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All I know is that electricity and water should not mix.∗

A project officer who shall remain unnamed

∗Except perhaps in Lead-acid batteries.



Abstract

The application of green technology to marine transport is high on the sector’s

agenda, both for environmental reasons, as well as the potential to positively impact

on ship operator running costs. In this thesis, electrical technologies and systems as

enablers of green vessels were examined for reducing emissions and fuel consumption

in a number of case studies, using computer based models and simulations, coupled

with real operational data.

Bidirectional auxiliary drives were analysed while providing propulsion during low

speed manoeuvring, coupling an electrical machine with power electronic converter

and feeding power to the propulsion system from the auxiliary generators. Models

were built to enable quantification of losses in various topologies and machine setups,

showing how permanent magnet machines compared to induction machines, as well

as examining different losses in different topologies.

Another examination of topologies was performed for onshore power supply systems,

where a number of different network configurations were modelled and examined

based on the visiting profile for a particular port. A Particle Swarm Optimisation

algorithm was developed to identify optimal configurations considering both capital

costs as well as operational efficiency. This was additionally coupled with the

consideration of shore-based LNG generation giving a hybrid onshore power supply

configuration.

Hybrid systems on vessels are more complex in terms of energy management, par-

ticularly with on-board energy storage. Particle Swarm Optimisation was applied

to a model of a hybrid shipboard power system, optimising continuously for the

greenest configuration during the ship’s voyage. This was developed into a generic

and scalable Energy Management System, with the objective of minimising fuel

consumption, and applied to a case study.
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Preface

Ships are all small when out there in the ocean.

Perhaps this is one of the reasons why the marine market has traditionally been seen

as relatively conservative, sticking to tried and tested machinery and systems. Ships

are currently responsible for moving about 80% of the world’s trade (by volume)

and contribute about 2.7% of the total man-made CO2 emissions worldwide. With

current and predicted growth rates, this implies a corresponding increase in airborne

emissions by shipping if no measures are taken to reduce the environmental impact

of vessels [1]. Airborne emissions have a direct impact both on human health as

well as the environment, which arise from the combustion of fossil fuels onboard

vessels, typically in diesel engines used both for propulsion as well as onboard power

generation [2].

In the vast majority of cases, a propeller is used to convert the mechanical rotational

power from the engine to a thrust able to propel a ship’s hull through the water. This

rotational power is transferred from the engine to the propeller by a combination

of shafts and gearboxes and associated couplings. This raises one of the inherent

limitations of this mechanical arrangement, in that the possible layouts of engine

and propulsion systems are constrained by shafting complexities.

Electric propulsion gives a broader degree of freedom to the designer, in that the

provision of mechanical rotating power does not need to be in the same location as the

chemical energy (stored in the fuel) conversion stage. This means that diesel engines

and generators can be located remotely from the propulsion system, with electric

cables being much easier to route than mechanical shafts. This concept of flexibility

in installation is extended to further flexibility in operation, facilitated by the use

of electric propulsion decoupling prime mover operation and propulsion demands.

With a number of diesel generators installed onboard, superior fuel consumption can

1



Preface 2

be obtained by better matching of the number of generators to the demanded power.

Electrification’s major advantage can be summed up as flexibility. This does not

however imply that electrification results in fuel savings, or improved performance.

Rather it can be better put that electrification gives a potential for improved per-

formance. This potential can be realised (or not!) based on the usage profile of the

vessel.

Electrifying the propulsion system after all will introduce additional components com-

pared to a mechanical system, such as frequency converters, transformer, switchgear

and filters in addition to the actual propulsion motor. Each of these components

introduces inefficiencies to the system, and additional components in series imply the

potential for lower reliability. Hence the operational benefits of an onboard electrified

system must be elucidated based on the usage profile of the vessel and correct energy

management approach. Existing vessels can help give a better picture of the uptake

of electric propulsion on onboard machinery systems.

Figure 1 shows the fraction of total installed power which is available for propulsion,

plotted against the deadweight-speed product for a selection of 190 ships of various

types built between 2007 and 2012 [3–7]1. Grouped according to propulsion type,

some interesting trends can be observed. The y-axis is a ratio of the total propulsion

power to the total installed power onboard. A low value indicates a high level of

auxiliary power (needed for other purposes than strictly propulsion of the vessel),

while a value of 1 indicates that the vessel has no auxiliary generators. The vessel

deadweight was multiplied with the vessel (rated) speed in knots as it was observed

to give a more distinct resultant plot by accounting for additional power required

due to a higher ship speed.

Direct mechanical propulsion (diesel engines) can be seen to occupy the whole range

of deadweight-speed values, with installed power ratios above 60%. Vessels with

high-speed engines (and reduction gearing) are restricted to lower deadweight-speed

ranges, but similarly are found with ratios over 60%. Steam turbine vessels are

restricted to a very distinct cluster in a very narrow range, all six of which are

liquefied gas carriers.

Of most relevance to this work are the vessels installed with electric propulsion.

Clearly, the ratio of installed power is spread over a much larger range, with total
1Ships in the database do not include smaller workboats and vessels.
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Figure 1 – Onboard power ratio vs deadweight-speed product, grouped by propulsion
type.

dominance in ratios below 60%. Six diesel-electric vessels also fall in the same range

as the steam turbine powered vessels. On closer examination it is seen that these

vessels are also liquefied gas carriers.

Figure 2 focuses solely on the vessels equipped with electric propulsion. The distinct

set of liquefied gas carriers can again be clearly discerned. The motivation for electric

propulsion in these large deadweight carriers stems from the natural availability

of boil-off gas, which is an unavoidable consequence of heat ingress into insulated

cargo tanks. This boil-off gas was typically fired in steam turbine installations for

propulsion purposes, which are however, bulky and complex [8]. The advent of

modern dual-fuel engines permits this boil-off gas to be used in reciprocating engines.

Because of the additional electrical loads associated with the liquefied gas fuel system,

a diesel-electric installation is utilised.

The impact of significant electric loads is also apparent in the specialised ships

category of figure 2. These include offshore support vessels, drillships and dredgers,

where once again, the significant electrical load is seen with the (relatively) low

number of propulsion:total-installed-power ratio. These types of vessels also typically

exhibit a number of operating modes, with different power levels in each. Finally,
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Figure 2 – Onboard power ratio vs deadweight-speed product for electric propulsion
vessels, grouped by vessel type.

passenger ships (including ferries and cruise vessels) make up the rest of the electric

propulsion category. A large onboard hotelling load is also seen on these vessels,

together with the additional requirement for onboard comfort.

In all these vessels, electric propulsion shows advantages over conventional systems,

summed as flexibility. Passenger ships can benefit from electric thrusters for reduced

vibration and noise. Ships with large electric loads can have one common electric

bus for both the propulsion and the auxiliary system. And various operating modes

can be better accommodated with electric systems. Final operational economy is

therefore the junction of both operational demands and the installed machinery

systems.

The importance of system design and operation based on matching with operational

data is highlighted in this thesis which focuses on environmental benefits in terms

of fuel consumption and airborne emissions by the use of electrified systems. This

work has been motivated by participation in two European FP7 research projects

which provided the scope of work, as well as real operational data. TEFLES was

concerned with Technologies and Scenarios for Low Emissions Shipping and ran from

2011 till 2013. INOMANS2HIP considered the development of an INOvative energy
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MANagement System for cargo SHIP and ran in parallel with TEFLES, finishing in

2015.

This thesis is a story of three parts, each focusing on a different aspect of electrification.

Chapters 1 and 2 look at the use of hybridisation of the propulsion system through

the use of bidirectional auxiliary drives. Their use is considered on a car carrier

vessel and a tug boat, considering the effect on fuel consumption and emissions based

on their operating profiles. An overview of the proposed setups is given, followed

by the modelling methodology used for assessing the impact of the use of auxiliary

drives.

Onshore power supply (also known as cold ironing) is then discussed in chapters 3

and 3.3, looking at the resultant impact on airborne emissions due to the plugging of

berthed ships to the shoreside grid. The components required are discussed, in light

of recent legislation on the matter and the developed models explained in chapter

4. A search algorithm using Particle Swarm Optimisation is then considered in

chapters 5 and 6 to identify optimal shore network configurations for a case harbour

based on the usage profile over a working week. This is then extended to consider a

hybrid approach combining cold ironing with shoreside generation using LNG-fuelled

generators and examining the cost influence on the resulting system configuration.

Finally in chapters 7 and 7.3, the focus is on the actual management of the onboard

energy considering a combination of novel sources as well as storage. A generic

Energy Management System using Particle Swarm Optimisation is developed in

chapter 7.6, which searches for the optimal configuration for a particular system

setpoint, and demonstrated for a RoRo vessel using its actual operating profile.

The appendices contain the salient elements of the code and models developed in

this work, together with additional results placed in the appendix for continuity of

the main text.

Aims of the work

This thesis sets out to identify the potential savings in airborne emissions and fuel

consumption to be had by the application of electric technologies and systems to

marine applications. Hybrid drives, cold ironing and advanced energy management

are considered, and aim to:
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• Develop a fast simulation framework to permit assessment and quantification

of any emissions/consumption reductions.

• Develop an optimisation framework to permit identification of optimal systems.

• Assess the reductions possible with hybridisation of the propulsion system.

• Assess the reductions possible through the use of cold ironing.

• Assess the reductions possible through the development and application of an

energy management system on complex systems.

The research for the auxiliary drives and shore supply studies was carried out under

the scope of the TEFLES project, while the Energy Management System work was

part of the INOMANS2HIP project. The outcomes of the research have already

been documented as parts of deliverables associated with the projects, together

with additional contributions from the other project partners. In addition to this, a

number of peer-reviewed publications and conference proceedings have been published

over the course of the research work, and are further expanded upon in this thesis.

The work on auxiliary drives has been presented in two conferences as well as a

journal publication:

• E. Sciberras, B. Zahawi, D. J. Atkinson, A. Juandó, M. Solla, and A. Sarasquete,

“Auxiliary drives for emissions reduction,” in Low Carbon Shipping Conference,

Newcastle upon Tyne 2012. Newcastle University, 2012.

• E. A. Sciberras, B. Zahawi, and D. J. Atkinson, “Simulation-based efficiency

evaluation of auxiliary drives for marine vessels,” in 13th International Confer-

ence on Computer and IT Applications in the Maritime Industries, V. Bertram,

Ed. Hamburg: Technische Universität Hamburg Harburg, 2014, pp. 427–436.

• E. A. Sciberras, B. Zahawi, D. J. Atkinson, and A. Juandó, “Electric auxiliary

propulsion for improved fuel efficiency and reduced emissions,” Proceedings of

the Institution of Mechanical Engineers, Part M: Journal of Engineering for

the Maritime Environment, vol. 229, no. 1, pp. 36–44, 2015.

A further two journal publications have been published based on the outcomes from

the research on onshore power supply, together with presentations at two conferences.
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• E. A. Sciberras, B. Zahawi, D. J. Atkinson, and A. Juandó, “Cold ironing for

greener port stays,” in Low Carbon Shipping Conference, London 2013. UCL,

2013.

• E. A. Sciberras and B. Zahawi, “Emissions reduction while at port,” in Green

Ports Energy Conference, Vigo, June 2013.

• E. A. Sciberras, B. Zahawi, D. J. Atkinson, A. Juandó, and A. Sarasquete,

“Cold ironing and onshore generation for airborne emission reductions in ports,”

Proceedings of the Institution of Mechanical Engineers, Part M: Journal of

Engineering for the Maritime Environment, vol. 230, no. I, pp. 67–82, 2016.

• E. A. Sciberras, B. Zahawi, and D. J. Atkinson, “Electrical characteristics of

cold ironing energy supply for berthed ships,” Transportation Research Part D:

Transport and Environment, vol. 39, pp. 31–43, 2015.

Two further journal publications have been prepared and are currently undergoing

peer review process. One analyses the impact of auxiliary drives together with

onshore power supply and the combined emissions and fuel consumption reductions

achievable with the inclusion of onboard battery storage. The second paper presents

the development and results of the energy management system and how fuel savings

can be realised when combined with an advanced onboard machinery installation.

• E. Sciberras, B. Zahawi, and D. J. Atkinson, “Reducing shipboard emissions –

assessment of the role of electrical technologies,” Transportation Research Part

D: Transport and Environment, 2016, submitted for peer review.

• E. A. Sciberras, B. Zahawi, and D. J. Atkinson, “Managing shipboard energy –

a stochastic approach,” IEEE Transactions on Transportation Electrification,

2016, submitted for peer review.

A note on fuels and emissions

This work addresses airborne emissions and fuel consumption onboard vessels. A

number of fuels are used onboard, which in turn are responsible for a larger variety of

emissions which are generated by the fuels’ combustion. Table 1 lists and defines the



Preface 8

Fuel name Abbreviation ISO identifier
Heavy Fuel Oil HFO RMH35

Marine Diesel Oil MDO DMB
Marine Gasoil MGO DMX

Table 1 – Definition of fuel types.

marine fuels as considered in this text, together with the ISO identifier. Marine fuels

are obtained from the refining of crude oil, where following processes of distillation,

the more volatile distillate products are successively extracted. These include gaseous

fuels such as methane and propane, light fuels as used in road transportation and

aviation and diesel fuels. The product left at the end of the distillation process are

the residual fuels. Heavy Fuel Oil (HFO) is the common name used for the residual

fuel used onboard ships, which can be blended with diesel fuel to form Intermediate

Fuel Oil (IFO). The various fuels can be characterised by their viscosity, and this

is used in the definitions of the individual products as per ISO 8217. The common

names for the fuel as used in industry are used in this text.

The combustion of the above fuels results in a number of emissions. Of concern

in this work are the three major airborne emissions namely CO2, NOx and SOx.

Carbon Dioxide (CO2) is formed by the combustion of Carbon which is burnt to its

dioxide. This gas is non-toxic, however it is a greenhouse gas attribute to global

warming. The amount of CO2 released is dictated by the Carbon content of the fuel

and is therefore directly related to the amount of fuel burnt. Similarly, the Sulphur

Oxides (SOx) which are composed mostly of Sulphur Dioxide (SO2) are defined by

the Sulphur content of the fuel. On the other hand, the Nitrogen Oxides (NOx) are

produced during the combustion process and are dependent on temperature as well

as reaction time. SOx and NOx are both pollutants, leading to acidification as well

as being damaging to human health.



Chapter 1

Hybridisation

Diesel engines account for the vast majority of prime movers found on ships, with

Heavy Fuel Oil (HFO) being the fuel of choice due to its lower cost [18, 19]; its

combustion however, generates significant emissions. Furthermore, main engines are

typically sized for the continuous at sea power rating, hence when they operate in

harbour at reduced speed, they are operating at low load factors, with associated

increases in emissions, Specific Fuel Consumption (SFC) and sooting [20].

A hybrid propulsion system consisting of at least two energy sources addresses this

mismatch between peak and actual power demands by exploiting the advantages

of two separate systems, whose operating points are optimised for different power

requirements [21]. Though typically associated with automotive vehicles, marine

hybrids in the form of mechanical parallel hybrids such as COmbined Diesel And

Gas turbine (CODAG) and serial electric hybrids such as diesel-electric submarines

have been used in naval applications for a large number of years [22]. Diesel-electric

submarines from a hundred years ago are after all series-hybrids.

Most seagoing (commercial) vessels which employ mechanical main propulsion with

diesel engines already have a link to the onboard electric system in the form of

a mechanically-driven shaft generator. In almost all cases, this is a conventional

wound-rotor synchronous alternator mounted along the propeller shaft line to gen-

erate electricity at the cheapest possible cost from the main engine [20, 23]. This

arrangement can be further taken advantage of by reversing power flow through the

electric machine to provide an electric motoring capability at the cost of additional

complexity, namely the need for a bidirectional power converter in order to permit

9
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Figure 1.1 – Generic overview diagram of an auxiliary drive.

controlled four-quadrant operation of the machine. The shaft generator in this

configuration can operate as an auxiliary propulsion drive [24–26]. This can help

meet the stringent emission limits by exploiting the flexibility of the electric system

to provide power from compliant sources while in sensitive areas.

In this work, auxiliary drives are understood to be a bidirectional electric drive

(consisting of an electric machine, power electronic converter and control algorithms),

mounted in parallel to the prime source of propulsion power, as illustrated schem-

atically in figure 1.1. Since the auxiliary drive is found on vessels which do not

employ electric (main) propulsion, the onboard electrical system is typically a low

voltage one. Improving efficiency in this case refers specifically to improvements in

the mechanical and electrical systems such that losses in the propulsive chain are

minimised.

The prime difference from a conventional shaft generator system is the bidirectional

power control equipment which permits a propulsive (motoring mode) capability.

This consists of a Voltage Source Inverter (VSI) which uses Insulated Gate Bipolar
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Transistor (IGBT) power electronic switches to convert the onboard AC fixed voltage

and fixed frequency supply into a variable output via an intermediate DC link. The

use of an IGBT front-end also permits reactive power flow from and into the drive

to be controlled (up to the kVA rating of the drive). Such variable frequency drives

are now commonplace in industry due to their much greater operational flexibility

and improved harmonic performance compared to conventional thyristor controlled

drives [27].

The electric machine is therefore fully controlled by the converter in all its operational

modes, permitting motoring or generating action at the required power factor (unity

power factor when operating as a motor and providing reactive power to the load

when operating as a generator). Permanent magnet machines offer higher power

density and efficiency compared to conventional wound-rotor machines [28] allowing

for more compact installations, especially important in the cramped spaces of an

engine room.

The placement of the drive along the propulsion chain determines the speed rating

of the machine, in turn affecting the size, weight and cost of the system. For the

same power rating, low speed machines require higher torque, which translates to a

higher current requirement and hence bigger conductors. Higher-speed machines are

generally smaller and lighter due to the reduced torque/current requirements but

need mechanical reduction gears in order to be matched to the speed required by

the propeller.

In case of a slow-speed diesel engine installation, a direct-drive is typically provided

between the engine flywheel and propeller, avoiding the need for any gearing [22]. This

reduces transmission losses to a minimum – hence any auxiliary drive installed with a

gearbox would introduce additional losses and encroach on existing physical space. In

a medium or high-speed engine installation, a step-down gearbox is a necessary part

of the propulsion package in the form of the Main Reduction Gearbox (MRG). In

this case, the presence of the MRG can be exploited since this does not introduce any

(additional) losses or components, and an even higher-speed machine can be utilised

by providing the MRG with a Power Take-Off/Power Take-In (PTO/PTI) facility.

This consists of a secondary gear on the MRG, permitting two-way mechanical power

flow to and from any connected auxiliary machinery [24–26,29,30].

In this work, different setups of auxiliary drives are examined for two case studies, a
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RoRo vessel and tug boat, with the aim to reduce fuel consumption and airborne

emissions. Permanent magnet and induction machines were selected from commer-

cially available ranges to examine the influences of setup on overall efficiency using

real operational data for the two vessels. A first order model system was set up which

permitted detailed drive models to be used to generate efficiency Look Up Tables for

the required operating points, which then facilitate fast steady-state energy studies.

The detailed models were then used to consider the differences between permanent

magnet machines and induction machines based on the operational profiles of the

RoRo and the resultant operating points.

1.1 The machines

The machines in the auxiliary drives convert electrical energy to rotational mechanical

energy and vice-versa, hence they represent the point where two otherwise separate

systems meet (mechanical propulsion and onboard electric system). Auxiliary drives

are sized to cater for a portion of the propulsive demand and are hence inherently

smaller than machines employed for main propulsion. The mode of operation of the

electric machine is determined by the direction of power flow through its armature

windings. Thus if power is flowing from the electrical supply to produce mechanical

torque at the output shaft, the machine operates in motoring mode, while if power is

fed back to the electric supply, the same machine operates in generating mode. Two

types of machines have been considered for application in shipboard auxiliary drives,

namely permanent magnet synchronous machines (PMSM) and induction machines

(IM). These are both commercially available in marine certifications, and are already

found in shipboard applications as off the shelf components. For completeness, wound

rotor synchronous machines are also described.

1.1.1 Permanent Magnet machines

The fundamental principle of operation of any electric machine is the interaction

between a current carrying conductor and a magnetic field. In conventional wound-

rotor machines, this magnetic field is established by the injection of a field current,

with an associated power loss. In Permanent Magnet (PM) machines, the magnetic

field is established by hard magnetic materials, permitting increased torque densities
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(b) AFM transverse view.

Figure 1.2 – PM machines comparison.

and higher efficiencies [31]. The magnets are generally mounted on the rotor,

avoiding the need to conduct power to the moving component via brushes, reducing

maintenance needs and easing cooling requirements. Radial flux PM machines have

their magnets establishing radially directed flux, linking with the conventionally

wound stator. In such a setup, the machine operates as a Permanent Magnet

Synchronous Machine (PMSM) where the rotor rotates in synchronism with the

rotating magnetic field established through the stator.

In contrast, Axial Flux Machines (AFM), as their name suggests, reorient the magnet

placements such that flux is established in an axial direction along the shaft. Such a

construction leads to very axially compact machines, permitting stacking of rotor

discs in order to achieve the required power rating [32]. They are however not as

widely commercially available as PMSMs. Figure 1.2 shows a cross-sectional diagram

of both machine topologies.

1.1.2 Induction machines

Induction machines transfer energy to the rotor by means of magnetic induction. The

fundamental principle of operation is based on a speed difference between the speed
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Figure 1.3 – Cross-section of a squirrel cage induction machine.

of the stator-produced rotating magnetic field and the speed of the rotor, inducing a

rotor voltage and causing rotor currents to flow. Hence induction motors operate at

a speed slightly slower than the synchronous speed (slip speed). Induction motors

are the most popular type of motor in industrial applications, due to their inherent

simplicity and robustness. Modern power electronic drives now permit variable speed

operation to be achieved by these machines further increasing their attractiveness.

The more popular type of induction machine consists of solid metal bars (generally

aluminium, though copper is also used in some higher efficiency grades [33]) cast

into the laminated rotor periphery. Solid metal rings short these bars at each end

forming a cage, permitting current to flow, thus making for a very rugged rotor. This

type of motor is the workhorse of industrial power conversion. A cross section of

such a machine is shown in figure 1.3.

PM machines are inherently more efficient than their equivalent induction machines

since no additional current is needed to set up the magnetic field. They can therefore

be more compact and power dense, especially at lower speed ratings. However this

comes at a significant price penalty compared to the much simpler IM due to the

cost of the permanent magnets.
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1.1.3 Wound rotor synchronous machines

Synchronous machines are a type of AC machine that operate with a DC field on

the rotor such as that set up by the permanent magnets in the PMSM. This is the

reverse construction of a traditional DC machine, where the field is placed on the

stator. By having a stationary armature however, less current needs to be conducted

through slip rings to the rotor since the load current is now carried by the stator

windings. Cooling of the machine is also facilitated by easier heat removal from a

stationary component. The DC field can be established by injecting a DC current

into the rotor via slip rings. However, a more common method for obtaining the DC

field current is to mount a smaller synchronous generator (exciter) on the same shaft

with a stationary field, with a rotating solid state rectifier producing the required

field current for the main machine. These two topologies are illustrated in figure 1.4

where a direct exciter is shown, which is able to generate an adjustable DC field

through a controlled rectifier, as well as a brushless exciter which includes a rectifier

mounted on the rotor shaft together with the exciter generator. The advantage of

the direct exciter is quick response since the DC voltage input to the rotor is directly

controlled. On the other hand adjustments to the field in the brushless exciter’s

case will take longer to settle since the exciter machine must first react. However

the omission of the slip rings is a major advantage as this eliminates the need for

periodic maintenance and renewal as well as reducing the incidence of arcing.

Synchronous machines operate at a fixed speed determined by the supply frequency

and the number of machine poles as ns = 60f/P where ns is the synchronous speed in

rpm, f is the supply frequency in Hz and P is the number of poles of the machine.

This clearly shows how a large number of poles are required for low speed ratings,

leading to larger diameter machines. This inherent speed holding capability makes

synchronous machines very suitable for fixed speed applications. However the most

popular application of a synchronous machine is as a generator, where it is directly

coupled to a diesel engine or a turbine to generate electric power.

In marine applications, synchronous generators coupled to diesel engines are almost

invariably used for on-board generation in auxiliary generator sets. Set to run

at a fixed speed (depending on the desired output frequency), control of the field

current (or the excitation) determines the flow of reactive power and hence the

terminal voltage, while the prime mover input power determines the flow of real
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(b) Brushless excitation.

Figure 1.4 – Synchronous machine excitation setups.

power. In motoring applications, synchronous machines are generally employed in

larger power ratings, where the possibility of controlling excitation and hence the

operating power factor can be a significant detail. Furthermore, when used as a part

of a line commutated converter (LCI) drive, a leading power factor is required in

order to provide the necessary voltages needed to naturally commutate the thyristor

switches used in the machine side converter, thus precluding the use of an induction

machine.

For the application of auxiliary drives, the rating of the electrical machine will

be much smaller than one used for main propulsion, an application where large

synchronous machines are typically used. PMSMs and IMs are therefore considered

in the rest of this work for application as auxiliary drives.

1.2 Drives

Modern power electronics and low-cost and powerful digital processing have permitted

electrical machines to be precisely and efficiently controlled. A Voltage Source

Inverter with an Active Front End (AFE) is shown in figure 1.5, showing the detailed

setup including the control algorithm. The Clarke and Park transformations are

mathematical tools which convert three-phase AC quantities into equivalent constant

values by aligning with a synchronous rotating frame, using the rotor shaft angle
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Figure 1.5 – Voltage Source Inverter with Active Front End.

as a reference. The transformed currents are known as the direct axis current (id)

and the quadrature axis current (iq) which are oriented using the rotor flux vector as

reference (in the case of PM machines). Under proper field orientation conditions, id
is termed the field-forcing current, while iq is the torque-producing current. These

transformations can be considered to be the digital equivalent of the mechanical

commutator found on DC machines.

With an AFE, the flow of power into the drive can be controlled, such that cur-

rent waveforms can be modulated to control aspects such as power factor. Most

importantly for the purposes of auxiliary drives, it permits the flow of power back to

the supply. This is not possible with a simple diode bridge rectifier, albeit cost is

significantly increased.

Proportional-Integral (PI) Control is used to control motor speed and currents using

a cascaded multi-loop system. A fast, inner current control loop controls id and iq
according to the current setpoints defined by the slower outer control loop. The

outer control loop includes a further PI controller which sets the desired iq setpoint,

based on the error between the desired and actual shaft speeds. The field-forcing

current setpoint can be set to a predetermined value or controlled by means of Look
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Figure 1.6 – Electric drive operating envelope.

Up Tables (LUTs) based on the machine’s operating point. This control technique is

known as Field Oriented Control (FOC).

The region of operation of an AC drive under FOC is shown in figure 1.6 (shown

only for forward operation - reverse operation would imply a reflection about the

y-axis). Here a drive is able to develop rated torque up to its rated speed, at which

point rated power is reached. Operation above this base speed is possible using a

technique known as field-weakening. In this region of operation, the machine can

develop up to its rated power. Since P = Tω, for a constant power (P) and an

increasing shaft speed (ω), the torque produced must drop. Operation in this region

is possible until the maximum current limit through the drive is reached, or until

other mechanical or magnetic constraints are reached.

The fundamental model for an electric machine is given using the standard d-q (direct

and quadrature axes) equations below for a non-salient PM machine
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vd = Rsid + Ld
did
dt
− ωrLqiq (1.1)

vq = Rsiq + Lq
diq
dt

+ ωr (Ldid + Ψrd) (1.2)

Te(t) = Ktiq(t) (1.3)

Pin(t) = 3
2 (Vd(t)id(t) + Vq(t)iq(t)) (1.4)

Pout(t) = Tm(t)ωm(t) (1.5)

where the subscripts d and q refer to the direct and quadrature axes, respectively.

Rs is the stator resistance, Lq and Ld are the quadrature and direct axis inductances

respectively, and Kt is the torque constant. The 3/2 factor comes in to play to provide

equivalence of power to preserve the transformation from three-phases to the two

quadrature phases. Ψrd refers to the flux established by the permanent magnets on

the rotor.

1.2.1 Field-weakening operation

In a PMSM, the magnetic field is set up inherently by the rotor. Once the magnets

have been assembled, no direct control of the magnetic field is possible. Under normal

operation therefore, the field-forcing current (id) is maintained at 0A for minimum

copper losses with the torque produced being directly proportional to iq. This is

known as Maximum Torque Per Amp (MTPA) operation, as all available current is

used for torque generation. This is the case for machines which do not exhibit any

saliency, such that Ld = Lq= Ls.

For operation beyond base speed, the magnetic field set up by the magnets must

be decreased. This is achieved by injecting a negative value of id such that a stator

field opposing that set up by the magnets is created, [34]. Care must be taken

since irreversible demagnetisation can occur on the magnets if these are exposed to

high levels of opposing flux. Machine designs such as those using interior mounting

of the permanent magnets helps to avoid the risk of damage to the magnets, [28].

Furthermore, additional current (since id was previously zero) needs to be injected

into the machine, increasing Ohmic losses.

At steady state, from equations 1.1 and 1.2, equations 1.6 and 1.7 can be derived for
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the stator direct and quadrature voltages as

vsd = Rsid − ωrLsiq (1.6)

vsq = Rsiq + ωr (Lsid + Ψrd) (1.7)

At high-speed, the terms with ωr dominate the expressions such that ωrLsi� Rsi

such that

vsd ≈ −ωrLsiq

vsq ≈ ωr (Lsid + Ψrd)

The stator voltage is limited by the maximum voltage supplied by the converter such

that

v2
max ≥ (ωrLsiq)2 + (ωr (Lsid + Ψrd))2

leading to (
vmax

ωr

)2
≥ L2

d

(
Ψrd

Ld

+ id

)2

+ (Lqiq)2 (1.8)

This describes an ellipse centred at i = (−Ψrd/Ld, 0) with radius vmax/ωr. This implies

a voltage and speed-dependent limit, leading to a series of circular limits [35], as

illustrated in figure 1.7.

For a PM machine, from equation 1.3 it can be observed that the maximum torque is

produced when iq = Imax (and id = 0) where Imax is the maximum current supplied

by the converter, leading to the the base speed being defined as

ωb = Vmax√
Ψ2

rd + (LqImax)2

This speed is the the maximum speed at which the nominal torque can be produced

before the voltage limit is reached. Operation above ωb can be maintained by

operating at the maximum voltage limit, such that from equation 1.8, the desired

value of id can be determined as equation 1.9 which results in a current trajectory

within the shaded area of figure 1.7.
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Figure 1.7 – Current and voltage limit loci for non-salient PM machine.
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Figure 1.8 – Comparison of field-weakening operation and stator currents for per-
manent magnet and induction machines.

id =
−Ψrd +

√(
vmax

ωr

)2
− (Ldiq)2

Ld

(1.9)

In an induction machine on the other hand, the magnetic field must (always) be set

up using an external power source, leading to a non-zero value of id. Up to base

speed, the field-forcing current is set to maintain rated flux levels in the machine

such that such that Ψrat
rd = Lmi

rat
d . Beyond base speed, in order to reduce the flux in

the machine (in a simple implementation of field-weakening), id is simply reduced

proportionally while maintaining iq such that [36]:

id = Ψrat
rd

Lm

ωb

ω

Hence at higher speeds, less current is potentially required by an IM than a PMSM.

Figure 1.8 shows this conceptually by comparing the stator currents in field-weakening

operation for a permanent magnet machine with an induction machine. A comparison

of the two machines’ operation must therefore be performed in order to analyse the

balance of overall efficiency due to the different operating modes.
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(b) Geared installation with high-speed machine.

Figure 1.9 – Topologies of different auxiliary drive installations..

1.3 Setups

Two different setups are investigated, namely a direct-drive low-speed setup and a

high-speed setup with a PTO/PTI on the gearbox. The two fundamental arrange-

ments are illustrated in figure 1.9, showing a direct-drive machine mounted directly

on the propeller shaft, as well as a high-speed machine mounted on the gearbox.

The use of a gearbox permits higher-speed machines to be utilised. These have the

advantage of lower cost and weight when compared with equivalent lower speed

devices of the same power rating. For the geared installation, the total step-down

ratio includes the Main Reduction Gear (MRG) in addition to the PTO ratio (if

any). Keeping the number of gearing stages low decreases the efficiency drops along

the chain, with approximately 98% efficiency at each stage [22,37].
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Geared installation Direct drive
Higher speed electric machine Low speed electric machine

Cheaper machine More expensive machine
Low current/torque ratings Higher current/torque ratings

Mechanical declutching possible Mechanical decoupling is complex
Two stage transmission inefficiency Least transmission losses

Table 1.1 – Comparison of auxiliary drive installations.

A further important consideration is the possibility of mechanical decoupling of the

shaftline components. Ideally for auxiliary propulsion, the main engine is de-clutched,

reducing the mechanical load on the drive and permitting independent propulsion

in case of mechanical failure in the engine. For the geared installation, a single

declutching device would be necessary at the main engine side to isolate the engine

when not required. Similarly, a clutching device on the PTO/PTI would permit

the auxiliary drive to be engaged/disengaged only when required. This would also

permit maintenance to be carried out while at sea.

In the direct-drive topology, isolation of the main engine is only possible with a

clutching mechanism on the main shaft between the engine and the direct-drive

motor. In this case, however, there is no possibility of isolation of the auxiliary drive

since this is directly mounted on the propeller shaft. Compared with the first two

topologies, clutching possibilities are less straightforward, although commercially

available systems can utilise tunnel gearing to decouple the main engine [38]. A point

which emerges with respect to the difficulty of de-clutching the electric machine (if

a permanent magnet rotor is used) is the voltage induced in the stator whenever

the shaft is turning. This can be undesirable in situations such as maintenance

and will need to be considered in further detail to ensure safe working conditions.

Furthermore, even at no load this represents a power loss due to the no-load losses

in the electric machine such as cogging torque. The comparison between the direct

drive and geared installation topologies is summarised in table 1.1.

Conventional shaft generator systems implement variants of these same topologies,

without bidirectional power converters or the need for decoupling of the main engine.

The purpose of using a shaft generator is to generate electricity at the lowest possible

cost, which comes about by raising the main engine’s operating point and the use of

low grade fuel on the main engine [23].
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1.4 Propulsion modes

The propulsion setup is an inherent part of the vessel design, and it directly influences

the auxiliary drive’s operating envelope. This is mainly a design philosophy that is

decided on in the initial design stages, when operational requirements such as speed

and manoeuvrability are defined. This influences the naval architecture decision on

what propulsion strategy to implement on the vessel.

1.4.1 Fixed speed operation

With a fixed (shaft) speed setup, the propeller rate of revolutions is kept constant,

and vessel speed is controlled by means of a Controllable Pitch Propeller (CPP).

Ship speed is adjusted by control of the propeller blade angle, permitting smooth

speed control as well as astern propulsion without changing the engine speed. This

is beneficial for manoeuvrability since ship speed can be very quickly adjusted due

to the relatively short time constants associated with the pitch control. A Look Up

Table (LUT) maps ship speed to propeller pitch.

By maintaining a constant shaft speed, electrical generation using a conventional

shaft alternator is simpler, as a fixed frequency output will be generated which can

be used to supply the onboard auxiliary system directly. This can be sustained over a

wide ship speed range as the shaft generator speed is kept close to its nominal design

value. However propulsive efficiency is somewhat reduced as the larger propeller

hub necessary for the CPP mechanism increases the drag, as well as complexity and

expense [39].

1.4.2 Variable speed operation

Ship speed is in this case controlled by adjustment of the propeller rotational speed

which involves a Fixed Pitch Propeller (FPP). This makes for a much simpler

installation as no hydraulic pitch adjustment mechanism is required. Ship speed is

(roughly) directly proportional to the propeller speed such that v ∝ n (where v is

the ship speed and n the propeller rate of revolutions). Limits on ship speed are

therefore dependent on engine speed ranges, with a minimum engine speed dictating

the minimum possible ship speed . A minimum engine speed is in place because
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of mechanical limits imposed by lubrication needs as well as a consequent loss of

compression and ignition failure. Similarly, at low torque loadings, combustion in

the engine takes place at lower temperatures than the design temperature, leading

to cylinder fouling [40].

A conventional shaft generator would only be operational when the ship is at nominal

speed, since at off-design conditions the generated frequency will not match that

required by the onboard grid. Either a complex variable speed gearbox would be

required, or a power electronic converter used to ensure correct electrical frequency

across a wider speed range.

Variable speed operation raises an operational issue with the auxiliary drive itself.

Figure 1.10 shows the operating envelope of an auxiliary drive superimposed on a

theoretical propeller curve and engine operating curve. Two regions are of interest,

namely the vicinity of point A where the vessel is to operate under auxiliary propulsion

(slow speed), and point B where the vessel is at rated speed, powered by the main

engine. At point A, all power (auxiliary drive as well as electric power) is provided

by the onboard generators, while at point B, the main engines supply propulsive as

well as the electric power via the auxiliary drive. Two distinct operating modes can

therefore be identified, namely low-speed motoring, and high-speed generating mode.

These two operating points will therefore determine the rating of the machine, chiefly

the speed and power ratings. Comparing the operating envelopes of figures 1.6 and

1.10, the most realistic sizing is one where the machine is rated for the propulsion at

low speed (point A), and then provides power in generating mode at point B under

field-weakening operation above rated speed [25].

1.4.3 Combinator mode

Since a propeller is designed for a particular nominal speed, operating at off-design

conditions with an FPP will imply that the propeller is not operating at its optimal

pitch. If a CPP is available, adjusting both propeller pitch and speed implies that

the propeller’s operating point can be optimised over two dimensions. This is known

as combinator mode, but is not commonly implemented (on commercial vessels) since

this would necessitate two adjustable systems (both speed and pitch), increasing

cost and complexity.



CHAPTER 1. HYBRIDISATION 27

���������	


��
�����	

�
������

����	

�
������	

�����
�

���
�����	

�����

���������	�����	

�����
�

�����

�����	

�
������	
��
�����	

�
������

�����	
����	

�����

�

�

Figure 1.10 – Operating envelopes of auxiliary drive, main engine and propeller curve.
Operating point A corresponds to low speed propulsion, while operating point B is
sailing at rated speed.
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In order to fully exploit the benefits of the (necessary) power electronic converter in

the auxiliary drive, the adjustable speed capability of the drive should be utilised

in order to operate in combinator mode, i.e. adjustable pitch and variable speed.

By reducing shaft speed and adjusting propeller pitch for optimised efficiency the

required shaft power can be optimised [41]. The rest of this work considers a system

with a CPP operating in combinator mode.



Chapter 2

Vessel case studies

Data from two separate vessels, namely a RoRo vessel and a harbour tug was used

as the basis for the analysis presented in this work. In close collaboration with the

vessel operators, operational data was logged by the project partners from which the

propulsion characteristics and operating profiles were documented [42]. These two

vessels were selected because of the availability of data and relevance to the TEFLES

project. They represent two different categories of vessel with their own individual

machinery arrangements and operating profiles.

2.1 RoRo vessel

Within the TEFLES project, RoRo ferries were the main focus of work. In collabora-

tion with a particular operator, a vessel was made available for case study, providing

operational data to serve as the basis for investigation. The main particulars of

the MV Auto Baltic (figure 2.1) are given in table 2.1. This vessel sails between

the port of Vigo in North-West Spain and St-Nazaire on the French Atlantic coast

transporting new vehicles for the European market. Its propulsion system consists

of a single shaft installation with a CPP and a medium speed diesel engine with

reduction gearbox.

Most importantly for the analysis, vessel operational data was also logged in order

to design and assess the performance of the auxiliary drive system. An example of

the measured speed and power profiles for the RoRo vessel is given in figure 2.2,

from which a typical manoeuvring average was obtained across a number of similar

29
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Parameter Quantity
Vessel name M/V Auto Baltic
Vessel length 138.5m
Gross Tonnage 18,979t

Main Engine rating Wärtsilä 16V46A - 14,480kW at
500rpm

Service speed 20.2kt (10.4m/s)
Propulsion system CPP at a nominal speed of 150rpm

Auxiliary system
Average electrical power (at sea) 385kW

Average power factor 0.76
Average apparent power 503kVA

Table 2.1 – RoRo vessel particulars. [42]

Figure 2.1 – Case vessel MV Auto Baltic [42].
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Figure 2.2 – Measured RoRo manoeuvring speed and power profile.

voyages. The RoRo’s profile focuses on the in-harbour manoeuvring time between the

point of port entry and berthing. This involves a manoeuvring period of around six

minutes sailing at 6kt (3.09m/s). The use of the auxiliary drive to provide propulsion

will be examined during this period of operation. Operational data was collected

every second and averaged over the length of each individual operating condition

(such as manoeuvring), giving piecewise linear approximations of the profiles. In the

absence of standardised operating profile for marine vessels, this averaging process

gives a representative profile of the vessel’s operation, which is more indicative of

typical operation and energy consumption patterns.

With the auxiliary drive directly replacing the main engine in this setup, a significant

power demand over 1MW would be required even at just 6kt. In order to fully

exploit the benefits of the (necessary) power electronic converter, the adjustable

speed capability of the auxiliary drive should be utilised in order to operate in

combinator mode, i.e. adjustable pitch and variable speed.

Based on Computational Fluid Dynamics (CFD) simulations the adjusted power

demands were determined [42], tabulated in table 2.2. This demonstrates the signi-

ficant power savings obtained by taking advantage of the controllability introduced
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Ship speed (m/s) Ship speed (kt) Propeller power at
500rpm (kW)

Adjusted propeller
power at 350rpm

(kW)
0 0 2,190 751
3.6 7 2,700 1,085
5.1 10 2,980 1,676

Table 2.2 – RoRo propeller power demands at different speeds with adjusted pitch
(combinator mode) [42].

by the bidirectional drive when compared with constant speed operation. These

figures are then used for the adjusted propeller demand to obtain the averaged

operating profile. The speeds indicated reflect engine shaft speed, with 350rpm

being the manufacturer’s minimum recommended speed for this engine. Hence low

speed auxiliary propulsion is considered at the engine’s minimum speed, permitting

a smooth changeover from main engine to auxiliary propulsion.

For the RoRo vessel, three different permanent magnet machines were selected from

commercially available devices as listed in table 2.3. Machines A and B are radial

flux PMSMs while machine C is an axial flux PM machine. Machine A is mounted

directly onto the propeller shaft while B and C are mounted on the high-speed side

of the reduction gearbox. All three drives were sized for propulsion at manoeuvring,

taking into consideration the use of combinator mode as outlined previously. The

speed rating of the machine is determined by the installation topology, and hence

whether mechanical reduction gears are used. All machines have similar (high)

efficiencies, making savings highly dependent on the operating profile and propulsion

setup. The direct-drive setup (Machine A) will have lower losses due to the absence

of a gearbox. The other two drives are modelled with a constant 2% power loss at

each gearing stage [22].

The different installations are illustrated in the structural drawings of figure 2.3

showing three different machines selected from commercially available devices. It

must be noted that the AFM is of a significantly higher speed rating, but this serves

to illustrate the size/space advantage. The figure also includes an illustration of the

existing shaft generator arrangement, which consists of a conventional synchronous

alternator. Comparing the setups it is clear how there is a significant size decrease

in going to higher-speed machines (on the PTO/PTI), especially with an AFM.
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(a) direct-drive setup (machine A).

(b) High-speed setup on PTO/PTI (machine B).

(c) AFM high-speed setup on PTO/PTI (machine C).

(d) Setup of existing shaft generator.

Figure 2.3 – Auxiliary drive machine setups.
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Machine A Machine B Machine C
Rated power (kW) 893 875 746

Rated speed
(rpm)

173 400 3600

Rated torque
(Nm)

49,296 20,900 1,980

Mass (kg) 12,470 4,680 340
Installation
location

Direct Geared Geared

Machine type Radial flux Radial flux Axial flux
Torque p.u. mass

(Nm/kg)
3.95 4.47 5.82

Torque p.u.
volume (kNm/m3)

32.4 24.3 15.7

Efficiency at rated
(%)

96.4 96.5 96

Table 2.3 – Selection of electric machines for auxiliary drive application on RoRo.

Parameter Quantity
Tug name Roque S

Type Harbour tug
Vessel length 25.36m
Bollard pull 53t
Main Engine 2×1,469kW at 1,600rpm

Propulsion system FPP

Table 2.4 – Tug particulars. [42]

2.2 Tug boat

The vessel details for the tug boat (figure 2.4) are listed in table 2.4, with the operating

profile shown in figure 2.5, including actual port and starboard engine measurements

together with the boat speed profile [42]. This reflects a typical working day of the

tug in Vigo harbour which is the vessel’s operating base. The power spikes seen

during the standby period are associated with the tug maintaining station (hence

the zero speed). The tug’s propulsion arrangement consists of two high-speed diesel

engines on two separate shaftlines powering two azimuthing thrusters.

The selection of machines for the tug case is listed in table 2.5, showing two machines

(both PMSM) sized for two different operating cases. In the first case, Machine A

is sized to provide auxiliary propulsion in the standby mode of operation. In the

second case, Machine B is sized to provide power during the transit periods. In either

case, the only possible installation is on the high-speed shaft at the main engine side,
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Figure 2.4 – Case tug Roque S [42].
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Figure 2.5 – Measured tug operating profile; in-harbour operation.
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Machine A Machine B
Tug operation (under
auxiliary propulsion)

Idling Transit

Rated power (kW) 160 628
Rated speed (rpm) 600 800
Rated torque (Nm) 2,546 7,500

Mass (kg) 1,125 3,040
Machine type Radial flux Radial flux

Torque p.u. mass
(Nm/kg)

2.26 2.47

Torque p.u. volume
(kNm/m3)

21.4 12.44

Efficiency at rated (%) 95.5 97.2

Table 2.5 – Selection of auxiliary drives for auxiliary drive application on tug.

since the reduction gearbox is integrated to the azimuthing thrusters.

2.3 Modelling

In order to make use of the available operational data and obtain estimates of the

emissions produced by the various machinery setups, a complete propulsion system

model was built. The averaged operational profiles of the two vessels (obtained from

the data of figures 2.2 and 2.5) are used as inputs to the model. This determines the

instantaneous power demands on the propulsion system and defines the total energy

required by the vessel over the snapshots of the operational scenarios considered in

this study. The emissions produced are a function of the energy consumption and

the various sources of the energy itself, i.e. main engine or auxiliary engines.

2.3.1 Electric drive model

The drive equations allow accurate simulations of drive behaviour but present a

computational penalty in terms of long simulation times. The solution adopted in

this investigation was to create an efficiency chart of the machine according to the

operating points demanded by the particular propulsion system topology, generating

a look up table of overall efficiencies, obtained from the ratio Pout:Pin calculated using

the detailed simulation model. The detailed d-q simulation is therefore performed

across all operating points of interest as defined a priori by the drive topology and

operating points, by varying the load torque (Tl) and the desired speed setting ω*,
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Figure 2.6 – Drive simulation overview.
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Figure 2.7 – Drive model setup in Simulink.

schematically illustrated as figure 2.6 and implemented in Simulink as figure 2.7. The

parameters associated with the machine model are obtained from manufacturer data

available in product catalogues. This methodology therefore permits commercially

available machines and converters to be easily represented. The algorithm developed

for the drive controller in figure 2.7 is listed as Appendix E.

Losses across the power electronic converter are treated similarly by utilising an

efficiency plot as a function of percentage loading, obtained from manufacturer

catalogues, allowing quick simulation without a detailed representation of device

switching action. The combination of calculated machine efficiencies and converter

losses permit the total drive loss at each identified operating point to be determined
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Auxiliary engine Fuel Emission factor (g/kWh) sfc
type type NOx SO2 CO2 HC PM (g/kWh)

Medium-speed MGO 13.9 1.1 690 0.4 0.3 217
MGO (0.1% S) 13.9 0.44 690 0.4 0.3 217

diesel MDO 13.9 4.3 690 0.4 0.3 217
RO 14.7 12.3 722 0.4 0.8 227

High-speed MGO 10.9 1.1 690 0.4 0.3 217
MGO (0.1% S) 10.9 0.44 690 0.4 0.3 217

diesel MDO 10.9 4.3 690 0.4 0.3 217
RO 11.6 12.3 722 0.4 0.8 227

Table 2.6 – Emission factors for auxiliary engines [19].

by means of interpolation for intermediate points.

2.3.2 Combustion engine model

The purpose of this model is to determine the fuel consumption and emissions

produced by engine operation. The approach adopted was to consider the cumulative

energy demanded from each prime mover as the integral of instantaneous power

loadings. The emissions produced by the engines to generate this energy (kWh) are

obtained by means of emission factors [19]. These averaged emission factors are

particular to individual engine types, and also vary according to the fuel used. Since

no journey will be identical to another even when under similar conditions, this

averaging (combined with the averaged power profiles) gives a basis for comparison

and evaluation of improvements brought about by auxiliary drives or hybridised

sources. A further variable is the different percentage loadings on the engine, which

is addressed by using different emission factors for different operating modes [19].

Tables 2.6 and 2.7 list the emission factors for auxiliary engines (powering generator

sets) and main engines for different types of fuel. MGO represents Marine Gasoil

(with a Sulphur percentage content of 0.25%), while MDO represents Marine Diesel

Oil, and RO describes Residual Oil (which is used interchangeably with HFO).

2.3.3 Power loading

The allocation of power demands to the different subsystems is at the heart of this

or any hybridised drive system. This directly determines the energy generated by

each prime mover and hence the resultant emission figures.
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Auxiliary engine Fuel Emission factor (g/kWh) sfc
type type NOx SO2 CO2 HC PM (g/kWh)

Medium-speed MGO 10.6 1.1 710 1.5 0.9 223
MGO (0.1% S) 10.6 0.44 710 1.5 0.9 223

diesel MDO 10.6 4.5 710 1.5 0.9 223
RO 11.2 12.7 745 1.5 2.4 234

High-speed MGO 9.6 1.1 710 0.6 0.9 223
MGO (0.1% S) 9.6 0.44 710 0.6 0.9 223

diesel MDO 9.6 4.5 710 0.6 0.9 223
RO 10.2 12.7 745 0.6 2.4 234

Table 2.7 – Emission factors for main engines [19].

The vessel speed demand in the form of a speed time-series is used as an input to

the model. This speed demand is converted to a propulsive power demand by means

of a speed-power look up table obtained from vessels’ sea trials data. As a result,

the power demand profile is a direct representation of the real propulsive power

without any additional model uncertainties. This speed-power look up table takes

into account the combinator mode power demand.

The load is allocated to the electric drive by a control logic decision block which

assumes a changeover threshold figure corresponding to the drive’s rating. This

maximises the time spent in auxiliary propulsion such that the main engine load is

reduced to zero once the power demand drops below the drive’s rating. Throughout

the operational scenario, the vessel’s auxiliary electrical demand is imposed as an

additional load on the auxiliary generators. This rule-based system was adopted to

examine the effect of the auxiliary drive itself without detailed consideration of the

energy management system, which is addressed separately in chapter 7.

Such a simulation setup is energy-centric by design where the consideration of interest

is the power loss across the various propulsion chain components. This permits the

comparison of different auxiliary drive topologies and strategies without requiring

detailed simulations capturing transient behaviour. The overall schematic of the

developed model is illustrated in figure 2.8, showing the topology of the various

sub-models described in the previous sections.
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Figure 2.8 – Propulsion system simulation setup.

2.4 Results

2.4.1 Topology comparison

The results for the RoRo case are summarised in table 2.8 for the six minute averaged

manoeuvring period. The savings between the three drives are very similar, with

Machine A showing marginally higher savings due to the reduced mechanical losses

compared to the other setups as expected. The savings in fuel consumption, CO2

and NOx emissions are around 45% of the original conventional case. On the other

hand SOx emissions are significantly reduced, due to the use of marine gasoil (MGO)

with a much lower Sulphur content (0.1%) as opposed to the heavy fuel oil used in

the main engines. Conversely this cleaner fuel is more expensive than the HFO and

hence fuel savings (monetary) are not commensurate with the actual consumption

savings due to the higher cost of the MGO [11,16].

Table 2.9 shows the results of the tug case simulation for the standby and transit

auxiliary propulsion cases. In these cases, the use of auxiliary drives has not resulted

in any reductions in consumption and emissions; instead these have increased. This

was an unexpected result since it was initially assumed that due to the greater

variability in the operating profile (see figure 2.5), an overall improvement in fuel

consumption and emissions would be observed. This outcome can be explained by

the fact that the use of the auxiliary drive in the tug case adds additional losses

to the propulsion chain. The main (mechanical) propulsion system returns better

consumption figures than the electrical auxiliary system at higher loadings, such that

over the complete scenario study, the net overall performance in terms of emissions

was inferior to the original case with no auxiliary propulsion. This is in agreement
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Current
estimate

Machine A Machine B Machine C

Setup
type

Direct Geared Geared

Fuel con-
sump-
tion
(kg)

28.15 15.12 -46.29% 15.15 -46.18% 15.33 -45.54%

Fuel
cost (€)

14.41 10.90 -24.37% 10.92 -24.23% 11.05 -23.33%

CO2
emission
(kg)

89.63 48.07 -46.37% 48.18 -46.25% 48.73 -45.63%

NOx
emission

(g)

1.35 0.76 -43.62% 0.76 -43.50% 0.77 -42.85%

SOx
emission
(kg)

1.53 0.08 -94.98% 0.08 -94.97% 0.08 -94.92%

Table 2.8 – Results comparison for RoRo case.

with the observation made in [43]. Contrary to the RoRo ship, the main engine on

the tug runs on the same fuel as the auxiliary engines, hence no emission savings are

realised by the possibility of running on different, cleaner fuels.

2.4.2 Machine comparison

A separate comparison was performed to compare induction and permanent magnet

machines over the vessel’s complete operating profile, i.e. over both manoeuvring

and at sea conditions. It has been established in the previous section how savings

are realisable using auxiliary drives on the RoRo during the manoeuvring condition.

Using data available for the RoRo vessel which typically operates with the operating

profile of table 2.10 the relative merits of different machines can be examined.

Within these conditions, propulsion is to be provided by the auxiliary drive for

the manoeuvring periods, while the drive is to provide power to the onboard grid

by operating as a shaft generator when at sea. The whole propulsion system is

considered to be shut down while the vessel is berthed.

For a direct comparison, two similarly rated machines were selected from manufacturer

catalogues, fitted to a PTO/PTI on the MRG (as in figure 1.9b), with an additional

PTO gear ratio of 2.3. This gives electrical machine speeds of 800rpm and 1142rpm
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Standby operation Transit operation
Machine

A
Current
estimate

Difference Machine
B

Current
estimate

Difference

Fuel con-
sumption

(kg)

37.34 36.66 1.85% 177.04 175.24 1.03%

Fuel cost
(€)

26.92 26.43 1.85% 127.65 126.35 1.03%

CO2
emissions

(kg)

118.76 116.70 1.77% 563.00 558.00 0.90%

NOx
emissions

(kg)

1.88 1.58 18.88% 8.89 7.54 17.90%

SOx
emissions

(kg)

0.19 0.18 4.71% 0.90 0.86 3.82%

Table 2.9 – Results comparison for tug case.

Operating condition Percentage of time
At sea 75%
Berthed 20%

Manoeuvring 5%

Table 2.10 – Time spent in each operating condition [42].

for the motoring and generation periods respectively, for the operating specifications

as defined in table 2.11. These two operating conditions correspond to points A

and B in the operating envelope of figure 1.10. The parameters for the PMSM and

IM are given in table 2.12. Since the influence of the additional current for field-

weakening was to be examined on the overall losses, a detailed model of the power

electronic converter was used to generate a LUT at the operating points of interest

similar to the method employed in the electric machine models described previously.

A simple field-weakening strategy was implemented as described in section 1.2.1.

The simulation was run until steady state was reached and the resultant efficiency

determined at each operating point of interest.

An example of the simulation of field-weakening operation is shown as figure 2.9

which shows the step response of the auxiliary drive with a PMSM accelerating to

the motoring setpoint as defined in table 2.11. The direct axis current is maintained

at 0A for minimum copper losses, while the quadrature current is clamped to rated

value for maximum torque during acceleration. Once the desired speed has been
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Motoring condition
Drive speed 800 rpm

Power demand
(mechanical)

580 kW

Generating condition
Drive speed 1,143 rpm

Auxiliary power demand
(electrical)

400 kW

Auxiliary load power
factor

0.8 lagging

Table 2.11 – Operating points specification.

Machine A Machine B
Machine type PMSM IM

Rated power (kW) 1,005 970
Rated speed (rpm) 800 744
Rated torque (Nm) 12,000 12,476

Mass (kg) 4,100 5,450
Torque p.u. mass

(Nm/kg)
2.93 2.29

Efficiency at rated (%) 97.3 95.4

Table 2.12 – Parameters for PMSM/IM comparison.

reached, the current reduces to its steady state value.

Figure 2.10 shows the corresponding characteristic when in generating mode. The

motor is accelerated to the desired speed (under no load), with the direct current

observed to take on a negative (non-zero) value in order to permit over speeding of

the machine. The quadrature current is decreased as a function of the maximum

permissible current in the stator in order to prevent overloading. A negative torque

(mechanical power fed from the shaft) is applied at 1s, with the quadrature current

then settling to a negative steady state value, indicating real power being fed back

to the electric supply. Characteristics for the induction machine drive are similar,

except that the direct current takes on a non-zero value and is decreased accordingly

during field-weakening.

The steady-state results of the two drives are compared in table 2.13 highlighting the

current values together with overall drive efficiency. While the PMSM drive shows

a higher efficiency during motoring condition, the efficiency during the generating

period is marginally lower than the IM drive. This comes about since a larger

current magnitude is now injected into the drive to force field-weakening, leading to
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Figure 2.9 – Simulated PMSM step (motoring).
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Figure 2.10 – Simulated PMSM step (generating).
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Motoring mode Generating mode
id (A) 0 −500
iq (A) 565 −250

Stator current (A) 565 559
Efficiency 97% 92%

(a) Steady-state characteristics of PMSM drive.

Motoring mode Generating mode
id (A) 247 170
iq (A) 695 −450

Stator current (A) 737 481
Efficiency 95% 93%

(b) Steady-state characteristics of IM drive.

Table 2.13 – Steady-state characteristics of drives with different machines.

Losses during
manoeuvring period

Losses at sea

PMSM drive 39.26 kWh 851.35 kWh
IM drive 56.98 kWh 790.32 kWh

PMSM vs IM −31% 7.7%

Table 2.14 – Comparison of losses between machine types.

higher (copper) losses. A typical journey of the RoRo in question (berth to berth)

lasts around 28 hours, and combining the averaged powers of table 2.11 and the

operational profile of table 2.10 with the results obtained, leads to the summarised

losses of table 2.14. Clearly, though the PMSM drive shows a lower efficiency while

generating at sea, when motoring an increased efficiency of around 31% can be

realised. However, the greater proportion of time spent at sea implies that the energy

lost will be greater [10].

Fundamentally, all energy on board a ship translates to an equivalent fuel cost.

The losses at sea (when generating) are supplied by the main engine, while those

during the manoeuvring period are supplied by the auxiliary generators. Based on

the typical Specific Fuel Consumption (sfc) figures for these engine types [19], the

equivalent fuel consumed to supply these losses, and the bunker cost [44] is shown in

table 2.15. This illustrates how due to the lower cost of HFO used by the main engine,

the economic savings due to the higher (generating) efficiency of the IM drive are

much smaller since they are offset by the higher cost of the fuel used in the auxiliary

generators, but when considering the total losses due to the operating profile, an

overall improvement is seen with the IM drive. The resultant losses/savings will
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therefore be determined based on the particular operating profile, highlighting the

importance of considering the actual design conditions for which the system is to be

designed [24,45].

Equivalent fuel
loss during
manoeuvring

(MGO)

Equivalent fuel
loss during at sea
period (HFO)

Total equivalent
cost of fuel to
supply losses

PMSM drive 8.52kg 181.34kg €79.75
IM drive 12.36kg 168.34kg €76.76

PMSM vs IM −31% +7.7% +3.8%

Table 2.15 – Economic comparison of losses due to different auxiliary drives.



Chapter 3

The cold ironing environment

Emissions from ships don’t stop when vessels are berthed. Though the propulsion

demand is zero, ships still need to run their onboard auxiliary plant, both for

operational purposes (e.g. running of extractor fans, onboard cranes etc...) as well

as for the onboard hotel load. This power is usually provided from the auxiliary

generators, or alternatively (depending on the load levels involved) by a smaller

onboard generator known as the emergency or harbour generator. These are typically

diesel engines, producing emissions from the combustion of fossil fuels.

The operation of the onboard generators when in port can be minimised by connecting

vessels to the shore electrical supply (a practice known as cold ironing) such that the

power requirement is met by land-based generation, supplying the electrical energy

from a centralised source. This gives a locally emission-free solution, though the

resultant overall airborne emissions will be a function of the generation mix employed

on land [14,46–48]. Legislation, both current and upcoming, aims to incentivise and

promote the uptake of cold ironing systems and reduce the emissions generated at

berth. Within EU ports, the Sulphur Directive [49] limits the Sulphur content of

fuels used by ships in EU ports to less than 0.1% by mass when the scheduled stay is

longer than two hours. Ships which shut down all engines and use a shore electrical

supply are considered compliant. A similar Sulphur limit is in place since 1 January

2015 in Emission Control Areas (ECAs), with a global Sulphur limit being reduced

from 3.5% to 0.5% in 2020 (or 2025 pending a review in 2018) [50]. Shore supply is

a solution to meeting these limits while berthed in harbour, providing an alternative

to the use of expensive, low sulphur content fuel [48,51,52].

47
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At the same time as increasingly stringent environmental requirements, newly de-

veloped technical standards aim at facilitating the expectations and requirements for

both port operators as well as visiting vessels, by setting out the required components

as well as quality of supply expected at the berths. Joint standard IEC/ISO/IEEE

80005-1 sets out the requirements for High Voltage Shore Connections (HVSC) [53],

while IEC/IEEE 80005-3 (pre-standard) deals with Low Voltage Shore Connections

(LVSC) [54] for vessels with a lower power demand based on similar concepts (such

as the location of the frequency converter on shore and the need for galvanic isolation

for each connection)2. The push for standardisation is aimed at easing ship to shore

connections and hence help break down (one of the) barriers in the adoption of cold

ironing.

From an electrical engineering point of view, the shore connection of vessels does not

require new technologies or devices, but rather an application of existing systems to

create feasible ship-to-shore connections [56]. Shore connection has been a common

feature in shipyards, where long stays as well as onboard works would make the

shutting down of shore generators a feasible consideration. Shipyards typically have

shore connection facilities at quaysides, from which a cable is spooled to the berthed

ship. Connection is made by means of bolted terminations onto a blacked out

vessel – the provision here is for a one-off connection during the vessel’s relatively

prolonged stay. Ease of connection as well as seamless transfer of power are secondary

considerations, and furthermore the vessel is generally not under normal operation

during its stay. On the other hand, cold ironing during operational stays needs to

be fast in connection, provide the demanded power and provide a safe and seamless

transfer between ship and shore power.

The fundamental components required in a cold ironing system as per IEC/ISO/IEEE

80005-1 are shown in figure 3.1. This is a representative schematic showing the

requirements for a single connection, and the salient components are discussed in the

following sections. A number of electrical issues, especially in terms of protection

and safety, are of concern to these shore connection installations. In [57], the authors

discuss the dangerous touch voltages created in the case of a ship connected to

the shore supply with a phase to ground fault in the system, arising because of a

common earthing situation. Grounding is also discussed in [58], while [59] looks at
2Part 2 of the standard IEC/ISO/IEEE 80005-2 [55] (pre-standard) relates to the communication

and control between ship and shore.
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Figure 3.1 – Typical cold ironing system arrangement.

the more specific aspect of residual charge in the ship-to-shore cable and the need for

a grounding switch. Surge protection is discussed in [60] outlining the need for surge

arresters both on shoreside as well as onboard, with the grounding configuration

determining type and rating of the protective devices. An additional protective

concern is the short circuit current capability of the installation, which is addressed

in [61]. Common to all these works is the appreciation of the fact that each project

is unique, requiring an in depth study for each cold ironing installation [51]. In this

work, the optimal shoreside configuration is investigated, together with the impact

of the cold ironing system on the power quality.

3.1 Shoreside requirements

3.1.1 Transformers

At the utility point of connection, a step-down transformer is required to provide

the Medium Voltage (MV) distribution for the cold ironing system from the High

Voltage (HV) utility distribution voltage. This can be required in addition to the

existing port substation or integrated into the current distribution system if there is

sufficient margin for additional capacity.

This utility interface transformer can be placed at a distance from the berthside at

any convenient location. Cabling must be provided from the transformer yard to the
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required point of ship-to-shore connection.

At the connection points, a further transformer can be required for purposes of

galvanic isolation of each ship to shore connection [53,54] . By providing a galvanically

isolated supply for each connected vessel, any occurring fault should not affect

adjacent consumers. The transformer can also provide a voltage level adjustment to

match the voltage required by the vessel, if different from the shore voltage.

The shore arrangement is also necessary to provide a grounding system compatible

with the vessel’s original electrical grounding philosophy. ISO/IEC/IEEE 80005-1

calls for the connecting transformers to be of a DYn type, i.e. with a delta connected

high voltage winding and a star connected low-voltage winding with access to the

star point which is earthed through an earthing resistance. The fundamental idea

is to maintain the ship’s onboard grounding philosophy such that a similar ground

fault protection and fault levels are unchanged.

Note on grounding arrangements

Vessels with a low voltage power system are generally isolated, i.e. ungrounded. This

provision prevents total loss of supply in the case of a single ground fault [62]. This

differs from shoreside installations where the priority is the immediate isolation of a

faulted system. In the case of a high voltage system, the power system is grounded

via High Resistance Grounding (HRG) at the generators’ star point. This prevents

floating high voltages and serves to limit any resultant fault currents to a value set by

the Neutral Grounding Resistance (NGR)’s value. ISO/IEC/IEEE 80005-1 requires

the ship’s hull to be bonded to the shoreside ground in order to prevent hazardous

touch potentials from developing (specified to be less than 30V). Thus the provision

of a separate ground requires an isolating transformer – which is required by low

voltage ships due to their ‘non-standard’ voltage level.

3.1.2 Automated earthing switch

An automated earthing switch with interlock is necessary to ensure safety of operating

personnel when handling cables. This ensures that the cable is solidly earthed when

the system is off, and should automatically be engaged on de-energisation of the

cable. The earthing switch serves to ensure that the cable is fully discharged before
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Rotary converter Static converter
Fixed output frequency Programmable output frequency
Permanent installation Modular installation

Output paralleling is complex Modular and expandable system
Downgraded operation is not possible

after failure
Reduced power operation possible due

to component failure

Table 3.1 – Comparison of rotary and static converters [65].

manual handling. Due to the cable’s capacitive characteristics, significant energy can

be stored in the cable length, which is quickly discharged by closure of the earthing

switch [59].

3.1.3 Frequency converter

The conversion of frequencies is more costly than the conversion of voltage. Small

systems can utilise rotating converters, which consist of a motor/generator pair

coupled on a common shaft. The motor runs at the supply frequency, with the

generator supplying power at the desired frequency. This is set by the choice of an

appropriate pole number for the machines. Running at the same speed, the relation

between the respective frequencies and poles is fm/Pm = fg/Pg where the subscripts

indicate the generating or motoring machines respectively. Thus for a conversion from

50Hz to 60Hz, the appropriate pole ratio will be Pg : Pm = 6 : 5. The disadvantages

of rotating converters are that they required periodic maintenance on the rotating

parts, as well as the need to have two fully rated machines of significant size. The

efficiency of such a system is also likely to be lower than that for a stationary

converter especially for part loadings [63]. With required multi-MW ratings, the cost

and size of these rotary converters places them at a disadvantage compared to static

converters.

Stationary converters utilise solid state power electronics to convert between frequen-

cies via an intermediate DC link. Similarly to industrial drives, converters which

utilise IGBTs and an active front end are available up to 2MVA, while for power rat-

ings up to 14MVA, IGCT converters with 12-pulse diode front ends are possible [64].

The biggest disadvantage of these converters is the higher cost associated with them.

Efficiencies are however higher than rotating converters, with an example of the

efficiency plots across a range of loadings shown in figure 3.2 [63].
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Figure 3.2 – Efficiency plots for static and rotary frequency converters [63].

High voltage converters are more expensive and specialised than their low voltage

counterparts. Commercially available systems are offered with low voltage converters

and step-down and step-up transformers at each end respectively [64,66].

3.1.4 Communications interface

A communication interface is required to synchronise the shipboard supply with the

shore grid when implementing a seamless transfer of power. This furthermore provdes

added protection in that the connection can be shut down if a faulted condition is

detected onboard. The communication cabling is integrated in the ship connection

cable and is in the form of an optical fibre link. An international standard (part 2 of

ISO/IEC/IEEE 80005) is currently being developed [55].

3.1.5 Shore connection switchboard

The shore connection switchboard includes the protection devices and earthing

interlocks necessary for the safe connection and disconnection of the shore supply

cable. This must be placed in a safe and secure location, in the form of cabinet
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or cubicle. The location of this shore connection box must take into account the

berthing location of vessels, as well as shoreside requirements such as the importance

of not obstructing berthside crane operations. Each port setup will be an individual

case, which must be tackled individually at project stage.

The location and frequency of these switchboards is an important consideration,

whereby the possible number of connected ships according to their berthing position

is hence determined. This choice is somewhat eased for berthing operations which

permit only docking at predefined locations such as ferry terminals.

3.1.6 Shore cabling

An infrastructural backbone is required from the port substation to the shore

connection boxes. This entails high voltage cables being laid across the port to

connect the necessary points. Trenching would be required to route and protect

the cables, and if not already present, this will represent a significant additional

cost. This will be a chief limiting factor in terms of retrofitting ports with an HV

infrastructure since major civil engineering works will be required, creating disruption

to normal port operations.

3.2 Shipside requirements

3.2.1 Shore connection panel

Onboard the ship, the shore connection panel provides the physical connection

receptacle for the connecting cables. It provides the protection relays and circuit

breakers for onboard safety as well as interfacing to the onboard power management

for synchronisation and protection. Physically it must be placed at a convenient yet

secure location which allows for easy shoreside access.

This represents the biggest adaptation requirement since a physical space must be

prepared at a suitable location. This location must be accessible from the shoreside

as well as protectable from inclement weather. The location of the equipment will

imply whether the vessel can berth alongside on any side. This is not a problem for

vessels which consistently call at the same location, but can prove problematic if the
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shore connection is aimed at multiple ports and berths. The same applies to the

location of the connection along the ship. This links with the shoreside location of

the connection panel, whose respective placement will determine the possibility of

shore connections for individual ships. The frequency of placement will determine

the possible number of vessels which can connect.

The actual connecting cable may either be held in an onboard spool with an associated

derrick for handling, or be supplied by the port using some means of craning system.

The advantage of having a ship supplied cable is that handling equipment such as

cranes are minimised, since simply a spool coiling system is needed for cable retrieval

and avoids having to lift heavy cables. The location (onboard or onshore) is ship-type

specific, and is defined in [53].

3.2.2 Onboard transformer

An onboard transformer would be required if the vessel operates solely a low voltage

system or a voltage level incompatible with that supplied from shore. This can

be placed remote from the shore connection panel via a fixed installation. This

transformer also provides the necessary galvanic isolation and serves to preserve the

onboard grounding philosophy.

3.2.3 Ship receiving switchboard

This switchboard would generally be part of the main switchboard, and serves to

distribute the shore power to the rest of the vessel’s system. It would contain

protection and metering facilities.

3.2.4 Power management modifications

Apart from the physical installation changes required on the system, a further

requirement is the modification of the power/energy management system to handle

the shore connection. This would imply the prioritisation of this source when

available while maintaining a standby capacity from an onboard generator. The

switchover between onboard and shore power must also be catered for, with the

provision to provide synchronisation between the sources. In cases where a software
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based management system is not used, this would imply changes in the protective

and control relaying.

The changeover from onboard power to shore supply is permitted via two techniques,

either load transfer via blackout or load transfer via automatic synchronisation. With

the blackout option, the load transfer occurs onto a ‘dead’ ship once the onboard

supply has been switched off. Clearly this has disadvantages in that power is lost for

a brief interval while the changeover process is effected, but is an otherwise simple

procedure. For ship loads which cannot sustain any power blackout, automatic

synchronisation sees the temporary parallel operation of both shore and onboard

supplies while the automatic synchroniser adjusts the supplies before switching

over to the shore supply. A maximum transfer time limit is to be defined which

if exceeded results in disconnection of the supply and sounding of an alarm. This

seamless transfer is of course more desirable for cruise ships and ferries.

3.3 The environmental case

The shore connection of ships shifts the generation of emissions from the harbour

area to the utility power generating stations located onshore. The harbour area is

generally close to habitation but is also an area of heavy industrial activity. Ships

running onboard auxiliary generators in order to provide their electricity needs

contribute to this environment, hence cold ironing serves to limit the emissions

produced in-harbour. Furthermore, the shoreside generating mix can also include

renewable sources which are an emission-free solution during operation.

Emission factors consider a linear relationship between the energy converted by the

prime mover and the emissions produced. Emission factors for the various pollutants

(CO2, SO2, NOx) for onboard auxiliary engines are found from literature, and in use

within this work are those found in [19] used in previous sections, tabulated as table

2.6.

Similar figures the shoreside power option were calculated using data from various

sources. Most relevant to this study are two documents published by the UK’s

Department of Energy and Climate Change (DECC) namely the UK Greenhouse Gas

Inventory, 1990 to 2010 (UKGHGI) [67] and the Digest of United Kingdom Energy

Statistics 2011 (DUKES) [68]. These both refer to 2010 as the latest year data is
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Pollutant Mean AE
emissions
(g/kWhe)

Power station
emissions
(g/kWhe)

Reduction (%)

NOx 14.1 1.2 91.6
CO 0.9 0.2 75.3
SO2 2.2 1.2 45.8
CO2 718.6 542.6 24.5

Table 3.2 – Emission factors as used in [47].

Fuel CO2 emission factors (g/kWh) of electricity supplied
2008 2009 2010

Coal 910 908 909
Oil 651 653 653
Gas 401 402 398

All fossil fuels 607 593 590
All fuels

(including nuclear
and renewables)

495 448 458

Table 3.3 – Emission factors in DUKES report [68].

available when this work was carried out. The objective was to obtain emission

figures for various sources, such that dependent on the generation mix selected, the

appropriate emissions can be estimated. This approach can then be extended to

various locations depending on the local generating mix, which if further detailed

information is available can be improved with the local fuel emission factors.

3.3.1 Existing emission factors

In an assessment of cold ironing effectiveness, [47] reports use of the emission factors

given in table 3.2 for the UK only, taking into account the generation mix in 2007.

The DUKES report itself gives some emission factors for CO2 emissions (only) as

table 3.3.

In the “2012 Guidelines to Defra / DECC’s GHG Conversion Factors for Company

Reporting” produced by AEA for the Department of Energy and Climate Change

(DECC) and the Department for Environment, Food and Rural Affairs (Defra) [69]

the emission factors in table 3.4 are given, again only considering CO2.

These emission factors however are only valid for the UK and as can be seen there

is an element of variation between the figures given in the studies. In order to
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Year CO2 emission factors (g/kWh) of electricity supplied
2008 486.57
2009 447.18
2010 454.53

Table 3.4 – CO2 emission factors from [69].
Fu

el
So

ur
ce Mass emission factors Electricity statistics Electrical energy emission factors

CO2
(kt/Mt)

NOx
(kt/Mt)

SO2
(kt/Mth)

Fuel
Con-
sumed

Electricity
Sup-
plied

(GWh)

CO2
(g/kWh)

NOx (g/kWh) SOx
(g/kWh)

Coal 610 4.31 4.07 40.23
MT

98,706 911.6 1.76 1.66

Fuel Oil 873 11.72 8.35 0.93
MT

4,357 683.2 2.5 1.78

Natural
Gas

1.46 3.6×10-3 5.32×10-5 11,700
GTh

158,972 394 0.26 3.91×10-3

Table 3.5 – Derived emission factors.

obtain generic factors, the emission factors were to be obtained for each fuel source,

additionally including SO2 and NOx such that a complete shoreside emission picture

could be produced.

3.3.2 New emission figures

The UKGHGI defines the mass emission factors utilised in the document to quantify

emissions at source in kt/Mt of fuel consumed. These are given for CO2, NOx and

SO2 (among others). In order to convert these to g/kWhe, the corresponding amount

of fuel consumed was required, together with the electrical energy produced from

each fuel type during the same time period. This data was correlated from the

DUKES report, giving the derived emission factors of table 3.5 for CO2, NOx, and

SO2 (reported as SOx).

In order to get the combined emission factor for the UK generation mix, use is made

of the electricity share given in DUKES. From these a weighted average can be

obtained giving table 3.6. It must be noted that these figures relate to electricity

supplied, to which losses due to Transmission and Distribution (T&D) must be added.

For the year 2010, the estimate for T&D losses (UK) are of 7% [68].
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Fuel source Share of
electricity

CO2 (g/kWh) NOx (g/kWh) SOx (g/kWh)

Coal 28% 911.6 1.8 1.7
Oil 1% 683.3 2.5 1.8
Gas 47% 394.0 0.3 0.0

Nuclear 16% 0.0 0.0 0.0
Renewables 7% 0.0 0.0 0.0
Weighted emission factors 447.26 0.64 0.48

Table 3.6 – Weighted emission factors for the UK.

Fuel France Germany Spain UK Turkey USA China
Coal 5% 43% 13% 28% 35% 49% 79%
Oil 1% 2% 6% 1% 3% 1% 0%
Gas 4% 13% 37% 47% 60% 24% 1%

Nuclear 76% 23% 18% 16% 0% 21% 2%
Renewables 13% 12% 24% 7% 1% 2% 17%

Network losses 6.07% 4.22% 9.09% 7.00% 18.25% 6.70% 4.90%

Table 3.7 – Generation mix for various countries.

3.3.3 Worldwide electricity supply data

The emission factors presented so far relate to the UK case. The fuel-specific emission

factors themselves will not vary excessively from country to country but the overall

emission factor will be scaled according to the generation mix. The International

Energy Agency (IEA) publishes yearly figures describing electricity generation mix,

network losses as well as electricity cost [70] for its member countries, permitting

the emission factors for generated electricity to be estimated.

Table 3.7 gives the percentage generation mix for various countries of interest. This

is used in conjunction with the source based emission factors given in table 3.5 to

provide the emission factors of table 3.8. The choice of country in these tables reflects

interests of the TEFLES project consortium as well as the USA and China for a

global perspective.

3.3.4 The case for shoreside generation

One of the major constraints on cold ironing is the power demand placed on the utility

supply by the berthed ships (e.g. the recommended rating for a cruise ship connection

is for 16 MVA) [53]. If the existing port infrastructure does not have sufficient

spare capacity, additional substations must be constructed and additional incoming
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Country CO2 (g/kWh) NOx (g/kWh) SO2 (g/kWh)
United Kingdom 478.9 0.7 0.5

Spain 331.1 0.5 0.4
France 75.6 0.1 0.1

Germany 478.6 0.9 0.8
Turkey 684.1 1.0 0.8

United States 585.4 1.0 0.9
China 762.6 1.5 1.4

Table 3.8 – Weighted emission factors for generated electricity based on generating
mix for various countries.

feeders might also be necessary, together with the associated protective switchgear,

transformers and cabling. This all involves a significant potential additional cost

which negatively affects the feasibility of new cold ironing systems.

Reduction of harbour demand by means of energy saving measures can be a way

of providing sufficient spare capacity to accommodate extra loads, depending on

the actual port power demands and loads, and the required extra power. For a

large disparity between power availability and demand, the provision of extra supply

would be necessary. In an effort to reduce the load on the utility, an alternative

proposal is to provide power by generation within the harbour area using alternative

sources [71].

Renewable sources within the harbour serve to improve the generation mix for the

localised demand and can be considered within the developed model by adjustment

of the generation mix (table 3.6). Ports can for example utilise unused roof area

to install photovoltaic modules to sell power to the grid. In this case, maximising

utilisation of renewable sources results in continuous income through feed-in tariffs

and is independent on the profile of connected ships. Another alternative is the

installation of a dedicated source which can be used on demand to supply in-harbour

loads, cleaner than running the ships’ onboard generators.

Generator sets are simple to install and operate and a number of fuel options are

possible. With the aim of reducing emissions when compared to the current situation,

a cleaner fuel than the diesel burnt onboard should be considered. Liquefied Natural

Gas (LNG) is a fuel which is undergoing a surge in popularity in the marine sector.

It is a clean-burning fuel with extremely low levels of particulate and Sulphur

emissions [72–74]. This has resulted in an increase in the popularity of LNG as an

onboard fuel, reflected in the growth in the number of LNG-fuelled ships, together
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Emission Emission factor (g/kWh)
CO2 521.25
NOx 2.085
SOx ≈0
PM ≈0

Table 3.9 – Emission factors for LNG shore power [74].

with an increase in available bunkering facilities worldwide, and wider range of engine

offerings by manufacturers. For this reason, LNG is considered as the alternative fuel

used in this case in shoreside generating sets to supply portions of the shore supply

network. This reflects interest by the harbour authorities in actually investing in an

LNG infrastructure to provide vessel bunkering, and hence this permits examining

the possibility of using this supply for shoreside use. The LNG supply is modelled in

a similar manner to the shoreside supplies, i.e. by emission factors implemented as a

Look Up Table. The emission factors used are given as table 3.9 [74].

3.4 The case port

As part of the TEFLES project, the Port of Vigo was a participant in the study,

providing data as well as industrial insight and impetus on shore supply. The port is

situated in North-West Spain, and consists of a five-berth RoRo terminal. Over the

year in question (2012), the port has seen over four hundred RoRo visits from about

fifty individual vessels ranging in size from 2,000 to 22,000 tonnes (deadweight) [75].

The terminal is illustrated in figure 3.3, indicating the locations of the five berths as

well as the existing substation location. Trenches and provision for connection boxes

(indicated in 3.3) are already available throughout the berthside area, though they

are currently unused for shore connection.

The Port of Vigo also performed a survey with other port operators in their network,

eliciting opinions on cold ironing. The results are summarised as figure 3.4 which rank

perceived drivers and constraints according to impact on cold ironing uptake [76].

The biggest obstacles to cold ironing implementation are chiefly concerned with the

expenses involved, together with the related issue of an insufficient (existing) utility

supply capacity. This would involve additional cost if an upgrade of the existing

installation would also be required. On the other hand, environmental benefits and

the associated reputation and goodwill gains are seen as the most prominent drivers
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Figure 3.3 – Case port, berth locations overview.

for cold ironing adoption, together with the need to meet regulations.

Voltage and frequency limitations have also been noted to be perceived as an obstacle

to cold ironing uptake. Once again this translates to increased cost as frequency and

voltage must be matched from shore [53,54]. The onboard supply frequency is highly

dependent on the design of the vessel and its region of operation. Similarly, the

shoreside frequency depends on the location, with Europe operating at 50Hz, while

North America utilises 60Hz. Based on the information obtained by the port about

visiting ships’ onboard power systems [75], the charts in figure 3.5 were obtained,

which illustrate the spread of onboard systems. The distribution of onboard frequency

ratings is approximately 80% operating at 60Hz, with the rest rated at 50Hz. This

is similar to the observations in [77], where a 70:30 spread was also observed. This

highlights a disadvantage for European ports in that a frequency converter is essential,

as otherwise the majority of visiting ships cannot be connected.

Most importantly, the information obtained from the visiting vessels also included

the power demanded by the vessels while at berth. This was used to correlate berthed

power demands with deadweight, from which a linear approximation (figure 3.6)

was fitted, permitting power levels when berthed to be estimated for similar ships

according to their size if more detailed information is not available. A power factor
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Figure 3.4 – Port operator feedback on cold ironing drivers and constraints [76].
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Figure 3.5 – Shipboard power systems prevalence for visiting RoRo vessels.
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Figure 3.6 – Estimate of power demands when berthed as a function of deadweight.

of 0.8 is assumed, based on measurements on a case vessel from which more detailed

information was available as well as additional operator feedback.



Chapter 4

Shore connection topologies and

modelling

Extending the fundamental system of figure 3.1 to cater for multiple berths or

connections provides for a number of different connection options and topologies.

Each of these gives different operational characteristics with respect to efficiency, cost

and operational flexibility [66]. These configurations differ mainly in the placement

and ratings of the frequency converter/s and transformers leading to the three

different topologies described in the next sections. In this study, the five berth

existing RoRo terminal described previously (figure 3.3) is considered, following the

existing trenching and hook-up points linking the berths and central substation.

4.1 Centralised topology

In the centralised distribution case, schematically shown in figure 4.1, frequency

converter(s) are located centrally and remote from the berthside. The individual

berths are then only provided with isolation/supply transformers. In order to permit

flexibility and eliminate unnecessary losses, a double busbar system can be used,

where each berth is connected either to the 50Hz or 60Hz bus according to its

demand. This gives greater flexibility in sizing of the converter since the expected

load diversity can therefore be taken into account [66].

64
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Figure 4.1 – Centralised cold ironing topology.

4.2 Distributed topology

In the distributed topology, the conversion and isolation is all performed at the

berthside (or close by) for each individual connection as shown in figure 4.2. This

gives greater operational flexibility in that each berth is wholly independent of the

rest of the system. However each berthside converter will need to be rated to the

maximum individual power demand, as load diversity cannot be taken advantage of.

Furthermore such a topology involves a larger footprint at the berthside - a location

where space is typically at a premium.

4.3 DC distribution topology

As a hybrid between the two previous topologies, a DC distribution topology (figure

4.3) mirrors industrial multi-drive systems (such as paper making or steel mills).

This topology makes use of DC as the distribution medium, with a centrally located

rectifier and distributed inverters at the berthside end. In effect this extends the

DC link of the integrated frequency converter right up to the berthside. With a

DC distribution, integration with any energy storage devices or alternative energy

sources within the harbour is facilitated, as only a DC interface is required. However

protection on DC systems is more complex when compared to AC systems (due to

the lack of natural current zero) especially at higher voltages.
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Figure 4.2 – Distributed cold ironing topology.
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Figure 4.3 – DC distribution topology.
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Attribute Distributed
topology

Centralised
topology

DC distribution
topology

Resilience High Less Least
Component count High Least Less
Berth footprint High Least Less

Table 4.1 – Comparison of topology attributes.

Some of the attributes of the three topologies are comparatively ranked in table

4.1 chiefly in terms of installation space and reliability. Resilience refers to the

ability of the cold ironing system to ride-through a single converter fault. In the

distributed case, each connection is independent of the rest; hence a fault on any

converter will not affect any other. In the centralised case, a fault on the centrally

located converter will result in loss of power to all the 60Hz berths, but leaving the

rest unaffected. Conversely, any fault in the rectifier stage in the DC distribution

topology will shut down the whole system while a fault on one of the inverters will

shut down its associated berth with no possibility of bypass operation.

4.4 Fitting in the LNG generation

In this study, the shoreside generation system was considered with an LNG-fuelled

generator set replacing one or more of the individual berth connections of the cold

ironing system as shown in figure 4.4. In this case berths 2 and 3 are supplied by

LNG generators, while the remaining berths are connected to a distributed cold

ironing network. This represents a situation where the benefits of a port with an

LNG supply can be exploited by conventionally-fuelled vessels.

4.5 Modelling

In order to provide comparisons between the topologies described above, a parametric

energy-centric model of the shoreside networks was developed. This permits various

configurations and designs to be explored and examined within an automated script

such that optimal designs can be identified. The comparison is to be performed on an

efficiency basis; therefore circuit models which account for the various losses in the

components are sufficient for modelling purposes. This also accounts for additional
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Figure 4.4 – Example of combined system with LNG generation for two berths within
a distributed cold ironing system.

losses due to harmonics introduced by the switching converters, causing an increase

in the RMS value of the current as well as additional magnetic losses in transformers.

The transformer and frequency converter models are described in more detail in the

next two sections, since these account for the majority of losses in the shore network.

The inputs to the models are the load profiles from the individual berths which

determine the power flows through the shoreside network. The expectation is that

the vessels’ power is met without negatively affecting the power quality to the rest of

the network. This constraint determines the electrical limits in accordance with [53]

which must be met for satisfactory and interoperable operation according to the

standardised requirements for cold ironing.

The fixed voltage input is that determined by the utility incomer at the port from the

distribution network. This is considered fixed and serves as the reference bus from

which the port distribution network’s voltages are determined, providing the starting

point for a power flow study. By having a fixed voltage input at the upstream node

and a known power demand at the downstream ends of the network, the intermediate

voltage and current quantities can be determined by successive iterations of the
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Figure 4.5 – Functional top-level diagram of cold ironing network model.

model until a steady-state solution is reached. This permits the simulation to be run

only when changes in any of the inputs are detected, after which the values are held

until the next detected change, speeding up simulation.

The functional top-level diagram of the simulation setup is illustrated in figure 4.5. It

shows the inputs (left hand side) consisting of the berth power profiles and the utility

voltage. The outputs (right hand side) of the simulation are the power demanded

from the utility and the corresponding emission figures. The network model is housed

within a do-while iteration loop. For the first iterate, the simulation is run until

all the (internal) currents and voltages converge to a steady-state value, indicating

that the simulation has reached a suitable solution. The output is then held until

a change is detected, which avoids having to continuously run the simulation even

when there are no changes to any of the variables involved.

4.5.1 Transformer model

The transformer depiction of figure 4.6a gives the equivalent circuit of a real trans-

former, which can be simplified by referring all elements to the primary side giving

the referred equivalent circuit shown in figure 4.6b. In this equivalent circuit, the

magnetisation branch (Xm in parallel with Rc) appears at the primary terminals.

This branch accounts for the real power losses in the core (V 2
p /Rc) and the mag-

netising current (−jVp/Xm). Req and Xeq represent the combined primary and



CHAPTER 4. SHORE CONNECTION TOPOLOGIES AND MODELLING 70

(a) Complete transformer circuit.
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(b) Simplified transformer circuit.

Figure 4.6 – Transformer equivalent circuits.

secondary winding resistance and reactance respectively, referred to the primary.

The actual transformer secondary output voltage (Vs) is given by Vs = V
′

s /a where a

is the transformer voltage ratio. Similarly the output current of the transformer on

the secondary side is Is = aI
′
s.

The input (primary) current Ip in figure 4.6b consists of three components: the

current in the secondary I ′
s, the magnetising current Imag and the current responsible

for providing the no-load losses in the core, Ic. The no-load core loss (Pnoload) is

associated with eddy-current and hysteresis losses in the core and is represented by

Rc. No-load losses are typically considered as fixed losses at 1% of the transformer’s

kVA rating and do not change with load. The magnetising current (Imag) is typically

constant at 4% of rated current, but lags the supply voltage by 90◦. Load losses

(Pll) will vary according to the loading on the transformer, and can be classified

as the losses due to resistance in the windings (PI2R) and losses due to stray flux

linkage (PT SL). These stray losses are caused by flux linkages with other transformer

components. The transformer equivalent circuits of figure 4.6 are valid for the

fundamental frequency. Additional losses are imposed on the transformer due to the

non-sinusoidal nature of the actual current flowing through it. This is caused by
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Figure 4.7 – Subdivision of transformer losses. [78]

non-linear loads connected downstream of the transformer drawing non-sinusoidal

currents (such as frequency converter). These will result in the total RMS value of

the current being greater than the fundamental, leading to additional Ohmic losses

in the circuits. Within the magnetic circuit of a transformer, additional losses will

occur due to the effect of harmonic currents on the magnetic core. These additional

losses due to harmonic effects are quantified according to an estimation procedure

defined by IEEE Std. C57.110-2008, [78] by applying the “transformer capability

equivalent calculation using data available from certified test report”, providing an

estimate of the additional losses due to harmonics using limited available data on

transformers. The classification of losses within a transformer can be summarised by

figure 4.7 highlighting the loss classifications which are affected by the presence of

harmonic currents.

The harmonic spectrum of the drawn current is used to calculate two harmonic

loading factors for the additional eddy-current FHLec and stray losses FHLstr. These

are described as equations 4.1 and 4.2, which define multipliers to the rated eddy

current and stray losses based on the current’s harmonic spectrum [78].

FHLec =
∑hmax

h=1 (Ih/I1)2 h2∑hmax
h=1 (Ih/I1)2 (4.1)

FHLstr =
∑hmax

h=1 (Ih/I1)2 h0.8∑hmax
h=1 (Ih/I1)2 (4.2)

where h is the particular harmonic number, with Ih being the corresponding harmonic
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current magnitude. The losses have to be defined for rated conditions first using

transformer nameplate data. From figure 4.7, the load losses (due to fundamental

current flow) at rated voltage and current can be defined as PLLR = (Prat/ηrat −

Prat − Pnoload), where Pnoload is the core loss, assumed a constant percentage of

the transformer’s rated kVA. In turn the total stray losses at rated are given as

PT SLR = PLLR − 3
∣∣∣I2

ph

∣∣∣Rph where Iph is the rated phase current. The eddy current

losses at rated are defined as being 33% of PT SLR for oil-immersed transformers

and 67% in dry-type transformers. The remainder is made up of other stray losses

POSLR [78].

The rated losses are then scaled proportionally according to the RMS current through

the transformer to represent the fundamental stray losses at that loading. The addi-

tional harmonic losses are then estimated by multiplying this figure by the harmonic

loss factor calculated according to the current’s harmonic spectrum. Together with

the additional copper loss, Ph = 3 (|Irms| − |I1|)2Rph gives the additional power

losses due to harmonics in the transformer.

4.5.2 Frequency converter

The basic power electronic circuit of the frequency converter is shown in figure 4.8,

with additional associated control algorithms and processing to maintain a 50Hz or

60Hz output, as desired. The losses associated with the converter are the switching

and conduction losses in the switching devices themselves. Switching losses in the

power electronic devices are due to the non-zero current and voltage waveforms

during device turn-on and turn-off, while conduction losses are due to effective

resistance of the devices while conducting current.

The voltage and current waveforms for a single device are illustrated as figure 4.9

together with the corresponding power losses, where Vs is the input voltage appearing

across the switch when turned off, Ion is the steady state current through the switch

and Von is the (small) on-state voltage. The switching losses are given by equation

4.3. Similarly, equation 4.4 defines the conduction losses during the on state period

(ton), where tc(on) and tc(off) are the turn on and turn off times, respectively, and fs

is the switching frequency [79].
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Figure 4.8 – Simple schematic diagram of frequency converter.

Ps = 1
2VsIonfs

(
tc(on) + tc(off)

)
(4.3)

Pon = VonIonfston (4.4)

With a fixed frequency output, power losses will vary according to the current

through the device (i.e. the total load on the inverter). Additional losses are also

produced in the passive components associated with the converter including the

DC link capacitor and any filter inductances at the input. Losses in the DC link

capacitor are associated with the RMS ripple current flowing through the capacitor,

leading to a heating effect due to its Equivalent Series Resistance (ESR). Since the

model is required to account for losses in the circuit, a Look Up Table (LUT) of

converter efficiency with respect to percentage loading was obtained [63], with the

detailed model implementing figure 4.9 developed in section 4.5.4.

4.5.3 Cost modelling

The installation of a cold ironing system is a significant undertaking and involves a

considerable cost. Each case is an individual project which requires detailed costings

and study, hence a specific and precise figure cannot be provided. Indicative costs
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(a) Voltage and current waveforms.

(b) Instantaneous power losses across power electronic device.

Figure 4.9 – Device switching waveforms and power loss characteristics.
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can however be estimated, which can be used to quantitatively compare different

topologies or systems.

These figures do not take into account the infrastructural works required for the

installation as these are highly dependent on the actual location. Based on figures

quoted in [77] and communication with a leading electrical equipment supplier, an

indicative figure of €700/kW (including frequency converter) was estimated per berth.

This does not take into account any infrastructural costs such as trenching or cabling

which are highly installation specific.

For worthwhile investment, the cost of infrastructure should be recuperated within a

reasonable amount of time. Hence the initial outlay should not be borne solely by

the port authority but rather, other involved parties must contribute. If this cost is

shared with visiting vessels, the actual cost of electricity supplied at the berthside

can be higher than that generated onboard, negating any economic driver for cold

ironing.

In order to provide meaningful comparisons between topologies, a cost metric must be

accounted for. By normalising costs with respect to component ratings, an indicative

figure can be obtained such that two topologies can be assessed based on relative

costs.

The power electronic converters are much more expensive than transformers; hence

a topology with more converters will be expected to be more expensive than one

with a single central converter, although the cost of converter will increase with

size. For modelling purposes, a transformer has been assigned a cost of 1pu/kVA,

while a power electronic converter has been assigned a relative (conservative) cost of

3pu/kVA, in line with costs obtained from [77]. Similarly, costs for LNG systems

will be assigned on a relative scale to the cold ironing system. In order to account

for disparity in costs (especially due to the need for infrastructure), this will be a

variable such that the crossover point (in terms of cost) between shoreside LNG and

cold ironing can be estimated.

4.5.4 Detailed modelling

The first order models of the various components in the shore power network described

in the previous sections were modelled in order to be able to give quantitative
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estimates of the efficiencies of the different systems. These models were concerned

with energy losses in the components of the systems involved, and hence focused on

fast simulation times, in order to facilitate the consideration of a number of different

configurations and setups. Fast events (such as semiconductor device switching) and

controller dynamics were approximated by first order models and LUTs. These gave

sufficient detail to quantify power losses for a given operating point. However these

models do not give any indication of the actual electrical operation of the system

and only account for the power flow study of the network.

A more detailed model of the shore supply network was additionally built using

components from the SimPowerSystems toolbox. This would be used to investigate

in further detail the results obtained by the first order models and the optimal search.

Models are readily available for the transformers and other passive components,

while a frequency converter subsystem model was assembled using the built-in

semiconductor switches exhibiting the switching profiles of figure 4.9.. A detailed

schematic diagram of the frequency converter implemented is shown in figure 4.10.

This is of course very similar to the variable speed drive used for the auxiliary drives

shown in figure 1.5, with the output frequency and voltage being the controlled

quantities rather than motor speed.

Here a diode front end (uncontrolled bridge rectifier) is shown, which rectifies the

supply to the intermediate DC link. An Insulated Gate Bipolar Transistor (IGBT)

inverter is then used to modulate the voltage to provide a three-phase 60Hz output

at the desired voltage [27]. This voltage must be filtered before being supplied to a

consumer which expects a clean sinusoidal supply. The control algorithm in figure

4.10 implements a vector control strategy to generate the required output voltage

waveforms, comprising a cascaded loop control with an outer voltage control loop,

and a nested current controller. PI (Proportional and Integral) controllers are used,

which are tuned to give the desired dynamic response of the controlled outputs. The

Clarke and Park transformations are mathematical transformations which convert

three-phase quantities to equivalent constant quantities in an synchronised orientation

rotating at desired output frequency ( f* in figure 4.10). The corresponding inverse

transformations feed the controlled output signals to the PWM generator, the output

of which is used to switch on/off each individual IGBT in the inverter.

A Low Pass Filter (LPF) is shown at the output of the inverter, which diverts
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Figure 4.10 – Detailed frequency converter schematic.

the high frequency harmonic components of the PWM waveform to ground (via

the capacitors) providing an output with a substantially reduced harmonic content.

A simple inductive (L) filter can provide a limited amount of attenuation of high

frequency harmonics, but this requires the use of a high switching frequency in the

power electronic converter in order to produce an acceptable output. With the

addition of a shunt capacitor, an LC filter can be obtained tuned for a given corner

frequency (equation 4.5) [80]. The presence of a series filter component (the inductor

Lf) results in a voltage drop when current flows through the filter. Hence the filter

design must take into account an allowable voltage drop at the output which must

be compensated for by the inverter raising its output voltage (within its limits) in

order to regulate the output voltage.

fc = 1
2π
√
LfCf

(4.5)

For this study, the parameters of the output filter were chosen for a 5% voltage drop

(at line frequency) and a corner frequency (fc) of 400Hz, corresponding to a factor

of one tenth of the inverter switching frequency of 4kHz, and are listed in table 4.2
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Quantity Symbol Value
Supply side inductance Ls 1.54mH

Supply voltage Vs 15kV
Voltage PI controller proportional gain Kpv 0.675

Voltage PI controller integral gain Kiv 405
Current PI controller proportional gain Kpi 6.75×10-5

Current PI controller integral gain Kii 0.054
Switching frequency fs 4kHz
Filter inductance Lf 5.3μH
Filter capacitance Cf 30mF

Table 4.2 – Component values for frequency converter.

together with the value of supply side inductance. The transformer at the input of

the converter is used to step down the input medium voltage supply (15kV in this

instance) to a low voltage level of 480V, which permits the use of conventional low

voltage power electronics. The voltage is then stepped up again at the output in

order to provide the voltage level required by the berth connections (6.6kV) [63].

This transformer also provides the required galvanic isolation if supplying a single

berth, otherwise additional isolation transformers are needed for each connection.

With developments in transistor technology, high voltage devices would permit high

voltage converters to be more commonplace, avoiding the need to step the voltages,

reducing the current levels and hence the cabling requirements.



Chapter 5

Optimal search

The optimisation procedure aims to identify the best possible configuration of

shoreside electrical network to provide shore power to berthed ships. The classical

design methodology would be to design a network for a particular operating case,

with components sized and chosen according to this particular scenario at one

instant in time. By using an optimisation algorithm, a broader search space can

be automatically considered, and by combining this with design-by-simulation, a

network configuration can be chosen to best address a requirement based on a

particular scenario.

The particular electrical configuration and component sizes can be described as a

particular point in the search space, which consists of the set of all the possible

network configurations. The complete search space clearly includes solutions which are

infeasible. These particular configurations do not meet the requirements demanded

of the network, such as the provision of sufficient power and the necessary power

quality. Constraints are hence used to restrict the search space to its feasible region.

For a given load power profile, each particular electrical configuration will have a

corresponding emission (and efficiency) level and cost. These quantities represent

the objectives of the optimisation routine. Each point in the search space therefore

maps to a corresponding point in the objective space, with the link being established

by an objective function.

The objective function evaluates a configuration and returns a particular metric

which is needed for quantitative comparisons with other solutions. In this case,

the objective function returns the emissions produced by a particular (network)

79
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configuration and power demand profile. This is obtained by running the developed

Simulink model.

By providing this quantitative figure, different configurations can be meaningfully

compared. Since the search space is defined by the large number of possible config-

urations, an optimisation procedure can also be termed to be a search operation,

tasked with identifying an optimal configuration from the search space based on

a quantifying metric in the objective space. A trivial method to identify the best

configuration would be an enumerative method, whereby all the possible configura-

tions are evaluated, and ranked according to their objective values. However this

is clearly a very costly process as all the solutions would need to be evaluated, and

additionally this process can only consider single objective problems [81].

Mathematically, linear systems can be optimised by techniques which are generally

gradient-based searches through the search space. However these require a linear

mathematical representation of the problem which can be difficult if not impossible to

achieve in some cases. In non-linear problems such as the one at hand, these optimisa-

tion algorithms cannot be realised (easily), hence a more robust optimisation/search

algorithm must be considered.

Evolutionary algorithms are a class of search routines which take inspiration from

natural processes/phenomena to realise intelligent search processes able to handle

non-linear and complex problems. Evolutionary algorithms offer advantages in that

they work well with a wide range of problems, since they do not make underlying

assumptions about the problem formulation. This makes them robust and able to

work on non-linear and complex search spaces. Of course this comes at the expense

of performance in that there is no algorithm which excels at every problem [81].

Evolutionary algorithms are particularly effective for finding the global optima of

complex search spaces albeit perhaps at a computational expense when compared to

optimisation algorithms specifically adapted for individual types of problems. In this

application, robustness and general applicability to a wider range of problems were

seen to be more important than algorithm speed.

In evolutionary algorithms, the problem to be optimised and the actual optimisation

process are kept separate. The optimisation algorithm maintains a black-box approach

to the problem at hand, requiring only the objective value to be returned for a

particular combination of variables. This objective function is the link between the
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search and objective spaces, and can be of any form as long as the input/output

combination is as expected by the optimisation algorithm. This is ideal for the

application at hand since the same Simulink models which are used for system design

and study can now also be used for the optimisation process.

Genetic Algorithms and Particle Swarm Optimisation are two such algorithms which

employ directed randomness to efficiently and effectively explore a search space [82].

Genetic Algorithms (GAs) employ a Darwinian process of survival of the fittest

whereby solutions are identified in the search space by co-ordinate values termed

chromosomes. By using reproduction and mutation operations on these chromosomes

the search space can be intelligently explored by a process of accelerated evolution [45].

Particle Swarm Optimisation (PSO) on the other hand takes its cue from the social

behaviour of swarming birds or fish. Each solution (configuration) is represented as

a particle within the swarm, and the position of each particle is the configuration’s

description. Associated with each particle is its fitness value in the objective space.

The PSO algorithm serves to steer the initially randomly located particles towards

the global best value [83–85].

These two algorithms are similar in terms of robustness and ease of implementation,

but in this work, PSO is considered due to generally superior speed of convergence

towards optimal solutions [84,86]. By virtue of the use of a swarm to perform the

search, PSO implements a parallel search such that multiple areas of the search space

are examined at the same time. This has the benefit of helping to ensure that global

optima are identified rather than local extrema and makes PSO more efficient than

GAs [87].

5.1 Particle Swarm Optimisation

Swarm intelligence considers the collective interactions and knowledge of a population

of members which are individually ‘dumb’ but collectively smart. A swarm of birds (or

shoal of fish) operate as a concerted entity, by sharing of each individual’s knowledge

such that overall, the whole swarm benefits. An example of swarm behaviour is

illustrated when a flock of birds is searching for food. Once a member of the flock

identifies a potential food source, the flock collectively drifts towards this new ‘goal’.
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This can be considered as an optimisation function, whereby the location of the food

is the optimisation goal.

Particle Swarm Optimisation (PSO) traces its origins to the seminal work of Kennedy

and Eberhart [85] by considering the social behaviour of a flock of birds and applying

this biologically inspired computer algorithm to optimisation problems. In the

application of PSO, the term swarm is used to describe the collection of individual

agents, who are in turn termed the particles (analogy with flock and birds, or shoal

and fish).

Associated with each particle is a fitness value, which serves as an indication of how

well that particle meets the optimisation goal. Maintaining the bird/flock analogy,

the fitness of a particle would be its proximity to food. Each particle is described by

its Cartesian co-ordinates in the so-called search space. The search space has as many

dimensions as there are variables, hence a particle is identified by a d-dimensional

co-ordinate, where d is the number of parameters (variables) which can be controlled.

In the bird flock case, this would be a three-dimensional space, representing physical

space in xyz-coordinates.

The particles ‘fly’ around in the search space, exploring potential solution regions

and successively converging towards particles which give better solutions due to the

swarm’s co-operative nature. Every particle therefore has an associated d-dimensional

position as well as d-dimensional velocity vector.

The fitness value of each point represents each particle in an equivalent objective space

such that each particle is mapped to a corresponding point from the search space

by the fitness function(s). For O objectives, the objective space is of O-dimensions,

with O corresponding fitness functions. Thus each particle can be described as a d-

dimensioned Cartesian coordinate in the search space or an equivalent O-dimensioned

Cartesian coordinate in objective space. This equivalent mapping is shown graphically

as figure 5.1.

5.2 The algorithm

The underlying co-operative concept behind PSO mimics the social behaviour of an

intelligent swarm in order to locate an optimal solution. Swarm intelligence therefore
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Figure 5.1 – Optimisation spaces showing mapped set of particles.

involves knowledge of other particles’ fitness (objective values) as well as a particle’s

own fitness. The sharing of this information must therefore be implemented in an

algorithm form. The PSO process is first introduced by considering a single objective

optimisation case before additional objectives are introduced in subsequent sections.

By the nature of the concept of swarming, the search space is explored by a number

of different particles in parallel, thus ensuring a speedy broad search of a large spread

of locations. The search itself is the heart of the optimisation routine, and this is

controlled within the velocity update procedure.

A particle in the search space has two quantities associated with it at each iteration

– its location and velocity, described respectively as

xi = [x1, x2, x3, . . . , xn]

vi = [v1, v2, v3, . . . , vn]

where n is the number of variables in the search space, and i is the particle number,

up to the swarm size N.

The PSO procedure is initialised with an initial swarm of size N, consisting of

randomly located particles with corresponding random velocities. Each particle’s

position at the next iteration is therefore calculated according to the simple equation

of motion given by equation 5.1.
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xi [ctr + 1] = xi [ctr] + vi [ctr] (5.1)

where [ctr] represents the current iteration. The calculation of each particle’s velocity

at successive iterations looks at the swarm’s fitness and the particles’ history in

order to intelligently move towards the best solution. Two figures of merit can be

defined which will determine this influence; the particle_best and the global_best

values in objective space, together with the corresponding position coordinates

particle_best_loc and global_best_loc respectively in the search space.

The particle best value is each individual particle’s best location found so far, while

the global best value is associated with the best location found by the whole swarm

(with respect to the objective). The quantities are used to update each particle’s

velocity such that it will tend to migrate towards better locations while still exploring

its vicinity. A particle’s velocity at the next iteration is given by equation 5.2.

vi [ctr + 1] = W × vi [ctr]+C1 × rand (0, 1)× (pbest− xi [ctr]) (5.2)

+C2 × rand (0, 1)× (gbest− xi [ctr])

W is termed the inertia factor and determines the tendency of a particle to carry on

in the same trajectory due to its own velocity. C1 and C2 are two constants which

determine the weighted influence of the particle’s historical best and the swarm’s

global best. Hence they describe the tendency of a particle to be attracted to its

own or the swarm’s historical best location and is illustrated graphically as figure

5.2. A particle will therefore have a velocity component proportional to its distance

from the particle best and global best locations respectively as well as its own inertia

to follow its original velocity. Empirically, the recommended value for W has been

found to be 0.7, while C1 and C2 both equal to 1.47. This has been shown to give

best balance between premature convergence and slow searches [88].

This simple formulation can be further tweaked into a more generic form which

reformulates all the constants into a constriction factor [88]. This can directly control

the constriction or explosion of the swarm, and improves the control of convergence

by using only one control parameter. In this case, the velocity update equation is
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Figure 5.2 – Particle trajectory due to historical and swarm components (not to
scale).

reformulated as

vi [t + 1] = χ× [vi [t] +ϕ1 × rand (0, 1)× (pbest− xi [t])

+ϕ2 × rand (0, 1)× (gbest− xi [t])]

Where

χ = 2∣∣∣2− ϕ−√ϕ2 − 4ϕ
∣∣∣

and ϕ1 + ϕ2 = ϕ > 4.

χ is the constriction factor, and φ the control constant. Setting φ to 4.1 (> 4) leads

to χ=0.729 which is in the same as the inertia factor in the previous case. With this

formulation, the value of χ controls the particle’s trajectory [84,88].

This forms the underlying principle of the PSO algorithm, with the process repeated

for a number of iterations N. The pseudocode for the basic PSO formulation is listed

as algorithm 5.1.

The process is simple in that minimal information about the problem at hand is
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Algorithm 5.1 Pseudocode for basic PSO algorithm.
1. Initialise population of size N with random position and velocity.

2. Evaluate each particle’s fitness.

3. Update each particle’s historical best position and swarm’s global best position.

4. Calculate velocity at next iteration.

5. Update position at next iteration.

6. Repeat algorithm for set number of iterations.

required. This black box approach permits PSO to be applied to non-linear problems

and requires only manual setting of the parameters in the velocity update equation.

The objective function is the only link to the problem to be optimised, and the

optimisation algorithm only requires the returned value. Hence the optimisation

algorithm is independent (to a certain extent) of the actual problem to be optimised.

5.2.1 Neighbours

In the canonical velocity update equation (equation 5.2), the particles share inform-

ation between the complete swarm in the form of the global best. This represents

a fully connected swarm, where all information is shared between all the particles.

This however has the danger of converging prematurely to local minimum. This risk

can be reduced by using the concept of a local best, which has more chances to find

a global optimum.

In this approach, the gbest location in the velocity update equation is replaced by a

local best location lbest. This is the best location found so far from a smaller subset

of the total swarm which each particle communicates with. Various topologies of

swarm communication are possible, with the ring most typically used [89]. In this

concept, the particles are numbered sequentially, and they then inform K (typically

3) neighbouring particles [83]. Thus information about local bests is gradually passed

along the swarm, permitting the global swarm to explore further although at a slower

overall rate.

For a minimisation problem, clearly a better solution would be one which returns

a lower value from the objective function, with the best (optimal) solution being

the one with the (globally) minimal objective value. However in real situations, the
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addressing of a single objective could lead to impractical solutions being proposed.

This comes about since concentrating solely on one objective necessarily neglects

other considerations such that solutions can be unrealistic. Much more convincing

solutions address compromises between concerns, such that best balance between

conflicting objectives can be realised.

Hence, the consideration of multiple objectives for optimisation purposes is more

realistic as it can consider conflicting objectives to identify best compromise solutions.

This requires some modifications to the fundamental single objective algorithm in

order to be able to handle multiple objectives.

5.3 Multi-Objective Particle Swarm Optimisation

Trivially, a multi-objective optimisation problem can be converted to a single objective

one by means of a weighting vector. With this approach, the combined objective

function is the weighted sum of the results of all objective functions, and a standard

PSO algorithm can be used, working on the objective function:

Ocombined = W1O1 +W2O2 + . . .+WoOo

where W is the weighting factor for each objective for a total of O objective functions.

However the selection of the weighting values is critical to the correct operation of

the search algorithm in order to attach the required importance (weighting) to each

objective function. Furthermore, any change in these values can give considerably

different results. The root of this problem lies in a lack of a priori knowledge

of the solutions’ spread in objective space, and hence the distribution among the

objectives [81].

A more natural approach towards multi-objective optimisation is the use of Pareto-

ranking and the concept of non-domination. Briefly, a solution is said to dominate

another if it is strictly better in at least one objective and no worse than the other

in all objectives, and is hence assigned to a higher (better) rank. If solutions are in

the same rank, i.e. non-dominated with respect to each other, then between these

solutions, there is a certain amount of sacrifice in one objective for a gain in another.

Figure 5.3 illustrates this graphically for a two objective minimisation problem with
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Figure 5.3 – Pareto-fronts on a two-objective, minimisation problem.

three Pareto-ranks identified. Here rank 1 represents the best set of equally optimal

solutions, while ranks 2 and 3 are overall inferior solutions compared to the first

rank.

With Multi-Objective Particle Swarm Optimisation (MOPSO), the aim is to search

for solutions which make up the best possible rank of non-dominated solutions. The

result of the optimisation is therefore not a single optimised solution, but rather a set

of equally-best compromise solutions. In a two dimension problem, the Pareto-fronts

form roughly parabolic curves, while in the case of a three-objective problem, the

Pareto-fronts tend towards paraboloids, or bowl-shaped curves. It can be noted that

a minimisation problem can be converted to a maximisation one by multiplication of

the objective function with negative one (-1).

The final selection is then made from this optimal set of solutions based on higher-level

decisions taken by the user considering also the search space results. This is generally

intuitive, qualitative engineering judgement which cannot be easily integrated into

automated code. In effect this represents the application of a weighting vector to

the objectives. However this weighting is performed with hindsight on the obtained

results, as opposed to a blind guess without knowledge of the distribution and

location of solutions as in the case of an a priori weighting vector [81].

The core of MOPSO is therefore the ranking mechanism which identifies the domin-

ated solutions and sorts them into the Pareto-ranks. The algorithm is changed to
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Algorithm 5.2 MOPSO pseudocode.
1. Initialise population of size N with random position and velocity

2. Evaluate each particle’s fitness in all objectives

3. Identify non-dominated set of particles and store in REP

4. Calculate velocity at next iteration by:

• V elocity [ctr + 1] = W × V elocity [ctr] + R1 ×
(Particle_best_loc− Position [ctr]) + C1 × (REP [h]− Position [ctr])

5. Calculate position at next iteration by

• Position [ctr + 1] = Position [ctr] + V elocity [ctr]

6. Repeat algorithm

accommodate Pareto-ranking as the main measure of fitness between solutions but is

fundamentally similar to the single-objective PSO described earlier. The pseudocode

for the MOPSO algorithm is listed as algorithm 5.2 based on the MOPSO algorithm

developed in [90].

In algorithm 5.2, the concept of a Repository (REP) is introduced, which is a store

of the the solutions making up the first ranked Pareto-set. The size of REP is of

course limited. In case the number of solutions in the first rank is greater than the

size of REP, a selection must be made, based on some quantifiable measure.

Within the context of multi-objective optimisation, an additional crowding metric is

defined. Its aim is to ensure sufficient exploration of the Pareto-front by emphasizing

solutions which are in less crowded areas (in the objective space) and hence more

unique. This reinforces a spread of solutions along the Pareto-front. A trivial

technique would be the Euclidean distance between particles, however especially as

the number of objectives increases, the complexity of this calculation increases sharply.

Other approaches involve niching or other area-based counting techniques in order

to give an indication of the relative crowding of different areas on the Pareto-front.

These do however require additional parameters whose value significantly influences

the outcome. A simpler approach as outlined in [91] simply considers the size of the

largest hypercube which can be fitted around a solution without touching adjacent

ones, giving an indication of how unique a solution is. This is used to quantify if a

solution is ‘better’ than another if in the same rank in order to emphasize searches to
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Figure 5.4 – Population and selection of REP.

less crowded areas of the solution space. Hence the REP memory is now a function

of both rank, and crowding distance (the bigger the better). This is a modification

from the original MOPSO developed in [90] and takes inspiration from aspects of

multi-objective GA such as NSGA-II as developed in [91] and applied in [45] and [92].

REP is initially populated with solutions from the first rank. If this is greater than

the size of REP, then the solutions are ranked according to crowding distance, and

the REP filled up in descending order (illustrated in figure 5.4). Additionally, in the

velocity update equation, the concept of global_best is also different in MOPSO in

that there is no unique, globally best solution. Instead a Pareto-optimal solution

is selected for each particle using binary tournament selection from the repository

which contains the Pareto-front of rank 1. The crowding distance is again used as

the discriminator between these equally optimal solutions.

5.4 Mutation operator

With any search algorithm, there is a risk of so-called premature convergence. This

refers to the algorithm locating a local optimum rather than the global optimum. Thus

though the algorithm would have converged, a true globally optimal solution would
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not have been found. In multi-objective optimisation, this represents another Pareto-

set which is dominated by the true Pareto-optimal one. Premature convergence is due

to a number of factors, but is fundamentally a case of focus on exploitation of current

solutions as opposed to exploration of new spaces. The balance of exploration vs

exploitation therefore influences the security of finding global optima at the expense

of algorithm performance.

Mutation represents a random perturbation through the search space which ensures

that exploration will still occur even if the whole swarm has converged. This will

obviously involve a penalty in terms of convergence speed, as the members of the

swarm will perform random movements independent of the located solutions.

The principle behind mutation/perturbation is that a number of search space

descriptor(s) are randomly modified according to a certain predefined probabil-

ity. Uniform mutation randomly mutates particles with the same probability over all

iterations. This ensures that exploration will take place until the final iteration. How-

ever this would involve the largest computational overhead. With variable probability

mutation, the probability of mutation is progressively decreased with each iteration,

such that initially a high percentage of the population is randomly perturbed (to have

highest exploration) and towards the end of the algorithm, very few perturbations

occur (exploiting the found solutions). This is much more computationally efficient,

but requires tuning of additional parameters (mutation rate decrease). A widely

accepted rule is that the mutation rate is inversely proportional to the number of

dimensions in the search space [81]. For this work, uniform mutation was selected as

it is the simplest to implement and will guarantee exploration until the very end.

In order to select particles for mutation, a random set of numbers (equal in size

to the swarm) is generated. Any of these numbers which is less than the mutation

probability constant is selected for mutation, and hence replaced by a random variable

within the search space’s limits. This occurs after the particles’ new position has

been calculated. Performance (final convergence speed) will correspondingly decrease,

but robustness in locating optimal solution sets will increase.
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5.5 Application to shore networks

The design and optimisation of an electrical network is a non-linear process which can

be adapted to make use of an evolutionary algorithm as part of the design process

in order to identify best configurations and component ratings [84,86]. In the cold

ironing implementation, the reduction of emissions is clearly a high priority of the

system. This is directly related to the efficiency of the network and the associated

losses along the distribution network, which depends on the operational flexibility and

suitability of a particular network to the load profile. Hence the design process should

aim to identify a network with the best overall energy efficiency. Furthermore, the

emissions are also a function of the shoreside generation mix which varies according

to the location of the port.

Three different fundamental electric network topologies have been identified which

describe a centralised topology, a distributed topology and a DC distribution system

(figures 4.1, 4.2 and 4.3 respectively) together with a hybrid cold ironing/LNG

generation topology (figure 4.4). The optimisation process aims to identify the

optimal configuration as well as optimal component values, and hence the component

sizes are defined as the variable set, in addition to the actual network type.

The PSO algorithm can therefore be set up to vary the component sizes and network

type to obtain minimised emissions as its objective. However this may not lead to

practical solutions since by maximising component ratings, overall losses are reduced

and hence emissions minimised. This would involve a considerable expense which

makes such a system infeasible.

Therefore the consideration of a multi-objective search is more realistic as it permits

a conflicting objective (such as the overall component cost) to be considered in

addition to the drive for emission reduction. Each installation of cold ironing is

unique, and presents its own individual challenges and requirements. Hence the costs

associated with each case will be project specific and highly dependent on the actual

situation (e.g. whether trenching is required, distance to berths etc. . . ). Estimating

the (absolute) cost of a cold ironing network is therefore highly unrealistic based

solely on the system design.

For a meaningful comparison of costs between configurations, the component count

and component ratings can be used to obtain the relative costs. By adopting a
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per-unit system of cost, the total cost figure for each configuration can be calculated

based on the number of devices and their rating. Each component is assigned a

per-unit cost, taking the cost per kVA of a transformer as the base cost. Hence a

multi-objective optimisation routine will strive to minimise cost as well as emissions.

5.6 Objective functions

Central to the functioning of the PSO algorithm, the objective functions establish

the link between the search algorithm and the problem to be optimised (figure

5.1). This black box treatment of the problem to be optimised is the core of

evolutionary algorithms’ robustness and applicability to non-linear problems. The

energy demanded from the utility is the first objective function, and is returned by

the models developed in the previous sections.

The second objective function describes the cost associated with the network. This

is clearly a highly subjective figure which depends on a large number of specific

factors associated with each case. In order to make a meaningful comparison, the

cost considered is a normalised cost which compares the expected costs of different

topologies relative to each other. Transformer cost is considered at a base cost of

1pu/kVA, while power electronic converters are considered as 3pu/kVA based on

typical costs as highlighted in [77]. Based on the number of each component in each

configuration, the cost is calculated as the weighted sum of each component’s rating.

The cost of the LNG generator system is assumed as a variable, and will be tested

at different values in order to examine the influence on results.

With a design-by-simulation approach, the objective function involves running a

simulation of the network and evaluating the resultant emissions according to the

local generation mix. The input to the simulation consists of the electrical power

demand of the berthed vessels which is obtained from port authority data. This

power profile should therefore reflect a typical period of time which is representative

of the daily harbour usage. The actual network configuration is defined according to

the particular solution as set by the PSO algorithm.

In order to limit the search to realistic solutions, the PSO algorithm makes use of

constraints which limit the search to feasible solutions. This increases the efficiency

of the algorithm, by discarding these unrealistic solutions. An example of a constraint
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could be the definition of a maximum cost, which every feasible solution must meet.

Any solution with a higher cost would be deemed infeasible and hence discarded.

The constraints in this case are handled by a hard limiting approach, i.e. in case

a constraint is violated, the particular solution is rejected [93]. Two electrical

constraints are accounted for in the model; within the objective function, checks

are carried out to ensure that the electrical quality at the berthside connection is

within limits (in terms of RMS values) as defined in ISO/IEEE/IEC 80005-1, and

the second check ensures that none of the components are overloaded. In the case of

constraint violation, a flag variable is set, and an infinite emission value is returned.

This ensures that such solutions (configurations) which violate any of the constraints

are heavily penalised and hence do not have any influence on successive iterations.

A real number representation in per-unit is used to define the variables. For the

component ratings the per-unit values are scaled by the base value (selected as

the largest available component size in kVA) in order to get absolute component

sizes. For realistic solutions, component ratings are rounded to the nearest 50kVA.

Similarly the choice of network topology is represented on a real scale between 0

and 1, with rounding intervals to the nearest third to identify which particular

topology has been selected. This representation can be extended to any number of

topologies/components by amending the base values and scaling factors. By having

a normalised representation of variables, the search space is thus constrained along

all its dimensions by interval confinement.

Particles can fly out of this search space, so a mechanism has to be included to

restrict and return particles back within limits. In case a limit violation occurs, the

offending particle is returned to the search space border, and its velocity is reversed.

This will ‘bounce’ the particle back into the valid search space. In order to limit the

exploration of the moving particles, a limit is also placed on the particle velocities.

This is set at half the maximum distance of the search space [83], i.e. in case the

size of a dimension being between 0 and 1, the velocity is limited to 0.5.

5.7 Port case study

The emission factors used in the optimisation routine are described in section 3.3,

while the electrical constraints are as defined by ISO/IEEE/IEC 80005-1. These
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Figure 5.5 – Snapshot of measured and averaged load profile on MV Auto Baltic [42].

were used to perform the configuration search for an example case, where the port

being considered consists of five berths, visited by RoRo vessels, shown as figure

3.3. The cable routes in this case exploit existing trenches running from the central

substation to the individual berths.

Figure 5.5 shows an example of the actual measured power profile showing the

variation in the RoRo vessel load. It can be seen to be quite stable and does not

show significant variation. For the purpose of the identification of optimal networks,

energy losses are the primary concern, with the analysis therefore considering the

averaged value of the load.

Based on the historical visiting vessel itineraries as well as the demand correlation of

figure 3.6 the power profile of berthed vessels can be estimated. For a typical day, the

berth power demands (together with the total demand) are shown as figure 5.6. In

addition to the power profile, associated with each berth is the frequency demanded

by the berthed vessel. This defines whether a frequency converter is required or not,

and therefore directly impacts the total efficiencies of the shore network.

Though representative, the profiles over a single day do not necessarily reflect the

complete spectrum of visiting vessels. Hence, considering the profile over a whole
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Figure 5.6 – Power profiles for typical day at port.

week gives a better indication of different power levels and frequency demands. A

typical (working) week was chosen (14/03/2012 to 17/03/2012) and is shown as

figure 5.7. The objective function calculation will be take correspondingly longer,

due to simulation run times associated with this longer duration.

The optimisation procedure evaluates the energy demand for each network configur-

ation as specified by the PSO, and verifies whether it meets the electrical constraints

on voltage levels and overloading. Feasible solutions are then considered for the

optimisation with respect to energy generated (at source) and normalised cost.



CHAPTER 5. OPTIMAL SEARCH 97

0

500

1,000

1,500

2,000

2,500

3,000

0

200

400

600

800

1,000

1,200

0 10 20 30 40 50 60 70 80 90 100
To

ta
l p

o
w

e
r 

(k
V

A
)

B
e

rt
h

 p
o

w
e

r 
(k

V
A

)

Time (hrs)

Berth 1 Berth 2 Berth 3 Berth 4 Berth 5 Combined power

Figure 5.7 – Power profile over a week.



Chapter 6

Shore supply results

6.1 Cold ironing only

The optimisation was run over 500 iterations in order to identify the optimal set of

solutions with respect to minimisation of energy demand (maximisation of total net-

work efficiency) and minimisation of component ratings (and hence cost) considering

solely a cold ironing solution. This is accomplished using the MOPSO algorithm

and network models outlined in the preceding sections. The final configuration is

manually chosen from this set of equally-optimal solutions based on actual preference

for a configuration taking into account also search space information (not typically

used by the PSO which only considers objective space information as a quantifying

metric). The parameters used in the PSO are defined in table 6.1.

Figure 6.1 shows the progression of the Pareto-optimal sets (of rank 1) over all the

iterations. This shows the progress of the optimal search, identifying solutions closer

to the bottom left corner of the objective space, associated with minimising cost

Parameter Value
Swarm size 20

Repository size 20
Number of iterations 500

Maximum particle velocity 0.5
Maximum berth rating 5MVA

Maximum central component rating 10MVA
Rating interval 50kVA

W (inertia constant) 0.4

Table 6.1 – Parameters used in MOPSO algorithm.

98
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Figure 6.1 – Objective space progression illustrating the optimal Pareto-sets over
500 iterations. Only feasible solutions in the first rank are shown, and solutions found
repeatedly in successive iterations are obscured by later solutions. Each colour indicates
an individual iteration.

Component ratings (kVA) Network Energy Total
Berth 1 Berth 2 Berth 3 Berth 4 Berth 5 Central type demand (kWh) cost (pu)
700 1000 1050 550 900 2800 Centralised 59351 15400
550 1200 1050 400 900 2800 Centralised 59374 15300

Table 6.2 – Corresponding search space configurations of final Pareto-optimal set for
optimised cold ironing network.

and energy consumption, with the final set of Pareto solutions (consisting of two

solutions) highlighted. The corresponding search space description of the final Pareto-

set is given in table 6.2. Clearly, a centralised network configuration (schematically

described in figure 4.1) is most appropriate for this particular scenario, with two

equally optimal solutions identified by the algorithm. One would give slightly higher

efficiency, at the expense of slightly larger components (and hence more expensive).

In the final selection, engineering judgement would be used, such as the need for

extra rating margin to allow for future growth.

For meaningful results, the emissions and energy consumption from cold ironing

must be compared with the current way of providing the onboard power, i.e. by

running of the generator sets on each ship. Since generation is carried out in the

vicinity of the consumers (onboard loads), transmission losses are kept to a minimum

when compared to cold ironing, where power is generated remotely and has to be

transmitted to the point of consumption. Furthermore it must be converted to

the required voltage and frequency, each of which involves losses due to intrinsic

inefficiencies in each conversion step. Additional losses are suffered because of
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harmonics injected into the system by each power electronics stage.

The total (electrical) energy demand from the berthed vessels is of 53MWh. Clearly

all the shore power solutions will have a higher energy demand due to the additional

losses introduced by the shore supply systems, giving an overall energy efficiency of

around 90%. The comparison should therefore be made with respect to the emissions

generated in each case, which are obtained from the emission factors for auxiliary

engines (table 2.6) and each locale’s generation mix, additionally accounting for the

averaged transmission losses.

Selecting the first solution from table 6.2, and comparing the environmental per-

formance of the cold ironing system with the onboard generation for a number of

different locations3 gives the emission figures of table 6.3. This includes the additional

transmission losses associated with each location and the specific generation mix.

The energy generated is greater since the transmission and cold ironing network

losses must also be supplied when compared to the onboard generation. The resultant

emissions are then seen to be highly dependent on the generation mix of the location

where the ship is berthed. The actual source of electricity cannot be defined, but

the choice of determining emission by country was made as it represents a specific

energy mix policy. Clearly, countries with a high renewable (e.g. Spain) or nuclear

mix (e.g. France) will have much lower resultant emissions compared to the onboard

generation or other coal-fired locations.

For the selection of countries considered in table 6.3, NOx emissions are reduced

across the board. CO2 is reduced in all cases other than those with a very high

percentage mix of coal (such as China). The situation with SOx emissions is slightly

less clear, especially with the use of low sulphur fuel used onboard. Irrespective of

the actual generation mix however, localised emissions in harbour are reduced, as

the auxiliary generators can now be turned off. This is one of the major drivers of

cold ironing, since in-harbour emissions are eliminated - a location which is typically

highly industrialised yet close to human habitation. Hence cold ironing is always

beneficial to the harbour area, with the actual balance of emissions needing to be

analysed with respect to the generation mix employed. In the case of Spain, CO2

emissions are practically halved when compared to the current situation with onboard

generation.
3The selection of countries reflects the interest in the TEFLES project consortium.
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Solution Energy CO2 (kg) NOx (kg) SOx (kg)
generated
(kWh)

0.1% S
content

0.25% S
content

Onboard
generation

53144 36669 739 23 58

Spain
Cold

ironing
64748 19651 30 20

Difference +22% -46% -96% -13% -65%
UK

Cold
ironing

63547 28422 41 31

Difference +20% -22% -94% +34% -46%
China

Cold
ironing

62259 45262 87 82

Difference +17% +23% -88% +256% +41%

Table 6.3 – Comparison of environmental performance for optimised cold ironing
network. The Sulphur emissions are given for two different Sulphur content fuels (used
onboard).

6.2 Cold ironing with shoreside generation

One of the major concerns highlighted by operators is a constraint in terms of the

allowable power to be drawn from the existing utility supply (figure 3.4). Based on the

existing loads and the actual infrastructure from the utility, the margin for additional

loads can be slim. In such a case, new substations or distribution lines/cables could

be required to supply the additional expected load, greatly increasing the capital

expenditure required for the cold ironing installation (and hence making it even more

unattractive).

Shoreside generation involves the installation of generation sources within the harbour

area to provide a contribution towards the harbour power demands. This can help to

reduce the power required from the utility, making the installation more cost-effective.

Once again, this is highly dependent on the actual location.

As discussed previously, LNG is an alternative supply to cold ironing being considered

in this study. Shoreside LNG generation involves the use of modified diesel engines

to run on LNG, either as dual-fuel or spark-ignition types. LNG is widely touted as a

clean fuel alternative to diesel, with lower emissions, proven reserves and a lower fuel

cost. Considering a complete Life Cycle Analysis (LCA) however, the CO2 emission
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advantage is less clear cut, and the issue of methane slip (unburned methane) can

even negate greenhouse warming benefits [72]. However, particulate emissions and

SO2 emissions are practically zero when burning LNG.

Table 3.9 lists the emission factors for an LNG-fuelled generator set [74] in terms

of the electrical energy produced. It is appreciated that though LNG use will

significantly reduce the impact on acidification and eutrophication, the greenhouse

gas emissions when looking at the complete LCA are not significantly reduced when

compared to diesel fuel [72].

In this scenario, the LNG system is considered as being an alternative to the cold

ironing system, in providing electrical power to the berthed ships. An example of

the hybrid topology being proposed is given in figure 4.4, which shows two berths

being supplied by shoreside LNG, while the other three berths are supplied by a

distributed cold ironing topology. By using the search algorithm described earlier,

the search space is now expanded to include various configurations with multiple

combinations of shoreside LNG generation or cold ironing at the different berths.

The objective functions must be modified in this case since different sources are

being compared. The consideration of demanded energy is not a valid comparison,

since cold ironing involves additional transmission losses. Rather, emissions must be

compared on a direct basis between the different sources, thus the search algorithm

must take into account the actual generation mix.

The cost function must also be modified to take into account the different systems

being used. Similarly to the previous search considering only the cold ironing network,

a relative cost on a per-unit basis is used. Once again, the costs associated with

the LNG-fuelled generation system are highly variable and installation specific (e.g.

whether onsite LNG infrastructure already exists or needs to be installed). Thus the

cost figure is given on a per-unit basis, and the optimisation is repeated for various

cost values of the LNG system, permitting the various emergent sets of solutions to be

considered dependent on the cost per kVA of the shoreside LNG system (accounting

for all the necessary components) compared to the cost per kVA of the cold ironing

system.

Figure 6.2 shows four Pareto-optimal sets of combined shoreside LNG generation

and cold ironing configurations in the objective space (in this case showing only

CO2 emissions for clarity). Four distinct sets can be discerned, roughly parabolic in
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Figure 6.2 – Various optimal solution sets for mixed shoreside LNG generation and
cold ironing systems for different per-unit costs.

nature, and stacked according to the progressive cost of the LNG systems.

Each configuration presents a different combination of LNG-fuelled generator and

cold ironing connections (one such case exemplified as figure 4.4). Clearly with

higher per-unit cost of the LNG generation system, the search algorithm favours

predominantly cold ironing configurations (confirmed from examination of the search

space description), while when the specific cost of the LNG system is lower, cold

ironing loses out on cost, although the configuration with lowest emissions (CO2) is

still a cold ironing one.

In terms of SO2 however, shoreside LNG generation would be much cleaner since the

emission factor for this is practically zero. Cold ironing solutions clearly are superior

in terms of emissions (CO2), but with a lower cost per kVA of the LNG solutions,

lower-cost (but higher emitting) configurations with mixed LNG generation are also

possible. This demonstrates the compromise nature of multi-objective optimisation,

which balances trade-offs for equally optimal solution sets.

Taking an example configuration from the set where the shore-side LNG generation

has a per-unit cost of one third of the frequency converter’s per-unit cost, a selected

configuration is described as table 6.4. In this configuration, two of the berths are



CHAPTER 6. SHORE SUPPLY RESULTS 104

C
on

fig
ur
at
io
n Component ratings (kVA)

To
po

lo
gy Emissions (kg) Total

cost
(pu)

Be
rt
h
1

Be
rt
h
2

Be
rt
h
3

Be
rt
h
4

Be
rt
h
5

C
en
tr
al

CO2 SOx NOx
C
ol
d
iro

ni
ng

750 900 1050 1350 C
en
tr
al
ise

d

23964 10 75 10450

Sh
or
es
id
e
LN

G

1000 1350 D
ist

rib
ut
ed

Table 6.4 – Example configuration for mixed LNG/Cold Ironing system with shoreside
LNG generation system per-unit cost being 1/3 of the cost per kVA of frequency
converter.

supplied with an LNG generation system, while the rest are supplied by a smaller

cold ironing network using a centralised topology. This gives a lower cost solution

than that highlighted in the (solely) cold ironing configuration, but at slightly higher

resultant emissions.

Another possible configuration, valid for a higher LNG system cost of 2/3 the

frequency converter’s per-unit cost gives the results of table 6.5, where the LNG

system is restricted to the lower demand berths.

These results are valid for the generation mix considered (Spain in this case) for this

particular scenario. For other generation mixes with a dominance of coal generation,

cold ironing could prove less attractive in terms of emissions than shoreside LNG

generation, dependant on the actual relative cost as highlighted by figure 6.2.

This technique permits the identification of cost-effectiveness of alternative technolo-

gies to be examined based on their relative cost, permitting the search algorithm to

be applied to various scenarios by the adjustment of the cost’s base value. Optimal

solutions are a case of selecting the best compromise between conflicting objectives

to make for real practicable configurations. Cold ironing is a highly effective solution

in reducing emissions in-harbour, but is not a necessarily a universal solution when

considering net emissions. Shoreside generation (such as using LNG) can help to make

cold ironing more effective and realisable, and when evaluated using a multi-objective
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Table 6.5 – Example configuration for mixed LNG/Cold Ironing system with shoreside
LNG generation system per-unit cost being 2/3 of the cost per kVA of frequency
converter.

optimisation algorithm, can be used to identify suitable mixed configurations for a

given scenario [14].

6.3 The electrical aspect

Among the most important electrical characteristics of any power distribution network

is the quality of the power delivered to the load. Power quality can be measured

by the level of deviation of the voltage supply from the ideal sinusoidal waveform

with the desired amplitude and frequency. The connection of a load should not

have adverse effects on the supply network. Equally, the supply to any downstream

loads should not be negatively affected by any interactions between the load and

supply network. In a cold ironing scheme, the quality of supply needs to be examined

at the berthside, as berthed ships expect a guaranteed minimum level of power

quality, while also ensuring that the operation of the shore connection system does

not adversely affect other consumers connected to the same utility supply [53].

An ideal electrical system supplies and draws sinusoidal voltage and current waveforms.

However, the presence of power electronic devices creates a non-linear system due

to the turn-on and turn-off operations of these controlled switches. Hence the real

waveforms observed consist of a large number of higher order harmonics superimposed
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Figure 6.3 – Detailed centralised distribution topology schematic.

on the fundamental 50 Hz or 60 Hz frequency.

The presence of harmonic currents means that the total Root Mean Squared (RMS)

current flowing in the system is higher (for any given load), increasing the Ohmic

losses. Furthermore, transformers and other magnetic components suffer from in-

creased losses at higher frequencies, leading to additional power losses as highlighted

in figure 4.7. In addition, the presence of harmonic currents will cause a correspond-

ing potential drop across the supply impedance, leading to a distorted voltage at the

supply. This results in other consumers being affected by this non-sinusoidal supply.

Hence, various standards and requirements are in place to ensure that equipment/sys-

tems meet a minimum level of harmonic content. The harmonic content is quantified

by the Total Harmonic Distortion (THD), which for a distorted current waveform is

defined by equation 6.1, where Ih are the individual harmonic components making

up the waveform and I1 is the fundamental waveform. This is measured at the Point

of Common Coupling (PCC), which is the point in the power system closest to the

user where the system operator could offer service to another customer as marked in

figure 6.3 [94].

THD =

√√√√∑∞h=2 I
2
h

I2
1

(6.1)

Figure 6.3 shows in more detail the setup of the centralised topology, identified as

the most appropriate configuration for the scenario being considered (results of table
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Berth number Load (kVA) Line Voltage
(V)

Deviation
from nominal

Voltage THD
at berth

1 500 6,459 2.1% 0.66%
2 800 6,441 2.4% 0.66%
3 1,000 6,414 2.8% 0.65%
4 350 6,473 1.9% 0.67%
5 700 6,447 2.3% 0.66%

Input current THD 55.46%
Voltage THD at PCC 5.33%

Overall efficiency 90.4%

Table 6.6 – Steady-state quantities for system of figure 6.3.
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Figure 6.4 – Voltage waveforms at berth 1.

6.2 and figure 6.1). Table 6.6 shows a snapshot of the steady state operation of

the system. The steady state RMS values of the output voltages for all the berths

are within the 3% permitted deviation from the nominal (6.6kV) [53]. Figure 6.4

shows the voltage waveform as supplied to a vessel connected to berth 1 (figure 6.3)

with a 500kVA load. The frequency spectrum of the Phase A voltage waveform is

shown in figure 6.5. This shows how some harmonic distortion is still present at

the output which would not be discernible from a simple visual inspection of the

time domain waveforms. Of interest here are the harmonics (attenuated) around the

4kHz band, which correspond to the sidebands around the switching frequency of

the converter. The THD value for this output is 0.66%, and none of the individual

harmonics exceeds 3%. The supply to berth 1 is therefore well within the acceptable

THD limits. Similar plots are seen for the other berths and other phases, and these

results are tabulated in Table 6.6 showing how all outputs to all berths are within

the acceptable THD limits.
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Figure 6.5 – FFT of output voltage at berth 1.
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Figure 6.6 – Input current from utility supply.

At the supply side, figure 6.6 shows the input currents drawn from the utility at

the 15kV Point of Common Coupling (PCC) which is the point on a power supply

system where other loads would be connected (figure 6.3). This clearly shows the six

pulse operation associated with the use of a diode bridge rectifier with a capacitive

DC link (six pulses of the dc waveforms for every ac supply cycle). This waveform is

far from sinusoidal, with a significant 5th harmonic component at 250Hz (for a 50Hz

supply), together with additional higher frequency harmonics. Seen in the frequency

domain, this is confirmed by figure 6.7 which shows the FFT of the input current

as measured at the PCC. In this case, the THD is above 50%, with very large low

frequency harmonics which exceed the minimum levels as set by standardisation

bodies. Table 6.7 and Table 6.8 list the acceptable voltage and current THD limits

at the PCC as specified by IEEE 519 standard [94].

The effect of this distorted supply current on the supply voltage waveform (due to
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Figure 6.7 – FFT of input current.

Bus voltage (V) Individual harmonic (%) Total harmonic distortion
THD (%)

V≤1.0kV 5.0 8.0
1kV<V≤69kV 3.0 5.0
69kV<V≤161kV 1.5 2.5

161kV<V 1.0 1.5

Table 6.7 – Voltage distortion limits at PCC [94].

Isc/I1
Odd harmonic order h (%) Total Harmonic

3≤h<11 11≤h<17 17≤h<23 23≤h<35 35≤h≤50 Distortion (%)
<20 4.0 2.0 1.5 0.6 0.3 5.0
20<50 7.0 3.5 2.5 1.0 0.5 8.0
50<100 10.0 4.5 4.0 1.5 0.7 12.0
100<1000 12.0 5.5 5.0 2.0 1.0 15.0
>1000 15.0 7.0 6.0 2.5 1.4 20.0

Table 6.8 – Current distortion limits for general distribution systems [94]. Isc is the
maximum short-circuit current at the PCC while IL is the maximum fundamental
demand load current.
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Figure 6.8 – Voltage at Point of Common Coupling (PCC).
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Figure 6.9 – FFT of voltage at point of common coupling.

the presence of the supply side impedance) is seen in figure 6.8. Figure 6.9 shows

the harmonic spectrum of this voltage waveform at the Point of Common Coupling

(PCC), showing a THD of 5.33%. This level of harmonic content at the input is

unacceptable (from table 6.7), as this imposes voltage distortion to other consumers

connected at the same point. A distorted voltage will in turn cause distorted currents

to flow, which can cause improper operation for connected equipment. The high

frequency currents also impose additional losses on the utility transformers, as well

as increasing the overall loading due to higher RMS currents.

6.3.1 Transient conditions

Steady-state stability and RMS voltage and current values within acceptable limits

are extremely important considerations for stable and secure cold ironing operation
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Figure 6.10 – Transient response of terminal voltage at berth 1 in response to a ±50%
load step change at time 1s. The dotted lines indicate the +20%/-15% permitted
limits for transient conditions.

that meets the requirements of both parties involved. The power profiles of figure

5.7 are averaged quantities which are indicative of the average power demands of

the berthed vessels. The actual load profile (figure 5.5) will show more fluctuations

and variations due to the intermittent nature of the onboard loads. The switching

on/off of loads will induce oscillations which must not adversely affect the rest of

the system. Limits on transient conditions are set out in [53] as being +20% and

-15% for voltage excursions from nominal for the largest expected load step. This

expected load step when berthed is to be documented for each ship which must then

be matched to the expected response from the shore supply to ensure that limits are

respected.

Figure 6.10 shows the responses of the RMS value of the output voltage to a ±50%

step change in load on berth 1. In all cases, the output voltage is maintained within

the transient limits indicated by the dotted lines on the plot. The perturbation was

observed at the berth connections, in order to examine the effect a load transient

onboard the ship would have on the actual terminal voltage. The transient response

will of course be different for different installations, depending on the dynamic

characteristics of the frequency converter implemented, influenced by controller time

constants and the values of passive circuit components.
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6.3.2 Harmonic mitigation

Various measures can be taken to improve the utility connection so that it meets

the required standards. The connection of a passive filter at the input (similar to

the way the output of the converter is filtered) is a possible solution (LCL filter

shown as figure 6.11a), but large values of passive components are required. An

active front end (figure 6.11b) can be used instead of the uncontrolled diode bridge

rectifier. This takes the form of the controlled inverter stage replicated at the input

stage. Having controlled switches at the input gives numerous benefits, including a

much smaller DC link ripple (or a corresponding DC capacitor size reduction) giving

also a cleaner input (and hence smaller input filter). The input currents can be

controlled, such that the power factor is controlled to be unity. This does come at the

significant expense of an additional controlled power electronic stage. Another power

electronic option would be to install an active filter, which utilises a current-mode

controlled power electronic converter to counter the input distortion current by

injecting inverse harmonics, minimising the use/size of passive components (figure

6.11c). This, however, is a more expensive and less efficient option, when compared

to passive filters [95].

Another solution which offers reduced current distortion at the input is the use of

a higher pulse-number rectifier. A 12-pulse rectifier (figure 6.11d) makes use of a

transformer with both a star and a delta connected output winding to utilise the 30°

phase difference between the voltage waveforms of the two sets of windings. This

produces twelve DC pulses per supply cycle (compared to the six pulses produced

by a standard three-phase rectifier circuit) and a stepped AC current waveform

eliminating all harmonics below 550 Hz (the 11th harmonic) for a lower input current

THD. A 24-pulse arrangement can be produced by combining two 12-pulse systems

with a 15° phase shift between the primary windings. This will produce 24 DC pulses

per supply cycle, and a much smoother AC current waveform, eliminating all current

harmonics below the 23rd.

The results show that the selected centralised system is able to meet the output

requirements both in terms of steady state voltage values as well as meeting harmonic

distortion limits for the berth connections. However, the study has highlighted the

significant harmonic content at the input of the shore connection system, with THD

values in excess of acceptable limits. Clearly, the use of power electronics generates
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(d) 12-pulse rectifier.

Figure 6.11 – Harmonic mitigation measures.
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significant harmonic content which must be managed in order not to adversely

affect other consumers connected to the same supply network. Operating within the

required harmonic limits is a necessary precondition to connection and represents a

shared responsibility between system operators and users.

The use of an onshore power supply is beneficial to the immediate harbour area, as

the use of onboard generators is reduced. Yet it must be ensured that the onshore

power supply system does not have an adverse impact on the electrical utility, a

process for which detailed simulations are well suited. After all, reducing airborne

pollution must not come at the expense of increased electrical pollution [15].



Chapter 7

Onboard energy management

7.1 The motivation for energy management

One of the major benefits of onboard electrification is the ease of integration of

multiple sources and energy storage. Of course, with increased integration also comes

increased complexity. The management of energy is now more complicated since

power can be provided from a number of different sources.

A vessel must perform a mission - carriage of cargo, passengers, towing etc... and this

is possible within an operating envelope defined by environmental conditions taken

into account during vessel design. The machinery systems on board are designed

to cope with the expected environmental operating states, with sufficient margins

for degradation as well as abnormal or extreme conditions. The onboard Power

Management System’s (PMS) role is to ensure that sufficient power is available at

any instance in time to the onboard machinery as required for the vessel to fulfil its

mission requirements.

An Energy Management System (EMS) takes this a step further and provides a

higher level of control whose main purpose is minimisation of overall consumption,

a concept which is not taken into account by the PMS. The EMS functions as a

top-level controller, giving setpoints to the PMS. The PMS is in turn responsible

for ensuring that sufficient power is available to the machinery systems, with the

possibility of overriding the EMS’ setpoints if necessary. The EMS can be seen

therefore as an optional system which however is required in order to fully exploit the

benefits of multiple sources and storage systems. Power after all, is nothing without

115
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Figure 7.1 – Overview of hierarchy of the various onboard controllers.

control.

The hierarchy of onboard controllers is shown in figure 7.1. The highest level of

control is the Alarm Monitoring and Control System (AMCS), which implements

a supervisory role on the vessel, but does not inherently provide any machinery

setpoints. The AMCS brings together all the alarms and supervisory controls for

cohesive presentation and management by the bridge personnel. The EMS is the

next level down, and encompasses the whole onboard system, with a view to realise

optimised operation. In turn, the PMS ensures that the setpoints defined by the

EMS are followed as closely as possible, but has the ability to override these in order

to ensure that safety and mission are not compromised. Finally, each component

has its own controller, shown in figure 7.1 for a variety of sources which attempts to

implement the setpoint passed down from the PMS as closely as possible. This can

be overridden by these lower level controllers in order to ensure safe operation of the

component [96].

The machinery controllers, AMCS and PMS are conventional controllers, which are

already found installed onboard vessels and come in classification society approved

setups. The EMS is the focus of this work, where the management of energy from

a multitude of sources on a shipboard environment provides scope for operational

savings as well as automating decision processes. In the INOMANS2HIP project, a
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Parameter Quantity Unit
Length overall 182.77 m

DWT 12,359 tonnes
Speed 21 kt

Freight capacity 2715 lane meters
Main Engines 4 x 5760 kW

Main engines speed 510 rpm
Auxiliary generators 2 x 1500 kW
Propulsion type 2 x CPP
Propeller speed 130 rpm

Table 7.1 – Case vessel main parameters [97].

case vessel was used as the focus of the work, with all data and studies based on this

ship. The vessel in question is a RoRo ship, with main particulars as listed in table

7.1 and the machinery configuration shown in figure 7.2.

As part of the INOMANS2HIP project, a new hybridized machinery system, shown

as figure 7.3, was designed for retrofit to the case vessel to examine the possibilities

of reducing fuel consumption. Four main engines are installed (as in the current

existing setup), powering two CPPs via a step-down gearbox. The shaft generators

are replaced by two bidirectional auxiliary drives, with a battery storage system

installed on each DC link. This DC link is the scope for future expansion into a

DC distribution system. The batteries are specified as two units of 2MWh each,

connected at a nominal voltage of 674V DC of a LiFePo type [98]. The auxiliary

drives permit bidirectional power flow between the onboard electrical grid and the

gearbox, linking the electrical and mechanical systems. The drives are rated at

2MVA at a grid voltage level of 450V, and consist of two back-to-back converters

and a 1,200kW induction machine connected to the gearbox. A photovoltaic (PV)

system was also added, which based on maximum available area of 1,994m2 permits

the installation of PV modules with a total rating of 300kWp [97]. A cold ironing

supply is also provided, able to charge the batteries as well as providing the onboard

auxiliary load. Additionally, two electrical generators connected to a Waste Heat

Recovery System (WHRS) are installed on main engines 2 and 3. These contribute

to the onboard electric grid when the main engines are running by recovering energy

from the exhaust gases.

The vessel sails a fixed route between the UK and the Netherlands, at constant speed

while at sea, with a constant electrical load of 850kW. The (averaged) operational
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Figure 7.2 – Existing vessel machinery configuration [97].
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Figure 7.3 – Refit configuration for lowest emissions [97].
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Figure 7.4 – Vessel operating profile.

profile of the vessel is shown in figure 7.4 for a return journey. With this data

available, and the proposed new configuration, an EMS was proposed to be developed

to control the new system to minimise fuel consumption over the voyage.

Within the project, the case vessel was modelled using the proprietary modelling

software GES (Generic Energy Systems), developed by project partners TNO (Neth-

erlands Organisation for Applied Scientific Research) [99]. GES was created by TNO

as a software tool to model ship energy systems by means of energy flow analysis,

using the bond graph method [100]. The software is able to model mechanical,

thermal as well as electrical components with custom component models available

for all onboard machinery. The GES model considers steady-state energy flows, and

hence does not simulate transient conditions. The motivation behind the software is

to evaluate different machinery configurations and examine steady state performance

characteristics of machinery. Of interest to the EMS application is the capability

of quickly returning the fuel consumption value for a particular configuration. A

screenshot of the model developed in GES for the configuration of 7.3 is shown in

figure 7.5.
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Figure 7.5 – GES model screenshot.

7.2 Energy management

The complexity in onboard energy management arises chiefly out of the handling of

multiple different sources, and the variation in time of stored energy. In automotive

hybrids, the number of sources and consumers is much lower, leading to a simpler

problem formulation. Rule-based EMS can provide adequate results, but the com-

plexity of formulating rules to encompass all possible scenarios will imply that their

performance is inferior in all but the simplest cases [101].

Energy management looking at global optimisation using heuristic or mathematical

algorithms can deliver superior results, but enter into the issue of no (or limited) a

priori knowledge of the future energy demands. For real time application of optimal

energy management, a suitable cost function must be formulated in order to be able

to perform optimisation at each instant of interest [101].

Gradient based searches and numerical optimisation approaches require the cost

function to be expressible as a linear function. This is the approach adopted in

most optimal energy controllers found in literature which use variants of linear

programming applied to linearised models [101–105]. These consider linear models

of propulsion systems (both marine and vehicular) together with consideration of

the load profile (based on historical data) to control setpoints across a voyage. With

the models being intrinsically linked to the optimisation algorithm, modifications

and reapplication to different systems are somewhat laborious and require reworking
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of the EMS. As part of the project’s motivation, a more generic scheme was desired

which would give more flexibility and expansion potential for application to different

vessels.

Beyond vehicular energy management, further inspiration can be found in power

systems in what is fundamentally an economic dispatch problem. In this case,

generator configurations are identified to provide the required power at the lowest

possible cost, taking into account constraints in terms of unit commitment and

ramping constraints. Again these typically use numerical algorithms with linear

models to implement a load flow analysis. An interesting approach is to use Particle

Swarm Optimisation to identify these optimal configurations [106–108]. The major

benefits of using PSO (or other evolutionary-inspired algorithms) is when the system

in question is relatively complex compared to a traditional transmission system.

With storage and other nonlinear components, or when adaptation to other systems

is desirable, the use of a black box optimisation algorithm can lead to a more flexible

implementation.

The idea adopted in INOMANS2HIP was to develop an EMS using PSO to optimise

the configuration of the vessel’s machinery systems during the voyage, without prior

knowledge of the vessel’s profile. Since shore supply is (considered to be) available,

constraints such as the need to ensure that energy storage devices are full at the

end of the voyage are not required [102], giving further freedom to the EMS routine.

The theory and working behind PSO have been explained in chapter 5, and in the

following sections, the implementation of the PSO algorithm to the EMS case is

discussed.

7.3 Development of the EMS

The application of the PSO algorithm to the onboard energy optimisation scheme

is summarised as figure 7.6. The PSO is the optimisation algorithm at the centre,

coded in Matlab. The GES model outlined in figure 7.5 serves as the objective

function, which returns the fuel consumption as the fitness value. Constraints are

also handled within the GES models, with violations of any constraints passed to the

EMS as warning flags. These constraints are operational ones, particularly on the

machinery systems. The algorithm then returns the optimal system configuration in
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Figure 7.6 – Overview of operational EMS.

Variable Type
ME1 On/Off
ME2 On/Off
ME3 On/Off
ME4 On/Off
DG1 On/Off
DG2 On/Off

PTO/PTI 1 Setpoint
PTO/PTI 2 Setpoint

Propeller operating mode Mode selection
PS Battery current Setpoint
SB Battery current Setpoint

Table 7.2 – Variables in optimisation scheme.

terms of power setpoints as well as on/off selection of machinery. The variables are

summarised as table 7.2, together with their type.

Table 7.2 shows the different types of variables involved, with the On/Off variables

being binary while the others are of a continuous nature. This discrete nature of

the On/Off variables can be treated by rounding continuous position vectors to the

nearest integer, with 0.5 being the threshold [84].

The algorithm is to be triggered at predetermined times through the voyage taking

as inputs the ship’s particular condition at that time, namely speed, auxiliary load,

solar irradiance (needed to calculate the PV array contribution) and wind direction

and speed. Once the algorithm is completed, the vessel’s configuration is updated

accordingly. Of course, it is not expected that the actual profile will be fixed in
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between update periods, but the PMS will control the power share in between these

periods, prior to the EMS updating the configuration for optimal generation.

The basic premise of the optimisation at each step is to minimise the total fuel

consumption. This however does not take into any account the wider operational

constraints of the vessel’s operation. As an example, each engine will return the same

fuel consumption value, hence there is no discriminant and due to the stochastic

nature of the optimisation, at each optimisation step, the optimal configuration could

be one with a different engine selected each time, yet still returning the same (or

very similar) fuel consumption. Hence the basic algorithm was modified to include

a penalty function which looks at the previous configuration, and calculates the

Hamming distance (number of discrete bit changes) to the new particle location. A

proportional penalty is then applied to the returned fuel consumption figure, ranging

from 0% if the configuration is the same, to a 20% penalty if the configuration

is completely different. This reinforces the algorithm to preferentially select a

configuration which is similar to the previously operating setup as much as possible,

avoiding frequent turning on and off of diesel engines, yet prioritising fuel consumption

minimisation.

7.4 A note on constraints

The search space is multi-dimensional, with the number of dimensions equal to the

number of parameters in the search. The search space is theoretically infinite – but

this does not represent a real implementation. In any practical application the search

space is limited since parameters have limits on the actual values they can take.

Hence the search space is said to be constrained to a feasible set of possible solutions,

which is a subset of the total possible search space.

The objective space is correspondingly constrained, as a consequence of the constraints

imposed on the search space. This constraining on the search space parameters is

termed interval confinement and is therefore the realistic values which the search

parameters can take [93].

For the problem at hand, the parameters are the setpoints of the machinery compon-

ents, which map to the fuel consumption of the resultant configuration by use of the

GES ship model. Clearly the setpoints of the machinery are constrained by the actual
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limits which the setpoints can take – e.g. diesel engine setpoints cannot be negative,

while limits in terms of the maximum loading must be respected. Hence for simplicity,

setpoints are constrained between 0 and 1 (inclusive) which is the normalised per-unit

power loading on each component. For components which permit bidirectional power

flow, values less than 0.5 represent power flowing into the component, while greater

than 0.5 implies power flowing out. This normalisation facilitates the setup of the

algorithm, with the values then un-normalised in the fitness function. The interval

confinement therefore ensures that only valid setpoints are selected, however this

still does not guarantee that the solution selected is feasible.

Other constraints come in to play which are not immediately apparent from the search

space but must be evaluated from the fitness function. These include additional

machinery constraints which are obtained from the GES simulation (e.g. overspeeding

of rotating machinery) or actual operational setpoints not being met (e.g. vessel

speed not reached).

The straightforward treatment of constraints is by a hard limiting approach, which

was adopted and described in the previous PSO implementation in chapter 5. Here a

solution which violates a constraint is penalised by assigning infinity to the objective

value (fuel consumption in this case). This means that that solution is discarded

when it comes to selection of successive population updates, and was seen to give

satisfactory results.

However in this application, at steady state too many variations in the setpoints

were observed. These could be explained as solutions being found close to the

global optimum (in objective space) but not the actual optimum itself. Clearly a

better solution had been found in previous waypoints but not found again. With a

hard limit approach, when a solution is discarded, all information related to that

particular configuration is lost. This implies that a solution which has good ‘concepts’

but violates a constraint will not be able to propagate these concepts to the next

iterations, effectively artificially limiting the search space.

A solution to this is to treat constraints with a soft penalty approach, where a

solution is not discarded for violating a constraint, but rather penalised in proportion

to the level of constraint violation. This therefore supports solutions which do not

violate any constraints, but at the same time small levels of constraint violation do

not imply a total rejection of a solution [93]. This is explained graphically by figure
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Figure 7.7 – Soft constraint handling for a single constraint.

7.7 which illustrates the linear penalty approach to a constraint violation.

The approach taken is to return the degree of violation in per-unit (e.g. level of

overspeed, overload etc. . . ) which is then summed and added to the fuel consumption

value. By using a per-unit system for the constraints, these can be directly compared.

Additionally, weighting can be applied to the different constraints in order to prioritise

satisfaction of particular constraints over others. The disadvantage is that the choice

of this weighting vector is very sensitive to variations. Hence for a more balanced

approach, a non-weighted sum was used in this case.

A further consideration is the relative values of the constraints and objective. If

the objective value returned by the fitness function is several orders of magnitude

different than the per-unit constraint violations, then the soft approach to constraints

requires adjustment such that the values are comparable, as otherwise the constraints

are insignificant.

The constraints considered are listed below, divided according to soft or hard

approach.

Hard constraints:

• Reverse power to shore supply

• Speed setpoint not met
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Parameter Symbol Value
Swarm size N 20

Total iterations - 300
Informed neighbourhood size K 3
Memory control parameter φ1 2.05

Co-operation control parameter φ2 2.05

Table 7.3 – Parameters implemented in PSO.

• Auxiliary power not supplied

• Main engine reverse power flow

• Main engine over/under speed

• Diesel generator reverse power flow

• GES convergence problem

Soft constraints:

• Battery state of charge over limit

• Battery state of charge under limit

• Main engine power overload

• Diesel generator power overload

• Auxiliary drive power overload

• Hamming distance from previous configuration

The PSO algorithm was implemented with the parameters as summarised in table

7.3.

The pseudocode of the algorithm is summarised as algorithm 7.1.

7.5 Handling of batteries

With the objective being the reduction of fuel consumption, the provision of power

from clean sources other than the diesel engines will be preferred since this will result

in reduced fuel usage. By assuming that the batteries are of zero cost, the discharge
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Algorithm 7.1 Pseudocode for single objective PSO developed for EMS.
1. Initialise random particle locations of swarm size N

2. Initialise random particle velocities

3. Round binary particle locations to [0/1]

4. Evaluate fitness function

5. Populate pbest and gbest with best solutions

6. Evaluate velocity update equation

7. Calculate new particle positions and round where necessary

8. Evaluate fitness function

9. Update particle best if new fitness is better

10. Update global/local best if new fitness is better

11. Repeat from step 6 until maximum iterations is reached

will be maximised in order to reduce the fuel cost as much as possible. While correct

from an optimisation point of view, this does not present a true picture of the cost of

battery power. By maximising discharge simply because the state of charge permits

it, the potential for prospective (better) savings at a later point of the voyage is lost.

The model was therefore modified to assign a cost to the energy stored as a function

of the source used to charge the battery. This takes the form of an accumulator whose

value is given by the amount of charge put into the battery together with the amount

of fuel used to supply this energy, leading to an equivalent specific fuel consumption

(eSFC) figure in g/kWh. The battery is assumed to maintain the constant charge

rate for the duration of the waypoint, such that the state of charge at the end of the

waypoint can be estimated by linear interpolation. Equation 7.1 defines the eSFC at

the end of the waypoint (eSFC2) as the weighted sum of the previous energy stored

in the battery (E1) and the current eSFC (eSFC1) together with the charged energy

and the average SFC used to charge the battery.

eSFC2 = E1 × eSFC1 + ∆E × SFCavg

E2
(7.1)

SFCavgrefers to the average specific fuel consumption (in g/kWh) of the energy
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sources when charging the battery. It is given as the sum of fuel consumption (in

g/s) of each diesel engine supplying the electric system divided by the total sum of

power (in kW) being supplied by these engines as SFCavg = ΣF C/ΣP . Equation 7.1

can be expressed more conveniently as equation 7.2 since the stored energy can be

expressed as a fraction of the nominal capacity of the battery in terms of the state

of charge (SOC) which results in equation 7.2

eSFC2 = SOC1 × eSFC1 + ∆SOC × SFCavg

SOC1 + ∆SOC (7.2)

When discharging, the eSFC is maintained constant at its previous value. The

concept can be visualised as being analogous to a bucket of paint - the actual colour

in the bucket (eSFC) is dependent on the quantity of paint added from different

buckets, which mix to form a homogeneous colour. When discharging, the colour of

the paint remains unchanged.

7.6 Testing of the EMS

In order to test the algorithm and validate results, the scheme was tested on

a simplified configuration without any energy storage capacity. This “low-cost”

configuration is shown as figure 7.8 and refers to the simplest incremental addition

of machinery to the existing setup (of figure 7.2) [97]. The chief difference is a

bidirectional capacity of the auxiliary drive giving PTO/PTI capability as described

in chapter 1 of this thesis.

The algorithm was tested repeatedly at a number of speed setpoints independently

of each other to observe convergence. The optimisation was run five times at speed

setpoints of 5, 10, 15 and 20 knots. The results are summarised in table 7.4 and

figure 7.9. Figure 7.9 shows the optimal fuel consumption progression in objective

space across the PSO’s iterations, together with metrics such as the average swarm

fitness and average pbest values which give an indication of the general swarm fitness

progression. This shows four distinct convergences for the four speed setpoints (with

the same auxiliary power demand of 850kW) indicating how the same point has been

found every time. The corresponding results in the search space are summarised in

table 7.4 together with the objective space values (fuel consumption figures). These
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Figure 7.8 – Simplified low-cost configuration for testing. Arrows indicate direction
of power flows. [97]



CHAPTER 7. ONBOARD ENERGY MANAGEMENT 131

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Iterations

F
ue

l c
on

su
m

pt
io

n 
(k

g/
s)

 

 

Global best
Particle best average
Average fitness history

Figure 7.9 – Fitness progression for four speed setpoints for five repetitions each.

represent the optimal configurations found, i.e. the final points on the blue trace in

figure 7.9.

From observation of the fuel consumption figures, it can be seen how the objective

values are all close to each other, indicating that the global optimum (or very close

to it) is being found every time. In all cases, the propeller operating mode is mode

1, which is variable revolutions mode. A positive power through the auxiliary drive

implies that the drive is operating in motoring mode (PTI). It can be seen especially

by looking at the PTO/PTI levels how different setpoints will still give the same

(or very similar) objective values. Similarly, the combination of main and auxiliary

engines, is very broad, since all main engines return the same fuel consumption.

7.6.1 Voyage testing

Following testing of the convergence of the PSO EMS on the low cost configura-

tion, the EMS was applied to the voyage profile with the low cost configuration

and validated against an EMS using the simplex method (a linear programming

optimisation algorithm) as implemented [103]. This algorithm is built in to GES and

was formulated by project partners to validate the PSO EMS approach. The simplex

method calculates objective values at simplex vertices, which are the boundaries

established by constraints in the search space. By examining the impact on the

objective value by movement along the constraint limits, the vertices are successively

explored by geometric processes of reflection, expansion and contraction of the sim-

plices. When movement along any of the simplex boundaries does not realise any
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Table 7.4 – Configuration results for low cost configuration for independent setpoints.



CHAPTER 7. ONBOARD ENERGY MANAGEMENT 133

0

5

10

15

20

25

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 10000 20000 30000 40000 50000 60000 70000 80000

Sp
ee

d
 (

kt
)

In
st

an
ta

n
eo

u
s 

fu
el

 c
o

n
su

m
p

ti
o

n
 (

kg
/s

)

Time (s)

Original configuration PSO EMS Simplex EMS Ship speed

Figure 7.10 – Fuel consumption profiles comparison for configuration with no battery
storage.

objective improvement then the extreme value has been identified [109]. In this case,

associated with each vertex is the fuel consumption (returned by GES) depending

on the particular control parameters.

Both EMS algorithms were applied to the same voyage profile (of figure 7.4) and

the results are summarised as the plot in figure 7.10. This shows the fuel consump-

tion profiles across the waypoints as optimised by the PSO and the Simplex EMS

respectively, together with the original case consumption in kg/s.

The fuel consumption points with both EMS algorithms are all lower than the original

figures for the conventional configuration. Figure 7.11 expands the profile returned

by the PSO EMS to illustrate the power supplied by the main engines and diesel

generators (combined) and the power to and from the auxiliary drive. The fuel

consumption values for the PSO EMS are lower than those obtained by the Simplex

EMS in the first voyage. In the return leg, the PSO EMS fuel consumption values

are 1.7% higher than those returned by the Simplex algorithm, which is explained

by different limits on power setpoints on the auxiliary drive between the two EMSs4.
4The simplex algorithm is part of the GES software. It therefore has much tighter control of

internal variables and limits. It is also much faster since it does not need to pass variables through
an external interface.
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Figure 7.11 – Power setpoints profiles using PSO EMS for configuration with no
onboard storage.

From figure 7.11, the fuel savings compared to the original configuration can be

explained by the use of the auxiliary drive as a PTO/PTI. In the first leg of the

voyage (at the lower ship speed), the diesel generators are used to supplement the

main engines in PTI mode, while for the return leg, the diesel generators are unloaded

and the auxiliary load is provided from the main engines via the auxiliary drive in

PTO mode.

The actual configuration setpoints are described in table 7.5 which lists the search

space results of the EMS over the voyage. Table 7.6 gives additional information with

the power setpoints of the machinery components as defined by the configurations

of table 7.5. Across the whole voyage, the vessel with the original configuration

returned a fuel consumption of 25.64 tons. With the new low-cost configuration and

the EMS using the simplex method, the fuel consumption is reduced to 24.42tons,

while with the PSO EMS the fuel used is 24.26tons. This gives savings of 4.8% and

5.4% respectively.

The difference in fuel savings between the two EMS algorithms is very small and

is due to the PSO EMS being able to find a better setpoint for the auxiliary drive

(within the setpoint limits). However the biggest motivation for adopting the PSO
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0 0 650 1 0 0 0 0 0 0 -0.30 0.89 1 0.0000
2009 15.23 850 0 0 1 1 0 1 0 -0.25 -0.43 1 0.4279
3427 15.23 850 0 1 0 1 0 1 0 0.48 -0.31 1 0.4278
6240 15.23 850 0 1 0 1 0 1 0 -0.34 0.51 1 0.4278
7552 15.23 850 0 1 0 1 0 1 0 -0.28 0.45 1 0.4279
18024 15.23 850 0 1 0 1 0 1 0 0.49 -0.32 1 0.4278
22326 15.23 850 0 1 0 1 0 1 0 -0.36 -0.32 1 0.4278
23626 15.23 850 0 1 0 1 0 1 0 0.52 0.50 1 0.4278
24321 15.23 850 0 1 0 1 0 1 1 -0.40 -0.28 1 0.4318
25311 15.23 850 0 1 0 1 0 1 1 0.46 -0.29 1 0.4318
26302 15.23 850 0 1 0 1 0 1 1 -0.25 0.43 1 0.4318
26400 0 650 1 0 0 0 0 0 0 0.51 0.53 1 0.0000
40736 0 650 1 0 0 0 0 0 0 0.57 0.54 2 0.0000
42029 16.70 850 0 0 1 0 1 1 1 0.79 0.80 1 0.5350
43042 16.70 850 0 1 1 1 1 1 1 0.21 0.21 1 0.5390
44724 16.70 850 0 1 1 1 1 1 1 0.30 0.12 1 0.5391
60978 16.70 850 0 1 1 1 1 1 1 0.23 -0.68 1 0.5390
61905 16.70 850 0 1 1 1 1 1 1 0.25 0.17 1 0.5390
62508 16.70 850 0 1 1 1 1 1 1 0.10 0.32 1 0.5391
63026 16.70 850 0 1 1 1 1 1 1 -0.64 0.18 1 0.5390
64858 16.70 850 0 1 1 1 1 1 1 0.14 0.28 1 0.5391
64900 0 650 1 0 0 0 0 0 0 0.57 0.54 2 0.0000
81058 0 650 1 0 0 0 0 0 0 0.55 0.56 1 0.0000

Table 7.5 – Setpoints for low cost configuration.
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0 0 0 0 0 0 0 0 0 0 0 668
2009 0 3,085 3,445 0 1,262 0 350 0 3,312 3,312 0
3427 3,328 0 3,202 0 1,262 0 114 236 3,312 3,312 0
6240 3,263 0 3,267 0 1,262 0 177 173 3,312 3,312 0
7552 3,136 0 3,393 0 1,263 0 301 51 3,312 3,312 0
18024 3,312 0 3,217 0 1,262 0 129 221 3,312 3,312 0
22326 3,315 0 3,215 0 1,262 0 126 224 3,312 3,312 0
23626 3,246 0 3,283 0 1,262 0 193 157 3,312 3,312 0
24321 3,398 0 3,131 0 0 1,262 45 305 3,312 3,312 0
25311 3,370 0 3,166 0 0 1,256 73 272 3,312 3,312 0
26302 3,085 0 3,444 0 0 1,263 350 1 3,312 3,312 0
26400 0 0 0 0 0 0 0 0 0 0 668
40736 0 0 0 0 0 0 0 0 0 0 668
42029 0 3,586 0 3,546 1,261 1,261 729 768 4,176 4,176 0
43042 2,414 2,414 2,415 2,415 0 0 -482 -482 4,176 4,176 0
44724 2,320 2,320 2,509 2,509 0 0 -298 -666 4,176 4,176 0
60978 2,396 2,396 2,433 2,433 0 0 -446 -518 4,176 4,176 0
61905 2,375 2,375 2,454 2,454 0 0 -405 -559 4,176 4,176 0
62508 2,538 2,538 2,292 2,292 0 0 -722 -242 4,176 4,176 0
63026 2,385 2,385 2,445 2,445 0 0 -424 -540 4,176 4,176 0
64858 2,495 2,495 2,335 2,335 0 0 -638 -326 4,176 4,176 0
64900 0 0 0 0 0 0 0 0 0 0 668
81058 0 0 0 0 0 0 0 0 0 0 668

Table 7.6 – Power setpoints for low cost configuration using PSO EMS.
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EMS is the greater ease in adapting the EMS to the configuration at hand. Since

the PSO uses a black box approach, the EMS and cost function (GES function) are

much less interlinked, with only the passing to and fro of variables and setpoints (as

per figure 7.6). This ease of adaptation is the chief proposition for adoption and

further development of the PSO EMS in the rest of the project.

7.7 Implementation

The EMS was now applied to the new configuration (figure 7.3), running every

waypoint in order to optimise the configuration at each step. The waypoints are

based on the navigational waypoints obtained from the vessel’s crew. Since these

are position dependent, the duration of these is variable and in some cases stretches

to the order of hours. Though power levels are unchanged, with energy storage,

the batteries’ state of charge will vary significantly over the course of the setpoint

duration, hence an update was scheduled every half an hour (unless the waypoint

has been reached).

Figure 7.12 summarises the results of the simulated voyage using the PSO EMS.

This clearly shows the batteries’ state of charge profiles, being discharged initially

(starting from a full state of charge) till empty (lower limit assumed at 20%). The

state of charge is then maintained at this level till the ship is berthed, at which

point the vessel is considered to connect to an onshore power supply, whereby the

batteries are charged from the shore. This is then repeated for the second leg of the

voyage. The batteries are used to provide power to the propulsion system via the

auxiliary drive (PTI mode). The fitness function (slightly higher than the actual

fuel consumption in figure 7.12) reflects the use of the equivalent fuel consumption

associated with the batteries. It can be seen how compared to the original case

with the conventional configuration, the fuel consumption is lower throughout the

complete voyage.

Power is shown in figures 7.13 and 7.14 for the same profile using the PSO EMS.

The shaft power is the (combined) power provided to the propulsion shafts while the

auxiliary demand is the power demanded by the onboard auxiliary plant. The shore

supply reflects the power supplied from a cold ironing supply when berthed. This

meets the demands of the onboard auxiliary load as well as charging of the onboard
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Figure 7.12 – Resultant profiles for voyage of figure 7.4 with configuration including
onboard energy storage. Fuel consumption (new configuration) is compared to the
original case fuel consumption, with the fitness function also shown.

battery storage as seen in figure 7.12.

The battery’s initial eSFC was set to be equal to the (nominal) SFC of the diesel

generators. The batteries are gradually discharged over the initial stages of the first

leg of the voyage, contributing to propulsion power via the auxiliary drive in PTI

mode and the auxiliary load. Once the lower discharge limit is reached, power is

switched to the main engines, with minor fluctuations via the auxiliary drive in

order to provide the auxiliary supply and keep the batteries within limits. Power is

then supplied to the onboard grid via the PTO such that the diesel generators are

unloaded.

When berthed, a cold ironing supply is available, which is able to provide the onboard

auxiliary load as well as charge the batteries. This is considered as zero cost (in

terms of fuel consumption) since no fuel is being consumed onboard and serves to

preferentially select the shore supply over any other onboard source. The EMS in

fact converges (correctly) to solutions with power being supplied solely from the

shore supply. With charging from a ‘zero’ cost supply, the batteries’ eSFC is diluted

down to a lower cost than in the initial leg, leading to a stronger emphasis on battery
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use in the second leg. Because of the higher vessel speed on the second leg, there is

clearly (from figure 7.14) a continuous contribution via the auxiliary drive in PTI

mode, initially supplied from the batteries, and once these have been discharged, a

continuous feed-in in PTO mode.

The results in the search space are summarised in table D.1, corresponding to the

objective space results of figure 7.12. This gives an illustration of the output from

the EMS algorithm which would be used as setpoints for the real-world application

of the EMS as per figure 7.6. Further insight to complement the plots of figures 7.13

and 7.14 can be seen in table D.2 which lists the power flows through the components

result from the setpoints of table D.1.

The actual power flow is determined by the PMS built in as part of the model in

GES. This determines the power demanded from each source and ensures that power

is balanced between all components. An essential part of the EMS algorithm is

to ensure that the desired setpoint is met by a particular configuration, which of

course depends on the PMS action as well as the availability of sufficient power by a

particular configuration.

From table D.2 and figure 7.14, it is apparent that there are variations in the power

levels between waypoints through the components in spite of the propulsion and

auxiliary powers being constant (averaged). The power available from the PV array

varies with the solar irradiation (which varies throughout the day, conditions etc...).

Furthermore, the state of charge in the batteries varies with use, hence changing

the power available from the batteries when approaching limits. This variation is

mitigated somewhat by the penalty function adopted with respect to the changes

in variables 1-6 (on/off of diesel engines). A similar approach was tested which

considered the geometric distance between solutions across all the variables. It was

observed however that this significantly restricted the freedom of the search such

that there was a very high dependence on the initial solution found and due to this

restricted freedom suboptimal fuel consumption over the voyage was being realised.

From figure 7.12, comparison of the instantaneous fuel consumption values shows how

the overall figures are less than the original case. Summed up across the intervals,

the original setup returned a fuel consumption of 25.64 tons while with the new

configuration and EMS the return journey was completed using 22.12tons of fuel, a

saving of 13.7% [17].
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Figure 7.15 – Demonstrator setup overview.

7.8 Installation

As part of the INOMANS2HIP project, a working hardware demonstrator has been

set up to showcase the results of the project. This work is being carried out by

project partners and involves the setting up of a number of hardware cabinets housing

drives, power converters and batteries to emulate part of the system of figure 7.3.

The demonstrator is aimed at being a tangible illustration of the project’s work. An

overview of the demonstrator is shown in figure 7.15, illustrating the various entities

which make up the system. Three separate components make up the demonstrator,

bringing together the three major aspects of the INOMANS2HIP project.

The HMI (Human Machine Interface) is being designed by project partners, tak-

ing into account bridge ergonomics together with aspects of how to best

illustrate energy/fuel savings and motivate improved performance [110]. On

the demonstrator, this is hosted on a PC, and uses four screens (see figure

7.18) to graphically showcase results and user-friendly information. This uses

proprietary software and builds on existing HMIs as used by project partners.

The ship emulator is a composite system consisting of a Hardware In the Loop

(HIL) component as well as a master software model of the ship system, built

in GES [109]. The ship emulator includes the PMS and component level

controllers for the vessel. The GES model is the main emulator, which passes
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Figure 7.16 – Overview of optimisation scripts for modular implementation of EMS.

the relevant setpoints required by the HIL component (via the AMCS) to follow

and track the matching model blocks.

The EMS is hosted on a separate PC, consisting of another instance of GES, being

called by the PSO algorithm described in the previous section [109]. The scripts

were set up in a generic and modular way, so that interfacing, optimisation

and overall functions are kept separate, permitting changes and adaptations

according to the application. The links between the various scripts together

with the variables passed between them is summarised as figure 7.16, illustrating

the modular approach to the EMS.

The highest level control module of the demonstrator is the AMCS which handles

communications between the various entities of the demonstrator. The EMS receives

the setpoints from the AMCS, performs the optimisation routine, and returns the

optimal setpoints to the AMCS. These optimal setpoints are in turn sent to the ship

emulator and the HMI for display purposes.

The single line diagram of the demonstrator hardware setup is shown as figure 7.17.

The components are described as follows:

Component 1 is a motor/generator pair rated at 5kVA which emulates a diesel

generator

Component 2 is a 100Wp photovoltaic module and MPPT inverter which emulates

the PV array. Due to the low rating of the available unit and the lack of control
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2.2 Electrical Overview 

Previously Figure 2 shows the proposal for the electrical system of the Stena Carrier. 

Keeping in mind the requirements given in Section 2.1, the single line as depicted in Figure 3 

is derived for the demonstrator. The electrical system is built up of three switchboards 

(MSB1, MSB2 and MSB3). The first switchboard, MSB1, is the interface between the main 

grid and the demonstrator. The second switchboard, MSB2 represents the AC switchboard 

of the vessel. The last and third switchboard, MSB3, is a DC switchboard and represents the 

DC link of the greenest solution.   

 

Figure 3: Single line diagram of the demonstrator 

As with the green solution proposed, the single line diagram of the demonstrator shows the 

following five main components: 

1. Weak net generator, to simulate a diesel generator set. 

2. PV arrays 

3. Battery 
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Figure 7.17 – Single line diagram of demonstrator setup. Numbered components are
the power sources on the vessel [96].
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of the solar irradiation in the demonstrator, this component is not considered

significant in the setup.

Component 3 is a 5kWh unit of four Lithium-ion batteries

Component 4 is a 5kVA motor/generator pair which emulates the auxiliary drive

and the gearbox node where this is connected

Component 5 is a separate feeder which represents the shore connection, effectively

bypassing the generator set.

MSB1 is an incoming busbar, external to the shipboard power system and is only

relevant on the demonstrator.

MSB2 represents the main AC bus on the vessel (figure 7.3) where all the sources

and loads are connected.

MSB3 is a DC bus which at the current stage represents the DC link of the

bidirectional converters of the auxiliary drives at the point where the batteries

are interfaced. This is scope for future expansion into a DC grid for future

work (beyond the current scope of INOMANS2HIP).

Figures 7.18 and 7.19 show various views of the demonstrator as set up at the

partner premises. As of writing (September 2015), the hardware units are still being

commissioned. The EMS has been tested with the GES emulator, and seen to

match the results obtained with the standalone instance as described in the previous

chapters.
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Figure 7.18 – Complete demonstrator view. HMI is displayed on the four central
screens. EMS runs on the lower computer, while upper computer runs HMI system.
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(a) Left hand side cabinet showing emulated diesel generator motor/generator pair.

(b) Right hand side cabinet, showing PTO/PTI motor generator pair and battery location (not
installed yet).

Figure 7.19 – Hardware cabinets of the demonstrator setup.
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Figure 7.20 – Motor-generator pair emulating diesel generator.



Chapter 8

Discussion

Shipboard electrification is a topic of growing importance in modern marine ves-

sels, evidenced by the number of research publications in the area. Electrification

brings about the potential for economy and savings due to flexibility - in operation,

installation and design.

Savings have been the main motivator behind the work in this thesis, focussing on

emission and fuel savings. Environmental legislation and drivers are motivating more

environmentally-friendly ships. That, as well as actual monetary savings returned

to ship operators by investing in environmental technologies on board their ships.

Being green is therefore economically sound.

A wide range of energy saving devices and technologies exist, both in concept and

commercial stages. The cost-benefit ratio of each will be the major determinant in

uptake - a factor which is different according to the ship type, and most importantly,

each ship’s operation. Consideration of the operational profile is fundamental to

understanding the impact of any energy saving technology and verifying results.

Hybridisation combines two or more systems in order to exploit the benefits of each.

The choice of hybrid components, as well as the operation of the complete system

needs to be correctly designed in order to elucidate the desired results. A mermaid

is a perfect example of a (mythological!) marine hybrid - by adapting the lower half

from fish and a human top half, the hybrid system is perfectly able to exploit the

best of both worlds i.e. dexterity and manoeuvrability at sea from each half. If

the chosen halves were reversed, then the result will be far from ideal...at least for

operation at sea.

148
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The same understanding can be extended to a hybridised vessel using auxiliary drives.

The conventional main propulsion system permits the easiest and most economical

means of propulsion at sustained speed. At low speeds however, suboptimal operation

occurs. The auxiliary system on the other hand can realise better loadings, and

supply power from other sources (e.g. batteries) more easily. The link between the

auxiliary and main propulsion systems is established by the bidirectional capability

of the auxiliary drive. The cost/benefit of such a hybrid system needs to be examined

in conjunction with the usage of the vessel by considering its operating profile.

A RoRo was taken as a case study for examining auxiliary drives. Various elec-

trical machines were considered for their suitability, focusing on permanent magnet

synchronous machines and induction machines. Low speed machines are able to

be mounted directly on the propeller shaft, but are large and expensive. Higher-

speed machines need reduction gearing, reducing efficiency compared to direct-drive

installations. However, they are less bulky and cheaper than similarly rated low

speed equivalents. The differences in savings was seen to be quite small between the

topologies, with the low-speed, permanent magnet machine showing the lowest losses.

With medium-speed and high-speed engines, a reduction gearbox is an integral part

of the installation, hence taking advantage of this required component and utilising

a higher-speed machine installed on the high-speed side of the gearbox is more

attractive due to the lower capital outlay of the machines.

By switching over to the auxiliary system during the manoeuvring period, fuel

savings of around 46% were observed with similar reductions in CO2. Furthermore,

by drawing power from the auxiliary generators running on MGO, Sulphur reductions

in the order of 96% were seen. This brings forward the flexibility introduced by the

auxiliary drive, in that operation in sensitive areas can be facilitated by changing

over the power source without requiring fuel changeovers.

The bidirectional auxiliary drive also permits generation and feeding back power to

the auxiliary system. This is the typical usage of a shaft generator when the vessel

is underway, with the use of the power electronic converter permitting generation at

variable speeds. The operating profile of the vessel and the times spent in each mode

determine the overall savings based on the auxiliary drive’s operating envelope. For

the system under consideration, the electric machines would be operated under field-

weakening while generating, potentially disadvantaging permanent magnet machines
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when compared to induction machines. This was observed to be the case for the

vessel’s operating profile, such that when taking into account the different costs of fuel

used by each system, the auxiliary drive using a permanent magnet machine returned

an overall fuel cost of around 4% higher than one using an induction machine. This

comes about due to the small relative amount of time spent in manoeuvring mode,

where the permanent magnet machine’s operation was more efficient. By spending

more time in generating mode under field-weakening operation, the induction machine

was seen to give greater overall savings. However, because of the higher cost of the

MGO used during manoeuvring, savings due to motoring via the auxiliary drive are

proportionally weighted higher than those due to savings due to generating via the

auxiliary drive.

This analysis was carried out by building detailed models of the hybridised propulsion

system, and generating efficiency LUTs according to the determined operating points.

This permits quick, energy-focused simulations to be run, considering efficiency losses

in the chain, and with the use of emission factors, convert this resultant energy

demand into equivalent airborne emissions.

Apart from reducing the actual emissions, the location where they are generated is

also of importance. The harbour area is of particular sensitivity due to proximity

to human habitation and the resultant direct impact on human health. Emissions

from ships do not cease once the vessel is stationary, but ships typically continue to

burn fuel while berthed in order to provide the onboard auxiliary load. A solution to

eliminate these in-harbour emissions is the use of an onshore power supply to provide

the required power from the shoreside grid, permitting the onboard generators to be

turned off.

Standardisation efforts have resulted in the publication of international standards to

attempt at homogenising expectations and requirements for both vessel and harbour

operators. This should theoretically permit compliant vessels to plug in to any

compliant port for a truly plug-and-play solution. Of course, uptake is still limited

but prospects are bright for popularisation of standardised shore supplies. The

infrastructural requirements are not insignificant, especially on the shoreside which

entails the highest costs. One of the major equipment requirements is a frequency

converter, required to provide 60Hz supplies (as found on most vessels) from 50Hz

shoreside grids.
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In line with requirements, a number of shore network topologies can emerge to

provide the required power to a number of berths in harbour. The choice of a single,

centralised frequency converter to supply the whole system, or a number of smaller,

distributed converters each supplying a single berth are two of the main questions to

be answered at the system design stage. Once again, consideration of the operating

profile provides the information required to answer this question.

Matching of system to usage is a complex multi-variable task, and the use of computer

algorithms can be used to aid in identifying superior configurations or otherwise.

Network type and component sizing all add up to a highly-nonlinear search space,

making linear programming approaches complex to formulate. Particle Swarm

Optimisation is a heuristic search algorithm inspired by the swarming behaviour of

a group of organisms, which are individually dumb, but collectively intelligent. By

sharing information throughout this swarm while flying around and exploring the

search space, solutions can be identified to which the swarm gradually converges. Of

course a goal must be set for this swarm, and in this case the goal is to minimise

emissions, by maximising efficiency of the shore network.

This efficiency is quantified by modelling, where a parametrised power-flow model

of the various shore networks was built, able to give the efficiency of a particular

shore network configuration. By varying component ratings, as well as network

topology, a large search space needed to be explored to identify configurations giving

lowest emissions. A PSO algorithm was created to identify the best configuration

considering the expected loading profile for a case harbour over a typical week.

Minimising a single goal (emissions) gives correct solutions. But not necessarily

realistic solutions. Considering solely one objective results in the search steering in a

headlong charge towards that solution which minimises that goal. From a real-world

perspective, neglecting practical aspects such as cost, weight, size etc... can result in

the solution being infeasible.

Considering multiple objectives at the same time gives rise to the idea of a set of

compromise solutions rather than a single focused solution. The word compromise in

this case should not have negative connotations associated with it. Rather it is the

addressing of conflicting objectives, and satisfying each to give balanced, realistic

solutions. With multi-objective PSO, the result is a Pareto-optimal set of solutions,

where each solution gives a benefit in one objective for a corresponding sacrifice in
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another. In this application, cost is a major concern to shore supply installations, so

identifying solutions giving a balance between capital cost and resultant efficiency

was seen to be a suitable measure.

Cost is however highly subjective, so using absolute figures was felt to be too sensitive

to any variations. Instead components were assigned a per-unit relative cost based

on their kVA rating. The resultant multi-objective PSO therefore focuses its search

on identifying solutions which maximise efficiency, while minimising system cost.

For the scenario being considered, a centralised topology was seen as being the most

appropriate, giving the best tradeoff between costs and emissions.

The actual resultant emissions are dependent on the berth location and the country’s

generation mix. For the case of Spain, where the case harbour was located, CO2

emissions are reduced by about 46%, together with a 13% Sulphur reduction when

compared to low Sulphur content fuel. However, in countries where the shoreside

generation mix is highly reliant on fossil fuels (particularly coal-fired stations), the

outlook is less positive. Sulphur emissions are among the ones which are most at

risk especially when compared to low-Sulphur fuel mandated for use in European

harbours. Irrespective of the actual generation mix however, the in-harbour emissions

will be reduced by the use of shore supply, shifting emission generation further inland

and supplying power through the distribution network.

This distribution network can create a constraint in the setup of a new shore supply

network due to any limitations with spare capacity on the existing supply to the

port. Upgrading of the connection to the network can be costly, further increasing

capital expense. A possible workaround is considering onsite power generation from

green sources, reducing the demand from the distribution network. Furthermore,

the (localised) generation mix can be improved, reducing the net airborne emissions

depending on the source of power. At periods of low berthed demand, the generating

plant could potentially be used as a distributed generator, feeding back to the grid.

Liquefied Natural Gas as a marine fuel is a concept which has been given increasing

attention in recent years, touted as a cleaner alternative to diesel fuel used onboard.

Using LNG as a fuel for onshore generating sets can be an attractive and feasible

solution, especially if a port is investing in LNG infrastructure for supplying vessels.

Compared to diesel fuel, combustion of LNG practically eliminates Sulphur emissions

and particulate matter, while also reducing CO2. In order to include the consideration
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of LNG-fuelled generators in the shoreside network, the network models were modified

to permit replacement of nodes with onshore generator sets, together with the relevant

emission factors. Accounting for the per-unit cost of the LNG-fuelled generators was

however less straightforward due to even greater subjectivity than the shore network

components (e.g. ready availability of LNG, maximum footprint available etc...).

The cost of the onshore generators was therefore considered as a further variable

in the optimisation setup, where the multi-objective PSO was repeatedly run with

different per-unit costs of the onshore generator system in order to examine the

influence on the resultant configurations. It was observed that when the LNG

system’s per-unit cost was greater than the frequency converter’s per-unit cost, there

was no advantage either in emissions (considering CO2) or cost in selecting any LNG-

fuelled generators for any of the berths. With decreased costs of the LNG-fuelled

generators, cheaper overall solutions could be realised at the cost of slightly higher

emissions in hybrid configurations of various degrees. This once again highlights the

nature of multi-objective optimisation, in that benefits in one objective are at the

expense of another. The final solution selection from this equally-optimal set is done

using higher-level information and engineering judgement.

The engineering aspects of shore supply networks do not stop at minimising the

losses in the system. With the use of (possibly multiple) power electronic converters

of a significant power rating, harmonics become an important consideration of

the system design. Compatibility must be ensured both at the berthside, where

vessels expect a supply of a satisfactory quality, as well as at the incoming supply

side, where harmonics can adversely impact other users on the network. This

was studied by building detailed models of a centralised shore supply network,

such that the magnitude of harmonics could be observed at the point of common

coupling with typical supply inductances. It was seen how berth supplies were of

a satisfactory quality even with a simple filter, however significant distortion was

observed propagated to the supply side, requiring mitigating measures to manage

harmonic content. Installation of filters or other compensation components will

invariably increase losses to an extent, however a non-compliant network will not be

permitted to operate on the distribution network.

Minimising losses is not only a design issue, but is also affected by operational choices

and decisions. The shore supply network is passive in nature in that a demand must
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be met, and supplied from the grid with a certain amount of inevitable losses. With

an onboard electrified power system, a multitude of supplies are available, together

with a number of loads of different type and magnitude. When coupled with onboard

storage, the energy picture becomes even more complex and convoluted.

Lowering emissions becomes a dynamic and ever-changing challenge, which must

balance the needs of supplying power of sufficient quantity and of the necessary

quality, to the machinery components as required to perform the vessel’s mission.

An Energy Management System is designed to do exactly that - provide power from

a suitable combination of sources in order to meet a particular goal. In this work,

that goal is the minimisation of fuel consumption and emissions.

Minimisation implies an optimisation of some sort, or a search for a particular

combination of setpoints of the onboard machinery to maximise/minimise a particular

objective. Two aspects can again be identified - quantifying the objective value in

objective space, and developing an algorithm to identify the variables which realise

this in the search space. Using an algorithm such as PSO gives a black box approach

to this problem, where the objective function (calculation of fuel consumption) and

the actual search algorithm are separate and communicate with each other by simply

exchanging variables, requiring little information about the problem at hand. This

gives the advantage of being easily adaptable to different setups by modifying the

number and type of variables together with the addition of relevant constraints.

Though developed for a particular case study, an EMS using a PSO algorithm was

developed with the aim of presenting a generic EMS. The case vessel is a RoRo

ship which was modelled parametrically to enable different configurations to be

examined in terms of their resultant fuel consumption. The RoRo was modelled

with a proposed green refit configuration, which included bidirectional auxiliary

drives, battery storage, photovoltaic arrays and a shore supply connection. The fuel

consumption is therefore the result of the machinery configuration (diesel engines

on/off) and the setpoints of the various components.

With voyage data available for the vessel, the PSO EMS aims to minimise the fuel

consumption for the duration of a particular waypoint. This has to take into account

the equivalent cost of the energy stored in the batteries, whose energy is not free,

but assigned an equivalent specific fuel consumption, based on the source of power

used to charge them. This approach was validated with an EMS developed using
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linear programming on a simplified configuration without energy storage. Results

from both algorithms were seen to give similar results, with fuel savings of around

5% based on a typical return voyage. The advantages of the PSO algorithm are more

apparent in the ease with which the consideration of storage was implemented to the

algorithm, which proved cumbersome with the linear programming approach.

With the addition of batteries, the fuel savings rise to above 13%, based on usage of

batteries during initial stages of each leg, and operation of the auxiliary drives in

PTO and PTI modes when underway. Most importantly however is the modularity

of the EMS, with separate objective function and optimisation routines and only the

transferring of setpoints in one direction, and returning of objective values in the

other direction.

8.1 Scope for future work

The work on the EMS is planned to be implemented on a working demonstrator with

a working Hardware In the Loop model. This work is being carried out by project

partners, with the EMS to be running on a realtime setup mimicking a real vessel

voyage. Beyond the application on the demonstrator, various other aspects which

are worthy of further examination and development have been identified.

• Introducing consideration of future consumption if a setpoint is maintained.

By linear interpolation, a setpoint is projected at a future point in time and

examined by running the objective function again, returning a further estimated

future fuel consumption value. Due to uncertainty, this fuel consumption

figure can be added to the current value with appropriate scaling to give a

combined weighted objective value. The disadvantage of this is the doubling of

computational time required due to running of the objective function twice.

This can of course be extended to return fuel consumption values at an arbitrary

number of future waypoints.

• Treatment as a multiple objective optimisation was implemented and tested,

minimising for fuel consumption and difference from previous configuration.

However for application as an EMS, a single solution is required to be applied

by the PMS. Automating selection of a single compromise solution proved to
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be problematic, especially due to solutions being close together in the objective

space, but being significantly different in search space. Furthermore it was seen

that the results over the voyage were extremely sensitive to the selection of the

initial configuration at the first waypoint.

The study on auxiliary drives considered an auxiliary system powered by diesel

generators. The addition of energy storage and the effect this has on the shore supply

network when charged by the cold ironing supply is an interesting examination,

since this would raise the power demands of berthed ships, and additionally inject

harmonics due to the non-linear nature of the battery chargers. At the point of

discharge, additionally considering the equivalent cost of emissions of the stored

energy could give interesting results, especially if the vessel sails between two countries

with very different generation mixes.

8.2 Conclusions

In an environmentally-conscious world, minimisation of energy is of significant interest

to all parties involved in the marine sector. Not only does minimisation of energy

reduce emissions, but it can also give lower operating costs. Onboard energy can be

considered a naval architecture concern, where the amount of energy stored onboard

a vessel is a finite quantity, constrained by the size of fuel tanks. To a certain extent,

the rate at which this stored chemical energy is converted to a more useful form is a

marine engineering issue, relating to the machinery systems installed onboard.

Engineering is therefore responsible for ensuring that most useful energy is obtained

from the onboard fuel. With electrification, the chemical energy is converted to an

intermediate stage in the form of electrical energy - a form which is very convenient

to control. This flexibility and convenience gives the potential to elucidate better

operational efficiencies from the onboard machinery system. This realisation of

efficiency improvement however is not obvious, but must be matched to the energy

usage profile. Apart from improvement at the conversion stages, electrification also

facilitates the input of energy from outside the hull boundaries by plugging in an

electric cable to a shore supply, once again giving the potential to reduce emissions

and green vessel operations within the harbour area.
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This work has used computer simulations coupled with real-world operational data to

demonstrate emission and fuel consumption reductions facilitated by electrification,

focusing on auxiliary drives, shore supply and real-time energy management. The

importance of consideration of the operating profile has been highlighted from this

work, together with the use of a black-box search algorithm to assist in decision-

making, based on increasingly complex machinery systems.

• Auxiliary drives are able to significantly reduce the emissions produced during

slow sailing by sourcing power from onboard auxiliary generators.

– CO2 emissions during the manoeuvring period were demonstrated to be

reduced by around 45% for a case study.

• Onshore power supply can eliminate emissions produced in-harbour with the

net emissions produced being a function of the generation mix employed on

shore.

– For a case study port in Spain, CO2 emissions were demonstrated to be

reduced by around 46% while corresponding UK case would see reductions

of around 22%.

– Countries with a high dependence on coal generation would see an increase

in emissions.

• Mixed generation systems can be employed to minimise supply demand on the

local grid.

– Sets of equally optimal solutions identified giving tradeoffs between cost

and emissions reduction based on shoreside LNG generation systems.

• Energy management systems can reduce fuel consumption by optimal utilisation

of onboard energy sources.

Fossil-fuels are not likely to be eliminated as the main source of energy onboard

vessels in the foreseeable future, yet electric systems can help in making the most out

of this finite resource. Increased electrification of onboard systems is a trend expected

to be continued in the coming years with a number of enablers and facilitators on

the cards. DC distribution is one such facilitator, providing easier and convenient
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interfacing of more-electric loads and storage systems. Going hand-in-hand, power

electronics are a related enabler, both on the conversion side at each end of the

distribution system as well as for protection purposes on the DC network.

This thesis has given an appreciation of some of the benefits possible with the use

electrification on marine vessels as well as the importance of consideration of the

operating profile. Economics and environmentalism are clearly a driver for adoption,

but without an insight into the realisable improvements (if any), enthusiasm for

takeup is likely to be muted. Electrification is a facilitator, but unlocking the

improvements depends on fitting the right key. And that key is unique to each

scenario.
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Appendix A

Shore supply network models

The following figures illustrate the Simulink models developed to represent the various

shoreside network topologies for onshore power supply. Figure A.1 shows the top level

diagram which contains the berth power information together with the simulation

execution control. Figures A.2 to A.4 show the actual network model for the various

topologies which are contained in the top level diagram in the conditionally executed

subsystem. Figure A.5 shows the transformer model, with the additional harmonic

loss factors.

171



APPENDIX A. SHORE SUPPLY NETWORK MODELS 172

Figure A.1 – Top level simulation model of shore network.
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Figure A.2 – Centralised topology network model.
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Figure A.3 – Distributed topology network model.
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Figure A.4 – DC topology network model.
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Figure A.5 – Transformer model.



Appendix B

Multi-Objective PSO code

The code in this section relates to the optimisation script developed for the identific-

ation of optimal network topology for onshore power supply. The main script is the

top level script that contains the PSO algorithm with all associated parameters, and

calls the objective function (Simulink models) as well as the other internal functions.

B.1 Main algorithm script

1 %% Main algorithm script for multi - objective PSO

2 clear

3

4 % Initialisation

5

6 %PSO parameters

7 % Inertia weighting

8 W = 0.4; % Constant inertia

9

10 N = 20; % Population size

11 d = 12; % Number of variables

12 %1:5 are berth ratings , 6 is central rating , 7 is shoreside

topology choice

13 O = 2; % Number of objectives

14 REP_size = 20; %Size of external repository to store Pareto

fronts

15 iterations = 1000; % Number of iterations to perform

16

17 % Mutation rate as 1/ number of dimensions ( search space)
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18 mut_rate = 1/d;

19

20 % Limits on velocity and location ( normalised )

21 v_max = 0.5;

22 x_max = 1;

23 x_min = 1e -3; % Prevents division by zero erros in device LUTs

24

25 % Scaling

26 % Population location is normalised (0 ,1]

27 max_rat_berth = 5e6; % Maximum berth rating to scale particle

positions

28 max_rat_central = 10e6; % Maximum central device rating for

scaling

29 num_topos = 3; % number of possible topologies

30 % Vector for berth rating scaling

31 %Berth ratings rounded to nearest 100 kW

32 max_rat (1:5) = max_rat_berth ;

33 max_rat (6) = max_rat_central ;

34 rat_interval = 50e3; % Rating intervals for rounding

35

36 % Binary cutoff for LNG or cold ironing

37 threshold = 0.5; % threshold function for binary variable

38 LNG_CI_select_list = false(N ,5); % selection mask

39

40 %Cost function parameters

41 %a) Uniform cost allocation

42 unit_cost = 1; %Cost per Watt (pu)

43 max_cost = sum( unit_cost .* max_rat );

44 %b) Corrected cost estimate allocation

45 cost_trafo = 1; %1pu (per kVA)

46 cost_converter = 3; %3pu (per kVA)

47 cost_LNG = 2; %3pu (per kVA)

48

49 %Load parameters and profiles for simulink models

50 cold_ironing_parameters_opt_02 ;

51

52 % Define models to be used as cell of strings

53 models = cellstr (char(’centralised_system_iterations_updated_03 ’

,... %1

54 ’distributed_system_iterations_updated_03 ’ ,... %2
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55 ’DC_system_iterations_updated_04 ’)); %3

56 % Strings refer to .mdl files in current directory

57

58 %Empty arrays to store results / historical progressions

59 results = zeros(N,d); %final population

60 gbest_hist = zeros(iterations ,1); % history of global best

61 gbest_loc_hist = zeros(iterations ,d); % history of global best

locations

62 pbest_hist = zeros(N,O, iterations ); % history of average particle

best

63 POP_loc_hist = zeros(N,d, iterations ); % history of all particle

locations

64

65 %% Initialise population with random velocities and locations (

normalised )

66 % Column 1 = x1 , column 2 = x2 , ... column d = xd

67 %Row 1 = particle 1, row 2 = particle 2, ... row N = xN

68 POP_loc = x_min + (x_max -x_min).* rand(N,d); % Random array for

population particle locations

69 POP_vel = -v_max + (v_max -(- v_max)).* rand(N,d); % Random array for

population particle velocities

70

71 % Initialise individual particles ’ memory spaces

72 fitness = zeros(N,O); %Empty array for fitness values

73 pbest = zeros(N,O); %Empty array for particle best fitness value

74 pbest_loc = zeros(N,d); %Empty array for corresponding best

fitness value location

75

76 % External repository

77 REP_loc = zeros(REP_size ,d); % Repository for particle location

78 REP_fitness = inf .* ones(REP_size ,O); % Repository for particle

fitness

79

80 % Initial configurations

81 berth_rating_list = bsxfun (@times , max_rat , POP_loc (: ,1:6));

82 POP_loc (: ,1:6) = bsxfun (@rdivide , berth_rating_list , max_rat );

83 POP_loc (: ,7) = round (( num_topos -1)* POP_loc (: ,7))/( num_topos -1);

84 mdl_list = models (1+( num_topos -1)* POP_loc (: ,7));

85 LNG_CI_select_list ( POP_loc (: ,8:12) >= threshold ) = true; %1 => Cold

ironing 0=> LNG
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86

87 load_system ( models )

88

89 %% Main algorithm loop

90 for ctr = 1: iterations

91 % Evaluate fitness of each particle based on location

92

93 %for each particle ...

94 for ctr2 = 1:N

95 berth_rating = berth_rating_list (ctr2 ,:); %Load berth

rating values

96 LNG_CI_select = LNG_CI_select_list (ctr2 ,:); %Load LNG/CI

options

97 mdl = mdl_list {ctr2 }; %Load model topology

98 simOut = sim(mdl ,’ReturnWorkspaceOutputs ’,’on’); %Run

simulation

99 V_flag = simOut .get(’V_flag ’); %Flag for berth voltage

violation

100 OL_flag = simOut .get(’OL_flag ’)| simOut .get(’OL_flag_LNG ’)

; %Flag for berth overload violation

101 if ( V_flag == 1 || OL_flag == 1)

102 fitness (ctr2 ,:) = inf; % Penalise fitness if any flag

violation occurs ...

103 else

104 fitness (ctr2 ,1) = simOut .get(’CO2_LNG ’)+ simOut .get(’

CO2_CI ’); %... otherwise store CO2 figure

105

106 % Corrected cost estimate allocations

107 if (1+( num_topos -1)* POP_loc (ctr2 ,7)) == 1

108 % Centralised topology

109 fitness (ctr2 ,2) = sum( cost_trafo .* LNG_CI_select

.*( berth_rating (1:5) /1e3)) + ( cost_trafo +

cost_converter )* berth_rating (6) /1e3 + sum(

cost_LNG .* not( LNG_CI_select ).*( berth_rating (1:5)

/1e3));

110 elseif (1+( num_topos -1)* POP_loc (ctr2 ,7)) == 2

111 % Distributed topology

112 fitness (ctr2 ,2) = sum (( cost_trafo + cost_converter )

.* LNG_CI_select .*( berth_rating (1:5) /1e3)) +

cost_trafo * berth_rating (6) /1e3 + sum( cost_LNG .*
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not( LNG_CI_select ).*( berth_rating (1:5) /1e3));

113 elseif (1+( num_topos -1)* POP_loc (ctr2 ,7)) == 3

114 %DC topology

115 fitness (ctr2 ,2) = sum (( cost_trafo +0.8*

cost_converter ).* LNG_CI_select .*( berth_rating

(1:5) /1e3)) + ( cost_trafo )* berth_rating (6) /1e3 +

sum( cost_LNG .* not( LNG_CI_select ).*( berth_rating

(1:5) /1e3));

116 else

117 %Catch errors

118 fitness (ctr2 ,2) = inf;

119 end

120 end

121 end

122

123 %For first iterate , initialise records of best locations

124 if ctr == 1

125 pareto_front = identify_pareto ( fitness ); % identify pareto

set of solutions

126 pbest = fitness ; % particle best is assigned to current

fitness

127 pbest_loc = POP_loc ; % particle best location is assigned

to current location

128 REP_loc (1: length (find( pareto_front )) ,:) = POP_loc (

pareto_front ,:); % repository for coordinates of pareto

front

129 REP_fitness (1: length (find( pareto_front )) ,:) = fitness (

pareto_front ,:); % repository for fitnesses of pareto

front

130 REP_distance = eval_crowding ( REP_fitness ); % evaluate

crowding distance between particles in objective space

131 else

132 % Update pbest if new fitnesses are better

133 for ctr3 = 1:N

134 % compare between new fitness and pbest to see if

dominated

135 pair_test = [ fitness (ctr3 ,:); pbest(ctr3 ,:) ];

136 pair_test_loc = [ POP_loc (ctr3 ,:); pbest_loc (ctr3 ,:) ];

137 mask = identify_pareto ( pair_test ); % perform pareto

test on particle best and corresponding new fitness
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138 %if non -dominated , randomly choose one

139 if all(mask)

140 select = randi (2 ,1);

141 pbest(ctr3 ,:) = pair_test (select ,:);

142 pbest_loc (ctr3 ,:) = pair_test_loc (select ,:);

143 else

144 select = find(mask ,1);

145 pbest(ctr3 ,:) = pair_test (select ,:);

146 pbest_loc (ctr3 ,:) = pair_test_loc (select ,:);

147 end

148 end

149

150 % update repository with new particles

151 [ REP_fitness ,REP_loc , REP_distance ] = build_REP (REP_size ,

REP_fitness ,REP_loc ,fitness , POP_loc );

152 end

153

154 % calculate new particle velocities

155 h = select_from_REP (N, REP_fitness , REP_distance ); % generate

list of particles from repository to be used for velocity

update

156 POP_vel = W.* POP_vel + rand(N,d).*( pbest_loc - POP_loc ) + rand(

N,d).*( REP_loc (h ,:) -POP_loc ); % calculate new velocities

157

158 %store current population location

159 %( necessary for end condition evaluation )

160 POP_loc_CURR = POP_loc ;

161

162 % calculate new particle positions

163 POP_loc = POP_loc + POP_vel ;

164

165 % MUTATION

166 % assume uniform mutation - each particle , and each dimension

has same

167 % probability of being mutated on all iterations .

168 mutation_select = logical (rand(size( POP_loc )) < mut_rate ); %

identify what is to be mutated

169 POP_loc ( mutation_select ) = rand(size(find( mutation_select )));

% replace masked coordinates

170
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171 % correct position to limits

172 POP_loc ( POP_loc > x_max) = x_max;

173 POP_loc ( POP_loc (: ,1:6) < x_min) = x_min;

174 POP_loc (( POP_loc (: ,7) < 0) ,7:12) = 0;

175 POP_vel ( POP_loc > x_max | POP_loc < 0) = (-1).* POP_vel (

POP_loc > x_max | POP_loc < 0); % Reflect particles beyond

boundary back into

176

177 % round population locations to rating interval values up to

x_max

178 POP_loc (: ,1:6) = bsxfun (@times ,( rat_interval ./ max_rat ),ceil(

bsxfun (@times , POP_loc (: ,1:6) ,( max_rat / rat_interval ))));

179 POP_loc (: ,7) = round (( num_topos -1)* POP_loc (: ,7))/( num_topos

-1);

180 POP_loc (: ,8:12) = round( POP_loc (: ,8:12));

181

182 berth_rating_list = bsxfun (@times , max_rat , POP_loc (: ,1:6)); %

get berth ratings

183 mdl_list = models (1+( num_topos -1)* POP_loc (: ,7)); %Get list of

model names

184 LNG_CI_select_list = logical ( POP_loc (: ,8:12));

185 pbest_hist (:,:, ctr) = pbest; %store particle best values

186 POP_loc_hist (:,:, ctr) = POP_loc_CURR ;

187

188 disp(ctr)

189

190 %store current pareto front data

191 valid_REP = all( REP_loc ~=inf ,2);

192 berth_rating_REP = bsxfun (@times ,max_rat , REP_loc (valid_REP

,1:6));

193 mdl_list_REP = models (1+( num_topos -1)* REP_loc (valid_REP ,7));

194 config_REP = REP_loc (valid_REP ,8:12) ;

195 total_cost = REP_fitness (valid_REP ,2);

196 CO2 = REP_fitness (valid_REP ,1);

197

198 % generate plot of pareto front

199 plot(CO2 ,total_cost ,’+’)

200 xlabel (’CO2 emissions (kg)’)

201 ylabel (’Cost ( normalised )’)

202 hold all
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203 end

204

205 % Emphasise final Pareto front and redraw to emphasize

206 plot(CO2 ,total_cost ,’*’,’MarkerSize ’ ,10)

207 elapsed_time = toc; %... stop timer to calculate elapsed time

B.2 Build repository function

1 function [ new_REP_obj , new_REP_loc , new_REP_distance ] = build_REP (

REP_size , REP_obj , REP_loc , current_fitness , current_loc )

2 %ES 25/03/2013

3

4 % builds repository containing first non - dominated front (rank 1)

5

6 new_REP_obj = inf*ones(size( REP_obj )); % instantiate empty

repository for fitnesses ( infinity for minimisation problem )

7 new_REP_distance = zeros( length ( REP_obj ) ,1); % instantiate empty

repository for crowding distance

8 new_REP_loc = inf*ones(size( REP_loc )); % instantiate empty

repository for particle locations

9

10 % builds the new generation ’s external repository with new pareto

front

11 combined_pop_obj = vertcat (REP_obj , current_fitness ); % concatenate

fitnesses

12 combined_pop_loc = vertcat (REP_loc , current_loc ); % concatenate

locations

13 new_pareto_mask = logical ( identify_pareto ( combined_pop_obj )); %

identify pareto front of combined swarm

14 %size of combined_pop = size_REP + N

15 new_pareto = combined_pop_obj ( new_pareto_mask ,:); %new pareto

front

16 new_distance = eval_crowding ( new_pareto ); % crowding distance of

new front

17 new_loc = combined_pop_loc ( new_pareto_mask ,:); %new locations

18 %if there are more elements than REP size , choose the less

crowded

19 % solutions

20 if length ( new_pareto ) > REP_size
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21 [~, index] = sort( new_distance ,’descend ’);

22 new_elements = index (1: REP_size );

23 new_REP_obj = new_pareto ( new_elements ,:);

24 new_REP_distance = new_distance ( new_elements );

25 new_REP_loc = new_loc ( new_elements ,:);

26 %if REP size is bigger fit all into REP

27 else

28 new_REP_obj (1: size(new_pareto ,1) ,:)= new_pareto ;

29 new_REP_distance (1: size(new_pareto ,1))= new_distance ;

30 new_REP_loc (1: size(new_pareto ,1) ,:) = new_loc ;

31 end

B.3 Crowding distance evaluation function

1 function [ demi_perimeter ] = eval_crowding ( fitness )

2 %ES 25/03/2013

3

4 % calculates dimensions of largest hybercube which can be fitted

around a

5 % solution without touching adjacent ones , giving indication of

crowding in

6 % vicinity of particle

7

8 [ num_elements ,~] = size( fitness );

9

10 max_fitness = max(fitness ,[] ,1); % determine maximum fitness for

scaling purposes

11 fitness_scaled = bsxfun (@ldivide , max_fitness , fitness ); % normalise

fitnesses - this creates hybercubes as otherwise

hyperparallelipids are formed

12 [ fitness_sorted , index] = sortrows ( fitness_scaled ); %sort in

ascending order according to first objective function .

13 demi_perimeter_sorted = zeros( num_elements ,1); % create empty

vector for demiperimeters

14 %end points have infinite demi - perimeter - emphasizes search

towards ends

15 demi_perimeter_sorted (1)=inf;

16 demi_perimeter_sorted ( num_elements )=inf;

17 for ctr = 2:( num_elements -1)
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18 %if particles are identical assign zero distance to de -

emphasize

19 if (all( fitness_sorted (ctr +1 ,:) == fitness_sorted (ctr ,:)) &&

all (( fitness_sorted (ctr -1 ,:) == fitness_sorted (ctr ,:))))

20 demi_perimeter_sorted (ctr) = 0;

21 else

22 %demi - perimeter calculated as difference of adjacent

fitness values

23 demi_perimeter_sorted (ctr) = sum(abs( fitness_sorted (ctr

+1 ,:) -fitness_sorted (ctr -1 ,:)));

24 end

25 end

26 demi_perimeter (index) = demi_perimeter_sorted ;

B.4 Pareto identification function

1 function [ non_dom_mask ] = identify_pareto ( fitness )

2 %ES 25/03/2013

3 % Identifies Pareto - optimal set of solutions based on their

fitness values .

4 % Considers a biobjective minimisation problem

5

6 pop_size =size(fitness ,1); % number of particles in population

being considered

7

8 % Initialise storage arrays

9 n = zeros(pop_size ,1); % number of other solutions which dominate

each solution

10 non_dom_mask = zeros(pop_size ,1); % logical mask for non - dominated

set

11

12 % function assumes minimisation problem

13 for a = 1: pop_size

14 %only need whether element is dominated by other elements in

swarm

15 % condition 1: solution is no worse than other in all

objectives

16 mask_1 = fitness (: ,1) <= fitness (a ,1) & fitness (: ,2) <=

fitness (a ,2);
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17 % condition 2: solution is strictly better than others in at

least one

18 % objective

19 mask_2 = fitness (: ,1) < fitness (a ,1) | fitness (: ,2) < fitness

(a ,2);

20 n(a) = sum( mask_1 & mask_2 ); % determine number of dominating

solutions

21 if n(a) == 0 %if non - dominated ...

22 non_dom_mask (a) = 1; % assign to Pareto front

23 end

24 end

25 non_dom_mask = logical ( non_dom_mask );

B.5 Select from REP function

1 function [h] = select_from_REP (N,REP , distance )

2 %ES 25/03/2013

3 % selects particles from external repository to perform

claculation of

4 %particles ’ new velocities

5

6 feasible_solns_indices = find(all(REP ~=inf ,2));

7 feasible_solns_distances = distance ( feasible_solns_indices );

8

9 random_int = randi( length ( feasible_solns_indices ),N ,2); % random

integers for binary tournament selection

10 mask = feasible_solns_distances ( random_int (: ,1)) >=

feasible_solns_distances ( random_int (: ,2)); % perform binary

tournament selection based on distance metric

11 h(mask) = random_int (mask ,1); %for mask=TRUE assign elements from

first column of h

12 h(~ mask) = random_int (~mask ,2); %for mask=FALSE assign elements

from second column of h

13 h = feasible_solns_indices (h);



Appendix C

EMS optimisation code

The EMS optimisation code is a single objective optimisation algorithm which is

based on the PSO algorithm as described in the previous section. The main control

script controls the execution of the EMS, which is contained in the optimisation

script. In turn an additional internal function is used to interface with GES (objective

function).

C.1 Main control script

1 % Voyage optimisation loop for low emissions model

2

3 % Script reads waypoint information from excel and triggers

optimisation algorithm at

4 % each waypointpoint .

5

6 %Clear workspace and initialise

7 clear

8 clc

9 ctr = 1;

10 iterations = 200; % number of iterations to be performed for each

optmisation

11

12 %Read profile from xls data

13 data = xlsread (’profile_load .xlsx ’,’Lowemissprofile ’,’E5:K60 ’);

14

15 % Separate data to individual profiles

16 speed_profile = data (: ,1); %ship speed (kt)

188
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17 aux_profile = data (: ,2) *1e3; % auxiliary power demand (kW)

18 CI_avail = data (: ,3); %Cold ironing availability (0/1)

19 delta_t = data (: ,5); %time intervals (s)

20 DayTime = data (: ,6); %Day/time for solar irradiance

21 ShipDirection = data (: ,7); %Read info about ship heading

22

23 [numel ,~] = size( speed_profile ); % Number of points in time

24

25 %Empty arrays for storing results

26 configuration_results = zeros(numel ,11);

27 FC = zeros(numel ,1);

28 info = zeros(numel ,22);

29

30 % Battery SoC data

31 Q_init = zeros(numel ,2); % initial SoC for each point 2x batteries

32 Q_init (1 ,:) = [0.95 0.95]; %start fully charged

33 Q_nom = 3000*3600; % nominal capacity in As

34 eSFC = zeros(numel +1 ,2);

35 eSFC (1 ,:) = [200 200]./(3600*1000) ; % initial equivalent sfc

36

37 h = actxserver (’GES. Application ’);

38 parent = 0;

39

40 %% Loop through waypoints

41 for ctr = 1: numel

42 disp(ctr)

43 %For first point , initialise batteries ’ SOC

44 if ctr == 1

45 SOC_PS = Q_init (1 ,1);

46 SOC_SB = Q_init (1 ,2);

47 config_old = zeros (1 ,11); % Uncomment to disable history

48 else

49 % Linear model for Battery SoC

50 Q_init (ctr ,1) = ( Q_init (ctr -1 ,1)*Q_nom -

configuration_results (ctr -1 ,10)* delta_t (ctr -1))/Q_nom;

51 Q_init (ctr ,2) = ( Q_init (ctr -1 ,2)*Q_nom -

configuration_results (ctr -1 ,11)* delta_t (ctr -1))/Q_nom;

52 SOC_PS = Q_init (ctr ,1);

53 SOC_SB = Q_init (ctr ,2);

54 config_old = configuration_results (ctr -1 ,:);
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55 config_old (9) = config_old (9) -1;

56

57 end

58 SOC = [SOC_PS , SOC_SB ]*100;

59 [ configuration_results (ctr ,:) ,FC(ctr),info(ctr ,:) ,eSFC(ctr

+1 ,:) ]= energy_opti_fn_emiss (h,parray , speed_profile (ctr),

aux_profile (ctr),CI_avail (ctr),iterations ,SOC ,eSFC(ctr ,:) ,

delta_t (ctr),config_old , DayTime (ctr));

60 end

61

62 P_oppoints = info (: ,1:16);

63 FC_components = info (: ,17:22);

C.2 Optimisation script

1 function [solution , FC_optimal , P_components , eSFC_next ] =

energy_opti_fn_emiss (h,parray ,vs ,Aux_power ,CI_ENABLE ,iterations ,

SOC ,eSFC_batt ,duration ,config_old , DayTime )

2 % Single objective PSO with lbest

3 % to identify optimal configuration wrt FC

4 % Variables are:

5 % Main Engine (s) On/Off

6 % combinator mode selection

7 % PTO/PTI setpoint

8 % Battery current setpoint

9

10 % ES 11/11/2014

11

12 % Inputs :

13 % 1) vs = ship speed in knots

14 % 2) Aux_power = auxiliary power demand in Watts

15 % 3) CI_Enable = option whether cold ironing is available [0/1]

16 % 4) Iterations = number of iterations PSO algorithm is to

perform

17 % 5) SOC = current state of charge (%) of the batteries

18 % 6) duration = length of time (s) the current setpoint is to be

maintained

19

20 % Outputs :
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21 % 1) solution = optimal configuration ( variables explained in

section PSO

22 % initialisation )

23 % 2) FC_optimal = fuel consumption (in one GES timestep ) of

optimal

24 % configuration

25 % 3) P_PTOPTI = power setpoints (W) of the PTOPTI drives

26

27 % Determine propeller operating mode

28 % 0 - AHEAD/ ASTERN automatic constant speed

29 % 1 - AHEAD variable RPM

30 % 2 - AHEAD constant RPM

31 % 3 - ASTERN variable RPM

32 % 4 - ASTERN constant RPM

33

34 % ************************************

35 % Run rng(’shuffle ’) once at start

36 % ************************************

37

38 % close all

39 % clear

40 % clc

41

42 % Timer to give indication of time for solution

43 % Only for development purposes

44 timerVal = tic;

45

46 %% Set parameters and build link to GES

47 % % These can be set as function parameters . Enable here to run

as script

48 % % and comment function line.

49 % vs = 15; %Ship speed in knots

50 % Aux_power = 350 e3; %Aux power in kW

51 % CI_ENABLE = 0; % Availability of shore power [0/1]

52 % iterations = 100; % number of iterations to perform

53 % SOC = [100 100]; %State of charge of batteries (%)

54 % duration = 1800; % duration of setpoint (s)

55

56 BATT_RAT_CURR = 1000; % Battery rated current (for normalising

results )
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57

58 %% PSO Initialisation

59

60 %PSO parameters

61 C1 = 2.05; % Acceleration constant for memory

62 C2 = 2.05; % Acceleration constant for cooperation

63 C = C1 + C2; %Sum of constants

64 Chi = 2/ abs (2-C-sqrt(C^2 -4*C)); % Constriction factor as per

delvalle08

65 PENALTY = 1.2; % penalty for most different solution ( Hamming

distance )

66

67 N = 20; % Population size

68 d = 11; % Number of variables

69 % Variables are:

70 % 1 = ME1

71 % 2 = ME2

72 % 3 = ME3

73 % 4 = ME4

74 % 5 = DG1

75 % 6 = DG2

76 % 7 = PTOPTI1 V/f setpoint (cts)

77 % 8 = PTOPTI2 V/f setpoint (cts)

78 % 9 = Combinator mode

79 % 10 = PS battery current setpoint (cts)

80 % 11 = SB battery current setpoint (cts)

81 BINARY_PARTICLES = [1 2 3 4 5 6 9];

82 ONOFF_PARTICLES = [1 2 3 4 5 6];

83 CTS_PARTICLES = [7 8 10 11];

84

85 % Limits on velocity and location ( normalised )

86 x_max = 1;

87 x_min = 0;

88 v_max = (x_max -x_min)/2; %Limit vel to ... (for continuous

variables )

89

90 K = 3; %size of information neighbourhood (when using lbest)

91

92 %Empty arrays to store results / historical progressions (use for

93 % development )
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94

95 % results = zeros(N,d); %final population

96 gbest_hist = zeros(iterations ,1); % history of global best

97 gbest_loc_hist = zeros(iterations ,d); % history of global best

locations

98 pbest_avg_hist = zeros(iterations ,1); % history of average

particle best

99 avg_fitness_hist = zeros(iterations ,1); % history of average

fitness per iteration

100 POP_loc_hist = zeros(N,d, iterations ); % history of all particle

locations

101 POP_vel_hist = zeros(N,d, iterations ); % history of all particle

locations

102 fitness_hist = zeros(N, iterations ); % history of all particle

fitnesses

103

104 %% Initialise population with random velocities and locations (

normalised )

105 % Column 1 = x1 , column 2 = x2 , ... column d = xd

106 %Row 1 = particle 1, row 2 = particle 2, ... row N = xN

107 POP_loc = x_min + (x_max -x_min).* rand(N,d); % Random array for

population particle locations

108 POP_vel = -v_max + (v_max -(- v_max)).* rand(N,d); % Random array for

population particle velocities

109

110 %If previous configuration is valid then initialise particle at

random to

111 %be equal to the previous configuration .

112 if (sum( config_old ) ~= 0)

113 POP_loc (randi(N ,1) ,:) = config_old ;

114 end

115

116 % Initialise individual particles ’ memory spaces

117 pbest = inf .* zeros(N ,1); %Empty array for particle best fitness

value

118 pbest_loc = zeros(N,d); %Empty array for corresponding best

fitness value location

119

120 % Global best results

121 gbest = inf; % Global best fitness value (0 for minimisation )
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122 gbest_loc = zeros (1,d); % Global best fitness value location

123 lbest_loc = zeros(N,d); % location of local best particle

124

125 % Preparing of parameters

126 POP_loc (:, BINARY_PARTICLES ) = round( POP_loc (:, BINARY_PARTICLES ));

%round particles to binary [0/1]

127

128 % Create fixed neighbourhood

129 lbest_fixed = (1:N) ’;

130 lbest_fixed = repmat ( lbest_fixed ,1 ,3);

131 lbest_fixed (: ,1) = lbest_fixed (: ,1) -1;

132 lbest_fixed (: ,3) = lbest_fixed (: ,3) +1;

133 % %for not - include self ...

134 lbest_fixed (1:2:N ,2) = lbest_fixed (1:2:N ,2) +(K -1);

135 lbest_fixed (2:2:N ,2) = lbest_fixed (2:2:N ,2) -(K -1);

136 % correct circular ring

137 mask_fixed_GT = (( lbest_fixed ) > N);

138 lbest_fixed ( mask_fixed_GT ) = lbest_fixed ( mask_fixed_GT )- N;

139 mask_fixed_LT = (( lbest_fixed ) < 1);

140 lbest_fixed ( mask_fixed_LT ) = lbest_fixed ( mask_fixed_LT ) + N;

141

142 % Start GES

143 invoke (h,’GesStartRun ’);

144 ctr_cumul = 0; % cumulative counter to be used with GesRun

145

146 %% Main algorithm loop

147 %Runs for predetermined number of iterations

148 for iteration_counter = 1: iterations

149 % Evaluate fitness of each particle based on location

150 fitness = inf*ones(N ,1); % Initialise empty array for fitness

values to inf

151 fitness_clean = inf*ones(N ,1);

152 P_components_temp = zeros (N ,22);

153 eSFC_temp = zeros(N ,2);

154

155 % Iterate for each particle

156 for particle_iteration_ctr = 1:N %For each particle

157 % Call function runGes to evaluate fitness

158 [ fitness ( particle_iteration_ctr ),P_components_temp (

particle_iteration_ctr ,:) ,Constraints , eSFC_temp (
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particle_iteration_ctr ,:)] = runGesEmiss ( POP_loc (

particle_iteration_ctr ,:) ,vs ,Aux_power ,h,CI_ENABLE ,

ctr_cumul ,SOC ,eSFC_batt ,duration ,DayTime , parray );

159 if sum( config_old ) == 0 %If initial configuration or if

history is to be disabled ...

160 weight_hist = 1;

161 else % otherwise consider the previous configuration

162 weight_hist = (1- PENALTY )*( sum( POP_loc (

particle_iteration_ctr , ONOFF_PARTICLES ) ==

config_old ( ONOFF_PARTICLES )))/ length ( ONOFF_PARTICLES

)+1; % calculate linear penalty wieght for different

configuration

163 end

164 % penalise solution if cold ironing is available and

165 % batteries are being discharged

166 if ( CI_ENABLE == 1) && ( P_components_temp (

particle_iteration_ctr ,15) >0 || P_components_temp (

particle_iteration_ctr ,16) >0)

167 weight_batt = 1;

168 else

169 weight_batt = 0;

170 end

171

172 weight_constraints = sum( Constraints );

173 fitness_clean ( particle_iteration_ctr ) = fitness (

particle_iteration_ctr );

174 fitness ( particle_iteration_ctr ) = weight_hist * fitness (

particle_iteration_ctr )+ weight_constraints +

weight_batt ;

175 ctr_cumul = ctr_cumul +1; % increment cumulative counter

for GesRun index

176 end

177

178 fitness_hist (:, iteration_counter ) = fitness ;

179

180 % Identify global best (for minimisation )

181 [gbest_curr , gbest_curr_ind ] = min( fitness );

182

183 %For first iterate initialise records of best locations

184 if ( iteration_counter == 1)



APPENDIX C. EMS OPTIMISATION CODE 196

185 pbest = fitness ;

186 pbest_loc = POP_loc ;

187 gbest = gbest_curr ;

188 gbest_loc = POP_loc ( gbest_curr_ind ,:);

189 P_components = P_components_temp ( gbest_curr_ind ,:);

190 fitness_actual = fitness_clean ( gbest_curr_ind );

191 eSFC_next = eSFC_temp ( gbest_curr_ind ,:);

192 else

193 % Update pbest if new fitnesses are better

194 mask = fitness < pbest; %(< for minimisation )

195 pbest(mask) = fitness (mask);

196 pbest_loc (mask ,:) = POP_loc (mask ,:);

197 % update gbest if better

198 if gbest_curr < gbest

199 gbest = gbest_curr ;

200 gbest_loc = POP_loc ( gbest_curr_ind ,:);

201 P_components = P_components_temp ( gbest_curr_ind ,:);

202 fitness_actual = fitness_clean ( gbest_curr_ind );

203 eSFC_next = eSFC_temp ( gbest_curr_ind ,:);

204 end

205 end

206

207 % obtain lbest

208 % Selection of informants ...

209

210 % % Random neighbourhood

211 % for particle_counter = 1:N

212 % informed = randperm (N,K); % random selection of K

particles ( including self)

213 % [lbest_val , lbest_ind ] = min( fitness ( informed )); %

find fittest

214 % if lbest_val == inf %if all solutions are

infeasible randomly select particle

215 % lbest_ind = randi(K ,1);

216 % end

217 % lbest = informed ( lbest_ind );

218 % lbest_loc ( particle_counter ,:) = POP_loc (lbest ,:);

219 % end

220

221 % Ring neighbourhood



APPENDIX C. EMS OPTIMISATION CODE 197

222 for particle_counter = 1:N

223 informed = lbest_fixed ( particle_counter ,:);

224 % [lbest_val , lbest_ind ] = min( fitness ( informed ));

%find fittest

225 [lbest_val , lbest_ind ] = min(pbest( informed )); %find

fittest from pbest

226 if lbest_val == inf %if all solutions are infeasible

randomly select particle

227 lbest_ind = randi(K ,1);

228 end

229 lbest = informed ( lbest_ind );

230 % lbest_loc ( particle_counter ,:) = POP_loc (lbest

,:);

231 lbest_loc ( particle_counter ,:) = pbest_loc (lbest ,:); %look

only in pbests

232 end

233

234

235 % calculate new particle velocities

236 %Un/ Comment method to be used ...

237

238 %... with inertia factor

239 %for gbest ...

240 % POP_vel = W.* POP_vel + C1.* rand(N,d).*( pbest_loc -

POP_loc ) + C2.* rand(N,d).*( bsxfun (@minus ,gbest_loc , POP_loc ))

;

241 %for lbest ...

242 % POP_vel = W.* POP_vel + C1.* rand(N,d).*( pbest_loc -

POP_loc ) + C2.* rand(N,d).*( lbest_loc - POP_loc );

243

244 %... with constriction factor

245 %for gbest ...

246 % POP_vel = Chi .*( POP_vel + C1.* rand(N,d).*( pbest_loc -

POP_loc ) + C2.* rand(N,d).*( bsxfun (@minus ,gbest_loc , POP_loc ))

);

247 %for lbest ...

248 POP_vel = Chi .*( POP_vel + C1.* rand(N,d).*( pbest_loc - POP_loc )

+ C2.* rand(N,d).*( lbest_loc - POP_loc ));

249

250 % %... FIPS with constriction factor
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251 % Pfi = (C/K).* rand(N,K);

252 % for particle_counter = 1:N

253 % % Pm( particle_counter ,:) = sum(Pfi( particle_counter

,:) ’.* pbest_loc ( lbest_fixed ( particle_counter ,:) ’,:) ,1)./ sum(

Pfi( particle_counter ,:));

254 % % [~,IX] = sort(pbest( lbest_fixed (

particle_counter ,:)),’ascend ’);

255 % % WK(IX) = [1, 0.75 0.5];

256 % WK = 1;

257 % WKPfi = Pfi( particle_counter ,:) ’.*WK ’;

258 % % Pm( particle_counter ,:) = sum( bsxfun (@times ,Pfi(

particle_counter ,:) ’,pbest_loc ( lbest_fixed ( particle_counter

,:) ’,:)) ,1)./ sum(Pfi( particle_counter ,:));

259 % Pm( particle_counter ,:) = sum( bsxfun (@times ,WKPfi ,

pbest_loc ( lbest_fixed ( particle_counter ,:) ’,:)) ,1)./ sum(WKPfi

);

260 % end

261 % pbest_loc ( lbest_fixed ,:);

262 % Pm = sum(Pfi .* fitness ( lbest_fixed ) ,2)./ sum(Pfi ,2);

263 % Pm = (C1.* pbest_loc + C2.* lbest_loc )./C;

264 % POP_vel = Chi .*( POP_vel + C.*(Pm - POP_loc ));

265

266 POP_vel_hist (:,:, iteration_counter ) = POP_vel ; %Store

velocities history

267

268 %store current population location

269 %( necessary for end condition evaluation )

270 POP_loc_CURR = POP_loc ;

271

272 %% Binary probabilistic correction

273

274 S = 1./(1+ exp(- POP_vel (:, BINARY_PARTICLES )));

275

276 %% calculate new particle positions

277 % POP_loc = POP_loc + POP_vel ;

278 POP_loc (:, CTS_PARTICLES ) = POP_loc (:, CTS_PARTICLES ) + POP_vel

(:, CTS_PARTICLES );

279 POP_loc (:, BINARY_PARTICLES ) = round(S);

280

281 % calculate new particle positions
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282 POP_loc = POP_loc + POP_vel ;

283

284 % correct position to limits

285 POP_loc ( POP_loc > x_max) = x_max;

286 POP_loc ( POP_loc < x_min) = x_min;

287

288 POP_vel (POP_vel >v_max)=v_max;

289 POP_vel (-POP_vel >v_max)=-v_max;

290

291 gbest_hist ( iteration_counter )=gbest;

292 gbest_loc_hist ( iteration_counter ,:) = gbest_loc ;

293 mask_avg = (pbest ~= inf & pbest ~=0);

294 pbest_avg_hist ( iteration_counter ) = sum(pbest( mask_avg ))/sum(

mask_avg );

295

296 avg_fitness_hist ( iteration_counter ) = sum( fitness ( fitness ~=

inf))/sum( fitness ~= inf);

297

298 POP_loc_hist (:,:, iteration_counter ) = POP_loc_CURR ;

299

300 %check for termination

301 % if gbest <= tolerance

302 % break

303 % end

304 % disp( iteration_counter ) %show iteration number (

development purposes )

305 end

306

307 %Stop GES

308 invoke (h,’GesStopRun ’)

309

310 %% Plot history

311 % newplot

312

313 plot( gbest_hist )

314 hold on

315 plot( pbest_avg_hist ,’r’)

316 % plot( avg_fitness_hist ,’g’)

317 legend (’Global best ’,’Particle best average ’);%,’Average fitness

history ’)
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318 xlabel (’Iterations ’)

319 ylabel (’Fuel consumption ’)

320

321 %% Load optimal config ...

322 % Pass as function output the optimal configuration ( global best)

323 solution = gbest_loc ;

324 % FC_optimal = gbest;

325 FC_optimal = fitness_actual ;

326 solution (9) = solution (9) +1; %un - normalise combinator mode

327 solution ([7 8]) = solution ([7 8]) .*2 -1; %un - normalise PTO/PTI

setpoints

328 solution ([10 11]) = ( solution ([10 11]) .*2 -1) .* BATT_RAT_CURR ; %

unnormalise battery discharge currents

329

330 toc( timerVal )

C.3 GES interfacing

1 function [fitness , P_components , Constraints , eSFC_batt_next ] =

runGesEmiss (params ,vs ,Aux_power ,h,CI ,index ,SOC ,eSFC_batt ,

duration ,DayTime , parray )

2 %Calls open GES model and uses GESRUN method

3 % requires external GESstartRun and GesStopRun calls

4

5 % ES 11/11/2014

6

7 % Inputs :

8 % 1) params = configuration to be evaluated

9 % 2) vs = ship speed in knots

10 % 3) Aux_power = auxiliary power demand in Watts

11 % 4) h = handle to active GES model

12 % 5) CI = Availability of cold ironing on/off

13 % 6) index = cumulative index for use with runGES

14 % 7) SOC = State of charge of batteries (%)

15 % 8) duration = duration of current setpoint (s)

16

17 % Outputs :

18 % 1) fitness = fuel consumption over one GES timestep as sum of

MGO and HFO
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19 % 2) P_PTOPTI = PTOPTI drives mechanical pwoer flow (W)

20

21 % global sfc_batt_PS sfc_batt_SB

22

23 % Parameters

24 PTO_rating = 1200 e3; % rating of PTO/PTI to un - normalise variables

25 BATT_CURR = 1000; % maximum battery current

26 SOC_MIN = 0.2;

27 SOC_MAX = 0.95;

28 BATT_RAT = 3000*3600; % Battery nominal capacity (As)

29 eSFC_batt_next = eSFC_batt ;

30 % CI = 0; %on/off of cold ironing ... for future use to be in

function call

31

32 % Initialise GES model

33

34 set(h,’GesSet ’,’vs’ ,0.5144* vs); %Ship speed in m/s

35 set(h,’GesSet ’,’FuelMain ’ ,2); %Set Main Fuel switch to HFO (3)

36 set(h,’GesSet ’,’FuelAux ’ ,1); %Set Aux Fuel switch to MGO

37 set(h,’GesSet ’,’AUX_POWER ’,Aux_power ); %Set constant auxiliary

power demand

38 set(h,’GesSet ’,’CI_ENABLE ’,CI); %Set availability of cold ironing

on/off

39 set(h,’GesSet ’,’SOC_INIT_PS ’,SOC (1)); %Set initial state of

charge or PS battery

40 set(h,’GesSet ’,’SOC_INIT_SB ’,SOC (2)); %Set initial state of

charge of SB battery

41 set(h,’GesSet ’,’DayTime ’,DayTime ); %Set time of day for solar

irradiance LUT

42

43 %Load configuration to GES

44

45 set(h,’GesSet ’,’ME1 ’,params (1));

46 set(h,’GesSet ’,’ME2 ’,params (2));

47 set(h,’GesSet ’,’ME3 ’,params (3));

48 set(h,’GesSet ’,’ME4 ’,params (4));

49 set(h,’GesSet ’,’DG1 ’,params (5));

50 set(h,’GesSet ’,’DG2 ’,params (6));

51 set(h,’GesSet ’,’PTO_VF_SET_PS ’,params (7) *2 -1);

52 set(h,’GesSet ’,’PTO_VF_SET_SB ’,params (8) *2 -1);
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53 set(h,’GesSet ’,’Combinator ’,params (9) +1);

54 set(h,’GesSet ’,’BATT_CURR_PS ’ ,( params (10) *2 -1)* BATT_CURR );

55 set(h,’GesSet ’,’BATT_CURR_SB ’ ,( params (11) *2 -1)* BATT_CURR );

56

57 % Turn on/off PTO/PTI clutch and breaker in GES if PTO/PTI is off

58 if ( params (7) *2 -1) == 0

59 set(h,’GesSet ’,’PTO_PS_SWITCH ’ ,0);

60 else

61 set(h,’GesSet ’,’PTO_PS_SWITCH ’ ,1);

62 end

63

64 if ( params (8) *2 -1) == 0

65 set(h,’GesSet ’,’PTO_SB_SWITCH ’ ,0);

66 else

67 set(h,’GesSet ’,’PTO_SB_SWITCH ’ ,1);

68 end

69

70 %Clear flags

71 set(h,’GesSet ’,’FLAG_engine ’ ,0);

72 set(h,’GesSet ’,’FLAG_shaft ’ ,0);

73 set(h,’GesSet ’,’FLAG_BATT ’ ,0);

74 set(h,’GesSet ’,’FLAG_generator ’ ,0);

75 set(h,’GesSet ’,’FLAG_SB ’ ,0);

76 set(h,’GesSet ’,’FLAG_PTOPTI ’ ,0);

77

78 set(h,’GesSet ’,’cumul_FC ’ ,0);

79 set(h,’GesSet ’,’cumul_FC_MGO ’ ,0);

80 set(h,’GesSet ’,’P_PTO_PTI_SB ’ ,0);

81 set(h,’GesSet ’,’P_PTO_PTI_PS ’ ,0);

82 % set(h,’GesSet ’,’ warning_out ’,0);

83 % set(h,’GesSet ’,’error_out ’,0);

84 set(h,’GesSet ’,’AUX_SUPPLY ’ ,0);

85 set(h,’GesSet ’,’speed_readout ’ ,0);

86

87 %Run GES!

88 set(h,’GesRun ’,index);

89 invoke (h,’GesWaitRun ’);

90

91 %Read flags from GES model

92 FLAG_engine = get(h,’GesGet ’,’FLAG_engine ’); %get engine flag
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93 FLAG_shaft = get(h,’GesGet ’,’FLAG_shaft ’); %get shaft flag

94 FLAG_generator = get(h,’GesGet ’,’FLAG_generator ’); %get generator

flag

95 FLAG_batt = get(h,’GesGet ’,’FLAG_BATT ’); %get battery flag

96 FLAG_SB = get(h,’GesGet ’,’FLAG_SB ’); %get switchboard flag

97 FLAG_PTOPTI = get(h,’GesGet ’,’FLAG_PTOPTI ’); %get PTOPTI flag

98 FLAG_hist = FLAG_engine + FLAG_shaft + FLAG_generator + FLAG_batt

+ FLAG_SB + FLAG_PTOPTI ;

99

100 SPEED_READOUT = get(h,’GesGet ’,’speed_readout ’); %get speed

readout

101 FC_HFO = get(h,’GesGet ’,’cumul_FC ’); %read HFO consumption

102 FC_MGO = get(h,’GesGet ’,’cumul_FC_MGO ’); %read MGO consumption

103 FC = FC_HFO + FC_MGO ;

104 AUX_SUPPLY = get(h,’GesGet ’,’AUX_SUPPLY ’);

105 warning_out = get(h,’GesGet ’,’warning_out ’);

106 error_out = get(h,’GesGet ’,’error_out ’);

107

108 %Read setpoints and component fuel consumption

109 P_PTO_PTI_SB = get(h,’GesGet ’,’P_PTO_PTI_SB ’);

110 P_PTO_PTI_PS = get(h,’GesGet ’,’P_PTO_PTI_PS ’);

111 P_DG1 = get(h,’GesGet ’,’P_DG1 ’);

112 P_DG2 = get(h,’GesGet ’,’P_DG2 ’);

113 P_ME1 = get(h,’GesGet ’,’P_ME1 ’);

114 P_ME2 = get(h,’GesGet ’,’P_ME2 ’);

115 P_ME3 = get(h,’GesGet ’,’P_ME3 ’);

116 P_ME4 = get(h,’GesGet ’,’P_ME4 ’);

117 P_SSB = get(h,’GesGet ’,’P_SSB ’);

118 P_SPS = get(h,’GesGet ’,’P_SPS ’);

119 P_CI = get(h,’GesGet ’,’P_CI ’);

120 P_WHRSPS = get(h,’GesGet ’,’P_WHRSPS ’);

121 P_WHRSSB = get(h,’GesGet ’,’P_WHRSSB ’);

122 P_SOLAR = get(h,’GesGet ’,’P_SOLAR ’);

123 P_BATTPS = get(h,’GesGet ’,’P_BATTPS ’);

124 P_BATTSB = get(h,’GesGet ’,’P_BATTSB ’);

125 OBJ = get(h,’GesGet ’,’OBJ ’);

126 Pout_tot = get(h,’GesGet ’,’Pout_tot ’);

127

128 P_COLLATE = [P_ME1 , P_ME2 , P_ME3 , P_ME4 , P_DG1 ,P_DG2 , P_PTO_PTI_PS

, P_PTO_PTI_SB ,P_SPS ,P_SSB ,P_CI ,P_WHRSPS ,P_WHRSSB ,P_SOLAR ,
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P_BATTPS , P_BATTSB ];

129

130 FC_ME1 = get(h,’GesGet ’,’FC_ME1 ’);

131 FC_ME2 = get(h,’GesGet ’,’FC_ME2 ’);

132 FC_ME3 = get(h,’GesGet ’,’FC_ME3 ’);

133 FC_ME4 = get(h,’GesGet ’,’FC_ME4 ’);

134 FC_DG1 = get(h,’GesGet ’,’FC_DG1 ’);

135 FC_DG2 = get(h,’GesGet ’,’FC_DG2 ’);

136

137 FC_COLLATE = [FC_ME1 ,FC_ME2 ,FC_ME3 ,FC_ME4 ,FC_DG1 , FC_DG2 ];

138

139 %% Constraints

140

141 %Read overload values ...

142 P_ol_ME1 = get(h,’GesGet ’,’P_ol_ME1 ’);

143 P_ol_ME2 = get(h,’GesGet ’,’P_ol_ME2 ’);

144 P_ol_ME3 = get(h,’GesGet ’,’P_ol_ME3 ’);

145 P_ol_ME4 = get(h,’GesGet ’,’P_ol_ME4 ’);

146 P_ol_DG1 = get(h,’GesGet ’,’P_ol_DG1 ’);

147 P_ol_DG2 = get(h,’GesGet ’,’P_ol_DG2 ’);

148 P_ol_PTO_PTI_PS = get(h,’GesGet ’,’P_ol_PTO_PTI_PS ’);

149 P_ol_PTO_PTI_SB = get(h,’GesGet ’,’P_ol_PTO_PTI_SB ’);

150

151 P_ol = [P_ol_ME1 , P_ol_ME2 , P_ol_ME3 , P_ol_ME4 , P_ol_DG1 ,

P_ol_DG2 , P_ol_PTO_PTI_PS , P_ol_PTO_PTI_SB ];

152

153 % ... guess SoC at end of duration ...

154 SOC_1_end = (SOC (1)* BATT_RAT /100 -( params (10) *2 -1)* BATT_CURR *

duration )/ BATT_RAT ;

155 SOC_2_end = (SOC (2)* BATT_RAT /100 -( params (11) *2 -1)* BATT_CURR *

duration )/ BATT_RAT ;

156 if SOC_1_end >= SOC_MAX

157 SOC_ol_Batt1 = SOC_1_end - SOC_MAX ;

158 elseif SOC_1_end < SOC_MIN

159 SOC_ol_Batt1 = abs(SOC_1_end - SOC_MIN );

160 else

161 SOC_ol_Batt1 = 0;

162 end

163 if SOC_2_end >= SOC_MAX

164 SOC_ol_Batt2 = SOC_2_end - SOC_MAX ;
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165 elseif SOC_2_end < SOC_MIN

166 SOC_ol_Batt2 = abs(SOC_2_end - SOC_MIN );

167 else

168 SOC_ol_Batt2 = 0;

169 end

170

171 SOC_ol = [ SOC_ol_Batt1 , SOC_ol_Batt2 ];

172

173 %% Detect flags and penalise solutions

174 if (FLAG_hist >0 ) %If any of the machinery flags is set

175 fitness_temp = inf;

176 elseif AUX_SUPPLY == 0 %If no power is delivered to aux system

177 fitness_temp = inf;

178 elseif abs( SPEED_READOUT -0.5144* vs) > 0.01 %if speed setpoint is

not met

179 fitness_temp = inf;

180 elseif P_CI < 0

181 fitness_temp = inf;

182 elseif ( warning_out >0 || error_out >0)

183 fitness_temp = inf;

184 else

185

186 %% Assign equivalent fuel consumption batteries

187 % % Change of SOC

188 delta_SOC_PS = SOC (1) /100 - SOC_1_end ;

189 delta_SOC_SB = SOC (2) /100 - SOC_2_end ;

190

191 numon = sum( P_COLLATE (1:6) >0);

192 if numon == 0

193 avg_sfc = 0;

194 else

195 avg_sfc = sum( FC_COLLATE )./ sum( P_COLLATE (1:6)); %g/Ws

196 end

197 %

198 if P_BATTPS < 0 %if charging

199 eSFC_batt_next (1) = (( SOC (1) /100)* eSFC_batt (1) + abs(

delta_SOC_PS )* avg_sfc )/( SOC (1) /100+ abs( delta_SOC_PS ));

200 FC_BATTPS = 0;

201 elseif P_BATTPS >= 0 %if discharging

202 FC_BATTPS = P_BATTPS * eSFC_batt (1);
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203 eSFC_batt_next (1) = eSFC_batt (1);

204 else

205 FC_BATTPS = 0;

206 eSFC_batt_next (1) = eSFC_batt (1);

207 end

208

209 if P_BATTSB < 0 %if charging

210 eSFC_batt_next (2) = (( SOC (2) /100)* eSFC_batt (2) + abs(

delta_SOC_SB )* avg_sfc )/( SOC (2) /100+ abs( delta_SOC_SB ));

211 FC_BATTSB = 0;

212 elseif P_BATTSB >= 0 %if discharging

213 FC_BATTSB = P_BATTSB * eSFC_batt (2);

214 eSFC_batt_next (2) = eSFC_batt (2);

215 else

216 FC_BATTSB = 0;

217 eSFC_batt_next (2) = eSFC_batt (2);

218 end

219

220 fitness_temp = FC + FC_BATTPS /1000 + FC_BATTSB /1000; %

otherwise save fuel consumption figure !

221 fitness_temp = fitness_temp /( Pout_tot /(1000*3600) ); %

calculate esfc (total) kg/kWh

222 end

223

224 fitness = fitness_temp ; % return fuel consumption figure

225 P_components = [P_COLLATE , FC_COLLATE ]; % return PTOPTI power

levels

226 Constraints = [P_ol SOC_ol ]; % return constraints
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Setpoint Configuration results
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0 1800 15.23 0 850 0 1 0 1 1 1 -0.43 -0.44 1 236.62 612.63
1800 209 15.23 0 850 0 1 0 1 1 1 -0.49 0.58 1 229.75 1000.00
2009 1418 15.23 0 850 0 1 0 1 1 1 0.39 0.15 1 1000.00 1000.00
3427 1800 15.23 0 850 0 1 0 1 1 1 -0.48 0.57 1 201.43 1000.00
5227 1013 15.23 0 850 0 1 0 1 1 1 0.41 0.35 1 -27.52 1000.00
6240 1312 15.23 0 850 0 1 0 1 1 1 0.44 1.00 1 622.99 55.60
7552 1800 15.23 0 850 0 1 0 1 1 1 0.45 0.51 1 155.74 1000.00
9352 1800 15.23 0 850 0 1 0 1 1 1 0.45 0.44 1 1000.00 49.65
11152 1800 15.23 0 850 0 1 0 1 1 1 0.35 0.46 1 1000.00 316.59
12952 1800 15.23 0 850 1 1 0 1 1 1 -1.00 0.69 1 378.70 -66.47
14752 1800 15.23 0 850 1 1 0 1 1 1 -1.00 0.57 1 23.30 -76.95
16552 1472 15.23 0 850 1 1 1 0 1 1 -1.00 0.71 1 96.04 186.68
18024 1800 15.23 0 850 1 1 1 0 1 1 -0.75 0.53 2 125.57 -25.14
19824 1800 15.23 0 850 1 1 1 0 1 1 -1.00 0.59 1 -108.29 4.20
21624 702 15.23 0 850 1 1 1 0 1 1 -0.53 0.45 1 290.25 98.71
22326 1300 15.23 0 850 1 1 1 0 1 1 -0.25 -0.44 2 7.94 -153.87
23626 695 15.23 0 850 1 1 1 0 1 1 -0.80 0.32 1 21.31 128.92
24321 990 15.23 0 850 1 1 1 0 1 1 -1.00 0.56 1 -269.45 64.67
25311 991 15.23 0 850 1 1 1 0 1 1 -1.00 1.00 1 -0.03 10.29
26302 1800 0 1 650 0 0 0 0 0 0 -0.27 -0.10 1 -694.43 -196.51
28102 1800 0 1 650 0 0 0 0 0 0 -0.42 0.05 1 -1000.00 -1000.00
29902 1800 0 1 650 0 0 0 0 0 0 -1.00 -1.00 1 -1000.00 -1000.00
31702 1800 0 1 650 0 0 0 0 0 0 -0.05 -0.50 2 -384.33 -406.28
33502 1800 0 1 650 0 0 0 0 0 0 -1.00 0.50 1 -1000.00 -1000.00
35302 1800 0 1 650 0 0 0 0 0 0 1.00 0.81 2 -61.58 -855.27
37102 1800 0 1 650 0 0 0 0 0 0 -1.00 -1.00 1 -88.65 -3.19
38902 1800 0 1 650 0 0 0 0 0 0 -1.00 -1.00 2 -74.35 -20.30
40702 34 0 1 650 0 0 0 0 0 0 -1.00 0.71 2 -1000.00 -522.71
40736 1293 16.70 0 850 0 1 0 1 0 1 0.28 0.59 1 1000.00 1000.00
42029 1013 16.70 0 850 0 1 1 1 0 1 0.62 0.50 1 1000.00 1000.00
43042 1682 16.70 0 850 1 1 1 1 0 1 0.47 0.30 1 1000.00 1000.00
44724 1800 16.70 0 850 1 1 1 1 0 1 0.38 0.56 1 1000.00 1000.00
46524 1800 16.70 0 850 1 1 1 1 1 1 0.56 0.39 1 1000.00 1000.00
48324 1800 16.70 0 850 0 1 1 1 1 1 0.78 -1.00 1 213.27 304.75
50124 1800 16.70 0 850 0 1 1 1 1 1 1.00 -1.00 1 58.43 -37.72
51924 1800 16.70 0 850 0 1 1 1 1 1 1.00 -1.00 1 -71.85 14.72
53724 1800 16.70 0 850 1 1 1 1 1 1 0.33 -1.00 1 75.50 -78.48
55524 1800 16.70 0 850 1 1 1 1 1 1 -0.91 0.53 1 24.87 78.97
57324 1800 16.70 0 850 1 1 1 1 1 1 0.42 -0.98 1 -165.71 -130.17
59124 1800 16.70 0 850 1 1 1 1 1 1 1.00 -1.00 1 139.58 66.10
60924 54 16.70 0 850 1 1 1 1 1 1 0.62 0.44 1 1000.00 1000.00
60978 927 16.70 0 850 1 1 1 1 1 1 -1.00 0.34 1 -10.22 -43.94
61905 603 16.70 0 850 1 1 1 1 1 1 -0.99 0.54 1 -117.78 137.00
62508 518 16.70 0 850 1 1 1 1 1 1 -1.00 0.61 1 81.70 24.21
63026 1832 16.70 0 850 1 1 1 0 1 1 -1.00 1.00 1 -32.90 -2.28
64858 1800 0 1 650 0 0 0 0 0 0 0.91 0.17 1 -1000.00 -1000.00
66658 1800 0 1 650 0 0 0 0 0 0 1.00 -0.55 1 -1000.00 -1000.00
68458 1800 0 1 650 0 0 0 0 0 0 -1.00 1.00 2 -1000.00 -1000.00
70258 1800 0 1 650 0 0 0 0 0 0 -1.00 1.00 2 -1000.00 -1000.00
72058 1800 0 1 650 0 0 0 0 0 0 0.88 0.36 1 -181.60 -58.18
73858 1800 0 1 650 0 0 0 0 0 0 -0.89 -1.00 2 -283.26 -336.41
75658 1800 0 1 650 0 0 0 0 0 0 1.00 -1.00 2 -3.03 -112.35
77458 1800 0 1 650 0 0 0 0 0 0 -1.00 1.00 2 -38.11 -5.22
79258 1800 0 1 650 0 0 0 0 0 0 0.63 1.00 2 -6.30 -33.54
81058 1800 0 1 650 0 0 0 0 0 0 1.00 -0.70 1 -1.65 -993.36

Table D.1 – Table of resultant configurations (search space) for figure 7.12.
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0 0 3,452 0 3,474 0 36 -7 -28 3,312 3,312 0 153 153 397
1800 0 3,571 0 3,111 0 46 -123 325 3,312 3,312 0 158 149 648
2009 0 3,379 0 2,863 0 3 64 566 3,312 3,312 0 158 648 648
3427 0 3,552 0 3,152 0 34 -105 285 3,312 3,312 0 162 131 648
5227 0 3,413 0 3,278 0 188 30 162 3,312 3,312 0 163 -18 648
6240 0 3,415 0 2,240 1,276 213 29 1,174 3,312 3,312 0 163 404 36
7552 0 3,398 0 3,278 0 87 46 163 3,312 3,312 0 163 101 648
9352 0 3,392 0 3,414 0 22 52 30 3,312 3,312 0 162 648 32
11152 0 3,287 0 3,378 0 7 154 65 3,312 3,312 0 159 648 205
12952 2,325 2,325 0 2,894 0 48 -1,174 537 3,312 3,312 0 154 245 -43
14752 2,325 2,325 0 3,139 0 24 -1,174 298 3,312 3,312 0 148 15 -50
16552 2,325 2,325 2,840 0 0 131 -1,174 589 3,312 3,312 0 141 62 121
18024 2,101 2,101 3,512 0 0 96 -594 80 3,459 3,459 0 138 81 -16
19824 2,325 2,325 3,090 0 0 34 -1,174 346 3,312 3,312 0 129 -70 3
21624 1,827 1,827 3,385 0 76 200 -203 58 3,312 3,312 0 118 188 64
22326 2,108 2,108 3,752 0 0 23 -608 -154 3,459 3,459 0 110 5 -100
23626 2,112 2,112 3,222 0 0 120 -759 217 3,312 3,312 0 105 14 84
24321 2,325 2,325 3,169 0 0 37 -1,174 268 3,312 3,312 0 98 -175 42
25311 2,325 2,325 2,240 0 801 200 -1,174 1,174 3,312 3,312 0 92 0 7
26302 0 0 0 0 0 0 0 0 0 0 1,166 91 -450 -127
28102 0 0 0 0 0 0 0 0 0 0 1,912 78 -648 -648
29902 0 0 0 0 0 0 0 0 0 0 1,927 63 -648 -648
31702 0 0 0 0 0 0 0 0 0 0 1,144 46 -249 -263
33502 0 0 0 0 0 0 0 0 0 0 1,960 30 -648 -648
35302 0 0 0 0 0 0 0 0 0 0 1,256 18 -40 -554
37102 0 0 0 0 0 0 0 0 0 0 722 6 -57 -2
38902 0 0 0 0 0 0 0 0 0 0 729 1 -48 -13
40702 0 0 0 0 0 0 0 0 0 0 1,675 0 -648 -339
40736 0 3,985 0 4,009 0 149 340 317 4,176 4,176 0 0 648 648
42029 0 3,945 2,097 2,097 0 2 379 136 4,176 4,176 0 0 648 648
43042 2,130 2,130 2,012 2,012 0 3 73 302 4,176 4,176 0 0 648 648
44724 2,103 2,103 2,038 2,038 0 4 124 252 4,176 4,176 0 0 648 648
46524 2,032 2,032 2,109 2,109 0 5 263 114 4,176 4,176 0 0 648 648
48324 0 3,597 2,774 2,774 0 131 718 -1,182 4,176 4,176 0 0 138 197
50124 0 3,121 2,774 2,774 792 200 1,182 -1,182 4,176 4,176 0 0 38 -24
51924 0 3,121 2,774 2,774 845 200 1,182 -1,182 4,176 4,176 0 0 -47 10
53724 2,048 2,048 2,774 2,774 0 56 232 -1,182 4,176 4,176 0 0 49 -51
55524 2,675 2,675 2,066 2,066 0 125 -990 197 4,176 4,176 0 0 16 51
57324 2,147 2,147 2,749 2,749 0 81 39 -1,133 4,176 4,176 0 0 -107 -84
59124 1,561 1,561 2,774 2,774 767 200 1,182 -1,182 4,176 4,176 0 0 90 43
60924 1,973 1,973 2,164 2,164 0 13 379 6 4,176 4,176 0 0 648 648
60978 2,774 2,774 2,057 2,057 0 74 -1,182 216 4,176 4,176 0 0 -7 -28
61905 2,759 2,759 2,058 2,058 0 48 -1,152 214 4,176 4,176 0 0 -76 89
62508 2,774 2,774 1,985 1,985 0 124 -1,182 356 4,176 4,176 0 0 53 16
63026 2,774 2,774 3,121 0 829 200 -1,182 1,182 4,176 4,176 0 0 -21 -1
64858 0 0 0 0 0 0 0 0 0 0 1,989 1 -648 -648
66658 0 0 0 0 0 0 0 0 0 0 1,979 11 -648 -648
68458 0 0 0 0 0 0 0 0 0 0 1,966 24 -648 -648
70258 0 0 0 0 0 0 0 0 0 0 1,953 37 -648 -648
72058 0 0 0 0 0 0 0 0 0 0 775 52 -118 -38
73858 0 0 0 0 0 0 0 0 0 0 1,011 66 -184 -218
75658 0 0 0 0 0 0 0 0 0 0 664 80 -2 -73
77458 0 0 0 0 0 0 0 0 0 0 601 95 -25 -3
79258 0 0 0 0 0 0 0 0 0 0 582 112 -4 -22
81058 0 0 0 0 0 0 0 0 0 0 1,198 128 -1 -644

Table D.2 – Table of power flows for each setpoint (kW).



Appendix E

Drive controller code

This chapter lists the drive control algorithm developed to implement the auxiliary

drive models including field weakening. The algorithm is implemented in C-code and

embedded in the Simulink drive model as an S-function.

1 // File : controller .c

2 // Author: EAS

3 // Abstract : complete drive controller implementing

field weakening for PM machine

4

5 #define S_FUNCTION_NAME controller_complete_v4

6 #define S_FUNCTION_LEVEL 2

7

8 # include " simstruc .h"

9 # include <math.h>

10

11 #define PI 3.141592653589793

12 #define SAMPLE_TIME 100e-6

13 #define V_MAX 1/ sqrt (2)

14 #define I_MAX 1000

15 #define K_inv 800

16

17

18 // int I_MAX = 800;

19 // int K_inv = 800; // inverter gain (DC link)

210
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20

21 // double I_mag = 0; // current magnitude

22

23 int mode = 4;

24 int flag = 0;

25

26 // machine parameters

27 int P = 4;

28 double psi_rd = 2.15;

29 double L = 0.001;

30

31 //PI controller constants

32 double K_curr = 3.825e -3;

33 double Ki_curr = 7.65;

34

35 double K_speed = 1000;

36 double Ki_speed = 20000;

37

38 /* ================*

39 * Build checking *

40 *================ */

41

42 /* Function : mdlInitializeSizes

===============================================

43 * Abstract :

44 * Setup sizes of the various vectors .

45 */

46 static void mdlInitializeSizes ( SimStruct *S)

47 {

48 ssSetNumSFcnParams (S, 0);

49 if ( ssGetNumSFcnParams (S) != ssGetSFcnParamsCount (S

)) {

50 return; /* Parameter mismatch will be reported
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by Simulink */

51 }

52

53 ssSetNumDiscStates (S, 5);

54 //1 speed error accumulator

55 //2 id error accumulator

56 //3 iq error accumulator

57 //4 V_mag error accumulator

58 //5 theta_e

59

60 if (! ssSetNumInputPorts (S, 6)) return;

61 ssSetInputPortWidth (S, 0, DYNAMICALLY_SIZED ); //w*

62 ssSetInputPortWidth (S, 1, DYNAMICALLY_SIZED ); //w

63 ssSetInputPortWidth (S, 2, DYNAMICALLY_SIZED ); //ia

64 ssSetInputPortWidth (S, 3, DYNAMICALLY_SIZED ); //ib

65 ssSetInputPortWidth (S, 4, DYNAMICALLY_SIZED ); //ic

66 ssSetInputPortWidth (S, 5, DYNAMICALLY_SIZED ); //

theta

67

68 ssSetInputPortDirectFeedThrough (S, 0, 1);

69 ssSetInputPortDirectFeedThrough (S, 1, 1);

70 ssSetInputPortDirectFeedThrough (S, 2, 1);

71 ssSetInputPortDirectFeedThrough (S, 3, 1);

72 ssSetInputPortDirectFeedThrough (S, 4, 1);

73 ssSetInputPortDirectFeedThrough (S, 5, 1);

74

75 if (! ssSetNumOutputPorts (S ,8)) return;

76 ssSetOutputPortWidth (S, 0, DYNAMICALLY_SIZED ); //vd

77 ssSetOutputPortWidth (S, 1, DYNAMICALLY_SIZED ); //vq

78 ssSetOutputPortWidth (S, 2, DYNAMICALLY_SIZED ); //va

79 ssSetOutputPortWidth (S, 3, DYNAMICALLY_SIZED ); //vb

80 ssSetOutputPortWidth (S, 4, DYNAMICALLY_SIZED ); //vc

81 ssSetOutputPortWidth (S, 5, DYNAMICALLY_SIZED ); //
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theta_e

82 ssSetOutputPortWidth (S, 6, DYNAMICALLY_SIZED ); //

theta_e

83 ssSetOutputPortWidth (S, 7, DYNAMICALLY_SIZED );

84

85 ssSetNumSampleTimes (S, 1);

86

87 /* specify the sim state compliance to be same as a

built -in block */

88 ssSetSimStateCompliance (S, USE_DEFAULT_SIM_STATE );

89

90 /* Take care when specifying exception free code -

see sfuntmpl_doc .c */

91 ssSetOptions (S,

92 SS_OPTION_WORKS_WITH_CODE_REUSE |

93 SS_OPTION_EXCEPTION_FREE_CODE |

94 SS_OPTION_USE_TLC_WITH_ACCELERATOR );

95 }

96

97

98 /* Function : mdlInitializeSampleTimes

=========================================

99 * Abstract :

100 * Specifiy that we inherit our sample time from the

driving block.

101 */

102 static void mdlInitializeSampleTimes ( SimStruct *S)

103 {

104

105 ssSetSampleTime (S,0, SAMPLE_TIME );

106 ssSetOffsetTime (S ,0 ,0);

107

108 }
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109

110 #define MDL_INITIALIZE_CONDITIONS

111 /* Function : mdlInitializeConditions

========================================

112 * Abstract :

113 * Initialize continuous states to zero

114 */

115 static void mdlInitializeConditions ( SimStruct *S)

116 {

117 real_T *x0 = ssGetDiscStates (S);

118 int_T i;

119

120 *x0++ = 0.0;

121

122 for (i=0; i <=4; i++) {

123 *x0++ = 0.0;

124 }

125 }

126

127 /* Function : mdlOutputs

=======================================================

128 * Abstract :

129 */

130 static void mdlOutputs ( SimStruct *S, int_T tid)

131 {

132 int_T i;

133 InputRealPtrsType AN0 =

ssGetInputPortRealSignalPtrs (S ,0); //wd

134 InputRealPtrsType AN1 =

ssGetInputPortRealSignalPtrs (S ,1); //w

135 InputRealPtrsType AN2 =

ssGetInputPortRealSignalPtrs (S ,2); //ia
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136 InputRealPtrsType AN3 =

ssGetInputPortRealSignalPtrs (S ,3); //ib

137 InputRealPtrsType AN4 =

ssGetInputPortRealSignalPtrs (S ,4); //ic

138 InputRealPtrsType AN5 =

ssGetInputPortRealSignalPtrs (S ,5); // theta_e

139

140 double *y0 =

ssGetOutputPortRealSignal (S ,0);

141 double *y1 =

ssGetOutputPortRealSignal (S ,1);

142 double *y2 =

ssGetOutputPortRealSignal (S ,2);

143 double *y3 =

ssGetOutputPortRealSignal (S ,3);

144 double *y4 =

ssGetOutputPortRealSignal (S ,4);

145 double *y5 =

ssGetOutputPortRealSignal (S ,5);

146 double *y6 =

ssGetOutputPortRealSignal (S ,6);

147 double *y7 =

ssGetOutputPortRealSignal (S ,7);

148

149 int_T width0 = ssGetOutputPortWidth (S

,0);

150 int_T width1 = ssGetOutputPortWidth (S

,1);

151 int_T width2 = ssGetOutputPortWidth (S

,2);

152 int_T width3 = ssGetOutputPortWidth (S

,3);

153 int_T width4 = ssGetOutputPortWidth (S
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,4);

154 int_T width5 = ssGetOutputPortWidth (S

,5);

155 int_T width6 = ssGetOutputPortWidth (S

,6);

156 int_T width7 = ssGetOutputPortWidth (S

,7);

157

158 double *x = ssGetDiscStates (S);

159

160 double wd , w, w_e;

161 double id , idd;

162 double iq , iqd;

163 double error_speed , error_iq , error_id ;

164 double sin_theta , cos_theta , wrap_angle ;

165 double v_alpha , v_beta , v_a , v_b , v_c;

166 double ia , ib , ic;

167 double i_alpha , i_beta;

168 double d_corr , q_corr; // correction terms

169 double vd , vq ,vdc , vqc;

170 double theta_e ;

171 double V_mag;

172 double x0_temp , x1_temp , x2_temp ;

173 double w_lim = K_inv/sqrt(pow(psi_rd ,2)+pow ((L*

I_MAX) ,2)); // calculate speed limit for Maximum

flux linkage locus

174

175 // Read analogue inputs

176 wd = *AN0 [0];

177 w = *AN1 [0];

178 ia = *AN2 [0];

179 ib = *AN3 [0];

180 ic = *AN4 [0];
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181 x[4] = *AN5 [0]*P;

182

183 w_e = w*( double)P; // electrical speed

184 sin_theta = sin(x[4]);

185 cos_theta = cos(x[4]);

186

187 // Clarke transformation

188 i_alpha = 0.666666* ia - 0.333333* ib - 0.333333* ic;

189 i_beta = 0.577350*( ib - ic);

190

191 // Park transformation

192 id = cos_theta * i_alpha + sin_theta *i_beta;

193 iq = -sin_theta * i_alpha + cos_theta *i_beta;

194 I_mag = sqrt(pow(id ,2)+pow(iq ,2)); // magnitude of

current

195 V_mag = sqrt(pow(vd ,2)+pow(vq ,2)); // magnitude of

voltage

196 // Correction terms

197 //d channel

198 d_corr = -w_e*L*iq/K_inv;

199 //q channel

200 q_corr = w_e *(L*id + psi_rd)/K_inv;

201

202 //

/////////////////////////////////////////////////////////////////////////////

203 // Speed loop

204 error_speed = wd - w; // speed error

205 x0_temp = x[0];

206 x[0] = x[0] + error_speed ;

207 iqd = K_speed * error_speed + Ki_speed * SAMPLE_TIME *x

[0];

208
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209 // Integrator anti -windup

210 if (iqd > I_MAX){

211 iqd = (double)I_MAX;

212 x[0] = x0_temp ;

213 }

214 else if (iqd < -I_MAX){

215 iqd = -(double)I_MAX;

216 x[0] = x0_temp ;

217 }

218

219 // Detect overspeed

220 if (w_e > w_lim)

221 {

222 if (sqrt(pow(-w_e*L*iq ,2)+pow(w_e*psi_rd+w_e*L*

id ,2)) <= V_MAX*K_inv){

223 idd = 0;

224 }

225 else

226 {

227 idd = (-psi_rd+sqrt(pow (( K_inv/w_e) ,2)-pow

((L*iq) ,2)))/L;

228 if (sqrt(pow(idd ,2)+pow(iqd ,2))> I_MAX)

229 iqd = sqrt(pow(I_MAX ,2) -pow(idd ,2));

230 }

231 }

232

233 else{

234 idd = 0;

235 }

236

237 // /////////////////////////////////

238 // Current loops

239 // direct current
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240 error_id = idd - id;

241 x1_temp = x[1];

242 x[1] = x[1] + error_id ;

243

244 vd = K_curr* error_id + Ki_curr * SAMPLE_TIME *x[1];

245 vd = vd + d_corr; // add correction

246 if (vd > V_MAX){

247 vd = (double)V_MAX;

248 x[1] = x1_temp ;

249 }

250 else if (vd < -V_MAX){

251 vd = -(double)V_MAX;

252 x[1] = x1_temp ;

253 }

254

255 // quadrature current

256 error_iq = iqd - iq;

257 x2_temp = x[2];

258 x[2] = x[2] + error_iq ;

259 vq = K_curr* error_iq + Ki_curr * SAMPLE_TIME *x[2];

260 vq = vq + q_corr; // add correction

261 if (vq > V_MAX){

262 vq = (double)V_MAX;

263 x[2] = x2_temp ;

264 }

265 else if (vq < -V_MAX){

266 vq = -(double)V_MAX;

267 x[2] = x2_temp ;

268 }

269

270 vdc = vd;

271 vqc = vq;

272 V_mag = sqrt(pow(vd ,2) + pow(vq ,2));
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273

274 if (V_mag <= V_MAX) {

275 vdc = vd;

276 vqc = vq;

277 }

278 else if (sqrt(pow(vd ,2) + pow(q_corr ,2)) <= V_MAX )

{

279 vdc = vd;

280 vqc = sqrt(pow(V_MAX ,2) - pow(vq ,2));

281 x[1] = x1_temp ;

282 x[2] = x2_temp ;

283 }

284 else{

285 vdc = sqrt(pow(V_MAX ,2) -pow(q_corr ,2));

286 x[1] = x1_temp ;

287 x[2] = x2_temp ;

288 vqc = q_corr;

289 }

290 // ///////////////////////////////////

291

292 // Inverse Park transformation

293 v_alpha = vdc* cos_theta - vqc* sin_theta ;

294 v_beta = vdc* sin_theta + vqc* cos_theta ;

295

296 // Inverse Clarke transformation

297 v_a = v_alpha ;

298 v_b = -0.5* v_alpha + 0.866025* v_beta;

299 v_c = -0.5* v_alpha - 0.866025* v_beta;

300

301 // outputs

302 *y0++ = vd;

303 *y1++ = vq;

304 *y2++ = 1.5* v_a;
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305 *y3++ = 1.5* v_b;

306 *y4++ = 1.5* v_c;

307 *y5++ = id;

308 *y6++ = iq;

309 *y7++ = flag;

310 }

311

312 /* Function : mdlTerminate

=====================================================

313 * Abstract :

314 * No termination needed , but we are required to

have this routine .

315 */

316 static void mdlTerminate ( SimStruct *S)

317 {

318 }

319

320 #ifdef MATLAB_MEX_FILE /* Is this file being

compiled as a MEX -file? */

321 # include " simulink .c" /* MEX -file interface

mechanism */

322 #else

323 # include " cg_sfun .h" /* Code generation

registration function */

324 #endif
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