode but rather

than adding the plaintext and previous ciphertext (or the IV if it is the first

block) modulo-2 prior to encryption, it is instead performed after encryption of the

previous cipher text (or IV if first block). Encryption is performed

C0 = IV

Cj = EK (Cj−1)⊕ Pj for j = 1, 2, . . . , n.
(2.51)
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and decryption as

C0 = IV

Pj = EK (Cj−1)⊕ Cj for j = 1, 2, . . . , n.
(2.52)

2.5.5 Output Feedback

The output feedback (OFB) mode is similar to CFB mode but with a minor

distinction that the output of the encrypted block is used in conjunction with the

key in subsequent encryption blocks rather than the resultant cipher. Again, it is

the result of these encrypted blocks that are added modulo-2 with plaintext block.

Alternatively, a selected number of bits may be used instead, which could therefore

turn this block encryption system into a stream encryption system. To process this

mode the following operations are used to set up the system

O0 = IV

Oj = EK (Oj−1) for j = 1, 2, . . . , n.
(2.53)

then

Cj = Pj ⊕Oj (2.54)

for encryption and

Pj = Cj ⊕Oj (2.55)

for decryption.

2.5.6 Counter

The counter (CTR) mode is a method utilising an IV as the input to an encryption

system and subsequently incrementing it at each round. Like the CFB and OFB

modes, the encrypted block is added modulo-2 to the plaintext to create the cipher.

There are therefore no feedback operations in this mode, which means that many

ciphers can be processed in parallel. Encryption is performed

I = IV

Cj = EK (I + j − 1))⊕ Pj for j = 1, 2, . . . , n
(2.56)
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and decryption as

I = IV

Pj = EK (I + j − 1))⊕ Cj for j = 1, 2, . . . , n.
(2.57)

2.6 Hashes

Depending on the nature of the application, there are additional types of encryption

that may not necessarily perform a reversible operation in a manner that is expected.

These encryption types are referred to as hashes. Hashes are one-way methods,

typically containing between 128 and 512 bits and are used whenever a user sends or

receives content that requires confirmation of message integrity or authentication.

Typical examples of this are the message digests MD4 and MD5 [87,88], the secure

hash algorithms, SHA1 and SHA2 [89] and the newly ratified SHA3 [90], which

is currently in draft format. The hash operation is synonymous to encrypting a

message block by block and cumulatively combining the encrypted outputs, thus

resulting in what should be an irreversible process. The security of the hash value

and its underlying algorithm is the assurance that the hash value from one message

cannot be duplicated by manipulating a different message. When a method is

discovered to reproduce values this is called a collision and rapidly degrades the

value of the algorithm.

Hashes, when used with public key cryptography, can serve as an important

method of authentication as well as proving integrity. This is accomplished with

the sender first deriving the hash of a message using the same previous methods.

However, upon deriving the hash, it is encrypted using the senders private key.

By decrypting the hash using the senders public key and verifying the hash, both

message integrity and authentication of source can be proven. For example, a user

may request a connection with a secure service and in doing so he sends his public

key to the service. The service responds by encrypting a session key with the

users public key, using previously agreed techniques relating to public key exchange

and requesting that the user provides authenticating details using the session key.

The user may then decrypt the session key using his matching private key and

encrypting his password with the provided session key. The encrypted password is

then passed through a hash function so that he can then send his user identification

and hash to the service. The service will be able to reliably verify the hash by
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recreating the same process using the users stored password. This adds enhanced

security by avoiding the actual password from traversing an unsecured channel.

The use of hashes in this manner is typically referred to as a message authentication

code (MAC) and embodies the integrity and authentication operation.

2.7 General Purpose Graphics Processing Unit

Processing

In 2006, NVIDIA announced the software development kit (SDK) to their

proprietary compute unified device architecture (CUDA) [91], inspiring researchers

and developers to push the boundaries of their developments to new architectures

using graphics cards [92–94]. Meanwhile, AMD were working on their solution, close

to metal, which was released in November the same year [95]. Two years later the

Khronos Compute Working Group was formed [96] leading to the release of their

Open Computer Language (OpenCL) [97], which although originally developed

by Apple, was supported by both AMD and NVIDIA. These two architectures

epitomise what we know today as general processing graphics processing unit

(GPGPU) processing.

Cell processors in the Sony Playstation 3, which contain accessible compute

engines for the graphics, were also discovered to be fully available to system

developers [98]. In 2008, a researcher in the field of astrophysics formed a cluster, in

which eight of these units were interconnected, costing less than two simulations on

an available supercomputer [99]. Unfortunately, while Sony once participated and

encouraged the use of their platforms for this purpose, they have since shut down

this resource to developers [100], currently leaving CUDA and OpenCL as the two

main contenders. However, the topic of GPGPU is currently an extremely vibrant

area, with frequent publications describing new achievements; such as the ability to

brute force every Windows NTLM hash derived from every possible eight-character

password, based upon 52 letters (upper- and lower-case), 10 digits and 31 special

characters [101]. This is a very realistic supposition as should the hacker gain

access to the Windows password file, then they would be able to process some 938

guesses in under 6 hours to determine the containing passwords.

GPGPU processing involves using a number of graphics cards, between one
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and four, within a desktop computer as a single host that can execute a users

program. Kernels are developed using the appropriate development system and

uploaded to the graphics card(s) along with datasets and parameters, including

the number of threads that are to be executed. These kernels can be executed

either synchronously, where the host program waits for the kernel to complete; or

asynchronously, where an interrupt can be generated within the host program upon

completion. Using graphics cards in this manner can be extremely beneficial as they

are naturally highly parallel by design for their primary function to process graphical

requirements; they are compact and have very low power requirements as opposed

to their thoroughbred supercomputer counterparts [102]. Moreover, because these

graphics cards are designed to be implemented in reasonably low-power hosts,

they are massively energy efficient in terms of giga floating point operations per

second (GFLOPS) per Watt, in comparison to other supercomputing topologies.

Applications that exploit the potential of GPGPU are known as heterogeneous

computing, owing to the significant processing workloads that can be offloaded to

one or more GPUs from the CPU.

Between the rapid development of GPGPU technology and associatively low

cost, the requirement for strong encryption has become a necessity, especially with

the vast amount of ongoing research and development to create GPGPU-based

algorithms to defeat security. Therefore, it is the balance in the critique between

the security strength of encryption algorithms and the evaluation of that strength

in terms of technological development.

2.8 Conclusion

This chapter has emphasised the scope and demand for secure methods of

communication and storage. Through advances in technology and techniques,

encryption processes are being broken and made redundant. Whilst there is

a demand for emerging techniques to be processed quickly and efficiently, care

and consideration must be taken into account with respect to the life span of

the development of new techniques. Parallel processing has been brought to the

consumer through affordable graphics cards where the advent of GPGPU processing

has made a significant impact in the field of cryptanalysis. Techniques using this

subject will be presented in Chapter 6 where simulations and analysis will be
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undertaken using GPGPU processing.
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Chapter 3

The Generalised New Mersenne

Transform

3.1 Introduction

There are many different transforms that are applicable for use in signal-processing,

such as the Fourier-, cosine-, sine- and wavelet-transforms to name a few.

These techniques have applications that include image- and audio-processing and

communications. While fundamental, these transforms are error-prone as they

are built upon irrational functions that are subject to rounding and truncation

errors, which therefore have limited use for applications in cryptography. A

separate branch of transforms called NTTs are built over a residue field modulo a

prime, such as the Fermat number (FNT), MNT and the NMNT. These particular

transforms incorporate Fermat and Mersenne prime numbers respectively, which

allow for extremely fast calculations using shifts and additions. As these transforms

are produced using modulo operations, the results they provide are exact as they

contain no irrational functions and therefore result in no rounding or truncation

errors.

One of the more recently created NTTs is the GNMNT, which was developed

by expanding the kernel parameters of the original NMNT, during which two

new transforms were invented; ONMNT and the O2NMNT. The GNMNT, like

the NMNT is built over a field modulo a Mersenne prime and shares similar

properties such as cyclic convolutions. Contrary to previous techniques such as

the FNT and MNT, it has both long and versatile transform lengths that are
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defined over a power of two, making it suitable for application development using

fast algorithms. Like the original NMNT, it too has applications in image-, audio-

and signal-processing where techniques involve one- (1D) and two-dimensional (2D)

correlation and convolutions for matching and filtering, as well as applications in

cryptography. This chapter will start by introducing the NMNT algorithm followed

by the ONMNT and O2NMNT algorithms. The derivation of the transform

parameters will be briefly discussed followed by the selection of the GNMNT

parameters and the taxonomy of the GNMNT will be included. The GNMNT

kernel components will be discussed and how key components can influence the

results will be discussed. Finally, examples of using the GNMNT to undertake

tasks for encryption will be demonstrated before providing conclusions.

3.2 The NMNT

The NMNT is the original transform derived in this suite and as such, there

are already significant developments in its use within signal- [6, 103–105] and

image-processing [7, 106–108], cryptography [61, 109–111] for example, as well as

being the topic of focus for implementations [112–115]. Its derivation is

X(k) =

⟨
N−1∑
n=0

x(n)β (nk)

⟩
Mp

for k = 0, 1, 2, ..., N − 1 (3.1)

where ⟨.⟩Mp denotes modulo Mp, Mp = 2p − 1 is a Mersenne prime for p =

2, 3, 5, 7, 13, 17, 19, 31, ..., etc and N is a power of two where N ≤ 2p. The transform

kernel β is given by

β(n) = ⟨β1(n) + β2(n)⟩Mp (3.2)

where

β1(n) = ⟨Re(α1 + jα2)
n⟩Mp , β2(n) = ⟨Im(α1 + jα2)

n⟩Mp (3.3)

for

α1 = ±⟨2q⟩Mp , α2 = ±⟨−3q⟩Mp and q = 2p−2 (3.4)

and Re(.) and Im(.) denote the real and imaginary parts of the enclosed terms

respectively. For transform lengths equal to N
d
, β1 and β2 can be calculated as

β1(n) =
⟨
Re

[
(α1 + jα2)

d
]n⟩

Mp
(3.5)
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Table 3.1: The NMNT Kernel for N = 16 and Mp = 127

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 82 111 82 1 3 0 124 126 45 16 45 126 124 0 3
1 111 1 0 126 16 126 0 1 111 1 0 126 16 126 0
1 82 0 45 126 3 111 3 126 45 0 82 1 124 16 124
1 1 126 126 1 1 126 126 1 1 126 126 1 1 126 126
1 3 16 3 1 45 0 82 126 124 111 124 126 82 0 45
1 0 126 111 126 0 1 16 1 0 126 111 126 0 1 16
1 124 0 3 126 82 16 82 126 3 0 124 1 45 111 45
1 126 1 126 1 126 1 126 1 126 1 126 1 126 1 126
1 45 111 45 1 124 0 3 126 82 16 82 126 3 0 124
1 16 1 0 126 111 126 0 1 16 1 0 126 111 126 0
1 45 0 82 126 124 111 124 126 82 0 45 1 3 16 3
1 126 126 1 1 126 126 1 1 126 126 1 1 126 126 1
1 124 16 124 1 82 0 45 126 3 111 3 126 45 0 82
1 0 126 16 126 0 1 111 1 0 126 16 126 0 1 111
1 3 0 124 126 45 16 45 126 124 0 3 1 82 111 82

and

β2(n) =
⟨
Im

[
(α1 + jα2)

d
]n⟩

Mp
(3.6)

where d = 2p+1

N
is an integer power of two and the term (α1 + jα2) is of the order

2p+1. The inverse NMNT is defined as

x(n) =

⟨
N−1

N−1∑
k=0

X(k)β (nk)

⟩
Mp

for n = 0, 1, 2, ..., N − 1. (3.7)

It can be seen that (3.1) is the same as its inverse (3.7) except for the scale

factor N−1. This indicates that both the forward and inverse transforms can

be implemented by the same algorithm with minimal intervention to differentiate

between the two. This can easily be verified by

⟨
GNGNN−1

⟩
Mp

= I (3.8)

where GN is an NMNT transform matrix of length N , N−1 is the corresponding

scaling factor and I is the identity matrix. Moreover, it can be further observed

that the NMNT is its own transpose because GN = GT
N and therefore it is also

orthogonal. An example of an NMNT transform matrix is shown in Table 3.1

where N = 16 and p = 7 thus producing Mp = 127. The NMNT, as well as being
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Table 3.2: The ONMNT Kernel for N = 16 and Mp = 127

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
72 19 19 72 5 99 28 122 55 108 108 55 122 28 99 5
82 82 3 124 45 45 124 3 82 82 3 124 45 45 124 3
19 5 122 108 28 72 72 28 108 122 5 19 99 55 55 99
111 0 16 0 111 0 16 0 111 0 16 0 111 0 16 0
19 122 122 19 28 55 72 99 108 5 5 108 99 72 55 28
82 45 3 3 45 82 124 124 82 45 3 3 45 82 124 124
72 108 19 55 5 28 28 5 55 19 108 72 122 99 99 122
1 126 1 126 1 126 1 126 1 126 1 126 1 126 1 126
5 28 28 5 55 19 108 72 122 99 99 122 72 108 19 55
3 3 45 82 124 124 82 45 3 3 45 82 124 124 82 45
99 72 55 28 19 122 122 19 28 55 72 99 108 5 5 108
0 111 0 16 0 111 0 16 0 111 0 16 0 111 0 16
28 72 72 28 108 122 5 19 99 55 55 99 19 5 122 108
124 3 82 82 3 124 45 45 124 3 82 82 3 124 45 45
122 28 99 5 72 19 19 72 5 99 28 122 55 108 108 55

orthogonal is also symmetric, producing a kernel that looks like

M =



β (0) β (0) β (0) β (0) . . . β (0)

β (0) β (1) β (2) β (3) . . . β (N − 1)

β (0) β (2) β (4) β (6) . . . β [2 (N − 1)]

β (0) β (3) β (6) β (9) . . . β [3 (N − 1)]

β (0) β (4) β (8) β (12) . . . β [4 (N − 1)]
...

...
...

...
. . .

...

β (0) β (N − 1) β [2 (N − 1)] β [3 (N − 1)] . . . β [(N − 1) (N − 1)]


. (3.9)

3.3 The ONMNT

The ONMNT is the first new transform of the GNMNT. Unlike the NMNT, it has

individual forward and inverse transforms, where the inverse can easily be obtained

by transposing the ONMNT matrix. This is analogous to the discrete cosine

transform (DCT), where the type-III is the inverse of the type-II. The maximum

transform length is slightly shorter than the NMNT and is defined as 2p−1. The

kernel is derived by replacing k from the NMNT with 2k+1
2

, which therefore defines

the forward transform as

XO(k) =

⟨
N−1∑
n=0

x(n)β

(
2k + 1

2
n

)⟩
Mp

for k = 0, 1, 2, ..., N − 1. (3.10)
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The kernel that is produced looks like

M =



β (0) β (0) β (0) β (0) . . . β (0)

β
(
1
2

)
β
(
3
2

)
β
(
5
2

)
β
(
7
2

)
. . . β

(
2N−1

2

)
β (1) β (3) β (5) β (7) . . . β (2N − 1)

β
(
3
2

)
β
(
9
2

)
β
(
15
2

)
β
(
21
2

)
. . . β

[
3(2N−1)

2

]
β (2) β (6) β (10) β (14) . . . β [3 (2N − 1)]
...

...
...

...
. . .

...

β
(
N−1
2

)
β
[
3(N−1)

2

]
β
[
5(N−1)

2

]
β
[
7(N−1)

2

]
. . . β

[
(N−1)(2N−1)

2

]


(3.11)

Subsequently, the inverse ONMNT (IONMNT) is derived by replacing n from the

NMNT with 2n+1
2

while retaining the original k term so that the inverse transform

is a transpose of the forward transform. This inverse transform of the ONMNT can

formally be defined as

x(n) =

⟨
N−1

N−1∑
n=0

XO(k)β

(
2n+ 1

2
k

)⟩
Mp

for n = 0, 1, 2, ..., N − 1. (3.12)

Table 3.3: The IONMNT Matrix for N = 16 and Mp = 127

1 72 82 19 111 19 82 72 1 5 3 99 0 28 124 122
1 19 82 5 0 122 45 108 126 28 3 72 111 72 3 28
1 19 3 122 16 122 3 19 1 28 45 55 0 72 82 99
1 72 124 108 0 19 3 55 126 5 82 28 16 28 82 5
1 5 45 28 111 28 45 5 1 55 124 19 0 108 3 72
1 99 45 72 0 55 82 28 126 19 124 122 111 122 124 19
1 28 124 72 16 72 124 28 1 108 82 122 0 5 45 19
1 122 3 28 0 99 124 5 126 72 45 19 16 19 45 72
1 55 82 108 111 108 82 55 1 122 3 28 0 99 124 5
1 108 82 122 0 5 45 19 126 99 3 55 111 55 3 99
1 108 3 5 16 5 3 108 1 99 45 72 0 55 82 28
1 55 124 19 0 108 3 72 126 122 82 99 16 99 82 122
1 122 45 99 111 99 45 122 1 72 124 108 0 19 3 55
1 28 45 55 0 72 82 99 126 108 124 5 111 5 124 108
1 99 124 55 16 55 124 99 1 19 82 5 0 122 45 108
1 5 3 99 0 28 124 122 126 55 45 108 16 108 45 55
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As expected, this transform produces a matrix that is the transpose of the forward

transform kernel. This produces a kernel that looks like

M−1 =



β (0) β
(
1
2

)
β (1) β

(
3
2

)
. . . β

(
N−1
2

)
β (0) β

(
3
2

)
β (3) β

(
9
2

)
. . . β

[
3(N−1)

2

]
β (0) β

(
5
2

)
β (5) β

(
15
2

)
. . . β

[
5(N−1)

2

]
β (0) β

(
7
2

)
β (7) β

(
21
2

)
. . . β

[
7(N−1)

2

]
β (0) β

(
9
2

)
β (9) β

(
27
2

)
. . . β

[
9(N−1)

2

]
...

...
...

...
. . .

...

β (0) β
(
2N−1

2

)
β (2N − 1) β

[
3(2N−1)

2

]
. . . β

[
(N−1)(2N−1)

2

]


(3.13)

⟨
GOG

T
ON

−1
⟩
Mp

= I (3.14)

where GO is an ONMNT transform matrix of length N , GT
O is the transpose of the

ONMNT transform matrix, N−1 is the corresponding scaling factor and I is the

identity matrix. Examples of the ONMNT and IONMNT transform matrices are

shown in Tables 3.2 and 3.3 respectively using N = 16 and p = 7.

3.4 Odd-Squared-NMNT (O2NMNT)

The O2NMNT is the third and final new transform of the GNMNT. The O2NMNT is

unique to the GNMNT in that its construction contains no trivial elements that are

present in the NMNT, ONMNT and the IONMNT. The details and the implications

of these characteristics will be discussed further in Section 3.8.1. The derivation of

the O2NMNT is

XO2(k) =

⟨
N−1∑
n=0

x(n)β

[
(2n+ 1)(2k + 1)

4

]⟩
Mp

for k = 0, 1, 2, ..., N − 1 (3.15)

and the inverse is defined as

x(n) =

⟨
N−1

N−1∑
k=0

XO2(k)β

[
(2n+ 1)(2k + 1)

4

]⟩
Mp

for n = 0, 1, 2, ..., N − 1. (3.16)

Like the NMNT, the O2NMNT shares a similar advantage in that the inverse

transform is the same as the forward transform, meaning that as well as being

orthogonal, their kernels are also symmetrical. In addition to k being replaced by

2k+1
2

, so n is also replaced by 2n+1
2

, which when combined produces (2k+1)(2n+1)
4

. An

example of the O2NMNT kernel is provided in Table 3.4 where N = 16 and p = 7.

44



3.4 Odd-Squared-NMNT (O2NMNT)

Table 3.4: The O2NMNTKernel for N = 16 and Mp = 127

15 56 106 105 105 106 56 15 83 26 14 36 91 113 101 44
56 105 15 14 113 112 22 71 101 36 83 106 106 83 36 101
106 15 91 71 71 91 15 106 14 44 22 101 26 105 83 113
105 14 71 44 83 56 113 22 91 106 26 112 112 26 106 91
105 113 71 83 83 71 113 105 91 21 26 15 112 101 106 36
106 112 91 56 71 36 15 21 14 83 22 26 26 22 83 14
56 22 15 113 113 15 22 56 101 91 83 21 106 44 36 26
15 71 106 22 105 21 56 112 83 101 14 91 91 14 101 83
83 101 14 91 91 14 101 83 112 56 21 105 22 106 71 15
26 36 44 106 21 83 91 101 56 22 15 113 113 15 22 56
14 83 22 26 26 22 83 14 21 15 36 71 56 91 112 106
36 106 101 112 15 26 21 91 105 113 71 83 83 71 113 105
91 106 26 112 112 26 106 91 22 113 56 83 44 71 14 105
113 83 105 26 101 22 44 14 106 15 91 71 71 91 15 106
101 36 83 106 106 83 36 101 71 22 112 113 14 15 105 56
44 101 113 91 36 14 26 83 15 56 106 105 105 106 56 15

Table 3.5: Values of α1 and α2 According to p for NMNT

p α1 α2

3 4 2
5 8 20
7 16 88
13 128 181
17 512 87260
19 1024 385302
31 65536 1268011823

As the O2NMNTis symmetrical, like the NMNT, the forward and inverse kernels

are derived as

M =



β
(
1
4

)
β
(
3
4

)
β
(
5
4

)
β
(
7
4

)
. . . β

(
2N−1

4

)
β
(
3
4

)
β
(
9
4

)
β
(
15
4

)
β
(
21
4

)
. . . β

[
3(2N−1)

4

]
β
(
5
4

)
β
(
15
4

)
β
(
25
4

)
β
(
35
4

)
. . . β

[
5(2N−1)

4

]
β
(
7
4

)
β
(
21
4

)
β
(
35
4

)
β
(
49
4

)
. . . β

[
7(2N−1)

4

]
β
(
9
4

)
β
(
27
4

)
β
(
45
4

)
β
(
63
4

)
. . . β

[
9(2N−1)

4

]
...

...
...

...
. . .

...

β
(
2N−1

4

)
β
[
3(2N−1)

4

]
β
[
5(2N−1)

4

]
β
[
7(2N−1)

4

]
. . . β

[
(2N−1)(2N−1)

4

]


(3.17)
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3.5 Derivation of Transform Parameters

Table 3.9: GNMNT Transform Selection

G n0 k0

NMNT 0 0
ONMNT 0 1
IONMNT 1 0
O2NMNT 1 1

3.5 Derivation of Transform Parameters

This section outlays the taxonomy of the GNMNT and demonstrates how

the transform parameters are derived for the NMNT, ONMNT and O2NMNT,

including consideration of their respective maximal transform lengths. For all

transforms of the GNMNT, the initial values of α1 and α2 are calculated by

selecting the appropriate value of q according to p for (3.4). The values that are

subsequently obtained with respect to p are shown in Table 3.5.

With appropriate starting values selected for of α1 and α2, they both require

adjustment according to the transform length to produce the initial values of β1

and β2. This is calculated as shown in (3.5) and (3.6) accordingly. The first notable

difference between the GNMNTs is through the derivation of N according to the

length N
d

for d is a power of two, which is 2p+1 for NMNT, 2p for ONMNT and

2p−1 for O2NMNT. A comprehensive list of final values of α1 and α2 according to

the field derived by p and the transform length N for the NMNT, ONMNT and

O2NMNTis shown in Tables 3.6, 3.7 and 3.8 respectively. The taxonomy of the

GNMNT that was first shown in Figure 1.1 illustrates how all of the GNMNT

transforms are interlinked with each other. These transforms are generalised as

X(k) =

⟨
N−1∑
n=0

x (n)β

[
(2n+ n0) (2k + k0)

4

]⟩
Mp

for k = 0, 1, ..., N − 1 (3.18)

and

x(n) =

⟨
N−1

N−1∑
k=0

X (k)β

[
(2n+ n0) (2k + k0)

4

]⟩
Mp

for n = 0, 1, ..., N − 1 (3.19)

where the variables n0 and k0 are selected to denote which transform is to be used

from the GNMNT according to the configuration shown in Table 3.9, which is

described in more detail in [11]. All transforms are orthogonal and when n0 = k0

when either the NMNT or O2NMNT are selected then the transforms are also
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symmetrical.

3.6 Cyclic Convolution of the GNMNT

Convolution is widely used in signal processing and image processing. There are

three types of convolution that have been defined, which are linear convolution,

cyclic convolution and the skew-cyclic convolution [116, 117]. When the input

sequence is x (n) and the impulse response is h (n), which has the same length N ,

the length of the linear convolution output y
LC
(n) is 2N − 1 [116,117]. The output

of the linear convolution is shown as

yLC (n) = x (n)~ h (n)

=

N−1∑
k=0

x (k)h (n− k)

=

N−1∑
k=0

x (n− k)h (k)

(3.20)

where ~ denotes convolution and the length of the cyclic convolution output y
CC

(n)

is N shown as

yCC (n) = x (n)~ h (n)

=

N−1∑
k=0

x (k)h (n− k mod N)

=

N−1∑
k=0

x (n− k mod N)h (k)

=

n∑
k=0

x(k)h (n− k) +

N−1∑
k=n+1

x(k)h (n− k +N) .

(3.21)

Finally, the skew-cyclic convolution output y
SCC

(n) is shown as

ySCC (n) = x (n)~ h (n)

=

n∑
k=0

x (k)h (n− k)−
N−1∑

k=n+1

x (k)h (n− k +N) .
(3.22)

3.6.1 Cyclic convolution of NMNT

As shown in (3.20) and (3.21), the output lengths are different. However, the

cyclic convolution can be derived from the linear convolution by padding with zeros

so that it can reach the required length of 2N − 1. The cyclic convolution can
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3.6 Cyclic Convolution of the GNMNT

therefore be calculated by

GN [yCC (n)] = GN [x (n)~ h (n)]

=

⟨
N−1∑
m=0

N−1∑
n=0

x(n−m)h (m)β (nk)

⟩
Mp

=

⟨
N−1∑
m=0

h (m)

N−1∑
s=0

x(s)β (sk +mk)

⟩
Mp

(3.23)

where s = m− n, and GN denotes the NMNT transform. According to the NMNT

definition, β(sk +mk) term in (3.23) can be simplified as

⟨
N−1∑
m=0

h (m)
N−1∑
s=0

x(s)
[
β1 (mk)β (sk) + β2 (mk)β (−sk)

]⟩
Mp

=

⟨
N−1∑
m=0

h (m)β1 (mk)

N−1∑
s=0

x(s)β (sk) (3.24)

+

N−1∑
m=0

h (m)β2 (mk)

N−1∑
s=0

x(s)β (−sk)

⟩
Mp

.

Due to the relationships between β1(n) and β(n), β2(n) and β(n) where

β1(n) =

⟨
1

2
[β(n) + β(−n)]

⟩
Mp

(3.25)

and

β2(n) =

⟨
1

2
[β(n)− β(−n)]

⟩
Mp

(3.26)

then applying (3.25) and (3.26) to (3.24) produces

⟨
N−1∑
m=0

h (m)β1 (mk)

N−1∑
s=0

x(s)β (sk) +

N−1∑
m=0

h (m)β2 (mk)

N−1∑
s=0

x(s)β (−sk)

⟩
Mp

=

⟨
N−1∑
m=0

h (m)
[β (mk) + β (−mk)

2

]
X (k) (3.27)

+
N−1∑
m=0

h (m)
[β (mk)− β (−mk)

2

]
X (N − k)

⟩
Mp

where X(k) and X(N − k) are defined by NMNT property, as well as H(k) and

H(N − k), which are

⟨
N−1∑
s=0

x(s)β (sk)

⟩
Mp

= X (k) , (3.28)
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3. THE GENERALISED NEW MERSENNE TRANSFORM⟨
N−1∑
s=0

x(s)β (−sk)

⟩
Mp

= X (−k)

= X (N − k)

(3.29)

and ⟨
N−1∑
m=0

h (m)β (mk)

⟩
Mp

= H (k) , (3.30)

⟨
N−1∑
m=0

h (m)β (−mk)

⟩
Mp

= H (−k)

= H (N − k) .

(3.31)

Therefore, applying (3.30) and (3.31) into (3.27) produces

⟨
H (k) +H (−k)

2
X (k) +

H (k)−H (−k)

2
X (N − k)

⟩
Mp

=

⟨{
[H (k) +H (N − k)]X (k) + [H (k)−H (N − k)]X (N − k)

}
2p−1

⟩
Mp

(3.32)

= Y (k) .

where
1

2
=

⟨
2p−1

⟩
Mp

. (3.33)

Splitting H (k) into even and odd parts as

Hev(k) =

⟨
H (k) +H (−k)

2

⟩
Mp

=
⟨
[H (k) +H (−k)] 2p−1

⟩
Mp

(3.34)

and

Hod(k) =

⟨
H (k)−H (−k)

2

⟩
Mp

=
⟨
[H (k)−H (−k)] 2p−1

⟩
Mp

(3.35)

Then applying (3.34) and (3.35) to (3.32) produces the desired equation in order to

derive the cyclic convolution using the NMNT as

GN [yCC (n)] = GN [x (n)~ h (n)]

= Hev (k)X (k) +Hod (k)X (N − k)

= Y (k) .

(3.36)
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NMNT

NMNT
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Figure 3.1: Convolution Process Structure for the NMNT

This is shown in Figure 3.1, where the ⊙ operator is defined as

Y (k) = X(k)⊙H(k)

= Hev (k)X (k) +Hod (k)X (N − k) .
(3.37)

An example using the NMNT to obtain the cyclic convolution yCC , generating x

and h randomly to represent the input and impulse response signals respectively,

with p = 13 and length N = 8 is first shown as

x(n) = [1, 1, 0, 1, 1, 0, 0, 1] (3.38)

and

h(n) = [1, 1, 0, 1, 1, 0, 1, 0]. (3.39)

The resulting NMNT representations are

X(k) = [5, 923, 0, 6019, 3, 2547, 8063, 7492, 8190, 7268, 0, 2176, 1, 5644, 128, 703], (3.40)

H(k) = [5, 8063, 8064, 5096, 1, 128, 8062, 1848, 1, 8063, 129, 3099, 1, 128, 127, 6347]. (3.41)

Applying the cyclic convolution algorithm produces

Y (k) = [25, 4354, 126, 7994, 3, 4795, 0, 2271, 8190, 3315, 8061, 459, 1, 3898, 0, 5670], (3.42)

and applying the inverse NMNT results the first 2N − 1 elements as

ycc = [1, 2, 1, 2, 4, 2, 2, 4, 2, 1, 2, 1, 0, 1, 0]. (3.43)
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3. THE GENERALISED NEW MERSENNE TRANSFORM

Confirming the results with the built in function of MATLAB produces

conv(x, h) = [1, 2, 1, 2, 4, 2, 2, 4, 2, 1, 2, 1, 0, 1, 0]. (3.44)

3.6.2 Cyclic convolution of ONMNT

Following similar steps to derive the NMNT cyclic convolution computation, the

ONMNT cyclic convolution can be calculated as

GO [yCC (n)] = GO [x (n)~ h (n)]

=

⟨
N−1∑
m=0

N−1∑
n=0

x(n−m)h (m)β

(
2k + 1

2
n

)⟩
Mp

=

⟨
N−1∑
m=0

h (m)

N−1∑
s=0

x(s)β

(
2k + 1

2
s+

2k + 1

2
m

)⟩
Mp

(3.45)

where s = m− n, and GO denotes the ONMNT transform. From the β identities in

provided in [7], the β
(
2k+1
2

s+ 2k+1
2

m
)
term in (3.45) can be simplified as

⟨
N−1∑
m=0

h (m)

N−1∑
s=0

x(s)

[
β1 (mk)β

(
2k + 1

2
s

)
+ β2 (mk)β

(
−2k + 1

2
s

)]⟩
Mp

=

⟨
N−1∑
m=0

h (m)β1

(
2k + 1

2
m

)N−1∑
s=0

x(s)β

(
2k + 1

2
s

)
(3.46)

+

N−1∑
m=0

h (m)β2

(
2k + 1

2
m

)N−1∑
s=0

x(s)β

(
−2k + 1

2
s

)⟩
Mp

.

Applying (3.25) and (3.26) now into (3.46), produces

⟨
N−1∑
m=0

h (m)β1

(
2k + 1

2
m

)N−1∑
s=0

x(s)β

(
2k + 1

2
s

)

+

N−1∑
m=0

h (m)β2

(
2k + 1

2
m

)N−1∑
s=0

x(s)β

(
−2k + 1

2
s

)⟩
Mp

=

⟨
N−1∑
m=0

h (m)

[
β
(
2k+1
2 m

)
+ β

(
−2k+1

2 m
)

2

]
XO (k) (3.47)

+
N−1∑
m=0

h (m)

[
β
(
2k+1
2 m

)
− β

(
−2k+1

2 m
)

2

]
XO (N − k − 1)

⟩
Mp
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where XO(k) and XO(N − k) are defined by ONMNT variables, as are HO(k) and

HO(N − k), which are

⟨
N−1∑
s=0

x(s)β

(
2k + 1

2
s

)⟩
Mp

= XO (k) , (3.48)

⟨
N−1∑
s=0

x(s)β

(
−2k + 1

2
s

)⟩
Mp

= XO (−k − 1)

= XO (N − k − 1)

(3.49)

and ⟨
N−1∑
m=0

h (m)β

(
2k + 1

2
m

)⟩
Mp

= HO (k) , (3.50)

⟨
N−1∑
m=0

h (m)β

(
−2k + 1

2
m

)⟩
Mp

= HO (−k − 1)

= HO (N − k − 1) .

(3.51)

Thus, substituting (3.50) and (3.51) into (3.47) generates

⟨
N−1∑
m=0

h (m)

[
β
(
2k+1
2 m

)
+ β

(
−2k+1

2 m
)

2

]
XO (k)

+
N−1∑
m=0

h (m)

[
β
(
2k+1
2 m

)
− β

(
−2k+1

2 m
)

2

]
XO (N − k − 1)

⟩
Mp

=

⟨
HO (k) +HO (N −K − 1)

2
XO (k)

+
HO (k)−HO (N − k − 1)

2
XO (N − k − 1)

⟩
Mp

(3.52)

=

⟨{
[HO (k) +HO (N − k − 1)]XO (k)

+ [HO (k)−HO (N − k − 1)]XO (N − k − 1)
}
2p−1

⟩
Mp

= YO (k) .

Splitting HO (k) into even and odd parts produces

Hev
O (k) =

⟨
HO (k) +HO (−k)

2

⟩
Mp

=

⟨
[HO (k) +HO (−k)] 2p−1

⟩
Mp

(3.53)
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ONMNT
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x(n)

h(n)
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Figure 3.2: Convolution Process Structure for the ONMNT

and

Hod
O (k) =

⟨
HO (k)−HO (−k)

2

⟩
Mp

=

⟨
[HO (k)−HO (−k)] 2p−1

⟩
Mp

.

(3.54)

Then applying (3.53) and (3.54) into (3.52) produces the desired equation to

process the cyclic convolution using the ONMNT as

GO [yCC (n)] = GO [x (n)~ h (n)]

= Hev
O (k)X (k) +Hod

O (k)X (N − k)

= YO (k) .

(3.55)

The ⊙ operator in Figure 3.2 is defined as

YO (k) = XO(k)⊙HO(k)

= Hev
O (k)XO (k) +Hod

O (k)XO (N − k) .
(3.56)

In Figure 3.2, the ⊙ operator has the same function as it does in Figure 3.1. An

example of a cyclic convolution using the ONMNT given where all of the variables

that were used for the NMNT have the same purpose such that

x(n) = [1, 1, 1, 1, 0, 0, 0, 0], (3.57)

h(n) = [0, 0, 0, 1, 1, 1, 1, 1]. (3.58)

The resulting ONMNT representations are

XO(k) = [2309, 5366, 5554, 2448, 5584, 3903, 2196, 3490,

790, 7921, 4485, 7591, 7703, 7387, 4151, 2857],
(3.59)
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and

HO(k) = [4977, 770, 6362, 1669, 1920, 1344, 235, 4305,

117, 4068, 8174, 433, 1177, 1497, 1611, 2296].
(3.60)

Applying the circular convolution algorithm produces

YO(k) = [5515, 2526, 5538, 5146, 4799, 6275, 8100, 146,

319, 7307, 357, 7850, 5737, 7453, 2375, 4276],
(3.61)

and applying the inverse ONMNT results in the first 2N − 1 elements as

ycc = [0, 0, 0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 0, 0, 0]. (3.62)

Confirming the results with the built in function of MATLAB produces

conv(x, h) = [0, 0, 0, 1, 2, 3, 4, 4, 3, 2, 1, 0, 0, 0, 0]. (3.63)

3.6.3 Cyclic convolution of O2NMNT

The O2NMNT can also be applied to compute the cyclic convolution. As previously

defined in (3.15), the O2NMNT kernel matrix is derived from β
[(

2k+1
2

) (
2n+1

2

)]
and is therefore implemented as

YO2 (k) =

⟨
N−1∑
m=0

N−1∑
n=0

x(n−m)h (m)β

[(
2k + 1

2

)(
2n+ 1

2

)]⟩
Mp

=

⟨
N−1∑
m=0

h (m)

N−1∑
s=0

x(s)β

[(
2k + 1

2

)(
2n+ 1

2

)]⟩
Mp

(3.64)

where

s = m− n. (3.65)

The O2NMNT defines HO2 (k) and HO2 (N − k − 1) by

⟨
N−1∑
m=0

h(m)β

[(
2k + 1

2

)(
2m+ 1

2

)]⟩
Mp

= HO2 (k) (3.66)
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and ⟨
N−1∑
m=0

h(m)β

[(
−2k + 1

2

)(
2m+ 1

2

)]⟩
Mp

= HO (−k − 1)

= −HO2 (N − k − 1) .

(3.67)

Applying m, s to the β term in (3.64), produces

β

[(
2k + 1

2

)(
2n+ 1

2

)]
= β

[(
2k + 1

2

)(
2m+ 1

2

)
+

2k + 1

2
s

]
(3.68)

and substituting (3.68) into (3.64) produces

YO2 (k) =

⟨
N−1∑
m=0

h (m)

N−1∑
s=0

x(s)β

[(
2k + 1

2

)(
2m+ 1

2
+

2k + 1

2
s

)]⟩
Mp

=

⟨
N−1∑
m=0

h (m)
N−1∑
s=0

x(s)

{
β1

[(
2k + 1

2

)(
2m+ 1

2

)]
β

(
2k + 1

2
s

)

+ β2

[(
2k + 1

2

)(
2m+ 1

2

)]
β

(
−2k + 1

2
s

)}⟩
Mp

=

⟨
N−1∑
m=0

h (m)β1

[(
2k + 1

2

)(
2m+ 1

2

)]N−1∑
s=0

x(s)β

(
2k + 1

2
s

)

+

N−1∑
m=0

h (m)β2

[(
2k + 1

2

)(
2m+ 1

2

)]N−1∑
s=0

x(s)β

(
−2k + 1

2
s

)⟩
Mp

.

(3.69)

To simplify (3.69) according to (3.66), (3.67) and (3.48), then (3.49) yields

YO2 (k) =

⟨
HO2 (k)−HO2 (N −K − 1)

2
XO (k)

+
HO2 (k) +HO2 (N − k − 1)

2
XO (N − k − 1)

⟩
Mp

=

⟨{
[HO2 (k)−HO2 (N − k − 1)]XO (k)

+ [HO2 (k) +HO2 (N − k − 1)]XO (N − k − 1)
}
2p−1

⟩
Mp

.

(3.70)

The function operator ⊙ as shown in Figure 3.3 is defined as

YO2 (k) = XO (k)⊙HO2 (k)

=
⟨
Hod

O2(k)XO (k)

+Hev
O2(k)XO (N − k)

⟩
Mp

(3.71)
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Figure 3.3: Convolution Process Structure for the O2NMNT

where

Hev
O2(k) =

⟨
[HO2 (k) +HO2 (−k)] 2p−1

⟩
Mp

(3.72)

and

Hod
O2(k) =

⟨
[HO2 (k)−HO2 (−k)] 2p−1

⟩
Mp

. (3.73)

An example of using the O2NMNT to perform a cyclic convolution is shown as

x(n) = [1, 0, 0, 0, 0, 1, 1, 0], (3.74)

h(n) = [0, 1, 0, 0, 1, 0, 1, 1]. (3.75)

The resulting O2NMNT representations are

XO(k) = [3454, 6272, 3545, 18, 6333, 3215, 6685, 7957,

1642, 7015, 2802, 1830, 4957, 8075, 3354, 6581],
(3.76)

and

HO2(k) = [1973, 5938, 6361, 2277, 1222, 606, 3763, 4807,

7005, 5958, 225, 7841, 2599, 4844, 464, 5500].
(3.77)

Applying the circular convolution algorithm produces

YO2(k) = [7595, 4072, 3529, 543, 963, 3337, 7814, 2753,

4813, 6359, 3429, 4057, 6479, 7859, 2744, 8088],
(3.78)
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and applying the inverse O2NMNT results in the first 2N − 1 elements as

ycc = [0, 1, 0, 0, 1, 0, 2, 2, 0, 1, 1, 1, 2, 1, 0]. (3.79)

Confirming the results with the built in function of MATLAB produces

conv(x, h) = [0, 1, 0, 0, 1, 0, 2, 2, 0, 1, 1, 1, 2, 1, 0]. (3.80)

Again, the variables x and h are input signal and impulse response accordingly,

which are generated randomly and y
CC

is the resultant cyclic convolution using the

O2NMNT. The result was verified using the built-in functions of MATLAB.

3.7 Encryption Example using the GNMNT

This section demonstrates the use of the GNMNT transforms as part of an

encryption application. As a demonstration, this is a basic implementation to

show some application techniques and the performance of each transform. There

are no additional rounds and operations that one would usually find in general

encryption schemes. This process can also be considered as a straightforward ECB

implementation, which is the simplest form of encryption and, as previously noted

in Section 2.5.1, is not a recommended technique for general use implementations.

The algorithm will take the plaintext equivalent and transform it to the associate

domain by

TG = G (t) (3.81)

where t is the plaintext, and TG is the transformed plaintext using one of the

GNMNT transforms denoted by G. The key is randomly chosen as

K = {0x3e41, 0x1a4d, 0x273f, 0xf670, 0x39f4, 0xea3e, 0xddc1, 0x99a0} (3.82)

and to test the effect of using an incorrect key, an alternate random key will be

used shown as

K̂ = {0x9ef7, 0x2913, 0x7503, 0xf2cc, 0x0ea8, 0xd934, 0xaab1, 0x2903}. (3.83)
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The cipher is then created by

CG = ⟨TG ⊗K⟩Mp (3.84)

and

c = G (CG)
−1 (3.85)

where G (·)−1 denotes the matching inverse GNMNT transform to what was used

in (3.81) and ⊗ denotes point-by-point multiplication. The inverse keys are then

derived by

K−1 =
⟨
KMp−2

⟩
Mp

(3.86)

K̂−1 =
⟨
K̂Mp−2

⟩
Mp

. (3.87)

The unadulterated key from (3.86) is the used to decrypt c to recover r, which

represents the original plaintext t by first deriving RG as

RG =
⟨
CG ⊗K−1

⟩
Mp

(3.88)

and then

r = G (RG)
−1 (3.89)

noting that

r = t. (3.90)

In addition, should we also wish to see the resultant plaintext with the use of a

different key then we compute

R̂G =
⟨
CG ⊗ K̂−1

⟩
Mp

(3.91)

and then

r̂ = G
(
R̂G

)−1
. (3.92)

We can then display t, c, r̂ and r, which are the results for each stage. This type

of encryption will be ECB mode, which is the simplest form of encryption where

each block will be independent from all others. This will in due course also serve

to show the inherent weakness of the ECB mode, the use of which is strongly

discouraged. Additionally, each cipher will be produced using a single round and

a single operation, not the several rounds and further operations that are usually

expected from a typical symmetric encryption system.
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3.7.1 Encryption using the NMNT

Earlier research has been undertaken using the NMNT, where the transform has

been proposed for use as a component within an encryption system [61,110,111,118].

The methodology used in this example is achieved by first considering the

parameters of the transform; N = 8 and p = 17 to derive Mp = 131071. The first

16 pixels to be encrypted are then obtained by

t = {0xce, 0xd0, 0xd1, 0xcf, 0xd1, 0xd1, 0xcf, 0xd1,

0xd0, 0xcf, 0xd0, 0xd1, 0xd3, 0xd1, 0xd0, 0xd2}
(3.93)

and concatenating subsequent pairs of bytes so that

t = {0xced0, 0xd1cf, 0xd1d1, 0xcfd1, 0xd0cf, 0xd0d1, 0xd3d1, 0xd0d2}. (3.94)

Applying the NMNT to the vector t we obtain

TG = {0x08887, 0x00202, 0x1f7ff, 0x00000, 0x001fe, 0x1fdff, 0x1fbf9, 0x1f801} (3.95)

and subsequently after applying the key from (3.82) in (3.84) we get

CG = {0x16Ce0, 0x0ceb4, 0x00763, 0x00000, 0x17451, 0x18315, 0x1c7bb, 0x030da}.

(3.96)

The resultant cipher c is then produced by applying (3.96) to the inverse NMNT in

(3.85) to obtain

c = {0x1665e, 0x02da3, 0x0de24, 0x09f5d, 0x145b5, 0x1c096, 0x0e660, 0x06eb0}. (3.97)

Reverting c to the GNMNT domain CG allows recovery of the plaintext r, which can

be obtained by using the inverse key (3.86) with CG in (3.89). Similarly, recovering

the alternate plaintext r̂ using the alternate key from (3.83) can be obtained by

applying the inverse of the altered key (3.87) to CG in (3.91) to respectively produce

Figures 3.5(a)-3.5(d) for the cameraman image.

R̂G = {0x02c52, 0x0dcca, 0x06606, 0x00000, 0x149ec, 0x13a3a, 0x12ac2, 0x191e3}

(3.98)
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3.7 Encryption Example using the GNMNT

(a) Original (b) Cipher

(c) Incorrect Key (d) Correct Key

Figure 3.4: Encrypted Cameraman using NMNT, N = 8 and Mp = 131071

and

r̂ = {0x015fe, 0x0edd6, 0x12c0a, 0x19fc0, 0x1abc3, 0x1fbf1, 0x1cd52, 0x0e7a9}. (3.99)

Using the public domain image of the cameraman, the results are shown for the

original image as the plaintext pT , ciphered image cT , the recovered image using

incorrect key r̂T and the recovered image using the correct key rT in Figures

3.4(a)-3.4(d) respectively.
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(a) Original (b) Cipher

(c) Incorrect Key (d) Correct Key

Figure 3.5: Encrypted Cameraman using ONMNT, N = 8 and Mp = 131071

3.7.2 Encryption using the ONMNT

The application of the ONMNT as part of an encryption scenario is a very new

concept. While much has been published with the NMNT on this subject, the

only research to date using the ONMNT can be found in [119]. The results of the

encryption effectiveness can be shown in Figures 3.5(a)-3.5(d).

3.7.3 Encryption using the O2NMNT

Like the ONMNT, the application of the O2NMNT within the field of encryption is

very recent. However, there is a stronger interest in O2NMNT as characteristics of

this transform appear to show that it is extremely resilient according to [119]. The
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3.7 Encryption Example using the GNMNT

(a) Original (b) Cipher

(c) Incorrect Key (d) Correct Key

Figure 3.6: Encrypted Cameraman using O2NMNT, N = 8 and Mp = 131071

results of the process using the O2NMNT are provided in Figures 3.6(a)-3.6(d).

3.7.4 Encryption using the GNMNT

From the initial assessment of the processes covered, it can be seen that all

transforms appear to perform equally. This is shown by depicting an unrecoverable

image upon decrypting using the incorrect key for each transform, which have been

collated in Figures 3.7(a)-3.7(d). However, in order to get a little insight into how

the transforms actually perform, the kernel components must be investigated a

little more deeply.
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(a) Original (b) NMNT

(c) ONMNT (d) O2NMNT

Figure 3.7: Decrypted Cameraman Error using GNMNT, N = 8 and Mp = 131071

3.8 The GNMNT Kernel Components

The kernel components can be seen as the heart of the transform. These

components are quite easily observed in the GNMNT matrices and as such, can

give an indication as to how these attributes will reinforce or diminish the security

properties of the transform. One of the significant metrics of an encryption

system is how its diffusion characteristics perform. The characteristics that govern

this aspect will be covered in greater detail later in Chapter 6. However, it

would be relevant to describe the observed characteristics of each transform kernel

observation while the kernels have recently been presented.
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Figure 3.8: Consistency of Trivial Elements in the NMNT Kernel

3.8.1 The NMNT Kernel Components

The NMNT kernel is both orthogonal and symmetric. As such, it is its own inverse

when used with the corresponding scaling factor. One of the characteristics that

was observed with the NMNT was a potential weakness in its diffusion properties,

which when used with encryption, are shown to be very linear. While [110]

and [111] provide an intensive study in this area, the work focused more upon the

changing of the elements rather than the effect upon the bits. As such, a significant

amount of information can be gained through the manipulation of a single bit; this

will be discussed further in Chapter 6. However, one of the biggest attributes to

this observable problem may well be the construction of the matrix itself in that

it contains a significant amount of trivial elements, i.e. one, zero and the field

equivilant of minus one in quantities that can be determined by

#{(GN ,m (1))} = N [log2(N) + 0.5] (3.100)

#{(GN ,m (0))} = N [log2(N)− 2] (3.101)

67



3. THE GENERALISED NEW MERSENNE TRANSFORM

Figure 3.9: Consistency of Trivial Elements in the ONMNT Kernel

and

#{(GN ,m (−1))} = N [log2(N)− 0.5] , (3.102)

where GN denotes the NMNT kernel matrix and the field equivalent of a minus

one is Mp − 1. Figure 3.8 better illustrates how these elements are dispersed

throughout the kernel.

Elements containing either a one or a minus one can potentially be a means to

attack the system using cribs, particularly where both the first row and column

contain ones, indicating that the first element in the transformed vector is the sum

of the initial vector, modulo the Mersenne prime. However, the greatest threat

appears to be the number of zeros contained within the NMNT kernel. This can be

shown by using the same implementation and process as Section 3.7 but decrypting

using a very slightly modified key to that shown in (3.83), where the final bit in

the final element of the key has changed to reflect

K̂ = {0x3e41, 0x1a4d, 0x273f, 0xf670, 0x39f4, 0xea3e, 0xddc1, 0x99a1}. (3.103)
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The result of decrypting the image with the NMNT by using a key that differs by

a single bit is shown in Figure 3.10(b), where it can quite easily be observed that

part of the image has been recovered. However, it can be further observed that

this effect diminishes as the transform length and subsequent key length increases

as show in Figures 3.10(c)-3.10(f), where increasingly longer keys were derived

randomly. The reason why part of the image has been recovered using a key

differing by a single bit will be explained later in this chapter.

3.8.2 The ONMNT Kernel Components

Using the same methods that were used with the NMNT, we can derive the

consistency of trivial elements for the ONMNT. As the IONMNT is a transpose of

the ONMNT, the same formulae will work between both transforms for determining

the number of ones, zeros and minus ones in quantities that can be determined by

#{(GO,m (1))} =
3N

2
(3.104)

#{(GO,m (0))} = N (3.105)

and

#{(GN ,m (−1))} =
N

2
. (3.106)

From Figure 3.11 it can be observed that the ONMNT also suffers from the same

inherent problems as the NMNT where part of the image has been recovered using

a decryption key that differs from the encryption key by a single bit. It can again be

further observed that this effect diminishes as the transform length and subsequent

key length increases as show in Figures 3.11(b)-3.11(f), where increasingly longer

keys were derived randomly. Proof of this will be provided later in this chapter.

3.8.3 The O2NMNTKernel Components

There is a unique aspect with the O2NMNT in that it does not contain any

of the trivial elements whatsoever. As will be analysed later, this suggests that

the O2NMNT would perform very well for security applications as there are no

components in the kernel to copy or invert elements from the input vector to

potentially perform attacks using cribs. More importantly, there are no elements

that nullify the effects of the key during the decryption process, as shown in Figure
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(a) Original Image (b) NMNT Bit Error N = 8

(c) NMNT Bit Error N = 16 (d) NMNT Bit Error N = 32

(e) NMNT Bit Error N = 64 (f) NMNT Bit Error N = 128

Figure 3.10: Decrypted 256 × 256 Cameraman Bit Error using NMNT with
N = 8, 16, 32, 64, 128, Mp = 131071
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(a) Original Image (b) ONMNT Bit Error N = 8

(c) ONMNT Bit Error N = 16 (d) ONMNT Bit Error N = 32

(e) ONMNT Bit Error N = 64 (f) ONMNT Bit Error N = 128

Figure 3.11: Decrypted 256 × 256 Cameraman Bit Error using ONMNT with
N = 8, 16, 32, 64, 128, Mp = 131071
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(a) Original Image (b) O2NMNT Bit Error N = 8

(c) O2NMNT Bit Error N = 16 (d) O2NMNT Bit Error N = 32

(e) O2NMNT Bit Error N = 64 (f) O2NMNT Bit Error N = 128

Figure 3.12: Decrypted 256 × 256 Cameraman Bit Error using O2NMNT with
N = 8, 16, 32, 64, 128, Mp = 131071
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3.12. The resultant image using the O2NMNT shows significant promise over the

NMNT and ONMNT counterparts, where a similar level of performance appears to

have been reached when using a completely different key in Section 3.7.3.

3.8.4 Proving the Detriments of Zero-Elements within the

GNMNT

The effects of the phenomenon where stripes can be observed are easily described

where earlier claims were made indicating that the zero-elements within the kernel

matrices were the cause.

Proof. If we first show the input vector x as

x = [x0, x1, . . . , xN−1] (3.107)

and the NMNT kernel as

M =


β (nk) β [n (k + 1)] β [n (k + j)] . . . β [n (N − k − 1)]

β [(n+ 1) k] β [(n+ 1) (k + 1)] β [(n+ 1) (k + j)] . . . β [(n+ 1) (N − k − 1)]

β [(n+ i) k] β [(n+ i) (k + 1)] β [(n+ i) (k + j)] . . . β [(n+ i) (N − k − 1)]

.

..
.
..

.

..
. . .

.

..

β [(N − n− 1) k] β [(N − n− 1) (k + 1)] β [(N − n− 1) (k + j)] . . . β [(N − n− 1) (N − k − 1)]


(3.108)

where

0 ≤ i, j ≤ N − 1 (3.109)

then by applying

X = ⟨xM⟩Mp (3.110)

where the transformed vector X is similarly constructed as

X = [X0, X1, . . . , XN−1] (3.111)

the derivation of each element of X as a result from applying the NMNT to x can
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be shown as

X0 = x0β (nk) + x1β [(n+ 1) k]

+ xiβ [(n+ i) k] + . . .+ xN−n−1β [(N − n− 1) k]

X1 = x0β [n (k + 1)] + x1β [(n+ 1) (k + 1)]

+ xiβ [(n+ i) (k + 1)] + . . .+ xN−n−1β [(N − n− 1) (k + 1)]

Xj = x0β [n (k + j)] + x1β [(n+ 1) (k + j)]

+ xiβ [(n+ i) (k + j)] + . . .+ xN−n−1β [(N − n− 1) (k + j)]

...

XN−k−1 = x0β [n (N − k − 1)] + x1β [(n+ 1) (N − k − 1)]

+ xiβ [(n+ i) (N − k − 1)] + . . .+ xN−n−1β [(N − n− 1) (N − k − 1)] .

(3.112)

If we define x̂ as a copy of vector x where a single element has been changed shown

as x̂r then we obtain a new transformed vector by

X̂ = ⟨x̂M⟩Mp (3.113)

and can show that

X̂j = Xj when x̂i ̸= xi ⇐⇒ β [(n+ i) (k + j)] = 0, (3.114)

where the unaffected resultant vector element(s) correspond to the matrix column(s)

that have a zero at the same row position as the modified key element.

Similarly, we can show that this also works with the ONMNT by applying the

matrix transpose, which for the NMNT yields the same matrix kernel.

Proof. Representing the transformed vector X as Y and derive the inverse

y =

⟨
1

N

[
YM

′
]⟩

Mp

(3.115)

noting that

y = x (3.116)

then defining Ŷ as a copy of Y where a single element has been changed shown as
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3.8 The GNMNT Kernel Components

Ŷi and transforming the modified vector out of the NMNT domain by

ŷ =

⟨
1

N

[
Ŷ M

′
]⟩

Mp

(3.117)

we can show that

ŷj = yj when Ŷi ̸= Yi ⇐⇒ β [(n+ i) (k + j)] = 0, (3.118)

where again the unaffected resultant vector element(s) correspond to the matrix

column(s) that have a zero at the same row position as the modified key element.

This corresponds to the diminishing number of zero-elements in the NMNT

kernel as described in (3.101) illustrated in Figure 3.8 and depicted in Figure

3.10 building upon the alternate key (3.103). This can be further verified when

considering the NMNT kernel that was constructed using the α1 and α2 values

from Table 3.6

M =



1 1 1 1 1 1 1 1

1 512 1 0131070 130559 131070 0

1 1 131070 131070 1 1 131070 131070

1 0 131070 512 131070 0 1 130559

1 131070 1 131070 1 131070 1 131070

1 130559 1 0 131070 512 131070 0

1 131070 131070 1 1 131070 131070 1

1 0 131070 130559 131070 0 1 512



(3.119)

and noting that changing the last element of the key will have no bearing on the

resultant operation owing that

Mi,j = 0 for i = N − 1, j ∈
{
N

8
,
5N

8

}
and 8 ≤ N ≤ 2p. (3.120)

Remembering that there are two pixels in each element would further explain the

recovery of the presented parts of the images.

This phenomenon can also be demonstrated with the ONMNT using the same

methods and conditions but replacing (3.119) with the appropriate version of the

kernel for the IONMNT that was constructed using the α1 and α2 values from
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Table 3.7

M =



1 82137 512 82137 1 29287 0 101784

1 82137 0 48934 131070 29287 512 29287

1 29287 130559 29287 1 48934 0 82137

1 101784 0 29287 131070 82137 130559 82137

1 48934 512 48934 1 101784 0 29287

1 48934 0 82137 131070 101784 512 101784

1 101784 130559 101784 1 82137 0 48934

1 29287 0 101784 131070 48934 130559 48934



(3.121)

and this time noting that

Mi,j = 0 for i = N − 1, j =
N

4
and 4 ≤ N ≤ 2p (3.122)

would correspond the shortcomings of Figure 3.11. This again would correspond

to the diminishing number of zero-elements in the ONMNT kernel as described in

(3.105) illustrated in Figure 3.9. Therefore the only way that these anomalies can

be avoided is by applying multiple rounds to the process and shuffling the result of

each round prior to supplying it as an input to the next round.

3.8.5 Demonstration of the Proof

We can provide an overall demonstration using a simple matrix unrelated to the

GNMNTs as follows.

Proof. Using N = 4 we define an arbitrary matrix

M =


95 70 69 94

68 121 0 44

42 113 79 104

105 0 101 3

 (3.123)

and vector

x = [52, 92, 99, 46] (3.124)
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so that

X = ⟨xM⟩127

= [118, 51, 53, 66].
(3.125)

Reusing the vector in (3.124) and changing the last value of the input vector x̂3 = 3

shown as

x̂ = [52, 92, 99, 3] (3.126)

results in

X̂ = ⟨x̂M⟩127

= [48, 51, 21, 64]
(3.127)

so that there is no change in the second value of the output vectors between (3.125)

and (3.127), which can be shown as X1 = X̂1. Similarly, reusing the vector in

(3.124) and changing the second value of the input vector x̂1 = 3 shown as

x̂ = [52, 3, 99, 46] (3.128)

results in

X̂ = ⟨[52, 3, 99, 46]M⟩127

= [35, 77, 53, 87]
(3.129)

so that there is no change in the third value of the output vectors between (3.125)

and (3.129), which can be shown as X2 = X̂2.

3.9 Conclusion

This chapter has introduced the new transforms of the GNMNT and demonstrated

that they are easily adaptable for applications based upon convolution, verifying

their capability and value in signal-processing. Moreover, while the original NMNT

has seen a relevant amount of success and acceptance in the field of security,

the extension of the NMNT to the GNMNT offers new and potentially stronger

transforms for security applications. The preliminary examples of encryption within

this chapter show that the GNMNT, particularly the O2NMNT transforms to have

comparable initial results in this field, which will be later explored in Chapter 6.
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Chapter 4

Fast Algorithms of the GNMNT

4.1 Introduction

Fast algorithms have been a prime focus of research since the inception of the fast

Fourier transform [120], which has initiated myriad pursuits in this area. Naturally,

the quicker such processes can be undertaken, the greater throughputs can be

achieved. Lowering typical power consumption and having a wider applicability

further increases their attractiveness. In this section we will show how the GNMNT

can be derived using fast algorithms like other transforms before it, such as

the original NMNT, fast Fourier transform [120], fast Hartley transform [121],

etc. Firstly, the radix-2 algorithms will be derived, followed by the radix-4 and

split-radix algorithms. A complexity analysis will also be developed and timings

for each algorithm will be included in order to compare and contrast.

4.2 Radix-2 ONMNT

The radix-2 algorithm is the simplest of the fast algorithms to both describe and

derive. It works by splitting an N -length algorithm into two smaller N
2
-length

algorithms. The significance of this approach is quite profound when looking at

metrics based on the Fourier transform, which reduces an O(N2) problem to an

O(N log2 N) problem. When N = 1024 then this represents a saving in processing

of over 90%. This process can be repeated log2 N times meaning that any length

that is a power of two can use this process.

79



4. FAST ALGORITHMS OF THE GNMNT

4.2.1 Radix-2 DIT

The first of the two radix-2 algorithms is the DIT algorithm. It is derived by

splitting the N -length transform into two smaller N
2
-length transforms representing

even and odd parts. This can easily be visualised when taking into consideration

the methods of indexing, which is X2n for even indexing and X2n+1 for odd

indexing. This decomposes the ONMNT algorithm

X (k) =

⟨
N−1∑
n=0

x(n)β

(
2k + 1

2
n

)⟩
Mp

(4.1)

into

X (k) = Xev (k) +Xod (k) . (4.2)

The even and odd components in (4.2) can be further expressed as

Xev (k) =

⟨N
2 −1∑
n=0

x(2n)β

(
2k + 1

2
2n

)⟩
Mp

= X2n (k)

(4.3)

and

Xod (k) =

⟨N
2 −1∑
n=0

x(2n+ 1)β

[
2k + 1

2
(2n+ 1)

]⟩
Mp

(4.4)

Simplifying β in (4.4) produces

β

[
2k + 1

2
(2n+ 1)

]
= β

(
2k + 1

2
2n+

2k + 1

2

)
. (4.5)

Using the identity given in [7] where

β (a+ b) = β1 (a)β (b) + β2 (a)β (−b) (4.6)

then (4.5) can be rewritten as

β

(
2k + 1

2
2n+

2k + 1

2

)
=β1

(
2k + 1

2

)
β

(
2k + 1

2
2n

)
+ β2

(
2k + 1

2

)
β

(
−2k + 1

2
2n

)
.

(4.7)

To obtain a general odd form we get

X2n+1 (k) =

⟨N
2 −1∑
n=0

x(2n+ 1)β

(
2k + 1

2
2n

)⟩
Mp

(4.8)
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2k+1

2

2k+1

2

X(k)
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X(k+N/2)

X(N-k)
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X(N-k)

β1( )2k+1

2

β1( )2k+1
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2
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2

=

Figure 4.1: Radix-2 1D-ONMNT In-Place DIT Butterfly

and

X2n+1 (N − k) =

⟨N
2 −1∑
n=0

x(2n+ 1)β

(
−2k + 1

2
2n

)⟩
Mp

. (4.9)

Before combining (4.7) and (4.8) we first need to correct the final term in (4.7),

which because of the periodic properties of the transform, can be expressed as

Xod =

⟨
β1

(
2k + 1

2

)
X2n+1 (k) + β2

(
2k + 1

2

)
X2n+1 (N − k)

⟩
Mp

. (4.10)

Combining (4.8) and (4.10) produces the first point k as

X (k) =

⟨
X2n (k) + β1

(
2k + 1

2

)
X2n+1 (k) + β2

(
2k + 1

2

)
X2n+1 (N − k)

⟩
Mp

. (4.11)

In radix-2 there are four points: k, N
2
− k, k+ N

2
and N − k. Equation (4.11) shows

the point k. Defining subsequent points is a little more involved and requires k

to be replaced with the point position that is currently being derived. Similarly,

it can be easy to get all equations at different point by replacing k. For example

point N
2
− k, ∵ N

2
− k :⇔ N

2
− k − 1 by definition, then

β

[
2
(
N
2 − k − 1

)
+ 1

2
2n

]
= β

(
N − 2k − 1

2
2n

)
(4.12)

β

[
2
(
k + N

2

)
+ 1

2
2n

]
= β

(
N + 2k + 1

2
2n

)
(4.13)

and

β

[
2 (N − k − 1) + 1

2
2n

]
= β

(
2N − 2k − 1

2
2n

)
. (4.14)

According to the β in each point derived in (4.12)-(4.14), the following points can

be derived by the respective processes as
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X2n+1

(
N
2 − k

)
=

⟨N
2 −1∑
n=0

x(2n+ 1)β

[
2
(
N
2 − k − 1

)
+ 1

2
2n

]⟩
Mp

=

⟨N
2 −1∑
n=0

x(2n+ 1)β

(
−2k + 1

2
2n

)⟩
Mp

= X2n+1 (N − k)

(4.15)

X2n+1

(
k + N

2

)
=

⟨N
2 −1∑
n=0

x(2n+ 1)β

[
2
(
k + N

2

)
+ 1

2
2n

]⟩
Mp

=

⟨N
2 −1∑
n=0

x(2n+ 1)β

(
2k + 1

2
2n

)⟩
Mp

= X2n+1 (k)

(4.16)

and

X2n+1 (N − k) =

⟨N
2 −1∑
n=0

x(2n+ 1)β

[
2 (N − k − 1) + 1

2
2n

]⟩
Mp

=

⟨N
2 −1∑
n=0

x(2n+ 1)β

(
−2k + 1

2
2n

)⟩
Mp

= X2n+1 (N − k) .

(4.17)

The point
(
N
2
− k

)
is derived as

X
(
N
2 − k

)
=

⟨
Xev

(
N
2 − k

)
+Xod

(
N
2 − k

)⟩
Mp

=

⟨N
2 −1∑
n=0

x(2n)β

[
2
(
N
2 − k − 1

)
+ 1

2
2n

]

+

N
2 −1∑
n=0

x(2n+ 1)β

[
2
(
N
2 − k − 1

)
+ 1

2
(2n+ 1)

]⟩
Mp

=

⟨
X2n

(
N
2 − k

)
+ β1

[
2
(
N
2 − k − 1

)
+ 1

2

]
X2n+1

(
N
2 − k

)
+ β2

[
2
(
N
2 − k − 1

)
+ 1

2

]
X2n+1

[
N −

(
N
2 − k

)]⟩
Mp

=

⟨
X2n (N − k)− β1

(
2k + 1

2

)
X2n+1 (N − k)

+ β2

(
2k + 1

2

)
X2n+1 (k)

⟩
Mp

.

(4.18)
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Similarly, in addition to equations (4.11) and (4.18) the rest of the points will be

derived respectively as

X
(
k + N

2

)
=

⟨
X2n (k)− β1

(
2k + 1

2

)
X2n+1 (k)

− β2

(
2k + 1

2

)
X2n+1 (N − k)

⟩
Mp

(4.19)

and

X (N − k) =

⟨
X2n (N − k) + β1

(
2k + 1

2

)
X2n+1 (N − k)

− β2

(
2k + 1

2

)
X2n+1 (k)

⟩
Mp

.

(4.20)

The radix-2 ONMNT DIT butterfly is shown in Figure 4.1.

4.2.2 Radix-2 DIF

The radix-2 DIF algorithm is the complement of the DIT. With the NMNT, the

DIT transform also serves to calculate the forward and inverse transforms, as

does the DIF. However, with the ONMNT the transform effectively transposes

the kernel, which essentially rules out the ability to use the same transformation

technique for the inverse. As such, the inverse ONMNT must therefore rely

upon the DIF algorithm. It too breaks the N -length transform into two smaller

N
2
-length transforms but this time representing left and right sequences. This is so

represented by the indexing, which is x(n) for the left part and x(n + N
2
) for the

right part.

The DIF starts with a variation of equation (4.1)

X (k) =

⟨
N−1∑
n=0

x(n)β

(
2n+ 1

2
k

)⟩
Mp

(4.21)

and is split into left and right components where

X (k) = X left (2k) +Xright (2k + 1) , (4.22)
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which expands to

X (k) =

⟨N
2
−1∑

n=0

x(n)β

(
2n+ 1

2
k

)
+

N−1∑
n=N

2

x(n)β

(
2n+ 1

2
k

)⟩
Mp

(4.23)

noting that where we previously used β
(
2k+1
2

n
)
in DIT, we swap n and k to obtain

β
(
2n+1

2
k
)
as the direct algorithm produces a transposed kernel, so we need to

invert the transpose during the inverse procedure through the DIF. We can now

begin to use a common sequence where

X (k) =

⟨N
2
−1∑

n=0

x(n)β

(
2n+ 1

2
k

)
+

N
2
−1∑

n=0

x

(
n+

N

2

)
β

[
2
(
n+ N

2

)
+ 1

2
k

]⟩
Mp

. (4.24)

The next step is to solve the last term of β so

β

[
2
(
n+ N

2

)
+ 1

2
k

]
= β

(
N + 2n+ 1

2
k

)
(4.25)

and subsequently

β

(
N + 2n+ 1

2
k

)
= β

(
Nk

2
+

2n+ 1

2
k

)
. (4.26)

Applying the identity from [7], equation (4.26) can be written as

β1

(
Nk

2

)
β

(
2n+ 1

2
k

)
+ β2

(
Nk

2

)
β

(
−2n+ 1

2
k

)
. (4.27)

By combining (4.24) and (4.27) we then get

X (k) =

⟨N
2
−1∑

n=0

[
x(n) + β1

(
Nk

2

)
x

(
n+

N

2

)
+ β2

(
Nk

2

)
x(N − n)

]
β

(
2n+ 1

2
k

)⟩
Mp

.

(4.28)

Assessing β2 in (4.28) it is clear to see that due to the periodicity of N
2
and that for

all Nk then β2(
Nk
2
) = 0. The final term cancels out leaving

X (k) =

⟨N
2
−1∑

n=0

[
x(n) + β1

(
Nk

2

)
x

(
n+

N

2

)]
β

(
2n+ 1

2
k

)⟩
Mp

. (4.29)

Substituting 2k and 2k + 1 into (4.29) and replacing k,

X (2k) =

⟨N
2
−1∑

n=0

[
x(n) + β1

(
2Nk

2

)
x

(
n+

N

2

)]
β

(
2n+ 1

2
2k

)⟩
Mp

(4.30)
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X(k)

X(N/2-k)

X(k+N/2)

X(N-k)

X(k)

X(N/2-k)

X(k+N/2)

X(N-k)

2n+1

2

2n+1

2

Figure 4.2: Radix-2 1D-ONMNT In-Place DIF Butterfly

where β1

(
2Nk
2

)
= 1 producing

X (2k) =

⟨N
2
−1∑

n=0

[
x(n) + x

(
n+

N

2

)]
β

(
2n+ 1

2
2k

)⟩
Mp

(4.31)

and

X (2k + 1) =

⟨N
2
−1∑

n=0

{
x(n) + β1

[
N(2k + 1)

2

]
x

(
n+

N

2

)}
β

[
2n+ 1

2
(2k + 1)

]⟩
Mp

.

(4.32)

Using the identities in [7] equation (4.32) results in

X (2k + 1) =

⟨N
2
−1∑

n=0

[
x(n)− x

(
n+

N

2

)]
β

(
2n+ 1

2
2k +

2n+ 1

2

)⟩
Mp

(4.33)

and finally produces

X (2k + 1) =

⟨N
2
−1∑

n=0

{
β1

(
2n+ 1

2

)[
x(n)− x

(
n+

N

2

)]

+β2

(
2n+ 1

2

)[
x

(
N

2
− n

)
− x (N − n)

]}
β

(
2n+ 1

2
2k

)⟩
Mp

.

(4.34)

The radix-2 ONMNT DIF butterfly is shown in Figure 4.2.

4.3 Radix-4 ONMNT

The main idea of radix-4 is to split the transform into four discrete parts and

process them at the same time. These attributes provide additional improvements

in terms of complexity and subsequently speed. However, the downside is that

only lengths that are derived as a power of four may be used. Therefore sequence

lengths of 8, 32, 128, 512, etc. cannot be processed using this method.
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4.3.1 Radix-4 DIT

According to the radix-2 ONMNT, equation (4.1) can be decomposed into

Xev (k) =

⟨N
2
−1∑

n=0

x(2n)β

(
2k + 1

2
2n

)⟩
Mp

= X2n (k)

(4.35)

and

Xod (k) =

⟨N
2
−1∑

n=0

x(2n+ 1)β

[
2k + 1

2
(2n+ 1)

]⟩
Mp

. (4.36)

Thus, when 2n turns into 4n and 4n+ 2, 2n+ 1 turns into 4n+ 1 and 4n+ 3, then

we have the requisite points to derive a radix-4 ONMNT. Again, noting that X2n

is even indexing and X2n+1 is odd indexing, then

X2n (k) =

⟨N
4
−1∑

n=0

x(4n)β

(
2k + 1

2
4n

)
+

N
4
−1∑

n=0

x(4n+ 2)β

[
2k + 1

2
(4n+ 2)

]⟩
Mp

. (4.37)

Decomposing the final β term in (4.37) produces

β

[
2k + 1

2
(4n+ 2)

]
= β [2n (2k + 1) + (2k + 1)] (4.38)

and further decomposition produces

β [2n (2k + 1) + (2k + 1)] = β1 (2k + 1)β

(
2k + 1

2
4n

)
+ β2 (2k + 1)β

(
−2k + 1

2
4n

)
.

(4.39)

Applying (4.39) into (4.37) then produces the even part

X2n (k) =

⟨N
4
−1∑

n=0

x(4n)β

(
2k + 1

2
4n

)

+ β1

(
2k + 1

2
2

) N
4
−1∑

n=0

x(4n+ 2)β

(
2k + 1

2
4n

)

+ β2

(
2k + 1

2
2

) N
4
−1∑

n=0

x(4n+ 2)β

(
−2k + 1

2
4n

)⟩
Mp

.

(4.40)

In order to simplify (4.40) we define

X4n (k) =

⟨N
4
−1∑

n=0

x(4n)β

(
2k + 1

2
4n

)⟩
Mp

(4.41)
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and

X4n (N − k) =

⟨N
4
−1∑

n=0

x(4n)β

(
−2k + 1

2
4n

)⟩
Mp

. (4.42)

Applying (4.41) and (4.42) to (4.40) now produces

X2n (k) = X4n (k)+β1

(
2k + 1

2
× 2

)
X4n+2 (k)+β2

(
2k + 1

2
× 2

)
X4n+2 (N − k) . (4.43)

The odd part is denoted as

Xod (k) =

⟨N
4
−1∑

n=0

x(4n+ 1)β

[
2k + 1

2
(4n+ 1)

]

+

N
4
−1∑

n=0

x(4n+ 3)β

[
2k + 1

2
(4n+ 3)

]⟩
Mp

.

(4.44)

Simplifying both β terms in (4.44), produces

β

[
2k + 1

2
(4n+ 1)

]
= β

(
2k + 1

2
4n+

2k + 1

2

)
= β1

(
2k + 1

2

)
β

(
2k + 1

2
4n

)
+ β2

(
2k + 1

2

)
β

(
−2k + 1

2
4n

) (4.45)

and

β

[
2k + 1

2
(4n+ 3)

]
= β

(
2k + 1

2
4n+

2k + 1

2
× 3

)
= β1

(
2k + 1

2
× 3

)
β

(
2k + 1

2
4n

)
+ β2

(
2k + 1

2
× 3

)
β

(
−2k + 1

2
4n

)
.

(4.46)

Applying equations (4.45) and (4.46) into (4.44) produces

Xod (k) =

⟨
β1

(
2k + 1

2

) N
4
−1∑

n=0

x(4n+ 1)β

(
2k + 1

2
4n

)

+ β2

(
2k + 1

2

) N
4
−1∑

n=0

x(4n+ 1)β

(
−2k + 1

2
4n

)

+ β1

(
2k + 1

2
× 3

) N
4
−1∑

n=0

x(4n+ 3)β

(
2k + 1

2
4n

)

+ β2

(
2k + 1

2
× 3

) N
4
−1∑

n=0

x(4n+ 3)β

(
−2k + 1

2
4n

)⟩
Mp

.

(4.47)

87



4. FAST ALGORITHMS OF THE GNMNT

Similar to (4.41), define

X4n+1 (k) =

⟨N
4
−1∑

n=0

x(4n+ 1)β

(
2k + 1

2
4n

)⟩
Mp

(4.48)

and

X4n+3 (k) =

⟨N
4
−1∑

n=0

x(4n+ 3)β

(
2k + 1

2
4n

)⟩
Mp

(4.49)

then by applying (4.48) and (4.49) into (4.47) we get the odd part

Xod (k) =

⟨
β1

(
2k + 1

2

)
X4n+1 (k) + β2

(
2k + 1

2

)
X4n+1 (N − k)

+ β1

(
2k + 1

2
× 3

)
X4n+3 (k) + β2

(
2k + 1

2
× 3

)
X4n+3 (N − k)

⟩
Mp

.

(4.50)

The equation of ONMNT radix-4 at point k is

X (k) = Xev (k) +Xod (k) (4.51)

and in the decomposed form becomes

X (k) =

⟨
X4n (k)+β1

(
2k + 1

2
× 2

)
X4n+2 (k) + β2

(
2k + 1

2
× 2

)
X4n+2 (N − k)

+β1

(
2k + 1

2

)
X4n+1 (k) + β2

(
2k + 1

2

)
X4n+1 (N − k)

+β1

(
2k + 1

2
× 3

)
X4n+3 (k) + β2

(
2k + 1

2
× 3

)
X4n+3 (N − k)

⟩
Mp

.

(4.52)

In radix-4 there are eight points: k, N
4 − k, k + N

4 ,
N
2 − k, k + N

2 ,
3N
4 − k, k + 3N

4 and

N − k. Equations (4.51) and (4.52) show the point k.

Similarly, it can be easy to get all equations at different point by replacing k.

For example point N
4 − k, ∵ N

4 − k :⇔ N
4 − k − 1 by definition, then

X4n (k)
k=

N
4 −k

−−−−−→ X4n

(
N
4 − k

)
=

⟨N
4 −1∑
n=0

x(4n)β

[
2
(
N
4 − k − 1

)
+ 1

2
4n

]⟩
Mp

. (4.53)
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2θ

2θ

θ

θ

3θ

3θ

X(k)

X(N/4-k)
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Figure 4.3: Radix-4 1D-ONMNT In-Place DIT Butterfly

Decomposing the β term in (4.53) produces

β

[
2
(
N
4 − k − 1

)
+ 1

2
4n

]
= β

( N
2 − 2k − 1

2
4n

)
= β

(
−2k + 1

2
4n

) (4.54)

We can identify the following β identities:

β1

[
2
(
N
4 − k − 1

)
+ 1

2
× 2

]
= −β1

(
2k + 1

2
× 2

)
(4.55)

β2

[
2
(
N
4 − k − 1

)
+ 1

2
× 2

]
= β2

(
2k + 1

2
× 2

)
(4.56)

β1

[
2
(
N
4 − k − 1

)
+ 1

2

]
= β2

(
2k + 1

2

)
(4.57)

β2

[
2
(
N
4 − k − 1

)
+ 1

2

]
= β1

(
2k + 1

2

)
(4.58)

β1

[
2
(
N
4 − k − 1

)
+ 1

2
× 3

]
= −β2

(
2k + 1

2
× 3

)
(4.59)

and

β2

[
2
(
N
4 − k − 1

)
+ 1

2
× 3

]
= −β1

(
2k + 1

2
× 3

)
. (4.60)

Substituting the identities (4.55)-(4.60) into (4.52) will derive the point N
4 − k. The

rest of the points can be shown as follows, where we substitute 2k+1
2 with θ for ease of
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reference 

X (k)

X
(
N
4 − k

)
X
(
k + N

4

)
X
(
N
2 − k

)
X
(
k + N

2

)
X
(
3N
4 − k

)
X
(
k + 3N

4

)
X (N − k)



=



A+B2 +B1 +B3

A+B2 +B1 −B3

A−B2 −B1 +B3

A−B2 +B1 +B3

A+B2 −B1 −B3

A+B2 −B1 +B3

A−B2 +B1 −B3

A−B2 −B1 −B3



(4.61)

where

A = X4n (k) (4.62)

A = X4n

(
N
4 − k

)
(4.63)

Bm =
⟨[
β1 (θm)X4n+m (k) + β2 (θm)X4n+m

(
N
4 − k

)]⟩
Mp

(4.64)

and

Bm =
⟨[
β2 (θm)X4n+m (k)− β1 (θm)X4n+m

(
N
4 − k

)]⟩
Mp

(4.65)

for m ∈ {1, 2, 3}. The radix-4 ONMNT DIT butterfly is shown in Figure 4.3.

4.3.2 Radix-4 DIF

Using the variation of the original algorithm shown in (4.21), the whole sequence is

evenly divided into sequences that are of length N
4
as

X (k) =

⟨N
4
−1∑

n=0

x(n)β

(
2n+ 1

2
k

)
+

N
2
−1∑

n=N
4

x(n)β

(
2n+ 1

2
k

)

+

3N
4

−1∑
n=N

2

x(n)β

(
2n+ 1

2
k

)
+

N−1∑
n= 3N

4

x(n)β

(
2n+ 1

2
k

)⟩
Mp

.

(4.66)

Adjusting the range in (4.66) we then obtain

X (k) =

⟨N
4
−1∑

n=0

{
x(n)β

(
2n+ 1

2
k

)
+ x

(
n+

N

4

)
β

[
2
(
n+ N

4

)
+ 1

2
k

]

+ x

(
n+

2N

4

)
β

[
2
(
n+ 2N

4

)
+ 1

2
k

]
+ x

(
n+

3N

4

)
β

[
2
(
n+ 3N

4

)
+ 1

2
k

]}⟩
Mp

.

(4.67)
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Figure 4.4: Radix-4 In-Place DIT Flow Diagram, N = 16
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and can be simplified as

X (k) =

⟨N
4
−1∑

n=0

[
x(n)β

(
2n+ 1

2
k

)
+ x

(
n+

N

4

)
β

(
2n+ 1

2
k +

N

4
k

)

+ x

(
n+

N

2

)
β

(
2n+ 1

2
k +

N

2
k

)
+ x

(
n+

3N

4

)
β

(
2n+ 1

2
k +

3N

4
k

)]⟩
Mp

.

(4.68)

The β terms in (4.68) can decomposed as

β

(
2n+ 1

2
k +

N

2
k

)
= β1

(
N

2
k

)
β

(
2n+ 1

2
k

)
+ β2

(
N

2
k

)
β

(
−2n+ 1

2
k

)
(4.69)

noting that the β2 term in (4.69) will always equate to zero, we further obtain

β

(
2n+ 1

2
k +

N

4
k

)
= β1

(
N

4
k

)
β

(
2n+ 1

2
k

)
+ β2

(
N

4
k

)
β

(
−2n+ 1

2
k

)
(4.70)

and

β

(
2n+ 1

2
k +

3N

4
k

)
= β1

(
3N

4
k

)
β

(
2n+ 1

2
k

)
+ β2

(
3N

4
k

)
β

(
−2n+ 1

2
k

)
. (4.71)

Substituting (4.69)-(4.71) into (4.68) produces

X (k) =

⟨N
4
−1∑

n=0

[
x(n) + β1

(
N

2
k

)
x

(
n+

N

2

)
+ β1

(
N

4
k

)
x

(
n+

N

4

)
+ β2

(
N

4
k

)
x

(
N

2
− n

)
+ β1

(
3N

4
k

)
x

(
n+

3N

4

)
+ β2

(
3N

4
k

)
x (N − n)

]
β

(
2n+ 1

2
k

)⟩
Mp

.

(4.72)

In radix-4, after reducing the length to N
4
, we have even parts: 4k, 4k + 2 and odd

parts: 4k+1 and 4k+3 . In terms of the even parts, we get the following identities

similar to (4.55)-(4.60), by first substituting 4k into (4.72) replacing k:

β1

(
N

2
4k

)
= 1 (4.73)

β1

(
N

4
4k

)
= 1 (4.74)

β2

(
N

4
4k

)
= 0 (4.75)
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4.3 Radix-4 ONMNT

and 4k + 2 into (4.72) replacing k:

β1

[
N

2
(4k + 2)

]
= 1 (4.76)

β1

[
N

4
(4k + 2)

]
= −1 (4.77)

and

β2

[
N

4
(4k + 2)

]
= 0. (4.78)

Putting equations (4.73)-(4.75) back into (4.72) we get

X (4k) =

⟨N
4
−1∑

n=0

[
x(n) + x

(
n+

N

2

)

+ x

(
n+

N

4

)
+ x

(
n+

3N

4

)]
β

(
2n+ 1

2
4k

)⟩
Mp

(4.79)

and also replacing equations (4.76)-(4.78) we get

X (4k + 2) =

⟨N
4
−1∑

n=0

[
x(n) + x

(
n+

N

2

)

− x

(
n+

N

4

)
− x

(
n+

3N

4

)]
β

(
2n+ 1

2
4k +

2n+ 1

2
× 2

)⟩
Mp

=

⟨N
4
−1∑

n=0

{
β1

(
2n+ 1

2
× 2

)[
x(n) + x

(
n+

N

2

)
− x

(
n+

N

4

)
− x

(
n+

3N

4

)]
+ β2

(
2n+ 1

2
2

)[
x

(
N

4
− n

)
+ x

(
3N

4
− n

)
− x

(
N

2
− n

)
− x (N − n)

]}
β

(
2n+ 1

2
4k

)⟩
Mp

.

(4.80)

In terms of the odd parts, we get the following identities similar to (4.73)-(4.78),

by first substituting 4k + 1 again into (4.72) replacing k:

β1

[
N

2
(4k + 1)

]
= −1 (4.81)

β1

[
N

4
(4k + 1)

]
= 0 (4.82)

β2

[
N

4
(4k + 1)

]
= 1 (4.83)
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Figure 4.5: Radix-4 1D-ONMNT In-Place DIF Butterfly

and finally 4k + 3 into (4.72) replacing k:

β1

[
N

2
(4k + 3)

]
= −1 (4.84)

β1

[
N

4
(4k + 3)

]
= 0 (4.85)

β2

[
3N

4
(4k + 3)

]
= 1. (4.86)
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4.3 Radix-4 ONMNT

Putting equations (4.81)-(4.83) back into (4.72) we get

X (4k + 1) =

⟨N
4
−1∑

n=0

{
x(n)β

[
2n+ 1

2
(4k + 1)

]

+ x

(
n+

N

4

)
β

[
2
(
n+ N

4

)
+ 1

2
(4k + 1)

]

+ x

(
n+

N

2

)
β

[
2
(
n+ N

2

)
+ 1

2
(4k + 1)

]

+ x

(
n+

3N

4

)
β

[
2
(
n+ 3N

4

)
+ 1

2
(4k + 1)

]}⟩
Mp

=

⟨N
4
−1∑

n=0

{
β1

(
2n+ 1

2

)[
x(n)− x

(
n+

N

2

)

+ x

(
N

4
− n

)
− x

(
3N

4
− n

)]

+ β2

(
2n+ 1

2

)[
x

(
N

2
− n

)
− x (N − n)

− x

(
n+

N

4

)
+ x

(
n+

3N

4

)]}
β

(
2n+ 1

2
4k

)⟩
Mp

.

(4.87)

and replacing (4.84)-(4.86) into (4.72) we get

X (4k + 3) =

⟨N
4
−1∑

n=0

{
x(n)β

[
2n+ 1

2
(4k + 3)

]

+ x

(
n+

N

4

)
β

[
2
(
n+ N

4

)
+ 1

2
(4k + 3)

]

+ x

(
n+

N

2

)
β

[
2
(
n+ N

2

)
+ 1

2
(4k + 3)

]

+ x

(
n+

3N

4

)
β

[
2
(
n+ 3N

4

)
+ 1

2
(4k + 3)

]}⟩
Mp

=

⟨N
4
−1∑

n=0

{
β1

(
2n+ 1

2
3

)[
x(n)− x

(
n+

N

2

)

− x

(
N

4
− n

)
+ x

(
3N

4
− n

)]

+ β2

(
2n+ 1

2
3

)[
x

(
N

2
− n

)
− x (N − n)

+ x

(
n+

N

4

)
− x

(
n+

3N

4

)]}
β

(
2n+ 1

2
4k

)⟩
Mp

.

(4.88)
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The equations of the radix-4 ONMNT DIF can be shown as a condensed representation,

similar to equations (4.61)-(4.65) but this time substituting 2n+1
2 with ϕ for ease of

reference 
X (4k)

X (4k + 1)

X (4k + 2)

X (4k + 3)

 = β1 (ϕm)


A+B

A−B

A+ C

A− C

+ β2 (ϕm)


C +D

C −D

D −B

D +B

 (4.89)

where

A = x (n) + x

(
n+

N

2

)
(4.90)

A = x (n)− x

(
n+

N

2

)
(4.91)

B = x

(
n+

N

4

)
+ x

(
n+

3N

4

)
(4.92)

B = x

(
n+

N

4

)
− x

(
n+

3N

4

)
(4.93)

C = x

(
N

4
− n

)
+ x

(
3N

4
− n

)
(4.94)

C = x

(
N

4
− n

)
− x

(
3N

4
− n

)
(4.95)

D = x

(
N

2
− n

)
+ x (N − n) (4.96)

D = x

(
N

2
− n

)
− x (N − n) . (4.97)

and m is derived from X(4k +m) for m ∈ {0, 1, 2, 3}. The radix-4 ONMNT DIF

butterfly is shown in Figure 4.5.

4.4 Split-Radix ONMNT

The split-radix, which is sometimes referred to as radix-2/4, combines the versatility

of the radix-2 with the efficiency of the radix-4 and manages to further reduce

the number of operations in the process. It accomplishes this by using L shaped

butterflies, which are based on radix-4 that interlock against each other until two

points remain. These L shaped butterflies can have either a single twiddle stage or

a dual twiddle stage, which are denoted in Figure 4.6. When there is no further

room to implement an L-butterfly, which typically encompasses two sub-stages

of butterflies and a sub-stage for the twiddle, a radix-2 butterfly is then used.
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Split-Radix

L1 Butterfly

Split-Radix

L2 Butterfly
Radix-2 Butterfly

Figure 4.6: Split-Radix DIT Structure

This section will show how combining algorithms from the radix-2 and radix-4

implementations can derive the split-radix DIT and DIF algorithms.

4.4.1 Split-Radix DIT

The split-radix combines radix-2 and radix-4, specifically the even part of radix-2

and the odd parts of radix-4. Therefore we decompose the initial ONMNT

algorithm in (4.1) into

X (k) = Xev (k) +Xod (k) (4.98)

where

Xev (k) =

⟨N
2 −1∑
n=0

x(2n)β

(
2k + 1

2
2n

)⟩
Mp

(4.99)

and

Xod (k) =

⟨N
4 −1∑
n=0

x(4n+ 1)β

[
(4n+ 1)

2k + 1

2

]

+

N
4 −1∑
n=0

x(4n+ 3)β

[
(4n+ 3)

2k + 1

2

]⟩
Mp

.

(4.100)

Defining point X2n(k) as

X2n (k) =

⟨N
2 −1∑
n=0

x(2n)β

(
2k + 1

2
2n

)⟩
Mp

(4.101)
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Figure 4.7: Split-Radix 1D-ONMNT In-Place DIT Butterfly

point X4n+1(k) as

X4n+1 (k) =

⟨N
4 −1∑
n=0

x(4n+ 1)β

(
2k + 1

2
4n

)⟩
Mp

(4.102)

and point X4n+3(k) as

X4n+3 (k) =

⟨N
4 −1∑
n=0

x(4n+ 3)β

(
2k + 1

2
4n

)⟩
Mp

(4.103)

we can then apply (4.101) into (4.99) and (4.102)-(4.103) into (4.100) to produce

the recursive equation

X (k) =

⟨
X2n (k) + β1

(
2k + 1

2

)
X4n+1 (k) + β2

(
2k + 1

2

)
X4n+1 (k)

+ β1

(
2k + 1

2
× 3

)
X4n+3 (k) + β2

(
2k + 1

2
× 3

)
X4n+3 (k)

⟩
Mp

.

(4.104)
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Equations for all points of the split-radix ONMNT DIT butterfly can now be

derived from 

X (k)

X
(
N
4 − k

)
X
(
k + N

4

)
X
(
N
2 − k

)
X
(
k + N

2

)
X
(
3N
4 − k

)
X
(
k + 3N

4

)
X (N − k)



=



A+B1 +B3

A+B1 −B3

A−B1 +B3

A+B1 +B3

A−B1 −B3

A−B1 +B3

A+B1 −B3

A−B1 −B3



(4.105)

where

A = X2n (k) (4.106)

A = X2n

(
N
2 − k

)
(4.107)

Bm =
⟨[
β1 (θm)X4n+m (k) + β2 (θm)X4n+m

(
N
4 − k

)]⟩
Mp

(4.108)

Bm =
⟨[
β1 (θm)X4n+m (k)− β2 (θm)X4n+m

(
N
4 − k

)]⟩
Mp

(4.109)

and m ∈ {1, 3}. The split-radix ONMNT DIT butterfly is shown in Figure 4.7.

4.4.2 Split-Radix DIF

Similar to the DIT split-radix, we initially start from (4.1) and subsequently derive

X (k) = X left (k) +Xright (k) (4.110)

where X left (k) is the left part. More specifically it comes from the radix-2 ONMNT

DIF. Additionally, Xright (k) contains the right parts of the radix-4 ONMNT DIF.

Thus, the left sequence that is first shown in (4.31) as

X (2k) =

⟨N
2
−1∑

n=0

[
x(n) + x

(
n+

N

2

)]
β

(
2n+ 1

2
2k

)⟩
Mp

(4.111)
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Figure 4.8: Split-Radix 1D-ONMNT In-Place DIF Butterfly

Similarly, the right parts of the radix-4 ONMNT DIF (4.87) and (4.88) as

X (4k + 1) =

⟨N
4
−1∑

n=0

{
β1

(
2n+ 1

2

)[
x(n)− x

(
n+

N

2

)

+ x

(
N

4
− n

)
− x

(
3N

4
− n

)]

+ β2

(
2n+ 1

2

)[
x

(
N

2
− n

)
− x (N − n)

− x

(
n+

N

4

)
+ x

(
n+

3N

4

)]}
β

(
2n+ 1

2
4k

)⟩
Mp

(4.112)

and

X (4k + 3) =

⟨N
4
−1∑

n=0

{
β1

(
2n+ 1

2
× 3

)[
x(n)− x

(
n+

N

2

)

− x

(
N

4
− n

)
+ x

(
3N

4
− n

)]

+ β2

(
2n+ 1

2
× 3

)[
x

(
N

2
− n

)
− x (N − n)

+ x

(
n+

N

4

)
− x

(
n+

3N

4

)]}
β

(
2n+ 1

2
4k

)⟩
Mp

.

(4.113)

The split-radix ONMNT DIF butterfly is shown in Figure 4.8.
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4.5 Complexity Analysis

Using the direct methods, similar to the discrete Fourier transform, the complexity

is represented as N2 multiplications and N(N − 1) additions. This is typical of

multiplying a vector with a matrix. Applying the fast algorithm techniques that

were proposed by [120] can have a significant impact in reducing this complexity.

Using the fast algorithms significantly reduces this computation complexity as

shown in Table 4.1. However, focusing on implementations where it is common for

CPUs to take longer performing multiplication in comparison to additions, so the

number of multiplications will be doubled to reflect this in respect of [122] as a

typical example. Therefore, in order to integrate this adjustment and normalise the

complexity, an adjust factor of λ = 2 will be applied to derive the complexities of

multiplication and fused-multiply-add operations with respect to complexity. The

complexity for the radix-2 ONMNT can be shown to be

M(N) = N (log2N − 1)λ (4.114)

and

A(N) =
3

2
N log2N +

N

2
, (4.115)

taking note that the first round of twiddle calculations can be reduced to trivial

additions and this has therefore been reflected in the calculation of the number

Table 4.1: ONMNT Radix-2 Complexity

Radix-2 Direct Improvement %

N Mults Adds Total Mults Adds Total Mults Adds Total

4 8 14 22 32 12 44 75.00 -16.67 50.00

8 32 40 72 128 56 184 75.00 28.57 60.87

16 96 104 200 512 240 752 81.25 56.67 73.40

32 256 256 512 2048 992 3040 87.50 74.19 83.16

64 640 608 1248 8192 4032 12224 92.19 84.92 89.79

128 1536 1408 2944 32768 16256 49024 95.31 91.34 93.99

256 3584 3200 6784 131072 65280 196352 97.27 95.10 96.54

512 8192 7168 15360 524288 261632 785920 98.44 97.26 98.05

1024 18432 15872 34304 2097152 1047552 3144704 99.12 98.48 98.91

2048 40960 34816 75776 8388608 4192256 12580864 99.51 99.17 99.40

4096 90112 75776 165888 33554432 16773120 50327552 99.73 99.55 99.67

8192 196608 163840 360448 134217728 67100672 201318400 99.85 99.76 99.82

16384 425984 352256 778240 536870912 268419072 805289984 99.92 99.87 99.90

32768 917504 753664 1671168 2147483648 1073709056 3221192704 99.96 99.93 99.95

65536 1966080 1605632 3571712 8589934592 4294901760 12884836352 99.98 99.96 99.97

131072 4194304 3407872 7602176 34359738368 17179738112 51539476480 99.99 99.98 99.99

262144 8912896 7208960 16121856 137438953472 68719214592 206158168064 99.99 99.99 99.99
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Table 4.2: ONMNT Radix-4 Complexity

Radix-4 Radix-2 Improvement %

N Mults Adds Total Mults Adds Total Mults Adds Total

4 8 10 18 8 14 22 0.00 28.57 18.18

16 80 84 164 96 104 200 16.67 19.23 18.00

64 512 512 1024 640 608 1248 20.00 15.79 17.95

256 2816 2752 5568 3584 3200 6784 21.43 14.00 17.92

1024 14336 13824 28160 18432 15872 34304 22.22 12.90 17.91

4096 69632 66560 136192 90112 75776 165888 22.73 12.16 17.90

16384 327680 311296 638976 425984 352256 778240 23.08 11.63 17.89

65536 1507328 1425408 2932736 1966080 1605632 3571712 23.33 11.22 17.89

262144 6815744 6422528 13238272 8912896 7208960 16121856 23.53 10.91 17.89

of multiplications and additions respectively in (4.114) and (4.115). The radix-4

ONMNT improves upon this complexity by significantly reducing the number of

operations through halving the number of stages. However, this requires a further

sub-stage to be calculated for each stage, which results in N more additions taking

place. Depending on how this sub-stage is handled, a further re-ordering may be

required so as typically there will be N
4
signal lines that will be derived out of place,

which can be clearly seen in Figure 4.3. The complexity of the radix-4 transform

can be shown to be

M(N) =

[
N

2
(3 log4N − 1)

]
λ (4.116)

and

A(N) =
N

4
(11 log4N − 1) , (4.117)

Table 4.3: ONMNT Split-Radix Complexity

Split-Radix Radix-4 Improvement % Radix-2 Improvement %

N Mults Adds Total Mults Adds Total Mults Adds Total Mults Adds Total Mults Adds Total

4 8 10 18 8 10 18 0.00 0.00 0.00 8 14 22 0.00 28.57 18.18

8 24 30 54 32 40 72 25.00 25.00 25.00

16 72 82 154 80 84 164 10.00 2.38 6.10 96 104 200 25.00 21.15 23.00

32 184 206 390 256 256 512 28.13 19.53 23.83

64 456 498 954 512 512 1024 10.94 2.73 6.84 640 608 1248 28.75 18.09 23.56

128 1080 1166 2246 1536 1408 2944 29.69 17.19 23.71

256 2504 2674 5178 2816 2752 5568 11.08 2.83 7.00 3584 3200 6784 30.13 16.44 23.67

512 5688 6030 11718 8192 7168 15360 30.57 15.88 23.71

1024 12744 13426 26170 14336 13824 28160 11.10 2.88 7.07 18432 15872 34304 30.86 15.41 23.71

2048 28216 29582 57798 40960 34816 75776 31.11 15.03 23.73

4096 61896 64626 126522 69632 66560 136192 11.11 2.91 7.10 90112 75776 165888 31.31 14.71 23.73

8192 134712 140174 274886 196608 163840 360448 31.48 14.44 23.74

16384 291272 302194 593466 327680 311296 638976 11.11 2.92 7.12 425984 352256 778240 31.62 14.21 23.74

32768 626232 648078 1274310 917504 753664 1671168 31.75 14.01 23.75

65536 1339848 1383538 2723386 1507328 1425408 2932736 11.11 2.94 7.14 1966080 1605632 3571712 31.85 13.83 23.75

131072 2854456 2941838 5796294 4194304 3407872 7602176 31.94 13.68 23.75

262144 6058440 6233202 12291642 6815744 6422528 13238272 11.11 2.95 7.15 8912896 7208960 16121856 32.03 13.54 23.76
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Table 4.4: ONMNT Fused-Split-Radix Complexity

Fused-Split-Radix Split-Radix Improvement %

N Mults Adds FMAs Total Mults Adds Total Mults Adds FMAs Total

4 4 8 4 16 8 10 18 50.00 20.00 -22.22 11.11

8 12 24 12 48 24 30 54 50.00 20.00 -22.22 11.11

16 36 64 36 136 72 82 154 50.00 21.95 -23.38 11.69

32 92 160 92 344 184 206 390 50.00 22.33 -23.59 11.79

64 228 384 228 840 456 498 954 50.00 22.89 -23.90 11.95

128 540 896 540 1976 1080 1166 2246 50.00 23.16 -24.04 12.02

256 1252 2048 1252 4552 2504 2674 5178 50.00 23.41 -24.18 12.09

512 2844 4608 2844 10296 5688 6030 11718 50.00 23.58 -24.27 12.14

1024 6372 10240 6372 22984 12744 13426 26170 50.00 23.73 -24.35 12.17

2048 14108 22528 14108 50744 28216 29582 57798 50.00 23.85 -24.41 12.20

4096 30948 49152 30948 111048 61896 64626 126522 50.00 23.94 -24.46 12.23

8192 67356 106496 67356 241208 134712 140174 274886 50.00 24.03 -24.50 12.25

16384 145636 229376 145636 520648 291272 302194 593466 50.00 24.10 -24.54 12.27

32768 313116 491520 313116 1117752 626232 648078 1274310 50.00 24.16 -24.57 12.29

65536 669924 1048576 669924 2388424 1339848 1383538 2723386 50.00 24.21 -24.60 12.30

131072 1427228 2228224 1427228 5082680 2854456 2941838 5796294 50.00 24.26 -24.62 12.31

262144 3029220 4718592 3029220 10777032 6058440 6233202 12291642 50.00 24.30 -24.64 12.32

representing multiplication and addition respectively, with representations of these

complexities shown for different lengths of N in Table 4.2. Using the radix-4

significantly improves upon the radix-2. However, there is a penalty for this in that

the radix-4 algorithm can only process lengths that are themselves a power of four.

This may well mean that these bounds are too big to adequately and efficiently

process a radix-4 length. Representing the final derivation of a fast ONMNT

implementation, the complexity for the split-radix ONMNT can be shown to be

M(N) =

[
2

3
N log2N − 4

9
N +

4

9
(−1)log2N

]
λ (4.118)

and while the number of additions can be expressed as

A(N) =
4

3
N log2N − 2

9
N +

2

9
(−1)log2N . (4.119)

At the cost of a little inconvenience in processing the split-radix, we gain both

an improvement in the processing complexity and the ability to process all vector

lengths that are available to radix-2 as shown in Table 4.3. Typically, a critical

evaluation of complexity analysis in current architectures usually shows that there

is an emphasis in contrasting algorithms between the multiplication and addition

operations, rather than considering the total number of operations and how they

can be grouped and implemented. With current architectures, a multiplication

operation can be typically processed in the same time as it takes to perform an
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Figure 4.10: Complexity of Different Radices by Total Operations

addition operation [123]. Also, operators are now available that can combine

three operands into a fused multiplication and accumulate (FMA), a process first

introduced in [124]. Such operators have been implemented in many architectures

including [123], [125] and [126] for example, which can be carried out at regular

addition speeds within the constraints of the word size [123]. Using these types of

architectures, it would therefore be possible to combine half of the multiplicative

operations of the ONMNT with an equal number of addition operations using

fused multiply and accumulate operators. This would significantly reduce the total

number of operations that are required by half of the number of multiplications.

By implementing on appropriate architecture, the number of operations would be

reflected to those shown in Table 4.4. A modified complexity calculation can

therefore be shown to be

F (N) =

[
1

3
N log2N − 2

9
N +

2

9
(−1)log2N

]
λ, (4.120)

M(N) =

[
1

3
N log2N − 2

9
N +

2

9
(−1)log2N

]
λ (4.121)
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Figure 4.11: Processing Time for Vectors of Length 2N

and

A(N) = N log2N, (4.122)

representing the FMA operations and discrete multiply and addition operations

respectively. The total number of operations is calculated by

T (N) =
2λ+ 3

3
N log2N − 4λ

9
N +

4λ

9
(−1)log2N . (4.123)

The improvement in reducing processing complexity that this process can provide

is shown in Figure 4.10. This is further demonstrated by observing and example of

a typical implementation in Listing A.6.

Listing 4.1: Typical Implementation

unsigned int t00, t11, t10, t01, in0, in1, out0, out1;

unsigned int B1[N], B2[N];

t00 = in0 * B1[theta];

t11 = in1 * B1[theta];

t10 = in1 * B2[theta];
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Figure 4.12: Time to Process ≈ 1010 bits Using Vectors of Length 2N

t01 = in0 * B2[theta];

out0 = t00 + t10;

out1 = t11 - t01;

By removing half of the multiplications and the equivalent number of additions to

implement the FMA commands, we can see that not only has the complexity been

reduced but also the number of operations as shown in Listing 4.2.

Listing 4.2: Fused-Multiply-Accumulate Implementation

unsigned int t0, t1, in0, in1, out0, out1;

unsigned int B1[N], iB[N], B2[N];

t0 = in0 * B1[theta];

t1 = in1 * iB1[theta];

out0 = fma(in1, B2[theta], t0);

out1 = fma(in0, B2[theta], t1);

In this updated variation, there remains the requirement to provide the requisite

subtraction operation. However, this minor issue can be overcome by implementing
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twos-complement negation equivalent table for β1 (shown in 4.2 as iB1[theta]) and

would reduce the processing time from six-cycles to four-cycles per butterfly for a

33.3% processing improvement, at a cost of introducing an additional table of size

log2 N . At worst, performing the extra subtraction to the variable t1 in order to

save memory may be preferable, in which case this processing time is only reduced

to five-cycles, which would improve the processing time by only 16.7%.

4.5.1 Higher Radices of the GNMNT

While there are clearly tangible benefits in terms of reduced complexity to be

obtained in developing the radix-4 and split-radix-2/4, this comes at a cost

of implementation complexity, which becomes progressively more difficult with

successive increases of the radices. Moreover, increasing the radix also restricts the

flexibility of the transform as it constrains the available lengths of the transform

to multiples of N = rs where r is the selected radix and s is the exponent used

to configure the length, which is shown more clearly in Table 4.5. To incorporate

higher radices with lengths that aren’t directly supported by these radices as

shown in Table 4.5 would require that the implementation consist of a split-radix

scheme. However, this would impede the implementation with respect to structural

complexity, which can also have a negative impact on resource constrained devices

Table 4.5: Available Lengths N = rs According to Radix

r

2 4 8 16

s

2 4 - - -

3 8 - - -

4 16 16 - -

5 32 - - -

6 64 64 64 -

7 128 - - -

8 256 256 - 256

9 512 - 512 -

10 1024 1024 - -

11 2048 - - -

12 4096 4096 4096 4096
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where program and memory sizes are primary concerns. What is unintuitive

with Table 4.5 is that some lengths are unavailable owing to the butterfly for the

particular radix consisting of 2r points, therefore suggesting that the minimum

implementation size would be r2 and not r.

4.6 Performance Analysis of the One-Dimensional

Derivations

A significant factor governing implementation should be taken into consideration

by using languages such as OpenCL [127] and other architectures incorporating

features such as advanced vector extensions (AVX) [126], where it is possible

to combine similar operations across multiple signal lines within vector variables

simultaneously. These types of techniques are encompassed by single-instruction

multiple-data (SIMD) described in [128], which debuted in Intels processer with

multimedia extensions (MMX) [129]. An example how this would benefit a butterfly

implementation using OpenCL is shown in Listing 4.3.

Listing 4.3: Vectorised Fused-Multiply-Accumulate Implementation

unsigned int2 t0, in, out;

unsigned int B1[N], iB[N], B2[N];

t = (unsigned int2)(in.0 * B1[theta], in.1 * iB1[theta]);

out = fma(in.10, (unsigned int2)(B2[theta]), t);

This new method would further reduce the processing time to only two cycles

when using the additional negated β1 table or three-cycles if incorporating the

extra subtraction, resulting in a overall performance improvements of 66.7% and

50% respectively. Such methodologies imply natural parallelism where a small

number of operations can be unrolled out of loops into vectors. However, there

are limits imposed upon such practices with respect to the maximum allowable

size of the vector and the optimum size before the hardware incurs penalties. The

latter imposition is a reflection to how the architecture is addressing memory. For

example, the AMD 7970 is able to manipulate up to 16 elements and can access

128 bits of memory using a single variable without incurring any performance

penalties. These constraints reflect configurations of 16 × 8-bit chars, 8 × 16-bit

shorts, 4 × 32-bit integers / single precision floats or 2 × 64-bit long integers
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/ double precision floats without any performance penalties. Further constraints

would be imposed if one or more data words are accessed that cross a 128-bit

boundary, which would likely to be similar to an unaligned memory access. Aside

from these constraints, it would be possible to process, depending on the word size

being used, a number of operations simultaneously in the time it would normally

take to process a single operation, thereby increasing the processing performance

even further. This would obviously require additional implementation planning as

where a loop would be designed to process N lines within a stage, the loop could

potentially be reduced by N
2
, N

4
, N

8
or even N

16
, depending on the capabilities and

versatilities of the architecture and implementation respectively. The next step in

enhancing the performance is naturally to employ parallel processing techniques on

parallel capable devices. With respect to the current development of CPUs, there

is already scope at least to incorporate multiple processing cores. Going further

would utilise available streams within a CPU that are dedicated to the onboard

GPU. Increasing performance even more would either suggest using more CPUs,

which can be costly and require specialised hardware to incorporate multiple CPUs

on the same board, or to use other options such as discrete GPUs or CPU cards.

Using additional discrete hardware can by far be the most versatile solution and

sometimes the cheapest. While a CPU card, such as the many integrated core

(MIC) architecture offered by Intel [130] offer the greatest versatility, but the

highest cost. A cheaper alternative would be to use a GPU that is applicable for

GPGPU computing.

There are many benefits with following the GPGPU route in that there are

usually a significantly greater number of cores available with GPGPU computing

typically than MIC solutions. Respectively, this currently represents a ratio of

36:1 with respect to available stream processors / cores. Additionally, the GPUs

are significantly cheaper than MICs. However, GPGPUs are more specialised

and require a significant amount of application development to fully realise their

potential, whereas MICs, being more general purpose, are typically more adaptable.

Of course, should one go fully down the parallel route, it may turn out that the

fastest method to implement by far would be the direct method, as depending on

the size of N and the constraints of the architecture, so all of the multiplications

would occur simultaneously. Subsequently, there would be log2N reduction stages

that would add all of the appropriate results. This would suggest a significant
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improvement over a sequence involving 2 log2N − 1 radix-2 or 3 log2 N radix-4 /

split-radix total sub-stages. In addition to this, there would be a delay of at least

two successive operations in each twiddle sub-stage; one to perform the initial

multiplication of either β1 or β2, followed by combining the result with a fused

multiply accumulate of the composite signal path. However, in order to perform

a vector by matrix multiplication simultaneously in parallel, the involvement of

operating with twiddles would be completely removed.

4.7 Conclusion

This chapter has introduced complete developments of the radix-2, radix-4 and

split-radix algorithms for the ONMNT, in both DIT and DIF. The importance in

developing fast and efficient implementations is to ensure that economical, fast and

versatile methods exist such that applications for real-time systems are tenable.

These implementations have been assessed according to the number of mathematical

operations that they require and tested to confirm the successive improvements in

execution time. Additionally, methods using new architectures have been included

to signify the impact that the architectures have in the future development of

new algorithms. While no direct comparisons in terms of speed by incorporating

these new architectures have been made, they have been implemented in a parallel

processing capacity, which was used to provide the exhaustive assessments in

Chapter 6.
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Chapter 5

The Row-Column GNMNT

5.1 Introduction

In the previous chapters, the 1D GNMNT has been presented and shown that it

can be calculated either as a fast algorithm or by the direct method. However,

there are also a number of areas where 2D processing is relevant, particularly in

image- and signal-processing applications where there are many areas that thrive

on such techniques and also on cryptography [104, 131–134]. As such, there are

many algorithms to facilitate the wealth of applications including the 2D-Fourier

Transform, 2D-Wavelet Transform and the 2D-Hartley Transform, to name but

few [135–137].

This chapter introduces the 2D-GNMNT using the row-column (RC) method,

including the extra calculations that are required in order to use the RC technique,

which is a non-separable algorithm used to attain a true 2D-algorithm. The RC

method of processing an N × N area can be seen as one of the most convenient

methods of using a single-dimensional algorithm to provide the functionality of a

two-dimensional algorithm. The RC achieves this by first transforming the desired

matrix row-by-row and then transforming the resultant rows in a column-by-column

fashion. However, the RC algorithm on its own will not provide the desired results

when using the GNMNT because the β term is not separable when used in this

manner and therefore the RC method must be further processed. The initial

two-dimensional algorithm is shown for each of the GNMNTs, beginning with the

NMNT for an introductory point of reference, where steps to derive the forward and

inverse 2D transforms; also included are the steps required to enable the transforms
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to be separable are provided.

5.2 RC-NMNT

The standard algorithm for the 2D-NMNT is

X(k1, k2) =

⟨
N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)β (n1k1, n2k2)

⟩
Mp

for k1, k2 = 0, 1, 2, ..., N − 1. (5.1)

However, as the β term in the 2D-NMNT is non-separable due to its characteristic,

then it can be shown that processing the NMNT using the RC method actually

yields the following algorithm

XRC(k1, k2) =

⟨
N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)β (n1k1)β (n2k2)

⟩
Mp

for k1, k2 = 0, 1, 2, ..., N − 1.

(5.2)

This is obviously a different algorithm because it is clear that

β (n1k1, n2k2) ̸= β (n1k1)β (n2k2) . (5.3)

Therefore, in order to achieve the separable version of the NMNT an additional step

is required, which was first described in [138]. This step is achieved by breaking

down the β (n1k1, n2k2) term to

β (n1k1, n2k2) = ⟨β1 (n1k1, n2k2) + β2 (n1k1, n2k2)⟩Mp . (5.4)

where we can further derive β1 and β2 by their definitions as

β1 (n1k1, n2k2) =
⟨
Re (α1 + jα2)

n1k1+n2k2
⟩
Mp

(5.5)

and

β2 (n1k1, n2k2) =
⟨
Im (α1 + jα2)

n1k1+n2k2
⟩
Mp

. (5.6)

Equations (5.5) and (5.6) can be further processed by expanding the exponential

term as

β1 (n1k1, n2k2) =
⟨
Re

[
(α1 + jα2)

n1k1 (α1 + jα2)
n2k2

]⟩
Mp

(5.7)

and

β2 (n1k1, n2k2) =
⟨
Im

[
(α1 + jα2)

n1k1 (α1 + jα2)
n2k2

]⟩
Mp

. (5.8)
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Simplifying the β1 term in (5.7) produces

β1 (n1k1, n2k2) = Re
⟨ [

Re (α1 + jα2)
n1k1 + jIm (α1 + jα2)

n1k1
]

×
[
Re (α1 + jα2)

n2k2 + jIm (α1 + jα2)
n2k2

] ⟩
Mp

= Re
⟨
β1 (n1k1)β1 (n2k2) + jβ1 (n1k1)β2 (n2k2)

+ jβ1 (n2k2)β2 (n1k1)− β2 (n1k1)β2 (n2k2)
⟩
Mp

= β1 (n1k1 + n2k2)

(5.9)

and similarly

β2 (n1k1, n2k2) = β2 (n1k1 + n2k2) . (5.10)

Substituting (5.9) and (5.10) into (5.4) produces

β (n1k1, n2k2) =
⟨
β1 (n1k1 + n2k2) + β2 (n1k1 + n2k2)

⟩
Mp

= β (n1k1 + n2k2)

=
⟨
β1 (n1k1)β (n2k2) + β2 (n1k1)β (−n2k2)

⟩
Mp

(5.11)

because

β1 (n1k1) =
⟨
β (n1k1)− β2 (n1k1)

⟩
Mp

(5.12)

and

β1 (−n1k1) = β1 (n1k1)

=
⟨
β (−n1k1) + β2 (n1k1)

⟩
Mp

.
(5.13)

Combining (5.12) and (5.13) produces

2β1 (n1k1) =
⟨
β (n1k1) + β (−n2k2)

⟩
Mp

(5.14)

thus

β1 (n1k1) =

⟨
1

2

[
β (n1k1) + β (−n2k2)

]⟩
Mp

(5.15)

and

β2 (n1k1) =

⟨
1

2

[
β (n1k1)− β (−n2k2)

]⟩
Mp

. (5.16)
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Substituting (5.15) and (5.16) into (5.11) produces

β (n1k1, n2k2) =
⟨
β1 (n1k1)β (n2k2) + β2 (n1k1)β (−n2k2)

⟩
Mp

=

⟨
1

2

[
β (n1k1) + β (−n1k1)

]
β (n2k2)

+
1

2

[
β (n1k1)− β (−n1k1)

]
β (−n2k2)

⟩
Mp

=
⟨[

β (n1k1)β (n2k2) + β (−n1k1)β (n2k2)

+ β (n1k1)β (−n2k2)− β (−n1k1)β (−n2k2)
]
2p−1

⟩
Mp

.

(5.17)

Applying XRC (k1, k2) to (5.1) produces the full separable 2D transform for the

NMNT and can therefore be written as

X (k1, k2) =

⟨
N−1∑
n1=0

N−1∑
n2=0

x (n1, n2)

{[
β (n1k1)β (n2k2) + β (−n1k1)β (n2k2)

+ β (n1k1)β (−n2k2)− β (−n1k1)β (−n2k2)
]
2p−1

}⟩
Mp

(5.18)

and further simplified as

X (k1, k2) =
⟨[

XRC (k1, k2) +XRC (−k1, k2)

+XRC (k1,−k2)−XRC (−k1,−k2)
]
2p−1

⟩
Mp

.
(5.19)

A demonstration of how this is presented is shown in Figure 5.1, which started by

reducing the cameraman image to an 8 × 8 array and using the RC technique to

transform the data to a 2D-NMNT, using N = 8, p = 13 and Mp = 8191. The data

is shown as it progresses through the various stages of the process, both forwards

and backwards.
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150 158 166 172 171 161 154 146

166 182 172 89 152 178 166 154

169 128 38 60 106 163 163 149

165 48 7 21 91 166 162 150

150 57 8 71 122 154 163 146

104 14 20 99 122 98 120 108

125 29 38 109 134 116 119 117

120 58 74 128 125 125 119 114

7529 2694 481 4482 193 7035 485 2675

7002 1040 469 6771 4793 7249 6809 1345

115 7364 43 2416 8142 965 8146 5741

843 6700 7642 4925 7343 3853 2856 994

295 2738 83 2628 8078 5555 63 5445

1625 850 7890 7230 3514 5915 926 1396

657 4701 8012 175 45 2912 8076 8114

349 4362 8144 7137 688 1067 5419 3910

7529 2694 481 4482 193 7035 485 2675

7002 5514 906 1854 4793 3975 6372 5062

115 4846 8158 322 8142 3059 31 68

843 3574 540 951 7343 7827 1767 4120

295 2738 83 2628 8078 5555 63 5445

1625 3976 6801 3013 3514 1941 2015 6461

657 7219 8088 2269 45 818 8000 5596

349 8079 7707 3863 688 4341 5856 193

150 158 166 172 171 161 154 146

166 140 4242 135 152 132 4287 196

169 4190 60 108 106 115 141 4278

165 52 4130 94 91 93 4230 146

150 57 8 71 122 154 163 146

104 10 4088 26 122 171 4243 112

125 4158 16 61 134 164 141 4179

120 100 4195 82 125 171 4189 72

150 158 166 172 171 161 154 146

166 182 172 89 152 178 166 154

169 128 38 60 106 163 163 149

165 48 7 21 91 166 162 150

150 57 8 71 122 154 163 146

104 14 20 99 122 98 120 108

125 29 38 109 134 116 119 117

120 58 74 128 125 125 119 114

Original Data

RC-NMNT

2D-NMNT via

Separable Algorithm

Inverse RC-NMNT

Original Data via 

Separable Algorithm

Figure 5.1: Example of 2D-NMNT using Row-Column Method
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5.3 RC-ONMNT

The 2D-ONMNT is similar to the 2D-NMNT; however to obtain the full

2D-ONMNT using the RC method, there are two distinct procedures that

must be derived for the forward and inverse transforms. The forward transform

uses β
(
2k1+1

2
n1,

2k2+1
2

n2

)
, shown as

X(k1, k2) =

⟨
N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)β

(
2k1 + 1

2
n1,

2k2 + 1

2
n2

)⟩
Mp

for k1, k2 = 0, 1, 2, ..., N − 1.

(5.20)

As the negative instances of k were replaced with N − k in the NMNT, they

must now be replaced by N − k − 1 for the ONMNT otherwise negating k would

otherwise produce

β

[
2 (N − k) + 1

2
n

]
= β

(
2N − 2k + 1

2
n

)
= β

(
2Nn

2
+

−2k + 1

2
n

)
= β

(
−2k + 1

2
n

)
= β

(
−2k − 1

2
n

)
.

(5.21)

This detail is necessary when using negative k in the fractional part of the index so

that correct index is maintained by

β

[
2 (N − k − 1) + 1

2
n

]
= β

(
2N − 2k − 2 + 1

2
n

)
= β

(
2Nn

2
+

−2k − 1

2
n

)
= β

(
−2k − 1

2
n

)
= β

(
−2k + 1

2
n

)
.

(5.22)

The RC definition for the 2D-ONMNT is

XRC(k1, k2) =

⟨
N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)β

(
2k1 + 1

2
n1

)
β

(
2k2 + 1

2
n2

)⟩
Mp

for k1, k2 = 0, 1, 2, ..., N − 1

(5.23)
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5.3 RC-ONMNT

and the full separable equation that was shown in (5.18) now becomes

X (k1, k2) =

⟨
N−1∑
n1=0

N−1∑
n2=0

x (n1, n2)

[
β

(
2k1 + 1

2
n1

)
β

(
2k2 + 1

2
n2

)
+ β

(
−2k1 + 1

2
n1

)
β

(
2k2 + 1

2
n2

)
+ β

(
2k1 + 1

2
n1

)
β

(
−2k2 + 1

2
n2

)
− β

(
−2k1 + 1

2
n1

)
β

(
−2k2 + 1

2
n2

)]
2p−1

⟩
Mp

.

(5.24)

In order to obtain β
(
−2k1+1

2
n1

)
from β

(
2k1+1

2
n1

)
, changing the indices that contain

−k1 to −k1 − 1 is necessary, this is shown as

β

(
2k1 + 1

2
n1

)
k1=N−k1−1−−−−−−−−→ β

[
2 (N − k1 − 1) + 1

2
n1

]
= β

(
2N − 2k1 − 1

2
n1

)
= β

(
−2k1 + 1

2
n1

) (5.25)

and can be represented by using XRC so that

X (k1, k2) =

⟨[
XRC (k1, k2) +XRC (−k1 − 1, k2)

+XRC (k1,−k2 − 1)−XRC (−k1 − 1,−k2 − 1)
]
2p−1

⟩
Mp

.

(5.26)

The IONMNT begins by first applying β
(
2n1+1

2
k1,

2n2+1
2

k2
)

to the original

2D-ONMNT formula and using X to indentify that the IONMNT transform

is currently selected. The standard equation for the IONMNT then becomes

X(k1, k2) =

⟨
N−2

N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)β

(
2n1 + 1

2
k1,

2n2 + 1

2
k2

)⟩
Mp

for k1, k2 = 0, 1, 2, ..., N − 1

(5.27)

where the RC method is defined as

XRC(k1, k2) =

⟨
N−2

N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)β

(
2n1 + 1

2
k1

)
β

(
2n2 + 1

2
k2

)⟩
Mp

for k1, k2 = 0, 1, 2, ..., N − 1.

(5.28)
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5. THE ROW-COLUMN GNMNT

As previously shown from (5.17), it is obvious that β
(
2n1+1

2
k1,

2n2+1
2

k2
)
is applied

to (5.11) so that

β

(
2n1 + 1

2
k1,

2n2 + 1

2
k2

)
= β

(
2n1 + 1

2
k1 +

2n2 + 1

2
k2

)
=

⟨
1

2

[
β

(
2n1 + 1

2
k1

)
+ β

(
−2n1 + 1

2
k1

)]

× β

(
2n2 + 1

2
k2

)
+

1

2

[
β

(
2n1 + 1

2
k1

)
− β

(
−2n1 + 1

2
k1

)]

× β

(
−2n2 + 1

2
k2

)⟩
Mp

=

⟨[
β

(
2n1 + 1

2
k1

)
β

(
2n2 + 1

2
k2

)
+ β

(
−2n1 + 1

2
k1

)
β

(
2n2 + 1

2
k2

)
+ β

(
2n1 + 1

2
k1

)
β

(
−2n2 + 1

2
k2

)
− β

(
−2n1 + 1

2
k1

)
β

(
−2n2 + 1

2
k2

)]
2p−1

⟩
Mp

.

(5.29)

Substituting (5.29) into (5.27) produces

X(k1, k2) =

⟨
N−2

N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)

[
β

(
2n1 + 1

2
k1

)
β

(
2n2 + 1

2
k2

)
+ β

(
−2n1 + 1

2
k1

)
β

(
2n2 + 1

2
k2

)
+ β

(
2n1 + 1

2
k1

)
β

(
−2n2 + 1

2
k2

)
− β

(
−2n1 + 1

2
k1

)
β

(
−2n2 + 1

2
k2

)]
2p−1

⟩
Mp

(5.30)

However, as k1 and k2 are not part of the fractional part then (5.30) can further be

simplified to

X (k1, k2) =

⟨[
XRC (k1, k2) +XRC (−k1, k2)

+XRC (k1,−k2)−XRC (−k1,−k2)
]
2p−1

⟩
Mp

.

(5.31)

However, as the ONMNT kernel is not a symmetrical transform, it must
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5.3 RC-ONMNT

therefore rely upon the transpose of itself to obtain the inverse. Pre-processing is

required for the 2D-ONMNT transform using the RC method.

According to the identity in 2D-ONMNT, the basic formula for forward

transform is

X(k1, k2) =

⟨
N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)β

(
2k1 + 1

2
n1,

2k2 + 1

2
n2

)⟩
Mp

for k1, k2 = 0, 1, 2, ..., N − 1

(5.32)

(k1, k2) can be deemed as different positions throughout a matrix, thus, when

k1 = 0, which represents the first column, then (5.32) can be written as

X(0, k2) =

⟨
N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)β

(
2k2 + 1

2
n2

)⟩
Mp

for k2 = 0, 1, 2, ..., N − 1.

(5.33)

Similarly, when k2 = 0, which represents the first row, then (5.32) can be written

as

X(k1, 0) =

⟨
N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)β

(
2k1 + 1

2
n1

)⟩
Mp

for k1 = 0, 1, 2, ..., N − 1.

(5.34)

As shown in (5.32) and (5.34), both X(0, k2) and X(k1, 0) have identical values

by changing k1 and k2. However at position (1, 1) and (N − 1, N − 1) produce

transposed numbers in terms of the kernel matrix shown as

X(1, 1) =

⟨
N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)β

(
3

2
n1,

3

2
n2

)⟩
Mp (5.35)

When calculating position (N − 1, N − 1), the actual position in the ONMNT is

(N − 1− 1, N − 1− 1) due to its identity, so that

X(N − 1, N − 1) =

⟨
N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)β

(
−3

2
n1,−

3

2
n2

)⟩
Mp (5.36)

Comparing (5.35) and (5.36), the value in β terms at the position X(1, 1) and
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5. THE ROW-COLUMN GNMNT

150 158 166 172 171 161 154 146

166 182 172 89 152 178 166 154

169 128 38 60 106 163 163 149

165 48 7 21 91 166 162 150

150 57 8 71 122 154 163 146

104 14 20 99 122 98 120 108

125 29 38 109 134 116 119 117

120 58 74 128 125 125 119 114

7007 1805 2072 3936 4963 2994 1827 6656

3083 7303 4667 7806 7961 5437 7293 5493

16 8154 7274 8006 1676 2376 7053 4374

5980 4263 5467 6222 5775 5108 5847 2357

1841 443 5708 5652 4654 4843 3343 5705

212 1685 5711 2169 5286 7518 1545 3260

684 6826 2325 4880 7511 6602 2886 5155

75 1872 2054 1200 4334 7489 4254 1930

150 158 166 172 171 161 154 146

166 140 4242 135 152 132 4287 196

169 4190 60 108 106 115 141 4278

165 52 4130 94 91 93 4230 146

150 57 8 71 122 154 163 146

104 10 4088 26 122 171 4243 112

125 4158 16 61 134 164 141 4179

120 100 4195 82 125 171 4189 72

150 158 166 172 171 161 154 146

166 182 172 89 152 178 166 154

169 128 38 60 106 163 163 149

165 48 7 21 91 166 162 150

150 57 8 71 122 154 163 146

104 14 20 99 122 98 120 108

125 29 38 109 134 116 119 117

120 58 74 128 125 125 119 114

150 158 166 172 171 161 154 146

166 182 172 89 152 178 166 154

169 128 38 60 106 163 163 149

165 48 7 21 91 166 162 150

150 57 8 71 122 154 163 146

104 14 20 99 122 98 120 108

125 29 38 109 134 116 119 117

120 58 74 128 125 125 119 114

Original Data

RC-ONMNT

2D-ONMNT via

Separable Algorithm

Inverse RC-ONMNT

Original Data via 

Separable Algorithm

Figure 5.2: Example of 2D-ONMNT using Row-Column Method
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5.4 RC-O2NMNT

position X(N − 1, N − 1) is negated. Moreover, these positions can be represented

as the positions X(k1, k2) and X(N −k1, N −k2), when k1 or k2 are not zero values.

Thus, the pre-process step is to flip over and negate the input matrix, apart from

first row and first column. A demonstration of how this is presented is shown in

Figure 5.2, which started by reducing the cameraman image to an 8 × 8 array

and using the RC technique to transform the data to a 2D-ONMNT, using N = 8,

p = 13 and Mp = 8191. The data is shown as it progresses through the various

stages of the process, both forwards and backwards.

5.4 RC-O2NMNT

As discussed in the previous chapter, the GNMNT consists of the NMNT, ONMNT

and the O2NMNT. Therefore, the 2D-O2NMNT using the RC method will be

derived in this section. The O2NMNT has a symmetrical and orthogonal kernel

matrix, which has been described in Chapter 3, and therefore the basic equation

of forward 2D-O2NMNT and inverse 2D-O2NMNT are the same other than the

scaling factor, shown as

X(k1, k2) =

⟨
N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)β

[
(2k1 + 1) (2n1 + 1)

4
,
(2k2 + 1) (2n2 + 1)

4

]⟩
Mp

for k1, k2 = 0, 1, 2, ..., N − 1

(5.37)

and

X(k1, k2) =

⟨
N−2

N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)β

[
(2k1 + 1) (2n1 + 1)

4
,
(2k2 + 1) (2n2 + 1)

4

]⟩
Mp

for k1, k2 = 0, 1, 2, ..., N − 1

(5.38)

respectively. The RC definition for the 2D-O2NMNT is

XRC(k1, k2) =

⟨
N−1∑
n1=0

N−1∑
n2=0

x(n1, n2)β

[
(2k1 + 1) (2n1 + 1)

4

]
β

[
(2k2 + 1) (2n2 + 1)

4

]⟩
Mp

for k1, k2 = 0, 1, 2, ..., N − 1.

(5.39)
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150 158 166 172 171 161 154 146

166 182 172 89 152 178 166 154

169 128 38 60 106 163 163 149

165 48 7 21 91 166 162 150

150 57 8 71 122 154 163 146

104 14 20 99 122 98 120 108

125 29 38 109 134 116 119 117

120 58 74 128 125 125 119 114

6369 2526 6957 6406 6828 1123 7131 7442

7046 4108 6223 7810 1877 2225 3747 3642

4915 7986 3956 279 4174 1463 5526 1254

3810 5103 63 4742 5036 6544 4623 3575

4341 1657 6535 5159 4162 2913 1531 6198

2250 4247 6319 2299 2699 260 3158 2601

6009 4214 7901 8104 5408 8034 4751 499

5832 6204 1261 1761 7147 3917 7787 2977

142 4037 2712 3924 1119 5368 5620 5478

8099 3659 62 2096 7591 195 4196 2589

2909 3205 5739 6122 6522 7871 2116 3260

2764 4926 1019 1292 295 5588 4800 4621

5387 1834 5579 418 712 3869 1354 5152

4256 837 4536 4647 351 2043 6568 595

4956 4663 5871 5627 7885 1873 4302 1552

3868 4693 5506 4243 4665 7863 1107 4941

151 4221 138 173 170 189 4282 145

164 129 136 108 133 214 219 156

157 4188 4157 4167 4190 4235 4294 161

4255 52 4109 4126 4177 4255 158 4251

4251 53 4097 4157 4227 4256 167 4236

116 4145 4092 4183 4229 4217 4180 96

127 82 74 90 153 80 66 115

119 4186 102 127 126 97 4182 115

150 158 166 172 171 161 154 146

166 182 172 89 152 178 166 154

169 128 38 60 106 163 163 149

165 48 7 21 91 166 162 150

150 57 8 71 122 154 163 146

104 14 20 99 122 98 120 108

125 29 38 109 134 116 119 117

120 58 74 128 125 125 119 114

Original Data

RC-O2NMNT

2D-O2NMNT via

Separable Algorithm

Inverse RC-O2NMNT

Original Data via 

Separable Algorithm

Figure 5.3: Example of 2D-O2NMNT using Row-Column Method
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5.5 Complexity Analysis

Following the same procedure in (5.29), β
[
(2k1+1)(2n1+1)

4
, (2k2+1)(2n2+1)

4

]
can be

calculated as

β

[
(2k1 + 1) (2n1 + 1)

4
,
(2k2 + 1) (2n2 + 1)

4

]
= β

[
(2k1 + 1) (2n1 + 1)

4
+

(2k2 + 1) (2n2 + 1)

4

]
=

⟨[
β

[
(2k1 + 1) (2n1 + 1)

4

]
β

[
(2k2 + 1) (2n2 + 1)

4

]
+ β

[
−(2k1 + 1) (2n1 + 1)

4

]
β

[
(2k2 + 1) (2n2 + 1)

4

]
(5.40)

+ β

[
(2k1 + 1) (2n1 + 1)

4

]
β

[
−(2k2 + 1) (2n2 + 1)

4

]
− β

[
−(2k1 + 1) (2n1 + 1)

4

]
β

[
−(2k2 + 1) (2n2 + 1)

4

] ]
2p−1

⟩
Mp

.

Finally, applying (5.41) to (5.37) and combing with XRC produces

X (k1, k2) =
⟨[

XRC (k1, k2) +XRC (−k1 − 1, k2)

+XRC (k1,−k2 − 1)−XRC (−k1 − 1,−k2 − 1)
]
2p−1

⟩
Mp

.
(5.41)

A demonstration of how this is presented is shown in Figure 5.3, which started

by reducing the cameraman image to an 8 × 8 array and using the RC technique

to transform the data to a 2D-O2NMNT, using N = 8, p = 13 and Mp = 8191.

The data is shown as it progresses through the various stages of the process, both

forwards and backwards.

5.5 Complexity Analysis

Calculating the complexity of using the RC method and subsequent separable

algorithm to obtain the 2D-GNMNT can easily be achieved by applying a series of

modifications to the complexities of the 1D counterparts provided in Section 4.5.

By noting that the RC method will in fact invoke a 1D method 2N times for each

of the N rows and then N columns, we can respectively obtain

MRC(N) = 2N2 (log2N − 1)λ (5.42)

and

ARC(N) = 3N2 log2N +N2 (5.43)
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5. THE ROW-COLUMN GNMNT

for the radix-2 implementation;

MRC(N) =
[
N2 (3 log4N − 1)

]
λ (5.44)

and

ARC(N) =
N2

2
(11 log4N − 1) (5.45)

for the radix-4 implementation;

MRC(N) =

[
4

3
N2 log2N − 8

9
N2 +

8

9
N(−1)log2 N

]
λ (5.46)

and

ARC(N) =
8

3
N2 log2N − 4

9
N2 +

4

9
N(−1)log2 N . (5.47)

for the split-radix implementation. The results using λ = 2 to normalise the

multiplications against the additions can be observed in Figure 5.4. In Section

4.5, the notion of using more up to date instructions that combine more than one

operator was introduced using the FMA command. Applying this technique for the

RC method using the split-radix algorithm produces

FRC(N) =

[
2

3
N2 log2N − 4

9
N2 +

4

9
N(−1)log2 N

]
λ, (5.48)

MRC(N) =

[
2

3
N2 log2N − 4

9
N2 +

4

9
N(−1)log2 N

]
λ (5.49)

and

ARC(N) = 2N2 log2N, (5.50)

to produce a total operational count of

TRC(N) =
4λ+ 6

3
N2 log2N − 8λ

9
N2 +

8λ

9
N(−1)log2 N . (5.51)

To complete the process of taking the results from the RC algorithm to the 2D

algorithm requires the application of the separable algorithm. This stage has

a significant impact, as shown in Figure 5.5, owing that the multiplication and

three additions that are required for each point. Therefore, applying a further

modification of N2 multiplications and 3N2 additions to (5.42) and (5.43) produces

MS(N) = 2N4 (log2N − 1)λ (5.52)
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Figure 5.4: Complexity of Different Radices for Row-Column by Total Operations

and

AS(N) = 9N4 log2N + 3N4 (5.53)

for the radix-2 implementation; to (5.44) and (5.45) produces

MS(N) =
[
N4 (3 log4N − 1)

]
λ (5.54)

and

AS(N) =
3N4

2
(11 log4N − 1) , (5.55)

for the radix-4 implementation and finally to (5.46) and (5.47) produces

MS(N) =

[
4

3
N4 log2N − 8

9
N4 +

8

9
N3(−1)log2 N

]
λ (5.56)

and

AS(N) = 8N4 log2N − 4

3
N4 +

4

3
N3(−1)log2 N (5.57)

for the split-radix implementation of the separable algorithm. As the separable

algorithm consists of three additions then a multiplication, applying this adjustment
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Figure 5.5: Complexity of Different Radices for Row-Column with Separable
Algorithm by Total Operations

to the FMA version in (5.48)-(5.51) is limited to the multiplications and additions

without offloading operations to the FMA operator. Therefore, adjusting (5.49)

with an additional N2 multiplications produces

MS(N) =

[
2

3
N4 log2N − 4

9
N4 +

4

9
N3(−1)log2 N

]
λ, (5.58)

adjusting (5.51) with an additional 3N2 multiplications produces

AS(N) = 6N4 log2N, (5.59)

and combining (5.48) with (5.58) and (5.59) produces a total operational count of

TS(N) =
2λ+ 3

3
N4 log2N − 4λ

3
N4 +

4λ

3
N3(−1)log2 N

+
2λ

3
N2 log2N − 4λ

3
N2 +

4λ

3
N(−1)log2 N .

(5.60)
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5.6 The 2D Cyclic Convolution for the GNMNT

5.6 The 2D Cyclic Convolution for the GNMNT

The 1D cyclic convolution for the GNMNT was discussed previously in Chapter 3.

A common application of the 2D cyclic convolution is image processing, where filters

can be applied quickly and efficiently. The derivations for the various convolutions

forthwith were first derived by [7] for the NMNT and [8, 139] for the expansion

to the GNMNT, and have been included here for the sake of completeness with

further insights and demonstrations. Typically, the signals x (n1, n2) and h (n1, n2)

are the inputs containing the image and filter of size N × N , while y
CC

(n1, n2)

provides the output of the 2D convolution using the GNMNT.

5.6.1 Cyclic Convolution for the 2D-NMNT

Denoting X (k1, k2), H (k1, k2) and Y
CC

(k1, k2) as the signal values within the

NMNT domain of x (n1, n2), h (n1, n2) and y
CC

(n1, n2), the 2D-NMNT Cyclic

Convolution is calculated as

YCC (k1, k2) =
⟨
2p−1 [H (k1, k2) +H (N − k1, N − k2)]X (k1, k2)

+ 2p−1 [H (k1, k2)−H (N − k1, N − k2)]X (N − k1, N − k2)
⟩
Mp

(5.61)

As previously described in [7], a new operator can be used to simplify (5.61), for

which ⊙ will be used, so that

YCC (k1, k2) = X (k1, k2)⊙H (k1, k2)

=
⟨
Hev(k1, k2)X (k1, k2)

+Hod(k1, k2)X (N − k1, N − k2)
⟩
Mp

(5.62)

where Hev(k1, k2) and Hod(k1, k2) are the even and odd parts of H (k1, k2) shown

respectively as

Hev(k1, k2) =
⟨
[H (k1, k2) +H (N − k1, N − k2)] 2

p−1
⟩
Mp

(5.63)

NMNT

NMNT

x(n1,n2)

h(n1,n2)

X(k1,k2)

H(k1,k2)

NMNT
-1Y(k1,k2) y(n1,n2)

RC

RC

XRC(k1,k2)

HRC(k1,k2)

RC
-1yRC(k1,k2)⊙

Figure 5.6: Convolution Process Structure for the 2D-NMNT
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ONMNT

ONMNT

x(n1,n2)

h(n1,n2)

XO(k1,k2)

HO(k1,k2)

IONMNT
YO(k1,k2) y(n1,n2)

RC

RC

XRC(k1,k2)

HRC(k1,k2)

RC
-1yRC(k1,k2)⊙

Figure 5.7: Convolution Process Structure for the 2D-ONMNT

and

Hod(k1, k2) =
⟨
[H (k1, k2)−H (N − k1, N − k2)] 2

p−1
⟩
Mp

. (5.64)

Figure 5.6 further illustrates the process of the 2D-NMNT cyclic convolution, which

shows two RC blocks that are slightly different from the 1D convolution owing to

the RC method being applied to the 2D-GNMNT.

5.6.2 Cyclic Convolution for the 2D-ONMNT

The variables XO (k1, k2), HO (k1, k2) and Y
OCC

(k1, k2) are the signals x (n1, n2),

h (n1, n2) and y
CC

(n1, n2) that are within the ONMNT domain. The operation to

derive the ONMNT result Y
OCC

(k1, k2) is processed using XO (k1, k2), HO (k1, k2)

by

YOCC (k1, k2) = XO (k1, k2)⊙HO (k1, k2)

=
⟨
Hev

O (k1, k2)XO (k1, k2)

+Hod
O (k1, k2)XO (N − k1 − 1, N − k2 − 1)

⟩
Mp

(5.65)

where Hev
O (k1, k2) and Hod

O (k1, k2) stand for even and odd parts of HO (k1, k2)

respectively as

Hev
O (k1, k2) =

⟨
[HO (k1, k2) +HO (N − k1 − 1, N − k2 − 1)] 2p−1

⟩
Mp

(5.66)

and

Hod
O (k1, k2) =

⟨
[HO (k1, k2)−HO (N − k1 − 1, N − k2 − 1)] 2p−1

⟩
Mp

. (5.67)

The process of computing the 2D cyclic convolution for the ONMNT is shown in

Figure 5.7.
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Figure 5.8: Convolution Process Structure for the 2D-O2NMNT

5.6.3 Cyclic Convolution for the 2D-O2NMNT

Transforming into the O2NMNT domain, the input and output signals x (n1, n2),

h (n1, n2) and y
CC

(n1, n2) are represented by XO2 (k1, k2), HO2 (k1, k2) and

Y
O2CC

(k1, k2) respectively and processed as

Y
O2CC

(k1, k2) = XO (k1, k2)⊙HO2 (k1, k2)

=
⟨
Hod

O2(k1, k2)XO (k1, k2)

+Hev
O2(k1, k2)XO (N − k1 − 1, N − k2 − 1)

⟩
Mp

(5.68)

where Hev
O2(k1, k2) and Hod

O2(k1, k2) stand for even and odd parts of HO2 (k1, k2)

respectively as

Hev
O2(k1, k2) =

⟨
[HO2 (k1, k2) +HO2 (N − k1 − 1, N − k2 − 1)] 2p−1

⟩
Mp

(5.69)

and

Hod
O2(k1, k2) =

⟨
[HO2 (k1, k2)−HO2 (N − k1 − 1, N − k2 − 1)] 2p−1

⟩
Mp

. (5.70)

Figure 5.8 shows the process of computing 2D cyclic convolution for O2NMNT.

5.6.4 Verification using Cyclic Convolution

An example application for using convolution would be to apply the Sobel filter to

an image, which is used to provide edge detection [140]; this is configured as

H =


1 2 1

0 0 0

−1 −2 −1

 . (5.71)

Using the NMNT to process the required convolutions is shown Figure 5.9, where

the original image Figure 5.9(a) is first processed using MATLAB for reference,

producing Figure 5.9(b). Applying the Sobel filter to the image Y via convolution
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(a) Original Image (b) MATLAB Implementation

(c) Sobel Filter x-Axis Derivative (d) Sobel Filter y-Axis Derivative

(e) Magnitude using xy-Derivatives (f) GNMNT Implementation

Figure 5.9: Convolution using Sobel Filter for Edge Detection using Cameraman
Image with NMNT
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(a) Original Image (b) MATLAB Implementation

(c) Sobel Function x-Axis Derivative (d) Sobel Function y-Axis Derivative

(e) Magnitude using xy-Functions (f) GNMNT Implementation

Figure 5.10: Convolution using Sobel Filter for Edge Detection using Lena Image
with ONMNT
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(a) Original Image (b) MATLAB Implementation

(c) Sobel Function x-Axis Derivative (d) Sobel Function y-Axis Derivative

(e) Magnitude using xy-Functions (f) GNMNT Implementation

Figure 5.11: Convolution using Sobel Filter for Edge Detection using Baboon
Image with O2NMNT
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across the x- and y-axes produces

Gx = H ~ Y (5.72)

and

Gy = H ′ ~ Y. (5.73)

The results of (5.72) and (5.73) using the NMNT are shown in Figures 5.9(c) and

5.9(d) respectively. The gradient map in Figure 5.9(e) is obtained by combining

the two direction sources by

G =
√

Gx2 +Gy2 (5.74)

The process concludes by defining a threshold level, which in this case was

accomplished by calculating the mean of the gradient map

TG = G (5.75)

and applying this threshold to define the boundaries for G yields Figure 5.9(f).

It appears that MATLAB may use additional processing techniques such as line

thinning for example [141]. Figures 5.10 and 5.11 depict the same processes using

the ONMNT and O2NMNT respectively, thus validating the implementations.

Table 5.1: Effective Lengths of 1D and 2D GNMNTs

1D Block and Key Size 2D Block and Key Size

p p

N 5 7 13 17 19 5 7 13 17 19

4 20 28 52 68 76 80 112 208 272 304

8 40 56 104 136 152 320 448 832 1088 1216

16 80∗ 112 208 272 304 1280∗ 1792 3328 4352 4864

32 160# 224 416 544 608 5120# 7168 13312 17408 19456

64 - 448∗ 832 1088 1216 - 28672∗ 53248 69632 77824

128 - 896# 1664 2176 2432 - 114688# 212992 278528 311296

256 - - 3328 4352 4864 - - 851968 1114112 1245184

512 - - 6656 8704 9728 - - 3407872 4456448 4980736

1024 - - 13312 17408 19456 - - 13631488 17825792 19922944
∗ NMNT and ONMNT, # NMNT Only
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5.7 Encryption Applications

An application for using the 2D algorithm of the GNMNT for encryption is where

two people have the same image. This can be combined with a password for an

implementation of the two-factor authentication (2FA) protocol that is applied to

encryption: something you know and something you have [142]. Selecting a random

area of the image and transferring the coordinates produces an ephemeral-type

key, which can be communicated to the receiving party using similar techniques to

those used to transmit the password. However, in order to safeguard the integrity

of the encryption, it would be advisable to transfer the image attributes and the

regular password using two distinct public key techniques. Such techniques enhance

security by adding an additional layer of security. There are a number of methods

used to provide 2FA including documentation, text message, email, hardware token

or even software [143], which have become highly adopted by many industries,

particularly by the finance sector.

This section will provide examples on this methodology by incorporating an

encryption system that uses a 2D key from an image that both parties are known to

have. The method of image selection, image key could well be communicated using

a public key encryption system such as RSA or ECC. Once an image and image

Figure 5.12: Image from which the selected 2D key is obtained
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Table 5.2: Pixel Values of 2D Key without Concatenation

0xb1 0x7e 0x9e 0x87 0x71 0x80 0x95 0x63 0xb0 0x76 0x7b 0x68 0x6a 0x7a 0x97 0xa0

0x90 0x80 0x9d 0x9f 0x8e 0x79 0x8a 0xbe 0xad 0x92 0x90 0x4b 0x9a 0x8d 0x78 0x5f

0x42 0x6f 0x5f 0x75 0x6d 0xa5 0xa8 0xaf 0x95 0x58 0x4e 0x85 0x82 0x86 0x73 0x9c

0x94 0x51 0x37 0x39 0x4e 0x7f 0x82 0x86 0x44 0x5f 0x88 0x64 0xa9 0x87 0x5e 0xa1

0x78 0x69 0x94 0x9b 0x36 0x62 0x54 0x57 0x72 0x45 0x40 0x8b 0xa6 0x6d 0x87 0x77

0x44 0x64 0xa6 0x6b 0x32 0x5a 0x47 0x4f 0x87 0x68 0x5b 0x3c 0x49 0x55 0x6b 0x6b

0x72 0x91 0x55 0x1e 0x68 0x4e 0x78 0xac 0x48 0x39 0x86 0xb1 0x5b 0x3f 0x8d 0xa4

0x67 0x76 0x59 0x1e 0x38 0x74 0x9c 0xa0 0x46 0x72 0x80 0x87 0x3a 0x64 0x99 0x61

Table 5.3: Pixel Values of 2D Key with Concatenation

0xb17e 0x9e87 0x7180 0x9563 0xb076 0x7b68 0x6a7a 0x97a0

0x9080 0x9d9f 0x8e79 0x8abe 0xad92 0x904b 0x9a8d 0x785f

0x426f 0x5f75 0x6da5 0xa8af 0x9558 0x4e85 0x8286 0x739c

0x9451 0x3739 0x4e7f 0x8286 0x445f 0x8864 0xa987 0x5ea1

0x7869 0x949b 0x3662 0x5457 0x7245 0x408b 0xa66d 0x8777

0x4464 0xa66b 0x325a 0x474f 0x8768 0x5b3c 0x4955 0x6b6b

0x7291 0x551e 0x684e 0x78ac 0x4839 0x86b1 0x5b3f 0x8da4

0x6776 0x591e 0x3874 0x9ca0 0x4672 0x8087 0x3a64 0x9961

position have been selected, this will then act as a private session key between the

two parties.

5.7.1 RC-GNMNT Implementations

One of the advantages of the NMNT and GNMNT transforms are their highly

adaptable lengths [7, 8]. However, irrespective of these lengths, limitations are still

put in place with respect to the prime that is defined by p. Using a 2D algorithm

allows even greater versatility by essentially squaring the lengths over the same

value of p, thereby providing significant increases in these lengths as shown in Table

5.1. In the following examples, a key of size based on an image area of 16 × 8 in

size has been selected from the image shown in Figure 5.12. This key is shown

numerically in Table 5.2 as it was extracted from the greyscale image and again

in Table 5.3 after the concatenation process has taken place. Data within the key

was concatenated in pairs to reduce the size from 16 columns to 8 so that the

length N = 8 could be assigned to a square area. A value of p = 17 was selected

to derive a Mersenne prime number of 131071, which completes the configuration

of the encryption system. The system uses a similar procedure that was defined in
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(a) Original (b) Cipher

(c) Incorrect Key (d) Correct Key

Figure 5.13: Encrypted Cameraman using RC-NMNT, N = 8×8 and Mp = 131071

(3.81)-(3.91) adapted as a 2D system using a 2D key for all examples, where only

the transform type was changed according to the appropriate subsection.

5.7.1.1 RC-NMNT

The results of encrypting the cameraman image using the RC-NMNT and a

2D key are shown in Figure 5.13. As anticipated from previous results using

1D-implementations, it can be seen that the NMNT has performed at a comparable

level. The decryption using a different key has rendered the resultant deciphering

operation completely worthless with no information apparently being released.

Moreover, it would appear that there may not be a necessary requirement in

computing the separable algorithm in order to completely process the image using
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(a) Original (b) Cipher

(c) Incorrect Key (d) Correct Key

Figure 5.14: Encrypted Camerman using RC-ONMNT, N = 8×8 and Mp = 131071

the RC method.

5.7.1.2 RC-ONMNT

Using the first of the two new transforms for RC encryption suggests that there are

very promising results. Deciphering the image has rendered it worthless, similar to

the results obtained from the NMNT. After applying the correct key, it is shown

in Figure 5.14 that the system correctly deciphered the image, suggesting that

encryption system is working as expected.

139



5. THE ROW-COLUMN GNMNT

(a) Original (b) Cipher

(c) Incorrect Key (d) Correct Key

Figure 5.15: Encrypted Camerman using RC-O2NMNT, N = 8 × 8 and Mp =
131071

5.7.1.3 RC-O2NMNT

The second of the two new transforms applied for encryption using the RC method

is the O2NMNT. Like its counterparts, the O2NMNT has successfully encrypted

and decrypted the image using the correct key, while failing to decipher the image

using the incorrect key as shown in Figure 5.15. Again, this would initially suggest

that the system using the O2NMNT would be applicable for use in the field of

cryptography.
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(a) Original (b) NMNT

(c) ONMNT (d) O2NMNT

Figure 5.16: Decrypted Cameraman Error using RC-GNMNT, N = 8 × 8 and
Mp = 131071

5.7.1.4 Comparison of RC-Encryption Characteristics

The different variations of the enciphered images using the same key but different

transforms is depicted in Figure 5.16. Whilst there is nothing to be gained directly

from observing this image, it is presented to demonstrate that the results from

using each transform to decrypt the image using the same alternate key and also

that they have provided different results according to each transform. Each of the

images was previously shown to correctly encrypt and decrypt the image when

using the same key.
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(a) Original (b) Cipher

(c) Incorrect Key (d) Correct Key

Figure 5.17: Encrypted Cameraman using 2D-NMNT, N = 8×8 and Mp = 131071

5.7.2 2D-GNMNT Implementations

This section is similar to the RC-GNMNT except that the additional separable

algorithm has been applied to provide a true 2D transformation of the image in

each system. While no further processing has been done in respect to 2D signal-

or image-processing, the underlying implementation has been developed and tested

to ensure compatibility throughout these transforms. The development of true

2D algorithms in cryptography opens many opportunities to further incorporate

different methods such as filtering to enhance the framework of a developed

encryption system.
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(a) Original (b) Cipher

(c) Incorrect Key (d) Correct Key

Figure 5.18: Encrypted Camerman using 2D-ONMNT, N = 8×8 and Mp = 131071

5.7.2.1 2D-NMNT

Like the RC-NMNT, the 2D-NMNT has correctly encrypted and decrypted the

image using the same key. When using the alternate key to decrypt, again like the

RC-GNMNT, the results yielded an unusable image where no information of the

original contents appears to be obtainable, as shown in Figure 5.17.

5.7.2.2 2D-ONMNT

Using the first of the new transforms and the separable algorithm has again yielded

favourable results as shown in Figure 5.18. The results that were obtained from

the result of the RC-ONMNT appear to be comparable to the 2D variant using the

separable algorithm.
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(a) Original (b) Cipher

(c) Incorrect Key (d) Correct Key

Figure 5.19: Encrypted Camerman using 2D-O2NMNT,N = 8×8 andMp = 131071

5.7.2.3 2D-O2NMNT

The final example of 2D encryption shows in Figure 5.19 that the second new

transform has also demonstrated favourable results. The encryption and decryption

process using the same key to obtain the original image and using different keys to

show that recovering the original image is unobtainable has reached expectations

and, like the other implementations of the GNMNT in these simulations, the

O2NMNT has performed comparably.

5.7.2.4 Comparison of 2D-Encryption Characteristics

The final image in these simulations again shows in Figure 5.20 the comparison

of the resulting images using the 2D transforms where the same alternate
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(a) Original (b) NMNT

(c) ONMNT (d) O2NMNT

Figure 5.20: Decrypted Cameraman Error using 2D-GNMNT, N = 8 × 8 and
Mp = 131071

decrypting keys were used instead of the same encrypting keys. Similar to the RC

implementations, there is no direct information to be obtained from these images

other than to show that by using the same key to encrypt and using the same

incorrect key to decrypt, each of the transforms used has produced different results.

5.7.3 Imposing a Single-Bit Error using the RC- and

2D-GNMNT

With previous respect to Section 3.8.1, it would be remiss to ignore the results of

changing a single bit of the GNMNT using the RC method to assess whether there
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(a) Original Image (b) RC-NMNT Bit Error N = 8

(c) RC-NMNT Bit Error N = 16 (d) RC-NMNT Bit Error N = 32

(e) RC-NMNT Bit Error N = 64 (f) RC-NMNT Bit Error N = 128

Figure 5.21: Decrypted Bit Error using RC-NMNT with N = 8, 16, 32, 64, 128 and
Mp = 131071
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(a) Original Image (b) RC-ONMNT Bit Error N = 8

(c) RC-ONMNT Bit Error N = 16 (d) RC-ONMNT Bit Error N = 32

(e) RC-ONMNT Bit Error N = 64 (f) RC-ONMNT Bit Error N = 128

Figure 5.22: Decrypted Bit Error using RC-ONMNT with N = 8, 16, 32, 64, 128
and Mp = 131071
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(a) Original Image (b) RC-O2NMNT Bit Error N = 8

(c) RC-O2NMNT Bit Error N = 16 (d) RC-O2NMNT Bit Error N = 32

(e) RC-O2NMNT Bit Error N = 64 (f) RC-O2NMNT Bit Error N = 128

Figure 5.23: Decrypted Bit Error using RC-O2NMNT with N = 8, 16, 32, 64, 128
and Mp = 131071
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(a) Original Image (b) 2D-NMNT Bit Error N = 8

(c) 2D-NMNT Bit Error N = 16 (d) 2D-NMNT Bit Error N = 32

(e) 2D-NMNT Bit Error N = 64 (f) 2D-NMNT Bit Error N = 128

Figure 5.24: Decrypted Bit Error using 2D-NMNT with N = 8, 16, 32, 64, 128 and
Mp = 131071
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(a) Original Image (b) 2D-ONMNT Bit Error N = 8

(c) 2D-ONMNT Bit Error N = 16 (d) 2D-ONMNT Bit Error N = 32

(e) 2D-ONMNT Bit Error N = 64 (f) 2D-ONMNT Bit Error N = 128

Figure 5.25: Decrypted Bit Error using 2D-ONMNT with N = 8, 16, 32, 64, 128 and
Mp = 131071
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(a) Original Image (b) 2D-O2NMNT Bit Error N = 8

(c) 2D-O2NMNT Bit Error N = 16 (d) 2D-O2NMNT Bit Error N = 32

(e) 2D-O2NMNT Bit Error N = 64 (f) 2D-O2NMNT Bit Error N = 128

Figure 5.26: Decrypted Bit Error using 2D-O2NMNT with N = 8, 16, 32, 64, 128
and Mp = 131071
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are similar characteristics that were observed with the NMNT and ONMNT. In

doing so, a random key is this time selected and concatenated and again, the last

bit of the final element is changed. The results for the bit error RC-GNMNT are

shown in Figures 5.21-5.23 where it can be observed that the effects are greatly

exacerbated. The reason for this relates to the nature of the processing as the

method essentially utilises N keys rather than an N × N key because of the way

the RC-GNMNT is processed. As such, more of the image can still be recovered as

clearly observed, although this diminishes as the transform length and subsequent

key length increases. Interestingly, the O2NMNT result in Figure 5.23 appears

to be defining the processing blocks rather than producing a random collection

of pixels. There should therefore be caution in implementing a technique using

the RC-O2NMNT, ensuring that any schemes employing this transform contain

multiple rounds and non-linear operations.

Addressing this technique with the 2D-GNMNT using a random key for

encryption with subsequent bit error in the key for decryption produces results that

can be observed in Figures 5.24-5.26. There is again evidence within the respective

images from each technique that information has been recovered, albeit somewhat

skewed, which again diminishes as the transform length and subsequent key length

increases. The skewing artefacts are no doubt a result of the separable algorithm

being applied to the RC method, which would emphasise how the transform

is being processed. As the implementation has been proven already using the

convolution techniques, there is no doubt that this skewing condition is confined

to the application of the RC and separable algorithm methods. Moreover, the

outline of the cameraman can be observed in Figure 5.26, indicating that even the

O2NMNT is not infallible with respect in this instance.

5.8 Conclusion

This chapter has developed and demonstrated the RC-GNMNT and its respective

separable algorithms, specifically the ONMNT, IONMNT and O2NMNT for

developing 2D algorithms. Examples using the cyclic convolution have been

shown and demonstrated using the Sobel filter to provide edge detection through

2D convolution, thereby verifying its implementation. Example RC and 2D

core encryption systems have been developed and presented to demonstrate
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the capabilities of these new transforms. Moreover, the simulations of the

encryption system show that it is not necessarily required to complete the full 2D

transformation in order to achieve favourable results, but maximising the transform

length and subsequent key length would certainly be advantageous. However,

there is a definite emphasis from the results that further steps are mandated when

implementing the GNMNT within an encryption system, particularly shuffling,

non-linear operations and multiple rounds. Whilst there were comparable results

between the RC and 2D methods and the RC method may serve as a faster

implementation, there may well be further benefits in completing the full 2D

process as other opportunities are presented that could incorporate additional

functionality to an encryption system. For example, part of an encryption system

may consist of filtering parts of the data either as a pre- or post-operation to the

underlying encryption system.
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Chapter 6

The Avalanche Effect of the

GNMNT

6.1 Introduction

The continual pace of technological development has accelerated the need for

stronger and more resilient encryption schemes. These schemes should offer

flexibility with respect to scalability, depending on needs and requirements. The

current standard [144] is currently halfway through its second decade of ratification

and while it has shown significant resilience so far, that is not to say it will

continue to do so. Reflecting how DES has been continually attacked with the

production of faster and more powerful GPUs highlighting the need for development

of similar systems that can be developed like deep crack, but using only commercial

off-the-shelf (COTS) components.

6.2 The Strict Avalanche Criterion

The avalanche effect is primarily influenced by diffusion that was noted by Shannon

when he first suggested that the two core concepts of security are confusion and

diffusion [12]. The key principle behind the avalanche model is that should a single

bit in the cipher text be out of place when applied to the decryption algorithm,

then it will yield a catastrophic effect upon the decoded plaintext. This theory

was developed further by Feistel and the ideas of confusion and diffusion were more

commonly referred to and implemented as networks incorporating substitution and
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permutation respectively [13]. Webster and Travers developed the avalanche effect

further still by introducing the SAC [14]. The SAC states that when a single bit is

changed in the cipher text, the effect of this change should influence the resultant

bits after the decryption process ideally by a probability of 0.5. We can therefore

measure the resultant plaintext of such an event and compare it with the original

plaintext where we should ideally observe that 50% of the bits between the two

plaintexts differ.

6.3 Methodology

There were a number of configurations and variations used for the development

of this simulation that include the simulation algorithm to apply conditions to

test and measure the SAC, the AES algorithm and the GNMNT transforms. The

simulations involved 106 iterations for each of the GNMNT transforms and the

AES algorithm, where either 136 or 128 bits were manipulated respectively during

each iteration. The implementation for each process will be described in greater

detail in Sections 6.3.2 and 6.3.3 for AES and GNMNT respectively.

6.3.1 Applying and Testing the SAC

The method used to undertake these measurements was designed to probe each

and every bit of the cipher text to identify not only consistency but also areas that

potentially exhibit undesirable characteristics: these may manifest as results that

contain excessively low or high metrics or exhibit consistent patterns. The process

used to accomplish this process was previously described in [119], beginning with

the obtaining of a cipher text c by applying an encryption operation E (·) to a

plaintext t by

c = E(t). (6.1)

We can then change a single bit in c by selecting a bit position n and performing

ĉm = c⊕ 2n for 0 ≤ n < pN (6.2)

where ĉm is the indexed state from the original cipher text where the bit that has

been modified n = m, ⊕ denotes a bitwise XOR operation, p is the size of each

element and N represents the number of elements in the cipher. Using n to select
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t tG = G(t)
tĜ[e] = < tG⊕ 2

b
>Mp

0 ≤ e < N, 0 ≤ b < p
t ̂= G-1

(tĜ)

δm[n̂] = ((t[e]⊕ t[̂e])>>b̂) ∧ 1

0 ≤ e < N, 0 ≤ b ̂ < p,

m = p⋅ e + b, n̂ = p⋅ e + b̂

Δm=Σδm(n̂)

Δn=Σδn(m̂)

Δm

Δn

δn[m̂] = ((t[e]⊕ t[̂e])>>b̂) ∧ 1

0 ≤ e < N, 0 ≤ b ̂ < p,

m̂ = p⋅ e + b̂, n = p⋅ e + b

Figure 6.1: Avalanche Assessment Process

a bit and treating the vector as if it were an N size element, it can be better

visualised as

n = pe+ b, for 0 ≤ e < N and 0 ≤ b < p, (6.3)

which converts n into an element that is index by e and the associated bit of that

element referenced by 2b. We then decrypt the altered cipher text ĉm to obtain an

alternate plaintext t̂m by

t̂m = D(ĉm) (6.4)

where D (·) refers to the corresponding decryption algorithm from (6.1). The bits

that have changed can be easily detected by developing a small function

δm(n) =

 1, if (t⊕ t̂m) ∧ 2n ̸= 0

0
(6.5)

using ∧ to denote a bitwise AND operation to process each bit in t̂m. We can then

represent the total change in the resultant vector t̂m by

∆m =

[
1

pN

pN−1∑
n=0

δm(n)

]
× 100. (6.6)

As (6.5) and (6.6) provide a methodology to measure the differential change in

the vector, so we can also measure the differential bit positions from the resultant

vector by applying a transpose. This will provide

δm(n) =

 1, if (t⊕ t̂n) ∧ 2m ̸= 0

0
(6.7)

and

∆n =

[
1

pN

pN−1∑
n=0

δn(m)

]
× 100. (6.8)
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This process is further illustrated in Figure 6.1.

We can demonstrate a small exhaustive example using p = 3 and N = 4 and

begin by selecting four numbers at random for t producing

t = {3, 2, 1, 2}. (6.9)

Table 6.1: Modification of t̂G for p = 3, N = 4

e b t̂G[3] t̂G[2] t̂G[1] t̂G[0]

0 0 001 010 000 011

0 1 001 010 000 000

0 2 001 010 000 110

1 0 001 010 001 010

1 1 001 010 010 010

1 2 001 010 100 010

2 0 001 011 000 010

2 1 001 000 000 010

2 2 001 110 000 010

3 0 000 010 000 010

3 1 011 010 000 010

3 2 101 010 000 010

Table 6.2: Resultant Values of t̂ for p = 3, N = 4

pe+ b t̂[3] t̂[2] t̂[1] t̂[0]

0 101 100 110 000

1 110 101 101 110

2 100 011 000 001

3 101 000 011 000

4 000 101 101 101

5 100 001 010 001

6 101 000 110 100

7 110 110 101 101

8 100 001 000 011

9 001 000 110 000

10 000 110 101 110

11 100 011 010 011
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However, for the sake of clarity in this example we shall instead represent values in

binary, which results in

t = {0112, 0102, 0012, 0102}. (6.10)

Transforming this vector using the NMNT produces the vector

TG = {0012, 0102, 0002, 0102}. (6.11)

Now we can produce a loop using e and b, which were defined in (6.3) to change

each bit of TG in sequence resulting in pN new transformed vectors denoted by T̂G.

These altered values of TG are shown in Table 6.1. Applying the inverse NMNT

transform to each of the T̂G and record them in t̂m, where m was defined in (6.4).

These resultant values of t̂ are shown in Table 6.2. Finally, applying (6.5) and (6.6)

using t and each t̂ produces values for δm and ∆m respectively. While this method

assess the bits that have changed in each vector and can be seen as a row-by-row

approach, using the resultant vectors we can also examine each column. Applying

the similar (6.7) and (6.8) produces values for δn and ∆n respectively. The results

Table 6.3: Differences Between t and t̂ for p = 3, N = 4

δn ∆m m

δ m

1 1 0 1 1 0 1 1 1 0 1 0 8 0

1 0 1 1 1 1 1 0 0 1 0 0 7 1

1 1 1 0 0 1 0 0 1 0 1 1 7 2

1 1 0 0 1 0 0 1 0 0 1 0 5 3

0 1 1 1 1 1 1 0 0 1 1 1 9 4

1 1 1 0 1 1 0 1 1 0 1 1 9 5

1 1 0 0 1 0 1 1 1 1 1 0 8 6

1 0 1 1 0 0 1 0 0 1 1 1 7 7

1 1 1 0 1 1 0 0 1 0 0 1 7 8

0 1 0 0 1 0 1 1 1 0 1 0 6 9

0 1 1 1 0 0 1 0 0 1 0 0 5 10

1 1 1 0 0 1 0 1 1 0 0 1 7 11

∆
n 9 10 8 5 8 6 7 6 7 5 8 6 85 ∑ ∆
n

n 11 10 9 8 7 6 5 4 3 2 1 0

∑
∆m ∑ ∆m

=

∑ ∆ n
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of the XOR operation between t and each t̂ that produces the respective δ and ∆

values that can be seen in Table 6.3. This table also shows the sums of the two

sequences of ∆, which naturally should be equal. Calculating the mean x̄ can be

achieved by using either ∆m or ∆n for 0 ≤ m,n < N as both yield the same value.

In fact, this is a measure to verify that the results have been both recorded and

processed correctly. Measuring the standard deviation is again a straight forward

process as

σ =

√√√√ 1

m

N−1∑
m=0

(∆m − x̄)2. (6.12)

As the data has been processed to provide a percentage for the results, the standard

deviation is also expressed as a percentage. To reflect the impact this has on the

actual block, a small adjustment must be made to change from a percentage to the

relevant number of bits. We denote this new measurement as στ and calculate it

thus:

στ = (pNσ)× 1

100
. (6.13)

6.3.2 AES Implementation

The AES implementation uses a slightly stripped-down version of the algorithm

that has the password functionality removed so as to better compare the algorithm

with the GNMNT where any influence of the passwords is removed; this is

essential for measuring the raw diffusion characteristics. To fully exploit the main

implementation characteristics of AES, which was designed to run on eight-bit

processors, all of the functions have been replaced with lookup tables. This has

a minimal impact in terms of storage as only eight tables of 256 bytes each are

required to accomplish this implementation: SubBytes, inverse SubBytes, 2n, 3n,

9n, 11n, 13n and 14n. This results in a total of 2,048 bytes of storage in total with

only 16 lookups / round for the SubBytes function and 64 lookups with 48 XOR

operations that combine the ShiftRows and MixColumns functions for each round.

Finally, when simulations were undertaken using the AES algorithm, they ran from

between one and 16 rounds, the total number of elements in the cipher block. This

was so that as well as the common 10, 12 and 14 rounds that are usually applied,

further configurations could be applied and analysed.
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6.3.3 GNMNT Implementation

The configuration for the GNMNT simulations was selected as p = 17 and N = 8,

which provided a block size of 136 bits that was as close as possible to the 128-bit

block size of AES. The same vector that was derived for the AES was used but each

element contained two elements from AES that were concatenated. Assessments

using the GNMNT implementation were initially accomplished using the relevant

straightforward transforms with no further operations applied. These simulations

ran from one to a maximum of eight rounds, the number of elements in the

GNMNT cipher block. In the second set of simulations, the elements were rotated

one place in between each round during the forward encryption phase. During

the inverse decryption phase, the elements were rotated in the opposite direction

in between each round. This rationale for doing this will be explained further in

Section 6.5 where its relevance can be better appreciated.

6.4 Assessing the Default Configuration

The results from each simulation are shown both graphically and statistically.

Whilst it is more common to disseminate such results statistically, the graphical

representation provides significantly more information that otherwise would be

missing in the statistics. The metrics obtained within the statistics include the

minimum, maximum and the range of bits that were affected expressed as a

percentage, the standard deviation σ that was observed to serve as a tolerance, also

as a percentage and the standard deviation στ that was expressed as the affected

number of bits. The average number of bits affected was also the same which,

as expected, was consistent whether observing the diffusion over the vector or

the bit position. The default results demonstrate each process with no additional

interference.
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Figure 6.2: AES Analysis

Table 6.4: AES Metrics - Vector / Bit Position

Rounds
∆m% ∆m bits ∆mn% ∆n bits ∆n%

Min Max Range σ στ x̄ στ σ Range Max Min

1 0.7813 6.2500 5.4688 0.1252 0.1600 3.1447 0.0030 0.0022 0.1745 3.2239 3.0495

2 3.1250 23.4375 20.3125 0.3406 0.4360 12.5521 0.0110 0.0086 0.0219 12.5613 12.5394

3 25.7813 74.2188 48.4375 0.9190 1.1760 50.1963 0.0440 0.0345 0.0293 50.2137 50.1844

4 25.0000 73.4375 48.4375 0.9085 1.1630 49.9995 0.0440 0.0344 0.0216 50.0107 49.9891

5 25.0000 73.4375 48.4375 0.9085 1.1630 49.9996 0.0440 0.0344 0.0248 50.0143 49.9895

6 25.0000 75.0000 50.0000 0.9085 1.1630 50.0002 0.0440 0.0344 0.0237 50.0095 49.9858

7 25.0000 75.7813 50.7813 0.9085 1.1630 50.0005 0.0440 0.0344 0.0240 50.0120 49.9879

8 25.0000 73.4375 48.4375 0.9086 1.1630 50.0006 0.0440 0.0344 0.0244 50.0123 49.9880

9 25.7813 75.0000 49.2188 0.9086 1.1630 49.9998 0.0440 0.0344 0.0206 50.0107 49.9901

10 26.5625 74.2188 47.6563 0.9086 1.1630 50.0004 0.0440 0.0344 0.0254 50.0119 49.9865

11 25.7813 73.4375 47.6563 0.9085 1.1630 50.0002 0.0440 0.0344 0.0197 50.0101 49.9904

12 25.0000 76.5625 51.5625 0.9085 1.1630 49.9996 0.0440 0.0344 0.0242 50.0117 49.9875

13 25.0000 75.0000 50.0000 0.9086 1.1630 49.9999 0.0440 0.0344 0.0226 50.0119 49.9893

14 25.7813 75.0000 49.2188 0.9085 1.1630 49.9996 0.0440 0.0344 0.0274 50.0146 49.9871

15 26.5625 74.2188 47.6563 0.9085 1.1630 49.9999 0.0440 0.0344 0.0208 50.0133 49.9926

16 24.2188 75.0000 50.7813 0.9085 1.1630 50.0006 0.0440 0.0344 0.0196 50.0103 49.9907
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Figure 6.3: NMNT Analysis

Table 6.5: NMNT Metrics - Vector / Bit Position

Rounds
∆m% ∆m bits ∆mn% ∆n bits ∆n%

Min Max Range σ στ x̄ στ σ Range Max Min

1 4.4118 38.9706 34.5588 0.2121 0.2880 10.2982 0.0170 0.0126 2.9737 11.7906 8.8169

2 0.7353 11.7647 11.0294 0.0628 0.0850 0.7353 0.0010 0.0005 0.0000 0.7353 0.7353

3 4.4118 38.9706 34.5588 0.2121 0.2880 10.2982 0.0170 0.0126 2.9737 11.7906 8.8169

4 0.7353 11.7647 11.0294 0.0628 0.0850 0.7353 0.0010 0.0005 0.0000 0.7353 0.7353

5 4.4118 38.9706 34.5588 0.2121 0.2880 10.2982 0.0170 0.0126 2.9737 11.7906 8.8169

6 0.7353 11.7647 11.0294 0.0628 0.0850 0.7353 0.0010 0.0005 0.0000 0.7353 0.7353

7 4.4118 38.9706 34.5588 0.2121 0.2880 10.2982 0.0170 0.0126 2.9737 11.7906 8.8169

8 0.7353 11.7647 11.0294 0.0628 0.0850 0.7353 0.0010 0.0005 0.0000 0.7353 0.7353

6.4.1 Assessing the AES

The results for the AES up to 16 rounds is shown graphically in Figures 6.2(a)

and 6.2(b), which depict the diffusion rate that was obtained using the default

implementation. It can be observed that it took three rounds for AES to settle to

a desirable rate and four rounds to consistently reach the ideal rate. The statistics
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Figure 6.4: ONMNT Analysis

Table 6.6: ONMNT Metrics - Vector / Bit Position

Rounds
∆m% ∆m bits ∆mn% ∆n bits ∆n%

Min Max Range σ στ x̄ στ σ Range Max Min

1 21.3235 54.4118 33.0882 0.6781 0.9220 30.9032 0.2230 0.1642 47.1186 52.9952 5.8766

2 31.6176 72.7941 41.1765 0.8713 1.1850 46.9111 0.1190 0.0877 35.7798 53.3721 17.5924

3 27.9412 72.7941 44.8529 0.7971 1.0840 47.2102 0.0480 0.0354 8.8330 50.6216 41.7886

4 32.3529 72.0588 39.7059 0.9238 1.2560 49.3714 0.0440 0.0327 4.9214 52.2194 47.2980

5 29.4118 75.0000 45.5882 0.8292 1.1280 49.0878 0.0510 0.0376 8.7430 53.7353 44.9923

6 29.4118 73.5294 44.1176 0.8571 1.1660 49.9016 0.0540 0.0395 9.2530 54.7078 45.4548

7 31.6176 75.0000 43.3824 0.8556 1.1640 49.5020 0.0480 0.0349 6.3323 53.2010 46.8686

8 32.3529 76.4706 44.1176 0.8882 1.2080 50.2657 0.0490 0.0360 7.8730 54.0375 46.1644

obtained for this simulation are shown in Table 6.4, which shows the total bits

affected within the vectors tested on the left-hand side of the table and the bit

positions affected within the vectors tested on the right-hand side. However, the

statistics suggest that the best scenario would be at least four rounds to ensure

consistency. It can be observed in Figure 6.2(b) that this would be the ideal

starting point, where the remaining rounds consistently yield results that are both
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Figure 6.5: O2NMNT Analysis

Table 6.7: O2NMNT Metrics - Vector / Bit Position

Rounds
∆m% ∆m bits ∆mn% ∆n bits ∆n%

Min Max Range σ στ x̄ στ σ Range Max Min

1 36.0294 76.4706 40.4412 1.0047 1.3660 51.4521 0.0440 0.0323 0.0153 51.4593 51.4440

2 0.7353 11.7647 11.0294 0.0628 0.0850 0.7353 0.0010 0.0005 0.0000 0.7353 0.7353

3 36.0294 76.4706 40.4412 1.0047 1.3660 51.4521 0.0440 0.0323 0.0153 51.4593 51.4440

4 0.7353 11.7647 11.0294 0.0628 0.0850 0.7353 0.0010 0.0005 0.0000 0.7353 0.7353

5 36.0294 76.4706 40.4412 1.0047 1.3660 51.4521 0.0440 0.0323 0.0153 51.4593 51.4440

6 0.7353 11.7647 11.0294 0.0628 0.0850 0.7353 0.0010 0.0005 0.0000 0.7353 0.7353

7 36.0294 76.4706 40.4412 1.0047 1.3660 51.4521 0.0440 0.0323 0.0153 51.4593 51.4440

8 0.7353 11.7647 11.0294 0.0628 0.0850 0.7353 0.0010 0.0005 0.0000 0.7353 0.7353

close to one another and at the ideal 50% threshold.

6.4.2 Assessing the NMNT

Figures 6.3(a) and 6.3(b) show the results of the NMNT, which unfortunately

have yielded very unfavourable results; In fact findings suggest that in some cases

there was virtually no change. The statistics in Table 6.5 show that every even
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round that has been processed has resulted in an extremely low performance. A

quick calculation on the mean to convert the value from a percentage to bit count

consistently produces a figure of 2.0425 bits on average that have been changed.

Observation of the NMNT processed over the odd rounds shows only a marginal

improvement, with a consistent average of 10.3

6.4.3 Assessing the ONMNT

An initial observation of Figures 6.4(a) and 6.4(b) shows that the ONMNT has

produced very promising results. Although Figure 6.4(a) shows that the first round

is relatively weaker than the rest and Figure 6.4(b) shows that in fact the first

two rounds are potentially the weakest. Removing the first two rounds from these

results produces Figures 6.4(c) and 6.4(d) where the is a marked and significant

improvement. Table 6.6 shows statistically that after overcoming the first two

rounds the transform produces consistently desirable results as can be seen in the

range variation across the bit positions. While it is not as good as the AES

algorithm, it is a significant baseline from which to develop.

6.4.4 Assessing the O2NMNT

On first impressions, the results that are provided by the O2NMNT transform

appear to be ambiguous. While there is a significant improvement in the diffusion of

both the vector total bits and over the bit positions that reach the ideal threshold,

the result is similar to the NMNT where the odd rounds are similar to each other.

Similarly, the even rounds are also similar to each other and, like the NMNT,

exhibit extremely undesirable results. This is confirmed statistically, where all the

odd and even rounds yield identical results. Regardless of the negative aspects

however, we can see both statistically in Table 6.6 and graphically in Figures 6.5(c)

and 6.5(d) that from the very first round, not only has the objective almost been

achieved, but in some areas it yields results that exceed the AES in terms of the

amount of change at peak, the difference in bit range and the reflective smaller bit

tolerance. Moreover, these positive results are reflected across the bit positions,

indicating that the transform produces a strong diffusion factor in respect to the

total number of bits affected and shows a consistent metric across all bit positions.

Aside from the initial weakness, the O2NMNT shows very desirable characteristics
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in its very first round.

6.5 Assessing the Modified Configuration

This section addresses the configurations that were first introduced in the

methodology and builds upon the default results. The AES shows, from four

rounds and beyond, an unfaltering convergence to the desirable characteristics to

confirm its resilience and integrity in the measurement of this metric. However,

while the ShiftRows and MixColumns functions are very linear in construction,

it would make an interesting study to ascertain the amount of influence that the

SubBytes function has with respect to diffusion. This is particularly interesting

as Rijndaels S-Box, which is essentially what the SubBytes function is, can be

reconfigured in many different ways during use; a new irreducible polynomial

can be used as can a different affine transform. Addressing the result of the

GNMNT suggests that an additional operation should be introduced that will have

a minimal impact upon the transforms, yet offer enough influence to address the

poor performance that was observed in successive rounds. The first round of the

O2NMNT was particularly favourable, which suggests that the modification should

therefore be made as an additional process after the first round. As introduced in

the methodology, this additional process is a function that rotates the elements by

one place in between rounds of the forward transform and reverses the direction

during the inverse transform over successive rounds. Whilst there are myriad

ways that these elements can be rotated, shuffled, flipped or mirrored, it would be

appropriate for the change to have as little impact to the structure as possible so

as not to introduce undetectable weaknesses that would be missed through overly

complex processes.

6.5.1 Assessing the NMNT (Shuffled)

The results shown in the newly modified NMNT are marginally better at best.

While the original default transform alternated the results according to whether

or not the current round was an even or odd iteration, the modified version now

repeats every converging round. For example it can be observed in Table 6.8 that

the first round is almost identical to the seventh round, the second round is almost
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Figure 6.6: NMNT Analysis (Shuffled)

Table 6.8: NMNT Metrics - Vector / Bit Position (Shuffled)

Rounds
∆m% ∆m bits ∆mn% ∆n bits ∆n%

Min Max Range σ στ x̄ στ σ Range Max Min

1 4.4118 38.9706 34.5588 0.2121 0.2880 10.2982 0.0170 0.0126 2.9737 11.7906 8.8169

2 0.7353 13.9706 13.2353 0.0567 0.0770 1.8382 0.0110 0.0082 2.2089 2.9442 0.7353

3 2.9412 32.3529 29.4118 0.1627 0.2210 7.3698 0.0160 0.0118 3.0593 8.9365 5.8772

4 1.4706 13.9706 12.5000 0.0956 0.1300 2.9411 0.0030 0.0018 0.0069 2.9442 2.9373

5 2.9412 33.8235 30.8824 0.1627 0.2210 7.3696 0.0160 0.0118 3.0676 8.9425 5.8750

6 0.7353 13.9706 13.2353 0.0567 0.0770 1.8383 0.0110 0.0082 2.2086 2.9438 0.7353

7 4.4118 38.9706 34.5588 0.2121 0.2880 10.2981 0.0170 0.0126 2.9842 11.7976 8.8134

8 0.7353 11.7647 11.0294 0.0628 0.0850 0.7353 0.0010 0.0005 0.0000 0.7353 0.7353

identical to the sixth round, the third with the fifth and the fourth and eight rounds

show certain attributes that are either multiples of two or four in some cases.

6.5.2 Assessing the ONMNT (Shuffled)

Modifying the ONMNT does not appear to have brought any noticeable benefits. It

doesnt appear to have brought any noticeable degradation either as the transform

still demonstrates that a minimum of three rounds are required before the transform

starts producing optimal results. In this respect, adding the shuffle function has

had an overall neutral effect.

6.5.3 Assessing the O2NMNT (Shuffled)

The O2NMNT has probably shown the greatest benefits of applying such a simple

routine. Figure 6.8(a) clearly shows the benefits that have been gained, where the

characteristic that was first observed with the NMNT has now been eradicated.
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Figure 6.7: ONMNT Analysis (Shuffled)

Table 6.9: ONMNT Metrics - Vector / Bit Position (Shuffled)

Rounds
∆m% ∆m bits ∆mn% ∆n bits ∆n%

Min Max Range σ στ x̄ στ σ Range Max Min

1 21.3235 54.4118 33.0882 0.6781 0.9220 30.9032 0.2230 0.1642 47.1186 52.9952 5.8766

2 30.8824 72.0588 41.1765 0.8599 1.1690 47.5942 0.1210 0.0888 35.4079 52.9872 17.5793

3 32.3529 73.5294 41.1765 0.9342 1.2710 49.6727 0.0450 0.0330 4.4809 52.0231 47.5422

4 31.6176 75.0000 43.3824 0.8695 1.1830 50.1399 0.0510 0.0373 8.7159 55.0933 46.3773

5 30.8824 72.7941 41.9118 0.8649 1.1760 49.3147 0.0460 0.0341 6.1181 52.2781 46.1601

6 29.4118 73.5294 44.1176 0.8182 1.1130 49.7799 0.0470 0.0344 6.1096 53.3335 47.2238

7 32.3529 74.2647 41.9118 0.8741 1.1890 49.9703 0.0480 0.0350 6.5114 52.9310 46.4196

8 29.4118 73.5294 44.1176 0.8664 1.1780 49.9853 0.0490 0.0357 8.8204 54.6907 45.8702

However, there is still room for improvement with respect to diffusion across the bit

positions that are shown by their fairly heavy fluctuations as in Figure 6.8(b). The

statistics in Table 6.10 confirm that the first round still offers the best performance

of the GNMNT with noticeable improvement over the remaining seven rounds.

6.5.4 Exhaustive Analysis of the GNMNT

This section covers the scenario where every bit in a 40-bit space GNMNT

configuration using p = 5 and N = 8 is permutated and manipulated as shown

previously in (6.1)-(6.13). The vector space that this configuration spans

(2p − 1)N =
(
25 − 1

)8
= 852, 891, 037, 441 permutations.

(6.14)

In order to undertake an exhaustive analysis, we must also take pN = 40 bits into

consideration as well as the three forward #G and three inverse #G−1 operations,
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Figure 6.8: O2NMNT Analysis (Shuffled)

Table 6.10: O2NMNT Metrics - Vector / Bit Position (Shuffled)

Rounds
∆m% ∆m bits ∆mn% ∆n bits ∆n%

Min Max Range σ στ x̄ στ σ Range Max Min

1 36.0294 76.4706 40.4412 1.0047 1.3660 51.4521 0.0440 0.0323 0.0153 51.4593 51.4440

2 36.7647 75.0000 38.2353 1.0448 1.4210 53.0417 0.0470 0.0344 3.0756 54.4265 51.3509

3 31.6176 75.0000 43.3824 0.9280 1.2620 51.7577 0.0500 0.0367 7.6145 54.1491 46.5346

4 33.0882 73.5294 40.4412 0.9400 1.2780 51.6110 0.0490 0.0357 6.0566 53.4523 47.3958

5 30.8824 73.5294 42.6471 0.8507 1.1570 50.2736 0.0510 0.0374 8.5247 54.2704 45.7457

6 33.8235 73.5294 39.7059 0.9242 1.2570 51.1050 0.0480 0.0350 6.1917 55.8871 49.6954

7 33.0882 74.2647 41.1765 0.9354 1.2720 49.8996 0.0440 0.0326 3.6158 51.3236 47.7077

8 32.3529 74.2647 41.9118 0.8571 1.1660 49.6516 0.0490 0.0360 7.1228 54.0376 46.9148

resulting in

#G
{
pN

[
(2p − 1)N

]}
+#G−1

{
pN

[
(2p − 1)N

]}
= 204, 693, 848, 985, 840 operations.

(6.15)

However, we can mitigate almost half of these operations by reusing the forward

part of the algorithm so that we then have

#G
[
(2p − 1)N

}
+#G−1

{
pN

[
(2p − 1)N

]}
= 104, 905, 597, 605, 243 operations. (6.16)

Unfortunately, developing a test application in C running on a single core of a

fairly recent 3 GHz CPU [145] yields a peak processing performance of 272,586,000

vectors / second. While this appears to be a significant processing metric, when

put into context with the amount of work to be completed, it then means that

the analysis will be completed in approximately 40,343 hours or slightly less than

4.61 years. The performance of this particular CPU is rated at 22.17 GFLOPs and

consumes 65 Watts [146]. Over the projected time period, this CPU would likely
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Figure 6.9: GNMNT Exhuastive Analysis: p = 5, N = 8

Table 6.11: GNMNT Exhuastive Analysis: p = 5, N = 8

G
∆m% ∆m bits ∆mn% ∆n bits ∆n%

Min Max Range σ στ x̄ στ σ Range Max Min

NMNT 15.0000 97.5000 82.5000 1.2298 0.4920 33.8703 0.0720 0.1792 9.6986 38.7218 29.0232

ONMNT 27.5000 85.0000 57.5000 2.0142 0.8060 43.5483 0.1740 0.4358 38.7181 58.0729 19.3548

O2NMNT 35.0000 97.5000 62.5000 2.6331 1.0530 56.1284 0.0880 0.2191 0.0121 56.1350 56.1229

consume approximately 2.62 MWh of power to complete the simulation. Using the

relatively new architecture of GPGPU, we can substantially reduce the processing

time. As graphic cards are developed using parallel techniques inherently, a large

amount of research and development has resulted in this new type of processing

using consumer grade equipment. For this application, an AMD HD7970 graphics

card was used containing 2,048 streams (effective cores); it runs at a clock speed of

1 GHz and is capable of a peak single precision throughput of 4,300 GFLOPs [147],

consuming 218 Watts at full load [148]. From an initial viewpoint and taking into

consideration of the additional processing resources and clock speed, we should

expect to see an increase in performance by a factor of 682 calculated by

Increase Factor =
coresGPU × ClockGPU

coresCPU × ClockCPU
, (6.17)

which should reduce the expected completion time to approximately 59 hours and

6 minutes.

Containing commands such as the fused-multiply-add that can simultaneously

perform a 24-bit multiply and a 32-bit addition using four-element vector variables

in a single clock cycle, the actual time that the HD7970 took to complete the

simulation was a little over 52 hours and 19 minutes. This completion time shows
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Table 6.12: Multiple Configuration Analysis of the GNMNT

N

8 16 32 64 128 256 512 1024 2048 4096 8192

p

5 1, 2, 3 1, 2 1 - - - - - - - -

7 1, 2, 3 1, 2, 3 1, 2, 3 1, 2 1 - - - - - -

13 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2 1

17 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3

19 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3

31 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3
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(c) O2NMNT
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(d) GNMNT - NMNT, ONMNT, O2NMNT

Figure 6.10: GNMNT Vector Analysis with Multiple Configurations

an actual speed increase by a factor of 771. During the course of the simulation

it was anticipated that the GPU had a power consumption of approximately 11.41

kWh, which is 0.49% of the power that the CPU would have required. This

could possibly be further improved upon as the implementation was designed to

process the metrics using atomic operations that naturally introduce bottlenecks

in the processing when memory accesses run into contention. The design of the
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(c) O2NMNT
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(d) GNMNT - NMNT, ONMNT, O2NMNT

Figure 6.11: GNMNT Bit Position Analysis with Multiple Configurations

implementation could be rearranged so that the program minimised the number of

atomic operations. However, this would certainly imply the use of slower memory

in order to cope with the volume of data that would be presented in addition to

the complex data consolidation requirements. However, with the myriad different

ways to approach a problem then obviously more time could be spent searching

for superior solutions than to disseminate the actual results already obtained. The

results of this simulation are depicted in Figures 6.9(a) and 6.9(b). Looking closer

at the statistics that have been produced in Table 6.11, it is interesting to note that

this configuration has produced notably different results: the NMNT has increased

in performance to almost 34%, the ONMNT has dropped in performance to 43.5%

and the O2NMNT has increased to a little over 56%. In fact, there is a very simple

explanation for this profound shift in performance, which is that the configuration

has maximised the transform length in retrospect to the selected Mersenne prime

for which the transform has been configured. As such, there is a stronger pull for
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all transforms to converge to the ideal 50% threshold, although simulating every

possible vector permutation doesnt necessarily indicate this. However, this effect

can be shown by defining similar vectors across different transform parameters.

Using values for p and N that define a more manageable vector range then a more

accurate performance of the GNMNT can be measured. For the final configuration,

a multiple set of configurations is defined and shown in Table 6.12, which refers

to the following transforms: 1 - NMNT, 2 - ONMNT and 3 - O2NMNT. Each

simulation is executed four times using various different vector values that provide

a wide range of values across the entire vector. The results that are obtained

are then combined to produce an average set of results. Using these results,

various plots are produced as shown in Figure group 6.10 that depicts the diffusion

effect across the vectors and 6.11 that depicts the diffusion effect down the bit

positions. The plots show the mean value that was observed and the application

of the standard deviation to show the upper and lower boundaries. It can be

seen in these plots, particularly with values of p = 13 and greater, that as the

length N approaches the maximum length according to p then typically the ideal

characteristics are obtained. This would appear to collaborate the results that

were depicted in Figures 3.10-3.12, 5.21-5.23 and 5.24-5.26 for the 1D, RC and 2D

methods respectively, where it was observed that the longer the transform length

the better the transform appeared to perform.

6.6 Conclusion

This chapter has introduced methodologies to apply existing techniques to the

GNMNT, which have enabled such a diverse and thorough examination of these

transforms and where they have also been compared against the industry standard.

The AES has repeatedly shown that it has extremely robust characteristics with

respect to diffusion, where it manages to obtain peak performance after only four

rounds. The transform from the GNMNT that characteristically better matched

to AES was the O2NMNT, which was able do so in only one round. However, a

number of potential weaknesses were exposed within the GNMNT, including the

O2NMNT that show that it is not a transform that can be used solely for encryption

purposes. Whilst it is able to perform to the ideal specifications, it is not able to do

so consistently without any further intervention. However, the addition of a simple
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function did make a difference to the O2NMNT in such a way that coupled with a

round key generator, it could be possible to derive a fairly crude yet fairly robust

encryption system without too much effort. An exhaustive analysis was undertaken

on the GNMNT using a comparatively conservative configuration. Whilst this

configuration was certainly not enough to withstand the rigor of resources that

are currently available, the availability of a new type of computing was able to

provide an insight into the performance of the GNMNT over all possible vector

permutations that were previously out of reach. Moreover, while the configuration

used was different to the simulations that were run against the AES, the results

brought additional insight that suggested the value of further investigation into a

broader configuration range. The final simulation set encompassed a configuration

range that spanned common usable ranges and beyond, where it was shown that

there are significant advantages to configure p so that the longest value of N can

be used. Finally, this study has shown that while there may initially be negative

results using particular transforms and configurations, they should not be dismissed

without exploring the potential to change to more suitable configurations and

applying additional functionality.
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Chapter 7

Conclusion and Future Work

It can be seen that the rate of progress with respect to both the development and

defeat of methodologies is perpetual and fuelled by theoretical and technological

advances. The development of security algorithms was presented in Chapter 2

where it was shown that provided with enough impetus, the amounts of resources

that organisations/hackers are prepared to invest to address/defeat security issues

could potentially be limitless. Technological advances will also mean that hardware

becomes very cheap very quickly and also more reusable.

Newly developed transforms have been implemented and applied as part of an

encryption algorithm, where both random keys and similar keys were used to see

how effective the raw algorithm was. Unwanted effects manifested from the NMNT

and ONMNT algorithms using similar keys that differed by a single bit and proofs

were provided to validate the implementation. Initial results suggested that there

was particular interest with the O2NMNT transform as it appeared to resist the

similar key attack very well.

The GNMNT has also been fully realised as fast algorithms for one-dimensional

applications. Complexity analysis has shown that there are substantial improvements

to be gained, especially in consideration of other architectures that possess emerging

instructions and techniques to merge operations into a single command and employ

parallelism through vector operations. However, depending on the size of the work

required, particularly the length when relating to fast algorithms for transforms,

it may prove more fortuitous to revert back to direct methods when considering

parallel techniques.

The development of separable algorithms for the row-column approach of the
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newly developed GNMNT has empowered this suite by not requiring fully developed

two-dimensional algorithms. Implementations were verified using the Sobel filter

on a number of images before conducting encryption assessments using RC and

2D techniques. Results appeared to lean towards caution upon application of the

similar key attack. However, it is well known that encryption systems employ many

rounds and techniques and in particular, non-linear operations.

The GNMNT algorithms were implemented using parallel techniques on a

consumer based graphics card. In doing so, simulations that were previously out of

reach in terms of years were accomplished in hours. The focus on security continues

to grow, especially with the development of new architectures and advances in

cryptanalysis.

The incorporation of GPGPU computing in this research facilitated the in-depth

analysis of the SAC, which has been performed and assessed alongside the algorithm

used in the AES. The O2NMNT was shown to yield comparable results to the AES

and suggests that there is potential scope to use it within an encryption system.

While the exhaustive analysis of the diffusion aspects for the NMNT and in part

the ONMNT are perhaps not as good as expected, consideration must be taken

into account where these results were obtained without any confusion techniques.

Moreover, obtaining an initial assessment into how well the GNMNT performs

within RC and 2D applications, it is clear to see that such an encryption system

would benefit from non-linear operations and shuffling, as well as multiple rounds.

Future Work

The development and subsequent assessment of the GNMNT has demonstrated

that there is sufficient scope to develop the algorithm further. Areas where this

could be feasible and advantageous are:

• further research into the GNMNT for development of new techniques

and algorithms that are based upon one- or two-dimensions; examples of

using two-dimensional techniques have demonstrated the circular convolution

properties of these new transforms, making these transforms accessible to

other disciplines such as image-, video- and signal-processing to name but a

few
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• develop a method of encryption that can incorporate additional functionality;

it has previously been demonstrated the strengths of the GNMNT in

convolutions, therefore it may well be that an encryption system that would

envelop additional convolution-based functionality should also be feasible

• development of adaptable and configurable S-Boxes for encryption systems

based upon the GNMNT that are comparable to the S-Boxes used with

AES so as to i) add additional and reconfigurable security and ii) derive a

secure methodology that can addresses the potential weaknesses that were

discovered in Chapter 6

• research new techniques for medical applications to piece and process images

from different sources; the advent of mobile technology has fuelled the desire

to incorporate many different types of sensors that can measure all sorts of

attributes including pulse, heat and humidity and piece together an analysis

to how healthy the user may be - such techniques could well be applicable to

other sensors and disciplines that may have medical benefits.
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Appendix A

Radix-2 GNMNT Algorithms

Listing A.1: Beta Generation

// Generate beta1 and beta2 for transforms

void betaGen(unsigned long long ∗B1, unsigned long long ∗B2,

unsigned long long ∗C1, unsigned long long ∗C2,

unsigned long long ∗E1, unsigned long long ∗E2,

unsigned int p, unsigned int log2N)

{

unsigned long long d, ∗A1, ∗A2;

long long a1, a2, t1, t2;

A1 = (unsigned long long∗)malloc(sizeof(unsigned long long) ∗ fN);

A2 = (unsigned long long∗)malloc(sizeof(unsigned long long) ∗ fN);

a1 = 2;

a2 = 3;

d = p − log2N − 1;

if (d == 0)

d = 1;

for(loop = 0; loop < (p − 2); loop++)

{

a1 = mods(a1 ∗ a1, p);

a2 = mods(a2 ∗ a2, p);
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}

for(loop = 0; loop < d; loop++)

{

t1 = mods((a1 ∗ a1) − (a2 ∗ a2), p);

t2 = mods(2 ∗ a1 ∗ a2, p);

a1 = t1;

a2 = t2;

}

A1[0] = 1;

A2[0] = 0;

for(loop = 0; loop < fNmm; loop++)

{

A1[loop + 1] = mods((a1 ∗ A1[loop]) − (a2 ∗ A2[loop]), p);

A2[loop + 1] = mods((a1 ∗ A2[loop]) + (a2 ∗ A1[loop]), p);

}

for(loop = 0; loop < N; loop++)

{

B1[loop] = A1[loop << 2];

B2[loop] = A2[loop << 2];

C1[loop] = A1[loop << 1];

C2[loop] = A2[loop << 1];

E1[loop] = A1[(loop << 1) + 1];

E2[loop] = A2[(loop << 1) + 1];

}

free (A2);

free (A1);

}
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Listing A.2: Bit Reversal

// Perform Bit Reverse Order to a vector

// Derived from: http://graphics.stanford.edu/˜seander/bithacks.html#ReverseParallel

void bitrevorder(unsigned long long ∗vec, unsigned char log2N)

{

unsigned long long newpos, temp;

for(loop = 0; loop < log2N; loop ++)

{

newpos = loop;

newpos = ((newpos >> 1) & 0x55555555) | ((newpos & 0x55555555) << 1);

newpos = ((newpos >> 2) & 0x33333333) | ((newpos & 0x33333333) << 2);

newpos = ((newpos >> 4) & 0x0F0F0F0F) | ((newpos & 0x0F0F0F0F) << 4);

newpos = ((newpos >> 8) & 0x00FF00FF) | ((newpos & 0x00FF00FF) << 8);

newpos >>= (16 − log2N);

if (loop < newpos)

{

temp = vec[loop];

vec[loop] = vec[newpos];

vec[newpos] = temp;

}

}

}
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Listing A.3: Radix-2 NMNT (DIT)

// Forward and Inverse Radix−2 NMNT (DIT)

void nmnt(unsigned long long ∗oldvec, unsigned long long ∗vec,

unsigned long long ∗b1, unsigned long long ∗b2,

unsigned long long inverse)

{

unsigned int i , j , k, n, io2 , ts , tmask, line1 , line2 , betaz, offset ;

unsigned int log2N, p;

long long t1, t2;

i = 2;

io2 = 1;

ts = N >> 1;

tmask = ts − 1;

for(n = 0; n < N; n++)

vec[n] = oldvec[n];

bitrevorder(vec, log2N);

for(j = 1; j <= log2N; j++)

{

for(k = 0; k < (ts & tmask); k++)

{

line1 = (1 << (j − 1)) + (k << j) + 1;

line2 = (1 << j) + (k << j) − 1;

offset = (((N >> (ts >> 1)) ∗ (k + 1)) − 1);

offset = ((k + 1) << (log2N − (ts >> 1))) − 1;

for(n = 0; n < ((1 << (j − 2))); n++)

{

betaz = n << (ts >> 1);

t1 = mods((vec[line1] ∗ b1[betaz]) + (vec[line2 ] ∗ b2[betaz]) , p);

t2 = mods((vec[line1] ∗ b2[betaz]) − (vec[line2 ] ∗ b1[betaz]) , p);

vec[ line1 ] = t1;

vec[ line2 ] = t2;

line1++;
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line2 = offset − n;

}

}

for(k = 0; k < N; k += i)

for(n = 0; n < io2; n++)

{

t1 = vec[k + n];

t2 = vec[k + n + io2];

vec[k + n] = mods(t1 + t2, p);

vec[k + n + io2] = mods(t1 − t2, p);

}

io2 = i;

i <<= 1;

ts >>= 1;

}

for(j = 0; j < N; j++)

vec[ j ] = mods(vec[j] ∗ inverse , p);

}
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Listing A.4: Radix-2 ONMNT (DIT)

// Forward Radix−2 ONMNT (DIT)

void onmnt(unsigned long long ∗oldvec, unsigned long long ∗vec,

unsigned long long ∗b1, unsigned long long ∗b2)

{

unsigned int i , j , k, n, io2 , ts , tmask, line1 , line2 , betaz, step;

unsigned int log2N, p;

long long t1, t2;

i = 2;

io2 = 1;

ts = N >> 1;

tmask = ts − 1;

betaz = N >> 1;

line1 = 0;

line2 = 1;

for(n = 0; n < N; n++)

vec[n] = oldvec[n];

bitrevorder(vec, log2N);

for(j = 0; j < log2N; j++)

{

for(k = j; k < 1; k++)

for(n = 1; n < N; n += 2)

vec[n] = mods(vec[n] ∗ b2[betaz], p);

for(k = 0; k < (ts & tmask); k++)

{

line1 = (1 << j) + (k << (j + 1));

line2 = line1 + (1 << j) − 1;

step = N >> j;

betaz = step >> 1;

for(n = 0; n < (unsigned int)(1 << (j − 1)); n++)

{

t1 = mods((vec[line1] ∗ b1[betaz]) + (vec[line2 ] ∗ b2[betaz]) , p);
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t2 = mods((vec[line1] ∗ b2[betaz]) − (vec[line2 ] ∗ b1[betaz]) , p);

vec[ line1++] = t1;

vec[ line2−−] = t2;

betaz += step;

}

}

for(k = 0; k < N; k += i)

for(n = 0; n < io2; n++)

{

t1 = vec[k + n];

t2 = vec[k + n + io2];

vec[k + n] = mods(t1 + t2, p);

vec[k + n + io2] = mods(t1 − t2, p);

}

io2 = i;

i <<= 1;

ts >>= 1;

}

}
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Listing A.5: Radix-2 ONMNT (DIF)

// Inverse Radix−2 ONMNT (DIF)

void ionmnt(unsigned long long ∗oldvec, unsigned long long ∗vec,

unsigned long long ∗b1, unsigned long long ∗b2)

{

unsigned int i , j , k, n, io2 , ts , tmask, line1 , line2 , betaz, step;

unsigned int log2N, p;

long long t1, t2;

i = N;

io2 = i >> 1;

ts = 1;

tmask = (N >> 1) − 1;

line1 = 0;

line2 = 1;

for(n = 0; n < N; n++)

vec[n] = oldvec[n];

for(j = log2N; j > 0; j−−)

{

for(k = 0; k < N; k += i)

for(n = 0; n < io2; n++)

{

t1 = vec[k + n];

t2 = vec[k + n + io2];

vec[k + n] = mods(t1 + t2, p);

vec[k + n + io2] = mods(t1 − t2, p);

}

for(k = 0; k < (ts & tmask); k++)

{

line1 = (1 << (j − 1)) + (k << j);

line2 = line1 + (1 << (j − 1)) − 1;

step = N >> (j − 1);

betaz = step >> 1;

for(n = 0; n < (unsigned int)(1 << (j − 2)); n++)
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{

t1 = mods((vec[line1] ∗ b1[betaz]) + (vec[line2 ] ∗ b2[betaz]) , p);

t2 = mods((vec[line1] ∗ b2[betaz]) − (vec[line2 ] ∗ b1[betaz]) , p);

vec[ line1++] = t1;

vec[ line2−−] = t2;

betaz += step;

}

}

for(k = j; k < 2; k++)

{

betaz = N >> 1;

for(n = 1; n < N; n += 2)

vec[n] = mods(vec[n] ∗ b2[betaz], p);

}

i = io2;

io2 >>= 1;

ts <<= 1;

}

for(j = 0; j < N; j++)

vec[ j ] = mods(vec[j] ∗ sn, p);

bitrevorder(vec, log2N);

}
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Listing A.6: Radix-2 O2NMNT (DIT)

// Forward and Inverse Radix−2 O2NMNT (DIT)

void o2nmnt(unsigned long long ∗oldvec, unsigned long long ∗vec,

unsigned long long ∗b1, unsigned long long ∗b2,

unsigned long long ∗e1, unsigned long long ∗e2,

unsigned long long inverse)

{

unsigned int i , j , k, n, io2 , ts , tmask, line1 , line2 , betaz, step;

unsigned int log2N, p;

long long t1, t2;

i = 2;

io2 = 1;

ts = N >> 1;

tmask = ts − 1;

betaz = N >> 1;

line1 = 0;

line2 = 1;

for(n = 0; n < N; n++)

vec[n] = oldvec[n];

bitrevorder(vec, log2N);

for(j = 1; j <= log2N; j++)

{

for(k = j; k < 2; k++)

for(n = 1; n < N; n += 2)

{

vec[n] = mods(vec[n] ∗ b2[betaz], p);

}

for(k = 0; k < (ts & tmask); k++)

{

line1 = (1 << (j − 1)) + (k << j);

line2 = line1 + (1 << (j − 1)) − 1;

step = N >> (j − 1);
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betaz = step >> 1;

for(n = 0; n < ((1 << (j − 2))); n++)

{

t1 = mods((vec[line1] ∗ b1[betaz]) + (vec[line2 ] ∗ b2[betaz]) , p);

t2 = mods((vec[line1] ∗ b2[betaz]) − (vec[line2 ] ∗ b1[betaz]) , p);

vec[ line1 ] = t1;

vec[ line2 ] = t2;

line1++;

line2−−;

betaz += step;

}

}

for(k = 0; k < N; k += i)

for(n = 0; n < io2; n++)

{

t1 = vec[k + n];

t2 = vec[k + n + io2];

vec[k + n] = mods(t1 + t2, p);

vec[k + n + io2] = mods(t1 − t2, p);

}

io2 = i;

i <<= 1;

ts >>= 1;

}

line1 = 0;

line2 = N − 1;

for(n = 0; n < (N >> 1); n++)

{

t1 = mods((vec[line1] ∗ e1[ line1 ]) + (vec[line2 ] ∗ e2[ line1 ]) , p);

t2 = mods((vec[line2] ∗ e1[ line2 ]) + (vec[line1 ] ∗ e2[ line2 ]) , p);

vec[ line1 ] = t1;

vec[ line2 ] = t2;

line1++;

line2−−;

}
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for(j = 0; j < N; j++)

vec[ j ] = mods(vec[j] ∗ inverse , p);

}
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Appendix B

Parallel GNMNT Algorithms

Listing B.1: OpenCL GPGPU Code for Exhaustive GNMNT Assessment

#pragma OPENCL EXTENSION cl khr local int32 base atomics : enable

#define LOCK(a) atom cmpxchg(a, 0, 1)

#define UNLOCK(a) atom xchg(a, 0)

#define DATA SIZE 144

#define STORE DATA SIZE ∗ 6

#define MP 31

#define BITS 5

#define SCALE 4

#define b18x50 1

#define b18x51 27

#define b18x52 0

#define b18x53 4

#define b28x50 0

#define b28x51 4

#define b28x52 30

#define b28x53 4

#define b1O8x50 1

#define b1O8x51 18

#define b1O8x52 27

#define b1O8x53 24
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#define b2O8x50 0

#define b2O8x51 7

#define b2O8x52 4

#define b2O8x53 13

#define b1OS8x50 5

#define b1OS8x51 20

#define b1OS8x52 2

#define b1OS8x53 21

#define b2OS8x50 10

#define b2OS8x51 29

#define b2OS8x52 11

#define b2OS8x53 26

uint mod1(uint input)

{

private uint output;

output = input & MP;

output = (output != MP) ? output : 0;

output += ((input >> BITS) & MP);

return((output + ((output < MP) ? 0: 1)) & MP);

}

uint2 mod2(uint2 input)

{

private uint2 output;

output = input & MP;

output = (output != MP) ? output : 0;

output += ((input >> BITS) & MP);

return ((output + ((output < MP) ? (uint)0 : (uint)1)) & MP);

}

uint3 mod3(uint3 input)

{
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return (uint3)(mod2(input.s01), mod1(input.s2));

}

uint4 mod4(uint4 input)

{

return (uint4)(mod2(input.s01), mod2(input.s23));

}

uint8 mod8(uint8 input)

{

return (uint8)(mod2(input.s01), mod2(input.s23), mod2(input.s45), mod2(input.s67));

}

uint8 nmnt(uint8 stage)

{

private uint4 temp;

private uint2 temp2;

stage = stage.s04261537;

// Stage 1

temp = stage.s1357;

stage.s1357 = mod4(((uint4)stage.s0246 + (uint4)MP − (uint4)temp));

stage.s0246 = mod4(((uint4)stage.s0246 + (uint4)temp));

// Stage 2a

temp2 = mod2(mul24((uint2)stage.s37, (uint2)(MP − b18x52, MP − b18x52)));

stage.s37 = mod2(mad24((uint2)stage.s37, (uint2)(b28x52), (uint2)temp2));

// Stage 2b

temp = (uint4)stage.s2367;

stage.s2367 = mod4(((uint4)stage.s0145 + (uint4)MP − (uint4)temp));

stage.s0145 = mod4(((uint4)stage.s0145 + (uint4)temp));

// Stage 3a

stage.s567 = mod3(mad24((uint3)stage.s765, (uint3)(b28x51, b28x52, b28x53), \

mod3(mul24((uint3)stage.s567, \

(uint3)(b18x51, MP − b18x52, b18x53)))));

// Stage 3b

temp = (uint4)stage.s4567;
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stage.s4567 = mod4(((uint4)stage.s0123 + (uint4)MP − (uint4)temp));

stage.s0123 = mod4(((uint4)stage.s0123 + (uint4)temp));

return stage;

}

uint8 inmnt(uint8 stage)

{

stage = nmnt(stage);

stage = mod8((stage ∗ (uint8)(SCALE)));

return stage;

}

uint8 onmnt(uint8 stage)

{

private uint4 temp;

// ONMNT (DIT)

// Bit Reverse

stage = stage.s04261537;

// Stage 1a

stage.s1357 = mod4(mul24(stage.s1357, (uint4)(30)));

// Stage 1b

temp = stage.s1357;

stage.s1357 = mod4((stage.s0246 − temp + MP));

stage.s0246 = mod4((stage.s0246 + temp));

// Stage 2a

temp = mod4(mul24(stage.s2367, (uint4)(b1O8x52, MP − b1O8x52, \

b1O8x52, MP − b1O8x52)));

stage.s2367 = mod4(mad24( stage.s3276, (uint4)(b2O8x52), temp));

// Stage 2b

temp = stage.s2367;

stage.s2367 = mod4((stage.s0145 − temp + MP));

stage.s0145 = mod4((stage.s0145 + temp));

// Stage 3a

temp = mod4(mul24(stage.s4567, (uint4)(b1O8x51, b1O8x53, MP − b1O8x53, \

MP − b1O8x51)));
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stage.s4567 = mod4(mad24(stage.s7654, \

(uint4)(b2O8x51, b2O8x53, b2O8x53, b2O8x51), temp));

// Stage 3b

temp = stage.s4567;

stage.s4567 = mod4((stage.s0123 − temp + MP));

stage.s0123 = mod4((stage.s0123 + temp));

return stage;

}

uint8 ionmnt(uint8 stage)

{

private uint4 temp;

// iONMNT (DIF)

// Stage 3b

temp = stage.s4567;

stage.s4567 = mod4((stage.s0123 − temp + MP));

stage.s0123 = mod4((stage.s0123 + temp));

// Stage 3a

temp = mod4(mul24(stage.s4567, (uint4)(b1O8x51, b1O8x53, \

MP − b1O8x53, MP − b1O8x51)));

stage.s4567 = mod4(mad24(stage.s7654, \

(uint4)(b2O8x51, b2O8x53, b2O8x53, b2O8x51), temp));

// Stage 2b

temp = stage.s2367;

stage.s2367 = mod4((stage.s0145 − temp + MP));

stage.s0145 = mod4((stage.s0145 + temp));

// Stage 2a

temp = mod4(mul24(stage.s2367, (uint4)(b1O8x52, MP − b1O8x52, \

b1O8x52, MP − b1O8x52)));

stage.s2367 = mod4(mad24(stage.s3276, (uint4)(b2O8x52), temp));

// Stage 1b

temp = stage.s1357;

stage.s1357 = mod4((stage.s0246 − temp + MP));

stage.s0246 = mod4((stage.s0246 + temp));

// Stage 1a
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stage.s1357 = mod4(mul24(stage.s1357, (uint4)(30)));

// Bit Reverse

stage = stage.s04261537;

// Scale

stage = mod8((stage ∗ (uint8)(SCALE)));

return stage;

}

uint8 osnmnt(uint8 stage)

{

private uint4 temp, tempa, tempb;

// OSNMNT

// Bit Reverse

stage = stage.s04261537;

// Stage 1a

stage.s1357 = mod4(mul24(stage.s1357, (uint4)(30)));

// Stage 1b

temp = stage.s1357;

stage.s1357 = mod4((stage.s0246 − temp + MP));

stage.s0246 = mod4((stage.s0246 + temp));

// Stage 2a

temp = mod4(mul24(stage.s2367, (uint4)(b1O8x52, MP − b1O8x52, \

b1O8x52, MP − b1O8x52)));

stage.s2367 = mod4(mad24(stage.s3276, (uint4)(b2O8x52), temp));

// Stage 2b

temp = stage.s2367;

stage.s2367 = mod4((stage.s0145 − temp + MP));

stage.s0145 = mod4((stage.s0145 + temp));

// Stage 3a

temp = mod4(mul24(stage.s4567, (uint4)(b1O8x51, b1O8x53, \

MP − b1O8x53, MP − b1O8x51)));

stage.s4567 = mod4(mad24(stage.s7654, (uint4)(b2O8x51, b2O8x53, \

b2O8x53, b2O8x51), temp));

// Stage 3b

temp = stage.s4567;
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stage.s4567 = mod4((stage.s0123 − temp + MP));

stage.s0123 = mod4((stage.s0123 + temp));

// Convert ONMNT to OSNMNT

temp = stage.s7654;

tempa = mod4(mul24(stage.s0123, (uint4)(b1OS8x50, b1OS8x51, \

b1OS8x52, b1OS8x53)));

tempb = mod4(mul24(stage.s7654, (uint4)(MP − b1OS8x50, MP − b1OS8x51, \

MP − b1OS8x52, MP − b1OS8x53)));

stage.s7654 = mod4(mad24(stage.s0123, (uint4)(b2OS8x50, b2OS8x51, \

b2OS8x52, b2OS8x53), tempb));

stage.s0123 = mod4(mad24(temp, (uint4)(b2OS8x50, b2OS8x51, \

b2OS8x52, b2OS8x53), tempa));

return stage;

}

uint8 iosnmnt(uint8 stage)

{

stage = osnmnt(stage);

stage = mod8((stage ∗ (uint8)(SCALE)));

return stage;

}

void latInc( local uint ∗source, uint data)

{

if (data & 16 == 16)

atomic inc(source);

if (data & 8 == 8)

atomic inc(source + 1);

if (data & 4 == 4)

atomic inc(source + 2);

if (data & 2 == 2)

atomic inc(source + 3);

if (data & 1 == 1)

atomic inc(source + 4);

}
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void atomicStat( local uint ∗source, uint8 data, uint8 diffAbs, uint data2)

{

atomic add(source, data.s0);

atomic add(source + 1, data.s1);

atomic add(source + 2, data.s2);

atomic add(source + 3, data.s3);

atomic add(source + 4, data.s4);

atomic add(source + 5, data.s5);

atomic add(source + 6, data.s6);

atomic add(source + 7, data.s7);

atomic inc(source + 8 + data.s0);

atomic inc(source + 14 + data.s1);

atomic inc(source + 20 + data.s2);

atomic inc(source + 26 + data.s3);

atomic inc(source + 32 + data.s4);

atomic inc(source + 38 + data.s5);

atomic inc(source + 44 + data.s6);

atomic inc(source + 50 + data.s7);

atomic inc(source + 56 + data2);

latInc(source + 97, diffAbs.s0) ;

latInc(source + 102, diffAbs.s1) ;

latInc(source + 107, diffAbs.s2) ;

latInc(source + 112, diffAbs.s3) ;

latInc(source + 117, diffAbs.s4) ;

latInc(source + 122, diffAbs.s5) ;

latInc(source + 127, diffAbs.s6) ;

latInc(source + 132, diffAbs.s7) ;

}

kernel void gnmntAvN8p5( constant uint ∗inVec,

global uint ∗outBuffer,

local uint ∗dataStore,

local uint ∗eVal,
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local uint ∗bitVal)

{

private uint8 in , stage, domain, diffAbs, diff ;

private uint lid = get local id (0) ;

private uint gid = get group id(0);

private uint gbl = get global id(0) ;

private uint y;

private uint transform; // 0 − NMNT, 1 − ONMNT, 2 − OSNMNT

private uint e0, e1;

private uchar ill ;

private uchar length;

private uchar doInv;

if ( lid == 0) // Setup Local Variables

{

for(y = 0; y < STORE; y++)

dataStore[y] = 0;

for(y = 0; y < 40; y++)

{

eVal[y] = y / 5;

bitVal[y] = 1 << (4 − (y % 5));

}

}

if ((gid < 744) || ( lid < 31))

{

barrier (CLK LOCAL MEM FENCE);

doInv = 0;

in = vload8(0, inVec);
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// Translate vector course

// range 0 to 961 or 10 bits worth

in .s2 = mod1(gbl);

gbl = (gbl − in.s2) / MP;

in .s3 = mod1(gbl);

gbl = (gbl − in.s3) / MP;

in .s4 = mod1(gbl);

e1 = 0;

while(e1 < 31)

{

// Translate vector medium

in .s1 = e1;

e0 = 0;

while(e0 < 31)

{

// Translate vector fine

in .s0 = e0;

transform = 3;

while(transform > 0)

{

transform−−;

stage = in;

switch((transform << 1) | doInv)

{

case 0:

// NMNT

stage = nmnt(stage);

break;

case 1:

// iNMNT

stage = inmnt(stage);

break;
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case 2:

// ONMNT (DIT)

stage = onmnt(stage);

break;

case 3:

// iONMNT (DIF)

stage = ionmnt(stage);

break;

case 4:

// OSNMNT

stage = osnmnt(stage);

break;

case 5:

// iOSNMNT

stage = iosnmnt(stage);

break;

default :

break;

}

domain = stage;

length = 40;

while(length > 0)

{

length−−;

stage = domain;

switch(eVal[length])

{

case 7:

stage.s0 ˆ= bitVal[length ];

ill = 1 − (stage.s0 != MP);

break;

case 6:

stage.s1 ˆ= bitVal[length ];

ill = 1 − (stage.s1 != MP);

break;
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case 5:

stage.s2 ˆ= bitVal[length ];

ill = 1 − (stage.s2 != MP);

break;

case 4:

stage.s3 ˆ= bitVal[length ];

ill = 1 − (stage.s3 != MP);

break;

case 3:

stage.s4 ˆ= bitVal[length ];

ill = 1 − (stage.s4 != MP);

break;

case 2:

stage.s5 ˆ= bitVal[length ];

ill = 1 − (stage.s5 != MP);

break;

case 1:

stage.s6 ˆ= bitVal[length ];

ill = 1 − (stage.s6 != MP);

break;

case 0:

stage.s7 ˆ= bitVal[length ];

ill = 1 − (stage.s7 != MP);

break;

default :

break;

}

switch((transform << 1) | doInv)

{

case 0:

// iNMNT

stage = inmnt(stage);

break;

case 1:

// NMNT
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stage = nmnt(stage);

break;

case 2:

// iONMNT (DIF)

stage = ionmnt(stage);

break;

case 3:

// ONMNT (DIT)

stage = onmnt(stage);

break;

case 4:

// iOSNMNT

stage = iosnmnt(stage);

break;

case 5:

// OSNMNT

stage = osnmnt(stage);

break;

default :

break;

}

diffAbs = stage ˆ in ;

diff = popcount(diffAbs);

atomicStat(&dataStore[(((transform << 1) | ill) ∗ \

DATA SIZE)], diff, diffAbs, diff .s0 + diff .s1 + \

diff .s2 + diff .s3 + diff .s4 + \

diff .s5 + diff .s6 + diff .s7) ;

}

}

e0++;

}

e1++;

}

}
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B. PARALLEL GNMNT ALGORITHMS

barrier (CLK LOCAL MEM FENCE);

if ( lid == 0)

{

gid ∗= STORE;

for(y = 0; y < STORE; y++)

outBuffer[gid + y] = dataStore[y];

}

}
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