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Abstract

Central pattern generators (CPGs) are neural circuits that control rhythmic motor pat-

terns such as walking running and swallowing. Injuries can sever the spinal cord or

conditions such as Huntington’s disease and Parkinson’s disease can damage nerves from

the brain that control CPGs. Understanding the connectivity of neural circuits has

proved insufficient to understand the dynamics of such circuits. Neuromodulators and

neurohormones can differentially affect every connection in neural circuits and different

circuits are affected in very different ways.

The resulting complexity of such systems make them very difficult to study but research

is greatly facilitated by the use of model organisms and computational models. The

crustacean stomatogastric ganglion (STG) has been used as a model system for many

years. Its relative simplicity and accessibility to neurons makes it an ideal system for the

study of neural interaction, CPGs and the effect of neuromodulators on neural systems.

The effect of dopamine on the pyloric CPG of the crab STG was recorded using voltage

sensitive dye imaging and electrophysiological techniques. To analyse voltage sensitive

dye (VSD) imaging data a heuristic method was devised that uses the timing of the ac-

tivity plateaus of neurons for the estimation of the dynamics of the temporal relationship

of the neurons’ activities.

MATLAB R©was used to create a Hodgkin-Huxley based model of the pyloric constric-

tor pyloric dilator neurons (PDs) with parameters that could capture the dynamics of

neuromodulation. The MATLAB R©model includes two compartments, the soma and the

axon, for the anterior burster neuron, the lateral pyloric neurons (LPs), two PDs and

five individual pyloric constrictor neurons (PYs).

By differentially changing the values of the model synapses, the model is able to reproduce

the de-synchronisation of the pyloric constrictor neurons as was observed experimentally
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on the deafferented stomatogastric nervous system. Existing models model PYs and

PDs as single neurons. These models are unable to show the desynchronising effect of

dopamine on multiple neurons of the same type. The model created for this research is

able to reflect the effect of neuromodulation on the complete circuit by allowing parame-

ters of synapses between neurons of the same type to be adjusted differentially, reflecting

the biological system more accurately.
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Chapter 1. Introduction

1.1 Aim and Hypothesis

Presented in this thesis is my research of which the aim was to build a computational

model of the pyloric central pattern generator (CPG) that would accurately reproduce

the impact of dopamine (DA), as a neuromodulator, on the neural activity of the pyloric

constrictor neuron (PY) complex.

Although it has been known for some time that DA has a desynchronising effect on the PY

neurons, no attempts have been made to quantify this effect. The working hypothesis was

that the desynchronising impact of DA on the PY neurons of the stomatogastric ganglion

(STG) can be quantified such that it is possible to build an accurate computational model

of this effect by differentially altering the strength of the gap junctions between the PYs.

Using electrophysiological and voltage sensitive dye techniques, experiments were devised

to capture the effect of DA on the PY complex. Adequate and appropriate methods to

analyse and quantify the captured effects do not seem to be available and thus I suggest

new methods for the analysis of voltage sensitive dye (VSD) recordings.

1.2 Central Pattern Generators

CPGs are neural circuits that produce rhythmic motor patterns that are involved in

actions such as walking, chewing and swimming (See Fig. 1.1). Timing is an inherent

function of these circuits and not dependent on sensory or descending inputs [127].

1



Figure 1.1: Spinal Central Pattern Generators. CPGs in the spine that generate rhyth-
mic activity for locomotion without sensory or descending inputs [115]

Parkinson’s disease (PDis)1 and Huntington’s disease (HD) are probably two of the best

known neuromuscular diseases, and are characterised by extremely debilitating impair-

ment of movement. The one thing that these conditions have in common is the destruc-

tion of the nerves from the brain that control the CPGs involved in movement. It is

known that PDis is caused by the death of dopaminergic neurons; that is, neurons that

produce DA, which are located in the substantia nigra, a region in the mid-brain [102].

Motor control projections starting from the brain can also be damaged by spinal cord

injury or surgery as treatment for conditions such as cancer.

Walking, running and swallowing are tasks that can be performed without thinking about

it. These tasks are made possible by specialised neural networks that are organised in

such a way that they can continually repeat particular actions. Known as CPGs, the

circuits produce motor patterns controlling the muscles that allow organisms to produce

repetitive movements [50, 60, 129]. The rhythmic patterns produced by CPGs cannot

be explained solely by anatomical connections, but are rather a product of the intrinsic

1Parkinson’s Disease is usually abbreviated as PD. In research involving the stomatogastric ganglion,
however, the abbreviation PD is used for the pyloric constrictor neuron. For the sake of clarity, in the
convention adopted for this document, PD is used for the pyloric constrictor neuron and PDis for
Parkinson’s Disease
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properties [29] of neurons and synaptic interactions. A diversity of patterns is essential

for an appropriate response of the network to the changing environments in which or-

ganisms find themselves [165, 3]. For optimal performance in changing environmental

conditions the patterns need to be adjustable, and this flexibility is provided by sensory

and modulatory inputs to the CPG.

Although CPGs can produce rhythms without external input, external inputs allow

changes in rhythm for control of, or adaptation to, a changing environment. For in-

stance, it has been found in studies using rats with spinal cord injuries that efficiency in

voiding of the bladder is significantly reduced due to disruption of the phasic activity of

the external urethral sphincter [48]. Treatment with 8-OH-DPAT 2 showed an increase

in micturition volume and a decrease in residual volume resulting from improved voiding

efficiency. The improved voiding efficiency can be explained by the induced emergence of

phasic external urethral sphincter relaxation. The higher control of the CPG that in turn

controls the external urethral sphincter is thus severed in spinal cord injury allowing the

CPG to rhythmically open and close the sphincter much more frequently. The frequent

relaxation of the sphincter, in turn, is the cause of the decreased efficiency of voiding of

the bladder [48].

1.3 Neuromodulators

Many diseases are associated with the dysfunction of systems producing neurotrans-

mitters. For example, conditions such as schizophrenia, PDis and Attention Deficit

Hyperactivity Disorder (ADHD) can, at least in part, be attributed to the body mal-

functioning in the production of DA. Many systems are affected in very different ways

by neuromodulators. Exactly how systems are effected is not always known. Because of

the complexity of such systems, research into these diseases is greatly facilitated by the

use of model organisms and computational models.

28-OH-DPAT is a chemical that is used to study the function of the 5-HT1A receptor. 5-HT1A is a
sub-type of the serotonin (5-HT, 5-hydroxytryptamine) receptor.
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1.4 Models

Since it is not always possible to study the causes of diseases or the effect of injuries in

vivo, we resort to alternatives such as animal model systems, and computational models

to find possible causes for a range of conditions and solutions to the problems they

produce.

A model, in science, is a human construct to help us understand real world systems.

Models are used to explain phenomena that cannot be experienced directly. Models can

be used to explain complex data, or for generating a hypothesis. Models can also be

used for prediction. It is thus very important to select an appropriate type of model for

the research at hand.

Animal models are usually selected for their relative tractability compared to that of

humans. For instance yeast, Saccharomyces cerevisiae, and zebra-fish, Danio rerio, are

useful for interpreting and understanding the functional and structural mechanisms of

human DNA sequences. The genes, the ribosomes and cytoskeletons of S. cerevisiae was

found to be homologous to that of mammals [19, 49]. Two well-known invertebrates are

the fruit fly, Drosophila melanogaster, and the nematode worm, Caenorhabditis elegans,

which serve as model organisms in genetics, genomics and neuroscience. C. elegans,

for instance, has been favoured as a model organism since the early 1970s due to its

experimental amenability, its small well-defined nervous system, the ease with which it

can be genetically manipulated and the low cost maintenance [172].

Computational models are mathematical models of systems such as are found in biol-

ogy, physics, weather systems etc. Such models can be used to predict the behaviour

of these systems in an effort to develop interventions which help to control our envi-

ronment. By predicting weather systems we can safeguard ourselves against extreme

weather conditions or plan our crops to avoid failures. In physics, models serve the pur-

pose of discovering the origins of the universe and predicting what the future might hold

for us. In biology, computational models serve to provide a better understanding of the

way our bodies work as part of our effort to fight disease and prolong life.

The difficulty of building a computational model does not only lie in the creation of

the model but also in the selection of parameters and the limitations placed on these
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parameters to keep the model biologically plausible.

Models are built at various scales. There are models that are less detailed with regards

to individual neurons but simulate whole areas of the brain. The Blue Brain Project3,

for instance, aims to reconstruct the human brain, piece by piece, using a supercomputer

to build a virtual brain. The project has already succeeded in simulating a rat cortical

column. Such a cortical column has in the range of 10000 neurons and there are about

10000 columns in the cortex of the rat brain. A model such as this, however, simulates

each of the neurons in less detail, due to the extensive computing resources required.

There are very detailed models of individual neurons, such as the model created by

Hodgkin and Huxley that gives a detailed explanation of how action potentials are

generated and propagated [94]. An action potential, sometimes referred to as a spike,

is a transient reversal in polarity of the transmembrane potential in a neuron [12]. The

original Hodgkin-Huxley model is a single compartment model with provision for the

three main ion channels responsible for the currents that result in action potentials.

This model, however, is easily extendible into multiple compartments and as many ion

channels, gap junctions and synapses as are required by the system being modelled.

Some of the main problems with detailed models are computing requirements, the task

of finding appropriate solvers for the differential equations used and, perhaps the biggest

issue, finding the right parameters for the model.

The large ganglion in the stomatogastric nervous system (STNS) of decapod crustaceans,

the STG has proved to be an ideal system for studying the effect and impact of neuro-

transmitters on the generation and variation of rhythmic motor patterns produced by

CPGs. This ganglion consists of about thirty neurons and form two CPGs, namely the

pyloric and the gastric mill CPGs. These CPGs control muscles involved in chewing

and filtering of food by producing rhythmic patterns. The STG is well studied, and the

complete connectome of all the neurons in the ganglion is known. The STG system is

not only ideal for biological research but also for the verification of computational models

[83, 164].

Several detailed computer models of STG sub-circuits involving a few neurons have been

created [177, 69] - we note that these models often simulate multiple neurons of the same

3http://bluebrain.epfl.ch/
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kind by a single model neuron (e.g. PY or pyloric dilator neuron (PD) neurons). Some

of the models have been able to show what the effect of neuromodulators on individual

neurons and the pyloric rhythm is. These models are still scaled down and model the

two PDs and four to eight PYs as one PD and one PY. It is thus not possible to see,

from the existing models, what the effect of DA would be on the individual PDs and

PYs.

Figure 1.2: The crab stomatogastric ganglion. The circular objects are the somas of
the neurons. The neurons are arranged around the neuropil which is a collection of axons
projecting from the somas.

The objectives of this research were:

• To investigate the role of neuromodulation in the regulation of CPG activity, using

DA.

• To create a detailed computational model of the pyloric CPG capable of showing

de-synchronisation of the PY complex, that includes the two individual PDs, five

PYs, the lateral pyloric neuron and the anterior burster (AB), which in conjunction

with the PDs serves as a pacemaker group for the pyloric CPG.

• To accurately model the effect of DA on the PYs in the STG of Cancer pagurus.

• To develop numerical methods to quantify measured changes when using electro-

physiology and VSDs such that the output of the biological system can be compared

with the output of the computational model.
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• To investigate alternative methods of simultaneously recording from multiple neu-

rons with the aim of getting better insight into the changes and contributions of

individual neurons to the pyloric rhythm under neuromodulatory conditions. These

alternative methods are considered for use in conjunction with, or in the place of ex-

isting electrophysiological and VSD methods currently used on the STG to improve

quantification of neural behaviour for implementation in computational models.

1.5 Research Approach

Using existing models based on the Hodgkin-Huxley equations, a model was developed

to include five PY neurons, two PD neurons, an AB neuron and a lateral pyloric neuron

(LP) neuron. Each neuron was modelled with two compartments. One compartment

represents the soma, primary neurite and dendrites and a second compartment represents

the axon. All axons were modelled with three currents, IKd, a delayed rectifier current,

INa, a fast sodium current and IL a leak current. Parameters for the model were selected

from the literature.

In conjunction with the development of the model, electrophysiological recordings and

voltage sensitive dye imaging were done on the dissected STNS of brown crabs (Cancer

pagurus). The experiments were designed to provide recordings of the system before,

during and after neuromodulation with DA.

All methods of recording have some shortcomings. For instance, when using micro-

electrodes the number of simultaneously recorded neurons is limited by the physical size

of the micro-manipulators. It could also take quite a while to locate the appropriate

neurons that is required for an experiment. Neurons are not always located in the same

place and therefore, the neurons have to be impaled and recorded from, one by one, until

the right one is found. During this process there is always a risk of damaging neuronal

cell membranes [179]. The use of intra-cellular recording using VSD carries the same risk

and can be overcome by the use of bath-applied VSD. The main drawbacks of all VSDs

are low responsivity, signal to noise ration and toxicity.

We thus investigated alternative methods that can be used on their own or in conjunction

with existing methods, for recording neural activity. The methods investigated are:
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• Newly developed voltage sensitive dyes

• The use of multi-electrode arrays on the STG

• Injection of dyes using compressed air.

The structure of this thesis is as follows. Chapter 2 provides background knowledge of

central pattern generators, neuromodulation, existing models and modelling techniques.

Chapter 3 provides a brief description of the general methods and materials used in the

crab laboratory. Chapter 4 introduces the methods we developed for the analysis of VSD

recordings. Following this, we discuss the computational model in chapter 5.

Two newly developed VSDs, existing multi-electrode arrays (MEAs) recording devices

and compressed air injection are methods that have not previously been used on the STG.

In chapter 6 the possibility of successfully using these alternative methods for recording

from multiple neurons in the STG at the same time are discussed.

Finally our conclusions and perspectives are presented in chapter 7.

The MATLAB R©source code of the model can be downloaded from http://www.jannetta.

com/downloads/PYCPG_model.zip
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Chapter 2. Background

2.1 Central Pattern Generators

Underlying the production of most rhythmic motor patterns are CPGs [124]. The earliest

hints at the existence of CPGs came from experiments performed on cats by Sherrington

and Brown [173, 21]. Brown noticed: “a mechanism confined to the lumbar part of

the spinal cord is sufficient to determine in the hind limbs an act of progression” [22].

The first modern evidence of centrally generated motor pattern was demonstrated in

the locust nervous system by Wilson. He showed that, when isolated from the animal,

the nervous system could produce rhythmic output that resembles the neural activity

observed during flight [195, 97, 131]. Now known as CPGs the existence of groups of

neurons that produce rhythmic patterns, independently of peripheral afferent feedback,

is indisputable [124]. Although not yet conclusive, there is some evidence to support

the presence of spinal CPGs in humans [47]. Banaie [8], presented a model for HD gait

disorder. The model is based on the hypothesis that CPG circuits are established in

some neuromuscular diseases which then produce semi-periodic movements. In a normal

person, variation in the gait signal appears to have a random-like behaviour. In HD

patients a semi periodic signal is observed which is the result of some oscillations of the

central nervous system (CNS) being synchronised to produce the movement symptom

[8].

Basic principles of CPG function is mostly based on research in invertebrates and prim-

itive vertebrates such as the lamprey [72]. Later research include studies of the axial

CPG in the salamander [158].

The rhythmic patterns produced by CPGs are often involved in vital functions such

as breathing, walking, flying and chewing [127]. A simple oscillating circuit can be

produced from as little as two neurons each of which inhibits the other. However, many
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inherent factors of a circuit, such as cellular properties, synaptic properties and network

connectivity patterns, can contribute to the generation and characteristics of a pattern.

Hooper identifies two things that are required to produce rhythms: “(1) two or more

processes that interact such that each process sequentially increases and decreases, and

(2) that, as a result of this interaction, the system repeatedly returns to its starting

condition.”. There are two mechanisms for producing neural rhythmicity; (1) either there

are interactions among neurons or (2) there are interactions among electrical currents in

individual neurons [97].

Network-based rhythmicity occurs when there are interactions among neurons with no

rhythmogenic ability. When reciprocally coupled these neurons form half centre oscilla-

tors that produce rhythmic outputs. An example of such a half-centre oscillator based

system is the heartbeat network of the leech Hirudo medicinalis [138].

Endogenous oscillator neurons, are neurons that could, even when isolated from a net-

work, continue to depolarise to the point where they fire action potentials, re-polarise

and then repeat the cycle again. The rhythm produced by such oscillator neurons is

the result of membrane currents. An example of such a neuron is the AB in the pyloric

network located in the STG of crustaceans. This CPG, as the subject of this research,

will be discussed in more detail later.

Circuits driven by both mechanisms, network based rhythmicity and endogenous oscil-

lator driven networks, can be multifunctional. Multi-functionality is provided by mod-

ulatory mechanisms that can alter the properties of the neurons involved in rhythmic

circuits [65]. The term ”polymorphic network” was coined by Getting and Dekin [66] to

define a network that could be organised into multiple states or configurations. Each of

these states or configurations are called ”circuits” and each circuit produces a different

motor pattern [64].

To understand the workings of CPGs it is useful to use model biological systems that are

significantly simpler than those of mammals [2]. The benefit of small systems is that they

can be used to generate hypotheses about how processes might occur in more complex

systems. Furthermore, the existence of CPGs in humans still lacks final proof and thus

relies on research using reduced models [100].
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Before looking into the STG in more detail it is worth considering some other model

systems. To this end a short discussion of Tritonia, Lymnaea and Hirudo medicinalis

follows to illustrate some of the basic concepts of CPGs

2.2 CPG model species

2.2.1 The leech, Hirudo medicinalis, heartbeat network

The leech has two hearts that are driven by heart (HE) motor neurons. The heart motor

neurons are paced by a CPG network of seven identified bilateral pairs of segmental heart

interneurons (HNs) and one, as yet, unidentified pair of heart inter-neurons (HN(X)),

that produce rhythmic activity at a rate of about 0.1 Hz. Synaptic activity between

inter-neurons and from the inter-neurons to the motor neurons are inhibitory [89, 139].

The heartbeat is coordinated by reciprocal inhibition between the HN cells. See figure

2.1

Figure 2.1: The Leech Heartbeat. A network diagram of the leech heartbeat CPG showing
known synaptic connections between heart inter-neurons. HN(1) to HN(7) are the identified
inter-neuron pairs while HN(X) is the unidentified neuron pair. All synapses are inhibitory
except for the connections from HN(X) to HN(3) and HN(4). Adapted from [28].
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2.2.2 Tritonia

Tritonia is a gastropod mollusc. The swim CPG of Tritonia has been a model system for

studying rhythmic motor pattern generation for many years. The Tritonia swim CPG is

also a network oscillator in that it has no neurons with intrinsic burst properties. Rhyth-

mic bursting arise through conventional synaptic interactions. This CPG is initiated by

sensory input which results from contact with the tube feet of certain predatory sea stars

[66].

The swim CPG consists of the cerebral cell 2 (C2), the dorsal swim interneurons (DSI)

and two types of ventral swim interneuronss (VSIs). In a basic scenario the swim motor

pattern is initiated by sensory input that activates dorsal ramp interneuron (DRI). DRI

excites DSI which, in turn, excites C2. C2 feeds back and excites DRI, which then further

excites DSI via a positive feedback loop. C2 excites VSIs, which then inhibits DSI and C2,

thus momentarily interrupting the positive feedback loop. Figure 2.2 shows the Tritonia

swim CPG circuit. The figure also shows the S-cells which are both mechanoreceptive

and chemoreceptive. Excitaton of the S-cells are conveyed onto the Tr1 and DRI cells

via excitatory glutamatergic synapses [61, 107]).
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Figure 2.2: The Tritonia swim CPG. This circuit shows the synapses involved in the
Circles represent inhibitory synapses and triangles represent excitatory synapses. Combinations
of circles and triangles represent multicomponent synapses. (Adapted from [107])

The DSIs not only activate C2 synaptically but also via neuromodulation. Both the

synaptic and neuromodulatory activation are mediated by serotonin (5-HT), which is

released by the DSI [108, 109].

Some of the neurons in the swim CPG of Tritonia have been found to be multi-functional

in that they have functions other than just being involved in swimming. The DSIs, for

example, excite neurons in the pedal ganglia that increase the speed of crawling [147].

Getting and Dekin used Tritonia as an example of a ”polymorphic network” [64].

2.2.3 Lymnaea

Yet another model organism which provides us with two more interesting CPG networks

for study is Lymnaea stagnalis, the pond snail. These CPGs are found in the feeding

(see figure 2.4) and respiratory networks (see figure 2.3) [110].

The name of Lymnaea stagnalis is deduced from the fact that it lives in stagnant wa-

ter. The stagnant water leads to a hypoxic environment at which causes the snails to
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surface and perform rhythmic opening and closing movement of the pneumostome (the

pulmonary opening). These movements are controlled by the respiratory CPG [17]. The

right pedal dorsal 1 (RPeD1) initiates the respiratory rhythm while the input 3 interneu-

ron (IP3) causes the pneumostome to open (i.e. expiration) and the visceral dorsal 4

(VD4) causes it to close (i.e. completion of inspiration). IP3 is connected to the I/J

motoneuron via a monosynaptic excitatory connection. The activity of I/J causes the

pneumostome to open. VD4 is connected to the K motoneuron, also via a monosynaptice

excitatory connection. The activity of K causes the the pneumostome to close [186].

As in the case of Tritionia it has been found that many Lymnaea neurons are multi-

functional [184, 110]. For example, RPeD1, a respiratory CPG neuron has been found

to co-ordinate sensory-motor input from the pneumostome at the water/air interface to

initiate respiratory rhythm generation [79].
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Figure 2.3: The Lymnaea respiratory CPGs. The filled circles are inhibitory chemical
synapses while the vertical bars indicate excitatory chemical synapses. Hypoxic conditions
in stagnant water evokes compensatory changes in respiration. The CPG consists of three
neurons: 1) the RPeD1 which initiates the respiratory rhythm, 2) the IP3 which causes the
pneumostome, via an excitatory monosynaptic connection to I/J, to open and 3) the VD4 which
causes the pneumostome to close via the excitatory monosynaptic connection to K. (Adapted
from [17])

Lymnaea possesses a toothed radula which is used for feeding. Feeding consist of the

mouth begin opened and the radula being scraped over the food substrate. The food is

lifted into the mouth and the mouth is then closed while the food is swallowed. These

movements are repeated while the snail is feeding. The rhythmic movements of the

feeding muscles are driven by motorneurons which in turn are driven by synaptic inputs

from the feeding CPG.

The CPG interneurons are divided into three main classes, N1, N2, and N3. The classi-

fication is made according to the phase of the feeding pattern, i.e. protraction, rasp (or

retraction) and swallow. These neurons provide sequences of excitatory and inhibitory
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synaptic inputs to motorneurons involved in the three phasic feeding rhythm. The rhyth-

mic activity of the CPG relies on both synaptic connections and intrinsic electrical prop-

erties of the N neurons [190]. Activity in the CPG neurons and in the motoneurons

are modulated by higher order interneurons such as the cerebral gian cell (CGC), slow

oscillator neuron (SO) and cerebro-buccal interneurons (CBI).

The frequency of the feeding CPG is controlled by the SO via know synaptic connectivity.

The SO is extrinisic to the CPG. The rhythm is driven by a steady depolorisation of

the N1 cells. Brief stimulation of N2 and N3 resets the phase of the rhythm. The N1

neurons excite the N2 interneurons which in turn inhibit the N1 cells [52].

Figure 2.4: The Lymnaea feeding CPGs. The filled circles are inhibitory chemical
synapses while the vertical bars indicate excitatory chemical synapses. Resistor symbols indi-
cate electrical synapses. B7, B3 and B4 are motoneurons. Neurons N1, N2 and N3 form the
CPG. B7, B3 and B4 are motoneurons. The activity of all these neurons are modulated by
higher order neurons such as the CGC, SO and CBI. (Adapted from [17])
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2.3 The Crustacean Stomatogastric Nervous System

The model system chosen for this research was the previously mentioned pyloric network

found in the STG which is located in the STNS of crustaceans. In the case of the STG,

forming hypothesis of processes in more complex systems can be done by demonstrating

in detail how cellular infrastructure produces rhythmicity and specialised patterns [167].

The STNS has been a tool for research into neural circuit dynamics for more than 40 years

and a number of different crustacean species have been employed. These species include

spiny lobsters (Panulirus argus and Panulirus interruptus), clawed lobsters (Homarus

americanus and Homarus gammarus), various crab species (Cancer borealis and Cancer

pagurus), crayfish and shrimp [128].

A detailed description of the gross anatomy of the stomatogastric system is beyond the

scope of this thesis. There is, however, an extensive literature available on this subject,

of which the writings of Selverston, Maynard and Dando [169, 132] are probably the most

prominent.

In crustaceans the STNS (Fig: 2.5 and 2.7) is an extension of the central nervous sys-

tem, controlling the foregut by innervating the striated muscles that produce rhythmic

movement in the oesophagus, cardiac sac, gastric teeth and the pyloric chamber [171].

It consists of four ganglia: the oesophageal ganglion (OG); the paired commissural gan-

glia (CoGs); and the STG. The OG contains about 18 neurons, while each of the CoGs

contains about 400 neurons [128].
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Figure 2.5: Location of the crab STNS around the stomach. Shown is the innervating
STNS, in black, and the STG, in red, around the crab foregut. Arrows with dotted lines point
to STNS elements which include the ion, CoG, son, OG, dpon, STG, a muscle and the vcn.
Arrows with solid lines point to foregut regions (Adapted from [16])

The underlying circuitry of the STNS is well known. Figure 2.6 shows the pyloric and

gastric circuits that comprise the lobster stomatogastric nervous system.
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Figure 2.6: The underlying circuitry of the lobster stomatogastric network. Sym-
bols: large circles, neurons; black dots, inhibitory synapses; triangles, excitatory synapses; resis-
tors, electrical coupling and diode symbols, rectifying electrotonic connections. The rectangles
represent delay lines between spikes in the presynaptic neurons and postsynaptic excitatory
repsonse. Adapted from [167]
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Figure 2.7: The Stomatogastric Ganlgion. A diagram of the stomatogastric nervous
system (STNS) showing the commisural ganglia (CoG), the oesophageal ganglion (OG), the
STG (STG) and all interconnecting nerves (ion, son, dpon, stn, vcn, aln, mvn, dgn, dvn, lgn,
lvn, pdn, pyn). Lower case abbreviations are used for the nerves while capitalised abbreviations
are used for neurons. All neurons (AB, AM, AGR, DG, GM, Int1, LG, LP, LPG, PD, MG,
PY, VD) are located in the stomatogastric ganglion (STG). The axons of neurons projecting
down specific nerves are shown in the orange circles.

2.4 The Stomatogastric Ganglion

The STG is found on the dorsal surface of the foregut of decapod crustaceans (Fig: 2.5).

The ganglion consists of 24-26 neurons in crabs and 29-32 neurons in lobsters. These

neurons form two CPGs, the pyloric and gastric mill CPGs. Differences in the number

of gastric mill neurons (GMs) and PYs between species account for the variability in the
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number of neurons [128].

Figure 2.8: Neurons of the stomatogastric ganglion with all inhibitory and electrical
synapses indicated. Inhibitory synapses are shown as circles on the neuron that is inhibited.
Electrical synapses are indicated by the resistor symbol (a zig-zag). The circuit consists of one
anterior burster (AB), two pyloric dilator neurons (PDs), two lateral posterior gastric neurons
(LPGs), one lateral pyloric neuron (LP), one inferior cardiac neuron (IC), one medial gastric
neuron (MG), four gastric mill neurons (GMs), five pyloric constrictor neurons (PYs) (which
could vary between four and eight depending on the species), one ventricular dilator neuron
(VD), one Interneuron 1 (Int1), one anterior median neuron (AM) and one dorsal gastric neuron
(DG). (from http://www.bio.brandeis.edu/marderlab//figures/circuit.jpg)

The pyloric CPG produces a cyclic three-phase rhythm that controls the striated muscles

which constrict and dilate the pyloric region of the stomach. The pyloric region is a

section of the foregut that is responsible for the filtering of masticated food. Chewing

is controlled by a six-phase rhythm produced by the gastric mill CPG [127, 166, 167],

controlling the movements of two lateral teeth and one medial tooth [87].

However, these two rhythms are not the only output that can be generated by the STG.

The networks in the STG are very plastic and can be reconfigured by neuromodulation

to produce multiple variants of the basic rhythms. The neurons of the two CPGs can

even be recruited into other motor networks [105, 141].
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Table 2.1: Neurons of the Gastric CPG

# Neuron name Abbr. Muscle
1 Interneuron 1 (Int 1) interneuron
4 Gastric Mill (GM) gm 1, 2a, b
1 Dorsal Gastric (DG) gm 4a, b, c
1 Anterior Median (AM) c6, c7
1 Lateral Gastric (LG) gm 5b, 6a
1 Medial Gastric (MG) gm 9a, 9c
2 Lateral Posterior Gastric (LPG) gm 3

Table 2.2: Neurons of the Pyloric CPG

# Neuron name Abbr. Muscle
1 Anterior Burster (AB) inter-neuron
2 Pyloric Dilator (PD) cpv 1 and 2
1 Lateral Pyloric (LP) p1
1 Ventricular Dilator (VD) cv2
1 Inferior Cardiac (IC) cv3
4 - 8 Pyloric Constrictor (PY) p2-4, 7-9, 1-11

2.4.1 Neurons of the STG

The gastric CPG is comprised of 11 neurons. Eleven to 14 of the neurons in the STG

belong to the pyloric CPG. The number of neurons in the pyloric CPG varies between

species and between individuals within a species [42]. The lobster (Homarus americanus),

for instance, has eight PY neurons while the crab (Cancer pagurus) has only four or five.

Compared to mammalian neurons, the neurons of the STG have relatively large somas

of 50 to 100µm in diameter [128].

Both chemical and electrical synapses are found in the STG. All of the chemical synapses

are inhibitory [171], with the exception of those involving projection neurons. The pro-

jection neurons are located in the OGs, projecting axons down the stomatogastric nerve

(stn) to the STG. The STG neurons are mostly motor neurons and make excitatory

neuromuscular connections [126].

Tables 2.1 and 2.2 give the number of each neuron, its name, abbreviation and the muscle

it innervates for the gastric and pyloric CPGs respectively. The abbreviations used for

the neurons, nerves and muscles are based on a convention created by Maynard and

Dando in which the nerves are named after the muscle they innervate [132, 125].
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Both these CPGs produce rhythms that can be recorded intracellularly and extracel-

lularly. In both cases the recordings obtained from in vitro preparations are largely

indistinguishable from those obtained from intact crabs (figure 2.9) [86].

Figure 2.9: In vivo and in situ recordings of gastric and pyloric neurons over the
dvn and mvn in Cancer borealis. The recordings are largely indistinguishable. Adapted from
[86], courtesy of Wolfgang Stein.

2.4.2 Neurons of the Pyloric CPG

Interneurons are neurons that form connections between other neurons while motor neu-

rons carry signals to the muscles to produce movement. Motor neurons interface with

muscles through specialised synapses known as neuromuscular junctions. Of the 11 to

14 neurons of the pyloric CPG one is an inter-neuron, the AB, while the rest, the PDs,

LP, PYs, VD and IC are motor neurons.

There are two major classes of bursting neurons. Firstly there are constitutive bursters

which rely on ionic conductances for its bursting. The second class of bursting neurons

are the conditional bursters which rely on ionic mechanisms to generate rhythmic activity.

The AB is an endogenous oscillator which can oscillate even when isolated from the

network. The AB is electrically connected to the PDs via gap junctions [198] to form

what is known as the pacemaker group. The AB oscillates, in conjunction with the PDs,

to serve as a kernel pacemaker that drives the pyloric circuit at a rate of approximately

one Hertz [177, 3]. This pacemaker group acts as the timer for pyloric rhythm. Typical

of pacemaker-driven activity, the depolarisation of the AB increases the frequency of

bursting while depolarisation decreases the frequency [168]. Together the AB and PDs
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inhibit the LPs and PYs. This inhibition forces the LPs and PYs to fire alternately with

the PDs [11]. The PYs take longer to rebound from inhibition than the LPs, and are

therefore inhibited further by the LPs. When the PYs do rebound from inhibition they

terminate the LPs [128].

The PDs drive one muscle group of the pylorus. The LP and PY follower neurons drive

another group of muscles. Fig. 2.10 shows the neurons of the pyloric CPG and their

connections with one another.

Bursting in neurons is produced by a combination of slow inward currents that produce

a depolarising phase followed by activation of a slow outward current that terminates

the burst. There are also faster, voltage-gated currents, which account for spikes during

the depolarised phase allowing action potentials and bursting to co-exist. It has been

hypothesised that Ca2+ is part of the inward current. Ca2+ accumulation activates the

Ca2+-activated K+ currents that have been shown to terminate bursts in several systems

[120]

Figure 2.10: Neurons of the pyloric CPG. Inhibitory synapses are shown with filled
circles; non-rectifying electrical synapses are shown with a resistor and rectifying synapses are
shown with a diode symbol that also shows the direction of the preferred current flow. (Adapted
from [80])

2.4.3 Neurons of the Gastric Mill CPG

The gastric mill CPG also has one inter-neuron, Int1, while the remaining neurons, the

GMs, DG, AM, lateral gastric neuron (LG), MG and LPGs are motor neurons. The

gastric mill CPG produces a five-phased motor pattern. Chemical synapses in this CPG

are inhibitory, while electrical synapses are mostly non-rectifying. The LG and MG
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neurons fire at about the same time, and alternate with the LPG. The DG, AM and Int1

fire together and alternate with the GM [83].

Figure 2.11: Neurons of the gastric mill CPG. Inhibitory synapses are shown with filled
circles; non-rectifying electrical synapses are shown with a resistor, (Adapted from [83])

In crustacea, the gastric mill CPG controls the chewing movements of three teeth located

in the gastric mill [157].

2.5 Neuromodulation

Despite the fact that the complete “wiring diagram” for the STG has been known for

more than 25 years, it was soon clear that the static connectivity diagram could not

capture the dynamics of the circuit [2]. An interesting phenomenon in neural systems is

their ability to maintain stability despite environmental changes. These changes include

extracellular conditions as well as channel turnover and cell growth [119]. Flexibility to

cope with such changes is provided for by sensory input, neuromodulation which tunes

the intrinsic neuronal excitability and synaptic properties of neurons as well as the inputs

to the circuits of which the neurons are part [26, 106, 136].
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Neuromodulation is caused by substances known as neuromodulators, such as amines,

neuropeptides, gasses and small-molecule neurotransmitters. Some neuromodulators are

produced locally by the neurons while others are released remotely and transferred to

neurons through the bloodstream. These molecules are known as neurohormones [180].

The source of neuromodulators in modulated circuits can be intrinsic or extrinsic. In

the latter, the cells releasing the neuromodulators are not part of the modulated circuit.

Indirect feedback to the neurons of origin might, however, exist. In the former the

neurons releasing the neuromodulator are part of the modulated circuit [26].

In the STNS all stages of the neuronal processing are affected by factors such as mem-

brane currents, synaptic transmissions, or the properties of the effector muscles [180]. At

least 18 neuromodulatory substances are found in the STG [126, 130, 127, 128], and the

same neuromodulator can differently affect pyloric neurons [13] (Table 2.3).

Table 2.3: Secreted Amines and Neuropeptides of the STG. At least 18 different
neuromodulatory substances are found in the STG.

Modulators Neurohormones Sensory Transmitters
AST 5-HT ACh
BUC OCT AST
CCKC36-9H DA 5-HT
CCKC34-4E CCAP
CCK223-R PDH
CabTRP AST
MYO BUC
PROC CCKC36-9H
RPCH CCK234-4
FLRF GABA
ATR CabTRP
Orcokinin FLRF
ACh RPCH
DA PROC
GABA MYO
HA COR
OCT Orcokinin
NO

2.6 Dopamine

DA is of interest to researchers because of the many functions it has in humans and
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animals. DA is associated with functions in attention, movement, memory, pleasurable

reward, mood, learning and many more.

Conditions such as ADHD, addiction and schizophrenia are all associated with abnormal

mid-brain dopamine levels [116]. Mesocortical DA inputs to the prefrontal cortex (PFC)

regulates aspects of working memory and its dysfunctions underlie cognitive deficits

associated with schizophrenia [10, 163, 176]. It has been shown that adjunctive admin-

istration of DA agonist can improve cognition in individuals with schizophrenia taking

typical anti-psychotics [9].

Proper DA actions in the PFC is also of vital importance for the PFC to mediate executive

functions in goal directed behaviour [70]. Several brain regions have been implicated in

the control of motivated behaviour. Disruptions in any of these regions, eg. the ventral

hippocampus, the amygdala, the PFC and the limbic system, lead to the pathophysiology

observed in several psychiatric disorders. What these brain areas have in common are

overlapping projections to the nucleus accumbens, where the inputs are integrated under

the modulatory influence of DA [71].

DA has been shown to be involved in regulating food intake by modulating food reward

via the meso-limbic circuitry of the brain and thus associated with obesity and drug abuse

[191]. It has been shown that the nucleus accumbens and dorsal striatum dopaminergic

neurotransmission are depressed in obese rats and DA levels can temporarily be restored

by eating highly palatable, high-energy food [63]. This research has led to the hypothesis

that individuals increase their reward seeking behaviour, which in this case is compulsive

eating, as a mechanism to compensate for diminished DA activity. A study by Jeff A.

Beeler using dopamine d2 autoreceptor (D2R) knock-down mice, however, has shown

that the primary contribution of altered D2R signalling to obesity does not lie in the

induction of compulsive eating but rather in altered energy expenditure. The knock-

down mice used in Beeler’s research exhibited significantly lower activity than wild-type

mice [15]

The regulation of DA has been associated with D2R which are found in high density

in the striatum, nucleus accumbens, the olfactory tubercle and to a lower extend in the

hippocampus, amygdala, hypothalamus and cortical regions. These receptors play a key

role in the regulation of dopaminergic neurons and are key in controlling the synthesis,
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release and uptake of DA. D2R are inhibitory and activation of D2R decreases excitability

of DA neurons and the release of DA [59].

Research such as the above-mentioned is usually done on mice and rats, using techniques

such as carbon microfibre electrodes [183], retrograde tracers [155], transgenic approaches

and optogenetics [146] and involve whole brain regions.

Also of interest is the association of DA with neurodegenerative diseases such as Alzheimer’s

disease, PDis and HD disease. Of particular interest to this research is PDis which is

the second most common neurodegenrative disorder after Alzheimer’s disease. PDis is a

degenerative disorder of the central nervous system which mainly affects motor systems

and is caused by selective dopaminergic cell loss. The reasons for such cell loss is still

not understood [44].

Although there is only indirect evidence that CPGs exist in humans, it is generally

accepted that locomotion is based on CPGs within the spinal cord [100]. Evidence is

pointing to defective afferent input to CPGs being involved in movement disorders such

as PDis. It is thought that CPGs in humans are dispersed over several spinal segments.

Conditions such as ”Freezing of Gate” could be caused by disrupted descending control

of these circuits and it has been shown that gait and turning abnormalities are more

pronounced in PDis patients when dopaminergic drugs are at their nadir, implicating

dopaminergic contribution to freezing of gate [142].

2.6.1 DA in the STG

DA acts in the STNS both as a neurohormone and a neuromodulator [39]. Neuromodu-

lators are produced locally in the CoGs while neurohormones are produced elsewhere in

the body and transferred to the STNS via the blood [170].

The STG neurons do not, themselves, contain DA, but because the STG is located in

the ophthalmic artery [37] the neurons are always bathed in haemolymph, and thus

receiving neurohormonal dopaminergic input. DA is secreted into the haemolymph by

the pericardial organs [39]. DA has been shown to induce a distinct pyloric motor pattern

when bath-applied to the STG [104].

DA is one of the neuromodulators that can differentially modulate neurons in the pyloric
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network [38]. Several changes to the pyloric motor pattern can be observed when DA is

applied. There are changes to the overall cycle frequency, the intensity of neural activity

and the phases of the rhythm. The changes are the result of both alterations to the

intrinsic properties of the cells and variations in the strength of synaptic interactions

[82].

One of the effects that DA has in the STG is to excite some of the PYs, causing them

to fire at a high frequency. In turn, the high frequency firing of the PYs cause a phase

advance in the timing of the PYs relative to the pyloric rhythm [81]. The IA current

is modulated in nearly every neuron of the pyloric network. Modulation, however, can

be in opposite directions in different cells [82, 13]. The modulation of the IA current

also affects the rate of post-inhibitory rebound and spike frequency of the PYs, which

influences the pyloric cycle frequency and phase constancy [196].

It has been shown, in lobsters, that modulation by dopamine can result in a significant

increase in the input resistance of AB and a simultaneous decrease in the input resistance

of PD [198].

A further influence of DA on the pyloric rhythm is the inhibition of the PDs through the

enhancement of IA and Ca-dependent outward current which in turn contributes to the

reduction of spike frequency. The LP, on the other hand, is excited through a decrease

in IA and the enhancement of Ih. Ih is a slow hyperpolarisation-activated inward current.

DA shifts the voltage activation curve for Ih in a positive direction [82]. Harris-Warrick

[82] has shown through modelling and dynamic clamp experiments that the reduction of

IA is the predominant mechanism for DA to excite the LP neuron. The firing of the LP

and PD is regularised by DA which, in turn, increases the reliability of recurrent spike

patterns [185].

Until recently not a great deal was known about the signalling events and molecular

mechanisms that mediate the effects of DA. However, the work of Deborah J. Baro

has been filling this gap [38]. It has been shown that the G-proteins Gs, Gi and Gq

are activated in response to DA in the STNS and that three evolutionary conserved DA

receptors were expressed to mediate the process. Research from this lab has also identified

six Innexin proteins in Cancer borealis and Homarus americanus. It was shown that all

the cells in the crab STG express multiple innexin genes. Electrophysiological recordings
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also showed that the PD-acPD electrical synapse is non-rectifying while the PD-LPG

synapse is strongly rectifying [175]. Understanding of the molecular mechanism is

improving but still a lot of work needs to be done.

Johnson et. al. [103] investigated amine modulation of electrical coupling in the pyloric

network and found that all the pyloric electrical synapses were modulated by DA. The

coupling strength of all the electrical synapses was either decreased or increased. They

found that the AB to PD coupling was decreased when current was injected into AB, but

coupling in the other direction, PD to AB, increased. Furthermore DA decreased AB to

VD coupling when current was injected into either of the neurons. They also found that

DA increased the input resistance of the AB neuron, but decreased the input resistance

of the PD and VD neurons.

2.7 Electrophysiology

Electrophysiology is the study of the electrical properties of biological cells and tissues.

More than 200 years ago Luigi Galvani not only paved the way for the invention of the

electric battery but he also laid the foundations of electrophysiology [145].

The mechanism underlying electric signalling in nerves became clearer with Hodgkin,

Huxley and Katz’s experiments with the squid giant axon in 1948 [99, 92]. The giant

squid axon was used as a model system because it is unusually large and therefore very

suitable for electrophysiological experiments. The voltage clamp method used in their

experiments was devised by Cole and Curtis in the 1930s [41].

Electrophysiology depends on three elements, time, voltage and current. The purpose

of the voltage clamp is to eliminate one of these elements, voltage, to make it easier to

study the changes in current over time. The voltage clamp works by using an internal

recording electrode that is inserted into the axon and an external reference electrode

to measure the voltage with an amplifier. A command voltage is set by the researcher.

A comparator measures the difference between the measured voltage and the command

voltage (the difference signal). The difference signal is then used to generate a current,

with the voltage clamp amplifier, that is injected into the axon with a current passing

electrode. This process keeps the membrane voltage as close to the command voltage as
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possible. The current injected into the axon can be measured and recorded [153].

The currents in the axon are carried by potassium (Na+) and sodium (K+) ions. The

effect of each of these ions can be determined by blocking the ion channels in the mem-

brane through which the ions move. To measure the effect of K+, the Na+ channels can

be blocked by tetrodotoxin (TTX) and to measure the effect of Na+, K+ channels can

be blocked by tetraethylammonium (TEA).

Metal, glass or silicon electrodes can be used to record the electrical signals that are

the product of ions moving in and out of the cell across neuronal cell membranes [160].

If an electrode is fine enough it can be inserted into a cell to obtain an intracellular

recording. Typically, this can be done with a glass pipette electrode which is filled with

an electrolyte solution such as potassium chloride. Alternatively, extracellular recordings

can be made by placing a wire electrode adjacent to a nerve.

2.7.1 Multi-electrode arrays

A MEA is an arrangement of electrodes onto which neurons can be placed for recording.

Typically, the preparations are brain slices or neurons cultivated directly on the MEA.

MEAs are used for cell-non-invasive (in vitro) extracellular recording. Polytrodes, on the

other hand, are silicon-based multichannel electrode arrays for in vivo recordings, which

enable the recording and stimulation of large populations of excitable cells for days or

months [178, 18].

In vitro arrays typically come with 32, 60 or 120 electrodes and can be arranged in

various layouts. The planar passive electrodes have a dimension of between 10 and 30

µm, spaced 30 to 700 µm apart. The electrodes are embedded in a glass substrate.

The largest manufacturer of MEAs is Multi Channel Systems in Germany 1. It is also

possible to use MEAs for stimulation by applying either current or voltage impulses to

the electrodes [55].

With spacing of electrodes between 30 and 700 µm and a typical inter-cell spacing of 10 to

15 µm the disadvantage of MEAs is obvious; the electrode density is too low to cover all

cells that are placed or grown over the array. The next generation MEAs are the CMOS

1http://www.multichannelsystems.com
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(complementary metal-oxide semiconductor) MEA which solves this problem. Stimula-

tion and recording electronics are integrated directly into the same substrate with the

electrode array. These active MEAs can, typically, achieve several thousand electrodes

per mm2. The CMOS chips advertised by Multi Channel Systems have a 65x65 layout

and is available with 16 or 32 µm inter-electrode distance. The diameter of electrodes

are always 8 µm. Between the recording electrodes there is a grid of 32x32 stimula-

tion electrodes giving 4225 recording electrodes and 1024 stimulation sites. However,

much higher densities can be achieved such as the custom designed stimulation MEA

described by Lei et. al. An active stimulation chip was fabricated in 2.5V 0.25 µm

CMOS. A 256x256 electrode array in a 3x3 mm2 area had 6724 electrodes per mm2. In

this research recording was done with optical methods [118, 117].

The main advantage of electrophysiology is that electrical activity in neurons can be

recorded directly. There is no need to transform the electrical activity into a different sig-

nal. The signal-to-noise ratio is, however, very high in electrophysiology. Unfortunately,

this type of recording also needs physical contact with the tissue under investigation,

which is its main disadvantage [160].

2.8 Voltage Sensitive Dyes

VSDs, also known as potentiometric dyes, contain molecules that fluoresce in response

to electrical potential changes in their environment2.

The simplest explanation of how VSDs work would be to consider the VSD molecule as

a transducer, i.e. a device that converts one form of energy into another. In the case of

the VSD molecule it acts as a transducer by transforming changes in membrane potential

into light.

Pioneering work in the establishment of optical methods for measuring electrical activity

in large populations of cells were done by Lawrence Cohen in the mid-1970s [31, 40].

The development of VSD was motivated by the need for an alternate method to mea-

sure neural activity when conventional electro-physiological methods that use electrodes

are unsuitable or inadequate. VSDs are especially useful for the study of activity in

2http://www.lifetechnologies.com/order/catalog/product/D1199
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multicellular preparations [122].

VSDs respond to action potentials by a change in their molecular environment.There

are several ways in which dye molecules respond. These are ON-OFF, reorientation,

Fluorescence Resonance Engery Transfer (FRET) and electrochromic.

In the case of the ON-OFF, reorientation and FRET dyes, they all involve a change in

the location of the dye molecule.

The ON-OFF mechanism involves the dye moving from the aqueous extracellular medium

to the cell membrane. Reorientation dyes cause the dye molecule, which is bound to the

membrane, to flip from an orientation which is perpendicular to the cell membrane to

a parallel orientation. In the case of the FRET mechanism two dyes are applied, an

acceptor and a donor fluorophore. The fluorophore is anchored to the outer surface

of the cell membrane and transfers energy to the acceptor chromophore which then

emits fluorescence at a longer wavelength. The acceptor, which is a negatively charged

membrane-permeant dye, will redistribute to the inner surface of the lipid bilayer when

the membrane depolarises, reducing FRET and the long wavelength emission [123].

Another method which was developed in the Loew lab to overcome some of the problems

of the aforementioned dyes utilises chromophores that interact directly with the electric

field of the membrane by an electrochromic mechanism. Electrochromic dyes undergo a

large electronic charge shift as a result of excitation, thus changing from a ground state

to an excited state. The intra-membrane electric field differentially stabilises the ground

and excited states. When the membrane potential changes it causes a spectral shift [122].

In simple terms this means that the dye undergoes a colour change with electric energy.

Looking at the features of the three types of dyes we find that ON-OFF dyes usually have

a large sensitivity but a slow response time and thus too slow to record action potentials.

On the other hand we find, that reorientation dyes can be very fast but the sensitivity can

be very low and often varies significantly from one preparation to the next. In the case

of FRET dyes, the sensitivity is high but the requirement to apply two dyes impeded its

wide adoption. Electrochromic dyes, proved to produce more robust sensitivities and are

more reliable from one experimental situation to another and has been widely adopted

for recording action potentials [123]. JPW1114, RH437, RH461, Di-4-ANEPPS, RH795
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and Di-8-ANEPPS are all electrochromic dyes that have been used successfully in a wide

range of species [5, 33, 150].

Two new electrochromic dyes, JULBD and MJULBD, have been developed in the labora-

tory of Professor Andrew Benniston at Newcastle University. Unlike the electrochromic

VSDs discussed before, the new dyes use an uncharged low molecular weight compound.

The purpose of these dyes were to improve on existing popular zwitterionic dyes with

regards to responsivity and toxicity. As part of this research these dyes were tested as

an alternative method for recording from multiple neurons. The results are discussed in

more detail in chapter 6.

VSDs have been used in vivo and in vitro for various studies which involved several

species. These studies include: in vivo VSD imaging of salamander olfactory bulb neural

activity during odourant stimulus delivery [36]; real-time visualisation of the cortical

responses to whisker deflections and cutaneous stimulations of the whisker pad in rats

[46]; and investigating the naturally evoked electrical activity in an intact frog brain [73].

Invertebrate studies have been done using neurons in leech [20] and snail ganglia [90, 25].

In vitro studies include: monitoring neuron activity in the ganglia of various invertebrates

[74]; and VSD imaging of interacting neurons in the stomatogastric ganglion of the brown

crab, Cancer pagurus.

The advantage of using VSDs, especially when used as a bath application, is that the

activity of a large number of neurons can be captured at the same time. Traditional

electro-physiological methods are restricted by space, as there is always limited space for

manipulators around the preparation [150]. There is, of course, also the additional risk

of damaging the neurons when electrodes are inserted into the soma [51]. In the case of

the STG, VSD can be applied to the whole STG potentially allowing the activity of all

the neurons to be captured. However, since not all neurons can necessarily be placed in

focus under the microscope and the imaging camera there is, in practice, still a limit on

the number of neurons that can be imaged at any one time.

Unfortunately there are disadvantages to using VSDs. Typically there is a drift in the

signal of VSDs and thus the data usually has to be de-trended as a first step in analysis.

The signals captured from VSDs are also much more noisy than the signal gained through
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normal intracellular electrodes. The toxicity of the VSDs can also be a problem, but this

issue can be mediated by keeping imaging sessions short (30 seconds). Short sessions,

however, do mean that continuous measurements over a longer period of time (such as

several minutes or even hours) are not possible.

A major drawback of VSDs, which limits the applicability of the method, is the low re-

sponsivity which is typically 0.1-1% intensity change per 10 mV change in the membrane

potential of a cell.

Research continues into finding new VSDs that would give an improved signal to noise

ratio and higher responsivity while also trying to maintain low toxicity [7].

2.9 Modelling Neurons

Computational models in neuroscience, aim to create functionally and biologically accu-

rate models of neurons at multiple spatio-temporal scales. Such models are used to create

and test hypotheses that can be verified by future and current biological experiments.

Well-designed models can be used to increase our understanding of the subjects under

investigation and to predict their behaviours under certain circumstances [182].

The nervous system is extremely complex and can be studied at a range of levels from the

molecular to the behavioural. Models can be constructed at all levels. An appropriate

model needs to be selected based on the research question. Different levels of detail

can also be modelled and detail at which a level is modelled is also determined by the

research question [182].

The levels of organisation in the CNS are summarised well in a diagram by Churchland

and Sejnowski[35]. The levels identified by these researchers are: molecules; synapses;

neurons; networks; maps; systems; and the CNS. Trappenberg added another level of

complexity, people [188] (Fig. 2.12).
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Figure 2.12: The levels of organisation in the CNS. Each level can be modelled in more
or less detailed as required. (used with permission of Prof. Trappenberg [188]).

According to the diagram in figure 2.12 and the scales, the research reported in this

thesis covers the “Neurons” level.

2.9.1 Lapicque’s integrate-and-fire model

One of the earliest models of a neuron was in 1907 by Louis Lapicque. Lapicque’s model

describes what he observed in experiments with frogs. The mechanisms responsible for

neuronal action potentials were unknown, and thus Lapicque’s model was very simple.

Despite the lack of detailed knowledge, Lapicque’s model is still the basis of many models
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that are widely used today [1]. Lapicque postulated that nerve membranes were semi-

permeable, polarisable membranes and could therefore be modelled as a capacitor with a

leak. He compared the data obtained from his frog experiments with both an RC-circuit

(a circuit with a resistor and a capacitor in parallel, fig 2.13) and a heuristic law of

excitability [24].

Figure 2.13: Lapicque’s model. Lapicque’s model was based on an RC-circuit. C is the
membrane capacitance, R is the membrane resistance, V is the membrane potential, Vrest is
the resting membrane potential and I is an injected current.

This model can be expressed as the time derivative of the law of capacitance, Q = CV .

A neuron represented in time would thus be:

I(t) = Cm
dVm(t)

dt
(2.1)

2.9.2 The leaky integrate-and-fire-model

An improvement on the integrate-and-fire model is the “leaky integrate-and-fire” model.

This model adds a leak resistance in parallel to the capacitance, which reflects the dif-

fusion of ions through the cell membrane. This model neuron will only fire when the

excitatory input is strong enough to overcome the leak (2.2).

I(t)− Vm(t)

Rm

= Cm
dVm(t)

dt
(2.2)

The leaky integrate-and-fire model is also known as the “passive integrate-and-fire” model

because in its simplistic form, all active membrane conductances and synaptic inputs are

ignored and the entire membrane is modelled as a single passive leakage term [43]
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Semi-permeability of cell membranes is the result of embedded ion channels and pumps.

These channels and pumps allow different concentrations of ions to be maintained inside

and outside the cell which, in turn, result in an electrical potential existing across the

membrane [182].

2.9.3 Hodgkin-Huxley Model

In 1952 Hodgkin and Huxley described the membrane current in the squid giant axon

as an electrical circuit (Fig. 2.14) and produced a set of differential equations which

modelled the ionic currents across the membrane of excitable cells. These equations are

still in use today [92, 94, 93, 91, 95]. Their work was a breakthrough in the understanding

of nerve excitation. The equations in these papers provided only for potassium ion,

sodium ion and leak currents. However, the same equations can be used to expand the

model to include other currents and as such still serve as the basis of most neuronal

models. These models are also known as conductance-based models.
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Figure 2.14: The membrane as an electrical circuit. Hodgkin-Huxey described the
membrane current in the squid giant axon as an electrical circuit. [94]

Action potentials are the result of joint action by fast-acting sodium channels and

delayed-acting potassium channels [14]. Sodium (Na+) channels can be in any of a

number of states, depending on the channel’s internal activation, inactivation or deac-

tivation state and whether it is open or closed. The channel only allows Na+ to move

through when it is both open and activated. Potassium channels have only two states,

open or closed. The channels responsible for “leak currents” are open all the time and

are mostly responsible for the resting membrane potential. The leak current is mostly

made up of chloride ions [94]. The sodium and potassium channels are also ion specific.

However, these channels are voltage dependent, meaning that the probability of them

being open or closed depends on the voltage across the cell membrane. In figure 2.14,

this voltage dependency is indicated by the symbol for a variable resistor (a resistor with
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an arrow through it).

The mathematical equation for the electrical circuit is given by:

I = CM
dVm
dt

+ Iint (2.3)

where:

I is the total membrane current.

C is the membrane capacitance.

Iint the sum of the intrinsic and modulatory ionic currents.

Vm is the membrane potential.

t is time.

Voltage gated sodium channels in the cell membrane are responsible for the depolarising

phase that eventually leads to action potentials. Voltage-gated potassium channels, on

the other hand, are crucial for hyperpolarisation to return the cell to a resting state [121].

In the Hodgkin-Huxley model, each of the voltage gated sodium channels is assumed to

have two gates: the ’m’ and the ’h’ gate. For the channel to be open, both gates have

to be in an open state. The channel is in a deactivated state if the m channel is closed

or an inactivated state if the h channel is closed. When both gates are open the gate is

activated. The states of the gates are described in the Hodgkin-Huxley equations by:

I = gionm
p
ionh

q
ion(V − Eion) (2.4)

As given, this equation (Eq: 2.4) is generic and can be used for all ionic conductances.

The maximal conductance of the channel is g, whilem and h are the fractions of activation

and inactivation gates in the open state, and p and q are the number of independent gates

per channel. V is the displacement of the membrane potential from its resting value and

Eion is the reversal potential that corresponds to the specific ion [27, 94, 194, 177].

The Hodgkin-Huxley model of an excitable cell is summarised in four differential equa-

tions:
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I = Cm
dVm
dt

+ gKn
4(Vm − VK) + gNam

3h(Vm − VNa) + gl(Vm − Vl) (2.5)

dn

dt
=
−(n− n∞(V ))

τn(V )
(2.6)

dm

dt
=
−(m−m∞(V ))

τm(V )
(2.7)

dh

dt
=
−(h− h∞(V ))

τh(V )
(2.8)

where:

I is the total membrane current,

Cm is the membrane capacitance,

Vm is the membrane potential,

t is time,

gK , gNa, gl are the ionic conductances for potassium (K), sodium (Na) and leakage (l)

respectively.

α and β are rate constants that vary with voltage but not with time.

The reversal potential for each current can be calculated by using the Nernst equation

(Eq. 2.9)

E =
RT

zF
ln

[ion]extracellular
[ion]intracellular

(2.9)

where:

E is the membrane potential in volts,

R is the ideal gas constant of 8.3144621 J
molK

,

T is the temperature in Kelvin,

z is valence of the ion,

F is Faraday’s constant for which the currently accepted value is 9.64853399x104Cmol−1,

and [ion]extracellular and [ion]intracellular are the intra- and extracellular ion concentrations

respectively in moles per cubic meter.

41



However, to take into account all of the ions that are permeant through a cell membrane

the Goldman-Hodgkin-Katz equation is used:

Em =
RT

F
ln
PNa+ [Na+]out + PK+ [K+]out + PCl− [Cl−]in
PNa+ [Na+]in + PK+ [K+]in + PCl− [Cl−]out

(2.10)

Various researchers have based models on the Hodgkin-Huxley model to simplify or adapt

the models for specific purposes. Some well-known models the Morris-Lecar [134] model,

FitzHugh-Nagumo [58, 137] model and the Hindmarsh-Rose model.

2.9.4 Multi-compartmental models

The aforementioned models describe the membrane potential over an entire neuron with

a single variable. Membrane and morphological properties vary along the length of

an axon resulting in varying membrane potentials over the surface of the neuron [43,

182]. The effect of the varying membrane potentials and associated complexities can

be reproduced in models by considering a neuron as several connected compartments.

Each compartment can be simulated by a Hodgkin-Huxley type model (or any other

appropriate type of model) with the compartments connected via conductances [101]

2.9.5 Existing pyloric CPG neuron models from literature

Table 2.4 lists models of pyloric CPG neurons from crustacean that can be found in

literature. The table shows the journal reference, the number of neurons that were

modelled and the equations that were used. The model with the most number of neurons

was the Gutierrez model. The purpose of this model was to illustrate circuit switching

using network motifs that are found in the STG network. The neurons were modelled

as single compartments and using the Morris-Lecar two-dimensional reduced excitation

model. Neurons in this model do not reflect physiological properties of the biological

neurons (eg. PD and LP are modelled using the same equations in anti-phase) [76].
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Table 2.4: STG model list. A list of published STG models by various researchers, showing
the number of neurons simulated and the equations used in the model

Paper Neurons # Equations Notes

Buchholz 1992 [27] LP 1 Hodgkin-Huxley

Epstein 1990 [54] unidentified 1 Hodgkin-Huxley Three models of

individual neurons

Golowasch 1992 [67] LP 1 Hodgkin-Huxley

Prinz 2003 [152] PD 1 Hodgkin-Huxley Database of 1.7

million

single-compartment

models

Abbot 1991 [3] AB, PD 2 FitzHugh-Nagumo

Golowasch 1999 [69] AB/PD, PY 2 Hodgkin-Huxley AB/PD modelled as

one

Soto-Trevino AB, PD 2 Hodgkin-Huxley

2005 [177]

Hartline 1979 [85] AB/PD, 3 AB/PD modelled as

LP, PY one

Warshaw 1976 [193] LP, PD, PY, 5

VD, IC

Gutierrez 2013 [76] IC, LP, 5 Morris-Lecar Illustrating circuit

LG, PD, Int1 switching

Very early models from the Hartline laboratory [85, 193] also included up to five neu-

rons. These models used Morris-Lecar type equations and were implemented in SNAX,

a language for interactive neuronal modelling and data processing [84]. SNAX does not

seem to be available any more and unfortunately the old journal articles could not be

obtained to learn more about the language.

Note that the Morris-Lecar model is a simplified version of the Hodgkin-Huxley model

which, for example, does not capture the details of spiking activity in neurons. With

such a configuration it is not possible to model the differential modulation which occurs

when STG neurons are exposed to DA.
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2.9.6 How models are created

The models discussed are expressed as differential equations. These systems are non-

linear and cannot be solved analytically. It is possible, though, to use numeric methods.

An interesting anecdote from the pen of Alan Hodgkin, makes us appreciate the general

availability of computers today:

“Finally there was the difficulty of computing the action potentials from the equations

which we had developed. We had settled all the equations and constants by March 1951

and hoped to get these solved on the Cambridge University Computer. However, before

anything could be done we learnt that the computer would be off the air for 6 months or

so while it underwent a major modification. Andrew Huxley got us out of that difficulty

by solving the differential equations numerically using a hand-operated Brunsviga. The

propagated action potential took about three weeks to complete and must have been an

enormous labour for Andrew. But it was exciting to see it come out with the right shape

and velocity and we began to feel that we had not wasted the many months that we had

spent in analysing records.” [96]

Using MATLAB c© on an i5 laptop with 6 gigabytes of RAM and a very simple implemen-

tation of the Hodgkin-Huxley model (Appendix A), it now takes approximately 0.194440

seconds to produce the graph (Fig. 2.16) that took Andrew Huxley three weeks with the

use of the Brunsviga calculator (Fig 2.15).

44



Figure 2.15: A Brunsviga hand-operated calculator. A Brunsviga hand-operated calcu-
lator such as was used by Andrew Huxley in 1951. (Image by Lothar Spurzem (Spurzem) [CC
BY-SA 2.0 de, http://creativecommons.org/licenses/by-sa/2.0/de/deed.en], Wikime-
dia Commons)

Figure 2.16: An action potential curve. A curve produced in 0.194440 seconds with the
Hodgkin-Huxley equations using MATLAB c©.

By Lothar Spurzem (Spurzem) (Created by Spurzem.) [CC BY-SA 2.0 de (http://creativecommons.org/licenses/by-

sa/2.0/de/deed.en)], Wikimedia Commons

In this day and age and for the purpose of this research it would not be unreasonable to

take the availability and use of computers as a given. Thus, the history and details of

numerical solvers will not be discussed but rather the software and choices of numerical

solvers implemented in the software will be considered. Various numerical solvers are

available and it is up to the researchers to select an appropriate solver based on the

nature of the equations to be used.

With regards to software there are various commercial and open source packages available
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such as MATLAB from MathWorks c©3, GNU Octave4 (an open source product, mostly

compatible to MATLAB) and R5 which is also open source.

There are also software available specifically for neuron simulation such as NEURON6

and the GENESIS7 (GEneral NEural Simulation System) simulator. These simulators

have built-in numerical solvers and in some cases the user might be offered a selection of

solvers to choose from.

The stiffness of the equations of the selected model is an important determinant in the

selection of the appropriate software and numerical solver to be used. “Stiffness” arises

when one has to deal with more than one first-order differential equation where some

dependent variables are changing based on two or more independent variables that have

very different scales [149].

In the case of the Hodgkin-Huxley model there are slow components and fast components.

The equations are stiff because of the interactions between the membrane potential and

the three conductance variables [32]. Thus a numerical solver that can cope with this

“stiffness” in the equations need to be selected.

Typically, for models derived from the Hodgkin-Huxley model, a fourth-order Runge-

Kutta method with predictions is used (Runge-Kutta(4,5)). Predictions are made with

an adaptive step-size algorithm.

Another interesting result from the Hodgkin-Huxley studies is the fact that neurons

emerged as dynamical systems and can therefore be studied as such.

The Hodgkin-Huxley model is a four-dimensional dynamical system of ordinary differen-

tial equations governing the evolution of four state variables, V , n, m and h [101]. The

model exhibits bi-stability between equilibrium and limit cycle attractors. If a constant

current is injected that is below the threshold where tonic firing takes place, the system

will go to a fixed point. When a higher current is injected, the fixed point becomes

unstable and solutions converge to a stable periodic trajectory which is known as a limit

cycle (figure 2.17) [57, 133].

3https://uk.mathworks.com/products/matlab/
4https://gnu.org/software/octave/
5http://www.r-project.org/
6http://www.neuron.yale.edu/neuron/
7http://genesis-sim.org/

46

https://uk.mathworks.com/products/matlab/
https://gnu.org/software/octave/
http://www.r-project.org/
http://www.neuron.yale.edu/neuron/
http://genesis-sim.org/


Figure 2.17: Limit cycle. Using the model from appendix A, this limit cycle was produced
by plotting m against v.

2.9.7 Finding Parameters

A vital aspect of computational modelling is finding appropriate values for model pa-

rameters. The values could be based on measurements taken during experiments, but

are often estimates or even complete guesses [182].

In the Hodgkin-Huxley based models there is requirement for conductance values (g).

These values are usually experimentally measured but are highly variable [68, 197]. Prinz,

for instance, computationally generated 20,250,000 model networks from combinations

of a three neuron circuit varying the synaptic strengths and neuron properties. The

circuit was based on the pyloric CPG of H. americanus. Of these model 4,047,375,

20%, produced pyloric-like behaviour, confirming that similar network activity can be

produced from disparate circuit parameters [151].

It has also been shown, in the pyloric neurons of the crustacean STG, that ionic conduc-

tances are expressed in a correlated fashion [187] and that these correlations contribute

to the invariance of neuron activity and spiking frequencies [197].

This background section is by no means comprehensive. Each of the sections covered

justifies research in its own right and is the subject of several books, articles and research
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groups. The nature of this research is such that it requires an interdisciplinary approach.

Continuous progress in technology also means that knowledge and skills of all the con-

tributory fields need to be kept up to date. For instance, progress made in optogenetics

might soon make it an option for recording neural activity in the STG. The background

given, will hopefully serve to put the research question and the technical requirements

into perspective.
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Chapter 3. Methods and Materials

3.1 Introduction

The planar arrangement of the cell bodies of the crustacean stomatogastric ganglion

(STG) makes the neural system particularly well suited for the recording of single or

multiple neurons using electrophysiology or voltage-sensitive dye imaging. To be able

to compare the output of a model system to the output of a complete biological neural

system, but with the insight into the contribution of individual neurons that comprise the

system, would be invaluable. Capturing such neural activity from the STG requires that

the stomatogastric nervous system (STNS) be dissected from a live crab. The methods

for dissecting the crustacean STNS are quite mature.

The use of voltage sensitive dye (VSD) on the STG has only been done since 2010 in the

Newcastle University crab lab (which was moved to Keele University in August 2014) by

Prof Peter Andras in collaboration with Dr Wolfgang Stein. The Newcastle University

crab lab was also the only laboratory investigating and developing the techniques for

using VSD on the crustacean STG. In 2012 Dr Wolfgang Stein set up a laboratory at

Illinois State University which now also investigate the use of VSDs on the STG and

other ganglia of the STNS.

Because the use of VSD for research into the neural activity of the STG is still rela-

tively new, the methods for the analysis of the data, especially for the use of verifying

computational models of the STG, were inadequate or non-existing when this research

project started. This research contributes in this respect by providing new methods for

recording of the complete STG and for the analysis of the recorded data.

In this chapter the methods and materials adopted and developed are described. These

methods and materials include obtaining and keeping crabs, dissections, electrophysi-
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ology, the application of VSDs both intracellularly and bath-applied, the methods de-

veloped for analysing the data and lastly, the building and analysis of a computational

model.

3.2 Obtaining and Keeping Crabs for Dissection

For this research Cancer pagurus, also known as the edible crab or brown crab, was

used. These crabs are found in the North Sea and North Atlantic Ocean.

Crabs were obtained from suppliers at North Shields Fish Quay and some were obtained

from Dove Marine Laboratory in Cullercoats1. Initially the purchased crabs were then

kept at the Ridley Building (School of Biology, Newcastle University) but later on the

crabs were kept in the crab lab in two 60 litre aquariums in artificial sea water. The

water was filtered and chilled to 14 degrees Celsius.

Crabs with a carapace width of 12 to 15 cm were selected. Both male and female crabs

were used.

3.3 Dissection

The dissection of the brown crab (Cancer pagurus) is done in two parts: the gross and fine

dissection. The methods are the same as for other crabs, such as the Jonah crab (Cancer

borealis) which is used in many other labs. During the gross dissection the carapace is

opened up with rongeurs and the stomach is removed. The stomach is opened by making

an incision from the oesophagus (anterior) to the pylorus (posterior). The stomach is

then pinned down in a dish lined with black Sylgard, with the inside of the stomach to

the bottom and covered with Cancer pagurus saline (see table B.1). All tissue on the

dorsal side of the stomach is removed to expose the STNS.

During the fine dissection the STNS is removed from the stomach using a microscope

and microdissection tools, and pinned into a Sylgard lined petri dish. The nerves are

cleared of all tissue. If intra-cellular or voltage sensitive dye recordings are to be made,

the STG has to be de-sheathed.

1Dove Marine Laboratory, Newcastle University (http://www.ncl.ac.uk/marine/facilities/
dove/)
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A detailed description of the gross and fine dissections are provided in Appendix B,

and an excellent video of the procedures is available on-line in the Journal of Visualized

Experiments (JOVE) [77].

3.4 Electrophysiology

Extracellular recordings of neurons in the STNS are made by pinning out the deafferented

STNS in a Sylgard coated petri dish. A petroleum jelly well is made over the nerve of

interest. To record the pyloric rhythm, the well is best made over the dorsal ventricular

nerve (dvn) and/or the lateral ventricular nerves (lvns).

Using a differential amplifier such as the A-M Systems Model 1700 2, one electrode is

placed inside the well and the other outside the well. The output from the differential

amplifier is fed into a DAQ (data acquisition system) such as the CED 1401 Micro 33.

The DAQ connects to a computer where software such as Spike24 or WinEDR5 displays

and records the activity measures over the electrodes.

Intra-cellular recordings are made using an intra-cellular amplifier such as the AxoClamp

900A Amplifier6, made by Molecular Devices. The intra-cellular amplifier has a head

stage into which a glass electrode is placed. Micro glass electrodes are pulled from glass

capillaries using a puller such as the M-97 Flaming/Brown Micropipette Puller7.

The head stage is fitted to a micro-manipulator such as the Scientifica Patchstar Micro-

manipulator8 that has an electronic movement resolution of 20 nm. Using the manipula-

tor, the glass electrode is positioned above a neuron. The electrode is then lowered to just

touch the cell membrane of the neuron. Using the intra-cellular amplifier software or an

oscilloscope it is possible to see when the electrode touches the neurons as the measured

voltage will suddenly drop. The electrode is then slowly lowered, using the manipula-

tor, while simultaneously “buzzing”. Buzz is a function of the intra-cellular amplifier

2https://www.a-msystems.com/s-129-differential-ac-amplifier-model-1700.aspx
3http://www.ced.co.uk/2pl01u.shtml
4http://www.ced.co.uk/pru.shtml
5http://spider.science.strath.ac.uk/sipbs/showPage.php?pages̄oftware winEDR
6http://www.moleculardevices.com/systems/conventional-patch-clamp/axoclamp-900a-

microelectrode-amplifier
7http://www.sutter.com/MICROPIPETTE/p-97.html
8http://www.scientifica.uk.com/products/patchstar-micromanipulator

51



which drives a short, large current oscillation through the electrode. These oscillations

force the electrode into the cell membrane. As soon as the electrode breaks into the cell

membrane, a typical intra-cellular wave form will appear on the oscilloscope/screen.

To keep the temperature of the preparation constant it has to be perfused. Perfusion is

accomplished by using a pump to suck out the saline that covers the preparation in the

Petri dish at the same time as feeding fresh cold saline into the dish. The temperature

of the saline is maintained by running it over a Peltier device9. The inlet and outlet are

placed as close to the STG as possible to insure the STG itself is kept at the required

temperature which is between 10 and 15 degrees Celsius.

If neurotransmitters are to be applied to the preparation, a large well is made around the

STG to restrict application of the neurotransmitter to the STG neurons. The perfusion

inlet and outlet are placed inside the well. It is therefore important to make sure that

the well is intact and has no leaks.

Figure 3.1 shows a deafferented STNS pinned and desheathed in a Petri dish. There are

three wells placed over the dvn and lvn with extracellular electrodes. The large well in

the centre around the STG is used for perfusing the STG with either saline or a dopamine

solution.

9http://stg.rutgers.edu/resources/Peltiers.pdf
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Figure 3.1: The dissected STNS with 3 small wells over the dvn and lvn and a large well
over the STG for the application of dopamine or voltage sensitive dyes.

3.5 Voltage Sensitive Dyes

The planar arrangement of the cell bodies of the STG makes this neural system particu-

larly well suited for the recording of multiple neurons using VSD imaging. Following the

preparation of the crab as described in section 3.3, neurons are identified using intracel-

lular recording and the analysis of their activity pattern relative to the pyloric rhythm

to which these neurons contribute.

Voltage sensitive dyes can be applied intra-cellularly [181] or extracellularly as a bath

application [179]. The advantage of bath application is that the dye can be applied

to several cells, e.g. the whole STG allowing the activity of the whole ganglion to

be recorded. The disadvantage of the bath application is that it is significantly more

noisy than intra-cellular electrophysiological recordings or intra-cellular dye application

recordings. Intra-cellular application of dyes, however, is very time consuming and as
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such limits the number of neurons that can be filled with the dye before recording can

start. The cells required for a specific experiment has to be located first using intra-

cellular electrophysiological methods and then filled with dye. Filling takes at least 30

minutes per cell.

Di-4 ANEPPS10 was used for bath application of the STG in this research. A stock

solution is made by dissolving 5mg of Di-4 ANEPPS in a solution of Pluronic F-127 and

20% DMSO (dimethylsulfoxide). This stock solution is kept in a fridge at 3 to 5 degrees

Celsius. Prior to the bath application, 20 µl of stock solution is mixed with 1ml crab

saline to give a 10.4024 millimolar solution. A well is made around the desheated STG

(see Fig. 3.1). The dye is applied to the well and left in the fridge for 20 minutes. The

preparation is covered with a blacked out box to prevent exposure to light. After 20

minutes the preparation is removed and placed under the microscope for exposure to a

green excitation light at about 450nm while fluorescence emission activity is detected at

>570nm and captured by a high speed camera such as the MiCAM02 system11.

For imaging using intracellular filling of neurons with voltage sensitive dye, di-8-ANEPPQ

dye is used. A stock solution is made by mixing 5 mg dye with 1 ml 20% F-127 pluronic

acid DMSO solution. The dye is applied using intracellular iontophoretic injection with

sharp microelectrodes. The tip of a microelectrode with a filament is filled with dye and

then back filled with with 3 M KCl. Pulses of 10 nA positive current with a duration of

1.5 s and an interpulse duration of 1.5 s is then used to drive the dye molecules into the

cell. To completely load the dye takes 20 to 30 minutes per neuron. The filling procedure

is described in detail in [181].

Imaging is accompanied by an extracellular recording over the lvn or dvn which is also

used to monitor the state of the preparation. Such a recording provides the well recog-

nised pyloric rhythm (see figure 3.2) and any change in this rhythm would indicate a

state change of the preparation, usually temperature, perfusion or toxicity of the VSD.

To avoid damage to the preparation the temperature and perfusion needs to be kept

constant. A major drawback of VSDs is photo-toxicity which limits the life of the prepa-

ration used [160]. Therefore, imaging bursts are kept short.

10http://www.lifetechnologies.com/order/catalog/product/P3000MP
11https://tools.lifetechnologies.com/content/sfs/manuals/mp01199.pdf
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Figure 3.2: Pyloric rhythm as measured over the lvn

Imaging is started by capturing a high resolution image of 376 by 252 pixels. The high

resolution image is used for identifying the neuron outlines which is very difficult to do

on a low resolution image. After the high resolution image, neural activity is captured

with low resolutions images of 40 by 28 pixels. Three short bursts of 21840 frames are

captured which have a duration of about 32 seconds each.

Figure 3.3: High resolution VSD image. The high resolution image is used for identifying
the outlines of the neurons. For illustrative purposes, two neurons have been outlined with red
dots. The red outline is overlaid onto the low resolution image below (3.4)
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Figure 3.4: Low resolution VSD images. Low resolution images are used for capturing
neural activity. These images are difficult to use for identifying the positions of the neurons
within the image. This image has been enlarged for illustrative purposes. The mask created
on the high res image can be overlaid on the low resolution image. For data analysis the mask
from the high resolution image is scaled down to fit the low resolution image.

The STG is imaged using a SciMedia MiCAM02 imaging system (SciMedia, Tokyo,

Japan). Data is collected with 1.5ms temporal resolution (i.e. 666 images per second)

and each neuron is covered by at least 20 pixels in the imaging data.

In this chapter the electrophysiology and VSD techniques used for accumulating data

were discussed. These data were used to verify the validity of the model which is discussed

in chapter 4. It was, however, also necessary to develop methods for the analysis of VSD

data as no suitable numerical methods exist for this purpose. The next chapter discusses

the methods developed that were used to quantify neural activity recorded with VSD,

such that the de-synchronisation could determined.
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Chapter 4. Methods for the analysis of Dynamics of Temporal

Relationships of Neural Activities Using Noisy Optical Imaging

Data

4.1 Methods

The first step in scientific investigation is usually the collection of data. Once the data

is collected it needs to be analysed and processed to allow for interpretation within the

context of what is already known. VSD data allow us to record intracellularly from

significantly more neurons at the same time than what electrophysiological techniques

allow us to record but at the same time the data is more noisy and thus need different

methods for analysis. In the next sections we discuss the methods we have devised for

the analysis of injected and bath-applied VSD to the STG of the brown crab (Cancer

pagurus)

The dynamics of the temporal relationship of the activities of neurons forming neural

circuits is critically important for the flexible and adaptive delivery of the functional-

ity of the circuits [83, 62, 90, 25]. For example, switching between synchronised and

de-synchronised patterns of activity of neurons forming functional circuits in the hip-

pocampus plays a fundamental role in memory formation, maintenance and recall in

vertebrate brains [6, 154]. In the case of epilepsy a switch to excessive synchronisation

of neural activities breaks down the functionality of many neural circuits and the neural

systems formed by them [56, 53]. Recently it has been shown that the fine timing of

inputs to different parts of the dendritic tree of neurons in the visual cortex of mammals

determines the actual receptive field of the neuron [34]. In general, both relatively simple

and complex changes in the temporal relationship of neural activities can play a critical

role in the delivery of the functionality of neural circuits.
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While multi-electrode arrays allow recording of many individual neurons in artificially

created cell culture [148, 178], the activity of neurons in such context is not truly compa-

rable to the activity of neurons in real physiological conditions. In other settings, when

multi-electrode array or multiple multi-electrodes (e.g. tetrodes) are used to record many

neurons from brains or brain slices in physiological conditions, the connectivity between

the recorded neurons is usually not known [75, 162, 159]. the impact of this is that a

large part of the work on neuron resolution dynamics of neural circuits remained mostly

theoretical [161, 174, 144].

Currently used techniques of optical recording of neural activity using voltage-sensitive

dyes and calcium dyes allow high spatio-temporal resolution recording of the activity of

many neurons, making possible the study of the dynamics of temporal relationships of

neural activities in biological neural circuits [30]. While many applications of these tech-

niques are used to record many neurons that are not necessarily directly coupled synapti-

cally [135, 156], it has been shown that these methods can also be applied successfully to

a range of biological neural systems to record the activity of many synaptically coupled

neurons simultaneously. These techniques have been applied to analyse the functionality

of neurons in leech ganglia [20], to study the dynamical assignment of functional roles

to neurons in snail ganglia [90, 25], to record almost simultaneously the activity of all

neurons in the brain of the zebra fish embryo [4], to analyse the activity of neurons in

intestinal neural ganglia in guinea pigs [143], and to study the activity of synaptically

coupled neurons in the stomatogastric ganglion of crabs [181, 179]. However, it should

be noted that usually the recorded data is quite noisy, potentially making its analysis

difficult.

4.2 De-trending and Event Triggered Averaging

The different types of neurons of the STG can be identified by intracellular recordings.

Each type of neuron has a distinct shaped voltage waveform that it produces. To confirm

the identification of the neuron the voltage waveform is also correlated to extracellularly

recorded spikes from the motor nerves. When using VSD, the identification of the neurons

are more difficult due to baseline drift and noise obscuring the wave forms. A VSD
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recording is seldom clear enough to discern any spikes. It is, however, possible to obtain

a voltage wave form good enough for identifying the recognisable wave features of a

specific neuron by first de-trending and then averaging the captured data.

Figure 4.1: Identifying pyloric CPG neurons. Neurons of the pyloric CPG can be iden-
tified by features of the voltage waveform as well as correlating the waveform to extracellularly
recorded spikes from motor nerves. The voltage waveforms of the PYs, PDs, LP and VD are
shown here. The horizontal shaded line correlates the waveform with extracellular recordings
that were made over the lvn and mvn. The red arrow points to features typical of the specific
neurons 1. Recording such as these are made using electrophysiological techniques.

A trend in a time series is gradual change in some property of the the series of the time
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interval under investigation. During recordings with VSDs a decaying trend can often

be observed, which can be attributed to dye bleaching [20].

De-trending on data was done with an R implementation of the following equation which

uses a linear approximation of xt as a function of time:

(m∗i , b
∗
i ) =

argmin

m, b

i+w∑
t=i

‖xt −m · (t− i)− b‖2 (4.1)

yi = xi −m∗i · i− b∗i
i = 1, . . . , z

where:

m is the slope of the linear approximation.

b is the bias or y-intersection of the approximation.

w is the chosen window size.

An appropriate window size needs to be chosen for de-trending. The result of applying

equation 4.1 to a recording can be seen in figure 4.2.
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Figure 4.2: Neural activity before and after detrending. Top: Normalised raw data
series from voltage dye imaging without detrending. Bottom: Data series after detrending.

After de-trending averaging over phases of the rhythm has to be done. Averaging requires

an extracellular recording that can be used to determine the beginning of each phase.

The identification of phases has to be done manually by looking at the trace and noting

the time stamp of the first spike in a phase. Spike2 software was used for doing the

identification as it allows one to zoom in on a trace to find an accurate time stamp.

Figure 4.3 shows an extracellular recording of the pyloric rhythm made over the dvn.
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The vertical red lines indicate the beginning of each phase. The time values of the

occurrence of the first spike of each phase is noted.

Figure 4.3: Extracellular recording of the pyloric rhythm made over the dvn. The
vertical red lines indicate the beginning of each phase. The time values of the occurrence of the
first spike of each phase is used for doing averaging of the phases. Shown here are only three
phases but as many phases as possible should be identified for more accurate averaging.

At this point it is necessary to decide over how many phases the averaging needs to be

done. Let us call the number of phases p. Typically, for this research, the decision was

made to average over three phases as averaging artefacts on the first and last phase often

made them unsuitable for use. Three phases proved to be adequate to identify a neuron

against the extracellular recording and also gives enough information for further analysis

as described in the following text. Starting at the beginning of each identified phase,

the data are placed in arrays, where each array contains p phases. The phases are never

exactly the same length, making it necessary to find the length, in time units, of the

shortest array of phases. Let us call the length of the shortest phase l and a the number

of arrays that can be extracted from the data. If n is the number of phases identified

then the number of arrays will be:

a = n− p+ 1 (4.2)

at each time unit in each array, sum the value of the time points and divide by the
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number of arrays (see figure 4.4) to give an average for that time point. Averaging is

done up to the length of the shortest array (l). The fact that the arrays are not the same

length accounts for the artefacts that are sometimes observed in the last phase which

can make it unusable.

Figure 4.4: Event-triggered averaging. (A) illustrates the identification of phases in a
time series. Five phases are identified (n=5) in this example. The data are placed in arrays
where each array contains p phases (p=3). (B) illustrates the summing of each time point over
all the arrays. The sum is then divided by the number of arrays to get the average for that
time point. This averaging is done for all time points up to the length of the shortest array (l),
indicated by the dotted red line.

Figure 4.5 shows an averaged time series. This averaging methods works well for both

intra- and extracellularly applied VSD recordings.
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Figure 4.5: Averaged intra- and extracellular recording. The black trace shows an
extracellular recording averaged over three phases. The red trace is the averaged data from
figure 4.2 overlaid onto the extracellular recording, illustrating the correlation of the voltage
sensitive dye recording with the extracellular recording and how the shape of the wave becomes
apparent after averaging. To be able to overlay the data as in this figure, it is necessary to
normalise both traces. In this case, normalisation was done to values between 0 and 1.

4.3 Analysis of Noisy Optical Imaging Data

Using the VSD imaging techniques described in section 3.5 the STG was first imaged in

normal saline. For the purpose of dopamine exposure the STG was perfused with saline

containing dopamine. First a saline solution containing 10−6M concentration dopamine

was applied to the STG for 20 minutes. This condition is called the “low dopamine”

condition. After the initial 20 minute exposure to dopamine, perfusion with the dopamine

saline solution was maintained while imaging. Next, a saline solution containing 10−4M

concentration dopamine (i.e. 100 times more dopamine than in the previous experimental

condition) was used and the STG was exposed to this for 20 minutes. This condition is

called the “high dopamine” condition. The preparation was imaged again while perfusion

with the high dopamine saline solution is maintained.

The activity of neurons participating in biological neural circuits follows various patterns.

Some neurons are silent most of the time balancing around their resting potential, on
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occasion firing a single or a few spikes, for example many cortical neurons in mammals

[23]. Other neurons, such as invertebrate neurons that form central pattern generators,

periodically generate bursts of activity [83]. One relatively common feature of the various

neural activities is that, generally, the spiking of neurons (especially multiple spikes)

happens on the top of a depolarization plateau (fig 4.6).

Figure 4.6: Intracellular recording of STG neuron. Intracellular recording of a neuron
from the crab stomatogastric ganglion. The spiking of neurons (especially multiple spikes)
happens on the top of a depolarization plateau.

In some cases the amplitude of membrane potential difference deviations during the spikes

is larger (possibly much larger) than the amplitude of depolarization for the plateau [23].

In other cases the depolarization amplitude of the plateau can be of a comparable size

or even larger than the amplitude of the of the membrane potential difference changes

during spikes [83] (fig 4.7).
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Figure 4.7: Comparison of mammalian and invertebrate neural spikes. The trace at
the top is an intracellular recording of a neuron in the crab stomatogastric ganglion. Typical of
invertebrate spikes, the amplitude of the spikes (A) is smaller than the depolarisation amplitude
of the plateau (B). In the case of mammalian spikes, the amplitude of the spikes (C) are much
larger than the amplitude of the plateau (D). (Mammalian spikes from [192].)

In general the change in the relative temporal ordering of the activity of multiple neurons

is reflected by changes in the relative timing of individual spikes or bursts of spikes

generated by these neurons. Thus, the temporal dynamics of relative activities of neurons

is reflected also by the dynamics of the relative timing of activity plateaus of these

neurons.

In the case of micro-electrode intra-cellular recording of neurons individual spikes, even

as part of a burst of spikes, can easily be distinguished. In the case of optical imaging

recording of neural activities, this is often not the case due to inherent noise of imaging.

This means that relying on the determination of spike and burst times of individual

neurons is relatively difficult and the use of these neural activity markers is relatively

unreliable for the estimation of the dynamics of the temporal relationships of the neural

activities.

In this section, the use of the timing of the activity plateaus of neurons for the estimation

of the dynamics of the temporal relationships of their activities is proposed. The proposed

heuristic analysis works off-line, following the recording of the activity of the neurons.
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In order to use activity plateaus for this purpose a set of salient features of these that

can be determined robustly using the noisy optical imaging data needs to be defined.

Given that, in general, the activity plateaus are preceded by a ramp-up phase and are

followed by a ramp-down phase of the membrane potential in the soma of the neuron,

the salient features of neural activity profile that are chosen are indicators of the timing

of the ramp-up, ramp-down and the beginning and ending of the plateau itself (fig 4.8).

Figure 4.8: Typical activity profile of a neuron. The spiking happens during the activity
plateau, which is preceded by the ramp-up phase and followed by the ramp-down phase. The
vertical axis shows the membrane potential of the neuron.

To find the timing of the ramp-up phase, the time point for which the upward slope of

the neural activity profile is maximal is numerically determined. An appropriate time

interval that lasts for around the usual duration of the measured ramp-up phases has

to be chosen. This point is expected to be around the mid-point of the ramp-up phase.

To find the maximum upward slope point (or maximum slope point, given that

the upward slope is a positive slope), the slope of the best linear approximation of the

data points representing the neuron’s activity profile for an appropriately chosen time

window centred on the time of the given time step is calculated for each step. Assuming

that xt are the measured values of the neural activity at recording time step t, it means

that time intervals of 2τ + 1 measurement time units is considered and the local slope
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approximation mt is calculated such that:

(mt, bt) =
argmin

m, b

t+τ∑
u=t−τ

(xt −m · (u− t+ τ)− b)2 (4.3)

The maximum slope point for a time interval [T1, T2], measured in units of recording

time steps, is the point on the activity profile of the neuron corresponding to the time

point t∗ for which

mt∗ = max
t∈[T1,T2]

mt (4.4)

If the time interval [T1, T2] is chosen such that T2 − T1 is approximately the usual time

length of the ramp up phase (measure in units of recording time steps) and τ is chosen

appropriately (e.g. τ = (T2 − T1)/2 or slightly less), then it can be expected that

the above calculation will find the maximum slope point of the neural activity profile

corresponding to the time interval [T1, T2]. If the chosen time interval is such that during

this time interval the neuron’s activity profile follows a ramp-up phase, the maximum

slope point that is found is likely to indicate the midpoint of the ramp-up phase. If

the chosen interval is such that the activity profile of the neuron for this interval does

not match a ramp-up phase, the maximum slope point that is found will not indicate

the mid-point of a ramp-up phase. Such points are called spurious maximum slope

points .

To distinguish between maximum slope points which indicate valid mid-points of ramp-

up phases and those which do not, the value ranges of the calculated maximum slope

values for many considered time intervals have to be considered. If the membrane poten-

tial variation associated with the ramp-up phase is larger than the membrane potential

variation associated with spikes measured in the neuron soma, the slope values for valid

maximum slope points will be much larger than the slope values calculated for spurious

maximum slope points.

In general, spurious maximum slope points, calculated for periods of relative silence of

neural activity, will have small maximum slope values associated with them (possibly very

close to zero). If the soma membrane potential variations associated with spikes are larger
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than the soma membrane potential variation during the ramp-up phase, some spurious

maximum slope points may have larger slope values associated with them than the slope

values calculated for valid maximum slope points. In such cases it is necessary to rely on

setting the appropriate and sufficiently narrow value interval for valid maximum slope

values based on the analysis of the experimental data. Figure 4.9 presents synthetic

examples of these two cases demonstrating the determination of the maximum slope

points.

69



Figure 4.9: Calculating maximum and local slopes. (A) Maximum slope points cal-
culated for simulated neural activity having a plateau potential difference that is much larger
than the potential difference corresponding to spike activity; (B) The calculated local slope
values for the data shown in (A); (C) Maximum slope points calculated for simulated neural
activity having a plateau potential difference that is much smaller than the potential difference
corresponding to spiking activity; (D) The calculated local slope values for the data shown in
(C). The horizontal axis is always time, the vertical axis represents the voltage in (A) and (C)
in arbitrary units and the local slope value (B) and (D).

For the timing of the ramp-down phase the time point with the maximal downward

slope of the neural activity profile is determined. A method, similar to that used for

determining of the maximum slope point is used. In the case of the ramp-down phase

the general expectation is that the minimum slope (equivalent to the maximum downward

slope) point is around the middle of the ramp-down phase. To find the minimum slope
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point the calculation for each time stop of the slope of the best linear approximation of

the data points representing the neuron’s activity profile for an appropriate time window

centred on the given time step (Eq.4.3) is used. The minimum slope point for a time

interval [T1, T2] measured in units of recording time steps is the point on the activity

profile of the neuron corresponding to the time point t∗∗ for which:

mt∗∗ = min
t∈[T1,T2]

mt (4.5)

As stated previously, for approximately chosen T2 − T1 and τ it can be expected that

equation 4.5 finds the minimum slope point of the neural activity profile corresponding

to the time interval [T1, T2]. If the chosen interval is such that the activity profile of the

neuron for this interval does not match a ramp-down phase, the minimum slope point

that is found will not indicate the mid-point of a ramp-down phase, and these are called

spurious minimum slope points points, similarly to spurious maximum slope points.

As in the case of maximum slope points, if the membrane potential change associated with

the ramp-down phase is considerably larger than the soma membrane potential change

associated with spikes, the valid minimum slope points will be significantly smaller than

the spurious minimum slope points, which are expected to have values close to zero.

If the membrane potential changes in the soma associated with spikes are larger than

the membrane potential change of the ramp-down phase, the determination of the valid

minimum slope points relies on the experimental determination of the acceptability range

of valid minimum slope values and those minimum slope points are considered valid for

which the associated slope value is in this acceptability range.

In the case of neurons with large change of membrane potential difference during ramp-up

and ramp-down phases and relatively small changes of the membrane potential difference

during the spikes, the calculation of local slope approximation also allows the estimation

of the beginning and the end of the activity plateau. The estimation cannot be done

reliably for neurons where the membrane potential difference changes in the soma during

spiking are much larger than the changes during the ramp-up and ramp-down phases.

To find the estimated points for the beginning and the end of the activity plateau the local

forward and backward slopes of the neural activity are considered. The local forward
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slope , at a time point, is the slope of the best linear approximation of the neural activity

starting from that time point and for some time period forward. It is expected that the

local forward slope gets close to zero around the start of the activity plateau, given that

the soma membrane potential difference variations related to spikes are relatively small,

and that the local forward slope is considerably positive for time points before the start

of the activity plateau. Similarly, the local backward slope at a time point is the slope

of the best linear approximation of the neural activity over some time period ending at

this time point. In general, it can be expected that the local backward slope is close to

zero for time points on the activity plateau and becomes considerably negative as the

activity of the neurons goes into the ramp-down phase. So, the end of the activity plateau

is indicated by the last time point where the local backward slope is close to zero.The

estimated local forward and backward slope, mf
t and mb

t respectively, are calculated as

follows:

(mf
t , b

f
t ) =

argmin

m, b

t+2τ∑
u=t

(xt −m · (u− t+ τ)− b)2 (4.6)

(mb
t , b

b
t) =

argmin

m, b

t∑
u=t−2τ

(xt −m · (u− t+ τ)− b)2 (4.7)

Next, the points on the activity profile of the neuron for which the calculated local forward

and backward slope values are close to zero have to be found. The acceptable range of

close to zero values may be determined on a case-by-case basis examining the calculated

slope values. In principle the acceptability range may be chosen as [−ε ·mmax, ε ·mmax],

where mmax is the maximal absolute value of the calculated slope values associated with

maximum and minimum slope points and ε is a small number, for example ε = 0.1. This

range of values is called the zero value range and is denoted as [−z∗, z∗]. Following

the finding of all the points with forward and backward slope values within the zero value

range the first of these that follows a maximum slope point and the last that precedes

the minimum slope point are determined. These two points will be estimates of the

beginning and the end, respectively, of the activity plateau of the neuron. In formal

terms it is determined as:
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T z,f = {t|mf
t ∈ [−z∗, z∗]} (4.8)

T z,b = {t|mb
t ∈ [−z∗, z∗]} (4.9)

then t0b and t0e are determined such that:

t0b > t∗, t0b ∈ T z,f , t0b ≤ t,∀t ∈ T z,f , t > t∗ (4.10)

t0e > t∗, t0e ∈ T z,b, t0b ≤ t,∀t ∈ T z,b, t < t∗ (4.11)

The beginning and end of the activity plateau will be the points corresponding to the

time steps t0b and t0e respectively. In general, it should be possible to determine an activ-

ity plateau for each consecutive pair of maximal and minimal slope points. Figure 4.10

exemplifies the determination of maximum and minimum slope points and the beginning

and end points of activity plateaus using synthetic data for a neuron with large mem-

brane potential difference changes associated with ramp-up and ramp-down phases and

relatively small such changes in the soma associated with spikes.
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Figure 4.10: Finding the activity plateau. (A) Simulated activity of a neuron. The
calculated maximum slopes are shown as red dots and the calculated minimum slopes
are shown as green dots. The beginning and end points of activity plateaus are shown with
yellow and purple dots respectively; (B) The thin green lines indicate the value band that
is considered to correspond to the activity plateau following the maximum slope point. The
horizontal axis is time in both cases, while the vertical axis represents voltage in (A) in arbitrary
units and the calculated local slope value in (B).

Following the determination of maximum and minimum slope points and possibly of the
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beginning and end points of activity plateaus for multiple neurons recorded simultane-

ously the timing of these points can be used to analyse the changes in the temporal

relationship of the activities of the recorded neurons. Depending on the number of the

kinds of salient points determined, multiple estimates about the observable temporal fea-

tures of the joint activity of the considered neurons can be obtained. For example, the

average time difference between maximum slope points of the two rhythmically active

neurons indicates the temporal difference between the activation of the neurons, while

the average time difference between minimum slope points of the same neurons indicates

the temporal difference between the inactivation of these neurons. Phase locking be-

tween the neurons is indicated by small standard deviations of the calculated temporal

differences between matching maximum slope or minimum slope points of the neurons

and the relaxation of phase locking is implied by an increase of the standard deviation

for example following exposure to a neuromodulator.

The robustness of the above proposed calculations can be assessed by considering xt =

x̃t + zt, where x̃t is the true value of the membrane potential difference and zt is an

additive noise with zero mean and σ standard deviation. Considering the formula (Eq.

4.3) for the local slope (a similar approach applies for the local forward and backwards

slopes as well), following algebraic manipulation we find that:

mt =
3

τ(τ + 1)(2τ + 1)
·

t+τ∑
u=t−τ

(u− t) · xu (4.12)

Considering the composition of xt leads to:

mt = m̃t + µt (4.13)

where m̃t is the correct local slope value and µt is an additive noise in the estimate of

the by mt. For µ we get that:

µt =
3

τ(τ + 1)(2τ + 1)
·

τ∑
u=−τ

u · zu+t (4.14)
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σ2
µt =

9

(τ(τ + 1)(2τ + 1))2
·

τ∑
u=−τ

u2 · σ2 =
3σ2

τ(τ + 1)(2τ + 2)
(4.15)

and

µ̄t = 0 (4.16)

Thus, the additive noise in the estimates of the local slope follows a normal distribution

with zero mean and standard deviation equal to:√
3

τ(τ+1)(2τ+1)
· σ.

In comparison, if the aim is to detect the presence of spikes in the recorded neural activity

data, a simple way is to compare the value of the recording to the local average value

of the recordings, and conclude the presence of the spike if the difference between the

compared values is sufficiently large. In this case the comparison is based on the local

average activity value;

x̄t = 1
2τ+1
·
∑t+τ

u=t−τ xu

for which the contained additive noise has zero mean and a standard deviation equal to√
1

(sτ+1)
·σ. Consequently, the likely errors affecting this approach will be larger than the

estimation errors affecting our proposed methodology since
√

3
τ(τ+1)(2τ+1)

· σ <
√

1
(2τ+1)

·

for τ > 1.

4.4 Results

The proposed methodology (section 4.3) is demonstrated here by analysing data recorded

from dyed PY neurons in the crab STG. For each PY cell the recordings contain between

50 to 80 full activity patterns, each corresponding to a pyloric rhythm cycle. Figure 4.11

shows a sample of the recordings including the identified maximum and minimum slope

points and beginning and end points of activity plateaus for the recorded PY neurons. To

quantify the effect of dopamine on the synchronisation of the PY neurons the temporal

delays between corresponding maximum and minimum slope points and beginning and
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end points of activity plateaus of pairs of PY neurons were measured. The mean values

and standard deviations of the temporal delays were calculated.
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Figure 4.11: Calculated salient features shown on VSD recording. VSDs recording
of a PY neuron together with the minimum (green) and maximum slope (red) points and
beginning (yellow) and end (purple) points of the activity plateau determined from the data;
B) The calculated local slope values, the green horizontal lines indicate the band of values
considered to correspond to the activity plateau following the maximum local slope point. The
horizontal axis is time in both cases and the vertical axis is voltage in arbitrary units in A) and
the local slope value in B).
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Table 4.1: Neuron pair comparisons. In total 11 pairs of PY neurons from four STG
preparations were considered. Two experiments used dye filling and two were bath applications.
For each experiment the neurons were compared under control and DA conditions. Using the
F-test a p-value was obtained for each of the four features, thus giving the 44 values as in table
4.2

.

Experiment Comparison 1 Comparison 2 Comparison 3

1 (dye filling) PY1 with PY2 - PY2 with PY3
2 (dye filling) PY1 with PY2 PY1 with PY3 PY2 with PY3
3 (bath application) PY1 with PY2 PY1 with PY3 PY2 with PY3
4 (bath application) PY1 with PY2 PY1 with PY3 PY2 with PY3

In total 11 pairs of PY neurons from four STG preparations (two using dye filling and

two using bath application of the dye) were considered (see table 4.1). The mean values

and standard deviations of the temporal delays were calculated. It was found that the

standard deviation of the temporal delays changed significantly in half of the cases (ac-

cording to the F-test) following the application of the dopamine (DA) containing saline.

Results are shown in table 4.2 and figure 4.12. In 22 cases of 44 comparisons of standard

deviations it was found that the standard deviations are significantly larger following

the effect of the DA on the neurons. In one case it was found that the calculated stan-

dard deviation was significantly lower following the DA exposure, and in the remaining

21 cases the difference between the standard deviations was not statistically significant.

The lack of statistical significance means that the exposure to DA did not have an effect

on the standard deviation of temporal differences between the corresponding maximum

and minimum slope points and beginning and end points of activity plateaus of pairs of

PYs. The increase of the standard deviation of the temporal differences implies reduction

of the temporal locking of the PYs, or in other words, the de-synchronisation of PYs.

The expectation of the de-synchronisation effect of DA on the PYs is thus confirmed.

The suggested approach offers a way to quantify the extent of de-synchronisation of PYs

in response to exposure to DA. The presented analysis of PYs demonstrates that the

methodology proposed, can be applied successfully to analyse the dynamics of temporal

relationships of neural activities using optical imaging data.
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Table 4.2: Results of the DA experiments. p-values of the F-test comparisons of the
temporal delay standard deviations. Significant values are shown in red.

Maximum Minimum Plateau Plateau

Slope Points Slope Points Begin Points End

Points

0.657721015 0.936337338 0.417005168 0.986805014

0.010577057 0.064029034 0.097578139 0.317799703

0.000196868 0.303675632 0.066103149 0.019539292

2.66550x10−19 4.10299x10−06 2.01957x10−15 0.000686408

7.86896x10−19 9.69148x10−05 2.93382x10−15 0.001116038

2.92339x10−26 8.04271x10−09 8.07804x10−27 3.30665x10−15

0.729215365 0.637028887 0.841677533 0.687908256

0.734146578 0.411370955 0.302637642 0.819808126

6.67436x10−05 0.263113108 0.006803160 0.000531943

0.665538015 0.024729645 0.976871651 0.131110278

0.018054682 0.002703960 0.285120361 0.004076710
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Figure 4.12: The results of the DA experiments. The calculated standard deviation
values are shown on the vertical axes. Each pair of bars represents a comparison of a pair of
PY neurons. Comparisons that resulted in a significant p-vale (<0.05) are indicated by a red
asterisk on the horizontal axis. The p-values were calculated using the F-test and are given in
table 4.2. PRE indicates standard deviation values calculated before the exposure to dopamine,
DA indicates standard deviation values calculated following the exposures to dopamine.

4.5 Discussion and Conclusions

It is of vital importance that neural circuits are adaptive and flexible in the delivery of

their functionality. Such flexibility relies on the dynamics of the temporal relationship

between the neurons forming those neural circuits. The recording of many synaptically

connected neurons, at individual neuron resolution, has not been possible under physio-

logically realistic conditions until relatively recently. However, current optical recording

techniques using voltage sensitive dyes and calcium dyes allow high spatio-temporal res-

olution recordings to be made of many neurons. Such techniques enable us to study the

dynamics of temporal relationships of neural activities in biological neural circuits.

In this chapter a method was proposed for the analysis of optical data for understanding

the dynamics of the temporal relationship of the activities of individual neurons. The
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proposed method relies on the robust identification of salient points of the activity pat-

terns of individual neurons, such as the minimum and maximum slope points and the

beginning and end points of depolarisation plateaus (the latter two only in appropriate

cases). The method is very important because it allows robust analysis of optical neuro-

imaging data to determine activity phases of neurons and on the basis of this, allows

the quantification and analysis of the dynamics of activity patterns of multiple neurons.

Other methods based on the calculation of average measurements are less robust than

the method proposed. This kind of analysis is key for the understanding of the emergent

functionality of neural systems. Consequently the method proposed here improves the

reliability of the use of optical imaging data for this kind of analysis. The proposed

method of analysis was applied to neurons recorded in the crab STG and it was shown

that, as expected, there is a statistically significant, measurable de-synchronisation effect

of DA on the considered PY neurons. This is the first time this effect is shown in the

physiologically realistic setting of the STG, i.e. previous measurements implying this

result were made in the presence of neurotoxic substances to achieve pharmacological

isolation of neurons. As noted above the described method is expected to work at best

in the case of neurons for which the depolarisation plateau means a larger change in

the recorded membrane potential than the spikes themselves. However, it is also ex-

pected that the method should work well even for neurons where this is not the case

(e.g. neurons of the mammalian cortex). In the case of these neurons the determi-

nation of minimum and maximum slope points is feasible and these allow the robust

measurement of the dynamics of the temporal relationships of the activity patterns of

these neurons using optical imaging data. As shown above, the proposed method works

off-line. However, it is possible at least in principle to extend it to an on-line application,

if the proposed analysis method is integrated with the recording of the data. With suffi-

ciently fast processors such integration should not represent a major technical challenge.

If the method is applied on-line its application is only limited by the time window re-

quired for the calculations (consider in particular the case of forward slope calculation),

however even this constraint can be mitigated by considering a predictive application of

the methodology (e.g. predicting the timing of salient points on the basis of previously

determined salient points and correcting the predictions when the required data becomes
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available). This kind of on-line application of the methodology would allow setting of

additional stimulation of selected neurons depending on the activity pattern phase of

measured neurons. This would make possible the design of more elaborated experiments

involving measurement and experimental modulation of the activity of multiple neurons.

The method described in this chapter is also applicable to other kinds of noisy biological

recordings where robust quantification of key transitions and the measurement of relative

transition dynamics across multiple processes is required. As shown, the calculation of

local slope values is more robust than the calculation of usual averages and this difference

in robustness of calculations may be critically important in the context of estimation of

activity pattern features from noisy recordings. For example, such cases may include

other neural systems (e.g. phase determination of swim pattern generators in leeches or

snails) or recordings from muscles (e.g. heart muscles or muscles involved in rhythmic

movement or swimming).

The question now remains whether it is possible to produce a computational model that

will reflect the de-synchronisation that was observed. In the next chapter (chapter 5)

such a model is discussed.
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Chapter 5. Modelling the impact of dopamine on PY neurons

5.1 Introduction

The Hodgkin-Huxley model is a conductance based, mathematical model that describes

how action potentials in neurons are initiated and propagated. The model comprise

four differential equations that were described in detail in Chapter 2 section 2.9.3. The

original model included only potassium, sodium and leak currents. However, the model

is relatively easily extensible to include several more channels and can also be adapted to

create multi-compartmental representations of neurons. Each compartment is modelled

with its own set of differential equations. The major challenge with this approach is

the selection of parameter values and ranges finding a differential equation solver that

can cope with the stiffness of the equations. Individual neuron models can be connected

through model synapses to create a circuit.

5.2 The Model

In this chapter an implementation of the Hodgkin-Huxley model is presented to include

five PYs, two PDs, one anterior burster (AB) and one LP (fig. 5.1). Each of the

neurons is modelled with two compartments, one representing the primary neurite and

dendrites (A) and the other representing the soma (S) (fig. 5.2). The A compartments

are responsible for producing action potentials while the S compartments produce slow

wave oscillations.

The model has been implemented in MATLAB R©, using the ode45 method which is

based on an explicit Runge-Kutta (4,5) formula. Several of the differential equation

solvers available in MATLAB R©were tested but ode45 was the only method that would
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not diverge to infinity. Simulations were performed on PCs with Linux and Windows

operating systems as well as on a high performance cluster.

MATLAB R©, R and Neuron were evaluated for creating the model. The decision to use

MATLAB R©was made because Neuron was found to diverge to infinity after only a few

seconds of simulation with only a simplistic model and in R all ode solvers were tested

but were also found to diverge to infinity and no results could be obtained.

Figure 5.1: Neural circuit of the pyloric CPG. The neural circuit of the model includes
five PYs, two PDs, one AB and one LP. Neurons are shown with large coloured circles. All
known inhibitory and electrical synapses are included in the model. The inhibitory synapses
are shown as small black circles. Rectifying gap junctions are shown as diode symbols and
non-rectifying gap junctions are indicated with resistor symbols. For clarity not all synapses
and gap junctions in diagram are connected but the name of the inhibiting neuron is shown in
the black circle. Similarly, not all the electrical synapses are connected but the name of the
originating neuron is shown in a clear circle.
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Figure 5.2: Two compartment model of a neuron. Each neuron is modelled with two
compartments, S/N representing the soma and primary neurite and A representing the axon.

5.3 Parameters

Parameters for the model was obtained from literature. For the AB and PD neurons

the parameters were taken from research by Soto-Treviño [177]. The distinct intrinsic

and dynamic properties of these two neurons were taken into account by using measure-

ments from cultured STG neurons in research performed by Turrigiano et al. [189] The

parameters for the LP and PYs were adapted from Golowasch et al. [69].

Table 5.1: Parameter values of the model axons. Conductances (g) are in muS and reversal
potentials (E) in mV .

Channel AB axon PD axon LP axon PY axon

g E g E g E g E

INa 300e−3 50 1, 110e−3 50 0.03e−3 20 0.03e−3 20

IK 52.5e−3 -80 150e−3 -80 4e−3 -80 4e−3 -80

IL 0.0018e−3 -60 0.00081e−3 -55 0.0075e−3 -68 0.0075e−3 -68

Table 5.2: Parameter values of the model somas. Conductances (g) are in /muS and reversal
potentials (E) in mV .

Channel AB soma PD soma LP soma PY soma

g e g e g e g e

INa 2.7e−3 50 4.383−3 50 — — — —

IH 0.054e−3 -20 0.219e−3 -20 0.005e−3 -20 0.005e−3 -20

IK 1890e−3 -80 1576.8e−3 -80 0.1e−3 -80 0.1e−3 -80

IKCA 6000e−3 -80 251.84e−3 -80 — — — —

IA 21.6e−3 -80 39.42e−3 -80 0.01e−e — 0.025e−3 —

IP 570e−3 0 0 0 0.04e−3 -10 0 -10

IL 0.045e−3 -50 0.105e−3 -55 0.025e−3 -68 0.015e−3 -68

ICaT 55.2e3 — 22.5e−3 — — — — —

ICaS 9e−3 — 60e−3 — — — —

ICa — — — — 0.1e−3 120 0.1e−3 120
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5.4 Equations

Mathematically the currents for gap junctions (Igap) and couplings between the S/N and

A compartments are described with the same equation. Coupling currents in the coupled

compartments are symmetric, thus the coupling current between the soma and the axon

would be:

IaxialS/N = −IaxialA (5.1)

and the gap junction between neurons i and j would be:

Igapi = −Igapj (5.2)

For each of the S/N compartments the axial current is the product of the axial conduc-

tance and the difference of the membrane potential in the A and S/N compartments:

IaxialS/N = gaxial(VS/N − VA) (5.3)

Gap junctions use a similar equation where the conductance Igapi is the product of the

gap-junctional conductance and the membrane voltage difference between the two S/N

compartments of neurons i and j:

Igapi = ggap(VS/Ni
− VS/Nj

) (5.4)

In all compartments the conservation of current is represented by the partial differential

equation of the form:

C
dV

dt
= Iext − Iint − Icoup (5.5)

and

C
dV

dt
= Iext − Iint − Igap (5.6)
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where:

C is the membrane capacitance.

Iext is the externally injected current.

Iint is the sum of all modulatory and intrinsic currents.

Icoup is the sum of the axial current of the adjacent compartment.

Igap is the gap junctional current in the case of the S compartment.

Each of the currents is described in terms of maximal conductance and voltage-dependant

gating variables:

Ii = gim
pi
i h

qi
i (V − Ei) (5.7)

where:

gi is the maximal conductance.

mi is the activation current.

hi is the inactivation current.

pi and qi depends on the current type and takes integer values between zero and four.

Ei is the reversal potential for ion i.

The behaviour of the activation and inactivation currents are modelled with the following

equations:

τm(V )
dm

dt
= m∞(V )−m (5.8)

τh(V )
dh

dt
= h∞(V )− h (5.9)

where:

m∞ and h∞ are steady-state values.

τm and τh are time constants.
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Table 5.3 and 5.4 gives the dependency of voltage and intracellular Ca2+ concentrations

for each of these functions. The steady-state activation of IKCa is also dependent on

[Ca2+] and provided in table 5.3.

The values of the exponents pi and qi are dependent on the current type and takes a

value between 0 and 4.

The calcium activated potassium channels (KCa) of AB and PD are critical for their roles

as pacemakers in the pyloric circuit. These channels only occur in the S/N compartments

of the AB and PD and not in any of the other neurons. Ca2+ is governed by the following

equation:

τCa
d[Ca2+]

dt
− FICa − [Ca2+] + C0 (5.10)

where:

τCa is the Ca2+ buffering time constant.

C0 is the background intracellular Ca2+ concentration.

F converts the total Ca2+ current ICa, in nA, into an intracellular concentration.

The reversal potential for all currents, apart from ECa are constants, given in table 5.1.

The Nernst equation (2.9) is used to compute the reversal potential for ECa, with an

extracellular concentration of 13 mM [27, 177].
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Table 5.3: PD and AB voltage and calcium dependency for the steady-state activation m and
inactivation h of the currents (adopted from [177] and [69])

m,h x∞ τx,ms

INa+

m3 1

1 + exp[−(V + 24.7/5.29)]
1.32− 1.26

1 + exp[−(V + 120/25)]

h
1

1 + exp[(V + 48.9)/5.18]

{
0.67

1 + exp[−(V + 62.9)/10]

}

×

{
1.5 +

1

1 + exp[(V + 34.9)/3.6]

}

IK m4 1

1 + exp[−(V + 14.2)/11.8]
7.2− 6.4

1 + exp[−(V + 28.3)/19.2]

ICaT

m3 1

1 + exp[−(V + 25)/7.2]
55− 49.5

1 + exp[−(V + 48)/17]

h
1

1 + exp[(V + 36)/7]
AB:87.5− 75

1 + exp[−(V + 50)/16.9]

PD:350− 300

1 + exp[−(V + 50)/16.9]

ICaS m3 1

1 + exp[−(V + 22)/8.4]
16− 13.1

1 + exp[−(V + 25.1)/26.4]

INap

m3 1

1 + exp[−(V + 26.8)/8.2]
19.8− 10.7

1 + exp[−(V + 26.5)/8.6]

h
1

1 + exp[(V + 48.5)4.8]
666− 379

1 + exp[−(V + 33.6)/11.7]

Ih m
1

1 + exp[(V + 70)/6]
272 +

1499

1 + exp[−(V + 42.2)/8.73]

IKCa m4

AB:

(
[Ca]

[Ca] + 30

)
× 90.3− 75.09

1 + exp[−(V + 46)/22.7]

1

1 + exp[−(V + 51)/4]

PD:

(
[Ca]

[Ca] + 30

)
×

1

1 + exp([−(V + 51)/8])

IA

m3 (AB)
1

1 + exp[−(V + 27)/8.7]
11.6− 10.4

1 + exp[−(V + 32.9)/15.2]

m4 (PD)

h
1

1 + exp[(V + 45.9)/4.9]
38.6− 29.2

1 + exp[−(V + 38.9)/26.5]

Iproc m
1

1 + exp[−(V + 12)/3.05]
0.5

91



Table 5.4: LP and PY voltage and calcium dependency for the steady-state activation m and
inactivation h of the currents (adopted from [69])

m,h x∞ τx,ms

ICa

m
1

1 + exp[0.205(−61.2− V )]
30 +

−5

1 + exp[0.2(−65− V )]

h
1

1 + exp[−0.15(−75− V )]
150

IK m
1

1 + exp[0.1(−35− V )]
2 +

55

1 + exp[−0.125(−54− V )]

IA

m

PY:
1

1 + exp[0.2(−51− V )]
0.1

LP:
1

1 + exp[0.2(−60− V )]

h
1

1 + exp[−0.18(−68− V )]
50

IP m
1

1 + exp[0.2(−55− V )]
6

INa

m3 1

1 + exp[0.1(−42.5− V )]
0.025

h
1

1 + exp[−0.13 ∗ (−50− V )]

10

1 + exp[0.12(−77− V )]

IKd m4 1

1 + exp[0.2(−41− V )]
12.2 +

10.5

1 + exp[−.05(58− V )]

5.4.1 Modelling the Impact of Dopamine

DA differentially modulates the neurons of the pyloric network. The following combina-

tions of variation to the K+ channel conductances and gap junction conductances were

modelled:

• The potassium conductances (gK) for PYs were fixed to 10−4. Conductances for
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H

Table 5.5: Values for channels A and H were calculated as percentages of the potassium
channels ([187])

Channel conductance Percentage (%)

gA 0.8875

gH 0.087

other channels were also all fixed. Gap junction conductances were varied from 0%

to 100% of 2.7× 10−7 in increments of 10%.

• Ten randomly generated potassium conductances in an initial range of 5× 10−5 to

0.2× 10−3 . Conductances of channels A and H were percentages of K (Table 5.5).

Gap junctions were modelled for each of the conductances at 10−6 at 100%, 50%

and 10%.

• Ten randomly generated conductances in a narrower range of 9×10−5 to 1.1×10−4

. Conductances of channels A and H were percentages of K (Table 5.5). Gap

junctions were modelled for each of the conductances at 10−6, from 100% to 0%.

5.4.2 Calculating Dyssynchrony

After the models were run a MATLAB R©script, findpeaks 1, was used to detect spikes for

each of the modelled PYs (figure 5.3). The detected spikes were then passed to another

MATLAB R©script, SPIKY [113]2. SPIKY uses the spike distance as a parameter-free

and timescale-independent measure of spike train synchrony. SPIKY also calculates the

inter-spike interval which quantifies local dissimilarities based on the neurons’ firing rate

profiles.

1http://terpconnect.umd.edu/ toh/spectrum/PeakFindingandMeasurement.htm
2http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/SPIKY.html.
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Figure 5.3: findpeaks result. findpeaks is a MATLAB R©script that can detect spikes.
The detected spikes are used by SPIKY to calculate spike-distance and inter-spike inter-
vals. This plot was generated from the peaks detected by findpeaks from the output of the
MATLAB R©model. The trace represents one modelled PY neuron. The peaks found for all the
PY neurons are passed to SPIKY which is then used to calculate ISI and SD

In the next chapter the results of applying the methods discussed will be presented.

5.5 Results: The Model Output

Traditionally PYs are modelled as one neuron implying that the same parameters are

valid for all of them. However, we know that parameters vary quite widely and more

recently it has also been shown that some conductance values maintain certain fixed

ratios [187].

The variations and ratios of the parameters are implemented in our model as follows.

A set of one hundred potassium conductance values were generated by using a uniform

distribution over an interval. Each set consisted of five values (for the five PYs) randomly

generated between of 5×−5 to 2× 10−4. A and H channel conductances were calculated

accordingly using the ratios as given in table 5.5. For each of these sets, models were

generated that would vary the gap junction conductance strength between zero and 100

percent of the gap junction normal strength (10−6µSiemens).

For each of the models, the spike trains were detected using the findpeaks MATLAB R©script

mentioned in section 5.4.2. The SPIKY MATLAB R©script was then used to determine
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the ISI and SD for the five PY spike trains (see figure 5.4). The ISI and SD calculated

by SPIKY are methods for quantifying the similarities in neuron’s firing rate profiles and

the degree of synchronisation between two spike trains on a continuous scale [112].

Figure 5.4: Spike distance (SD) and inter-spike interval. A simplified representation of
spike distance and inter-spike interval. ISI would be the distance between the spikes in a spike
train. SD would be the distance between two spike trains. Detailed descriptions of exactly how
these values are calculated by SPIKY can be found in the Kreuz papers [114, 111, 112, 113]

Below are plots showing the effect of the changing gap junction strengths on ISI and

SD. Figure 5.5 and 5.6 plot the means of the ISI and SD values for each of the gap

junction strength percentages. It would be expected that the stronger the gap junction

conductances are, the closer the SD would be to zero, thus more synchronised. The

weaker the gap junction conductances are, the more de-synchronised the neurons are

expected to be and thus the values SD should increase. A changing ISI indicates a

change in the firing rate of a neuron.

To test the significance of any changes that might have occurred when the gap junction

strength is changed, t-tests are used to test each gap junction conductance strength

against the 100 percent strength. The ISIs and SDs were gathered and tested in this
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way for each gap junction conductance to provide a comparison measure. Figures 5.7

and 5.8 show plots of the p-values from the t-tests over the gap junction strengths. The

horizontal red line indicates a significance value of 0.05.

Figure 5.5: Means of inter-space interval for gap junction conductance strength.

Figure 5.6: Means of spike distance for gap junction conductance strength.
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Figure 5.7: Statistical Significance Test of ISI Values. The ISI calculated for each gap
junction conductance strength (from 0% to 100% of 10e−6µS) is tested against 100% ISI. The
horizontal bars show standard deviation.

Figure 5.8: Statistical Significance Test of Spike Distance Values. The SD calculated
for each gap junction conductance strength (from 0% to 100% of 10e−6µ S) is tested against
100% SD. The horizontal bars show standard deviation.

97



5.6 Conclusion

This research investigated the possibility of accurately modelling the effect of dopamine

on the pyloric central pattern generator circuit. Existing models only model two or three

neurons at a time and groups neurons of the same type by representing them as one

neuron. These models are unable to show the effect of modulation on the individual

neurons of the same type and can thus not show any differential effects that might occur

[177, 69]. The fact that neurons of the same type are modulated differentially can be

seen in electrophysiological recordings and the challenge is to produce a model that could

reflect such modulation.

The model built for this research is indeed able to reflect the de-synchronisation of the

PYs that we observe in the biological system. The model included nine neurons, one

AB, one LP, two PDs and five PYs.

Although the effect of modulation on the whole pyloric network could not be observed,

the necessary parameters for neurons other than the PYs are in place for further investi-

gation. The model is also easily extensible to include parameters for more neurons and/or

channels and junctions. The main problem still remains finding realistic parameter values

for these parameters.

5.7 Discussion

The main aim of this research was to develop a model that can accurately reflect the

effect of neuromodulators on a neural network. The STG of Cancer pagurus was selected

because, as a well studied model system, it has been shown that all neurons and all

synapses are differentially modulated. We are familiar with all the neurons in the system,

as well as the complete connectome and all the neuromodulators that are found in the

system. By implementing all known synapses and gap junctions as parameters to the

model it is possible to vary the values.

This is the first model to include all PY and acPD neurons, i.e. five PYs and two PDs,

which makes it possible to show de-synchronisation that would occur under neuromod-

ulatory conditions.
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The model showed that when gap junction strength was reduced, both the SD and ISI

increased. The increasing SD confirms the de-synchronisation of the PYs. Using a t-

test it was possible to show that when the gap junction was reduced to 50 percent and

less the increase of both the SD and ISI became statistically significant. According to

Harris-Warrick [82], DA also decreases the cycle frequency of the pyloric rhythm. The

increasing ISI of the model could be the result of such a decreasing rhythm frequency.

What the model did not show conclusively is the decrease in the overall frequency of

the pyloric rhythm under neuromodulatory conditions. The increasing SD could be an

indication of a changing frequency but since the model, at this point, is not reflecting

modulation of neurons other than the PYs it is not possible to draw any conclusions with

regards to the complete pyloric rhythm. An extended version of the model, that allows

for the varying of parameters that reflect the effect of modulation of the rest of neurons,

should be able to show altered rhythm frequencies.

Validation of the model is done by comparing its results to the quantified output of ex-

perimental VSD data. How the experimental data was quantified is described in chapter

4

The accuracy of a model relies to a great deal the numbers we provide to it as parameters.

These number are most accurate if they are actually measured (rather than inferred or

even guessed) and thus a great deal of time, in scientific research, is spent on improving

our techniques of measurement. In neuroscience such methods often involve electrophys-

iology or even optogenetics and voltage sensitive dyes. Of importance to this research

are methods of recording and quantifying neural activity in groups of neurons. However,

not just measurements of neurons as a group but the contribution of each and every

individual neuron in the group.

The following chapter describes three methods that were investigated as possible, alter-

native or additional, methods for measuring the activity of large groups (i.e. more than

four or five which is possible with traditions electrophysiological methods) of neurons

at individual neuron level. In the first instance two newly developed voltage sensitive

dyes were tested on the STG and compared to existing dyes, in terms of toxicity and

signal to noise level. The methods in chapter were used to quantify measurements for

comparison to existing dyes. In the second instance the use of multi-electrodes on the
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STG was investigated. The fact that multi-electrode arrays (MEAs) are successfully

used on other preparations do not guarantee that it will work on the crustacean STG as

the STG presents its own sensitivities to being handled in the laboratory environment.

Lastly, as a possible method for quickly injecting VSD into multiple neurons, the use of

a Picospritzer was investigated.
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Chapter 6. Alternative methods

6.1 Alternative Methods Considered

Being able to record simultaneously from multiple neurons allows us to investigate the

effect of changes in a single neuron on a complete circuit. Such recordings could also give

insight into the effect of modulators on individual neurons in a circuit but with the added

advantage that differential changes in each neuron can be captured simultaneously.

Traditional electrophysiological techniques, such as the use of glass micro-electrodes and

wire electrodes, have limitations. The main limitation being the physical size of the

equipment when working on microscopic biological preparations.

As part of this research we investigated the use of alternative dyes , alternative delivery

of dyes and alternative ways of recording:

6.2 Voltage Sensitive Dyes

6.2.1 Methods

The use of VSDs, especially if bath-applied, allow us to record form multiple neurons.

When used on the STG we have been able to isolate signals for as many as 19 inidividual

neurons. VSDs do however have some drawbacks that justifies further research into the

development of dyes that would provide better signal to noise ratios, higher responsivity

and lower toxicity.

As part of this research, pilot work was done to investigate VSD design. Five newly

designed1 VSDs were tested (MJULBD, JULBD, AN024, AN192, NMACr) of which

1The dyes were developed in collaboration with Prof. Andrew C. Benniston at the Molecular Pho-
tonics Laboratory, School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
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the results from two of the dyes, JULBD and MJULBD, were promising enough to

be published in a journal paper. The dyes are low molecular weight julolidine-based

borondipyrromethene (Bopidy) dyads [7].

Protocols for recording with the new dyes were similar to that used with Di-4 ANEPPS

which was discussed in section 3.5. 5mg of Bodipy dye was dissolved in 1ml DMSO that

contains 20% pluronic acid. A 20 µl sample of the stock se-olution was then dissolved

in crab saline to obtain 10−5, 10−4 and 10−3 solutions. A petroleum jelly well was made

around the STG and filled with the dye solution to bathe the STG for approximately 20

minutes. The dye was then washed away with a flowing saline solution before imaging

(figure 6.1).

Figure 6.1: Fluorescence image of the stomatogastric ganglion (STG) of Cancer
pagurus after bathing with a JULBD saline solution. (A) neuropil, (B) an STG neuron.
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6.2.2 Results

2The sensitivity of the Bodipy dyes, MULBD and JULBD, were compared with that of di-

4-ANEPPS. For the comparison, event-triggered averaging was carried out for recordings

made with the Bodipy and di-4-ANEPPS dyes that clearly reflected neural activity .

The dynamic range for MJULBD was 9.3% of the di-4-ANEPPS dynamic range and

for JULBD it was 30%. Results shown in figure 6.2 and figure 6.3 show the imaging

recordings matching the activity of a neuron that ws recorded using an intracellular

electrode.

2These results were also published in [7]

103



Figure 6.2: Intracellular and optical VSD recording using JULBD of neural activ-
ities in the crab STG. (A) PY neuron recorded simultaneously by intracellular and optical
VSD recording; (BD) other STG neurons recorded only by VSD imaging and considered against
the reference provided by the intracellular recording of the PY neuron shown in (A). The blue
traces in all panels show the intracellular electrical recording of the PY neuron. The red traces
in all panels show the VSD fluorescence imaging recording of the corresponding neurons marked
in the bottom panel. All shown recording data were calculated using event-triggered averaging
as described in the paper. The units on the vertical axes are arbitrary scaled units.
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Figure 6.3: Extracellular and optical VSD recording using MJULBD of neural
activities in the crab STG. The blue traces in the panel shows the extracellular recording of
full pyloric cycle from the lvn. The red traces in the panel shows the VSD imaging recording of
an STG neuron. All shown data were calculated using event-triggered averaging as described
in section 4.2. The units on the vertical axes are arbitrary scaled units

Also of interest when developing VSDs is toxicity. The toxic effect of VSDs, typically

speeds up the pyloric rhythm. The toxic effects of the Bodipy dyes were compared to

that of di-4-ANEPPS by measuring the impact of the dye on the pyloric rhythm cycle

while the the STG preparation was exposed to exciting illumination.

For the analysis recordings made with dye solutions of 10−5M dye concentration were

used. It was found that there was a reduction of cycle length from one cycle to the

next of 2.4% for JULBD. Using a t-test at 5% significance, this reduction proved to

be significantly positive. di-4-ANEPPS and MJULBD however, showed no significant
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shortening of cycle length.

Over a long period, i.e. several minutes, all dyes prove to have some toxic effect which

is reflected by the shortening rhythm cycle length.

6.2.3 Discussion

Zwitterionic dyes such as di-4-ANEPPS and di-8-ANEPPS are the dominating technology

for VSD imaging. There is, however, still room for improvement with regards to toxicity,

responsivity and signal to noise ratio.

As an alternative to zwitterionic voltage sensitive dyes we investigated the use of dyes

based on the Bodipy framework for VSD imaging. Our results are the first to demonstrate

that Bodipy dyes can be used for neural imaging.

The MJULBD dye gives a much narrower dynamic range for the signal, but it has similar

low toxicity as di-4-ANEPPS. Although the fluorescence voltage response of JULBD

proved not to be any better than that of 4-ANEPPS, it appears that the BF2 group

reduces the toxicity of Bipody dyes to neurons [7].

6.2.4 Conclusion

The search for methods that would provide a better signal to noise ratio when recording

neural activity is ongoing. It is also of vital importance to find methods that would allow

the recording of whole networks as recordings from individual or a few neurons do not

give sufficient information to understand complete networks. VSDs offer a solution but

there is still a great deal of research and development to be done to increase the signal

to noise ratio and reduce the toxicity of such dyes.

The positive results from the pilot study has resulted in further funding being obtained

from the Leverhulme Trust in the amount of ca. £170K. This study into the development

of Bodipy dyes will be a partnership between the laboratories of Prof. Peter Andras from

Keele University and Prof. Andrew Benniston from Newcastle University.
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6.3 Multi-electrode Arrays

6.3.1 Methods

The possibility exists that MEAs can be used in conjunction with VSDs. Potentially

simultaneously recording of neural activity with both the MEA and VSD can be done.

MEAs can also be used to stimulate neurons. Such stimulation would allow us to study

the effect of stimulating specific neurons on the known rhythms produced by the central

pattern generators found in the STG. The main reason for considering the use of the

MEA and VSD would be to overcome the restrictions of traditional electrophysiological

methods to record activity of all the neurons of the STG simultaneously.

In collaboration with the laboratory of Prof. George Kemenes, from Sussex University,

we investigated the use of a MEA on the STG of Cancer pagurus. The deafferented and

desheathed STG was placed on a MEA with 252 electrodes which were 30 µm in diameter

and spaced 100 mum apart. The nervous system was held in place by a combination of

plastic strips, Blu Tack and a glass cover slip.

Neural activity was recorded using MC Rack software produced by MultiChannel Sys-

tems. Spike sorting was accomplished using a MATLAB R©script which implements a a

centre-of-mass calculation which is described in a paper by Novak and Wheeler [140]. A

20 µV threshold was used to detect spikes in 100Hz high-pass filtered data.

6.3.2 Results

Of six experiments done, the experiment which recorded the most active neural activity

was chosen. Using the MATLAB R©scripts mentioned in section 6.3.1, 33293 spikes were

triangulated in the first 10 minutes of recording. A spike could be triangulated if it

was detected on at least three electrodes at an amplitude of 20µV or more. A typical

recording over one electrode is shown in figure 6.4.

Figure 6.4 shows a typical recording of the neural activity that was recorded over one

electrode. A 5Hz rhythmic pattern can be observed in the recording. At least 23 spatially

distinct spike sources were detected. These sources are shown in figure 6.5 and 6.6.
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Figure 6.4: MEA recording. A typical recording of neural activity over one electrode as
recorded with a multi-electrode array. A 5Hz rhythmic pattern could be observed.

Figure 6.5: MEA Spike sources detected with a MATLAB R©script. Each detected
spike is shown as circle. The detected spikes are overlaid on the image of the STG, showing
where on the STG the spikes originated. The alns and dvn are labelled on the image. Figure
6.6, is an enlarged view of the activity.
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Figure 6.6: Spike sources detected on MEA recording. At least 23 spatially distinct
spike sources were detected. The small red crosses on the image shows the position of the
electrodes. Each circle is a spike that was detected in the first 10 minutes of the recording.
The colour of the circle reflects a normalised amplitude of the spike.

6.3.3 Discussion

To provide insight into neural activity over the whole STG we investigated the use of

MEAs as a method of recording. It was found that most spikes and distinct areas of

activity were identified over the neuropil which raised the question whether some areas

might be neurite segments of the same neuron rather than neurons. To determine whether

this is indeed the case further analysis will be required. It has been found that signals

recorded over the neuropil are predominantly from the PDs but it is not possible to

confirm whether this was the case with the recordings made for this initial investigation

into the use of MEAs. The equipment used during the investigation, lacked the facility

for making an extra-cellular recording which is usually used to identify the timing, and

thus the identification of the spiking neuron.

The 5Hz rhythmic activity observed in figure 6.4 was not evident in the spike sorted

data. Re-sorting the data at a higher voltage threshold should resolve this discrepancy.
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We have shown, however, that it is possible to successfully record from the STG using

an MEA. In terms of hardware, software and protocols, areas were identified that will

need refining to successfully use the MEA, either independently or in conjunction with

VSD.

6.3.4 Conclusion

With its added functionality of stimulation, MEAs could prove of significant value in

research on the STG as an alternative to VSDs or even for use in combination with

VSDs. Both these methods allow recording from the whole STG. Being able to study

the effect of stimulation of one or more neurons or the effect of a modulation on all the

neurons at the same time could give us invaluable insight into the workings of CPGs.

We have shown that we can successfully record from the STG using an MEA. We have

identified areas, in terms of hardware, software and protocols, that will need refining to

successfully use the MEA in conjunction with VSDs.

The equipment that were used for the proof of concept experiments, were from a Lymnea

stagnalis lab, which were not adequately set up for STG experiments. Perfusion of

the preparation is required to keep the temperature of the saline between 10 and 15

degrees Celsius and can be implemented in the same manner as is used for VSD and

electrophysiological experiments.

Extra-cellular recordings are of vital importance to be able to identify spiking neurons

that are being recorded. In the case of MEA setup, a suction electrode has to be used

rather than wire electrodes.

6.4 Injection of dyes using compressed air

6.4.1 Methods

Yet another method that was investigated is the use of compressed air to inject VSD into

cells. To our knowledge, this method has not been attempted before for the injection of

VSD into neurons. The Picospritzer III is a rack mountable system which can supply

controlled and repeatable pressure pulses. Rather than using current to drive the dye
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into the cell, compressed air is pushed into a dye filled glass microelectrode. Glass

microelectrodes are pulled as for intracellular recordings and dye fillings but the point of

the microelectrode is broken off and polished, using an open flame, to obtain a slightly

larger diameter. The electrode is then placed tightly against the cell, but not so that it

penetrates the membrane. When the compressed air is pushed into the glass electrode,

the dye is injected into the cell.

The glass microelectrodes were pulled using a P-97 Flaming/Brown Micropipette Puller

from Sutter Instruments. The following settings on the puller were found to produce

microelectrodes with the most appropriate shape with regards to taper and tip size for

injection:

Table 6.1: Pipette Puller settings for microelectrodes used for injection with the Picospritzer.

Ramp Head Pull Velocity Time/Del

511 511 30 80 250

The duration and pressure of the air injection of the dye is also important. After some

experimentation we found the settings as shown in table 6.2 to be ideal in that the dye

was injected into the cell without damaging the neuron. The viability of the preparation

during injection could be confirmed by make sure that the pyloric rhythm which is

recorded during injection remains unaltered.

Table 6.2: Picospritzer settings used for injection of VSD into pyloric neurons.

Duration (msec) Pressure (PSI)

500 30

6.4.2 Results

Because injection of VSD with electrical pulses is so time consuming the neurons are

usually identified first in order to fill only neurons specific to the requirements of the

experiment. The preparation is not likely to survive the amount of time that would be

required to inject all neurons with the electrical pulse method and then to be identified

later with imaging data. Injection of VSD using the Picospritzer III is an exciting
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prospect as it allows for instantaneous injection of dye which would otherwise take at least

thirty minutes per neuron when using conventional intracellular injection with electrical

pulses. It also allows for all visible neurons to be injected without having to identify

neurons first as identification can be done afterwards from the imaging data.

Dye was successfully injected into several cells of the STG with the cells surviving the

injection and the pyloric rhythm maintained. The process of injecting the dye into several

cells took less than an hour. It was thus shown that it is also possible to inject many

cells in a short period. As many cells as can be seen can be filled to allow recording

from as many cells as possible. Avoiding the penetration of cells multiple times (first for

identification and then for filling) also reduces the risk of damaging the preparation.

6.4.3 Discussion

Time did not allow for the refinement of the process for injecting VSD using compressed

air. However, it was shown in principle that the method should work and possibly provide

a much better alternative for filling cells with intracellular VSD. Intracellular VSD has

the advantage of giving a much better signal to noise ratio for better recording of neural

activity but the skill required and the amount of time it takes to first identify and then

fill a neuron using electrical pulses makes it a very difficult method to use. Injection

using compressed air could potentially provide a much easier and quicker method with

better results.

6.4.4 Conclusion

The fact that injection with compressed air can be successfully used as a delivery mech-

anism on neurons of the STG, opens up other possibilities such as optogenetics. Optoge-

netics is already used successfully in model organisms such as Caenorhabditis elegans [98]

and Danio rerio [45]. In these two species genetically altered strains of the organisms

are bread for experimentation. In crustacean however, this would not necessarily be an

option because these animals take about four years to reach the required size. On the

other hand it is possible to keep the deafferented STNS alive for at least a week with the

use of antibiotics. It has been shown that plasmids can be injected into in tact brains of
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Xenopus tadpoles [88, 78]. The delivery of appropriate rhodopsin plasmids would allow

optical control of STG neurons and the analysis of contribution of individual neurons

to the overall functionality of STG circuits by selectively switching neurons off and on

or by driving multiple neurons with set activity patterns. Potentially what can now be

done with current or dynamic clamping on a single neuron can then be done optically

with multiple neurons. An optimum solution would be the combination of VSD imaging

with optical control using different wavelength bands.

If rhodopsin plasmids suitable for expression in crustacean can be developed, injection

with compressed air could offer a quick and relatively simple way delivering system

offering yet another way of recording neural activity from the complete STG network.

6.5 Concluding Remarks

Traditionally, neural activity in the STNS is recorded with electrophysiological methods.

For extracellular recordings, petroleum jelly wells are made over a nerve and one electrode

is placed inside the well while a second electrode is placed outside the well. Action

potentials can then be observed as spikes. Intra-cellular recordings are made by using

micro glass electrodes that can penetrate the cell membrane of soma. Although these

methods are very effective they do have limitations. For instance, extracellular recording

can only show action potentials. It is not possible to see the depolarising and hyper-

polarising of the cell and it is also not possible to measure the potential difference in the

soma.

Intra-cellular recordings, on the other hand, accurately records the potential differences

in the cell, capturing unique waveforms as well as the action potentials that occur when

the required threshold is reached. The main drawback of this method is that the number

of electrodes that can be inserted into cells at the same time is limited by the skill of

the scientist performing the experiment, but mostly by the physical size of the micro

manipulators which have to be arranged around a petri dish to hold the micro glass

electrodes. With exceptional skill it might be possible to get as many as five electrodes

inserted into five neurons. It is not possible to tell which neuron is which when looking at

the STG and thus, if recordings from specific neurons are required, the recording process
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is complicated and slowed down by the fact that neurons have to be penetrated with the

glass electrode, one by one, until the required one is found.

Because we know that neurons are modulated differentially we need to be able to record

from several neurons at the same time, but we also need to be able to record intra-

cellularly to be able to see how and when the neuron gets depolarised or hyperpolarised

with respect to other neurons. Using bath-applied VSD we were able to record from

as many as 19 neurons at the same time. Since we now know that we can successfully

record from that many neurons our next goal is to reduce the toxicity of the dyes and

to improve the signal to noise of such recordings. Intra-cellular application of VSD give

a better signal to noise ratio but still has the limitation of the amount of neurons that

can be filled due to the time-consuming process of filling the soma with the dye.

For the afore mentioned reasons, the search for better recording methods is ongoing.

The new recording techniques, however, also require methods for analysis of the data.

Some analysis methods that are used for existing recording techniques are adequate but

in some cases new methods are required.
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Chapter 7. Conclusions and Perspectives

Existing models of the STG include at most four or five neurons, with neurons of the same

type, such as the PYs and PDs, modelled as a single neuron. With such a configuration

it is not possible to model the differential modulation which occurs when STG neurons

are exposed to DA.

This thesis addresses the need for a computational model to better understand the effect

of DA on individual neurons as part of a larger network. For this research our interest

was focused on the PYs which comprise the pyloric CPG in the STG of Cancer pagurus.

We have a certain expectation of the network output which is based on previous research.

It has been shown that the PYs which are synchronised under normal conditions become

desynchronised when exposed to DA .

This project was started with the gathering of experimental data to inform the com-

putational model. Research into the crustacean STNS has mainly been done using tra-

ditional electrophysiological methods such as intra-cellular recordings made with glass

micro-electrodes that are inserted into the soma of the cell, and extra-cellular recordings

that are made using suction or wire electrodes. Previous research at the lab of Prof.

Peter Andras has shown that VSD can be used successfully on the neurons of the STG.

The use of VSD opens the possibility of recording all the neurons of the STG at the

same time. Such recordings allow us quantify the contribution of individual neurons to

the CPG rhythms and, in turn, model the network at neuron level.

To find an improved means of recording from the whole STG, a great deal of time and

effort was spent making VSD recordings and investigating alternative means of recording.

Analysis of the pyloric CPG activity starts with the identification of the beginning of

the pyloric rhythm. The rhythm is usually easily identifiable on extracellular recordings
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over the lvn or dvn. Identifying the rhythm was done by finding the first LP spike1.

The LP spikes are usually easily identifiable as the first long spike after a short pause.

DA, however, affects the amplitudes of the spikes and it often becomes impossible to

identify the rhythm in this way. This significantly complicates identifying the phases of

the rhythm. A possible solution to this relies on intracellular recordings, made either by

using electrophysiology or VSD. If at least one pyloric neuron can be positively identified,

the beginning of its depolarisation period can be taken as the beginning of the phase. It

has been found in VSD imaging that the PD signal usually dominates the neuropil. If

this signal is found to form a recognisable wave it can be used to identify the beginning

of the rhythm.

More detailed analysis of extracellular recordings made simultaneously over the lvn and

pyloric nerve (pyn) can also be useful, at least until other methods for recording and the

data analysis for these methods become more mature. Such recordings would allow the

identification of the individual PYs in the rhythm. Dissecting the pyns requires some

skill as the nerves tend to be very fine and can be difficult to dissect from the surrounding

tissue in which it is embedded.

To verify the validity of a model we need to show that the model output is reflective of

that of the biological system. We thus need to find means of quantifying the output of the

biological system. We have described the detrending and triggered averaging methods

used for analysing extracellular recordings and we have also proposed new methods for the

analysis of VSD recordings. The new method works off-line and involves the identification

of salient features which are used to profile a waveform specific to a neuron. The features

on profiled waveforms are then used to quantify the extent of de-synchronisation of the

neurons of interest, which in our case are the PYs.

The new analysis methods were successfully applied to recordings made from both bath-

applied neurons and neurons that were individually injected with VSD. While the meth-

ods have been shown to work well off-line, i.e. applied after the recordings have been

made, it would be very useful if the methods can be extended to be used on-line. An

1Physiologically the start of the pyloric rhythm would be the PD activity as it is a pacemaker [83].
However, visually it was easier to use the LP activity for this purpose. For the sake of analysis and
timing it did not matter which neurons were used to identify the beginning of a phase as long as it is
used consistently
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on-line application would allow for the immediate identification of neurons that, in turn,

would allow for the stimulation of individual neurons if the VSD is used in conjunction

with MEA or traditional electrophysiological techniques.

Using established methodology and newly developed methods for analysis of the data as

detailed in chapter 3 and 4 we were able to construct a detailed computational model of

the PYs in the STG that would reflect the expected desynchronisation. Hodkin-Huxley’s

conductance-based, mathematical model was used as the basis for developing the model

for this research. Each neuron is represented with two compartments, the soma and the

axon. All axons include three channels, Na, K and L while the soma had, depending on

the neuron type, up to nine channels. As pacemakers for the circuit, the AB and PDs

include Ca2+ and KCa channels.

Several existing models were considered. Very early models from the Hartline laboratory

[85, 193] included up to five neurons, however the decision was made to not consider

such very old models but to rather focus on later models that used the Hodgkin-Huxley

equations with parameters derived from newer experimental results.

The Golowasch [69] and Soto-Trevino [177] models, although only modelling two neurons

each, proved to be the most comprehensive in terms of available parameters. For instance,

by creating a two neuron, two compartment model of the AB and PD neurons Soto-

Treviño could illustrate how the compartments interact to determine the dynamics of

the model neurons [177]. Both these models use Hodgkin-Huxley equations and were

thus relatively easily extendible to incorporate multiple copies of the PDs and PYs that

would allow modification of gap junction parameter values which is required to model the

effect of DA. The equations and parameter values from the Golowasch and Soto-Treviño

models were thus used as the starting point for the more complete and biologically

accurate pyloric CPG model presented.

As is, the model created for this research incorporates two PDs neurons which means that

it is already possible to use the model for research into the effects of various conditions,

such as neuromodulation, of the PDs. The model is also suitable for investigating the

impact of different ranges, differences and ratios of conductance parameters with the

intentions of determining the impact of these on the pyloric rhythm. For example such

investigations may give a better insight into the mechanisms charaterising the STG
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behaviour following decentralisation and during the spontaneous re-establishment of the

pyloric rhythm.

The effect of DA was modelled by adjusting the values of the K+ channel parameters

and the gap junction strength between the PYs. Using t-tests which compared the ISI

of the five PYs for gap junction strengths of zero to 90 percent (at 10 percent intervals)

against the 100 percent strength value of the gap junctions we were able to confirm that

model did indeed succeed in showing the expected de-synchronisation of the PYs under

neuromodulatory conditions.

The model produced can easily be extended to include more neurons, junctions and

channels with the main challenge being the finding of appropriate parameters. Such

parameters depend on the biological measurements which in turn rely on the methods

of recording that are available.

As part of this research we also investigated the use of alternative methods to record the

activity of individual neurons, but in a complete neural circuit. Existing methods are

extremely limited in this respect. Methods that can simultaneously record from large

number of neurons in such a way that the contribution of individual neurons can be

isolated has the advantage of showing the contributions that individual neurons make

to the whole. Data recorded in such a way would be invaluable to the development of

models as we would be able to parametrise neurons more accurately and thus reflect

biologically true activity.

We investigated three alternative methods. These methods were the use of alternative

VSDs in an attempt to improve responsivity, signal to noise ratio and toxicity, which are

the main drawbacks of of current VSDs. We also looked at the use of MEAs which could

potentially allow not only recording of the complete STG but also stimulation of neurons.

Lastly we investigated the use of the Picospritzer III for injection of substances such as

VSD and plasmids into neurons of the STG using compressed air. Such injection would

have the advantage of offering a much faster and safer delivering method, to improve

the longevity of STNS preparations. In principle, we were able to show that the three

methods could be used successfully with further development.

In conclusion this work presents an improvement on current models of the STG with
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implications for medical science. We still lack conclusive evidence of CPGs in humans.

However, Banaie et. al [8] was able to use a model to offer a possible explanation

for the gait disorder in Huntington’s disease (HD). Unfortunately direct research on

vertebrate CPGs has severe limitations due to ethical and practical constraints. Thus

work on invertebrate CPGs can contribute critically to better understanding of vertebrate

movement generation. Our work contributes towards better modelling and understanding

of neuromodulatory impact on CPG functionality with potential implications to the

understanding of neurmodulator-related movement disorders (eg. Parkinsons’ Disease).

Neurons of the same type do not necessarily respond exactly in the same way to neuro-

modulators such as DA and each neuron could affect the network differently. Using the

STG with the pyloric CPG as a model system we have been able to show the need for

such differentiation to be considered in computational models. Improved quality data is

required to build finer and more detailed models. Here we also reported new methods for

improved data analysis and proof of concept for alternative methods for more detailed

recording of neurons within networks.

7.1 Further work

The research discussed in this thesis leads to new questions that could be investigated

with further research in the future:

• We showed that we can model the de-synchronisation of the PYs caused by DA.

The question that remains is why is such de-synchronisation required. It is known

that the pyloric CPG produces alternative rhythms in vivo. Hypothetically this

de-synchronisation is required to switch to an alternative rhythm.

• It is known that there are ”early” and ”late” PYs, ie. some PYs fire before the

others. The questions is whether the early and late firing of these neurons is a

reflection of the parameters. If that is the case we can hypothesize that the early

and late PYs have different effects on the rhythm and this can potentially be tested

with the presented model.
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• It is known that the pyloric rhythm will stop after de-centralisation, i.e. being

disconnected from higher higher ganglia. Recovery of the rhythm has been mod-

elled using Hodgkin-Huxley models by altering the Calcium ion current mechanism.

However, it is possible that modification of the maximal conductance values of cer-

tain ionic currents might also restore the rhythmic activity of the pyloric network.

It should be possible to test this hypothesis by using the presented model with

minor alterations.
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Appendix A. Simple MATLAB Implementation of the

Hodgkin Huxley Equations

% Parameters in :

% v0 i n i t i a l va lue o f the p o t e n t i a l

% I e x t A 1xT vecto r . I t r e p r e s e n t the e x t e r n a l

% cur rent .

% Constants :

% DT ms time s t ep s f o r ode s o l v e r

% C Membrane capac i tance

% E L mV Leakage r e v e r s a l p o t e n t i a l

% E Na mV Na r e v e r s a l p o t e n t i a l

% E K mV K r e v e r s a l p o t e n t s i a l

% G L mS/cmˆ2 Leakage conducatance

% G Na mS/cmˆ2 Na conductance

% G L mS/cmˆ2 Leakage conductance

func t i on [ v h m n]=HHModel( v0 , I e x t )

T=length ( I e x t ) ;

v=ze ro s (1 ,T) ;

%Constant va lue s

DT=0.01;

C=0.01;

E L=−49.42;

E Na=55.17;

E K=72.14;

G L=0.003;
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G Na=1.20;

G K=0.36;

g L=G L ;

g Na=ze ro s (1 ,T) ;

g K=ze ro s (1 ,T) ;

m=ze ro s (1 ,T) ;

n=ze ro s (1 ,T) ;

h=ze ro s (1 ,T) ;

m(1) =0.05;

h (1 ) =0.54;

n (1 ) =0.34;

v (1 )=v0 ;

f o r t =2:T

v ( t )= v ( t−1) + (DT/C)∗ ( I e x t ( t−1)−g L∗ ( v ( t−1)−E L)−g Na ( t

−1)∗ . . .

( v ( t−1) −E Na)−g K ( t−1)∗ ( v ( t−1)+E K) ) ;

m( t )=m fun (m( t−1) , v ( t−1) ,DT) ;

n( t )=n fun (n( t−1) , v ( t−1) ,DT) ;

h( t )=h fun (h( t−1) , v ( t−1) ,DT) ;

g Na ( t )=G Na∗ (m( t ) ˆ3)∗h( t ) ;

g K ( t )=G K∗ (n( t ) ˆ4) ;

end

func t i on y=alpha n (V)

y=(0.1 −0.01∗ (V+65) ) . / ( exp (1−0.1∗ (V+65) )−1) ;

f unc t i on y=alpha m (V)

x=2.5 −0.1∗ (V+65) ;

y=x . / ( exp ( x )−1) ;

f unc t i on y=alpha h (V)
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y=0.07∗exp(−(V+65) /20) ;

f unc t i on y=beta n (V)

y=0.125 ∗ exp(−(V+65) /80) ;

f unc t i on y=beta m (V)

y=4 ∗ exp(−(V+65) /18) ;

f unc t i on y=beta h (V)

y=1 . / ( exp (3−0.1∗ (V+65) )+1) ;

f unc t i on n=n fun ( n0 , v , t )

% n0 i s the i n i t i a l va lue o f n

% v i s the constant value o f the p o t e n t i a l

% t i s the time .

n 0=1 . / ( 1 + beta n ( v ) . / a lpha n ( v ) ) ;

tau n=1 . / ( a lpha n ( v ) +beta n ( v ) ) ;

n=n 0 −(n 0 −n0 )∗exp(−t / tau n ) ;

f unc t i on m=m fun (m0, v , t )

% m0 i s the i n i t i a l va lue o f m

% v i s the constant value o f the p o t e n t i a l

% t i s the time .

m 0=1 . / ( 1 + beta m ( v ) . / alpha m ( v ) ) ;

tau m=1 . / ( alpha m ( v ) +beta m ( v ) ) ;

m=m 0 −(m 0 −m0)∗exp(−t /tau m ) ;

func t i on h=h fun ( h0 , v , t )

% h0 i s the i n i t i a l va lue o f h

% v i s the constant value o f the p o t e n t i a l

% t i s the time .
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h 0=1 . / ( 1 + beta h ( v ) . / a lpha h ( v ) ) ;

tau h=1 . / ( a lpha h ( v ) +beta h ( v ) ) ;

h=h 0 −(h 0 −h0 )∗exp(−t / tau h ) ;

t i c

% i n i t i a l i s e pu l s e vec to r with z e ro s

I e x t P u l s e=ze ro s (1 ,5000) ;

% s e t pu l s e at 10 f o r time s t ep s 500 to 700 to i n i t i a t e ac t i on

p o t e n t i a l

I e x t P u l s e (500 : 700 ) =10;

v=HHmodel(−65 , I e x t P u l s e ) ;

p l o t ( v )

toc
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Appendix B. Dissection

B Dissection of the crab is done in two parts; first the gross dissection and then the fine

dissection. During the gross dissection the entire stomach is removed from the crab, and

during the fine dissection the STNS is extracted from the stomach and pinned in a Petri

dish. During both parts of the dissection the preparation is kept cool by replacing the

saline every 10 minutes with fresh saline from the fridge. A basic anatomy of the whole

crab and the stomach is shown in figure B.1 and B.2.

Figure B.1: The basic anatomy of the crab showing the location of the stomach. (Adapted
from [180])
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Figure B.2: The stomach of the crab with the STNS. (Adapted from [180])

B.1 Gross dissection

The dissection process is started by anaesthetising a crab on ice for about 30 to 45

minutes. A dissection pan is laid out with the tools required, which are; rongeurs, a

tapered edge spatula, small scissors, toothed forceps and a black Sylgard-coated dish.

Insect pins are used to pin the preparation down. Crab saline (Table B.1) is also required.

Gloves are worn when handling the crabs.

Table B.1: Cancer pagurus saline

Salt (mM) g/Liter g/2 Liter g/5 Liter g/8 Liter

KCl 11.00 0.83 1.66 4.15 6.64

NaCl 440.00 25.80 51.60 129.00 206.40

CaCl2H2O 13.00 1.90 3.80 9.50 15.20

MgCl26H2O 26.00 5.30 10.60 26.50 42.40

Trizma base 11.2 1.50 3.00 7.30 12.00

Maleic Acid 5.00 0.60 1.20 3.00 4.80

Hepes 10.00 2.38 4.76 9.52 19.04

(Hepes can be used instead of Tris+Maleate)

The first step is to remove the claws and legs using rongeurs or manually (Fig. B.3).
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Figure B.3: First step of dissections is to remove the claws and legs using rongeurs or manually.

The external mouth parts are removed next. Using the rongeurs the large external

mandibles are removed first and then the smaller 1st and 2nd maxillipeds, exposing the

2nd maxillae which covers the opening to the oesophagus. The 2nd maxillae are attached

to thin long ossicles with a muscle attached to the end. These are removed, using the

rongeurs, with a twist and pull motion.

The rongeurs are then used to break off the carapace edges on both sides by starting

at the lateral posterior end and working towards, and up to the eyes. A gap is created

between the dorsal and ventral carapace, exposing the hypodermis (Fig. B.4).

Figure B.4: Removing the frilled edge on the side of the carapace, exposing the hypodermis
underneath.
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Eyes, antennae and rostrum are chipped away leaving a thin layer of carapace intact that

can later be easily broken by hand.

The hypodermis is then separated from the carapace, holding the spatula against cara-

pace so as to not put pressure on the tissue below in which the STNS is embedded (Fig.

B.5).

Figure B.5: The hypodermis is separated from the carapace taking care not to damage the
tissue below the carapace where the nervous system is located.

The carapace is removed in three sections (Fig. B.6). The triangular shapes on the

sides are removed first (Fig. B.7). The tapered edge of the spatula is then used again

to separate the hypodermis from the centre part that is left over when side sections

have been removed. The hypodermis is separated from the carapace as far forward

(anteriorly) as possible and as far back (posteriorly) as the two ossicles that protrude

from the carapace. The centre part of the carapace is then be removed by breaking

the connecting strip of carapace parallel to the posterior and between the two corners

of the triangular shaped sections. This section is then removed manually by bending it

upwards towards the anterior, exposing almost all of the hypodermis on the dorsal side
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of the crab (Fig. B.9).

Figure B.6: The carapace is removed in three sections.

Figure B.7: Firstly the triangular shaped section to the sides are removed.
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Figure B.8: The centre part of the carapace should be separated from the hypodermis until
one can see through the opening.

Figure B.9: The last section of carapace to be removed is the centre part.

The tapered edge of the spatula is then used to separate ventral tissue from the carapace.

Tissue at the cephalon is drawn back exposing the connecting tissue (Fig. B.10). The

connecting tissue is then cut with the scissors allowing the tissue to be drawn back even

further - up to the point where the oesophagus is attached to the ventral side of the

carapace is exposed (Fig. B.11).
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Figure B.10: Separate the ventral tissue from the carapace and push the tissue below the
eyes as far back as the connecting tissue.

Figure B.11: The connecting tissue is cut using the scissors and push the tissue back up to
where the top oesophagus is exposed.

The labrum is detached from the epistome using small scissors. The cephalum is then

removed making diagonal breaks from next to the eyes down to the oesophagus (Fig.

B.12)
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Figure B.12: The cephalum is removed after the oesophagus is loosened from the carapace
and then diagonal breaks are made from the eyes to the oesophagus.

The crab is then propped up on the side of the dissection pan using the claws. While

the labrum is held in place with the forceps the stomach is extracted by cutting it away

from the ventral carapace (Fig. B.13).

Figure B.13: The crab is propped up on the side of the dissection pan using the claws. While
the labrum is held in place with the forceps the stomach is extracted by cutting it away from
the ventral carapace.

The stomach is then removed from the body and laid down the back of the hand with

the hypodermis facing down (Fig. B.14).
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Figure B.14: The stomach is removed from the body and laid down the back of the hand
with the hypodermis facing down.

Excess tissue is scraped off and then the stomach is filled with saline to inflate it. Inflating

the stomach with saline makes it easier to enter the scissors into the oesophagus to cut

through the top layer of the stomach from the oesophagus to the pylorus and through

the ossicle between the ampullae (Fig. B.15).

Figure B.15: A cut is made from the oesophagus to the pylorus.

Two diagonal cuts are made through the cardial branches, which allows the stomach to

open up and expose the three teeth inside. The tips of three teeth are cut off (Fig. B.16)
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which allows the stomach to lie flat when placed in a dish with black Sylgard and the

inside of the stomach facing down. The dish is filled with cold crab saline before the

stomach is placed in it. The stomach lining is pinned down tightly using dissection pins

(Fig. B.17).

Figure B.16: The tips of the three teeth are cut off.

Figure B.17: Pinned-down stomach. The opened stomach is pinned down flat in a dish
with black Sylgard. The inside of the stomach faces down. Before the stomach is placed in the
dish the dish is filled with crab saline.
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B.2 Fine dissection

For the fine dissection the following additional equipment is needed, a stereoscopic micro-

scope with zoom capability, a 3.5 inch clear Sylgard coated petri dish, two size 5 forceps,

dissecting scissors, small dissection pins, fine dissection pins and saline.

When viewed from above the dissected stomach is covered with hypodermis. More or

less in the middle of the preparation there are two small dots. All of the hypodermis is

cut away leaving only a small circle of tissue around the two dots.

To the anterior of the small piece of hypodermic tissue left behind, is the brain. From

the brain there are two thick nerves, the circumoesophageal commissure (coc) nerves.

Covering these nerves is a layer of light yellow tissue, which when cut away, makes it

possible to see the coc well enough through the. Starting at the brain the cocs are

exposed by following them and cutting the tissue above to expose the nerve. The nerve

is followed to expose the commissural ganglia (CoGs) and the rest of the nerve to the

anterior of the preparation where the nerve ends. All tissue to the posterior of the cocs

is cleared away. The brain is then lifted and the tissue below the brain and above the

opthalmic artery is cut away. The cocs are then cut against the brain and the brain is

removed. Once the brain is removed it is possible to see the opthalmic artery clearly.

The opthalmic artery splits to form a ’Y’. By grasping the artery with the forceps to

the posterior of the split it is possible to lift the artery and see where the stomatogastric

nerve (stn) leaves the artery and bends downward. The artery is cut as close to the stn

as possible and is then removed by cutting it away from the tissue below and cutting it

loose from the ossicles to the the anterior. With the artery removed it is possible to the

see the oesophageal ganglion (OG) and the inferior oesophageal nerves (ions). To clear

the ions they are followed from both the OG and CoGs. As one follows the ions to be

cleared, care has to be taken to notice the where the labral nerve splits off. All tissue

between the ions is cleared away ass well as the tissue to the anterior of the ions.

At this point in the dissection it is also possible to see the superior oesophageal nerves

(sons) splitting of the stn. The sons can be followed and exposed from the stn towards

the CoGs. The tissue between the sons and ions can be clear away leaving only the

exposed nerves behind. The dorsal posterior oesophageal nerves (dpons) split off the son
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and care has to be taken to leave at least a short stub of the dpon behind for pinning

the preparation down in the petri dish later on.

It is now also possible to clear away all orange coloured glandular tissue to the sides

of the acstn, posteriorly of the sons. The are below the stn is covered by white tissue

that resembles white ”wadding” (the material used to stuff padded clothing). The mvns

run below the orange glandular tissue and on the edge of the white tissue. About two

to three centimetres of the mvns are cleared. It can sometime be quite difficult to see

the white nerves running inside this white tissue but by zooming in on the nerves it is

possible to follow the dvn (the nerve projecting posteriorly from the STG). The dorsal

gastric nerve (dgn) usually projects out of the STG or splits off the dvn and then bends

downwards towards the dorsal side of the preparation. One to two centimetres of the

dgn is left in tact and cleared. The dvn splits into two aclvn, both which have to be

exposed by following them to the posterior and, if possible, to where they split into the

pyn and pyloric dilator nerve (pdn)

Once all these nerves are exposed, care is taken to cut the nervous system away from any

tissue that might still be attaching it to the tissue ventrally of the STNS. If not already

detached, the ends of the cocs, labral nerves, dpons, mvns, dgn and lvn,pyns, pdns are

cut loose. The whole STNS can now be lifted by grasping it by the ends of the coc and

the lvns and moving it to the side of the dish. The left over stomach lining is unpinned

and used to rub it over the Sylgard lined petri dish. Sylgard is hydrophobic and the

water will form puddles and not spread evenly over the Sylgard if it is not conditioned

in this way with the stomach. Also, without the conditioning the nerves will strongly

adhere to the Sylgard and become impossible to handle without damaging. The Petri

dish is then rinsed in filled with saline. Grasping the nerves as before, the nervous system

is then transferred into the Petri dish. The STNS is pinned down onto the Sylgard using

minuten pins.

The STG can now be exposed by grasping the hypodermis that was left behind with

the forceps and lifting it up. This exposes an opening into the ophthalmic artery. The

artery is split open by entering the scissors into the artery opening and cutting from the

posterior to the anterior between the two dots on the hypodermis. The cut has to be

made all the way to the anterior where the artery was cut earlier. Because the artery
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tissue can be quite tough the artery is sometimes pinned down to the sides to create

enough tension for the scissors to cut. The cuts are made while slightly pulling upwards

to avoid touching or damaging the STG and the stn which runs along the bottom of the

artery. Once the stn and acSTG are exposed the excess artery and hypodermic tissue

can be cut away to only leave behind the exposed nerves. Care is taken when the tissue

is cut away to leave small stubs of alns behind which are required to pin down the STG.

Without the alns it is very difficult to pin the STG down sufficiently when desheathing

the STG.

All excess tissue is cleared away from the STNS.
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