
 
 

Heat resistant thermophilic endospores 
in cold estuarine sediments 

 
Emma Bell 

 

 

 

 
Thesis submitted for the degree of Doctor of Philosophy 

 
School of Civil Engineering and Geosciences 

Faculty of Science, Agriculture and Engineering 

 

 
February 2016 

  



 

  

 



 

 i 

Abstract 

Microbial biogeography explores the spatial and temporal distribution of 

microorganisms at multiple scales and is influenced by environmental selection 

and passive dispersal. Understanding the relative contribution of these factors can 

be challenging as their effects can be difficult to differentiate. Dormant thermophilic 

endospores in cold sediments offer a natural model for studies focusing on passive 

dispersal. Understanding distributions of these endospores is not confounded by 

the influence of environmental selection; rather their occurrence is due exclusively 

to passive transport. Sediment heating experiments were designed to investigate 

the dispersal histories of various thermophilic spore-forming Firmicutes in the River 

Tyne, a tidal estuary in North East England linking inland tributaries with the North 

Sea. Microcosm incubations at 50-80°C were monitored for sulfate reduction and 

enriched bacterial populations were characterised using denaturing gradient gel 

electrophoresis, functional gene clone libraries and high-throughput sequencing. 

The distribution of thermophilic endospores among different locations along the 

estuary was spatially variable, indicating that dispersal vectors originating in both 

warm terrestrial and marine habitats contribute to microbial diversity in estuarine 

and marine environments. In addition to their persistence in cold sediments, some 

endospores displayed a remarkable heat-resistance surviving multiple rounds of 

autoclaving. These extremely heat-resistant endospores are genetically similar to 

those detected in deep subsurface environments, including geothermal 

groundwater investigated from a nearby terrestrial borehole drilled to >1800 m 

depth with bottom temperatures in excess of 70°C. The ability of these endospores 

to survive extreme temperatures whilst in a dormant state may enable them to 

withstand adverse conditions for long periods of time and then germinate in 

response to changing surroundings. This was investigated further in the context of 

seawater injection during secondary oil recovery, where cold seawater is injected 

into hot oil reservoirs, resulting in a cooler reservoir temperature near the injection 

well bore. Microcosm experiments designed to simulate this showed that cooling 

triggered the germination of endospores of sulfate-reducing Desulfotomaculum 

leading to the onset of souring in this model system. The results presented here, 

indicate that bacterial endospores are transported between terrestrial and marine, 

surface and subsurface environments. Their survival and distribution therefore has 
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relevance to understanding deep biosphere processes, and factors shaping 

microbial diversity in the marine environment. 
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Chapter 1.  

Introduction 

1.1 Thermophilic Endospores in Cold Sediments 

The detection of anaerobic thermophilic endospore-forming bacteria in cold 

sediments was first reported in heated sediment incubations from Aarhus Bay, 

Denmark (Isaksen et al., 1994). The in situ temperature of Aarhus Bay sediments 

ranges from 0-15°C, yet when incubated at 60°C thermophilic sulfate reduction 

was detected. Enumeration of viable thermophilic sulfate reducing bacteria (SRB) 

by most probable number (MPN) indicated the presence of 2.8 ⋅ 104 cells g-1 in the 

cold surface sediment. The thermophilic sulfate-reducing strain P60 was isolated 

from enrichments at 60°C, and based its physiological characteristics identified as 

Desulfotomaculum kuznetsovii. The temperature range for growth of strain P60 

(52-69°C) was significantly higher than would ever be encountered in situ, thus it 

must have been delivered to the sediments from an external source. 

Desulfotomaculum arcticum strain 15T, a moderate thermophile capable of growth 

between 26 and 46.5°C with optimum growth at 44°C, was later isolated from 

permanently cold fjord sediment off the west coast of Svalbard where the 

temperature never exceeds 4°C (Vandieken et al., 2006). Sediments from 

Smeerenburgenfjorden in the north-west of Svalbard have since been shown to 

host a diverse community of spore-forming thermophilic bacteria including sulfate-

reducing Desulfotomaculum and putative fermentative Firmicutes capable of 

organic matter mineralisation when incubated at 50°C (Hubert et al., 2009; 2010). 

Combining spore abundance estimates with sedimentation rate, revealed a 

constant delivery of spores of thermophilic SRB at exceeding a rate of 108 spores 

m-2 y-1 to the permanently cold sediments of Svalbard (Hubert et al., 2009). Further 

investigation of Aarhus Bay sediments incubated between 46 and 69°C revealed 

23 species level phylotypes of endospore forming sulfate-reducing 

Desulfotomaculum (de Rezende et al., 2013). Three of the Desulfotomaculum 

phylotypes detected in Aarhus Bay were highly similar to those detected in 

Svalbard sediments (Hubert et al., 2009; 2010) despite the two locations being 

3000 km apart. This indicated the long-distance passive dispersal of endospores 

of thermophilic bacteria in the ocean from a source common to both locations. 
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Endospores of thermophilic bacteria are conspicuous in cold sediments and are 

inactive in situ making them useful model organisms for studying microbial 

biogeography (de Rezende et al., 2013; Müller et al., 2014). 

1.2 Microbial biogeography 

Biogeography explores the spatial and temporal distribution of organisms 

over multiple scales (Martiny et al., 2006; Lomolino et al., 2010). Microbial 

biogeography seeks to understand, what microorganisms live where, at what 

abundance and why. To answer these questions, biogeographers must understand 

the underlying mechanisms that cause differences in community composition 

(Lindström and Langenheder, 2012). A review by Hanson et al., (2012) identified 

four fundamental processes that underlie microbial biogeographic patterns – 

selection, drift, dispersal and mutation. Each of these processes has an effect on 

the distance-decay relationship, which models the decrease in community 

compositional similarity between two locations with increasing spatial distance 

(Figure 1.1). Selection occurs as a result of the influence exerted by environmental 

factors such as temperature, pH, salinity and other physical and chemical 

characteristics. Genetic drift occurs as a result of chance demographic events such 

taxa reproduction and deaths. Both processes result in a decrease in the similarity 

between two communities with distance (Hanson et al., 2012). In contrast, 

dispersal will weaken the distance-decay relationship. The strength of this effect 

may vary between communities as microorganisms can have different dispersal 

capabilities (Figure 1.1) (Foissner, 2006; Martiny, 2015). Taxa that are better at 

dispersing will show lower rates of distance-decay over a given landscape (Nekola 

and White, 1999). This includes abundant taxa, which have a greater chance of 

long-distance dispersal owing to population size (Martiny et al., 2006; Martiny, 

2015). Additionally, deterministic traits such as spore formation, may increase the 

probability of long distance dispersal (Eisenlord et al., 2012; Hanson et al., 2012). 

This trait, amongst other factors, is thought to contribute to the widespread 

distribution of endospore-forming Firmicutes in the environment (Beuche et al., 

2013). Microbial community composition at a given location therefore depends on 

a combination of factors, however the influences contributed by these different 

factors on the compositional similarity between locations can be difficult to 

disentangle from one another. 
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Figure 1.1: The effect of selection and dispersal on the community composition similarity between 
locations with increasing geographic distance. Selection will decrease the similarity between two 
communities with distance, if environmental conditions differ along a spatial gradient (A) and 
dispersal will increase the similarity between two locations (B). Unlimited dispersal (dashed line) 
would enable a microorganism to disperse globally, a good disperser (grey line) has increased 
probability of dispersing between geographically distant locations compared to a microorganism 
with a poor dispersal ability (black line). Adapted from Hanson et al., (2012), Nature Reviews 
Microbiology. 

1.2.1 Passive dispersal 

The active dispersal of microorganisms (self-propulsion) is spatially 

constrained (Martiny et al., 2006, Fierer 2008), generally occurring on a minute 

scale e.g. from particle to particle (Lindström and Langenheder, 2012). Active 

dispersal therefore does not have a significant effect of microbial composition 

between distant locations. By contrast, passive dispersal has the potential to 

transport microorganisms over great distances, and even globally. The passive 

dispersal of cells may occur in the atmosphere, in ocean currents and on or in 

mobile macroorganisms (Fierer, 2008; Hervàs et al., 2009, Galand et al., 2010; 

Lennon and Jones, 2011). The global connectivity of these transport mechanisms, 

in addition to large population sizes and small cell size, suggest that 

microorganisms have the potential for unlimited dispersal and consequently taxa 

may be ubiquitous in the environment (Finlay, 2002; Fenchel and Finlay, 2004; 

Martiny et al., 2006). While microorganisms may have the ability to disperse across 

the globe, the extent to which geographic barriers contribute to changes in 

community composition by limiting dispersal is debated (Martiny et al., 2006; 

Eisenlord et al., 2012; Martiny, 2015). A study conducted in the English Channel 

showed that a large proportion of microbial lineages found in the International 

Census of Marine Microbes (ICoMM) dataset, which included samples from 

multiple distinct marine locations, could be detected in a single site in the English 

Channel with deep sequencing methods (ca. 10 million 16S rRNA V6 reads in the 
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deeply-sequenced English Channel site) (Gibbons et al., 2013). This discovery 

suggests that in any given location, all microbial diversity may be present. This 

would mean that the differences observed in communities between different 

locations reflect changes in relative abundance combined with the technical 

limitations of the survey method, rather than presence or absence (Gibbons et al., 

2013). In addition, it suggests that dispersal limitation does not affect 

microorganisms and that biogeographers have simply not had the detection tools 

to exhaustively sample the full microbial diversity at a given location. On the other 

hand, there is evidence that microorganisms do display complex biogeographic 

patterns and can be dispersal limited despite high dispersal rates (Foisnner, 2006; 

Schauer et al., 2010; Eisenlord et al., 2012; Martiny et al. 2015). This is discussed 

in the marine context in the next section. 

1.2.2 Dispersal limitation 

Oceans are regionally formed water masses with different temperature and 

salinity characteristics, resulting in vertical and horizontal variation (Galand et al., 

2010; Lovejoy and Potvin, 2011). This variation is reflected in the distribution of 

marine microorganisms (Lovejoy and Potvin, 2011). Functional groups of marine 

microorganisms in the water column can be vertically stratified with depth, and are 

often associated with the availability of light, oxygen and nutrients (Stevens and 

Ulloa, 2008; Bryant et al., 2012). On a global scale, water masses are considered 

to be a key factor controlling marine microbial biogeography as they act as physical 

barriers limiting dispersal, thus impacting upon the diversity of microorganisms in 

the ocean. This has been demonstrated by the presence of distinct communities in 

different water masses (Galand et al., 2010; Agogue et al., 2011; Monier et al., 

2013; Hamdan et al., 2013) and bipolar species that are not detected at intervening 

latitudes (Sul et al., 2013). The influence of dispersal limitation can be difficult to 

distinguish from the selective factors that act within different water masses i.e. the 

distinct environmental conditions. Nevertheless, dispersal limitation in the ocean 

appears to play an important role distinct from and prior to environmental selection 

influencing microbial community composition (Sul et al., 2013). By tracking the 

dispersal of thermophilic endospores, which are inactive in the cold ocean and thus 

are not subject to environmental selection, Müller et al., (2014) were able to 

demonstrate dispersal limitation as a result different water masses, and how they 



Chapter 1 - Introduction 

 5 

connect with global circulation. Additionally, by focusing on endospores, this study 

could show that dispersal limitation affects microorganisms thought to have greater 

dispersal ability, owing to the ability to persist in a dormant state. 

Distributions of bacterial taxa in the seabed indicate that microorganisms 

from the overlying water column are deposited in surface sediments (Hamdan et 

al., 2013). Walsh et al., (2015) investigated the relationship between communities 

in the water column and the seabed by incorporating deep subseafloor sediment 

(defined as ≥ 1.5 metres below seafloor (mbsf)) in addition to shallow (surface) 

sediment and water column samples. The study demonstrated that communities in 

the deep subseafloor sediment were derived from a subset of the community from 

shallow seafloor sediment, which were recruited from the water column. Abundant 

taxa in the subseafloor could be detected at much lower relative abundance in the 

seawater, whereas taxa that were abundant in the seawater were generally not 

detected in the subseafloor. This is likely due to the different conditions 

experienced in the water column in comparison with the subseafloor, where 

sediments are characterised by anoxic conditions with low energy availability 

(Jørgensen and D’Hondt, 2006; Jørgensen and Marshall, 2015). This discovery 

demonstrates how microbes associated with the sedimentary environment may be 

transported in the water column as components of the rare biosphere, and could 

colonise the seafloor at a location distant from where they originated. 

1.3 Dormancy and the Microbial Seed Bank 

The microbial diversity of an ecosystem is comprised of both abundant and 

rare taxa. Rare taxa exist at low relative abundance, but collectively account for a 

large proportion of species richness (Pedrós-Alió, 2006; 2012). Rare organisms 

can have important ecological functions and are important for maintaining microbial 

diversity (Lynch and Neufield et al., 2015). All rare taxa must grow at some point 

in time, somewhere, and can become abundant in response to temporal and/or 

spatial changes in environmental conditions (Pedrós-Alió, 2012). As discussed 

above, certain rare taxa in seawater subsequently become dominant upon 

deposition and burial in seabed sediments (Walsh et al., 2015). This has also been 

observed in terrestrial settings, where rare taxa in upslope environments, 

subsequently became abundant taxa in a downstream lake (Crump et al., 2012). 

Many rare taxa are not actively growing or are dormant. Dormant microorganisms 
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enter a state of reduced metabolic activity as a strategy for maintaining microbial 

diversity for long-term survival (Lennon and Jones, 2011). In some cases, entering 

dormancy results in morphological differentiation, such as endospore formation. 

Dormant endospores are considered metabolically inert and can remain dormant 

for thousands (de Rezende et al., 2013), and possibly even millions of years (Cano 

and Borucki, 1995; Vreeland, 2000). Dormant microbial populations may persist at 

undetectable cell densities (Locey, 2010), together with other low abundance 

microbial populations, creating a rare biosphere of phylogenetic diversity (Sogin et 

al., 2006). 

These dormant microorganisms contribute to a microbial seed bank of taxa 

that are able to persist during unfavourable environmental conditions (Lennon and 

Jones, 2011). Microorganisms in the seed bank are capable of responding to 

environmental change, and may be recruited from the rare biosphere and become 

active if favourable conditions are encountered (Jones and Lennon, 2010). This 

has important implications for the ecological processes which influence microbial 

diversity, such as succession and recovery following disturbance events, where 

dormant organisms may be recruited from the persistent seed bank (Fierer and 

Lennon, 2011; Caporaso et al., 2012; Gibbons et al., 2013). While many rare 

organisms in the environment are inactive or dormant, some may be actively 

growing, yet still rare. A study of anaerobic phototrophic bacteria inhabiting the 

meromictic Lake Cadagno found that although Chromatium okenii represented 

<1% of the total cell number, it contributed to approximately 40% to the total carbon 

uptake and 70% to the inorganic carbon (Musat et al., 2008). Similarly, Pester et 

al., (2010) found a Desulfosporosinus species to constitute only 0.006% of the total 

microbial community while still contributing an important biogeochemical process 

that diverts the carbon flow in peatlands from methane to CO2. Despite these and 

other examples of biogeochemical activity by numerically rare microbial taxa, it is 

likely that a large proportion of the rare biosphere is made up of non-growing cells 

(Pedrós-Alió, 2012), and endospores are considered in more detail below.  

1.3.1 Bacterial endospores 

Endospores can be formed by certain bacteria within classes Bacilli and 

Clostridia, of the phylum Firmicutes. Bacilli are typically considered aerobic and 

Clostridia anaerobic, but there are also a number of anaerobic and facultatively 
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anaerobic Bacilli reported (Tang et al., 2009; Coorevits et al., 2012; Lin et al., 

2014). The majority of studies on sporulation and germination have focused on the 

model organism Bacillus subtilis, a fast-growing aerobe. Studies that have 

investigated Clostridium spp., typically C. difficile, C. acetobutylicum or 

C. perfringens, have indicated that the basic morphological changes during spore 

formation are conserved between Clostridium and Bacillus, but genetic initiation, 

regulation and germination mechanisms are considerably different (Paredes-Sabja 

et al., 2010; Vecchia et al., 2014; Al-Hinai et al., 2015). Sporulation occurs in 

response to unfavourable environmental conditions, such as nutrient deprivation. 

In their dormant state, endospores are resistant to multiple forms of stress including 

desiccation, irradiation, and extreme heat (Nicholson et al., 2000). Spore 

resistance is achieved by condensation of the chromosome and dehydration of the 

spore core (Vecchia et al., 2014). The degree of heat resistance is attributed to a 

variety of factors that include: (i) the optimal growth temperature of the strain, (ii) 

the temperature at which sporulation occurred, (iii) the extent of spore core 

mineralisation with dipicolinic acid (DPA) and divalent cations, (iv) the protection of 

spore DNA by α/β type small acid soluble spore proteins, and (v) the core water 

content of the spore (Nicholson, 2000; Melly et al., 2002; Atrih and Foster, 2002; 

Setlow, 2006; Coleman et al., 2007; Setlow, 2014). Heat-resistance is lost when 

the spore core is rehydrated and DPA is released (Setlow, 2014). 

For dormancy to be a successful survival strategy, spores must continually 

monitor their environment, enabling them to respond to specific nutrients, leading 

to germination and outgrowth to form a new vegetative cell (Atrih and Foster, 2002; 

Paredes-Sabja et al., 2011; McKenney et al., 2013). Endospore-forming Firmicutes 

are specifically adapted to grow quickly in response to favourable environmental 

conditions, and their frequent isolation from subsurface environments has been 

attributed to their fast growth response in enrichment cultures (Parkes et al., 2014). 

1.3.2 Endospores in the subseafloor sediments 

Parkes et al., (2014) recently estimated that there are 5.39 ⋅ 1029 cells in the 

marine deep biosphere. This followed previous estimates of 2.9 ⋅ 1029 cells 

(Kallmeyer et al., 2012) and 3.5 ⋅ 1030 cells (Whitman et al., 1998). Cell abundance 

estimates are adjusted as an increasing number of deep biosphere samples and 

settings are explored. Whitman (1998) produced estimates from ocean margin 
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regions with high organic productivity and high sedimentation rates. Kallmeyer 

(2012) updated this global estimate, accounting for Pacific gyre regions with 

extremely low cell abundance and low sedimentation rates. Parkes et al., (2014) 

further included more deep ocean sediments with elevated prokaryotic activities 

and populations including subsurface gas hydrate formations and oil and gas 

reservoirs, accounting for the increased cell abundance compared to the estimate 

by Kallmeyer et al., (2012). Even taking the lowest estimate, these numbers show 

that marine sediments are a major microbial habitat that extends deep below the 

seafloor, with microbial abundance roughly equal to the scale of the seawater 

(1.2 ⋅ 1029), soil (2.6 ⋅ 1029) and the lower boundary estimate of the terrestrial 

subsurface (2.5 ⋅ 1029 to 25 ⋅ 1029) global microbiomes (Whitman et al., 1998).  

Spore formation is considered to be an important strategy for long-term 

survival in subseafloor sedimentary habitats (Parkes et al., 2014), and offers one 

explanation for how microorganisms deal with low energy fluxes in the deep 

subsurface. The contribution of endospores to the total microbial community might 

increase estimates of deep marine biosphere cell abundance, as endospores are 

generally impermeable to DNA stains and may not have been accounted for 

(Jørgensen, 2012; Lomstein et al., 2012). Although there is evidence that some 

endospores may be stained with acridine orange (Fichtel et al., 2008; Parkes et al., 

2014). DPA is universally present in bacterial endospores and can be used as a 

marker to determine endospore abundance (Fichtel et al., 2007; 2008; Langerhuus 

et al., 2012). DPA extraction from sediment cores from North Sea tidal flats showed 

that the relative contribution of endospores to the total microbial community 

increased with depth, accounting for <1% of the total microbial community in the 

upper 50 cm of the sediment and increasing to 10% in deeper layers of the 

sediment (Fichtel et al., 2008). Estimates of endospore abundance in sediments 

off the coast of Peru, using DPA in addition to a muramic acid based method, 

indicated that they may be as abundant as vegetative cells in deep subsurface 

sediments with abundances of up to 107 endospores per cm3 reported (Lomstein 

et al., 2012). For spore-formation to be a successful long-term survival strategy, 

conditions suitable for germination and growth would ultimately need to be 

encountered. In sediments where available energy decreases slowly and steadily 

with time, endospore formation may be a dead-end strategy, especially when 
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taking into account the energy required for germination (Jørgensen, 2012; Hoehler 

and Jørgensen, 2013). In the case of thermophilic endospores in subseafloor 

sediments, conditions suitable for growth may be encountered in warmer 

sediments encountered at depth, resulting in germination post burial (Hubert et al., 

2010). 

While these studies point towards the quantitative significance of 

endospores in sedimentary habitats, a recent study of subseafloor sediment 

metagenomes estimated that putative endospore formers accounted for <10% of 

the population, based on low frequencies of endospore-specific genes (Kawai et 

al., 2015). The discrepancy between these different studies may be the result of 

low DNA extraction efficiency from endospores in the sediments analysed with 

metagenomics, owing to the difficulty in extracting DNA from endospores using 

standard procedures. This would result in an underestimation of spore-specific 

genes in the metagenomes. In addition to this, the authors suggested that 

discrepancies could arise based on assumptions of the DPA content per spore. 

DPA cell content is used to calculate abundance estimates, but it can vary 

considerably between species, thus influencing DPA-based estimations of total 

endospore abundance. Another explanation for the discrepancy could be if 

sporulation genes in subsurface microorganisms are distinct from currently well 

known endospore specific genes (Kawai et al., 2015). 

1.4 Thermophilic spore-forming Desulfotomaculum 

The genus Desulfotomaculum was created to describe Gram-positive and 

obligately anaerobic sulfate-reducing bacteria that form heat-resistant endospores 

(Campbell and Postgate, 1965). Desulfotomaculum are members of the family 

Peptococcaceae, order Clostridiales, class Clostridia and phylum Firmicutes 

(Stackebrandt, et al., 1997). Spore-forming sulfate-reducing bacteria additionally 

include the genera Desulfovirgula (Kaksonen et al., 2007a), Desulfurispora 

(Kaksonen et al., 2007b), Desulfosporosinus (Stackebrandt et al., 1997), 

Desulfosporomusa (Sass et al., 2004) and the candidate species Desulforudis 

audaxviator (Chivian et al., 2008). Desulfotomaculum spp. have been detected in 

both freshwater and marine sediments and are of ecological significance in both 

surface and subsurface environments (Nakagawa et al., 2002; Detmers et al., 
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2004; Moser et al., 2005; Kaksonen et al., 2006; Haouari et al., 2008; Basso et al., 

2009; Guan et al., 2013; Watanabe et al., 2013). 

Firmicutes often dominate bacterial communities from deep subsurface 

sediments (Fry et al., 2008; Edwards et al., 2010). The presence of sulfate-

reducing Desulfotomaculum in these environments has been attributed to their 

adaptation to extreme conditions, through sporulation and the ability to grow at high 

temperature (Aüllo et al., 2013). In addition, Desulfotomaculum spp. are 

metabolically diverse, and can utilise a wide range of substrates, including acetate 

and hydrogen, both of which are thought to be important substrates for life in the 

deep subsurface (Wellsbury et al., 1997; Aüllo et al., 2013; Roussel et al., 2015). 

Sulfate-reduction is a significant process in marine sedimentary environments 

(Jørgensen, 1982). In addition to active psychrophilic and/or mesophilic 

communities in marine surface sediments (Robador et al., 2015), some cold and 

temperate marine sediments host thermophilic spore-forming Desulfotomaculum 

spp. as explained above (section 1.1). Unable to grow at in situ temperatures, they 

remain dormant and are not influenced by selective pressures. This makes them 

ideal model organisms for studying dispersal, without the confounding influence of 

selection. To use these model organisms for biogeographic studies, it is important 

to consider their source habitat in order to identify possible dispersal vectors and 

determine their dispersal histories. 

1.4.1 Habitats of thermophilic endospore-forming bacteria 

In cold Arctic sediments thermophilic sulfate reduction occurred optimally 

(Topt) at 56°C, and was detected between 41 and 62°C, representing the minimum 

(Tmin) and maximum (Tmax) growth temperature for thermophilic SRB in those 

sediments (Hubert et al., 2009). The Tmin is significantly higher than the annual in 

situ temperature (-2 to +4°C), indicating that the source must be an external habitat, 

with thermal conditions between the Tmin and Tmax. Given a flux of up to 108 

thermophilic spores m-2 y-1 to cold Arctic sediments, the warm anoxic source 

habitat must be associated with an efflux mechanism, and have sufficient 

magnitude to support these population sizes (Hubert et al., 2009). Close relatives 

to the thermophiles enriched in Arctic sediments were detected in deep oil reservoir 

and mid-ocean ridge habitats, in keeping with the warm anoxic source habitat 

criteria. Advective flow of geofluids from these habitats could expel thermophiles 
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from subsurface into the cold ocean, explaining their occurrence and observation 

in cold surface sediments (Hubert et al., 2009). 

1.4.1.1 Petroleum reservoirs 

Despite harsh environmental conditions, petroleum reservoirs are active 

deep biosphere ecosystems (Head et al., 2003; Parkes and Sass, 2009) and have 

been shown to harbour elevated cell counts – up to 107 cells g-1 – at the oil-water 

transition zone (Bennett et al., 2013). Firmicutes are a frequently detected bacterial 

phylum in high temperature (>50°C) subsurface oil reservoirs (Hubert et al., 2012) 

and are detected in both pristine and water-flooded reservoirs (Frank et al., 2015). 

Thermophilic fermentative spore-forming Firmicutes isolated from oil-field 

formation waters include members of the genera Thermoanaerobacter and 

Caldanaerobacter (Cayol et al., 1995; Fardeau et al., 2000; 2004). Three 

thermophilic species of sulfate-reducing Desulfotomaculum spp. have been 

isolated from oil fields, D. kuznetsovii (Nazina et al., 1989), D. salinum (Nazina and 

Rozanova, 1978), and D. thermocisternum (Nilsen et al., 1996), in addition to the 

mesophilic species D. halophilum (Tardy-Jacquenod et al., 1998).  

Seabed pockmarks and seeps result in the release of hydrocarbon fluids 

from subsurface oil reservoirs (Judd and Hovland, 2007). These natural seeps may 

transport thermophilic microorganisms adapted to hot petroleum reservoirs, out of 

the subsurface and into the cold ocean, where they are then transported in ocean 

currents (Figure 1.2) (Hubert and Judd, 2010). This process can explain the 

presence of thermophilic spore-forming bacteria detected in cold sediments that 

are close relatives of bacteria detected in oil reservoirs and oil production facilities 

(Hubert et al., 2009; de Rezende et al., 2013). Two Desulfotomaculum phylotypes 

detected in heated Aarhus Bay sediments shared greatest identity with bacteria 

originating in the Dan and Halfdan oilfields (Gittel et al., 2009), located 200 km west 

of Denmark, suggesting oil reservoirs in the region could be a source of 

thermophilic SRB in Aarhus Bay sediments (de Rezende et al., 2013). Seabed 

pockmarks and seeps are widespread in the ocean floor and could contribute to 

the dispersal of thermophilic organisms from the subsurface to the cold ocean on 

a global scale. 
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Figure 1.2: Dispersal of subsurface microorganisms from petroleum reservoirs. Leaking geofluids 
seep upwards (white circles) transporting microbial cells (grey ovals) and endospores (black circles) 
up into the ocean, where they may be dispersed in ocean currents. Microbial cells and endospores 
are then deposited in marine sediments potentially many kilometres away from the original source. 
The longevity of endospores may result in dispersal further from the source than vegetative cells, 
and their persistence deeper sediments layers. Adapted from Hubert and Judd (2010), Handbook 
of Hydrocarbon and Lipid Microbiology. 

1.4.1.2 Mid-ocean ridges 

A survey of endospore forming Firmicutes in >80 cold marine sediments 

from around the globe found that following experimental heating to 50°C, 44.5% of 

the thermophilic phylotypes identified (defined at 97% sequence similarity), were 

also detected in hydrothermally influenced sediments of the Guaymas Basin (43-

150°C, Gulf of California) (Müller et al., 2014). The results from this study are 

consistent with hydrothermal fields as a source of thermophilic spore-formers in 

the cold ocean. The hydrologically active igneous ocean crust is the largest aquifer 

on Earth, representing approximately 2% of the global ocean’s fluid volume 

(Edwards et al., 2011). The ocean circulates through this aquifer as fluids are 

exchanged with the overlying water column through hydrothermal circulation, 

mainly along ridge flanks which occur kilometres away from spreading centres at 

mid-ocean ridges (Edwards et al., 2011). High temperature microbial habitats 

persist in the oceanic crust beneath the flanks of mid-ocean ridge systems (Cowen 
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et al., 2003; 2004; Ehrhardt et al., 2007) with cell densities in the range of 105 ml-1 

reported within the igneous crust (Salas et al., 2015). Fluid-flow at vent sites is 

characterised by recharging seawater and underlying hydrothermal fluids, 

presenting physiological challenges for microorganisms, in particular, high 

temperature (Schrenk et al., 2010; Yanagawa et al., 2014). Temperature gradients 

in the subsurface and at vent chimneys encompass hyperthermophilic, 

thermophilic and mesophilic growth from the hot interior to the interface with cold 

seawater (Teske 2008; Martin 2008; Teske et al., 2014). High temperature vent 

fluids tend to be dominated by archaeal lineages with maximum growth 

temperatures as high as 121°C reported (Kashefi and Lovely, 2003; Ehrhardt et 

al., 2007). Diffuse fluids vented at off-axis ridge flanks may be much cooler (ca. 10-

90°C) with high concentrations of H2, CH4 and other low molecular mass 

hydrocarbons (Martin, 2008; Wankel et al., 2011). Advective fluid-flow at these 

sites may transport microorganisms from within this deep biosphere to the surface 

and into the water column via hydrothermal plumes or diffusive water flow (Huber 

et al., 2006; Orcutt et al., 2011). These fluids can harbour greater concentrations 

of microorganisms than background seawater (Summit and Baross, 1998; Lam et 

al., 2004; Huber et al., 2006), indicative of the dispersal of microorganisms from 

the subsurface. Hyperthermophile cell densities of at least 106 ml-1 were identified 

within hydrothermal plume of Macdonald Seamount, a submarine volcano in 

Polynesia (Huber et al., 1990) and up to 105 cells ml-1 were detected in warm 

hydrothermal fluids from an outcrop on the eastern flank of the Juan de Fuca Ridge, 

from which anaerobic thermophilic and hyperthermophilic enrichment cultures 

were obtained (Huber et al., 2006). These enrichment cultures included a gram-

positive anaerobic thermophile that shared high sequence identity with 

Caloranaerobacter azorenensis, a fermentative member of the Firmicutes isolated 

from deep sea hydrothermal vent (Wery et al., 2001). The gram-positive 

thermophile was also closely related to a thermophilic spore-former (phylotype A) 

enriched from cold Arctic sediments (Hubert et al., 2009). The detection of closely 

related thermophilic microorganisms in both hydrothermal fluids and cold Arctic 

sediments supports the theory that thermophilic microorganisms expelled into the 

ocean at venting sites are dispersed by seawater currents, to be deposited on the 

seafloor at a distant location. 
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Anaerobic fermentation of peptides and sugars is the predominant 

metabolism of heterotrophic thermophilic Firmicutes found at hydrothermal vents 

and in addition to Caloranaerobacter spp., the genera Caminicella, Tepidibacter, 

Caldanaerobacter and Thermosediminibacter have also been detected (Teske, 

2009). Sulfate-reducing Desulfotomaculum detected at vent sites include 

Desulfotomaculum tongense, which was isolated from a hydrothermal vent 

sediment collected from the Tofua Arc in the Tonga Trench (Cha et al., 2013). 

Bacteria closely related to Desulfotomaculum have been detected in deep-sea 

hydrothermal vent sulfide samples collected from the East Pacific, and South 

Atlantic (Jiang et al., 2015) and from vent chimneys and microbial mat samples 

from the Lost City hydrothermal field (Brazelton et al., 2006; Gerasimchuk et al., 

2010). 

1.4.1.3 Terrestrial thermal environments 

In addition to marine habitats, terrestrial industrial environments may add to 

the flux of thermophilic endospores detected in cold marine sediments, such as 

wastewater treatment plants and coal-fired power stations, which were identified 

as possible local sources of endospores of SRB in cold Aarhus Bay sediments 

(Isaksen et al., 1994). Sulfate-reducing Desulfotomaculum have been detected in 

industrially heated environments such as D. carboxydivorans which was isolated 

from an anaerobic bioreactor treating paper mill waste (Parshina et al., 2005) and 

strains of D. kuznetsovii and D. geothermicum have been detected in cooling 

towers at petroleum refineries (Anandkumar et al., 2008; 2009). Compost piles can 

also generate significant amounts of heat reaching temperatures of 70°C and 

higher (Canganella and Wiegal, 2014), accordingly the thermophilic 

Desulfotomaculum thermosapovorans was isolated from compost enrichments at 

55°C (Fardeau et al., 1995). 

Thermophilic spore-formers are also detected in naturally thermal terrestrial 

environments, such as solfataric fields and hot springs, which form where volcanic 

activity heats surface waters and soils. These terrestrial volcanic environments can 

reach temperatures in excess of 100°C, and are host to diverse thermophilic and 

hyperthermophilic microorganisms (Fardeau et al, 2010; Bouanane-Darenfed et 

al., 2013; Chernyh et al., 2015). In non-volcanic, geologically old or stable 

environments, such as the UK, high temperatures occur where water at depth is 
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heated by the normal crustal gradient, which is typically around 2.6°C 100 m-1 in 

the UK (Busby et al., 2010). Heat is also generated and maintained by the decay 

of radioisotopes of uranium, thorium and potassium within the Earth’s crust which 

can result in elevated geothermal gradients (McCay et al., 2014). Thermophilic 

sulfate-reducing Desulfotomaculum spp. isolated from naturally heated terrestrial 

thermal environments include; D. solfataricum, isolated from the sediments of a hot 

solfataric pool in Iceland (Goorissen et al., 2003), D. thermosubterranean, isolated 

from an underground mine in a geothermally active region of Japan (Kaksonen et 

al., 2006) and D. geothermicum strains which have been isolated from deep 

geothermal groundwaters in both France and Germany (Daumas et al., 1988; Sass 

and Cypionka, 2004). Other thermophilic members of the Firmicutes isolated from 

terrestrial thermal environments include Caldinitratiruptor, Thermovenabulum, and 

Caldicoprobacter (Fardeau et al., 2010; Ogg et al., 2010; Zarvarzina et al., 2012; 

Bouanane-Darenfed et al., 2013). 

1.5 Estuaries 

Estuaries occur at the transition between the terrestrial and marine 

biospheres. They are defined by the mixing of fresh- and saline water and provide 

a link for dispersal between terrestrial and marine habitats. Riverine flow transports 

sediment particles into the estuary from the erosion of riverbanks and catchment 

run-off. Catchment run-off is influenced by the catchment characteristics such as 

the local topography, geology, land use, soil and vegetation type. Sediment 

particles suspended in riverine flow may be deposited on the riverbed, or be 

transported offshore and be deposited on the seafloor. Tidal currents result in 

significant sediment loads being transported into estuaries from the marine 

environment. As a result of both fresh riverine outflow and saline tidal inflow 

estuarine sediments are sourced from both terrestrial and marine environments. 

The physical activity resulting in the entrainment and deposition of sediment 

particles in estuaries, similarly acts upon microorganisms attached to sediment 

particles and those suspended freely in the water column, resulting in a mixed 

estuarine microbial community. 
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1.5.1 Microbial distribution in estuarine sediments 

Estuaries are complex ecosystems, characterised by changing physical and 

chemical conditions both laterally and with depth. Microorganisms may be 

advected into estuaries from riverine flow, surface run-off, groundwater seepage, 

and tidal currents, resulting in a mixed estuarine community of soil, sediment and 

marine derived species adapted to the estuarine environment (Crump et al., 2004). 

Terrestrial habitats in the upper reaches of estuarine environments influence the 

community composition of downstream habitats through downslope dispersal of 

microorganisms (Crump et al., 2012). The mixing of freshwater and seawater 

results in physical and chemical gradients in salinity, nutrient input and organic 

matter composition (Crump et al., 2004). These changes are reflected in the 

microbial community composition, which results from the gradual mixing of 

freshwater and seawater communities, in addition to the inactivation of some 

microbial groups resulting from physiological stress (Bouvier et al., 2002). Microbial 

salinity tolerance in particular contributes significantly to compositional changes in 

estuarine microbial communities (Telesh and Khlebovich, 2010). A study of the 

Choptank River in the USA demonstrated that the distribution α- and 

β-proteobacteria along the salinity gradient overlapped, but that α-proteobacteria 

were generally found in lower reaches of the estuary with higher salinities and 

β-proteobacteria in upstream reaches of the estuary with lower salinities (Bouvier 

et al., 2002). Sulfate reduction can be the dominant process in estuaries receiving 

input of sulfate from tidal currents. A study of the Colne estuary, UK, detected an 

SRB community of Desulfobacter, Desulfobacterium, Desulfobulbus and 

Desulfovibrionaceae, and demonstrated that their distributions were linked to their 

metabolic flexibility (Purdy et al., 2002a). A study of the same estuary, identified 

methanogenesis to be an important process in the estuary, and found it to be 

predominant in upstream sites where sulfate-rich tidal currents had less influence 

(Purdy et al., 2002b). 

In addition to lateral gradients, estuarine microbial populations are depth 

distributed related to the availability of electron acceptors and donors. Oxygen is 

rapidly depleted in surface estuarine sediment, resulting in an anoxic subsurface 

characterised by microorganisms that utilise nitrate, manganese, iron, sulfate and 

carbon dioxide as terminal electron acceptors (Köpke et al., 2005; Wilms et al., 
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2006; O’Sullivan et al., 2013). An investigation of tidal flat sediments, which form 

in intertidal regions from the deposition of sediment from both riverine and tidal 

flow, showed that the microbial community shifted from one dominated by 

Proteobacteria in near surface sediments, to one dominated by Firmicutes in 

sulfidic layers at depth (Köpke et al., 2005). A study of sediments from the same 

region demonstrated that depth distributed bacterial communities were affected by 

the availability of carbon sources, while archaeal communities correlated with 

methane and sulfate concentrations (Wilms et al., 2006).  

1.6 Objectives and Outline of this Thesis 

Thermophilic endospores in cold sediments can be used as models for 

investigating the dispersal of marine microorganisms (de Rezende et al., 2013; 

Müller et al., 2014). Work presented in this thesis aims to use these model 

organisms to reveal dispersal vectors that deliver microorganisms to estuarine 

environments, which are influenced by both terrestrial and marine biosphere 

inputs. Chapter 3 explores this by identifying changes in the community 

composition of thermophilic spore-forming bacteria along an estuarine gradient to 

reveal distribution patterns indicative of different dispersal histories. Chapter 4 

investigates the survival physiology of thermophilic endospores which demonstrate 

extreme heat-resistance when exposed to high temperature. Geothermal 

groundwater was investigated as a potential local source habitat of thermophilic 

microorganisms, and a comparison of the microbial community in the groundwater 

and estuarine sediment enrichments is presented. Chapter 5* applies the sediment 

heating research approach in an industrially relevant context by testing the 

hypothesis that the germination of thermophilic endospores can be induced by 

cooling from hot to warm temperature, simulating the situation in petroleum 

reservoirs that receive seawater injection during secondary oil recovery. Chapter 6 

discusses the activity of extremely thermophilic Firmicutes enriched in sediments 

incubated at >80°C. The results presented throughout are summarised and 

discussed in Chapter 7. 

 

                                            
*[Chapter 5 includes data contributed by Dr. Angela Sherry, Newcastle University. 
Contributions are acknowledged within]. 



Chapter 2 – Materials and Methods 

 18 

Chapter 2.  

Materials and Methods 

2.1 The Tyne estuary 

The River Tyne is a tidal estuary in northeast England, its two principal 

tributaries, the South Tyne and the North Tyne, have a combined catchment area 

of ca. 2000 km2). The tidal limit of the estuary is located approximately 32 km from 

the ocean at Tynemouth. It is estimated that 250,000 tonnes of sediment that 

accumulates annually in the Tyne estuary is of marine origin and 350,000 tonnes 

is of terrestrial origin (Hall, 1967). The River Tyne discharges into the North Sea at 

Tynemouth, where freshwater run-off mixes with North Atlantic water. Deep North 

Sea waters consist of water of Atlantic origin while shallower regions are influenced 

by the mixing of freshwater discharge. Freshwater discharge from rivers into the 

North Sea is in the order of 300 km3 y-1 (OSPAR Commission, 2000). Estuaries 

along the east-coast of the UK (including the Tyne, Tees, Humber, Thames and 

Forth) have a combined total catchment of 115,500 km2 with an annual freshwater 

run-off of 48 km3. River discharges combined with tidal action result in intensive 

sediment transport.  

2.1.1 Sampling locations 

Sediment was collected from six stations (Figure 2.1), where the “F”, “B” 

and “M” notation indicate Freshwater, Brackish and Marine, respectively. Estuarine 

sediment was sampled from Ovingham (station F1; 54°57'56''N, 1°52'10''W), 

Newburn (station B2; 54°58'47''N, 1°44'35''W), Scotswood (station B3; 54°57'51''N, 

1°40'60''W), Byker (station B4; 54°58'22''N, 1°35'38''W) and Jarrow (station B5; 

54°59'27''N, 1°28'35''W) (Figure 2.1). Marine sediment was sampled from the 

North Sea ca. 175 km off the English north-east coast where the River Tyne 

discharges (station M6; 55°05'13''N, 1°15'09''W). Station F1 at Ovingham is 

upstream of the tidal limit of the estuary, where the river tree-lined and backed with 

agricultural land. Stations B2-B4 are within the tidal range, where the river is 

channelised and flows through the urbanised city of Newcastle upon Tyne. 

Sediment was collected from 20-30 cm depth and stored in sealed containers at 

4°C. Geothermal water was sampled from a borehole located within the Tyne 
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catchment (GB; 54°58'23''N, 1°37'34''W) (Figure 2.1). Additional details on the 

geothermal groundwater are provided in section 4.3.5. 

 

Figure 2.1: The River Tyne, UK. The River Tyne is a tidal estuary in the northeast of England, 
highlighted on the UK inset map with a box and arrow. Sediment was collected from six stations; 
Ovingham (station F1), Newburn (station B2), Scotswood (station B3), Byker (station B4) and 
Jarrow (station B5). Station M6 was located in the North Sea, approximately 175 km off the coast. 
The “F”, “B” and “M” notation indicate Freshwater, Brackish and Marine, respectively. The tidal limit 
of the estuary is located between station F1 and B2, indicated by the dashed line. GB marks the 
location of the Geothermal Borehole from which geothermal water was sampled. Land use data 
was accessed from the EDINA Environment Digimap Service (Land Cover Map, 2007). 

2.2 Sediment slurry incubations 

2.2.1 Preparation of microcosms 

Sediment heating experiments were used to enrich thermophilic 

endospores in cold sediments. Sediment heating enables spore-forming taxa to be 

identified following germination and growth, as the extraction of DNA directly from 

endospores can be difficult owing to their resilience to standard protocols used to 

extract DNA from vegetative cells (Wunderlin et al., 2013). Sediments were mixed 

with either brackish or marine basal medium prepared according to Widdel and 

Bak (1992) (Table 2.1 and 2.2) with the concentration of sulfate adjusted to 20 mM. 

Organic substrates were added to the medium from sterile stock solutions. The 
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final assembled medium was dispensed anaerobically into Wheaton glass serum 

bottles (60 or 100 ml, Sigma-Aldrich, UK). Sediment was added to each serum 

bottle under a constant flow of N2 to give a final ratio of 2:1 (v/w) and the bottles 

were sealed using butyl rubber stoppers and aluminium crimps. 

Table 2.1: Preparation of basal media from Widdel and Bak, (1992). *Na2SO4 was altered from 4 g 
to 2.84 g to give a concentration of 20 mM in the final medium. 

 Brackish medium Marine medium 

Distilled water 1.0 litre 1.0 litre 

NaCl 7.0 g 20.0 g 

MgCl2·6H2O 1.2 g 3.0 g 

CaCl2·2H2O 0.1 g 0.15 g 

NH4Cl 0.25 g 0.25 g 

KH2PO4 0.2 g 0.2 g 

KCl 0.5 g 0.5 g 

Na2SO4* 2.84 g 2.84 g 

Table 2.2: Assembling the final medium. Aliquots from stock solutions were aseptically added to 
autoclaved basal medium under a flow of N2/CO2. The pH was adjusted to 7.0 – 7.3 by adding 1 M 
H2SO4 or 1 M Na2CO3. 

 Per litre basal medium 

Non-chelated trace element solution 1.0 ml 

Selenite-tungstate solution 1.0 ml 

Vitamin solution 1.0 ml 

Vitamin B12 1.0 ml 

NaHCO3 solution (1.0 M) 30.0 ml 

Na2S solution (0.6 M) 2.5 ml 

 

2.2.2 Analysis of sulfate 

Sediment microcosms were subsampled by removing 1.5-2 ml of 

homogenised slurry from the microcosms using a N2 flushed syringe. Aliquots of 

sediment slurry were centrifuged (13,000 g, 5 minutes, Hettich Mikro 200). The 

supernatant was used for sulfate analysis and the sediment pellet was stored 

at -20°C for DNA extraction. Sulfate was analysed by ion chromatography using a 
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Dionex ICS-1000 with an AS40 auto-sampler. The column for measuring sulfate 

and other inorganic anions was an IonPac AS14A analytical column with the flow 

rate set to 1ml min-1. The eluent was 8.0 mM Na2CO3 / 1.0 mM NaHCO3 solution 

and the injection loop was 25 µl. Chromatograms were visualised using 

Chromeleon Dionex software and peak areas calibrated using standard sulfate 

solutions. 

2.2.3 Analysis of volatile fatty acids (VFA) 

VFA (butyrate, propionate and acetate) were analysed by ion 

chromatography using a Dionex ICS-1000 with an AS40 auto-sampler. The column 

for measuring organic acids was an IonPac ICE-AS1, 4x250 mM analytical column 

with the flow rate set to 0.16 ml/min. The eluent was a 1.0 mM heptafluorobutryic 

acid solution, and the cation regenerant solution used for the AMMS-ICE II 

Supressor was 5 mM tetrabutylammonium hydroxide. The injection loop was 10 µl. 

Chromatograms were visualised using Chromeleon Dionex software and peak 

areas calibrated using standard solutions. 

2.2.4 Analysis of sulfide 

Sulfide was measured in enrichments with little to no sediment particles. 

The concentration of sulfide in culture medium was determined 

spectrophotometrically as a colloidal solution of copper sulfide as described by 

(Cord-Ruwisch, 1985). A 50 mM HCl 5 mM CuSO4 solution was prepared and 4 ml 

added to a polypropylene cuvette, 100 µl culture medium was aseptically removed 

with an N2 flushed syringe and added to the copper sulfide solution. The sulfide 

concentration was measured at 480 nm wavelength and mM concentrations 

determined using standard solutions prepared with sodium sulfide nonahydrate. 

2.3 Microbial community analysis 

2.3.1 DNA extraction 

Sediment microcosms were subsampled by removing 1.5-2 ml of 

homogenised slurry from the microcosms using a N2 flushed syringe. Aliquots of 

sediment slurry were centrifuged, the supernatant was used for sulfate and organic 

acid analysis (described in 2.2.2 and 2.2.3). and sediment pellet used for DNA 

extraction. DNA was extracted using the PowerSoil DNA isolation Kit (MoBio 



Chapter 2 – Materials and Methods 

 22 

Laboratories, Inc) following the manufacturer’s protocol, except for the elution step 

(step 20), which was modified by eluting DNA with 50 μl instead of 100 μl of elution 

buffer (solution C6) and leaving to elute for 30 minutes instead of centrifuging 

immediately (step 21). A procedural blank was prepared with every set of DNA 

extractions performed, where all of the steps were carried out but no sample was 

added. Extracted DNA was used as a template for PCR amplification.  

2.3.2 Polymerase chain reaction (PCR) amplification 

For PCR amplification each sample contained 1.0 μl of DNA template and 

49 μl of master mix (1.0 μl of 10 μM forward primer, 1 μl of 10 μM reverse primer, 

1.0 μl of 10 mM dNTPs (Thermo Scientific Fermentas Ltd, UK), 1.6 μl of 50 mM 

MgCl2, 5.0 μl of 10x NH4
+ buffer, 0.2 μl of Taq DNA polymerase (Biotaq, Bioline 

Reagents Ltd, UK) and 39.2 μl of sterile water. A negative control containing 

master mix only with no added DNA template was included to detect contamination 

of the reagents or contamination from the PCR preparation. In addition, the DNA 

extraction procedural blank (section 2.3.1) was used as a DNA template to 

demonstrate that no contamination occurred during the DNA extraction process. 

DNA from a positive control sample, known to contain the amplicon of interest, was 

used as a template to verify negative amplification results. Specific cycling 

conditions are given in the subsequent sections according to the analytical strategy 

that was chosen. PCR was carried out using an automated thermal cycler Techne 

TC-512. PCR products were visualised by electrophoresis on a 1% agarose gel. 

2.3.3 Amplification of 16S rRNA genes 

The most widely used gene for inferring phylogenetic relationships among 

prokaryotes is the 16S ribosomal RNA (rRNA) gene. This genetic marker is used 

for a number of reasons including (1) it is ubiquity amongst prokaryotes, (2) it is 

functionally constant (3) it is long enough (ca. 1500 bp) to provide sufficient 

sequence information for defining phylogenetic relationships and (4) the presence 

of highly conserved regions in addition to variable regions allow primers to be 

designed for multiple scales of phylogenetic resolution from domain- to species-

level (Head et al., 1998; Janda and Abbott 2007). Coverage of primers used 

throughout are detailed in Appendix C, Table C.1. 
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2.3.3.1 Denaturing gradient gel electrophoresis (DGGE) targeting 
Desulfotomaculum spp. 

DGGE separates gene amplicons of the same length, but with different 

base-pair sequences, electrophoretically based on their differential mobility in a 

denaturing gradient polyacrylamide gel (Muyzer et al., 1993). DGGE was carried 

out following two-step nested PCR. The initial amplification used primer pair 

DEM116f (5’-GTA ACG CGT GGA TAA CCT-3’) and DEM1164r (5’-CCT TCC TCC 

GTT TTG TCA-3) that targets the 16S rRNA gene of Desulfotomaculum spp. 

(positions 116-1164) (Stubner and Meuser, 2000). The PCR programme 

comprised an initial denaturation step at 94°C for 3 minutes followed by 20 cycles 

of denaturation (94°C, 1 min), annealing (60°C, 1 min) and extension (72°C, 1 min), 

then final annealing (60°C, 1 min) and extension (72°C, 7 min) steps. The PCR 

product was used as a template in a second round of PCR amplification using 

universal bacterial primers 341f (5’-GCC TAC GGG AGG CAG CAG-3’) (Muyzer 

et al., 1993) and 907r (5’-CCG TCA ATT CMT TTG AGT TT-3’) (Muyzer et al., 

2004), targeting the V3-V5 region of the 16S rRNA gene (positions 341-907). A 39 

nucleotide GC-clamp was added to the 5’ end of the primer 341f (CGC CCG CCG 

CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG). PCR cycling conditions 

were an initial denaturation cycle (94°C, 5 min) followed by 1 cycle of annealing 

(65°C, 1min) and extension (72°C, 3min), 19 touchdown cycles of denaturation 

(94°C, 1min), with the annealing temperature decreased by 1°C every second 

cycle (64°C-55°C, 1 min) and extension (72°C, 3min), followed by 5 cycles 

denaturation (94°C, 1min) annealing (55°C, 1min) and extension (72°C, 3min) and 

a final extension (72°C, 10 min). PCR products were loaded on a 6% 

polyacrylamide gel with a 50–75% urea and formamide denaturing gradient (100% 

denaturant was 80 ml formamide with 84 g urea made up to 200 ml with distilled 

water). Gels were cast using an INGENYphorU electrophoresis cassette and run 

at 60°C in Tris-acetate-EDTA buffer (40 mM Tris acetate, 1 mM EDTA, pH 8.3) for 

16 hours at 100V, then stained in a 1:200 dilution of SYBR-Gold (Life Technologies 

Ltd., Paisley, UK) for 1 h. The acrylamide gel was visualised on a UV 

transilluminator (Ultra-Violet Products Ltd, Cambridge, UK). Distinctive bands were 

excised with a sterile scalpel blade and stored in 100 µl sterile distilled water at 5°C 

for 24 h. DNA eluted from the excised bands was re-amplified using universal 
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bacterial rRNA gene primers 341f and 907r and Sanger dideoxy sequencing was 

performed using primer 341f at Geneius Labs (Cramlington, UK). 16S rRNA gene 

sequences were trimmed and edited in BioEdit Sequence Alignment Editor version 

7.0.9.0 (Hall, 1999) and resulted in 16S rRNA gene sequences of 400-500 bp. 

2.3.3.2 16S rRNA gene clone libraries 

Cloning of the 16S rRNA was used to retrieve longer sequences to obtain a 

finer genetic resolution. Near full-length 16S rRNA gene amplicons (positions 8-

1542) were obtained by PCR with forward primer pA (5’-AGA GTT TGA TCC TGG 

CTC A-3’) and reverse primer pH (5’-AAG GAG GTG ATC CAG CCG CA-3’) 

(Edwards et al., 1989). PCR components were as described in section 2.6. The 

PCR cycling conditions were an initial denaturation cycle with 3 min at 95°C, 

followed by 30 cycles consisting of denaturation (1 min at 95°C), annealing (1 min 

at 55°C), extension (1 min at 72°C), and final extension of 10 min at 72°C. The 16S 

rRNA PCR products were visualised and purified by agarose gel electrophoresis 

using crystal violet and cloned using TOPO XL PCR Cloning Kit according to the 

manufacturers instructions (Invitrogen, Paisley, UK), Clones were screened to 

determine insert size using PCR with the vector-specific primers pUCF (5’-GTT 

TTC CCA GTC ACG AC-3’) and M13R (5’-CAG GAA ACA GCT ATG AC-3’). PCR 

cycling conditions were 10 min at 95°C, followed by 30 cycles consisting of 

denaturation (1 min at 95°C), annealing (1 min at 57°C), extension (1 min at 72°C), 

and a final extension at 72°C for 10 min. The insert size (~1.5 kb) was determined 

by electrophoresis with a 1% agarose gel. Cloned inserts of the correct size were 

purified using ExoSAP-IT (GE Healthcare, Buckinghamshire, UK) according to the 

manufacturer’s instructions. To retrieve near-full length 16S rRNA sequences 

Sanger dideoxy sequencing was performed with primers pA and pH in addition to 

the internal primers pC (5’-CCG TCA ATT CMT TTG AGT TT-3’), pF (5’-ACG AGC 

TGA CGA CAG CCA TG-3’) (Edwards et al., 1989) at Geneius Labs (Cramlington, 

UK). Sequences were trimmed and consensus alignments constructed in BioEdit 

Sequence Alignment Editor version 7.0.9.0 (Hall, 1999). 

2.3.3.3 Ion Torrent sequencing 

The advent of high-throughput sequencing methods enables rapid and 

relatively low-cost sequencing of microbial communities retrieving millions of 
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sequences per run (Loman et al., 2012). 16S rRNA gene amplicons were 

sequenced using the Ion Torrent Personal Genome Machine (PGM) (Life 

Technologies). Ion Torrent determines sequence information by measuring 

changes in pH resulting from the release of a hydrogen ion when a nucleotide is 

incorporated into the sequence. Extracted DNA was used as a template for PCR 

amplification using Golay barcoded fusion primers (synthesised at Thermo Fisher 

Scientific, Inc.) that amplify the V4-V5 region (position 515-926) of the 16S rRNA 

gene with forward primer V4F (5’-GTG NCA GCM GCC GCG GTA A-3') and V5R 

(5’-CCG YCA ATT YMT TTR AGT TT-3'). The PCR protocol was denaturation at 

95°C for 4 minutes followed by 25 cycles consisting of denaturation (1 min, 95°C), 

annealing (45 s, 55°C) and extension (1 min, 72°C) and a final extension for 10 

minutes at 72°C. In instances where amplicons from triplicate microcosms were 

pooled, PCR products from individual microcosm DNA extracts were first quantified 

using the Quant-iT Picogreen dsDNA Assay kit (Invitrogen, Life Technologies, Inc.) 

with the Tecan Infinite 200 PRO. Triplicate amplicons were then pooled in 

equimolar concentrations prior to purification using Agencourt AMPure XP 

paramagnetic beads (Beckman Coulter, Inc.). Following purifications, amplicons 

were quantified using the Qubit 3.0 Fluorometer and Qubit dsDNA High Sensitivity 

Assay kit (Life Technologies, Inc.) to enable pooling of equimolar amounts of each 

amplicon, at 100 pM each, for sequencing. 

Pooled amplicons were submitted for sequencing using an in-house Ion 

Torrent PGM (School of Civil Engineering and Geosciences, Newcastle University) 

and standard Ion Torrent sequencing procedures (Life Technologies, Inc.). The 

Quantitative Insights Into Microbial Ecology (QIIME) software package (version 

1.7.0) was used to process raw sequence data (Caporaso et al., 2010b). 

Sequences were assigned to samples based on their barcodes and simultaneously 

filtered to remove poor quality reads (those with a quality value of <20 were 

discarded). Organisation of good quality reads into operational taxonomic units 

(OTUs) was performed using UClust (Edgar, 2010), with an OTU threshold defined 

at 0.97 (97% sequence identity). Clustering of OTUs was first performed open 

reference against the Greengenes 16S rRNA database (DeSantis et al., 2006) and 

then de novo. Taxonomy was assigned using RDP Classifier (Wang et al., 2007) 

and sequences aligned using PyNAST (Caporaso et al., 2010a). Chimeric 

sequences were identified with ChimeraSlayer (Haas et al., 2011) and removed 
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from subsequent analysis. A final OTU table was generated by rarefying all libraries 

in the dataset to the smallest library. QIIME scripts used throughout are detailed in 

Appendix B. 

2.3.4 Amplification of dsrAB genes 

The dsr gene encodes for dissimilatory sulfite reductase, a key enzyme for 

sulfate reduction, which catalyses the reduction of sulfite to sulfide (Wagner et al., 

1998). The dsr gene was amplified using primers DSR1F (5’-ACS CAC TGG AAG 

CAC G-3’) and DSR4R (5’-GTG TAG CAG TTA CCG CA-3’) resulting in a 1.9 kb 

gene amplicon (Wagner et al., 1998). The cycling conditions for primer pair 

DSR1F/DSR4R were according to Guan et al., (2013) starting with 5 min at 95°C, 

followed by 35 cycles consisting of denaturation (45 s at 94°C), annealing (45 s at 

55°C), extension (90 s at 72°C), and a final extension at 72°C for 10 min. The 

dsrAB cloned insert was sequenced with primers DSR1F and DSR3R (5’-GAA 

GAA SAT GWA CGG GTT) (Wagner et al., 1998). Sequences were trimmed and 

consensus alignments constructed in BioEdit Sequence Alignment Editor version 

7.0.9.0 (Hall, 1999), resulting in dsrA sequences of 800-900 bp. 
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Chapter 3.  

The distribution of thermophilic Firmicutes along an estuarine 
gradient reveals multiple dispersal histories for endospores in 
estuarine and marine sediments 

3.1 Abstract 

Thermophilic endospores are found in cold and temperate sediments where 

they are unable to grow and thus persist in a dormant state for long periods of time. 

Their inability to grow in these environments effectively removes the confounding 

influence of environmental selection, which contributes to changes in microbial 

community composition. To understand their biogeography, spores can therefore 

be treated as tracer particles, and their spatial distribution used as an indicator of 

their dispersal history. To test the hypothesis that tidal currents deliver marine-

derived thermophilic endospores to estuarine sediments, the distribution of 

thermophilic endospore populations in sediments of the River Tyne, a tidal estuary 

in northeast England connected to the North Sea, was investigated. The 

distribution pattern of 80 OTUs corresponding to thermophilic Firmicutes was 

determined, and indicated that 78% of thermophilic spore-formers detected in 

estuarine sediments from the River Tyne were terrestrially derived, and the 

remaining 22% were of marine origin. In addition, 70% of OTUs from terrestrially 

derived thermophilic spore-formers were detected in low relative abundance in 

sediment from the North Sea indicating that endospores from terrestrial 

environments are delivered to the open ocean. Different dispersal histories 

revealed within the estuary suggest that the diversity of thermophilic endospores 

in estuarine sediments is the result of bi-directional currents, terrestrial run-off, 

groundwater seepage, and effluent from industrial activities which may all operate 

as vectors for the passive dispersal of microorganisms. 
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3.2 Introduction 

Large-scale bacterial dispersal is facilitated by the movement of ocean 

currents and air currents (Hervàs et al., 2009; Galand et al., 2010; Yamaguchi et 

al., 2012; Müller et al., 2014). Bacteria in transit are eventually transported to 

locations different from where they last grew or were active, potentially far away 

from that original source. If the new environment is favourable, cells in transit may 

have the opportunity to grow and successfully colonise. Without appropriate growth 

conditions, bacteria will only persist in their new location if their loss is balanced by 

influx of new cells (Pedrós-Alió, 2012), in which case they may form part of a 

microbial seed bank of low abundance taxa (Lennon and Jones, 2011; Gibbons et 

al., 2013). Bacteria able to form endospores remain dormant during unfavourable 

conditions and can persist in the environment for long periods of time – 

characteristics that are particularly relevant for the microbial seed bank. Several 

studies have shown this seed bank to include inactive spores of thermophilic 

bacteria (Bartholomew and Paik, 1966; Isaksen et al., 1994; Dobbs and Selph, 

1997; Hubert et al., 2009; de Rezende et al., 2013; Müller et al., 2014) that 

constitute a non-indigenous, low abundance, dormant component of microbial 

communities in cold sediments. As spores, these microorganisms are a particularly 

useful marker of dispersal, as spore formation not only facilitates their dispersal 

across large distances and through hostile surroundings but also means that once 

deposited in an environment unsuitable for their growth they remain viable and 

leave a record of their distribution. As such they can be used to investigate the 

passive dispersal of bacteria in the marine environment in general (de Rezende et 

al., 2013; Müller et al., 2014). 

Past investigations of the diversity and abundance of thermophilic 

endospores in cold environments have focused on marine sediments. These 

studies have revealed that significant numbers thermophilic endospores of sulfate-

reducing bacteria (SRB) are deposited in cold marine surface sediments (up to 108 

spores m-2 y-1) (Hubert et al., 2009; de Rezende et al., 2013). These thermophilic 

endospores appear to derive from warm subsurface environments that must be 

delivering microorganisms into the cold ocean (Hubert et al., 2009). Once in the 

water column, microorganisms may be transported in ocean currents and seed 

marine sediments below (Müller et al., 2014; Walsh et al., 2015). 
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Estuaries are dynamic ecosystems that form the transition between the 

terrestrial and marine biospheres along a terrestrial-freshwater-marine continuum. 

As tidally influenced environments estuarine sediments could be a sink for marine 

derived thermophilic endospores dispersed via ocean currents. This would result 

in a gradient in the distribution of thermophilic Firmicutes in estuarine sediments, 

from marine to freshwater, as an effect of ocean currents seeding the tidally-

influenced reaches of the estuary. To test this hypothesis, the distribution of 

thermophilic endospores within the River Tyne, a tidal estuary adjoining the North 

Sea, was investigated. Different sediments were incubated under sulfate-reducing 

conditions and at high temperature, with the resulting microbial communities 

analysed using 16S rRNA gene amplicon libraries. The distribution of thermophilic 

Firmicutes and in particular sulfate-reducing Desulfotomaculum spp. were tracked 

along the estuarine gradient, suggesting newly considered dispersal histories 

involving different warm source environments. 

3.3 Methods 

3.3.1 Study sites 

Sediment was sampled from 20-40 cm depth from five locations within the 

estuary (Figure 2.1); stations F1, B2, B3, B4 and B5, as well as from one location 

in the North Sea, station M6. Station F1 is upstream of the tidal limit of the estuary, 

while the other four estuarine locations are within the tidal range. Sediment 

descriptions were determined by visual inspection (Table 3.1).  

3.3.2 Sediment slurry incubations at elevated temperature 

Estuarine sediments were mixed with brackish basal medium prepared 

according to Widdel and Bak (1992) (section 2.2.1) with the concentration of sulfate 

adjusted to 20 mM. The medium was amended with tryptic soy broth (TSB) in a 

final concentration of 3 g L-1, glucose at a final concentration of 3 mM, and the 

organic acids acetate, propionate, butyrate and lactate also at a final concentration 

of 3 mM each. Sediment collected from the North Sea was mixed with marine basal 

medium (Widdel and Bak, 1992) (section 2.2.1) with the same levels of sulfate and 

organic substrates as indicated above. Microcosms were always prepared in 

triplicate from all sample locations. Microcosms were pasteurised for 1 hour at 

80°C to kill vegetative cells, then incubated at 50°C for 8 days.  
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3.3.3 Monitoring of time course incubations 

Sediment microcosms were subsampled daily by removing 2 ml of 

homogenised slurry from the microcosms using a N2 flushed syringe. Aliquots of 

sediment slurry were centrifuged (13,000 g, 5 minutes, Hettich Mikro 200). The 

supernatant was used for sulfate analysis (section 2.2.2) and the sediment pellet 

was stored at -20°C for DNA extraction (section 2.3.1). 

3.3.4 Analysis of 16S rRNA amplicon libraries 

16S rRNA gene amplicon libraries were sequenced using the Ion Torrent 

platform and analysed using QIIME (section 2.3.3.3). Sulfate concentrations 

(Figure 3.1) and DGGE profiles (Appendix A, Figure A.1) were highly reproducible, 

therefore DNA extracts from triplicate time points were pooled prior to purification 

on amplicon libraries as described in section 2.3.3.3. Each library was rarefied to 

the smallest library in the dataset (12,852 reads) and used to determine distribution 

patterns within the dataset. Rarefaction curves from all stations indicated that this 

was a sufficient sampling depth (Appendix A; Figure A.2A). OTUs were defined at 

97% similarity. In certain instances, if an OTU of interest was absent in the rarefied 

OTU table, the unrarefied OTU table was checked to confirm the absence of that 

OTU from the larger full amplicon library (mean, median and maximum library sizes 

were 25,729, 23,647 and 91,369 reads, respectively; Appendix A, Table A1). 

Representative sequences of Desulfotomaculum OTUs detected at ≥0.05% 

relative abundance in the rarefied libraries were extracted, and closest sequence 

matches within the Genbank database identified with the Basic Local Alignment 

Search Tool (BLAST) using the blast (blastn) suite at the National Center for 

Biotechnology Information (NCBI) (Altschul et al., 1990). Four of these OTUs 

(Desulfotomaculum spp. G, R, F and AA) were named based on closely related 

(99% sequence identity) Desulfotomaculum phylotypes previously identified in 

sediment heating experiments from Svalbard (Hubert et al., 2010) and Aarhus Bay, 

Denmark (de Rezende et al., 2013). 

3.3.5 MPN quantification of endospores of thermophilic sulfate-reducing 
bacteria 

Endospores of thermophilic sulfate-reducing bacteria in sediments from 

stations F1, B3 and M6 were enumerated using a three-tube MPN approach. 
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Brackish medium was prepared as described in section 2.2.1 and amended with 

the organic acids butyrate, propionate lactate and acetate, to final concentrations 

of 3 mM each. Medium was then dispensed into Hungate tubes under a constant 

flow of N2. A 1:10 dilution (w/v) of sediment and medium was pasteurised for 1 hour 

at 80°C after which the 10-1 dilution of sediment was serially diluted (1 ml into 9 ml 

medium) up to 10-7. Inoculated Hungate tubes plus nine sterile blanks, containing 

only medium and substrates, were incubated at 50°C for three months, after which 

time the concentration of sulfide was determined spectrophotometrically as a 

colloidal solution of copper sulfide as described by Cord-Ruwisch, (1985) (section 

2.2.4). Hungate tubes that showed sulfide production were scored positive for 

growth. 

3.3.6 Total organic carbon (TOC) 

Sediment TOC was determined according to ISO 10694, (1995). The TOC 

of triplicate samples was analysed using a LECO CS230 carbon analyser (LECO 

Instrument UK, Ltd), and reported as a percentage of total mass. 
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3.4 Results 

3.4.1 Endospores of thermophilic SRB in temperate estuarine sediments 

Sulfate reduction in pre-pasteurised microcosms was detected within 24 to 

48 hours of incubation at 50°C for sediments from every location, both tidally 

influenced (Figure 3.1B-F) and upstream of the tidal limit (Figure 3.1A). This 

revealed the presence of viable thermophilic spore-forming SRB in all reaches of 

the estuary. Sulfate consumption was rapid at all locations and was completely 

reduced to 0 mM within 120 h of incubation at 50°C. 

 
Figure 3.1: Sulfate reduction in pasteurised sediment microcosms (1 hour at 80°C) incubated at 
50°C. Sediment from freshwater (station F1: A) and brackish (stations B2-B5: B-E) reaches of the 
estuary and one marine site from the adjacent North Sea (station M6: F) were incubated. The “F”, 
“B” and “M” notation indicate Freshwater, Brackish and Marine, respectively. Sediment microcosms 
were prepared in triplicate and amended with organic substrates. Sulfate concentration was 
measured daily with bars showing standard error among triplicate bottles. In many cases, the error 
bars are smaller than the size of the sulfate symbols. 

MPNs were calculated for thermophilic sulfate-reducing endospores for one 

freshwater, one brackish and one marine sediment (stations F1, B3 and M6) 
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incubated at 50°C. Stations B3 and M6 both had an abundance of 4.3 ⋅ 103 spores 

g-1 sediment. MPN values from station F1 indicated a low abundance of 

thermophilic endospores of SRB with just 3.6 ⋅ 100 spores g-1 detected. Sediment 

incubations from station F1 had a long lag-phase (Figure 3.1A), which could be the 

result of the low spore numbers, as indicated by MPN. Station F1 contained sandy 

sediment and had the lowest measured TOC (0.19%) of all of the sediments (Table 

3.1). Sediment texture has been shown to affect endospore abundance in marine 

sediments, with significantly lower numbers found in sandy sediments than in black 

mud layers with higher TOC (Fichtel et al., 2008). The study included both 

autochthonous and allochthonous endospores, but it was suggested that 

endospores delivered from an external source may be preferentially captured in 

muddy sediments with small pore space and lower hydraulic conductivity. This may 

in part explain the lower abundance of endospores being retained in the sandy low-

TOC sediments at station F1, as compared to other stations consisting of muddy 

sediments with higher TOC (Table 3.1). 

Table 3.1: Station descriptions. ND denotes not determined. 
Station F1 B2 B3 B4 B5 M6 

Location Ovingham 
54°57'56''N 
1°52'10''W 

Newburn 
54°58'47''N 
1°44'35''W 

Scotswood 
54°57'51''N 
1°40'60''W 

Byker 
54°58'22''N 
1°35'38''W 

Jarrow 
54°59'27''N 
1°28'35''W 

North Sea 
55°05'13''N 
1°15'09''W 

TOC 0.19 7.03 6.42 6.42 2.42 4.27 

Sediment 
Description 

Sandy Black mud Black mud Black mud Sandy mud Sandy mud 

MPN 
spores g-1 

3.6 ⋅ 100 ND 4.3 ⋅ 103 ND ND 4.3 ⋅ 103 

 

3.4.2 Microbial community composition in heated sediments under sulfate-
reducing conditions 

Amplicon libraries targeting the V4-V5 region of the 16S rRNA gene were 

constructed using DNA extracted from pasteurised sediment microcosm 

incubations at 50°C. Amplicon libraries for each location correspond to the times 

where sulfate concentrations are plotted in Figure 3.1A-F, i.e., for non-incubated 

sediments (0 h) and every subsequent 24 h of incubation at 50°C. Comparison of 

0 h and 24 h amplicon libraries show a clear shift in the microbial community 
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structure. Proteobacteria (represented by the classes Delta-, Gamma-, Alpha-, 

Beta- and Epsilon- in rank order), Bacteroidetes and Chloroflexi were the 

predominant phyla before incubation (43% ± 2.8, 20% ± 3.7 and 8% ± 1.2, 

respectively). Following pasteurisation and 24 h incubation at 50°C, 

Proteobacteria, Bacteroidetes and Chloroflexi decreased in relative abundance 

and were replaced by Firmicutes as the most dominant phylum. The relative 

abundance of Firmicutes increased from 3% ± 0.8 at 0 h to 73% ± 8.0 at 24 h, 

consistent with endospore germination and growth in the high temperature 

incubations. The majority of enriched Firmicutes belong to the order Clostridiales 

(66% ± 7.8), with the most abundant families across all sampling sites being 

Clostridiaceae, Peptococcaceae, Peptostreptococcaceae and Gracilibacteraceae, 

with relative proportions differing at each site (Figure 3.2). Within the estuary 

(stations F1-B5) the families Tissierellaceae, Ruminococcaceae and 

Symbiobacteriaceae also increased in relative abundance when incubated at 

50°C, but these families were not prevalent in heated marine sediment from the 

North Sea (all <1.3%). 
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Figure 3.2: Families within the Firmicutes detected in 16S rRNA amplicon libraries from stations 
F1-M6 with a relative abundance of ≥3% in at least one library. Relative abundance was calculated 
as a percentage of 12,852 reads. Family_'NA' denotes Family_'Not Assignable' 

A total of 133 OTUs that increased by ≥0.5% relative abundance upon 

incubation at 50°C were identified, all belonging to the Firmicutes and 

predominantly to the class Clostridia (11 OTUs belonged to the class Bacilli). To 

investigate the potential dispersal vectors for thermophilic endospores within the 

estuary, OTUs that were detected at ≥0.5% in three or more libraries were selected 

for additional analysis. Based on their distribution between sites these OTUs were 

assigned to having either a marine, terrestrial, or cosmopolitan dispersal pattern. 

This resulted in a total of 80 OTUs with 59 being identified as having a terrestrial 

distribution, 18 a marine distribution, and 3 a cosmopolitan distribution. Of the 59 

terrestrial OTUs, 20 were not detected in marine sediments (station M6). Five were 

detected at >0.5% relative abundance (belonging to the genera Lutispora and 

Clostridium) and the remaining 34 OTUs were detected at <0.5%. Marine OTUs 
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were detected in amplicon libraries from sites at variable distances into the estuary. 

They were most abundant at stations M6 and B5, decreasing in relative abundance 

upstream towards station F1. Eight of the 18 marine OTUs were not detected at 

station F1, three were detected at >0.05% relative abundance and none were 

detected at >0.5% relative abundance. OTUs were classified as cosmopolitan if 

they were (1) detected at every site and (2) were detected at ≥1% in a freshwater, 

brackish and marine sediment sample. Three OTUs met these criteria (belonging 

to the genera Desulfotomaculum and Tepidibacter). 

3.4.3 Diversity of thermophilic Desulfotomaculum spp. within the Tyne 
estuary and North Sea sediments 

Within the Firmicutes the only known sulfate-reducing genus identified in 

these heated sediment incubations was Desulfotomaculum, detected at every 

location. To investigate the distribution of different Desulfotomaculum spp. along 

the estuarine gradient, Desulfotomaculum OTUs with greater than 0.5% 

abundance in any given library were extracted and grouped based on their 

distribution. By this approach a total of 11 Desulfotomaculum OTUs were retrieved 

from pasteurised sediment incubations, six of which were designated as terrestrial, 

three as marine and two as cosmopolitan. Two representative examples from each 

of these groupings were selected and are shown in Figure 3.3A-F. Representative 

16S rRNA sequences of all 11 Desulfotomaculum OTUs were compared with 

closest relatives identified in BLAST searches, which are shown in Figure 3.4 with 

detail of the stations that all 11 Desulfotomaculum OTUs were detected in. 

Five Desulfotomaculum OTUs were detected in North Sea sediment (station 

M6), OTUs G, R, F, 5 and 6. By incubating North Sea sediment microcosms with 

marine basal medium this demonstrated that OTUs detected in marine sediment 

had a salinity tolerance that would allow growth in a marine environment. All five 

Desulfotomaculum OTUs detected in North Sea sediment incubations were also 

detected at the mouth of the Tyne estuary (station B5) using brackish medium and 

therefore are capable of growth at both brackish and marine salinities.  
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Figure 3.3: The distribution of six Desulfotomaculum OTUs along an estuarine gradient from 
freshwater (station F1, green) to brackish (stations B2-B5, yellow) and marine (station M6, blue). 
Desulfotomaculum OTUs that were detected at greater than 0.5% relative abundance in three or 
more libraries were designated as; terrestrial (A-B), cosmopolitan (C-D) or marine (E-F) based on 
their distribution pattern. The two most abundant OTUs from each of these groupings are shown 
as representative examples. Stations marked ND (not detected) indicate that OTU was absent from 
unrarefied amplicon libraries. All libraries were rarefied to 12,852 reads, on which relative 
abundance calculations (percentages) are based. 

Desulfotomaculum OTUs R and G were not detected at greater than 0.03% 

abundance in libraries from sites upstream of Jarrow (station B5) (Figure 3.4) and 

were not detected at all at Ovingham, upstream of the tidal limit (station F1) as 

shown for OTU R in Figure 3.3E. The distribution of OTUs R and G therefore 
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suggests dispersal originating from a marine source. The closest cultured relative 

of Desulfotomaculum OTU R is Desulfotomaculum geothermicum strain DSM 3669 

(92% identity), isolated from geothermal groundwater (Daumas et al., 1988). 

Desulfotomaculum OTU R also shared close identity with uncultured 

Desulfotomaculum spp. from production water from the Halfdan oil field in the North 

Sea as well as Desulfotomaculum spp. detected in a Western Siberian oil well 

(Figure 3.4). Desulfotomaculum OTU G is most closely related to representatives 

from the genera Desulfotomaculum and Sporotomaculum (Figure 3.4), sharing 

95% identity with Desulfotomaculum sapomandens strain DSM 3223 and 

Desulfotomaculum thermosapovorans strain DSM 6562, and 94% identity with 

Sporotomaculum syntrophicum strain FB and Sporotomaculum hydroxybenzoicum 

strain BT.  

Desulfotomaculum OTU F was enriched in sediment microcosms from 

stations M6 to B2 (Figure 3.3F). In unrarefied libraries OTU F was detected in three 

libraries from station F1 at 0 h (5/17366 reads) 24 h (1/23209 reads) and 48 h 

incubation (1/12852 reads). Desulfotomaculum OTU F was most closely related to 

Desulfotomaculum peckii strain LINDBHT1 (96% sequence identity) isolated from 

abbatoir wastewaters (Jabari et al., 2013) and Desulfotomaculum halophilum strain 

SEBR 3139 (92% sequence identity) isolated from an oilfield (Tardy-Jacquenod et 

al., 1998). Uncultured Desulfotomaculum spp. related to OTU F were detected in 

deep sea hydrothermal environments (JX183068 and FJ792442, Figure 3.4). 

Desulfotomaculum OTUs G, R and F were also closely related to 

Desulfotomaculum phylotypes detected in heated marine sediments from Svalbard 

(Hubert et al., 2010) the Baltic Sea (de Rezende et al., 2013) and coastal marine 

sediment (Ji et al., 2012) (Figure 3.4) 
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Figure 3.4: 16S rRNA tree of Desulfotomaculum spp. with gene sequences derived from heated 
sediments in this study shown in bold. Only Desulfotomaculum OTUs that made up ≥0.5% of any 
given library are shown. The stations which OTUs were detected at are indicated in the tree (F1, 
B2-B5 and F6), with asterisks (*) denoting detection of the OTU at ≤ 0.03 % at that location. Closely 
related sequences were retrieved from Genbank and included in the phylogenetic analysis, 
performed using MEGA 5.2 by Maximum Likelihood with a total of 372 nucleotide positions. 
Desulfotomaculum subclusters are according to Imachi et al., (2006). Filled and open circles at 
branching nodes indicate bootstrap support values of >90% and 70 to 90% respectively (1000 
resamplings). The out-group was Helicobacteraceae clone DVBSD (accession# KF463694). 

Seven Desulfotomaculum OTUs were detected upstream of the tidal limit at 

Ovingham (station F1). Desulfotomaculum OTU A was the most enriched OTU in 
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amplicon libraries from estuary locations (station F1-B5) and was detected at its 

highest relative abundance (and greater than any of the other Desulfotomaculum 

OTUs) at stations F1 and B4. Desulfotomaculum OTU 8 displayed the same 

distribution pattern as Desulfotomaculum OTU A (Figure 3.3). OTU A was absent 

from station M6 in unrarefied libraries (21471, 18809, 27313, 25877, 29856 and 

23904 reads at 0, 24, 46, 72, 96 and 120 h incubation respectively). OTU 8 was 

present as a single read from station M6 at 120 h incubation. High abundance of 

Desulfotomaculum OTUs A and 8 upstream of the tidal limit at station F1 implies 

an input of these OTUs either at or upstream of station F1. Both OTUs were most 

closely related to Desulfotomaculum nigrificans strain NCIMB 8395 detected in 

soils and compost heaps (Campbell and Postgate, 1965) and Desulfotomaculum 

carboxydivorans strain CO-1-SRB isolated from paper mill effluent (Parshina et al., 

2005) (Figure 3.4). Sequences related to these Desulfotomaculum OTUs were also 

detected in culture-independent evaluations of warm terrestrial environments such 

as compost and metal rich waters treating acid mine drainage (Figure 3.4). 

 Cosmopolitan Desulfotomaculum OTUs 5 and 6 were detected in 

sediments from every location, including upstream of the tidal limit and in marine 

sediment (Figure 3.3C and D). Both OTUs were most closely related to 

Desulfotomaculum intricatum strain SR45 (99 and 100% sequence identity for 

OTUs 5 and 6, respectively), isolated from sediment of a freshwater lake in Japan 

(Watanabe et al., 2013). The dispersal of microorganisms upstream, past the tidal 

limit, could occur during storm events with high winds and high river levels resulting 

in the formation of wind-blown aerosols (Aller et al., 2005; Crump et al., 2012). 

However, this dispersal mechanism is likely to be limited in magnitude as 

compared to the downstream dispersal of microorganisms in riverine flow. It is 

therefore most likely that the cosmopolitan OTUs are terrestrially-derived and are 

delivered marine sediments by river discharge into the North Sea. 
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3.5 Discussion 

Temperate estuarine sediments harbour a diversity of thermophilic 

endospores that are dormant under in situ conditions (0-15°C) yet remain viable 

and capable of germination and growth when incubated at 50°C (Figure 3.1). When 

incubated at 50°C the prevailing community structure in the sediments rapidly 

changes to one dominated by thermophilic spore formers including 

Desulfotomaculum spp. capable of sulfate reduction (Figures 3.1 and 3.2). 

Amplicon libraries also reveal an increased abundance of putative thermophilic 

fermentative bacteria that are capable of utilising more complex organic 

substrates, in most cases preceding the enrichment of Desulfotomaculum and the 

detection of sulfate reduction. This suggests that in addition to the small organic 

acids present in the medium, fermentation products also fuel the sulfate reduction 

as 50°C incubations proceed, as shown in Figure 3.1, and demonstrated in prior 

studies (Hubert et al., 2010). 

Thermophilic Firmicutes enriched in sediment incubations from the River 

Tyne estuary appear to represent a combination of freshwater and marine 

populations transported into the estuary possibly in a variety of ways. 80 OTUs of 

thermophilic Firmicutes were detected at ≥0.5% relative abundance in three or 

more libraries. The majority of thermophilic spore-formers analysed (59 out of 80 

OTUs) had a distribution pattern indicative of dispersal from a terrestrial source 

(e.g. Figure 3.3A and B). Of the terrestrial OTUs, 20 were absent from amplicon 

libraries from marine sediment (station M6), 34 were detected at low relative 

abundance and five were detected at >0.5%, suggesting that endospores from 

terrestrially derived sources contribute to thermophilic endospore populations in 

marine sediments. In addition, the three cosmopolitan OTUs were detected at >1% 

relative abundance in freshwater, brackish and marine stations and are likely 

dispersed from upstream environments by riverine flow. OTUs that were prevalent 

in marine sediments were also enriched in estuarine sediments, primarily near the 

mouth of the estuary (station M5) and to a lesser extent at upstream locations, 

showing that they may be dispersed kilometres into the estuary (Figure 3.3E-F). 

This distribution is consistent with tidal currents seeding estuarine sediments with 

marine derived thermophilic endospores. 
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Industrial discharges into the Tyne estuary are regulated by trade effluent 

consents to protect the environment (Environment Agency, 2013). Discharged 

fluids may still contain microorganisms, including endospores, resulting in their 

delivery to the estuary from an industrial source. Endospores of Desulfotomaculum 

detected in the estuary were related to bacteria that had been detected in paper 

mill wastewater, compost, domestic wastewater sludge and metal rich mine waters 

(Figure 3.4). Within the catchment there are a number of potential sources of 

thermophilic bacterial endospores, including discharge from industries. Hot 

industrial effluents are cooled before being discharged into the estuary and could 

carry thermophilic endospores e.g. hot waters from a woodchip factory are cooled 

to 25°C before discharging near Hexham, upstream of station F1 and paper mill 

effluent is discharged into the River South Tyne, also upstream of station F1. 

Sewage treatment works located near station B5 also discharge treated domestic 

sewage into the River Tyne. Historically, water discharge from coal and metal 

mines and their spoil heaps were major sources of pollution into the estuary. Water 

discharges from mine adits and the erosion of spoil heap material still pollute the 

River Tyne today, resulting in metal rich sediments throughout the estuary (Tyne 

Rivers Trust, 2013). Mine water treatment schemes are in place within the estuary, 

such as reed beds that co-treat mine water and sewage effluent (Johnson, 2004; 

The Coal Authority, 2016), the treated water is then discharged into the River 

Team, which joins the River Tyne between stations B3 and B4 (Figure 2.1). 

Desulfotomaculum OTUs with the greatest abundance at stations F1 and B4 were 

closely related to uncultured bacteria detected in packing materials treating acid 

mine drainage and metal-rich wastewater (Figure 3.4). The closely related 

Desulfotomaculum nigrificans was originally isolated from a freshwater habitat in 

the Netherlands (Campbell and Postgate, 1965) and has also been isolated from 

metal mine tailings and mine pit water in India (Natarajan, 2008). 

Desulfotomaculum reducens, closely related to the terrestrially derived 

Desulfotomaculum OTUs U and B, was also originally isolated from sediment 

contaminated with metals (Tebo and Obraztsova, 1998) and, interestingly, has also 

been shown to have the unique capability of reducing metals in its sporulated state 

(Junier et al., 2009).  

Desulfotomaculum OTU A was detected in greatest relative abundance in 

amplicon libraries from upstream estuarine sediments (Figure 3.3) and is closely 
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related to a bacterium detected in compost (Figure 3.4). A large portion of the Tyne 

catchment is used for agriculture and as a result the River Tyne receives significant 

loads of agricultural run-off including soil, fertilisers and manure. Microorganisms 

in compost degrade and utilise organic compounds, and the heat generated 

through this metabolism can maintain the temperatures up to 70°C (Maeda et al., 

2010). The mature product is returned to the land as organic fertiliser, which may 

thus contain spores of thermophilic bacteria, that are subsequently washed into 

the river catchment. Desulfotomaculum OTU A and 8 both increased in relative 

abundance at station B4 (Figure 3.3A and B) coinciding with a lower relative 

abundance of OTU F at this site compared to other estuary locations (Figure 3.3F). 

Site B4 is at the confluence of the River Tyne and the Ouseburn river (Figure 2.1) 

and it is possible that this tributary delivers a fresh supply of terrestrially-derived 

OTU A and OTU 8 endospores to the estuary, such that they out-compete OTU F 

when sediment from this particular location is incubated at 50°C. In addition to the 

Ouseburn, two other tributaries, the River Team and River Derwent, both join the 

River Tyne slightly upstream of station B4 but downstream of station B3 (Figure 

2.1) and could similarly transport a supply of terrestrially-derived endospores 

resulting in the distribution pattern observed for Desulfotomaculum OTUs A and 8 

(Figure 3.3A and B).  

Seabed fluid flow from petroleum reservoirs may be a source of 

thermophiles into the cold ocean (Hubert et al., 2009). Studies from Aarhus Bay 

sediments detected thermophiles at depths corresponding to approximately 4500 

years of sedimentation, preceding human activity in the North Sea and thus 

indicating long-term dispersal by natural forces (de Rezende et al., 2013). 

However, industrial activity in the North Sea may also contribute to the dispersal of 

thermophilic endospores from the subsurface. Produced water is one of the largest 

waste products routinely discharged into seawater, at offshore oil and gas 

platforms (Yeung et al., 2011). This discharge can transport significant numbers of 

microorganisms from the subsurface into the ocean, with an estimated 3 to 16 kg 

of cells day-1 expelled with production fluids from high temperature (70-110°C) 

North Sea oil reservoirs (Parkes and Sass, 2009). In recent decades the amount 

of produced water discharged into the North Sea has significantly increased owing 

to extension of offshore activities. The maturation of many producing oil fields in 

this region is resulting in larger volumes of water both being injected for secondary 
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oil recovery and co-produced during oil extraction (OSPAR Commission, 2000). 

Produced water discharge could be an anthropogenic large-scale dispersal vector 

for transporting subsurface bacteria into the ocean, since many North Sea oil fields 

are hot and anoxic and could harbour thermophiles as a deep biosphere habitat. 

Desulfotomaculum OTU R was detected in greatest relative abundance in North 

Sea (station M6) sediments and was closely related to 16S rRNA genes cloned 

from produced water from the Halfdan oil field in the North Sea (Figure 3.4; Gittel 

et al. (2009)). Hot North Sea oil fields are therefore a likely source of thermophilic 

Desulfotomaculum spp. in North Sea marine and tidal sediments, and could be 

where Desulfotomaculum OTU R detected in this study originates. 

A study conducted assessing the impact on the bacterial community near a 

discharge site at a Canadian offshore oil platform in the northwest Atlantic Ocean 

found that near-platform sediments (250 m) were impacted by the discharge but 

that more distant sediments and the surrounding seawater had a stable bacterial 

community (Yeung et al., 2011). In a later study of the same platform, a 

Thermoanaerobacter sp. detected in the produced water was also detected up to 

1 km from the oil platform using q-PCR (Yeung et al., 2015). It is not clear whether 

the methods used in these studies are capable of extracting DNA from spores, and 

it is possible that beyond 1 km only spores are further dispersed and thus no longer 

detectable by routine molecular methods. Thermophilic endospores of 

Desulfotomaculum were detected in seawater in Aarhus Bay but only following 

incubation at a suitable growth temperature (de Rezende et al., 2013). 

Thermophilic endospores detected in the present study and previous studies 

(Hubert et al., 2009; de Rezende et al., 2013), are not readily detected in sediments 

without incubation at high temperature. Sediment heating experiments that 

promote endospore germination may therefore reveal a greater impact area from 

produced waters in the marine environment, and could contribute to studies 

assessing changes in the microbial community as an indicator of pollution. The use 

of microbial indicators for pollution is already widely applied in water quality 

assessments, in particular for the detection of pathogens (Tallon et al., 2005). 

Microbial indicators used for water quality also rely on endospore germination for 

detection e.g. the spore-former Clostridium perfringens, a moderate thermophile, 

is used as an indicator of faecal pollution and its detection relies on culture-based 
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methods, that allow for germination and growth before enumeration (Vierheilig et 

al., 2013). 

Thermophilic microorganisms may be used as part of petroleum exploration 

strategies as indicators of hydrocarbon seeps (Hubert and Judd, 2010). 

Thermophilic spore-forming bacteria represent particularly good targets for these 

kind of exploration strategies as they are conspicuous in cold sediments, and 

readily detected when induced to grow in high temperature experiments. The 

detection of thermophilic endospores associated with industrial activities in this 

study, presents the possible application of using spore-formers as indicators of 

pollution from multiple industrial processes that discharge effluent into the surface 

waters. Endospore longevity in the environment could mean they could be used as 

indicators of long-term or past activities. 

The results presented here show that the distribution of spore-forming 

thermophiles can be used to reveal insights into the passive transport of 

microorganisms in estuarine environments. The distribution of thermophilic 

Firmicutes in the River Tyne indicates that while tidal currents do seed estuarine 

sediments with marine microorganisms a greater number of OTUs detected are 

apparently associated with warm terrestrial environments. This suggests that 

thermophilic endospores are delivered to estuarine sediments via terrestrial run-

off, groundwater seepage, and effluent from industrial activities. Some endospores 

were distributed indicative of dispersal from a terrestrial source were also detected 

in marine sediments indicating that freshwater discharge into the ocean contributes 

to marine populations of thermophilic endospores. Terrestrially-derived spores 

delivered to the ocean and subsequently transported in ocean currents could 

therefore colonise a warm marine environment with suitable growth conditions.  
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Chapter 4.  

Extremely heat-resistant thermophilic endospores in temperate 
estuarine sediments 

4.1 Abstract 

Cold and temperate sediments harbour diverse populations of spore-

forming thermophilic bacteria that become active at high temperature. Estuarine 

sediments pasteurised at 80°C for one hour prior to being heated to 50-70°C 

revealed distinct populations of thermophilic sulfate-reducing Desulfotomaculum 

spp. and putative thermophilic fermentative bacteria, enriched dependent 

incubation temperature. More extreme pasteurisation through pre-autoclaving the 

same sediments prior to similar 50-70°C incubations selected for extremely heat-

resistant phylotypes that were not otherwise detected in sediment incubations of 

the same temperature. Sulfate was consumed in microcosms autoclaved for 20 

minutes at up to 140°C, and in microcosms autoclaved for 8 hours at 121°C, 

significantly extending the known limits to survival for bacterial spores exposed to 

extreme high temperature for a prolonged period. Analysis of 16S rRNA and dsrAB 

gene sequences showed that close relatives to the extremely heat-resistant 

phylotypes were detected in thermal environments, including oil reservoirs, hot 

springs and geothermal groundwater. Consistent with this, two partial 16S rRNA 

gene sequences retrieved from a nearby hot geothermal groundwater from a 

sedimentary aquifer at 1800 m depth were identical to those enriched in autoclaved 

sediment slurry microcosms. The detection of identical 16S rRNA gene sequence 

fragments in geographically proximal surface and subsurface environments 

indicates that microorganisms dwelling in the terrestrial deep biosphere may be 

transported to the surface, e.g., in groundwater up-flow that could be encountered 

in local mining operations or naturally occurring saline springs. 
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4.2 Introduction 

Members of the classes Clostridia and Bacilli belonging to the phylum 

Firmicutes are able to form endospores, a dormant resting state that is resistant to 

heat, irradiation, desiccation and nutrient limitation (Nicholson et al., 2000). An 

endospore’s heat-resistance is generally ≥40°C higher than the maximum growth 

temperature (Tmax) of its corresponding vegetative form (Warth, 1978). In keeping 

with this, the most heat-resistant endospores known belong to strains of 

thermophilic bacteria. Extreme heat-resistance, here defined as survival at 

temperatures above standard pasteurisation protocols of 80-95°C, was first 

reported for two strains of Desulfotomaculum spp. isolated from oil field waters in 

the North Sea buried down to 4000 mbsf (Rosnes et al., 1991a). Both strains 

survived 20-minute exposure to 131°C. Goorissen (2002) later reported that 

sterilisation procedures of longer than two hours at 120°C were insufficient to kill 

spores of Desulfotomaculum kuznetsovii, originally isolated from underground 

thermal mineral waters 3000 m depth (Nazina et al., 1989). D. kuznetsovii currently 

holds the record for greatest heat-resistance, surviving 15 minutes at 140°C 

(Goorissen, 2002; O’Sullivan et al., 2015). Desulfotomaculum geothermicum B2T 

also originated from the deep subsurface and was isolated from pore water brines 

in sandstone at 1060 m depth (Sass and Cypionka, 2004), and was recently shown 

to survive triple-autoclaving at 121°C (O’Sullivan et al., 2015). In addition to 

Desulfotomaculum spp., Thermoanaerobacter siderophilus and 

Thermovenabulum ferriorganovorum, anaerobic thermophilic Fe(III) reducing 

species isolated from a terrestrial hydrothermal vent on the Kamchatka peninsula 

in Russia, both survived 90-minute exposure at 121°C (Slobodkin et al., 1999; 

Zarvarzina et al., 2002). In contrast, endospores of Desulfotomaculum 

thermosapovorans and Desulfotomaculum acetoxidans isolated from enrichments 

on rice hulls and piggery waste, respectively (Fardeau et al., 1995; Widdel and 

Pfenning, 1977) do not survive triple-autoclaving at 121°C (O’Sullivan et al., 2015), 

demonstrating that extreme heat-resistance is not shared by all spore-formers. 

Bacteria form endospores in response to environmental stress, enabling 

them to escape unfavourable conditions both spatially and temporally e.g. during 

periods of nutrient limitation (Nicholson et al., 2000). Bacterial endospores can 

remain dormant and viable for thousands (Rothfuss et al., 1996; de Rezende et al., 
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2013) and possibly millions of years (Cano and Borucki, 1995) and make up an 

increasingly significant component of total cell counts with sediment depth (Fichtel 

et al., 2007; 2008; Langerhuus et al., 2012; Lomstein et al., 2012). Endospore 

formation may contribute to long-term survival strategies in subsurface 

sedimentary habitats (Kawai et al., 2015). The formation of extremely heat-

resistant endospores may offer a survival advantage if spores are exposed to short 

periods of high temperature in the environment, such as during dispersal in the 

deep biosphere through hot hydrothermal plumes or within ridge flank crustal fluids 

(O’Sullivan et al., 2015). In some instances, short exposure to high temperature 

may even serve to activate spores of thermophilic bacteria, with maximal percent 

germination of thermophilic Moorella thermoacetica spores observed in cultures 

that were first heated to 100°C for up to 90 minutes (Byrer et al., 2000).  

The survival physiology of thermophilic endospores detected in cold 

estuarine sediments was investigated. To select for extremely heat-resistant 

endospores sediments from the Tyne estuary were autoclaved at 121-140°C prior 

to experimental incubations at 50-80°C. Autoclaving was performed for up to 8 

hours to see if extremely heat-resistant species could survive prolonged exposure 

to extreme high-temperature. Sulfate concentration was monitored in subsequent 

incubations, with decreases indicating germination and growth of spore-forming 

SRB. The surviving sulfate-reducing microbial community was analysed using 

Desulfotomaculum-specific DGGE and cloning and sequencing of the dsrA gene, 

encoding one of the major subunits of the dissimilatory sulfite reductase, a key 

enzyme for sulfate reduction (Wagner et al., 1998). To look beyond only SRB, 

whole microbial community analysis was performed by Ion Torrent sequencing 

using universal primers targeting the V4-V5 region of the 16S rRNA gene. 

Moreover, near full-length 16S rRNA sequences from extremely heat-resistant 

Desulfotomaculum spp. were retrieved from 16S rRNA gene amplicons generated 

using universal primers encompassing the V1-V9 regions of the gene. Extremely 

heat-resistant endospore-forming bacteria were enriched from cold (2-22°C) 

estuarine sediments. Their growth temperature (50-70°C) indicates that they are 

advected into the estuary from an external warm source habitat. The microbial 

community in geothermal groundwater retrieved from a sedimentary aquifer 

underlying the Tyne catchment was also examined as a potential warm-source 

environment. 
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4.3 Methods 

4.3.1 Sulfate-reducing high temperature enrichments 

Anoxic slurries of estuarine sediment from station B3 at Scotswood (Figure 

2.1) were prepared under sulfate-reducing conditions as described in section 2.2.1. 

The medium was amended with tryptic soy broth (3 g L-1) as well as glucose, 

butyrate, propionate, lactate, and acetate (3 mM each). Sediment microcosms 

were subject to different heat pre-treatments prior to incubation at 50, 60, 70 and 

80°C. Heat-treatment was either pasteurisation for 1 h at 80°C, or autoclaving at 

121°C, 130°C or 140°C either once or three times in succession. Where multiple 

autoclave cycles were performed, after the first cycle of autoclaving, the autoclave 

cooled to ca. 79°C before immediately commencing the next cycle of autoclaving. 

Microcosms were prepared and incubated in triplicate for all experimental 

conditions. 

4.3.2 Sulfate measurements 

Microcosms were sampled at 0 h (i.e. before pasteurisation or autoclaving) 

and then periodically during incubation at 50, 60, 70 and 80°C. Sediment slurry 

sub-samples were centrifuged, the supernatant was used to determine the 

concentration of sulfate in the enrichment culture (section 2.2.2), the sediment 

pellet was used for DNA extraction (section 2.3.1). 

4.3.3 Microbial community analysis of heated estuarine sediments 

Aliquots of DNA were used for PCR-DGGE targeting Desulfotomaculum 

spp. (section 2.3.3.1), 16S rRNA and dsrAB gene cloning (sections 2.3.3.2 and 

2.3.4) and 16S rRNA gene amplicon sequencing using the Ion Torrent platform 

(section 2.3.3.3). Amplicon libraries from pasteurised incubations and autoclaved 

incubations were constructed from separate ion torrent sequencing runs. Amplicon 

libraries from pasteurised sediment incubations were rarefied to 12852 reads and 

libraries from autoclaved sediment incubations to 6030 reads. Rarefaction curves 

from both analyses indicated that this was a sufficient sampling depth for the 

respective datasets (Appendix A, Figures A.2A and B) 
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4.3.4 Enumeration of thermophilic endospores by MPN assays 

Endospores of thermophilic sulfate-reducing bacteria in sediments were 

enumerated using a three-tube most probable number (MPN) approach, which 

enables quantification of a specific sub-group of endospores present in the 

sediment based on cultivation conditions. The presence of solid particles has been 

reported to stimulate bacterial enrichment (Vester and Ingvorsen, 1998). Sterile 

sediment was therefore used in the growth medium for MPN enumeration. To 

prepare the sterile sediment medium, sediment from station B3 was mixed in a 1:3 

ratio (w/v) with brackish basal medium (section 2.2.1). The sediment slurry was 

autoclaved at 137°C for 20 minutes, then degassed and incubated at the 

temperature which would be used for MPN enumeration of SRB (50°C or 70°C) for 

72 hours, then autoclaved a second time at 137°C for 20 minutes and incubated a 

second time at 50°C or 70°C for 120 hours, then autoclaved a final time at 137°C 

for 20 minutes. This triple-autoclaving tyndallization approach was adopted to 

promote germination of any heat-resistant endospores during the 72- and 120-hour 

incubation periods between autoclave cycles. Vegetative cells from heat-resistant 

endospores ultimately being targeted by the MPNs are presumed to germinate 

such that they are killed by the subsequent autoclaving of the sterile sediment 

medium. FeCl2 was added to the final sterile sediment medium to a concentration 

of 0.1 mM to assist in positive scoring of growth by the visual formation of a black 

precipitate of FeS. For a reducing agent in this medium, Na2S was substituted with 

Na2S2O4 to avoid formation of FeS upon FeCl2 addition (Brandt et al., 2001; Yu et 

al., 2010). Butyrate, propionate, lactate and acetate were all added to the medium 

from sterile stock solutions to a final concentration of 3 mM each. Sterile sediment 

medium was then dispensed into Hungate tubes under a flow of N2/CO2. A 1:10 

dilution of sediment from Scotswood at station B3 to sterile sediment medium (v/v) 

was serially diluted (1 ml into 9 ml medium) up to 10-7. Sterile blanks containing 

sterile sediment medium only were also prepared, so that 15 sterile blanks were 

incubated at 50°C, and 19 sterile blanks were incubated at 70°C. In addition to 

scoring tubes positive following precipitation of FeS, sulfate was measured by ion 

chromatography (section 2.2.2) to confirm sulfate reduction by the activity of SRB. 



Chapter 4 – Extreme heat-resistance 

 51 

4.3.5 Geothermal groundwater 

Geothermal water was sampled from a terrestrial subsurface borehole 

situated in the city centre of Newcastle upon Tyne, and within the Tyne estuary 

catchment (Figure 2.1 GB; 54°58'23''N, 1°37'34''W). The borehole was drilled to 

1,821 m depth targeting a deep sedimentary aquifer (Younger et al., 2015). In most 

of the UK the geothermal gradient is 2.6°C 100 m-1 (Adams et al., 2010), however 

the geothermal gradient at this drill site is 3.5°C 100 m-1 resulting in groundwater 

temperatures above 70°C at the bottom of the borehole (BritGeothermal, 2016). 

The source of heat originates from Weardale granite, west-southwest of Newcastle 

upon Tyne, where radiogenic isotope decay leads to heat generation (Manning et 

al., 2007; Younger and Manning, 2010). The warmed groundwater migrates 

eastward along a fault zone, the Ninety Fathom Stublick fault, recharging 

Carboniferous Fell sandstone beneath the city of Newcastle upon Tyne 

(BritGeothermal, 2016). 

4.3.6 Microbial community analysis of geothermal water 

A water sample was retrieved from the geothermal borehole at 1500 m 

depth, at a water temperature of ca. 65°C. DNA was extracted from the geothermal 

water by centrifuging 2 mL aliquots for 5 minutes (10,000 g, Hettich Mikro 200). 

The supernatant was discarded and aliquot centrifugation repeated until a pellet 

was visible in the centrifuge tube. DNA was extracted from the pellet following the 

same procedure as for sediment extractions (section 2.3.1). For DGGE analysis, 

16S rRNA genes were amplified directly using primer pair 341f-gc / 907r. 

Touchdown PCR conditions were initial denaturation (95°C, 5 min), annealing 

(65°C, 1 min) and extension (72°C, 3 min) followed by 19 touchdown cycles; 

denaturation (94°C 1 min), annealing temperature was decreased by 1°C every 

second cycle (64°C-55°C, 1 min) and extension (72°C, 3 min) and a final extension 

cycle (72°C, 10 min) followed by 5 cycles denaturation (94°C, 1 min) annealing 

(55°C, 1 min) and extension (72°C, 3 min) and extension (72°C, 10 min). The PCR 

product was visualised by DGGE distinctive bands were excised with a sterile 

scalpel blade and stored in PCR grade water overnight at 5°C before re-

amplification and Sanger dideoxy sequencing (section 2.3.3.1). 

To assess the viability of SRB in the geothermal water, 100 ml was passed 

through a Sterivex filter unit (Merck Millipore Ltd., Hertfordshire, UK) with a 0.22 µm 
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polyethersulfone gamma irradiated membrane.  After filtration the filter unit was 

stored at 5°C. The filter was used to inoculate a microcosm containing sterile 

sediment medium prepared as described above (section 4.3.2) amended with 

butyrate, propionate, lactate, and acetate (3 mM each). In addition, a medium-only 

microcosm was prepared to serve as a blank control. Microcosms were incubated 

at 70°C and subsamples were taken at regular intervals to monitor the 

concentration of sulfate by ion chromatography (section 2.2.2). 

4.3.7 Isolation of pure cultures 

Sediment from the highest positive MPN dilution was transferred into fresh 

brackish medium (prepared as described section 2.2.1), amended with 10 mM 

lactate and incubated at 70°C. When sulfide production was detected (section 

2.2.4) a subsample was transferred into fresh medium and this was repeated until 

no sediment particles remained in the culture. Single colonies were isolated using 

the agar shake technique (Parkes et al., 2009). Single colonies that were picked 

were transferred to fresh brackish medium containing 10 mM lactate. Growth was 

monitored by the production of H2S (section 2.2.4) and the purity of cultures 

checked by microscopy and 16S rRNA PCR-DGGE (described in 4.3.6). 

4.4 Results 

4.4.1 Extremely heat-resistant endospores of Desulfotomaculum enriched 
from cold estuarine sediments 

Anoxic sediment microcosms were either pasteurised (1 h at 80°C) or 

autoclaved (20 minutes at 121°C, 3x in succession) before incubation at 50, 60, 70 

and 80°C. Rapid sulfate removal occurred in microcosms incubated at 50, 60 and 

70°C, following either heat pre-treatment (Figures 3.1A, B and C), revealing the 

presence of extremely heat-resistant SRB in cold estuarine sediments from the 

River Tyne. No sulfate reduction was detected during incubation at 80°C 

(Figure 4.1D). Comparing pasteurised and autoclaved sediment incubations at the 

same temperature showed that the lag phase prior to observing sulfate reduction 

was greater in autoclaved microcosms incubated at 50 and 60°C (Figure 4.1A and 

B). Sulfate reduction commenced after a 24 h in both pasteurised and autoclaved 

sediment incubations at 70°C (Figure 4.1C). 
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Figure 4.1 Sulfate reduction in microcosms that were either pasteurised (1 h at 80°C; circles) or 
triple-autoclaved (20 minutes at 121°C, 3x in succession; diamonds), then incubated at 50°C (A), 
60°C (B), 70°C (C) and 80°C (D). All microcosms were prepared in triplicate and amended with 
organic substrates. Error bars show standard error, and in some instances are smaller than the 
sulfate symbols. 
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Desulfotomaculum spp. were not detected by PCR with Desulfotomaculum 

specific primers immediately before or after the heat-treatment (0 h incubation). 

Following incubation at 50, 60 or 70°C for 24-96 h Desulfotomaculum 16S rRNA 

genes could be amplified by PCR suggesting an enrichment of Desulfotomaculum 

spp. with incubation. Analysis of Desulfotomaculum 16S rRNA gene fragments by 

DGGE showed a shift in the dominant Desulfotomaculum spp. enriched as the 

temperature increased (Figure 4.2). In addition, different Desulfotomaculum spp. 

were enriched in pasteurised sediments incubated at 50 and 60°C compared to 

autoclaved sediments incubated at the same temperature (Figure 4.2).  

 
Figure 4.2: DGGE profile of Desulfotomaculum spp. enriched in sediment incubations at 50, 60 
and 70°C. DNA was extracted after 72 h incubation from pasteurised sediments (1 hour at 80°C) 
and 96 h incubation from autoclaved sediments (20 minutes at 121°C, 3x in succession). Labelled 
bands were excised and sequenced. M denotes a marker lane. 

The presence of different Desulfotomaculum spp. in autoclaved sediment 

incubations at 50 and 60°C appears to be the result of the autoclave treatment 

eliminating competition from faster growing Desulfotomaculum spp. present in the 

pasteurised sediments (Figure 4.1A and B). Desulfotomaculum sp. 70K was 

enriched in both pasteurised and autoclaved microcosms incubated at 70°C, 

autoclaving did not appear to affect its ability to grow, hence it is labelled “70K” on 

both DGGE gels shown (Figure 4.1C). Selected distinct DGGE bands were excised 

and sequenced (Table 4.1) where the “P” and “K” notation indicate Pasteurised 

and Killed respectively (since autoclaved sediment slurry microcosms were initially 
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intended to be “killed controls”). The extremely heat-resistant Desulfotomaculum 

sp. 50K shared 97% sequence identity with Desulfotomaculum geothermicum 

strain DSM 3669 (NR_119245), isolated from anoxic geothermal groundwater from 

2500 m depth with an in situ temperature of ca. 58°C (Daumas et al., 1988). The 

second extremely heat-resistant SRB, Desulfotomaculum sp. 70K, shared 98% 

sequence identity with Desulfotomaculum thermocisternum DSM 10259 

(NR_117746) isolated from a North Sea oil field water sample originating 2.6 km 

below the seafloor with in situ temperatures up to 90°C (Nilsen et al., 1996). 

dsrAB clone libraries were constructed from microcosms triple-autoclaved 

at 121°C and incubated either at 50°C or 70°C, to target the two extremely heat-

resistant SRB revealed by DGGE, Desulfotomaculum sp. 50K and 70K (Figure 

4.2). The sequences of 26 cloned dsrA amplicons were retrieved (13 from the 50°C 

incubation and 13 from the 70°C incubation). Phylogenetic analysis showed that 

all dsrA sequences from both incubations were affiliated with the genus 

Desulfotomaculum (FN666333, AF074396, AF273031). In sediments incubated at 

50°C, all dsrA amplicons (13/13) were most closely related (99% sequence 

identity, max. sequence length 902 bp) to a Desulfotomaculum clone from a 

geothermal hot spring in Tunisia that reaches temperatures up to 73°C (Sayeh et 

al., 2010). The next closest relative (84% sequence identity) was 

Desulfotomaculum geothermicum (Daumas et al., 1988). Two clusters of dsrA 

sequences were retrieved from the 70°C clone libraries (9/13 clones and 4/13 

clones), and shared 89% sequence identity with each other across an 882 bp 

fragment. A sequence identity of <90% over the 1.9 kb fragment of the dsrAB gene 

will likely represent two different species, and correspond to <99% 16S rRNA gene 

sequence identity (Müller et al., 2014). The two shorter (882 bp dsrA gene 

fragments) sequenced from 70°C clone libraries might therefore come from two 

different Desulfotomaculum spp., even though there was only one obvious band 

resulting from 16S DGGE analysis for this experiment. The larger of the two groups 

of dsrA amplicons (9/13) shared 99% identity with Desulfotomaculum 

thermocisternum (Nilsen et al., 1996), the same species that was identified as a 

close relative to SRB in the 70°C incubations based on comparisons of the 16S 

rRNA gene (discussed above). The remaining dsrA amplicons (4/13) shared 97% 

identity with Desulfotomaculum kuznetsovvi DSM 6115 isolated from thermal 

mineral waters at 68°C from 2.8-32.5 km depth (Nazina et al., 1989). Both D. 
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thermocisternum and D. thermocisternum group within the Desulfotomaculum 

subcluster Ic (Stackebrandt et al., 1997; Imachi et al., 2006). 

4.4.2 Effect of increased autoclave temperature on the selection for 
extremely heat-resistant endospores of Desulfotomaculum 

Microcosms were autoclaved for 20 minutes at 130°C and 140°C either 

once or three times in succession before incubation at 50°C and 70°C. Sulfate 

reduction occurred in microcosms both single- and triple-autoclaved at 130°C 

during subsequent incubation at both 50 and 70°C (Figure 4.3A and C). Close 

relatives to the SRB identified in these experiments by Desulfotomaculum-specific 

DGGE are given in Table 4.1. Sulfate measurements from microcosms incubated 

at 50°C were less reproducible among replicates following autoclaving at 130°C 

(Figure 4.3A). Analysis of 16S rRNA amplicons showed that different 

Desulfotomaculum spp. were enriched in these different replicates following the 

same length of incubation (Figure 4.3B), explaining the variability of sulfate 

measurements between replicates. Desulfotomaculum sp. 50K was only detected 

in two of the triplicate microcosms subject to a single cycle of autoclaving at 130°C, 

indicating that autoclaving likely eliminated this organism in one of the triplicate 

bottles. Following three cycles of autoclaving at 130°C Desulfotomaculum sp. 50K 

was not detected. Instead, triple-autoclaving at 130°C selected for two additional 

Desulfotomaculum spp. (50K16 and 50K19) that were not detected in incubations 

at the same temperature after lower temperature heat pre-treatments (i.e. 

pasteurisation at 80°C or autoclaving at 121°C). Phylotype 50K16 was most closely 

related (98%) to Desulfotomaculum salinum strain 435 (NR_115338) isolated from 

western Siberian oil and gas fields (Nazina et al., 2005). Phylotype 50K19 was 

most closely related to spore-forming Pelotomaculum propionicicum strain MGP 

(NR_041000) (96%) affiliated with subcluster Ih of Desulfotomaculum cluster I 

(Imachi et al., 2007). Pelotomaculum propionicum strain MGP oxidises propionate 

in syntrophy with methanogens but does not have the ability to reduce sulfate. 

Desulfotomaculum sp. 70K was enriched in all incubations at 70°C following 

autoclaving at 121°C and 130°C (Figure 4.3D) and sulfate reduction was highly 

reproducible among replicates (Figure 4.3C). 
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Figure 4.3: Sulfate reduction in microcosms autoclaved at 121°C and 130°C either singularly or 3x 
in succession. Microcosms were incubated at either 50°C (A) or 70°C (C). All conditions were 
carried out in triplicate and error bars show standard error. DGGE targeting Desulfotomaculum spp. 
was carried out on DNA extracts from times points highlighted in blue, corresponding to the phase 
of active sulfate reduction (C and D). Marker lanes are marked with a ‘M’. 

Microcosms subjected to a single autoclave cycle at 140°C were monitored 

for two-weeks at 50 and 70°C, during which time no sulfate reduction could be 

observed at either temperature, initially suggesting that spores of 

Desulfotomaculum spp. 50K, 50K19, 50K16 and 70K did not survive exposure to 

140°C for 20 minutes. After two-weeks, microcosms continued to incubate but 

were not monitored regularly. A subsample taken after 674 days’ incubation 

revealed that sulfate had been completely consumed in the microcosms incubated 

at 50°C. Extraction of DNA at this point revealed a Desulfotomaculum sp. that had 

not previously been detected in autoclaved sediment incubations, and presumably 

was responsible for sulfate reduction occurring following an initial lag-phase longer 
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than the two-week observation period. The 16S rRNA gene sequence retrieved 

shared 99% sequence identity with Desulfotomaculum luciae strain DSM 12396 

(NR_117590) isolated from a geothermal hot spring (Liu et al., 1997). Sulfate had 

not been reduced in the 70°C microcosms after 156 days’ incubation. 

4.4.3 Prolonged exposure to extreme high temperature 

The survival of Desulfotomaculum sp. 50K in response to longer high 

temperature treatments was tested by autoclaving microcosms for 10, 20, 30, 60, 

119, 240 and 480 minutes at 121°C. Sulfate reduction was detected following all 

autoclave treatments in microcosms subsequently incubated at 50°C (Figure 

4.4A). Desulfotomaculum sp. 50K was detected in all incubations (Figure 4.4B), 

demonstrating endospore survival by this organism during prolonged exposure to 

extreme high temperature. Sulfate reduction commenced rapidly in microcosms 

autoclaved at 121°C for up to 2 hours, and sulfate was completely consumed within 

120 hours of 50°C incubation (Figure 4.4A). When the autoclaving was increased 

to four hours, sulfate reduction was not detected until after 144 h incubation at 50°C 

had elapsed, indicating that a reduced number of spores of Desulfotomaculum sp. 

50K survived the longer autoclave treatment. Sulfate reduction was only detected 

in two out of three of the replicate microcosms autoclaved for 8 hours and 

incubated at 50°C for two weeks. 
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Figure 4.4: Sulfate reduction in microcosms incubated at 50°C following 10, 20, 30, 60, 119 and 
240 minutes autoclaving at 121°C (A). Desulfotomaculum specific DGGE shows the same 
Desulfotomaculum sp. was enriched in all 50°C incubations (B), including after 480 minutes of 
autoclaving (sulfate reduction for this experiment is not shown in A). 

4.4.4 Abundance of extremely heat-resistant endospores in estuarine 
sediment 

Thermophilic endospores of sulfate-reducing bacteria present in the 

sediment were enumerated by a MPN technique. All dilutions incubated at 50°C 

(up to 10-7) plus 15/15 sterile sediment medium-only blanks were positive for 

growth. As such the abundance of thermophilic endospores in sediments 

incubated at 50°C could not be determined. However, this indicated a remarkable 

survival of extremely heat-resistant SRB that withstood three rounds of autoclaving 

at 137°C, with 72- and 120-hour incubation periods at 50°C in between autoclave 

cycles. This tyndallisation with autoclaving approach was chosen to eliminate heat-

resistant endospores by allowing them to germinate during incubation periods 

between autoclave cycles for subsequent killing of vegetative cells during 

autoclaving. The survival of endospores of sulfate-reducing bacteria despite these 

measures, indicates that the incubation period may not have been sufficiently long 

enough to allow for the germination of endospores with lag-phases greater than 

120 hours; e.g., Desulfotomaculum sp. 50K16 and 50K19 were detected in 50°C 

incubations following a lag period of 180 h (Figure 4.3). 

However, the tyndallization with autoclaving approach was successful for 

the 70°C MPN test. All of the blank controls (19/19) incubated at 70°C showed no 

sulfate reduction following 28 days’ incubation, indicating that spore germination at 
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70°C occurs within 120 h (consistent with observations reported above in Figure 

4.1C; regardless of initial pasteurisation or autoclaving treatments the lag phase 

was <48 h). MPN estimates showed the presence of 7.5 ⋅ 102 endospores per cm3 

in incubations at 70°C. MPN estimates at 70°C from both upstream and 

downstream of this site, indicated the presence of 7.3 ⋅ 100 endospores per cm3 in 

sediments from station F1 and 4.3 ⋅ 101 endospores per cm3. Desulfotomaculum 

sp. 70K was successfully purified following serial transfers from the highest positive 

dilution (10-4). The isolated Desulfotomaculum sp. 70K strain reduced sulfate with 

lactate between 55 and 70°C, but showed no growth in tests at lower (50°C) or 

higher (75°C) temperatures. 
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Table 4.1: Desulfotomaculum spp. 16S rRNA sequences detected by DGGE. DGGE fragment lengths are approximately 440 bp. 

Sequence ID Inc. 
Temp Treatment Closest cultured relative 

(accession) 
% 
identity Isolation source Reference 

Desulfotomaculum 
sp. 50PA 50°C Pasteurised 

Desulfotomaculum defluvii 
strain A5LFS102 
(NR_132388) 

96 Subsurface sample of 
landfill 

Krishnamurthi 
et al., (2013) 

Desulfotomaculum 
sp. 50PB 50°C Pasteurised 

Desulfotomaculum 
reducens MI-1 strain MI-1 
(NR_102770) 

98 

Sediment contaminated 
with Cr(VI) and other heavy 
metals from San Francisco 
Bay estuary, California. 

Tebo et al., 
(1998) 

Desulfotomaculum 
sp. 50PD 50°C Pasteurised 

Desulfotomaculum 
thermosaporvorans strain 
DSM 6562 (NR_119247) 

97 Mixed compost containing 
rice hulls and peanut shells 

Fardeau et al., 
(1995) 

Desulfotomaculum 
sp. 60P 60°C Pasteurised 

Desulfotomaculum 
geothermicum strain DSM 
3669 (NR_119245) 

96 Geothermal groundwater Daumas et al., 
(1988) 

Desulfotomaculum 
sp. 50K 

50 and 
60°C 

Autoclaved 3x 
at 121°C 

Desulfotomaculum 
geothermicum strain DSM 
3669 (NR_119245) 

95 Geothermal groundwater Daumas et al., 
(1988) 

Desulfotomaculum 
sp. 70K 

60 and 
70°C 

Pasteurised or 
Autoclaved 3x 
at 121°C 

Desulfotomaculum 
thermocisternum DSM 
10259 (NR_117746) 

98 Hot North Sea oil reservoir Nilsen et al., 
(1996) 

Desulfotomaculum 
sp. 50K16 50°C Autoclaved 

130°C 
Desulfotomaculum salinum 
strain 435 (NR_115338) 98 Western Siberian oil and 

gas fields 
Nazina et al., 
(2005) 

Desulfotomaculum 
sp. 50K19 50°C Autoclaved 

130°C 

Pelotomaculum 
propionicicum strain MGP 
(NR_041000) 

96 Methanogenic sludge 
treating artificial wastewater 

Imachi et al., 
(2007) 

Desulfotomaculum 
sp. 140 50°C Autoclaved 

130°C 

Desulfotomaculum luciae 
strain DSM 12396 
(NR_117590) 

99 Geothermal hot spring, St. 
Lucia 

Liu et al., 
(1997) 
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4.4.5 Multiple genera of thermophilic Firmicutes can form extremely heat-
resistant endospores 

Analysis of microbial communities in heated estuarine sediments by DGGE and 

dsrA clone libraries revealed diverse Desulfotomaculum spp. with varying heat-

resistance properties. In addition, microbial community analysis was conducted 

using universal primers that target both bacteria and archaea, encompassing 

microbial diversity beyond only SRB. This was approached using two methods of 

analysis; (1) full length 16S rRNA gene amplicon clone libraries were constructed 

and (2) 16S rRNA gene amplicon libraries were sequenced using the Ion Torrent 

platform. The construction of clone libraries allowed longer fragments of the 16S 

rRNA genes to be sequenced (mean amplicon length 675 bp) enabling near full-

length gene sequences for extremely heat-resistant Desulfotomaculum spp. (ca. 

1500 bp) to be reconstructed. The high-throughput sequencing approach gave 

shorter 16S rRNA gene fragments (mean amplicon length 304 bp ± 106 from the 

V4/V5 region) with the advantage of much greater sequencing depth (minimum of 

6030 reads per sample) compared to the clone library approach (maximum of 29 

sequences retrieved per sample). 

16S rRNA gene libraries sequenced by Ion Torrent were constructed from 

DNA extracts from pasteurised and autoclaved sediments incubated at 50, 60, and 

70°C (Figure 4.5A and B). Pasteurised enrichments at all temperatures showed an 

increase in the relative abundance of Clostridiales from 5% at 0 h incubation to 73 

± 3% after 72 h incubation. The majority of OTUs in pre-pasteurised sediments 

after high temperature incubation were affliated to the genera Symbiobacterium, 

Desulfotomaculum, Lutispora, Caloramator and Caldicoprobacter (Figure 4.5A). 

Symbiobacterium, Desulfotomaculum and Caloramator were detected at all 

temperatures, while Lutispora was only detected in incubations 50 and 60°C. 

Caldicoprobacter, despite being detected in all incubations, was most abundant at 

70°C. Autoclaving sediments prior to incubation resulted in a different community 

in subsequent 50-70°C incubations (Figure 4.5B). The most abundant OTUs were 

affiliated to the genera Desulfotomaculum, Thermoanaerobacter, Gelria, 

Tepidanaerobacter and Moorella. Interestingly, other than Desulfotomaculum spp., 

genera that were abundant in pasteurised sediment incubations (Figure 4.5A) were 

not detected after autoclaving (Figure 4.5B). Extreme heat-resistance has not 
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previously been reported for Tepidanaerobacter or Gelria spp., which were 

detected in microcosms autoclaved at 121°C and 130°C prior to incubation at 50, 

60 and 70°C.  

 
Figure 4.5: Genera detected at ≥2% relative abundance in 16S rRNA amplicon libraries generated 
by Ion Torrent, from sediments that were either pasteurised (A) or autoclaved (B) and incubated at 
50, 60 and 70°C. Genus_'NA' denotes Genus_'Not Assignable'. 

Different OTUs within the genera Desulfotomaculum, Gelria and 

Tepidanaerobacter were enriched depending on the incubation temperature 

(Figure 4.6). Thermoanaerobacter spp. was only detected in 60 and 70°C 

incubations, and Moorella only became abundant in 70°C incubations following 

triple-autoclaving at 130°C (Figure 4.5B). Moorella and Desulfotomaculum were 

the only OTUs detected at >1% relative abundance in the 70°C incubation triple-

autoclaved at 130°C making them the most heat-resistant spore-formers detected 



Chapter 4 – Extreme heat-resistance 

 64 

in these experiments. 16S rRNA gene sequence comparisons showed that heat-

resistant OTUs were closely related to bacteria from hot environments including oil 

reservoirs, geothermal groundwater, hot springs and bioreactors (Figure 4.6). 

16S rRNA gene clone libraries were constructed from microcosms 

incubated at 50°C and 70°C for 96 h following triple-autoclaving at 121°C. All 16S 

rRNA gene amplicons sequenced from both samples (26 and 29 respectively) were 

affiliated within the Firmicutes (Table 4.2). The majority of cloned 16S rRNA inserts 

(22/26) sequenced from 50°C incubations were classified as Tepidanaerobacter 

and shared 95% sequence identity with Tepidanaerobacter syntrophicus a 

thermophilic anaerobic syntrophic alcohol- and lactate-degrading bacterium 

(Sekiguchi et al., 1996). Two sequenced clone inserts shared greatest identity (99 

and 95%) with Gelria glutamica strain TGO a thermophilic anaerobic syntrophic, 

glutamate-degrading bacterium (Plugge et al., 2002). A near full-length sequence 

was retrieved for Desulfotomaculum sp. 50K, which shared greatest sequence 

identity (95%) with Desulfotomaculum sp. MP104 PS13, detected in fracture water 

from deep crystalline rock (according to its Genbank entry). Its closest cultured 

relative is Desulfotomaculum geothermicum strain DSM 3669, isolated from 

geothermal groundwater with H2 (Daumas et al., 1988). 16S rRNA gene sequences 

related to Gelria, Desulfotomaculum, Thermosediminibacter and the candidate 

order SHA-98 were retrieved from clone libraries of autoclaved sediments 

incubated at 70°C. Gelria amplicons shared 94% sequence identity with Gelria 

glutamica strain TGO (Plugge et al., 2002). Amplicons affiliated with the Order 

Thermoanaerobacterales shared 94% sequence identity with 

Thermosediminibacter oceani strain DSM 16646 a thermophilic barophilic 

anaerobic chemoorganotroph isolated from subsurface marine sediments (Lee et 

al., 2006), and 96% identity with clones from a H2 producing bioreactor seeded 

with groundwater (Baito et al., 2015). Amplicons classified as candidate order SHA-

98 had no closely cultured relatives but shared 99% sequence identity an 

uncultured bacterium from a methanol fed thermophilic bioreactor that produced 

methane in co-culture with methanogens (Roest et al., 2004).  Four near full length 

16S rRNA gene sequences affiliated within the Desulfotomaculum were retrieved. 

The four sequences shared between 92 and 97% identity with each other, and 

shared greatest identity (92-99%) with Desulfotomaculum salinum strain 435 

isolated from a mixture of formation and condensation water extracted together 
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with gas at the Igrim gas condensate field in western Siberia (Nazina et al., 2005). 

Desulfotomaculum thermocisternum, Desulfotomaculum solfataricum, and 

Desulfotomaculum kuznetsovii are all also closely related. It is possible that the 

four Desulfotomaculum sequences may represent multiple 16S rRNA operons 

from the same species; the presence of multiple divergent 16S rRNA genes is a 

common characteristic of Desulfotomaculum spp. (Tourova et al., 2001). Closely 

related Desulfotomaculum kuznetsovii DSM 6115 and Desulfotomaculum sp. 

C1A60 both contain three copies of the 16S rRNA gene with up to 8.3% sequence 

divergence (Visser et al., 2013; O’Sullivan et al., 2015). Most of the sequence 

variation is observed at both the 5’ and the 3’ termini of the 16S rRNA genes 

(Tourova et al., 2001; Visser et al., 2015), and is thus not always identifiable in 

shorter sequences from within the 16S rRNA gene, including the V4-V5 region 

targeted by the Ion Torrent sequencing approach used in this study. Several 

instances of multiple 16S rRNA gene copies within the genus Desulfotomaculum 

are reported, with D. intricatum strain SR45 having the most 16S rRNA operons 

with at least 13 copies (Watanabe et al., 2013); D. acetoxidans has 10 copies 

(Spring et al., 2009) and D. reducens has eight copies (Junier et al., 2010). 
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Figure 4.6: Phylogenetic analysis of the V4-V5 region of the 16S rRNA gene retrieved by Ion 
Torrent sequencing. The analysis was performed in MEGA 5.2. (Tamura et al., 2011) by Maximum 
Likelihood based on the Tamura-Nei model (Tamura and Nei, 1993). The analysis was performed 
with 345 base positions. Filled and open squares at the branching notes indicate bootstrap support 
values of >90% and 70 to 90%, respectively (1000 resamplings). 
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4.4.6 Thermophilic Firmicutes in geothermal groundwater 

Geothermal water retrieved from 1500 m depth in the terrestrial subsurface 

was highly saline with 134.80 g L-1 chloride, 53.81 mg L-1 sodium and 18.03 g L-1 

calcium. Sulfate was measured at 0.93 g L-1 (9.7 mM). Sulfate reduction was 

detected in a filter incubation of 100 ml geothermal groundwater incubated at 70°C 

for one month (Figure 4.7), showing that SRB in the geothermal water were viable. 

 

Figure 4.7: Filter incubation of geothermal water at 70°C (A), amended with butyrate, propionate, 
lactate and acetate (3 mM each). Sulfate reduction was detected in the microcosm inoculated with 
a filter membrane that had 100 ml of geothermal water was passed through (white diamonds). No 
sulfate reduction was detected in the control microcosm that was not inoculated (black squares). 
DNA extracted from the geothermal water inoculum was analysed by PCR-DGGE with universal 
bacterial primers (B). Labelled bands were excised and sequenced.   

Four 16S rRNA gene sequences were retrieved by PCR-DGGE using 

universal bacterial primers from the geothermal water used to inoculate the filter 

incubation (Figure 4.7). All four sequences were most closely related to genera 

within the Firmicutes (Figure 4.8). Two of the four sequences (DGGE bands gb7 

and gb8) shared 100% identity with 16S rRNA sequences from amplicon libraries 

of autoclaved Tyne estuary sediments incubated at 70°C. These were DGGE band 

gb7, which is identical (across 349 bp) to Desulfotomaculum sp. 70K, and DGGE 

band gb8, which is identical (across 487 bp) to a Thermoanaerobacterales cloned 

sequence (Figure 4.8). The closest cultured relatives (93% identity) to the latter are 

Thermosediminibacter litoriperuensis and Thermosediminibacter oceani, both 

thermophiles isolated from the Peru margin (Lee et al., 2006). Greater identity 

(96%) was shared with clones from a bioreactor seeded with deep groundwater 

(AB910319 and AB910313, Baito et al., 2015). DGGE from the filter incubation 



Chapter 4 – Extreme heat-resistance 

 68 

indicated that Desulfotomaculum sp. 70K was present in the enrichment culture, 

based on the migration of DGGE bands. DGGE bands gb12 and gb6 were not 

similar to any sequences detected in Tyne sediment enrichments. These two 

groundwater sequences had neither cultured nor uncultured relatives with 

sequence homology greater than 92% identity (Figure 4.8). The nearest relatives 

to DGGE band gb12 were sulfate-reducing bacteria detected in subsurface 

geothermal environments (EU730988 and AB518055) as well as Candidatus 

Desulforudis audaxviator strain MP104C, inferred from its genome to be a 

sporulating, sulfate-reducing, chemoautotrophic thermophile isolated from 2.8-km 

depth in a South African gold mine (Chivian et al., 2008). The most closely related 

sequence to DGGE band gb6 (91% identity) was an uncultured organism detected 

in a hexadecane-degrading consortium cultured at 55°C from samples from a 

disposal plant of the Shengli oil field, China (Cheng et al., 2013).  

 

Figure 4.8: Phylogenetic tree of 16S rRNA amplicons constructed using Maximum Likelihood with 
Tamura Nei methods (Tamura and Nei, 1993). Sequences from this study are in shown in bold; and 
include all four sequences retrieved from the geothermal water sample (Geothermal water DGGE 
bands 6,7,8 and 12), in addition to closely related sequences from autoclaved Tyne estuary 
sediment incubations retrieved from Desulfotomaculum-specific DGGE, clone- and ion torrent 
amplicon libraries. The analysis was performed in MEGA 5.2. (Tamura et al., 2011) with 289 bp. 
Filled and open squares at the branching notes indicate bootstrap support values of >90% and 70 
to 90%, respectively (1000 resamplings). 
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Table 4.2: 16S rRNA sequences detected in sediments incubated at 50 and 70°C following triple-autoclaving at 121°C. 16S rRNA sequences were retrieved 
from clone libraries using universal bacterial primers. Average fragment lengths were 675 bp, excluding Desulfotomaculum spp. for which longer sequences 
were retrieved. 

Sequence ID  
(number of clones or 
sequence length) 

Inc. Temp Closest cultured relative 
(accession), maximum % identity Isolation source Closest relative (accession),  

maximum % identity 

Tepidanaerobacter (22/26) 50°C Tepidanaerobacter syntrophicus 
strain JL (NR_040966), 94% 

Thermophilic digested 
sludge 

Thermophilic biocathode clone 
EMTBiocatB-10, (KM819479), 
99% 

Desulfotomaculum sp. 50K 
(1503 bp) 50°C 

Desulfotomaculum geothermicum 
strain DSM 3669 (NR_119245), 
92% 

Geothermal 
groundwater 

Desulfotomaculum sp. MP104 
PS13, fracture water from 
deep crystalline rock 
(KC439348), 95% 

50K clone C3/H11 (2/26) 50°C Thermosediminibacter oceani strain 
DSM 16646 (NR_074461), 93% 

Subsurface marine 
sediment 

Thermophilic biocathode clone 
EMTBiocatB-10, (KM819479), 
95% 

50K clone G3 (1/26) 50°C Gelria glutamica strain TGO 
(NR_041819), 99% 

Propionate-oxidising 
enrichment culture 

Deep groundwater clone: 
MET-BR-B03, Japan 
(AB910315), 99% 

Gelria (12/29) 70°C Gelria glutamica strain TGO 
(NR_041819), 94% 

Propionate-oxidising 
enrichment culture 

Extreme thermophilic mixed 
culture fermentation clone 
bac4 (KF026006), 100% 

Candidate order SHA-98 (5/29) 70°C Calditerricola satsumensis JCM 
14719 (NR_112611), 88% 

High temperature 
compost 

Methanol fed-thermophilic 
bioreactor clone D2 
(AY526501), 99% 

Desulfotomaculum sp. clone 
D7 (1404 bp) 70°C Desulfotomaculum solfataricum 

strain V21 (NR_036846), 92% 

Hot solfataric fields in 
Krafla region of 
Iceland 

Desulfotomaculum salinum 
strain 781 (AY918123), 92% 

Desulfotomaculum sp. clone 
G5, (1390 bp)  70°C Desulfotomaculum salinum strain 

435 (NR_115338), 96% 
Western Siberian gas 
field 

Desulfotomaculum salinum 
strain 781 (AY918123), 96% 
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Sequence ID  
(number of clones or 
sequence length) 

Inc. Temp Closest cultured relative 
(accession), maximum % identity Isolation source Closest relative (accession),  

maximum % identity 

Desulfotomaculum sp. clone 
E3, (1394 bp) 70°C Desulfotomaculum salinum strain 

435 (NR_115338), 97% 
Western Siberian gas 
field 

Desulfotomaculum 
solfataricum strain V21 
(NR_036846), 97% 

Desulfotomaculum sp. clone 
C12, (1440 bp) 70°C Desulfotomaculum salinum strain 

435, (NR_115338), 99%  
Western Siberian gas 
field 

Desulfotomaculum salinum 
strain 781 (AY918123), 99% 

Thermoanerobacterales sp. 
clones (2/29) 
 

70°C Thermosediminibacter oceani strain 
DSM 16646 (NR_074461), 94% 

Subsurface marine 
sediment 

Deep groundwater clone: 
MET-BR-B01 (AB901303) 
96% 

70K clone E11 (1/29) 
 70°C Moorella humiferrea strain 64-FGQ 

(NR_108634), 93% Terrestrial hot spring 
Extreme thermophilic mixed 
culture fermentation clone 
bac4 (KF026006), 97% 

70K clone F4 (1/29) 
 70°C Gelria glutamica strain TGO 

(NR_041819), 90% 
Propionate-oxidising 
enrichment culture 

Anaerobic thermophilic 
bioreactor clone D2 
(AY526501), 94% 
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4.5 Discussion 

The presence of extremely heat-resistant endospores in cold estuarine 

sediments that are genetically closely related to deep-biosphere dwelling taxa can 

be explained by dispersal from the subsurface via geofluid transport vectors. 

Thermophilic endospores in marine sediments have been proposed to originate 

from petroleum reservoirs and hydrothermally influenced oceanic crust, either 

associated with sufficient fluid flow to expel endospores out of these subsurface 

biomes and into the ocean (Hubert et al., 2009; 2010). The results presented here 

suggest that in addition to the aforementioned possibilities, microorganisms from 

the terrestrial subsurface may be transported via the migration of groundwater to 

surface environments. Desulfotomaculum and Thermoanaerobacterales 16S 

rRNA gene fragments (349 and 487 bp, respectively) detected in geothermal water 

from a sandstone aquifer at 1500 m depth and 65°C, shared 100% identity with 

extremely heat-resistant thermophilic bacteria enriched in pre-autoclaved Tyne 

estuary sediment incubated at 70°C. In northern England, saline groundwater 

discharges naturally at the surface at saline springs (Younger et al., 2015). Many 

natural saline springs documented in the region (Tyneside and Durham) have dried 

up as a result of mining. For example, former springs at Birtley and Saltwell, both 

located on the eastern side of the River Team (a tributary of the River Tyne, Figure 

2.1) ceased to flow as a result of mining in the region (Banks et al., 2006). Saline 

groundwater was subsequently encountered in deep mine workings, and tepid 

saline waters sampled from the Slitt vein within Cambokeels Mine at Eastgate, 

south of Newcastle upon Tyne, were shown to derive from depth within the 

Weardale Granite (Manning and Strutt et al., 1990), the source of the geothermally 

heated groundwater in this study. As mining in the region ceased, and many mines 

are no longer pumped, saline groundwater rises through previously worked strata 

and commonly decants in disused mines (Adams and Younger et al., 2001; Yu et 

al., 2006). Mine waters enter the Tyne catchment along the River South Tyne, 

Derwent, Team and Ouseburn tributaries (Entec UK Limited, 2011), and in addition 

to any naturally occurring saline springs, could result in the passive transport of 

deep subsurface microorganisms to surface estuarine sediments.  

The incubation temperature (70°C) of the microcosms from which the 

identical Desulfotomaculum and Thermoanaerobacterales sequences were 
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retrieved is similar to the temperature of the geothermal water from the depth the 

sample was retrieved (ca. 65°C at 1500 m depth). This further supports that 

geothermal groundwater could be a source of thermophilic endospores in the Tyne 

estuary. In addition, both 16S rRNA and dsrA genes of Desulfotomaculum detected 

in the pre-autoclaved incubation at 70°C were closely related to isolates from 

subsurface environments (Nilsen et al., 1996; Nazina et al., 1989; 2005) and the 

Thermoanaerobacterales 16S rRNA gene sequence shared greatest identity with 

uncultured bacterial sequences from an H2 and CH4 producing bioreactor seeded 

with groundwater from a well drilled to 1489 m depth in Japan (Baito et al., 2015). 

MPN estimates indicated the presence of 7.5 x 102 g-1 endospores of SRB 

from estuarine sediments incubated at 70°C. This number is much lower than 

previous estimates of endospore abundance in marine sediments incubated at the 

lower temperature of 50°C where up to 105 thermophilic spores of SRB have been 

detected per cm3 (Hubert et al., 2009; de Rezende et al., 2013). If endospores are 

being dispersed to the Tyne estuary via rising groundwater as suggested, this fluid 

flow mechanism may deliver fewer spores to the surface than marine sources 

associated with the active efflux of geofluids, either due to the flow dynamics or 

due to these SRB being present at lower abundance in the source geothermal 

groundwater. MPN incubations at 70°C from sediments upstream (station F1) 

indicated that Desulfotomaculum sp. 70K was present upstream of the tidal limit 

(in low abundance) consistent with dispersal from a terrestrial source. The low 

abundance in sediments from station F1 could be related to the sediment texture, 

as discussed in section 3.4.1. Alternatively, if saline groundwater is the source of 

these spores, then the higher abundances detected at station B3 may result from 

an efflux site (natural or a disused former mine site) near that station. Low numbers 

of Desulfotomaculum sp. 70K were also detected in marine sediments (station M6; 

4.3 ⋅ 101 cm3) and could indicate an decreasing abundance gradient with 

increasing distance from the terrestrial source. 

In addition to the two geothermal groundwater phylotypes, multiple 

extremely heat-resistant thermophilic Desulfotomaculum, Thermoanaerobacter, 

Tepidanaerobacter, Gelria and Moorella spp. were detected in pre-autoclaved 

Tyne sediment enrichments at 50-70°C. Different OTUs were selected depending 

both on heat pre-treatment and subsequent incubation temperature. Autoclaving 
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sediments revealed phylotypes that were not otherwise detected in pasteurised 

sediments of the same temperature (Figure 4.2 and 4.5), and at hotter autoclave 

temperature additional phylotypes were revealed (Figure 4.3B). Extremely heat-

resistant endospores detected in autoclaved enrichments were able to survive 

temperatures significantly above the reported maximum growth temperature (Tmax) 

for closely related isolates. Sulfate reduction was detected in cultures of the 

isolated strain Desulfotomaculum sp. 70K between 55-70°C, but not at 50°C or 

75°C. This strain was enriched in microcosms that had been triple-autoclaved at 

130°C, showing that its spores can survive temperatures ca. 60°C higher than the 

maximum growth temperature of its vegetative cells.  

Desulfotomaculum 16S rRNA and dsrA gene sequences from the pre-

autoclaved incubation at 50°C were most closely related to uncultured 

Desulfotomaculum spp. from hot springs and deep fracture fluids (FN666233 and 

KC439348), and the cultured Desulfotomaculum geothermicum (Daumas et al., 

1988; Sass and Cypionka, 2004). Spores of Desulfotomaculum have been shown 

to survive short exposures (multiple 20 minute cycles) of high temperature (Rosnes 

et al., 1991b; O’Sullivan et al., 2015; and this study). Desulfotomaculum sp. 50K 

spores still germinated after 8 hours autoclaving at 121°C, showing that 

endospores may be able to survive significantly longer periods of extreme high 

temperature. Microorganisms in thermal vent structures may be exposed to 

temperatures above their Tmax (Pagé et al., 2008). For endospores transported in 

crustal fluids and hydrothermal systems, extreme heat-resistance may enable 

dispersal in hot fluids (>100°C) which might otherwise inactivate vegetative 

thermophiles or spores that are less heat-resistant. Spore survival in hot zones 

may only occur if a given mass of crustal fluid only gets heated to extreme high 

temperatures during short transit periods along a thermal gradient, or in an axial 

hydrothermal plume. 

A recent study with spores of Thermoanaerobacter siderophilus, which has 

a Tmax of 78°C, suggested that spores could survive entry into the Earth’s 

atmosphere within an artificial meteorite that reached temperatures high enough 

to melt the surface of the basalt (Slobodkin et al., 2015). Extremely heat-resistant 

endospores that survive autoclaving may therefore be good candidates for further 

lithopanspermia studies.  
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Endospore survival at high temperature may also have relevance to the 

temperatures required for deep burial sterilisation that has been observed in 

subsurface petroleum reservoirs. Deep burial sterilisation or ‘palaeopasteurisation’ 

is thought to occur when oil reservoirs are subject to heating in excess of 80-90°C 

during sediment burial. This has been inferred from observations that oil 

biodegradation as a result of anaerobic hydrocarbon-degrading microbial 

communities is not observed in reservoir formations that have been buried to 

depths that are warmer than these temperatures, even if those reservoirs are 

subsequently uplifted to shallower, cooler depths (Wilhelms et al., 2001). The 

temperature for sterilisation may be considerably higher for extremely heat 

resistant endospores inhabiting the subsurface, though it is unclear whether or not 

the heat-resistant organisms discovered in River Tyne sediments are capable of 

anaerobic hydrocarbon degradation. Extremely heat resistant endospores that are 

not oil-degraders may survive deep burial sterilisation, while having no effect on 

the oil quality in petroleum reservoirs. However, oil reservoirs that have been 

subject to deep burial sterilisation have experienced high temperatures for many 

millions of years (Wilhelms et al., 2001). As such, although the survival of 

endospores may be greater than that of other organisms, this prolonged heat 

exposure may kill extremely heat-resistant endospores as well.  

These results highlight the ability of bacterial endospores to survive 

temperatures much hotter than their Tmax for vegetative growth. This may influence 

fluid transport pathways by which they can be dispersed in the deep hot biosphere, 

in addition to certain environments that they may be able to persist in that might 

otherwise be considered too hot based on evaluations based only on Topt and Tmax.
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Chapter 5.  

Temperature shifts simulating seawater injection for secondary 

oil recovery trigger the germination of endospore-forming 

Firmicutes 

5.1 Abstract 

Sulfate-reducing bacteria (SRB) belonging to the genus Desulfotomaculum 

have been implicated in reservoir souring problems at offshore oil fields. Members 

of this genus are also endospore-formers, which may confer a survival advantage 

in the warm deep biosphere. Spores are known to germinate in response to 

changes in temperature, such as the cooling that happens when cold seawater is 

injected into hot subsurface reservoirs as part of engineering strategies for oil 

recovery. To investigate this, endospores of thermophilic SRB were subjected to 

temperature shifts similar to those encountered near the injection wellbore region 

in warm oil reservoirs, in two-phase sediment heating experiments. Different 

sediments known to harbour endospores of thermophilic bacteria were initially 

incubated at high temperature (90 or 80°C) prior to cooling by between 10 and 

40°C to simulate seawater injection. Sulfate reduction was only observed during 

the second phase of incubation, at the cooler temperatures of 70, 60 and 50°C. 

Sulfate reduction did not occur when microcosms were maintained at ≥80°C. 

Sulfate reduction coincided with enrichment in Desulfotomaculum spp. that were 

not detected in amplicon libraries corresponding to the initial 80-90°C incubation. 

Both prolonged exposure to high temperature for 463 days, as well as incubation 

in the presence of crude oil led to the enrichment of a specific sulfate reducer 

closely related to Desulfotomaculum sp. previously discovered at North Sea oil 

production platforms. Putative fermentative endospore-forming bacteria were also 

detected which may contribute to reservoir souring by generating fermentation 

products that serve as electron donors for SRB. The survival and enrichment of 

certain strains under these conditions suggests adaptation to hot conditions such 

as those in North Sea oil reservoirs and other deep biosphere environments.  
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5.2 Introduction 

H2S production by sulfate-reducing microorganisms (SRM) can cause 

problems in oil reservoirs and oil production facilities, such as reservoir souring and 

microbiologically influenced corrosion (Gittel et al., 2009; Kaster et al., 2009; 

Hubert and Voordouw, 2007; Gittel, 2011). Consequences of reservoir souring 

include lowered production efficiency, health and safety issues due to the presence 

of toxic and flammable H2S gas and decreased value of the crude oil. Reservoir 

souring often occurs in response to changes to subsurface ecosystems, e.g., 

induced by seawater injection during secondary oil recovery. The introduction of 

cold fluid into a hot formation cools the region near the injection well, resulting in a 

more favourable environment for SRM activity. This ‘Thermal Viability Shell’ (TVS) 

is the zone in the reservoir that permits the activity of SRM that were apparently 

otherwise inactive at the formation temperature (Eden et al., 1993). Injected 

seawater is often deaerated and naturally contains high concentrations of sulfate 

(approximately 28 mM in seawater), hence providing a suitable electron acceptor 

for SRM. This sulfate, together with organic compounds derived from oil as electron 

donors, facilitates reservoir souring, as well as SRM activity in flow-lines and top-

side infrastructure (Sunde and Torsvik, 2005; Gittel, 2011). Continued water 

flooding sustains a mixing zone within the formation water in which growth 

conditions can be met, as the TVS matures and creates a spatially enlarging 

thermal gradient between injection and production wells (Eden et al., 1993). 

Firmicutes are a frequently detected bacterial phylum in high temperature 

(>50°C) subsurface oil reservoirs (Hubert et al., 2012), and may be an important 

component of both pristine and water-injected reservoirs (Frank et al., 2015). 

Thermophilic Firmicutes detected in oil reservoirs comprise of bacteria with 

fermentative, sulfate-reducing and syntrophic metabolisms (Magot, 2005; 

Shestakova et al., 2011). Four sulfate-reducing Desulfotomaculum spp. have been 

isolated from different oil field environments: D. kuznetsovii (Nazina et al., 1989), 

D. salinum (Nazina and Rozanova, 1978), D. halophilum (Tardy-Jacquenod et al., 

1998) and D. thermocisternum (Nilsen et al., 1996). This genus has been widely 

detected in oil fields both in the North Sea (Rosnes et al., 1991b; Christensen et 

al., 1992; Leu et al., 1998; Gittel et al., 2009) and other parts of the world (Liu et 

al., 2008; Lan et al., 2011; Guan et al., 2013; Guan et al., 2014). 
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The indigenous nature of microorganisms detected in oil field environments 

is sometimes questioned, and is generally ruled out in cases where the reservoir 

temperature is significantly higher than corresponding maximal growth or activity 

temperatures determined for closely related pure cultures in instances where 

culture-independent reservoir characterisation methods are used (Magot, 2005; 

Dahle et al., 2008). Seawater is known to harbour thermophilic microorganisms (de 

Rezende et al., 2013; Müller et al., 2014) and has been proposed as a vector for 

inoculating exogenous SRM into reservoirs during water flooding for secondary oil 

recovery (Stetter et al., 1993). Observations of oil reservoirs that are initially sweet 

but that sour following seawater injection indicate that SRM could be introduced 

during drilling or seawater injection. On the other hand, SRM originally present in 

situ must have either been deposited with the original sediment and survive over 

geological time (Hubert et al. 2010), or possibly have migrated into the reservoir 

through subsurface faults and fissures (Parkes and Maxwell, 1993). In the 

reservoir, if conditions are unsuitable for their activity, certain SRM may be present 

in a dormant state. Thermophilic endospores can survive exposure to extreme high 

temperature (Chapter 4), and may be able to persist at temperatures higher than 

their Tmax for long periods of time. Dormant endospores remain viable and can 

germinate and become active if conditions change to become more favourable, for 

Desulfotomaculum spores in oil reservoirs, secondary oil recovery may represent 

such a change.  

Current souring mitigation strategies include the addition of biocides or 

nitrate to the injection water (Gittel et al., 2009). Nitrate injection reduces the 

production of H2S by altering the reservoir community to one dominated by nitrate-

reducing, sulfide-oxidising bacteria, which reduce sulfide by oxidising it sulfate, or 

organotrophic nitrate-reducing bacteria which compete with SRB for electron 

donors (Hubert and Voordouw, 2007). This chapter presents the results of an 

investigation of the effect of injected seawater temperature on oil-field souring. To 

test the hypothesis that altered conditions in oil reservoirs during water flooding 

activate dormant Desulfotomaculum endospores, leading to reservoir souring 

reactions, sediments from three locations known to harbour thermophilic 

endospores were incubated in two phases. An initial high temperature was chosen 

mimic ambient conditions in hot reservoir formations, and this was followed by a 

subsequent lower temperature to simulate cooling encountered as a result of water 
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injection. Over the production life of an oil reservoir the TVS will grow, resulting in 

a thermal gradient that stretches from the injection to the production well (Eden et 

al., 1993). This experimental model was therefore used to test a range of 

temperature scenarios, to simulate different zones within such thermal gradients. 

The results show that the sediment source chosen, incubation temperature shift 

regime, and incubation time all affect endospore selection, germination and 

enrichment. Furthermore, it is shown that crude oil may select for specific 

Desulfotomaculum spp. within this setup. These observations will help to develop 

better prediction and mitigation strategies for managing oil reservoir souring.  
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5.3 Materials and Methods 

5.3.1 Preparation of microcosms 

Seawater medium was prepared as described by Widdel and Bak (1992) 

with the sulfate concentration adjusted to 20 mM (section 2.2.1). The medium was 

either (1) unamended, (2) amended with a mixture of complex substrates, or (3) 

amended with a mixture of simple substrates. The complex substrate mixture 

contained tryptic soy broth (TSB) in a final concentration of 3 g L-1, glucose at a 

final concentration of 3 mM, and the organic acids acetate, propionate, butyrate 

and lactate also at a final concentration of 3 mM each. TSB contained casein 

peptone (1.7 g/L) dipotassium hydrogen phosphate (0.25 g/L), glucose (0.25 g/L), 

sodium chloride (0.5 g/L) and soya peptone (0.3 g/L). The simple substrate mixture 

contained only 1 mM final concentration of the organic acids formate, acetate, 

propionate, butyrate, lactate and succinate, as well as 1 mM ethanol. Substrates 

were added to autoclaved media aseptically from sterile stock solutions stored 

under N2 headspace. Medium was then dispensed anaerobically into Wheaton 

glass serum bottles (100 ml, Sigma-Aldrich, UK). Surface sediments from the River 

Tyne estuary (United Kingdom; 54°57'51''N, 1°40'60''W), Aarhus Bay (Denmark; 

56°06'20''N, 10°27'48''E) and Smeerenburgfjorden in the Arctic (Svalbard; 79°56'N, 

11°05'E) were used as inocula of thermophilic endospores in these experiments. 

Sediment was added to serum bottles under a constant flow of N2 to a final 

sediment-to-medium ratio of 1:2 (w/v) and bottles were sealed using butyl stoppers 

and aluminium crimps to maintain the resulting sediment slurries under anoxic 

conditions. 

A series of experiments were designed to simulate temperature shifts 

possibly encountered in offshore oil reservoirs during seawater injection for 

secondary oil recovery. Microcosms were first incubated at 90 or 80°C to mimic hot 

reservoir conditions, then the temperature was lowered to simulate the cooling 

effect of seawater injection and the development of a TVS. Combinations of 

different temperatures, incubation times and substrate amendments were tested, 

as outlined in Table 5.1. All experiments conditions were conducted using triplicate 

sediment slurries. 
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Table 5.1: Experimental conditions used in this study. 

Sediment 

inoculum 

Phase 1 

incubation 

Phase 2 

incubation  
Amendments 

River Tyne* 

Aarhus Bay* 

Svalbard* 

80°C for 138 h 60°C 

complex substrates 

simple substrates 

no amendment 

River Tyne** 80°C for 138 h 60°C 

complex substrates 

complex substrates with 

300 mg crude oil 

River Tyne 80°C for 279 h 

70°C 

60°C 

50°C 

complex substrates 

no amendment 

River Tyne 90°C for 279 h 

80°C 

70°C 

60°C 

50°C 

complex substrates 

no amendment  

River Tyne 
80°C for 463 

days 

70°C 

60°C 

50°C 

complex substrates 

no amendment 

 *Experiments performed by Dr. Angela Sherry. 

**Microcosms were prepared by Dr. Ana Suárez-Suarez and analysed by Guillermo Cueto (M.Sc.) 

under the supervision of Dr. Angela Sherry. 

5.3.2 Sulfate and Organic Acid measurements 

Sediment microcosms were subsampled at regular intervals by removing 

1.5 ml of homogenised slurry using a N2 flushed syringe. Aliquots of sediment slurry 

were centrifuged (13,000 g, 5 minutes, Hettich Mikro 200). The supernatant was 

used for determination of sulfate (section 2.2.2) and organic acid concentrations 

(section 2.2.3) and the sediment pellet was stored at -20°C for DNA extraction 

(section 2.3.1). Sulfate reduction rates were calculated by applying a linear 

regression to the sulfate consumption data for each individual replicate and 

averaged. Statistical comparisons (Two-Sample t-Test) were calculated using 

Minitab 17.1.0. 

5.3.3 16S rRNA amplicon libraries 

16S rRNA amplicon libraries were prepared and sequenced using the Ion 

Torrent platform as outlined in section 2.3.3.3. Based on highly reproducible sulfate 

reduction profiles (Figure 5.1), PCR products derived from a common sub-
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sampling time from triplicate microcosms were pooled prior to clean-up and then 

subjected to Ion Torrent sequencing resulting in a single pooled amplicon library. 

To verify the suitability of this approach, amplicon libraries from triplicate 

microcosms were also assessed as individual replicates (from respective sediment 

slurries) in addition to being analysed as a pooled sample. Comparing OTUs 

(defined at 97% sequence identity) identified in libraries generated from individual 

triplicate DNA extracts with OTUs in the pooled sample library (where PCR 

amplicons were combined prior to sequencing) indicated that the pooled library 

was a good representation of the microbial community at the tested sampling 

points (Appendix A, Table A2). Amplicon libraries were constructed from separate 

sequencing runs, libraries from experiments performed by Dr. Angela Sherry 

(indicated in Table 5.1) were rarefied to 9159 reads (mean, median and maximum 

library sizes were 23538, 23076 and 38602 reads, respectively). Amplicon libraries 

from the second sequencing run were rarefied to the same size (mean, median 

and maximum library sizes were 18382, 18543 and 26083 reads, respectively). 

Representative OTU sequences were extracted and closest sequence matches 

identified within the Genbank database (Altschul et al., 1990).  
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5.4 Results 

5.4.1 Sulfate reduction in response to simulated reservoir cooling 

The germination of sulfate-reducing bacterial endospores in response to 

changing temperature was investigated in high temperature sediment incubation 

experiments. Initial experiments used sediments from Svalbard, Aarhus Bay and 

the River Tyne, all known to harbour thermophilic endospores (Hubert et al., 2009; 

de Rezende et al., 2013; O'Sullivan et al., 2015; respectively) as sources of 

endospores. These microcosms were incubated at 80°C for 138 h to mimic a high 

temperature oil reservoir prior to seawater injection. During the 80°C phase sulfate 

reduction was not observed (Figure 5.1A-F). Monitoring concentrations of organic 

acids showed an increase in acetate and propionate at 80°C in River Tyne 

sediment (Figure 5.1A, C and E) whereas no such changes were observed during 

the 80°C phase in both Aarhus Bay and Svalbard sediment incubations. After six 

days (138 h) the temperature was lowered from 80°C to 60°C. Sulfate reduction 

commenced in microcosms inoculated with River Tyne sediment and Aarhus Bay 

sediment following the temperature downshift to 60°C under all experimental 

conditions (Figure 5.1A-F), but not in any of the incubations with sediment from 

Svalbard (Figure 5.2). 
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Figure 5.1: River Tyne (left: A, C, E) and Aarhus Bay (right: B, D, F) sediment slurries incubated 

at 80°C for 138 h (red shaded area) then incubated at 60°C. Sulfate reduction at 60°C in the 

presence of complex substrates (white circles; A & B), simple substrates (grey circles; C & D) or 

without substrate amendment (black circles; E & F) is shown. Acetate (blue diamonds), propionate 

(green triangles) butyrate (grey squares) and isovalerate (purple circles) were monitored over the 

course of the incubation. Acetate production was observed during the 80°C phase in all River Tyne 

sediment microcosms (A, C, E), propionate was also produced during the 80°C phase in amended 

River Tyne microcosms (A, C). Similar increases in organic acids were not observed in Aarhus Bay 

sediment microcosms incubated at 80°C (B, D, F). Error bars show standard error determined from 

triplicate incubations, in many cases error bars are smaller than sulfate and VFA symbols. 
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Figure 5.2: Sulfate concentration in Arctic (Svalbard) sediment microcosms incubated at 80°C for 

138 h (red shaded area) then incubated at 60°C. Regardless of whether microcosms were 

amended with complex substrates (white circles), or simple substrates (grey circles) or left 

unamended (black circles) sulfate reduction was not observed. Concentrations of VFA did not 

increase during the incubation (data not shown). Triplicate microcosms were incubated for all 

substrate amendments; error bars show standard error and are visible when the standard error is 

larger than the size of the symbols. 

As sulfate reduction proceeds in River Tyne and Aarhus Bay microcosms, 

butyrate and propionate are consumed as acetate is produced (Figure 5.1A-D). 

The greatest production of acetate was observed in microcosms amended with 

complex substrates, consistent with the presence of fermentable compounds 

(glucose, casein and tryptone) and higher concentrations of organic acids (3 mM 

of four different compounds, as compared to 1 mM each of seven organic 

compounds in the simple substrate mixture). Isovalerate production was only 

detected in microcosms amended with complex substrates. Small amounts of 

isobutyrate were detected in Aarhus Bay sediment amended with complex 

substrates (<300 µM). Sulfate was fully consumed in substrate-amended River 

Tyne sediment microcosms (both complex and simple; Figure 1A & C), whereas in 

unamended microcosms only ca. 10 mM sulfate was consumed after which the 

process apparently became substrate limited. Sulfate was not fully consumed in 

any of the Aarhus Bay sediment microcosm experiments, with an average sulfate 

removal of 9.9, 7.0 and 4.3 mM with complex substrates, simple substrates and no 

external substrate amendment, respectively (Figure 5.1B. D and E). 

Amplicon libraries were generated prior to incubation (0 h), at the end of the 

80°C exposure (138 h incubation), and at different points throughout the sulfate 

reduction phase at 60°C. For Svalbard sediment, where no sulfate reduction was 
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observed, libraries were only constructed at 0 h, 138 h and 447 h (the end of the 

monitored incubation period). River Tyne and Aarhus Bay sediments both 

experienced an enrichment of Firmicutes during incubation at 80°C (Figure 5.3A; 

see also Chapter 6). Sulfate reduction following the temperature downshift to 60°C 

corresponded to the emergence of Desulfotomaculum spp. in amplicon libraries 

corresponding to 166 h and 233 h in the overall incubation (i.e., 28 h and 95 h after 

the temperature downshift to 60°C) in River Tyne sediment incubations, and 186 h 

(48 h after downshift to 60°C) in Aarhus Bay sediment libraries (Figure 5.3B). 

Desulfotomaculum spp. were not detected in Svalbard sediment incubation 

following the temperature downshift, indicating that Desulfotomaculum endospores 

known to be present in the sediment (Hubert et al., 2009) did not survive the 138 h 

incubation period at 80°C. 

 

Figure 5.3: Relative abundance of Firmicutes (A) and Desulfotomaculum (B) in 16S rRNA amplicon 

libraries of sediment from the River Tyne, Aarhus Bay and Svalbard in microcosms incubated at 

80°C for 138 h (red shared area) and incubated at 60°C. Columns marked with a * denote an absent 

data point not a zero value. 

Tyne sediments were selected for further investigation where the initial hot 

incubation period was increased to 279 h (11.5 days) and microcosms were 

incubated at either 90 or 80°C. Microcosms were then cooled to 80, 70, 60 or 50°C, 

to simulate a wider range of TVS scenarios that are likely to occur between injection 

and production wells in different oil field settings. For these tests, microcosms were 
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either amended with complex substrates or not substrate amended (the simple 

substrates were omitted). Sulfate reduction again commenced when microcosms 

entered the second phase of incubation and the temperature was reduced to either 

70, 60 or 50°C (Figure 5.4A-D). Sulfate reduction did not occur in the second phase 

of incubation when the temperature was reduced from 90°C to 80°C (Figure 5.4A). 

In microcosms amended with complex substrates (Figure 5.4A and C), regardless 

of whether experiments began at 90°C or 80°C, the subsequent sulfate reduction 

rate following the downshift to 70, 60 or 50°C was not significantly different (Two-

Sample T-Test, p = 0.595, 0.205, 0.156 for microcosms incubated at 70, 60 and 

50°C respectively). The rate of sulfate reduction decreased in amended 

microcosms between 358 h and 448 h of the overall incubation as sulfate was 

depleted (79 h and 169 h after the temperature downshift). In unamended 

microcosms the rate of sulfate reduction was greater in the first 79 h of the second 

phase of incubation (Figure 5.4B and D, 279-358 h) in microcosms pre-incubated 

at 90°C compared microcosms pre-incubated at 80°C, and was significantly higher 

in microcosms subsequently downshifted to 60 and 50°C (Two-Sample T-Test, 

p = 0.067, 0.008, 0.002 for microcosms incubated at 70, 60 and 50°C respectively). 
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Figure 5.4: Sulfate reduction rates (SRR) in microcosms incubated at 80, 70, 60 and 50°C following 

incubation at 90°C (A-B) or 80°C (C-D) for 279 h. Microcosms were either amended with organic 

substrates (A & C) or were unamended (B & D). Sulfate reduction was detected in all microcosms 

reduced to 70, 60 and 50°C. Sulfate reduction was not observed following the temperature 

downshift from 90 to 80°C, ND denotes 'not detected' (A). Error bars show standard error. 

Amplicon libraries constructed at 309 h and 358 h (30 h and 79 h into the 

second-phase of incubation at 70, 60 and 50°C) showed an enrichment of 

Desulfotomaculum following the temperature downshift from initial 90°C or 80°C 

conditions (Figure 5.5A and B). Comparing Desulfotomaculum OTUs enriched 

following the temperature downshift showed that the same SRB were enriched 

regardless of whether the first-phase of incubation was at 90 or 80°C, though they 

were enriched to different relative abundances (Figure 5.5A and B). However, 

different Desulfotomaculum spp. were enriched depending on whether the second 

temperature was 70, 60 or 50°C, reflecting a scenario where multiple 

Desulfotomaculum could germinate and occupy different zones within TVS 

gradients. 
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Figure 5.5: Sulfate-reducing Desulfotomaculum OTUs detected at >1% relative abundance in 16S 

rRNA gene amplicon libraries from microcosms incubated at; 90°C for 279 h then downshifted to 

70, 60 and 50°C (A); microcosms incubated at 80°C for 279 h then downshifted to 70, 60 and 50°C 

(B); and microcosms incubated for 138 h then downshifted to 60°C either with or without oil (C). All 

microcosms were amended with complex substrates. 

Crude oil components can potentially be inhibitory to microbial growth. To 

investigate the effect of oil on thermophilic SRB, an additional set of triplicates 

amended with 300 mg/L crude oil were prepared. Oil-amended microcosms 

inoculated with River Tyne sediment were incubated 80°C for 138 h then 

downshifted to 60°C. Following the temperature downshift to 60°C, 

Desulfotomaculum spp. were detected in amplicon libraries, consistent with the 

results observed in equivalent no-oil experiments (Figure 5.5C). Comparing 

Desulfotomaculum OTUs showed that different Desulfotomaculum spp. were 

enriched in the presence of oil. Desulfotomaculum sp. 70K (detected in autoclaved 
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sediments; Chapter 4) was the predominant OTU enriched in oil-amended 

incubations at 60°C (Figure 5.5C), whereas it was not detected in incubations at 

the same temperature without oil. The Desulfotomaculum spp. that were abundant 

in microcosms without oil (60C/1 and 50C/1) were only detected at a maximum 

1.2% and 0.28% relative abundance in oil-amended microcosms, respectively. 

Desulfotomaculum sp. 70K is closely related to isolates previously detected 

subsurface environments, whereas Desulfotomaculum spp. 50C/1 and 60C/1 are 

not (Table 5.2). 

Desulfotomaculum spores indigenous to the deep subsurface will of course 

be exposed to high temperatures for much longer periods of time than the initial 

six- to 12-day exposure used for experiments described above (Figures 5.1-5.5). 

To determine whether Desulfotomaculum endospores can survive prolonged 

exposure to high temperature, microcosms inoculated with River Tyne sediment 

were incubated at 80°C for 463 days. No sulfate reduction was observed during 

this period. Following a decrease in temperature to 70, 60 or 50°C microcosms 

were monitored for a further 70 days. No sulfate reduction was observed in 

microcosms incubated at 50°C (Figure 5.6C), suggesting that no sulfate-reducing 

endospores capable of growth at 50°C survived the prolonged 463-day incubation 

at 80°C. However, at 70°C sulfate reduction commenced rapidly and reproducibly 

following a five-day lag phase (Figure 5.6A) while at 60°C the lag phase varied 

between triplicates (7, 10 and 21 days) but sulfate was still eventually completely 

consumed (Figure 5.6C). Amplicon libraries generated from the 60 and 70°C 

incubations showed that the same Desulfotomaculum OTU was predominant at 

both temperatures (Figure 5.6D and E). This OTU was not detected at >1% relative 

abundance in the shorter high temperature exposure experiments (Figures 5.1-

5.5). In addition, Desulfotomaculum sp. 70K, the OTU that was enriched in the oil-

amended incubations (Figure 5.5C), was detected in microcosms incubated at 

70°C for 144 h (Figure 5.7D). No other Desulfotomaculum OTUs that were 

detected in microcosms following the shorter 279 h incubation at 80 and 90°C 

(Figure 5.5A and B) were detected following the extended 463-day heating period 

at 80°C. 
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Figure 5.6: Sulfate reduction in microcosms amended with complex organic substrates and 

incubated at 70°C (A), 60°C (B) and 50°C (C) following 463 days incubation at 80°C. 

Desulfotomaculum spp. were detected in amplicon libraries from incubations at 70°C (D) and 60°C 

(E). All libraries were rarefied to 9,159 reads, on which relative abundance calculations 

(percentages) are based. DNA extractions from 144 h and 186 h incubation at 70°C were pooled 

prior to sequencing as sulfate reduction was highly reproducible in replicate microcosms (A). 

Amplicon libraries from microcosms incubated at 60°C were constructed from individual DNA 

extractions at 114 h, 313 h and 505 h incubation, given that the lag phase varied between replicates 

(B). No sulfate reduction was detected in microcosms incubated at 50°C (C) therefore no 

sequencing was performed. 
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Table 5.2: Desulfotomaculum spp. detected in this study. 

OTU ID Temp. 
detected 

°C 

Closest isolated relative 
(accession number) 

% 
I.D. 

Isolation Source Temp. range °C 
(Topt) 

D. sp. 
70K 70, 60 

Desulfotomaculum 
thermocisternum strain ST90: 
DSM 10259 (NR_025979) 

99 Hot North Sea Oil Reservoir (Nilsen et al., 
1996) 41-75 (62) 

D. sp. 
70C/2 70, 60 

Desulfotomaculum kuznetsovii  
strain 17: DSM 6115 
(NR_115129) 

99 
Thermal water sample from a spontaneous 
effusion from a rift in the Sukhumsk deposit, 
Russia (Nazina et al., 1989) 

50-85 (60-65) 

D. sp. 
60C/1 70, 60, 50 Desulfotomaculum peckii  

strain LINDBHT1 (NR_109724) 99 Anaerobic filter treating abbatoir wastewaters 
(Jabari et al., 2013) 50-65 (55-60) 

D. sp. 
50C/1 50 

Desulfotomaculum 
carboxydivorans strain CO-1-
SRB (NR_074579) 

99 Sludge in an anaerobic bioreactor treating 
paper mill wastewater (Parshina et al., 2005) 30-68 (55) 

D. sp. 
50C/2 50 Desulfotomaculum intricatum  

strain SR45 (NR_114380) 96 Freshwater Lake sediment (Watanabe et al., 
2013) 28-58 (42-45) 

D. sp. 
50C/3 50 Desulfotomaculum intricatum  

strain SR45 (NR_114379) 99 Freshwater Lake sediment (Watanabe et al., 
2013) 28-58 (42-45) 

D. sp. 
50C/4 50 Desulfotomaculum intricatum 

strain SR45 (NR_114378) 97 Freshwater Lake sediment (Watanabe et al., 
2013) 28-58 (42-45) 
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5.4.2 Thermophilic fermentative Firmicutes enriched in high temperature 
incubations 

Following the temperature downshift multiple putative fermenters belonging 

to the Firmicutes were enriched in consort with sulfate-reducing Desulfotomaculum 

spp. (Figure 5.7). The genera Thermosediminibacter, Caldicoprobacter, 

Caldinitratiruptor, Symbiobacterium and Thermoanaerobacter were the most 

abundant putative thermophilic fermenters detected. Differences in community 

composition were observed depending on whether the first phase of incubation 

was at 90 or 80°C, in addition to whether the subsequent incubation was at 70, 60 

or 50°C. Thermosediminibacter, Caldicoprobacter and Caldinitratiruptor were also 

detected during the first phase of incubation at 80 and 90°C and may have been 

active at these high temperatures (Figure 5.3A; discussed in Chapter 6). End 

products of fermentation with glucose from isolates of these genera include 

acetate, lactate, ethanol, H2 and CO2, all of which may be utilised by 

Desulfotomaculum spp. (Fardeau et al., 2000; Bouanane-Darenfed et al., 2013) 

An enrichment of OTUs belonging to the Bacillales was observed following 

the temperature downshift in all microcosms pre-incubated at 90°C (Figure 5.7A-

C). This was not observed in microcosms downshifted from 80°C (Figure 5.7D-E). 

One explanation for Bacillales OTUs only being enriched following the 90°C 

incubation may be that they were able to grow to abundance by filling a niche left 

behind by a less heat-resistant OTU inactivated by the 90°C incubation period. 

Alternatively, the heating at 90°C may have activated Bacillales endospores in the 

sediment, which subsequently displayed greater growth when the temperature is 

downshifted in the second phase of incubation. This has been observed amongst 

other Firmicutes, where a heat activation step is required to achieve maximal 

percentage germination (Byrer et al., 2000; Setlow, 2013; 2014). The same OTU 

of Geobacillus was enriched in microcosms incubated at 70 and 60°C (Figure 5.7A 

and B) and was closely related to the anaerobic Geobacillus thermoglucosidans 

(99% sequences identity, Coorevits et al., 2012). Microcosms incubated at 50°C 

were dominated by two Bacillus OTUs (Figure 5.7 C) that were most closely related 

to Bacillus thermoamylovarans (99% sequence identity), a facultative anaerobe 

capable of carbohydrate fermentation (Combet-Blanc et al., 1995) and Bacillus 
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polygoni (97% sequence identity) an aerobic alkaliphile which hydrolyses casein 

(Aino et al., 2008). 

 
Figure 5.7: Genera belonging to the Firmicutes detected at greater than 3% relative abundance in 
any one amplicon library from microcosms incubated at 90°C for 279 h then reduced to 70°C (A), 
60°C (B) or 50°C (C) and microcosms incubated at 80°C for 279 h then reduced to 70°C (A), 60°C 
(B) and 50°C (F). All microcosms were amended with a complex substrate mixture. Genus_'NA' 
denotes Genus_'Not Assignable'. 
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5.5 Discussion 

5.5.1 Endospore-forming bacteria and reservoir souring 

A consortium of hydrolytic, fermentative and sulfate-reducing endospore-

forming bacteria were enriched in sediment microcosms subject to two-phase 

incubation simulating changing conditions in oil reservoirs during seawater 

injection (Figure 5.7 A-F). The enrichment of sulfate-reducing Desulfotomaculum 

spp. after the temperature downshift in the microcosms offers a parallel scenario 

for considering Desulfotomaculum endospore germination in response to cooling 

that occurs in reservoirs when seawater is injected. Temperature incubations 

conducted at 70-50°C resulted in different Desulfotomaculum OTUs being 

enriched, modelling roles reservoir-dwelling sulfate reducers with different 

temperature optima could play within distinct zones of a dynamic TVS. The 

metabolic activity of microorganisms in oil reservoirs will largely depend on the 

prevailing conditions including temperature and the availability of electron donors 

and acceptors. In North Sea formation water, aliphatic carboxylic acids are the 

most abundant organic substrates; acetic acid is found at concentrations up to 20 

mM, while other short chain aliphatic carboxylic acids are typically at lower 

concentrations (Barth and Riis, 1992; Nilsen et al., 1996; Gittel et al., 2009). These 

are potential electron donors for sulfate reduction; while more complex compounds 

such as glucose may not be naturally present in the reservoir, they are sometimes 

found in viscosity promoters injected into oil reservoirs or can be produced by 

hydrolytic bacteria under anaerobic conditions (Rosnes et al., 1991c). 

 In water-injected oil reservoirs both electron donors and electron acceptors 

suitable for SRM activity may be abundant, yet typically only a fraction of the sulfate 

gets consumed, one explanation for this may be the hostile conditions in the 

reservoir (Sunde and Torsvik, 2005; Vance and Thrasher, 2005). A 

microorganism’s ability to grow in a subsurface oil reservoir will not only be affected 

by temperature, they will face multiple physicochemical pressures (Lin et al., 

2014a). Some endospores have characteristics which could support their survival 

in a deep hot oil reservoir. In this study seven Desulfotomaculum spp. were shown 

to be capable of surviving for 11.5 days at 90 and 80°C, but only two 

Desulfotomaculum OTUs were able to survive and be enriched after incubation at 

80°C for 463 days. Interestingly, these two OTUs, Desulfotomaculum spp. 70K and 
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70C/2, were most closely related to Desulfotomaculum spp. previously isolated 

from the deep subsurface, indicating that they may be adapted to such conditions 

enabling them to survive in the hot subsurface for potentially long periods of time. 

In addition to surviving 463 days at 80°C, Desulfotomaculum sp. 70K was 

previously demonstrated to be resistant to extreme high temperature (autoclaving 

at 130°C; Figure 4.3) possibly a characteristic of endospores from deep 

environments (discussed in Chapter 4). Desulfotomaculum sp. 70C/2 was most 

closely related to Desulfotomaculum kuznetsovii, which was originally isolated from 

thermal mineral waters (Nazina et al., 1989), and has also been isolated from two 

well head samples from non-water flooded oil fields in the Paris Basin (Magot et 

al., 2000).  

Desulfotomaculum OTUs detected in incubations at 50 and 60°C following 

279 h incubation at 80 and 90°C, were most closely related to SRB that had 

previously been isolated in cooler surface environments (Table 5.2); accordingly, 

these were not enriched following longer high temperature exposure and 

apparently did not survive prolonged heating. However, these organisms were 

apparently still more heat-resistant than thermophilic endospores known to be 

present in Arctic sediments, which were not detected in incubations following 279 h 

at 80°C (Figure 5.2).  

Despite differences thermal tolerance, all of the Desulfotomaculum spp. 

detected in this study may be present in seawater (i.e., they are enriched from cold 

estuarine and marine sediment), and if they were to be introduced with injected 

seawater into a reservoir where a TVS has developed, they could nevertheless 

potentially rapidly colonise different zones of a water flooded reservoir. However, 

even when all growth requirements are met (temperature, electron donor, electron 

acceptor and nutrients), the presence of oil itself may limit bacterial growth. In 

experiments incubated with and without crude oil, growth of Desulfotomaculum 

spp. 60C/1 and 50C/1 was apparently inhibited by adding oil to the sediment 

incubations (Figure 5.5C) and neither OTU was detected following the 463-day 

incubation at 80°C (Figure 5.6D and E). In contrast, the presence of crude oil did 

not inhibit the growth of Desulfotomaculum sp. 70K (Figure 5.6C), the same OTU 

which survived 463 days of incubation at 80°C (Figure 5.6D), indicating that this 

OTU has multiple characteristics that would enable its survival in the deep 

subsurface. Survival during long-term high temperature exposure and the ability to 



Chapter 5 – Endospores and reservoir souring 

 96 

grow in the presence of crude oil suggest that this species could represent spores 

able to survive in reservoir conditions prior to seawater injection. 

Microbial sulfate reduction can occur at temperatures >90°C. Thermophilic 

archaeal Archaeoglobus spp. isolated from a North Sea oil reservoir are able to 

reduce sulfate at temperatures up to 94°C with an optimum around 80°C (Stetter 

et al., 1993). The highest recorded growth temperature for SRB is reported for 

Desulfotomaculum kuznetsovii strain 6115 with growth recorded at 85°C (Nazina 

et al., 1989), even though this strain’s temperature optimum is 60-65°C. 

Desulfotomaculum sp. 70C/2 was closely related to D. kuznetsovii sp. strain 6115 

(99% sequence identity), but no sulfate reduction was observed during incubation 

at 80°C, indicating different temperature physiology between the two. 

Desulfotomaculum sp. 70C/2 was nevertheless able to survive the high 

temperature and grow in subsequent 70°C incubations. No other 

Desulfotomaculum spp. have been reported to grow at >80°C. This is consistent 

with the observations in this study, where no sulfate reduction was observed in 

microcosms incubated at 80°C (Figure 5.1A-F) including in microcosms 

downshifted from 90°C to 80°C (Figure 5.4A). In terms of souring mitigation 

strategies, this has important implications for the injection of seawater in secondary 

oil recovery. If the temperature of the reservoir can be maintained at ≥80°C, 

possibly by heating seawater prior to its injection, this may limit the development 

of a TVS. By maintaining the reservoir temperature, endospores either injected 

with the seawater or present in the reservoir, would not have the opportunity to 

germinate and contribute to reservoir souring. In addition to inhibiting endospore 

germination, prevention of TVS development should similarly reduce the activity of 

non-endospore forming mesophilic and thermophilic SRM. 

The results presented here support the hypothesis that Desulfotomaculum 

germination is triggered by temperature shifts in oil fields caused by cold fluid 

introduction into hot formations, which can lead to reservoir souring. Endospore-

forming bacteria are physiologically and metabolically diverse and are able to 

survive long periods in unfavourable conditions, aiding their colonisation and 

establishment across a wide range of environments. Some species detected in this 

study have characteristics that would make them well adapted to life in hot oil 

reservoirs. Seawater injection provides suitable growth conditions for a wide range 
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Desulfotomaculum that would be capable of exploiting different zones of the TVS. 

Formation waters contain substrates suitable for growth, and additionally 

thermophilic fermenters can contribute to the substrate pool. However, the results 

here also suggest that the presence of oil can have an inhibitory effect on some 

species that may be inoculated into the reservoir via injected seawater, and that 

they may not be able to grow in parts of the reservoir where conditions are 

otherwise favourable. 
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Chapter 6.  

Extremely thermophilic Firmicutes in temperate estuarine 
sediments 

6.1 Abstract 

Acetate production was stimulated in surface estuarine sediments 

incubated at 80 and 90°C for ~12 days, indicating the presence of an extremely 

thermophilic microbial population in these temperate sediments. 16S rRNA 

amplicon libraries showed an enrichment in Thermosediminibacter and 

Caldinitratiruptor spp. in incubations at 90°C, possibly representing novel 

hyperthermophilic strains of these genera, which have not previously been shown 

to grow above 76°C. Extremely thermophilic phylotypes of Caldicoprobacter and 

Thermoanaeromonas were also detected in high temperature incubations at 80°C, 

but they were not detected at 90°C. Greater concentrations of acetate were 

detected in microcosms amended with a complex substrate mixture, compared to 

microcosms that did not receive any additional substrate amendment. Consistent 

with this, extremely heat-resistant genera were detected in greater relative 

abundance in amplicon libraries from microcosms amended with the complex 

substrate mixture. The results suggest that extremely thermophilic fermentative 

bacteria could contribute to biological acetate production in deep hot sediments. 
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6.2 Introduction 

Microbial life can be found in many extreme environments on Earth. These 

environments – considered ‘extreme’ to those accustomed to life at ambient 

conditions – host extremophiles which thrive under such conditions. Extremophilic 

microorganisms include halophiles, piezophiles, acido- and alkaliphiles, psychro- 

and thermophiles, which are adapted to extremes of salinity, pressure, pH and 

temperature respectively (e.g. Conner and Benison, 2013; Chernyh et al., 2015; 

González-Toril et al., 2015).  

Thermophiles may be classified as moderate thermophiles (Topt 40-60°C), 

extreme thermophiles (Topt 60-80°C) and hyperthermophiles (Topt >80°C) (Bonch-

Osmolovskaya and Atomi, 2015). Hyperthermophilic microorganisms are mainly 

represented by archaeal lineages (Stetter, 2013), and are found in deep ocean and 

terrestrial hydrothermal environments, in hot hydrothermal fluids, vent chimneys 

and surrounding thermally-heated sediments (Stetter et al., 1993; Ehrhardt et al., 

2007; Chernyh et al., 2015). The highest reported growth temperature for life on 

Earth was recorded at 121°C for an archaeal strain closely related to Pyrodictium 

occultum (Kashefi and Lovely, 2003). The strain was isolated from a black smoker 

from a hydrothermal vent field of the Juan de Fuca Ridge (with temperatures up to 

300°C) and demonstrated growth at extreme high temperature when incubated 

with Fe(III) and formate. In addition to hyperthermophilic archaea, 

hyperthermophilic bacteria have been isolated from thermal environments. 

Anaerobic heterotrophic Thermotoga petrolphilia and Thermotoga napthophila 

were isolated from production fluid from the Kubiki oil reservoir in Niigata, Japan, 

and are capable of growing in the temperatures ranges 47-88°C and 48-86°C, 

respectively (Takahata et al., 2001). Both species displayed optimal growth at 

80°C, on the border between ‘extreme thermophiles’ and ‘hyperthermophiles’ 

based on the above definitions. Members of the same genus, Thermotoga maritima 

and Thermotoga neapolitana, also grow optimally at 80°C and were isolated from 

geothermally heated marine sediments (Huber et al., 1986; Belkin, 1986; Jannasch 

et al., 1988). Aquifex pyrophilus, a chemolithoautotroph, was also isolated from hot 

marine sediments and displayed growth between 67 and 95°C with a Topt at 85°C 

(Huber et al., 1992). Thermal springs are also host to hyperthermophilic bacteria, 

and the sulfate-reducing chemolithoautotrophic Thermodesulfobacterium 
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geofontis strain OPF15T was recently isolated from thermal springs within 

Yellowstone National Park (Hamilton-Brehm et al., 2013). 

The study of hyperthermophilic microorganisms is of scientific interest for 

numerous reasons. Discovering the upper temperature limits for life is of broad 

general interest as well as being inherent to understanding microbial processes in 

present-day thermal environments, including possibly determining the depths to 

which life exists in the subsurface. Microbial processes in thermal environments 

also have relevance for understanding the evolution of life on early Earth and may 

offer analogues for understanding life on other planets (Stetter, 1996; Walter et al., 

1998; Nisbet and Sleep, 2001; Bonch-Osmolovskaya, 2010). In addition, the study 

of thermophiles and hyperthermophiles can have biotechnological applications, as 

their enzymes (thermozymes) are active and stable at high temperature (Dalmaso 

et al., 2015; Elleuche et al., 2015). 

Microcosms inoculated with Tyne estuary and Aarhus Bay sediment were 

incubated at 80°C and 90°C for up to 279 h as part of an investigation into the 

germination of thermophilic endospores in response to changing temperature 

(Chapter 5). Monitoring concentrations of VFA during the high temperature 

incubations and the generation of 16S rRNA gene amplicon libraries indicated the 

presence of active bacterial communities at these high temperatures. 

6.3 Methods 

6.3.1 Monitoring sediment incubations at 80 and 90°C  

Microcosm incubation experiments with sediment from the River Tyne and 

Aarhus Bay were amended with either a complex or simple mixture of organic 

substrates, or were left unamended. Microcosm preparation was otherwise as 

described in section 5.3.1. Organic acid analysis was performed at sub-sampling 

time points during incubation at 80 and 90°C (see section 5.3.2) and DNA extracts 

from the same time points were used to construct 16S rRNA amplicon libraries 

(see section 5.3.3). 
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6.4 Results 

6.4.1 Acetate production in estuarine sediment at high temperature 

Estuarine sediments from the River Tyne and marine sediments from 

Aarhus Bay were heated to 80°C for 138 h. During incubation at 80°C sulfate 

reduction was not observed (Chapter 5; Figure 5.1). Monitoring concentrations of 

organic acids showed an increase in acetate at 80°C in microcosms inoculated 

with River Tyne sediment, at the same time the relative abundance of Clostridia 

increased in 16S rRNA amplicon libraries (Figures 6.1A-C). The relative 

abundance of Clostridia increased from 2.4% at 0 h incubation to 48.2%, 29.5% 

and 28.96% at 138 h incubation in microcosms amended with complex organic 

substrates, simple organic substrates and unamended microcosms, respectively 

(Figure 6.1A-C). Acetate production was greatest in microcosms amended with 

complex substrates (Figure 6.1A) suggesting that some of the acetate produced 

came from the breakdown of glucose, casein and/or peptone, in addition to acetate 

production stimulated by the organic acids amendment. The production of acetate 

in unamended River Tyne sediment microcosms incubated at 80°C, indicates the 

presence of degradable organic substrates present in the sediment inoculum 

(Figure 6.1C).  

Small concentrations of acetate were detected in Aarhus Bay sediment 

microcosms amended with complex organic substrates (<500 µm) (Figure 6.1D). 

No acetate production was detected in Aarhus Bay sediment microcosms that were 

amended with simple substrate or that were not unamended (Figure 6.1E and F). 

The relative abundance of Clostridia in amplicon libraries from Aarhus Bay 

sediment incubations at 0 h and 138 h incubation did not indicate an enrichment of 

this group with incubation at 80°C. Clostridia was detected at 1.04% relative 

abundance at 0 h incubation and 4.36 ± 0.75% at 138 h incubation. Analysis of 

Aarhus Bay amplicon libraries did show an increase in relative abundance of Bacilli 

in microcosms incubated at 80°C for 138 h and amended with the complex 

substrate amendment, increasing from 0.04% at 0 h to 68.28% (Figure 6.1D). This 

was not observed in Aarhus Bay sediment microcosms at the same temperature 

without the complex organic substrate amendment (Figure 6.1E and F). Sediments 

from Svalbard incubated under the same conditions (138 h at 80°C; Chapter 5) 

showed no increase in acetate and no enrichment of the classes Clostridia or Bacilli 
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(relative abundance of 1.75 and 0.69% at 0 h incubation and 3.06 and 0.43% at 

138 h incubation for Clostridia and Bacilli, respectively). 

 
Figure 6.1: Production of acetate in Tyne estuary sediment incubated at 80°C for 138 h was 
monitored in microcosms amended with complex substrates (A), simple substrates (B) or not 
amended with substrates (C). Acetate concentrations were also monitored incubations at 80°C with 
Aarhus Bay sediment amended with complex substrates (D), simple substrates (E) or not amended 
with substrates (F). The concentration of acetate at 0 h was subtracted from acetate measurements 
to show the amount of acetate produced. Acetate was measured in triplicate microcosms with error 
bars showing standard error among triplicate bottles. In many cases the error bars are smaller than 
the size of the acetate symbols. The relative abundance of Clostridia in amplicon libraries from Tyne 
estuary incubations is indicated on the secondary y-axis (A-C) and Bacilli is indicated for Aarhus 
Bay incubations (D-F). Relative abundances were calculated as a percentage of 9159 reads. 

Analysis of amplicon libraries from Tyne estuary sediment incubations 

showed that 10 OTUs from within the Clostridia were present at ≥1% relative 

abundance following 138 h incubation at 80°C (Figure 6.2A). These OTUs were 

members of the genera Thermosediminibacter and Thermoanaeromonas of the 

order Thermoanaerobacterales and of the genera Caldinitratiruptor and 

Caldicoprobacter within the order Clostridiales (Figure 6.2A). The greatest 

enrichment was observed in microcosms amended with the complex substrate 

mixture, consistent with the greatest production of acetate in complex substrate 

amended microcosms (Figure 6.1A). Geobacillus of the order Bacillales was also 

detected in complex substrate amended microcosms increasing to 9.2% relative 

abundance at 138 h incubation (Figure 6.2A). Amplicon libraries from Aarhus Bay 

sediments showed an increase in Bacillales spp. in microcosms amended with 

complex organic substrates (Figure 6.2B). 
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Figure 6.2: OTUs within the classes Clostridia and Bacilli that represented ≥1% relative abundance 
in of 16S rRNA amplicon libraries following 138 h from incubation of Tyne estuary sediment at 80°C 
(A) and Aarhus Bay marine sediment at 80°C (B). Microcosms were either amended with complex 
substrates (black bars), simple substrates (grey bars) or did not have any substrate addition (white 
bars). Relative abundances were calculated as a percentage of 9159 reads. 

Microcosms prepared with only Tyne estuary sediment were also incubated 

for twice as long (279 h) at 80°C and also at 90°C. Acetate production was detected 

under all conditions (Figure 6.3A-C). 
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Figure 6.3: Production of acetate in Tyne estuary sediment incubated for 279 h at 80°C and 
amended with complex substrates (A), incubated at 80°C with no substrate amendment (B) and 
incubated at 90°C with no substrate amendment (C). The concentration of acetate at 0 h incubation 
was subtracted from acetate measurements to show the amount of acetate produced. Acetate was 
measured in triplicate microcosms with error bars showing standard error among triplicate bottles. 
In many cases the error bars are smaller than the size of the acetate symbols. The relative 
abundance of Clostridia in amplicon libraries is indicated on the secondary y-axis. Relative 
abundances were calculated as a percentage of 9159 reads. 

16S rRNA gene amplicon libraries from the extended incubations at 80°C 

again showed an enrichment of Thermosediminibacter, Thermoanaeromonas, 

Caldinitratiruptor and Caldicoprobacter spp. (Figure 6.4A-B). Enriched genera 

increased in relative abundance with incubation time at 80°C and 90°C, (Figure 

6.4A-D) as the concentration of acetate increased (Figure 6.3A-C).  

Thermosediminibacter and Caldinitratiruptor spp. were detected in incubations at 

90°C, but Thermoanaeromonas and Caldicoprobacter spp. were not (Figure 6.4C-

D). In addition to changes in the microbial community as a result of incubation 

temperature, differences in community composition were observed as a function 

of substrate amendment. In unamended microcosms incubated at 90°C, there was 

a longer lag phase before Thermosediminibacter spp. were detected in amplicon 

libraries (Figure 6.4D) compared to its detection in 80°C incubations, consistent 

with the slower production of acetate at the higher temperature (Figure 6.3C). In 

addition, the Thermosediminibacter spp. that were abundant in unamended 

microcosms at 90°C (Figure 6.4B) did not appear to be enriched in microcosms at 

the same temperature amended with complex organic substrates (Figure 6.4D). 

Instead, Caldinitratiruptor was the only genus enriched in the complex substrate-

amended microcosms at 90°C (Figure 6.4D). 
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Figure 6.4: Comparison of ten OTUs from within the class Clostridia that represented ≥1% relative 
abundance in 16S rRNA amplicon libraries from incubations of Tyne estuary sediment at 80°C (A-
B) and 90°C (C-D) for 279 h. Microcosms were either amended with complex substrates (A and C) 
or were not amended with substrates (B and D). Relative abundances were calculated as a 
percentage of 9159 reads. 

Five OTUs of Thermosediminibacter were detected in Tyne sediments 

incubated at 80 and 90°C (Figure 6.4A-D). Thermosediminibacter OTUs were 

closely related Thermosediminibacter oceani strain JW/IW-1228P and 

Thermosediminibacter litoriperuensis strain JW/YJL-1230-7/2. 

Thermosediminibacter sp.1, the most abundant of the five OTUs, shared 97% and 

96% sequence identity with T.oceani and T.litoriperuensis, respectively (Figure 

6.5). Both strains are anaerobic thermophiles, isolated from deep sea sediments 

from the Peru Margin (Lee et al., 2005). The Tmax for both strains was 76°C, with 

optimum growth for T.oceani was observed at 68°C, and at 64°C for 

T.litoriperuensis. Spore formation was not reported for either strain. The next 

closest relative to Thermosediminibacter sp. 1 was Thermovorax subterraneus 

strain 70B (95% sequence identity), a spore-forming bacterium isolated from a 
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geothermally active underground mine in Japan (Mäkinen et al., 2009). The Tmax 

of T.subterraneus is 81°C with optimum growth at 71°C. Both Thermosedimibacter 

spp. and T.subterraneus use thiosulfate as an electron acceptor, and can utilise 

amino acids and sugars with the main fermentation end product from glucose being 

acetate (Lee et al., 2009; Mäkinen et al., 2009). 

Two OTUs of Caldinitratiruptor were enriched in River Tyne sediment 

incubations at 80 and 90°C, with the greatest enrichment (based on amplicon 

libraries) observed in microcosms incubated at 90°C (Figure 6.4C). Only one 

member of this genus has been described, Caldinitratiruptor microaerophilus, 

which shared 92% sequence identity with Caldinitratiruptor spp.1 and 2. 

C. microaerophilus a facultative microaerophilic anaerobic thermophile within the 

family Symbiobacteraceae and was isolated from a French hot spring (Fardeau et 

al., 2010). Caldinitratiruptor also uses glucose and amino acids as substrates, 

glucose is oxidised to acetate with nitrate as an electron acceptor. The reported 

Tmax was 75°C. Spore formation was not reported for Caldinitratiruptor 

microaerophilus or related Symbiobacterium spp. (Rhee et al., 2002; Ueda et al., 

2004; Fardeau et al., 2010). 

Caldicoprobacter and Thermoanaeromonas spp. were detected in greatest 

relative abundance in amplicon libraries from enrichments at 80°C for 279 h 

(Figure 6.4A-B). They were not enriched in the same sediments incubated at 90°C 

(Figure 6.4C-D). Thermoanaeromonas sp.1 was most closely related to 

Thermoanaeromonas toyohensis (97% sequence identity), a spore-forming 

thiosulfate reducer isolated from a geothermal aquifer at 550 m depth in the 

Toyoha Mines in Japan (Mori et al., 2002). T. toyohensis has a reported Tmax of 

73°C, and can ferment sugars.  Nitrate and nitrate reduction was also reported in 

lactate as an electron donor. Two OTUs of Caldicoprobacter were detected in 80°C 

enrichments at 279 h which shared 98-99% sequence identity with 

Caldicoprobacter oshami, a spore-forming thermophile with a Tmax of 77°C 

(Yokoyama et al., 2010). Caldicoprobacter guelmensis (96% identity) has the 

highest recorded Tmax among Caldicoprobacter isolates with growth observed of 

85°C (Bouanane-Darenfed et al., 2013). The reported Tmax for other cultured 

Caldicoprobacter spp. is <80°C (Figure 6.5), and endospore formation was not 

reported for C.guelmensis, C. algeriensis or C. faecale (Bouanane-Darenfed et al., 

2011; 2013; Winter et al., 1987). Caldicoprobacter spp. can use xylan and glucose 
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as substrates, with acetate as produced as one of the main products of 

fermentation.  

Aarhus Bay 16S rRNA amplicon libraries from microcosms incubated at 

80°C for 138 h and amended with complex substrates showed an increase in 

relative abundance of Bacillales spp. compared at 0 h incubation (Figure 6.2B). 

The most abundant Bacillales OTU was most closely related to Geobacillus 

thermoglucosidans (97% sequence identity), an anaerobic thermophile with a Tmax 

of <60°C (Suzuki et al., 1983; Coorevits et al., 2012). The maximum growth 

temperature for most members of the genus Geobacillus is <80°C, but a Tmax of 

80°C has been reported for Geobacillus thermantarcticus and Geobacillus 

thermocatenulatus, although these species are aerobic (Coorevits et al., 2012).  
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Figure 6.5: 16S rRNA tree of OTUs detected in Tyne sediment incubations at 80 and 90°C with 
gene sequences derived from this study shown in bold. Only sequences greater than 300 bp were 
included in the tree. Closely related sequences were retrieved from Genbank and included in the 
phylogenetic analysis, performed using MEGA 5.2 by Maximum Likelihood with a total of 332 
nucleotide positions. Reported Tmax for closely cultured isolates are shown in the tree, in addition 
to whether spore formation was reported (+) or not (-). Filled and open circles at branching nodes 
indicate bootstrap support values of >90% and 70 to 90% respectively (1000 resamplings). 
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6.5 Discussion 

The results presented within indicate that biological acetate production was 

stimulated in estuarine sediments from the River Tyne when heated to 80 and 

90°C. Acetate production occurred concurrently with an increase in relative 

abundance of Clostridia, indicating that acetate may be a metabolic product from 

the activity of the detected Clostridia. The reported metabolisms for all of the 

isolates closely related to the OTUs detected in amplicon libraries from this study 

are consistent with the production of acetate as a metabolic product. 

Thermosediminibacter and Caldinitratiruptor were the only genera detected 

in incubations at 90°C. Both of these genera are only represented by 1-2 isolates, 

none of which have had growth at ≥80°C previously reported (Lee et al., 2006; 

Fardeau et al., 2010). The detection of Thermosediminibacter and 

Caldinitratiruptor spp. in Tyne sediments incubated at 90°C may therefore 

represent new strains or species within these genera. Growth at 90°C indicates 

that the species detected in the Tyne estuary are hyperthermophilic, however the 

Topt was not determined and therefore it cannot be said whether their optimum 

growth is above 80°C, making them true hyperthermophiles. Spore-formation was 

not reported for Thermosediminibacter or Caldinitratiruptor isolates, although other 

close relatives to the Thermosediminibacter spp. (Thermovorax subterraneus and 

Thermovenabulum ferriorganovorum) could form spores (Figure 6.5) (Zarvarzina 

et al., 2002; Mäkinen et al., 2009). The OTUs detected in this study were enriched 

from cold sediments and spore formation would provide a mechanism for survival 

at cold temperatures. Nevertheless, non-spore forming thermophiles have been 

isolated from cold sediments, including Thermosediminibacter spp. which were 

isolated from sediments at 12°C (Lee et al., 2006) and non-spore forming 

hyperthermophiles have been detected in cold seawater (Stetter et al., 1993). From 

the results presented within it is unclear whether the Thermosediminibacter and 

Caldinitratiruptor spp. detected at 90°C are spore-formers. 

Caldicoprobacter and Thermoanaeromonas spp. were detected in 

microcosms at 80°C, but not at 90°C. Based on these occurrence patterns, it is 

likely that both the Caldicoprobacter and Thermoanaeromonas spp. detected at 

80°C are extreme thermophiles operating at or near their Tmax. Consistent with this, 

Caldicoprobacter spp. increased from 12.42% relative abundance at 279 h 
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incubation at 80°C, to 51.10% in libraries from the same microcosms that had been 

reduced to 70°C for an additional 30 hours (Chapter 5; Figure 5.7). 

Caldicoprobacter spp. were also detected in amplicon libraries from sediments 

incubated at 70°C that first underwent heating at 90°C, indicating that although 

they did not grow at 90°C, they were still viable after the 279 h incubation period at 

90°C. This suggests that Caldicoprobacter spp. were present in the sediment as 

spores. Spore formation was also reported for the close relative Caldicoprobacter 

oshami (Yokoyama et al., 2010). Thermoanaeromonas sp. 1 was also detected in 

incubations at 70°C that have previously been subject to 279 h incubation at 90°C 

indicating that it may also be a spore former, although it was detected at low relative 

abundance (<1%). This OTU was also detected in low relative abundance in the 

libraries reduced from 80°C (<3% relative abundance). Microorganisms may have 

alternative mechanisms for survival at high temperature e.g. Thermovenabulum 

gondwanese strain CA9F1, which was related to the Thermosediminbacter spp. 

detected in this study, was not shown to form spores, but has a complex 

multilayered cell wall structure, thought to aid in resistance to high temperatures 

(>80°C) encountered in the thermal hot springs from which it was isolated (Pradel 

et al., 2013). 

It is uncertain whether Bacillales spp. enriched in Aarhus Bay sediment 

microcosms were active, as little to no acetate production was observed (Figure 

6.1C-F). DNA is not easily extracted from endospores using standard extraction 

protocols, thus the detection of endospore-forming genera in considerable 

abundance in amplicon libraries from sediments incubated at 80°C suggests that 

spores in the sediment had germinated, making their DNA readily extractable. The 

significant enrichment of Bacillales in microcosms amended with complex organic 

substrates (68.3%) compared to microcosms incubated under the same conditions 

other than the substrate amendment (5.9% in unamended microcosms) suggests 

that the organic substrate amendment did enhance germination and/or growth of 

Bacillales spp. in heated Aarhus Bay marine sediments. Substrates in the complex 

substrate mixture may have activated germinant receptors in Bacillales spp. 

causing germination, thus making DNA extractable and amplifiable by PCR. This 

would result in their detection in amplicon libraries, but does not suggest that they 

were active at 80°C following germination. If Bacillales spp. were active, they may 
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have produced metabolic products, e.g., ethanol, that would not have been 

detected by the IC method used to monitor organic substrates in this study. 

The biological production of acetate from buried organic matter at high 

temperature may be an important process for sustaining microbial communities in 

deeply buried sediments (Wellsbury et al., 1997; Parkes et al., 2007). Both acetate 

and H2 were produced in coastal sediment incubations up to 90°C (Parkes et al., 

2007) and acetate accumulation at depth was also demonstrated in pore waters 

from deep marine sediment cores (Wellsbury et al., 1997). The production of 

acetate in sediments from the Tyne estuary at 80 and 90°C suggests that 

hyperthermophilic and/or extremely thermophilic fermentative bacteria, like those 

detected in this study, could contribute to biological acetate production in deeply 

buried sediments. The geothermal gradient of the seabed is normally 

2-4°C 100 m-1 (Jørgensen and Marshall, 2015), long-term survival may allow 

thermophilic and hyperthermophilic bacteria to reach warm deep sediments via 

sedimentation (Hubert et al., 2010). This would be more likely to occur in areas 

with a steep geothermal gradient and a high rate of sedimentation, otherwise the 

process would require endospores deposited at the surface to survive for millions 

of years before reaching warmer deep sediments. If endospores can successfully 

survive during burial, thermophiles in cold sediments could in this way become 

active members of the deep biosphere. 
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Chapter 7.  
Conclusions and Perspective 

7.1 Estuaries as dispersal vectors of thermophilic endospores 

The presence of inactive anaerobic thermophilic endospores in cold 

sediments provides a natural model to study microbial dispersal, a fundamental 

process underlying microbial biogeographic patterns. Since their first discovery in 

cold Aarhus Bay sediments (Isaksen et al., 1994), thermophilic endospores have 

been shown to be both metabolically diverse (Hubert et al., 2010) and 

geographically widespread (de Rezende et al., 2013; Müller et al., 2014). Prior to 

the contribution presented here, studies had focused on marine sediments, and 

provided significant contributions towards understanding marine microbial 

biogeography. The work presented in this thesis focuses on the diversity and 

distribution of thermophilic endospores in estuarine sediments, at the interface of 

the terrestrial and marine biospheres. The detection of thermophilic spore-forming 

sulfate-reducing and fermentative bacteria upstream of the tidal limit in the River 

Tyne (station F1, Chapter 3) confirms that in addition to marine dispersal (Hubert 

et al., 2009; de Rezende et al., 2013; Müller et al., 2014) thermophilic endospores 

are dispersed in riverine flow, from terrestrial sources.  

The dispersal histories and biogeography of over 100 different OTUs of 

thermophilic Firmicutes detected here within the Tyne estuary system, indicate that 

endospores are delivered to the estuary via multiple dispersal vectors, both marine 

(hydrocarbon seeps, production fluids discharge and diffuse hydrothermal flow) 

and terrestrial (compost, industrial discharges, mine water, and groundwater). 

Freshwater discharge from rivers into the North Sea is in the order of 300 km3 y-1 

(OSPAR Commission, 2000), and contributes 4 ⋅ 1010 km3 y-1 to oceans globally 

(Johnson and Pruis, 2003). Significant numbers of thermophilic endospores 

transported in riverine flow could therefore be transported to marine environments, 

consistent with the detection of terrestrially-derived endospores in North Sea 

marine sediments (Chapter 3). Once in the ocean, terrestrially-sourced 

thermophilic endospores may be transported on multiple further journeys, thus far 

proposed for marine microorganisms. Thermophilic endospores in seawater may 

be deposited at the cold seafloor and reach warm deep sediments following deep 

burial, becoming active members of the deep biosphere (Hubert et al, 2010). 
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Alternatively, endospores could be delivered to a warm hydrothermal site where 

they could colonise vent chimneys or geothermally heated sediments, or get drawn 

down with seawater in hydrothermal circulation at ridge flanks inoculating the warm 

ocean crustal aquifer system. The annual flux from venting hydrothermal fluid is 

estimated to be 18% of the total riverine flow to oceans (Johnson and Pruis, 2003), 

possibly expelling microorganisms from the subsurface into the ocean if they can 

survive the transit within a very hot plume. Microorganisms expelled at vent sites, 

may be inoculated into oil reservoir environments during seawater flooding for 

secondary oil recovery. This was a mechanism hypothesised following the first 

discovery of hyperthermophilic archaea in oil fields, in samples of produced water 

from deep North Sea and Alaskan oil reservoirs, since these organisms were 

similar to those detected from a distant hydrothermal vent site based on the best 

similarity comparisons that could be made at the time (Stetter et al., 1993). Active 

oil reservoir communities may then be transported back to the ocean in discharged 

production water, and be dispersed to another location. Any one of these journeys 

mediated by ocean currents could potentially be taken upon by a terrestrially-

derived endospore, discharged to the ocean in riverine flow. These transport routes 

highlight the potential power of dispersal, connecting terrestrial and marine, 

surface and subsurface environments. 

The dispersal histories identified for thermophilic endospores detected in 

the River Tyne indicated that the majority originated from a terrestrial source, with 

current industrial discharges and historic mining activities implicated as vectors of 

terrestrial spores (Chapter 3 and 4). While terrestrial sources appear to be 

significant in the Tyne estuary, they may only constitute a substantial flux of 

thermophilic endospores in estuaries influenced by human activity. If the same 

lateral sampling strategy was applied to an estuary from a relatively pristine 

environment, without the industrial activity of the River Tyne, it is possible that the 

same predominance of apparently terrestrially-derived endospores would not be 

observed. Consequently, estuarine dispersal vectors may be most relevant in 

ocean regions connected to estuaries that flow through urbanised areas. 

7.2 Thermophilic endospores as bioindicators 

Microorganisms may be used as bioindicators for oil prospecting, as 

markers of undiscovered petroleum reservoirs (Hubert and Judd, 2010). Close 
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relatives to the many thermophilic phylotypes enriched from cold sediments were 

detected in petroleum reservoirs (this study; Hubert et al., 2009; 2010; de Rezende 

et al., 2013), and display multiple characteristics indicative of subsurface origins 

(Chapter 5), including in some cases extreme heat-resistance (Chapter 4). If these 

bacteria originate from deep hot oil reservoirs via the upward flow of petroleum 

fluids, then studies of these dormant endospores could be integrated into oil 

exploration strategies that rely on seabed hydrocarbon seep prospecting. 

Screening marine sediments for microorganisms thought to be otherwise 

indigenous to oil reservoirs could indicate the presence of hydrocarbon seepage 

from a subsurface petroleum reservoir (Hubert and Judd, 2010). Following the 

identification of a phylotype of interest, a quantitative screening method would be 

required to track the abundance towards the source, assuming that population size 

decreases in abundance with dispersal distance. Thermophilic endospores are 

conspicuous and persistent in cold sediments, making them ideal candidates for 

microbial source tracking. The quantification method would need to be species-

specific, targeted at the phylotype of interest. As thermophilic endospores would 

not be readily detected in cold sediments by molecular methods independent of 

enrichment, a cultivation step may be required. Growth of thermophilic endospores 

in sediment enrichments can be rapid (Chapter 3, Figure 3.1) and the work 

presented here shows how enrichment conditions can be tailored towards a 

specific phylotype e.g. growth in the presence of oil (Chapter 5) or activity 

screening following varying degrees of heat-treatment (Chapter 4). Enrichments 

that are positive for growth under specific conditions could be screened relatively 

rapidly and inexpensively using high-throughput sequencing.  

A challenging aspect of using thermophilic endospores as bioindicators of 

hydrocarbon seeps would be ensuring that the indicator organism chosen truly 

derived from a petroleum reservoir. The results presented within demonstrate that 

there may be multiple origins of thermophilic endospores in cold sediments, and 

that thermophilic endospores in marine sediments could have been delivered in 

riverine flow and not have come from a marine habitat at all (Chapter 3 and 4). In 

addition, the connectivity of distant source environments resulting from passive 

dispersal (as discussed above) could obscure a clear source signal, making one 

specific target source even more difficult constrain. Using endospores as 

bioindicators of undiscovered petroleum reservoirs may only be feasible in 
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environments that are not influenced by human industrial activity and that are 

distant from tapped reservoirs. Otherwise, even if a petroleum-reservoir dwelling 

organism was correctly identified, source-tracking may lead to the site where an 

active oil platform discharges production water. In regions where offshore oil 

platforms are in place, thermophilic endospores could instead be used as 

indicators of pollution from production water. The same issue arises – determining 

whether the organism is truly from oil reservoir production water – but knowing the 

source could provide the opportunity to first characterise the production water, or 

multiple production waters from oil reservoirs in the region, to screen for indicator 

organisms. This could be applied to various types of industrial pollution identified 

as possible dispersal vectors (Chapter 3). As with production waters, the effluent 

of interest could first be screened for an indicator organism. An additional challenge 

for quantitatively tracking thermophilic endospores may arise from changes in 

sediment type along a lateral gradient, which may affect the endospore retention 

and thus the in situ abundance of spores of interest (Chapter 3; Fichtel et al., 2008). 

Sediment properties would therefore have to be accounted for when determining 

abundance along a transect with heterogeneous sediment properties. The 

development of quantitative screening methods could also be used for tracking 

endospores from unknown sources, for new biogeography investigations. 

7.3 Heat-resistant endospores 

Autoclaving sediments from the Tyne estuary revealed the presence 

extremely heat-resistant endospore-forming Firmicutes, which were closely related 

to bacteria detected in the deep hot biosphere (Chapter 4). Sampling subsurface 

environments is often challenging and costly. If endospores detected in surface 

sediments are dispersing from the deep biosphere, strain isolation and genome 

studies could reveal insights into metabolic capabilities of deep biosphere 

organisms in easily accessed samples. In the case of extremely heat-resistant 

organisms, this could include studies of extreme physiology, and what determines 

extreme heat-resistance. Cultivation strategies generally detect the faster-growing 

abundant microbial populations. Autoclaving sediments prior to cultivation 

introduces a harsh selection step, enabling strain isolation of microorganisms that 

are not otherwise readily detected (Chapter 4). Different spore-forming phylotypes 

are enriched depending on incubation temperature and heat pre-treatment 
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(Chapters 4-6), suggesting that temperature optima and heat resistance may serve 

as indicators of different source environments where different conditions (e.g., local 

temperature) may influence endospore formation. Differences in endospore heat-

resistance have been attributed to a number of factors (detailed in section 1.2.1), 

including sporulation conditions, which could have a significant effect (Condon et 

al.,1992; Melly et al., 2002). Melly et al., (2002) demonstrated that spores of 

Bacillus subtilis that were formed at higher temperatures were more heat resistant 

than those in clonal cultures that sporulated at lower temperatures. This increased 

resistance appeared to be achieved, at least in part, by a decrease in the core 

water content of spores formed at higher temperature. Cultivation conditions were 

otherwise identical and the different-temperature spores had equal amounts of 

DPA and small acid soluble proteins. Whether these kinds of observations would 

also be made in experiments with thermophiles including Desulfotomaculum spp. 

remains to be tested; could the heat-resistance of extremely thermophilic strains 

be changed by inducing sporulation at different points along their temperature 

activity range, e.g., Tmin vs Tmax. If so, differences in heat-resistance could be 

incorporated into biogeographic studies, as indicators of different microbial habitats 

of origin where sporulation conditions may differ. 

The ability of endospores to survive at temperatures much greater than their 

Tmax whilst in a dormant state (Chapter 4) enabled them to be used in a model 

system for studying reservoir souring, a troublesome and costly problem often 

encountered during secondary oil recovery (Chapter 5). Sulfate-reduction was not 

detected in experiments maintained at 80°C or higher, suggesting if the ambient 

reservoir temperature can be maintained during secondary oil recovery, souring 

could be prevented or reduced. As a consequence of these experiments, the pre-

heating of injection water, before introduction into the formation, is being 

considered as part of a souring mitigation strategy. This has significant industrially 

relevant implications, as successful souring mitigation strategies can reduce 

operating costs and maintain the oil value through the prevention of H2S 

production. 

The study of out-of-place thermophilic endospores in temperate estuarine 

sediments has enabled multiple hypotheses to be explored in particular relating to 

microbial dispersal and extreme survival. This study has focused on thermophilic 

endospores, but the dispersal vectors identified are not exclusive to this group. 



Chapter 7 – Conclusions and Perspective 

 117 

They likely transport microorganisms of all kinds thus influencing biogeographic 

patterns of many microbial populations.  

Summary of findings 

1. Thermophilic spore-forming SRB and putative thermophilic fermenters 

are present throughout the temperate River Tyne estuary, UK, including 

upstream of the tidal limit (Figures 3.1-3.3) 

2. Different populations of thermophiles are detected depending on 

incubation temperature (50-90°C) and heating (pasteurisation and 

autoclaving) indicating multiple warm source environments with different 

environmental conditions (Figures 4.2, 5.5, and 6.4). 

3. The identification of different dispersal histories adds to the known 

possibilities for dispersal vectors explaining biogeographic distributions 

of thermophilic endospores cold sediments (Chapters 3 and 4) 

4. The presence of identical partial 16S rRNA sequences in geothermal 

groundwater with two extremely heat-resistant phylotypes suggests 

microorganisms in the terrestrial subsurface may be transported to the 

surface in migrating groundwater (Figure 4.8) 

5. Extreme heat-resistance was demonstrated among the genera 

Desulfotomaculum, Tepidanaerobacter, Moorella, Thermoanaerobacter 

and Gelria, contributing towards the known diversity and physiology of 

extremely heat-resistant spore-formers (Figure 4.5B)  

6. Extreme heat-resistance appears to be a characteristic of deep 

biosphere microorganisms (Chapter 4) 

7. Autoclaving sediments reveals microbial diversity that may not be 

otherwise be detected in enrichment cultures (Figures 4.2 and 4.5) 

8. Extremely thermophilic and hyperthermophilic fermentative species 

detected in estuarine sediments contribute to bacterial acetate 

production at high temperature (up to 90°C) (Figures 6.2 and 6.4). 

9. Thermophilic endospores have been shown to survive 8 hours at 121°C 

and 463-days at 80°C, extending the known survival times at high 

temperature (Figures 4.4 and 5.6). 

10. The survival physiology of endospores is industrially relevant in the 

context of reservoir souring. Temperature shifts trigger endospore 
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germination of SRB, which may subsequently contribute to souring 

(Figure 5.1). 
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Appendix A 

Sediments from the Tyne estuary (stations F1, B3, B5 and B6) were 

analysed by Desulfotomaculum-specific DGGE (section 2.3.3.1), following 

pasteurisation at 80°C (1 h) and incubation at 50°C (72 h), as described in section 

3.3.1-3.3.3. Based on highly similar DGGE profiles (Figure A1), in addition to 

reproducible sulfate measurements (Figure 3.1), PCR products from replicate 

microcosms were pooled prior sequencing by Ion Torrent (section 2.3.3.3).  

 
Figure A.1: Desulfotomaculum-specific DGGE following two-step nested PCR; DEM116f – 1164r 
(targeting Desulfotomaculum spp.) followed by 341f-gc – 907r (universal bacterial 16S rRNA 
primers). Sediments were pasteurised sediments (1 hour at 80°C) and incubated at 50°C. DNA 
was extracted after 72 hours' incubation. Average % similarity between triplicates was calculated 
in Bionumerics software package (Applied Maths, Austin, Texas, US). Band matching data was 
used to calculate Dice similarity indices. 
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Amplicon libraries generated from pasteurised Tyne estuary sediment 

incubations (Chapter 3 and 4) were rarefied to 12,852 reads. Rarefaction analysis 

indicated that the sampling depth was sufficient for representing and comparing 

microbial communities (Figure A.2A). Amplicon libraries generated from pre-

autoclaved Tyne estuary sediments (Chapter 4) were rarefied to 6030 reads 

(Figure A2B). Autoclaving sediments prior to incubation resulted in reduced 

species richness compared to pasteurised sediment incubations conducted at the 

same temperature. 

 
Figure A.2: Rarefaction analysis of amplicon libraries from pasteurised (A) and autoclaved (B) 
Tyne estuary sediments (Chapters 3 and 4). Libraries in A are grouped according to station; error 
bars show the standard error between different amplicon libraries from the same station. 
Pasteurised incubations at 50, 60 and 70°C (Chapter 4) are included within the group station B3. 
Rarefaction curves in B each represent a single amplicon library. 
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In Chapter 3, in instances where an OTU of interest was absent from the 

rarefied OTU table the unrarefied OTU table was checked. Unrarefied library sizes 

are shown in Table A.1. 

Table A.1: Reads per library generated by Ion Torrent (Chapter 3), from sediment incubations at 
50°C. 

 0 h 24 h 48 h 72 h 96 h 120 h 

Station F1 
17336 23209 12852 27882 25141 22429 

Station B2 
20430 21280 92272 24064 19882 ND 

Station B3 
19288 28744 26135 29123 23358 ND 

Station B4 
21527 32954 21031 24505 ND ND 

Station B5 
23125 29584 26441 12900 28458 ND 

Station M6 
21471 18809 27313 25977 29856 23904 

 

Amplicon libraries in Chapter 5 were generated from individual triplicate 

DNA extracts in addition to pooled libraries (where PCR amplicons were combined 

prior to sequencing). Comparing shared phylotypes between single and pooled 

amplicon libraries indicate that the pooled library was a good representation of the 

microbial community at the tested sampling points (Table A2).  

Table A.2 Libraries were first rarefied to 9159 reads then low abundance OTUs were filtered from 
the OTU table (OTUs observed less than 92 times). OTUs shared between pooled and single 
amplicon libraries were compared using the shared_phylotypes.py command in QIIME. 

Sample ID Total number of 

OTUs in library 

Number of OTUs 

shared 

% of OTUs 

represented 

Tyne 116 h rep 1 171 146 85.38 

Tyne 116 h rep 2 175 149 85.14 

Tyne 116 h rep 3 142 131 92.25 

Tyne 116 h POOL 178 178 100.00 

Tyne 223 h rep 1 146 125 85.62 

Tyne 223 h rep 2 167 119 71.26 

Tyne 223 h rep 3 140 118 84.29 

Tyne 223 h POOL 158 158 100.00 
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Appendix B 

Amplicon libraries generated by Ion Torrent were analysed in QIIME 

(Caporaso et al., 2010b). Raw sequence data was processed in QIIME 1.7.0 using 

a pipeline developed by Gregg Iceton. Core diversity analyses was conducted in 

QIIME 1.8.0. Analysis steps are outlined below. 

(1) Convert the fastq file into fasta and qual files 

convert_fastaqual_fastq.py 

(2) Split the libraries according to the mapping file, remove sequences <100 bp 

split_libraries.py 

(3) Pick OTUs using open reference (first compare to Greengenes, then de novo). 

Align sequences, build tree, assign taxonomy, similarity 0.6. 

parallel_pick_otus_uclust_ref.py 

filter_fasta.py 

pick_rep_set.py 

pick_otus.py 

pick_rep_set.py 

make_otu_table.py 

Assign taxonomy 

parallel_assign_taxonomy_rdp.py 

Add taxa to OTU table command  

add_metadata.py 

(4) Alignment, filter alignment, filter pynast failures from OTU table 

parallel_align_seqs_pynast.py 

filter_alignment.py  

filter_otus_from_otu_table.py  

(5) Identify and remove chimeras from fasta file and OTU table 

parallel_identify_chimeric_seqs.py  

filter_fasta.py 

filter_otus_from_otu_table.py 

(6) Make phylogenetic tree 

 make_phylogeny.py 

(7) Core diversity analyses 

 core_diversity_analyes.py
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Appendix C 

Table C.1: Primer coverage was tested using the SILVA Test Prime tool (Klindworth et al., 2012). Coverage was calculated with 0 mismatches. Primer targets 
are shown in bold and additional coverage information is shown for comparison between primer pairs. 

Primer Pair 
(Application) 

Domain Phylum Order Class Family Genus 

DEM116F / 
DEM1164R  
(DGGE) 

Bacteria – 
0.1% 

Clostridia – 
0.4% 

Clostridia – 
0.4% 

Clostridiales – 
0.4% 

Peptococcaceae – 
20.9% 

Cryptanaerobacter –  
81.3% 
Desulfotomaculum –  
31.6% 
Desulfurispora –  
84.5% 
Sporotomaculum –  
75% 
Uncultured 
Peptococcaceae –  
12.7% 

pA / pH  
(Cloning) 

Bacteria – 
22.6% 

Firmicutes – 
31.0% 

Clostridia – 
32.4% 
Bacilli – 
30.9% 

Clostridiales – 
32.4% 

Peptococcaceae – 
20.3% 

Desulfotomaculum – 
23.8% 

V4F / V5R  
(Ion Torrent) 

Archaea – 
85.4% 
Bacteria – 
88.0 % 

Firmicutes – 
87.7% 

Clostridia – 
90.2% 
Bacilli – 
83.7% 

Clostridiales – 
90.3% 

Peptococcaceae – 
92.2% 

Desulfotomaculum – 
93.1% 

 


