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Abstract 

In turbulent premixed combustion, the mean reaction rate can be modelled based on scalar 

dissipation rate (SDR) in the context of both Reynolds Averaged Navier-Stockes (RANS) 

and Large Eddy Simulations (LES) simulations. The SDR, which characterises the 

mixing rate of the unburnt reactants and hot burnt products, itself requires modelling as 

well. The SDR based reaction rate closure has been studied extensively in the context of 

RANS. However, modelling of SDR and SDR based reaction rate closure are yet to be 

addressed in the context of LES for turbulent premixed combustion. There are two major 

approaches for SDR based reaction rate modelling, which are algebraic closure and SDR 

transport equation based closure respectively. Several Direct Numerical Simulation 

(DNS) databases, part of which were generated by this study, have been explicitly filtered 

using a Gaussian filter for both a-priori analysis of Favre filtered SDR and filtered SDR 

transport equation and a-posteriori assessment of the SDR based reaction rate closure.  

 

In the a-priori DNS analysis, a three-dimensional DNS database of freely propagating 

statistically planar flames for a range of different heat release parameter, global Lewis 

number and turbulent Reynolds number has been LES filtered using a Gaussian filter. An 

existing SDR based reaction rate closure for RANS simulations has been extended for 

LES and a satisfactory performance of this LES closure is observed for a range of filter 

widths, covering both laboratories scale to practical scales.  

 

When the generation and destruction of the scalar gradient are at equilibrium, it is viable 

for an algebraic SDR model in the context of LES.  A-priori DNS assessment of algebraic 

SDR closures based on passive scalar mixing model and a power-law has been conducted, 

which have been found unsuitable for the reactive turbulent flows of premixed flames. 



Subsequently, a new algebraic model of Favre-filtered SDR has been proposed by 

extending a popular algebraic model of RANS averaged SDR into the context of LES. 

The performances of the newly proposed algebraic closure were assessed with respect to 

Favre-filtered SDR directly extracted from the DNS datasets. It has been found that the 

newly proposed SDR model for LES predicts both local and volume-averaged behaviours 

of SDR satisfactorily. However, when the generation and destruction of the scalar 

gradient are not at equilibrium, the Favre-filtered SDR transport equation need to be 

modelled for both RANS and LES. The statistical behaviours of the SDR transport 

equation have been studied for different global Lewis number, turbulent Reynolds 

number and heat release parameter at different filter widths. Based on the scaling analysis 

of all the unclosed terms in the Favre-filtered SDR transport equation, models are 

proposed for those terms in the context of LES and their performances have been assessed 

with respect to their corresponding values obtained from explicitly filtered DNS data.  

These newly proposed models are found to satisfactorily predict both the qualitative and 

quantitative behaviours of these unclosed terms for a range of different values of filter 

widths, heat release parameter, global Lewis number and turbulent Reynolds number. 

 

The newly proposed algebraic closure and transport equation based closure of Favre-

filtered SDR in the context of LES, which were proposed based on simple chemistry DNS 

database, are assessed by a v-flame detail chemistry DNS database as a-posteriori 

assessment. The algebraic model is found to capture both qualitative and quantitative 

behaviours of SDR with reaction progress variable defined based on both deficient 

reactants and products. The models of the unclosed terms of SDR transport equation are 

found to capture the behaviours of the explicitly filtered terms of the detail chemistry 

DNS database in an order-of-magnitude sense. Further improvement is required in order 



to address the effects of diffusivity gradient, the gradients of reaction rate and molecular 

dissipation of SDR.    
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Chapter 1. Introduction 

 

1.1 Background 

Since fire was discovered and utilised by the ancestor of human being, from the flaring torches 

to space rockets, the development of the applications based on combustion underpins the 

civilisation of the human race. As intensive heat is released by consuming combustible 

materials, where chemical energy converts to heat, combustion can be utilised as energy 

providing tool but can also be a cause for destruction depending on interaction of heat and 

mass transfer, fluid dynamics and chemistry, and therefore remains one of most complex and 

challenging areas of thermo-fluid research. Although improved understanding of combustion 

process improves energy utilisation and reduces pollutant emission, the understanding of 

combustion is yet to be complete and still an active research topic.  

 

The statistical and predicted world energy consumption by fuel type from 1990 to 2040 is 

shown in Figure 1. The total world energy consumption will increase by 56% from 524 

quadrillion British thermal units (Btu) in 2010 to 820 quadrillion Btu in 2040, where almost 80 

percent will still rely on burning fossil fuels (U.S. Energy Information Administration, 2013), 

despite the facts that the fastest-growing energy sources are renewable energy and nuclear 

power with 2.5% increase per year.  

 

  

Figure 1.1: World Energy Consumption by Fuel Type 1990-2040. (Quadrillion Btu) 
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Among the fossil fuels, natural gas is expected to have the fastest growing rate of 1.7% per year, 

including the growth of tight gas, shale gas and coalbed methane. The consuming of coal is 

expected to exceed petroleum and other liquid fuels before 2030 mainly due to China’s growing 

usage of the coal and the moderated consumption of liquid fuel due to the high oil price.  

 

Considering the fast development on the combustible renewable energy such as biofuels,  

combustion will remain active as the main energy source in the foreseeable future. However, 

the next generation of combustors, such as gas turbines, airplane jet engines and automotive 

internal combustion engines, are required to be more energy efficient and more environmental 

friendly.   

 

There are a few perspectives to characterise the combustion process, which can be based on the 

degree of mixing of reactants, the flow type and the flame stability. A popular way to categorise 

combustion is based on the degree of mixing the fuel and oxidisers before the reactants entering 

the reaction zone (Poinsot, 2004), which has characterised combustion into premixed, non-

premixed and stratified/partially premixed flames. The fuel and oxidizer are assumed to be 

homogeneously mixed before combustion process in premixed combustion, whereas the fuel 

and oxidizer are separated from each other until they meet in the reaction zone of the non-

premixed flame.  

 

In premixed combustion, the flame preheats the cold reactants up to the required flammable 

temperature such that the combustion process is triggered continuously with the flame 

propagating towards reactants. Since, it is fairly simple to keep the mixture composition of 

premixed combustion as fuel lean, the emission of the pollutants such as NOx can be controlled 

by restricting the maximum temperature of the burnt products. As fuel and oxidizer are fully 

homogeneously mixed, the efficiency of premixed combustion is high as well. The above 

advantages of premixed combustion make it promising to design the next generation of 

combustors based on premixed combustion.  

 

Based on the Reynolds number of the flow, the flames can be categorised into laminar flame 

and turbulent flames respectively. For premixed flames, the burning rate is enhanced by the 

flame area generation and the flame-brush thickens with increasing turbulent level. In reality, 

most combustion process of engines takes place in turbulent environment, where the flame 

brush exhibits considerable quantitative and qualitative differences in comparison to the 
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laminar premixed flames. However, the physical understanding of turbulent premixed 

combustion is not complete and experimental and numerical investigations of premixed 

turbulent combustion is an active area of research. 

 

Computational Fluid Dynamics (CFD), emerging in 1970s, has consistently served as an 

increasingly important tool for both academic research and industrial design of the combustors. 

There are three main simulation methodologies for turbulent flows which can be categorised 

into Direct Numerical Simulation (DNS), Large Eddy Simulation (LES) and Reynolds 

Averaged Navier-Stokes Simulation (RANS). DNS resolves turbulent flows both temporally 

and spatially, whereas other two simulating techniques (i.e. RANS and LES) only partially 

resolve time and length scales and the flame structure remains fully unresolved for turbulent 

reacting flows. The highest resolution is achieved in DNS, while RANS requires the lowest 

computational cost. RANS has been widely adopted in industry already for the designing of the 

combustors. LES, which is increasingly becoming a promising industrial tool, requires more 

powerful computers and higher resolution than RANS. Instantaneous governing equations are 

solved in DNS while averaged and filtered transport equations are solved respectively in RANS 

and LES. Therefore, the unclosed terms of the averaged/filtered governing transport equations 

in RANS and LES require modelling. The recent development of High Performance Computing 

(HPC) equips CFD simulations with higher computational power than ever, which make it 

possible to investigate some of the unresolved problems as well as to extend simulations 

towards much higher resolutions. A central challenge of simulating premixed turbulent reacting 

flow is the modelling of chemical reaction rate which depends on temperature exponentially 

according to the Arrhenius law. It has been found by Bray (1980) that the mean reaction rate is 

closely related to another quantity of central importance, which is scalar dissipation rate (SDR). 

The SDR characterises the mixing process of unburnt reactants and burnt products across the 

flame surface. SDR based reaction rate modelling for RANS has been investigated extensively 

in the recent past. However, the modelling of reaction rate based on SDR is yet to be addressed 

in the context of LES, which is expected to become a leading tool in industrial designing of the 

combustors in the near future. Therefore, the current work is aimed to address the SDR based 

reaction rate closure for LES using a-priori DNS analysis of turbulent premixed flames. Based 

on fundamental investigation of turbulent premixed combustion, a novel methodology will be 

developed for LES modelling through SDR based reaction rate closure in this analysis. The 

models proposed in this analysis will be further assessed with respect to the explicitly filtered 

DNS results.  
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1.2 Simulation Techniques for Turbulent Combustion 

 

In order to explain the difference between DNS, LES and RANS from a quantitative 

perspective, the schematic diagram of turbulent energy spectrum is shown in Fig. 1. 2 where κ 

denotes the wavenumber magnitude which is inversely proportional to the length scale of 

turbulent eddies and E(κ) denotes the turbulent kinetic energy content associated with the 

wavenumber magnitude κ while η, l, Δ and Δx represent the Kolmogorov length scale, integral 

length scale, LES filter size and the grid size of the chosen simulation technique respectively. 

 

  

Figure 1.2: A schematic of turbulent energy spectrum (E(κ)) with wave number (κ) showing the 

capabilities of different simulation techniques on a log-log format . 

 

It is demonstrated by Fig. 1. 2 that the grid size of DNS is of the same order as Kolmogorov 

length η therefore the most of the energy spectrum is resolved in DNS with only the viscous 

dissipation of kinetic energy is not resolved in DNS. The grid spacing in RANS is of the order 

of the integral length scale and thus a major part of turbulent kinetic energy spectrum is 

unresolved and need modelling. The grid/filter size of LES Δ falls between the integral length 

l and Kolmogorov length η, a typical filter size of LES Δ usually ensures that up to 80% of the 

total kinetic energy is resolved on the computational mesh (Pope, 2000). 

 

 

log(E(κ)) 

log(κ) 

Resolved in LES 

Resolved in DNS 

Modelled in LES 

Modelled in RANS 
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1.2.1 Direct Numerical Simulation 

 

Direct numerical simulation (DNS) provides the highest resolution for simulating turbulent 

combustion, where the transport equation of mass, momentum, energy and species are 

discretised directly and solved numerically without any physical approximation of the turbulent 

flow. All the scales of turbulent motion are resolved both temporally and spatially in DNS and 

henceforth the detailed information on flame structure, the heat release rate, mixing process 

across the flame brush can be obtained from a DNS database. Considering the large spectral 

range of turbulence and the complexity of chemical reaction involved in the combustion 

process, it is not surprising that DNS relies heavily on the computational power. Despite the 

significant development of high performance computing (HPC) in the recent decade, the DNS 

is still restricted in a relatively small domain size (e.g. a few cm3) involving simple 

configurations (e.g. planar flame, v-shape flame etc.), while the combustors in industrial 

applications involve complex geometries with much larger scales (e.g. a few m3). The 

computational cost of non-reacting flow DNS can be shown to be proportional to the power of 

11/4 of turbulent Reynold number (i.e. ~𝑅𝑒𝑡
11/4

) which has restricted the simulated flow field 

in DNS to moderate values of turbulent Reynolds number. In addition, the flame thickness is 

often of the same order of the Kolmogorov scale, which is commonly taken as the smallest scale 

turbulent motion, henceforth in order to resolved the flame structure, the grid size in DNS of 

the turbulent reacting flow is often limited to microns. Therefore, DNS is mainly adopted by 

academic research for improved understanding of the fundamental physical processes in the 

turbulent reacting flows. 
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Figure 1.3: DNS domain is shown with the thick red line in relation to engineering applications in 

reciprocating engines and aircraft engines on the combustion diagram according to Poinsot and 

Veynante (2001). 

 

The utilisation of DNS as a simulation technique for turbulent reacting flows emerged in early 

1990s (Rutland and Ferziger, 1991; Poinsot et al., 1991; Baum et al., 1994) when turbulent 

flames were simulated in two-dimensional canonical configurations using simplified or 

complex chemistry, and the three dimensional information of turbulent vortices were 

compromised. Later in 1990s, a few three dimensional DNS were carried out for turbulent flow 

of moderate Reynolds number for single step (Trouve and Poinsot, 1994; Rutland and Cant, 

1994; Cant, 1999), two steps (Swaminathan and Bilger, 1997) and complex chemistry 

(Tanahashi et al., 1999, 2000). The geometric configurations of DNS were mostly restricted by 

the computational power to canonical statistical planar flames (Poinsot et al., 1991; Trouve and 

Poinsot, 1994; Swaminathan and Bilger, 1997; Cant, 1999; Tanahashi et al., 2000; Grout, 2007; 

Shim et al., 2011; Chakraborty et al., 2004, 2010, 2013), where statistically planar the premixed 

flames moves for propagating towards the unburnt gas. Recently, a few attempts have been 

made to simulate turbulent premixed flames in more complicated geometry such as V-shape 

flame, swirl burner, Bunsen flames and lifted flames (Mizobuchi et al., 2002; Domingo et al., 

2005; Richardson et al., 2010; Dunstan et al., 2012; Minamoto et al., 2011b; Tanaka et al., 

2011).  Figure 3 presents the boundary of DNS on combustion diagram regime according to 

Poinsot and Veynante (2013), which shows that the majority of the parameter range for 

combustors in piston engines can be accessed through DNS but only relatively small portion of 

the parameter range corresponding to aircraft jet engines can be simulated using DNS. It can be 
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expected that with the advancement of the High Performance Computing, DNS of realistic 

combustors will be possible in the near future (Chen et al., 2011; Moureau et al., 2011).  

 

1.2.3 Reynolds Averaged Navier-Stokes Simulation 

Reynolds averaged Navier-Stokes (RANS) simulation is the most widely adopted 

computational technique for the analysis of turbulent combustion, especially when the 

calculation of the instantaneous flow field is not computationally affordable. In RANS the mean 

values of all the quantities are obtained. The instantaneous transport equations are simulated 

after Reynolds averaging (i.e. directly calculating mean values) or Favre averaging (i.e. density 

weighted averaging) operation, where the unclosed terms, such as Reynolds stresses, turbulent 

fluxes of heat and species and reaction rate terms, created by the Reynolds/Favre averaging 

operations require models to close the transport equations. The Reynolds stresses are often 

closed by the k-ε model where k is the turbulent kinetic energy and ε denotes its dissipation rate. 

However, the ability of k-ε model in capturing the effects of buoyancy, strain, changing density 

(which is often the case in reacting flow) and pressure gradient is questionable. It is worth 

noting that this k-ε model was proposed originally for non-reacting flows, therefore, either 

modification to the k-ε model or a new model is required to address the effects induced by heat 

release due to exothermic chemical reaction. The gradient hypothesis is usually adopted to close 

turbulent fluxes of heat and species in non-reacting flow, which has been found to be invalid 

under certain conditions in premixed turbulent combustion (Bray et al.,1985). Modelling of the 

turbulent fluxes for turbulent premixed flames have been attempted recently (Veynante et al., 

1997; Chakraborty and Cant, 2009) to capture both gradient and counter-gradient transport. A 

central challenge for RANS is the modelling of chemical reaction rate term, which contains an 

exponential function of temperature according to the Arrhenius law. However, the physical 

scales of the chemical reactions are limited to a very thin region (i.e. of the order of flame 

thickness), which is fully unresolved in RANS, therefore mean reaction rate term is modelled 

using various different approaches instead of expanding the term according to Taylor 

expansion. The relatively low computational cost of RANS makes it possible to carry out 

simulation involving practical geometries within a realistic period of time. Thus RANS is still 

the standard simulation technique in industry. 

 

1.2.3 Large Eddy Simulation 

Large eddy simulation (LES) uses a coarser level of spatial resolution than DNS. The resolution 

of LES is determined by the filter width Δ, which is between Kolmogorov length scale η and 

integral length scale l (see Fig. 1.2). however, the physical processes associated with length 



 

Chapter 1.  Introduction 

 8 

scales smaller than the LES filter width (i.e. sub-grid processes) still need to be modelled. 

Therefore, the accuracy of LES heavily relies on both the grid size Δ and the behaviour of the 

sub-grid closures. In practice, the grid size Δ tends to be much larger than flame thickness such 

that the turbulent micro mixing and chemical reaction rate, occur in small scales, are often 

unresolved in LES. This brings a possible approach to model the unclosed terms in LES by 

adopting similar modelling methodologies used in RANS (Poinsot and Veynante, 2004).  

However, the resolution of LES is required to be much higher than RANS to resolve large scale 

turbulent flow physics. In addition, LES is inherently three-dimensional and unsteady and 

unlike RANS the assumption regarding axisymmetric, symmetric boundary do not remain valid 

for LES. Therefore the computational cost of LES is much higher than RANS for a given 

configuration and simulation parameters. Due to the advancement of high performance 

computing, LES is beginning to be adopted by industry for simulation of engineering problems 

involving large scale unsteadiness. LES is expected to be the main CFD tool in industry in the 

near future, but robust SGS models of turbulent combustion in the context of LES are needed. 

 

1.3 Aim of the present work 

The scalar dissipation rate (SDR) is a quantity of central importance in turbulent premixed 

combustion, which characterises the micro mixing of reactants and hot burnt products in scale 

of the same order of the flame thickness are thus cannot be fully resolved in LES and RANS. It 

has been found by Bray (1980) that SDR of reaction progress variable in RANS holds a 

proportional relation with the mean reaction rate for turbulent premixed flames for high 

Damkӧhler number combustion. Extensive research has been directed on SDR based reaction 

rate closure in RANS for turbulent premixed flames, while relatively limited effort has been 

made to the SDR based filtered reaction rate closure in the context of LES. Nethertheless, the 

statistical behaviours of Favre-filtered SDR and its transport are yet to be analysed in the open 

literature. Therefore, the purpose of this project is listed below: 

 To analyse instantaneous scalar dissipation rate and its transport equation for turbulent 

premixed flames based on a well-documented DNS database.  

 To investigate the effects of heat release parameter, turbulent Reynolds number and Lewis 

number Le, on the statistical behaviours of SDR and its transport. 

 To investigate the statistical behaviour of SDR and its transport for different filter widths. 

 To propose an algebraic closure of SDR based on the scaling analysis and statistical analysis 

of filtered SDR and its transport equation. 
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 To propose LES closures of the unclosed terms in filtered SDR transport equation for LES 

so that it remains valid for a large range of filter widths for flames with different values of 

τ, Le and Ret. 

 To compare the performances of SDR closures based on simple chemistry DNS database 

for explicitly filtered detailed chemistry DNS database. 

 

 

1.4 Thesis outline 

The current state of research on turbulent premixed combustion modelling will be reviewed in 

Chapter 2. The SDR approach in reaction rate closure for turbulent premixed combustion will 

be reviewed along with a brief review of other modelling approaches in the context of LES for 

turbulent premixed flames in Chapter 2. The mathematical background of basic concepts of 

laminar and turbulent premixed combustion are provided in Chapter 3. The details related to 

the DNS databases used in the current work will be presented in Chapter 4. The development 

of the SDR based reaction rate closure for LES is discussed based on a-priori DNS analysis in 

Chapter 5. In Chapter 6, the development of both static and dynamic algebraic closures of SDR 

for turbulent premixed flames in the context of LES based on a-priori DNS analysis is 

discussed. The statistical behaviour, statistical analysis and the modelling of the unclosed terms 

in explicitly filtered SDR transport equation will be presented in Chapter 7. Both algebraic SDR 

closure and transport equation based SDR closures developed in Chapters 6 and 7 based on a-

priori analysis of simple chemistry DNS database will be assessed in the context of detailed 

chemistry and transport in Chapter 8. A brief conclusion of the present research and the future 

research directions will be discussed in the final chapter (Chapter 9).  
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Chapter 2. Literature Review 

 

 

2.1 Flamelet approaches in turbulent premixed combustion 

 

2.1.1 The regimes of turbulent premixed combustion 

The wrinkling effects of turbulence on turbulent premixed flame were firstly described 

by Damköhler (1940) who suggested that combustion chemistry mostly takes place in 

thin, highly-wrinkled reaction interface which is not significantly disturbed by turbulent 

eddies as the scales of the cascading turbulent eddies are much larger than the flame 

scales. The laminar premixed flame structure is usually divided into three layers, which 

denotes the processes of homogeneous reactants, intensive chemical reaction and 

oxidisation of the products and intermediates respectively. The relatively small scale of 

the flame thickness and the fast chemical reaction result in a chemical time scale which 

is smaller than the large turbulent time scale (Bray, 1980). Therefore, these thin interfaces 

are reasonably assumed to be only wrinkled by the turbulent eddies but they maintain 

their quasi-laminar flame structure. These thin interfaces, separating products from mixed 

reactants, are termed as flamelets, which maintains laminar flame structure, but are only 

wrinkled and strained by the turbulent motion. A non-dimensional number which 

characterises the ratio between large eddy turn over time scale t  to the chemical time 

scale c  is known as the Damköhler number Da which is defined as: 

 

t

c Z L

l u
Da

S



 


                                                           (2.1) 

 

where l  is the integral length, u is the turbulent root mean square (RMS) velocity, LS  is 

unstrained laminar burning velocity and Z T LS   is known as the Zel’dovich flame 

thickness and T  denotes the unburnt gas thermal diffusivity. The flamelet assumption 

holds for 1Da , where the chemical time scale is too small for the integral turbulence 

to affect the inner flame structure. For small values of Da the chemical reaction requires 

longer time than turbulent mixing and thus the inner flame structure is continuously 

destroyed and reformed by the generation (consumption) of  products (reactants) and the 
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mixing of them. The above regime is known as ‘perfectly/well stirred reactor’ (Libby & 

Williams, 1980), where the mixing is fast and chemistry is slow. The Klimov-Williams 

criterion (Klimov, 1963; Williams, 1976) suggested only 1Da  solely was not 

sufficient to characterise different regimes of premixed flames and suggested another 

non-dimensional number to characterise the effects of smallest eddies on the premixed 

flames. This non-dimensional number is known as Karlovitz number Ka, which is defined 

as:             

c z LS
Ka

u

 

 
 


                                                 (2.2) 

 

where   is the Kolmogorov time scale and   is the Kolmogorov length scale. where 

Ret  is the turbulent Reynolds number which is defined as: 

2 2Re ~t

L Z

u l u l
Da Ka

S 

   
    

  
                                      (2.3) 

It is possible to recast eq. (2.2) as:  

1 3
2

2 2
z

z L

l u
Ka

S



 



     
      

    
                                    (2.4) 

Using the relation between the integral length l  and Kolmogorov length scale  : 

3 4

t

l
Re


                                                          (2.5) 

 

Under the condition of 1Ka  , the chemical scale is smaller than all turbulent scales with 

flame is thinner than the smallest eddy in turbulence, where flamelets hold an inner 

structure close to laminar flames but are wrinkled by the turbulence. Based on the ratio 

between turbulent motion u  and the unstrained laminar burning velocity LS , the above 

regime can be further characterised into two sub-regimes: 

 Lu S  : the flame propagates faster than turbulent velocity fluctuation and thus 

turbulence can hardly wrinkle the flame front in this ‘wrinkled flamelet regime’. 

  Lu S  : the turbulent velocity fluctuation exceeds the laminar burning velocity 

and turbulent eddies start to corrugate the flame front in this ‘corrugated flamelet 

regime’. 
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Figure 2.1:  Regime diagram for turbulent premixed combustion (Peters, 2000). 

 

The modified regime diagram by Peters (2000) is shown in Figure 2.1 where the above 

two regimes are explicitly denoted. Peters (2000) defined a second Karlovitz number rKa  

in terms of reaction zone thickness r  (which is typically one order magnitude smaller 

than the flame thickness, i.e. ~ 10r z  ) as: 

 

                                                     
2

2

r
rKa




                                                              (2.7) 

 

when r  , 1rKa   and 
2 2

2 2
~ 100z z

r

Ka
 

 
   represents a critical value of Ka , based 

on which two more regimes are defined: 

 When 1rKa Ka   where r z    , the eddies of Kolmogorov scales are able 

to enter the preheat zone and penetrate the flame structure resulting in a thickened 

flame. However, the reaction zone remains beyond the reach of the turbulent 

eddies and maintains a quasi-laminar structure. This regime is denoted as ‘thin 

u
΄ 

/ 
S

L
 

l / δz 
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reaction zone regime’ (Peters, 2000) or ‘thickened-wrinkled flame regime’ 

(Poinsot and Veynante, 2001). 

 When 1rKa   where 
r z    , small eddies are able to penetrate into both the 

pre-heat zone and the reaction zone with possibility of causing local extinction 

resulting in pockets of reactants surrounded by flame like surface. This regime is 

denoted as ‘the broken reaction zones regime’ (Peters, 2000). 

 

In premixed turbulent combustion, the scalar field can be represented by a reaction 

progress variable c to characteristic the development of the turbulent premixed flames 

based on reactant mass fraction 
RY  (or product mass fraction 

PY  or temperature T) as 

follows:  

0

0

R R

R R

Y Y
c

Y Y 





                                                      (2.8) 

 

where 
0RY ,

RY 
 denotes reactant mass fraction in fresh gas and burnt products 

respectively. The reactant progress variable c increases from 0 in the unburnt reactants 

monotonically up to 1.0 in the fully burnt products. The reaction rate of reaction progress 

variable in the context of one-step Arrhenius chemistry can be expressed by the following 

relation in terms of mixture density  , reaction progress variable c and instantaneous 

temperature T̂  as: 

 

*

0

( , , ) (1 )exp
ˆ

E
w f c T B c

R T
 

 
    

 
                                     (2.9) 

 

where *B  is the pre-exponential factor and E is the activation energy. The single step 

Arrhenius law of normalised form of chemical reaction w  reads: 

 

(1 )
(1 )exp

1 (1 )

T
w B c

T






  
   

  
   with 

*

0 0

exp
B l

B
u



 

 
  

 
                 (2.10) 

 

where  
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 0

0

ˆ

ad

T T
T

T T





 is the normalised temperature with Tad denoting the adiabatic 

temperature  

 0

2

0

( )ad

ad

E T T

R T



  is Zel’dovich number which is typically taken as 6.0  ,  

 01
1ad

T

T





  


 is closely related to heat release parameter  . 

 

The exponential function poses a major challenge to model the mean/filtered reaction rate 

in the context of RANS and LES. 

 

2.1.2 Bray-Moss-Libby Model  

This is one of the most well-established flamelet models of turbulent premixed 

combustion, usually referred to under the initials of the three contributors, Bray, Moss 

and Libby. The Bray-Moss-Libby (BML) model was initially proposed in 1977 (Bray and 

Moss, 1977), which has been subsequently improved (Bray, 1980; Bray et al. 1985, Bray 

et al., 1989). Combining the statistical approach by using the presumed probability 

density function (pdf) of progress variable, this model provides a thermochemical closure 

for turbulent premixed combustion in the context of RANS. The scalar field is assumed 

to be a unique function of reaction progress variable c. Regarding perfect gas and unity 

Lewis number, usual assumptions were made to maintain the simplicity of the 

mathematical framework. The pdf of c at a given location x has been expressed in the 

following manner: 

 

                          

 s

( ) ( , ) ( ) ( , ) ( , ) ( , ) (1- )

burning gases burnt gasespdf fresh gase

p c,x,t x t c x t f c x x t c                           (2.11) 

 

where the , and     denote respectively the probability of finding unburned gases, 

burned gases and reacting gases, inherently summing up to unity (i.e. 1     ). The 

normalisation of pdf yields one more condition: 

 

                              

1

0

( , ) 1f c x dc   with (0, ) (1, ) 0f x f x                                    (2.12) 
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Based on the pdf according to eq. (2.11) the mean value of a quantity Q can be easily 

shown as:  

 

1

0

1

0

( , ) ( , , ) ( , , )

( , ) (0, x, t) ( , ) (1, , ) ( , ) ( , , ) ( , , )

Q x t Q c x t p c x t dc

x t Q x t Q x t x t Q c x t f c x t dc  



  





               (2.13) 

 

The flamelet assumption of large Reynolds and Damköhler numbers is applied in BML 

model where the flame front is so thin that the probability to find burning mixtures is 

mathematically small compared with the probability of finding fresh gases or burnt 

products.  Therefore eq. (2.11) can be further reduced by neglecting the intermittency 

weight ( , ) ~ (1 )x t O Da  as: 

 

                                    ( ) ( , ) ( ) ( , ) (1- )p c,x,t x t c x t c                                    (2.14) 

 

It worth noting that with one more assumption of low Mach number, eq. (2.14) can lead 

to a direct relation between Reynold averaged and Favre averaged values as well as a 

meaningful expansion of scalar flux  𝑢′′𝑐′′̃ : 

 

                               𝑢𝑖′′𝑐′′̃ = 𝑢𝑖𝑐̃ − 𝑢̃𝑖𝑐̃ = 𝑐̃(1 − 𝑐̃)(𝑢̅𝑖
𝑏 − 𝑢̅𝑖

𝑢)                               (2.15) 

 

where 𝑢̅𝑖
𝑏  and 𝑢̅𝑖

𝑢  denotes the mean velocities conditional on burnt and unburnt gases 

respectively. For thermal expansion across the flame brush 𝑢̅𝑖
𝑏 can be greater than 𝑢̅𝑖

𝑢 

which leads to counter-gradient transport (i.e. the scalar flux assuming same sign as the 

scalar gradient, 𝑢𝑖′′𝑐′′̃ ×𝜕𝑐̃ 𝜕𝑥𝑖⁄ > 0). Thus eq. (2.15) provides a theoretical proof of the 

counter-gradient behaviours of scalar flux, which was later confirmed in experiments 

(Bray et al., 1981). 

 

However, the modelling of mean reaction rate is still unresolved by BML model which 

can be mathematically explained as: 

 

   
1 1

0 0
( ) ( ) ( , ) ( ) ( ) ( , ) 0 for 1w x w c p c x dc x w c f c x dc Da                  (2.16) 
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As the chemical reaction rate w  is weighted by   which is negligible for 1Da  , 

eq.(2.16) dose not yield a finite non-zero value of w . Based on the BML model, three 

alternative approaches have been developed to close the mean reaction rate in RANS, 

which are respectively based on flame crossing frequency, flame surface density (FSD) 

and scalar dissipation rate. The approach based on scalar dissipation rate approach will 

be introduced in detail in section 2.2. The flame crossing frequency based reaction rate 

closure and flame surface density approach will be discussed here. 

 

2.1.3 Flame crossing frequencies 

The central logic of this approach is given by the following statement. At a given point, 

the number of times of the flame front crossing is assumed to have more influence on the 

mean reaction rate than the local temperature and species mass fraction (Bray,1984; Bray 

and Libby, 1986). According to this assumption, the mean reaction rate can be 

mathematically expressed as: 

 

                                                            𝑤̅̇ = 𝑤𝑓̇𝜐𝑓                                                    (2.17) 

 

where 𝑤𝑓̇ and  𝜐𝑓 represent the reaction rate per flame crossing and the flame crossing 

frequency respectively. The flame crossing frequency is evaluated based on the statistical 

function of a telegraph signal in the following manner: 

                                                           

                                                   𝜐𝑓 = 2
𝑐̅(1 − 𝑐̅)

𝑇̂
                                                               (2.18) 

                                                   

where 𝑇̂ denotes the mean period of the telegraph signal, which is typically taken to be 

the eddy turn over time 𝜏̃𝑡~ 𝑘̃ 𝜖̃⁄  for w  closure. The reaction rate per flame crossing 𝑤𝑓̇ 

is often modelled as: 

        

  𝑤𝑓̇ =
𝜌0𝑆𝐿
𝛿𝐿 𝑡𝑡⁄

                                                                    (2.19) 

 

where 𝜌0 denotes the density of fresh gases, 𝛿𝐿 is the laminar flame thickness and 𝑆𝐿 is 

the laminar flame speed and 𝑡𝑡 represents the transit time between the two isosurfaces 

0c   and 1c  . Subsequently, the eq. (2.17) can be written as:   
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                                            𝑤̅̇ =
2𝜌0𝑆𝐿
𝛿𝐿/𝑡𝑡

𝜀̃

𝑘̃
𝑐̅(1 − 𝑐̅)                                                      (2.20)  

                                         

However, it is often not straightforward to estimate 𝑡𝑡 and therefore the model has been 

later recast in terms of FSD. 

 

2.1.4 Flame Surface Density (FSD) approach 

As a well-established modelling approach, the flame surface density Σ , which 

characterises the flame surface area per unit volume by measuring the flame front 

convolution. According to FSD based closure, the mean reaction rate is expressed as:  

                                                          

                                                  𝑤̅̇ = 𝜌0〈𝑠𝑐〉𝑠Σ                                                                  (2.21) 

              

where 𝑠𝑐 is the flame consumption speed and 〈… 〉𝑠 denotes the averaging operation over 

the flame surface (Marble and Broadwell, 1977). The mean surface averaged flame 

consumption speed 〈𝑠𝑐〉𝑠 was estimated by (Vervisch and Veynante, 2002):  

 

                                             〈𝑠𝑐〉𝑠 = ∫ 𝑠𝑐(𝜅)𝑝(𝜅)𝑑𝜅
+∞

0
                                         (2.22) 

 

where 𝑝(𝜅)denotes the probability and 𝜅 is the stretch rate. A ‘stretch factor’ 𝐼0 was 

introduced (Bray, 1990) to account the ratio of mean flamelet consumption speed and 

the laminar flame speed as: 

 

                                            𝐼0 =
1

𝑆𝐿
∫ 𝑠𝑐(𝜅)𝑝(𝜅)𝑑𝜅
+∞

0
                                           (2.23) 

 

Subsequently, eq. (2.21) can be rewritten as: 

 

                                                  0 0Lw S I                                                            (2.24) 

 

It worth noting that FSD Σ itself requires modelling which could be achieved through 

either an algebraic closure or solving a transport equation. This approach is valid for both 

RANS and LES.  
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2.2 Review of scalar dissipation rate in turbulent combustion modelling 

This section focuses on the reaction rate closure based on scalar dissipation rate, which 

itself is unclosed in both RANS and LES simulations. A brief review of the roles played 

by SDR in turbulent combustion modelling will be provided below. The mathematical 

background of the SDR in turbulent premixed combustion modelling will be introduced 

in Chapter 3 in detail, however, the SDR based reaction rate closure derived from BML 

model will be introduced here in order to demonstrate the strength of this methodology. 

 

2.2.1 Reaction rate closure 

The instantaneous transport equation of reaction progress variable c is written as: 

 

                                   ( )i

i i i

c c
u c D w

t x x x


 

    
   

    
                                   (2.25) 

 

Reynolds averaging equation (2.25) one obtains the transport equation of Favre averaged 

progress variable c  as: 

 

( ) [ ]i j j

i i i j

c c
u c D w u c u c

t x x x x


   

     
     

     
                  (2.26) 

 

An alternative transport equation for (1 )c c  can be derived from eq. (2.25) in the 

following form (Bray and Moss, 1977): 

 

   
 

(1 ) (1 )
(1 ) 2 2

i

i i i i i

c c u c c c c
D c c D cw w

t x x x x x

 
 

        
      

      
    (2.27) 

 

According to BML approach where the probability of finding 0 1c   is negligible, the 

term (1 )c c  assumes zero value which leads eq. (2.27) to: 

 

                                             2 (2 1)
i i

c c
D c w

x x


 
 

 
                                         (2.28) 
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where c

i i

c c
N D

x x

 


 
 is the instantaneous scalar dissipation rate (SDR). Reynolds 

averaging eq. (2.28) yields the following equation: 

 

                                           2 2 (2 1)c

i i

c c
N D c w

x x
 

 
  

 
                                    (2.29) 

 

Bray (1980) proposed the SDR based reaction rate closure by recasting eq. (2.29) into the 

following form: 

 

  
2 2

2 1 2 1
c

m i i m

c c
w D N

c x x c
 

 
 

   
                                (2.30) 

 

where c cN N   denotes the Favre averaged SDR and the thermo-physical parameter 

mc  is given by: 

 

              

1

0

1

0

[ ( )]

[ ( )]

L

m

L

wcf c dcwc
c

w wf c dc
 




                                            (2.31) 

 

where ( )f c  is the burning mode pdf of c and the subscript ‘L’ refers to the values in 

unstrained planar laminar premixed flames. Equation (2.30) relates the mean reaction rate 

w  to the turbulent mixing through SDR cN  and chemical reaction through the thermo-

chemical parameter mc , which assumes values between 0.7~0.9 (Bray, 1980). 

 

In order to explain the central role played by SDR in the reaction rate closure for RANS, 

it is useful to start from the transport equation of the scalar variance 𝑐′′2̃  (noting 

𝑐 = 𝑐̃ + 𝑐′′)  (Bray, 1980; Veynante & Vervisch, 2002): 
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𝜕𝜌̅𝑐′′2̃

𝜕𝑡
+
𝜕𝜌̅𝑢𝑖̃𝑐′′

2̃

𝜕𝑥𝑖
+
𝜕𝜌̅𝑢𝑖′′̃𝑐′′

2̃

𝜕𝑥𝑖
=
𝜕

𝜕𝑥𝑖
(𝜌𝐷

𝜕𝑐′′2

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
+ 2𝑐′′

𝜕

𝜕𝑥𝑖
(𝜌𝐷

𝜕𝑐̃

𝜕𝑥𝑖
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅⏞                      
𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

 

                      

                        − 2𝜌̅𝑢𝑖′′𝑐′′̃
𝜕𝑐̃

𝜕𝑥𝑖⏟      
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

+  2𝑤̇𝑐′′̅̅ ̅̅ ̅̅⏟  
𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

− 2𝜌𝐷
𝜕𝑐′′̃

𝜕𝑥𝑖

𝜕𝑐′′̃

𝜕𝑥𝑖⏟        
𝑠𝑐𝑎𝑙𝑎𝑟 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

            (2.32) 

 

 

The three terms on the left hand side (LHS) denote the transient term, advection term and 

turbulent transport term of scalar variance respectively. The first term on the right hand 

side (RHS) is the molecular diffusion of scalar variance which is often ignored in RANS 

of high Reynolds number flows. The ‘production’ term in eq. (2.32) characterises the 

scalar fluctuation for gradient transport of scalar flux. Many previous analyses on scalar 

fluxes of turbulent premixed flames in RANS reported both gradient and counter-gradient 

type transport (Bray et al.,1985; Moss, 1980; Shephard et al., 1982; Frank et al.,1999; 

Kalt et al.,2002; Rutland and Cant, 1994; Veynante et al. 1997; Swaminathan et al., 2001; 

Nishiki et al., 2006; Chakraborty and Cant, 2009). The reaction rate related term can be 

modelled based on eq. (2.31) as: 

 

𝑤̇𝑐′′̅̅ ̅̅ ̅̅ = 𝑤̇𝑐̅̅ ̅̅ − 𝑤̅̇𝑐̃ = (𝑐𝑚 − 𝑐̃)𝑤̅̇                                         (2.33) 

                                    

The last term on RHS of eq. (2.32) denotes the scalar dissipation of scalar variance, the 

mean SDR is defined as 𝜀𝑐̃ ≡ 𝜌𝐷̅̅ ̅̅
𝜕𝑐′′̃

𝜕𝑥𝑖

𝜕𝑐′′̃

𝜕𝑥𝑖
𝜌̅⁄  whose relation with Favre averaged SDR is 

written as:  

                 

𝜌̅𝑁𝑐̃ = 𝜌𝐷
𝜕𝑐

𝜕𝑥𝑖

𝜕𝑐

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
= 𝜌𝐷̅̅ ̅̅

𝜕𝑐̃

𝜕𝑥𝑖

𝜕𝑐̃

𝜕𝑥𝑖
+ 2𝜌𝐷

𝜕𝑐′′

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝜕𝑐̃

𝜕𝑥𝑖
+ 𝜌𝐷

𝜕𝑐′′

𝜕𝑥𝑖

𝜕𝑐′′

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
                (2.34) 

                   

In the context of RANS, the first two terms on RHS of eq. (2.34) are often neglected due 

to small values of the mean scalar gradient in comparison to the gradient of scalar 

fluctuations which results in 𝜌̅𝑁𝑐̃ ≈ 𝜌̅𝜀𝑐̃ , which has been applied in the reaction rate 

closure (i.e. eq. (2.30)) based on SDR. However, in the context of LES the first term on 

the RHS cannot be simply neglected and further information of this will be elaborated in 

Chapter 3. It worth noting that this scalar dissipation rate (SDR) 𝜀𝑐̃  itself is unclosed 
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which require closure in RANS. A traditional approach to model the SDR 𝜀𝑐̃  is the linear 

relaxation model which is often used for passive scalar mixing: 

                                                             

𝜌̅𝜀𝑐̃ =
𝜌𝑐′′2̅̅ ̅̅ ̅̅

𝜏𝑡
                                                            (2.35) 

                                                 

Based on the BML model and using the large-scale turbulent time scale scaling 𝜏𝑡~ 𝑘̃ 𝜀̃⁄  

subsequently leads to: 

                                         

𝜌̅𝜀𝑐̃ =
𝜌𝑐′′2̅̅ ̅̅ ̅̅

𝜏𝑡
≈
𝜌̅𝑐̃(1 − 𝑐̃)

𝜏𝑡
= 𝜌̅

𝜀̃

𝑘̃
𝑐̃(1 − 𝑐̃)                                         (2.36) 

                            

Substituting in eq. (2.30) and using 𝜌̅𝑁𝑐̃ ≈ 𝜌̅𝜀𝑐̃  for large Reynolds number turbulent 

premixed flames, eq. (2.36) yields: 

                                        

𝑤̅̇ ≈ 𝐶𝐸𝐵𝑈
𝜌𝑐′′2̅̅ ̅̅ ̅̅

𝜏𝑡
≈ 𝐶𝐸𝐵𝑈𝜌̅

𝜀̃

𝑘̃
𝑐̃(1 − 𝑐̃)                                               (2.37) 

                          

Equation (2.37) is commonly known as the Eddy-Break-Up (EBU) model (Mason & 

Spalding, 1973) which is one of the first attempts to close the chemical reaction rate of 

turbulent premixed flames. Due to the simple mathematical expression solely based on 

the resolved quantities, the EBU model has attracted extensive attention and is already 

implemented in commercial codes for both premixed and non-premixed turbulent flames 

simulations. However, this model adopted the assumption of passive scalar mixing and 

the chemistry process is assumed too fast to affect w  through the existence of any 

burning mixtures. The separation of chemical kinetics from the turbulence in the EBU 

model results in a lack of interaction between flames and turbulence. The EBU model has 

been reported to overestimate the chemical reaction rate in the context of RANS. 

However, a few attempts in LES of EBU model provided reasonable predictions for bluff 

body stabilised flames (Fureby and Möler, 1995), but the model parameter 𝐶𝐸𝐵𝑈 needed 

tuning for different flow parameters (Fureby and Löfstörm,1994).  

 

2.2.2 Review on modelled SDR transport equation in RANS 

One possible way to model SDR 𝜀𝑐̃ is based on the closure of the transport equation of 

Favre averaged SDR, which has been recently studied extensively in the context of 
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RANS. The exact unclosed transport equation of  𝜀𝑐̃  takes the following form (Borghi, 

1978, 1990; Mantel and Borghi, 1990; Swaminathan and Bray, 2005): 
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             (2.38) 

 

On the LHS the two terms respectively denotes the transient and mean advection terms. 

The term D1 denotes the molecular diffusion of 𝜀𝑐̃  and term T1 denotes the turbulent 

transport  of 𝜀𝑐̃ which takes the following form: 

11 12
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j k j k
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u c c
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
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           

                             (2.39) 

The term T2 arises due to density change resulting from heat release and is given by: 
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       
    
        

                                (2.40) 

 

The term T3 originates due to the reaction progress variable gradient c  alignment with 

local principal strain rates, which is commonly referred to as the turbulence-scalar 

interaction term. The term T3 takes the following form: 
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            (2.41) 

 

The term T4  representing the fluctuation of reaction rate gradient assumes the following 

form: 

4 2 2
k k k k

w c w c
T D D

x x x x

   
 

   
                                              (2.42) 

 

The term (-D2) denotes the molecular dissipation of 𝜀𝑐̃ and is given by: 
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2 2
2
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k i k i

c c
D D

x x x x


  
  

   
                                                     (2.43) 

The term ( )f D  arises from the variation of mass diffusion and the mathematical 

expression of ( )f D  is given as: 
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                  (2.44) 

 

The term ( )f D  sometimes is neglected in RANS by assuming constant diffusivity D 

(Swaminathan and Bray, 2005). Moreover density has been assumed to be constant in an 

earlier derivation of the above transport equation (Borghi, 1990; Mantel & Borghi, 1994; 

Mura & Borghi, 2003). The terms 1 2 3 4 2, , , , ( )T T T T D  and ( )f D  are the unclosed terms 

and these terms need to be modelled in order to solve the 
c

~  transport equation. For a 

statistically stationary point of view, the contribution of 

)]/
~

(~.~)/(.[ tDcctDcc    can be considered to be negligible and thus has 

been neglected in most studies (Borghi and Dutyoa,1978; Borghi, 1990; Mantel and 

Borghi, 1994; Mura and Borghi, 2003; Swaminathan and Bray, 2005; Swaminathan and 

Grout, 2006; Chakraborty and Swaminathan, 2007a, 2007b, 2010, 2011, 2013; 

Chakraborty et al., 2008, 2010, 2011a; Mura et al., 2008, 2009; Kolla et al., 2009). 

Swaminathan and Bray (2005) proposed an order-of-magnitude analysis for the above 

unclosed terms by using unburned gas density 0  
and laminar flame velocity LS  and 

thickness th . This yields the following scaling estimates for the SDR transport equation 

upon normalisation with respect to 
22

0 / thLS   :  

 

)(~ 1

11

DaOT ; )(Re~ 11

12


DaOT t ;                              (2.45) 

)1(~2 OT ;                                                           (2.46) 
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)(Re~ 2/12/1

31


DaOT t ; )1(~32 OT ; )/(~ 1

33 uUDaOT ref


;                   (2.47) 

)1(~4 OT ;                                                            (2.48) 

)(~)( 12 OD                                                           (2.49) 

 

where  refU is a velocity scale representing the Favre mean velocity. The diffusivity 

gradient term )(Df  can be scaled in the following manner upon normalising with respect 

to 
22

0 / thLS 
 
(Gao et al., 2014): 

 

)1(~)( ODf                                                                  (2.50) 

 

An alternative order of magnitude analysis was proposed by Mantel and Borghi (1994), 

where the root-mean-square (rms) turbulent velocity fluctuation u  and Taylor micro-

scale   are used to scale the velocity fluctuations and the gradients of the fluctuating 

quantities respectively following Tennekes and Lumley (1972). The scaling analysis by 

Mantel and Borghi (1991) yields the following scaling estimates for the unclosed terms 

of the SDR transport equation upon normalisation with respect to 
22

0 / lu :  

 

)1(~11 OT ; )(Re~
2/1

12



tOT ;                                                   (2.51) 

)1(~31 OT ; )(Re~ 2/1

32 tOT ; )1(~33 OT                                     (2.52) 

 

One obtains the following scaling estimate for )( 2D  in non-reacting flows if the second-

derivatives of fluctuating quantities are scaled using the Kolmogorov length scale,  : 

 

)(Re~/)( 2

0

2

2 tOulD                                                       (2.53) 

 

Equations (2.52) and (2.53) indicate that 
32T  and )( 2D  are the leading order 

contributors to the 
c

~  transport in high Ret non-reacting flows. The terms 2T , 4T  and 

)(Df  are identically zero for non-reacting isothermal flows.  The above order of 

magnitude analysis suggests that 
2 3 4 2, , , ( )T T T D  and )(Df  are the leading order terms 

of 
c

~  transport which has been confirmed later by DNS data (Chakraborty et al., 2011). 

According to eqs. (2.45) and (2.51), the contribution of 1T  can potentially play an 
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important role for 1Da  combustion, however, the magnitude of 1T  is reported to be 

negligible comparing with 
2 3 4 2, , , ( )T T T D  and ( )f D  for turbulent premixed flames 

with 1Da  (Chakraborty and Swaminathan, 2013).  The modelling of these unclosed 

terms, 
4321 ,,, TTTT  and )( 2D , are discussed next. 

 

Review modelling of turbulent transport term, T1 

The scaling estimates in eq. (2.45) indicate that )(Re~/ 1211 tOTT  and 12T  contribution is 

negligible compared to 11T  in high 
tRe  flows. A similar observation can also be made 

using the alternative scaling given by eq. (2.51), therefore T1 can be written as  

  

1 .( )cT u                                                       (2.54) 

 

Equation (2.54) indicates that the modelling of 
1T  translates to the modelling of turbulent 

flux, cju  
 
(Chakraborty and Swaminathan, 2010, 2013). A conventional modelling 

approach is to follow the gradient hypothesis for passive scalar mixing in the following 

manner: 
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where
2

t

k
C 


  is the eddy viscosity, 0.5 i iu u

k




 
  denotes the turbulent kinetic 

energy and 
  is the turbulent Schmidt number and 09.0C  is a model parameter. 

Counter-gradient transport of the turbulent flux of scalar gradients has been reported by 

previous studies for the flames where counter-gradient behaviour for turbulent scalar flux 

cu j
  is observed. (Veynante et al., 1997; Chakraborty and Cant, 2009; Chakraborty 

and Swaminathan, 2010, 2013). The scalar flux was modelled in BML approach (i.e. eq 

(2.14)) in terms of slip velocity as: 𝑢𝑖′′𝑐′′̃ = 𝑐̃(1 − 𝑐̃)(𝑢̅𝑖
𝑏 − 𝑢̅𝑖

𝑢)  for high Damköhler 

number flames (Bray et al., 1985). The slip velocity was modelled in the following 

manner as (Veynante et al., 1997): 

𝑢̅𝑖
𝑏 − 𝑢̅𝑖

𝑢 = −𝛼𝐸√2𝑘̃ 3⁄ + 𝜏𝑆𝐿                                      (2.56) 
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 with 𝛼𝐸 being an appropriate efficiency function (Veynante et al., 1997). A model of 

ciu    was proposed to accommodate both gradient and counter-gradient transports in 

the following manner (Chakraborty and Swaminathan, 2013): 
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               (2.57) 

 

where cxcM ii
~/)/~(   is the ith component of the flame brush normal vector. The 

model parameters are given as 22.01  ; )]6/(Re5.01[0.42 Lerf  and 

)3/(Re5.01 Lerf , where  ~/
~

Re 0

2

0kL   is the local turbulent Reynolds number 

with 
0  and 

0   being the unburned gas density and unburned gas viscosity respectively. 

 

Review modelling of density variation term, T2 

The term T2 denotes the correlation between the dissipation and dilatation rates. The 

dilatation rate assumes non-zero values inside the flame front for low Mach number 

combustion. T2 and the contribution of γ0 in eq. (2.10) can be expressed in terms of mean 

reaction rate to propose a model of T2 as follows (Swaminathan and Bray, 2005): 
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where L denotes the laminar flame quantities and ( )f c  is the burning mode pdf. The 

quantity 
cK  has been found to be strongly dependent on heat release parameter   and 

equivalence ratio (Rogerson and Swaminathan, 2007), which has been improved by 

modifying eq. (2.58) in the following form (Kolla et al., 2009): 
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where 
*

cK  can be obtained from laminar flame solutions and 
* /cK   has been found to be 

insensitive to the changes in equivalence ratio. Both eqs (2.58) and (2.59) attempt to 
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account for the intensity of heat release through a thermochemical parameter and both 

models are strictly valid for flames of large Da. Recently, a simple algebraic closure of 

2T  has been proposed to overcome the above limitation. The gas density   for low Mach 

number combustion can be expressed as (Bray et al., 1985):  

)1(

0
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
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                                                    (2.60) 

 

Equation (2.60) has been rewritten based on the progress variable c for flames with unity 

Lewis number as: 
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Using eq. (2.61) along with conservation equations of c  (i.e. eq. (2.25)) and c~  (i.e. 

eq.(2.26)) yield the following relation: 
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Subsequently an alternative expression for 2T  for unity Lewis number flames can be 

obtained (Swaminathan and Bray, 2005): 
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The three components of eq. (2.64) were scaled as (Swaminathan and Bray, 2005): 
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For turbulent premixed flames of high turbulent Reynolds number, the magnitude of 22T  

and 
23T  are expected to be much smaller than 21T , such that 2T  and 21T  are almost 

indistinguishable (Chakraborty and Swaminathan, 2013). A model of 
2T  was proposed 

based on the scaling estimates of scalar dissipation rate 
c  and dilatation rate .u  in term 

of laminar flame speed 
LS  and thermal flame thickness 

th : 
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The term 2T   arises due to heat release with the reaction zone maintaining quasi-laminar 

structure, which justifies the choice of the laminar burning velocity 
LS  and the flame 

thickness 
th  for the scaling analysis. A model of 2T  was proposed in the following 

manner (Chakraborty and Swaminathan, 2010): 
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where the model parameter 
2TC  is given by 

2

2 3/2 1/21 ( ) ( )

T

T

K L th

B
C

C S 



                                     (2.68) 

 

with 
2TB  and 

KC  are the model parameters of order unity (Chakraborty and 

Swaminathan, 2010): 

1/2

3/2

( )

( )

th
L K

L

Ka C
S


                                             (2.69) 

  

Review modelling of scalar-turbulence interaction term, T3 

The modelling of term T3 is usually divided into the modelling of the three components 

31 32,T T  and 
33T  separately (Mantel and Borghi, 1994; Swaminathan and Bray, 2005) 

Equation (2.52) indicates that 
32T  is expected to be the dominant contributor to 

3T  for 

high turbulent Reynolds number Ret turbulent premixed flames, whereas eq. (2.47) further 

indicates that for low Damköhler number combustion ( 1Da ) 
31T  and 

33T  are likely to 

be of the same order of magnitude as that of 
32T  which has been confirmed in DNS 
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assessments, where contributions of 
31T  and 

33T  to 
3T  have been found to play important 

roles (Chakraborty and Swaminathan, 2010; 2013).  

 

The statistical behaviour of 
3T  and its components can be explained by expressing the 

scalar-turbulence interaction contribution 2 i

i j j

uc c
D

x x x


 
  

  
 in the following 

manner (Swaminathan and Bray, 2005; Chakraborty et al., 2008):  

jj

i
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c
DTTT

Neee
x
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x
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










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)coscoscos(22

333231

222



 

            (2.70) 

 

where 
e , e  and e  are the most extensive, intermediate and most compressive 

principal strain rates with   ,  and   being the angles between c  and 
e , e  and 

e  respectively. Equation (2.70) indicates that the statistical behaviour of 
32T  is 

principally determined by the alignment of c  with the local principal strain rates. A 

preferential alignment of c  with  
e  leads to a negative contribution of   and 

32T , 

which is expected to happen for high values of Da , where the strain rate induced by 

flame normal acceleration dominates over turbulent straining effects. On the other hand 

in low Da  combustion the turbulent straining is expected to overcome the heat release 

effects and thus the scalar gradient c  tends to align with the most compressive principal 

strain rate e  (Ashurst et al., 1987; Batchelor, 1952), leading to a positive contribution of 

  and 
32T (Swaminathan and Grout, 2006; Chekraborty et al., 2008; Chakraborty and 

Swaminathan, 2013) 

 

Following the same scaling approach of Swaminathan and Bray (2005),  

2 i

i j j

uc c
D

x x x


 


  
 scales in the following manner:  

2

2 3/2 3/2
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1
2 ~

Re

refi th

i j j L L t

Uuc c
D O

x x x S S Da






  
   

    
                                (2.71) 

 



  
Chapter 2. Literature Review: Turbulent Premixed Combustion Modelling 

30 

 

the contribution of  )/~)(/~)(/~(2 jjii xcxuxcD    remains negligible in 

comparison to the contributions of 
3231,TT  and 

32T , and the contribution of 
32T  remains 

the major contributor to  . The above discussion suggests that the modelling for the 

components of 
3T  should be proposed in such a manner that they can address the 

alignment of c  with local strain rate. Various of models have been proposed for 
31T , 

32T  and 
33T  by different researchers (Mantel and Borghi, 1990; Chakraborty and 

Swaminathan, 2007a, 2010; Mura et al., 2009; Mura et al., 2009). The existing models 

for 
3231,TT  and 

33T  are summarised in Tables 2.1, 2.2 and 2.3 respectively. The models 

for 
3231,TT  and 

33T  proposed by Mantel and Borghi (1994) are referred to as the T31-MB, 

T32-MB and T33-MB models. Another series of models for 
3231,TT  and 

33T  has been 

proposed (Mura et al., 2008, 2009). However, different modelling suggestions for the 

same component of 
3T  were made at the same time, therefore the models are named as: 

T31-M1 and T31-M2 for 
31T  modelling (Mura et al., 2009), T32-M1 and T32-M2 for 

32T  

modelling (Mura et al., 2008), T33-M1, T33-M2 and T33-M3 for 
33T  modelling (Mura et 

al., 2009). Independently, an alternative set of the models for 
3231,TT  and 

33T  was 

proposed later by Chakraborty and Swaminathan (2007) and these models were 

subsequently modified to account for different values of Ret, Le and τ (Chakraborty and 

Swaminathan, 2010, 2013). The latest version of the models by Chakraborty and 

Swaminathan (2013) are referred to T31-CS, T32-CS and T33-CS models here.  

 

Model names Model expression 

T31-MB 

31 j

j

c
T u c

x k




   
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j
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x

c
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




~
.~.31


  where ccn f  /


 is a local 

flamelet normal vector 

T31-CS-R2 
1.5

31 1 2 L 3Da . .
~

j L c f j

j j

c c
T C C u c C S n x c

x xk


  

   
                

 

with C1=0.5 ;
2

2 2

0.4

(1 )

L

L

Ka
C

Ka



 and 

3

1.2 0.6 (Re / 5)

1 exp[ 10( 1)]

L

L

erfc
C

Ka




  
 

Table 2.1: Summary of the existing models for T31 
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Model name Model expression 

T32-MB 
ce

k
AT 

 ~
~

~

32 







   where  9.0eA  
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
       

T32-M2  
32 L[ 3.2ln( 1).Da ]c cT

k


        

T32-CS-R1 

* *
3 4

32 L2.57

Re 1 1 (1 )
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L
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T erf
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 
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    
 
 

where 
Re 1

0.4 0.15
80

Lerf
 

   
 

  

Table 2.2: Summary of the existing models for T32 

 

Model name Model expression 

T33-MB 

33
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



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
 and D0 is the 

unburned  gas diffusivity 

T33-M1  
 

T33-M2  
 

T33-M3  

 

where ccn f  /


 is a local flamelet normal vector 

Table 2.3: Summary of the existing models for T33 

 

Review modelling of the combined reaction rate and molecular dissipation terms 

(T4- D2) 

Based on the transport equation of 
cN  as (Chakraborty et al., 2008): 
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         (2.72)

                    

where n c c    is the local flame normal vector  and  .( )dS w D c c      

is the local flame displacement speed (Swaminathan and Bilger, 2001). Subsequently, the 

combined contribution of the terms 1D , 4T , )(Df and )( 2D  can be expressed as 

(Mantel & Borghi, 1994; Mura & Borghi, 2003; Swaminathan and Bray, 2005; 

Chakraborty et al., 2008; Gao et al. , 2014): 
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         (2.73) 

 

where m c c    is the resolved flame normal and 
rS w c  , 

( )nS N DN c c      are the reaction and normal diffusion components of the 

displacement speed respectively (Peters et al., 1998; Echekki and Chen, 1999; 

Swaminathan and Bilger, 2001). Equation (2.73) indicates that the the net contribution of 

)]([ 241 DfDTD   originates due to flame normal propagation and flame curvature. 

It worth noting that f(D)  was assumed to be negligible in RANS in most of previous 

studies. Mantel and Borghi (1994) proposed a model for the net contribution of  

)( 2144 DDTT   in the following manner: 
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                      (2.74)  

    

where 1  = 4.2 and 1.0
c

C  are model constants. The molecular diffusion term 1D  is a 

closed term and its magnitude is likely to be small for large Reynolds number tRe  flames 

according to the following scaling estimates (Swaminathan and Bray, 2005): 
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A similar conclusion can be reached using the scaling estimate (Mantel and Borghi, 

1994): 

2

0
1 2

1
~

t

u
D

l Re

 
                                                      (2.76) 

As 
1D  is a closed term and assumes negligible value for high 

tRe  flows, a model for  

)( 24 DT   was proposed as (Chakraborty et al., 2008): 

  

2

4 2 2( )
(1 )

cT D
c c


   


                                                  (2.77) 

 

where 
2 6.7   is the model parameter, which has been modified subsequently for a wide 

range of values of turbulent Reynolds number as: 
2 3.9 2.8 (Re /10)Lerf    

(Chakraborty and Swaminathan, 2013). 

 

2.2.3 Review on algebraic closures of SDR in RANS 

An algebraic closure of 𝜀𝑐̃ may be developed for turbulent premixed flames by assuming 

the leading order unclosed source and sink terms of the SDR transport equation (Mantel 

and Borghi, 1994; Mura and Borghi, 2003; Swaminathan and Bray, 2005; Kolla et al. 

2009). Based on the above assumption, an algebraic model was initially proposed by 

Mantel and Borghi (1994) following the BML approach (eq. (2.36)) as: 

 

𝜀𝑐̃ = (1 +
2𝐶𝜀𝑐𝑆𝐿

3√𝑘̃
) (𝐶𝐷

𝜀̃

𝑘̃
) 𝑐′′2̃  with 𝐶𝜀𝑐 = 0.1; 𝐶𝐷 = 0.21               (2.78) 

 

It worth noting that the analysis by Mantel and Borghi (1994) was carried out for constant 

density flow and thus the contribution of the dilatation term 𝑇2 was not included in eq. 

(2.78). Swaminathan and Bray (2005) revised the model by Mantel and Borghi (1994) to 

take into the effects of 2T  in the below manner: 

 

𝜀𝑐̃ = (1 +
2𝐶𝜀𝑐𝑆𝐿

3√𝑘̃
) (𝐶𝐷𝑐

𝑆𝐿
𝛿𝐿
+ 𝐶𝐷

𝜀̃

𝑘̃
) 𝑐′′2̃  with  𝐶𝐷𝑐 ∝

𝐾𝑐
2𝑐𝑚 − 1

             (2.79) 
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The model parameter 𝐶𝐷𝑐 was suggested to be 0.24 (Swaminathan and Bray, 2005). It 

worth noting that the alignment between the scalar gradient with the compressive 

principal strain rates was implicitly considered in eq. (2.79). Subsequently, an algebraic 

model was proposed by Kolla et al. (2009) where the effects of Da and 𝜏 on ∇𝑐 alignment 

are explicitly taken into account: 

 

𝜀𝑐̃ ≃
1

𝛽′
(2𝐾𝑐

∗
𝑆𝐿
𝛿𝑡ℎ

+ [𝐶3 − 𝜏𝐶4𝐷𝑎𝐿]
𝜀̃

𝑘̃
) 𝑐′′2̃                            (2.80) 

 

where model parameters are given as: 

 

𝐶3 =
1.5√𝐾𝑎𝐿

1 + √𝐾𝑎𝐿
, 𝐶4 =

1.1

(1 + 𝐾𝑎𝐿)0.4
  and  𝛽′ = 6.7                         (2.81) 

 

Further refinements of this model have been attempted to capture the differential diffusion 

effects due to non-unity Lewis number Le (Chakraborty and Swaminathan, 2010). Lewis 

number Le is defined as the ratio of thermal diffusivity 𝛼𝑇 to mass diffusivity 𝐷. For 𝐿𝑒 =

1.0, heat and mass diffuse at the same rate. Differential diffusion of heat and mass occurs 

for 𝐿𝑒 ≠ 1.0  (Chakraborty and Swaminathan, 2010). By including the non-unity Le 

effects in the modelling of the leading order terms of the SDR 𝜀𝑐̃ transport equation, eq. 

(2.80) has been revised in the following form (Chakraborty and Swaminathan, 2010): 

   

𝜀𝑐̃ = (2
𝐾𝑐
∗

𝐿𝑒1.88
𝑆𝐿
𝛿𝑡ℎ

+
2.0√𝐾𝑎𝐿

1 + √𝐾𝑎𝐿

𝜀̃

𝑘̃
− 𝜏

1.2(1 − 𝑐̃)Φ

(1 + 𝐾𝑎𝐿)0.4𝐿𝑒2.57
𝐷𝑎𝐿

𝜀̃

𝑘̃
)
𝑐̃(1 − 𝑐̃)

𝛽′
       (2.82) 

 

where Φ = 0.2 + 1.5|1 − 𝐿𝑒|. Another model of 𝜀𝑐̃ was proposed by Vervisch et al. 

(2004) in terms of the flame wrinkling factor Ξ = |∇𝑐|̅̅ ̅̅ ̅ |∇𝑐̅|⁄  as: 

 

𝜀𝑐̃ =
(2𝑐𝑚 − 1)

2𝜌̅
𝜌0𝑆𝐿Ξ|∇𝑐̅|

𝑐′′2̃

𝑐̃(1 − 𝑐̃)
                                             (2.83) 

 

Mura et al. (2007) proposed an alternative model by linking the scalar dissipation rate for 

turbulent premixed flames for the thin flamelet and thickened flame regimes which reads: 
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𝜀𝑐̃ = 𝑔(−
𝜌𝐷̅̅ ̅̅

𝜌̅
∇𝑐̃. ∇𝑐̃ +

𝑤̅̇

2𝜌̅
[2𝑐̃ − 1] +

1

𝜌̅
[𝑤̇𝑐̅̅ ̅̅ − 𝑤̅̇𝑐̃]) + (1 − 𝑔)𝐶𝑌

𝜀̃

𝑘̃
𝑐′′2̃      (2.84) 

 

The 𝐶𝑌 is the model parameter and 𝑔 is the segregation factor defined as:  

 

𝑔 =  
𝑐′′2̃

𝑐̃(1 − 𝑐̃)
                                                        (2.85) 

The segregation factor 𝑔 assumes a value equal to unity in the strict thin flamelet regime 

where the pdf of c can be approximated by a bimodal distribution with impulses at 𝑐 = 0 

and 𝑐 = 1. This yields: 

 

𝑐′′2̃ = 𝑐̃(1 − 𝑐̃)                                                     (2.86) 

 

However 𝑐̃(1 − 𝑐̃)  is the maximum possible value of 𝑐′′2̃  and 𝑐′′2̃  decreases in 

comparison to 𝑐̃(1 − 𝑐̃) with decreasing Da as the underlying combustion shows the 

attributes of the thicken flames regimes. 

 

2.3 Other modelling approaches for turbulent premixed combustion 

 

2.3.1 G-equation Level Set Approach 

Williams (1985) introduced the G-equation (i.e. level-set approach) concept which was 

further developed by Peters (2000) later. This approach approximates the assumed thin 

flame surface with a level surface of scalar field G. The scalar G assumes a given level 

G0 at the flame front and the balance equation of G is proposed in the following form:  

 

. d

G
u G S G

t


   


                                                 (2.87) 

 

Due to the lack of specific definition of G, it is often taken as the distance of a certain 

isosurface of G from the flame surface in the local flame normal direction. Therefore the 

eq. (2.36) describe the advection and propagation of this isosurface with respect to the 

flame surface. It has been argued that rather than taking G equation approach as an 

explicit model of turbulent premixed combustion, it may be of more physical to treat it as 

a mathematical framework for modelling (Cant, 2011), which provides a novel 

perspective to describe the premixed turbulent combustion. In the context of RANS and 
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LES modelling, the Favre averaged balance equation can be obtained by substituting  

G G G   into eq. (2.87): 

 

                                      .( )j d

j

G G
u S G u G

t x
   
 

    
 

                           (2.88) 

 

where the first term on the RHS denotes the flame front propagation and the second term 

presents the turbulent flux of G. It worth noting that the diffusion effects was not taken 

into consideration in G-equation approach as the framework relies on kinematic 

description of the flame front. The first unclosed terms on the RHS of eq. (2.88) have 

been modelled as: 

 

0d TS G S G                                                       (2.89) 

 

where TS  the turbulent burning velocity henceforth 0 TS  denotes the mass flow across 

the flame brush and  the G flux terms can be modelled according to gradient hypothesis 

as (Chakraborty et al., 2011a):  

 

                                       .( ) .( )Tu G D G                                                    (2.90) 

 

where TD  reads the diffusivity of G. The RHS of eq. (2.90) was further deducted (Peters, 

2000) by only keeping the tangential components, which leads to the well-known Favre 

averaged form of the G-equation: 

 

0j T t

j

G G
u S G D G

t x
    
 

    
 

                                (2.91) 

 

where .( / )G G      is the Favre averaged curvature. The turbulent flame speed is 

modelled in terms of laminar flame speed in the following manner (Abdel-Gayed et al., 

1984; Gulder, 1990; Yakhot et al., 1992; Pocheau, 1994): 
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                                                     (2.92) 

 

where both A and n denote constants. Peters (2000) also derived the transport equation of 

the variance 𝐺′′2̃ , which can be taken as a measure of the flame brush thickness. G 

equation has been of practical interest in RANS modelling (Peters, 2000), which has been 

recently extended to LES (Kim, 1999; Pitsch, 2002; Oberlack, 2001). A new 

mathematical description was presented recently (Pitsch, 2005, 2006) for which the G 

equation does not require filtering in LES, which is beyond the scope of this document, 

interest readers are referred to the papers.    

             

2.3.2 Artificially Thickened Flame 

Artificially thickened flame (ATF) approach was initially proposed in purpose of 

thickening the reaction zone for adequate flame resolution with limited computational 

power (Butler and O’Rourke, 1977) without compromising the flame speed 

characteristics. As the  turbulent premixed flame brush is expected to be thickened by 

LES filtering, the ATF concepts have been revisited and adopted into LES of turbulent 

premixed combustion by Veynante and Poinsot (1997).  

 

 

Figure 2.2: Schematic diagram of thickened flame approach (Poinsot and Veynante, 2001). 

 

Following the theories of laminar premixed flame (Williams, 1985; Kuo, 1986), the flame 

speed and the Zel’dovich flame thickness can be expressed as: 

 

L TS B     and   T T
L

LS B

 
                                       (2.93) 
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where B denotes the pre-exponential factor of single step Arrhenius law of normalised 

form of chemical reaction w . By simultaneously increasing the thermal diffusivity 
T  

and decreasing B with a same factor F, the flame speed is conserved while the flame 

thickness has been increased by factor F, therefore it is possible to thicken the flame front 

to scales which can be more easily resolvable on LES grids. A schematic diagram is 

shown in Fig. 2.2 to demonstrate the thickening of the flame brush.  

 

This method shows advantages in dealing with ignition, flame stabilisation and 

flame/wall interactions where flame-turbulence interaction is mainly determined by large 

scales. The balance equation of a single step Arrhenius chemistry, the balance equation 

for reaction progress variable c reads:      

 

( )( ) (1 )
(1 )exp

1 (1 )
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j j j

u cc c T
D B c

t x x x T
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


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      

         

                 (2.95) 

 

which will be modified in ATF approach into the following form: 

 

( )( ) 1 (1 )
(1 )exp

1 (1 )

j

j j j

u cc c T
DF B c

t x x x F T
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 


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      

         

            (2.96) 

 

The two terms on the RHS of eq. (2.95) have been recast into the form of eq. (2.96) which 

model the conventional unclosed terms arising from the sub-grid flux and reaction rate 

implicitly. The thickening of the flame brush leading to an increase in the flame time 

scale, which subsequently decreases Damkӧhler number Da by the same factor F (i.e. 

Da/F). and the ratio between integral length scale l and laminar flame thickness δth also 

decreases by a factor of F. Therefore the flame brush is expected to lose partial sensitivity 

to turbulent motions. This brings an interesting comparison between the conventional 

LES filtering and ATF approach. The response of flame to sub-grid turbulent motions is 

dealt with by additional unclosed terms in the filtered transport equation of a general 

progress variable. The filtering operation is mimicked by broadening the reaction zone 

where the flame stretch requires to be handled in the latter, which has been attempted by 

introducing an efficiency function E (Poinsot et al., 1991; Angelberger et al., 1998). An 

obvious link can be observed between the above treatments with a RANS approach of 

turbulent strain rate, known as intermittent turbulent net flame stretch (ITNFS) method 
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(Meneveau and Poinsot,1991). The efficiency function E builds a link between the actual 

flame wrinkling with the thickened flame wrinkling. The efficiency function is 

implemented by modifying the diffusivity D and the pre-exponential factor B in eq. (2.96) 

as follows: 

 

( )( ) (1 )
(1 )exp

1 (1 )

j

j j j

u cc c E T
EF D B c

t x x x F T
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      
         

         (2.96) 

 

An inequality condition between the thickening factor F and the efficiency factor E was 

proposed by Colin et al. (2000) based on an analysis involving flame wrinkling factor: 

  

                                                      2/31 E F                                                       (2.98) 

 

2.3.3 Probability density function Approach 

If the joint probability density functions (pdf) of all the thermochemical quantities in 

turbulent premixed flames are known, the mean reaction rate can be directly calculated 

based on the conditional probability transport equations, which is a central motivation 

behind the transported pdf approach. A modelled transport equation for the conditional 

pdfs of the thermochemical scalars in turbulent reacting flows was derived by Dopazo 

and O’Brien (1974) for the first time based on a presumed pdf shape of thermochemical 

quantities, usually known as ‘presumed pdf approach’. The mostly adopted shape of the 

presumed pdf is the   function, which is able to change from shape of a mono-modal 

distribution to a Gaussian distribution. The   function in terms of c in range of 0 1c 

is given by:  

 

   
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where 
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( , ) (1 )a bB a b c c dc    is a normalisation factor and 1

0

( ) t xx e t dt



    .  

Two model parameters are evaluated based on c and 𝑐′′2̃ as: 
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A limitation of the presumed pdf is the lack of information for unburnt ( 0c  ) and fully 

burnt gas ( 1c  ).  The transport equation of the scalar variance 𝑐′′2̃  (i.e. eq. (2.32) also 

requires closure in simulations, which has been looked into by previous studies 

(Chakraborty et al, 2010) in the context of RANS.  

 

An alternative pdf approach focuses on solving the pdf transport equation, which was 

proposed firstly through the investigation of the link between the particle transport models 

and the pdf description (Pope, 1979) and commonly known as the ‘pdf transport 

approach’. An advantage of the pdf transport equation is the incorporation of multi-

variables (species, mass, temperature, velocities etc.) by their joint probabilities. The pdf 

considered in this approach is a one-point, one-time of the velocity vectors u, composition 

variable NΦ and a turbulent frequency ω (Haworth, 2010). The composition variable NΦ 

denotes a finite number of variables sufficient to describe the thermochemical properties. 

The Favre average pdf is denoted as 𝑓𝒖𝑵𝜱𝝎(𝑽,𝝍, 𝜽; 𝒙, 𝑡) , where 𝑽,𝝍, 𝜽  denotes the 

corresponding variables related to u, NΦ and ω respectively. By integration of 

𝑓𝒖𝑵𝜱𝝎(𝑽,𝝍, 𝜽; 𝒙, 𝑡)  over the sample space the complete statistical information of 

velocity, composition and turbulent frequency at a given point can be obtained for a given 

instance of time. Therefore, the mean chemical reaction rate is a closed term and can be 

deterministically evaluated using 𝑓𝒖𝑵𝜱𝝎(𝑽,𝝍, 𝜽; 𝒙, 𝑡)  which is the most important 

advantage of the pdf transport approach. Meanwhile, one of the central challenges of this 

approach is the model to characteristic rate of micro-mixing, which is represented by the 

SDR in the pdf transport approach. The most popular models of SDR for the pdf transport 

approach are IEM (Villermaux and Devillon, 1975), variants of Curl’s model (Curl, 1963; 

Spielman et al., 1965) and the Euclidean minimum spanning tree model (Subramaniam 

and Pope, 1998). For premixed combustion with high Damkӧhler number, a mixing 

closure was proposed by Lindstedt and Vaos (2006).   

 

The numerical simulations of the pdf transport approach has been developed extensively 

in the last decade. A hybrid Lagrangian particle/Eulerian mesh (LPEM) algorithm is the 

most widely adopted pdf methodology in turbulent steady flow simulations (Anand et al., 

1989). 
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2.3.4 Dynamic modelling approach 

The dynamic approach was initially proposed to model the turbulent residual Reynolds 

stresses for passive turbulent flows based on the scale similarity assumption (Bardina et 

al., 1981). Later the scalar similarity assumption was extended to model the filtered 

reaction rate (Germano et al., 1997), however, a model parameter is required to be 

specified. Dynamic modelling of unresolved stresses therefore was motivated by the fact  

the model parameters are directly evaluated based on the resolved quantities 

automatically. A review of the dynamic model of unresolved stresses in LES can be found 

somewhere else (Sarghini et al., 1999). However, modelling of filtered reaction rate in 

LES using dynamic approach is not very straight-forward. A Germano-identity like 

procedure was adopted to model the reaction rate after introducing an exponential 

dependence for filtered reaction rate (Charlette et al., 2002) as: 

 

𝑤̅̇ = 𝑤̇(𝑄̃, ∆̅)[1 + 𝑓(𝑢′∆̅, … )]
𝛼𝑐                                       (2.101) 

 

where 𝑤̇(𝑄̃, ∆̅) is referred as ‘resolved’ reaction rate which was calculated based on the 

known resolved quantities 𝑄̃ (including temperature, species mass fraction) and the filter 

width ∆̅ . Thus 𝑤̇(𝑄̃, ∆̅) ≠ 𝑤̅̇  and 𝑓(𝑢′∆̅, … )  denotes a certain function which ensures  

𝑤̇(𝑄̃, ∆̅)𝑓(𝑢′∆̅, … ) can be a closure of  𝑤̅̇. The Germano-like identity then can be recast 

into the following form (Germano et al., 1997): 

  

𝑤̇(𝑄, ∆)[1 + 𝑓(𝑢′∆̅, … )]
𝛼𝑐⏞                = 𝑤̇(𝑄̂̃, ∆̂)[1 + 𝑓(𝑢′∆̂, … )]

𝛼𝑐                       (2.102) 

 

where the 𝑄̂̃ denotes the filtered quantity based on a test filter width ∆̂, which is larger 

than original filter size ∆. Therefore the model parameter 𝛼𝑐 can be deduced from eq. 

(2.102) by taking the logarithm function of both sides simultaneously as: 

 

𝛼𝑐 =
𝑙𝑜𝑔 [𝑤̇(𝑄, ∆)̂ 𝑤̇(𝑄̂̃, ∆̂)⁄ ]

𝑙𝑜𝑔[(1 + 𝑓(𝑢′∆̂, … )) 1 + 𝑓(𝑢′∆̅, … )⁄ ]
                           (2.103) 

 

 

 

2.3.5 Conditional Moment Closure (CMC) Approach 
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Conditional moment Closure (CMC) was originally proposed for non-premixed flames 

(Klimenko, 1990; Bilger, 1993) based on the correlation between mixture fraction and 

the reactive scalar species which links the fluctuations in both scalar space and mixture 

fraction space. A comprehensive review of CMC approach for non-premixed flames can 

be found in Klimenko and Bilger (1999) and the recent development has been reviewed 

by Kronenburg and Mastorakos (2011). The CMC shares some similarities with the 

flamelet assumption in premixed combustion by assuming that the fluctuations of the 

reactive scalars are well correlated with the fluctuations of one sole quantity: reaction 

progress variable in premixed flames. The global averaged quantity can be expressed in 

terms of conditional mean as: 

 

𝑌(𝑥⃗, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∫〈𝑌|𝑐 = 𝜁〉𝑝(𝜁) 𝑑𝜁                                          (2.104) 

where 𝜁 denotes the sample space of progress variable c and 𝑄(𝜁, 𝑥⃗, 𝑡) = 〈𝑌|𝑐 = 𝜁〉 is the 

conditional mean value of a reactive scalar 𝑌 with 〈… 〉 denoting ensemble averaging. A 

decomposition of the quantity 𝑌(𝑥⃗, 𝑡) reads 𝑌(𝑥⃗, 𝑡) = 𝑄(𝜁, 𝑥⃗, 𝑡) + 𝑦(𝑥⃗, 𝑡), where 𝑦(𝑥⃗, 𝑡) 

denotes the conditional fluctuation. Subsequently, the transport equation of the 

conditional mean 𝑄  (Klimenko and Bilger, 1999; Swaminathan and Bilger, 2001) of 

reactive scalar 𝑌𝑖 is derived as: 
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where 
iw  is the generation rate of the scalar and 

iQe denotes the contribution of molecular 

diffusion,  
iye  denotes the conditional transport of scalar fluctuation. The expressions of 

iQe and 
iye  are (Swaminathan and Bilger, 2001):  
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  (2.106) 

The terms of eq. (2.105) require modelling are: 
iye , iu  , iw  , cN  . A model of 

iye was proposed as (Klimenko and Bilger, 1999): 
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where 
iu  is the conditional velocity fluctuation and ( )p   is the Favre pdf of  . It worth 

noting that the terms i iu y   and ( )p   require further closures. The modelling of 

iu   was attempted (Swaminathan and Bilger, 2001) by a linear model which yields 

good agreement. Closures are required for the terms in eq. (2.105), among which iw   

can be addressed by first order Taylor series expansion (Klimenko and Bilger, 1999): 

 

1 1 1( ,.... , ) ( ,.... , ) ( ,.... , )i N i N T i N Tw Y Y T w Q Q Q w Q Q Q             (2.108) 

 

It has been reported that eq. (2.108) perform satisfactorily for major species whereas high 

fluctuations were observed for minor species (Swaminathan and Bilger, 2001). A key 

issue in CMC methodology is the modelling of conditional mean SDR cN   in eq. 

(2.105). Despite the advantage of validity of this method for both slow and fast chemistry, 

the computational cost of CMC is expected to be much higher than the flamelet approach, 

which may possibly be incorporated by the fast development of high performance 

computing. 

 

 

2.4 Final Remarks 

A review of the development of flamelet approach in turbulent premixed combustion has 

been provided, where the chemistry is assumed to occur within a thin region which 

propagates normal to itself towards the reactants in turbulent premixed flames. This 

approach is mostly widely used approach in the modelling of turbulent premixed flames. 

The scalar dissipation rate is found to have direct link to the reaction rate closure 

irrespective of the nature of chemical reaction as long as the flamelet assumption remains 

valid. The SDR determines the time scale for molecular mixing, which can be taken as a 

measure of reaction rate in the turbulent reacting flow where the heat release is strongly 

correlated with the molecular mixing process. A review of the SDR approach in turbulent 

premixed combustion modelling in RANS provides a useful theoretical ground and a 

modelling platform for SDR based closure in the context of LES, which is the central 

topic of this merit.  
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The application of popular modelling approaches for non-premixed flames (i.e. pdf 

transport approach, CMC approach) in turbulent premixed combustion have been 

discussed briefly.  The advantage of transport pdf approach is it can be used irrespective 

of the magnitude of characteristic chemical time scales but at the expense of high 

computational cost and modelling of molecular micro-mixing. The CMC approach is 

another successful approach in non-premixed turbulent combustion modelling, which is 

in its infancy in modelling turbulent premixed combustion. A few unclosed terms require 

modelling as expected in the transport equation of conditional mean of a reactive scalar. 

However, the definition of the reference space, i.e. the reaction progress variable space, 

remain a key issue in CMC approach which inherently characterises the turbulent 

premixed combustion process by multiple reactive scalars. The higher computational cost 

of CMC than flamelet approach need to be accommodated as well. 

 

Nevertheless, the SDR has been found to play a key role in closure of pdf transport and 

CMC approaches, which justifies the importance of modelling this quantity in turbulent 

premixed flames, using Direct Numerical Simulation data. In addition, both the 

quantitative and qualitative behaviours of SDR with respect to LES grid size/ filter widths 

are essential for adopting SDR approach into LES, which is becoming increasingly 

popular as a tool for designing next generation combustors by explicitly filtering the 

simulation results obtained from DNS with a range of different filter widths. The 

statistical behaviours of the Favre-filtered scalar dissipation rate for different LES filter 

widths will be analysed based on DNS data and scaling arguments in this merit. Both the 

algebraic closure of SDR and reaction rate and transported SDR closure for turbulent 

premixed combustion in the context of LES will be discussed in the remaining chapters 

of this thesis. 
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Chapter 3. Mathematical Background 

 
In this chapter the important physical features and governing equations of premixed 

combustion for both laminar flow and turbulent flow are presented. The mathematical 

theory of reaction rate closure for turbulent premixed combustion in the context of LES 

is demonstrated.  The derivations of transport equation of instantaneous, Favre filtered 

SDR and the resolved components of SDR are provided.  The explicit filtering operations 

of the DNS results are presented with discussion of the numerical efficiency and accuracy 

of LES filtering. 

 

3.1 Laminar premixed flames 

Turbulent combustion is often categorised based on the extent of mixing of the reactants 

approaching the reaction zone. Premixed flames denotes the combustion process where 

the fuel and oxidizer are homogeneously mixed before entering the reaction zone. In 

premixed combustion the reaction zone tends to be a very thin surface, which separates 

the well-mixed reactants from fully-burnt products. The well mixed reactants are pre-

heated by the intensive heat release from the chemical reaction taking place in the reaction 

zone. The temperature of the reactants increase during the preheating process, which 

triggers burning of preheated reactants as a continuous process. A schematic diagram of 

typical laminar premixed flame is shown below in Figure 3.1.  

 

Figure 3.1: Schematic diagram of a one-dimensional laminar premixed flame 
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In Fig. 3.1, thermal flame thickness δth is defined based on temperature as (Williams, 

1980): 

 

0( )
 

ˆmax

ad
th

L

T T

T






                                                    (3.1) 

 

where 
adT , 

0T  and T̂  denotes the adiabatic temperature, temperature of unburnt reactant 

and instantaneous temperature respectively. Figure 3.1 also shows that the sharp gradient 

of temperature occurs within the reaction zone, which will subsequently generate a strong 

thermal flux towards the fresh gases which heats up the cold fresh gases in the pre-heat 

zone. The flame thickness of this is typically 10 times of the reaction zone thickness  . 

In lean premixed combustion, the flame front propagates towards the unburnt reactants at 

a flame speed known as the laminar burning velocity LS  which is dependent on the initial 

temperature of the reactants, thermochemistry of the mixture and pressure. 

  

A single-step irreversible Arrhenius chemical reaction can be generically presented as:  

 

Reactants Products  

 

and the premixed flame is often characterised by defining a reaction progress variable c 

in such a manner that 0c   in the unburned gases and 1c   in the fully burnt products 

and c increases monotonically from 0c   to 1c  . This reaction progress can be defined 

based on mass fraction of a suitable reactant or product mass fraction (i.e. RY  or PY ) as: 
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where 0,   denotes the corresponding variable in unburnt fresh gases and fully burnt 

products respectively. For a single-step Arrhenius chemistry, the reaction rate is given by:  

 

          𝑤 = 𝐵∗𝜌(1 − 𝑐)𝑒𝑥𝑝 [
−𝐸

𝑅0𝑇̂
]                                          (3.3) 
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where *B  is the pre exponential factor and E is activation energy. A non-dimensional 

number characterising the ratio between the initial flow speed 
0u  and sonic 

0a  is known 

as Mach number 
0 0Ma u a .  As introduced in Chapter 2, for unity Lewis number Le 

flame, heat and mass diffuse at the same rate. For low Ma  and unity Le flames, the 

reaction progress variable is equivalently defined based on temperature T in the following 

manner: 

u

b u

T T
c

T T





                                                               (3.4) 

with T , uT , bT  being the instantaneous , unburnt reactants’ and burnt products’ 

temperatures. 

 

3.2 Governing Equations 

The three dimensional compressible reactive flows are governed by a series of 

conservation equations. The dimensional form of these equations are shown below in 

Cartesian tensor notation. 

 Mass conservation equation: 

  0k
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u
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
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                                                (3.5) 

where and   is the density, ku  is the 
thk component of the velocity vector, 

 Momentum conservation equation (Navier-Stockes equation):  
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where P is the pressure  and ki  is the viscous stress tensor, given by: 
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where   is the kinematic viscosity. 

 Species conservation equation of species α present in the reacting gas mixture: 

     ,k k

k k

Y u Y w V Y
t x x

      
  

  
  

 with  N,......,1                (3.8)    
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where ,kV  is the diffusion velocity of species α, Y  is the mass fraction of the species   

in the reacting mixture where N is the total number of species, w  is the mass production 

of  the species   by chemical reactions.  

 Internal energy conservation equation: 

𝜕

𝜕𝑡
(𝜌𝐸) +

𝜕

𝜕𝑥𝑘
(𝜌𝑢𝑘𝐸) = −

𝜕

𝜕𝑥𝑘
(𝑃𝑢𝑘) +

𝜕

𝜕𝑥𝑘
(𝜏𝑘𝑖𝑢𝑖) −

𝜕

𝜕𝑥𝑘
𝑞𝑘               (3.9) 

where the total specific internal energy is defined as:   

              



N

kkV YhuuTCE
1

0

2

1ˆ



                                                  (3.10) 

where VC is the mixture heat capacity at constant volume.  kq  in eq (3.9) is the heat flux 

vector, which is given by: 

 

,

1

ˆ N

k k

k

T
q h V Y

x
  



 



  


                                               (3.11) 

where   is thermal conductivity, T̂  is the temperature, h is the enthalpy of the species α 

defined as: 

0

0

,

T

p

T

h c dT h                                                      (3.12) 

where ℎ𝛼
0  is the enthalpy of formation of species 𝛼. The thermal equation of state is 

given by the ideal gas law: 

                           𝑃 = 𝜌𝑅0𝑇̂ ∑
𝑌𝛼

𝑊𝛼

𝑁
𝛼=1                                                 (3.13) 

where 𝑅0 is the universal gas constant and W is the molar mass of species α.  

A reaction rate involving N species and M steps can be described in generic form as: 

' ''

, ,

1 1

 with 1, ,
N N

m mM M m M   
 

 
 

                                (3.14) 

where m, 
'

,

''

, , mm    are respectively the product and reactant stoichiometric coefficients. 

The chemical reaction rate of species  is given by: 
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               

                        (3.15) 

where mmm EnA ,, are respectively, the frequency factor, temperature exponent and 

activation energy. The compatibility conditions for species mass fraction, the diffusion 

velocities and reaction rates are respectively: 

                              1
1




N

Y


 ; ,

1

0
N

kV Y 


  and 
1

0
N

w


                                   (3.16) 

In current study, a single-step irreversible Arrhenius chemical reaction was assumed in 

all DNS datasets analysed here, where the simplified form of the equations of state 

become 

      TRP ˆ                                                               (3.17) 

      )1(
2

1ˆ cHuuTCE kkV                                             (3.18) 

where H is the heat of reaction per unit mass of reactants consumed.   

 

 The simplified heat flux vector reads: 

kk

k
x

c
DH

x

T
q









 

ˆ
                                              (3.19) 

 

 All the above governing equations can be non-dimensionalised based on a set of 

standard values of the principal variables including a reference velocity 0u  which is 

often taken as the laminar flame burning velocity LS , a length scale 0l , a time scale 

 0 0 0/ ,t l u the reference density usually based on the density 0  of unburned gas 

and the unburned gas temperature 0T  is taken to be the reference temperature. The 

reference pressure 0P  is defined based on a dynamic perspective only as 2

000 uP  . 

In the mass transfer formulation the Soret effect and Dufour effect are assumed 

negligible. 

 



 

Chapter 3. Mathematical Background 

50 

 

 The specific heats  and P VC C , dynamic viscosity , thermal conductivity   and 

density weighted D  are taken to be constant and independent of temperature.  

 

 The temperature is non-dimensionalised as: 

0

0

ˆ

ad

T T
T

T T





                                                      (3.20) 

where 0T  is the initial temperature and adT  is adiabatic flame temperature, given by 

0 /ad PT T H C  . The internal energy E is normalised with respect to 0PC T . It has 

been discussed earlier that for low Mach number unity Le combustion condition, the 

above normalised temperature and reaction progress variable are equivalent to each 

other, i.e. c T . 

Based on the above assumptions all the governing equations can be recast into the 

following non-dimensional form: 

 Mass conservation equation: 

0
)(











k

k

x

u

t


                                                     (3.21) 

 Momentum conservation equation: 
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                                    (3.22) 

where the viscous stress tensor ki and reaction rate term w  are  given by: 
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3
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x x x
   

    
     

      

                                            (3.23) 

 Energy conservation equation: 
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( 1) ( 1)

Re

k k ki i

k k k

k k k k

u E Pu uE
Ma Ma

t x x Re x

T c
D

RePr x x Sc x x

 
 

 
 

  
     

   

      
    
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                (3.24)  
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where the non-dimensional equations of state become: 

)1(
1

2
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                                                              (3.25) 
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                                (3.26) 

 Species conservation equation: 
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where the heat release rate is given by: 

(1 )
(1 )exp

1 (1 )

T
w B c

T






 
   

  
                                                  (3.28) 

 

The parameters in the governing equations are replaced by a series of non-dimensional 

parameters including: 

Reynolds number: 
0

000



 lu
Re                                                              (3.29) 

 Prandtl number: 
0

00



 PC
Pr   which is taken as 0.7                              (3.30) 

Schmidt number:
00

0

D
Sc




                                                                  (3.31) 

Mach number: 
0

0

a

u
Ma  with 00 RTa  = sonic speed                      (3.32) 

The ratio of specific heats: 0

0

P

V

C

C
                                                         (3.33) 

Heat release parameters: 0

0
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
                                   (3.34) 

 Zel’dovich number: 
2

( )ad o
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E T T

RT



                                                       (3.35) 

The non-dimensional pre-exponential factor: 
*

0 0

exp
B

B
u



 

 
  

 
                  (3.36) 
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3.3 Filtering: a DNS perspective  

In Large Eddy Simulation, the large structures of the turbulent reactive flows are 

explicitly calculated through the filtered governing equations. Filtering is mathematically 

a convolution process in either spectral space or physical space with respect to the filter 

widths, which may be expressed as: 

( ) ( ) ( )f x f F x d                                                  (3.37) 

where F is the filter kernel function. Cut-off filtering function is widely used in spectral 

space, whereas box filter and Gaussian filter are the most popular filtering functions in 

physical space (Poinsot and Veynante, 2001). Therefore the governing equations applied 

in generating DNS database will need to be derived into their filtered forms. In this study, 

DNS database of turbulent premixed combustion are generated by solving the 

instantaneous governing equations in Section 3.2, which have been post-processed by 

applying convolution operation on the three dimensional variables extracted from DNS 

data. 

 

3.3.1 Favre decomposition 

Turbulence is characteristic of random fluctuations of various physical variables 

(Kolmogorov, 1941).  In low Mach number non-reactive turbulent flow, density variation 

is usually expected to be small and density can be considered to be constant. Thus, the 

variables are decomposed into a mean and a fluctuating part according to convention 

Reynolds decomposition. However, in turbulent reacting flows, the density variation is 

significant due to the strong heat release from the chemical reaction (see eq. (3.12)). Thus, 

the fluctuation of density cannot be ignored which leads to unclosed terms involving 

density fluctuations in the Reynolds averaged mass conservation equation. This difficulty 

can be avoided by decomposing a general variable Q  into the Favre averaged/resolved 

part Q  and fluctuation Q  as: 

 Q Q Q                                                           (3.38) 

with        ( ) ( ) ( ) ( ) ( )x Q x Q F x d                                                (3.39) 
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Therefore ( ) ( ) ( ) ( )x Q x x Q x  , which is often adopted to calculate the Favre averaged 

values.  It worth noting that the mean of the fluctuations Q  is not 0 while the density 

weighted mean is null: 

0; 0Q Q                                                        (3.40) 

 

3.3.2 Gaussian filter and its efficiency 

A Gaussian filter is defined as: 

3 2

2 2 2

1 2 3 1 2 32 2

6 6
( ) ( , , ) exp ( )F x F x x x x x x



   
           

                    (3.41) 

where   denotes the filter widths which is equivalent to grid size in LES. It worth noting 

eq. (3.41) is the normalised form of the filter such that:  

1 2 3 1 2 3( , , ) 1F x x x dx dx dx
  

  
                                   (3.42) 

Explicit filtering has been applied to simple chemistry DNS database, where the Gaussian 

filter kernel was firstly discretised with finite difference method and then directly 

calculated which may be demonstrated below: 
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            (3.43) 

where 2N   denotes the grid points involved in the filter on each direction which is 

equal to half of the digital filter width for isotropic filters. Considering the speciality of 

exponential function, under the assumption that the filtering function F can be 

decomposed into three orthogonal, independent components, a more efficient digital filter 

was proposed as follows (Klein et al., 2003):  

3 2
6

( , , ) ( , , )
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N N N

i j k

i N j N k N

Q x y z f f f Q i j k
   

 
  
 

                      (3.44) 

where , ,i j k i j kF f f f . Equation (3.44) has been used for filtering the detail chemistry DNS 

results. More information on numerical implementation and DNS datasets will be 

provided in Chapter 4. 
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3.3.3 Filtered transport equations 

The governing transport equations in Section 3.2 are revised into the Favre filtered form 

below. Favre filtered/averaged mass conservation equation: 

( ) 0k

k

u
t x




 
 

 
                                                     (3.41) 

Favre filtered/averaged momentum conservation equation: 

𝜕

𝜕𝑡
(𝜌̅𝑢̃𝑖) +

𝜕

𝜕𝑥𝑖
(𝜌̅𝑢̃𝑖𝑢̃𝑗) = −

𝜕𝑃̅

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑖
[𝜏𝑖̅𝑗 − 𝜌̅(𝑢𝑖𝑢𝑗̃ − 𝑢̃𝑖𝑢̃𝑗)]              (3.42) 

 

Favre filtered/averaged conservation equation of reactant species  : 

     ,k k i i

k k

Y u Y w D Y u Y u Y
t x x

         
        

   
 with N,......,1   (3.43) 

The transport equation of the Favre filtered reaction progress variable c~  : 

                           (3.44) 

The two terms on LHS of eq. (3.44) indicate the transient and the resolved advection 

effects. The terms on the RHS denote the filtered molecular diffusion, chemical reaction 

rate and the sub-grid turbulent transport of the reaction progress variable respectively. 

The filtered reaction rate w  and the turbulent transport term 
jjj xcucu  /]~~[   are 

unclosed and thus need to be modelled in LES. The filtered molecular diffusion term 

)( cD   is often approximated as ( ) ( )D c D c     . 

 

3.4 SDR based reaction rate closure for LES 

Reaction rate closure based on SDR cN  has already introduced in Chapter 2 (Section 

2.2.1) where a proportional relationship between the mean reaction rate and Favre-

averaged SDR was proposed by Bray(1980) (see eq.2.30) for high Damkӧlar number 

1Da  flames, which has been further adopted to model c  in RANS as:  

2

2 1
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w
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



                                                            (3.45) 
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Equation (3.45) has been assessed later by DNS analysis and it is found to remain valid 

even for 1Da   turbulent premixed flames in RANS (Chakraborty and Swaminathan, 

2010). A recent analysis has recast eq. (3.45) back into the form of eq. (2.30), i.e. 

 2 2 1c mw N c  , for the purpose of assessing and extending this relationship for LES 

(Dunstan et al., 2013). The analysis of Dunstan et al. (2013) suggested that for filter size 

greater than thermal flame thickness (i.e. 
th  ), eq. (2.30) is valid for LES. However, 

for filter width comparable 
th  or smaller 

th   than thermal flame thickness, the 

local behaviour of filtered reaction rate w  is not accurately predicted by eq. (2.30). The 

reason for this discrepancy will be discussed in detail in Chapter 5 of this thesis. 

 

3.5 SDR transport equations 

 

3.5.1 Instantaneous SDR transport equation 

The transport equation of the instantaneous SDR cN  can be derived from the transport 

equation of the reaction progress variable c (eq. (2.25)). To demonstrate the derivation 

process, the eq. (2.25) is recast in the following manner: 
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                                  (3.46) 

Dividing both sides of eq. (3.46) by 𝜌 and then differentiating them with 
ix




 reads: 
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                      (3.47) 

Multiplying both sides of eq. (3.47) with 2
i

c

x

 
 

 
 leads to: 
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      (3.48) 

Multiplying diffusivity on both sides of eq. (3.48) generates the following equation: 
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        (3.49) 

Incorporating continuity equation into eq. (3.49) will lead to the final form of the 

instantaneous SDR transport equation as follows: 
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     (3.51) 

The first two terms on the left hand side of eq. (3.50) represent the transient and advection 

effects, whereas the first term on the RHS 1ID  denotes molecular diffusion of SDR.  The 

second term on the RHS of eq. (3.50) 1IT  originates due to density variation and will 

henceforth be referred to as the density variation term. The third term 2IT  represents the 

effects of fluid-dynamic straining, whereas the fourth term 3IT  denotes the reaction rate 

contribution to the SDR transport. The penultimate term on the RHS of eq. (3.50) 2( )D  

denotes molecular dissipation of cN  and terms involving temporal and spatial gradients 

of diffusivity are collectively referred to as ( )If D  shown in eq. (3.51) (Gao et al., 2014). 

The behaviours of the above terms will be provided and analysed in detail in Chapters  6 

and 7 later in this thesis. 
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Although the statistical behaviours of c  and the terms of its transport equation were 

analysed earlier, the terms of cN  transport equation are fundamentally different from the 

terms of the c  transport equation, which can be written for a given c isosurface in the 

following manner (Chakraborty and Cant, 2005): 
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is the ith component of flame normal vector  and 
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is the local flame displacement speed. It is evident from eqs. (3.52) – (3.54) that the 

statistical behaviour of cN  transport is likely to be different from c  transport although 

the quantities cN  and c  are closely related to each other (i.e. 
2

cDNc  ).  

 

3.5.2 Favre averaged SDR transport equation 

The transport equation of Favre averaged/filtered SDR 
cN

~
 is obtained by LES filtering 

Eq. (3.50): 
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Then dividing the term 
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will lead to the final form of the Favre averaged/filtered SDR transport equation shown 

below: 
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where 
ju  is the  jth component of velocity vector and the terms on the left hand side 

denote the transient effects and the resolved advection of 
cN

~
 respectively. The term 1D  

represents the molecular diffusion of 
cN

~
 and the other terms )(,,,, 24321 DTTTT   and

)(Df  are all unclosed and given by: 
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The term 1T  represents the effects of sub-grid convection, whereas 2T  denotes the effects 

of density-variation due to heat release. The term 3T  is determined by the alignment of 

c  with local strain rates )//(5.0 ijjiij xuxue  , and this term is commonly 

referred to as the scalar-turbulence interaction term. The term 4T  arises due to reaction 

rate gradient while )( 2D  denotes the molecular dissipation of SDR and these terms will 

henceforth be referred to as the reaction rate term and dissipation term respectively. The 

term )(Df  , as in eq. (3.64), indicates the effects of variation of mass diffusivity, D ,  

and its interaction with scalar gradients.  

 

3.5.3 The transport equation of the resolved components of 
cN

~
 

Equation (2.34) presents the expansion form of cN  which can be recast into the 

following form: 

𝑁𝑐̃ = 𝜌𝐷
𝜕𝑐
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𝜕𝑥𝑖

𝜕𝑐̃

𝜕𝑥𝑖
+ 𝑁𝑠𝑔 + 𝜀𝑐̃                             (3.65) 

 

As the term 𝑁𝑠𝑔 = 2𝐷
𝜕𝑐′′

𝜕𝑥𝑖

̃ 𝜕𝑐̃

𝜕𝑥𝑖
 tends to be small. The resolved component of 

cN
~

 is usually 

denoted as: .D c c  . The transport equation of the resolved component of SDR .D c c   

can be derived from the transport eqaution of c  eq. (3.44) which has been recast in the 

following form: 
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Similarly with the derivation of the transport equation of instantaneous SDR cN , eq. 

(3.66) are differentiated with respect to ix  on both sides: 
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Multiplying eq. (3.67) with 2
i

c
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 then using chain rule leads to: 
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By multiplying D  on both sides of eq. (3.68), an exact form of the transport equation of 

the resolved component of filtered SDR .D c c   can be obtained as follows: 
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A simple assumption is made to express 2 . .( )D c D c    
 

 in the following form: 
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This yields the transport equation of the resolved component of SDR .D c c   as: 
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3.6 Summary  

In this chapter, the governing transport equations and the underlying assumptions of the 

DNS were presented. The diffusion velocities were characterized by the Fick's law. The 

reaction mechanism was accounted with respect to a single reaction progress variable. 

This reaction progress variable can be defined based on the mass fraction of a deficient 

reactant/product as well as temperature. All the transport equation were non-

dimensionalised with respect to the numeraire of the unburned reactants. The SDR based 
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reaction rate closure in the context of RANS was discussed and the derivation of the 

transport equations of instantaneous SDR, Favre filtered SDR and its resolved component 

were introduced. In next chapter, the DNS database used will be introduced in detail.     
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Chapter 4 Numerical Implementation 
 

Several Direct Numerical Simulation (DNS) databases are post-processed in the current 

work for analysing the statistical behaviours of both instantaneous SDR, filtered SDR and 

the terms of their transport equations. Based on a-priori analysis of the simple chemistry 

DNS database, the current work has attempted to model the Favre-filtered SDR and 

different unclosed terms of its transport equation in the context of LES for turbulent 

premixed flames with different non-dimensional parameters, which will be further 

elaborated in Chapters 5, 6 and 7. The models based on a-priori DNS analysis of simple 

chemistry DNS database are further assessed in detail chemistry DNS data in Chapter 7. 

The purpose of this chapter is firstly to demonstrate general numerical procedure behind 

DNS simulation and secondly to provide description of both simple and detailed 

chemistry DNS databases used for the a-priori analysis conducted in this thesis. The 

filtering operation and the filtered scalar field of both sets of DNS database are provided.   

 

4.1 DNS in turbulent combustion 

Recent significant development in computational power has established DNS as a precise 

numerical technique of turbulent combustion research. However, the computational cost 

of DNS is still too high for simulating industrial combustors. In addition, the information 

provided by DNS may need further simplifications for research purpose to investigate the 

effects of a particular physiochemical element in isolation. Therefore, simplifications and 

assumptions of different levels are often made in DNS (Poinsot and Veynante, 2005). 

Another central issue for solving the governing partial differential equations (PDE) 

through DNS is the set-up of proper initial conditions and boundary conditions, which are 

deterministic to the PDE solutions. At the early stage of 1990s, when DNS as a simulation 

tool for combustion research just started up, the DNS was often restricted into two 

dimensional domains, where the vortex-stretching mechanism were inherently ignored. 

In the current work, both simple chemistry and detail chemistry fully compressible DNS 

databases are considered. The description of chemistry raises another main approximation 

in DNS. For the current analysis, the modelling of SDR and its transport is addressed 

using a-priori analysis of simple chemistry DNS database for different values of heat 

release parameter τ, global Lewis number Le and turbulent Reynolds number 𝑅𝑒#. 

Although, three dimensional DNS simulations with detail chemistry are now possible to 
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carry out, they involve several million CPU hours (Chen, 2009) and thus are not ideally 

suitable for a detailed parametric analysis. Furthermore, it is not convenient to analyse 

the effects of τ  and Le in isolation using detailed chemistry DNS data because these 

effects are often interlinked in the context of detailed chemistry and transport. However, 

it is useful to assess the validity of the models proposed based on the analysis of simple 

chemistry DNS databases in the context of detailed chemistry and transport. Thus the 

models developed based on a-priori DNS analysis using simple chemistry DNS database 

are assessed again for detail chemistry DNS data in Chapter 8. 

 

4.2 Spatial and temporal resolution 

In the current work, DNS databased of both statistical planar flame and V-shape flames 

are considered. The relationship between the domain size and the mesh size of DNS for 

turbulent premixed flames are generally required to be: 

• The simulation should carried out a domain size which accommodates a number of 

large scale (i.e. integral) eddies so that there are enough statistical independent 

samples within the domain. 

• The mesh should be fine enough such that the turbulent flow are fully resolved, 

therefore the grid size is often smaller or comparable with Kolmogorov scales. 

• The inner flame structure should be resolved by the mesh as well. 

When the largest and smallest scales of turbulent motions are approximately addressed 

by the DNS grid, the turbulent flow is considered to be correctly resolved. Take a cubic 

domain with side of length L with N+1 grid points on it, leading to the grid size ∆𝑥 =

𝐿/𝑁. The largest spatial scales in turbulent flow is often considered as integral length 

scale l  and the velocity field of turbulent flow is often characteristic by the large-scale 

velocity fluctuations uʹ .  The smallest spatial scales of turbulent flow is considered as 

Kolmogorov length scale η . Therefore a relation is obtained to meet the above 

requirements as: 

 

 l x
N

η≤ Δ ≤                                                           (4.1) 

 

which ensures that the whole domain size is no smaller than integral length scale (i.e. 

L l≥ ) and the Kolmogorov scale is resolved by the mesh. Based on the work of 

Kolmogorov (1941), it is known that for isotropic turbulence a relationship can be 

obtained for the turbulent cascading process as: 
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𝜂~ ,
(./0)2 3                                                           (4.2) 

Combining eqs. (4.1) and (4.2) reads: 

3/4 4 3( )  or t t
lN Re Re N
η

> ≈ <                                      (4.3) 

The inequalities shown in eq. (4.3) provides a direct relationship between the given 

turbulent Reynolds number tRe  and the required number of grid points N or the maximum 

achievable tRe  based on the number of grid points in each direction. 

 

Another feature of DNS is the number of grids resolving the inner flame, which is often 

characterised by thermal flame thickness 0( ) maxth ad L
T T Tδ ≡ − ∇ . For simplified 

chemistry, at least ten grid points are required to resolve the flame structure. If the number 

of grid points resolving the flame brush is denoted as Q , then the size of domain can be 

expressed with respect to the flame thickness as: 

 th
NL
Q

δ
⎛ ⎞

≈ ⎜ ⎟
⎝ ⎠

                                                             (4.4) 

Substituting L l≥  into eq. (4.4) leads to: 

th th

l L N
Qδ δ

< <                                                         (4.5) 

The flame is often characterised based on another flame thickness, known as 

Zel’dovich/diffusive flame thickness Zδ , which can be expressed as: 

T
Z

L LS S
α ν

δ ≡                                                      (4.6) 

Thus, eq. (4.5) can be recast in terms of turbulent Reynolds number 𝑅𝑒# and Damköhler 

number Da as:  

𝑅𝑒#𝐷𝑎~
,678
9:;

~ ,
:<

=
                                                     (4.7) 

Another computational grid condition is obtained as :  
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2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
<
Q
NDaRet                                                     (4.8) 

It worth noting that Zδ  is usually an approximation rather than an exact calculated values, 

however, the scaling argument Z LSδ ν  holds even under approximation, therefore eq. 

(4.8) is useful for defining the resolution of chemical scales considering the physical 

representation of Damköhler number is t cDa=τ τ  whereas the resolution of turbulence 

structure is limited in terms of turbulent Reynolds number tRe  by eq. (4.3). 

 

Temporal resolution is another important requirement for DNS, which affects the 

computational cost directly. The time step tΔ  and the number of time steps required of 

DNS are determined based on two time scales: Kolmogorov time scale ητ  and large eddy 

turn over time scale which is often defined based on integral length scale as t l uτ ʹ= . In 

order to resolve the flame structure in temporal space as well, the time step tΔ  is required 

to meet the following relation: 

1 2

 or t tη

ν
τ

ε
⎛ ⎞Δ ≤ Δ ≤ ⎜ ⎟
⎝ ⎠

                                            (4.9) 

Another criterion of time step tΔ  is prescribed by Courant-Friedrichs-Lewy (CFL) 

condition which restricts the travel distance of acoustic wave a in unit time step tΔ  

within unit grid size xΔ  as: 

  1
u a t

C
x

ʹ± Δ
= ≤

Δ
                                                    (4.10) 

Equation (4.10) can be recast to determine the maximum allowable time step size as: 

xt
u a
Δ

Δ ≤
ʹ±

                                                           (4.11) 

where C is the CFL number, which has been suggested to be around 1 20C ≈  in practice 

to ensure the acoustic wave only travels a fraction of the unit grid in one time step tΔ  

(Pope, 2000).  
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4.3 Discretisation: DNS domain setup 

 

4.3.1 Statistically planar turbulent premixed flames 

 

 

 

 

 

 

 

 

 

 

 

 

The statistically planar flames of turbulent premixed combustion with simplified one-step 

chemistry was generated by a three dimensional compressible DNS code SENGA 

(Jenkins and Cant, 1999), in order to investigate the effects of non-dimensional numbers 

such as Lewis number Le (0.34-1.2), heat release parameter τ (2.0-6.0) and turbulent 

Reynolds number Ret (22.0-110.0) on Favre-averaged SDR and its transport equation 

characterised for different LES filter widths Δ. An updated version of SENGA code: 

SENGA2 (Cant, 2012) was used to generate the DNS solution for a detailed turbulent 

methane-air premixed flames, which is post-processed here for the assessment of the 

modelling of SDR and its transport equation in the context of detail chemistry and 

transport. A schematic diagram of the above two DNS databases is shown in Fig. 4.1, 

where the DNS domain is considered to be a rectangular box with the flame propagating 

in the negative x-direction. The boundary condition in the direction of main flame 

propagation is chosen to be partially non-reflecting and are specified according to the 

Navier-Stokes Characteristic Boundary Condition (NSCBC) formalism in conjunction 

with Local One-Dimensional Inviscid (LODI) approximation (Poinsot and Lele, 1992; 

Jenkins and Cant, 1999). The transverse boundaries are chosen to be periodic to reduce 

the computational complexity.  

 

Partially non-reflecting 

z 

x 

y 

Figure 4.1: Description of computational domain for statistically turbulent premixed flames for both 
simple and detail chemistry DNS. 
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Numerical scheme of high accuracy is essential for DNS of turbulent combustion. In the 

above DNS solutions, a 10th order central-difference scheme is used to evaluate spatial 

derivatives at the internal grid points as: 

                                  
/2

'

1
( )

2

j m
j

i i j i j
j

a
f f f

jh

=

+ −
=

= −∑                                               (4.12) 

where m is the order of the approximation which is always even for a central difference 

scheme. Values of the constants ja  are obtained by Taylor expansion and equating 

coefficients of successive orders in h (Jenkins and Cant, 1999). A stencil width of eleven 

points is demanded for explicitly 10th order central difference scheme to ensure 5 grid 

points in each directions, which is feasible only at the inner grid points, whereas boundary 

points are treated with explicit finite differences of decreasing order of accuracy as the 

boundary is approached.  The order of differentiation gradually drops to a one-sided 4th 

order scheme near non-periodic boundaries. The time-advancement is carried out using a 

3rd order low storage Runge-Kutta scheme (Wray, 1990). One does not obtain any 

spurious fluctuations due to the 10th order central difference scheme and its transition to 

the lower-order finite difference scheme for sufficiently small grid spacing (e.g. η≤Δx  

where xΔ  and η  are the grid spacing and the Kolmogorov length scale respectively). 

Thus it was not necessary to use numerical filter to eliminate spurious oscillations. For 

detail chemistry database, the methane-air combustion is simulated based on a skeletal 

mechanism consisting of 16 species and 36 elementary reactions (Smooke, 1991). 

  

The initial velocity field of both simple and detail chemistry DNS databases were 

generated under the continuity constraint of incompressible flow (i.e. ∇. 𝑢 = 0) in spectral 

space where the turbulent kinetic energy spectrum )(κE , with κ  being the wave number 

magnitude in the Fourier space, has been specified according to Bachelor and Townsend 

(1948). A standard pseudo-spectral method has been used to generate the initial turbulent 

velocity field (Rogallo, 1981), whereas an unstrained planar steady laminar premixed 

flame solution has been used to initialise the flame.   

 

The simple chemistry DNS database consists of thirteen cases for the purpose of an 

extensive parametric analysis which is in turn used for developing algebraic and transport 

equation based SDR closure. The initial parameters of these thirteen cases are set in such 

a manner that the effects of Lewis number Le (0.34-1.2), heat release parameter τ (2.0-
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6.0) and turbulent Reynolds number Ret (22.0-110.0) can be investigated independently 

of each other. Table 4.1 lists the initial values of the important simulation parameters for 

the simply chemistry DNS database, which are the normalised rms velocity fluctuation 

Lu Sʹ , normalised integral length scale thl δ , turbulent Reynolds number Ret, Damkӧhler 

number Da, Karlovitz number Ka, heat release parameter τ  and the global Lewis number 

Le. Standard values are taken for the Prandtl number (i.e. Pr 0.7= ), ratio of specific heat 

capacities (i.e. / 1.4)P VC Cγ = =  and the Zel’dovich number (i.e. 

2
0( ) / 6.0ac ad adT T T Tβ = − = ) where acT  is the activation temperature. The computational 

domain is taken to be a cube of size 24.1 24.1 24.1th th thδ δ δ× ×  for cases A-E and cases K-

M, which has been discretised with a uniform Cartesian grid of 230 230 230× × , with 

about 10 grid points kept within thδ  for all cases considered here. 

 

Case Lu Sʹ  thl δ  Ret Da Ka τ Le 
A 7.5 2.45 47.0 0.33 13.2 4.5 0.34 
B 7.5 2.45 47.0 0.33 13.2 4.5 0.6 
C 7.5 2.45 47.0 0.33 13.2 4.5 0.8 
D 7.5 2.45 47.0 0.33 13.2 4.5 1.0 
E 7.5 2.45 47.0 0.33 13.2 4.5 1.2 
F 5.0 1.67 22.0 0.33 8.67 4.5 1.0 
G 6.25 1.44 23.5 0.23 13.0 4.5 1.0 
H 7.5 2.50 48.0 0.33 13.0 4.5 1.0 
I 9.0 4.31 100 0.48 13.0 4.5 1.0 
J 11.25 3.75 110 0.33 19.5 4.5 1.0 
K 7.5 2.45 47.0 0.33 13.2 2.0 1.0 
L 7.5 2.45 47.0 0.33 13.2 3.0 1.0 
M 7.5 2.45 47.0 0.33 13.2 6.0 1.0 

Table 4.1: Initial parameters for simple chemistry DNS database 

 

It can be seen from Table 4.1 that the value of Le number changes from 0.34 to 1.2 in 

cases A-E, but all remaining parameters are kept identical and thus the effects of Le can 

be investigated independently of other parameters using these cases. The three 

dimensional field of progress variable c ranging 0.1 to 0.9 at 𝑡C = 𝛿#E 𝑆G is shown for 

cases A-E in Figure 4.1. It is evident from Fig. 4.1 that the flame is wrinkled by the 

turbulence and the extent of flame wrinkling increases with decreasing Le, which will be 

explained in detail in the following subsection.  
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Figure 4.2: Instantaneous field of 0.1 < c < 0.9 isosurfaces at tc = δth/SL for cases A-E. 

Cases F-J are generated by changing Da (cases G-I) and Ka (cases F, H, J) independently 

of each other to bring about the change in Ret from 22.0 to 110.0 as Ret scales as 
2 2Re ~t Da Ka  (Peters, 2000). The computational domain for cases F-J is considered to 

be a rectangular parallelepiped of size 36.1 24.1 24.1th th thδ δ δ× × , which has been 

discretised with a uniform Cartesian grid of 345 230 230× × , with about 10 grid points 

kept within thδ  for all cases considered here.  The Instantaneous view of 0.01< c <0.99 

isosurfaces at tc = δth/SL for cases F-J are shown in Fig. 4.3, which demonstrates that the 

extent of wrinkling of the flame surface increases considerably with increasing turbulence 

intensity 𝑢′ 𝑆G. The cases D, K-M share identical parameters except the heat release 

parameter τ . It worth noting that for the cases, which are used to analyse the effects of  

τ  and Ret, Lewis number is kept as unity. 

A B C 

D E 



 
Chapter 4.   Numerical Implementation 

71 
 

 

Figure 4.3: Instantaneous field of 0.01 < c < 0.99 isosurfaces at τc = δth/SL for cases F-J. 

In all simple chemistry cases flame-turbulence interaction takes place under decaying 

turbulence, which necessitates the simulation time ( , )sim f cMaxτ τ τ≥ , where /f l uτ ʹ=  

is the initial eddy turn over time and /c th LSτ δ=  is the chemical time scale. In all cases 

statistics were extracted after one chemical time scale cτ . Chemical time scale cτ  

corresponds to a time equal to 3.0 fτ  in cases A-E (where Le number differs), cases F, H 

and J (where Ka is varied) and cases K-M (where τ  varies),  2.0 fτ  in case I and 4.34 fτ

for case H respectively. It is worth noting that the thermo-chemical parameters for the 

cases are chosen in such a manner that chemical time scale cτ  remains the same for all 

cases. The present simulation time is comparable to several previous DNS studies (Boger 

et al., 1998; Charlette et al., 2002a,b; Swaminathan and Bray, 2005; Swaminathan and 

Grout, 2006; Grout, 2007; Han and Huh, 2008,2009; Reddy and Abraham, 2012), which 

have contributed significantly to the fundamental understanding and modelling of the 

turbulent premixed combustion. By the time the statistics were extracted, the global 

turbulent kinetic energy and its dissipation rate in the unburned gas ahead of the flame 

were no longer changing rapidly with time. The global level of turbulent velocity 

fluctuation had decayed by about 50%, 52.66%, 61.11%, 45%, 24% and 34% in 

F G
F 

H
F 

I
F 

J
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comparison to the initial values for cases A-E and K-M, F, G, H, I and J respectively. By 

contrast, the integral length scale increased by factors 1.5 to 2.25 for cases A-M, ensuring 

that sufficient numbers of turbulent eddies were retained in each direction to obtain useful 

statistics. It worth noting that Ka remains larger than unity and the thermal flame 

thickness thδ  is greater than the Kolmogorov length scale η  at the time of analysis, 

suggesting that combustion takes place in the thin reaction zones regime for all the cases 

here (Peters, 2000).  The DNS cases considered here have been used extensively in 

several previous publications (Chakraborty et al., 2009; Chakraborty and Swaminathan, 

2010, 2011, 2013; Chakraborty and Cant, 2009a-c, 2011, 2013; Chakraborty et al., 

2011b-d; Chakraborty and Lipatnikov, 2013a,b) to analyse different aspects of turbulent 

premixed combustion and interested readers are referred to these publications for further 

information regarding these cases and for the conditions under which statistics were 

extracted. 

4.3.2 Turbulent V-flames 

Three detailed chemistry DNS cases of turbulent premixed V-flames of stoichiometric 

hydrogen air mixture at 0.1 MPa have been post-processed here. These cases consider 27 

elementary reactions involving 12 reactive species (H2, O2, H2O, O, H, OH, HO2, H2O2, 

N2, N, NO2, and NO) (Minamoto et al., 2011). CHEMKIN-II package have been used to 

calculate the temperature dependence of the viscosity, thermal conductivity, and diffusion 

coefficients (Kee et al., 1986, 1989). The diffusion velocity was modelled based on 

Fickian type diffusion with the diffusion effects of Soret, Dufour, and pressure gradient 

neglected. The unburnt reactant temperature is set to 700K for all these flames. A third-

order low storage Runge-Kutta method was used for time advance on the uniform grid 

mesh. The reaction terms are implicitly dealt with by using point implicit method. 

 

Figure 4.4 shows a schematic of the V-flame DNS configuration. The turbulent flame is 

anchored through a hot rod which is positioned at a distance of about 2.5 to 5mm away 

from the inflow boundary with a diameter thd δ≈ . The temperature inside the rod is fixed 

at 2000rodT K= . The velocity of the grid points on the rod are set to be zero and the mass 

fraction of these grid points are given the value of the mass fraction of the corresponding 

species in the burned gas , ,i rod i bY Y= , which subsequently creates a region of discontinuity 

for the values of velocities and mass fractions.  In order to resume the continuity of the 

simulation grids, a Gaussian function G has been applied to the turbulent velocity field 

and scalar field (temperature and species mass fractions) which is expressed as: 
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2

2

( )( , 0) ( )exp
2

w
rod

w

r rG r t G G G
r∞ ∞

⎡ ⎤−
= = − +⎢ ⎥

⎣ ⎦
                              (4.13) 

where G can denote flow velocity components, temperature or species mass fractions, r 

is the radial distance from the centre of the rod. 2wr d=  denotes the radius of the rod 

and the subscript “∞ ” denotes the free stream value which is equal to the values at inflow 

boundary, where the fluid velocity u  is assumed to be a sum of an average velocity 

( ,0,0)av avU u=  and the inlet turbulent velocity fluctuation inuʹ  which was obtained from 

an incompressible turbulent flow solution, as av inu U uʹ= + . The simulation has run for 3 

flow through time /D x avL uτ =  after initialisation, where xL  is the length of the domain 

in main flow stream direction (see Fig. 4.4). The simulation parameters for turbulent V-

flames post-processed are listed in Table 4.3. 

  

 
Figure 4.4: Schematic diagram of the V-shape flame DNS domain. 

Case Lu Sʹ  av Lu S  thl δ  Ret Da Ka 
V 2.2 10 1.6 60.8 0.73 1.3 

Table 4.2: Initial conditions of V-shape flames based on inflow turbulence characteristics 

The computational domain of case V is given in Table 4.4 below. 

Case Domain size (mm) Grid size 
V 10 5 5× ×  513 257 257× ×  

Table 4.3: Domain configurations of V-shape flames  
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The grid spacing of the three V-shape flame cases ensures that the thermal flame thickness 

thδ  is resolved by no less than 20 grids. The boundary layers near the rod are also resolved 

by the computational grid as well. The x-directions are taken to be inlet and outlet, 

whereas outflow boundaries are considered for y-direction boundaries. The NSCBC 

technique is used to specify inflow and outflow boundaries. The boundaries in Z-direction 

are considered to be periodic. 

 

4.3.3 Effects of Lewis number Le 

The instantaneous views of reaction progress variable isosurfaces corresponding to 

9.01.0 ≤≤ c  at Lthc Stt /δ==  and c field at the central x1 - x2 plane of the DNS domain 

after three eddy turn over time for cases A-E are shown in Figs. 4.1 and 4.5 respectively.  

Figure 4.5 shows that the level of flame wrinkling increases significantly with decreasing 

Le , which is consistent with several previous analyses (Chakraborty and Cant, 2011; 

Sivashinsky, 1977; Clavin, and Williams, 1982). The extent of the augmentation of flame 

wrinkling with decreasing Lewis number can be quantified from the values of normalised 

turbulent flame surface area /T LA A , which are presented in Table 4.4, where flame 

surface area A  is evaluated using the volume integral:  

V

A c dV= ∇∫                                                    (4.14) 

and the subscripts ‘T’ and ‘L’ are used to refer to turbulent and laminar flame values 

respectively.  An increase in flame wrinkling is reflected in the increase in burning rate 

in turbulent flames.  

 

Case Le LT AA /  LT SS /  
A 0.34 3.93 13.70 
B 0.6 2.66 4.58 
C 0.8 2.11 2.53 
D 1.0 1.84 1.83 
E 1.2 1.76 1.50 

 
Table 4.4: The effects of Lewis number on normalised flame surface area LT AA /  and 

normalised turbulent flame speed LT SS / when the statistics were extracted. 
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The extent of burning rate augmentation can be quantified from the values of the 

normalised turbulent burning velocity LT SS / , which for cases A-E are also presented in 

Table 4.4 where TS  is evaluated as: 

  
0

1
T

P V

S wdV
Aρ

= ∫                                               (4.15) 

with PA  being the projected area in the direction of mean flame propagation.  The values 

of /T LA A  and /T LS S  in Table 4.4 reveal that  ( / ) ( / )T L T LS S A A≈  roughly holds only 

for the 0.1=Le  case but /T LS S  assumes greater (smaller) values than /T LA A  in the 

flames with 1<Le  ( 1>Le ).1   

 

In the 1<Le  flames, the heat diffues at a slower rate than the rate at which fresh reactants 

diffuse into the reaction zone, which leads to the simultaneous presence of high 

temperature and reactant concentration, giving rise to faster flame propagation, higher 

extent of flame wrinkling, and greater burning rate than the unity Lewis number flame 

with statistically similar turbulence in the unburned gas. 

 

The simultaneous presence of high temperature and reactants concentration in the 

reaction zone significantly increases the overall consumption rate of reactants per unit 

area in comparison to the corresponding laminar flame value for the flames with 1<Le . 

Higher rate of thermal diffusion from the reaction zone than the rate of diffusion of fresh 

reactants in the 1>Le  cases gives rise to simultaneous presence of low temperature and 

reactant concentration, which in turn leads to a reduction in the overall consumption rate 

of reactants per unit area in comparison to the corresponding laminar flame values. 

 

                                                
1 It has been found / /t t

T L T LS S A A>  for 1.0Le <<  flames even when the area tA  is evaluated as 
t

V
A T dV= ∇∫  where 

0 0
ˆ( ) / ( )adT T T T T= − −  is the non-dimensional temperature. However,

/ /t t
T L T LS S A A≈  is maintained for the globally adiabatic low Mach number 1.0Le ≈  flames. 
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C       D  

 

E  

 
Figure 4.5: The reaction progress variable c field at the central x1 - x2 plane of the DNS domain 

after three eddy turn over time, for cases A-E. 
	
 

This leads to )/()/( LTLT AASS <  in the 2.1=Le  case (i.e. case E) considered here (see 

Table 4.5). In the flamelet regime of combustion (Peters, 2000), the consumption rate of 

reactants per unit area remains similar to the laminar flame values for unity Lewis number 

flames, which gives rise to )/()/( LTLT AASS ≈  in case D. As the mean/filtered reaction 
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rate has been found to be directly proportional to density-weighted Favre-mean/Favre-

filtered SDR (Bray, 1980) through BML approach )~  i.e.( cNw ρ∝! , the turbulent flame 

speed can be expressed as : 

0

1 ( )T c
P V

S N dV
A

ρ
ρ

∝ ∫                                              (4.16) 

Therefore the effects of Le  on LT SS /  and LT AA /   are expected to be reflected in the 

statistical behaviour of the SDR transport. 

 

4.3.4 Effects of turbulent Reynolds number Ret 

The contours of reaction progress variable in the central 21 xx −  plane for cases F-J are 

shown in Fig. 4.6, where the flame wrinkling increases with increasing / Lu Sʹ , which can 

be explained through the scaling relation: 
1 2

1 4 1 2/ ~ ~t
L t

Reu S Re Ka
Da

⎛ ⎞ʹ ⎜ ⎟
⎝ ⎠

                               (4.17) 

 The normalised turbulent flame speed /T LS S  and normalised turbulent flame area 

/T LA A  for cases F-J are listed in Table 4.6. This quantitatively demonstrates the 

augmentation of the flame surface area due to stronger turbulent wrinkling, leading to 

higher reaction rates. An increase in tRe  for a given value of Da leads to an increase in 

Ka, which separates the length scale between 𝛿#E and η. Thus, turbulent eddies with 

sufficient energy are more likely to penetrate into the flame and distort the thermo-

diffusive balance within the preheat zone for high values of Ka. 

 

Case Ret LT AA /  LT SS /  
F 22.0 1.1 1.83 
G 23.0 1.25 1.83 
H 47.0 1.85 1.83 
I 100.0 3.75 1.83 
J 110.0 3.80 1.83 

Table 4.5: The effects of turbulent Reynolds number Ret on normalised flame surface area 
LT AA /  and normalised turbulent flame speed LT SS / when the statistics were extracted. 
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Figure 4.6: Contours of c  in the central 21 xx −  plane for cases F-J at Lthc St /δ= . 

 

 

Case τ LT AA /  LT SS /  
K 2.0 2.04 2.01 
L 3.0 1.95 1.92 
D 4.5 1.84 1.83 
M 6.0 1.74 1.76 

 
Table 4.6: The effects of heat release parameter τ on normalised flame surface area LT AA /  and 

normalised turbulent flame speed LT SS / when the statistics were extracted. 
 

4.3.5 Effects of heat release parameter τ 

The heat release parameter τ characterises the temperature increase with respect with the 

initial temperature or temperature of the unburnt reactants. It is shown in Table 4.6 that 

an increase in heat release parameter τ will lead to a slight decrease in both /T LS S  and 

/T LA A . The scalar gradient is expected to increase with decreasing τ, which will enhance 
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the dilatational effects of smoothing the wrinkled flame surface (Chakraborty and Cant, 

2006). 

 

4.4 Summary 

In this chapter the governing equations and the underlying assumptions of the DNS 

databases were mentioned. These assumptions for the simple chemistry DNS databse are 

that the reaction mechanism was determined by a single step irreversible Arrhenius rate 

law, whereby allowing for the species held to be represented using a reaction progress 

variable, which is based on the product mass fraction. Additionally, the diffusion 

velocities was accounted for by using Fick's law. In the following chapter the reaction 

rate closure based on SDR in the context of LES will be introduced with a brief discussion 

of the modelling strategy for SDR based reaction rate closure.  
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Chapter 5. Reaction rate closure for LES: SDR approach 

 

 

SDR based reaction rate closure in the context of RANS has been introduced in detail in 

Chapter 2, where the Reynolds averaged chemical reaction rate can be seen to be  

modelled directly by the unresolved SDR. The model has been recast for the purpose of 

LES recently (Dunstan et al., 2013) based on a-priori DNS analysis of a single database  

turbulent premixed V-flame, which was introduced in Section 3.4. The SDR based 

reaction rate closure (eq. 2.30) for LES was reported to capture the filtered reaction rate 

closure for filter widths much larger than thermal flame thickness but cannot capture the 

local behaviours for relatively small filter widths, where further investigation and 

improvement are required. Therefore, in this chapter, the relationship between filtered 

chemical reaction rate and the filtered SDR for different filter widths will be discussed 

based on the explicitly filtered DNS data for different values of heat release parameter τ, 

Lewis number Le and turbulent Reynolds number 𝑅𝑒𝑡. The modelling assumptions will 

be elaborated from a statistical perspective in Sections 5.2 & 5.3, based on which a new 

reaction rate closure for LES using SDR approach of turbulent premixed combustion will 

be introduced in Section 5.4.   

 

5.1 Assessment of SDR based reaction rate closure for LES   

A recent a-priori DNS analysis (Dunstan et al., 2013) assessed the SDR based reaction 

rate closure which was originally proposed for RANS (i.e. eq. (2.30)) in the context of 

LES. The reaction rate model expression analysed by Dunstan et al. (2013) is given here 

as the original expression proposed by Bray (1979) was in the context of RANS:  

  
2

2 1

c

m

N
w

c





                                                       (5.1) 

where q  indicates Favre filtered value of a general quantity q  and the q  indicates a 

simple LES filtering operation. Eq. (5.1) was reported to remain valid for 
th   based 

on a single V-shape flame DNS database with 1.0Le   and the effects of heat release 



 

Chapter 5.  SDR based reaction rate closure  

81 

 

parameter   and turbulent Reynolds number tRe  on the applicability of eq. (5.1) was not 

considered.  

The above analysis is extended here by assessing eq. (5.1) with an DNS database of a 

range of different values of global Lewis number Le , heat release parameter   and 

turbulent Reynolds number tRe .  

 A B C D E 

      

 F H J L  

     

 

Figure 5.1: Variation of mean values of normalised reaction rate w


 ( ), normalised SDR 

based closure 
modw  ( ) conditional on c~  across the flame brush at th8.0  for cases A-

E, F, H, J and K. 
 

The variations of the normalised filtered reaction rate  0/th Lw w S     and the 

prediction given by eq. (5.1)  
02 / (2 1) /model c m th Lw N c S       conditional on c  values 

at 0.8 th   and 2.8 th   in cases A-J and L are shown in Figs. 5.1 and 5.2 respectively, 

which show that +

modelw  does not adequately predict w  for th , but satisfactorily 

predicts w  for th . 

 A B C D E 

      

 F H J L  

     

 

Figure 5.2: Variation of mean values of normalised reaction rate w


 ( ), normalised SDR 

based closure 
modw  ( ) conditional on c~  across the flame brush at 2.8 th   for cases A-

E, F, H, J and K. 
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Since the cases G and I are qualitatively similar to cases F and J, the results of these two 

cases are not shown in Figs. 5.1 and 5.2 and in subsequent figures. Figures 5.1 and 5.2 

show that the agreement between the normalised reaction rates obtained form DNS and 

SDR based closure (i.e. w
 and +

modelw ) improves with increasing  , which is consistent 

with the previous findings (Dunstan et al., 2013). The SDR closure eq. (5.1) was proposed 

based on two major assumptions (Bray, 1979): 

1.  Fast chemical reaction: 1Da   

2.  Presumed bi-modal probability density function of c with impulses at 𝑐 = 0 

and 𝑐 = 1 

According to the above assumptions, the probability of finding burning mixtures is 

negligible, and it needs to be assessed if such an assumption is valid within the sub-filter 

volume. The above assumptions are assessed in the following sub-sections. 

 

The above observation has been explained by showing the pdf of c at a given iso-surface, 

where the assumption of bi-modal pdf was found invoked for filter width close th   

and smaller than thermal flame thickness th  . Although LES will leave the premixed 

flame brush unresolved as a sub-grid phenomenon, where filter size th  , the above 

mismatch requires further investigation and simultaneously the behaviour of eq. (2.30) is 

subject to improvement in order to smoothly transfer the well behaved reaction rate 

closure in RANS eq.(3.45) into a LES feasible form.  

 

5.2 Sub-grid Damkӧhler number for different filter widths  

For the assessment of an LES model, the sub-grid/local Damkӧhler number Da  is more 

relevant than the global Damkӧhler number Da . The sub-grid Damkӧhler number Da  

can be defined as: 

L

th

S
Da

u 








                                                              (5.2) 

where u
  is sub-grid turbulent velocity fluctuation and can be defined based on sub-grid 

turbulent kinetic energy sgk  in the following manner: 
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 2 3sgu k
  , where 

1

2

i i
sg i i

u u
k u u





 
  

 
                                (5.3) 

where iu  denotes the ith component of the velocity vector. It worth noting that u
  can be 

explicitly calculated by post-processing DNS database as done here, but it requires 

modelling in actual LES.  

The variations of Da  conditional on c~  values for filter widths ranging from 0.4 th   

to th8.2  are shown in Fig. 5.3 for cases A-F, H, J and L. It can be seen from Fig. 5.3 

that Da  increases with increasing filter width   for all cases, which justifies the 

observed mismatch between  w  and +

modelw  for th   filter widths comparable or smaller 

than thermal flame thickness, as the assumption of 1Da   is not maintained.  

A B C D E 

     

F H J L  

     

Figure 5.3: Variation of 
Da  at filter widths ranging from 0.4 th   up towards 2.8 th    for 

cases A-E, F, H, J and K. 

 

5.3 Validity of presumed probability density function of reaction progress variable 

The pdfs of c within the filter volume corresponding to 5.0~ c  are shown in Figs. 5.4a 

and 5.4b for th8.0  and th8.2  respectively. It can be observed from the pdf 

profile that the for small filter width (i.e. th8.0 ), there exists considerable probability 

to find 0.5c c  , which represents burning mixtures. Although the pdf of c does not 

become bi-modal with increasing  , the probability of finding c c  increases with 

increasing   (compare Figs 5.4a and b for th8.0  and 2.8 th  ). Therefore, the 

second assumption is likely to be invalid in the context of LES for filter widths th  . 
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Figure 5.4: Pdfs of c at 0.5c   within the filter volume for (a) 0.8 th   and (b) 
th8.2   for 

cases A-F, H, J and L. 

 

Figures 5.3 and 5.4 together demonstrate that the probability of finding cc ~  within the 

filter volume increases significantly with increasing   and Da , which subsequently 

improves the agreement between the normalised reaction rates obtained from DNS and 

the SDR based closure (i.e. w
 and +

modelw ) as shown in Figs. 5.1 and 5.2. This observation 

is found to be consistent with previous findings by Dunstan et al. (2013). Therefore, the 

behaviours of eq. (5.1) for small filter widths (i.e. 
th  ). It worth noting that in most 

practical LES,   often assumes greater values than the largest filter width used here (i.e. 

2.8 th  ), where eq. (5.1) remain valid for the closure of w  according to Figs 5.1 and 

5.2, provided cN
~

 is appropriately modelled.  

 

5.4 A new reaction rate closure using SDR approach 

In order to improve the prediction of w  for th   as well as satisfying the limiting 

condition given by: ww   0lim , a modified closure for w  in the context of LES is 

proposed as:  

1

2
( , , ) exp 1 exp

(2 1)

c

th th m

N
w f c T

c


  

 

     
        

     
                    (5.4) 

where the model parameter   is given by: 

0.56 L

Z





                                              (5.5) 

where 1 maxL L
c    is an alternative flame thickness defined based on reaction 

progress variable c. It can be shown that 
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 L th   for flames with 1.0Le  ,  

 L th   for flames with 1Le  , 

 L th   for flames with 1Le  .  

In the new model (i.e. eq. (5.4)), 
1f  is a function which follows the Arrhenius law of 

chemical reaction rate (i.e. eq. (2.9)) but is based on the filtered density  , filtered 

reaction progress variable c  and filtered temperature T  in the following manner: 

1

(1 )
( , , ) (1 )exp

1 (1 )

T
f c T B c

T


 



 
   

  
                              (5.6) 

which ensures that  

1
0

(1 )
lim ( , , ) ( , , ) (1 )exp

1 (1 )

T
f c T f c T B c w

T


  



 
     

  
                 (5.7) 

where    0 0
ˆ

adT T T T T    is the non-dimensional temperature,  1     is a heat 

release parameter and   * expB B     with B  being the pre-exponential factor.  For 

multi-step chemistry, the reaction progress variable c  can be defined in terms of a suitable 

reactant mass fraction RY  or product mass fraction PY  of a species which is closely related 

to the chemical heat release as: 

 0

0

R R

R R

Y Y
c

Y Y 





 or  0

0

P P

P P

Y Y
c

Y Y





                                          (5.8)  

Thus the overall reaction rate can be defined as  

                                       
0

R

R R

w
w

Y Y 

 


 or 
0

P

P P

w
w

Y Y




                                        (5.9) 

where Rw   and Pw  are the reaction rate of the reacting species and product species based 

on which the progress variable is defined respectively, which can be expressed as:  

1
ˆ( , ,[ ])w f T q  where 1 2[ ] [ , ,..., ]Nq Y Y Y  is the scalar matrix with 1 2, ,..., NY Y Y  being the 

species mass fractions. Therefore in the context of multi-step multi-variate scenario the 

first term on the right hand side of Eq. (5.4) needs to be replaced by 

1
ˆ( , ,[ ]) exp( / )thf T q     where 1 2[ ] [ , ,..., ]Nq Y Y Y . Furthermore most industrial LES 
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are carried out for th  where the first term on the right hand side of Eq. (5.4) 

effectively vanishes so the exact form of 1f  is unlikely play an important role.  

 

 
A B C D E 

 
     

 F H J L  

     

 

Figure 5.5: Variation of mean values mean values of normalised reaction rate w


 ( ), 

normalised SDR based closure 
+

modelw  ( ) and the prediction of new reaction rate model (i.e. 

eq. 5.4) ( ) conditional on c  across the flame brush at 0.8 th   for cases A-E, F, H, J and 

K. 

 

 A B C D E 

      

 F H J L  

     

 

Figure 5.6: Variation of mean values mean values of normalised reaction rate w


 ( ), 

normalised SDR based closure 
+

modelw  ( ) and the prediction of new reaction rate model (i.e. 

eq. 5.4) ( ) conditional on c  across the flame brush at 2.8 th   for cases A-E, F, H, J and 

K. 

 

Figures 5.5 and 5.6 show the predictions of filtered reaction rate by eq. (5.4) along with 

the predictions of eq. (5.1).  Equation (5.4) ensures that the right hand side becomes w  

when 0  (i.e. th  ) and 2 / (2 1)c mw N c   is obtained for th . In addition 

it is possible to scale th/  as:  
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1/2 1/2~ ~ Re
th L

u
Da Da

S


  


                                           (5.10) 

which suggests that eq. (5.4) can be rewritten as: 

1 1 1

2
( , , ) exp 1 exp

(2 1)

c

L L m

Nu u
w f c T Da Da

S S c


   

 

     
        

    
                (5.11) 

   1/2 1/2 1/2 1/2

1 2 2

2
( , , )exp Re 1 exp Re

(2 1)

c

m

N
w f c T Da Da

c


     

     
  

     (5.12) 

where 1   and 2 0.626   for the simple chemistry cases are the appropriate model 

coefficients.  

The eqs. (5.11) and (5.12) tend towards 2 / (2 1)c mw N c   for high values of Da  for 

a given value of / Lu S
  and Re  respectively, which is consistent with improved 

agreement between  w   and 2 / (2 1)c mN c   with increasing Da  (compare Figs. 5.4-

5.6). Figures 5.5 and 5.6 suggest that eq. (5.4) satisfactorily predicts w  for all cases 

considered here for both th  and th .  

5.5 Summary 

It has been found that eq. (5.1) starts to satisfactorily predict w  obtained for DNS data 

for 2.0 th   for all assessed DNS cases of simple chemistry. In most engineering 

calculations   remains much greater than 2.0 th  so eq. (5.1) is likely to predict w   

satisfactorily for most industrial LES. However, the LES model given by eq. (5.1) fail to 

approach to the correct asymptotic value (i.e. w ) for small values of   (i.e. 0 ) for 

which an LES simulation approaches a DNS simulation which has been addressed by  

eqs. (5.4), (5.11) and (5.12). The satisfactory performance of eq. (5.4) indicates that w  

can be closed using SDR if cN  is adequately modelled, as filtered SDR itself requires 

modelling in LES as well. The modelling approaches of filtered SDR will be presented 

in Chapters 6 and 7 in detail.  

 



 

Chapter 6.  Algebraic Closure of SDR for LES  

88 

 

    

 

 

Chapter 6. Algebraic Closure of SDR in the context of LES  

 

 

As introduced in Chapter 5, it is possible to close the chemical reaction rate of turbulent 

premixed combustion based on properly modelled scalar dissipation rate. In non-

premixed combustion, SDR is often modelled by introducing the eddy diffusivity to 

characterise the turbulence effects on scalar mixing. However, such an approach ignores 

the involvement of chemical time-scale in the SDR in turbulent premixed combustion. 

The validity of eq. (5.1) provides the proof that SDR in premixed flames is dependent on 

chemical time scales along with turbulent mixing time scales. In turbulent premixed 

combustion, the transport equation of SDR can be closed if all unclosed terms in SDR 

transport equation is properly modelled in the context of both RANS and LES. Under the 

condition when the equilibrium is maintained for the generation and destruction of scalar 

gradient, it is possible to derive an algebraic closure of Favre-filtered/averaged SDR in 

both RANS and LES, which will be discused in detail here. Dunstan et al. (2013) 

investigated the possibility of extending an algebraic closure for the Favre-averaged SDR 

c  proposed by Kolla et al. (2009) for the SDR closure in the context of LES.  The a-

priori analysis by Dunstan et al. (2013) showed a good agreement between the SDR 

extracted from DNS and the model predictions. It worth noting that the analysis of 

Dunstan et al. (2013) was based on a single V-flame DNS data with unity global Lewis 

number and the effects of global Lewis number, heat release parameter   and turbulent 

Reynolds number Ret  were not addressed, which motivates the analysis presented here. 

 

Chakraborty and Swaminathan (2011) demonstrated that the algebraic c  model by Kolla 

et al. (2009) was inadequate for 1.0Le   flames and proposed modifications. This 

modified SDR model for RANS is extended to LES. The performance of this new model 

is evaluated using the DNS results for cN . Furthermore, this model performance is 

compared to a power-law based closure with a global exponent and inner cut-off scale 

(Dunstan et al.,2013) and a conventional model (Girimaji and Zhou, 1996), which is 

widely used for SDR closure in the context of passive scalar mixing.  
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The sub-grid turbulent velocity fluctuation (i.e. 2 / 3sgu k
   ) (where 

iu  is the ith 

component of fluid velocity and 0.5( / )sg i i i ik u u u u    is the sub-grid kinetic energy) 

is an input parameter to the algebraic model for cN  , which needs to be modelled in actual 

LES. In order to assess the effects of u
  modelling on cN  closure, the results of an 

algebraic SDR model with u
  evaluated according to the Smagorinsky-Lily model 

(Smagorinsky, 1963) of sub-grid eddy viscosity have been compared to the corresponding 

cN  predictions where the sub-grid turbulent velocity fluctuation u
  has been extracted 

from DNS data. 

 

6.1 Statistical analysis of filtered SDR and its transport equation 

For the purpose of convinience, the transport equation of SDR cN , which is eqs. (3.58-

3.64) in Chapter 3, is repeated here as (Swaminathan and Bray, 2005): 

1

1 2 3 4 2

( )( )
( )

j cc c

j j j

D

u NN N
D T T T T D f D

t x x x



  

        
     

                (6.1) 

where ju  is the  jth component of velocity vector and the terms on the left hand side denote 

the transient effects and the resolved advection of cN  respectively. The term 1D  

represents the molecular diffusion of cN  and the other terms 1 2 3 4 2, , , , ( )T T T T D  and 

( )f D  are all unclosed and given by: 

 1 j c j c

j

T u N u N
x

 


  


                                                         (6.2) 

2 2
i i j j

D c c
T w D

x x x x






     
    

      

                                                  (6.3) 

3 2 i

i j j

uc c
T D

x x x


 
 

  
                                                           (6.4) 

4 2
i i

w c
T D

x x

 


 
                                                                      (6.5) 

2 2
2

2( ) 2
i j i j

c c
D D

x x x x


 
  

   
                                                        (6.6)  
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           
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      

             

       (6.7) 

 

 

 

6.1.1 Local behaviours of cN   

The variation of 𝑁̃𝑐 × 𝛿𝑡ℎ/𝑆𝐿  with 𝑐̃ is shown in Fig. 6.1 for cases F, H, J and V where 

values of 𝑁̃𝑐 × 𝛿𝑡ℎ/𝑆𝐿 have been ensemble-averaged on c  isosurfaces for 0.4δth , 1.6δth 

and 2.8δth. The filter sizes 0.4δth and 2.8δth are representative of the situations where the 

flame is partially resolved and fully unresolved respectively. The cases G and I are not 

shown because of their qualitative similarity to cases F and J. It can be seen from Fig. 6.1 

that 𝑁̃𝑐 × 𝛿𝑡ℎ/𝑆𝐿 remains slightly skewed towards the burned gas side (i.e. 0.5c  ) for 

Δ<<δth (e.g. Δ=0.4δth) but the profile becomes more symmetric with the peak occurring 

close to 0.5c   for Δ>>δth  (e.g. Δ=2.8δth). It can also be seen from Fig. 6.1 that the 

magnitude of 𝑁̃𝑐 × 𝛿𝑡ℎ/𝑆𝐿 decreases with increasing filter width Δ due convolution 

operation over a larger volume where the contributions arising from the close to the centre 

of the filter volume are weighted more heavily. However, Fig. 6.1 suggests that 𝑁̃𝑐 ×

𝛿𝑡ℎ/𝑆𝐿 remains of the order of unity for all values of Δ for all cases.   
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F  H  

J  V2  

Figure 6.1 : Variation of /c th LN S  with c  at Δ=0.4δth ( ), Δ= 1.6δth ( ) and Δ= 2.8δth   (

) for cases  F, H, J and V2. 

 

Following Swaminathan and Bray (2005) the sub-grid part of c can be scaled as: 

 
1

( ) ~sg

th

c


                                                    (6.8)  

whereas the molecular diffusivity D can be taken to scale as  ~ L thD S   with ( )sgQ  and  

referring to sub-grid parts of 𝑄̃ respectively. Thus, the sub-grid component of cN  can be 

expressed as: 

           ( ) [ . ] ~ L
c sg c

th

S
N N D c c


                                              (6.9) 

The resolved part of cN  in turn scales as: 

    ( ) . ~ L
c res

th

S
N D c c


     for Δ<<δth                                  (6.10) 

 
2

1
( ) ~ ~L th L

c res

th

S S
N

Re Da



  
 for Δ>>δth                                                 (6.11) 
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where ( )resQ  refers to resolved parts of Q  , L

th

S
Da

u








 and 0

0

u
Re








 
  are the local 

Damköhler and turbulent Reynolds number respectively with u
 , ρ0 and μ0 are the sub-

grid scale velocity fluctuation, unburned gas density and viscosity respectively. Equations 

(6.9-6.11) suggest that ( )c resN  remains comparable to ( )c sgN  for small values of Δ (i.e. 

Δ<<δth) but ( )c resN  decreases progressively in comparison to ( )c sgN  with increasing Δ, 

and for Δ >> δth the Favre-filtered SDR cN  is principally made up of ( )c sgN  (i.e. 

( )c c sgN N ). As ( )c resN  decreases with increasing Δ, the magnitude of cN  decreases 

progressively with increasing Δ but remains of the order of /L thS   due to 

( ) ~ / .c sg L thN S   

 

6.1.2. Statistical nature of cN  transport 

The variations of the mean values of D1, T1, T2, T3, T4, (-D2) and f(D) conditional on 



˜ c  

values for 0.4δth , 1.6δth and 2.8δth for cases F, H, J and V2 are shown in Fig. 6.2. It is 

evident that T2, and (-D2) remain leading-order source and sink terms respectively for all 

filter widths. The contribution of T4  remains positive for the major portion of the flame 

brush before becoming negative towards the burned gas side for Δ<<δth  (e.g. Δ=0.4δth ) 

but for Δ>>δth  (e.g. Δ=2.8δth) the contribution of T4  remains a leading-order source term 

throughout the flame brush. For the cases considered here the contribution of T3 remains 

negative (positive) throughout the flame brush for all filter widths in cases F-J (case V2), 

whereas f(D) assumes negative (positive) values towards the unburned (burned) gas side 

of the flame brush for all cases for all filter widths. The magnitude of T1 remains 

negligible in comparison to the magnitudes of T2, T3, T4, (-D2) and f(D) for all filter widths 

in all cases. The molecular diffusion term D1 plays a key role for Δ<<δth (e.g. Δ=0.4δth) 

assuming comparable magnitudes as those of T2, T3, T4, (-D2) and f(D).  
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Figure 6.2: Variation of D1 ( ), T1 ( ), T2( ), T3 ( ), T4 ( ), (-D2) ( ) and 

f(D) ( ) with c  at Δ=0.4δth (1st column) and 2.8δth (2nd column) for  cases: F (1st row), H (2nd 

row),  J (3rd row) and V2 (4th row).  
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However, the magnitude of D1 becomes negligible in comparison to the magnitudes of 

T2, T3, T4, (-D2) and f(D) for Δ>>δth  (e.g. Δ=2.8δth). The molecular diffusion term D1 

scales in the following manner if the spatial gradients are scaled with respect to Δ: 

2 2

0 0
1 2 2

1
~ ~L L

th

S S
D

Re Da

 

  
 for  Δ>>δth                                  (6.12) 

2

0
1 2

~ L

th

S
D




 for  Δ<<δth                                                            (6.13) 

 

Equations (6.12) and (6.13) suggest that the magnitude of D1 is expected to decrease with 

increasing Δ. Figure 6.2 further indicates that the magnitudes of T2, T3, T4, (-D2) and f(D) 

decrease with increasing Δ and the observed behaviours in response to Δ will be 

explained. 

 

6.1.3. Statistical behaviour of T1 

The variations of the mean values of T1, conditional on c  values for cases F, H, J and V2 

are shown in Fig. 6.3 for different filter widths. It is evident from Fig. 6.3 that T1 assumes 

both positive and negative values across the flame brush. The behaviour of T1 depends on 

the statistical behaviour of the sub-grid flux of SDR (i.e. 
i c i cu N u N  ). The 

distributions of ( )i c i c iu N u N M   and ( / )c i iN x M   conditionally averaged on c  

isosurfaces are shown in Fig. 6.3 where ( / ) /i iM c x c      is the ith component of the 

resolved flame normal vector. Comparing the signs of ( )i c i c iu N u N M   and  

( / )c i iN x M   it is evident that the sub-grid flux of SDR shows predominantly gradient 

type transport (i.e. ( / ) /i c i c t c iu N u N Sc N x        ) for the case V2 but counter-

gradient transport has been observed for cases F-J. It is worth noting the sub-grid flux 

i c i cu N u N   assumes negligible values for Δ<<δth (e.g. Δ=0.4δth) and its magnitude 

increases with increasing Δ, as most of the turbulent transport takes place at the sub-grid 

level. If the sub-grid velocity fluctuations are scaled with respect to SL (Swaminathan and 

Bray, 2005) one obtains the following scaling argument for ( )i c i cu N u N  : 

                   
2

0~ L
i c i

th

S
u N u N


 


                                                     (6.14) 
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Alternatively, sub-grid scale velocity fluctuation can be scaled using u
  which yields: 

  0~ L
i c i

th

S u
u N u N


 





  for    Δ>>δth                                   (6.15) 

Using eq. (6.14) and scaling resolved gradients with respect Δ lead to the following 

scaling of T1: 

2 2

0 0
1 2 0.5 0.5

1
~ ~L L

th th

S S
T

Da Re

 

   
      for   Δ>>δth                           (6.16) 

 

   

   

   

   

Figure 6.3: The variation of T1, (1st column), ( )i c i c iu N u N M   (2nd column) and  ( / )c i iN x M   

(3rd column) with c  at Δ= 0.4δth ( ) , 1.6δth ( ) and 2.8δth( ) for cases F (1st row), H 

(2nd row), J (3rd row) and V (4th row).  
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Similarly, eq. (6.15) yields: 

             
2

0 0
1 2

1
~ ~L L

th th

S u S
T

Da

 

 







                                               (6.17) 

The values of Da  and Re   increase with increasing Δ (Dunstan et al., 2013) so it is 

expected that the magnitude of T1 decreases in comparison to 2 2

0 /L thS   with increasing 

Δ. Moreover, eqs. (6.16) and (6.17) indicate that the magnitude of T1 is expected to 

decreases with increasing Δ, which can be confirmed from Fig. 6.3.  

 

6.1.4. Statistical behaviour of T2 and T3 

The variations of the mean values of T2 and T3, conditional on c  values for cases F, H, J 

and V2 are shown in Fig. 6.4 for different filter widths. Using 0 / (1 )c     for low 

Mach number unity Lewis number flames leads to the following expression: 

                          
2 . cT uN                                                          (6.18) 

The dilatation rate .u  can be taken to scale with /L thS   (i.e. . ~ /L thu S  ) 

(Chakraborty et al., 2007) and thus the sub-grid and resolved component of T2 can be 

scaled as: 

                            
2

0
2 2

( ) ~ L
sg

th

S
T

 


                                                     (6.19) 

For Δ<<δth, 
0

2 2
( ) . ~

ref Li
res

i th

U Su
T D c c

x







  


                          (6.20) 

ForΔ>>δth, 
2

0
2 2 1.5 1.5

1
( ) ~

refL
res

th L

US
T

S Re Da



  

                                   (6.21) 

where Uref is a velocity scale representing the Favre-filtered velocity components iu .  

Equations (6.19-6.21) demonstrate that 2( )sgT  remains of the order of 2 2

0 /L thS    

irrespective of Δ. By contrast, the magnitude of 2( )resT  remains comparable to 2( )sgT  for 

~ref LU S  for Δ<<δth but the magnitude of 2( )resT  decreases with increasing Δ. Thus, the 
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magnitude of 2 2 2( ) ( )res sgT T T   decreases with increasing Δ but remains of the order of 

2 2

0 /L thS   .  

  

  

  

  

  

Figure 6.4: The variation of T2, (1st column) and T3 (2nd column) with c~  at Δ= 0.4δth ( ), 1.6 

δth ( )  and 2.8 δth ( ) for cases F (1st row), H (2nd row), J (3rd row) and V2 (4th row).  
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The contribution of 3T  can be expressed as: 

           2 2 2

3 2 ( cos cos cos ) cT e e e N                              (6.22) 

where ,e e   and e  are the most extensive, intermediate and the most compressive 

principal strain rates and their angles with c  are given by α, β and γ respectively. 

 

The scalar gradient c  aligns with e  when the effects of strain rate induced by chemical 

reaction chema  overcome the effects of turbulent straining turba  and vice versa 

(Chakraborty et al., 2007). The strain rate induced by chemical heat release is expected 

to scale as ~ /chem L tha S  . Following Meneveau and Poinsot (1991) the turbulent strain 

rate turba  can be scaled as: ~ /turba u l , which leads to / ~chem turba a Da  (Chakraborty 

and Swaminathan, 2007). 

 

 As 1Da   for the cases F-J, c  aligns with e  for the major portion of the flame brush 

leading to negative values of 3T .  In case V2, the effects of turba  dominate over the effects 

of chema  to give rise predominant alignment of c  with e  leading to positive values of

3T . The contributions of 3( )resT  and 3( )sgT  can be scaled as: 

                            
2

0
3 2

( ) ~ L
sg

th

S
T




                                                         (6.23) 

For Δ << δth : 
0

3 2
( ) ~

ref Li
res

i j j th

U Suc c
T D

x x x






 
 

  
                             (6.24) 

For Δ >> δth : 
2

0
3 2 1.5 1.5

1
( ) ~

refL
res

th L

US
T

S Re Da



  

                                          (6.25) 

Equations (6.23-6.25) demonstrate that 3( )sgT  remains of the order of 
2 2

0 /L thS   

irrespective of Δ. By contrast, the magnitude of 3( )resT  remains comparable to 3( )sgT  for 

~ref LU S  for Δ << δth but the magnitude of 3( )resT  decreases with increasing Δ. Thus, the 

magnitude of 3 3 3( ) ( )res sgT T T   decreases with increasing Δ but remains of the order of

2 2

0 /L thS  .  
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6.1.5. Statistical behaviour of T4, (-D2) and f(D) 

The variations of the mean values of T4, (-D2) and f(D) conditional on c  values for cases 

F, H, J and V2 are shown in Fig. 6.5 for different filter widths. The term T4 can be 

expressed as: 
4 2 /T D w n c      where n  is the spatial coordinate in the local flame 

normal direction and the flame normal vector /n c c     points towards the unburned 

gas side of the flame. For single step chemistry considered here the maximum value of 

reaction rate w  occurs close to 0.85c   (Chakraborty and Cant, 2004). This suggests that 

the probability of finding negative (positive) values of /w n    is significant for 0.85c   

( 0.85c  ), which gives rise to positive (negative) mean value of T4 towards the unburned 

(burned) gas side of the flame brush.  The molecular dissipation term (-D2) remains 

deterministically negative according to eq. (6.6).   

 

It is worth noting from Figs. 6.2 and 6.5 that f(D) remains weakly negative towards the 

unburned gas side before assuming positive values towards the burned gas side for all 

cases. The magnitude of the mean contribution of f(D) cannot be neglected even for cases 

F-J where ρD is considered to be constant.  

 

In cases F-J, [ / / ]c j jN D t u D x       for constant ρD can be expressed as: 

 

 2

2

j

c j c

j j

u TD D
N u DN

t x x
 

    
            

                                 (6.26) 

 

and the first three terms on the right hand side vanish for constant values of ρD. The 

contributions of the third and fourth terms on the right hand side of eq. (6.7) are 

responsible for the change in sign of f(D) in cases F-J. These terms are also principally 

responsible for sign change of f(D) in case V. Scaling the sub-grid reaction progress 

variable and reaction rate gradients using δth leads to following scaling estimates for 

4( ) ,sgT  2( )sgD  and ( )sgf D : 

2

0
4 2

( ) ~ ;L
sg

th

S
T




 

2

0
2 2

( ) ~ ;L
sg

th

S
D




  

2

0

2
( ) ~ ;L

sg

th

S
f D




                       (6.27)  

where the reaction rate w  is taken to scale with 0 L thS   (Swaminathan and Bray, 2005). 
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Figure 6.5: The variation of T4, (1st column) and (-D2) (2nd column) and f(D) (3rd column) with c~  

at Δ= 0.4δth ( ), 1.6δth ( )  and 2.8δth ( ) for cases F (1st row), H (2nd row), J (3rd 

row) and V (4th row).  

 

The resolved parts of T4, (-D2) and f(D) can in turn be scaled in the following manner for 

Δ>>δth: 

   
2

0
4 2

1
( ) 2 ~ L

res

i i th

Sw c
T D

x x Re Da



  

 


 
                                           (6.28) 

22 2
2 0

2 2 2 2

1
( ) 2 ~ L

res

i j i j th

Sc c
D D

x x x x Re Da




  

 
  

   
                          (6.29) 

              

2

0

2 2 2

1
( ) ~ L

res

th

S
f D

Re Da



  

                                                                 (6.30) 
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Equations (6.27-6.30) demonstrate that 4( )sgT , 2( )sgD  and ( )sgf D  remain of the order 

of 
2 2

0 /L thS   irrespective of Δ. By contrast, the magnitude of 4( )resT , 2( )resD  and 

( )resf D  decrease with increasing Δ. Thus, the magnitude of 4 4 4( ) ( )res sgT T T  , 

2 2 2( ) ( ) ( )res sgD D D      and ( ) ( ) ( )res sgf D f D f D   decreases with increasing Δ but 

remains of the order of 
2 2

0 /L thS  .   

 

 

6.2 Differential diffusion (Lewis number) effects on SDR and its transport equation 

The above section showed the behaviours of cN  and its transport for unity Lewis number 

flames of different turbulent Reynolds number and flame configuartion, however, the 

differential diffusion effects on SDR and its transport has not been shown yet. Lewis 

number has been reported to affect the behaviours of SDR and its transport equation 

significantly in the context of RANS (Chakraborty et al., 2009; Chakraborty and 

Swaminathan, 2010). The effects of Le on SDR and its transport in the context of LES 

will be demonstrated here in this section. The five cases A-E will be used here to 

demonstrate the effects of Le on the SDR cN
~

 transport. 

 

6.2.1 Effects of Le on  the statistical behaviour of SDR cN
~

  

The variations of the mean values of /c c th LN N S    conditional on bins of c  for cases 

A-E are shown in Fig. 6.6 for th4.0 , th6.1  and th8.2 . It can be seen from Fig. 6.6 

that the magnitude of cN  decreases with increasing Le for a given  . It has been discussed 

elsewhere (Chakraborty and Cant, 2011; Chakraborty and Swaminathan, 2010; Trouvé 

and Poinsot, 1994; Chakraborty and Klein, 2008) that the probability of finding high 

values of c  increases with decreasing Le. The augmentation of c  and w  with 

decreasing Le is particularly prevalent for 1.0Le   cases (e.g. 0.34Le   and 0.6), which 

can be substantiated from the values LT AA /  and LT SS /  reported in Table 4.5. The 

increased probability of finding high values of c  with decreasing Le gives rise to an 

increase in the mean value of cN 
 conditional on c  for a given  . It is worth noting that 

the thermo-physical parameters for cases A-E have been chosen to yield identical values 

of LS  and th  in all cases. Thus a comparison between the normalised values of SDR (i.e. 
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

cN
~

) in Fig. 6.6 provides information regarding the relative magnitudes of SDR between 

the cases considered here. Figure 6.6 shows that the variation of cN 
 is skewed towards 

the burned side of the flame brush with a peak value of SDR at 0.5c   for th   (e.g. 

0.4 th  ). However, the location of peak value of cN 
 progressively shifts close to 

0.5c   with increasing   for the 1.0Le   flames. However, the peak value location 

shifts towards 0.5c   for the 0.34Le   and 0.6 flames. A Gaussian filter kernel assigns 

more weight at the centre of the filtered domain and high values of c  are concentrated 

near the middle of the flame front.  

 

 

Figure 6.6: Variation of  mean values of c c th LN N S   (solid line) and . th LD c c S  

(dash line) conditional on bins of c  across the flame brush at 0.4 th   (red), 1.6 th   

(black) and 2.8 th  (green) for the Le=0.34(A), Le=0.6(B), Le=0.8(C), Le=1.0(D), Le=1.2(E) 

cases. 

 

These act to produce high values of cN 
 close to 0.5c   for th   (e.g. 2.8 th  ) 

for flames with 1.0Le   (e.g. cases C-E). The reaction progress variable c  field in the 

1.0Le   flames is significantly different from non-dimensional temperature  

0 0
ˆ( ) / ( )adT T T T T    field,  and   in these flames is dependent on both c  and T

~
 unlike 

0.1Le  flames where c~  and T
~

 are almost (identially equal for 0.1Le ) equal to each 

other. The 0.1Le  flames show higher extent of T
~

 variation for a given value of c~



 

Chapter 6.  Algebraic Closure of SDR for LES  

103 

 

than in the 0.1Le  cases due to weaker thermal diffusion. This increases the probability 

of obtaining smaller values of    in the 0.1Le  flames than in the 0.1Le  cases for a 

given value of c~ , which leads to a shift in the peak value location of 


cN
~

 towards 5.0~ c  

as a result of Favre-filtering for the 1Le  cases considered here (see cases A and B in 

Fig. 6.6).  

 

The variation of 


cN
~

 with c~  shown in Fig. 6.6 is qualitatively consistent with previous 

results in the context of RANS (Chakraborty et al., 2011). Figure 6.6 further indicates 

that the magnitude of 


cN
~

 decreases with increasing   for all cases considered here.  

Based on the definition of 1/ ( )L L
Max c   , the Favre-filtered SDR cN

~
 can be scaled 

as: 

                      ~ L
c

L

S
N


 irrespective of                                         (6.31) 

where the molecular diffusivity D  is scaled with respect to LLS   (i.e. LLSD ~ ).  Figure 

6.6 reveals that 


cN
~

 remains of the order of 0.1 , 

 

  / ~ (1)c th LN S O  irrespective of   due to 0.1~/ Lth  (see Table 6.1)        (6.32) 

 

The resolved part of the SDR (i.e. ccD ~.~~
 ) for th   can be scaled as: 

2 2

1
~ ~L L L

L

S S
D c c

Le Re Da



  

 


  and  

2

~
th

Re Da


 

 
 
 

                          (6.33) 

where the gradients of the resolved quantities are scaled with respect to  . Therefore 

ccD ~.~~
  is expected to decrease with increasing   and ccD ~.~~

  assumes comparable 

values to that of cN
~

 only for L . This behaviour can be substantiated from Fig. 6.6, 

which shows that the difference between cN
~

 and ccD ~~~
  increases with increasing   

and the sub-grid contribution ( ) ( )c sg cN N D c c     increases with an increase in  . 

For th   (or Re 1Da   ) ccD ~.~~
  remains much smaller than cN , which 

indicates the sub-grid part of SDR ( )c sgN  also remains of the order of /L LS   for L    
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(i.e. [ ] ~ /c L LN D c c S    ).  As shown by eqs. (6.31-6.33), it is expected that the peak 

value of cN
~

 conditional on bins of c~  decreases with increasing  , which is consistent 

with the observations from Fig. 6.6. Moreover, the weighted averaging process involved 

in LES filtering leads to a decrease in the peak value of cN
~

 conditional on bins of c~  with 

an increase in  , as the sub-filter volume includes an increasing number of samples with 

small values of ccDNc   for th . 

Quantities Scaling estimates 

cN
~

 

L

LS


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Table 6.1: Summary of the scaling estimates of cN
~

 and the terms of its tranport equation. 
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6.2.2 Effects of Le on SDR cN
~

 transport  

The variations of the mean values of the unclosed terms of the SDR transport equation 

conditional on c~  values for th4.0  and th8.2  are shown in Fig. 6.7 where the 

magnitudes of these terms are normalised by 22
0 / thLS  , which remains the same for all 

cases considered here. It can be seen from Fig. 6.7 that the magnitude of 1T  remains 

negligible in comparison to the magnitudes of )(,,, 2432 DTTT   and )(Df  for all filter 

widths in all cases so that )(,,, 2432 DTTT   and )(Df  remain leading order contributors 

to the SDR cN
~

 transport irrespective of Δ, which is consistent with previous findings in 

the context of RANS (Chakraborty and Swaminathan, 2010). It can be seen from Fig. 6.7 

that 2T  acts as a source term for both th  and th   in all cases irrespective of 

Le. The magnitude of 2T  shows an increasing trend with decreasing Le  and especially for 

the 34.0Le  and 0.6 cases 2T  assumes much greater values than in the 0.1Le  cases 

(i.e. cases C-E) for a given value of Δ. It can be seen from the LT SS /  values in Table 4.5 

that the rate of burning in turbulent flames increases with decreasing Le, which acts to 

produce greater extent of density-change for small values of Le , leading to an increasing 

magnitude of 2T  with decreasing Le. For low Mach number globally adiabatic flames 

with Le=1.0 yields cNuT )(22


  . As dilatation rate )( u


  remains predominantly 

positive in premixed flames, the density-variation term 2T  assumes positive values 

throughout the flame brush for case D. The non-dimensional temperature T increases with 

increasing c  within the flame front, which leads to a positive value of T c   throughout 

the flame front for all cases. This along with the predominant positive values of the 

reaction-diffusion balance  ( )w D c   leads to positive values of 2T  throughout the 

flame brush for all cases irrespective of the value of Le .  
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Figure 6.7: Variation of mean values of T1 ( ), T2 ( ), T3 ( ), T4 ( ), (-

D2) ( ) and f(D) ( ) conditional on bins of c  at Δ≈0.4δth (1st column) and 2.8δth (2nd 

column). All the terms are normalised by 
2 2

0 L thS   for the Le=0.34 (A), Le=0.6 (B), Le=0.8 (C), 

Le=1.0 (D), Le=1.2(E) cases. 

 

The term 3T  assumes negative values throughout the flame brush for the Le = 0.34 and 

0.6 cases, whereas this term assumes positive values near both the unburned and burned 

sides of the flame brush for th  (e.g. 0.4 th  ) for the 1.0Le   cases. The scalar 

turbulence interaction term 3T  assumes negative values for the major part of the flame 

brush but positive values can be discerned towards the unburned gas side of the flame 
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brush for the 0.1Le  cases for th . As shown in the previous section, the term 3T  

can alternatively be expressed as eq. (6.22): 

2 2 2

3 2 ( cos cos cos )cT N e e e          

where e , e  and e  are the most extensive, intermediate and most compressive 

principal strain rates and  ,  and   are the angles between c  and e , e  and e  

respectively. 

 

It is evident that a predominant collinear alignment between c  and e  ( e ) leads to a 

negative (positive) contribution of  3T  . The probability density functions (pdfs) of cos  

and cos  on five different c  isosurfaces across the flame front are shown in Fig. 6.8. A 

high probability of finding cos 1.0   ( cos 1.0  ) indicates a predominant collinear 

alignment of c  with e  ( e ). Figure 6.8 shows that c  aligns predominantly with e  

for the Le = 0.34 and 0.6 cases (i.e. cases A and B), which leads to negative contributions 

of 3T  in these cases. By contrast, in the 1.0Le   cases c  aligns predominantly with e  

both on unburned and burned gas sides of the flame, where the effects of heat release are 

weak. However, in the 1.0Le   cases c  starts to align predominantly with e   for the 

major part of the flame brush, where the effects of heat release are strong. This alignment 

statistics for the 1.0Le   cases lead to predominantly negative contribution of 3T  for the 

major part of the flame brush but the local alignment of c  with e  both on unburned 

and burned gas sides of the flame leads to positive contribution of 3T  near both the 

unburned and burned sides of the flame brush for th  (e.g. 0.4 th  ). The local 

information is progressively smeared with increasing   due to the convolution operation 

associated with LES filtering, and thus only positive values of 3T  have been observed 

towards the leading edge of the flame brush for th  for  the 1.0Le    and 1.2 cases. 
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Figure 6.8: Pdfs of cos  (1st column) and cos  (2nd column) on c = 0.1, 0.3, 0.5, 0.7 and  0.9 

isosurfaces for the Le = 0.34(A), Le = 0.6(B), Le = 0.8(C), Le = 1.0(D), Le = 1.2(E) cases.   

 

The strain rate chema  arising from flame normal acceleration can be taken to scale as:  

~ ( , ) L
chem

th

S
a g Ka Le



 
 
 

                                         (6.34) 
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where g  is a function which is expected to decrease with increasing Ka  as the reacting 

flow field for high values of Karlovitz number starts to show attributes of the broken 

reaction zones regime (Peters, 2000) where the effects of heat release are expected to be 

weak. However, g  is also expected to increase with decreasing Le  as the effects of flame 

normal acceleration strengthen with decreasing Le  due to augmentation of burning rate 

(see Table 4.5)1. Scaling turba  as: ~turba u l  (Meneveau and Poinsot, 1991)  or

~turba u   (Tennekes and Lumley, 1972) where   is the Taylor micro-scale, yields 

respectively: 

 ~ ( , )chem

turb

a
g Ka Le Da

a
                                                        (6.35) 

1/2

( , )
~ ( , ) ~

Re

chem

turb t

a Da g Ka Le
g Ka Le

a Ka




 
 
 

                        (6.36) 

 As g  increases with decreasing Le ,  the strain rate due to flame normal acceleration 

chema  dominates over turbulent straining turba  to give rise to a preferential alignment of 

c  with e  for the 34.0Le  and 0.6 cases. In the Le = 0.8, 1.0 and 1.2 cases chema  

dominates over turba  only in the region where the flame normal acceleration due to heat 

release is strong enough to induce turbchem aa  . However, turba  dominates over chema  on 

both unburned and burned gas sides of the flame brush where the effects of heat release 

are relatively weak.  For 1Le  cases (e.g. 34.0Le  and 0.6 flames considered here) 

turbchem aa  , leading to large negative contributions of 3T  , which are comparable to the 

magnitude of the molecular dissipation term )( 2D . For the low Damköhler number 

0.1Le  cases considered here (e.g. cases C-E) turbchem aa ~  and thus the effects of  chema  

are partially nullified by the influences of turba . This results in a relatively smaller 

magnitude of 3T  in the 0.1Le  cases than in the 1Le  cases (see Fig. 6.7). 

                                                 
1 The exact form of g  is not important for the purpose of this scaling analysis. 
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Figure 6.9: Variations of (a) 0/ ( )th Lw w S     ( ), (b) 
thc c 


     ( ), (c)  

2

0( / ) / ( )th Lw n S       ( ) and (d) 
2 2

0( / ) th LY D w n c S       ( ) with c 

for the Le=0.34(A), Le=0.6(B), Le=0.8(C), Le=1.0(D), Le=1.2(E) cases. 

 

The term 4T  behaves as a source (sink) term towards the unburned (burned) gas sides of 

the flame brush for all cases for th  (e.g. 0.4 th  ). However, T4 acts as a leading 

order source term throughout the flame brush for all cases for th  (e.g. 

thm 8.228  ). Figure 6.7 also indicates that the magnitude of T4 increases with 

decreasing Le. The term 4 2T D w c    can alternatively be expressed as: 

cnwDT  )/(24
  where n  is the flame normal direction and ccn  /


 is the 

flame normal vector, which points towards the unburned gas side of the flame.  The 

variations of the mean values of nomrliased reaction rate 0/ ( )th Lw w S    ,  

normalised magnitude of reaction progress variable gradient 
thc c 


     and 

normalised reaction rate gradient in flame normal direction 
2

0( / ) / ( )th Lw n S       

conditional on bins of c  are shown in Fig. 6.9 , which shows 
  assumes negative values 

for the major part of the flame brush except the burned gas side where 
  is positive.  

For single step chemistry the maximum value of w  occurs close to 0.8c  , which 

suggests that the probability of finding negative (positive) values of 
  is significant for 
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8.0c  ( 8.0c ). The variations of the mean values of 
2 2

0( / ) th LY D w n c S        

conditional on bins of c  across the flame front for different values of Le  are also shown 

in Fig. 6.9, which shows that   assumes negative values for the major part of the flame 

front before assuming positive values towards the burned gas side, and the magnitude of 

  increases significantly with decreasing Le . The negative (positive) values of   and 

  lead to positive (negative) values of cnwDT  )/(24
  when the flame is 

partially resolved (i.e. th , for example th4.0 ), which can be confirmed by Figs. 

6.7 and 6.9.  For th , the flame is completely unresolved and thus the sub-filter 

volume includes more positive samples with high magnitudes of ))/(2( cnwD    than 

the negative samples which are confined only in a small region within the flame front. 

This leads to predominantly positive values of 4T  throughout the flame brush for th  

(e.g. th8.2 , see Fig. 6.7).  It is evident from Fig. 6.9 that the magnitudes of 
w , 

  

and  increase with decreasing Le  and this trend is especially strong for the 1Le  

cases (e.g. 34.0Le  and 0.6 cases considered here). The high magnitudes of 

cnwD  )/(   for small values of Le  (see Fig. 6.9) give rise to an increasing magnitude 

of  cnwDT  )/(24
  with decreasing Le.  

 

Figure 6.7 shows that the molecular dissipation term )( 2D  acts as a leading order sink 

term for all cases irrespective of Δ. However, the magnitude of )( 2D  also increases with 

decreasing Le.  It is worth noting that the components of the tensor c  (where the 

components of c  are given by ji xh  /  with ih  being ixc  / ) assume non-zero values 

only in the flame front and 
1

c  provides a measure of the local flame thickness where 

c  remains active.  The probability of finding high values of c  increases signficantly 

with decreasing Le (see Table 4.5 and Fig. 6.9), which indicates a high probability of 

finding thin flame front for small values of Le . This acts to increase the magnitude of the 

components of c , which, along with an increase in mass diffusivity D  with decreasing 

Le , leads to high magnitudes of )( 2D  for small values of Le  at a given  . 
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The term )()( 1 DfDf   assumes negative (positive) values towards the unburned 

(burned) gas sides of the flame brush with the transition taking place close to the middle 

of the flame brush for all cases for Δ<<δth (e.g. Δ≈0.4δth).  However, the magnitude of the 

negative contribution of )(Df  remains smaller than the positive contribution for Δ<<δth, 

which indicates that the negative contribution of )(1 Df  on the unburned gas side also 

remains smaller than the positive )(1 Df  contribution on the burned gas side. The high 

magnitude of positive samples of )(1 Df  overcomes the negative contributions of )(1 Df  

in the filter volume for th  (e.g. Δ≈2.8δth), which gives rise to predominantly 

positive values of f(D) for the major part of the flame brush. In cases A-E, 5FD  can be 

expressed as: 5 ( / )c j jFD DN u x    (i.e. for constant ρD) and the first two terms 1FD  

and 2FD  on the right hand side of eq. (6.7) vanish for constant values of ρD. The 

contributions of the third and fourth terms on the right hand side of eq. (6.7) ( 3FD  and 

4FD ) are responsible for the change in sign of ( )f D  within the flame brush.  

 

It can be seen from Fig. 6.7 that the magnitudes of )(,,,, 24321 DTTTT   and )(Df  are 

significantly affected by  , and the filter size dependences of the unclosed terms of the 

SDR cN
~

 transport equation will be discussed next in thiscChapter. 

 

6.2.3 Scaling estimate and filter size dependence of turbulent transport term T1 

The variations of the mean values of  the turbulent transport term 1T  (see eq. 6.2 for its 

definition) conditional on bins of c  for cases A-E are shown for Δ≈0.4δth, 1.6δth and 2.8δth 

in Fig. 6.10, which shows that 1T  assumes negative values towards both unburned and 

burned gas sides while attaining positive values in the middle of the flame brush for all 

cases considered here. Equation 6.2 and the previous section has shown that 1T  is closely 

related to the sub-grid flux of SDR ( )sg

i i c i cF u N u N   . The variation of mean values 

of ( )sg

i i i c i c iF M u N u N M    and ( / )c i iN x M   conditional on bins of c~  are also 

shown in Fig. 6.10. It can be seen from Fig. 6.10 that 
sg

i iF M  and ( / )c i iN x M   

predominantly show same (different) signs for major portion of the flame brush in case 

A-C (cases D-E). A gradient hypothesis based closure for sgF  yields: 

( / )sg

t N cF N     where t  is the eddy viscosity and N  is a suitable Schmidt 
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number. Thus, the same (different) signs of i

sg

i MF  and iic MxN )/
~

(   indicate a counter-

gradient (gradient) transport of SDR. Figure 6.10 indicates that a gradient transport is 

prevalent (i.e. ( / )sg

i c iF N x   ) for cases D and E for Δ>>δth, whereas a predominantly 

counter-gradient transport has been observed for cases A-C for Δ>>δth, which is 

consistent with a previous analysis in the context of RANS (Chakraborty and 

Swaminathan, 2010). The flame normal acceleration strengthens with the augmentation 

of heat release with decreasing Le , and a counter-gradient transport is obtained when the 

effects of flame normal acceleration overcome the effects of turbulent velocity 

fluctuations and vice versa.  The effects of Le  on turbulent transport have been discussed 

elsewhere (Chakraborty and Cant, 2009; 2009a; 2009b) and thus will not be addressed 

here. The aforementioned scaling arguments yield:  

2
0.5 0.50 2 0 2

1 2

( ) ( )
~ ~ ReL c L

th

g Le S N g Le S
T Le Da

   



 

  


 for 
th                            (6.37) 

In eq. (6.37) the sub-grid flux of SDR is scaled as: 

2

0 2 0 2( ) ~ ( ) ~ ( ) L
i c i c L c

L

S
u N u N g Le S N g Le     


                        (6.38) 

where the sub-grid velocity fluctuations are scaled with respect to 2 ( ) Lg Le S  where 

)(2 Leg  is a function (the exact form is not important for the purpose of this scaling 

analysis) which increases with decreasing Le  and accounts for strengthening of flame 

normal acceleration with decreasing Le  .  

 

Alternatively, the sub-grid velocity fluctuations can be scaled using 
u  as: 

 0 0( ) ~ ~i c i c c L Lu N u N u N S u     
  . Accordingly, T1 could be scaled in the 

following manner: 

2
10 0

1 2
~ ~L L

L th

S u S
T Le Da

 

 





 


 for th                                       (6.39) 

Equation (6.37) is more suitable for counter-gradient transport as LSu 
  whereas eq. 

(6.39) is proper for gradient transport for  LSu 
 . For the cases considered here a 

combination of counter-gradient and gradient transport has been observed (see Fig. 6.10) 

and thus both eqs. (6.37) and (6.39) remain relevant. Equations (6.37) and (6.39) indicate 
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that the magnitude of T1 is expected to decrease with increasing Δ, as 

)/)(/( 
 uSDa Lth  and 2)/(~Re thDa   increase with increasing Δ (Dunstan et 

al., 2013). 

 

 

Figure 6.10: Variation of mean values of 2 2

1 0th LT S   (1st column),   2

0i c i c i th Lu N u N M S      

(2nd column) and   2

c i i th LN x M S    (3rd column) conditional on bins of c  at Δ≈0.4δth (

), 1.6δth ( ) and 2.8δth ( ) for the Le=0.34(A), Le=0.6(B), Le=0.8(C), Le=1.0(D), 

Le=1.2(E) cases. 

 

It is evident from Fig. 6.10 that the magnitude of 1T  indeed decreases with increasing .  

Moreover, the scaling estimates /
~

)(~ 201 cLNSLegT   and 
 /

~
~ 01 cNuT   indicate 

an increasing trend of 1T  with decreasing Le  due to high values of cN
~

 and )(2 Leg  for 

small values of Le . This can also be substantiated from Fig. 6.10, which shows that the 

magnitude of 1T  increases with decreasing Le  for a given  . 
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It is worth noting that the sub-grid flux of reaction progress variable )~~( cucuR ii

sg

i    

can be scaled with respect to LSLeg )(20  ( 
u0 ) in the case of counter-gradient 

(gradient) transport where LSu 
  ( LSu 

 ). This leads to the following scaling 

relations for )
~~( cici

sg

i NuNuF    and 1T :  

 

( ) ~ ( )i c i c i i cu N u N u c u c N       and 
1

( )
~ i i cu c u c N

T
 


 for th         (6.40) 

 

Equation (6.40) remains valid for both gradient and counter-gradient transport. Moreover, 

eq. (6.40) indicates that the modelling of  sub-grid flux of SDR 
sg

iF  is closely related to 

the closure of sub-grid scalar flux 
sg

iR . This is consistent with previous findings 

(Chakraborty and Swaminathan, 2010) in the context of RANS, which demonstrated that 

the statistical behaviour and modelling of Reynolds fluxes of SDR and the scalar are 

closely related and one obtains counter-gradient (gradient) transport of Reynolds flux of 

SDR where turbulent scalar flux shows counter-gradient (gradient) behaviour. Equation 

(6.40) further indicates that the modelling of sub-grid flux of SDR 
sg

iF  and turbulent 

transport term 1T  in the context of LES depends on accurate modelling of sub-grid scalar 

flux 
sg

iR . Thus the models for 
sg

iF  and 1T  should be proposed in terms of 
sg

iR  so that 

both counter-gradient and gradient transports of SDR can be appropriately accounted for 

in LES of premixed turbulent combustion. It is worth noting that failing to address 

counter-gradient transport of 
sg

iF  could potentially lead to artificial thickening of the 

flame. Under extreme conditions, transported SDR could provide high unrealistic values 

of SDR and filtered reaction rate in the burned gas side of the flame brush in the absence 

of accuarate turbulent transport modelling.  

 

6.2.4 Scaling estimates and filter size dependences of the density-variation term, T2, 

and the scalar-turbulence interaction term, T3 

The contribution of the density variation term, 2T  (defined in eq. (6.3)),  for low Mach 

number unity Lewis number flames can be expressed as cNuT

 22 which does not 

strictly hold for non-unity Lewis number flames, but 2T  could still be scaled as: 
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cNuT

2~2 . Chakraborty et al. (2009) proposed that the dilatation rate u


  could be 

scaled as:  

1
~ L

m

th

S
u

Le





 
   

 
                                                 (6.41) 

 where m  is a positive number, but greater than unity (i.e. 1m ), which suggests that 2T  

can be scaled as: 

21

2

0
2 ~

th

m

L

Le

S
T






                                                        (6.42) 

The resolved part of 2T  (i.e. 2( )resT ) can be scaled in the following manner for th :  

2

0
2 2 1.5 1.5

1
( ) ~ ~

Re

j refL
res

k k j th L

u USc c
T D

x x x S Le Da




  

 
 

  
 for Δ>>δth            (6.43) 

where Uref  is a velocity scale representing the Favre-filtered velocity components iu  and 

the length scale associated with resolved scale velocity gradients is taken to scale with   

for th . Equations 6.42 and 6.43 show that the contribution of 2( )resT  to 2T  decreases 

with increasing  .  Also the high probability of obtaining small values of 

 2( / ) . .D w D c c          with increasing  , as large values of 

 2( / ) . .D w D c c          and cN  are confined within the flame front, further 

reduces the magnitude of 2T  with increasing  .  However, 
2

0

2

2 / Lth ST   remains of the 

order of 
1/ mLe  irrespective of  . The aforementioned behaviour of 2T  in response to 

  and Le  can be verified from Fig. 6.11 where the variations of the mean values of 2T  

conditional on bins of c  for cases A-E are shown for th4.0 , th6.1  and th8.2 .  

 

The predominant negative values of  the scalar turbulence interaction term 3T  (see eq. 

(6.4) for its definition) indicates a predominant c  alignment with e , and the 

dominance of chema  over turba . For  Le ≠ 1 flames chema  can be taken to scale with 

)/(~ thL

n

chem SLea 
 where n  is a positive number greater than unity (i.e. 1n ). This 

can be utilised to scale 3T  as: 
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2

0
3 1 2

~ ~ L
chem c n

th

S
T a N

Le





                                                   (6.44) 

whereas the resolved part of 3T  (i.e. 3( )resT ) can be scaled in the following manner for 

th : 

2

0
3 2 1.5 1.5

1
( ) 2 ~

Re

refi L
res

i j j th L

Uu Sc c
T D

x x x S Le Da




  

 
   

  
                        (6.45) 

 

Figure 6.11: Variation of mean values of 2 2

2 0th LT S   (1st column) and 
2 2

3 0th LT S   (2nd 

column) conditional on bins of c  at  Δ≈0.4δth ( ), 1.6δth ( ) and 2.8δth ( ) for the 

Le=0.34(A), Le=0.6(B), Le=0.8(C), Le=1.0(D), Le=1.2(E) cases. 
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Equations (6.44) and (6.45) indicate that the contribution of 3( )resT  to 3T  progressively 

decreases with increasing  , which along with an increased probability of obtaining 

small magnitudes of 
cNeee )coscoscos(2 222     within the filter volume, 

leads to a reduction in magnitude of 3T  with increasing  .   This can also be substantiated 

from Fig. 6.11 where the variations of the mean values of 3T  conditional on bins of c  for 

cases A-E are shown for Δ≈0.4δth, 1.6δth and 2.8δth.  Equations (6.44) and (6.45) indicate 

that the magnitude of 3T  for a given filter width is expected to show an increasing trend 

with decreasing Le , which is consistent with the variation of 3T  shown in Fig. 6.11.  

 

It is worth noting that 3T  can alternatively scaled based on /~ uaturb
  as: 3 ~ ,turb cT a N  

which yields an alternative scaling estimate of 3T  subject to the inertial range 

assummption 
 /~)/)(/( 322 uu  : 

2 21/2

0 0
3 2 1/2 2 1/2

Re
~ ~ ~L L

turb c

th th

S SLe Le
T a N Ka

Pr Da Pr

 


 






                        (6.46) 

Equation (6.46) is more appropriate for high Karlovitz number combustion where the 

effects of heat release are expected to be weak. However, both eqs. (6.44) and (6.46) 

indicate that 3T  is expected to play a key role in the SDR cN  transport, which is consistent 

with the observations made from Fig. 6.7.  

 

6.2.5 Scaling estimates and filter size dependences of the reaction rate contribution, 

T4, molecular dissipation term, (-D2), and the diffusivity gradient term, f(D) 

The reaction rate gradient nw  /  can be scaled as 2

0/ ~ ( ) ( / )L thw n Le S      where 

)(Le  is a function, which increases with decreasing Le in order to account for the 

augmentation of the magnitudes of nw  /  (see Fig. 6.12) with decreasing Le. The above 

information can be utilised to obtain following scaling estimates for the reaction rate 

contribution, T4  (defined in eq. 6.6), and the resolved component of T4 for  Δ>>δth: 

2

2

0
4

)(
~

th

LSLe
T




                                                                       (6.47) 

2

1 0
4 2

( ) 1
( ) 2 ~ L

res

i i th

Le Sw c
T D

x x LeRe Da

 

  

 
 

 
                                 (6.48) 
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where w  is scaled as 1 0~ ( ) ( / )L thw Le S    with 1( )Le  being a function, which 

increases with decreasing Le  to account for high burning rate for low Lewis number 

flames (see Table 4.5 and Fig. 6.9). It is worth noting that the exact mathematical 

expressions of   and 1  are not important for the purpose of this scaling analysis. 

 

Figure 6.12: Variation of mean values of 2 2

4 0th LT S   (1st column) , 2 2

0( )2 th LD S    (2nd 

column) and 2 2

0( ) th Lf D S   (3rd column) with c  at Δ≈0.4δth ( ), 1.6δth ( )  and 2.8δth 

( ) for the Le=0.34(A), Le=0.6(B), Le=0.8(C), Le=1.0(D), Le=1.2(E) cases. 

 

It has already been discussed earlier in this analysis that the components of c  is expected 

to assume high magnitudes for small values of Le  because of thinning of the flame front 

(see Figs. 6.6 and 6.9). Thus, the components of c  could be scaled as: 
2~ ( ) /c thLe    
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where ( )Le  is a function (again the exact mathematical expression is not important for 

this analysis), which increases with decreasing Le in order to account for the thinning of 

flame front for small values of Le  (see Figs. 6.6 and 6.9).  Using 2/)(~ thc Le    yields 

following scaling estimates for the molecular dissipation term )( 2D (see eq. (6.6) for 

its definition) and its resolved component 2( )resD  for th : 

2 2
20

2 2

( )
( ) ~ L

th

Le S
D Le






                                                    (6.49)                               
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2 2 2 2 2
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D D

x x x x Le Re Da




  

 
   

   
                      (6.50) 

Subject to the assumption of inertial scaling 
3 3~u l u
    one obtains the alternative 

scaling when c  is scaled with respect to the Kolmogorov scale   similar to the passive 

scalar mixing: 

2 2

0
2 2 3 2

( ) ~ L

th

S Ka
D

Pr Le




  , for th                                     (6.51) 

For the current cases 
1/2 ~ / ~ (1)thKa O  , so both eqs. (6.49) and (6.51) are expected to 

yield similar scaling estimates.  

 

 As D  is treated as constant in cases A-E, the first two terms of the difffusivity gradient 

term f(D)  (see eq. (6.7) for its definition) on the right hand side vanish and 5FD  can be 

expressed as: 5 cFD uN   using the mass conservation equation. It has been discussed 

earlier that 2T  could be scaled as: cNuT

2~2  whereas an equality holds for the 

0.1Le  flames. Thus, for the present cases )(Df  can be scaled as: 

43)2/(~)( 2 FDFDTDf   using 2/~. 2TuNc


 . This leads to the following scaling 

estimation of ( )f D  using eq. (6.42): 

2

0
2 1 2

( ) ~ ~ L

m

th

S
f D T

Le

 


                                                      (6.52) 

whereas the resolved component ( )resf D , can be taken to scale as: 
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    (6.53)      

Equations (6.47)-(6.53) demonstrate that the magnitudes of 4( )resT , 2( )resD  and ( )resf D  

decrease with increasing Δ, which along with increased probability of obtaining small 

magnitudes of cwD  .2  ,  )/)(/(2 2

jiji xhxhD    and )(1 Df  within the filter 

volume for th , leads to reductions in magnitudes of 4T , )( 2D  and ( )f D  with 

increasing  .  This behaviour can be confirmed from Fig. 6.12 where the variations of 

the mean values of 4T , )( 2D  and ( )f D  conditional on bins of c  for all cases are shown 

for Δ≈0.4δth, 1.6δth and 2.8δth. Equations (6.47)-(6.53) also suggest that the magnitudes of 

4T , )( 2D  and )(Df  are expected to increase with decreasing Le for a given Δ, which 

can also be substantiated from Fig. 6.12.  

 

Case u’/SL l/δth Ret Da τ Le Ka cm /

cK  

A 7.5 2.45 47.0 0.33 4.5 0.34 13.2 0.92 0.52 

B 7.5 2.45 47.0 0.33 4.5 0.6 13.2 0.87 0.67 

C 7.5 2.45 47.0 0.33 4.5 0.8 13.2 0.867 0.71 

D 7.5 2.45 47.0 0.33 4.5 1.0 13.2 0.825 0.78 

E 7.5 2.45 47.0 0.33 4.5 1.2 13.2 0.816 0.79 

F 5.0 1.67 22.0 0.33 4.5 1.0 8.67 0.825 0.78 

G 6.25 1.44 23.5 0.23 4.5 1.0 13.0 0.825 0.78 

H 7.5 2.50 48.0 0.33 4.5 1.0 13.0 0.825 0.78 

I 9.0 4.31 100 0.48 4.5 1.0 13.0 0.825 0.78 

J 11.25 3.75 110 0.33 4.5 1.0 19.5 0.825 0.78 

K 7.5 2.45 47.0 0.33 2.0 1.0 13.2 0.85 0.746 

L 7.5 2.45 47.0 0.33 3.0 1.0 13.2 0.85 0.756 

M 7.5 2.45 47.0 0.33 6.0 1.0 13.2 0.85 0.795 

Table 6.2: Initial values of simulation parameters and non-dimensional numbers relevant to the 

DNS database 
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6.2.6 Modelling implications in the context of LES 

The scaling estimates for the different relevant quantities, as given by eqs. (6.37)-(6.53), 

are summarised in Table 6.1 for quick reference. Table 6.1 demonstrates that the terms 

T2, T3, T4, (-D2) and f(D) are likely to play key roles in the SDR cN
~

 transport irrespective 

of Δ, which is consistent with previous findings in the context of RANS (Chakraborty et 

al., 2011; Chakraborty and Swaminathan, 2010). Moreover, Table 6.1 and Figs. (6.11)-

(6.121) indicate that the magnitudes of T2, T3, T4, (-D2) and f(D) are expected to increase 

with decreasing Le and similar observations have been made earlier by Chakraborty and 

Swaminathan (2010) in the context RANS.  As introduced in Chapter 2 that an algebraic 

model of SDR was proposed (Kolla et al., 2009) based on the assumption of the 

equilibrium of the generation and destruction of the scalar gradients, which equivalently 

assumes the standing of 2 3 4 2 ( ) 0T T T D f D      in the context of RANS. The above 

model has been extended laterly to cover the differential diffusion effects of heat and 

mass (Chakraborty and Swamianthan, 2010). The scaling relations given by eqs. (6.37)-

(6.53) indicate that 2 3 4 2[ ( )] ~T T T f D D   , which allows for obtaining an algebraic 

estimation for cN  by putting the model expressions for the unclosed terms 

2 3 4, , , ( )T T T f D  and 2( )D  in the expression 2 3 4 2[ ( )] ~T T T f D D   . It is important to 

note that  is a transport term and thus the volume-integral of this term vanishes so it 

does not play any role in the generation/destruction of cN .  The variations of the mean 

values of 2 3 4 2[ ( )]T T T f D D    conditional on c  for different values of  for cases 

A-E are shown in Fig. 6.13. It can be seen from Fig. 6.13 that 2 3 4 2[ ( )]T T T f D D    

remains of the order of unity for all values of  in all cases. However, 

2 3 4 2[ ( )]T T T f D D    assumes a value close to unity for the major portion of the flame 

brush for large filter widths (i.e. ) and this trend strengthens with increasing . 

This suggests that 2 3 4 2 ( ) 0T T T D f D      remains roughly valid for . The 

transient term  in the SDR transport equation for turbulent flows can be scaled 

as:  . This suggests that the magnitude of 

 weakens with increasing  because  shows an increasing trend with 

increasing filter width (Dunstan et al., 2013). Thus, 2 3 4 2 ( ) 0T T T D f D      is not 

1T
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expected to hold for small values of  (e.g. ) but this assumption roughly holds 

in an order of magnitude sense for large filter widths (i.e. ).  

 

 

 

Figure 6.13: Variation of mean values of 
2 3 4 2[ ( )]T T T f D D    conditional on bins of c  at 

Δ≈0.4δth ( ), 1.6δth ( ) and 2.8δth ( ) for the Le=0.34(A), Le=0.6(B), Le=0.8(C), 

Le=1.0(D), Le=1.2(E) cases. 

 

Therefore, it is reasonable to expect that the algebraic models proposed based on this 

assumption remain feasible for the large filter widths but may require modifications for 

the filter widths which are comparable to or smaller than the thermal flame thickness. 

This will be discussed in the next section in detail together with other possible approaches 

to algebraicaly closure of SDR for LES. 

 

6.3 Algebraic closure of SDR in the context of LES 

A model of cN
~

, which is widely used for sub-grid SDR closure for passive scalar mixing 

is given by Girimaji and Zhou (1996) as: 

( ) .c tN D D c c                                                          (6.54) 

where tD  is the eddy diffusivity and is often modelled based on sub-grid eddy viscosity 

t  as: 

 2 1/2( ) (2 )t t s ij ijD C S S                                                   (6.55) 

 th

th
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where 2/12 )
~~

2()( ijijst SSC   is the Smagorinsky-Lily model of sub-grid eddy viscosity 

(Smagorinsky, 1963), )/~/~(5.0
~

ijjiij xuxuS   is the resolved strain rate,  and sC  

is the Smagorinsky constant which assumes a theoretical value of 18.0sC  for decaying 

turbulence (Girimaji and Zhou, 1996) and this value of sC  is used in the present a-priori 

DNS analysis. The model given by eq. (6.55) is referred to as the SDR-C (SDR-

Conventional) model. 

 

The SDR is closely related to the generalised Flame Surface Density (FSD) (Boger et al., 

1998) 2/1)/( DNc cgen   (Bray and Swaminathan, 2011; Vervisch and Veynante, 

2002). The FSD is often modelled in terms of a wrinkling factor cgen  /  in the 

following manner (Charlette et al., 2002a,b; Knikker et al., 2004; Chakraborty and Klein, 

2008):  

2FD

gen O

ic









  
    

  
                                         (6.56) 

where i  and O  are the inner and outer cut-off scales and FD  is the fractal dimension 

based on FSD. The filter width   can be taken to be the outer cut-off scale O . Dunstan 

et al. (2013) defined a SDR based wrinkling factor D  drawing on the analogy with eq. 

(6.56), as follows: 

.

c
D

N

D c c
 

 
                                                   (6.57) 

Dunstan et al. (2013) also explored the possibility of modelling D  by using a power-

law in the following manner:  

D

O
D

iD







 
   

 
                                                      (6.58) 

where 
D  is the power-law exponent, iD  is the inner cut-off scale for D , whereas the 

outer cut-off scale O  for LES can be taken to be the LES filter width  . According to 

eq. (6.57), w  can be considered to be directly proportional to cN
~

  for th , and thus 
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the volume-averaged value of c cN N   should remain independent of   for th 

, which leads to c cV V
N N   where 

V
 indicates a volume averaging operation. 

Using eqs. (6.57) and (6.58), it is possible to write: 

  log log log log
.

cV V
D D D iD

V

N

D c c


  



 
     
  
 

                         (6.59) 

where .V

D c
V V

N D c c      indicates the wrinkling factor based on the volume-

averaged quantities. Thus a linear variation between log V

D  and log  confirms the 

power-law behaviour postulated in eq. (6.58), which was demonstrated earlier for 

th  by Dunstan et al. (2013). However, it is worth noting that: 

  
0

lim . .cN D c c D c c  


                                           (6.60) 

whereas cN  approaches zero according to eq. (6.58). Dunstan et al. (2013) modified eq. 

(6.58) in the following manner to overcome this difficulty: 

1 2exp 1 exp

D

V

D

th th iD



 
  

        
           

       
                          (6.61) 

where 1  and 2  are the model parameters (Dunstan et al., 2013). According to eq. (6.61) 

V
D  approaches unity (i.e. 1V

D  ) for small values of filter width (i.e. 0 ), whereas 

one recovers eqs. (6.58) and (6.59) for th . Thus, it is possible to propose a model 

for cN
~

, in the following manner provided the power-law exponent D  and iD  are 

suitably parameterised and optimised values are used for 1  and 2 : 

1 2. exp 1 exp

D

c

th th iD

N D c c



 
  

         
             
         

                 (6.62) 

The model given by eq. (6.62) is referred to as the SDR-PL (SDR-Power-Law) model 

here. It is worth noting that one will obtain 0.1~.~~~


VV
c

V

D ccDN   for 

th  if O  is not permitted to be smaller than iD . However, DNS results (see Dunstan 
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et al. (2013) and Fig. 6.14 later in this chapter) show 0.1V

D  even for  th0  . 

This necessitates an expression such as eq. (6.62), which has the capability of capturing 

V

D  variation with  . 

 

Dunstan et al. (2013) discussed the possibility of extending a RANS algebraic SDR 

closure proposed by Kolla et al. (2009) for the purpose of LES in the following manner: 

*

3 4 1

2
. [1 exp( )] 2 ( ) (1 ) /

3

L
c c

th th

S u
N D c c K C C Da c c  

 




 
         

 
        (6.63) 

where LS  is the unstrained laminar burning velocity. The model parameters 43,, CC  and 

1  in eq. (6.63) are given by: 

75.0 ; 
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C  and 4.21                  (6.64) 

In eq. (6.64) cK 
 is a thermo-chemical parameter which provides information regarding 

the SDR-weighted dilatation rate u


.  (Kolla et al., 2009) in the following manner:  



 



1

0

1

0

)]([

)](.[

dccfN

dccfuN

S
K

Lc

Lc

L

th
c








                                              (6.65) 

The same expressions of Kc
*, C3

 and 4C  were proposed by Kolla et al., (2009) in the 

context of RANS and the value of 1  has been modified by Dunstan et al. (2013) to adopt 

this model for LES. The function )]/exp(1[ th  ensures that 
cN

~
 approaches  

.D c c   when the flow is fully resolved (i.e. 0 ) and this function and the first term 

on the right hand side of eq. (6.63) were absent in the model proposed by Kolla et al. 

(2009) as the RANS model was proposed only for the unresolved part of SDR (i.e. c


). 

The terms )/(2 thLc SK   and )3/2)(( 43   uDaCC   in eq. (6.63) arise due to dilatation 

and normal strain rate contributions to the SDR transport, whereas 
1/)~1(~ cc   originates 

due to the combined reaction and molecular dissipation contributions (Kolla et al., 2009). 

It is worth noting that the model given by eq. (6.63) and the model of Kolla et al. (2009) 

are strictly valid for unity Lewis number (i.e. 0.1Le ) flames. Moreover, the 



 

Chapter 6.  Algebraic Closure of SDR for LES  

127 

 

performance of eq. (6.63) was assessed for LES based on the a-priori analysis of a single 

unity Lewis number V-flame DNS database, and thus it is important to assess the 

performance of this modelling methodology for different values of τ, Le and Ret.  

 

It was demonstrated by Chakraborty and Swaminathan (2011) that global Lewis number 

Le  has significant influence on the statistical behaviour of SDR c  in the context of 

RANS (i.e. / th  ) and the model proposed by Kolla et al. (2009) has been modified 

by Chakraborty and Swaminathan (2011) to account for non-unity Lewis number effects 

on c  closure in RANS. This modified RANS model for c  is extended for cN
~

 closure 

in the context of LES in the following manner: 

  
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           (6.66) 

 where exp[ ( ) ]p

thf      is a bridging function and 

43 ,CC  and c  are the model 

parameters. Chakraborty and Swaminathan (2011) suggested the following expressions 

for 

3C  and 


4C :  

)0.1(5.12.0     where
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       (6.67) 

It is worth noting that the first term on the right hand side of eq. (6.66) was absent and 

the second term featured without )1( f  in the RANS model by Chakraborty and 

Swaminathan (2011). The bridging function )1( f  ensures that 
cN

~
 approaches to 

ccDNc  .  for small values of filter size (i.e. ccDNN cc  .
~

lim 0  where

0.1f ), whereas eq. (6.66) approaches to the RANS model expression proposed by 

Chakraborty and Swaminathan (2011) for th  where 0.0f . The terms 

)/(2 88.1
thLc LeSK   and )32)(.( 43  




 uCDaC   in eq. (6.66) arise due to dilatation 

and strain rate contributions to the SDR transport, whereas ccc /)~1(~   originates due to 

the combined reaction and molecular dissipation contributions (Kolla et al., 2009; 

Chakraborty and Swaminathan, 2010, 2011). Equations (6.63) and (6.66) have similar 

expressions, and they provide similar performances for the unity Lewis number (i.e.
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0.1Le  ) flames, but the effects of Le  are included in eq. (6.66) and thus the 

performances of eq. (6.66) will only be discussed in this paper for the sake of conciseness.  

 

The model given by eq. (6.66) will henceforth be referred to as the SDR-RE (SDR-RANS 

Extended) model here.  It is worth noting that the sub-grid turbulent velocity fluctuation 

(i.e. 
u ) needs to be modelled in actual LES and 

u  is often evaluated in the following 

manner (Pope, 2000): 

t

v

u
C



 


                                                         (6.68) 

where 094.0vC  is a model parameter. As 
u  appears explicitly in eq. (6.66) and in the 

definitions of Da  and 
Ka , which are the input parameters for the SDR-RE model 

given by eq. (6.66). Thus, the modelling of 
u  is expected to play an important role in its 

predictive capabilities of eq. (6.66).  The performances of SDR-C, SDR-PL and SDR-RE 

models will be compared with cN
~

 extracted from the DNS data for a range of filter widths

 . 

Case 
LT AA /  1  2  

D  
thiD  /  c  *

c  

A 3.93 0.01 0.69 1.42 0.73 4.35 4.9 

B 2.66 0.01 0.55 1.32 0.88 4.35 4.9 

C 2.11 0.01 0.45 1.19 0.92 4.35 4.9 

D 1.84 0.01 0.42 1.07 0.93 4.35 4.9 

E 1.76 0.01 0.40 1.04 0.93 4.35 4.9 

F 1.1 0.01 0.33 0.86 0.93 4.8 5.5 

G 1.25 0.01 0.34 0.88 0.94 4.8 5.5 

H 1.85 0.01 0.41 1.11 0.98 4.1 4.9 

I 3.75 0.01 0.45 1.18 0.96 4.0 4.5 

J 3.80 0.01  0.48 1.26 0.97 4.0 4.5 

K 2.04 0.01  0.47 1.14 0.92 2.4 2.4 

L 1.94 0.01  0.45 1.13 0.90 3.3 3.8 

M 1.74 0.01  0.42 1.02 0.93 4.8 4.86 

Table 6.3: Normalised flame surface area when statistics were extracted and the optimum 

model parameters for eqs. (6.62) and (6.66).  
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Figure 6.14: Variations of wrinkling factor based on volume averaged quantities V
D  ( ) 

with normalised filter width th/ on a log-log plot along with the predictions of SDR-C model 

(i.e. eq. (6.54)) ( ), SDR-PL model (i.e. eq.(6.62)) ( ) and SDR-RE model (i.e. eq.(6.66)) ( )  for 

case A-F, J and L. Power-law model (eq. (6.62)) predictions are shown for the optimum values 

of 1  and 2  reported in Table 6.3 and the values of D  and iD  extracted from DNS data. The 

SDR-RE model (eq. (6.66)) predictions are shown for the optimum values of c  reported in Table 

6.3. 

 

The variations of V

D  (see eq. (6.58)) with normalised filter width th/  in cases A-F, J 

and L are shown in Fig. 6.14 on a log-log plot along with the predictions of SDR-C (i.e. 

eq. (6.54)), SDR-PL (i.e. eq. (6.61)) models. Figure 6.14 shows that the SDR-C model 

underpredicts V

D  for all cases considered here for the theoretical value of Smagorinsky 

constant for decaying turbulence (i.e. 18.0sC ). It is worth noting the predictions of the 

SDR-PL (i.e. eq. (6.61)) model are shown in Fig. 6.14 for optimum choices of 
1  and 

2  
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which capture the variations of V

D  with th/ . Equation (6.61) is multiplied with   to 

obtain an expression for V

D  in order to estimate the optimum values of 
1  and 

2 . The 

values of  1  and 2  which yield satisfactory qualitative and quantitative predictions of 

the variation of  V

D   with   are estimated based on a least-squares method. It has been 

found that the value of 1 , which leads to satisfactory prediction of V

D ,  does not change 

from one case to another and the optimum value of 1  remains close to 0.01. For the sake 

of simplicity 01.01   is taken for all cases and a least squares method is used to obtain 

optimum values of 2 . The optimum values of 
1  and 

2  for cases A-M are shown in 

columns 3 and 4 of Table 6.3 respectively.  

 

It is evident from Fig. 6.14 that a power-law between V

D  with th/  (see eqs. (6.58) and 

(6.59)) can be obtained for th , where )log( V

D  shows a linear relation with 

)/log( th , which is consistent with the previous findings by Dunstan et al. (2013). The 

slope of the best-fit straight line with the steepest slope corresponding to the linear 

variation of log( )V

D  with )/log( th  provides the value of power-law exponent 
D . 

The intersection of this best fit straight line with 0.1V
D  (i.e. log( ) 0.0V

D  ) provides 

the measure of the inner cut-off scale iD .  The values of D  and 
thiD  /  obtained from 

DNS are reported in columns 5 and 6 respectively for cases A-M. It is evident from Fig. 

6.14 and Table 6.3 that the inner cut-off scale iD  remains of the order of th  for all the 

cases considered here, which is consistent with previous findings by Dunstan et al. 

(2013). This suggests that iD  is not significantly affected by  , Le  and tRe . By contrast, 

 , Le  and tRe  have significant influences on the power-law exponent D . The power-

law exponent D  increases with decreasing Le  (i.e. from Le=1.2 in case E to Le=0.34 in 

case A), which consistent with increasing extent of flame wrinkling with decreasing Le 

which is consistent with the c  isosurfaces and LT AA /  values shown in Fig. 4.1 and 

column 2 of Table 6.3 respectively.  

 

It has been found that the SDR-RE model (i.e. eq. (6.66)) satisfactorily captures the 

variation of V

D  with th/  when f  is taken to be 1.7exp[ 0.7( / ) ]thf     (for the 

present thermo-chemistry 1.7 0.85exp[ 0.7( / ) ] exp[ 0.325( Re ) ]thf Da       ) and the 
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optimum global values of c  have been used, which can be substantiated from Fig. 6.14 

where the predictions of the SDR-RE model for 1.7exp[ 0.7( / ) ]thf     and the 

optimum values of c  are shown. Equation (6.61) is multiplied with   to obtain an 

expression for V

D  in order to estimate the optimum values of  , p  and 
c . The values 

of c ,   and p , which provide satisfactory qualitative and quantitative predictions of 

the variation of  V

D  with  , are estimated based on a least-squares method. It has been 

found that  the values of   and p  , which lead to satisfactory prediction of V

D , do not 

change from one case to another and the optimum values of    and p  remain close to 0.7 

and 1.7 respectively. For the sake of simplicity 7.0  and 7.1p  are taken for all cases 

and a least squares method is used to obtain optimum values of c .   

 

The global optimum values of c  for the cases considered here are shown in column 7 of 

Table 6.3, which indicates that c  increases with increasing τ (i.e. βc =2.4 to 4.86 from τ 

=2.0 to 6.0), which is consistent with βc =2.7 for the model expression given by eq. (6.66) 

for the flame with 52.2 , analysed by Dunstan et al. (2013). Moreover, a comparison 

of the optimum values of c  for cases F-J reveals a weak variation of c   but it is difficult 

to ascertain if this variation originates due to statistical variation or due to the turbulent 

Reynolds number tRe  dependence. A recent RANS based analysis by Chakraborty and 

Swaminathan (2013) also revealed a weak tRe  dependence of c .  However, the 

variation of c  between cases F-J has been found to be much weaker than the dependence 

on the heat release parameter   (see cases K, L, D and M). It is worth noting that a 

different set of optimum values of c  can be obtained for a different expression of f  but 

the present choice of 1.7exp[ 0.7( / ) ]thf     yields optimum values of c  which only 

exhibits   dependence and remains a weak function of Le  and tRe . This makes 

1.7exp[ 0.7( / ) ]thf     as a desirable bridging function for practical applications. 

 

The variations of mean values of normalised SDR /c c th LN N S    conditional on c~  

across the flame brush at th8.0  and th8.2  for cases A-F, J and L are shown in 

Figs. 6.15 and 6.16 respectively along with the predictions of the SDR-C (i.e. eq. (6.54)), 

SDR-PL (i.e. eq. (6.61)) and SDR-RE (i.e. eq. (6.66)) models for D  and iD  extracted 
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from DNS data and the optimum values of 
21 ,  and c  (as reported in Table 6.3) for 

which the variation of V

D  with th/  is accurately captured. It can be seen from Fig. 

6.15 that all three models satisfactorily capture the behaviour of the mean value of 

normalised SDR 

cN
~

 conditional on c~  for filter widths th  (e.g. th8.0 ) for 

flames in cases B-F, J and L but the SDR-PL model (i.e. eq. (6.61)) shows overprediction 

for Le<<1.0 cases (e.g. case A with Le=0.34) at th8.0  even with the optimum values 

of  
1  and 

2  for which the SDR-PL model satisfactorily captures the variation of V

D  

with th/ . However, the SDR-C (i.e. eq. (6.54)) and SDR-RE (i.e. eq. (6.66)) models 

more accurately predict the mean value of normalised SDR 

cN
~

 conditional on c~  for case 

B at th8.0   than the SDR-PL model. A comparison between Figs. 6.15 and 6.16 

reveals that the differences between the predictions of the SDR-C, SDR-PL and SDR-RE 

models increase with increasing  . Figure 6.16 shows that the SDR-PL model (i.e. eq. 

(6.61)) overpredicts the mean value of normalised SDR 

cN
~

 conditional on c~  for th  

(e.g. th8.2 ), and does not adequately capture the qualitative behaviour obtained from 

DNS data, even when D  and iD  are extracted from DNS data, and the optimum values 

of  
1  and 

2  for which the SDR-PL model satisfactorily captures the variation of V

D  

with th/ , are used.  By contrast, the SDR-C model (i.e. eq. (6.54)) underpredicts the 

mean value of 
Lthc SN /

~
  conditional on c~  at th8.2  for all the cases considered 

here. It is worth noting that the Smagorinsky constant sC  in eq. (6.54) (which has been 

taken here as 18.0sC  according to the theoretical analysis for decaying turbulence) is 

often taken to be 1.0sC , which will make the SDR-C (i.e. eq. (6.54)) model to 

underpredict further than the results shown in Figs. 6.14-6.16.  

 

For using the SDR-PL model in an actual LES simulation, the quantities 
1,   and 

2  

need to be parameterised in terms of resolved-scale quantities. However, such 

parameterisation has not been attempted here because the SDR-PL model fails to capture 

the variation of the mean values of normalised SDR 

cN
~

 conditional on c~  across the 

flame brush, especially for th , even when the optimum values of parameters 
1  and 

2  for the accurate prediction of V

D  are used, and the values of  D  and iD  are extracted 

from DNS data. The first term on the right side of eq. (6.61) (i.e.  
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 1. exp( / )thD c c      ) remains a major contributor for th  and thus eq. (6.61) is 

more successful in capturing the local behaviour of cN
~

 for th  than th  (see 

Figs. 6.15 and 6.16).  This suggests that a power-law based model with a single global 

value of D  may not be suitable for capturing the correct qualitative variation of cN
~

 

even when the optimum values of 
1  ,

2 , and iD  are used in eq. (6.61). The discrepancy 

between satisfactory prediction of V

D  and inadequate prediction of the mean values of 

normalised SDR 

cN
~

 conditional on c~  by the SDR-PL (i.e. eq. (6.61)) model arises 

possibly due to multi-fractal nature of SDR (i.e. a power law of the form D

ioD

 )/(  

has a single exponent D  but a continuous series of exponents is necessary to describe 

the statistics of D .  For example 
)(1)/(~

qq

L

q

r LrXX


  where rX  is defined as 

 xdNX cr

3   with )(1 q  being the exponent associated with any real number q  for 

which the power-law behaviour is obtained. For the above description the summation is 

taken over a box of size r  for a domain of characteristic length L).  Interested readers are 

referred to (Sreenivasan et al., 1989; Sreenivasan, 1991; Prasad and Sreenivasan, 1990; 

Shivamoggi, 1995) for further information on multi-fractal nature of SDR. The 

performace of the SDR-PL model is also found to be consistent with earlier findings by 

Dunstan et al. (2013) for turbulent premixed flames.   
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Figure 6.15: Variation of  mean values of normalised SDR 
cN

~
 ( )  conditional on c~  across 

the flame brush along with the predictions of SDR-C model (i.e. eq. (6.54)) ( ), SDR-PL 

model (i.e. eq. (6.62)) ( ) and SDR-RE model (i.e. eq. (6.66)) ( ) at th8.0  

for cases A-F, J and L. Power-law model (eq. (6.62)) predictions are shown for the optimum 

values of 1  and 2  reported in Table 6.3 and the values of D  and iD  extracted from DNS 

data. The SDR-RE model (eq. (6.66)) predictions are shown for the optimum values of c  

reported in Table 6.3. 
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Figure 6.16 : Variation of  mean values of normalised SDR 
cN

~
  ( )  conditional on c~  

across the flame brush along with the predictions of SDR-C model (i.e. eq. (6.54)) ( ), 

SDR-PL model (i.e. eq.(6.62)) ( ) and SDR-RE model (i.e. eq.(6.66)) ( ) at 

th8.2  for case A-F, J and L. SDR-PL model (eq. (6.62)) predictions are shown for the 

optimum values of 
1  and 

2  reported in Table 6.3 and the values of 
D  and 

iD  extracted from 

DNS data. The SDR-RE model (eq. (6.66)) predictions are shown for the optimum values of c  

reported in Table 6.3. 

 

The SDR-C model is commonly used for passive scalar mixing when the time-scale of 

turbulent mixing (i.e. 1)~.~(~  ccDtt ) is the principal time-scale associated with the 

physics of micro-mixing. However, in turbulent premixed flames the time-scale 

associated with chemical processes also plays an important role in the SDR statistics 

(Swaminathan and Bray, 2005; Kolla et al., 2009) and this essential physics is missing in 
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the SDR-C model (i.e. eq. (6.54)).  The effects of chemical reaction weaken with 

decreasing Da , and thus this model reasonably captures the qualitative variation of the 

mean values of normalised SDR 

cN
~

 conditional on c~  across the flame brush (in spite of  

 

 

Figure 6.17: Variations of wrinkling factor based on volume averaged quantities V
D  ( ) 

with normalised filter width th/ on a log-log plot along with the predictions of the SDR-RE 

model for: (i) 
u  extracted from DNS and c  reported in Table 6.3 ( ), (ii) 

u  extracted from 

DNS and c  according to eq. (6.69) ( ), (iii) 
u  modelled using eq. (6.68) and optimum values 

of 
c  reported in Table 6.3 ( ) and (iv) 

u  modelled using eq. (6.68) and 
c  according to eq. 

(6.70) ( )  for cases A-G and K.  
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some underpredictions) for 1Da  flames considered here, although V

D  is significantly 

underpredicted by the SDR-C model. The prediction of the SDR-C model is likely to be 

worse in the 1Da  flames where the effects of chemical reaction are stronger than in 

the 1Da  cases considered here, and thus cannot be ignored. The local Damköhler 

number Da  increases with increasing filter width   for all cases considered here (see 

Fig. 5.4) and thus the SDR-C model is expected to show greater extent of underprediction 

of V

D  for th (see Fig. 6.14). 

 

 It is evident from Figs. 6.15 and 6.16 that the SDR-RE model (i.e. eq. (6.66)) 

satisfactorily captures the variation of the mean values of normalised SDR 

cN
~

 

conditional on c~  across the flame brush except the overpredictions in cases B and F for 

th  (e.g. th8.2 ). In the 1Le   cases (e.g. 34.0Le  in case A) neither of the 

models considered here captures the correct qualitative behaviour of cN
~

 for th  (e.g. 

th8.0 ) and th  (e.g. th8.2 ) but the prediction of the SDR-RE model 

remains closer to the DNS data than the SDR-PL and SDR-C models. Although the SDR-

RE model overpredicts the mean values of normalised SDR 

cN
~

 conditional on c~  at the 

middle of the flame brush for th  (e.g. th8.2 ) in case F where tRe  remains 

small, the agreement between the SDR-RE model prediction and DNS data improves with 

increasing tRe  (i.e. going from F to J). For example, the SDR-RE model satisfactorily 

captures the variation of the mean values of normalised SDR 

cN
~

 conditional on c~  across 

the flame brush for both th  (e.g. th8.0 ) and th  (e.g. th8.2 ) in case J. 

Figures 6.15 and 6.16 indicate that the SDR-RE model (i.e. eq. (6.66)) more accurately 

captures both global and local behaviours of cN
~

 in turbulent premixed flames than the 

SDR-PL and SDR-C models for the range of  , Le  and tRe  considered here, provided 

the optimum value of c  is used for which the variation of V

D  with   is accurately 

captured by eq. (6.66).  
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Figure 6.18: Variation of  mean values of normalised SDR 

cN
~

  ( )  conditional on c~  

across the flame brush along with the predictions of predictions of the SDR-RE model for: (i) 
u  

extracted from DNS and c  reported in Table 6.3 ( ), (ii) 
u  extracted from DNS and 

c   according to eq. (6.69) ( ), (iii) 
u  modelled using eq. (6.68) and optimum values 

of 

c  reported in Table 6.3 ( ) and (iv) 
u  modelled using eq. (6.68) and 

c  according 

to eq. (6.70) ( ) at th8.0  for cases A-F, J and L.  
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Figure 6.19: Variation of  mean values of normalised SDR 

cN
~

  ( )  conditional on c~  

across the flame brush along with the predictions of predictions of the SDR-RE model for: (i) 
u  

extracted from DNS and c  reported in Table 6.3 ( ), (ii) 
u  extracted from DNS and 

c   according to eq. (6.69) ( ), (iii) 
u  modelled using eq. (6.68) and optimum values 

of 

c  reported in Table 6.3 ( ) and (iv) 
u  modelled using eq. (6.68) and 

c  according 

to eq. (6.70) ( ) at th8.2  for cases A-F, J and L.  

 

It is worth noting that the original RANS model for c  , based on which eq. (6.66) was 

derived, implicitly assumed an equilibrium between the source and sink terms of the SDR 

transport equation. The first term on right hand side of eq. (6.66) indicates the resolved 

part of SDR (i.e. ccD ~.~~
 ), whereas the second term on the right hand side represents 

the unresolved part of SDR (i.e. ccDNc
~.~~~

  ) and the expression for  
sgN  in eq. (6.66) 
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is obtained based on the balance of the source and sink terms of the SDR transport 

equation for th  (Chakraborty and Swaminathan, 2011). It has been demonstrated 

earlier by Swaminathan and Bray (2005) and Kolla et al. (2009) that the contributions of 

)(,,, 432 DfTTT and )( 2D  remain the leading order contributors to the SDR transport for 

high values of Damköhler number (i.e. 1Da ), and a rough equilibrium is maintained 

between the terms )(,,, 432 DfTTT and 
2( )D , which was utilised to develop the original 

RANS models leading to eqs. (6.66) and (6.67). The assumptions behind the derivations 

of eqs. (6.66) and (6.67) are satisfied more closely for high values of  . Thus,  
sgNf )1(   

in eq. (6.66) is expected to predict the unresolved part of SDR (i.e. ccDNc
~.~~~

 ) 

reasonably accurately for th  (e.g. 2.8 th  ). Although the assumptions behind eq. 

(6.66) are likely to be rendered invalid for th  (e.g. 0.8 th  ), the resolved part of 

SDR (i.e. ccD ~.~~
  ) remains the major contributor to cN

~
 (as evidenced by 0.1V

D
for 

th  in Fig. 6.14) and thus eq. (6.66) continues to predict cN
~

 accurately and the 

inaccuracy involved in evaluating the unresolved part )~.~~~
( ccDNc   by 

sgNf )1(   

does not play a major role. 

 

It is worth noting that the model parameters 

3C  and 

4C  in eq. (6.66) are expressed 

according to the original suggestion by Chakraborty and Swaminathan (2011) for the 

purpose of RANS modelling and here only c  has been modified in order to extend the 

model for LES.  In Figs. 6.15 and 6.16 the predictions of the SDR-RE are shown for the 

optimum values of c  for which the variation of V

D  with   is appropriately captured. 

For actual LES simulations the optimum values of c  are not a-priori known and thus it 

is important to parameterise the optimum values of c . In addition, c  needs to satisfy 

2 / (2 1)c mc    in order to maintain physical realisability (i.e. 0
~

cN )  (Chakraborty et 

al., 2008). Therefore a parameterisation for c  has been proposed here in the following 

manner, which reasonably captures the variation of V

D  with  , as shown in Fig. 6.17 for 

cases A-M:   

4.6
2

max , 1.05 0.51
2 1 1

c

mc






  
   

    

                                    (6.69) 
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Equation (6.69) accounts for the increasing trend of V

D  and the peak mean value of cN
~

 

conditional on c~  with decreasing   by ensuring an increasing trend of c  with increasing 

 . The minimum value of c   has been set to be )12/(2 mc  in eq. (6.69) in order to 

satisfy the physical realisability (i.e. 0
~

cN ) according to a previous analysis by 

Chakraborty et al. (2008). In addition, c  assumes an asymptotic constant value (i.e. 

7.73c  ) for large values of   (i.e.   ) according to eq. (6.69), and this asymptotic 

value remains close to 6.7    proposed by Chakraborty and Swaminathan (2011) in 

their SDR-RANS model. The turbulent Reynolds number tRe  dependence has not been 

included in eq. (6.69) for the sake of simplicity because the optimum value of c  for 

1.7exp[ 0.7( / ) ]thf     does not show any appreciable tRe  dependence (see column 7 

of Table 6.2). It is worth noting that eq. (6.69) not only satisfactorily predicts the optimum 

values of c  for cases A-M, but also enables eq. (6.66) to capture the variation of V

D  

with   for the DNS dataset (where 52.2  and 0.1Le ) considered by Dunstan et al. 

(2013) (not shown here). 

 

The predictions of the mean values of normalised SDR 

cN
~

 conditional on c~  according 

to the SDR-RE model with c  parameterisation using eq. (6.69) at th8.0  and 

th8.2  are also compared with DNS results in Figs. 6.18 and 6.19 respectively for 

cases A-M.  A comparison between Figs. 6.17-6.19 reveals that eq. (6.69) enables the 

SDR-RE model to perform comparably with the model predictions when the optimum 

values of c  are used. Moreover, the SDR-RE model (i.e. eq. (6.66)) satisfactorily 

captures the variation of the mean values of normalised SDR 

cN
~

  conditional on c~  across 

the flame brush for both th  (e.g. th8.0 ) and th  (e.g. th8.2 ) for cases 

B-E, G-J and L except the overpredictions in cases A and F, as noted earlier in this paper.  

 

It is worth noting that 

u  appears explicitly in eq. (6.66) and is used for the evaluation of 

Da , 
Re  and 

Ka . The optimum values of c  reported in column 7 of Table 6.2 and 

its parametersation using eq. (6.69) are obtained when 

u  is extracted from DNS data. 

However, modelling of 

u  using eq. (6.68) is likely to alter the optimum values and the 

parameterisation of c .  The optimum values of c  when 

u  is modelled using eq. (6.68) 
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show similar Le ,   and 
tRe  dependences as that of c  (when 


u  is extracted from DNS 

data) for a slightly modified bridging function 1.7exp[ 0.8( / ) ]thf     (

0.85exp[ 0.36( Re ) ]f Da     for the present thermo-chemistry). The optimum values 

of c , when 

u  is modelled using eq. (6.68), are reported in column 8 of Table 6.2 

(denoted as *

c  for convenience) and the corresponding predictions of the SDR-RE model 

with the optimum values of *
c  are shown in Fig. 6.17, which reveals that the variation 

of V

D  with    can be  appropriately captured by the SDR-RE model when 

u  is modelled 

using eq. (6.68)  provided the optimum values of *
c  are used. The optimum value of *

c   

and the corresponding bridging function f  have been obtained using the same 

methodology which was used to extract optimum values of  c  and f   when 

u  was 

extracted from DNS data.  

 

It is evident from Table 6.3 that *
c  shows qualitatively similar   and tRe  dependences 

as that of c , and Le  has been found not to have any major influence on *
c .  However, 

the optimum values of *
c  are slightly greater than the values for c  (see Table 6.3). The 

predictions of the SDR-RE model, when 

u  is modelled using eq. (6.68)  and the 

optimum values of *
c  are used, are also shown in Figs. 6.18 and 6.19, which indicate 

that the performance of the SDR-RE model does not get significantly affected by 

u  

modelling when the optimum values of *
c   are used.  The  observed   dependences of 



c  has been parameterised  here by modifying eq. (6.69) in the following manner so that 

the SDR-RE model captures the variation of V

D  with  , which can be substantiated from 

Fig. 6.17 for cases A-M: 






















6.4

* 55.0
1

05.1,
12

2
max






m

c
c

                                (6.70) 

Similar to eq. (6.69) the weak tRe  dependence of 

c  has been ignored in the 

parameterisation of 

c  in eq. (6.70).  The predictions of eqs. (6.69) and (6.70) ensure that 



c  remains slightly larger than c  as demonstrated in Table 6.3 (see columns 7 and 8 of 

Table 6.3). 
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The predictions of the SDR-RE model with 

c  (

u ) according to eq. (6.69) are also 

shown in Figs. 6.18 and 6.19, which show that these predictions remain comparable to 

the predictions when 

u  is extracted from DNS and c  is parameterised using eq. (6.70). 

Moreover, the predictions of the SDR-RE model with 

c  according to eq. (6.70) remain 

comparable to the predictions when the optimum values of 

c  reported in Table 6.3 are 

used. The evidences from Figs. 6.15-6.19 indicate that the performance of the SDR-RE 

model captures the statistical behaviours of cN
~

 better than the SDR-PL and SDR-C 

models for turbulent premixed flames with a range of different values of  , Le  and 
tRe  

even when 

u  is modelled using eq. (6.68).  Thus, the SDR-RE model (i.e. eq. (6.66)) 

can be considered to be a viable option for the SDR closure in the context of LES 

simulations of turbulent premixed flames. 

 

 

6.4 Dynamic approach of SDR algebraic closure 

6.4.1 Dynamic power law model for 
cN

~
 

It is possible to rewrite the eqs. (6.57) and (6.58) in the following manner: 

D

iD

cc ccDNN




 







 
 ~.~~~

                                     (6.71) 

where iD  is the inner cut-off scale and D  is the power-law exponent. An approach to 

avoid the unphysical small values of cN
~

  for 0  according to eq. (6.71) is a dynamic 

evaluation of D  as it (i.e. 0D ) approaches to 0 for 0 . Assuming D  does not 

change during test filtering operation, it is possible to evaluate it dynamically in the 

following manner: 

( . ). . .

D

D

c c

th th

N N D c c D c c





   
 

 
    

         
   

 

                        (6.72) 

where  

Q  and  


Q
~

  indicate test filtered value of a general quantity Q  and Favre filtering 

operation at the equivalent filter width (i.e. 

  
 /

~
QQ  ) respectively, whereas the 

equivalent filter width after test filtering is given by 

 . The test filter is often taken to be 
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a multiplier of   (i.e. 


 a  where 1a  is a constant) for non-zero filter widths. Thus 

the equivalent filter width 

  for a Gaussian filter can be given as: 

 
22/122 1])([ a  (i.e. 


2

0 1/lim a ) (Pope, 2000). Therefore 

the ratio between 

  and   should be taken as a constant value. Based on eq. (6.72), it is 

possible to obtain an expression of D  in the following manner: 

 

  


)/ln(

]~.~~
/)~.~~

(ln[




 DD

D

ccDccD 




  for 0 ; otherwise  0D   (6.73) 

 

where DQ    is an appropriate volume-averaging operation to avoid unphysical 

numerical artefacts induced by dynamic filtering operation (Charlette et al., 2002; 

Knikker et al., 2004). It is worth noting that eq. (6.73) relies on scale-similarity between 

  and 

 , and thus the validity of this modelling approach is significantly dependent on 

it.  Furthermore, D   approaches 0   (i.e. )1ln(/1ln 2a ) for very small filter width (i.e. 

0 ),  as the numerator of eq. (6.73)  vanishes when . ( . )D c c D c c      . This 

leads to ccDNc
~~~~

  when the flow becomes completely resolved (i.e. 0 ).  It is 

worth noting that a similar dynamic closure for FSD (i.e. FSD

TLgen Sc
 )3/( 0 ) was 

proposed earlier by Knikker et al. (2004) where FSD  was  evaluated using an expression 

similar to eq. (6.73). 

 

6.4.2 Dynamic evaluation of the SDR-RE model 

The SDR model given by eq. (6.66) with a predetermined c  has recently been 

implemented in LES simulations (Ma et al., 2014; Langella et al., 2013) of flow 

configurations for which well-documented experimental data is available for a direct 

comparison with simulation results and the results have been found to be either 

comparable or better than that obtained from established algebraic LES-FSD closures. 

Interested readers are referred to Ma et al. (2014) for further discussion in this regard.  
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However, the modelling of 
u  influences the optimum value and the parameterization of 

c . The empirical parameterisation of c  can be avoided using a dynamic formulation 

which is proposed here in the following manner. Equation (6.69) can be rewritten as: 

cthL

c
S

u
fccDN






 







 
  ,~.~~~

1                                  (6.74) 

where 






 


thLS

u
f


,1  is given by:  

1 3 41.88

2 2
, 1 exp[ ] ( . ) (1 )

3

p

c L

L th th th

K Su u
f C Da C c c

S Le
 

  


  



          
            

        

               (6.75) 

Based on the assumption of the scale independent functional form one can write: 













 
 

thLc

c
S

u
fccDN





 ,

1~.~~~
1 ,  

   
  


















 

thLc

c
S

u
fccDN




 ,~.~~

1            (6.76) 

and 1 3 41.88

2 2
, 1 exp[ ] ( . ) .(1 )

3

p

c L

L th th th

K Su u
f C Da C c c

S Le
 

  


  



      
        

           
            

               (6.77) 

where 




3C  , 




4C  and 


Da  are given by: 





2/1

2/1

3

)( 1

)(0.2









Ka

Ka
C , 





4.057.2

4

)1(

)~0.1(2.1
 











KaLe

c
C   and  





th

LS

u

Da









                     (6.78) 

In eq. (6.78) 


Ka  and 



u  are given by: 


 

5.05.1 











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
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u
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
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
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
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
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
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
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                    (6.79) 
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The volume-averaged value of the density-weighted SDR )
~

( cN  should be independent 

of   (i.e. 
 

VcVc NN  
~ 

VV ww


  ), which can be utilised along with eqs. 

(6.74) and (6.76) to obtain the following dynamic evaluation of c : 
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                                 (6.80) 

Chakraborty et al. (2008) demonstrated that c  needs to satisfy 2 / (2 1)c mc    in order 

to maintain physical realisability (i.e. 0
~

cN ) and thus it is ensured that dynamic 

evaluation of c  does not violate physical realisability in the following manner: 
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                       (6.81) 

The predictions of eqs. (6.73) and (6.81) for dynamic evaluation of D  and c , 

respectively, will be assessed with respect to explicitly filtered DNS data.  The predictions 

of SDR-RE model with dynamic evaluation of c  (i.e. eq. (6.81)) will also be compared 

to the prediction of the static version of this model where c  is evaluated using eq. (6.69). 

 

6.4.3 Performance of the dynamic approaches: Volume-averaged behaviour 

The variation of V

D  with changing th/  for cases A-M are shown in Fig. 6.20 on a log-

log plot. The cases G, I, K are qualitatively similar to cases F, H and L respectively and 

thus are not shown in Fig. 6.20 and in subsequent figures. A linear variation of )log( V

D  

with )/log( th  indicates a power-law dependence between V
D  and   (see eq. (6.71)), 

which can be seen in Fig. 6.20 for th  but not for th . The slope of the best-fit 

straight line with the steepest slope provides a global value of 
D  and the intersection of 
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this line with the 0.1V
D  gives the measure of thiD  / . The values of D  and thiD  /  

for all cases considered here. It can be seen from Table 6.3 that D  assumes higher 

values for cases with smaller value of Le   for a given value of LSu /  , whereas D  

increases with increasing 2/12/12/14/1 /Re~Re~/ DaKaSu ttL
  for a given value of Le .  

By contrast, iD  remains of the order of th  for all cases. Table 6.3 shows that 0.1D  

for weakly turbulent flames (e.g. cases F and G) which also leads to 0.1V

D  for ∆> 𝛿𝑡ℎ. 

An increase of D  with decreasing Le  for a given value of Le  suggests an increase in 

the extent of flame wrinkling, which can be substantiated from the values of normalised 

flame surface area LT AA / , which is provided in Table 6.3 where the flame surface area 

has been evaluated using the volume integral  
V

dVcA  with the superscripts ‘T’ and 

‘L’ referring to turbulent and laminar flame quantities respectively. Table 6.3 further 

shows that flame area generation increases with increasing 
LSu /  for a given value of Le

, which in turn gives rise to an increasing trend of D  with an increase in 
LSu / .  It has 

been demonstrated in Dunstan et al. (2013) that the power-law model (i.e. eq. (6.71)) does 

not adequately predict the local behaviour of cN
~

 even when D  and iD  obtained from 

DNS data in Fig. 6.20 are used. Interested readers are referred to Dunstan et al. (2013) 

for more discussion on the performance of the static version of the power-law model.  

 

The prediction of the SDR-RE model (i.e. eq. (6.66)) with c  given by eq. (6.69) is also 

shown in Fig. 6.20, which shows that eq. (6.66) satisfactorily predicts the variation of V

D  

with   but this is expected as the parameterisation given by eq. (6.69) is designed to 

capture the magnitude of 
VcN

~
 . However, Fig. 6.20 suggests that an accurate 

estimation of cN
~

 can be obtained using eq. (6.66) and the empiricism involved in  c  

parameterisation (i.e. similar to eq. (6.66)) can be avoided if c  can be evaluated using 

eq. (6.81) according to the dynamic formulation.  
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Figure 6.20: Variations of 
V

D  ( ) with th/ on a log-log plot along with the predictions of 

Power-law model (i.e. eq. (6.71)) (  ) with dynamic 
D , static SDR-RE model (eq. (6.66) with 

c  according to eq. (6.69)) (  ) and dynamic SDR-RE model (eq. (6.66) with c  according to 

eq. (6.81)) (  ) in cases A-F, J and L. The linear region describing the power-law given by eq. 

(6.71) is marked by the solid line following least-squares fit corresponding to the largest slope.  

 

The predictions of eq. (6.71) with dynamic evaluation of 
D  according to eq. (6.73) are 

compared to the mean value of cN
~

 conditional on c~  obtained from DNS in Fig. 6.21 for 

cases A-F, J and L at 0.4 th   and 2.8 th  . The volume-averaging involved in 

dynamic evaluation of D  (see eq. (6.73)) is carried out by ensemble averaging the 

relevant quantities of using (2n)3 cells around a given grid point, and it was found that 

results did not change significantly for n>3. Here the results are shown for n=4.  The same 
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procedure was used for volume-averaging process involved in the dynamic evaluation of 

c  using eq. (6.81). It is worth noting that D  is a three-dimensional variable in the 

context of dynamic modelling and thus it is ensemble averaged conditional on bins of c~  

in Fig. 6.22. The variations of the mean values of D  conditional on c~  for cases A-F, J 

and L at 0.4 th   and 2.8 th   are shown in Fig. 6.22.  It is clear from Fig. 6.22 that 

dynamic formulation according to eq. (6.73) successfully captures the increase in power-

law exponent D  with increasing tRe  for a given value of Le . Moreover, it can be seen 

from Fig. 6.22 that D  increases with decreasing Le . Figure 6.22 demonstrates that D  

according to eq. (6.73) shows considerable local variation of power-law exponent within 

the flame brush for th  (e.g. th8.2 ). Moreover, Fig. 6.22 shows that the dynamic 

formulation shows a reduction in D  with decreasing  . It can be seen from Fig. 6.21 

that the dynamic power-law model prediction under-predicts the mean value of cN
~

 

conditional on c~  towards the unburnt side of the flame brush for th  for all cases, 

and the qualitative variation of cN
~

 with c~  is not captured by the dynamic model for 

1Le  cases (e.g. cases A and B). However, the variation of mean value of cN
~

 

conditional on c~  is satisfactorily captured for th  (e.g. th4.0 ) for 1Le  cases 

but the dynamic model under-predicts the mean value of cN
~

 conditional on c~  for 

1Le  cases (e.g. cases A and B) even at small filter widths (i.e. th  , for example 

th4.0 ). The predictions of V

D  according to eq. (6.71) with dynamic D  (i.e. eq. 

(6.73)) evaluation are also shown in Fig. 6.20, which shows that dynamic evaluation of 

D  results in the under-prediction of V

D  with increasing  , and this tendency increases 

with decreasing Le  and is particularly prevalent for flames with 1Le  (e.g. cases A 

and B).   
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Figure 6.21: Variations of Lthc SN /
~

  ( ) conditionally averaged in bins of c~  along with 

the predictions of power-law model ( ) with dynamic evaluation of 
D  for 0.4 th   (left 

column) and 2.8 th   (right column) in cases A-F, J and L. 

 

It is possible propose an alternative power-law model in the following manner: 
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which leads to the following expression under the assumption of scale-similarity: 
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Equation (6.83) provides: 
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Figure 6.22: Variations of dynamically evaluated 

D  (according to eq. 4) conditionally averaged 

in bins of c~  for 0.4 th   ( ), th2.1 ( ), th0.2  ( ) and 2.8 th   

( ) with the bars indicating one standard deviation variation over the mean in cases A-F, J 

and L. 
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                                (6.84) 
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However, the performance of eq. (6.82) remains inferior to the dynamic version of the 

model given by eq. (6.71) and thus are not discussed here. The applicability of scale-

similarity for quantities related to scalar gradient (e.g. SDR and Flame FSD) is debatable 

but the assumption of scale-similarity was successfully used in the past for the closure of 

FSD (Charlette et al., 2002). However, the results in Figs. 6.20 and 6.21 suggest that the 

strong assumption regarding scale independent functional form (i.e. D  does not change 

between actual and test filter scales) that has been invoked while deriving eq. (6.73) may 

not be strictly valid, as SDR for passive scalars is known to exhibit multi-fractal nature 

(Sreenivasan, 2004; Sreenivasan et al., 1989; Sreenivasan, 1991; Prasad and Sreenivasan, 

1990; Shivamoggi, 1995) and a similar behaviour is likely to present also for reacting 

flows. Thus, a single power-law exponent may not be suitable to describe the statistical 

behaviour of cN
~

.  Thus, the inaccuracies associated with the assumption involved scale 

regarding the independent functional form while deriving eq. (6.73) might have strong 

implications for highly wrinkled flames with 1Le  (e.g. case A), which leads to a 

discrepancy between the predictions of local and volume-integrated behaviours of SDR 

according to the dynamic power-law model. 
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Figure 6.23: Variations of Lthc SN /
~

 ( ) conditionally averaged in bins of c~  along with 

the predictions of static SDR-RE model (eq. (6.66) with c  according to eq. (6.69)) ( ) and 

dynamic SDR-RE model (eq. (6.66) with c  according to eq. (6.81)) ( ) for 0.4 th   

(left column) and 2.8 th   (right column) in cases A-G and K. 

 

 

The predictions of the SDR-RE model (i.e. eq. (6.66)) with dynamic evaluation of c  

(according to eq. (6.81)) are compared to the same model prediction with static c  

(according to eq. (6.69)) and mean value of cN
~

 conditional on c~  obtained from DNS in 

Fig. 6.23 for cases A-F, J and L at 0.4 th   and 2.8 th  . The variations of the mean 

values of c  conditional on c~  for cases A-F, J and L at 0.4 th   and 2.8 th   are 
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shown in Fig. 6.24.  The predictions of V

D  according to eq. (6.66) with dynamic c  

evaluation are also shown in Fig. 6.20. It is evident from Fig. 6.24 that eq. (6.81) predicts 

appreciable local variation of c  within the flame brush. Moreover, Fig. 6.24 also 

suggests an increasing trend of c  with increasing  , as suggested by the empirical 

parameterization given by eq. (6.69). It is evident from Fig. 6.24 that the SDR-RE model 

with dynamic evaluation of c  captures the behaviour of mean value of cN
~

 conditional 

on c~  obtained from DNS data either comparably or better than the static version of the 

SDR-RE model with c  parameterisation according to eq. (6.69).  The advantages of 

dynamic model are particularly prominent for small values of tRe   and for flames with 

small Le  (e.g. cases A, F and J) where the dynamic model satisfactorily captures cN
~

 

variation with c~ , whereas the static version of the model overpredicts the mean value of 

cN
~

 conditional on c~  for a major portion of the flame brush for th  (i.e. 2.8 th  ). 

Moreover, Fig. 6.20 suggests that the prediction of  V

D   according to eq. (6.66) with 

dynamic c  evaluation (i.e. eq. (6.81)) remains satisfactory and comparable to the 

prediction of the model with static c  parameterization (i.e. eq. (6.69)).  However, the 

dynamic version of the SDR-RE model (i.e. eq. (6.66)) does not depend on any empirical 

parametersation of c  similar to eq. (6.69) but inherently accounts for tRe , Le  and   

dependences of cN
~

 for a range of different filter widths  . A comparison between Figs. 

6.21 and 6.23 further reveals that eq. (6.69) with dynamic c  evaluation is more 

successful in capturing the local behaviour of cN
~

 than the power-law model (i.e. eq. 

(6.71)) with dynamic evaluation of D . Moreover, Fig. 6.20 suggests that V

D  according 

to eq. (6.66) with dynamic c  evaluation remains better than the prediction of eq. (6.71) 

with dynamic evaluation of D .  This suggests that the power-law models, though widely 

used for the purpose of algebraic closure of 
gen  (Charlette et al., 2002), may not be 

suitable for SDR cN
~

 modelling and this behaviour perhaps arises due to multi-fractal 

nature of SDR, which was observed previously for passive scalar mixing (Sreenivasan, 

1991, 2004; Sreenivasan et al, 1989; Prasad and Sreenivasan, 1990; Shivamoggi, 1995). 

By contrast, both static and dynamic versions of the SDR-RE model (i.e. eq. (6.66)) are 

more successful in predicting SDR accurately than the power-law based models for a 

range of different values of tRe , Le  and  .   
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Figure 6.24: Variations of dynamically evaluated c  conditionally averaged in bins of c~  for 

0.4 th   ( ), th2.1  ( ), th0.2  ( ) and 2.8 th   

( ) with the bars indicating one standard deviation variation over the mean in cases A-F, J 

and L.  

 

 

6.5 Summary 

A simple chemistry DNS database of statistically planar turbulent premixed flames has 

been used here to investigate the modelling of SDR for LES over a range of different heat 

release parameter  , Lewis number Le and turbulent Reynolds number tRe  values.  The 

performance of an existing SDR closure for passive scalar mixing (i.e. SDR-C model) 

has been assessed with respect to 
cN

~
 extracted from DNS data alongside a model based 

on a power-law expression (i.e. SDR-PL model) and an existing algebraic RANS-SDR 
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model, which has been extended here for the purpose of LES (i.e. SDR-RE model). It has 

been found that the SDR-PL model significantly overpredicts and fails to capture the  

qualitative variation of the mean values of 
cN

~
 conditional on c~  for th , even for the 

optimum parameters for which this model accurately predicts the volume averaged values 

of SDR. The SDR-C model with the theoretical value of Smagorinsky constant has been 

found to underpredict the mean values of 
cN

~
 conditional on c~  and also the volume 

averaged values of SDR for all cases considered here. The newly developed SDR-RE 

model has been found to capture both local and volume-averaged statistics of 
cN

~
 for both 

th  and th  in a better manner than the other alternative models for all cases 

considered here. The performance of the SDR-RE model has been found to improve with 

increasing tRe  and the SDR-RE model has been demonstrated to satisfactorily predict 

both local and volume-averaged statistics of 
cN

~
 for high values of tRe  in flames with 

0.1Le  Moreover, it has been found that the modelling of the sub-grid turbulent 

velocity fluctuation (i.e. 

u ) based on Smagorinsky model of the eddy viscosity does not 

significantly affect the performance of the SDR-RE model. The model parameters 

proposed originally in the context of RANS have been used for the SDR-RE model except 

for the model parameter c , which is expressed here as a function of heat release 

parameter  , as c  remains a weak function of tRe  and independent of global Lewis 

number Le .  

 

It is worth noting that the assumption of scale independent functional form is indeed 

questionable for modelling the quantities related to scalar gradient in premixed flames. 

However, this concept was successfully used for modelling the generalised FSD 
gen  

(Charlette et al., 2002) in the past using a power-law approach. However, previous 

findings (Dunstan et al., 2013) and current analysis indicate that the concept of scale-

similarity may not be suitable for SDR modelling in the context of LES using a power-

law approach. Although the assumption of scale independent functional form is invoked 

for dynamic evaluation of c  but this assumption is applied to the function 1f  which is 

dependent on LSu /
  and th/  (see eqs. (6.71) and (6.72)).  As the assumption of scale 

independent functional form has been demonstrated to be successful in capturing the 

quantities associated with turbulence (e.g. 
u ) (Bardina et al., 1980; Zang et al., 1993; 
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Vreman et al., 1997), this assumption works better for dynamic evaluation of c  than the 

dynamic evaluation of power-law exponent. 
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Chapter 7. Scalar dissipation rate transport and its modelling 

 

 

As discussed in Chapters 5 and 6, it is possible to model the chemical reaction rate of 

turbulent premixed combustion based on properly modelled scalar dissipation rate. In 

turbulent premixed combustion, the transport equation of SDR can be closed if all 

unclosed terms in SDR transport equation are properly modelled in the context of both 

RANS and LES. Under the condition that equilibrium is maintained for the generation 

and destruction of scalar gradient, it is possible to algebraic closure filtered/averaged SDR 

in both RANS and LES, which was introduced in detail in Chapter 6. The modelling of 

SDR transport equation for RANS has been studied extensively in the existing literature 

(Chakraborty and Swaminathan, 2007a, 2007b, 2010, 2013; Chakraborty et al., 2008, 

2009, 2010, 2011d; Mantel and Borghi, 1994; Mura and Borghi, 2003; Mura et al., 2008, 

2009; Swaminathan and Bray, 2005). Interested readers are referred to Chakraborty et al. 

(2011d) for a detailed review of the existing modelling methodologies for SDR transport 

in the context of RANS simulations. However, relatively limited attention has been given 

to the modelling of SDR transport in the context of LES (Knudsen et al., 2012). In order 

to solve the transport equation of filtered SDR, it is necessary to model the sub-

grid/unresolved components of the unclosed terms. Therefore, it is essential to model the 

unclosed terms of the SDR transport equation for the purpose of LES, which is yet to be 

addressed for turbulent premixed flames. The instantaneous behaviours of SDR and its 

transport equation will be provided firstly in this chapter followed by the statistical 

analysis of filtered SDR and its transport equation for a wide range of different filter 

widths. The dependences on local strain rate and curvature will be analysed for both 

instantaneous SDR and filtered SDR and their respective transport equations. The scaling 

estimates of SDR and the terms of its transport equation have been utilised to model the 

unclosed terms of filtered SDR transport equation at the end of this chapter.  

 

7.1 Statistical analysis of instantaneous SDR and its transport equation 

For the purpose of convience, the transport equation of instantaneous SDR cN  , which is 

eqs. (3.50) and (3.51) in Chpater 3, is repeated here as: 
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     (7.2) 

In the above transport equation, density variation term 1IT , turbulence scalar interaction 

term 2IT , reaction rate term 3IT , molecular dissipation term ( )2ID  and diffusivity 

gradient term ( )F D  lead to unclosed terms of eqn. (3.58), (i.e. 2 3 4 2, , , ( )T T T D and f(D)), 

which require modelling in both RANS and LES. Therefore the statistical behaviours of 

the above instantaneous terms evaluated based on DNS database will provide an accurate 

picture of their behaviours when the flow is fully resolved, which is of fundamental 

importance for modelling the unclosed terms of the SDR transport equation in a 

physically consistent manner as premixed combustion is mainly a sub-grid phononmenon 

as the flame thickness is only resolved in DNS but not RANS or LES.  
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Figure 7.1: Variation of the mean value of /c th LN S  conditional on c  values across the flame 

front for cases F-J with the bar indicating the standard deviation. 

 

The variation of normalised instantaneous SDR /c th LN S  with c  for unity Lewis 

number flames are shown in Fig. 7.1, which is obtained by ensemble averaging the 

quantity in question on a given c isosurface in the manner often used by previous studies 

(Boger et al., 1998; Chakraborty and Cant, 2004, 2005; Chakraborty and Klein, 2008, 

2008a). It is worth noting that this ensemble averging should not be confused with either 

Reynolds averaging or conventional conditional averaging operation in the context of 

RANS simulations because /c th LN S  is evaluated using all the samples for a given c  

value over the whole domain. Figure 7.1 shows that the maximum value of /c th LN S  

is skewed slightly towards the burned gas side of the flame (i.e. 0.7c  ).  The peak 

magnitude of /c th LN S  does not change significantly in response to / Lu S  as the 

standard deviation for the case in the middle of the parameter range is found to exceed 

the difference in /c th LN S  values for the cases considered here. In order to understand 

this behaviour, the variations of the mean values of the terms 1I 2I 3IT ,T ,T , ( )2ID  and 

( )F D  conditional on c  for cases F and J are shown in Fig. 7.2. The variations of the 

mean values of the terms in cases G, H and I are qualitatively similar to those in cases F 

and J and thus are not explicitly shown here. In all cases 1IT  remains positive throughout 

the flame. By contrast, ( )2ID  assumes negative values throughout the flame in all cases 

as dictated by eq. (7.1). Expressing 0 / (1 )c     for low Mach number unity Lewis 
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number flames gives rise to an alternative expression for 1T  (Swaminathan and Bray, 

2005;Chakraborty et al., 2008, 2010; Chakraborty and Swaminathan, 2010): 

2
j

1I c

j

u
T N

x






                                                          (7.3) 

As dilatation rate /i iu x   is predominantly positive in premixed flames, 1IT  for all values 

of c  is positive across the flame and vanishes on both ends of the flame. 

 

(a)   (b)  

Figure 7.2: Variation of the mean values of , , , ( )1I 2I 3I 2IT T T D  and ( )F D  conditional on c  

values across the flame for cases F (a) and J(b). All the terms of the transport equation of cN  are 

normalised with respect to the respective values of 
2 2

0 /L thS  . 

 

The quantity 2IT  assumes negative values throughout the flame front for cases F, although 

2IT  remains negative for the major portion of the flame, small positive values can be 

discerned in cases J. In order to understand this behaviour, the term 2T  can be expressed 

in the following manner (Swaminathan and Grout, 2006; Chakraborty and Swaminathan, 

2007, 2007a; Chakraborty et al., 2008, 2009): 

2 2 22 ( cos cos cos )2I cT N e e e                                          (7.4) 

where ,e e   and e  are the most extensive, intermediate and most compressive principal 

strain rates and ,   and   are the angles of the eigenvectors associated with these 

principal strain rates with c . Equation 7.4 demonstrates that the predominant alignment 

of e  with c  leads to a negative contribution to 2IT  whereas a predominant alignment 

of  e  with c  leads to a positive contribution to 2IT . 
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It has been discussed in the previous analyses (Chakraborty and Swaminathan, 2007, 

2007a; Chakraborty et al., 2008, 2009) that the alignment of c  with e  and e  is 

determined by relative strengths of strain rate induced by flame normal acceleration chema  

and turbulent straining turba . It has been demonstrated earlier that c  preferentially 

aligns with e  when chema  dominates over turba , but tends to aligns with e  when turba  

dominates over chema . The strain rate induced by flame normal acceleration due to 

chemical heat release can be scaled as: 

 

   ~ ( ) L
chem

th

S
a f Ka


                                                (7.5) 

 

where ( )f Ka  is expected to decrease with increasing (Chakraborty and Swaminathan, 

2013). Following Meneveau and Poinsot (1991) turba  can be scaled as: 

 

 ~turb

u
a

l


                                                                (7.6) 

which gives rise to: 

 

1/2Re
~ ( ) ~ ( ) ~chem tL

turb th

a S l
f Ka f Ka Da f Da

a u Da
  



 
 

  
                          (7.7) 

 

Alternatively, turbulent straining can be scaled as (Tennekes and Lumley, 1972):  

 

~turb

u
a




                                                             (7.8) 

 

where   is the Taylor micro-scale, which yields 

 

  
1/2

1/2 1/2

Re ( )
~ ( ) ~ ( ) ~ ~

Re Re

chem tL

turb th t t

a S Da Da f Ka
f Ka f Ka f

a u Da Ka


   



 
 

  
           (7.9) 

 

The above scaling relations suggest that chema  strengthens with respect to turba  with 

increasing Da  for a given value of Ret . Previous analyses (Chakraborty and 
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Swaminathan, 2007, 2007a; Chakraborty et al., 2008, 2009) demonstrated that c  

predominantly aligns with e  for 1Da  flames, whereas c   aligns with e  in 

1Da  flames for comparable value of Ret . Both eqs. (7.7) and (7.9) indicate that an 

increase in 1/2~ Re /tKa Da  for a given value of Da  (e.g. cases F, H and J) gives rise to 

weakening of chema  in comparison to turba . This increases the extent of c  alignment 

with e  with increasing Ka  when Da  is held constant as in cases F, H and J. In cases F 

and H c  predominantly aligns with e  however the extent of this alignment decreases 

from F to H. This predominant alignment of c  with e  in cases F and H leads to a 

negative contribution of 2IT  in these cases. In case J, c  predominantly aligns with e  

in the unburned and fully burned gases but chema  overcomes turba  in the regions of intense 

heat release close to the middle of the flame and as a result c  aligns with e  in the 

reaction zone. Thus the mean value of 2IT  in case J assumes positive values towards both 

the unburned and burned gas sides, whereas the mean contribution of 2IT  remains 

negative close to the middle of the flame. The relation 1/2/ ~ ( ) / Rechem turb ta a f Ka Da  

indicates that chema  weakens in comparison to turba  with decreasing 1/2/ RetDa . The 

quantity 1/2/ RetDa  assumes values equal to 0.96, 0.55 and 0.49 for cases G, H and I 

respectively when the statistics were extracted. This leads to larger extent of c  aligning 

with e  in case I (case H) than in case H (case G). This leads to predominantly negative 

contribution of 2IT  in cases G and H, whereas 2IT  assumes positive values towards the 

unburned and burned gas sides of the flame in case I. However, chema  overcomes turba  in 

the regions of intense heat release at the middle of the flame and c  starts to align with 

e  in the reaction zone giving rise to negative values of 2IT  in case I.  

 

The contribution of 3IT  remains positive (negative) towards the unburned (burned) gas 

side of the flame with the transition from positive to negative value taking place close to 

85.0c . In order to explain this behaviour 3IT  can be rewritten as: 

 

   2 23I i

i

w w
T Dn c D c

x n

 
     

 
                                         (7.10) 
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where n  is the spatial coordinate in the local flame normal direction and the flame normal 

vector n   points towards the unburned gas side of the flame. For single step chemistry 

considered here the maximum w  occurs close to 85.0c  (Chakraborty and Cant, 2004; 

Chakraborty et al., 2008d). This suggests that the probability of finding negative values 

of nw  /   is significant for 85.0c , which gives rise to positive value of 
3IT  towards 

the unburned gas side of the flame. For 85.0c , it is of high probability to find 

/ 0w n    resulting in negative value of 
3IT  towards the burned gas side of the flame.    

 

Figure 7.2 shows that ( )F D  is weakly negative towards the unburned gas side before 

becoming positive towards the burned gas side in all the cases. The magnitude of the 

mean contribution of ( )F D  remains comparable to that of 1IT  in all cases indicating that 

( )F D  cannot be neglected even for flames where D  is considered to be constant. As for 

globally adiabatic 0.1Le  flames as cases F-J: 

0

1 c








                                                       (7.11) 

such that c i
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D D
N u
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 

    
     

        

                              (7.12) 

 

and the first two terms on the right hand side of eq. (7.2) vanish for constant values of 

.D  The contributions of 3 4( )D DT T  are responsible for the change in sign of ( )F D  in 

cases F-J.  

 

7.1.1 Local behaviours of Nc and its strain rate and curvature dependence 

The marginal probability density functions (pdfs) of normalised cN   (i.e. /c th LN S ) 

for different c  isosurfaces across the flame are shown in Fig. 7.3 in log-log scale for case 

H. The pdfs of cN  in cases F, G, I and J are qualitatively similar to those in cases H and 

thus are not explicitly shown here. The pdfs for c < 0.5 are not shown in Fig. 7.3, as cN
 

assumes small values in the preheat zone of the flame due to small magnitude of scalar 

gradient c . It is evident from Fig. 7.3 that the probability of finding high values of cN  
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is most prevalent in the middle of the flame with slight skewness towards the burned gas 

side (i.e. 7.0c ) and the probability of finding high values of cN  decreases on both 

unburned and burned gas sides of the flame front. This is consistent with the observed 

behaviour of the mean values of cN  conditional on c  shown in Fig. 7.1. It can be seen in 

Fig. 7.3 that a log-normal distribution captures the qualitative behaviour of the pdf of cN  

although there are some disagreement in the pdf tails. This is consistent with several 

previous experimental (Sreenivasan and Antonia, 1997; Antonia and Sreenivasan, 1977; 

Mi et al., 1995; Su and Clemens, 2003; Karpetis and Barlow, 2002; Geyer et al., 2005; 

Markides and Mastorakos, 2006) and numerical (Jones and Musonge, 1988; Yeung et al., 

1990; Hawkes et al., 2007) studies investigating the scalar dissipation rate pdf of a passive 

scalar.  An approximate log-normal distribution of SDR in turbulent premixed flames has 

also been reported in a previous analysis (Swaminathan and Bilger, 2001).  

 

Figure 7.3: The marginal pdf of normalised cN 
 (i.e. /c th LN S ) and the log-normal 

distribution  in log-log scale for c  0.5, 0.7 and 0.9 across the flame for cases H.  

 

The joint pdfs of cN  and tangential strain rate Ta  for cases F anf J are shown in Fig. 7.4a 

respectively for 8.0c  isosurface, which is close to the most reactive region for the 

present thermo-chemistry. It can be seen from Fig. 7.4a that cN  and Ta  are positively 

correlated on 8.0c  isosurface for cases F and J and similar qualitative behaviour has 

been observed also for other c  isosurfaces in all cases considered here. This positive 

correlation between cN  and Ta  can be explained in the following manner.  

 

 The dilatation rate .u  can be devided into tangential component and normal 

component as:  
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. T nu a a    where i
n i j
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u
a n n

x





 is the normal strain rate.                  (7.13) 

For unity Lewis number flames u


.  can be scaled as:  

. ~ ~ ( ) L
chem

th

S
u a f Ka


                                                   (7.14) 

whereas Ta  can be taken to scale with turbulent strain rate as:  

 ~ ~T turb

u
a a

l


, with integral length scale (Meneveau and Poinsot, 1991) or      (7.15) 

~ ~T turb

u
a a




, with Taylor’s length scale

 
(Tennekes and Lumley, 1972)       (7.16) 

 Above scalings indicate that 
.

T

u

a


 scales as:  

1/2Re.
~ t

T

u
f Da

a Da


 
 
 

 or                                                  (7.17) 
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                                            (7.18)  

 

F  J  

(a) 

F    J  

(b)   

Figure 7.4: (a) Joint pdfs between /c th LN S  and normalised tangential strain rate /T th La S  

on 8.0c  isosurface for cases F and J. (b) Joint pdf between /c th LN S  and normalised 

curvature m th   on 8.0c  isosurface for cases F and J. 
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Both eqs. (7.17) and (7.18)
 
suggest that the magnitude of Ta  is likely to supersede the 

magnitude of u


.  in most locations within the flame for small values of Da  and high 

values of Ka . 

 

 It has been shown in several previous analyses (Chakraborty and Cant, 2004; 

Chakraborty et al., 2009)  that both .u  and Ta  assume predominantly positive values 

and thus a higher magnitude of Ta  than .u  induces a negative (i.e. compressive) 

normal strain rate na .  Thus an increase in Ta  often leads to a decrease in .n Ta u a   

for small (high) values of Da  ( Ka ). Thus, the isoscalar lines come close to each other 

under the action of decreasing na , which leads to increase in the magnitude of scalar 

gradient c . This is reflected in the positive correlation between cN  and Ta .  

 

The joint pdfs between cN  and curvature m  for cases F and J are shown in Fig. 7.4b 

respectively for 8.0c  isosurface. Cases G, H and I are not explicitly shown here due to 

their similarity to cases F and J.  It can be seen from Fig. 7.4b that the joint pdf between 

cN  and m  exhibits both positive and negative correlating branches on 8.0c  isosurface 

for cases J, and as a result of this, the net correlation between cN  and m  remains weak. 

The positive correlation branch between cN  and m  remains weak for small values of 

/ Lu S  (see Fig. 7.4b for case F). Similar behaviour is observed for other c  isosurfaces 

in all cases considered here and the correlation between cN  and m  is weak throughout 

the flame for high values of / Lu S  (e.g. case J).  The observed behaviour can be explained 

based on the following physical mechanisms: 

 

 It has been shown earlier that both Ta  and u


.  are negatively correlated with m  
for 

the flames considered here (Chakraborty et al., 2011) and thus the behaviour of na  at 

locations with large positive curvature are principally determined by Ta  since u


.  is 

small in these zones due to defocusing of heat. Small values of Ta  are associated with 

high values of m  at these locations, which lead to small values of cN  at high values 

of positive m  due to positive correlation between cN  and Ta . This leads to a negative 

correlating branch between cN  and m  at the positively curved zones.  



 

Chapter 7.  SDR transport and its modelling  

168 

 

 The dilatation rate u


.  is large in the negatively curved locations due to strong 

focussing of heat and the magnitude of u


.  can locally be high enough to supersede 

the magnitude of Ta , which leads to a positive value of na . This tendency strengthens 

with decreasing m  especially in the zones with large negative curvature, which gives 

rise to an increase in na  with decreasing curvature. As the distance between the 

isoscalar lines increases with increasing na , the magnitude of scalar gradient c  

decreases with decreasing m  in the negatively curved zones. This leads to the positive 

correlating branch in the joint pdf of cN  and m  (see Figs. 7.4b for case J).   

 The relative strengths of the positive and negative correlating branches ultimately 

determine the net correlation between cN  and m  in the high / Lu S  cases.  The 

probability of finding high negative curvature remains small for small values of / Lu S  

and as a result the probability of finding high values of u


. , which locally overcomes 

Ta , to induce a positive value of na , becomes rare (e.g. case F). Thus the combination 

of positive correlations between cN  and Ta , and negative correlations between Ta  and 

m  leads to a predominantly negative correlating branch between cN  and m  in the 

low / Lu S  cases (e.g. case F, see Fig. 7.4b). 

 

The strain rate and curvature dependences of cN  discussed above, in turn affect the local 

statistical behaviours of  1IT , 2IT , 3IT , ( )2ID and ( )F D  in response to  Ta  and m .  The 

curvature and strain rate dependences of 1IT , 2IT , 3IT , ( )2ID  and ( )F D  are discussed 

next. 

 

7.1.2 Local Behaviours of T1I and its strain rate and curvature dependence 

The marginal pdfs of 1IT  for different c  isosurfaces across the flame are shown in Fig. 

7.5a for case H. The pdfs of 1IT  in cases F, G, I and J are qualitatively similar to those in 

case H, and thus are not explicitly shown here. It is evident from Figs. 7.5a that the pdfs 

of 1IT  suggest 2( . )1I cT u N   assumes predominantly positive values throughout the 

flame. As dilatation rate u


.  is principally positive due to thermal expansion in premixed 

flames (Chakraborty and Cant, 2004; Chakraborty et al., 2009), the contribution of 

2( . )1I cT u N   is predominantly positive throughout the flame. Moreover, Fig. 7.5a 
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demonstrates that the probability of finding high values of 1IT  is most prevalent in the 

middle of the flame with slight skewness towards the burned gas side (i.e. 7.0c ) and 

the probability of finding high values of 1IT  decreases on both unburned and burned gas 

sides of the flame. This is consistent with the observed behaviour of the mean values of 

cN  conditional on c  shown in Fig. 7.2.  The probability of finding large magnitudes of 

.u  is the highest at a location which is slightly skewed towards the burned gas side of 

the flame (Chakraborty et al., 2009). As the distributions of cN  and .u  are slightly 

skewed towards the burned gas side of the flame, the probability of finding large values 

of 2( . )1I cT u N   becomes high around 7.0c .  

 

(a)  

(b)  (c)  

Figure 7.5: (a) The marginal pdfs of 
2 2

0/1I th LT S   for c  0.1, 0.3, 0.5, 0.7 and 0.9 for case H. 

(b) Joint pdf between 
2 2

0/1I th LT S   and normalised tangential strain rate /T th La S   on 

0.8c   isosurface for case H. (c) Joint pdf between 
2 2

0/1I th LT S   and normalised curvature 

m th   on 0.8c   isosurface for case H. 

 

The joint pdf between 1IT  and Ta  for case H is shown in Fig. 7.5b for 8.0c  isosurface. 

It can be seen from Fig. 7.5b that 1IT  and Ta  are positively correlated on 8.0c  

isosurface for case H and similar qualitative behaviours have been observed for other c  
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isosurfaces in all cases considered here. Both u


.  and Ta  are positively correlated for all 

flames considered here, which along with positive correlation between cN  and Ta  (see 

Fig. 7.4) gives rise to a positive correlation between 2( . )1I cT u N   and Ta .  

 

The joint pdf between 1IT  and m  for case H is shown in Fig. 7.5c for 0.8c   isosurface. 

It can be seen from Fig. 7.5c that the joint pdf between 1IT  and m  exhibits negative 

correlation on 0.8c   isosurface for case H and similar qualitative behaviour has been 

observed for other c  isosurfaces in all cases considered here. In all cases the net 

correlation between cN  and m  is weak (see Fig. 7.4) but .u  assumes high (small) 

values at negatively curved locations because of focussing of heat, whereas at convex 

location .u  tends to small values due to heat defocusing. This leads to a predominantly 

negative correlation between .u  and m  (Chakraborty et al., 2011). The negative 

correlation between .u  and m  is principally responsible for the negative correlation 

between 2( . )1I cT u N   and m .  

  

7.1.3 Local Behaviours of T2 and its strain rate and curvature dependence 

The marginal pdfs of 2IT  for different c  isosurfaces across the flame are shown in Fig. 

7.6a for case H. The pdfs of 2IT  in cases F, G, I and J are qualitatively similar to those in 

case H and thus are not explicitly shown here.  Figure 7.6a shows that the probability of 

finding negative values of 2IT  supersedes the probability of finding positive values. The 

probability of finding negative values of 2IT  increases as the heat releasing zone (see the 

pdfs for 7.0c  isosurface) is approached. It has been discussed earlier that the effects of 

chema  overcome the effects of turba  in the heat releasing zone to result in a preferential 

alignment of c  with e  even for small values of Da . This preferential alignment of 

c  with e  in these zones gives rise to negative values of 2IT  according to eq. (7.4).  The 

extent of c  alignment with e  ( e ) decreases (increases) towards both unburned and 

burned gas sides of the flame due to diminishing effects of chema .  

 

The contours of joint pdfs between 2IT  and Ta  for 0.8c   are shown Fig. 7.6b for case 

H and the correlation coefficients between 2IT  and Ta  for different c  isosurfaces across 
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the flame for all cases F-J are shown in Table 7.1.  It is evident from Figs. 7.6b and Table 

2 that 2IT  and Ta  are positively correlated for high / Lu S  cases (e.g. cases H-J) although 

the strength of the correlation changes through the flame. However, 2IT  and Ta  are 

weakly correlated with each other within the flame where the effects of heat release are 

significant for the cases with small and moderate values of / Lu S  (see Table 7.1).  In 

order to explain this behaviour it is useful to rewrite 2IT  in the following manner: 

                                                               22I n cT a N                                                             (7.19) 

(a)  

(b)  (c)       

 

Fig. 7.6: (a) The marginal pdfs of 
2 2

0/2I th LT S   for c 0.1, 0.3, 0.5, 0.7 and 0.9 for case H. (b) 

Joint pdf between 
2 2

0/2I th LT S   and normalised tangential strain rate /T th La S  on 8.0c  

isosurface for case H. (c) Joint pdf between 
2 2

0/2I th LT S   and normalised curvature m th   

on 8.0c  isosurface for cases H. 

 

Based on eq. (7.19) the strain rate dependences of 2IT  can be explained in the following 

manner: 

 It has already been demonstrated that cN  and Ta  are positively correlated with 

each other (see Fig. 7.4). The quantity ( ) .n Ta a u    tends to increase with 
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increasing Ta  in the regions where the effects of u


.  are weak.  This along 

with positive correlation between cN  and Ta  leads to a positive correlation 

between 2IT  and Ta  for both unburned and burned gas sides of the flame for 

all cases.  

 The magnitudes of .u  and Ta  increase with decreasing m , and thus 

( ) .n Ta a u    might not increase (even decrease) with increasing Ta  in the 

heat releasing zone of the flame where the effects of u


.  are strong. The Ta  

dependences of )( na  and cN  ultimately determine the nature of the 

correlation between 2IT  and Ta .  The strain rate and curvature dependences of 

u


.  weaken with increasing / Lu S  (Hartung et al., 2008) so ( ) .n Ta a u    

increases with increasing Ta , which leads to a positive correlation between 2IT  

and Ta  for the major portion of the flame for cases with high values of / Lu S  

(see Table 7.2).  

 

Case 2I TT a  2I mT   

c =0.1 c = 0.3 c = 0.5 c =0.7 c =0.9 c =0.1 c = 0.3 c = 0.5 c =0.7 c =0.9 

F 0.642 -0.098 -0.217 -0.092 0.685 0.141 0.509 0.720 0.614 -0.250 

G 0.673 -0.090 -0.208 -0.084 0.676 0.116 0.506 0.719 0.616 -0.227 

H 0.751 0.376 0.263 0.263 0.648 0.544 0.252 0.412 0.423 -0.065 

I 0.802 0.593 0.616 0.689 0.827 0.052 0.196 0.235 0.198 -0.027 

J 0.783 0.662 0.614 0.616 0.787 0.028 0.137 0.223 0.242 -0.014 

Table 7.1: Correlation coefficients between 2IT  and Ta , and between 2IT  and m  on c 0.1, 0.3, 

0.5, 0.7 and 0.9 isosurfaces.  

 

The joint pdf between 2IT  and m  for case H is shown in Figure 7.6c respectively for 

8.0c  isosurface and the correlation coefficients between 2IT  and m  for different c  

isosurfaces across the flame are shown in Table 7.1 for all cases considered here. It is 

evident from Fig. 7.6c and Table 7.1 that 2IT  and m  
 remain weakly positively correlated 

except the burned gas side of the flame. The observed curvature dependence of 2IT  could 

be explained based on following physical mechanisms:    

 

 The effects of dilatation rate .u  and thermal expansion are particularly strong in the 

negatively curved regions due to focussing of heat. By the same token, the effects of 
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heat release are weak in the positively curved zones due to defocusing of heat.  Thus 

the effects of chema  are more likely to dominate over the effects of turba  in the 

negatively curved zones and thus increases the extent of c  alignment with e  as 

demonstrated earlier by Hartung et al. (2008). Weakening of the heat release effects at 

positively curved zones due to defocusing of heat leads to a greater (lesser) extent of 

c  alignment with e ( e ) in the positively curved zones. The extent of c  alignment 

with e  increases in the negatively curved zones, which in turn makes 2IT  increasingly 

negative (see eq. (7.4)) and the magnitude of the negative contribution of 2IT  decreases 

for positive curvature locations. This gives rise to a positive correlation between 2IT  

and m , as observed from Figs. 7.6c and Table 7.1.   

 However, the effects of turba  are more likely to dominate over the effects of chema  

towards the burned gas side and thus the extent of c  alignment with e  is determined 

by local turbulent flow conditions. The effects of flame-generated turbulence become 

stronger at the negatively curved zones due to stronger thermal expansion effects 

resulting from focussing of heat especially in the heat releasing zone. The straining 

induced by flame-generated turbulence may overcome relatively weak effects of .u  

towards the burned gas side, which can give rise to an increasing extent of c  

alignment with e  increases in the negative curved zones. This in turn gives rise to an 

increase in 2IT  (see eq. (7.4)) with decreasing m  towards the burned gas side and 

leads to a negative correlation between 2IT  and m  (see Table 7.1). 

 

7.1.4 Local Behaviours of T3I and its strain rate and curvature dependence 

The marginal pdfs of normalised 3IT  for different c  isosurfaces across the flame are 

shown in Fig. 7.7 for cases H. The pdfs of 3IT  in cases F, G, I and J are qualitatively 

similar to those in case H and thus are not explicitly shown here. The pdfs for 5.0c  are 

not shown in Fig. 7.7 because 3IT  assumes negligible value in the preheat zone of the 

flame due to negligible magnitude of the reaction rate w . It is evident that 3IT  assumes 

positive values for the major portion of the flame and the probability of finding high 

positive values increases towards the most reactive zone (e.g. c = 0.7) of the flame front. 

However, 3IT  assumes negative values only towards the burned gas side (e.g. 9.0c ) of 

the flame front. This is consistent with the behaviour of 3IT  shown in Fig. 7.16. The 
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physical mechanism behind the transition from positive to negative values of the mean 

contribution of 3IT  (see eq. (7.10)) is also responsible for obtaining negative (positive) 

values of 3IT  towards the burned (unburned) gas side of the flame.  

 

 

Fig. 7.7: The marginal pdfs of 2 2

0/3I th LT S    for c 0.5, 0.7 and 0.9 for case H. 

 

The contours of joint pdfs between 3IT  and Ta  for 0.5c  , 0.7 and 0.9 isosurfaces are 

shown Figs. 7.8a-7.8c for case H and similar qualitative behaviour has been observed for 

other cases considered here. It is evident from Figs. 7.8a-7.8c that 3IT  and Ta  remain 

positively correlated for the part of the flame where finding positive values of 3IT  is 

prevalent. On the other hand 3IT  and Ta  are negatively correlated with each other towards 

the burned gas side of the flame where 3IT  is predominantly negative. The observed Ta  

dependence of 3IT  can be explained in the following manner: 

 It has been demonstrated earlier that cN  and Ta  are positively correlated with each 

other which suggests that /c c n     increases with increasing Ta . For low Mach 

number unity Lewis number flames w  depends only on c  and thus high values of 

/w n   are associated with high values of /c c n     and cN .  

 As cN  and Ta  are positively correlated with each other, the magnitude of reaction rate 

contribution 2 ( / )3IT D w n c     is positively correlated with tangential strain rate 

Ta . Thus 3IT  is positively (negative) correlated with Ta  where 3IT  assumes positive 

(negative) values.  
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(a)   (d)  

(b)    (e)  

(c)      (f)  

Fig. 7.8: Joint pdfs between 
2 2

0/3I th LT S   and normalised tangential strain rate /T th La S on 

(a) 5.0c , (b) 0.7 and (c) 0.9 isosurfaces for case H . Joint pdfs between 
2 2

0/3I th LT S   and 

normalised curvature m th   on the (d) 5.0c  , (e) 0.7 and (f) 0.9 isosurfaces for case H. 

 

The joint pdfs between 3IT  and m  for case H are shown in Figs. 7.8d-7.8f for 5.0c , 

0.7 and 0.9 isosurfaces and similar qualitative behaviour has been observed for other cases 

considered here. It is evident from Figs. 7.8d-7.8f that the joint pdf of 3IT  and m  exhibit 

both positive and negative correlating branches and the net correlation is weak throughout 

the flame.  
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The physical explanations for the observed m  dependence of 3IT  can be summarised in 

the following manner: 

 The term 2 ( / )3IT D w n c     is expected to be positively (negatively) correlated 

with curvature m  at negatively (positively) curved locations for high values of / Lu S

, as in the case of cN  (see case H in Fig. 7.4b), because high values of nw  /  are 

associated with high values of cN and ncc  / .  

 As a result of the aforementioned physical mechanisms the term 3IT  and m  remain 

positively (negatively) correlated with curvature m  at negatively (positively) curved 

locations in the planar flames where 3IT  assumes positive values. By contrast, the joint 

pdfs of 3IT  and m  exhibit negative (positive) correlation with curvature m  at 

negatively (positively) curved locations within the flame where 3IT  assumes negative 

values for the planar flames considered here (see Fig. 7.8f). 

 

Case 
( )2I TD a   ( )2I mD    

c =0.1 c = 0.3 c = 0.5 c =0.7 c =0.9 c =0.1 c = 0.3 c = 0.5 c =0.7 c =0.9 

F -0.598 -0.809 -0.368 -0.183 -0.522 0.280 0.577 0.582 -0.020 0.261 

G -0.581 -0.806 -0.389 -0.218 -0.488 0.272 0.554 0.600 0.023 0.225 

H -0.546 -0.699 -0.028 0.050 -0.296 0.283 0.422 0.364 -0.234 -0.001 

I -0.513 -0.652 0.221 -0.078 -0.483 0.231 0.338 -0.074 -0.412 -0.100 

J -0.472 -0.581 0.111 -0.031 -0.378 0.205 0.288 0.174 -0.317 -0.107 

V1 -0.712 -0.695 -0.069 -0.616 -0.679 0.700 0.825 -0.176 0.619 0.766 

V2 -0.628 -0.525 0.089 -0.445 -0.703 0.475 0.696 0.033 0.159 0.633 

V3 -0.452 -0.355 0.130 -0.312 -0.697 0.289 0.481 0.049 -0.104 0.260 

Table 7.2: Correlation coefficients between ( )2ID  and Ta , and between ( )2ID  and m  on 

c  0.1, 0.3, 0.5, 0.7 and 0.9 isosurfaces.  

 

7.1.5 Local Behaviours of (-D2I) and its strain rate and curvature dependence 

The marginal pdfs of ( )2ID  for c  isosurfaces representative of leading edge, reaction 

zone and trailing edge of the flame (e.g. 3.0c , 0.7 and 0.9 isosurfaces) are shown in 

Fig. 7.9 for case H. The pdfs of ( )2ID  in cases F, G, I and J are qualitatively similar to 

that in case H and thus are not explicitly shown here. Figure 7.9 shows that ( )2ID  

assumes negative values throughout the flame and the probability of finding high 

magnitude of ( )2ID  increases from unburned gas side towards a region of the flame 
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which is severely skewed towards the burned gas side (e.g. c = 0.9 isosurface). This 

behaviour is found to be consistent with the mean behaviour of ( )2ID  shown in Fig. 7.2.  

The contours of joint pdfs between ( )2ID  and Ta  for 8.0c  isosurface are shown Fig. 

7.9b for case H and the correlation coefficients between ( )2ID  and Ta  for different c  

isosurfaces across the flame for all cases considered here are shown in Table 7.2. Figures 

7.9b and Table 7.2 show that ( )2ID  and Ta  are predominantly negatively correlated 

throughout the flame but the strength of this negative correlation weakens with increasing 

/ Lu S  and the correlation becomes weakly positive at the middle of the flame for high 

values of / Lu S  (e.g. cases I and J). This behaviour can be explained in the following 

manner: 

 The instantaneous SDR cN  and the molecular dissipation term ( )2ID
 
can be taken to 

scale as 2~ /cN D   and 2 4 2( ) ~ ( / ) ~ ( )2I cD D N      (where   is the typical local 

flame thickness) because in premixed flame the gradients of progress variable are only 

existent within the flame thickness. Alternatively, ( )2ID  can be considered to be 

governed by small-scale eddies and thus the characteristic length scale can be taken to 

be the Kolmogorov length scale  . However, 
1/2/ ~ Ka   remains of the order of 

unity for all cases considered here (see Table 4.1) and thus one obtains 

2 4 2( ) ~ ( / ) ~ ( )2I cD D N      when dissipation processes are taken to be governed 

by  . Both scalings of ( )2ID  (i.e. 2 4 2( ) ~ ( / ) ~ ( )2I cD D N      and 

2 4 2 2( ) ~ ( / ) ~ ( )2I cD D N Ka     ) suggest that high magnitudes of the dissipation 

term 
2ID  are associated with high values of Ta  due to positive correlation between 

cN  and Ta  (see Fig. 7.4a).  

 

 As ( )2ID  assumes negative values, the quantities ( )2ID  and Ta  is predominantly 

negatively correlated throughout the flame due to positive correlation between 2D  

and  Ta . However, the negative correlation between  ( )2ID  and Ta  weakens with 

increasing / Lu S  due to weakening of positive correlation between cN  and Ta  . Thus 

the correlation between ( )2ID  and Ta  becomes weakly positive at the middle of the 

flame for high values of / Lu S  (e.g. cases I and J). 

 



 

Chapter 7.  SDR transport and its modelling  

178 

 

(a)  

(b)   (c)       

(d)  (e)  

Fig. 7.9: (a) The marginal pdfs of 
2 2

0( ) /2I th LD S    for c  0.3, 0.7 and 0.9 for case H. (b) Joint 

pdfs between 
2 2

0( ) /2I th LD S    and normalised tangential strain rate /T th La S on 0.8c   

isosurface for case H. Joint pdfs between 
2 2

0( ) /2I th LD S    and normalised curvature m th 

on (c) 0.3c  , (d) 0.7 and (e) 0.9 isosurfaces for case H. 

 

The joint pdfs of ( )2ID  and curvature m  for case H are shown in Fig. 7.9 for c = 0.3, 

0.7 and 0.9 isosurfaces and the correlation coefficients between ( )2ID  and m  for 

different c  isosurfaces across the flame are shown in Table 7.2 for all cases considered 

here. The joint pdfs of ( )2ID  and m  
in cases F,G, I and J are qualitatively similar to 

those in case H and thus are not shown here. It can be seen from Fig. 7.9 that the quantities 
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( )2ID  and m  
are non-linearly related to one another. The physical explanations behind 

the observed behaviour is provided below: 

 

 The molecular dissipation term ( )2ID  can alternatively be expressed as:  

2
2 2 2 2

22

1 2 1 2 1 1 2 22

2 2 2 2 2 2 2 2

1 3 1 3 1 1 3 3 2 3 2 3 2 2 3 3

4 4 2

( ) 2

2 2

m m

2I

c c c c c c
c c

n n x x x x x x x x
D D

c c c c c c c c

x x x x x x x x x x x x x x x x

 



          
         

                
           

                          

   (7.20) 

The above expression clearly indicates that the third term on the right hand side of eq. 

7.20 (i.e. 
22 28 mD c   ) induces non-linear curvature dependence of the molecular 

dissipation term ( )2ID .  

 The quantity /c n    remains negative (positive) towards the unburned (burned) gas 

side of the flame (Chakraborty and Cant, 2004; Jerkins et al., 2006; Klein et al., 2006) 

thus the second term on the right hand side is positively (negatively) correlated with 

m  towards the unburned (burned) gas side of the flame. The first term on the right 

hand side of eq. 7.20 can be taken to scale as 2 2 22 ( / ) ~ 2 cD c n N      . It has 

already been shown that the joint pdf of cN  and m  exhibit both positive and negative 

correlating branches for high values of / Lu S  (see case J in Fig. 7.4b) and thus the 

joint pdf of 2 22 ( / )D c n     and m  is also expected to show branches with both 

positive and negative correlations in these cases. The weak negative correlation 

between cN and m  for small values of / Lu S  (see case F in Fig. 7.4b) leads to weak 

positive correlation between 2 2 22 ( / ) ~ 2 cD c n N       and m . The last three 

terms on the right hand side vanish in the limit of small scale isotropy and for the 

present cases they remain weakly correlated with curvature.  

 

The relative strengths of the above mechanisms determine the net curvature dependence 

of ( )2ID . Thus positive and negative correlations between ( )2ID  and m  have been 

observed within the flame front in all cases considered here. 
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7.1.6 Local Behaviours of f(D) and its strain rate and curvature dependence 

The marginal pdfs of ( )F D  for 0.1,c   0.3, 0.5, 0.7 and 0.9 isosurfaces across the flame 

front are shown in Fig. 7.10 for case H. The pdfs of ( )F D  in cases F, G, I and J are 

qualitatively similar to those in case H and thus are not explicitly shown here. It is evident 

from Fig. 7.10a that ( )F D  predominantly assumes negative (positive) values towards the 

unburned (burned) gas side of the flame (see Fig. 7.2). The density-weighted diffusivity 

D  is considered to be constant in cases F-J and thus 1DT  and 2DT  are identically zero in 

these cases. The marginal pdfs of 3DT  and 4DT  for case H are shown in Figs. 7.10b and 

7.10c, which show that both 3DT  and 4DT  predominantly assume positive (negative) 

values towards burned (unburned) gas side of the flame. As 5 1 / 2DT T  in cases F-J, the 

pdfs of 5DT  are qualitatively similar to those of 1T  and thus are not shown here. This 

indicates that 5DT  shows predominant probability of finding positive values throughout 

the flame (see Fig. 7.5).   

 

The contours of joint pdfs between ( )F D  and Ta  and between ( )F D  and m  for 1.0c

, 0.5 and 0.7 isosurfaces are shown Fig. 7.11 for case H, and the correlation coefficients 

between ( )F D  and Ta   and ( )F D  and m  for different c  isosurfaces across the flame 

for case H are shown in Figs. 7.12a and 7.12b respectively. Both Figs. 7.11 and 7.12 

indicate that ( )F D  and Ta  are negatively (positively) correlated with each other towards 

the unburned (burned) gas side of the flame brush (i.e. case H).  

 

In order to explain the observed strain rate dependence of ( )F D  the correlation 

coefficients between 3DT , 4DT  and 5DT  with Ta  for 1.0c , 0.3, 0.5, 0.7 and 0.9 

isosurfaces are also shown Fig. 7.12 for case H.  It is evident from Figs. 7.12a and 7.12b 

that both 3DT  and 4DT  remain negatively (positively) correlated with Ta  towards the 

unburned (burned) gas side of the flame.  
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(a)  

(b)  (c)  

Fig. 7.10: (a) The marginal pdfs of 
2 2

0( ) /th LF D S   for c 0.1, 0.3, 0.5, 0.7 and 0.9 for case H. 

The marginal pdfs of (b) 
2 2

3 0/D th LT S   and (c) 
2 2

4 0/D th LT S   for c 0.1, 0.3, 0.5, 0.7 and 

0.9 across the flame for case H.  

 

The strain rate dependences of 3 4,D DT T  and 5DT  can be explained in the following 

manner: 

 

 The magnitudes of 3DT  and 4DT  can be taken to scale as: 2 2

3 ~ / ~D c cT DN N    and 

2 2

4 ~ / ~D c cT DN N   , which indicates that 2

3 ~D cT N  and 2

4 ~D cT N  remain 

positively correlated with Ta  due to positive correlation between cN  and Ta  (see 

Fig. 7.4).  This suggests that the negative (positive) values of 3DT  and 4DT  (see Figs. 

7.11 and 7.12) lead to negative (positive) correlations of these terms with Ta  due to 

positive correlations between cN  and Ta  (also due to positive correlation between 

2

3 ~D cT N  ( 2

4 ~D cT N ) and Ta ).  
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 The term 5DT  remains positively correlated with Ta  throughout the flame, which is 

consistent with the positive correlation between 1IT  and Ta  shown in Fig. 7.5, as 

5 0.5D 1IT T   in cases F-J considered here (see Fig. 7.12).  

 

(a)

 

(d) 

 

(b) 

 

(e) 

 

(c) 

      

(f) 

 

Figure 7.11: Joint pdfs between 
2 2

0( ) /th LF D S   and normalised tangential strain rate 

/T th La S  for case H on (a) c=0.1, (b) 0.5 and (c) 0.7 isosurfaces. Joint pdfs between 

2 2

0( ) /th LF D S   and normalised curvature thm    on (d) c = 0.1, (e) 0.5 and (f) 0.7 isosurfaces 

for case H.  
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 The terms 3 4,D DT T  and 5DT  remain positively correlated with Ta  towards the burned 

gas side of the flame (see Fig. 7.12a) and these positive correlations result in a net 

positive correlation between ( )F D  and Ta  towards the burned gas side of the flame. 

On the other hand, 3DT  and 4DT  remain negatively correlated with Ta  towards the 

unburned gas side of the flame (see Fig. 7.12a) and these correlations dominate over 

the positive correlation between 5DT  and Ta  to result in a net negative correlation 

between ( )F D  and Ta  towards the unburned gas side of the flame. 

 

(a)

 

(b) 

 

Figure 7.12: (a) Correlation coefficients for the 
3D TT a , 

4D TT a , 
5D TT a  and ( ) TF D a  

correlations on c  0.1, 0.3, 0.5, 0.7 and 0.9 isosurfaces for case H; (b) Correlation coefficients 

for the 3D mT  , 4D mT  , 5D mT   and ( ) mF D   correlations on c  0.1, 0.3, 0.5, 0.7 and 

0.9 isosurfaces for case H.    

 

The correlation coefficients between 3DT , 
4DT  and 5DT  with m  for 1.0c , 0.3, 0.5, 0.7 

and 0.9 isosurfaces are also shown Fig. 7.12b for case H.  It is evident from Figs. 7.12b 

that ( )F D  and m  is weakly correlated throughout the flame.  The curvature m

dependences of 3 4 5, ,D D DT T T  and ( )F D  can be explained in the following manner: 

 

 Both 3DT  and 4DT  remain negatively (positively) correlated with Ta  towards the 

unburned (burned) gas side of the flame (see Figs. 7.12a), whereas Ta  and m  are 

negatively correlated throughout the flame. Thus, high (low) values of 3DT  and 4DT  

are associated with high positive values of m  towards the unburned (burned) gas side 
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of the flame, which gives rise to positive (negative) correlations of 3DT  and 
4DT  with 

m  towards the unburned (burned) gas side.  

 As 5 0.5D 1IT T  for cases F-J), a strong negative correlation between 5DT  and m  has 

been observed near c = 0.7 isosurface, which is consistent with the negative correlation 

between 1IT  and m  shown in Fig. 7.5.  

 

7.1.7 Modelling significance 

A modelled transport equation of cN
~

 needs to be solved alongside other modelled 

conservation equations in LES simulations, when the generation of scalar gradients do 

not remain in equilibrium with its destruction. In order to solve the transport equation of 

cN
~

, models are required for the sub-grid part of each unclosed terms in the cN
~

 transport 

equation. It has been reported that the local strain rate and curvature dependence of cN  

and the terms of its transport equation for V-flames are found to be qualitatively similar 

to the behaviour observed for the statistically planar flame case.  As the SDR statistics 

are principally governed by the small-scale molecular processes, the local statistics of cN  

and the terms of its transport equation are largely independent of the flow configuration. 

Thus, the models for cN
~

 transport developed based on data extracted from canonical 

configurations might broadly be applicable to different geometries.  

 

7.2 Statistical analysis of filtered SDR and its transport equation 

As cN
~

 approaches to cN  with decreasing filter width   (i.e. cc NN 

~
lim 0 ), the local 

resolved-scale strain rate and curvature dependences of cN
~

 and the terms of its transport 

equation (i.e. 1 2 3 4 2, , , , ( )T T T T D  and ( )f D  in eq. (3.58)) are likely to be qualitatively 

similar to the local strain rate and curvature dependences of cN  and the terms of its 

transport equation respectively. It worth noting that 1T  only exists in the filtered SDR 

transport equation such that the corresponding relations between the instantaneous terms 

and filtered terms are as: 

2 2 3 3 4 2;  ;  ;  ( ) ( ) and  ( ) ( )1I I I 2IT T T T T T D D F D f D                  (7.21) 
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However, the resolved scale curvature and strain rate dependences of the sub-grid SDR 

( . )cN D c c    and the sub-grid componnents of the unclosed terms of its transport 

equation (i.e. 2 2 2sg RT T T  , 3 3 3sg RT T T  , 4 4 4sg RT T T   and ( ) ( ) ( )sg Rf D f D f D 

) are expected to be smeared due to the convolution process of LES filtering, which is yet 

to be addressed here 

 

For the purpose of convience, the transport equation of filtered SDR (eq. (3.58) is repeated 

below here following the numbering of this chapter: 
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where the terms on the left hand side denote the transient effects and the resolved 

advection of 
cN

~
 respectively. The term 1D  represents the molecular diffusion of 

cN
~

 and 

the other terms )(,,,, 24321 DTTTT   and )(Df  are all unclosed and given by: 
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The term 1T  represents the effects of sub-grid convection, whereas 2T  denotes the effects 

of density-variation due to heat release. The term 3T  is determined by the alignment of 

c  with local strain rates )//(5.0 ijjiij xuxue  , and this term is commonly 

referred to as the scalar-turbulence interaction term. The term 4T  arises due to reaction 

rate gradient while )( 2D  denotes the molecular dissipation of SDR and these terms will 

henceforth be referred to as the reaction rate term and dissipation term respectively. The 

term )(Df  , as in eq. (3.63), indicates the effects of variation of mass diffusivity, D ,  

and its interaction with scalar gradients. The transport equation of the resolved 

components of 
cN , .D c c  , is repeated here as well for presenting purpose below: 
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Based on eqs. (7.22) - (7.30), the resolved strain rate and resolved curvature dependences 

of the sub-grid conponents of 2 3 4 2,  ,  ,  ,  ( ) and ( )cN T T T D f D  will be assessed for 

turbulent premixed flames datasets of different turbulent intensities.  

 

7.2.1 Sub-grid component of cN  and its strain rate and curvature dependence 

The correlation between the sub-grid components of cN  for different filter widths is 

shown below for a sample case (case F). 

 

∆≈ 0.4𝛿𝑡ℎ 

 

∆≈ 1.2𝛿𝑡ℎ 

 

 

c=0.1 c=0.3 c=0.5 

c=0.7 c=0.9 

c=0.1 c=0.3 c=0.5 

c=0.7 c=0.9 
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∆≈ 2.0𝛿𝑡ℎ 

 

 

∆≈ 2.8𝛿𝑡ℎ 

 

 

Figure 7.13: Joint pdfs between 
c th LN S  and 

cre th LN S  for case F on c=0.1, 0.3, 0.5, 0.7 and 

0.9 isosurface for filter widths 0.4 th  , 1.2 th  , 2.0 th   and 2.8 th   .  

 

Figure 7.13 showed that for small filter width (i.e. 0.4 th  ), 
c th LN S  and its resolved 

component are strongly positive correlated. This positive correlation weakens with 

increasing filter width. For large filter widths (i.e. th  ), 
c th LN S  and its resolved 

component becomes uncorrelated, indicating that it is possible to model 
c th LN S  

algebraically for th   which is often the case in real LES. 

 

c=0.1 c=0.3 c=0.5 

c=0.7 c=0.9 

c=0.1 c=0.3 c=0.5 

c=0.7 c=0.9 
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Figure 7.14: Variations of  ( ), ( ), ( ), ( ), ( ) and 

    ( ) conditionally averaged in bins of  for  (1st column) and  

(2nd column) in cases L, F, H and J. 

 

7.3 Modelling of unclosed terms of SDR transport equation 

 

7.3.1. Modelling of the turbulent transport term T1 

It is evident from eq. 3a that the variation of the turbulent transport term 1T  within the 

flame brush depends on the sub-grid flux of SDR (i.e. cici NuNu
~~  ) and its modelling 

is essential for the closure of 1T . One obtains thLcici SNuNu  /~)
~~( 2

0   when LS  is 

used to scale the sub-grid velocity fluctuations associated with sub-grid scalar gradients, 

and the sub-grid fluctuations of SDR are taken to scale with thLS /
 
(Swaminathan and 

1T 2T 3T 4T )( 2D

)(Df c~
th th0.3

L L 

F F 

H H 
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Bray, 2005). Using thLS  /2
0  and   to scale  )

~~( cici NuNu    and resolved gradients 

respectively yields: 

5.05.0
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SS

T
th

L

th

L








 for th                                  (7.31) 

where thL uSDa 
 /  and 00 /Re    u  are sub-grid Damköhler and turbulent 

Reynolds number respectively with 3/2 sgsku   and  2/)~~( iiiisgs uuuuk 
 
being 

the sub-grid turbulent velocity fluctuation and sub-grid kinetic energy respectively. One 

obtains 2)/(~Re thDa   using thLSD ~  (Swaminathan and Bray, 2005), which 

indicates that  ReDa  increases with increasing Δ. Thus, the magnitude of the turbulent 

transport term 1T  is expected to decrease in comparison to 
22

0 / thLS 
 
with increasing   

according to eq. (7.31). One obtains an alternative scaling estimate of 1T  when the sub-

grid fluctuations of velocity and SDR are scaled with respect to 
u  and thLS /   

respectively, which yields:  
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for th                                 (7.32) 

Equation (7.32) also suggests that the magnitude of the turbulent transport term 1T  is 

expected to decrease in comparison to 22
0 / thLS 

 
with increasing  , as Da  increases 

with increasing   (Dunstan et al., 2013). 
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Figure 7.15: Variations of   ( ) conditionally averaged in 

bins of along with the predictions of eq. (7.43) ( ) for  (1st column) and 

 (2nd column) in cases L, F, H and J. 

 

Sub-grid flux of SDR )
~~( cici NuNu    is often modelled using a gradient hypothesis as 

(Chakraborty et al., 2011a):  

i

c
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~~(                                              (7.33) 

where tD  is the eddy diffusivity. It has been demonstrated earlier that the turbulent scalar 

flux of scalar gradients (e.g. FSD and SDR) may exhibit counter-gradient transport for 
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the flames when counter-gradient transport is observed for )~~( cucu ii    (Chakraborty 

and Swaminathan, 2010, 2013; Chakraborty et al., 2011d; Veynante et al., 1997; 

Chakraborty and Cant, 2009). Recently, Chakraborty and Swaminathan (2013) proposed 

a RANS model for turbulent flux of SDR which is capable of predicting both gradient 

and counter-gradient transport of SDR in the following manner: 
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            (7.34)            

where Q , QQ ˆ  and QQQ ˆ  are Reynolds average and Favre average, 

and Favre fluctuation of Q  and t , c̂ , k̂  and ̂  are the eddy viscosity, Favre-mean 

SDR, turbulent kinetic energy and its dissipation rate respectively in the context of RANS, 

which are defined as:  
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In eq. (7.34) 2c  and 5.0  are the model parameters and cxcM i

R

i
ˆ/)/ˆ(   is 

the ith component of the resolved flame normal vector. According to Bray et al. (1985), 

cui
  can be expressed in the following manner:  

                       )()ˆ1(ˆ][ cRiPii Occuucu                                     (7.36) 

where 
Piu  and 

Riu  are the conditional mean velocities in ix -direction in products and 

reactants respectively and the contribution )( cO   arises from burning mixture which 

scales with Da/1  (i.e. )/1(~)( DaOO c ). Thus the contribution of )( cO   is expected to 

be negligible for 1Da  flames. Veynante et al. (1997) demonstrated that the slip 

velocity ][
RiPi uu 

 
can be expressed as:  

R

iLERiPi MSkuu )3/ˆ2(][                                 (7.37) 

where E  is an appropriate efficiency function. Equation (7.37) leads to the following 

expression for cui
 : 
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                     )()ˆ1(ˆ)3/ˆ2( c

R

iLEi OccMSkcu                          (7.38) 

Thus, the quantity 
R

iE Mcck )~1(ˆ)3/ˆ2(   in eq. (7.38) can be taken to represent the 

effects of turbulent velocity fluctuation on turbulent scalar flux cui
 . Thus, the heat 

release and turbulent velocity fluctuation effects in eq. (7.34) can be identified as: 

 

Heat release effects 
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Turbulent velocity fluctuation effects 
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Chakraborty and Swaminathan (2013) proposed the following expressions for  1 , 2  

and  :  

22.01  ; )]6/(Re5.01[0.42 Lerf  and )3/(Re5.01 Lerf                (7.41) 

where  ~/
~

Re 0

2

0kL   is the local turbulent Reynolds number, ensuring the model 

parameters reach asymptotic limit for large values of LRe (i.e. LRe ) (Chakraborty 

and Swaminathan, 2013). It is worth noting that eq. (7.34) is not only valid for high 

Damköhler number (i.e. 1Da ) flames  but also for low Damköhler number (i.e. 

1Da ) flamelet combustion in the thin reaction zones regime (Peters, 2000). For 

1Da  one obtains )ˆ1(ˆ2 ccc    due to bimodal pdf of c  (Bray, 1980) and under 

that condition eq. (7.34) for 0.2c  reduces to an expression proposed by Veynante et 

al. (1997) which is strictly valid only for high values of Damköhler number (i.e. 1Da

) in the context of FSD transport. For 1Da  combustion  )ˆ1(ˆ2 ccc   , and thus 

the involvement of 2c   in eqs. (7.34), (7.39) and (7.40) inherently accounts for )( cO   

contributions in eqs. (7.36) and (7.38). The contribution of  )( cO   is expected to weaken 
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with increasing Da  as 2c   approaches )ˆ1(ˆ cc  . It was demonstrated by Chakraborty 

and Swaminathan (2010, 2013) and Chakraborty et al. (2011d) that eq. (7.34) not only 

predicts ciu    for 1Da  flames but also for 1Da  thin reaction zones regime 

combustion.  

 

The RANS modelling of turbulent scalar flux can be extended for LES as (Rymer, 2001):  

iLERiPiii MccSuccuucucu )~1(~][)~1(~])()([]~~[          (7.42) 

where 
E   is an appropriate efficiency function and cxcM ii

~/)/~(   is the ith 

component of the resolved flame normal vector for LES. Using eq. (7.42)
 
and extending 

the aforementioned RANS modelling argument given by eqs. (7.34-7.41) for the purpose 

of LES allows one to model )
~~( cici NuNu    in the following manner:  
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where ,, 21   and 
FC  are the model parameters and the following values have been 

suggested based on the current a-priori DNS assessment:  

7.0),Re15.0(2.39.4,8.1 21  erf  and 11.0FC                  (7.44) 

Equation (7.44) ensures that 2  reaches an asymptotic limit for large values of 
Re (i.e. 

Re ). The predictions of 
2

0/)
~~( Lthicici SMNuNu    according to eq. (7.43) are 

compared to the corresponding quantity extracted from DNS data for th  and 

th3  in Fig. 7.15 for cases L, F, H and J. Figure 7.15 shows that eq. 9a satisfactorily 

predicts 
2

0/)
~~( Lthicici SMNuNu    for both th  and th  (e.g. th0.3 ) 

in turbulent flames with different values of   and tRe  when the model parameters 

according to eq. 9b are used. However, the agreement between the predictions of eq. 9a 

and DNS data improves with increasing   (see Fig. 7.15). It can be seen from Fig. 7.14 

that the magnitude of 1T  remains negligible in comparison to the magnitudes of 

)(,,, 2432 DTTT   and )(Df  in all cases for all values of  . Thus, the uncertainties 
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associated with the modelling of )
~~( cici NuNu     do not have major implications in the 

closure of SDR cN
~

transport.  

 

7.3.2 Reaction rate gradient terms T2 

For low Mach number globally adiabatic 0.1Le  flames   can be expressed as 

)1/(0 c   (Bray et al., 1985), which gives rise to an alternative expression of 2T  

as:  

                                                













 c

i

i N
x

u
T 22                                                  (7.45) 

The resolved part of 2T  can be taken as:  

                                              2( ) 2 . i
res

i

u
T D c c

x



  


                                             (7.46) 

As the dilatation rate )/( ii xu 
 
is predominantly positive in turbulent premixed flames, 

the contribution of 2T  remains positive in all cases irrespective of the filter width  . The 

dilatation rate can be taken to scale as thLii Sxu  /~)/(    (Chakraborty and 

Swaminathan, 2007a,b; Chakraborty et al., 2009) . Thus, 2T  can be scaled as:  

                                             
2

2

0
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
                                                      (7.46) 

whereas the resolved component resT )( 2  can be taken to scale as: 
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where refU  is a velocity scale representing the Favre-filtered velocity components 
iu~ .  

The above scaling estimates demonstrate that 2T  remains of the order of 
22

0 / thLS   

irrespective of  . By contrast, the magnitude of resT )( 2   remains comparable to 22

0 / thLS   

for 
Lref SU ~  and th , but the magnitude of resT )( 2  is expected to decrease with 

increasing  .  This suggests that the sub-grid component  ressg TTT )()( 222   plays an 
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increasingly important role with increasing  , which can be substantiated from Fig. 7.16 

where the variations of the mean values of 2T  and ressg TTT )()( 222    conditional on c~  

are shown for cases L, F, H and J for th  and th0.3 . 

 

Figure 7.16: Variations of  ( ) and  ( ) conditionally averaged in bins of  

along with the predictions of eq. (7.49) ( ) for  (1st column) and  (2nd 

column) in cases L, F, H and J. 

 

Scaling )/( ii xu   and cN  with respect to thLS  /  and 
thLS /  respectively leads to 

the following model for ccxuD ii
 .)/(2  in the context of RANS (Chakraborty et 

al., 2008, 2010; Chakraborty et al., 2011d; Chakraborty and Swaminathan, 2010, 2013):  

                 
2/1)1(

ˆ
2.)/(2

2

Lth
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LTii
Ka

SBccxuD
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                               (7.48) 
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where 
2TB  is a model parameter of the order of unity which depends on the thermo-

chemistry and 2/12/3 )ˆ()( thLL SKa   is the local Karlovitz number. As 

ressg TTT )()( 222   is expected to behave similar to ccxuD ii
 .)/(2  for th  

and both of these quantities scale with 
22

0 / thLS  , the existing RANS modelling 

methodology for ccxuD ii
 .)/(2

 
has been extended here for the modelling 2T  in 

the following manner:  

22 1/2

[ . ]
2 .
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i c
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u N D c c
T D c c S
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   
   

 
                            (7.49) 

where 2/12/3 )/()/( 
  thLSuKa   is local sub-grid Karlovitz number and 

2T  is a 

model parameter, which is taken to be 2.7 based on the current analysis.  The first term 

on right hand side of eq. (7.49) accounts for resT )( 2  whereas the second term accounts for 

the sub-grid component.  According to eq. (7.49) the term 2T  approaches to resT )( 2  when 

the flow is completely resolved in the following manner:  

0 2 0lim lim 2 2 .i i

i i

u u
T D c c D c c

x x
  

 
     

 
                     (7.50)  

ccDccDNc   .~.~~
lim

~
lim 00                                      (7.51) 

The local Karlovitz number 
Ka  dependence of sgT )( 2  ensures that the effects of 

)/( ii xu   diminish as combustion approaches the broken reaction zones regime 

(Chakraborty et al., 2008, 2010; Chakraborty et al. 2011d; Chakraborty and 

Swaminathan, 2010, 2013).  However, the local 
Ka  dependence of sgT )( 2  suggested in 

eq. (7.49) is one of the several possible options, which suggests a diminishing strength of 

sgT )( 2  with increasing 
Ka . Thus, any other parameterisation, which predicts weakening 

of sgT )( 2  with increasing
Ka , can also be used for the modelling of 2T . The predictions 

of eq. (7.49) with 7.22 T  are compared to 2T  extracted from DNS data in Fig. 7.16, 

which shows that eq. (7.49) satisfactorily predicts the quantitative behaviour of 2T  for a 

range of different values of   for turbulent premixed flames with different values of tRe  

and  . 
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7.3.3 Scalar turbulence interaction term T3 

The term 3T  can be expressed as (Chakraborty and Swaminathan, 2007a,b; Chakraborty 

et al., 2009; Chakraborty et al., 2010):   

                               
cNeeeT )coscoscos(2 222

3                        (7.52) 

where  ee ,  and e  are the most extensive, intermediate and the most compressive 

principal strain rates and their angles with c  are given by  ,  and   respectively, 

which suggests that a preferential collinear alignment of c  with e  and e  leads to a 

negative contribution and positive contribution respectively of 3T . It has been 

demonstrated earlier (Chakraborty and Swaminathan, 2007a,b; Chakraborty et al., 2009; 

Chakraborty et al., 2010) that c  aligns with e  (i.e. 0.1cos  ) when turbulent fluid-

dynamic straining turba  overcomes the strain rate chema  induced by flame normal 

acceleration and vice versa. The variations of the mean values of 3T  conditional on c~  are 

shown in Fig. 7.14 for cases L, F, H and J at th  and th0.3 .  Figure 7.14 shows 

that 3T  is negative throughout the flame brush for cases F and H but assumes positive 

values towards unburned gas side of the flame brush and negative values towards burnt 

gas side of the flame brush respectively in cases L and J. In cases F and H, the reaction 

progress variable gradient c  predominantly aligns with e , however, the extent of this 

alignment decreases from case F to case H. This predominant alignment of c  with e  

in cases F and H leads to negative contributions of 3T  in these cases. In case F, the 

reaction progress variable gradient c  predominantly aligns with e  in the unburned 

gas region but the effects of chema  overcome the effects of turba  in the regions of intense 

heat release and c  starts to align with e  in the reaction zone. Thus, positive value of 

3T  can be discerned towards the unburned gas side in case F, whereas 3T  assumes 

negative values for the rest of the flame brush. When the statistics were extracted,  

2/1Re/ tDa
 
is equal to 49.0 ,55.0,96.0  for cases H, I and J respectively, which gives 

rise to greater extent of c  alignment with e  in case J (case I) than in case I (case H). 

Therefore 3T  assumes predominantly negative values in cases H and I, whereas positive 
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contribution towards the unburned gas sides of the flame brush is observed for 3T  in case 

J (not shown here) as chema  overcomes turba  in the regions of intense heat release and 

c  starts to align with e  in the reaction zone. The effects of chema  are weaker in case 

L than in cases F-J due to smaller value of   and thus turba  dominates over chema  for a 

major portion of the flame brush in case L than in case I, although turbulent flow 

conditions are similar in these cases. This leads to greater extent of positive contribution 

of 3T  in case L than in case I but in both cases 3T  assumes negative values towards the 

burned gas side of the flame brush as chema  dominates over turba  in the regions of intense 

heat release.  

 

Scaling the strain rate associated with sub-grid fluctuations of velocity using LS  and th  

(Swaminathan and Bray, 2005) gives:  

                 
2

2
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                                              (7.53)   

   

whereas the resolved part of 3T  can be scaled as: 
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An alternative scaling of 3T  can be obtained when the sub-grid turbulent straining is taken 

to scale with )/( 
u :  

                      1
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  for  th                                    (7.55) 

Equations (7.53-7.55) suggest that the contribution of resT )( 3  to 3T  is expected to be 

negligible for th
 
. This can be substantiated from Fig. 7.17, where the variations 

of the mean values of ressg TTT )()( 333   conditional on c~  are also shown for cases L, F, 

H and J.   
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Figure 7.17: Variations of  ( ) and  ( ) conditionally averaged in bins of   

along with the predictions of eq. (7.56) ( ) for  (1st column) and  (2nd 

column) in cases L, F, H and J. 

 

The above scaling arguments are used here to propose a model for 3T  as: 
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where 3C  and 4C  are the model parameters and thL uSDa  

  /0L  is the density-

weighted local sub-grid Damköhler number. The first (second) term on the right hand 

side of eq. (7.56) denotes )( 3Tres
 
( ressg TTT )()( 333  ) and 

3Tf  is a bridging function in 

3T
sgT )( 3
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terms of z/ , which ensures that 33 )( TT sg   for th  and 3T  approaches to resT )( 3  

when the flow is fully resolved:  
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The term )/(
~

3 
uNC c  in eq. (7.56) is consistent with the scaling estimate given by eq. 

15c, which accounts for the alignment of c  with e . By contrast, 

)/(
~

)/(
~

044 thLcc SNCuNDaC   



  accounts for the alignment of c  with e , 

and is consistent with scaling estimate given by eq. (7.55). The effects of  
chema  weaken 

with increasing Karlovitz number and thus the model parameter 4C  is expected to have 

local sub-grid Karlovitz number 
Ka  dependence.  Based on the current a-priori analysis 

the following expressions for 43 ,CC  and 
3Tf  have been proposed here: 

              5.73 C ; 
4.0

4 )0.1(75.0 

 KaC  and ])/(05.1exp[ 2

3 zTf            (7.58) 

The above values have been chosen based on a least-squares analysis. An alternative set 

of functional relations for 4C  and 
3Tf , which will satisfy the expected asymptotic trends 

in terms of 
Ka  and )/( z  respectively, can also be used for the modelling of 3T .  

 

The predictions of eq. (7.56) with the model parameters given by eq. (7.58) are compared 

with DNS data in Fig. 7.17.  It can be seen from Fig. 7.17 that the model given by eq. 

(7.56) provides satisfactory prediction of 3T  for a range of different values of   , and for 

flames with different values of tRe  and   when the model parameters listed in eq. (7.58) 

are used. 

 

7.3.4. Modelling of the combined reaction, dissipation and diffusivity gradient 

contribution [T4-D2+f(D)] 

The variations of the mean values of )]([ 24 DfDT   conditional on c~  are shown in 

Fig. 7.18 for A, B, D and F for th  and th0.3 ,  showing that )]([ 24 DfDT   

acts as a sink (source) term towards the  burned (unburned) gas side of the flame brush 

for th  (also for th  not shown here). However, the mean value of 
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)]([ 24 DfDT   conditional on c~  is predominantly negative for th  (e.g. 

th0.3 ).  

 

The term 4T  can be expressed as: cnwDT  )/(24
  where n  is the direction of 

the local flame normal which points towards the unburned gas. For the present thermo-

chemistry the maximum value of reaction rate w  occurs close to 85.0c (Chakraborty 

and Cant, 2004). This suggests that the probability of finding negative (positive) values 

of nw  /  is significant for 85.0c  ( 85.0c ) leading to positive (negative) mean value 

of 4T  towards the unburned (burned) gas side of the flame brush.  The molecular 

dissipation term )( 2D  is negative according to eq. 3e.  It is often assumed that D  is a 

constant (Peters, 2000), which allows one to express ]/[ DutDcc 


  as:  
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Thus, ]/[ DutDcc 


  assumes positive values throughout the flame brush, 

whereas the contributions of third and fourth terms on the right hand side of eq. 3f are 

responsible for the change in sign of )(Df  from negative in the unburned gas side to 

positive in the burned gas side. As ]/[ DutDcc 


  is one of the major 

components of )(Df  and it scales with )2/( 2T , the net contribution of )(Df  can be 

scaled as 22

02 /~~)( thLSTDf  , whereas the resolved component,  resDf )}({ , can be 

taken to scale as: 
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 (7.60) 

Equation (7.60) indicates that the contribution of resDf )}({   to )(Df  weakens with 

increasing 2/12/1Re~/  Dath . Scaling w  and )/( nw    using thLS  /0  and 2

0 / thLS    

respectively yields:  
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whereas scaling c2  using 2/1 th  (Swaminathan and Bray, 2005) provides: 
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The resolved terms resT )( 4  and resD )( 2  can in turn be scaled as: 
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These estimates suggest that the magnitudes of resT )( 4 , resD )( 2  and resDf )}({  decrease 

with increasing  . Thus, the magnitudes of ressg TTT )()( 444  , 

ressg DDD )()( 222   and ressg DfDfDf )}({)()}({   remain of the order of 

222

0

~
~/ cthL NS   for th .  

 

The net contribution of cwD  2 ,  )(D  and ))(2( 222 ccD    in the context 

of RANS scales as 22

0 / thLS   (Swaminathan and Bray, 2005), and is usually modelled 

collectively (Mantel and Borghi, 1994; Mura and Borghi, 2003; Chakraborty et al., 2018, 

2010; Chakraborty et al., 2011d; Chakraborty and Swaminathan, 2010, 2013) as:  
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              (7.65) 

where 7.62   is a model parameter (Chakraborty et al., 2008, 2010; Chakraborty and 

Swaminathan, 2010, 2013). As sgsgsg DfDT )}({)()( 24   is expected to behave similar 

to )(2)(2 222 ccDDcwD    for th  and these quantities scale as 

222

0

~
~/ cthL NS  , the existing RANS closure has been extended here for the 

modelling of ])([ 24 DDfT   as:  
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where the last term on the right hand side of eq. (7.66) accounts for  

sgsgsg DfDT )}({)()( 24  , 
3  and *c  are the model parameters, and the term 

)]~1(~/[*)~( cccc   has been used to capture the correct qualitative behaviour of 

)]([ 24 DfDT   across the flame brush. In eq. (7.66) ])/(27.0exp[ 7.1

zTDf   is a 

bridging function in terms of  z/ , which ensures:  
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A least squares method yielded the following optimum values of 
TDf,3  and *c  based 

on the current a-priori analysis: 

7.53  ; ])/(27.0exp[ 7.1

zTDf  ;  and )3.2/5.0(83.00.1*  zerfc    (7.68) 

The parameterisation of *c  ensures that the transition from positive to negative 

contribution of ])([ 24 DDfT   has been captured accurately for both th  and 

th . The predictions of eq. (7.66) for the model parameters given by eq. (7.68) are 

shown in Fig. (7.18), which demonstrates that this model captures both the qualitative 

and quantitative behaviours of ])([ 24 DDfT   for both th  (also for th  but 

not shown here) and th (e.g. th0.3 ) for different values of tRe  and  .  
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Figure 7.18: Variations of  ( ) and    (

) conditionally averaged in bins of   along with the predictions of eq. (7.66) ( ) for 

 (1st column) and  (2nd column) in cases L, F, H and J.  

 

The combined contribution of the terms 
1D , 

4T , )(Df and )( 2D  can be expressed as 

(Chakraborty et al., 2008; Chakraborty et al., 2011d): 

2

241 .2).(2)( cnSDccnSDDfDTD dd 


               (7.69) 

where )/()].([ ccDwSd    and ccn  /


 are the flame displacement speed 

and local flame normal vector respectively.  
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It is evident from eq. (7.69) that the terms 
4T , )(Df  and )( 2D  scale with 22

0 / thLS  , 

whereas 
1D  scales as 1122

01 /~ 





 RaDaSD thL 
. 

This along with eq. (7.69) suggests that 

the net contribution of  )]([ 24 DfDT   originates due to flame normal propagation and 

flame curvature. This justifies modelling these terms together (Mantel and Borghi, 1994; 

Chakraborty et al., 2018, 2010; Chakraborty et al., 2011d; Chakraborty and 

Swaminathan, 2010, 2013). Although eq. (7.66) reasonably satisfactorily predicts 

])([ 24 DDfT   for all cases considered here, modelling of the terms 
4T , )(Df  and 

)( 2D  collectively may lead to loss of their individual significances. As this is the very 

first attempt to model the SDR transport equation terms in the context of premixed 

combustion LES, there is a scope for further improvement in the future. 

 

7.4 SDR transport modelling for non-unity Lewis turbulent premixed flames 

7.4.1 Modelling of the turbulent transport term T1 

The unclosed term 1T  can be scaled in the following manner: 
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where )(Leg  is a function increasing with decreasing Le, which accounts for flame 

normal acceleration, LS
 is used to scale the sub-grid velocity fluctuations associated with 

sub-grid scalar gradients, and the sub-grid fluctuations of SDR are taken to scale with 

LLS /  . Alternatively, one obtains the following expression when the sub-grid velocity 

fluctuations are taken to scale with 
u  : 
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   for th                               (7.71) 

It is worth noting that the scaling estimate given by eq. (7.70) (eq. (7.71)) is more 

appropriate for counter-gradient (gradient) transport. Equations (7.70) and (7.71) can be 

combined to suggest the following scaling estimate, which is valid for both gradient and 

counter-gradient transport: 







 ciicici NcucuNuNu
T

~
)~~(

~
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~~(
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and             

for                                   (7.72) ciicici NcucuNuNu
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~~(   th
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Figure 7.19: Variations of   ( ) conditionally 

averaged in bins of along with the predictions of eqs. (7.43) and (7.44) with  (

) and eq. 6a and 6b with  according to eq. (7.73) ( ) for  (1st column),  

(2nd column) and  (3rd column) in cases A-E (1st-5th row). 

 

The predictions of  according to the model in 

previous section, i.e. eq. (7.43), with  are compared to the corresponding quantity 

extracted from DNS data for ,  and  in Fig. 7.19 for cases A-E. 
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Figure 7.19 shows that even though eq. (7.43) predicts  in a reasonable manner in the 

cases with  (e.g. cases C-E), this model does not adequately capture the correct 

qualitative and quantitative behaviours of  for the flames with  (i.e. cases A 

and B). The model given by eqs. (7.43) and (7.44) does not explicitly account for non-

unity Lewis number effects, so it is not surprising that this model does not adequately 

capture the behaviour of  for  flames where the non-

dimensional temperature field is significantly different from  

field, which alters the distribution of heat release and thermal expansion effects within 

the flame brush in comparison to the  flames. This behaviour is mimicked here 

by introducing   dependence of the model parameter  in the following manner: 

 

                                                                                                    (7.73) 

 

The predictions of the model given by eq. (7.73) with   according to eq. (7.73) are also 

shown for in Fig.7.19, which shows that  the model with new parameterisation  

7.0)1(3.0  Le  predicts 


sgJ  satisfactorily for all filter widths in all cases 

considered here and the agreement between the predictions of eq. (7.43) and DNS data 

improves with increasing   (see Fig. 7.19). It worth noting that the sub-grid flux of scalar 

(i.e. cucu ii
~~  ) itself requires modelling in LES, and the performance of the models for 

)
~~( cici NuNu    and the turbulent transport term 

1T  depend on the modelling of 

)~~( cucu ii   . The modelling of )~~( cucu ii    is beyond the scope of current analysis 

and interested readers are referred to Appendix for further discussion on the modelling of 

)~~( cucu ii    for non-unity Lewis number flames. 

 

7.4.2 Modelling of the density variation term T2 

According to previous analyses, 2T  can be scaled for flames with low Mach number 

globally adiabatic 0.1Le  flames as:  
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where m  is a positive number greater than unity (i.e. 1m ).  
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Term Model expression 

 

    

where

 and   

 

 
        

where  is local sub-grid Karlovitz 

number and . 

 
                         

where , ,

 and   

 with  

 

  

where , ,  

,

, 

 and  

 

Table 7.3: Summary of the proposed models for the unclosed terms of the SDR transport 

equation for non-unity Lewis flames. 
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The resolved part of  can be taken as:  

                              (7.75) 

where  is a velocity scale representing the Favre-filtered velocity components .  

The above scaling estimates demonstrate that  remains of the order of  

irrespective of . By contrast, the magnitude of   remains comparable to  

for  and , but the magnitude of  is expected to decrease with 

increasing .   

 

This suggests that the sub-grid component   plays an increasingly 

important role with increasing , which can be substantiated from Fig. 7.20 where the 

variations of the mean values of  and  conditional on  are shown for 

cases A-E for ,  and . 

 

The prediction of eq.(7.49) is also shown in Fig. 7.20 for cases A-E for th4.0 , th6.1  

and th8.2 . A comparison between the predictions of eq. (7.49) and the normalised 2T  

extracted from explicitly filtered DNS data reveals that eq. (7.49) satisfactorily predicts 

2T  for a range of different filter widths for  flames with  0.1Le  (e.g. cases C-E) but this 

model significantly under-predicts the magnitude of 2T  for the 0.1Le  cases (e.g. 

cases A and B). The magnitude of 2T  is expected to increase with decreasing Le  due to 

the strengthening of heat release effects as a result of enhanced burning rate for small 

values of Lewis number (see Table 6.1).  As this effect is missing in eq. (7.49), this model 

under-predicts the magnitude of 2T  for the 0.1Le  cases (e.g. cases A and B) where 

the effects of enhanced heat release due to differential diffusion of heat and mass are 

particularly strong.  
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Figure 7.20: Variations of  ( ) and  ( ) conditionally averaged in bins of  

along with the predictions of eq.(7.49) ( ) and eq. (7.76) ( ) for  (1st 

column),  (2nd column) and  (3rd column) in cases A-E (1st-5th row). All the terms 

are normalised with respect to . 

 

Here the model given by eq. (7.49) has been extended in order to account for the effects 

of Le in the following manner: 
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         (7.76) 

where  and              (7.77) 

In eq. (7.77)  accounts for the strengthening of heat release effects with decreasing 

. The parameter  is a thermo-chemical parameter, which provides information 

regarding the SDR-weighted dilatation rate .  

 

The thermo-chemical parameter  accounts for the correlation between  and  

within the flame front.  It is possible to approximate  as: , which 

enables one to evaluate  from laminar flame data.  The thermo-chemical parameter 

 is also affected by  and it is equal to 0.52, 0.67, 0.71, 0.78 and 0.79 for the 

, 0.6, 0.8, 1.0 and 1.2  flames considered here. The predictions of eq. (7.76) are 

compared with respect to the predictions from eq. (7.49) and  extracted from DNS data 

in Fig. 7.20, which shows that eq. (7.76) satisfactorily predicts the quantitative behaviour 

of  for a range of different values of  for flames with Le ranging from 0.34 to 1.2. 

 

7.4.3 Modelling of the scalar turbulence interaction term T3 

The variations of the mean values of 3T  conditional on c~  are shown in Fig. 7.21 for cases 

A-E at  th4.0 , th6.1  and th8.2 .  Figure 7.21 shows that 3T  assumes predominantly 

negative values throughout the flame brush for cases A-C but assumes positive (negative) 

values towards the unburned (burned) gas side of the flame brush in cases D and E. 

Equation (7.52) suggests that a predominant collinear alignment of c  with e  ( e ) 

leads to a negative (positive) value of 3T . The flame normal acceleration strengthens with 

decreasing Le , and thus c  predominantly aligns with e  for the 1Le  flames (e.g. 

cases A and B) which leads to negative values of 3T . By contrast, turbulent straining 

overcomes the flame normal acceleration on both ends of the flame brush for the 0.1Le  

cases considered here (e.g. cases C-E), which leads to positive values of 3T  both on 
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unburned and burned gas sides of the flame brush.  However, the flame normal 

acceleration dominates over turbulent straining in the middle of the flame brush where 

the effects of heat release are strong even in the 0.1Le  cases considered here (e.g. cases 

C-E), which leads to negative values of 3T  for the major portion of the flame brush in 

these cases. 

 

The effects of c  alignment with e  on 3T  can be scaled in the following manner: 

                                             
21
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                                                       (7.78) 

whereas the contribution of c  alignment with e  on 3T  can be scaled as: 

  
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th
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00
3 Pr~
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~



   for th                         (7.79) 

The Lewis number Le  dependence in eq. 11a (with 1n ) accounts for greater extent of 

c  alignment with e  for the flames with 0.1Le . A comparison of eqs. (7.54) and 

(7.79) reveals that the contribution of resT )( 3  to 3T  is expected to weaken with increasing 

 , and this behaviour can indeed be seen from Fig. 7.21, which shows that the magnitude 

of resT )( 3  decreases with increasing  . 

 

The modelling of  for unity Le cases, i.e. eq. (7.56) with the model parameters given 

by eq. (7.58) are compared with 3T extracted from DNS data in Fig. 7.21, which shows 

that eq. (7.56) adequately captures the qualitative and quantitative behaviours of 3T  for 

the 0.1Le  cases considered here (e.g. cases C-E) but this model has been found to 

under-predict the magnitude of the negative contribution of 3T  in the 0.1Le  cases 

(e.g. cases A and B) for th . It has already been noted that the increased extent of 

scalar gradient destruction in the 0.1Le  flames due to preferential c  alignment with 

e  under strong action of flame normal acceleration is not addressed in the model given 

by eq. (7.56). Thus, this model underpredicts the negative contribution of 3T  for the 

flames with 0.1Le .  

  

3T
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Figure 7.21: Variations of  ( ) and  ( ) conditionally averaged in bins of   

along with the predictions of eqs.(7.56) and (7.58) ( ) and eqs. (7.80) and (7.81) ( ) 

for  (1st column),  (2nd column) and  (3rd column) in cases A-E 

(1st-5th row). 

 

 

 

3T resT )( 3 c~

th4.0 th6.1 th8.2
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Here eq. (7.56) has been modified in the following manner to account for non-unity Lewis 

number effects: 

                        (7.80) 

where            and               (7.81) 

 

The involvement of the function  in eq. (7.81) account for the strengthening of  

alignment with  under strong actions of flame normal acceleration in flames with small 

values of Lewis number. The presence of  helps eq. (7.81) to capture the 

qualitative behaviour of  across the flame brush. It can be seen from Fig. 7.21 that the 

model given by eq. (7.81) provides satisfactory qualitative and quantitative predictions of 

 for all the flames with different values of Le for a range of different values of .   

 

7.4.4 Modelling of the combined reaction, dissipation and diffusivity gradient 

contribution [T4-D2+f(D)] 

The variations of the mean values of )]([ 24 DfDT   conditional on c~  are shown in 

Fig.7.22 for A-E for  th4.0 , th6.1  and th8.2 . It can be seen from Fig. 7.22 that 

)]([ 24 DfDT   acts as a sink (source) term towards the burned (unburned) gas side of 

the flame brush for th4.0  and th6.1 , but the mean value of )]([ 24 DfDT   

conditional on c~  assumes predominantly negative values for th8.2 . It can be seen 

from Table 7.3 that the order of magnitudes of 
4T , )( 2D  and )(Df  remain comparable 

according to the scaling estimates and their magnitudes are expected to increase with 

decreasing Le . Furthermore, the scaling estimates of  resT )( 4 , resD )( 2  and resDf )}({  in 

Table 6.1 suggest that their contributions are expected to weaken with increasing  . Thus, 

the sub-grid components ressg TTT )()( 444  , 
ressg DDD )()( 222   and 

ressg DfDfDf )}({)()}({   are expected to play major roles for th .  The 

aforementioned behaviours of the resolved and sub-grid components of 4T , )( 2D  and 

)(Df  can be confirmed from Fig. 7.22. It can be seen from Table 6.1 that the magnitudes 

of sgT )( 4 , sgD )( 2  and sgDf )}({  remain of the order of 222
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but their magnitudes are expected to increase with decreasing Le,  which can indeed be 

substantiated from Fig. 7.22.  

 

   

   

   

   

   
 

Figure 7.22: Variations of ])([ 24 DDfT   ( ) and ])}({)()[( 24 sgsgsg DfDT    

( ) conditionally averaged in bins of  c~  along with the predictions of eqs.15i and 15ii  

( ) and eq. 16 ( ) for th4.0  (1st column), th6.1  (2nd column) and th8.2   

(3rd column) in cases A-E (1st-5th row). All the terms are normalised with respect to 
22

0 / thLS  . 
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The predictions of eq. (7.66) are shown in Fig. 7.22, which show that this model captures 

both the qualitative and quantitative behaviours of ])([ 24 DDfT   for the 0.1Le  

cases considered here (e.g. case C-E) but this model under-predicts the magnitude of 

])([ 24 DDfT   significantly for the 0.1Le  cases (e.g. cases A and B).   It is worth 

noting that the model given by eq. 15a does not account for the increased magnitude of 

sgDfDT )}({ 24   for small values of Le  (see Table 7.3) so perhaps it is not surprising 

that this model under-predicts the magnitude of ])([ 24 DDfT   for the flames with 

0.1Le  (e.g. cases A and B). The increased magnitude of ])([ 24 DDfT   for small 

values of Le  is accounted for by modifying eq. 15a in the following manner: 

 
)~1(~

]~.~~~
[

*)~()1()}({)()()(
2

32424
cc

ccDN
ccfDfDTDfDT c

TDresresres



  with  2.0

3 7.5  Le  

(7.82) 

where *c and 
TDf  are kept the same as in eq. (7.68). The predictions of eq. (7.68) are 

shown in Fig. 7.22, which demonstrates that eq. (7.68) captures both the qualitative and 

quantitative behaviours of ])([ 24 DDfT   for a range of different filter widths for all 

the different Le cases considered here. 

 

 

7.5 Summary 

This chapter has disccuessed the models of the unclosed terms of SDR transport equation 

based on a-priori analysis of a simple chemistry DNS databse. It is worth noting that the 

flamelet assumption is invoked while deriving these models so they are expected to 

remain valid in the corrugated flamelets and thin reaction zones regimes (Peters, 2000) 

of turbulent premixed combustion. 
 

 

The scaling estimates and the newly proposed models for the aforementioned unclosed 

terms of the SDR  transport equation are summarised in Table 7.3 for quick reference 

for the readers and future potential users of these models. The scaling estimates in Table 

6.1 suggest that the terms  and  remain leading order contributors 

to the SDR transport and the magnitude of  remains negligible in comparison to the 

cN
~

)(,,, 2432 DTTT  )(Df

cN
~

1T
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terms  and  irrespective of Damköhler and turbulent Reynolds 

numbers. It is worth noting that some of the unresolved components of  and  can be 

neglected in the context of RANS simulations for high values of turbulent Reynolds 

number . The components, which do not play an important role in RANS, may not 

be negligible in the context of LES because of partial resolution of the flow field. Thus, 

the terms  and  are modelled on their own in the context of LES without splitting 

them into their components. It is also worth noting that although Table 6.1 suggests that 

the magnitude of  is negligible compared to  for all  in all cases, the 

turbulent transport term  still need to be modelled and included in the model 

implementation for LES for numerical stability. 

 

The newly proposed models for the unclosed terms of the SDR cN
~

 transport equation are 

summarised in Table 7.3 for quick reference for the readers and future potential users of 

these models.  The scaling estimates in Table 6.1 indicate that the terms )(,,, 2432 DTTT   

and )(Df  remain leading order contributors to the SDR cN
~

transport and the magnitude 

of 
1T  remains negligible in comparison to the terms )(,,, 2432 DTTT   and )(Df  

irrespective of Damköhler and turbulent Reynolds numbers. This is consistent with the 

observations made from Fig. 7.15. However, the turbulent transport term 1T  still need to 

be modelled and included in the model implementation for LES for numerical stability.
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Chapter 8. Assessment of SDR closures for detailed chemistry cases  

 

The algebraic SDR closure and the closures of unclosed terms of the SDR transport 

equation discussed in Chapters 6 and 7 are assessed in this chapter using a three-

dimensional detailed chemistry based V-flame DNS database of stoichiometric hydrogen-

air turbulent premixed flames, where the assessments of models are based on reaction 

progress variable defined based on the mass fractions of two species H2O (major product) 

and H2 (reactant). The reaction progress variable (RPV) based on mass fractions of H2O 

and H2 are denoted as 𝑐𝐻2𝑂  and 𝑐𝐻2
 respectively, which are defined in the following 

manner: 
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where 028.0)( 02
HY , 0.0)( 02

OHY , 0.0)(
2

HY   and 255.0)(
2

OHY  for 

stoichiometric H2-air premixed flame. The assessment of the SDR algebraic closure will 

be provided in the following section, which will be followed by the assessment of the 

modelled unclosed terms of filtered SDR transport equation. A brief conclusion will be 

provided by the end of this chapter.  

 

8.1 Assessment of algebraic closure 

8.1.1 The statistical behaviour of SDR with PRV based on different species  

The SDRs for reaction progress variable based on hydrogen (i.e. 𝑐𝐻2
) and water (i.e. 𝑐𝐻2𝑂) 

mass fraction are denoted as 𝑁̃𝑐𝐻2
 and 𝑁̃𝑐𝐻2𝑂

 respectively. 

 

It can be observed from Fig. 8.1 that the magnitude of cN  conditional on bins of c  are 

decreasing with increasing filter width  , consistent with the findings in previous 

chapters. The above scaling arguments suggest the resolved components of cN  decreases 

with increasing , leading to lower magnitude of ( )c c sgN D c c N     for larger filter 

width. The diminishing peak value of cN  conditional on bins of c~  resulting from the 

averaging process involved in LES filtering is also observable from Fig. 8.1. Note that 



 

Chapter 8.  Modelling assessment based on detailed chemistry database  

 

 220 

the magnitudes of the peak values of 𝑁̃𝑐𝐻2
 is generally greater than 𝑁̃𝑐𝐻2𝑂

 which can be 

explained by the differential diffusion of effects as 𝐿𝑒𝐻2
< 𝐿𝑒𝐻2𝑂.  

 

  

Figure 8.1: Variation of 𝑁̃𝑐𝐻2
 and 𝑁̃𝑐𝐻2𝑂

 with 𝑐̃ at ∆≈ 0.4𝛿𝑡ℎ , ∆≈ 1.7𝛿𝑡ℎ  and ∆≈ 2.8𝛿𝑡ℎ  for v-

flame case. 

 

The values of 𝑐̃ where the conditional mean value of SDR attains its peak values convey 

some physical meaning. It can be seen from Fig. 8.1 that the peak value of 𝑁̃𝑐𝐻2
 skews 

slightly towards the burnt side, coinciding with the peak value of the chemical reaction, 

while the one of 𝑁̃𝑐𝐻2𝑂
 shows a more symmetric distribution with 𝑐̃𝐻2𝑂. Moreover, Fig. 

8.2 shows the wrinkling factor Ξ𝑉 of 𝑐𝐻2𝑂 and 𝑐𝐻2
 for a range of LES filter widths. The 

power-law exponent parameter of the wrinkling factor are found to follow the relation as 

𝛼𝐻2
> 𝛼𝐻2𝑂 , which can be attributed to the differential diffusion effects of different 

species as 𝐿𝑒𝐻2
< 𝐿𝑒𝐻2𝑂, which is consistent with the findings with simple chemistry 

DNS database in Chapter 6. It can be seen from Fig. 8. 2 that D  increases with 

increasing th/  indicating that the sub-grid contribution to SDR increases with an 

increase in LES filter width. It can further be seen Fig 8.2 that D  for the SDR based on 

2Hc  assumes greater values than the SDR of OHc
2

. Figure 8.2 also shows that the 

algebraic SDR model satisfactorily captures the behaviour of the wrinkling factor D  for 

both choices of reaction progress variable.  
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Figure 8.2: The volume averaged behaviour of the wrinkling factor Ξ𝑉  of 𝑐𝐻2𝑂 , 𝑐𝐻2
 with the 

algebraic predictions of the volume averaged values.  

 

8.1.2. Filtered transport equation behaviours 

The statistical behaviours of the normalised unclosed terms of SDR transport equation 

are shown in Fig. 8.3 for different filter widths for both 𝑐𝐻2𝑂 and 𝑐𝐻2
. 

 

 Δ ≈ 0.4𝛿𝑡ℎ Δ ≈ 1.7𝛿𝑡ℎ Δ ≈ 2.93𝛿𝑡ℎ 

𝑐𝐻2
 

   

𝑐𝐻2𝑂 

   

Figure 8.3: Statistical behaviours of unclosed terms of SDR transport equation based on 𝑐𝐻2𝑂, 𝑐𝐻2
 

for filter widths Δ ≈ 0.4𝛿𝑡ℎ, 1.7𝛿𝑡ℎ and 2.9𝛿𝑡ℎ respectively. 

 

It can be observed from Fig. 8.3 that 2T  and )( 2D  act as source and sink respectively for 

all filter widths for both 𝑁̃𝑐𝐻2
 and 𝑁̃𝑐𝐻2𝑂

, which is consistent with previous findings. The 
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contribution of 4T  is positive for major portion of the flame brush before becoming 

negative towards the burned gas side for th  (e.g. th4.0 ) but for th  (e.g. 

th8.2 ) the contribution of 4T  remains a leading-order source throughout the flame 

brush. The term 3T  assumes mainly positive values for both 𝑁̃𝑐𝐻2
 and 𝑁̃𝑐𝐻2𝑂

 for all filter 

widths whereas in simple chemical cases 3T  show predominantly negative contributions. 

As shown in Chapter 6, the contributions of 3T  can be expressed as 

2 2 2

3 2 ( cos cos cos ) cT e e e N          where  ee ,  and e  are the most 

extensive, intermediate and the most compressive principal strain rates and their angles 

with c  are given by  ,  and   respectively. The scalar gradient c  aligns with e  

when the effects of strain rate induced by flame normal acceleration chema  overcome the 

effects of turbulent straining turba  and vice versa. The strain rate chema  scales as 

~ ( ) /chem L tha f Ka S   where ( )f Ka  is expected to decrease with increasing Ka  where 

the effects of heat release are expected to be weak. Scaling turba  as: luaturb /~   yields

DaKafaa turbchem )(~/  .  The effects of turba  dominate over the effects of chema  

throughout the flame brush due to smaller values of   than in simple chemistry cases, 

which leads to a predominant alignment of c  with e  leading to positive values of 3T  

throughout the flame brush for both 
2Hc  and OHc

2
.  It can be seen from Fig. 8.3 that the 

relative magnitude of 3T  is greater in the case of OHc
2

 than in the case of 
2Hc . The 

magnitude of conditional mean value of 3T  is comparable to that of )( 2D  for OHc
2

 , 

whereas conditional mean value of 3T  is smaller than that of )( 2D  for 
2Hc . As 

𝐿𝑒𝐻2
< 𝐿𝑒𝐻2𝑂, the extent of alignment of c  with e  is stronger for OHc

2
 than in the 

case of 
2Hc . This leads to a stronger positive contribution of 3T  in the case of OHc

2
 than 

in the case of 
2Hc . The term ( )f D  consists of both positive and negative contribution for 

small filter width but assumes mainly positive contribution with larger filter width, which 

is consistent with previous findings for simple chemistry case. It can be seen from Fig. 

8.3 that the magnitude of the all the terms decrease with increasing , which is consistent 

with previous finding based on simple DNS data. 
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8.1.3. Algebraic SDR closure behaviour  

Figure 8.3 demonstrates that for filter width larger than thermal flame thickness (i.e. ∆>

𝛿𝑡ℎ ), the magnitude of 1T  is negligible compared to 2 3 4 2, , , ( )T T T D  and ( )f D . This 

enables one to write: T2+T3+T4-D2+f(D) ≈0.0 when equilibrium is maintained between 

generation and destruction of scalar gradients. Figure 8.4 shows that 

2 3 4 2[ ( )] ~ O( )T T T f D D     holds for all filter widths, implying the assumption of the 

newly proposed SDR algebraic model in Chapter 6 generally holds for this detail 

chemistry case.  

 

The predictions of algebraic closure of Favre-filtered SDR (i.e. eq. (6.66)) along with the 

parameterisation according to eq. (6.69) for 𝑁̃𝑐𝐻2
 and 𝑁̃𝑐𝐻2𝑂

 are shown in Fig. 8.5 for 

filter widths Δ ≈ 0.4𝛿𝑡ℎ, 1.7𝛿𝑡ℎ  and 2.9𝛿𝑡ℎ . It is evident from Fig. 8.5 that eq.(6.66) 

satisfactorily predicts both the qualitative and quantitative behaviours of SDR across the 

flame brush for both choices of reaction progress variable, while the local peak values are 

slightly overestimated for small filter width and the overestimation diminishes with 

increasing filter width.  

 

Δ ≈ 0.4𝛿𝑡ℎ Δ ≈ 1.7𝛿𝑡ℎ Δ ≈ 2.93𝛿𝑡ℎ 

   

   

Figure 8.4: The comparison between [𝑇1 + 𝑇2 + 𝑇3 + 𝑓(𝐷)] and (−𝐷2) for case V60 of 𝑐𝐻2
 for 

filter widths Δ ≈ 0.4𝛿𝑡ℎ , 1.7𝛿𝑡ℎ and 2.9𝛿𝑡ℎ respectively. 
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 Δ ≈ 0.4𝛿𝑡ℎ Δ ≈ 1.7𝛿𝑡ℎ Δ ≈ 2.93𝛿𝑡ℎ 

𝑐𝐻2
 

   

𝑐𝐻2𝑂 

   

Figure 8.5: The assessment of the algebraic closure behaviour for v-flame case of  𝑐𝐻2𝑂, 𝑐𝐻2
  for 

filter widths Δ ≈ 0.4𝛿𝑡ℎ , 1.7𝛿𝑡ℎ and 2.9𝛿𝑡ℎ respectively. 

 

Figure 8.5 also suggested that the magnitude of 𝑁̃𝑐𝐻2
 is greater than that of 𝑁̃𝑐𝐻2𝑂

 after 

normalisation with the corresponding Zel’dovich flame thickness 𝛿𝑧𝑐𝐻2
 and 𝛿𝑧𝑐𝐻2𝑂

 

respectively due to 𝐿𝑒𝑐𝐻2
(~0.3) < 𝐿𝑒𝑐𝐻2𝑂

(~0.8)  (Minamoto et. al., 2011), which is 

consistent with the conclusion of previous chapter. Thus, the evidence based on a priori 

DNS analysis suggests that the algebraic SDR model provides a robust closure for Favre-

filtered SDR cN
~

 for both simple and detailed chemistry, and this inference was also 

supported by a posteriori assessments based on actual LES simulations (Ma et al., 2014; 

Butz et al., 2015). 

 

8.2. Assessment of the modelled SDR transport equation 

The models for unclosed terms of the transport equation proposed in Chapter 7 are 

assessed in this section in the context of the closures of both 𝑁̃𝑐𝐻2
 and 𝑁̃𝑐𝐻2𝑂

  transport 

equations respectively. All the results are shown as normalised with the corresponding 

Zel’dovich flame thickness 𝛿𝑧𝑐𝐻2
= 𝐷𝑐𝐻2

𝑆𝐿⁄  and 𝛿𝑧𝑐𝐻2𝑂
= 𝐷𝑐𝐻2𝑂

𝑆𝐿⁄ .  

  

8.2.1 Assessment of the modelling of the density variation term T1 

Figure 8.3 demonstrates that 𝑇1 exhibits both positive and negative contribution across 

the flame brush, where both gradient and counter-gradient transport of the sub-grid flux 

of SDR are observed, consistent with the results of simple chemistry database. It is worth 
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noting that for 𝑐̃𝐻2
, 𝑇1 shows positive contribution towards the burnt gas side while acts 

as a consumption near the unburnt gas side. The maximum value of 𝑇1(𝐻2) occurs near 

𝑐̃𝐻2
≈ 0.7 towards burnt gas side while the peak value of 𝑇1(𝐻2𝑂) are obtained close to 

the unburnt gas side. As the expression of term 𝑇1 = −∇. (𝜌𝑢𝑁𝑐
̅̅ ̅̅ ̅̅ ̅ − 𝜌̅𝑢̃𝑁̃𝑐) indicates, the 

modelling of 𝑇1 directly relies on the model of the sub-grid flux of SDR, denoted as 

( )i c i c Modelu N u N  . The modelling of sub-grid flux (i.e. eq. (7.43) and (eq. 7.44)) is 

assessed by implemented into 𝑇1 as: 

 

                                        1Model( ) ( )i c i c Model

i

T u N u N
x

 


  


                               (8.1) 

 

The variation of normalized  𝑇1 and the predictions of eq. (8.1) are shown in Fig. 8.6 for 

both both 𝑁̃𝑐𝐻2
 and 𝑁̃𝑐𝐻2𝑂

 for filter widths Δ ≈ 0.4𝛿𝑡ℎ, 1.7𝛿𝑡ℎ  and 2.9𝛿𝑡ℎ . The model 

under predicts the magnitude for Δ ≈ 0.4𝛿𝑡ℎ , but roughly captures the qualitative 

variation of 𝑇1. However, the performance of the model improves with increasing filter 

width where both quantitative and qualitative behaviours are reasonably well captured. 

 

 Δ ≈ 0.4𝛿𝑡ℎ Δ ≈ 1.7𝛿𝑡ℎ Δ ≈ 2.93𝛿𝑡ℎ 

𝑐𝐻2
 

   

𝑐𝐻2𝑂 

   

Figure 8.6: The assessment of the modelling of normalised 𝑇1 of 𝑐𝐻2𝑂, 𝑐𝐻2
  for filter widths Δ ≈

0.4𝛿𝑡ℎ, 1.7𝛿𝑡ℎ and 2.9𝛿𝑡ℎ respectively. 
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8.2.2 Assessment of the modelling of the density variation term T2 

Figure 8.3 demonstrates that the term 𝑇2 exhibits positive contribution for both 𝑁̃𝑐𝐻2
 and 

𝑁̃𝑐𝐻2𝑂
 for all filter widths, with the magnitude decreasing with increasing filter width. 

The variation of 𝑇2  shifts towards burnt gas side for 𝑁̃𝑐𝐻2
 while 𝑇2  skews towards 

unburnt gas side for RPV based on water. The scaling analysis of 𝑇2~2 𝜌∇. 𝑢⃗ 𝑁𝑐
̅̅ ̅̅ ̅̅ ̅̅ ̅̅   suggests 

the local value of 𝑇2 is affected by correlation between the dilatation rate ∇. 𝑢⃗  and the 

instantaneous SDR. 

 

 Δ ≈ 0.4𝛿𝑡ℎ Δ ≈ 1.7𝛿𝑡ℎ Δ ≈ 2.93𝛿𝑡ℎ 

𝑐𝐻2
 

   

𝑐𝐻2𝑂 

   

Figure 8.7: The assessment of the modelling of normalised 𝑇2 for filter widths Δ ≈ 0.4𝛿𝑡ℎ , 1.7𝛿𝑡ℎ 

and 2.9𝛿𝑡ℎ for 𝑐𝐻2𝑂, 𝑐𝐻2
respectively. 

 

The Lewis number Le of hydrogen is close to 0.3 while the Le of the water is 0.83, such 

that the magnitude of 𝑇2  of water for different filter width is smaller than the 

corresponding one of hydrogen, which is consistent with previous finding. In order to 

take the differential diffusion effects into consideration, eq. (7.76) and eq. (7.77) are 

compared with the filtered  𝑇2  for both 𝑁̃𝑐𝐻2
 and 𝑁̃𝑐𝐻2𝑂

 for filter widths Δ ≈

0.4𝛿𝑡ℎ, 1.7𝛿𝑡ℎ and 2.9𝛿𝑡ℎ respectively in Figure 8.7. The results from Fig. 8.7 indicate 

𝑇2(𝐻2) are captured qualitatively but slightly over-predicted for the peak values, whereas 

𝑇2(𝐻2𝑂) has been reasonable well captured for quantitative and qualitative behaviours 

for all filter widths. 
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8.2.3 Assessment of the modelling of the scalar turbulence interaction term T3 

Figures 8.3 and 8.8 both demonstrate that 𝑇3 acts as a predominant positive term for both 

𝑁̃𝑐𝐻2
 and 𝑁̃𝑐𝐻2𝑂

 except assuming small negative values close to the unburnt (burnt) gas 

side for 𝑁̃𝑐𝐻2
 (𝑁̃𝑐𝐻2𝑂

). Comparing the magnitude of 𝑇3 with other leading order unclosed 

terms for both 𝑁̃𝑐𝐻2
 and 𝑁̃𝑐𝐻2𝑂

, the contribution of 𝑇3  is more prominent for 𝑁̃𝑐𝐻2𝑂
 

transport  than the relative contribution to 𝑁̃𝑐𝐻2
 transport, which can be explained by 

scaling 𝑇3 for this v-flame case with 𝑎𝑡𝑢𝑟𝑏~𝑢′/𝜆 as: 

 

𝑇3~𝜌𝑎𝑡𝑢𝑟𝑏𝑁𝑐
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ~

𝜌0𝑆𝐿
2

𝛿𝑡ℎ
2 ×

𝐿𝑒

𝑃𝑟0.5
× 𝐾𝑎∆                                       (8.2) 

 

The relative contribution of 𝑇3 is expected to be higher for the species of higher 𝐿𝑒. The 

scaling analysis of 𝑇3  eqs. (8.2) also demonstrates the sensitivity of  𝑇3  with Le, 

thereforethe predictions of eqs. (7.80) and (7.81) are compared with the normalised 𝑇3 

with respect to 𝑐̃𝐻2𝑂, 𝑐̃𝐻2
  for filter widths Δ ≈ 0.4𝛿𝑡ℎ, 1.7𝛿𝑡ℎ and 2.9𝛿𝑡ℎ respectively. 

 

 Δ ≈ 0.4𝛿𝑡ℎ Δ ≈ 1.7𝛿𝑡ℎ Δ ≈ 2.93𝛿𝑡ℎ 
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Figure 8.8: The assessment of the modelling of normalised 𝑇3 of 𝑐𝐻2𝑂, 𝑐𝐻2
  for filter widths Δ ≈

0.4𝛿𝑡ℎ, 1.7𝛿𝑡ℎ and 2.9𝛿𝑡ℎ respectively. 

 

It can be observed that the model captures both quantitative and qualitative behaviour of 

𝑇3  for ∆≫ 𝛿𝑡ℎ . However, the peak value of 𝑇3  is shown to be over-predicted by eqs. 

(7.80) and (7.81) for small filter widths (e.g. ∆≈ 0.4𝛿𝑡ℎ) for 𝑐𝐻2𝑂. As the contribution of 

the unresolved 𝑇3𝑠𝑔
 is negligible for ∆≪ 𝛿𝑡ℎ , this under-prediction hardly affects the 
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model behaviour for practical LES where the grid size is usually much larger than thermal 

flame thickness (i.e. ∆≫ 𝛿𝑡ℎ). 

 

8.2.4. Assessment of the modelling of [T4-D2+f(D)] 

Figure 8.3 shows that the order of magnitude of 𝑇4, (−𝐷2) and 𝑓(𝐷) remain comparable 

for this detail chemistry DNS database.It can further be seen from Fig. 8.3 that 𝑇4 assumes 

predominantly positive values while (−𝐷2) assumes negative contribution throughout the 

flame, and 𝑓(𝐷) assumes both positive and negative contribution, which is consistent 

with the behaviours observed from simple chemistry DNS database.  

 

 Δ ≈ 0.4𝛿𝑡ℎ Δ ≈ 1.7𝛿𝑡ℎ Δ ≈ 2.93𝛿𝑡ℎ 

𝑐𝐻2
 

  
 

𝑐𝐻2𝑂 

   

Figure 8.9: The assessment of the modelling of normalised [𝑇4 − 𝐷2 + 𝑓(𝐷)] of 𝑐𝐻2𝑂, 𝑐𝐻2
  for 

filter widths Δ ≈ 0.4𝛿𝑡ℎ , 1.7𝛿𝑡ℎ and 2.9𝛿𝑡ℎ respectively. 

 

The magnitude of 𝑇4 for 𝑐𝐻2
 assumes much higher contribution in comparison to that 

for𝑐𝐻2𝑂 . As
1

4
0 0

2 [2 ( / ) ] ( , ; ; )LT D w c D w n c p c c x dcd c


             subject to 

the flamelet assumption where p  is the sub-filter probability density function. Therefore 

negative (positive) values of )/( nw    lead to positive (negative) values of 4T  when the 

flame is partially resolved. When the flame is completely unresolved, the sub-filter 

volume includes more positive samples with high magnitudes of ))/(2( cnwD    than 

the negative samples which are confined only in a small region within the flame front. 

This leads to predominantly positive values of 4T  throughout the flame brush for ∆> 𝛿𝑡ℎ. 
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Moreover, the magnitude of 4T  is dependent on the choice of c , and on the behaviour of 

( / )w n c   . 

 

The model given by eq. (7.82) is compared to [𝑇4 − 𝐷2 + 𝑓(𝐷)] extracted from DNS data 

for both 𝑐𝐻2𝑂 and 𝑐𝐻2
  for filter widths Δ ≈ 0.4𝛿𝑡ℎ, 1.7𝛿𝑡ℎ and 2.9𝛿𝑡ℎ in Fig. 8.9. It can 

be seen from Fig. 8.9 that [𝑇4 − 𝐷2 + 𝑓(𝐷)] assumes both positive and negative values, 

which has been captured qualitatively for all filter widths. By contrast, [𝑇4 − 𝐷2 + 𝑓(𝐷)] 

for 𝑁̃𝑐𝐻2𝑂
 is found to demonstrate negative contribution throughout the flame brush, 

which is qualitatively captured by eq. (7.82). The order of magnitude of the [𝑇4 − 𝐷2 +

𝑓(𝐷)] is captured by the model for all filter widths for both 𝑐𝐻2𝑂 and 𝑐𝐻2
 but there is a 

scope for improvement for quantitative predictions. 

 

8.3. Comments 

The developed closures of SDR and the unclosed terms of its transport equation based on 

simple chemistry DNS data have been further assessed in this chapter by comparing the 

model predictions with the filtered DNS results of a detail chemistry DNS database for a 

stoichiometric turbulent hydrogen-air V-flame. The algebraic closure is found to capture 

the local SDR both quantitatively and qualitatively for all filter widths with the robust 

performance irrespective of the choice of the reaction progress variables based on major 

reactant and product mass fractions. 

 

A model for the sub-grid flux of 𝑁̃𝑐 which was proposed and validated based on simple 

chemistry DNS data, has been found to yield reasonable agreement between the modelled 

turbulent transport term 𝑇1  and the filter DNS results for 
th   with no significant 

sensitivity to the choice of the reaction progress variable. The maximum values of the 

density variation term 𝑇2  and scalar turbulence interaction term 𝑇3  are found to be 

affected by the choice of the definition of the reaction progress variable. However, the 

models of 𝑇2 and 𝑇3 have been found to capture the DNS results both qualitatively and 

quantitatively for all filter widths for both 𝑁̃𝑐𝐻2𝑂
 and  𝑁̃𝑐𝐻2

. The combined contribution 

of reaction dissipation and diffusive gradient terms [𝑇4 − 𝐷2 + 𝑓(𝐷)]  exhibits 

distinctively different behaviours for  𝑁̃𝑐𝐻2𝑂
 and 𝑁̃𝑐𝐻2

 and the model proposed for [𝑇4 −

𝐷2 + 𝑓(𝐷)] based on simple chemistry database only captures the qualitative behaviours 

for 𝑁̃𝑐𝐻2
 transport equation, but shows quantitative agreement with DNS results only for 



 

Chapter 8.  Modelling assessment based on detailed chemistry database  

 

 230 

𝑁̃𝑐𝐻2𝑂
 transport equation. Thus, further assessment and improvement of the modelling of 

𝑇4, (−𝐷2) and 𝑓(𝐷) is necessary. 
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Chapter 9. Conclusions and future work 

 
9.1  Conclusions 
Here Direct Numerical Simulation (DNS) databases of turbulent premixed flames for a 

range of different values of heat release parameter τ, global Lewis number Le and 

turbulent Reynolds number Ret has been investigated in detail for the purpose of the 

reaction rate closure of turbulent premixed combustion in the context of Large Eddy 

Simulations (LES). The reaction rate closure based on scalar dissipation rate (SDR) is 

well-established for Reynolds Averaged Navier-Stokes (RANS) simulations (Borghi, 

1990; Borghi and Dutoya, 1978; Chakraborty and Swaminathan, 2007a, 2007b, 2010, 

2011, 2013; Chakraborty et al., 2008, 2010, 2011a; Kolla et al., 2009; Mantel and Borghi, 

1994; Mura and Borghi, 2003; Mura et al., 2008, 2009; Swaminathan and Bray, 2005; 

Swaminathan and Grout, 2006), while this modelling approach for LES, which is a 

promising simulation tool for industrial combustors design, is yet to be investigated. The 

current thesis aims at proposing a generalized SDR based reaction rate closure for 

turbulent premixed combustion in the context of LES. 

 

A closure for the filtered reaction rate w!  using the Favre-filtered Scalar Dissipation Rate 

(SDR) cN
~ for LES of turbulent premixed combustion has been proposed by extending an 

existing SDR based reaction rate closure for RANS simulations, where a satisfactory 

performance of this LES closure is observed for a range of different values of heat release 

parameter τ, global Lewis number Le and turbulent Reynolds number Ret.  

 

A-priori DNS assessment of the SDR closures based on a model used for passive scalar 

mixing and a power-law closure has been conducted but they have been found unsuitable 

for the reactive turbulent flows in premixed flames. Subsequently, an existing algebraic 

model of Favre-averaged SDR for RANS has been extended here for LES. The 

performances of the algebraic closures of cN
~  have been assessed with respect to Favre-

filtered SDR extracted from the DNS data. It has been found that the newly proposed 

model of cN
~  for LES predicts both local and volume-averaged behaviours of SDR 

satisfactorily for a range of filter widths for turbulent premixed flames with different 
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values of τ, Le and Ret. The satisfactory performance of this newly developed SDR 

closure has been justified by analysing the statistical behaviour of Favre-filtered SDR 

transport using DNS data of freely propagating statistically planar turbulent premixed 

flames. The DNS data has been explicitly filtered using a Gaussian filter to obtain the 

unclosed terms of the Favre-filtered SDR transport equation,  arising from sub-grid 

transport ( 1T ), density variation due to heat release ( 2T ), strain rate contribution due to 

the alignment of scalar and velocity gradients ( 3T ), correlation between the gradients of 

reaction rate and reaction progress variable ( 4T ), molecular dissipation of SDR ( 2D− ) 

and diffusivity gradients )(Df . It has been found that )(,,, 2432 DTTT −  and )(Df  are 

the leading order contributors to the SDR transport and the magnitude of 1T  remains 

smaller than the magnitudes of )(,,, 2432 DTTT −  and )(Df  irrespective of the filter 

width. A detailed scaling analysis has been carried out to justify the behaviour of the SDR 

transport equation terms in relation to the variation of the filter width. The scaling relation 

has been utilised to propose models for the unclosed terms of SDR transport equation in 

the context of Large Eddy Simulation (LES) and their performances have been assessed 

with respect to their corresponding quantities obtained from explicitly filtered DNS data.  

These newly proposed models have been found to satisfactorily predict both the 

qualitative and quantitative behaviours of these unclosed terms for a range of different 

values of filter widths Δ , heat release parameter τ , Lewis number Le and turbulent 

Reynolds number tRe . 

 

The closures which have been developed using simple chemistry DNS database have been 

subsequently assessed using a three dimensional detailed chemistry database of H2-air V-

flame. The algebraic model for SDR is found to capture both qualitative and quantitative 

behaviours of SDR obtained from DNS data with reaction progress variable c defined 

based on different species. The sub models of the terms of SDR transport equation have 

been found to satisfactorily capture qualitative behaviours of the explicitly filtered terms 

of the detailed chemistry DNS database.  

 

9.1.1 Remarks on algebraic closure of SDR 

The SDR based reaction rate closure for LES has been investigated over a range of 

different values of heat release parameter τ , Lewis number Le and turbulent Reynolds 

number tRe  values.  The DNS data has been explicitly filtered using a Gaussian filter 
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kernel to assess the validity of an existing SDR based mean reaction rate closure for 

RANS in the context of LES.  The existing SDR based reaction rate closure in the context 

of RANS has been extended here for LES using a-priori DNS analysis and the newly 

proposed model has been demonstrated to predict w!  satisfactorily for a range of different 

values of τ , Le and tRe  provided the Favre filtered SDR cN
~  is appropriately modelled. 

The performance of an existing SDR closure for passive scalar mixing (i.e. SDR-C model) 

has been assessed with respect to cN
~  extracted from DNS data alongside a model based 

on a power-law expression (i.e. SDR-PL model) and an existing algebraic RANS-SDR 

model, which has been extended here for the purpose of LES (i.e. SDR-RE model). It has 

been found that the SDR-PL model significantly over-predicts and fails to capture the 

qualitative variation of the mean values of cN
~  conditional on c~  for thδ>Δ , even for the 

optimum parameters for which this model accurately predicts the volume averaged values 

of SDR. The SDR-C model with the theoretical value of Smagorinsky constant has been 

found to underpredict the mean values of cN
~  conditional on c~  and also the volume 

averaged values of SDR for all cases considered here. The newly developed SDR-RE 

model has been found to capture both local and volume-averaged statistics of cN
~  for both 

thδ<Δ  and thδ>Δ  in a better manner than the other alternative models for all cases 

considered here. The performance of the SDR-RE model has been found to improve 

increasing value of tRe  and the SDR-RE model has been demonstrated to predict both 

local and volume-averaged statistics of cN
~  for high values of  tRe  in flames with 

0.1≈Le  Moreover, it has been found that the modelling of the sub-grid turbulent velocity 

fluctuation (i.e. Δ́u ) based on Smagorinsky-Lily model of the eddy viscosity does not 

significantly affect the performance of the SDR-RE model. The model parameters 

proposed originally in the context of RANS have been used for the SDR-RE model except 

for the model parameter cβ , which is expressed here as a function of heat release 

parameter τ , as cβ  remains a weak function of tRe  and independent of global Lewis 

number Le . This SDR-RE model has been subsequently assessed with respect to a three 

dimensional filtered detail chemistry DNS database, where satisfactory behaviors have 

been observed that both quantitative and qualitative behaviors are captured for different 

filter widths.  
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The SDR-PL and SDR-RE models later have been investigated further by dynamic 

evaluation of model parameters. The possibility of SDR closure using a power-law model 

based on dynamic evaluation of the model parameter has been assessed and is found to 

capture the local variation of cN  both qualitatively and quantitatively for small filter 

width for 1Le ≈  flames, but under-predicts cN  for 1Le <<  flames. The prediction of 

volume-averaged SDR also suffers especially for 1Le <<  flames. The under-predictions 

of volume-averaged behaviour of density-weighted SDR increase with increasing filter 

width. The empirical parameterisation of cβ  in the SDR-RE model can be avoided by 

using a dynamic formulation which captures the local behaviour of SDR either 

comparably or better than the static formulation for a range of different values of Δ , 

, Leτ  and Ret , whereas the volume-averaged SDR is also adequately predicted. Thus, 

the dynamic formulation based on the SDR-RE model seems to be a viable option for 

algebraic cN  closure for turbulent premixed flames. However, this newly proposed 

model has been assessed here based on simple chemistry DNS for moderate values of 

Ret  with decaying turbulence and thus needs to be assessed further based on detailed 

chemistry based DNS data for higher values of Ret . Although the static version of the 

SDR-RE model has already been implemented in actual LES simulations and satisfactory 

agreement with experimental findings has been obtained (Butz et al., 2015; Ma et al., 

2014) the proposed dynamic model also needs to be implemented in actual LES 

simulations in a configuration for which experimental data is available for the purpose of 

a-posteriori assessment. 

 

9.1.2  Remarks on modelled generalised SDR transport equation 

As the scaling analysis of turbulent transport term 1T  indicated, both gradient transport 

and counter-gradient transport are observed, the modelling of 1T  has been proposed based 

on model of sub-grid flux )~~( cici NuNu ρρ − , where effects of the heat release parameter, 

Lewis number, Karlovitz number and Damköhler number have been accounted for. 

However, the flux of SDR )~~( cici NuNu ρρ −  itself requires modelling in the context of 

LES as well, and the performances of the models for )~~( cici NuNu ρρ −  and the turbulent 

transport term 1T  depend on the modelling of )~~( cucu ii ρρ − . The modelling of 
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)~~( cucu ii ρρ −  is beyond the scope of current analysis and interested readers are referred 

to Gao et al., (2015) for further discussion on the modelling of )~~( cucu ii ρρ − . 

 

Scaling estimates are used for modelling the density variation term 2T , which is a leading 

order contribution to the SDR transport. This term is highly sensitive to the differential 

diffusion of heat and mass, characterised by Le. The contribution of the unresolved part 

of 2T , increases with increasing filter width, while the contribution of resolved part is 

diminishing with increased filter width. 

 

The scalar turbulence interaction term 3T  can assume both negative and positive values 

depending on the alignment of scalar gradient c∇  with the most extensive , intermediate 

and the most compressive principal strain rates, denoted as βα ee ,  and γe  respectively. It 

has been found that c∇  aligns with γe  when turbulent fluid-dynamic straining turba  

overcomes the strain rate chema  induced by flame normal acceleration and vice versa. The 

modelling of 3T  has been proposed explicitly accounting for the competition between  

turba  and chema .  

 

The kinematic form of the SDR transport equation indicates the possibility of modelling 

the remaining unclosed terms )]([ 24 DfDT +−  collectively, which has been adopted in 

this analysis based on their same scaling estimates.  

 

All the proposed models for the unresolved terms of SDR transport equation have been 

assessed based on both simple and detailed chemistry DNS database. The model are 

shown to capture both the qualitative and quantitative behaviours of the unresolved terms 

of the SDR transport equation for different filter widths. However, the results also 

indicates the necessity of further work on modelling the combined contribution of the 

reaction, dissipation and diffusion gradient term )]([ 24 DfDT +−  and it is worth 

considering the individual contributions of these terms. Moreover, these proposed models 

need to be implemented into LES codes to evaluate their performance for laboratory-scale 

and practical flames. However, these closure models also interact with other closures for 

turbulence and scalar mixing in LES simulations. Thus, due care must be taken to the 

detailed evaluation of these models through a-posteriori assessment.  
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9.2  Future work 
Although the newly developed SDR closure has been found to yield promising results, 

there are scopes for further improvement.   

 

9.2.1 Turbulent Reynolds number 

The turbulent Reynolds numbers of the DNS database used in the current study is 

relatively moderate, however, turbulent Reynolds numbers of real burners are extremely 

expensive to achieve using DNS. Although useful physical insights can be obtained based 

on a-priori analysis of both simple and detailed chemistry based DNS data for moderate 

values of Ret, the models developed based on the analysis of these DNS data need to be 

validated further for higher values of Ret based on experiment and DNS data. A couple 

of LES posteriori assessment for higher values of Ret have been carried out for the SDR 

algebraic closure (Butz et al., 2015; Ma et al., 2014), where corresponding experiment 

measurements are available, further assessment for dynamic algebraic closure and 

transport equation based closure will be necessary. 

 

9.2.2 Effects of flame-wall interaction 

The investigation of the flame-wall interaction is out of the scope of current study, 

however, this relation is crucial for the design of practical combustors. The flame is likely 

to be quenched once it propagates towards the walls of combustors and under the 

condition of flame quenching, the assumption involved during the derivation of algebraic 

closure (e.g. SDR-RE model) may become invalid. These proposed models in the current 

analysis require modifications to make them suitable for the flame-wall interaction.  

 

9.2.3 Stratified combustion, equivalence ratio and fuel blending 

The current study concentrates on purely premixed turbulent combustion and provides 

valuable physical insights of the effects of heat release parameter, turbulent Reynolds 

number, Lewis number on the SDR and its transport statistics. However, the effects of 

equivalence ratio and the fuel blending on the SDR based reaction rate closure for LES 

are yet to be addressed along with the elements of SDR and its transport for stratified 

mixture combustion. 
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9.2.4 A posterior assessment in actual LES and experimental validation 

Although the proposed models for SDR and its transport equation have been assessed 

with both simple and detail DNS databases based on a-priori analyses, it remains however 

necessary to assess the model performance in an actual LES, as in actual LES, the 

modelling and numerical inaccuracies may interact in a complicated manner that the 

prediction can be more accurate if these inaccuracies cancel each other or rather erroneous 

if these inaccuracies augment each other. This necessitates a comprehensive a posteriori 

assessment of the algebraic SDR closure based on actual LES simulations. A few recent 

assessments have been carried out on this purpose (Ma et al., 2014; Butz et al., 2015; 

Langella et al., 2015), interested readers please refer to them. Last but not the least, the 

models proposed in this thesis are necessary to be validated by real experiments. 
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