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Abstract 

Due to their reliability and low cost, induction machines have been widely utilized in a large 

variety of industrial applications. Although these machines are rugged and reliable, they are 

subjected to various stresses that might result in some unavoidable parameter changes and 

modes of failures. A common practice in induction machine parameter identification and fault 

diagnosis techniques is to employ a machine model and use the external measurements of 

voltage, current, speed, and/or torque in model solution. With this approach, it might be possible 

to get an infinite number of mathematical solutions representing the machine parameters, 

depending on the employed machine model. It is therefore crucial to investigate such possibility 

of obtaining incorrect parameter sets, i.e. to test the identifiability of the model before being 

used for parameter identification and fault diagnosis purposes. This project focuses on the 

identifiability of induction machine models and their use in parameter identification and fault 

diagnosis. 

Two commonly used steady-states induction machine models namely T-model and inverse Γ-

model have been considered in this thesis. The classical transfer function and bond graph 

identifiability analysis approaches, which have been previously employed for the T-model, are 

applied in this thesis to investigate the identifiability of the inverse Γ-model. A novel algorithm, 

the Alternating Conditional Expectation, is employed here for the first time to study the 

identifiability of both the T- and inverse Γ-models of the induction machine. The results 

obtained from the proposed algorithm show that the parameters of the commonly utilised T-

model are non-identifiable while those of the inverse Γ-model are uniquely identifiable when 

using external measurements. The identifiability analysis results are experimentally verified by 

the particle swarm optimization and Levenberg-Marquardt model-based parameter 

identification approaches developed in this thesis. 

To overcome the non-identifiability problem of the T-model, a new technique for induction 

machine parameter estimation from external measurements based on a combination of the 

induction machine’s T- and inverse Γ-models is proposed. Results for both supply-fed and 

inverter-fed operations show the success of the technique in identifying the parameters of the 

machine using only readily available measurements of steady-state machine current, voltage 

and speed, without the need for extra hardware. 



  

ii 

 

A diagnosis scheme to detect stator winding faults in induction machines is also proposed in 

this thesis. The scheme uses time domain features derived from 3-phase stator currents in 

conjunction with particle swarm optimization algorithm to check characteristic parameters of 

the machine and detect the fault accordingly. The validity and effectiveness of the proposed 

technique has been evaluated for different common faults including interturn short-circuit, 

stator winding asymmetry (increased resistance in one or more stator phases) and combined 

faults, i.e. a mixture of stator winding asymmetry and interturn short-circuit. Results show the 

accuracy of the proposed technique and it is ability to detect the presence of the fault and 

provide information about its type and location. 

Extensive simulations using Matlab/SIMULINK and experimental tests have been carried out 

to verify the identifiability analysis and show the effectiveness of the proposed parameter 

identification and fault diagnoses schemes. The constructed test rig includes a 1.1 kW three-

phase test induction machine coupled to a dynamometer loading unit and driven by a variable 

frequency inverter that allows operation at different speeds. All the experiment analyses 

provided in the thesis are based on terminal voltages, stator currents and rotor speed that are 

usually measured and used in machine control. 
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CHAPTER 1  

Introduction 

1.1 Motivations 

Due to their simple structure, low cost and high performance, induction machines (IMs) have 

been intensively utilized and they are considered as the “workhorse” in many industrial and 

automation applications [1]. These machines can be supplied from constant-frequency 

sinusoidal power supplies (supply-fed) or from adjustable-frequency ac drives (inverter-fed). 

Although IMs are rugged and reliable, they are subjected to various stresses that might lead to 

some unavoidable modes of failures/faults, especially when supplied by ac drives where the 

winding insulation experiences higher stresses due to the voltages with high harmonic contents 

[2]. Due to the critical integration of IMs in a massive number of industrial applications, fault 

diagnoses have a great importance in enhancing the reliability of the machine and consequently 

the industrial process. Accurate identification of IM parameters is required for fault diagnosis 

[3] and is also a prerequisite to many applications such as sensorless control [4] and model 

predictive control [5]. 

A variety of IM parameter identification methods have been proposed [8-11]. Most of these 

methods try to estimate the parameters of an IM model based on external measurements of 

voltage, current, speed and/or torque while the machine is running [6-8]. These model-based 

techniques are relatively easy to implement, do not require any additional hardware circuitry 

and are applicable to different types of machines under different operating conditions. 

When developing a model-based approach for parameter estimation and fault diagnosis of IM, 

it is essential to start with an appropriate and accurate model that sufficiently describes the 

measured data. It is also important to assess how well the actual parameters of the model are 

estimated from the measurements. Any mismatch between the real and estimated model 

parameter values may result in a wrong assessment of the machine performance [6, 9, 10]. 

Therefore, before using a machine model in a parameter estimation technique, it is important to 

test the identifiability of the model to make sure that its parameters are uniquely identifiable. 

Different IM models have been derived to represent the machine’s dynamic and steady-state 

behaviour [11-13]. Some of these models have been used in parameter identification and fault 

diagnosis of the machine [10, 14-16]. However, there still a lot more work needs to be done in 
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this area. This includes a comprehensive study on the identifiability of IM models and choice 

and development of models suitable for parameter identification and fault diagnosis. More 

research is also required on the parameter identification and fault diagnosis methods of the IM 

in order to increase the accuracy and reduce the implementation cost of these methods. This 

research is a trial to cover these important topics. For the parameter identification and fault 

diagnosis of induction machines, only model-based techniques that make use of external 

measurements are considered in this study. 

1.2 Induction machine structure and principle 

Induction machines are the most widely used electrical machines due to their simple structure, 

robustness, low cost and reliability [12]. The name of the IMs derived from the fact that the 

torque producing currents in the rotor of the IMs are induced by electromagnetic action. The 

stator windings of the IMs not only produce the magnetic field (the excitation), but also supply 

the energy that is converted to mechanical output. The absence of any sliding mechanical parts, 

like the commutator in the dc machines, and the consequent saving in terms of maintenance is 

a main advantage of the cage IMs.  

The IM is composed of stator, rotor, bearing and frame, as shown in figure 1.1. Depending on 

rotor type, they are divided into two main types; squirrel-cage and wound-rotor IMs. In both 

types, the rotor consists of a stack of laminations, to prevent the eddy currents from flowing in 

the iron, with evenly spaced slots punched around the rotor circumference. In the cage rotor, 

each slot contains a solid conductor bar and all the bars are connected electrically and physically 

by conducting end-rings.  

In wound-rotor (also called slipring) type, the rotor is provided with insulated windings similar 

to the stator. The windings are connected with three outputs brought out to three sliprings. In 

slipring machines, the rotor circuit is open and a connection via brushes on the sliprings can be 

made. Unlike the cage machines; the resistance of each rotor phase is not fixed and can be 

increased by adding external resistance, which can be beneficial in terms of speed control. Even 

though all these advantages, wound-rotor machines are still more expensive than cage machines 

because of the extra cost of the wound rotor and the associated control system, especially for 

low-power machines [17]. Recently, due to the continuous improvements of variable-frequency 

inverter suppliers, cage machines have begun to replace wound-rotor machines and still few 
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wound-rotor machines used only in large sizes [17]. The induction machine used as a test 

machine in the thesis (Figure 1.1) is of the squirrel-cage type. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  The structure of induction motor. 

 

The fundamental principle of the IM is the creation of a sinusoidally distributed rotating 

magnetic field in the air-gap. When a sinusoidal three-phase electrical power supply with a 

frequency f is connected to the stator, the stator currents create a synchronously rotating 

magnetic field in the air-gap of the machine. The rotational speed (߱௘) of the field is directly 

proportional to the supply frequency (f) and inversely proportional to the pole number (P) of 

the winding, and is given by: 
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According to the principles of magnetic induction theory, as long as there is a relative motion 

between a conductor and a magnetic field, induced current will start to flow in the rotor 

conductors and an alternating flux which lags behind the stator flux is introduced.  

The interaction between the axial currents in the rotor conductors and the radial magnetic flux 

waves produces the driving torque of the motor. In order to produce a torque, the rotor speed 
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(߱௥) should be different from the synchronous speed (߱௘). At any speed, the difference between 

the rotor speed ௥ܰ and the synchronous speed ௘ܰ is called the slip speed ( ௦ܰ௟) which induces 

rotor current and develop the torque. The slip s is given by: 
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1.3 Induction machine modelling 

In the literature, many mathematical models have been developed to describe the dynamic and 

steady-state behaviour of IMs [11-13]. Although this thesis considers only steady-state IM 

models, a brief review of the most used dynamic models is also provided in the appendix A for 

information. 

Due to their simplicity and shorter computation time, steady-state models have gained more 

acceptances in many applications including parameter identification [10, 18]  and fault 

diagnosis [14]. One of the most commonly utilized steady-state models is the standard per-

phase induction motor T-equivalent circuit model shown in figure. 1.2. This model includes 

five electrical parameters: ܴ௦, ܴ௥, ݈௟௦, ݈௟௥, and ܮ௠, where ܴ௦ is the stator resistance, ܴ௥ is the 

rotor resistance (referred to the stator), ݈ ௟௦ is the stator leakage inductance, ݈ ௟௥ is the rotor leakage 

inductance (referred to the stator), ܮ௠ is the magnetizing inductance and s is the slip.  
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Figure 1.2  Induction motor T-equivalent circuit. 
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For the T-model shown in figure 1.2, the relationship between the flux linkages (ߖ௦௦,  ௥௦), andߖ	

the winding currents (݅௦௦, ݅௥௦) is given by [12, 18]: 
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The total per phase resistance (ܴ௘௤), reactance (ܺ௘௤), and impedance (ܼ௘௤) at the stator side are 

given by [6]: 
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A simple change to obtain two mathematically equivalent circuits with only two inductances 

that give the same performance as the T-equivalent circuit have been proposed [12]. As long as 

the input voltage is the same, the two models have the same input impedance and produce the 

same torque as the T-model. The first equivalent circuit is known as the inverse Γ-model and is 

shown in figure 1.3. 

The relationship between the flux linkages (ߖ௦௦, ߖ௥௦ᇱ) and the winding currents (݅௦௦, ݅௥௦ᇱ) of inverse 

Γ-model is given by [12, 18]: 
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Figure 1.3  Induction motor Inverse Γ-equivalent circuit. 
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In this model, the stator resistance is equal to that of the T-model while the other parameters’ 

values are transferred based on the value of the transformation constant α. The relations between 

the parameters of the T-model and the inverse Γ-model are as follow [10, 12, 18]:  
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where α = Lm/Lr, Ls and Lr are the self-inductances of the stator and rotor given by Ls = Lm + lls 

and Lr = Lm + llr , respectively. 

The second equivalent circuit is known as the Γ-model and shown in figure 1.4. The relationship 

between the flux linkages and the winding currents of Γ-model is given by [12, 18]: 
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Figure 1.4  Induction motor Γ-equivalent circuit. 

The stator resistance in this Γ-model is similar to that of the T-model while the other parameters’ 

values are transformed based on α’. The relations between the parameters of the T-model and 

the Γ- model are given by [10, 12, 18]:  
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where α’ = Ls/Lm, Ls and Lr are the self-inductances of the stator and rotor, respectively. 
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1.4 Thesis objectives 

The main objectives of this thesis are: 

- To do a comprehensive study that contributes to the research on identifiability analysis, 

parameter identification, and fault diagnosis of induction machines. 

- To develop techniques to assess model identifiability and apply them on the two 

commonly used steady-state IM models; the T-model and inverse Γ-model. 

- To develop a technique for IM parameter identification. 

- To develop a tool for IM fault diagnosis and detection of IM stator faults. 

- To develop a laboratory test facility to permit the detailed investigation of IM 

identifiability, parameter identification and fault diagnosis. 

- To validate the proposed and considered approaches for IM parameter identification and 

fault diagnosis using the test facility. 

1.5 Assumptions 

A number of assumptions and simplifications have been made throughout the thesis in order to 

reduce the IM model complexity and time of calculations. Due to these simplifications, some 

differences between the measured and simulated data are expected. However, these 

assumptions are in line with previous publications in this area [10, 11, 19]. They can be 

summarised as follows: 

- Only three-phase induction motors at steady-state operating condition are considered. 

- The machine parameters which are most mentioned in this thesis are the electrical 

parameters including the stator and rotor resistances (Rs and Rr), the stator and rotor 

leakage inductances (lls and llr), and the magnetising inductance (Lm). 

- Space magnetomotive force (MMF) and flux profile are considered to be sinusoidally 

distributed and higher order harmonics are negligible. 

- Iron losses, saturation and skin effect were assumed to be negligible. 

- The self- and mutual-inductances between stator and rotor phases are constant. 

Dependency of the leakage inductances on the rotor position, caused be slots, is 

neglected.  
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- For parameter identifications, it is assumed that the three phases are identical and as a 

result only one phase can be used for this purpose. For condition monitoring, the three 

phase measurements are collected and used.  

- All time varying parameters, such as the rotor resistance which may vary due to the 

rotor heating, are assumed to vary so slow that they can be treated as constants during 

the test course. 

- Different cases of supply-fed and inverter-fed operation are investigated and, thus the 

applied voltages (and currents) are not necessary of constant frequency and/or 

amplitude and, therefore different impedances may result. 

1.6 Methodology and outlines 

Due to the wide use of IM steady-state models in many applications including IM parameter 

identification and condition monitoring, two commonly used IM models, the conventional per 

phase equivalent circuit (T-model) and the inverse Γ-model are considered in this thesis. One 

of the most important points when designing an approach for IM parameter identification and 

condition monitoring is to choose the proper IM model and the method that will be used for 

data analysis. To enable a clear understanding of IM identifiability analysis, parameter 

identification, and fault diagnosis, previous research related to these topics is firstly reviewed. 

However, the review showed that the study of identifiability of the IM models and its 

approaches has not been received high attention.  

The parameters of the T-model (the familiar equivalent circuit of the machine) may be identified 

by performing the standard no-load, dc and locked rotor tests as detailed in IEEE Standard 112-

2004. This requires the ratio of stator leakage inductance to rotor leakage inductance (࢘࢒࢒/࢙࢒࢒) to 

be known. When this ratio is unavailable or when the machine in question is in operation and 

it is not possible to carry out the standard tests, an alternative parameter identification approach 

is required. 

One such approach recently proposed in the literature [6, 8, 10], is to try to estimate the 

induction machine parameters based on external measurements at stator terminal while the 

machine is running. Before using a machine model in such a parameter estimation technique, 

however, it is important to test the identifiability of the model to make sure that its parameters 

are uniquely identifiable. As a result, the identifiability of the two aforementioned models (T- 
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and inverse Γ-) is extensively investigated in this thesis using the transfer function, bond graph, 

and Alternating Conditional Expectation (ACE) identifiability test techniques. The obtained 

results from these three techniques are then verified by using the Levenberg-Marquardt (L-M) 

and particle swarm optimization (PSO) parameter estimation algorithms that use the external 

measurements of motor’s voltage, current and speed. 

The research also concerns the way in which the two IM models (T- and inverse Γ-) are 

combined together for the sake of eliminating the T-model redundancy and estimating its 

parameters uniquely from the external measurements of stator current and voltage and rotor 

speed. To close the loop and to show that the proposed integrated model has the ability to 

effectively resolve the identifiability issues of the T-model, its (integrated model) identifiability 

is firstly assessed. This is achieved by testing the structural identifiability of the model using 

the transfer function identifiability test approach. 

A diagnosis scheme to detect stator winding faults in induction machines is also proposed in 

this thesis. According to the review, model-based methods were used in this thesis due to their 

advantages including their simplicity, easy to implement, they are non-intrusive methods, and 

the cost of implementation tends to be low. 

Matlab/Simulink is used to analyze and simulate the induction motor under both healthy and 

faulty conditions. The M-file is then run along with the simulation to apply the proposed 

approaches and find the situation of the machine. All the obtained results are experimentally 

verified using the test rig described in chapter 4.  

In order to achieve the objectives of the thesis and validate the obtained results, the thesis is 

organized as follows. 

Chapter-2 discusses the identifiability concept and provides a detailed theoretical 

background on the identifiability approaches presented in this thesis.  

Chapter-3 presents a literature review on IM parameter identification. It also describes the 

symptoms and mechanism of common electrical/mechanical faults and reviews previous 

research on fault diagnosis of IMs. 

Chapter-4 gives a detailed description of the experimental setup used in the project. Steady-

state experimental measurements of stator voltages and currents for healthy and faulty IM 

are provided to be used in chapters 5-7. The mathematical models of the IM are 
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implemented in Matlab/Simulink program environment. 

In Chapter-5, the identifiability of the T-equivalent circuit and inverse Γ-equivalent circuit 

of the induction motor is investigated in details, using the five approaches provided in 

Chapter 3. The transfer function and bond graph a priori (structural) identifiability analysis 

approaches are utilised. The Alternating Conditional Expectation (ACE) approach is used 

for the first time to assess the identifiability of IM models. Steady-state measurements of 

stator voltage and current and rotor speed of the IM obtained in Chapter 4 are utilized by 

the Levenberg-Marquardt (L-M) and Particle Swarm Optimization (PSO) techniques in 

parameter identification of both IM equivalent circuits.  

Chapter-6 proposes a novel method for IM parameter identification using an integrated 

steady-state model. By analysing the identifiability of T- and inverse Γ-models, a new 

model is suggested to solve the non-identifiability problem of the T-model based on a 

combination of the two models (T- and inverse Γ-). 

Chapter-7 presents a new model-based technique for the detection of stator winding faults 

of IMs. The proposed method is based on the use of the inverse Γ-model in conjunction 

with external measurement of terminal waveforms. 

Chapter-8 includes conclusions of the thesis and recommendations for future work.  

1.7 Contributions and publications 

The research reported in this thesis considers the problem of IM identifiability analysis and 

parameter identification under different operating conditions (healthy and faulty). The 

completion of the thesis objectives is supported by the main contribution of the project that can 

be summarized as follows:  

- A novel identifiability analysis approach is proposed in which the Alternating 

Conditional Expectation (ACE) algorithm is used for the first time to address steady-

state IM models identifiability issues. The analysis is employed to examine the 

identifiability of both the T- and inverse Γ-models.  

- An experimental approach based on the use of the Levenberg-Marquardt (L-M) and 

Particle Swarm Optimization (PSO) algorithms in conjunction with measured steady-

state machine stator currents, voltages and rotor speed is developed for identifiability 

analysis and parameter identification of IMs. 
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- A novel approach for IM parameter identification based on an integrated steady-state 

model is proposed. The technique is performed at steady state using only the terminal 

quantities without any additional hardware or any changes in motor connections and, 

therefore, is fit for running machines.  

- An induction machine fault diagnosis technique is developed using model-based 

approach based on the use of the PSO. 

In addition to these main contributions, several minor contributions are as follows: 

- Developing a comprehensive understanding of the identifiability analysis, parameter 

identification and electrical faults of IMs. 

- Comprehensive discussions and evaluation of electrical parameter of induction motors 

and the effects of different electrical faults including short-circuited and open-circuited 

faults on them. 

- Developing comprehensive modelling, simulation and evaluation tools for assessing 

the proposed identifiability, parameter identification and fault diagnosis algorithms 

developed in this thesis. 

The following papers have been extracted from this research: 

1. A. M. Alturas, S. M. Gadoue, B. Zahawi, and M. A. Elgendy, “On the Identifiability 

of Steady-State Induction Machine Models Using External Measurements,” IEEE 

Transactions on Energy Conversion, Early Access, Digital Object Identifier: 

10.1109/TEC.2015.2460456, 2015. 

2. A. M. Alturas, S. M. Gadoue, M. A. Elgendy, B. Zahawi, and Y. Zbede, “An 

Integrated Steady-State Model to Estimate the Parameters of the Induction Machine,” 

submitted to IEEE Transactions on Industrial Electronics, 15-TIE-4063, 2015. 

3. A. M. Alturas, S. M. Gadoue, M. A. Elgendy, B. Zahawi, and A. S. Abdel-Khalik, 

“Structural Identifiability Analysis of Steady-State Induction Machine Models,” IEEE 

4th International Conference on Electrical Power and Energy Conversion Systems 

EPECS 2015, Sharjah, UAE, 24-26 November, 2015. 
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CHAPTER 2  

Identifiability Test Approaches  

 

The identifiability of induction machine models investigates the uniqueness of the solution for 

the unknown parameters of the model and is, therefore, a prerequisite for IM parameter 

identification. In this chapter, the identifiability concept, definitions and the used approaches 

in this thesis are presented.  
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2.1 Identifiability concept  

Since the publication of Bellman and Astrom paper in 1970 [20], the identifiability issue has 

received considerable attention in a number of fields including statics, economics, system 

engineering, and mathematical biology [21-24]. The identifiability of induction machine (IM) 

model parameters is concerned with the unique association of the solution (identified model 

parameters) with the measured characteristics of the machine. If some parameters of a system 

model are not uniquely identifiable, there will be always several combinations of parameters 

that satisfy the solution. 

The concept of identifiability can be explained by comparing the two functions shown in figure 

2.1. In figure 2.1.a, there is only one combination of parameter values that results in the function 

having a global minimum. In contrast, an infinite number of combinations of parameter values 

can result in the same minimum value of the function shown in figure 2.1.b. The system 

represented in figure 2.1.a is identifiable whereas that represented in figure 2.1.b is non-

identifiable. 

The identifiability term means whether it is possible to recover the parameter vector P uniquely 

from input/output measurements or not. In other words, the parameter vector P is identifiable 

if and only if any change in the values of the parameters results in a change in the measured 

quantities Y(t). 

 

 
 

(a)                                                          (b) 

Figure 2.1  Estimation of hypothetical parameters p1 and p2, (a) Identifiable system, (b) non-identifiable 
system. 



Identifiability Test Approaches                                                                                                               Chapter 2 

  

14 

 

Models describing dynamic properties of systems are usually defined by differential equations 

and can be written in the form of state-space. The dynamic model of any system depending on 

a parameter vector P ∈ Rm is described by: 

          
     tt

ttt

XPCY

UPBXPAX






 (2.1) 

where ܆ ൌ ሾݔଵ	ݔଶ ܃ ,௡௫ሿ் is the state vectorݔ	… ൌ ሾݑଵ	ݑଶ ܇	 ,௡௨ሿ் is the inputݑ	… ൌ

ሾݕଵ	ݕଶ … . ۾ ,௡௬ሿ் is the output (measurements)ݕ	 ൌ ሾ݌ଵ	݌ଶ …  ௡௣ሿ் is the unknown parameter݌	

vector, A, B and C are matrices of proper dimensions and each of them consisting of some or 

all of unknown parameters. 

The vector P is said to be globally identifiable if [25]: 
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Implies that P = 
~

P ∀ P, 
~

P ∈ Rm. 

Since the IM drives became widely used in different applications, a lot of efforts for improving 

their performance and reliability have been taken off. A major factor affecting the machine 

performance is the accuracy of its electrical parameters which is related to many applications 

including condition monitoring [3], Model Predictive Control [5] and sensorless control [4]. 

Before using any IM model for parameter identification, it is important to assess its 

identifiability.  

Several approaches for identifiability analysis have been proposed in the literature [10, 18, 26, 

27]. In general, identifiability analysis can be done either structurally or practically. In structural 

(a priori) analysis, the model structure is considered and no attention is paid to any restrictions 

related to the model operation. A structural non-identifiability arises when there are redundant 

parameters in model structure. The most obvious case of non-identifiability is over-

parameterisation in the sense that the model can be rewritten in terms of smaller sets of 

parameters. This kind of non-identifiability is known as parameter redundancy,  where it is not 

possible to uniquely estimate all the parameters in the model [28]. If such a non-identifiability 
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occurs, it is essential to be removed analytically by introducing new restrictions, e.g. an 

identifiable combination of some non-identifiable parameters [29]. 

In practical (posteriori) identifiability analysis, identifiability is tested by finding out if the 

measured information is enough to estimate the parameter reliably or not. The idea of practical 

identifiability approaches is to test model identifiability using simulated or measured data [22]. 

Practical identifiability is mainly dependant on the accuracy of the available experimental data 

and therefore, a model that is structurally identifiable may still be practically unidentifiable if 

the experimental data are not sufficient [30].  

In this investigation, the two methods will be applied to assess the identifiability of IM. The 

obtained results from the practical identifiability analysis should agree with the outcomes 

obtained from structural methods. 

2.2 Theoretical background of the employed approaches  

This section gives a theoretical background on the five identifiability test methods used in this 

thesis. The first three approaches, the transfer function, the bond-graph and the alternating 

conditional expectation (ACE) are used only for identifiability analysis in chapter (5). The other 

two approaches, Levenberg-Marquardt (L-M) and particle swarm optimization (PSO) in 

conjunction with measured time-domain data are used for identifiability analysis in chapter 5, 

parameter identification in chapters 5 and 6, and condition monitoring in chapter 7. 

2.2.1 The transfer function approach  

Recently, some work has been carried out to obtain general criteria for a priori identifiability 

analysis based on the transfer function of the system [31]. This is a simple approach that can be 

used if the transfer function of the model is known. 

The complete dynamic model with parameter vector P can be described as: 

 
)()()()()(

)()()()()(

ttt

ttt

UPDXPCY

UPBXPAX






 (2.3) 

where X is the state vector, U is the input vector, Y is the output vector, A is the state matrix, 

B is the input matrix, C is the output matrix, and D is the feed forward matrix. Any dynamical 
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system can be completely characterized by its transfer matrix	۵ሺ۾ሻ. The transfer function for 

this model is: 

 )()()S)((),S( 1 PDPBAIPCPG    (2.4) 

In this approach, the transfer functions are written in a canonical form, common factors in 

numerator and denominator are cancelled and the transfer function is simplified so that the 

coefficients of the higher power of S in the denominator is always one. After this simplification, 

all the transfer function’s coefficients are often referred to as moment invariants. The 

identifiable parameters are the parameters that can be uniquely deduced from the coefficients 

of the transfer function matrix [32]. If it is not possible to uniquely determine the parameters 

from the transfer function coefficients, it is essential to re-arrange the model or to use another 

model [33, 34]. 

2.2.2 Bond graph approach 

Bond-graph modelling is a graphical representation that can be used to describe various systems 

including electrical, mechanical, hydraulic and chemical systems [35]. The graphical nature of 

the bond graph enables the characteristics of the model to be easily visualized and determines 

whether or not the model is appropriate for the task in hand [36]. In this approach, the system 

can be represented by lines and symbols identifying the power flow paths of the system by a 

combination of efforts and flows.  

The bond graph has five types of elements; two active and three passive. The two active 

elements are the bond graph sources i.e. effort source SE (voltage) and flow source SF (current). 

The remaining three are represented by an R, L and C for resistive, inductive and capacitive 

elements, respectively. Each of these elements has a single power bond attached (line with the 

element at the end of the bond) showing the exchange of the power at one location. Any 

interface between two elements in the bond graph is known as a port. In electrical domain, port 

variables of the bond graph are the voltage over the element port and the current through the 

element port.  

A simple example to clarify the concept of the bond graph is to derive the bond graph of the 

series RLC shown in figure 2.2. For this circuit, the effort source SE is the voltage v and the 
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flow source SF is the current i. The different bond graph elements in this circuit are shown in 

figure 2.3 (a).  

Power bond may join in one of two types of junctions called 1-junction and 0-junction. 1-

junction represents locations in the circuit with common current flow, where 0-junction 

represents nodes of the circuit where voltages are same. Consequently, series connected 

elements are connected at 1-junction while parallel branches are connect at 0-junction. A power 

flow diagram is created by connecting the elements in an energy conserving mode by means of 

junctions and nodes. Figure 2.3 (b) shows the bond graph of the RLC circuit where the common 

current in the bond graph becomes a 1-junction.  

 

 

R L

v CAC

 

Figure 2.2  The RLC circuit. 
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(a)                                                                                 (b) 
Figure 2.3  Bond graph of the RLC circuit, (a) with electrical symbols, (b) with standard symbols. 
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Bond graphs have a concept called causality that indicates the direction of the effort and flow 

for each bond of the power flow diagram and identifies the causal relationships between all 

variables. For each bond, causality is identified by the causal stroke (end-bar) which is 

independent of the power flow direction. The causality chooses which one of the two elements 

linked by a bond sets the effort and which one sets the flow. The effort information moves 

toward the causal stroke and the flow information moves away from it as shown in figure 2.4 

(a).  

The R-element dissipates energy and, therefore the energy flows towards the resistor is always 

positive. It does not matter which of the port variables is the output and which one is the input. 

Therefore, causal stroke for R-element can go on both directions in such a way to satisfy the 

junction at the other end of the bond. For the energy storing elements, L-element and C-element, 

the L–element has a flow out causality and C–element has an effort out causality. Figure 2.4 

(b) shows the causal stroke assignment for the R-, L-, and C- elements [35]. 

 

 

AB
 

Means A set effort and B set flow 

B A
 

Means B set effort and A set flow 

(a) 

e

f
R: R

 
or 

e

f
R: R Causal stroke of the resistor 

I: I
e

f
Causal stroke of the resistor 

C: C

e

f
Causal stroke of the resistor 

(b) 

Figure 2.4  (a) Causal stroke assignment procedure, (b) causal stroke of R-, I- and C-elements. 
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At 0-junction, one of the bonds sets the effort for the others. Consequently, only one causal 

stroke is on the 0-junction, while the others are away from it. At 1-junction, one bond sets the 

flow; indicates that only one bond has the causal stroke away from the 1-junction, while the 

others are on it [18, 35]. Figure 2.5 shows the bond-graph of the RLC circuit. The causal strokes 

are set in accordance with the procedure discussed above. At 1-junction, the effort (v) of source 

SE moves towards its causal stroke while the flow (i) moves away from its causal stroke. The 

inductor element imposes flow, hence can be modelled as a source with a causal stroke at the 

element side. The capacitor element has effort-out, hence can be modelled as a source with a 

causal stroke far from the element side.  

For a resistive element, causal stroke can go on both directions in such a way to satisfy the 

junction at the other end of the bond. For a proper causal completion, the causal strokes for R 

is set near to 1-junctions. Figure 2.6 shows how to generate the bond-graph from a physical 

model.  
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Figure 2.5  RLC circuit causal bond graph. 
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Determine the system physical domains and identify basic 
elements

Give a unique name of the identified elements in the previous 
step

Identify reference effort (voltage in electrical domain)

Identify all efforts/flows differences needed to connect the 
ports of the elements

Construct the effort differences using a 1-junction and flow 
differences with 0-junction

Connect the ports of all elements obtained in previous step 
with 0- and 1- junctions for corresponding efforts and flows 

differences

Simply the resulted graphs

Start

End
 

Figure 2.6  How to generate a bond-graph model from a physical model. 
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2.2.3 Alternating Conditional Expectation 

The Alternating Conditional Expectation (ACE) algorithm was initially developed in 1985 for 

the purpose of regression analysis to estimate the relationship between variables [37]. It is a 

simulation-based approach that can be used to determine whether the model is identifiable or 

not. The power and usefulness of this algorithm lie in its ability to identify the effect of one or 

more independent variables (predictors) on a dependent variable (response) and reveal accurate 

relationships between them. In addition, ACE is a non-parametric approach that does not 

require any assumptions about the functional relationship between the dependent and 

independent variables [10]. 

In the ACE approach, the problem of estimating a linear function of n-dimensional predictors 

 and a response Y is replaced by estimating ݊ separate one-dimensional (௡݌	,... ,ଶ݌	,ଵ݌) =۾

functions of the predictors and a function of the response [38] as expressed by:  

 



n

i ipiY
1

)()(   (2.5) 

where ߠ is a function of the response variable Y, ∅௜ is a function of the predictor	݌௜	and ɛ is an 

independent normal random variable. These transformations are achieved through minimizing 

the variance of a linear relationship between the transformed response variable and the 

summation of transformed predictor variables. The normalized error variance ሺ݁ଶሻ (for 	‖ߠ‖ଶ ൌ

1) is given by: 
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The minimization of the error is carried out through a series of individual function 

minimizations that result in the following expressions: 
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These two equations represent iterative minimization and conditional expectation (E), from 

which the name of Alternating Conditional Expectation is derived. Figure 2.7 shows the 

operational steps of the ACE algorithm.  

 

 

Figure 2.7  ACE Algorithm description. 
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For a simple two dimensional case, considering two random variables p and y with zero 

expectation	ܧሾ݌ሿ ൌ ሿݕሾܧ ൌ 0, the functions ߠሺݕሻ and ߶ሺ݌ሻ are called optimal transformations 

if they satisfy: 

 min
)]([

)]()([
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
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pyE
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 (2.9) 

This is equivalent to the maximization of the correlation coefficients between the transformed 

variables ߠሺݕሻ and ߶ሺ݌ሻ. ACE estimates the optimal transformations ߠ෠ሺݕሻ and ߶෠ሺ݌ሻ which 

maximize the linear correlation ܴ between ߠ෠ሺݕሻ and ߶෠ሺ݌ሻ [39] non-parametrically (i.e. based 

on classification and ranking, not actual numbers): 
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with a correlation coefficient: 
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where the goal is to minimize ‖ߠሺݕሻ െ ߶ሺ݌ሻ‖ଶ with ‖ߠ‖ଶ=1. 

The maximum correlation coefficient R (െ1 ൑ ܴ ൑1) is used as a measure of the relationship 

between two variables p and y.  R=0 if and only if p and y are independent. A large correlation 

coefficient, such as ±0.8, would suggest a strong relationship between parameters which may 

make a model not-identifiable. On the other hand, a small correlation coefficient, such as ±0.3, 

suggests weaker parameter dependence and an identifiable model. 

This concept can be extended to higher-dimensional problems with more than one predictor 

variable, i.e. 
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The calculation of (2.12) is carried out iteratively by the algorithm where new estimates of the 

transformation of the response serve as an inputs to new estimates of the transformation of the 

predictors and vice versa.  

A simple example to demonstrate the use of the ACE is to consider a multivariate (multi-

dimensional) case with three predictors (݌ଵ, ݌ଶ, ݌ଷ) and a response y. Five hundred tuples of 

predictors are drawn independently and randomly from the interval ሾ0, 1ሿ and the response is 

calculated for each tuple from (2.13), imitating 500 different observations.  

 )(tan5.0 2
13

1 ppy   (2.13) 

This was repeated three different times and, accordingly, three different matrices ࢏ܓ	 ൌ

ሾݕ	݌ଵ		݌ଶ		݌ଷሿ (i=1, 2 and 3) with dimension of 500 ൈ 4 are obtained and serve as inputs for the 

ACE algorithm. Functionally related parameters provide quite stable optimal transformations 

from one sample to another and from the one matrix to another. If there is a relation between 

parameter, all matrices (	ܓ૚, ܓ૛ and ܓ૜) render the same optimal transformations from one 

sample to another and vice versa. Figure 2.8 shows a scatterplot of these data sets after applying 

ACE three times, where the three different colours illustrate the three estimates (	ܓ૚, ܓ૛ and 

  .(૜ܓ

As shown in the figure, for each estimate (a row of the matrix k), only the first three columns 

 is independent (ଷ݌) are functionally related (based on Equation 2.13) and the forth (ଶ݌ ଵ and݌ ,ݕ)

and, thus nearly linear transformations for all variables except ݌ଷ exist. The transformations of 

the first three parameters (݌ ,ݕଵ and ݌ଶ) remain stable from one sample to another and from one 

estimate to another, while the transformation of the fourth parameter (݌ଷሻ looks different. The 

estimated regression model of (2.13) from ACE transformed variables has a maximum 

correlation value of 0.99986 which is almost equal to 1. Such a high correlation coefficient 

between the parameters means that the model is non-identifiable. 
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Figure 2.8  ACE optimal transformation of equation (2.13) data. 

 

2.2.4 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a population based stochastic optimization technique 

inspired by the social behaviour of large animal swarms such as birds flocking or fish schooling. 

PSO was originally designed and developed by Eberhart and Kennedy [40]. Each potential 

solution, called particle, is interpreted as a solution to the problem being investigated and 

allowed to fly through the search space. During the process, each member (particle) cooperates 

with the others trying to find a global optimum (global best) in a partially random way. As soon 

as a new better solution (objective function) is obtained, the global best will be updated with 

this new best solution [41]. A member with low fitness will not be discarded, it is still surviving 

and it is possible to be potentially the future successful member of the swarm. 
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With the PSO, the system is initialized randomly and searching for optima by updating 

generations, similar to many other computation techniques. However, it is much simpler and 

each particle has its own memory that allows it to remember the best position and fitness that 

has been achieved so far. In addition, each particle shares the information with its neighbours 

and adjusts its behaviour according to the best experiences of the swarm. In N-dimensional 

space, the main steps of PSO can be summarized in the flowchart shown in figure 2.9. 

 

Figure 2.9  The flowchart of Particle Swarm Optimization. 
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Each member in the swarm keeps tracking three main variables; the objective function, the 

global best (that indicates which particle is close to the best optima) and the stopping criteria 

that is used to stop the swarm if the optima has not been found. Each particle i has a position 

 :௜ and treated as a point in N-dimensional space representing the optimization problem, so that܆

 for i = 1, 2, …, M, where N is the dimension (the number of variables) (௜ேݔ ,… ,௜ଶݔ ,௜ଵݔ) =୧܆

and M is the number of particles that form the population.  

PSO assumes all the particles to fly in the search space with velocity ܄௜ that is continuously 

adjusted according with the flying history of the particle and other members in the population, 

so that: ܑ܄ = (ݒ௜ଵ, 	ݒ௜ଶ, 	ݒ௜ଷ, …, 	ݒ௜ே), for i = 1, 2, …, M, where the velocity is the rate of change 

of the position per unit iteration.  

Considerable research has been done in order to improve the performance of the PSO. In this 

thesis, an improved version of the PSO described in [42] has been used. This version of the 

PSO introduces an inertia weight variable to control the exploitation and impact of the previous 

and current velocities. This variable significantly affects the exploration and the speed of 

convergence of the PSO algorithm. 

The motion for each particle can be determined by the following equations: 
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where k is the iteration number, ߱ is the inertia weight, n = (1, 2, …, N), ݎଵ	 and ݎଶ	are random 

numbers between 0 and 1 standing for the weight that particle gives to its own best position and 

that for its best neighbour’s position, ௜ܲ௡= (݌௜ଵ,	݌௜ଶ , …, ݌௜ே) is the previous best position of the 

ith particle (that gives the best fitness value), and ۵௃௡=(݃௃ଵ, ݃௃ଶ, .., ݃௃ே) is the global best 

position of the best particles (J) in the swarm. ܿଵ and ܿଶ	are accelerating coefficients that 

determine the maximum position step size of the particle in a single iteration [43]. 

Figure 2.10 shows the main three fundamental displacement of each particle according to the 

current velocity, its own best performance and performance of the best particle in the swarm. 
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Figure 2.10  Schematic representation of the motion of particle in PSO. 

 

For each iteration k (time step), the position vector in Equation (2.15) is updated with the 

velocity vector obtained from Equation (2.14) and the process is repeated until the stopping 

criteria are achieved.  As can be seen from equations (2.14) and (2.15), the main parameters of 

the PSO model are the inertia ω, the accelerating coefficients	ܿଵ, ܿଶ, and the swarm size M. It 

is important to choose the correct parameters in order to get reasonable results to the 

optimization problem. As a result, it is important to have knowledge of the effects of choosing 

different setting of parameters from one problem to another, so that it will be possible to pick 

to most appropriate setting for a specific problem.  

The inertia weight ω plays an important role in controlling the momentum of the particles. 

Depending on the value of ω the momentum will be changed. The original PSO velocity update 

equation can be obtained by setting ω=1. If ω was zero (ω=0), then the concept of velocity will 

be totally lost and the particle will move in each step without any knowledge of the previous 

velocity.  For ω << 1, the momentum preserved from the previous step will be little and quick 

changes of direction will be possible with this setting. For ω > 1, the particles can change their 

direction hardly and as a result a large exploration area will be required and there will be 

difficulties to converge towards optimum. 

Large number of particles reduces the speed and increases the number of function evolutions in 

order to converge to an error limit. The population size has a slight improvement on the optimal 

value and a smaller population sizes are usually more appropriate with the PSO method [44]. It 

is very common to limit the number of the particles between 20 and 60 [45]. In the literature, 
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many efforts have been made in order to find the optimal values for c1 and c2 in equation (2.14) 

and many values have been suggested to these parameters in different applications. In this work, 

the values of ܿଵ	and ܿଶ are chosen to be equal [45].  

In many applications it is important to confine the search space in order to avoid a particle 

leaving the search space. A simple confinement mechanism that is used in this work is described 

by the following operator [46]: 
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where xmax is the upper limit and xmin is the lower limit. 

Herein, the PSO algorithm is used to find the best-fit and to locate the minimum value of one 

of the most commonly used test functions called the Griewank function which is given by:  
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This is a two dimensional 2-D function has one global minimum of zero value at point 

(100,100). As shown in figure 2.11, the global minimum of this function is almost 

indistinguishable from many other local minima that closely surround it, which increases the 

difficulty of the problem. 

The PSO was initialized with 8 particles that generated and distributed randomly in the search 

space. Values of ω= 1.414 and c1= c2= 1.2 were used in this test. Each particle is interpreted as 

a solution to the Griewank function and has been allowed to fly through the search space. The 

task of the PSO is to update the particles (parameters’ values) to minimize the objective 

function. As soon as better optimum is discovered the best optimum will be changed. Figures 

2.12 and 2.13 show the convergence history of the estimated parameters (݌ଵ and ݌ଶ) and the 

error function, respectively. It can be observed that the PSO algorithm success the find the 

global optimum at (99.5355, 100.3194) with a small error of 0.0429. 
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Figure 2.11  Griewank function, Minimum 0 at point (100, 100). 

 

 

Figure 2.12  Convergence of the estimated parameters of the Griewank function. 

 

 
Figure 2.13  Error function convergence of the estimated parameters of the Griewank function. 
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2.2.5 Levenberg-Marquardt Algorithm 

The Levenberg-Marquardt (L-M) [10, 47] optimization tool is developed and employed in this 

project to estimate the parameters of the T- and Inverse Γ-models of the IM. The L-M algorithm 

is an optimization technique that uses a combination of two methods; the Gauss-Newton 

method and the Gradient Descent method [47]. The parameter values are updated in the 

opposite direction to the gradient of the objective function (error) and the error is reduced by 

assuming that the objective function is approximately quadratic near to the optimal solution. 

Like many parameter estimation algorithms, especially for nonlinear models, the L-M 

algorithm is based on the minimization of an index (usually an error). The most commonly 

applied procedure is to search the best parameters set ۾∗ in the search space that minimize the 

error function err, 

 ))(min(* PEerr   (2.18) 

Herein, the L-M algorithm is used to find the best-fit model parameters by minimizing an 

objective function, the weighted square errors between the measured data vector ܇୫ሺtሻ and the 

calculated data vector ܇ୡሺtሻ. This is known as a chi-squared error criterion, given by: 
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(2.19) 

where q is the number of data points, ߱௜ is a measure of the error in the measurement, W is a 

weighting matrix with ܅୧୧ ൌ 1/߱௜
ଶ. The goal is to minimize ߯ଶ with respect to the parameters 

by finding the perturbation h to the parameters P.  

The update relationships are given by [47]: 

 )( cm YYWJ  Th   (2.20) 

 )()]([ cm YYWJWJJWJJ  TTT hdiag  (2.21) 
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where ߙ is a positive scalar which determines the length of the step in the steepest-descent 

direction, J is an ݍ ൈ ݊ Jacobian matrix [∂܋܇ ∂p⁄ ] represents the local sensitivity of ܋܇ to 

variation in parameters, h is the perturbation that moves the parameters in the direction of the 

steepest descent, and ߣ is the damping parameter.  

For each step (iteration), if the present ߣ produces a smaller error, then the step is applied and 

λ is divided by a constant	ߪ. In contrast, if the present λ produces a higher error, the step is 

discarded and ߣ is multiplied by ߪ. L-M acts in a similar way to the Gauss-Newton method 

when parameters are close to their optimum values (small values of ) and similar to the 

Gradient Descent method at large values of . Figure 2.14 shows the operational steps of L-M 

algorithm. 

A simple example is given here where the L-M approach is used as an optimization algorithm 

to fit the following function (find the minima) to a set of measured data. 

 )/exp()/exp()( 4321 ptpptptf   (2.22) 

Table 2.1 shows the real parameter values and the estimated solution based on the use of the L-

M. It is obvious that the L-M algorithm can successfully estimate the parameters within an 

acceptable error. Figures 2.15 and 2.16 show the convergence history of the estimated 

parameters and the error, respectively. Figure 2.17 shows the real data points and the curve fit. 

As shown, a very good agreement between the two curves is realized. The squared error (χଶሻ 

as a function of the two parameters (݌ଷ and ݌ସ) is shown in figure 2.18. 

 

 

Par. Real par. Estimated  par. 
 ଵ 20.00 19.918݌
 ଶ 10.00 10.159݌
 ଷ 1.00 0.9958݌
 ସ 50.00 50.136݌

Table 2.1  Parameter Estimation of Equation (2.22). 
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Figure 2. 14  Levenberg-Marquardt (L-M) Algorithm Description. 

 

 
Figure 2.15  Convergence of the estimated parameters of the model (2.22). 
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Figure 2.16  Error function convergence for the estimated ( χ^2). 

 
Figure 2.17  The real data points and the curve fit. 

 
 

 

Figure 2.18  The sum of the squared errors as a function of p3 and p4. 
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2.3 Conclusion 

The identifiability problem has been discussed and an example to help readers unfamiliar with 

this concept is introduced. The five employed methods in this thesis including the transfer 

function, bond-graph, alternating conditional expectation, particle swarm optimization and 

Levenberg-Marquardt are discussed. For the sake of clarification, mathematical examples for 

these methods have been given. In Chapter 5, the first three methods (transfer function, bond-

graph and alternating conditional expectation) will be used only for identifiability assessment 

of IM steady-state models, while the other methods (particle swarm optimization and 

Levenberg-Marquardt) will be used for the identifiability, parameter identification and fault 

diagnosis purposes in Chapters 5-7. 
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CHAPTER 3  

Induction machine parameter identification and fault diagnosis 

 

Concepts of parameter identification and condition monitoring of induction machines are 

discussed in this chapter. An up-to-date survey of the current research state on both topics is 

introduced. The symptoms and mechanisms of the most common electrical/mechanical faults 

are presented. 
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3.1 Induction machine parameter identification  

Parameter identification is the process of fitting parameters to an existing model of a system 

from external input-output measurements. The knowledge of the IM parameters allows 

estimating what the machine dynamics would be if the operating conditions have been changed. 

Parameter identification of IMs is important and very useful for many applications including 

sensorless control [4], Model Predictive Control (MPC) [5], and fault diagnosis [3].  

In practice, IM parameters have been identified based on the data measured from the motor. 

Tests of no-load, dc and locked rotor, during which the rotor has to be disconnected from the 

load or kept mechanically locked, are performed and measurements of the current and voltage 

at the stator terminals are taken, as detailed in IEEE Standard 112-2004 [48]. However, those 

tests become impractical when the motor has been coupled to a load [49]. Importantly, it is not 

possible to determine the stator and rotor leakage inductances (݈௟௦ and ݈௟௥) separately from the 

measurements at the stator terminals using these tests. One way to determine them separately 

is to assume that ݈௟௦ = ݈௟௥, which is not always true (e.g. for a faulty machine) and might lead 

to a wrong parameter estimation [10]. When the ratio (݈௟௦/݈௟௥) is unavailable or when the 

machine in question is in operation and it is not possible to carry out the standard tests, an 

alternative parameter identification approach is required. 

A variety of IM parameter identification methods based on external measurements of stator 

voltages, stator currents, speed and/or torque have been proposed in the literature [6, 9, 10, 50, 

51]. Most of these methods use many assumptions and require prerequisite information about 

the investigated model. For example, some methods may limit the number of estimated 

parameters (assuming constant values for the other parameters of the model) in order to reduce 

the complexity and increase the accuracy of the estimation process [52]. The majority of those 

approaches can be categorized into two main groups: 1) signal-based [53, 54]; 2) model-based 

[6, 8, 55-57]. 

A. signal-based induction machines’ parameter identification 

Signal-based techniques are usually system specific and require more computational power and 

extra hardware to be implemented. This type is based on the analysis of characteristic 

frequencies in the voltage and/or current spectrum components by using algorithms such as the 

fast Fourier transform (FFT) [58]. These components are based on the measurement response 
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to deliberately injected test signals or to existing characteristic harmonics [59]. An example of 

signal-based IM parameter identification approaches is to inject negative sequence current and 

detecting the negative sequence voltage and, thus the required parameter can be estimated from 

the mathematical model [60, 61]. This technique, however, produces a strong second harmonic 

torque pulsation in the system due to the interaction of the positive and negative rotating 

components of the Magnetic Motive Force (MMF) [59]. A different approach is based on 

injecting sinusoidal perturbation into the flux producing stator current [62]. Although this 

technique can provide a good estimation, the cost is very high due to the need of installation 

two flux search coils [59]. A different approach is based on injecting a pseudo-random binary 

signal into the d-axis and correlating with q-axis is used for the estimation. With light load 

operating condition, however, this techniques does not provide good estimation [59]. 

Although signal-based methods perform well with some applications, they are more 

complicated in terms of computations and need more sophisticated components and external 

hardware to be implemented. In addition, most of these approaches cannot be used during the 

normal operating conditions while the machine is running and, thus it is hardly been used in 

industrial applications. Moreover, injecting such signals may cause to disturb the system 

behaviour and produce losses. 

B. Model-based induction machines’ parameter identification 

Due to their simplicity and low cost of implementation, model-based parameter identification 

approaches are the most widely used [56]. In general, model-based approaches are based on the 

construction of a mathematical model of the target system that allows estimating its parameters 

[63]. The model of the system is fed with the measured inputs of the real system. The model 

output is then compared with that of the system and the difference between the two outputs (the 

error) is passed to an optimization algorithm that adjusts the model parameter values until a 

minimum error value between measured and calculated outputs is achieved. The model 

parameters identified by the optimization algorithm at this minimum error point are then taken 

as the correct model parameters.  

Model-based techniques can deal with different types of models like ordinary differential 

equations, intelligent data-driven models, artificial neural network models and fuzzy logic 

models [64]. The main advantage of model-based techniques is no additional hardware or 
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components needed to realize the parameter identification algorithm [10, 65]. The accuracy of 

this type is greatly dependent on the used IM model for parameter estimation. A block diagram 

for model-based parameter identification of the induction machine is shown in figure 3.1. 

 

Test IM

Adjustable Model

+

-
Estimator

Input Measured Output

Calculated Output

 

Figure 3.1  A Block diagram of model-based parameter identification scheme. 

 

Various model-based techniques have been proposed in the literature. The main differences 

between all these techniques are the used machine model and the applied algorithm for error 

(the difference between the calculated and measured outputs) calculation. Among model-based 

techniques, observer-based techniques have recently received much attention [66, 67]. These 

techniques are used to estimate the parameters of the IM during the normal operation. Some of 

these techniques are based on the use of the extended Kalman filter (EKF) that can be used 

under noisy condition with a high accuracy of estimation [68, 69]. However, EKF is known as 

being complex model-based algorithm and computationally very intensive [59, 68]. An 

extended Luenberger observer (ELO) for state and parameter estimation is presented in [70, 

71]. The major disadvantage of this technique is its computational intensity. Other approaches 

are based on the model reference adaptive system (MRAS) [72-74]. The basic idea of this 

method is to optimize the model parameters so that the output of the model is close to the output 

of the reference model. The accuracy of MRAS methods is heavily dependent on the used 

reference model (which is usually difficult to be determined [75]) and the used optimization 

technique algorithm for error minimization.  

Recently, optimization algorithms have been extensively improved and utilized in many 

applications and different fields such as finance [76], engineering design [77] and curve fitting-



Induction machines parameter identification and fault diagnosis                                                           Chapter 3 

  

40 

 

based identification methods [10, 78]. The fundamental principle of such techniques is to search 

for an optimum solution for the model. These techniques have been motivated by their 

reliability, availability and ability of dealing with multidimensional and nonlinear problems 

within a relatively short time [79]. According to the method of the operation, optimization 

algorithms can be classified into two basic classes; deterministic and stochastic.  

Deterministic algorithms take the advantages of the analytical properties of the problem to 

generate a sequence of steps that finally converge to an optimum solution which might not be 

the global one, as shown in figure 3.2. They do not include instructions that use random 

numbers in order to modify the data or to decide what to do next. Such algorithms always 

produce the same results when giving the same inputs. In the literature, several deterministic 

techniques exist such as linear programming, nonlinear programming, and mixed-integer 

nonlinear programming [80]. However, if the problem in hand has a high dimensional space or 

too complicated, deterministic techniques become impractical and, thus stochastic techniques 

come into play. 

Stochastic optimization algorithms were developed and extensively used in engineering 

systems since 1950s [81]. They are also known as a probabilistic optimization methods and 

classified as the most recent and powerful computational products of artificial intelligence 

techniques [52, 82]. The basic principle of these approaches is based on the use of functions 

that help to decide which solution set among the available sets could be tested next or how to 

produce the next solutions [82]. They do not require any assumptions to be made such as 

continuity, differentiability or unimodality which means they are simple to implement [41].  

 
Figure 3.2  Global and local optima. 

Compared to deterministic methods, stochastic optimization techniques can deal with more 

complicated problems and locate the optimal solution relatively quickly. Because of their 
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capability of handling linear and nonlinear problems, multiple objectives and time varying 

components, stochastic algorithms are considered as a promising alternative to deterministic 

techniques. However, the results obtained when using these algorithms are always approximate 

and the accuracy of the solution improves by increasing the number of iterations. In the 

literature, many stochastic techniques such as evolutionary computation [83], genetic algorithm 

[84], and simulated annealing [85] are emerging and successfully applied in different fields. 

An important class of stochastic techniques is swarm intelligence (SI) such as ant colony 

optimization algorithms [86], bee colony optimization algorithms [87] and particle swarm 

optimization algorithms [88]. Swarm algorithms are nature-inspired approaches that work on a 

population of potential solution in the research space. Throughout the cooperation and 

competition among particles in the search space, these techniques can often find optima more 

quickly than other techniques, especially for complex optimization problems.  

3.2 Induction machine faults  

Induction machines are subjected to many different types of faults especially when they are 

supplied by ac drives where the windings are stressed by voltage with high harmonic contents 

[2]. IMs Failures are normally caused by thermal stresses (due to machine overheating as a 

result of abnormal operating duty or overload and unbalance), magnetic stresses caused by 

electromagnetic forces, environmental stress such as abrasion, fabrication procedures, 

vibration, bearing faults, and so on [89]. The history of the electrical machines fault diagnosis 

dates back to 1924 [90] and since then many developments in the topic have been made [14, 

91-94].  

Condition monitoring techniques are mainly employed to detect and localize the developments 

of any fault sufficiently in early stages. Therefore, a proper action can be taken to avoid 

catastrophic damages and, thus avoiding enormous costs, e.g., motor failures in an offshore oil 

plant can causes as economical losses as high as $25000/h [95]. 

Fault diagnosis is the heart of condition monitoring and many techniques are implemented to 

monitor systems during healthy and abnormal operation conditions [14, 91-94, 96, 97].  The 

main idea of the fault diagnosis is to correctly detect and locate incipient faults before they 

propagate and cause irreversible damages. A typical fault diagnosis system can be divided into 
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four phases; collecting data, analysing data, classifying data, and decision making. These four 

stages are illustrated in figure 3.3.  

Electrical machines

Data acquisition

Feature extraction

Fault progression and trending analysis

Decision making
 

Figure 3.3  Fault diagnosis system’s phases. 

The main motivations of using fault diagnosis techniques are [98-100]: 

- Investigation of the equipment failure. 

- Providing an adequate warning of impending failure. 

- Decreasing downtimes and increasing productivity. 

- Reduction of operational and maintenance costs. 

- Improving plants and equipment reliability. 

- Optimization of equipment performance. 

- Process automation and reduction of labour cost. 

- Providing a safe operation environment. 

To enable a clear understanding of IM fault diagnosis techniques, a brief description of the most 

common IMs faults and their diagnosis methods is presented. 
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3.2.1 Common Induction Motors faults 

Induction machines can experience either internal or external faults. These major faults of the 

IMs can be mainly categorized as [91, 94]:  

1) Bearing faults. 

2) Stator-related faults, which resulting in shorting or opening in one or more stator phases. 

3) Rotor-related faults which includes the open and short circuit faults for wound rotor 

machine and broken bar(s) or cracked end-rings for cage machines. 

4) Eccentricity faults. 

A. Bearing faults 

Depending on the IM size and the installation type, bearing faults account for a large majority 

(40% -50%) of the all faults as shown in figure 3.4 [91, 94]. These faults cause increased 

vibration and lead to torque oscillation which results in amplitude modulation of the stator phase 

current [101]. These faults are not sudden but progressive and if not detected on time they lead 

to malfunction, reduce efficiency, loss of performance, and may even cause a severe damage in 

the machine and a potential injury to nearby personnel. 

In general, bearing defects can be categorised as: inner race , outer race, ball, and/or train [91]. 

Commonly, bearing faults are detected through the shaft vibration frequencies. The vibration 

frequencies associated with each defect category is given by [91, 94, 102]: 

 

 

Figure 3.4  Faults in Three phase squirrel-cage induction motor. 
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(3.1) 

where FI for the inner raceway fault frequency, FO for the outer raceway fault frequency, FB for 

the ball fault frequency, FC for the cage fault frequency, NB is the number of rolling elements, 

Db and Dc are the ball diameter and the pitch diameter, respectively, and β is the ball contact 

angle. 

However, the vibration signal is mainly affected by the speed and, thus the machine vibration 

may decrease at low speeds even with faulty machines [94]. In addition, sometimes the 

vibration signals are not easy to be sensed (e.g. under harsh environments) and, thus the current 

signal is used as a diagnosis method. In the literature, extensive research work has been 

conducted to develop bearing faults diagnosis methods based on the current signal [103, 104].  

B. Rotor-related faults 

In the case of wound-rotor IM, the faults of the rotor windings are similar to the stator winding 

faults and they result either in open- or short-circuited faults. In the case of squirrel-cage IM 

around 5%-10% of IM failures are related to the rotor faults including broken bars and cracked 

end rings, figure 3.4 [91, 94]. These faults result in torque and speed pulsation and lead to the 

deterioration of steady-state performance of the machine [91]. These faults generate frequency 

components at ሺ1 േ  ,ሻ݂ around the fundamental component f, where s is the slip and k=1ݏ2݇

2, 3…, in the stator current spectrum that can be used as a fault detector. In the literature, motor 

current signature analysis (MCSA) has been used extensively to detect rotor faults [105, 106]. 

Other approaches are based on instantaneous power signal [107], wavelet analysis [108], and 

so on. As rotor faults are not considered in the thesis, not much attention will be given to their 

diagnosis methods.  
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C. Eccentricity faults 

The air-gap eccentricity refers to the condition of non-uniform air gap between the stator and 

the rotor. This fault can be classified as static, dynamic, and mixed eccentricity [109] as shown 

in figure 3.5. Static eccentricity is characterized by an axis displacement where the rotor is not 

centred within the stator bore, figure 3.5 (b). As a result, unsymmetrical field distribution in the 

air-gap occurs and unbalanced radial electromagnetic forces, called unbalanced magnetic pull 

(UMP), which acts in the direction of minimum air-gap is generated [94]. The dynamic 

eccentricity, on the other hand, means the rotor is not rotating on its own axis and the minimum 

air-gap rotates with the rotor, figure 3.5 (c). This causes also a revolving UMP that rotates at 

the same speed of the motor and acts directly on the rotor [110]. For mixed eccentricity, the 

rotor and the centre of rotation are displaced from their origin, figure 3.5 (d). Eccentricity faults 

should be detected in early stages; otherwise they may lead to bending the rotor shaft and cause 

major damages in the stator and rotor [91]. However, air-gap eccentricity up to 10% is 

acceptable [94].  

 

 
Figure 3.5  Different types of eccentricity, (a) healthy machine, (b) static eccentricity, (c) dynamic 

eccentricity, (d) mixed eccentricity. 
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Modelling of eccentricity using both finite element and analytical methods is still under 

investigation. Many methods are available in the literature to diagnosis the presence of 

eccentricity faults through different signal such as vibration, current and flux [111-113]. 

However, due to the high cost and sensitivity of the vibration sensors and the dependence of 

these signals on the rotor speed, most research work is based on the use of the stator current.  

D. Stator-related faults 

Usually, electrical faults either within the machine or with supply may cause significant risks 

including fire, damage to other equipment and possible electrical shocks to people. As shown 

in figure 3.4, about 30%-40% of motor failures happen because of problems in the stator 

windings [94]. Stator winding failures can be classified into two main types; an asymmetry in 

the stator windings (such as an open-phase fault) and short circuit [91]. Open-circuited winding 

fault occurs when a winding becomes open circuited, preventing the current flow in the faulty 

machine winding. If an open-circuit winding fault occurs, the machine may stop working or 

continue to work in either single phase (when star connected) or two phase (when delta 

connected) operation. Although this fault allows the machine to work with a reduced torque for 

a period of time, it might ultimately leads to a catastrophic fault, especially for large machines, 

and results in  unexpected interruption in production lines [91]. 

Compared to open-circuit faults, short-circuited faults are considered as one of the most difficult 

faults to be detected [91]. These faults often lead to a high current to flow and, thus produce 

unwanted heat in the shorted turns. If the produced heat exceeding the limit value of the 

temperature, these faults may result in a complete motor failure that may lead to a serious 

accident involves loss of a human life. It is believed that the main cause of the stator short 

circuit winding related faults is the insulation failure in the stator coil turns. Among all these 

faults, interturn short-circuited fault is the most challenging one and the other short-circuit 

modes like phase to phase and phase to ground usually come as a result of this fault.  

All previous mentioned faults can cause one or more of symptoms including vibration and 

noise, torque pulsating, excessive heating, unbalanced voltages and currents, leakage flux and 

other symptoms. Due to the wide integration of IMs in a massive number of industrial 

applications including nuclear power [114], petrochemical [115] and transportation [116], fault 

diagnosis has a great importance in enhancing the system reliability.  
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3.2.2 Induction machine fault diagnosis techniques 

In the literature, many methods have been developed to analyse and interpret the machine 

signals in order to extract the features of useful information for additional diagnosis. Most of 

these methods are based on the use of the current, vibration, flux and torque signals analysis. 

Although vibratory signals have higher signal-to-noise ratio (SNR) and enable efficient fault 

detection, their implementation require expensive sensors that are sensitive to the installation 

location [92, 97]. The same for the flux and the torque signals that require special and expensive 

sensors. On the other hand, due to availability and low cost of current sensors that are usually 

required for control purposes, recent research focuses on the use of current signal analysis in 

IM fault diagnosis.  

Most common IM stator-related fault diagnosis techniques can be broadly categorized into two 

main categories; signal-based and model-based. The fundamental principles of these two 

categories are discussed in the previous section and are repeated here from the fault diagnosis 

perspective.  

A. Signal-based IMs diagnosis techniques 

Signal-based diagnosis methods do not need a mathematical model of the monitored machine 

and are based on tracking the frequency signature of each fault type in the stator current [93], 

air-gap torque profile analysis [117], instantaneous power [118]  and so on in time or/and 

frequency domain. Figure 3.6 shows the basic structure of signal-based fault diagnosis 

techniques. 

The presence of any kind of faults in IMs may cause an asymmetry in the machine magnetic 

field and generate harmonics in the stator current. Many approaches have been proposed in the 

literature based on the motor current signature analysis (MCSA) that is based on current 

monitoring of an induction motor. Some of these techniques are based on the comparison 

between the current spectrums of the faulty machine with its spectrum when it is healthy. In 

order to apply such methods and to make the correct interpretation in the spectrum of the 

different faults, one should be familiar with the spectrum components of the healthy machine 

[92]. A comprehensive study of spectrum components in stator current signal of a healthy 

machine is provided in [119]. 
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Figure 3.6  Block diagram of signal-based diagnostic procedure. 

Signal-based techniques can mainly be classified into three types; spectral analysis, time 

domain and time-frequency. Spectral analysis techniques are based on detecting characteristic 

frequencies related to the fault using classical spectral analysis tools like the Fourier transform 

[92]. The main factors that affect the accuracy of these techniques are the frequency resolution 

and spectrum leakage [120]. In the literature, some approaches are proposed in order to improve 

the frequency resolution and to reduce the computation time including zoom-FFT (ZFFT), chirp 

Z transform (CZT) and zero-padding [120]. 

Spectral analysis techniques can be divided into three main groups; nonparametric, parametric, 

and subspace methods. Nonparametric methods are based on classification and ranking, not 

actual numbers, which include conventional Fourier analysis and its extensions, optimal 

bandpass filtering analysis and so on. The main drawback of these techniques is their low 

frequency resolution that eliminates their ability to distinguish between two closely spaced 

frequency components [121]. Parametric methods are based on the estimation of linear time 

invariant systems from noise by autoregressive-moving-average model such as covariance, 

Yule-walker, and Burg [122, 123]. Due to the massive developments in microprocessors and 

the spectral analysis algorithms, subspace methods have been recently introduced to the IM 

diagnostic by the application of multiple signal classification (MUSIC) [123, 124] and 

estimation of signal parameters via rotational invariance techniques (ESPRIT) approaches 

[125]. These techniques allow detecting fault harmonics and reducing the noise influence [91, 



Induction machines parameter identification and fault diagnosis                                                           Chapter 3 

  

49 

 

124]. However, most of these techniques require measurements with long data window and 

known as being computationally demanding [121]. In addition, unsatisfactory results are 

obtained when these techniques are applied for combined faults or when any transient (e.g. load 

changing) occurs [14, 92]. For such cases, other signal-based techniques including time domain 

and time-frequency domain are more accurate for fault detection [126]. These techniques are 

reviewed in [120, 124] 

Time-domain analysis refers to an analysis of data as a function of time and has been introduced 

as a powerful tool for IM fault diagnosis in terms of low computational cost and reduced time 

acquisition period. In the literature, many time based approaches for IM fault diagnosis are 

introduced. One proposed approach is based on the use of the filtering effects to cancel 

unrelated fault frequencies components such as space and saturation harmonics [127-129]. 

Different method is based on the use of the maximum covariance matrix which is based on the 

computation of the covariance between the input signal and the reference signal in the time 

domain [130]. If a large frequency bandwidth and good frequency resolution are required, this 

method takes a long computational time [131].  

Time-frequency analysis concerns the analysis of signals with time varying frequency contents. 

One of the most used time-frequency techniques is the short-time Fourier transform (STFT) 

which is an extension of the Fourier transform. In the STFT the signal is divided into small time 

windows and each one is analysed using FFT. In order to obtain a good resolution, STFT 

requires high computational cost and fixed window width, which is a major drawback [132]. 

To overcome this drawback, the quadratic time-frequency analysis technique is introduced as 

an alternative to the STFT [120]. This technique is independent of the type and size of the 

window and it is based on the computation of the energy distributions of the signal over both 

time and frequency domains [132].   

Although signal-based techniques perform well with some applications, they have significant 

limitations [133]. Most of these techniques require post-processing step using artificial 

intelligence (AI) techniques to classify different faults [120]. Long-time data with high rate of 

sampling is required to achieve a good spectral resolution and, thus large memory space to 

process and store the current spectra is needed [93]. In addition, most of these techniques are 

based on tracking the frequency signature of each fault type in the recorded signal spectrum, 

which depends on the machine’s slip and must be recomputed for each different operating 
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condition [134]. Moreover, it is common for healthy machines to have various harmonic 

components due to the machine design, saturation, and the loading variation [119]. If these 

harmonics are close or overlapped with the fault-related spectrum components, signal-based 

techniques might fail to differentiate between the faulty and healthy conditions [14]. In large 

industrial applications, signal-based techniques become more complicated and need more 

sophisticated components to be implemented. For the inverter-fed IM, the spectral analysis of 

the stator current signal becomes more difficult [135]. In order to overcome all these 

shortcoming and improve the signal-based techniques accuracy, advanced signal processing 

techniques are implemented such as multiple signal classification [136], fraction Fourier 

transform [137] and maximum covariance methods [131].  

B. Model-based IMs diagnosis techniques 

Due to the availability of powerful computational platforms, model-based diagnosis techniques 

have been demonstrated to have superior performance in fault diagnosis and parameter 

identification processing. Model-based techniques were introduced in 1970s and since then they 

have been developed dramatically [138]. Today, model-based techniques have been integrated 

in many applications including robotics, transport systems and power systems [138]. 

Model-based techniques allow for a deep understanding into the process behaviour [66, 91]. 

They are based on the construction of a mathematical model of the faults that allows monitoring 

the characteristic parameters and detecting abnormal situations [14, 139]. External 

measurements are used with a dynamic process model like state observers [140] and parameter 

estimation [14] for fault diagnosis. Measured data are used as an input of the machine model to 

produce the calculated output. The output of the IM model is compared with that of the real 

machine (real measurements) to produce the error that is used as a faults indicator. If this error 

is higher than a predefined threshold value, a fault is declared. Figure 3.7 shows a basic structure 

of model-based fault detection techniques. 

One of the great advantages of models-based techniques is that most of them do not require 

exotic sensors and available sensors are usually used [141]. Due to the assumptions and 

approximations in the IM model, the fault message might be corrupted by other unknown 

disturbances. Consequently, it is important to evaluate the error and to extract the needed 

information about the fault (error evaluation). 
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Figure 3.7  Block diagram of model-based diagnostic procedure. 

 

In the literature, many model-based condition monitoring techniques have been proposed. The 

main difference between them lies in two factors; the adopted process model and the applied 

algorithm. Among model-based methods, observer-based techniques have received much 

attention since 1990s [138]. The basic idea of these techniques is to replace the machine model 

by an observer that will deliver a reliable estimate of the real machine output. Many observer-

based approaches are available in the literature including adaptive observer [142] and Extended 

Kalman Filter (EKF) [143].  

Another class of model-based condition monitoring is parameter identification based methods, 

where the fault decision is performed by online parameter estimation. Parameter identification 

techniques are structured in a feedback closed-loop in such a way that the error between the 

actual machine and the model is fed back to the error generator, as shown in figure 3.8. The 

task is to minimize the objective function, the error between the measured and calculated data, 

by iteratively adjusting the parameter values and to find a set of characteristic parameters that 

give the best match between the two sets. 

Recently, adaptive observer theory has been developed aiming to combine both observer-based 

and parameter identification based fault diagnosis methods [144]. The main difference between 

the regular and adaptive observer-based techniques is the error evaluation [138]. 
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Figure 3.8  Block diagram of parameter identification diagnostic procedure. 

 

Several other model-based techniques for IM fault diagnosis have been introduced in the 

literature. In [145-147], the winding function method (WFM) is used for modelling interturn 

short circuits in the IM stator winding. These methods are geometrically based that use 

functions to model the machine windings and the air gap in order to determine the magnetic 

field parameters. However, the obtained results from conventional winding function models 

might not be accurate if the air gap is non-uniform [148]. Many improvements have been 

proposed to increase the accuracy of the WFM [149, 150]. Although these approaches allow a 

deep understanding of the process behaviour, they are unsuitable for industrial applications due 

to their complexity [14].  

Another model-based technique is to use the dynamic mesh reluctance approach for winding 

short-circuit faults [151-153]. The method provides a flexible approach for accurately 

modelling the equivalent electrical and magnetic circuits of the IMs including different effects 

like saturation and machine geometry [151]. Although these models provide good results and 

incorporate other aspects of drive systems like power converters and controllers with an 

acceptable simulation time, they require a specific knowledge about the machine design 

parameters that are not usually available from the manufacturer.  

Recently, several artificial intelligence (AI) techniques, such as  artificial neural networks 

[154], fuzzy logic systems [65], and support vector machines [155], have been introduced and 

used for IM fault diagnosis. These diagnoses are based on three steps; choosing the targeted 

fault, defining the cause-effect relationships and finally computing the diagnostic indices linked 

to the fault [156]. 
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Unfortunately, most of model-based techniques are designed for a specific fault and the used 

IM model is different from one fault to another. In addition, these techniques might fail when 

two faults occur in the same time.  

3.3 Conclusion 

In this chapter, concepts of parameter identification and condition monitoring of induction 

machines are reviewed. The IM parameter identification methods are divided into two main 

categories, model-based and signal-based. The most predominant faults in induction machines 

have been discussed and the need for the fault diagnosis has been highlighted. An extensive 

review has been carried out to present the current research state of the parameter identification 

and fault diagnosis of induction machines. Based on the provided literature on the parameter 

identification and condition monitoring of IMs, model-based parameter identification and 

condition monitoring of IMs art adopted and presented in the next chapters of the thesis. 
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CHAPTER 4  

Experimental setup and simulation 

 

This chapter presents the experimental setup used in this thesis. Then a series of experimental 

investigations that is carried out to validate the proposed schemes is provided. Different 

operating conditions including heathy and faulty and how the faults were emulated are 

explained. The tests were performed under steady-state conditions with supply-fed and inverter-

fed machine. A description of Matlab/Simulink models constructed and used in the thesis for 

induction machines identifiability analysis, parameter identification and fault diagnoses is also 

provided in this chapter.  
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4.1 Experimental Set up 

To allow practical testing of the schemes proposed in this thesis, an experimental platform with 

a 1.1 kW, 50 Hz, 230/400 V, 4-pole three-phase squirrel cage induction machine is constructed. 

The test rig includes also a permanent magnet synchronous machine used as a load, and an ac 

drive. The experimental system is shown in figure 4.1 for supply-fed operation and in figure 

4.2 for inverter-fed operation. For supply-fed operation, the IM was connected directly to the 

50 Hz mains supply and operated at the rated stator current. The main components of the system 

are described in details in the following sub-sections.   

 

Figure 4.1  Experimental set up for supply-fed IM. 

 

 

 

Figure 4.2  Experimental set up for inverter-fed IM. 



Experimental setup and simulation                                                                                                           Chapter 4 

 

56 

 

4.1.1 Test motor 

The 1.1 kW, 50 Hz, 230/400 V, 4-pole star connected three-phase squirrel-cage induction 

machine, manufactured by AmTecs Ltd is used as the test machine, figure 4.3.  

 

 

Figure 4.3  The squirrel-cage induction motor. 

 

To obtain the T-equivalent circuit parameters of the machine, the standard tests of no load, 

locked rotor, and dc tests were performed as described in [48]. The dc test determines the stator 

resistance (ܴ௦) value, while the no-load test is used to determine the magnetizing inductance 

 Finally, the locked rotor test is used to calculate the stator and rotor leakage inductances .(௠ܮ)

(݈௟௦ and ݈௟௥) and the rotor resistance (ܴ௥). 

For the motor under consideration, the ratio of ݈௟௦/݈௟௥	is available (NEMA class B, 40/60) and 

can be used to calculate the stator and rotor leakage inductances. Table 4.1 gives the parameters 

of the IM T-model based on these tests. 

For the inverse Γ-model, circuit parameters can be independently calculated based on the 

standard IEEE tests. No assumption is required in this case. The parameters of the inverse Γ-

model can also be calculated from those of the T- model (chapter 1) if the	݈௟௦/݈௟௥ is known. Table 

4.2 presents the inverse Γ-model parameters that obtained from the IEEE tests. 

 



Experimental setup and simulation                                                                                                           Chapter 4 

 

57 

 

Parameter Value 

Stator resistance (ܴ௦) 3.61 Ω 

Rotor resistance (ܴ௥) 3.66 Ω 

Stator leakage inductance (݈௟௦) 0.0395 H 

Rotor leakage inductance (݈௟௥) 0.056  H 

Magnetising inductance (݈௠) 0.408  H 

Table 4.1  Measured parameters of the T-Model of IM. 

 

Parameter Value 

Stator resistance (ܴ௦) 3.61 Ω 

Rotor resistance (ܴ௥′) 2.79 Ω 

Stator leakage inductance (݈௟௦′) 0.0911 H 

Magnetising inductance (ܮ௠′) 0.3565 H 

Table 4.2  Measured parameter of the Inverse Γ–Model of IM. 

 

4.1.2 The load and its drive 

A 4.19 kW, 380/480 V, 8-Poles, 2000 r/m permanent magnet synchronous machine (PMSM) 

(figure 4.4), is used to emulate the mechanical torque on the IM shaft experienced by the load. 

The PMSM was driven by a Unidrive SP controller (figure 4.5) manufactured by Control 

Techniques to change the load torque on the shaft.  

 

 
Figure 4.4  The PMSM machine. 
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Figure 4.5  The PMSM driver unit. 

4.1.3 Test motor ac Drive 

The ac drive used in this thesis has been designed and built at Newcastle University. The ac 

drive of the IM consists mainly of a three-phase diode bridge rectifier, dc link, and an IGBT-

based three-phase bridge inverter. The rectifier is Vishay VS-26MT100, 25A, 1000V, 3-phase 

Diode Bridge which consists of six uncontrolled diodes. The dc link capacitors consisting of 

two 470 μF capacitors connected in series to smooth the output voltage of the rectifier. Two 

150 kΩ resistors each connected across the capacitors to ensure equal voltage sharing between 

the two capacitors. To monitor the voltage across the dc link, an LV25-P voltage sensor is used. 

The drive inverter uses six IGBT switches with following specifications: VCES=1200V, I-

NOMINAL=20A, TJ(MAX)=150ºC, VCE(ON)=1.9V. These IGBTs are supplied by International IOR 

Rectifier.  
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4.1.4 Control and interface board 

For experimental flexibility and ease of programming, a Texas Instruments TMS320F28335 

DSP based eZdsp kit was used for control and data acquisition. A general interface board which 

is designed at Newcastle University is used to interface the microcontroller to the motor drive 

circuit, shown in figure 4.6. Figure 4.7 shows the experimental circuit. 

 

 

Figure 4.6  The general interface board. 

 

 

Figure 4.7  The IM drive circuits. 



Experimental setup and simulation                                                                                                           Chapter 4 

 

60 

 

4.2 Induction motor measured data 

As this work uses external measurements with IM steady-state models, steady-state 

measurements of three phase stator voltages (ݒ஺௠, ݒ஻௠, ݒ஼௠) and currents (݅஺௠, ݅ ஻௠, ݅ ஼௠) were 

collected over a time window of 0.1 sec with a sampling interval of 1 msec. Motor speed (߱௥) 

was also measured using an encoder with a digital display unit for each test to calculate the slip 

required for the model. 

All the measurements provided in this thesis are phase measurements taken between the phase 

terminal and the common point. Therefore, there will be waveforms unbalance in the faulty 

case due to an asymmetry of the winding. 

The test rig is based in a power electronics, machines and drives lab in which different types of 

nonlinear loads are connected affecting the mains voltage waveform. As a result, a significant 

amount of harmonics has turned up within the voltage signal. This causes the measured phase 

voltage to deviate from an ideal sinusoidal, which in turn causes the voltage harmonics and 

affects the current shape. This problem has been highlighted before in a number of PhD theses 

such as [157].  

The IM was tested under different operating condition (healthy and faulty) for both supply-fed 

and inverter-fed IM. The measurements of voltages and currents will be shown in the next 

subsections and will be used in the following chapters. 

For supply-fed IM, three Tektronix P5200 high voltage differential probes were used to measure 

the three phase stator voltages (ݒ஺௠, ݒ஻௠, ݒ஼௠), and three Tektronix A622 Current Probes were 

used to measure the three phase stator currents (݅஺௠, ݅஻௠, ݅஼௠). For inverter-fed IM, phase 

terminal voltage was calculated from the modulation index of the inverter and the available dc 

link voltage; hence no stator voltage measurement was needed. Three CAS-15 Hall-effect 

current sensors were used to measure the phase currents. The sampling frequency of the 

voltages and currents is 10 kHz and, thus the current signals include 1000 points. 

4.2.1 Healthy IM tests 

Different no-load and full-load tests with supply-fed and inverter-fed operation were carried 

out for healthy IM. These tests are then used for identifiability analysis and parameter 

identification of the IM steady-state models. As mentioned in the first chapter, it is assumed that 
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the three phases are identical and as a result only one phase (phase A) measurements are used 

in the identifiability analysis and parameter identification.  

In order to match the impedance of the supply-fed IM with that obtained in the case of the 

inverter-fed IM, a variac has been utilized to maintain the level of voltage to be the same as that 

of the inverter-fed.   

Figures 4.8 and 4.9 show phase A measured stator voltage and current obtained from the healthy 

IM at steady state when the machine was fed from the mains at no load with a speed of 1491 

r/m (i.e., a slip of 0.006).  

 

 

Figure 4.8  Measured stator voltage waveform-phase A; supply-fed, no-load at slip of 0.006. 

 

 

Figure 4.9  Measured stator current waveform-phase A; supply-fed, no-load at slip of 0.006. 
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The test machine is also tested at a different operating condition by adjusting the ac drive of the 

synchronous machine loading the IM up to full load. This occurs at a speed of 1418 r/m (i.e. a 

slip of 0.055), the measured stator voltage and current waveforms are shown in figures 4.10 and 

4.11, respectively.  

 

 

Figure 4.10  Measured stator voltage waveform-phase A; supply-fed, full-load at slip of 0.055. 

 

 

Figure 4.11  Measured stator current waveform-phase A; supply-fed, full-load at slip of 0.055. 
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dc link and hence no measurement of that voltage is needed and, thus reducing the cost. As V/f 

control is an open loop scheme, no current measurements are required for control purpose but 

current sensors are still needed for protection purpose of the drive. 

Similar to the supply-fed case, stator current is adjusted at the full-load value using the ac drive 

of the synchronous machine load. This occurs at a speed of 1417 r/m (i.e. a slip of 0.055) for 

the 50 Hz and a speed of 694 r/m (i.e. a slip of 0.075) for the 25 Hz. Figures 4.12 and 4.13 show 

the measured stator current at 50 Hz and 25 Hz, respectively. 

 

 

Figure 4.12  Measured stator current waveform-phase A; inverter-fed, 50 Hz, full-load at slip of 0.055. 

 

 

 

Figure 4.13  Measured stator current waveform-phase A; inverter-fed, 25 Hz, full-load at slip of 0.075. 
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4.2.2 Faulty IM tests 

These tests were carried out to validate the proposed fault diagnosis technique using the test 

machine. Three fault conditions were implemented using the test facility including stator 

winding asymmetry (increasing the stator resistance), interturn short-circuited, and combined 

faults. For safety reasons and to avoid destructive tests, these tests were carried out just when 

the machine is supplied directly from the mains at no load. 

A. Stator Open-circuited winding fault test 

Due to the need of the test machine to be used in other tests, it was not possible to make a real 

open circuit in the stator winding. Stator winding asymmetry fault is simply implemented by 

increasing the stator resistance towards a very high value (about 10 times) compared to the 

healthy one [158, 159]. This is done by connecting a 30  resistor in series with one of the 

stator phases, phase A, imitating an asymmetry fault in one phase. The schematic diagram of 

the open-circuited fault is shown in figure 4.14.  

The measurements were taken at a speed of 1474 r/m (i.e. a slip of 0.017) across the 3-phase 

terminals (between the phase terminal and the common point).  Figures 4.15 and 4.16 show the 

measured stator voltages and currents waveforms obtained from this test. 

 

 

 

Figure 4.14  Schematic diagram of stator asymmetry. 
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Figure 4.15  Measured stator phase voltage waveforms; developing stator open-circuit winding fault, 

phase A. 
 

 
Figure 4.16  Measured stator phase current waveforms; developing stator open-circuit winding fault, 

phase A. 
 

B. Stator interturn short-circuited winding fault test 

The short-circuited stator winding fault was emulated by scraping the insulation layer of 

windings and soldering them with wires as shown in figure 4.17. The experimental 

measurements of about 30% interturn short-circuit fault in phase A have been collected at a 

speed of 1475 r/m (i.e. a slip of 0.016). Figures 4.18 and 4.19 show the measured steady-state 

stator voltages and currents obtained from faulty induction motor. Again, the measurements in 

this test have been taken between the 3-phase terminals and the common point.   
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Figure 4.17  Stator interturn fault. 

 
Figure 4.18 Measured stator phase voltage waveforms; developing stator interturn short-circuit fault at 

no-load, phase A. 

 
Figure 4.19 Measured stator phase current waveforms; developing stator interturn short-circuit fault, at 

no-load, phase A. 
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C. Stator winding combined fault 

Figure 4.20 shows a schematic diagram of a stator combined fault including an interturn short 

circuit fault an phase A and an asymmetry winding fault in phase B. Experimental 

measurements of about 30% stator short-circuited fault in phase A and an open-circuited fault 

in phase B (by adding 30 Ω) have been collected and used in this test. The experimental 

measurements have been collected at a speed of 1482 r/m (i.e. a slip of 0.012). ). Figure 4.21 

and figure 4.22 show the obtained measured steady-state stator voltages and currents. 
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Figure 4.20  Schematic diagram of stator combined fault in two phases, short-circuit fault in phase A and 

asymmetry winding-fault in phase B. 

 

 

Figure 4.21  Measured stator phase voltage waveforms; developing stator winding combined fault, short-
circuit fault in phase A and asymmetry winding-fault in phase B. 
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Figure 4.22 Measured stator phase current waveforms; developing stator winding combined fault, short-

circuit fault in phase A and asymmetry winding-fault in phase B. 

 

4.3 System simulation 

To enable fast analysis and manipulation of the recorded data files, Matlab/Simulink is used to 

analyse and simulate the IM under both healthy and faulty conditions. The programming was 

done using M-files that was run along with the simulation to apply proposed approaches and 

find the solutions. 

Figures 4.23 – 4.25 show block diagrams of the Simulink models used in the identifiability 

analysis, parameter identification and fault diagnosis, respectively. 
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Figure 4.23  Simulink model showing machine mathematical model combined with practical data for 

identifiability analysis. 
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Figure 4.24  Simulink model showing machine mathematical model combined with practical data for IM 

parameter identification using the proposed integrated steady-state model. 
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Figure 4.25  Simulink model showing machine mathematical model combined with practical data for the 

proposed IM fault diagnosis. 



Experimental setup and simulation                                                                                                           Chapter 4 

 

70 

 

4.4 Conclusion 

The experimental setup used in the project has been presented in this chapter. The main 

components of the hardware configuration of experimental system have been described. In 

addition, measurements of stator voltages, currents, and rotor speed were collected and 

presented for different operation conditions including healthy and faulty machine to be used in 

next chapters. Simulation models were presented for the proposed techniques for identifiability 

analysis, parameter identification and condition monitoring.  

Measurements obtained from the healthy IM in conjunction with simulations models will be 

used to examine the identifiability of the IM models in chapter 5 and for IM parameter 

identification in chapter 6. Measurements obtained from the faulty machine are used for IM 

condition monitoring in Chapter 7. 
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CHAPTER 5  

On the identifiability of steady-state induction machine models using external 

measurements 

 

The identifiability of two commonly used induction machine steady-state models, the T- and the 

inverse Γ-models is examined using a novel approach based on the Alternating Conditional 

Expectation (ACE) algorithm. The identifiability analysis results are experimentally verified 

using external measurements in conjunction with the Levenberg-Marquardt and Particle 

Swarm Optimization (PSO) algorithm.  
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5.1 Introduction 

A common practice in IM parameter identification techniques is to use external measurements 

of voltage, current, speed, and/or torque. Using this approach, it is possible to obtain an infinite 

number of mathematical solutions representing the machine parameters depending on the model 

employed. 

For a healthy IM, the parameters of the T-model (the familiar equivalent circuit of the machine) 

may be identified by performing the standard no-load, dc and locked rotor tests as detailed in 

IEEE Standard 112-2004 [48]. This requires the ratio of stator leakage inductance to rotor 

leakage inductance (݈௟௦/݈௟௥) to be known. When this ratio is unavailable or when the machine in 

question is in operation and it is not possible to carry out the standard tests, an alternative 

parameter identification approach is required. One such approach recently proposed in the 

literature [6, 8, 10], is to try to estimate the IM parameters based on external measurements at 

stator terminal while the machine is running. Before using a machine model in such a parameter 

estimation technique, however, it is important to test the identifiability of the model to make 

sure that its parameters are uniquely identifiable. 

This chapter presents an identifiability analysis of two commonly used IM models; the familiar 

T-Model and the inverse Γ- model (shown in chapter 1) using the techniques described in 

chapter 2. First, two approaches, the transfer function and the bond graph, which are a priori 

(structural) identifiability analysis methods are employed. Second, a novel identifiability 

analysis approach is proposed in which the Alternating Conditional Expectation (ACE) 

algorithm is used for the first time to test the identifiability of the two IM models.  

For verification purposes, an experimental approach based on the use of the Levenberg–

Marquardt (L-M) and particle swarm optimization (PSO) algorithms in conjunction with the 

measured steady-state machine terminal quantities are used to identify the parameters of the 

test machine, considering both the T- and the inverse Γ-models. These techniques make use of 

the instantaneous steady-state values of external measurements of only one phase stator voltage 

and current and rotor speed. These are general schemes that can be utilized with different types 

of machines under various operating conditions (healthy and faults). They do not require any 

assumptions and/or a prior knowledge of the IM parameters. Also, they do not need any 

additional hardware or changes in motor connections to be used for running machines 
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5.2 Identifiability analysis of IM T-model 

In this section, the identifiability of IM T-model is assessed using the aforementioned 

approaches in chapter 2. 

5.2.1 The transfer function approach 

Mathematically, the transfer function of the T-model shown in chapter 1 is given by the 

admittance (G(s) = I(s)/V(s) = 1/Zeq). The input impedance of this model given by [160]: 
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where	ߩ ൌ ݆߱௦, and a1, b1, c1 and d1 are functions of the five electrical parameters that can be 

obtained from the following expressions: 
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Taking Laplace transform, equation (5.1) becomes as: 
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Although the T-model has five physical parameters, only four different coefficients (a1, b1, c1 

and d1) can be uniquely determined from the input/output measurements defined by GT(s). Any 

parameter can only be expressed by other parameters is not identifiable and vice versa.  

5.2.2 Bond graph approach 

The different parameter variables of T-model are drawn in the bond graph. All elements are 

connected to appropriate junctions. Figure 5.1 shows the bond graph of the IM T-model where 

the half arrows show the direction of power flow. The causal strokes are set in accordance with 

the procedure discussed in Chapter 2.  For example, at 1-junction, the effort (vs) of source SE 
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moves towards its causal stroke while the flow (is) moves away from its causal stroke. The 

inductor element imposes flow, hence can be modelled as a source with a causal stroke at the 

element side. For a resistive element, causal stroke can go on both directions in such a way to 

satisfy the junction at the other end of the bond. For a proper causal completion, the causal 

strokes for ܴ௦ and ܴ௥ are set on the near of 1-junctions. 

As discussed in chapter 2, it is essential that one bond imposes an effort on each 0-junction (i.e. 

one causal stroke is on the 0-junction). This has not been realized in the bond graph shown in 

figure 5.1. With such a causality conflict, it is not possible to construct a proper bond-graph for 

the circuit that can be used in parameter identification. 

 

 

 

Figure 5.1  T-model causal bond graph. 
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5.2.3 Alternating conditional expectation algorithm 

In this section the ACE algorithm, described in chapter 2, is applied for the first time to test the 

identifiability of the IM T-Model [10].  The IM T-model is a multivariate model with a response 

(ܼ௘௤) and five predictors (ܴ௦	, ܴ௥	, ݔ௟௦, ݔ௟௥, and ݔ௠). Five hundred tuples of ܴ௦,	ܴ௥,	ݔ௟௦,	ݔ௟௥ and 

,௠ are independently and randomly drawn from the interval ሾ0ݔ 1ሿ and ܼ௘௤ was calculated for 

each tuple. The three inductances have been multiplied by a weighting factor of (2 ൈ ߨ ൈ 50) 

to take into account the real contribution of these parameter in the overall impedance. 

This was carried out three different times to obtain three different	ሺ500 ൈ 6) matrices ܑܓ	 ൌ

ሾܼ௘௤	 ܴ௦	 ܴ௥	 ݔ௟௦ ݔ௟௥ ݔ௠ሿ (i=1, 2 and 3) to serve as inputs to the ACE algorithm. 

The optimal transformations of T-model parameters are achieved through minimizing the 

variance between the transformed response variable ߠ൫ܼ௘௤൯ and the summation of transformed 

predictor variables	∑ ∅௜ሺܓሺ݌௜ሻሻ
௡
௜ୀଵ , where ۾= [ܴ௦	 ܴ௥	 ݔ௟௦ ݔ௟௥ ݔ௠].  

The optimal transformations of the five predictors	ܴ௦, ܴ௥	, ݔ௦, ݔ௥, and ݔ௠ for the three different 

estimated matrices are shown in figure 5.2. It is difficult to draw the scatterplot for complex 

variables (	ܼ௘௤) because it would require four dimensions (for the real and imaginary parts of 

ܼ௘௤ and ). Therefore, a scatterplot of หܼ௘௤ห is plotted to represent	ܼ௘௤.  

For functionally related parameters, almost the same optimal transformations from one sample 

to another and from one estimate to another will be obtained. Nearly linear transformations are 

obtained for หܼ௘௤ห, ݔ௟௦,	ݔ௟௥ and ݔ௠. These transformations remained stable for all estimates and, 

thus the parameters are functionally related. However, different transformations are obtained 

for ܴ௦	 and ܴ௥. 

Optimal transformations of functionally related parameters are invariant under different 

estimates for each new drawn matrix	ܓ. A non-identifiable model causes parameters to be 

functionally related. The maximum correlation between the response and the five predictors is 

0.99583. Such a high correlation coefficient between the parameters means that there is a strong 

dependence between them which is a characteristic of a non-identifiable model. These results 

obtained from ACE agree with those obtained from the other 2 approaches, the transfer function 

and the bond graph. 
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Figure 5.2  ACE optimal transformations plot of the T-model parameters. 
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5.3 Identifiability analysis of IM inverse Γ-model 

Similar to the IM T-model, the identifiability of the inverse Γ-model is tested using the 

approaches described in chapter 2.  

5.3.1 The transfer function approach 

The input impedance of the inverse Γ-model as a function of the slip s is given by [18]: 
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where ρ=jωs, and a2, b2, c2 and d2 are functions of the four electrical parameters of the model 

and they can be obtained from the following expressions: 
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The transfer function of this model is given by [18]: 
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There are four coefficients of ܩ௰ሺݏሻ that can be uniquely determined if the external 

measurements are used. Model parameters can then be uniquely identified from these 

coefficients by using (5.5) [18]. 

5.3.2 Bond graph Approach 

To avoid the causality conflict occurred in the bond graph of the T-model, the stator leakage 

inductance is combined together with that of the rotor as suggested in [161]. Figure 5.3 shows 

the bond graph of the inverse Γ-model where the parameter redundancy has been removed and 

a proper bond graph is obtained [18].  
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Figure 5.3  Bond graph of IM Inverse Γ-equivalent circuit. 

 

5.3.3 Alternating conditional expectation algorithm 

The ACE technique is used to estimate the transformations of a response ܼ௘௤ᇱ  and a set of four 

predictor variables (ܴ௦, ܴ௥ᇱ ௟௦ܮ ,
ᇱ  and ܮ௠ᇱ ) based on the IM inverse Γ-model [10]. ܴ௦ , R୰ᇱ ௟௦ݔ ,

ᇱ , and 

௠ᇱݔ  are independently drawn and ܼ௘௤ᇱ  was calculated for each estimate. This was repeated three 

different times and, accordingly, three different matrices ܓ௜	=[ܼ௘௤ᇱ 	 ܴ௦	 ܴ௥ᇱ ௟௦ݔ 
ᇱ ௠ᇱݔ  ሿ (i=1, 2 and 

3) with dimension of 500ൈ5 are obtained and serve as inputs to the ACE algorithm. The optimal 

transformations for the response (ܼ௘௤ᇱ ), and the four predictors (ܴ௦, ܴ௥ᇱ ௟௦ܮ ,
ᇱ  and ܮ௠ᇱ ) are shown 

in figure 5.4 [10].  

The transformations look different from one estimate to another. This demonstrates the 

independence of the parameters and thus the identifiable nature of the model. The maximum 

total correlation between the response ܼ௘௤ᇱ  and the four predictors was calculated at 0.0023038. 

This very low correlation coefficient between the inverse Γ-model impedance and the four 

electrical parameters means there is no dependence between the parameters. Thus, the 

parameters of the inverse Γ-model can be uniquely identified. 
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Figure 5.4  ACE optimal transformations plot of IM Inverse Γ-model parameters. 
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The L-M and PSO are developed and employed to estimate the parameters of the T- and Inverse 

Γ-models of the IM. These techniques are based on the use of external measurements of only 

one phase stator voltage and current and rotor speed. The measured phase A stator current (݅஺௠) 

is compared with calculated from the simulation model (݅஺௖ሻ with the model parameters 

adjusted by the optimization algorithm (L-M or PSO) to minimize the error and to find the 

model parameters that give the best match between the two current sets. The block diagram of 

the identification process is shown in figure 5.5. 

The IM is modelled using Matlab/Simulink as shown in chapter 4. The optimization algorithms 

(parameter tuning) were done using M-files that were run along with the simulation to find the 

solutions (minimum error). This was done for different operating conditions of the test machine.  

In the case of an identifiable model, the results should not be affected by the identification 

algorithm initialization. The algorithm will converge to the same solution (within acceptable 

limits) regardless of the initial conditions used to initialize the identification search. For a non-

identifiable model, different parameter values will be obtained for different initial conditions 

(i.e. for different runs of the algorithm).  
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Figure 5.5   General structure of the identification technique. 
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5.4.1 Levenberg-Marquardt (L-M) algorithm for parameter estimation 

The measured current shown in chapter 4 is compared with calculated current obtained from 

the IM model. The task of the L-M algorithm is to minimize the error and to find the model 

parameters that give the best match between the two current sets.  

A.  T-model identifiability analysis using L-M 

For the T-model, the L-M algorithm continuously updates the five parameter values (ܴ௦, ܴ௥, 

݈௟௦, ݈௟௥, and ܮ௠) and feeds them to the system model (constructed in Matlab/Simulink) to 

calculate the phase current until a close agreement between the measured and calculated 

currents is achieved. The process is then repeated for different initial conditions.  

For supply-fed, the current is adjusted by the ac drive of the synchronous machine loading the 

induction motor. This occurs at a speed of 1418 r/m (i.e. a slip of 0.055) as shown in chapter 4. 

The parameter identification process using the L-M is repeated many times at different initial 

conditions achieving completely different results every time, as demonstrated in table 5.1 which 

shows three such estimates. Figure 5.6 shows the convergence history of the estimated 

parameters of the T-Model for the three different estimates. Figure 5.7 shows the error function 

convergence for the 1st estimate.  

Figure 5.8 shows the measured current (݅஺௠ሻ and the calculated current (݅஺஼ሻ with one of the 

parameter sets obtained by L-M parameters (1st estimate). Figure 5.9 shows the squared error 

(߯ଶሻ as a function of rotor and stator leakage inductances based on the measured data.  

 

 

Pars. 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 6.3470 Ω 3.8862 Ω 5.2315 Ω 
ܴ௥ 2.3655 Ω 2.5006 Ω 3.5782 Ω 
݈௟௦ 0.1075 H 0.1105 H 0.0418 H 
݈௟௥ 0.0328 H 0.0344 H 0.0644 H 
 ௠ 1.2383 H 1.5739 H 0.4321 Hܮ

หܼ௘௤ห 67.30 Ω 68.31 Ω 67.77 Ω 
∠ܼ௘௤ 45.76 º 46.12 º 45.61 º 

Table 5.1  Parameter Estimation of T-model using L-M; supply-fed at full-load (s= 0.055). 
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Figure 5.6  Convergence of the estimated parameters of the T-Model for different estimates using L-M; 

supply-fed at full-load (s=0.055). 
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Figure 5.7  The error function convergence for the 1st estimate (T-model) using L-M; supply-fed at load 

(s=0.055). 

 

 
Figure 5.8  Measured (iAm) and calculated (iAc) stator currents waveforms corresponding to the optimal 

solution of the 1st estimate (T-Model) using L-M; supply-fed at load (s=0.055). 

 

 
Figure 5.9  The sum of the squared error as a function of lls and llr based on the measured data (T-Model). 
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As shown, infinite combinations of the two inductance values result in the same minimum value 

of the squared error, i.e. there is no unique global minimum. This confirms that it is not possible 

to determine ݈௟௦ and ݈௟௥ uniquely using external measurements of voltage, current, and speed.  

For further validation, parameter identification is also investigated when the machine is driven 

by the variable frequency inverter described in chapter 4. Simple V/f control was implemented 

and the parameter identification was investigated at two different frequencies, 50 Hz and 25 

Hz.  

Similar to the supply-fed case, stator current is adjusted at the full load value using the ac drive 

of the synchronous machine load. This occurs at a speed of 1417 r/m (i.e. a slip of 0.055) and 

694 r/m (i.e. a slip of 0.075) for the 50 Hz and 25 Hz operation, respectively. 

Table 5.2 shows three different parameter estimates for 50 Hz inverter-fed operation of the IM 

at full load with slip of 0.055(1417 r/m). Figure 5.10 shows the convergence history of the 

estimated parameters of the T-Model for the three different estimates. Figure 5.11 shows the 

error function convergence for the 1st estimate. Figure 5.12 shows the measured current (݅஺௠ሻ 

and the calculated current (݅஺஼ሻ with one of the parameter sets obtained by L-M parameters (1st 

estimate). 

 

 

Pars 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 9.5726 Ω 7.8724 Ω 4.2479 Ω 
ܴ௥ 3.0323 Ω 2.6168 Ω 4.6831 Ω 
݈௟௦ 0.0656 H 0.0981 H 0.0109 H 
݈௟௥ 0.0323 H 0.0214 H 0.0206 H 
 ௠ 0.4208 H 0.8366 H 0.2977 Hܮ
หܼ௘௤ห 68.42 Ω 68.41 Ω 66.04 Ω 
∠ܼ௘௤ 42.12 º 41.16 º 44.13 º 

Table 5.2  Parameter Estimation of T-model using L-M, inverter-fed, Full-load (s= 055 and 50Hz). 
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Figure 5.10  Convergence of the estimated parameters of the T-Model for different estimates using L-M, 

inverter-fed, (s=0.055 and 50 Hz). 

0 10 20 30 40
0

5

10

15

R
s( 

)

 

 

1st Estimate 2nd Estimate 3rd Estimate

0 10 20 30 40
0

5

10

R
r( 

)

 

 

1st Estimate 2nd Estimate 3rd Estimate

0 10 20 30 40
0

0.2

0.4

l ls
(H

)

 

 

1st Estimate 2nd Estimate 3rd Estimate

0 10 20 30 40
0

0.2

0.4

0.6

0.8

l lr
(H

)

 

 

1st Estimate 2nd Estimate 3rd Estimate

0 10 20 30 40
0

0.5

1

1.5

Number of steps

L
m

(H
)

 

 

1st Estimate 2nd Estimate 3rd Estimate



On the identifiability of steady-state induction machine models using external measurements        Chapter 5 

 

86 

 

 

 
Figure 5.11  The error function convergence for the 1st estimate (T-model) using L-M, inverter-fed, 

(s=0.055 and 50 Hz). 
 

 

Figure 5.12  Measured (iAm) and calculated (iAc) stator currents waveforms corresponding to the optimal 
solution of the 1st estimate using L-M, inverter-fed, (s=0.055 and 50 Hz). 
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Figure 5.13  Convergence of the estimated parameters of the T-Model for different estimates using L-M, 

inverter-fed, (s=0.075 and 25 Hz). 
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Pars 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 2.4552 5.9963 9.8298 
ܴ௥ 2.0881 2.8468 5.7151 
݈௟௦ 0.1665 0.0996 0.0101 
݈௟௥ 0.0406 0.0279 0.0205 
݈௠ 1.0882 0.3493 0.2880 
หܼ௘௤ห 45.74 Ω 54.23 Ω 45.22 Ω 
∠ܼ௘௤ 52.52 º 49.88 º 50.20 º 

Table 5.3  Parameter Estimation of T-model using L-M, inverter-fed, Full-load (s= 075 and 25 Hz). 

 

 
Figure 5.14  The error function convergence for the 1st estimate (T-model) using L-M, inverter-fed, 

(s=0.075 and 25 Hz). 

 

 
Figure 5.15  Measured (iAm) and calculated (iAc) stator currents waveforms corresponding to the optimal 

solution of the 1st estimate using L-M, inverter-fed, (s=0.075 and 25 Hz). 
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B. Inverse Γ-model identifiability analysis using L-M 

In this test, the parameter vector P represents a set of the four parameters (ܴ௦, ܴ௥ᇱ ௟௦ܮ ,
ᇱ  and ܮ௠ᇱ ) 

of the inverse Γ-model. Regardless of the initial conditions, the L-M algorithm successfully 

estimates the parameter vector of the inverse Γ-model. The same measurements for supply-fed 

and inverter-fed IM used in previous tests are used here.  

Table 5.4 represents three sets of estimated parameter values for different initial conditions at 

full-load supply-fed IM with slip of 0.055.  The total impedance corresponding to each estimate 

are also calculated and shown in the table. Figure 5.16 shows the convergence history of the 

estimated parameters of the T-Model for the three different estimates at full-load.  

Figure 5.17 shows the error function convergence for the 1st estimate. Figure 5.18 shows the 

measured current (݅஺௠ሻ and the calculated current (݅஺஼ሻ with one of the parameter sets obtained 

by L-M parameters (1st estimate). 

The squared error (χଶሻ as a function of the two inductances (݈௟௦′ and ܮ௠′) based on the measured 

data is shown in Figure 5.19. As illustrated, there is only one optimal combination of the two 

parameter values (݈௟௦′= 0.0912 H, ܮ௠ᇱ = 0.366 H) that satisfies the objective function and 

provides one global minimum.  

 

 

Pars. 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 3.4501 Ω 3.6112 Ω 3.5560 Ω 
ܴ௥′ 2.6900 Ω 2.7045 Ω 2.6181 Ω 
݈௟௦′ 0.0900 H 0.0998 H 0.0998 H 
 ௠′ 0.3685 H 0.3787 H 0.4103 Hܮ

หܼ௘௤ห 64.46 Ω 66.99 Ω 63.94 Ω 
∠ܼ௘௤ 45.53 º 46.85 º 45.52º 

Table 5.4  Parameter Estimation of Inverse Γ-model using L-M; supply-fed at full-load (s=0.055). 
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Figure 5.16  Convergence of the estimated parameters of the Inverse Γ-Model for different estimates using 

L-M at full-load, supply-fed, (s=0.055). 
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Figure 5.17  The error function convergence for the 1st estimate (Inverse Γ-Model) using L-M, supply-fed, 
(s=0.055). 

 

 

Figure 5.18  Measured (iAm) and calculated (iAc) stator currents waveforms corresponding to the optimal 
solution of the 1st estimate (Inverse Γ-Model) using L-M, supply-fed, (s=0.055). 

 
Figure 5.19  The sum of the squared error as a function of of lls' and Lm' based on the measured data 

(Inverse Γ-model). 
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Table 5.5 shows three different parameter estimates for 50 Hz inverter-fed operation of the IM 

at full-load with slip of 0.055 (1417 r/m). The total impedance corresponding to each estimate 

are also calculated and shown in the table. Figure 5.20 shows the convergence history of the 

estimated parameters of the T-Model for the three different estimates.  

 

 

 

 

 
Figure 5.20  Convergence of the estimated parameters of the Inverse Γ-model for different estimates using 

L-M, inverter-fed, (s=0.055 and 50 Hz). 
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Figure 5.21 shows the error function convergence for the 1st estimate. Figure 5.22 shows the 

measured current (݅஺௠ሻ and the calculated current (݅஺஼ሻ with one of the parameter sets obtained 

by L-M parameters (1st estimate). 

 

Pars. 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 3.7112 Ω 3.7303 Ω 3.6797 Ω 
ܴ௥′ 2.977 Ω 2.8036 Ω 2.8967 Ω 
݈௟௦′ 0.0804 H 0.0895 H 0.0890 H 
 ௠′ 0.3703 H 0.3762 H 0.3893 Hܮ

หܼ௘௤ห 66.36 Ω 66.28 Ω 67.06 Ω 
∠ܼ௘௤ 43.59 44.98 44.91 

Table 5.5  Parameter Estimation of Inverse Γ-model using L-M, inverter-fed, (s=0.055 and 50Hz). 

 

 

 

Figure 5.21  The error function convergence for the 1st estimate (Inverse Γ-model) using L-M, inverter-
fed, (s=0.055 and 50 Hz). 

 

 
Figure 5.22  Measured (iAm) and calculated (iAc) stator currents waveforms corresponding to the optimal 

solution of the 1st estimate using L-M, inverter-fed, (s=0.055 and 50 Hz). 
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Three different parameter estimates for 25 Hz inverter-fed operation of the IM at full-load with 

slip of 0.075 (694 r/m) are demonstrated in Table 5.6. Figure 5.23 shows the convergence 

history of the estimated parameters of the inverse Γ-model for the three different estimates. 

  

 

 

 

 
Figure 5.23  The error function convergence for the 1st estimate (Inverse Γ-model) using L-M, inverter-

fed, (s=0.075 and 25 Hz). 
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Figure 5.24 shows the error function convergence for the 1st estimate. Figure 5.25 shows the 

measured current (݅஺௠ሻ and the calculated current (݅஺஼ሻ with one of the parameter sets obtained 

by L-M parameters (1st estimate). 

 

Pars. 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 3.7481 Ω 3.6221 Ω 3.8447 Ω 
ܴ௥′ 2.7636 Ω 2.7714 Ω 2.7201 Ω 
݈௟௦′ 0.1000 H 0.1005 H 0.1005 H 
 ௠′ 0.3095 H 0.3201 H 0.3149 Hܮ

หܼ௘௤ห 43.38 Ω 43.46 Ω 43.14 Ω 
∠ܼ௘௤ 50.67 50.46 50.26 

Table 5.6  Parameter Estimation of Inverse Γ-model using L-M, inverter-fed (s=0.075 and 25Hz). 

 
 

 
Figure 5.24  The error function convergence for the 1st estimate (Inverse Γ-model) using L-M, inverter-

fed, (s=0.075 and 25 Hz). 

 

 
Figure 5.25  Measured (iAm) and calculated (iAc) stator currents waveforms corresponding to the optimal 

solution of the 1st estimate using L-M, inverter-fed, (s=0.075 and 25 Hz). 
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5.4.2 Particle swarm optimization (PSO) algorithm for parameter estimation 

The Particle swarm optimization (PSO) tool is developed and employed to estimate the 

parameters of the T- and Inverse Γ-models of the IM. Herein, the PSO algorithm is used to find 

the best-fit machine parameters by minimizing an objective function, the integral absolute error 

(IAE) between the measured phase A stator current (݅஺௠) and that calculated from the simulation 

model (݅஺௖ሻ: 

   TiiIAE AcAm    (5.7) 

where	∆ܶ is the sampling period. 

This was done for different operating conditions of the test machine. The block diagram of the 

identification process is shown in figure 5.5. The same previous measurements are used with 

the PSO. To avoid repetition, only inverter-fed results are included in this chapter, more results 

can be found in Appendix C. 

A. T-model identifiability analysis using PSO 

For the T-model, each particle represents one set of the five parameters (ܴ௦, ܴ௥, ݈௟௦, ݈௟௥, and  

 ௠) of the T-model. The PSO algorithm continuously updates these five parameter values andܮ

feeds them to the system model (constructed in Matlab/Simulink) to calculate the phase current 

until a close agreement between the measured and calculated currents is achieved. The process 

has been done for different times with different initial conditions. Depending on the initial 

conditions, completely different sets of parameters can be obtained.  

Table 5.7 shows three sets of estimated parameter values (each obtained with different initial 

conditions) at full-load inverter-fed IM with slip of 0.055.  The total impedance corresponding 

to each estimate are also calculated and shown in the table. Figure 5.26 shows the convergence 

history of the estimated parameters of the T-Model for the three different estimates. Figure 5.27 

shows the error function convergence for the 1st estimate. The 1st parameter sets obtained by 

PSO is applied using the Matlab model and the calculated (݅஺஼) and measured (݅஺௠) stator 

currents are showed in figure 5.28. 
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Figure 5.26.  Convergence of the estimated parameters of the T-Model for different estimates using PSO; 
inverter-fed (s=0.055 and 50 Hz). 
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Pars. 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 7.5456 Ω 4.9982 Ω 5.6665 Ω 
ܴ௥ 2.6405 Ω 3.1882 Ω 3.5210 Ω 
݈௟௦ 0.1001 H 0.0681 H 0.0594 H 
݈௟௥ 0.0126 H 0.0403 H 0.0167 H 
௠ܮ 0.480 H 0.4931 H 0.3350 H 

หܼ௘௤ห 68.79 Ω 68.79 Ω 69.04 Ω 
∠ܼ௘௤ 44.66 º 44.52º 44.75º 

Table 5.7  Parameter Estimation of T-model using PSO; inverter-fed (s=0.055 and 50 Hz). 

 

 

 

 

Figure 5.27  The error function convergence for the 1st estimate (T-model) using PSO; inverter-fed 
(s=0.055 and 50 Hz). 

 

 

 
Figure 5.28  Measured (iAm) and calculated (iAc) stator currents waveforms corresponding to the optimal 

solution of the 1st estimate (T-Model) using PSO; inverter-fed (s=0.055 and 50 Hz). 
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Figure 5.29 shows the error (IAE) as a function of rotor and stator leakage inductances based 

on the measured data. As shown, infinite combinations of the two inductance values result in 

the same minimum value of the error, i.e. there is no unique global minimum. This confirms 

that it is not possible to determine ݈௟௦ and ݈௟௥ uniquely using external measurements of voltage, 

current, and speed.  

Figure 5.30 shows the speed-torque characteristics of the IM for the real (experimental 

parameters obtained from standard IEEE tests shown in table 4.1) and estimated parameter sets 

in table 5.7.  

 

 
Figure 5.29  The IAE error as a function of ࢙࢒࢒ and ࢘࢒࢒ based on the measured data (T-Model). 

 

 

Figure 5.30 Speed vs. Torque for the experimental and the three different parameter sets illustrated in 
table 5.3 
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It can be observed from the obtained results that, completely different sets of parameters can be 

obtained depending on the initial conditions. Three sets of PSO estimated parameter values 

(each obtained with different initial conditions) for each test are obtained. The total impedance 

corresponding to each test and estimate are also calculated and shown in the tables. Despite the 

significant differences between the three sets of parameters, the calculated current closely 

matches the measured current in each case. In addition, almost the same electromagnetic torque 

at slip of 0.055 is obtained for the all sets including the real one; 5.1969 N.m, 5.3361 N.m, 5.017 

N.m, and 5.2073 N.m respectively.  This confirms that the T-model is non-identifiable. 

B. Inverse Γ-model identifiability analysis using PSO 

Similar to the T-model, identifiability of the inverse Γ-model is investigated using PSO 

technique. In this test, each particle represents one set of the four parameters (ܴ௦, ܴ௥ᇱ ௟௦ܮ ,
ᇱ  and 

௠ᇱܮ ) of the inverse Γ-model. The task of PSO is to update the four parameter values until a close 

agreement between the measured and calculated currents is achieved. Again, the process has 

been done for different times with different initial parameters and operating conditions. 

Regardless the initial conditions, almost similar sets of parameters with an acceptable error can 

be obtained. Table 5.8 shows three sets of estimated parameters with different initial conditions 

at a slip of 0.055 for inverter-fed IM.  

The convergence history of the estimated parameters for the three different estimates is 

demonstrated in figure 5.31.  Figure 5.32 shows the error function convergence for the 1st 

estimate. Figure 5.33 shows the measured current (݅஺௠ሻ and the calculated current (݅஺஼ሻ with 

one of the parameter sets obtained by PSO parameters (1st estimate).  

 

Pars. 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 3.7 Ω 3.9907 Ω 3.8969 Ω 
ܴ௥′ 2.8565 Ω 2.9679 Ω 2.99768 Ω 
݈௟௦′ 0.0978 H 0.0905 H 0.0913 H 
 ௠′ 0.4292 H 0.3851 H 0.3868 Hܮ

หܼ௘௤ห 68.31 Ω 68.69 Ω 68.94 Ω 
∠ܼ௘௤ 44.59º 44.69º 44.82º 

Table 5.8  Parameter estimation of Inverse Γ–model using PSO; inverter-fed (s=0.055 and 50Hz). 
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Figure 5.31  Convergence of the estimated parameters of the inverse Γ-model for different estimates; 

inverter-fed (s=0.055 and 50Hz). 
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Figure 5.32  The error function convergence for the 1st estimate (inverse Γ -model); inverter-fed (s=0.055 

and 50Hz). 

 

 

 

Figure 5.33  Measured (iAm) and calculated (iAc) stator currents waveforms corresponding to the optimal 
solution of the 1st estimate (inverse Γ-Model) ; inverter-fed (s=0.055 and 50Hz). 

 

 

Regardless of the initial conditions, PSO algorithm successfully estimates the parameter vector 

of the inverse Γ-model with an acceptable error. This small mismatch between the real and 

estimated parameters is due to measurements noise and unmodeled effects like the skin effect 

and the heat. As shown, a very good agreement between the measured and calculated current 

waveforms is realized. Similar agreement between current waveforms is obtained with the other 

sets of estimated parameters. The parameters of the T-model can be calculated from inverse Γ-

model parameters based on equation 5.8. 

 rrmmmslsrm RRLLLLlLL 2''' ,,,/    (5.8) 
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This requires the ratio of α to be known which is not available in real application and, hence 

going back from inverse Γ-model to T-model is impossible. For many applications such as high 

performance control, the knowledge of the real physical parameter values of the T-model is 

necessary [162, 163]. 

5.5 Conclusion 

This chapter presented a detailed study of the identifiability of the parameters of the T- and 

inverse Γ-equivalent circuits of the induction motor. The identifiability of both circuits has been 

investigated by the transfer function and bond graph as a priori identifiability approaches. A 

novel approach based on the Alternative Conditional Expectation (ACE) algorithm is proposed 

and applied to assess the identifiability of the two IM models. The analysis shows that, if 

external measurements are used, the machine T-model is non-identifiable whilst the inverse Γ- 

model is identifiable. 

Using the ACE algorithm, a high correlation coefficient of about 0.996 between the parameters 

of the T-model is obtained suggesting that the parameters are dependent on each other and 

cannot be uniquely identified. On the other hand, ACE produces a small maximum correlation 

coefficient of 0.0023 between the parameters of the inverse Γ-model suggesting that the 

parameters of the model are identifiable. 

These results are experimentally verified using measured machine waveforms, shown in 

chapter 4, in conjunction with the Levenberg-Marquardt (L-M) and Particle Swarm 

Optimization (PSO) algorithms. When comparing measured and calculated current waveforms 

to minimize the sum of the errors, infinite combinations of parameter values produce the same 

input impedance and torque of the T-model.  In contrast, for inverse Γ-model, only one 

combination of parameter values provides the equivalent impedance and a single global 

minimum of the objective function is obtained.  

It confirms that the T-model parameters are not uniquely identifiable (if the ratio ݈௟௦/݈௟௥ is 

unknown). The analysis also confirms that the parameters of the of inverse Γ- model are 

uniquely identifiable and can then identified from measured steady-state machine data.  
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CHAPTER 6  

Induction Machine Parameter Identification Using Integrated Steady-State Model 

 

A new technique for induction machine parameter identification from external measurements 

of terminal waveforms is proposed in this chapter. The proposed method uses a combination of 

the steady-state induction machine conventional equivalent circuit (T-model) and the inverse 

Γ-model in conjunction with particle swarm optimization and Levenberg-Marquardt as 

optimization algorithms. This identification technique overcomes the non-identifiability 

problem associated with the conventional T-model, eliminating the possibility of obtaining 

incorrect parameter sets that still satisfy the model solution. The transfer function approach is 

employed to confirm the structural identifiability of the proposed integrated model. The 

performance of the proposed identification technique is experimentally demonstrated for both 

supply-fed and inverter-fed operations. 
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6.1 Introduction 

Accurate Parameter identification of Induction machines (IMs) is required for many applications 

such as condition monitoring [3] and control [4, 5]. In the literature, a number of different IM 

models have been used in parameter identification studies. The most commonly utilized model 

is the standard steady-state per phase equivalent circuit (T-model). However, the parameters of 

this model have been shown not to be uniquely identified from external measurements at the 

stator terminals (detailed in chapter 5) [10, 161].  

The non-identifiability of the T-model is mainly due to the model redundancy where the three 

dependent inductances (lls, llr and Lm) can be described by only two independent inductances. 

The ratio of ݈௟௦/݈௟௥ may be available in the datasheet of the IM or can be determined based on 

motor classification. However, this information is not always available and if available may not 

always be useful (e.g. for a faulty machine). It has also been shown that, unlike the T-model, the 

inverse Γ-model is identifiable, i.e. only one unique set of parameter values will be obtained in 

the identification process [10, 18]. This model includes only four electrical parameters (ܴ௦, ܴ௥ᇱ , 

݈௟௦
ᇱ ௠ᇱܮ , ). The relationship between the parameters of the T- and inverse Γ- models is given by 

the following equations [12]:  

 rrmmmslsrm RRLLLLlLL 2''' ,,,/    (6.1) 

where ܮ௦ and ܮ௥ are the self-inductances of the stator and rotor given by ܮ௦ ൌ ௠ܮ ൅ ݈௟௦	and ܮ௥ ൌ

௠ܮ ൅ ݈௟௥, respectively. 

The main drawback of using the inverse Γ-model for parameter estimation purposes, however, 

is that it is not possible to obtain the values of the T-model parameters usually needed in high 

performance control applications directly from the identified inverse Γ-model parameters.   

In this chapter, a new approach based on the use of a combination of the T- and inverse - models 

is proposed to uniquely estimate the parameters of the standard IM T-equivalent circuit from 

readily available measured stator waveforms and rotor speed. The transfer function 

identifiability test approach [18, 34] is used to verify that the parameters of the T-model can be 

uniquely identified when using the proposed integrated model. The integrated model is then used 

in parameter identification in conjunction with an optimization technique based on the 

Levenberg-Marquardt (L-M) and particle swarm optimization (PSO) algorithms. 
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In the optimization process, the objective function is formulated to minimize the error between 

the measured current and those obtained from the T- and inverse - models (the two components 

of the integrated model). This method is suitable for online parameter estimation as no additional 

hardware or changes in motor connections are required. The proposed identification technique 

is experimentally verified using the test machine for both supply-fed and inverter-fed operation 

of the machine. Results confirm the effectiveness of the proposed technique in successfully 

estimating the machine parameters at different operating conditions.  

6.2 Proposed IM Parameter Identification Technique 

In the parameter identification technique proposed in this chapter, both the T- and inverse Γ-

models are combined as illustrated in figure 6.1, where vAm is the measured stator voltage, iAm is 

the measured stator current, iAT is the calculated current from the T-model and iA is the 

calculated current from inverse Γ-model.  

Only the five parameters of the T-model are considered as the parameter vector to be updated 

by the optimization algorithm. The parameters of the inverse Γ-model are then calculated using 

equation (6.1). The two models are solved for the same inputs and the objective function is set 

to minimize the difference between the measured current and the calculated currents of both 

models at the same time. A predefined minimum can only be achieved when the calculated 

currents of both models offer very good agreement with the measured current. Since there is no 

redundancy in the inverse Γ-model, the parameter vector that satisfies the minimum error is 

unique.  

 

Test IM

T-Model error

Inverse Γ-model

L-M

Ami

ATi

Ai

Amv

r



 

Figure 6.1  Block diagram of the proposed parameter identification technique. 
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For an identifiable model, good optimization algorithms should be able to detect the global 

minimum of the objective function and consequently identify the model parameters with a good 

accuracy. Nearly the same parameter values should be obtained if the identification process is 

repeated at different initial conditions. The next section will show that this is the case when the 

L-M and PSO algorithms are employed with the proposed integrated model.  

6.3 Identifiability analysis of proposed integrated model 

For further verification of the identifiability of the proposed model, an analytical proof is 

presented in this section. This is achieved by testing the structural identifiability of the model 

using the transfer function identifiability test approach described in chapter 2 [18, 33, 34].  

In this approach, the transfer function is written in a canonical form, common factors in the 

numerator and denominator are cancelled and the transfer function is simplified so that the 

coefficients of the higher power of S in the denominator is always one. The identifiable 

parameters are the parameters that can be uniquely deduced from the coefficients of the transfer 

function matrix.  

The transfer function approach has been applied to test the identifiability of both the T- and 

inverse Γ-models in chapter 5. For both models, the transfer functions as a function of the slip 

(s) are represented by the input admittance of the circuit (I(S)/V(S) = 1/Zeq) as follows [18]: 
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where: 
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 (6.4) 

where ܮ௦	ᇱ is the self-inductances of the stator given by ܮ௦	ᇱ ൌ ௠ᇱܮ ൅ ݈௟௦
ᇱ . 

Although the T-model has five physical parameters, only four different coefficients of the 

transfer function GT(S) (a1, b1, c1, and d1) can be uniquely determined from the input/output 

measurements. On the other hand, the inverse Γ-model has only four parameters which is equal 

to the number of coefficients of the transfer function GΓ (S) (a2, b2, c2, and d2). Therefore, the 

model parameters can be uniquely determined from using equations (6.4), taking into account 

that the coefficients of the transfer function can be determined from the input/output 

measurements. 

Similarly, the identifiability of the proposed integrated model can be tested using the transfer 

function approach. The model can be represented by a parallel connection of the T- and inverse 

Γ-models (figure 6.2) since the two models are solved simultaneously for the same input voltage.  

 

 

AΓiATi

Av T-Model
GT(s)

Inverse Γ-
model
GΓ(s)

 

Figure 6.2  Schematic representation of the proposed integrated model. 
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In this case, the output of the transfer function (GI(S)) can be considered as the total current and 

the transfer function is given by: 

 (S)G(S)G(S)G ΓTI   (6.5) 

Inserting equations (6.2), (6.3), and (6.4) into equation (6.5), the transfer function obtained: 
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 (6.7) 

With the integrated models, there are eight coefficients of GI(s) that can be uniquely determined 

from the input/output measurements. Only the five parameters of the T-model need to be 

calculated from these eight coefficients using equation (6.7). Therefore, when using the proposed 

integrated model, the parameters of the T-model can be uniquely identified from external 

measurements, unlike the case of using the T-model by its own. 

6.4 Experimental Verification  

To validate the proposed scheme, parameter identification is investigated at two different speeds 

when the IM is driven by the variable frequency inverter described in chapter 4. The five 

parameters of the T-model (ܴ௦, ܴ௥, ݔ௟௦, ݔ௟௥, and ݔ௠) are considered as the parameter vector P to 

be updated by the optimization algorithm. The parameters of the inverse Γ-model are then 

calculated using equation (6.1). The two models are solved for the same inputs and the objective 

function is set to minimize the difference between the measured current and the calculated 

currents of both models at the same time. 
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For verification, the proposed method is tested using both the PSO and L-M algorithms in 

conjunction with the measurements obtained in chapter 4.  

6.4.1 Induction machine parameter identification using L-M 

The total chi-squared error function ሺχଶሻ of both models is considered as the objective function 

in this case. The stator current is adjusted at the full load value using the ac drive of the 

synchronous machine load. This occurs at a speed of 1417 r/m (i.e. a slip of 0.055) and 694 r/m 

(i.e. a slip of 0.075) for the 50 Hz and 25 Hz operation, respectively. 

The parameter identification process using L-M is repeated many times at different initial 

conditions achieving very similar results every time, as demonstrated in table (6.1) which shows 

three such estimates for 50 Hz inverter-fed operation of the IM. 

 The full convergence history for these three estimates is shown in figure 6.3. Figure 6.4 shows 

the convergence of the error χଶ for the first estimate. The waveforms of the measured current iAm 

and the calculated currents iAT  and iA, corresponding to the 1st estimate parameter set in table 

6.1, are shown in figure 6.5. 

As shown, a very good agreement is obtained between the measured and calculated currents 

waveforms. Similar results are obtained for the two other estimates. 

 
 
 
 
 

Pars. 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 3.8269 Ω 3.8842 Ω 3.9805 Ω 
ܴ௥ 3.7594 Ω 3.8781 Ω 4.0183 Ω 
݈௟௦ 0.0358 H 0.0370 H 0.0317 H 
݈௟௥ 0.0597 H 0.0594 H 0.0573 H 
௠ܮ 0.4299 H 0.4307 H 0.4043 H 

หܼ௘௤ห 67.06 Ω 68.70 Ω 68.28 Ω 
∠ܼ௘௤ 44.57 º 44.80 º 44.69 º 

Table 6.1  Parameter Estimation of T-model using the proposed integrated model, L-M, Inverter-fed (s = 
0.055 and 50 Hz). 
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Figure 6.3  Convergence of the estimated parameters for different estimates using the proposed integrated 

model, L-M, inverter-fed, (s=0.055 and 50 Hz).    
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Figure 6.4  The error function convergence for the 1st estimate using the proposed integrated model), L-M, 
inverter-fed, (s=0.055 and 50 Hz).    

 

 
(a) 

 
(b) 

Figure 6.5  Stator currents waveforms coresponding to the optimal solution of the 1st estimate (proposed 
integrated model), L-M, inverter-fed, (s=0.055 and 50 Hz) (a) Measured and T-model calculated currents, 

iAm and iAT (b) Measured and inverse Γ-model calculated currents, iAm and iA . 
 

  
 

Similar parameter identification results were also obtained for 25 Hz inverter-fed operation at a 

slip of 0.075 as illustrated in table (6.2). Figure 6.6 shows that the different model parameters 

converge to the same final values regardless of the initial conditions. The error χଶ of the first 

estimate converges to a minimum value, as shown in Figure 6.7. 
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Figure 6.6  Convergence of the estimated parameters for different estimates using the proposed integrated 

model, L-M, inverter-fed, (s=0.075 and 25 Hz).   
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Similar to previous cases, a very good agreement between the measured and calculated currents 

waveforms is also obtained at the 1st estimate parameter set in table 6.2, as shown in figure 6.8.  

Similar results are also obtained for the other two estimates. 

 

 

Figure 6.7  The error function convergence for the 1st estimate using the proposed integrated model, L-M, 
inverter-fed, (s=0.075 and 25 Hz).    

 
 
 
 

 
(a) 

 
(b) 

Figure 6.8  Stator currents waveforms corresponding to the optimal solution of the 1st estimate using the 
proposed integrated model, L-M, inverter-fed, (s=0.075 and 25 Hz) (a) Measured and T-model calculated 

currents, iAm and iAT (b) Measured and inverse Γ-model calculated currents, iAm and iA . 
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Pars. 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 3.5872 Ω 3.5572 3.6664 
ܴ௥ 3.6360 Ω 3.6408 3.8405 
݈௟௦ 0.0395 H 0.0390 0.0394 
݈௟௥ 0.0470 H 0.0578 0.0593 
 ௠ 0.4231 H 0.4215 0.4395ܮ

หܼ௘௤ห 43.90 Ω 43.46 Ω 45.47 Ω 
∠ܼ௘௤ 44.85 º 46.00 º 45.99 º 

Table 6.2  Parameter estimation of T-model using the proposed Technique, L-M, Inverter-fed (s = 0.075 
and 25 Hz). 

 

6.4.2 Induction machine parameter identification using PSO 

The five parameters of the T- model are considered as the parameter vector to be updated by the 

PSO algorithm. The two models are solved for the same inputs and the objective function is set 

to minimize the difference between the measured current and the calculated currents of both 

models at the same time (figure 6.1). The total integral absolute error (IAET) of both models (6.8) 

is considered as the objective function in this case. 

   TiiiiIAE AΓAmATAmT    (6.8) 

where iAm is the measured stator current, iAT is the calculated current from the T-model and iA is 

the calculated current from inverse Γ-model.  

For supply-fed, the current is adjusted by the ac drive of the synchronous machine loading the 

IM. This occurs at a speed of 1418 r/m (i.e. a slip of 0.055) as described in chapter 4. The 

parameter identification process using PSO is repeated many times at different initial conditions 

achieving very similar results every time, as demonstrated in table 6.3 which shows three such 

estimates.  

The stopping criterion of the optimization algorithm was no significant change in the IAET for 

10 consecutive iterations. The full convergence history for these three estimates is shown in 

figure 6.9. Figure 6.10 shows the convergence of the IAET for the first estimate.  
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Figure 6.9  Convergence of the estimated parameters for different estimates using the proposed integrated 
model, PSO, supply-fed (s=0.055). 
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The waveforms of the measured current iAm and the calculated currents iAT  and iA, 

corresponding to the 1st estimate parameter set in table 6.3, are shown in figure 6.11.  As shown, 

a very good agreement is obtained between the measured and calculated currents waveforms. 

Similar results are obtained for the two other estimates. 

 

 

Figure 6.10 The error function convergence for the 1st estimate the proposed integrated model, PSO, 
supply-fed (s=0.055) 

 

 

(a) 

 

(b) 

Figure 6.11  Stator currents waveforms corresponding to the optimal solution of the 1st estimate using the 
proposed integrated model, PSO, supply-fed (s=0.055 and 50 Hz) (a) Measured and T-model calculated 

currents, iAm and iAT (b) Measured and inverse Γ-model calculated currents, iAm and iAT. 
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Pars. 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 3.4588 Ω 3.5977 Ω 3.6398 Ω 
ܴ௥ 3.5781 Ω 3.6069 Ω 3.6646 Ω 
݈௟௦ 0.0379 H 0.0393 H 0.0368 H 
݈௟௥ 0.0594 H 0.0590 H 0.0595 H 
௠ܮ 0.4070 H 0.4209 H 0.4067 H 

หܼ௘௤ห 64.90 Ω 66.09  Ω 65.77 Ω 
∠ܼ௘௤ 46.66 º 45.64 º 45.81 º 

Table 6.3  Parameter estimation of T-model using the proposed technique, PSO, supply-fed (s = 0.055). 
 

To further validate the proposed scheme, parameter identification is also investigated when the 

machine is driven by the variable frequency inverter described in chapter 4. Simple V/f control 

was implemented and the proposed technique was investigated at two different frequencies, 50 

Hz and 25 Hz. 

Similar to the supply-fed case, stator current is adjusted at the full load value using the ac drive 

of the synchronous machine load. This occurs at a speed of 1417 r/m (i.e. a slip of 0.055) and 

694 r/m (i.e. a slip of 0.075) for the 50 Hz and 25 Hz operation, respectively. 

The identification process gives very similar results regardless of initial conditions. Three 

different parameter estimates for 50 Hz inverter-fed operation of the IM are demonstrated in 

table 6.4. The full convergence history for the three estimates is shown in figure 6.12. The 

convergence of the absolute integral error IAET is shown in figure 6.13.  For the parameter set 

of the 1st estimate in table 6.4, the calculated currents show very good agreement with the 

measured current as shown in figure 6.14. 

 

 

Pars. 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 3.5804 Ω 3.7943 Ω 3.8689 Ω 
ܴ௥ 3.7767 Ω 3.6251 Ω 3.8816 Ω 
݈௟௦ 0.0396 H 0.0395 H 0.040 H 
݈௟௥ 0.0595 H 0.042 H 0.0434 H 
௠ܮ 0.4353 H 0.3845 H 0.3900 H 

หܼ௘௤ห 68.5 Ω 68.53 Ω 68.42 Ω 
∠ܼ௘௤ 44.51 º 44.55 º 44.53 º 

Table 6.4  Parameter estimation of T-model using the proposed technique, PSO, inverter-fed (s= 0.055 and 
50 Hz) 
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Figure 6.12  Convergence of the estimated parameters for different estimates using the proposed 

integrated model, PSO, inverter-fed, (s=0.055 and 50 Hz). 
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Figure 6.13  The error function convergence for the 1st estimate the proposed integrated model, PSO, 
inverter-fed, (s=0.055 and 50 Hz). 

 

 

(a) 

 

(b) 

Figure 6.14  Stator currents waveforms corresponding to the optimal solution of the 1st estimate the 
proposed integrated model, PSO, inverter-fed (s=0.055 and 50 Hz) (a) Measured and T-model calculated 

currents, iAm and iAT (b) Measured and inverse Γ-model calculated currents, iAm and iAT. 
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Similar parameter identification results were also obtained for 25 Hz inverter-fed operation at a 

slip of 0.075 as illustrated in table 6.5. Figure 6.15 shows that the different model parameters 

converge to the same final values regardless of the initial conditions. The IAET of the first 

estimate converges to a minimum value, as shown in figure 6.16. Similar to previous cases, a 

very good agreement between the measured and calculated currents waveforms is also obtained 

at the 1st estimate parameter set in Table 6.5, as shown in figure 6.17.  Similar results are also 

obtained for the other two estimates.  

 

Pars. 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 3.7188 Ω 3.7553 Ω 3.8858 Ω 
ܴ௥ 3.6495 Ω 3.5470 Ω 3.6429 Ω 
݈௟௦ 0.0394 H 0.0399 H 0.0399 H 
݈௟௥ 0.0452 H 0.0517 H 0.0484 H 
 ௠ 0.4547 H 0.4632 H 0.4567 Hܮ

หܼ௘௤ห 44.92 Ω 44.24 Ω 45.00Ω 
∠ܼ௘௤ 43.05º 43.12º 43.22º 

Table 6.5  Parameter estimation of T-model using the proposed technique, PSO, inverter-fed; full-load (s 
= 0.075), 25 Hz. 

 

 

The results clearly show that successful parameter estimation is achieved when using the 

integrated steady-state models of the machine with the both L-M and PSO algorithms. This is 

achieved regardless of the initial conditions and the operating conditions of the machine. 

The estimated parameters in tables 6.1 to 6.5 are similar to those obtained from the standard 

IEEE tests of the machine in chapter 4. 

Because of the approximation in the stopping criteria, measurement error and model 

assumptions, there are always differences between estimated parameters and those obtained 

from the standard tests. However, the difference is within acceptable limits and the parameter 

estimation is relatively accurate. For example, the maximum difference in one parameter 

estimation and the standard test value is less than 7% (for Lm in the 3rd estimate in the table 6.5). 

This compares favorably with results obtained by other researchers working in the area of 

parameter identification (for example, a maximum percentage difference of 28.75% was 

obtained for ܺ௥ in [6]).    
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Figure 6.15  Convergence of the estimated parameters for different estimates using the proposed 

integrated model, PSO, inverter-fed, (s=0.075 and 25 Hz). 
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Figure 6.16  The error function convergence for the 1st estimate the proposed integrated model, PSO, 
inverter-fed, (s=0.075 and 25 Hz). 

 

 

 

(a) 

 

(b) 

Figure 6.17  Stator currents waveforms corresponding to the optimal solution of the 1st estimate the 
proposed integrated model, PSO, inverter-fed, (s=0.075 and 25 Hz) (a) Measured and T-model calculated 

currents, iAm and iAT (b) Measured and inverse Γ-model calculated currents, iAm and iAT. 
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6.5 Conclusion 

A new model-based parameter identification technique for the electrical parameters of the 

induction machine T-model equivalent circuit is proposed in this chapter.  Steady-state external 

measurements of motor speed and phase currents are needed for the identification process. The 

proposed technique uses a combined T- and inverse Γ-steady-state induction machine models. 

The use of the two models in combination overcomes the problem of the non-identifiability of 

the T-model that can result in wrong parameter estimation. Using the proposed technique, the 

redundancy of the T-model is eliminated and only one parameter set that represents the real 

parameters of the machine is obtained.  

Compared with other parameter identification methods (like signal-based), fewer measurements 

are required to identify model parameters as it only uses the measurements that are normally 

required for a motor drive. Experimental results based on a 1.1 kW IM have shown that the 

proposed scheme can successfully estimate induction machine parameters.  
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CHAPTER 7  

Detection of Stator Winding Faults in Induction Machines Based on Parameter 
Estimation 

 

 

A novel condition monitoring technique for detecting stator winding faults in induction 

machines is proposed in this chapter. The scheme uses time domain measurements in 

conjunction with particle swarm optimization algorithm to estimate the parameters of the 

simple Inverse Γ-model of the induction machine and detect stator winding faults accordingly. 

Only stator voltages and currents and rotor speed, which are usually measured in an induction 

machines, are required for the fault detection process. The proposed technique is robust to 

supply voltage unbalance and motor loading conditions. The validity and effectiveness of the 

proposed technique is verified by extensive experimental tests under open circuit, interturn 

short circuit and combined stator winding faults. The results presented in this chapter show the 

accuracy of the proposed technique in detection and providing information about type and 

location the faults. 
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7.1 Introduction 

Induction machines (IMs) are widely used in industrial applications due to their robustness and 

reliability [59, 164, 165]. They consume around 85% of the generated electrical power produced 

in the world [65]. However, these machines may face various stresses during operation 

conditions which might lead to some unavoidable modes of failures/faults.  

The key item in the model-based fault diagnosis process is to choose the proper IM model that 

characterizes the fault. In the literature, intensive work has been done towards deriving different 

mathematical models of IMs for fault diagnosis. Simple models like classical three phase 

ABCabc, T-equivalent circuit and space vector models may not be accurate enough for 

monitoring purposes. For example, it is impractical to use an unbalanced two axis Park’s model 

for fault diagnostic as it is very difficult to distinguish between stator and rotor fault. In addition, 

it is unsuitable in the case of fault in several phases as the model will translate the defect by 

anomalous parameter values that satisfy the solution  [139]. On other hand, complicated models 

like finite elements method [166], winding function approach [145], dynamic mesh reluctance 

approach [151] are complex and take too much computation time. Most of these models require 

a priori knowledge of the machine design parameters that are usually not available. In fact, these 

models are useful for scientific purposes to get a deep understanding of the machine behaviour 

under the fault and, hence they are not suitable for industrial applications [91]. 

Due to their simplicity and shorter computation time, steady-state IM models have been widely 

used in the condition monitoring area. Chapter 5 recommended not to use the T- equivalent 

circuit with external measurements for condition monitoring and parameter identification due to 

the model non-identifiability [10]. Instead, the inverse Γ-model can be used if it is applicable 

and suitable for task in hand.  

This chapter proposes a new model-based IM condition monitoring technique by means of 

characteristic parameter estimation using external measurements. The proposed scheme has the 

advantage of being applicable to IMs condition monitoring under various stator winding failure 

modes. Only steady-state measurements of three phase stator voltages and currents in addition 

to rotor speed are required. Unlike the conventional model-based condition monitoring 

techniques, the proposed technique uses a simple model that can be used to detect different types 

of stator winding faults. The proposed technique is experimentally verified using the test 
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machine subjected to different stator windings fault conditions as described in chapter 4. Particle 

Swarm Optimization (PSO) is used in this chapter as an optimization algorithm to minimize the 

error between measured and calculated currents to obtain the machine characteristic parameters. 

Results show the effectiveness of the proposed condition monitoring technique and its ability to 

provide information about the nature and the location of the fault. 

7.2 Proposed fault diagnosis technique 

The inductances of the induction motors are based on the geometry of the machines and the 

number of the turns. In both faulty and healthy motor, the mutual inductance of two windings is 

proportional to the product of the counts of turns in the two windings. When a short circuit 

between any (stator/rotor) turns arises in a given phase, the corresponding number of winding 

will decrease [167]. Therefore, both resistances and inductances due to the short-circuit fault are 

affected and changes in their values have to be taken into account. The open circuit fault causes 

an asymmetry of the resistance and inductance in the stator phases. This impact can be simply 

modelled by unbalancing the stator resistances while the inductance changes are negligible due 

to its insignificant influence compared to the resistance changes [2, 168]. 

In this chapter, the proposed condition monitoring technique is based on making an approximate 

relationship between the portion of short-circuit and the change of the stator winding inductances 

by considering the leakage and magnetizing inductances to be proportional to turns account and 

the fault has the same effect on both of them. Two characteristic parameters are introduced to 

define the stator faults. One of these parameters (ߤ) is linked to both the leakage and the 

magnetizing inductances and the other (ߤோ) is linked to the stator resistances. 

Depending on the fault level, the value of ߤ varies from 1 (where the phase is healthy) and down 

to zero (where the phase is totally short-circuited) and it is calculated based on: 

 
windingshealthyininterturnsofnumber Total

windingscircuitshort  interturnsofNumber
1  (7.1) 

The values of ߤோ varies from 1 (where the phase is healthy) up to infinity (where the phase is 

totally open) and down to zero when the phase is totally short-circuited, and it is calculated based 

on: 
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 sRe RR   (7.2) 

where ܴ௘ is the estimated resistance for each phase and ܴ௦ is the stator resistance for healthy 

machine. 

Let	ߤ஺, ߤ஻, and ߤ஼ be the percentage of the remaining un-shorted stator windings in stator phases 

A, B, and C respectively. The modified stator leakage and magnetizing inductances in the three 

phase reference frame are given by 	ߤ஺݈௟஺′, 	ߤ஻݈௟஻′, 	ߤ஼݈௟஼′, 	ߤ஺ܮ௠஺′, 	ߤ஻ܮ௠஻′, 	ߤ஼ܮ௠஼′. The 

modified stator resistances in the stator phases are given by 	ߤோ஺ܴ஺, 	ߤோ஻ܴ஻, and 	ߤோ஼ܴ஼. To 

improve the accuracy of the proposed techniques and to take the fault effects on the rotor side in 

account, the rotor resistances have been included in the estimated parameter vector P, thus P= 

 This makes it is possible to detect the presence of .[ோ஼, ܴ௥௔, ܴ௥௕, ܴ௥௖ߤ ,ோ஻ߤ ,ோ஺ߤ ,஼ߤ ,஻ߤ ,஺ߤ]

any faults or combine faults by monitoring these characteristics parameters values.  

The performance of the proposed fault identification technique of the stator windings faults is 

illustrated by the parameter identification method shown in figure 7.1. The scheme uses three 

inverse Γ-models and, thus eliminating the effect of the current sequences. It makes use of the 

instantaneous values of external measurements including stator voltages, currents and rotor slip. 

The measured stator currents are obtained from the test rig while the calculated currents are 

obtained computationally from the model constructed in Matlab/Simulink. Measured data of 

three phase stator voltages	ݒ஺௠, ݒ஻௠, ݒ஼௠ and the rotor slip s are used as an input of the machine 

model to produce the calculated outputs. The calculated currents are compared with the 

measured using the objective function: 

   TiiiiiiIAE
N

k
CcCmBcBmAcAm  

1
 (7.3) 

where N is the number of samples and ∆T is the sampling period.  
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Figure 7.1  General structure of the Model-Based IM fault diagnosis technique. 

 

Since this objective function IAE uses time domain quantities, any change in the amplitude of 

these quantities introduces a change in the IAE value. Under healthy condition, both measured 

and calculated currents are almost symmetrical and the error is close to zero. When a fault occurs, 

the error will be larger than a predefined threshold, thus it is used as a fault detector. The task of 

the PSO then is to generate a new set of parameters values and feed them to the IM model to 

produce the calculated currents and to calculate the error IAE. This process iterates until a close 

agreement between the measured and calculated currents is achieved and, therefore the fault will 

be localized.  
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There will always be an error between the machine model and the actual performance of the 

system regardless of the IM model and the parameter identification technique, because of the 

assumptions and approximations made in the modelling process.  

7.3 Experimental Validation of the Proposed Technique 

The proposed technique is experimentally validated using different faults including stator 

winding asymmetry (open-circuit), inter-turn short circuit and combined fault, i.e. a mixture of 

open circuit and inter-turn short circuit fault as described in chapter 4. 

In this chapter, the particle swarm optimization is used as an optimization technique to minimize 

the objective function (equation 7.3). The number of the used particles N=12, the inertia weight 

ω=1.424, the accelerating coefficients ܿଵ= ܿଶ= 2.2. To avoid destructive tests, these tests were 

carried out when the machine is supplied directly from the mains at no-load. 

7.3.1 Stator winding asymmetry fault detection 

Stator winding asymmetry fault is simply implemented by connecting a 30  resistor in series 

with phase A imitating an open-circuited fault, as described in chapter 4. This fault leads to an 

asymmetry in the phase impedance and, consequently produces a large error IAE indicating the 

fault occurrence. The task of the PSO is to minimize the error between the measured (shown in 

chapter 4) and calculated currents by continuously adjusting the IM model characteristic 

parameters’ values, P, until a close agreement between the measured and calculated currents is 

achieved. Table 7.1 presents the obtained characteristic parameters using PSO. The convergence 

history of the estimated parameters and the error IAE are shown in figures 7.2 and 7.2, 

respectively. Figure 7.5 shows both the measured currents (݅஺௠, ݅஻௠, ݅஼௠) and calculated 

currents (݅஺௖, ݅஻௖, ݅஼௖) obtained from the parameter sets given in table 7.1. 

 

 

Pars. Estimated Pars. Estimated 
 ோ஼ 1.0237ߤ ஺ 1.0979ߤ
஻ 1.0343 ܴ௥௔ߤ 2.9798 
 ஼ 1.0850 ܴ௥௕ 2.9410ߤ
ோ஺ 9.8564 ܴ௥௖ߤ 2.9511 
   ோ஻ 0.8844ߤ

Table 7.1  Parameter Estimation of the IM Model, Open-Circuit Fault in Phase A. 
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The high value of the characteristic parameter ߤோ஺ indicates the presence of an open winding 

fault in phase A. Based on the equation (7.2), it shows that the estimated stator resistance is equal 

to 35.58Ω which is almost equal to the simulated one (33.61Ω). 

 

 

Figure 7.2  Convergence history of the estimated parameters, open-circuit fault in phase A. 
 
 
 
 

 
 

 
 
 

Figure 7.3  The error function convergence for the estimated parameters, open-circuit fault in phase A. 
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Figure 7.4 Measured and calculated three phase stator currents waveforms coresponding to the optimal 
obtained solution, open-circuit fault in phase A. 

 
 
 

7.3.2 Stator winding interturn short-circuited fault detection 

The experimental measurements of about 30% interturn short-circuit fault in phase A have been 

collected as described in chapter 4. Similar to the previous test, the PSO updated the parameters 

values of the IM model until a good agreement between the measured and calculated current is 

obtained.  

Table 7.2 shows the parameter values obtained using the PSO. Figures 7.5 and 7.6 show the 

convergence history of the estimated parameters and the IAE convergence, respectively. Figure 

7.7 shows a very good agreement between the measured and calculated currents. 

The estimated results in table 7.2 indicate that 56.98% of stator winding in phase A are still 

healthy and about 43.01% are short-circuited (the ratio of the healthy to the total windings ߤ஺= 

0.5652). The value of the parameter associated with the stator resistance ߤோ஺ shows the presence 

of an interturn short-circuit in phase A with a severity of around 27.77%. 
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Pars. Estimated Pars. Estimated 
 ோ஼ 0.9698ߤ ஺ 0.5652ߤ
஻ 0.8919 ܴ௥௔ߤ 2.9775 Ω 
 ஼ 0.9521 ܴ௥௕ 2.9398 Ωߤ
ோ஺ 0.7223 ܴ௥௖ߤ 2.9643 Ω 
   ோ஻ 0.9902ߤ

Table 7.2  Parameter Estimation of One-Phase Interturn Short-Circuit Fault, Phase A 

 
 

 

Figure 7.5 Convergence history of the estimated parameters, interturn short circuited fault in phase A. 

 

 
 

 

Figure 7.6 The error function convergence for the estimated parameters, interturn short circuit fault in 
phase A. 
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Figure 7.7 Measured and calculated three phase stator currents waveforms coresponding to the optimal 
obtained solution, interturn short circuit fault in phase A. 

 

7.3.3 Stator winding combined fault detection 

The experimental measurements of 30% stator short circuit fault in phase and an open-winding 

fault in phase B presented in chapter 4 are used in this test. Table 7.3 presents the parameter 

values obtained using PSO. Figure 7.8 and Figure 7.9 show the convergence history of the 

estimated parameters and the IAE convergence, respectively. A close agreement between the 

waveforms of the three phase measured currents and that of the calculated current obtained, 

figure 7.10. The estimated results indicate that an interturn short circuit fault occurs in the phase 

A (ߤ஺= 0.5648). The high value of the characteristic parameter ߤோ஻ (11.5477) indicates the 

presence of an open winding fault in phase B. Comparing with other faults, this fault causes the 

motor to exhibit a high temperature and, thus increasing the resistance in other healthy phases. 
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Pars. Estimated Pars. Estimated 
 ோ஼ 1.0780ߤ ஺ 0.5648ߤ
஻ 1.0278 ܴ௥௔ߤ 3.3139 
 ஼ 1.0293 ܴ௥௕ 3.5780ߤ
ோ஺ 0.7435 ܴ௥௖ߤ 2.9122 
   ோ஻ 11.5477ߤ

Table 7.3  Parameter Estimation of Combined Fault. 

 

 

 

Figure 7.8 Convergence history of the estimated parameters of the combined fault under combined fault. 

 
 
 
 

 

Figure 7.9  The error function convergence for the estimated parameters under combined fault.  

 

0 5 10 15 20
0

1

2

 

 

0 5 10 15 20
0

10

20

 

 

0 5 10 15 20
2

3

4

5

R
r (


)

Number of steps

 

 

A B C

RA RB RC

Ra Rb Rc

0 5 10 15 20
0

0.02

0.04

0.06

Number of steps

IA
E



Parameter estimation-based fault diagnosis of stator winding fault in Induction Machines                   Chapter 7 

 

136 

 

 

Figure 7.10  Measured and calculated three phase stator currents waveforms coresponding to the optimal 
obtained solution under combined fault. 

 

7.4 Conclusion 

A simple fault diagnosis technique based on parameter estimation is proposed in this paper. The 

faults were detected by monitoring the characteristic parameters estimated using external 

measurements including three phase stator voltages and currents and rotor speed. The scheme 

has been verified using extensive experimental tests under different faults types including 

interturn short circuit, open circuit, and combined faults. The fault characteristic parameters are 

estimated using the measured machine waveforms in conjunction with the PSO algorithm.  The 

obtained results show the effectiveness of the proposed on providing good information about the 

nature and the location of the fault. 

 

0.3 0.32 0.34 0.36 0.38 0.4
-20

0

20

i A
 (

A
am

p)

 

 

0.3 0.32 0.34 0.36 0.38 0.4
-5

0

5

i B
 (

A
am

p)

0.3 0.32 0.34 0.36 0.38 0.4
-10

0

10

i C
 (

A
am

p)

Time (s)

 

 

data1
data2

Calculated Measured



 Conclusion and future work                                                                                       Chapter 8
 

137 

 

 

CHAPTER 8  

Conclusion and future work 

 

8.1 Summary 

In this thesis an overall framework has been presented to expand the current state of the art in 

parameter identification and fault diagnosis of induction machines (IMs). This research has 

been mainly divided into three major parts: identifiability of IMs’ steady-state models (the 

possibility of obtaining incorrect parameter sets that satisfy model solution), parameter 

identification of the IMs (the procedure that allows a mathematical representation of the 

experimental data), and fault diagnosis of the IMs (detecting and localizing the developments 

of any fault sufficiently).  

Commonly, the parameters of the T-equivalent circuit of the IMs are calculated based on 

measurements at the stator terminals following the standard no-load, dc and locked rotor tests 

as detailed in IEEE Standard 112-2004 [48]. However, it is not possible to determine both stator 

and rotor leakage inductances, ݈௟௦ and ݈௟௥, from these tests without making an additional 

assumption. The ratio of ݈௟௦/݈௟௥ may be available in the datasheet of the IM or can be assumed 

depending motor classification. For the motor under consideration, the ratio of ݈௟௦/݈௟௥	is 

available (NEMA class B, 40/60). However, this information is not always available and if 

available may not always be useful (e.g. for a faulty machine). Some researchers assume that 

݈௟௦ and ݈௟௥ are equal [169], which is not always the case and might lead to incorrect parameter 

estimation. On the other hand, for the inverse Γ-model, circuit parameters can be independently 

calculated based on the standard IEEE tests. No assumption is required in this case. The 

parameters of the inverse Γ-model can also be calculated from those of the T- model (chapter 

1) if the	݈௟௦/݈௟௥ is known. 

Usually, motor parameters are identified for the purpose of fault diagnosis of a running motor 

that is coupled with a load. In this case, performing the standard IEEE tests will not be possible 

and alternatively the external measurements of voltage, current, speed and/or torque are usually 
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used in parameter identification. Before using a machine model in such a parameter estimation 

technique, however, it is important to test the identifiability of the model to make sure that its 

parameters are uniquely identifiable. 

The identifiability of T- and inverse Γ-models of the IM are investigated using the transfer 

function, bond graph and ACE identifiability test techniques.  The results of these three 

techniques are then verified by using the L-M and PSO parameter estimation algorithms that 

use external measurements of motor’s voltage, current and speed. The parameter estimation 

process has been repeated three times at different initial conditions and the estimated parameters 

are then compared to the measured parameters (obtained from the standard IEEE tests). For an 

identifiable model, the difference between the estimated and measured parameters will be 

always with acceptable limits regardless of the initial conditions. For a non-identifiable model, 

a big difference between estimated and measured parameter values may be obtained depending 

on the initial conditions.  

The transfer function of the T-model derived in chapter 5 has only four coefficients which are 

functions of the five unknown electrical parameters of the model. Although the values of the 

four coefficients can be estimated from the experimental measurements, these four coefficients 

are not sufficient to mathematically calculate the model parameters (five unknowns).  In 

contrast, the transfer function of the inverse Γ-model derived in chapter 5 has four coefficients 

which are equal to the number of the unknown parameters. This means that the inverse Γ-model 

is identifiable while the T-model is non-identifiable according to the transfer function approach. 

Causality conflict is observed from the T-model bond graph construction (chapter 5) that shows 

a redundant energy storage component to be present on the model. This conflict is eliminated 

by taking the dependent storage element together with an independent storage element leading 

to the use on the inverse Γ-model. 

A novel identifiability analysis approach based on the use of the Alternating Conditional 

Expectation (ACE) algorithm was developed and applied to test the identifiability of T- and 

inverse Γ-models. The ACE algorithm confirmed the non-identifiability of the T-model and the 

identifiability of the inverse Γ-model parameters, in agreement with the results obtained by 

using transfer function and bong graph approaches. Functionally related parameters provide 

high correlation coefficient and cause the model to be non-identifiable. A strong correlation 
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coefficient (0.996) between the T-model parameters is observed and, therefore, the T-model in 

non-identifiable. In contrast, a very low correlation coefficient (0.0023) between the inverse Γ-

model parameters is obtained which means the inverse Γ–model is identifiable. 

The identifiability analysis is then verified using the Levenberg-Marquardt (L-M) and Particle 

Swarm Optimization (PSO) as optimization tools in conjunction with measured time-domain 

data. Although several parameter identification methods have already been proposed including 

simpler methods that are already in use. However, some of these methods (such as signal based 

techniques [53] and [170]) require additional external hardware. There are also other model-

based methods that require several tests and/or complex statistical operations to be performed 

(for example [57]).  

The algorithms are applied to test the identifiability of both T- and inverse Γ-models using 

steady-state measured data including stator voltage, stator current and rotor speed. Using these 

techniques, only steady-state stator phase voltage and current (one phase only) and rotor speed 

measurements are required to identify the machine parameters. All the tests were carried out 

while the machine was operating under steady-state conditions with no additional 

hardware/sensors or changes in motor connections. For comparison, standard IEEE tests are 

applied and the parameters of the induction motor are determined (chapter 4). 

When attempting to identify the parameters of the T-model in this way, a different set of 

parameter values is obtained at the end of the optimization process every time the algorithm is 

run with all sets producing results that match the measured data very closely. This is not the 

case when using the same algorithm and the same data set to identify the parameters of the 

inverse Γ-model when the same set of parameter values is consistently obtained. 

It can be observed from the results given in chapter 5 that, completely different sets of 

parameters, for T-model, that provide the same impedance ܼ௘௤ and current can be obtained 

depending on the initial conditions. Despite the significant differences between the three sets 

of parameters, the calculated current closely matches the measured current in each case. This 

confirms that the T-model is non-identifiable.  

The squared error (χଶሻ as a function of rotor and stator leakage inductances for the T-model 

based on the measured data is shown in chapter 5. As shown, infinite combinations of the two 

inductance (݈௟௦ and ݈௟௥) values result in the same minimum value of squared error, i.e. there is 
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no unique global minimum. This confirms that it is not possible to determine ݈ ௟௦ and ݈ ௟௥ uniquely 

using external measurements of voltage, current, and speed. Consequently, the IM T-model is 

not uniquely determined and there will be an infinite number of T-models of the IM that are 

theoretically equivalent if the external measurements are used. 

In order to solve this problem, an inverse Γ-model that minimizes the parameter number is 

implemented. The obtained results are satisfactory for different L-M and PSO runs. There will 

always be an error between the machine model and the actual performance of the system 

regardless of the IM model and the parameter identification technique, because of the 

assumptions and approximations made in the modelling process. As shown in chapter 5, a very 

good agreement between the measured and calculated current waveforms is realized. Similar 

agreement between current waveforms is obtained with the other sets of estimated parameters 

for the different tests. The squared error (χଶሻ is plotted against different values for ݈ ௟௦′ and ܮ௠′). 

Only one optimal combination of these parameter values that satisfy the error (one global 

minimum) is realized with the inverse Γ-model (chapter 5). 

This study of the identifiability of the parameters of the T- and inverse Γ-equivalent circuits of 

the induction motor shows that the machine T-model is non-identifiable while the inverse T-

model is. Results show that, different sets of parameter values may produce the same input 

impedance and electromagnetic torque of the T-model while, however, only one combination 

of parameter values provides the equivalent impedance for inverse Γ-model. 

The main drawback, however, of using the inverse Γ-model for parameter identification of the 

IM is that it is not possible to go back from inverse Γ-model to T-model, as this requires the 

ratio α to be known. For many applications such as high performance control, knowledge of the 

real physical parameter values of the T-model is necessary.  

To overcome the inverse Γ-model shortcoming and identify the parameter of the T-model, a 

new technique based on an integrated steady-state model is proposed in this thesis. The model 

is a combination of the induction machine T- and inverse Γ-steady-state models. The use of this 

model overcomes the non-identifiability problem of the T-model, eliminating the possibility of 

obtaining wrong parameter sets that satisfy model solution. The structural identifiability of the 

integrated model is investigated using the transfer function technique. The obtained results 

ensure the identifiability of the T-model parameters when the integrated model is use. 
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Consequently, a new technique for IM parameter estimation using L-M and PSO with the 

measurements of only one phase stator current and rotor speed is proposed. Results for both 

supply-fed and inverter-fed operations show the effectiveness of the technique in successfully 

identifying the parameters of the machine using only readily available measurements without 

the need for extra hardware. 

Due to the critical integration of IMs in enormous industrial applications including nuclear 

power and petrochemical, fault diagnosis and fault diagnoses has a great importance in 

enhancing the reliability of the all system. This thesis proposed a fault diagnosis technique that 

is based on the use of a simple inverse-Γ-model. Unlike other model-based techniques, the 

proposed can be used to detect different faults and to identify their nature and location. The 

proposed scheme has been verified by extensive experimental tests under different faults types.  

In conclusion, this thesis has achieved the main objectives listed in Chapter 1 which can be 

summarizes as: assessing the identifiability of two commonly used steady-state IM models, 

namely the T-model and inverse Γ-model, proposing a technique to improve IM parameter 

identification, and accurately proposing an IM stator-winding fault diagnosis technique.  

8.2 Scope for future work 

After achieving the main objectives of this research, there is generally still few key areas are 

open for further investigation including 

- The investigation can be extended to study the identifiability of other induction motor 

models under different operating condition including healthy and faulty machines. 

- L-M and PSO are successfully used to locate the optima of the different objective 

function throughout the thesis. Further research should be done in order to improve 

these algorithms in terms of computation time.  

- Extend the proposed fault diagnosis techniques by examining different types of faults 

such as rotor-related faults. 

- Study the effects of different faults on the IM parameters. 
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Appendix A 

Induction machine dynamic models 

 

The three-phase induction machine with three stator windings and three rotor windings is shown 

in figure A.1, where A, B, and C referring to stator phases, a, b, and c, referring to rotor phases. 

The machine is described by three identical stator windings placed on the stator frame with 

equal separation of 120º in space between each other. The three rotor windings are place with 

equal distant of 120º around the rotor circumference and rotating at the machine speed ωr. All 

these windings have resistances and inductances. 
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Figure A.1  Three phase machine diagram. 

 

 

Using Kirchhoff’s and Faraday’s laws, the voltage relations on rotor and stator sides are given 

by [11]: 
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The symbols i and v are for currents and voltages and ߖ for the flux linkages. ܴ ௦ ൌ ሺܴ஺, ܴ஻, ܴ஼ሻ 

are the stator winding resistances, and ܴ௥ ൌ ሺܴ௔, ܴ௕, ܴ௖ሻ are the rotor winding resistances and 

they are assumed to be equal for all phase windings (for healthy machines). 

The flux-linkage of a single phase, for example phase A, comprises of both leakage flux path 

(which thread stator or rotor alone) and mutual flux (which thread both stator and rotor). 

Therefore, the flux-linkage consists of self-leakage flux due to the current flowing in the 

winding and the mutual flux due to the current of other windings as given by equation (A.2). 

 cAcbAbaAaCACBABAAAA iLiLiLiLiLiL   (A.2) 

where L is the inductance which define the relationship between the machine winding currents 

and the flux linkage. 

Deriving the equations for the flux-linkage of the other windings and substituting it into (A.1) 

yields: 
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where: 
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and 
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The mutual inductances between the stator and rotor vary with the relative space position 

between them as follows:  
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where ߠ is the rotor angle,  ܽଵ ൌ ሺݏ݋ܿ ,௥ሻߠ ܽଶ ൌ ሺݏ݋ܿ ௥ߠ ൅
ଶగ

ଷ
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ଶగ

ଷ
ሻ. 

Substituting (A.4), (A.5) and (A.6) in (A.3), the dynamic three phase model (ABCabc) model 

is obtained and represented as following: 
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where ܮ௦௦ and ܮ௥௥ are stator and rotor self-inductances, ܯ௦௦ are the mutual inductance between 

each pairs of the stator windings, ܯ௥௥ are the mutual inductance between each pairs of the rotor 

windings, ܯ௦௥ are the peak value of the rotor position dependent mutual inductance between 

the stator and rotor windings, and ߠ௥ is the rotor angle. 

To reduce the computational complexity of the three phase model due to the time-varying 

mutual inductances, IMs can be described by two equivalent windings rather than three such as 

αβ and dq.  
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The transformation of the stator and rotor variables from abc to αβ are defined as follows [171]: 
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Another substantial simplification is made by transforming the three phase quantities into 

orthogonal two-axis representation known as Park’s transformation [172]. This model is 

commonly referred to as the dq model and it has been extensively used in many applications 

including high performance drive control. This transformation eliminates the effect of time 

varying inductances by referring the stator and rotor inductances into a fixed or rotating 

reference frame. This transformation is done using the transformation matrix as follows: 

 abcdqdq XTX   (A.11) 

where 
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Appendix B 

Structural identifiability analysis of IM Γ-model 

 

In this section, the structural identifiability of the Γ-model is tested using the two 

aforementioned techniques.  

B.1 The transfer function approach 

The input impedance of the Γ-model in chapter 1 as a function of the slip s is given by: 
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where ρ=jωs, and a2, b2, c2 and d2 are functions of the four electrical parameters of the model 

and they can be obtained from the following expressions: 
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The transfer function of this model is given by: 
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With Γ-model, there are four coefficients of GΓ(S) that can be determined if the external 

measurements are used. Model parameters can then be uniquely identified from these 

coefficients by using equation (B.2). 
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B.2 Bond Graph Approach 

In this model, the stator leakage inductance is combined together with that of the rotor as 

suggested to eliminate the conflict in the T-model in [12]. Figure C.1 shows the bond graph of 

the Γ-model where the parameter redundancy has been removed and a proper bond graph is 

obtained.  

 

Figure B.1  Bond graph of IM Γ-equivalent circuit. 
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Appendix C 

Extra Results for identifiability analysis 

 

In this section, extra results at different operating conditions from that in the chapter 5 are 

provided to assess the identifiability of both models (the T and inverse Γ-model). 

C.1 T-model identifiability analysis using L-M 

Table C.1 represents three sets of estimated parameter values and the total impedance 

corresponding to each estimate for different initial conditions at supply-fed no-load with slip of 

0.0087. Figure C.1 shows the convergence history of the estimated parameters of the T-Model 

for the three different estimates at no-load. Figure C.2 shows the error function convergence 

for the 1st estimate. Figure C.3 shows the measured current (݅஺௠ሻ and the calculated current 

(݅஺஼ሻ with one of the parameter sets obtained by L-M parameters (1st estimate).  

As shown in figure C.4, infinite combinations of the two inductance values result in the same 

minimum value of squared error, i.e. there is no unique global minimum. This confirms that it 

is not possible to determine ݈ ௟௦ and ݈ ௟௥ uniquely using external measurements of voltage, current, 

and speed.  

 

Pars 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 10.4824 Ω 5.1722 Ω 7.3494 Ω 
ܴ௥ 7.6361 Ω 2.6230 Ω 4.3881 Ω 
݈௟௦ 0.0263 H 0.1346 H 0.0696 H 
݈௟௥ 0.0108 H 0.0199 H 0.0177 H 
݈௠ 0.3387 H 0.2356 H 0.2975 H 

หܼ௘௤ห 115.58 Ω 115.54 Ω 115.37 Ω 
∠ܼ௘௤ 80.35 º 81.34 º 80.45 º 

Table C.1 Parameter Estimation of T-model using L-M; supply-fed at no load (s= 0.0087). 
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Figure C.1  Convergence of the estimated parameters of the T-Model for different estimates using L-M; 
supply-fed at no load (s= 0.0087). 
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Figure C.2  The error function convergence for the 1st estimate using L-M (T-model); supply-fed at no 

load (s= 0.0087). 

 

Figure C.3 Measured (iAm) and calculated (iAc) stator currents waveforms corresponding to the optimal 
solution of the 1st estimate using L-M (T-Model); supply-fed at no load (s= 0.0087). 

 

Figure C.4  The sum of the squared error as a function of lls and llr based on the measured data (T-Model); 
supply-fed at no load (s= 0.0087). 
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Table C.2 represents three sets of estimated parameter values and the total impedance 

corresponding to each estimate for different initial conditions at full-load with slip of 

0.021(1469 r/m). Figure C.5 shows the convergence history of the estimated parameters of the 

T-Model for the three different estimates at no-load. Figure C.6 shows the error function 

convergence for the 1st estimate. Figure C.7 shows the measured current (݅஺௠ሻ and the 

calculated current (݅஺஼ሻ with one of the parameter sets obtained by L-M parameters (1st 

estimate). 

 

Pars 1st estimate 2nd estimate 3rd estimate 
Rୱ 3.381583 Ω 3.736917 4.921409 
R୰ 1.329535 2.559239 1.365111 
l୪ୱ 0.149764 0.075604 0.052693 
l୪୰ 0.0042 0.00655 0.0246 
l୫ 0.328732 0.293377 0.78043 

หZୣ୯ห 90.59 91.6 92.7 
∠Zୣ୯ 62.3 63.2 63.33 

Table C.2  Parameter Estimation of T-model; supply-fed at full load (s= 0.21). 
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Figure C.5  Convergence of the estimated parameters of the T-Model for different estimates (T-model) 

using L-M; supply-fed at full load (s= 0.21). 
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Figure C.6  The error function convergence for the 1st estimate (T-model) using L-M; supply-fed at full 

load (s= 021). 

 

 
Figure C.7  Measured (iAm) and calculated (iAc) stator currents waveforms corresponding to the optimal 

solution of the 1st estimate (T-Model); supply-fed at full load (s= 021). 
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Figure C.8 Convergence of the estimated parameters of the T-Model for different estimates using 

PSO; supply-fed at no load (s=0.0087). 
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Pars 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 8.9998 Ω 7.9880 Ω 4.9982 Ω 
ܴ௥ 2.9998 Ω 7.1935 Ω 2.0919 Ω 
݈௟௦ 0.1379 H 0.0114 H 0.1497 H 
݈௟௥ 0.0032 H 0.0482 H 0.0110 H 
 ௠ 0.2303 H 0.3553 H 0.2211 Hܮ

หܼ௘௤ห 115.82 Ω 115.63 Ω 115.22 Ω 
∠ܼ௘௤ 80.39 º 80.87 º 80.84 º 

Table C.3 Parameter Estimation of T-model using PSO; Supply-fed at no load (s= 0.0087). 

 

Figure C.9  The error function convergence for the 1st estimate (T-model) using PSO; supply-fed at 
no-load (s=0.0087). 

 

Figure C.10  Measured (iAm) and calculated (iAc) stator currents waveforms corresponding to the 
optimal solution of the 1st estimate (T-Model); supply-fed at no-load (s=0.0087). 
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calculated current (݅஺஼ሻ with one of the parameter sets obtained by PSO parameters (1st 
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Figure C.11  Convergence of the estimated parameters of the T-Model for different estimates using PSO; 
supply-fed at full load (s=0.021). 
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Pars. 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 6.9999 9.6175 5.0544 
ܴ௥ 4.3777 0.8972 2.5829 
݈௟௦ 0.0040 0.1987 0.0806 
݈௟௥ 0.00571 0.0127 0.0201 
 ௠ 0.3165 0.2850 0.2592ܮ

หܼ௘௤ห 91.51 91.81 91.34 
∠ܼ௘௤ 62.14 62.50 63.58 

Table C.4  Parameter Estimation of T-model using PSO, supply-fed at full load (s= 0.021). 

 

 

Figure C.12 The error function convergence for the 1st estimate (T-model) using PSO; supply-fed at full 
load (s=0.021). 

 

Figure C.13 Measured (iAm) and calculated (iAc) stator currents waveforms corresponding to the optimal 
solution of the 1st estimate (T-Model); supply-fed at load (s=0.021). 
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parameters of the T-Model for the three different estimates at no-load. Figure C.15 shows the 

error function convergence for the 1st estimate. Figure C.16 shows the measured current (݅஺௠ሻ 

and the calculated current (݅஺஼ሻ with one of the parameter sets obtained by L-M parameters (1st 

estimate).  

 

 

 

 

 
Figure C.14  Convergence of the estimated parameters of the Inverse Γ-Model for different estimates 

using L-M; supply-fed at no-load (s=0.0087). 
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Pars. 1st estimate 2nd estimate 3rd estimate 
ܴ௦ .3 6848 Ω 4.0599 Ω 3.8638 Ω 
ܴ௥′ .2 368 Ω .2 6858 Ω .2 4024 Ω 
݈௟௦′ 0.1098 H .0 1118 H .0 1101 H 
݈௠′ 0.2627 H 0.2594 H 0.2616 H 

หܼ௘௤ห .115 4 Ω .115 53 Ω 115.29 Ω 
∠ܼ௘௤ 79.87º 80.79º 79.94º 

Table C.5  Parameter Estimation of Inverse Γ-model using L-M; supply-fed at no-load (s=0.0087). 

 

 

Figure C.15  The error function convergence for the 1st estimate (Inverse Γ-Model using PSO; supply-fed 
at no-load (s=0.0087). 

 

Figure C.16  Measured (iAm) and calculated (iAc) stator currents waveforms corresponding to the optimal 
solution of the 1st estimate (Inverse Γ-Model); supply-fed at no-load (s=0.0087). 
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Figure C.17 Convergence of the estimated parameters of the Inverse Γ-Model for different estimates using 
PSO; supply-fed at full load (s=0.021). 

 

Pars. 1st estimate 2nd estimate 3rd estimate 
ܴ௦ 3.81987 3.796245 3.500022 
ܴ௥′ 2.562973 2.480859 2.562602 
݈௟௦′ 0.077992 0.077504 0.073688 
݈௠′ 0.259485 0.260134 0.250254 

หܼ௘௤ห 91.3 90.46 88.36 
∠ܼ௘௤ 63.1 62.43 63.73 

Table C.6 Parameter Estimation of Inverse Γ-model using PSO; supply-fed at full load (s=0.021) 
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Figure C.18  The error function convergence for the 1st estimate (Inverse Γ-Model) using PSO; supply-fed 
at full load (s=0.021). 

 

 

Figure C.19  Measured (iAm) and calculated (iAc) stator currents waveforms corresponding to the optimal 
solution of the 1st estimate (Inverse Γ-Model), supply-fed, full-load. 
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