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Abstract

Modern technology offers us highly evolved data collection devices. They allow us to
observe data densely over continua such as time, distance, space and so on. The observa-
tions are normally assumed to follow certain continuous and smooth underline functions
of the continua. Thus the analysis must consider two important properties of functional
data: infinite dimension and the smoothness. Traditional multivariate data analysis nor-
mally works with low dimension and independent data. Therefore, we need to develop
new methodology to conduct functional data analysis.

In this thesis, we first study the linear relationship between a scalar variable and a group
of functional variables using three different discrete methods. We combine this linear re-
lationship with the idea from least angle regression to propose a new variable selection
method, named as functional LARS. It is designed for functional linear regression with
scalar response and a group of mixture of functional and scalar variables. We also propose
two new stopping rules for the algorithm, since the conventional stopping rules may fail
for functional data. The algorithm can be used when there are more variables than sam-
ples. The performance of the algorithm and the stopping rules is compared with existed
algorithms by comprehensive simulation studies.

The proposed algorithm is applied to analyse motion data including scalar response, more
than 200 scalar covariates and 500 functional covariates. Models with or without func-
tional variables are compared. We have achieved very accurate results for this complex
data particularly the models including functional covariates.

The research in functional variable selection is limited due to its complexity and oner-
ous computational burdens. We have demonstrated that the proposed functional LARS
is a very efficient method and can cope with functional data very large dimension. The
methodology and the idea have the potential to be used to address other challenging prob-
lems in functional data analysis.
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Chapter 1

Introduction

As technology continuous to evolve, the structures of the data we could obtain become
more complex. One of the new data type is functional data, where the basic units of the
data are functions rather than points. One example of this is the movement data that we
will discuss in this thesis, where records are signals with high frequencies. On the other
hand, the purpose of data analysis remains the same, and we still interest in the traditional
statistical problems, such as regression and classification, etc. New data structures, such
as functional data, bring new challenges to the analysis. We will address some of these
challenges in this thesis, by using both scalar and functional data.

The thesis consists of two parts. The first will focus on functional variable selection while
the second will focus on applying this variable selection method to analyse large, real
motion data.

Part I: Variable Selection in Functional Linear Regression

Functional regression is the regression model with functional variables in either response
or predictors, or both of them. The model we are interested in has a scalar variable as
the response and both scalar and functional variables can be included in the predictors.
The focus in the literature is univariate functional regression, i.e., only one functional
variable is used in the predictor. However, as data collection technology becomes more
powerful, multidimensional functional variables in one data set become more common.
Thus, we have to treat each one of the functional variables as a whole in the analysis. The
research in this area is still developing. As the number of functional variables increases,
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Chapter 1. Introduction

the variable selection problem in the regression analysis becomes more important.

There are two major difficulties associated with functional variable selection. One is that
the number of predictors could be larger than the sample size. The other one is the func-
tional structure of the variables and the coefficients should be captured in the analysis.
The former difficulty is one of the problems that generally occurs in variable selection
algorithms. This is caused by the collinearity from the large number of candidate predic-
tors. The later difficulty is from the smoothness behaviour of the functional objects. We
need to consider the smoothness of functional variables in the regression and make sure
the estimated functional coefficients are smooth functions. Moreover, from a computa-
tional point of view, the functional variables add an additional burden to the computation
of the variable selection procedure.

We propose a new functional variable selection algorithm, called functional least angle
regression to overcome the difficulties above. It is an extension of the least angle regres-
sion processed by Efron et al. (2003) from a multivariate domain to a functional domain.
The key in least angle regression is the linear correlation between the residuals and the
predictors measured by Pearson’s correlation coefficient. We replace this correlation by
an extension of functional canonical correlation analysis. We use this correlation analysis
to calculate the correlation between a scalar variable and a set of mixed scalar and func-
tional variables. The functional variables are represented as discrete data points, while
functional coefficients could be represented by different methods. We introduce three
different representation methods for functional coefficients: discrete data points, basis
functions and Gaussian quadrature. To the best of our knowledge, the last method has not
been used in functional regression analysis before. The smoothness of the functional co-
efficients is controlled by the roughness penalty, and the tuning parameter for the penalty
function is selected by generalized cross validation to avoid heavy computational costs.
By using this correlation measure, we can achieve accurate and efficient estimation of
the coefficients for the variables in the functional least angle regression. Least angle re-
gression can be modified to give a better estimation of the regression equation. We also
propose a modification addressing the same problem by checking the variance of the pro-
jection of each selected variable. Because of the difficulty in calculating the degrees of
freedom of the regression equation, conventional stopping rules cannot provide accurate
information about the stopping point. Therefore we propose two new stopping rules for
practical usage. These would allow the algorithm to stop immediately after the correct
stopping point and therefore further reduce the computational time.

2
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In Part I, we first briefly introduce and review recent developments in functional data
analysis in Chapter 2. We then explore the functional canonical correlation analysis in
Chapter 3. Functional least angle regression for functional predictors and mixed scalar
and functional predictors are discussed in Chapter 4 and Chapter 5, respectively. Compre-
hensive simulation studies are included in both of these chapters for different correlation
structures.

Part II: Application of the Functional Regression Analysis
in Motion Data

The motion data we will analysis in this thesis come from a study of the recovery of stroke
patients using the signal data from a video game played by stroke patients at home. We
want to build a regression model to represent the dependence level of stroke patients in
daily life and do prediction for new patients.

The raw data set contains rich information, but many pretreatment steps are required to
better compare the difference between samples. After the pretreatment of the data, we
obtain a large number of scalar and functional variables. The total number of these two
types of variables is much larger than the sample size. Thus the variable selection is
one of the necessary tasks to do. As this is a longitudinal study, the within and between
patient variation should also be considered in the analysis. In addition, the change of the
dependence level of any patient should be smooth, unless a second stroke occurred during
the data collection period.

Many models are tested and a few typical models are listed in detail in the thesis. For
selecting a good subset of predictors, least angle regression is used in the model with
scalar variables only, while functional least angle regression is used in the model with
both scalar and functional variables. The best model is the mixed effects model with
functional linear regression in fixed effect and Gaussian process in the random effect. The
functional linear regression is used to capture the linear variation while Gaussian process
is used to capture the non-linear variation and to introduce smoothness to the change of
the upper limb function of individual patients.

In Part II, we first introduce the background of the motion data in detail in Chapter 6. The
models will be explained in Chapter 7 with model comparison from repeated k-fold cross
validation at the end.
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Functional Variable Selection
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Chapter 2

Introduction for Functional Data
Analysis

Functional data analysis, or FDA in short, uses functional variables in addition to the
conventional multivariate data analysis. The most common characteristic of functional
variable is that the observed samples follow some smooth underlying functions. Func-
tional variables can be thought as the observations of an object changes its state on a
continua, such as time t. However, different observation qualities may give different types
of functional variables. Ideally, we want the functions to be observed on all t ∈ [0,T ].
Since t is continuous, the ideal case would give infinite data points, which is not feasible to
use practically. Typically, we can have the function observed on a grid of time t. The grid
can be dense, such as the well studied children’s gait data from Olshen et al. (1989) and
Berkeley growth data studied in Ramsay and Silverman (2005). When the observation
grid is sparse, the data are more closely related to the longitudinal data. For example, the
longitudinal data recording the recovery of a patient can be thought as sparsely observed
functional data as the patient should recovery smoothly over time.

In this thesis, we focus on the regression problem in functional data analysis, but there are
other aspects in functional data analysis which are equally important. We give an intro-
duction and review for some of the topics in FDA in this chapter. First of all, we briefly
introduce smoothing and registration for functional variables in Section 2.1. Secondly,
we roughly review the popular representative of functional variables in Section 2.2, i.e.,
the functional principle component analysis. We then show some recent development in
functional regression with brief discussions in Section 2.3.
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2.1 Smoothing and Registration for Functional Data

Smoothing can reduce the noise from observation. But more importantly, it can recover
the underlying functions from the observed functional data. Registration, on the other
hand, can change the phases of the samples of the functional variables slightly to align
the important features for future analysis.

2.1.1 Smoothing

Suppose we observe a realization of a functional variable X(t) at K discrete time points
(t1, t2, . . . , tK) with values x = (x1, x2, . . . , xK), where t ∈ [0,T ] and 0 ≤ t1 < t2 < . . . <≤ T .
Denote the underlying function of this realization as x(t), then we have:

xk = x(tk) + εk.

There are many methods that can be used in data smoothing. One of the most commonly
used method is to use basis functions to represent the functional object. Suppose we
have known basis functions Φm(t), we can express the functional object x(t) by the basis
functions:

x(t) =

∞∑
m=1

cmΦm(t),

where cm are unknown basis coefficient. Practically, we can use M basis functions instead
of an infinite number of basis function to represent the observed data x:

x = x(t) + ε ≈
M∑

m=1

cmΦm(t) = cΦ,

where ε, c and Φ are the vector form of the error, basis coefficient and basis functions,
respectively. The basis coefficient is the unknown quantity to estimate. We can use least
square or penalized least square to estimate ĉ.

For least square estimation, we have:

ĉ = Φ
(
ΦTΦ

)−1
Φx.

The smoothness of the outcome is controlled by the number and the order of the basis
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functions. This can be done by cross validation. If the basis functions have a large M and
a high the order, they may overfit the observed data. However, if the basis functions have
a small M and a low order, they may give a fitted curve that is too smooth to capture the
features of the observed data.

For penalized least square estimation, we have:

ĉ = Φ
(
ΦTΦ + λPen

)−1
Φy, (2.1)

where Pen is the penalty function, and λ is the smoothing parameter. With the penalty
function, we can use a set of basis functions with relatively large number and relatively
high order in the calculation and let the smoothing parameter λ control the smoothness.
As λ increases, the smoothness of the outcome increases, and vice-verse.

The penalty function can be written as Lx(t), where L is the linear differential operator for
x(t). The choice of L depends on the choice of the basis functions we use in the smoothing
process. We first show two examples for commonly used basis functions, spline basis and
Fourier basis. Let us denote Dnx(t) as the n-th derivative of x(t).

The spline basis is a set of basis function of t. Without loosing the generality, the func-
tional object can be expressed as a polynomial of order q, where q is the order of the basis
function:

x(t) = c1 + c2t + c3t2 + . . . =

Q∑
q=1

cqtq.

The commonly used penalty function is L = D2. We can relate this penalty function to
the differential equation D2x(t) = 0. The general solution of it is

A1 + A2t,

for any constant A1 and A2. Intuitively, when λ increases in the Eqn (2.1), the coefficients
corresponding to the basis functions with order higher than one would tends to zero.
Therefore, if λ = ∞, the outcome is the fitted value of the linear regression x = A1+A2t+ε,
where t is the continuum, and ε is the error.

If we use a set of Fourier basis, the functional object can be written as:

x(t) = c1 + c2 sinωt + c3 cosωt + c4 sin 2ωt + . . . ,
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where 1/qω is the period of the (2q)-th and (2q + 1)-th Fourier basis functions. One of
the popular penalty functions for Fourier basis functions is L = D3 + ω2D. We can also
connect it to the differential equation D3x(t) + ω2Dx(t) = 0. The general solution of it is:

A1 + A2 cosωt + A3 sinωt,

for any constant A1, A2 and A3. Intuitively, the Fourier basis functions with short periods
would have less effect to the outcome when λ increases, and the outcome becomes closer
to the fitted value of the non-linear regression x = A1 + A2 cosωt + A3 sinωt + ε.

Similarly, we can define other linear operators of L. Table 2.1 shows a few more general
penalty functions with corresponding components in the general solutions:

Operator terms
1 Dq {1, t, ..., tq−1}

2 D2 + ω2 {cos(ωt), sin(ωt)}
3 D + A {exp(−At)}

Table 2.1: General solution for low order different differential operator

where A is a constant; q is the order of the derivative. They can be considered for specific
data sets and basis functions in practical use.

2.1.2 Registration

Suppose we have two realizations x1(t) and x2(t) of the functional variable X(t). The
registration process changes the continuum t for each realization by using wrapping func-
tions h1(t) and h2(t) such that x1(t) and x2(t) becomes x1(h1(t)) and x2(h2(t)) respectively,
with the important features aligned. This can help to capture the important features when
analysing the data.

2.2 Representative of Functional Data

In addition to the basis function expressions, the most commonly used method to represent
the functional variables is the functional principle component analysis (FPCA). There is
an extensive research on the topic of the FPCA, such as Hall et al. (2006); Ramsay and
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Silverman (2005). We briefly review the method of FPCA here as this method is often
connected to the regression problem in FDA.

The FPCA is designed for fully observed independent samples from one functional ran-
dom variable. The idea is to represent the functional variable by a set of orthogonal basis
functions estimated from the auto-covariance matrix. This set of basis functions can be
used as normal basis functions on any functional object. The original version of the FPCA
has a few limitations. In order to address these limitations, many variations of the FPCA
have been proposed. Here we show three typical methods targeting problems from sparse
observation grid, multi-dimensional functional data and dependent samples, respectively.
Yao et al. (2005a) extend the FPCA to sparse observed data, or longitudinal data. The
data are collected with sparse observation grid. Due to the small sample size from each
subject, conventional smoothing techniques cannot be applied to recover the underlying
functions with respect to each of the sample. Thus, a mean function is calculated by
smoothing over all the samples from all the subject. The FPCA for the i-th sample is
carried out using the corresponding covariance matrix Σi estimated from the subset of the
auto-covariance matrix of the whole data set. The conditions of this method are weak and
easy to satisfy. Ramsay and Silverman (2005) gives details about the FPCA and extends
the FPCA to multivariate case. The method they use considers the information in both
auto-covariance and cross-covariance of the functional variables. Di et al. (2009) intro-
duced the multi-level FPCA to deal with the longitudinally collected signal data from a
large number of subjects. This method targets the variations on the within subjects level
and between subjects level at the same time.

2.3 Regression Analysis of Functional Data

The regression analysis in FDA can have functional variables in both response and predic-
tors. We first review functional regression with scalar response, as it is our main focus in
the later chapters. We will also look at the functional regression with functional response
here.

A large proportion of the literature for functional regression is concerned with univariate
functional regression. The univariate functional linear model with scalar response is:

y = µ +

∫
x(t)β(t)dt + ε,
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where y here is the response; µ is the intercept; x(t) is the functional variable; β(t) is the
functional coefficient and ε is the noise follows a normal distribution.

We can use basis functions to represent the functional objects and turn this model to the
straight forward extension of the multivariate linear regression. Similar to smoothing,
the choice of the basis functions for the functional variable and the functional coefficient
can affect the estimations. One popular choice is to use the same set of orthogonal ba-
sis functions for both functional variable and functional coefficients. This can reduce the
complexity of the estimation, since the orthogonal basis would cancel out in the calcula-
tion. Or we can use spline basis with low order and small numbers to control the smooth-
ness of the functional objects. We can also introduce a roughness penalty to control the
smoothness by a smoothing parameter.

As we mentioned above, the basis functions can be provided from the FPCA. The eigen-
functions we obtain from FPCA are orthogonal basis driven by data. Cardot et al. (1999);
Reiss and Ogden (2007) study this model. C.Crainiceanu (2009) proposed generalized
multilevel functional regression following the work from the multilevel FPCA. Mixed ef-
fects model is carried out using the principle components to capture the variation between
different levels.

Similar to principle component regression in the multivariate case, regression with the
FPCA has an obvious disadvantage, i.e., the principle components are obtained without
considering any information from the response variable. Thus the focus is moving away
from functional regression with the FPCA to functional regression with other discrete
methods such as basis functions representations and even the discrete data points of the
functional variables. We will discuss the details of the discrete methods in Chapter 3.

We can see other alternative methods for functional linear regression with scalar response
and univariate functional covariates. Müller and Yao (2012) propose a functional additive
model. The model uses the components from FPCA to build an additive model. It is more
flexible than the original FPCR, and it is able to overcome some problems that FPCR
has. Functional partial least square (or FPLS) extends the partial least square method
from a multivariate domain to functional domain. Reiss and Ogden (2007) propose FPLS
smoothed by either basis functions or roughness penalties. James et al. (2009) propose
a method to give a better estimation of the functional coefficient in the functional linear
regression model with scalar response. The method targets the problem that when the
functional coefficient is exactly zero at some t, the estimation at and near t would be
inaccurate. If the functional coefficient is zero in an area on t, the problem would be worse.
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Since most of the time the functional coefficients are non-zero on most of t ∈ [0,T ], it
would be difficult to locate the zero positions. However, the derivatives of the functional
coefficient could be sparse. Instead of estimating the functional coefficient, they then
estimate the n-th order derivative of the functional coefficient, which can be sparse and
therefore easily estimated by conventional variable selection methods.

Functional generalized linear regression has also been studied. Müller and Stadtmüller
(2005) proposed a generalized functional linear model. The functional objects are rep-
resented by orthogonal basis. The algorithm to estimate the parameters can work with
non-exponential family errors. J.Goldsmith et al. (2011) propose a generalized linear
regression model with sparse observed noisy functional variables. The auto-covariance
matrix is first calculated using the raw sparse observed functional variable. Instead of
smoothing the functional variables, the auto-covariance matrix is smoothed to perform
FPCA. They then recover the functional variables by the data driven orthogonal basis and
perform the generalized linear regression. This method can also be extended to multivari-
ate functional regression.

Multivariate functional regression has become common recently. Fan and James (2013)
propose a functional additive model with scalar response and functional predictors:

y =

P∑
p=1

fp(xp(t)) + ε,

where fp(·) could be linear or non-linear and fp for non-linear additive model could be
unknown. They also propose the variable selection and model selection methods for
both linear and non-linear additive models. The selection for linear model is done by
group lasso with standardization. The selection for non-linear models is done by iterative
method. This approach is closely related to that proposed in Fan et al. (2014), where the
response variable is functional.

Functional regression with functional response is also a popular area. As this topic is
not our focus, we only briefly introduce a few methods proposed in this area. He et al.
(2000) use functional canonical correlation between two functional variables to model the
relationship between a functional response and a functional predictor. Yao et al. (2005b)
extend the FPCA for longitudinal data to the longitudinal regression model. Both response
variable and predictor are observed longitudinally and treated as sparsely observed func-
tional variables. The FPCA is carried out individually for both response and predictor,
and regression analysis is carried out using the principle components from both func-
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tional variables. Shi and Wang (2008) connect concurrent functional regression with a
Gaussian process for curve prediction. The functional regressions are used as the mean
model and greatly increase the prediction accuracy for the curves. Rosen and Thomp-
son (2009) study a very complex model. Both response and predictor are multivariate
functional variables. This model also considers the dependences between the response
functional variables.

Our focus is in the area of functional regression with scalar response and multivariate
functional variables. But before we look at the regression model, we will study the rela-
tionship between a set of functional variables and a scalar variable in Chapter 3.
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Chapter 3

Correlation for Functional Data

In order to build a functional regression model and also to perform variable selection for
functional data, we need to study the correlation between one functional variable (or one
set of functional variables) and one or more other variables. The latter could be functional
or scalar. More specifically, we are interested in measuring the correlation between the
information contained in two sets of functional or scalar variables.

The choices of correlation measures between random variables are limited. However,
there exist many correlation measures between random vectors. Functional random vari-
ables can be thought as random vectors with complex structures. Thus we start by learning
different correlation measures in this chapter. The correlation we focus on in this chapter
is the canonical correlation analysis, which is an extension of commonly used Pearson’s
correlation. Functional canonical correlation analysis has been studied in the literature for
some time (Ramsay and Silverman (2002, 2005)). We are going to extend it to measure a
more general relationship for functional data, such as the correlation between two groups
of functional variables and the correlation between one scalar variable and one group of
functional variables.

This chapter is organized as follows. A number of correlation measures are reviewed in
Section 3.1, followed by the introduction of the canonical correlations in Section 3.2.
Canonical correlation between functional variables and canonical correlation between
scalar and functional variables are discussed in details in Section 3.3 and 3.4, respec-
tively. A simulation study is given in Section 3.5.
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3.1 Different measures of correlation

The most commonly used measure for determining the linear correlation between two
random variables is Pearson’s product-moment correlation coefficient. Normally if not
specified, the term “correlation” means Pearson’s correlation. The formula for correlation
ρ between two random variables X and Y is

ρX,Y =
Cov(X,Y)
σXσY

=
E[(X − µX)(Y − µY)]

σXσY
, (3.1)

where Cov(X,Y) is the covariance of X and Y , σX is the population standard deviation of
X, µX is the population mean of X, and E[·] is the expectation. In practice, the population
mean and standard deviation are replaced by the sample mean and standard deviation.
When ρX,Y = ±1, X and Y are exactly correlated and can be written as:

X = aY + b

for any constant a (a , 0) and b. When ρX,Y = 0, X and Y are uncorrelated, but not
necessary independent.

The correlation between two groups of random variables or random vectors is more com-
plex. We will now review several commonly used measures. Assume we have two data
sets X and Y generated from two random vectors with the dimension px and py respec-
tively. We assume that the sample size for X and Y are both n.

1. Rv coefficient
The Rv coefficient was proposed by Yves Escoufier in the early 70’s, and the original
articles are in French. Later Robert and Escoufier (1976) relate the Rv coefficient
with other multivariate data analysis tools including principle component analysis.
This coefficient gives an indication of the linear relationship between two sets of
data points. The two sets of data could be high dimensional. Let us denote the
dimension of X and Y to be px and py, respectively. For this particulate correlation
measure, we need to have px = py.

The formula of Rv is:

ρX,Y =
tr(ΣT

xyΣ xy)√
tr(ΣT

xxΣ xx)tr(ΣT
yyΣyy)

,
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where Σ ·· = Cov(·, ·). More specifically,

Σ xy =
XT Y

(n − 1)
, Σ xx =

XT X
(n − 1)

, Σyy =
YT Y

(n − 1)
.

This is a well studied linear correlation measure. There are many modifications of
it. For example, the Procrustes coefficient is:

ρX,Y =

√
tr(ΣT

xyΣ xy)√
tr(ΣT

xxΣ xx)tr(ΣT
yyΣyy)

,

and modified Rv coefficient is:

ρX,Y =
tr([Σ xy − diag(Σ xy)]T [Σ xy − diag(Σ xy)])√

tr([Σ xx − diag(Σ xx)]T [Σ xx − diag(Σ xx)])tr([Σyy − diag(Σyy)]T [Σyy − diag(Σyy)])
.

The former one is not scale invariant (Josse and Holmes (2013); Josse (1971)), but
it is popular in the areas such as ecology and morphology.

We can further modify it to obtain non-linear correlation measures. This is done by
changing the form of the Σ’s to that of the other dissimilarity matrices. It is referred
to as the generalized Rv coefficient and was proposed by Minas et al. (2013). The
properties of the generalized Rv coefficient depend on the properties of the new Σ’s.

2. Congruence coefficient
Another closely related correlation measure is the congruence coefficient. It was
first proposed by Cyril Burt in 1948. The formula of this measure is very simple

ρX,Y =

∑
(XT Y)√

(
∑

(XT X)) (
∑

(YT Y))
.

where
∑

(. . .) is the summation of all the elements in the matrix.

This correlation measure uses the data directly rather than the covariance matrix
we see in the Rv coefficient. And thus we can have px , py in this case. It is
widely used in measuring the similarity between the factors in two matrices, such
as Lorenzo-Seva and Ten Berge (2006).

3. Mantel coefficient
The Mantel coefficient was originally introduced by Mantel (1967). This is a pop-
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ular correlation measure especially in ecology. Similar to the Rv coefficient, the
Mantel coefficient uses the distance matrices to do the calculation. Consider Σ as
one kind of distance or dissimilarity matrix, and Σu as the upper triangular matrix
of Σ. The formula is:

ρX,Y =

∑
[(Σu

xx − Σ̄
u
xx)(Σ

u
yy − Σ̄

u
yy)]√∑

[((Σu
xx − Σ̄

u
xx))T ((Σu

xx − Σ̄
u
xx))]

∑
[((Σu

yy − Σ̄
u
yy))T ((Σu

yy − Σ̄
u
yy))]

,

where Σ̄u is the mean of all the entries of the upper triangular distance matrix Σ.

Similar to the Rv coefficient, there are many modifications to the Mantel coefficient
from the extensive practical usage. In addition, many new proposed correlation
measures use Mantel coefficient as the target for comparison.

4. Distance correlation coefficient
Székely et al. (2007) proposed a distance covariance/correlation coefficient to mea-
sure the correlation between two random vectors. This is a non-linear measure. In
this case, we can have px , py. As a non-linear correlation measure, it is 0 if,
and only if, the two random vectors are independent. This valuable property has
attracted further research from statistical point of view. For example, J. Berrendero
(2013) studied functional data analysis and used this correlation to select effective
data points. This correlation measure is calculated in the following way. First, we
need to transfer the data matrices X and Y into some distance matrices ΣX and ΣY .
Secondly, ΣX is centred to ∆X by:

∆X
i, j = ΣX

i, j − Σ̄
X

i,· − Σ̄
X
·, j + Σ̄X

·,·.

And ΣY is centred in the same way. Then the squared distance covariance is:

dCov2
n(X,Y) =

1
n2

∑
[∆X]T [∆Y].

The correlation is:

ρX,Y =
dCov(X,Y)

√
dCov(X)dCov(Y)

.

A few articles review the different statistical properties and usages of the correlation coef-
ficients. Josse and Holmes (2013) introduces the history and development of some com-
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monly used correlation measures. Abdi (2007) reviews many distance functions, while
Abdi (2010) reviews three correlation measures from the statistical test and distribution
perspectives.

3.2 Canonical correlation analysis between random vec-
tors

Canonical correlation analysis, or CCA measures the linear correlation between two groups
of random variables or two random vectors. It is a natural extension of Pearson’s corre-
lation coefficient. We replace the random variables in Eqn (3.1) by the projection of the
random vectors with some weights or coefficients. For each pair of given weights or co-
efficients ã1 and ã2, there exists one correlation measure between two random vectors X1

and X2:

ρ(X1,X2|ã1, ã1) =
cov(ãT

1 X1, ãT
2 X2)√

Var(ãT
1 X1)Var(ãT

2 X2)

For each of the random vectors, there exist more than one possible projections Ua = ãT X
when the dimension of X is larger than one, regardless the scale of ã. Among all the
possible projections Ua for X1 and Ub for X2, the first canonical correlation uses the
pair that can give the maximum correlation. The first canonical correlation coefficient is
obtained by:

ρ(X1,X2) = max
ã1,ã2

cov(ãT
1 X1, ãT

2 X2)√
Var(ãT

1 X1)Var(ãT
2 X2)

, (3.2)

under the constraint that Var(ãT
1 X1) = 1 and Var(ãT

2 X2) = 1 in order to scale the coef-
ficients. This gives one correlation and the estimate of the first pair of weights or coeffi-
cients ã(1)

1 and ã(1)
2 .

For the k-th canonical correlations when k > 1, we still want the projections U (k)
a and U (k)

b

that can give maximum correlation, but we also want U (k)
a ⊥ U (k∗)

a and U (k)
b ⊥ U (k∗)

b for any
k∗ < k, where ⊥ means independent with. Thus the number of canonical correlations are
equal to the minimum number of possible orthogonal projections from the two random
vectors. Sample sizes of the two random vectors should satisfy n > p1 + p2 + 1, where p1
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and p2 are the dimensions of X1 and X2 respectively.

The reason for choosing canonical correlation analysis in this case is that it gives correla-
tion and coefficients simultaneously. The correlation can be used to represent the relation-
ship between random vectors, and the coefficient vectors can be related to the regression
problem in the later chapters.

In multivariate case, solving Eqn (3.2) is equivalent to solving the optimization problem:

G = max
ã1,ã2

cov(ãT
1 X1, ãT

2 X2) −
η1

2
[Var(ãT

1 X1) − 1] −
η2

2
[Var(ãT

2 X2) − 1]. (3.3)

If sample size is n, then we have

G = max
ã1,ã2

ãT
1 XT

1 X2ã2 −
η1

2
[ãT

1 XT
1 X1ã1/(n − 1) − 1] −

η2

2
[ãT

2 XT
2 X2ã2/(n − 1) − 1]. (3.4)

Eqn (3.4) can be solved by using Lagrange multiplier:

∂G
∂ã1

= XT
1 X2ã2 − η1XT

1 X1ã1 = 0; (3.5)

∂G
∂ã2

= ã1XT
1 X2 − η2ãT

2 XT
2 X2 = 0. (3.6)

It can be proved that η1 = η2. From Eqn (3.5), we can get:

(XT
1 X1)−1XT

1 X2ã2 = ρ1ã1

ãT
1 (XT

1 X1)(XT
1 X1)−1XT

1 X2ã2 = ãT
1 (XT

1 X1)ρ1ã1

ãT
1 XT

1 X2ã2 = η1.

Similarly from Eqn (3.6), we cat get:

ãT
2 XT

2 X1ã1 = η2.

Thus η1 = η2. Set both of η1 and η2 to be η. Now we solve the linear system

XT
1 X2ã2 = ηXT

1 X1ã1

XT
2 X1ã1 = ηXT

2 X2ã2. (3.7)
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It is equivalent to solving the generalized eigen decomposition: 0 XT
1 X2

XT
2 X1 0

  ã1

ã2

 = η

 XT
1 X1 0
0 XT

2 X2

  ã1

ã2

 ,
where η is the eigenvalue and the correlation. Thus ρ = η. The correlation measure
ρ can have more than one values, depending on the dimensions of the random vectors.
Alternatively, solving this linear system is equivalent to solving the eigen-decomposition
of matrices:

for X1 M1 = (XT
1 X1)−1XT

1 X2(XT
2 X2)−1XT

2 X1,

for X2 M2 = (XT
2 X2)−1XT

2 X1(XT
1 X1)−1XT

1 X2.

These two matrices can have more a general form. Let V1 = Var(X1), V2 = Var(X2),
V1,2 = VT

2,1 = Cov(X1,X2), then

for X1 M1 = V−1
1 V1,2V−1

2 V2,1 (3.8)

for X2 M2 = V−1
2 V2,1V−1

1 V1,2. (3.9)

Note that MoorePenrose pseudoinverse might be required to solve Eqn (3.8) and Eqn (3.9)
to overcome some numerical problems. This is a type of generalized inverse. It is unique
for all matrices if the outcome satisfies necessary conditions (Penrose (1955)). Other
types of generalized inverse may also be applied here. Vinod (1976) added a ridge penalty
into the analysis, which can ease this issue to some extent.

The only correlations of interest are the non-zero ones, or the ones that are fairly distinct
from 0. Numerical computation may give results that are non-zero but also very small.
Thus practically, a threshold should be set to decide which correlations are too large to be
non-zero.

3.3 Canonical correlation analysis between random func-
tional variables

Projections of random vectors are used in the canonical correlation analysis. Similarly,
projections of random functional variables can also be used in CCA. The projection of a
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functional variable x(t) can be obtained by∫
x(t)β(t)dt.

Without any further modifications, Eqn (3.2) in the functional case can be written as:

ρ(x1(t), x2(t)) = max
β1(t),β2(t)

cov
(∫

x1(t)β1(t)dt,
∫

x2(t)β2(t)dt
)

√
Var

(∫
x1(t)β1(t)dt

)
Var

(∫
x2(t)β2(t)dt

) .
However, such naive implementation of Eqn (3.2) disregards any functional aspect of
the data. It has been proved that the functional canonical correlation analysis cannot be
carried out using Eqn (3.2) by S. E. Leurgans and Silverman (1993) and Ramsay and
Silverman (2005). In the later reference, the authors commented that the outcome is
‘meaningless’. This is also confirmed in our study. If apply Eqn (3.2) with the generalized
inverse, the estimated coefficients would over fit the variations between the two functional
variables, and give very large correlations.

The definition of canonical correlation analysis has no requirement of the within group
dependence. However, the dependence within functional variables is one of the most
important features in functional data analysis. This is because that the data and the co-
efficient must be smooth functions. From the literature, there are basically two ways to
estimate the functional canonical correlation and the component coefficients of the func-
tional variables. One way is to add a roughness penalty in the constraint, for example
S. E. Leurgans and Silverman (1993) used a discrete data points with constraints for
smoothness on ‘curve data’, while Ramsay and Silverman (2005) applied a roughness
penalty to the basis function expression of the functional variables and coefficients. The
other way is a two stage algorithm. The first stage is to use dimension reduction method,
such as functional principle component analysis to summarize the data. The second stage
is to apply original canonical correlation to the summaries of the data. Guozhong He
and Wang (2003) discusses a few different versions of this algorithm. He et al. (2010)
combines functional principle component analysis and canonical correlation analysis in
functional linear regression with functional response and predictors.

Adding roughness constraints to the functional coefficients is more closely related to the
functional regression problem than the other method, since we estimate the coefficient di-
rectly with respect to the functional coefficients. By using this method, the information of
the functional variables is not changed or discarded before the analysis. Thus we consider
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the penalized method here. The alternative way of smoothing with a roughness penalty
is to use suitable number of basis functions with suitable order. We use the roughness
penalty here in order to reduce the computation cost.

Suppose there are the two functional random variables denoted as x1(t) and x2(t), with the
corresponding coefficients β1(t) and β2(t) obtained from functional canonical correlation
analysis. As shown in the Eqn (3.2), the variances of the projected random vectors are
constrained to be 1. This is actually the constraint for the coefficients. Now change the
constraint to :

Var
(∫

xi(t)βi(t)dt
)

+ λ

∫
[β
′′

i (t)]2dt = 1 i = 1, 2,

where β
′′

(t) is the second order derivative of β(t). Therefore the canonical correlation
analysis between functional variables is:

ρ(x1(t), x2(t)) =

max
β1(t),β2(t)

cov
(∫

x1(t)β1(t)dt,
∫

x2(t)β2(t)dt
)

√
[Var

(∫
x1(t)β1(t)dt

)
+ λ1

∫
[β′′1(t)]2dt][Var

(∫
x2(t)β2(t)dt

)
+ λ2

∫
[β′′2(t)]2dt]

.

(3.10)

This is equivalent to

max
β1(t),β2(t)

cov
(∫

x1(t)β1(t)dt,
∫

x2(t)β2(t)dt
)

s.t. Var
(∫

x1(t)β1(t)dt
)

+ λ1[β
′′

1(t)]2 = 1, Var
(∫

x2(t)β2(t)dt
)

+ λ2[β
′′

2(t)]2 = 1.

We need to reduce the dimensions of the functional variables before solving Eqn (3.10).
S. E. Leurgans and Silverman (1993) used the discrete data points expression, whereas
Ramsay and Silverman (2005) used basis functions expression. The details of these meth-
ods for performing the canonical correlation analysis will be discussed in the next section.

Eqn (3.10) involves two tuning parameters λ1 and λ2. How to choose these values is an
important issue. S. E. Leurgans and Silverman (1993), Guozhong He and Wang (2003)
and Ramsay and Silverman (2005) mentioned cross validation method in this case. In
their articles, the tuning parameters λ1 = λ2 = λ from Eqn (3.10). This approximation
can simplify the problem and make the computation faster. The cross validation is stated
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as follows:

Suppose (β−i
1 (t), β−i

2 (t))k is the k-th pair of coefficients corresponding to the k-th largest
canonical correlation between x−i

1 (t) and x−i
2 (t), where −i means without the i-th sample.

Thus for the i-th sample from x1(t) and x2(t), there exist projections
∫

xi
1(t)β−i

1 (t)dt and∫
xi

2(t)β−i
2 (t)dt, respectively. For each choice of λ, the correlation between these projec-

tions can be expressed as:

CVλ,k = Cor
({∫

xi
1(t)β−i

1 (t)dt
}n

i=1

,

{∫
xi

1(t)β−i
1 (t)dt

}n

i=1

)
k

, (3.11)

where Cor(., .)k means the k-th correlation. Depending on the purpose of the analysis,
one may want to find the λ such that it can maximise the first canonical correlation as
in S. E. Leurgans and Silverman (1993) and Ramsay and Silverman (2005); or one can
select a λ that can minimise the k-th canonical correlation as in He et al. (2000). Compu-
tationally, this cross validation is very expensive.

3.4 Canonical correlation analysis between a scalar vari-
able and a functional variable

If we replace one of the functional variables by a scalar variable, the canonical correlation
can still be calculated. If we denote the scalar variable as y, we can write:

ρ(x(t), y) = max
β(t),α

Cov
(∫

x(t)β(t)dt, αy
)

√
[Var

(∫
x(t)β(t)dt

)
+ λ

∫
[β′′(t)]2dt][Var(αy)]

, (3.12)

which is equivalent to

max
β(t),α

Cov
(∫

x(t)β(t)dt, αy
)

s.t. Var
(∫

x(t)β(t)dt
)

+ λ[β
′′

(t)]2 = 1, Var(αy) = 1

In either CCA between two functional variables or CCA between one functional and one
scalar variable, the integration is not the most difficult part. The difficulty lies in defining
the second order derivative of the coefficients.

We consider three representative methods of the functional objects here and give the cor-
responding solutions of the canonical correlation analysis between one functional variable
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and one scalar variable. The first one is simply using the representative data points to re-
place the functional coefficient, and use matrix multiplication to represent the integration.
The second one is to introduce numerical integration to our problem. More specifically,
one type of Gaussian quadrature, Gauss-Legendre quadrature is used. The third one is to
apply basis functions to the functional objects, and reduce the dimension to the number
of basis functions. The details of them will be discussed in the following subsections.

3.4.1 Representative data points expression for functional variable
and functional coefficients

Suppose the functional variable x(t) has k representative data points. The functional vari-
able can be expressed as:

x(t) =
(
x(t1), x(t2), . . . , x(tk)

)
= Xn×k.

As a start, we assume k is large. It is likely to have k larger than the sample size n. The
coefficient β(t) should have the same number of discrete points as the functional variable.
For consistency, the coefficient β(t) is approximated by a 1 × k vector β̃. We refer to this
discrete method as representative data points expression or RDP method.

We now focus on calculation of the second order derivative. Tibshirani et al. (2005) used
finite difference to obtain the fusion in fused lasso, which is first order derivative. The
same idea can be used in the calculation of second or higher order derivative. We can
have:

β̃′′T ≈ Lβ̃T ,

where L is defined as:

L =



1 −2 1 0 0 0 . . .

0 1 −2 1 0 0 . . .

0 0 1 −2 1 0 . . .

0 0 0 . . .
. . .

. . . . . .

0 0 0 0 . . . . . . . . .


∗

1
δt
,

where δt as the difference between time of the corresponding consecutive data points.
This L is from the centred differences formula. The value of δt is arbitrary, thus we set it
as 1 for convenience. However, this is only for equally spaced data points. We need to
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consider more general case when δti , δt j for i , j. Suppose f (t) is the original function,
which has observations on t = t j, where j = 1, . . . , J. By Taylor expansions,

f (t j+1) = f (t j) + (t j+1 − t j) f ′(t j) +
(t j+1 − t j)2

2!
f ′′(t j) . . .

f (t j−1) = f (t j) − (t j − t j−1) f ′(t j) +
(t j − t j−1)2

2!
f ′′(t j) . . . .

Thus the centred differences formula for second order derivative is:

f ′′(t j) =
f (t j+1)(t j − t j−1) − f (t j)(t j+1 − t j−1) + f (t j−1)(t j+1 − t j)

(t j+1 − t j)(t j − t j−1) t j+1−t j−1

2

.

This gives the weight for the entries of the matrix L:

L =



2
(t3−t2)(t3−t1) −

2
(t3−t2)(t2−t1)

2
(t2−t1)(t3−t1) 0 0 0 . . .

0 2
(t4−t3)(t4−t2) − 2

(t4−t3)(t3−t2)
2

(t3−t2)(t4−t2) 0 0 . . .

0 0 2
(t5−t4)(t5−t3) − 2

(t5−t4)(t4−t3)
2

(t4−t3)(t5−t3) 0 . . .

0 0 0 . . .
. . .

. . . . . .

0 0 0 0 . . . . . . . . .


.

Such an approximation will create a big bias if the time points are not dense enough to
cover the rapid change. Therefore, this method is only useful for the case when records
of the data are made densely, such as the data we get from the well known “gait” data in
functional data analysis (Ramsay and Silverman (2005)), where 20 records are made per
gait cycle.

The integration
∫

x(t)β(t)dt can be approximated by:∫
x(t)β(t)dt ≈

Xβ̃T

k
.

Now Eqn (3.10) becomes:

ρ(x(t), y) ≈ ρ(X, y) max
β̃,α

cov(Xβ̃T/k, αy)√
[Var(Xβ̃T/k) + λ(Lβ̃)2][Var(αy)]

,

subject to Var(Xβ̃T/k) + λ[Lβ̃]2 = 1 and Var(αy) = 1, where 1/k in the equation can be
written as 1

k I and I is the identity matrix with dimension k. Let us denote KI = 1
k I. Thus
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we have:

ρ(X, y) = max
β̃,α

β̃KIXT yα/(n − 1)

(
√

[β̃KIXT XKIβ̃T + λβ̃LT KILβ̃T ][Var(αy)])/(n − 1)

= max
β̃,α

β̃T KIXT yα√
[β̃(KIXT XKI + λLT KIL)β̃T ][α2yT y]

. (3.13)

Eqn (3.8) and Eqn (3.9) can be applied, with V1 = KIXT XKI + λLT KIL, V2 = Var(y),
V1,2 = KIXT y.

3.4.2 Gaussian quadrature expression

Gaussian quadrature has been studied for a long time in the literature. It is designed for
numerical integrations. Many different versions of Gaussian quadrature have been de-
veloped. Gaussian quadrature can produce accurate results if the function can be well
approximated by a set of polynomial functions within a certain range. Different Gaus-
sian quadratures have different choices of polynomial functions and different ranges for
integration. The corresponding weights and abscissae would also be different. It can be
shown that the abscissae of Gaussian quadrature are the roots of certain types of orthogo-
nal polynomials. The basic formula of Gaussian quadrature is:∫ 1

−1
f (t)dt ≈

n∑
i=1

wi f (ti),

where the upper and lower bound [−1, 1] is for some specific Gaussian Quadrature, such
as Gauss-Legendre quadrature or Chebyshev-Gauss quadrature. For commonly used
Gaussian quadratures, the weights wi and the abscissae ti are all calculated in advance.

In our case, functional variables need to be projected to a one dimensional random vari-
able, which is also done by such integration. The upper and lower bound can be easily
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changed. The integration becomes:∫ 1

−1
x(t)β(t)dt =

∫ 1

−1
x∗(t)dt

≈

n∑
i=1

wix∗(ti)

=

n∑
i=1

wix(ti)β(ti). (3.14)

In matrix form, the projected random variable is:∫ 1

−1
x(t)β(t)dt = XWβ̃,

where W is a diagonal matrix with weights wi’s at the points closest to the abscissas, and
zero everywhere else. Here the Gauss-Legendre quadrature is applied. A polynomial of
order (2n−1), where n is the number of points, is used to approximate the target function.

The roughness penalty is a little different from the previous two discrete methods. It must
be seen as the integration of the the squared second order derivative:

Pen =

∫
[β′′(t)]2dt =

∫
β′′∗(t)dt

≈

n∑
i=1

wiβ
′′∗(ti) =

n∑
i=1

wiβ
′′(ti)2

= β̃′′Wβ̃′′T ,

where the weights and abscissas are the same as those used in the Eqn (3.14). Similar to
RDP method, the second order derivative of the functional coefficient β̃′′ is approximated
by multiplying a band matrix L to the original functional coefficient β̃. In this case L must
be

L =



2
(t3−t2)(t3−t1) −

2
(t3−t2)(t2−t1)

2
(t2−t1)(t3−t1) 0 0 0 . . .

0 2
(t4−t3)(t4−t2) − 2

(t4−t3)(t3−t2)
2

(t3−t2)(t4−t2) 0 0 . . .

0 0 2
(t5−t4)(t5−t3) − 2

(t5−t4)(t4−t3)
2

(t4−t3)(t5−t3) 0 . . .

0 0 0 . . .
. . .

. . . . . .

0 0 0 0 . . . . . . . . .


,
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since the abscissas of Gaussian quadrature are not equally spaced. As the gap between
abscissas might be large at some part of the curves, this approximation may introduce
some bias into the calculation. Therefore, a reasonable number of abscissas is required to
reduce the bias.

Note that we can only obtain the estimation of the coefficients β̃ at the abscissas. All other
points of β̃ would be 0. For X, β̃, W and L, we use the subscription GQ to denote their
values at selected abscissas.

Thus Eqn (3.10) becomes:

ρ(x(t), y) = max
β̃,α

cov(XWβ̃T , αy)√
[Var(β̃WT XT XWβ̃T ) + λβ̃LT WLβ̃T ][Var(αy)]

= max
β̃GQ,α

β̃GQWT
GQXT

GQyα√
[β̃GQWT

GQXT
GQXGQWGQβ̃

T
GQ + λβ̃GQLT

GQWGQLGQβ̃
T
GQ][α2Var(y)]

= max
β̃GQ,α

β̃GQWT
GQXT

GQyα√
[β̃GQ(WT

GQXT
GQXGQWGQ + λLT

GQWGQL)β̃T
GQ][α2Var(y)]

. (3.15)

Similarly Eqn (3.15) can be solved by the same method as Eqn (3.8) and Eqn (3.9). In
this case, V1 = WT

GQXT
GQXGQWGQ + λLT

GQWGQL, V2 = Var(y), and V1,2 = WT
GQXT

GQy. We
refer this discrete method as the GQ method.

3.4.3 Basis function expression for functional coefficients

SupposeΦk(t) are known basis functions. Also, assume that the basis functions are second
order differentiable. Thus

x(t) =

∞∑
k=1

CkΦk(t) ≈
K∑

k=1

CkΦk(t) β(t) =

∞∑
k=1

C̃β,kΦk(t) ≈
K∑

k=1

C̃β,kΦk(t),

where Ck and C̃β,k are coefficients for the basis functions used for the functional variables
and functional coefficients, respectively. We use spline basis in our study, as we have no
evidence to support the periodic shape of the curves.

In the actual calculation, the spline basis functions are represented by matrices. The
above equations means K basis functions are used. If we reduce the dimension of basis
functions to p equally spaced time points, the basis function Φk(t) can be expressed by
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a K × p matrix Φ; while all the coefficient matrices for functional variables are n × K,
and coefficient matrices for functional coefficients are 1×K. This would be helpful in the
derivation of the solution of correlation analysis later.

We show an example here to explain the process. For the basis function φk(t), we can
calculate the values at a series of data points t1, t2, . . . , tp, so that this basis function is
expressed as a vector with length p. We have K basis functions in total, so that the set of
basis functions is represented by a K by p matrix. For convenience, we can set the the
time points to be equally spaced one the interval [0, 1]. We can also assume t1 = 0 and
tp = 1.

By using the discrete values of the basis functions, the original functional variables can
be written as:

x(t) ≈ X = CΦ β(t) ≈ β = C̃βΦ.

We refer to this discrete method as the BF method.

Also we denote the the second order derivative of the basis functionsΦ(t) asΦ(2) = Φ′′(t),
so that the second order derivative of β′′(t) can be written as

∑K
k=1 C̃β,kΦ

(2)
k (t). Similar to

Φ, we denote Φ(2) as the discrete values of Φ(2)(t).

Thus, the integration becomes: ∫
x(t)β(t)dt ≈ CΦΦTC̃T

β /k∫
β′′(t)β′′(t)dt ≈ C̃βΦ

(2)Φ(2)T
C̃T
β /k.

Thus Eqn (3.10) becomes:

ρ(x(t), y) = max
C̃β,α

cov(CΦΦTC̃T
β /k, αy)√

[Var(CΦΦTC̃T
β /k) + λC̃βLT LC̃T

β /k][Var(αy)]

= max
C̃β,α

C̃βΦΦ
T CT yα/(k(n − 1))√

[C̃βΦΦ
T CT CΦΦTC̃T

β /k + λC̃βLT LC̃T
β /k][α2Var(y)]/(n − 1)

= max
C̃β,α

C̃βΦΦ
T CT yα/k√

[C̃β(ΦΦT CT CΦΦT/k + λLT L/k)C̃T
β /k][α2yT y]

. (3.16)
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Eqn (3.16) can be solved by the same method as Eqn (3.8) and Eqn (3.9). More specifi-
cally, the eigen-decomposition of matrix M1 and M2 gives the estimation of the unknown
coefficients C̃β and α respectively. M1 and M2 are:

M1 =V−1
1 V1,2V−1

2 V2,1

M2 =V−1
2 V2,1V−1

1 V1,2.

In this case, V1 = ΦΦT CT CΦΦT/k + λLT L/k, V2 = yT y, and V1,2 = ΦΦT CT y/k.

3.4.4 General expression and solution

From the above expressions, it is clear that the functional variable x(t) can be replaced by a
matrix X, which contains discrete data points. In general, by combining these expressions
above, the integration of x(t)β(t) and the penalty function [β′′(t)]2 can be written as:∫

x(t)β(t)dt = XWC̃T
β (3.17)∫

[β′′(t)]2dt = C̃βW2C̃T
β , (3.18)

where W and W2 are weight matrices and C̃β is the unknown coefficient to estimate. If
we use RDP method for the functional coefficient, W = KI , which is the diagonal matrix
with 1/k on the diagonal and W2 = LT KIL; C̃β is the discrete vector of the functional
coefficient. If we use the BF method , W = Φ/k; W2 = Φ′′Φ′′T/k; C̃β is the coefficient
of basis functions for the functional coefficient. If we use Gaussian quadrature, W is the
diagonal matrix with weights at the point closest to the abscissae and zero everywhere
else. Also W2 = LT WL and C̃β is the functional coefficient, but only the values at or
near abscissae can be calculated. The values are C̃βGQ . In Eqn (3.17) and 3.18, the only
unknown is C̃β. Therefore the data matrix can be seen as XW.

Thus Eqn (3.10) becomes:

ρ(x(t), y) = max
C̃β,α

cov(XWC̃T
β , αy)√

[Var(XWC̃T
β ) + λC̃βW2C̃T

β ][Var(yb)]

= max
C̃β,α

C̃βWT XT yα√
[C̃β(WT XT XW + λW2)C̃T

β ][α2yT y]
. (3.19)
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Consider the conditions mentioned before in Eqn (3.12), this maximization problem can
be rewritten as:

G = C̃βWT XT yα −
1
2
ρC̃β(WT XT XW + λW2)C̃T

β −
1
2
ρα2yT y,

where ρ is the same as Eqn 3.4. By using the Lagrange multiplier:

∂G
∂C̃β

= WT XT yα − ρ(WT XT XW + λW2)C̃T
β = 0

∂G
∂α

= C̃βWT XT y − ραyT y = 0.

From the constraint Var(αy) = 1, α can be obtained straight-away: α = 1/SD(y). Thus α
is known. The unknown parameters to be estimated are the correlation ρ, the coefficient
for functional variables C̃β and the tuning parameter λ. However, the tuning parameter λ
can be assumed as known at the moment. More details are discussed in later sections.

The solutions can be found by solving the following equations:

correlation: ρ2 =
yT XW(WT XT XW + λW2)−1WT XT y

yT y
(3.20)

coefficients: C̃β =
(WT XT XW + λW2)−1WT XT y

ρ
√

yT y
(3.21)

The denominator in Eqn (3.21) contains the correlation itself, but from Eqn (3.20), only
the squared correlation can be obtained. This means that the sign of C̃β cannot be found.
However, it is difficult to say a functional variable is positively or negatively correlated to
a scalar variable. Based on the canonical correlation analysis, we only get the correlation
between the projected functional variable and the scalar variable. In this case, the sign
is not fixed. Therefore this sign problem has little effect on our case, and we can always
assume that the correlation between a functional variable and a scalar variable is positive
for convenience.

More generally, the solutions can be written as

correlation: ρ2 =
VT

X,yP−1
X,XVX,y

Vy
(3.22)

coefficients: C̃β =
P−1

X,XVX,y

ρ||y||2
(3.23)
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Figure 3.1: The CCA correlation against the log of tuning parameter.

where PX,X is the variance of the functional variable with penalty functions.

3.4.5 Choose the tuning parameters

The value of tuning parameter greatly affects the outcome of the functional canonical cor-
relation. Roughly speaking, the correlation reduces as the value of the tuning parameter
increases. The tuning parameter must be non-negative. As we state before, the result is
meaningless when no constraint is taken for the smoothness of the coefficient for CCA
involving functional variables. On the other hand, when the tuning parameter is too large,
the correlation would reduce to almost zero. Figure 3.1 shows the change of the correla-
tion between one functional variable and one scalar variable with the tuning parameters.

Generalized cross validation (GCV)

We can always use leave one out cross validation to find a good tuning parameter. How-
ever, the cost of “leave one out” cross validation is extremely high, and makes this method
impractical. Golub et al. (1979) proposed generalized cross validation, which is an ap-
proximation of the “leave one out” cross validation. The formula is:

GCV(λ) =

1
n ||[I − H(λ)]y||2

[1
n tr(I − H(λ)]2

(3.24)
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where H(λ) is a function of the tuning parameter λ. In a regression problem, the fitted
value ŷ is obtained by ŷ = Hy. In this case,

H(λ) = XW(WT XT XW + λW2)−1WT XT .

Since there would be only one canonical correlation, GCV here is close to the cross val-
idation method in S. E. Leurgans and Silverman (1993) for CCA between two functional
variables. That is to say, Eqn (3.11) is maximized with k = 1.

Apparently, matrix inversion is the most computationally expensive part of GCV calcu-
lation. Therefore calculating the inverse matrix for each candidate tuning parameter is
impractical. It turns out GCV can be calculated efficiently by the following method.

Suppose we want to have the inverse of matrix M which has the form M = A + λB, where
A is a positive definite matrix. We solve the generalized eigen decomposition:

Bx = αAx,

where x is the eigenvector, and α is the corresponding eigenvalue. If we write it in matrix
form:

BV = AVD,

where columns of the matrix V are the eigenvectors ; D is a diagonal matrix with diagonal
to be the eigenvalues. One important feature of generalized eigen decomposition is that
the matrix V is ‘A-orthogonal’, which means VT AV = I. Also V is invertible. Thus,

VT AV = I and VT BV = VT AVD = D

VT MV = VT (A + λD)V = I + λD.

And so:

M = (VT )−1(I + λD)V−1

M−1 = [(VT )−1(I + λD)V−1]−1 = V(I + λD)−1VT . (3.25)

By using this method, the matrix inverse for each candidate tuning parameter is no longer
necessary. Instead, we only need to calculate the generalized eigen decomposition once.

The only requirement is that the matrix A is positive definite. In our problem, Matrix A
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is the ‘covariance matrix’ WT XT XW. With the smoothing penalty, the singular problem
can be avoided when the dimension of the covariance matrix is low. Later when we
introduce more than one functional variables in the calculation, the dimension of this
matrix would become vary large and it would almost certainly become an ill conditioned
matrix. In order to overcome this problem, we introduce the second tuning parameter into
the calculation.

The second tuning parameter

Meier et al. (2009) introduces a new type of penalty function, called ‘sparsity-smoothness’.
It is designed for group variables selection. It uses the combination of inner product of
second order derivatives and the inner product of the original function. The penalty func-
tion can be defined by the following:

Pen = λ1

∫
[β′′(t)]2dt + λ2

∫
[β(t)]2dt.

The matrix we need to invert in H(λ) becomes:

WT XT XW + λ1W2 + λ2WT W,

where λ1 and λ2 control the amount of penalization from each penalty functions respec-
tively. Simon and Tibshirani (2012) also mentioned this method when ill conditioning
happened with the candidate groups for group lasso selection.

If we keep λ2 fixed as a small number, such as 0.001, the effect from the second penalty
would be small, and the numerical difficulty would be avoided. On the other hand, cross
validation can be done with respect to both of the tuning parameters. For each choice of
λ2, a GCV can be done. An optimum can be found for λ1 and λ2.

3.4.6 Canonical correlation between more than one functional vari-
ables and a scalar variable

When there is more than one functional variable in Eqn (3.12), some minor changes are
required. Without loosing any generality, we can assume that there are two functional
variables in the following expressions. It can be easily extended to the cases with more
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functional variables. The canonical correlation is now:

ρ((x1(t), x2(t)), y) = max
(β1(t),β2(t)),α

Cov
(〈

(x1(t), x2(t)), (β1(t), β2(t))
〉
, αy

)
√[

Var
(〈

(x1(t), x2(t)), (β1(t), β2(t))
〉)

+ PEN
] [

Var (αy)
] ,

(3.26)

PEN = λ(1)
1

∫
[β′′1 (t)]2dt + λ(1)

2

∫
[β1(t)]2dt + λ(2)

1

∫
[β′′2 (t)]2dt + λ(2)

2

∫
[β2(t)]2dt

where (·, ·) means a 2-vector, 〈·, ·〉means inner product of the two elements and λ( j)
i means

the i-th λ for j-th functional variable. This definition can be easily extended to the case
with more than two functional variables.

The inner product in Eqn (3.26) can be rewritten as:

< (x1(t), x2(t)), (β1(t), β2(t)) >=< x1(t), β1(t) > + < x2(t), β2(t) >

As in the univariate case, the functional variables in the multivariate case are also ex-
pressed as representative data points. The variance of functional variable with penalties
is written as block matrices. Suppose there are two functional variables, using the general
expression of the functional variables and functional coefficients, the covariance matrix
of the input joint functional variables can be written as: WT XT

1 X1W + λ(1)
1 W2 + λ(1)

2 WT W WT XT
1 X2W

WT XT
2 X1W WT XT

2 X2W + λ(2)
1 W2 + λ(2)

2 WT W

 .
The penalty functions are all on the diagonal blocks. This can distinguish between differ-
ent functional variables, and keep each individual functional variable smooth.

One problem now is that the GCV is not suitable due to the number of tuning parame-
ters selected. According to Ramsay and Silverman (2005), the value of tuning parameter
is relevant to the Frobenius norm of the corresponding functional variable. With RDP
method, this is

√
trace(XT X). As with the block matrices above, the matrices on the

diagonal blocks are identical to each other except for WT XT
i XiW. In order to keep the

advantage of GCV, we normalize the functional variable by their point wise mean and
standard deviation. This can at least make the Frobenius norms of XiW for all i compa-
rable to each other. By using this approximation, the tuning parameters are shared across
all functional variables. Thus, there are at most two parameters that need to be tuned.
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3.5 Simulation examples

This section contains a few examples, including canonical correlation analysis between
functional variables and canonical correlation analysis between a set of functional vari-
ables and scalar variables.

Three functional variables and one scalar variable are generated. The sample size for
each of the variables is 80. The data generation process is similar to those used in the
simulation section in the later chapter.

The functional variables are shown in Figure 3.2. The three functional variables are de-
noted as x1(t), x2(t) and x3(t), respectively; the scalar variable is denoted as y. The scalar
variable y is generated by:

y =

∫
x1(t)β1(t)dt +

∫
x2(t)β2(t)dt +

∫
x3(t)β3(t)dt + ε; ε ∼ N(0, 0.02).

The coefficients β1(t), β2(t) and β3(t) are adjusted such that the projections of the func-
tional variables have similar measure of spread to each other. Thus the correlations be-
tween y and each of the functional variables should be close.

The true values of functional coefficients are shown in Figure 3.3. The canonical correla-
tions between two functional variables do not depended on these true value of functional
coefficients.
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Figure 3.2: Three functional variables generated from three random vectors
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Figure 3.3: Three functional coefficients

3.5.1 Canonical correlation between functional variables

We discussed different discretizing methods for functional variables in Section 3.4. These
methods can also be used here. Since the different discretizing methods give similar
results, we would just present those that use the RDP method.

With cross validation, the smoothing parameter λ is tested within 15 values from 10−4 to
1. Figure 3.4 shows the values of the correlation changes with the smoothing parameters.
The x axis shows the candidate smoothing parameters on a log10 scale. Within the candi-
dates, the best choice is 0.205. On the other hand, the values of the cross validation seem
erratic. This might come from the generalized inverse of the covariance matrices.
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Figure 3.4: The values of cross validation against smoothing parameter in log scale

Table 3.1 shows the first five canonical correlations between x1(t) and x2(t); while Fig-
ure 3.5 shows the corresponding coefficients from x1(t) and x2(t) respectively. The result
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is calculated by using the tuning parameter selected by cross validation. Given that the
two functional variables are generated from two independently generated random vectors,
the values seem reasonable. The correlation values, after the first five, reduce quickly to
almost zero.

1 2 3 4 5
0.1106 0.0493 0.0280 0.0101 0.0004

Table 3.1: The five leading canonical correlations between x1(t) and x2(t) calculated using the
tuning parameter from cross validation
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Figure 3.5: The coefficients corresponding to the five leading canonical correlations between x1(t)
and x2(t). The order of the coefficients are black, red, green, dark blue and light blue.

In order to compare the outcomes corresponding to different values of tuning parameters,
the following two examples give results by using extreme values of the tuning parameter.
One is λ = 1 and the other uses λ = 0. For the later case, the covariance matrix is
actually ill-conditioned, thus a result can only be obtained using the generalized inverse.
The first five correlations are listed in Table 3.2 and the corresponding coefficients are in
Figure 3.6. When λ = 1, the coefficients corresponding to the leading correlations tend
to be a straight line. From the upper two plots, the first two coefficients in black and red
from both variables are very smooth. When λ = 0, the shapes of the coefficients oscillate
around zero with high frequency.
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1 2 3 4 5
λ = 1 3.47 × 10−6 3.27 × 10−8 2.75 × 10−10 0 0
λ = 0 0.9648 0.7562 0.7002 0.4639 0.3179

Table 3.2: The five leading canonical correlations between x1(t) and x2(t)
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Figure 3.6: The coefficients corresponding to the five leading canonical correlations between x1(t)
and x2(t) when λ = 1 or λ = 0. The order of the coefficients are black, red, green, dark blue and
light blue.
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3.5.2 Canonical correlation analysis between functional variables and
one scalar variable

The correlation between a functional variable and a scalar variable has only one value
and therefore, one corresponding functional coefficient. This is because the dimension of
the scalar variable is just one. The example contains correlation between x1(t) and y, and
correlation between (x1(t), x2(t)) and y. Since y is generated by three functional variables
together, the correlation between the scalar variable and one or two of these functional
variables and should have reasonable big values.

(i). Between one functional variable and one scalar variable

Table 3.3 shows the result using different methods and the smoothing parameters are
selected from 41 values between 10−20 to 105 by generalized cross validation. Clearly all
the methods give very similar results.

Discrete data point basis function Gaussian quadrature
0.6034 0.6036 0.5966

Table 3.3: Correlation calculated with different discrete methods

We draw the estimated coefficients in Figure 3.7. If we compare with the true coefficient
β1(t) in Figure 3.3, the shapes of the estimated coefficients from different discrete methods
are all quite close to the true shape. Because of the different discrete methods we use, the
scale of the estimated coefficients can be very different from the true coefficient. This
does not affect the correlation between the projection and the scalar variable.

For comparison, we show the estimated coefficient using RDP method in Figure 3.8 when
the smoothing parameters are very small. The plot on the left shows the outcome when
the tuning parameter is zero. The estimated coefficient changes rapidly every where on
the curve. The plot on the right shows the outcome when the tuning parameter is large.
The shape of the estimated coefficient is very smooth, and close to a straight line.

(ii). Between two functional variables and one scalar variable

Table 3.4 presents the results between y and {x1(t), x2(t)}. As expected, the correlations
are larger than the ones between y and x1(t) from the previous section.
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Figure 3.7: Estimated coefficients from the different discrete methods. For RDP expression and
BF expression the x axis is the index of data points. For GQ expression, the x axis has the range
required by Gaussian quadrature.
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Figure 3.8: Estimations of functional coefficients by using RDP expression.
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Discrete data point basis function Gaussian quadrature
0.7838 0.7855 0.7648

Table 3.4: Correlation values calculated with different discrete methods between two functional
variables and a scalar variable

The coefficients from different discrete methods are shown in Figure 3.9. Recall the gen-
erated coefficient β1(t) and β2(t) from Figure 3.3, the shapes of the estimated coefficient in
the plots from different discrete methods roughly match the true shape. For the first two
discrete methods, the shapes of the coefficients match the true curves very well, while the
third way using Gaussian quadrature is slightly worse visually.
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Figure 3.9: The estimated functional coefficient. Black line for the x1(t) and red line for x2(t).

3.6 Conclusion and Discussion

We have used the canonical correlations analysis to measure the correlation between func-
tional variables. We noticed that the measures normally have many different non-zero
values. If we use a single number to represent the correlation, possible choices are the
first canonical correlation, the mean or the mean square of all the non-zero canonical cor-
relations. We used the first canonical correlation (i.e. the maximum value) in this chapter
and will do so in the remaining chapters of the thesis. It gives some meaningful results
although it usually gives quite a high number. We consider that methods of summarizing
these non-zero values is worth a further study.

The other emphasis of this chapter is the relationship between a scalar variable and a
group of functional variables. Because the scalar variable has dimension one, we can
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only get one correlation from the canonical correlation analysis between a scalar variable
and a group of functional variables. From the generalized cross validation formula in
Eqn (3.24), we can see that the hat matrix from canonical correlation analysis is related to
the hat matrix from a regression problem. In other words, the estimation of the functional
coefficient from CCA can be used as the coefficient of the functional regression with
functional covariates and scalar response, if we can properly scale the outcome. This
is similar to the idea of the partial least square. More precisely, the projection from the
canonical correlation between one functional variable and one scalar can explain the same
amount of variation as the first component from the functional partial least square (Reiss
and Ogden (2007); Aurore Delaigle (2012)).
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Functional Least Angle Regression

In the previous chapter, we discussed how to use canonical correlation analysis to mea-
sure the correlation between a group of functional variables and a scalar variable. This
enabled us to extend the idea from least angle regression (LARS) and its group selec-
tion version to address the functional variable selection problem. This chapter will focus
on the regression problem when the response is a scalar variable, and the covariates are
functional variables:

y = β0 +

J∑
j=1

∫
X j(t)β j(t)dt + ε (4.1)

where y is the response; β0 is the intercept; X j(t) is the j-th functional variable with
j = 1, . . . , J and J is the number of candidate functional variables; β j(t) is the j-th func-
tional coefficient; ε is the noise term with normal distribution. The dimension J could
be very large in this problem. For example, there are more than 500 functional variables
in the motion data discussed in Chapter 7. We propose functional least angle regression
(functional LARS) for functional variable selection.

The original LARS algorithm and group LARS algorithm will be introduced briefly in
Section 4.1. Functional LARS will be defined in Section 4.2 and the technical details will
also be provided. The modifications of functional LARS algorithm will be given in Sec-
tion 4.3, followed by the definition of our stopping rules in Section 4.4. A comprehensive
simulation study is conducted and the results are presented in Section 4.5.
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4.1 LARS and Group LARS Algorithm

4.1.1 LARS algorithm

In multivariate data analysis, LARS, short for least angle regression, is a variable selection
and parameter estimation method. It is a iterative, piecewise linear algorithm with great
computational efficiency. This algorithm is designed for the linear multivariate regression
model, i.e.:

y = β0 +

J∑
j=1

x jβ j + ε

where both response variable y and candidate variables x j, ( j = 1, . . . , J) are scalar vari-
ables; ε is the noise term with a normal distribution. This algorithm was proposed by
Efron et al. (2003) in order to find the solution for the lasso method proposed by Tibshi-
rani (1996).

The key idea is to do the selection by using the correlation between variables and residu-
als, such that the redundant, relevant and irrelevant variables are clearly separated. More
specifically, the algorithm first finds the variable whose correlation with the current resid-
ual is the highest and then defines the direction of the parameter vector such that it moves
accordingly. It then moves the parameter vector in the ordinary least squares direction
until any of the remaining candidate variables has as much correlation with the current
residual as the current direction. The algorithm adds the new predictor to the selected
variables. This procedure is then repeated.

The algorithm to be described here is based on a statistical understanding, which is dif-
ferent from the original algebraic understanding. This was pointed out by the discussions
of the least angle regression from Turlach (2004) and Efron et al. (2004). In order to give
a better description of the algorithm, we put Figure 4.1 and a more detailed descriptions
after the algorithm. Figure 4.1 is based on Figure 2 in the original LARS paper with a
little modification.

Let the full set of candidate variables X = (x1, x2, . . . , xJ), where J is the number of
variables in total. Let XA be the set containing all the selected variables and XAc be the
rest of the candidates. Suppose that the residuals from the previous iteration are r(k), where
k is the index for the current iteration. Note that for the first iteration, r(1) = y, where y is
the response variable and β is the coefficient vector. The variables are centred and scaled
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before commencing the regression, so the intercept can be ignored in the algorithm.

The algorithm starts with k = 1, r(1) = y, β = 0. The first selection is based on the
correlation between r(1) and X. The variable corresponding to the largest absolute value
of the correlation is selected. After the first variable is selected, we perform the following
steps:

1. Build a unit vector that has equal correlation to each of the selected covariates, and
call it u(k) in the k-th iteration. This is done by:

u(k) =
XAk(XT

Ak
XAk)

−1XT
Ak

r(k)

||XAk(XT
Ak

XAk)−1XT
Ak

r(k)||2

where ||a||2 is the l2 norm of vector a: ||a||2 =
√

aT a.

2. Find the new variable and find how far the current u(k) can go in its direction by
solving the equation

cor(u(k), r(k) − α(k)
mcu(k))2 = cor(Xmc , r(k) − α(k)

mcu(k))2 for mc ∈ Ac. (4.2)

This equation can be rewritten as a quadratic equation with respect to α(k)
mc , which is

the distance to go in the direction of u(k) for each mc ∈ Ac. In all α(k)
mc , the algorithm

finds the one with a minimum positive value and the corresponding covariate. We
denote the index of that covariate as mc∗. It then add mc∗ into set A and get the
distance to go: α(k) = α(k)

mc∗.

3. The new residual for next iteration is:

r(k+1) = r(k) − α(k)u(k). (4.3)

The estimated coefficient at the k-th iteration β̂(k) is made from the non-zero coeffi-
cients β̂(k)

m and the zero coefficients β̂(k)
mc , where

β̂(k)
m =

α(k)(XT
Ak

XAk)
−1XT

Ak
r(k)

||XAk(XT
Ak

XAk)−1XT
Ak

r(k)||2

and β̂(k)
mc = 0. Note that at this point the newly selected variable still has a zero

coefficient.
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We repeat steps 1-3 until the algorithm meets the stopping rule or runs out of candidate
variables. Since LARS is computational efficient, practically the complete solution path
is calculated, and users can find where to stop with different rules and requirements. The
estimated coefficient β̂[K] at K-th iteration is the sum of the coefficients from all the itera-
tions before and including the K-th one:

β̂[K] =

K∑
k=1

β̂(k),

where β̂(k) is made from β̂(k)
m and β̂(k)

mc .

The original algebraic explanation covers the situation when the response variable is neg-
atively correlated with the selected variable, while here we ignore that point. This is
because the negative correlation can always be transferred to positive correlation at the
beginning of each iteration, and transferred back after the iteration. The description later
are all based on the situation where all variables are positively correlated with the current
residual in all iterations.

The key step in the algorithm is certainly the second step. There are two important points
in this step. Firstly, with respect to each of the candidate variables, the distance that
the unit direction vector moves is calculated via an equal squared-correlation equation.
Secondly, the variable corresponds to the smallest positive distance that the unit direction
vector moves would is selected.

The first point is represented in Figure 4.1. It shows how to find the distance to move for
direction vector u with respect to a candidate variable x. The iteration number is omitted
for convenience. In the plot, y1 represents the projection of the current residual on u; y2

is the projection of the space spanned by x and u. u′ is the new direction vector. Suppose
that x is selected as the new variable. If x is the last candidate variable, the solution of
the regression will reach to the solution of least square estimation, i.e. y2. If there are still
candidate variables available, the distance to move for u′ will depend on the next iteration.

The plot shows that the new variable x joins in the regression equation at the point α × u.
Unlike forward stepwise selection, the LARS algorithm does not take a full least square
step for the direction vector. More specifically, the algorithm takes the next variable x in
when x is equally important as the current direction vector u with respect to the current
residual r − αu, or y2 − αu in Figure 4.1. The new direction vector u′ represents the
direction of the current residual r−αu projects on the space spanned by x and u. Because
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uαxu

x x

y1

y2
u'

Figure 4.1: Plot relating to finding the distance to move for direction vector u with respect to the
variable x. x, u and u′ are all unit vectors. The projections from y to u, u′, (x, u) are drawn in
dotted lines. This plot represents the Eqn (4.2) in the algorithm.

x and u are equally important to the current residual, the new direction vector, u′, must
have equal angle or equal correlation with x and u. This leads to Eqn (4.2).

For the second point, using the smallest α as the criterion to select the next variable can
be understood from the correlation point of view: in each iteration, the variable which
has the highest correlation with the current residual is selected. In the first iteration, this
statement is obvious. For the later iterations, it is less so.

The LARS algorithm does not take full OLS step for the direction vector, therefore the
squared correlation between the residual and the direction vector, i.e.,

cor(r − αu, u)2

always reduces when α increases from 0. The minimum value of this squared correlation
appears when the full OLS step is taken. In other words 0 ≤ α ≤ (uT u)−1uT r. If α
keeps increasing after it reaches the OLS solution, αu would make the squared correlation
between the current residual and u larger. Therefore, if one candidate joins the direction
vector earlier than others, the squared correlation of the variable is certainly larger than
others. This is also true for the first iteration, where the direction vector is 0. It is important
to understand that the algorithm always picks the most correlated variable as the next
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variable to join the direction vector. Later, our new stopping rule will depend on this
behaviour of the algorithm.

For more detailed explanations and discussions see the original paper by Efron et al.
(2003).

4.1.2 Group LARS algorithm

Yuan and Lin (2006) proposed a series of group variable selection algorithms, includ-
ing the group LARS algorithm. The group version of the algorithm solves the variable
selection problem for the following regression model:

y = β0 +

J∑
j=1

x̃ jβ̃ j + ε

where x̃ j is the j-th group of variables, with dimension p j, and ε is the usual noise term
which follows a normal distribution.

In all the algorithms proposed in that paper, each of the groups of variables are trans-
formed to the orthonormal matrices via QR decomposition before doing any selection
(Simon and Tibshirani (2012)). The basic idea of group LARS is using the correlation (or
cosine of the angle) between the current residual and the groups. The correlation between
x̃ j and r(k) now is more complex than that of the scalar case, but the correlation between
the orthonormal basis of x̃ j and r(k) is not hard to calculate. Assume that x̃ j are orthonor-
mal matrices for j ∈ 1, . . . , J. The squared correlation between x̃ and a scalar response y

is defined as:

cor2(x̃, y) = ||x̃T y||2/||y||2 (4.4)

Note that this formula gives only the squared correlation.

Let x̃ be a single group variable, and X be the collection of all the candidate group vari-
ables. Let XA be the set that contains all the selected groups and XAc be the rest of the
candidates. Suppose that the residual from the previous iteration is r(k), where k is the in-
dex for the current iteration. Also define XAk as the matrix comprising the columns of all
the variables selected in the k-th iteration. Note that for the first iteration, r(1) = y, where
y is the response variable. As before, β is the coefficient vector and β j is the coefficient
corresponding to the j-th covariate. The intercept is ignored by centring and scaling the
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variables.

The algorithm starts with k = 1, r(1) = y, β = 0. The first selection is based on the corre-
lation between r(1) and X. The group of variables that has the largest absolute correlation
with r(1) is selected. After the first variable is selected, we carry out the following steps

1. Define the direction to go by projecting the column combined selected groups of
variables XA to the current residual r(k):

u(k) = XAk(X
T
Ak

XAk)
−1XT

Ak
r(k) (4.5)

Group LARS does not normalize the direction vector. so the distance vector u(k) is
not a unit vector.

2. Find the new group and the distance to move in the direction of u(k) by solving the
following equation:

||x̃T
m(r(k) − α(k)

mcu(k))||2/pi = ||x̃T
mc(r(k) − α(k)

mcu(k))||2/pmc for mc ∈ Ac,m ∈ A (4.6)

where pm and pmc are the dimensions of the corresponding group variables. Here
m can be chosen arbitrarily. This equation can be rewritten as a quadratic equation
with respect to α(k)

mc , which is the distance to move in the direction of u(k) for each
mc ∈ Ac. In all α(k)

mc , the algorithm finds the one with minimum positive value and
its corresponding covariate. Denote the index of that covariate as mc∗. It then adds
mc∗ into the set A and gets the distance to go as α(k) = α(k)

mc∗.

3. The new residual for next iteration is:

r(k+1) = r(k) − α(k)u(k).

The coefficient for the k-th iteration β(k) is made from the non-zero coefficients β(k)
m

and the zero coefficients β(k)
mc , where

β(k)
m = α(k)XAk(X

T
Ak

XAk)
−1XT

Ak
r(k)

and β(k)
mc = 0.

Similarly with the scalar case, we repeat steps 1-3 until the algorithm meets the stopping
rule or runs out of candidates.
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For non-orthonormal matrices x̃ j, QR decomposition is applied such that:

x̃ j = Q jR j for j ∈ 1, . . . , J.

We define matrix QAk as the matrix comprised the columns of Qm for m ∈ A in the k-th
iteration. The estimated coefficient β̂∗ using QAk at iteration k made from the non-zero
coefficients β̂

(k)
m and the zero coefficients β̂

(k)
mc , where

β̂
∗k
m = α(k)QAk(Q

T
Ak

QAk)
−1QT

Ak
r(k)

and β(k)
mc = 0.

For the j-th groups, the estimated coefficient β̂
[K]
j until the K-th iteration would be:

β̂
[K]
j =

K∑
k=1

R−1
j β̂
∗k
j , (4.7)

where β̂
∗k
j corresponds to the j-th group of variables from iteration k.

4.2 Functional LARS Algorithm

We extend the idea of the LARS to a functional data analysis framework and propose
functional LARS algorithm in this section. Recall the multivariate functional regression
problem in Eqn (4.1):

yr = β0 +

J∑
j=1

∫
xr

j(t)β j(t)dt + ε

where yr is the response variable; xr
j(t)’s are functional variables; ε is the noise term that

follows a normal distribution with mean zero and unknown variance σ2. The superscript
r means they are raw data, which are not centred or scaled.

All of the discrete methods we use to represent a functional variable would give us a
group of variables. More specifically, it gives a group of very high dimensional variables
by using the RDP method; it gives a group of variables with dimension corresponding to
the p-point-rule by using the GQ method; and it gives a group of variables with dimension
equals to the number of basis functions we choose by using the BF method. Therefore,
functional variables naturally have the group property. Thus group LARS can be extended
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to the functional case, with some necessary modifications.

However group LARS cannot be applied directly to functional case. The most serious
problem is that the dimension of the discrete functional variable is often high, for all of
the discrete methods we use. The dimension could be even higher than the sample size
when we use the RDP method. Therefore, the discrete functional variables are usually
short rank matrices, and it would be difficult to carry out the QR decomposition for them.
Moreover, recall Eqn (4.7), R−1

j is required to get the estimated functional coefficient for
x j(t). Thus inverting R j would create numerical error for the estimation of the functional
coefficients.

If the group variables cannot be represented as orthonormal matrices, the squared corre-
lation can no longer be calculated by Eqn (4.4). Thus other correlation measures must be
applied in the algorithm. Many correlation measures have been proposed in the functional
case. We first propose an algorithm without specifying the choice of correlation measures.

We centre and scale the response variable and the functional variables by their mean and
point-wise standard deviation: µy, σy, µ j(t) and σ j(t). Thus the intercept can be ignored
during the selection. We will recover the intercept and the functional coefficients for the
original variables after selection.

After centring and scaling, we get y and x j(t). Let x j(t) be a single functional variable,
and x(t) be the set that contains all the candidates. Let xA(t) be the set that contains all the
selected functional variables and xAc(t) contains the rest of the candidates. Suppose that
the residuals obtained from the previous iteration is r(k), where k is the index of the current
iteration. Note that for the first iteration, r(1) = y, where y is the response variable. β(t) is
the functional coefficient vector. Denote ρ2(x(t), y) as the squared correlation between a
functional variable x(t) and a scalar variable y.

The algorithm starts with k = 1, r(1) = y, β(t) = 0. The first selection is based on the
correlation between r(1) and x(t). The covariate which has the largest absolute correlation
with r(1) is selected. After the first variable is selected, we carry out the following steps:

1. Define the direction u(k) to move in by projecting the scalar variable to the selected
functional variables:

u(k) =

∑
m

∫
xm(t)β(k)

m (t)dt

sd(
∑

m

∫
xm(t)β(k)

m (t)dt)
m ∈ A.

u(k) must have positive correlation with the residual r(k). Note that β(k)
m (t) is un-
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known, and needs to be estimated in this step with respect to r(k). Unlike the group
LARS case, we normalize the direction vector u(k) using its standard deviation. This
normalization will be useful in defining our stopping rule later.

2. For each mc ∈ Ac, compute α(k)
mc using

cor(u(k), r(k) − αmcu(k))2 = ρ2(xmc(t), r(k) − αmcu(k))2 for mc ∈ Ac (4.8)

For all α(k)
mc , the algorithm finds the one with the minimum positive value and its

corresponding covariate. Denote the index of that covariate as mc∗. We then add
mc∗ into the set A and get α(k)

mc∗ as the distance to move in the direction vector.

3. The new residual for next iteration is:

r(k+1) = r(k) − α(k)
mc∗u

(k).

As before, the functional coefficient up to the K-th iteration is the sum of all the coeffi-
cients calculated up to and including the current iteration.

The model we get from the algorithm is up to the K-th iteration is as following:

y =

J∑
j=1

∫
x j(t)β̂∗j(t)dt,

where we omit the iteration index for the coefficients.

After transforming with the means and standard deviations from the data, the model be-
comes:

yr = µy −

J∑
j=1

∫ µ j(t)β̂∗j(t)σy

σ j(t)
dt +

J∑
j=1

∫
xr

j(t)
β̂∗j(t)σy

σ j(t)
dt.

So

β̂0 = µy −

J∑
j=1

∫ µ j(t)β̂∗j(t)σy

σ j(t)
dt,

β̂ j(t) =
β̂∗j(t)σy

σ j(t)
.

One remaining problem is how to find the solution to Eqn (4.8). We provide the details of
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one way to do it below.

4.2.1 The solutions of Eqn (4.8)

The functional canonical correlation analysis discussed in the previous chapter is a good
choice of correlation measure in the functional LARS algorithm. It provides a projection
of a group of functional variables on a scalar variable and gives a squared correlation be-
tween this groups of functional variables and the scalar variable. By using this correlation,
we can utilise the piece-wise linear property that LARS has.

All LARS, group LARS and functional LARS algorithms use direction vectors to repre-
sent the information in the selected variables with respect to the response variable. By
using the direction vectors, all the coefficients of selected variables change linearly with
the distance moved at each iteration. This piece-wise linear property gives LARS algo-
rithm significant computational advantages.

If we disregarded the piece-wise linear property in functional LARS, we would not have
a direction vector u in each iteration. Instead, we would need to calculate

ρ2

xA(t), r − αmc

∫ ∑
m∈A

xm(t)βm(t)dt

 = ρ2

xmc(t), r − αmc

∫ ∑
m∈A

xm(t)βm(t)dt


in the k-th iteration to find the distance to move for each candidate functional variables.
Both correlation and the functional coefficients βm(t) are unknown. They are estimated
with respect to xA(t) and the residual r−αmc

∫ ∑
m∈A xm(t)βm(t)dt. In addition, βm(t) would

changes with the value of αmc . Thus the search for next variable to select would be com-
putationally impractical if we want very accurate results by using a fine grid for the value
of α.

Therefore, in the functional LARS algorithm, piece-wise linearity also means that for
each iteration, the projection of a group of functional variables with respect to the current
residual r−αu does not change with the distance moved, and neither does the correspond-
ing functional coefficients. More specifically, in Eqn (4.8), the projection of the selected
functional variables stays the same when the residual r − αu changes with α.

Recall the general solution of the functional canonical correlation in Eqn (3.20):
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ρ2 =
(r − αu)T XW(WT XT XW + λ1W2 + λ2WT W)−1WT XT (r − αu)

(r − αu)T (r − αu)

=
(r − αu)T S (r − αu)
(r − αu)T (r − αu)

(4.9)

where S = XW(WT XT XW + λ1W2 + λ2WT W)−1WT XT ; X is the discrete data matrix;
W is the matrix depending on the discrete method we choose for β(t); W2 is the matrix
for smoothness penalty; λ1 and λ2 are two tuning parameters in ‘sparsity-smoothness’
penalty we mentioned in Chapter 3.4.5. The correlation ρs between the residual r −α and
the direction vector u is:

ρs = Cor(r − αu, u) =
Cov(r − αu, u)
√

Var(r − αu)Var(u)

=
(r − αu)T u/(n − 1)√

(r − αu)T (r − αu)/(n − 1)
√

uT u/(n − 1)

=
(r − αu)T u√

(r − αu)T (r − αu)uT u
.

Thus if the squared canonical correlation between functional variable x(t) and residual
r − αu equals to the squared correlation between two scalar variables u and r − αu, i.e.
ρ2 = ρ2

s , Eqn (4.8) can be written as:

(r − αu)S (r − αu)
(r − αu)T (r − αu)

=

 (r − αu)T u√
(r − αu)T (r − αu)uT u

2

=
(rT u − αuT u)(rT u − αuT u)

(r − αu)T (r − αu)uT u
.

The only unknown item in the equation is α, and thus the equation can be written as a
quadratic function with respect to α:

α2(uT S uuT u − uT uuT u) − 2α(rT S uuT u − uT urT u) + (rT S ruT u − rT urT u) = 0 (4.10)

This equation can be solved analytically.

There are two tuning parameters in the matrix S arising from the ‘sparsity-smoothness’
penalty. The smoothing parameter λ1 is tuned by generalized cross validation, or GCV
and λ2 is tuned by cross validation. Because GCV is computationally efficient, we tune
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λ1 from a large interval with fine grid. On the other hand, we tune λ2 by cross validation,
so we tune it on a fairly small interval with coarse grid. We discussed details about the
tuning of the two parameters in Chapter 3.

4.3 Modifications

The algorithm works well in general. However, in some special cases, the algorithm may
not work as we expected. Here we propose two modifications to make the algorithm more
reliable and efficient. The first one can be used when Eqn (4.10) has no real solution for
all candidate variables. The second modification is to remove the redundant variables
from the selected variables.

4.3.1 Modification I

In the algorithm, we must calculate α’s for all candidate variables in order to perform the
selection. However, in some cases, there may be no real solutions for α with respect to
all candidate functional variables from their quadratic equations. This happens when the
candidate variables contain very little information about the current residual. More pre-
cisely, the correlation between any candidate variable and the current residual is smaller
than the correlation between the current direction and the current residual for all possible
values of α, even when αu reaches the OLS solution. In addition, if all candidates are
selected, it is impossible to find the next selection and the distance to move.

In both cases, the selection and the calculation of α fail. Therefore, the only choice is
to carry out the OLS for the current direction vector. Thus the algorithm is modified by
taking the full OLS using the projection of the selected variables in the regression model
when α has no real solutions. If there are candidate variables left, the algorithm may still
be able to carry on after this step, but the contribution from the new variables would be
little. In other words, it is safe to stop the selection in this case. This is a special case of
finding the stopping point. More details about the stopping rules will be given in the next
section.
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4.3.2 Modification II

The LARS algorithm itself would not reduce the number of selected variables without
modification. But, with the right modification, it can give lasso solution, which will in-
volve dropping some variables selected. A variable is removed from the regression equa-
tion when the sign of its coefficient changes. Changing of the coefficient sign indicates
that there is a point at which the coefficient is exactly zero. This implies that the corre-
sponding variable contributes nothing to explain the variation of the response variable at
that point. So we can remove that variable when its coefficient becomes zero.

For the functional LARS algorithm, the sign change is no longer feasible, since the sign
of β(t) cannot be defined directly. An alternative way is to measure the contribution
of a variable by calculating the variance of its projection on the response variable, i.e.,
Var

(∫
x(t)β(t)dt

)
. When the contribution of a variable reduces to zero, the variance of its

projection in the regression equation would also be zero.

However, it is impossible to find the point when the variance of the projection of a func-
tional variable reaches zero exactly. An alternative option is to remove the variable when
the variance of its projection reduces to a small value. To implement this idea, a threshold
is required. The variable is removed from the model when the following two conditions
are met. Firstly, the variance of the projection of the variable is smaller than the maximum
variance from the same variable:

Var
(∫

x j(t)β
(k)
j (t)

)
< Var

(∫
x j(t)β

(k∗)
j (t)

)
for k∗ ∈ 1, . . . , k − 1.

Secondly, the variance of the projection of the variable is less than a certain percentage of
the total variance of the response variable:

Var
(∫

x j(t)β
(k)
j (t)

)
< κVar(y),

where κ is the threshold.

The first condition is to make sure that the variable to remove becomes less and less useful
when new variables join the regression equation. The second condition is to make sure
that the variable is removed when its contribution is small. The second condition requires
a threshold. In our simulation, a figure of 10% is used.
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4.4 Stopping Rules

Similar to the LARS and group LARS algorithms, functional LARS also calculates the
full solution path or solution surface more precisely. Practically, the final model should
be one of the estimates on the solution path. We can always use leave-one-out cross
validation to find the optimal stopping point, but it is very time consuming to do so.
Therefore we need to use other stopping rules which are less expensive computationally.
Mallow’s Cp-type criterion (Mallows (1973)) has been used in the LARS and group LARS
as a stopping rule. In addition, other traditional methods, including Akaike information
criterion (AIC) (Akaike (1998)), Bayesian information criterion (BIC) (Schwarz et al.
(1978)), R2 coefficient and adjusted R2 coefficient can also be used. These criteria can be
used in functional LARS but only when the number of variables is not too large. There
are other issues in functional LARS of using these criteria. In order to overcome this
shortcoming, we propose a new stopping rule.

We explain Mallow’s Cp in details here because it is preferred in many other related algo-
rithms such as LARS, group LARS and group lasso. It is also very closely related to other
criteria, such as AIC and BIC. It would be very easy to calculate other information based
criteria if we can calculate Mallow’s Cp. However, in functional data analysis model se-
lection problems, such as smoothing, leave-one-out cross validation or generalized cross
validation are preferred (Ramsay and Silverman (2005), Gertheiss:2013). One important
reason is that when we discretize the functional variables, the calculation of the degrees
of freedom would be inaccurate.

4.4.1 Cp-type criterion

For a linear regression problem:

y = β0 +

J∑
j=1

z jβ j + ε

where ε ∼ N(0, σ2). We can assume that all the variables are centred, so that β0 = 0. Thus
the response variable y has the distribution N(µ, σ2), where µ =

∑J
j=1 z jβ j.

Assume that we have n independent sets of observations, where the i-th set is:

Di = (yi, zi,1, . . . , zi,J) for i = 1, . . . , n.
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Thus we have:
yi ∼ N(µi, σ

2)

where µi =
∑J

j=1 zi, jβ j; i = 1, . . . , n.

The value µ̂i is obtained by leave one out cross-validation to estimate the mean value
of yi. In other words, they are obtained from a prediction point of view (Efron (1986);
Efron and Tibshirani (1997a)). Denote g(·) as the function to calculate this value. In
linear regression, g(yi) = µ̂i = H−iyi, where H−i is the “hat” matrix estimated from all the
samples excluding the i-th sample. The squared error is:

(µ̂ − µ)2 = (y − µ̂)2 − (y − µ)2 + 2(µ̂ − µ)(y − µ).

The expectation of the squared error is:

E[(µ̂ − µ)2] = E[(y − µ̂)2] − E[(y − µ)2] + 2E[(µ̂ − µ)(y − µ)]

= E[(y − µ̂)2] − E[yT y − 2yTµ + µTµ] + 2E[(µ̂ − µ)(y − µ)].

For each i, E[y2
i −2yiµi +µ

2
i ] = Var(ε) = σ2, and E[(µ̂i−µi)(yi−µi)] = Cov(µ̂i, yi). Because

µ̂i is obtained from all the samples but the i-th one, the covariance of Cov(µ̂i, y j)i, j is equal
to 0. Therefore:

E[(µ̂ − µ)2] = E[(y − µ̂)2] − nσ2 + 2tr(Cov(µ̂T , yT )),

where tr(·) means the trace of a matrix. The normalized squared error is:

E

[
(µ̂ − µ)2

σ2

]
= E

[
(y − µ̂)2

σ2

]
− n + 2tr

(
Cov(µ̂T , yT )

σ2

)
.

This equation leads to the estimation of Cp-type criterion:

Cp = E

[
(y − µ̂)2

σ2

]
− n + 2df, (4.11)

where df is the degrees of freedom, defined as:

df = tr
(
Cov(µ̂T , yT )

σ2

)
. (4.12)
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This definition of degrees of freedom is discussed in Ye (1998) as ‘generalized degrees
of freedom’. Efron and Tibshirani (1997b) also mentioned this type of degrees of free-
dom. Both the LARS and group LARS algorithms use Eqn (4.11) and Eqn (4.12) in their
stopping rules. However, group LARS uses the variance of the response variable rather
than the variance of the error as σ2, and thus they only obtain approximated degrees of
freedom. Zou et al. (2007) discussed the calculation of the degrees of freedom for the
lasso estimation obtained by LARS.

The estimation of Cp and the degrees of freedom involve unknown parameters: µ and
σ2. Usually, these parameters are estimated from the ordinary least square estimation
using all the variables. Therefore, if the residual from the ordinary least square has zero
variance, we cannot calculate Cp, the degrees of freedom and other information criteria
which requires σ2. At the moment, we assume the residual from OLS using all variables
has non-zero variance σ∗2 and mean µ∗. We use µ∗ as the expectation of y.

Practically, in order to calculate Cov(µ̂T , yT ), the Bootstrap method or the Monte Carlo
method are used. For each of set of the samplesDi, we generate B new realizations of the
response yi from N(µ∗i , σ

∗2). Denote the new generated values as y∗b, b = 1, . . . , B. New
fitted values µ̂∗b with respect to these new realizations can be calculated by using the same
function g(.) as before. Both Ye (1998) and Efron et al. (2003) used this method to find
degrees of freedom. The draw back of bootstrap method is that the computational cost
would be high.

Here we propose our definition of the degrees of freedom. Recall Eqn (4.3), in the func-
tional LARS algorithm, the residual after iteration k can be written as

r(k+1) = r(k) − αku(k)

where u is the direction vector, calculated by:

u(k) =
Hkr(k)

SD(Hkr(k))
.

Therefore, the true “hat” matrix at iteration k is :

H∗k =
Hkαk

SD(Hkr(k))
,

where Hk = XW(WT XT XW + λ1W2 + λ2WT W)−1WT XT from Eqn (4.9).
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The residual after iteration k becomes:

r(k+1) = (I − H∗k )r(k).

Recursively, the fitted value after iteration K with respect to the response variable is:

ŷ =y − r(K+1)

=y − [
K∏

k=1

(I − H∗k )]y

=[I −
K∏

k=1

(I − H∗k )]y,

hence the “hat” matrix H̄K after iteration K is

H̄K = I −
K∏

k=1

(I − H∗k ). (4.13)

We then define the degrees of freedom for functional LARS as follows:

df∗ = tr
(
Cov(µ̂∗T , y∗T )

σ2

)
= tr

(
Cov(y∗T H̄T

k , y
∗T )

σ2

)
= tr

(
H̄ky∗y∗T/(n − 1)

σ2

)
where y∗y∗T/(n − 1) is an n × n matrix. The i, j-th element is Cov(yi, y j). Its value is σ2 if
i = j and 0 otherwise. Hence:

df∗ = tr
(

H̄ky∗y∗T/(n − 1)
σ2

)
= tr

(
H̄kσ

2I
σ2

)
= tr(H̄k). (4.14)
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Combining Eqn (4.11), Eqn (4.14) and the estimated value of σ∗2, we have

Cp =
E[(y − ŷ)2]

σ∗2
− n + 2df∗. (4.15)

Other criteria such as AIC and BIC also require the error variance and the degrees of
freedom. We omit the equations of these traditional criteria.

Remarks

1. The degrees of freedom defined above uses the “hat” matrix from each iteration.
The “hat” matrix at the k-th iteration is:

Hk = XW(WT XT XW + λ1W2 + λ2WT W)−1WT XT

where λ1 and λ2 are tuning parameters. Recall from Section 3.4.5, that the tun-
ing parameters are calculated with respect to both scalar and functional variables.
Therefore the values of tuning parameters can be thought of as calculated from a
function of the scalar and functional variables. The values of the tuning parameters
involves the information about the relationship between the two variables. So the
value of the degrees of freedom does not purely dependent on the functional covari-
ates in the regression model. More specifically, the value of the degrees of freedom
depends more on the relationship between the functional variables and the response
variable. If the correlation between the functional variable and a scalar variable
is small, the corresponding tuning parameters would be large. Large tuning pa-
rameters leads to small degrees of freedom. Thus the degrees of freedom reduces
when the correlation between the scalar response and the functional variable in the
regression model reduces and vice versa.

We expect that when the number of variables increases in the model, the value of de-
grees of freedom increases and the expected normalized squared residual decreases,
so we can have an optimal point to stop the algorithm. However, in functional
LARS, the degrees of freedom does not necessarily increase when then number of
functional variables increases. Usually, the stopping rules using degrees of free-
dom would stop at an optimal point, but non in the functional LARS. Thus it would
be very difficult to use those stopping rules which depend on the degrees of free-
dom. More discussions will be given in the first scenario of the simulation study in
Section 4.5.
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2. Not only tuning parameters have disadvantages, but they also have some advan-
tages. Firstly, the tuning parameters make sure that no singularity problem occurs
in the inverse in the calculation. This means that we will always have a result even
with a large number of functional variables in the regression equation. Secondly,
when the correlation between the functional variables and the response variable is
small, the tuning parameter would be large, and this leads to a very small estimated
coefficient. This property guarantees us an estimation of the error variance using
OLS with all candidate variables. In addition, these estimated coefficient with small
scale gives the prediction a certain amount of robustness.

4.4.2 New general stopping rules

If the residual from OLS using all candidate variables has zero mean, we cannot use the
criteria discussed above. We will propose a new stopping rule based on the underlying
idea of algorithm itself.

The idea is to compare the values of the distance that the direction unit vector goes. This
is the quantity α calculated from Eqn (4.8) in each iteration when we looking for the next
variable:

Cor(u(k), r(k) − α ju(k))2 = ρ(Z j, r(k) − α ju(k))2 for j ∈ Ac, i ∈ A,

where ρ(·) could be the functional canonical correlation. Recall that u(k) is the direction
vector in the k-th iteration; r(k) is the residual from previous iteration; Z j is one of the
candidate functional variables. We will omit the iteration index in the later description.

Since the direction vector u is unit vector, the distance α is equivalent to:

α = α||u||2 = ||αu||2. (4.16)

r − αu is the residual left after the current iteration. Thus αu represents the variation
explained in the current iteration by the current direction vector u. From Eqn (4.16), we
know that α can be used to replace αu to represent the amount of variation explained in the
current iteration. A very small αmeans that the current direction vector u contributes very
little in the current iteration. Such a phenomenon can happen in two situations: firstly, the
current direction vector u is informative and it is almost equally important as the newly
selected variable Z with respect to the residual r. Secondly, u is unable to explain much
variation in the residual r.
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In the latter situation, u would have small correlation with r. Therefore it only needs a
small distance for u to move to reach the OLS solution with respect to r. This indicates
that we can stop the algorithm when the distance is very small, or before the distance
becomes very small.

However, we need to exclude the first situation mentioned above. When u is actually
an informative direction vector with respect to r(k), and it is as important as the next
selected variable, this simple criterion would give an incorrect result. We can check the
correlation or angle between the newly selected variable Z(k+1) and the current residual
r(k) − α(k) p(k) to find out how informative u is. If the correlation between Z(k+1) and the
current residual has very small correlation, or equivalently, very large angle (close to
orthogonality), Z(k+1) would not be very useful to explain the variation in the current
residual. As we discussed at the end of Section 4.1.1, the algorithm selects the variable
that has the highest correlation with the current residual at each iteration. Therefore, if
Z(k+1) has a small correlation with the current residual, the rest of the candidates can only
do worse than Z(k+1). Thus the algorithm can stop when the new selected variable has a
very small correlation with the current residual. Also, because

Cor(p(k), r(k) − α(k) p(k))2 = ρ(Z(k+1), r(k) − α(k) p(k))2,

we can use Cor(p(k), r(k) − α(k) p(k))2 instead of ρ(Z(k+1), r(k) − α(k) p(k))2 to measure the cor-
relation between new variable and the current residual to avoid the heavy calculation of
functional canonical correlation. Denote entering correlation as the correlation between
the current direction u(k) and the current residual r(k)−α(k)u(k) when the new variable Z(k+1)

is selected. From this correlation, we can also get the corresponding entering angle by

entering angle = arccosine(entering correlation).

Thus we have two ways to find the stopping point: one is to stop when the distance to go
is very small; the other one is to stop when the entering correlation is too small or the
entering angle is too close to orthogonality. At the k-th iteration, if we observe that α is
smaller than the threshold, or that the entering correlation is smaller than the threshold,
or that the entering angle is larger than the threshold, we should stop at iteration k.

However, we need to define the terms ‘too small’ and ‘too big’ in a numerical sense. It is
difficult to define thresholds even for simulated data set. On the other hand, our experience
shows that the values of α would have an abrupt drop right at the stopping point. In the
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simulated data, the value of α at the stopping point could be dropped to less than 1% of
the maximum value of α. Similar phenomenon happens to the entering correlation and
entering angle, but to a less significant degree than α. This is due to the value of the
correlation and the angle being bounded between [-1,1], and [0,90], respectively.

Both of the ways we defined above have no optimal points, and the thresholds are diffi-
cult to determine. To overcome this problem, we combine both the entering correlation
or angle and the corresponding distance α(k) to get a new stopping rule. When the algo-
rithm reaches the stopping point, all the relevant variable should be selected, thus the next
variable should have small correlation with the current residual. At that point, the new
direction vector still needs a large distance to move. So α in that iteration is still a large
number. Thus we can have a large angle and a large distance at the stopping point.

The new stopping rule is defined as:

AD(k) = entering angle(k)
× α(k−1)

where AD is short for ‘angle times distance’. The algorithm should stop at iteration k if
AD reaches the maximum point at iteration k.

To sum up, we propose two stopping rules here. Firstly, the algorithm should stop when
the distance to move α is smaller than a threshold. Secondly, the algorithm should stop
when AD reaches the maximum. These stopping rules can be used without any informa-
tion about the error variance. Thus it can be used when the number of variables is vary
large.

4.5 Simulation study

4.5.1 The true model and data generation

The true model uses three functional variables:

y = µ +

∫
x1(t)β1(t)dt +

∫
x2(t)β2(t)dt +

∫
x3(t)β3(t)dt + ε (4.17)

where µ is the intercept; β j(t) are functional coefficients; x j(t) are functional variables and
ε is the noise follows a normal distribution with mean 0 and standard deviation 0.05. The
variance of the noise is adjusted such that the ratio between it and variance of the response
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variable is around 1:30.

We represent the functional variables by discrete data points generated on 100 equally
spaced time points within [0, 1]. The i-th sample of the functional variable x j(t) is gener-
ated from:

xi, j(t) = µ j(t) + ei, j(t) + εi, j(t)

where µ j(t) is an overall shape, and it is the same for all i ∈ 1, . . . , n. The term ei, j(t) is a
functional object obtained from the i-th sample of a 10 dimensional random vector νi, j by
smoothing using basis functions, where νi, j is the i-th realization from a Gaussian process:

νi, j ∼ GP (0, κ(., .; θ)) .

Our kernel function κ is the sum of a squared exponential kernel and a linear kernel:

κ(νi, νi∗; θ) = v exp
(
w(νi − νi∗)2

)
+ aνiνi∗ + σ2Ii,i∗,

where θ = (v,w, a, σ) = (20, 50, 2, 0.5), and Ii,i∗ = 1 if i = i∗, and 0 otherwise. Squared
exponential kernel gives smooth curves while linear kernel adds a small amount of rough-
ness to the curves. The term εi, j(t) is the functional error. In the literature, most of the
errors are independent, but here we consider more difficult situation where the error term
is also functional. The errors are also generated from normal distributions.

To help us understand the result of simulation, we want to control the correlation between
any two functional variables. This is done by controlling the canonical correlation be-
tween random vectors ν0

j , such that largest canonical correlation between any two random
vectors is almost zero. In our simulation, we generate eight random vector ν0

j , j = 1, . . . , 8.
Set ν1 = ν0

1. For j > 1, we perform the linear regression:

ν0
j = τ0 +

∑
j∗< j

τ j∗ν
0
j∗ + ε j

and set ν j = ε j to remove the correlations. We use this method to generate linearly
uncorrelated functional variables.

As an illustrative example, one set of functional variables and the corresponding func-
tional coefficients are shown in Figure 4.2 and Figure 4.3, respectively. Figure 4.3 con-
tains three functional coefficients for x1(t), x2(t) and x3(t), respectively. The other func-
tional coefficients are all zero.
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Figure 4.2: Eight linearly uncorrelated functional variables
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Figure 4.3: The true values of the functional coefficients
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We will consider five scenarios in the simulation study. Each of the scenarios are repeated
1000 times. In each of the replications, we generate 120 samples. The 80 of them are
used as training data, and the remaining 40 are used as test data.

Different scenarios have different correlation structures. The details are listed below.

1. Eight functional variables are generated, namely x1(t), x2(t), . . ., x8(t). The maxi-
mum functional canonical correlation between any two of the functional variables
are almost zero.

2. Similar to Scenario 1, eight uncorrelated functional variables are generated, namely
x1(t), x2(t), . . ., x8(t). We replace x4(t) by combining x1(t) and x4(t) such that the
correlation between the first and fourth functional variables is quite large, measured
by the maximum functional canonical correlation.

3. Similar to Scenario 2, we first generate eight uncorrelated functional variables x1(t),
x2(t), . . ., x8(t). Then we replace x4(t), x5(t) and x6(t), such that they are correlated
with x1(t), x2(t) and x3(t) respectively.

4. Similar to Scenario 2, we generate eight uncorrelated functional variables x1(t),
x2(t), . . ., x8(t). Then we replace x4(t) and x5(t), such that they are both correlated
with x1(t).

5. 100 functional variables are generated without any constraints on the correlation be-
tween any pairs of the variables. The first three variables are still the true variables,
but the correlation between them are no longer as small as previous scenarios.

In each scenario, we will report the order of variables entering the regression equation,
RMSE of prediction, and find the model chosen by using different stopping rules.

4.5.2 Scenario 1

In this scenario, we have eight linearly uncorrelated functional variables x1(t), x2(t), . . .,
x8(t). Figure 4.4 shows the correlation map between functional variables and the response
from the example data set shown in Figure 4.2 and Figure 4.3. The last column shows the
correlation between functional covariates and the response. The correlation between the
functional variables are almost zero.
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always 1.
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Figure 4.5: Estimated parameters at the third iteration for Scenario 1. Black lines are the true
functional coefficients; green lines are the estimates of the functional coefficients using the RDP
method; blue squares are the point estimates of those using the GQ method; red lines are the
estimates from the BF method. The colour of the lines and points remains the same meaning
through out all the simulations.

68



Chapter 4. Functional Least Angle Regression

We use three different discrete methods for the functional coefficient discussed in Chap-
ter 3, i.e. RDP, GQ and BF methods. The estimates of the intercept and the functional
coefficients at the third and eighth iterations are drawn in Figure 4.5 and Figure 4.6 for
the example data set, together with the true value of the intercept and the true values of
the functional coefficients.

Note that the we use 18-point rule for Gaussian quadrature here. Thus only 18 points on
the estimated functional coefficients are returned. Also these 18 points are not equally
spaced.
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Figure 4.6: Estimated parameters at the eighth iteration for Scenario 1. Black lines are the true
functional coefficients; green lines are the estimates of the functional coefficients using RDP
method; blue squares are the point estimates of the ones using GQ method; red lines are the
estimates from BF method.

Figure 4.5 shows the estimated parameters at iteration three. It also shows that only the
parameters of the relevant variables are non-zero, which means that the relevant variables
are successfully selected before any other irrelevant variables. Figure 4.6 shows that at
the end of the algorithm, the irrelevant variables might be selected, but with very small
coefficients.

The estimates of the intercept from different discrete methods are all close to the true
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value. The estimates of functional coefficients are also accurate in general. To make
sure the selected irrelevant variables have little effects to the regression, we compare the
contribution of each functional variables, by using the R2 coefficient. More specifically,
we calculate p j =

∫
x j(t)β j(t)dt, and calculate the R2 coefficients using each p j with

respect to y. We list the results of both training and testing from iteration three and eight
in Table 4.1. Clearly, the contributions of the irrelevant variables are little. This is further
confirmed by the results in Table 4.3.

Training

RDP GQ BF
Iteration 3 8 3 8 3 8

0.2892 0.2892 0.2920 0.2920 0.2871 0.2873
0.3869 0.3862 0.3909 0.3914 0.3859 0.3859
0.3015 0.3009 0.3001 0.2995 0.3000 0.2994

0 0.0005 0 0.0022 0 0
0 0 0 -0.0008 0 0
0 0.0073 0 0.0047 0 0
0 -0.0049 0 -0.0012 0 0
0 0.0007 0 -0.0028 0 -0.0014

Testing

0.3944 0.3969 0.3920 0.3932 0.4015 0.4007
0.3077 0.3103 0.3142 0.3132 0.3111 0.3114
0.2657 0.2662 0.2740 0.2755 0.2684 0.2689

0 -0.0051 0 -0.0058 0 0.0001
0 0.0026 0 0.0042 0 0
0 -0.0156 0 -0.0091 0 0
0 0.0069 0 0.0017 0 0
0 -0.0007 0 0.0089 0 0.0045

Table 4.1: Contribution of each variable in iteration three and eight.

Table 4.3 shows more numerical results. We list the explanation of the notation used
in Table 4.3 in Table 4.2. Here we clarify that when a stopping criterion suggests that
the algorithm should stop at iteration m, or after the m-th variable enters the regression
equitation, it actually means that there are (m − 1) variables in the regression equation.
This is because the last variable selected is only used for finding the distance to move for
the (m − 1)-th selection.

The first part of Table 4.3 shows the result by using RDP method for functional coeffi-
cients. The relevant functional variables are selected before the others. Recall that the true
standard deviation of the error is 0.05. Thus the prediction RMSE in the table represents
accurate prediction after the fourth functional variable enters the regression equation. Af-
ter the third iteration, some irrelevant variables are selected into the model. However
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selection
The index of the variables selected in each iteration
or ‘-’ if no variable is selected.

RMSE The RMSE of the prediction after each iteration.

entering correlation

The correlation between the current direction and current residual
when the new variable joins the selected set of variables. Because
the current direction in the first iteration is 0, the first value of this
summary is invalid.

AD

The correlation between the current direction and current residual
when the new variable joins the selected set of variables over the
distance that the current direction goes. The first value of this
measurement is also not valid.

Cp
Mallow’s Cp using the estimated variance from error. The estimated
variance is calculated from OLS using all variables.

AIC AIC using the estimated variance from error.

BIC BIC using the estimated variance from error.

R2 R2 coefficient at each iteration.

Adj R2 Adjusted R2 coefficient at each iteration.

Table 4.2: Meanings of the notations used in Table 4.3

the contributions they made to the prediction are negligible, since the prediction RMSE
remains almost unchanged. This confirms the finding from Table 4.1. The entering corre-
lation reduces across all iterations, and the entering angle increases across all iterations.
The parameter α reduces to a very small value after the fourth variable joins the regression
equation. Although we do not have a criterion to find the threshold, the rapid decreasing
in α after the third iteration seems a good indicator that the algorithm should stop at the
fourth iteration. At iteration four, AD reaches a maximum, which also indicates that the
algorithm should stop at the fourth iteration. Both α and AD suggest that the number of
variables in the regression is three. Cp, AIC and BIC using estimated error variance reach
their optimal value at the end of the iterations. As we know, the first three selections cover
the true variables, but the actual distance to move for theses three functional variables is
decided by the fourth selection. So we should stop at the fourth iteration. Therefore α and
AD give an accurate stopping point in this case.

The second part of this table shows the result from the algorithm using the GQ method
for functional coefficients. Similar to the previous part of the table, the relevant variables

71



Chapter 4. Functional Least Angle Regression

Iteration 1 2 3 4 5 6 7 8
selection 2 3 1 6 8 4 5 7
RMSE 0.320 0.273 0.062 0.062 0.061 0.064 0.067 0.073
entering cor - 0.565 0.682 0.255 0.237 0.162 0.157 0.074
entering angle(◦) - 55.583 46.961 75.218 76.292 80.673 80.969 85.771
α 0.067 0.227 0.746 0.017 0.028 0.017 0.021 0.017
AD - 3.735 10.670 56.075 1.316 2.253 1.370 1.844

RDP Cp 336.001 264.279 6.630 7.085 7.260 7.237 7.223 7.206
AIC 198.798 162.936 34.112 34.340 34.427 34.415 34.409 34.400
BIC 733.399 664.091 432.129 432.599 432.808 432.787 432.776 432.755
R2 0.115 0.401 0.980 0.980 0.980 0.980 0.980 0.980
Adj R2 0.112 0.392 0.976 0.976 0.976 0.976 0.976 0.976
selection 2 1 3 6 4 5 7 8
RMSE 0.320 0.265 0.062 0.062 0.061 0.065 0.080 0.066
entering cor - 0.561 0.679 0.260 0.223 0.076 0.045 -0.388
entering angle(◦) - 55.904 47.211 74.927 77.135 85.659 87.448 67.146
α 0.059 0.218 0.759 0.011 0.031 0.002 0.071 0.062
AD - 3.277 10.300 56.861 0.828 2.613 0.194 4.753

GQ Cp 336.562 266.793 7.625 6.595 4.476 3.662 13.239 5.449
AIC 199.078 164.194 34.609 34.095 33.035 32.628 37.416 33.522
BIC 733.941 666.296 433.871 432.913 431.094 430.600 441.941 435.948
R2 0.113 0.392 0.980 0.980 0.982 0.983 0.977 0.983
Adj R2 0.110 0.383 0.976 0.977 0.978 0.979 0.973 0.980
selection 2 3 1 8 4 - - -
RMSE 0.320 0.273 0.062 0.062 0.062 0.062 0.062 0.062
entering cor - 0.570 0.676 0.139 0.001 0.047 0.000 0.379
entering angle(◦) - 55.253 47.499 81.998 89.958 87.326 89.994 67.753
α 0.051 0.239 0.759 0.001 0.000 0.031 -0.060 -0.026
AD - 2.807 11.332 62.274 0.091 0.012 2.825 4.052

BF Cp 336.057 270.086 7.412 8.469 8.338 8.316 8.309 8.289
AIC 198.826 165.840 34.503 35.031 34.966 34.955 34.952 34.942
BIC 733.463 670.173 434.215 435.326 435.223 435.211 435.232 435.222
True BIC 2790.232 2380.919 749.950 755.893 758.090 739.464 803.165 757.531
R2 0.115 0.380 0.980 0.980 0.980 0.980 0.980 0.980
Adj R2 0.082 0.349 0.974 0.974 0.974 0.976 0.968 0.975

Table 4.3: Summaries of the functional LARS for the first scenario using the example data set.
The functional coefficients are represented by using BF, GQ and RDP. In each type of discrete
methods, the selected variable, prediction RMSE, and different measures of stopping rules in each
iteration are presented.
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No. of variables RDP GQ BF
in the regression log(λ1) d.f. cor log(λ1) d.f. cor log(λ1) d.f. cor

1 -9.7476 0.2683 0.6294 -2.1798 0.2606 0.6337 -16.7935 0.2720 0.6298
2 -8.4428 1.2822 0.7960 0.1689 1.1523 0.7975 -17.0545 1.3977 0.7878
3 -19.9250 12.0659 0.9833 -11.8353 12.3793 0.9840 -26.1881 12.6134 0.9838
4 -1.1359 12.0719 0.0546 4.6052 12.4092 0.2968 0.6908 12.6360 0.0288
5 4.6052 12.0864 0.1088 4.6052 12.5356 0.3015 2.5175 12.6475 0.0697
6 -1.9188 12.0873 0.0282 4.6052 12.6699 0.1973 2.2565 12.6519 0.0312
7 -2.1798 12.0883 0.0223 4.6052 13.4106 0.0821 2.2565 12.6635 0.0307
8 -2.1798 12.0867 0.0211 3.8223 14.1648 0.5103 2.2565 12.6676 0.0301

Table 4.4: The values of tuning parameter on log scale, degrees of freedom, and the corresponding
correlation in the regression model with different number of variables. λ1 controls the smoothness;
d. f . is the degrees of freedom up to the corresponding iteration; cor is the correlation between the
selected variables and the current response variable.

are selected first. The RMSE also indicate accurate prediction. AD reaches its maximum
value at iteration four, and α has a sudden drop at iteration four. Both of them indicate that
the algorithm should stop there. All other criteria fail to find their optimal points before
that last selection.

The result in the third part of the table is obtained by using the BF method for the func-
tional coefficients. The true variables are selected in the first three iterations. The algo-
rithm fails to select variables after iteration five. Only AD and α successfully found the
correct stopping point. All other criteria failed to find the stopping point.

As discussed in Chapter 4.4, here we present the details of the change of tuning param-
eters in log scale, degrees of freedom, correlation between the selected variables and the
current response variable in Table 4.4. Since the first three selections cover the true vari-
ables, the correlation is expected to be large. When the number of variables increasing,
the correlation between the selected variables and the current response variable drops and
stays low. The corresponding tuning parameter, however, keeps increasing. The corre-
sponding degrees of freedom barely change when the tuning parameters are large. The
stopping rules using this definition of degrees of freedom, such as Cp from Eqn (4.15),
certainly cannot get enough penalty for the normalized squared error. Thus it would be
difficult to find optimal stopping points using the traditional stopping rules.

Summary of the repeated runs

Table 4.5 shows the summary of the prediction RMSE’s from 1000 replications. The av-
erage and the standard deviation of prediction RMSE’s after the m-th covariates enters the
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regression equation are given. The prediction RMSE reaches an optimal value when the
fourth variable joins the regression equation (i.e. three functional variables are selected)
using any of the three discrete methods. This matches the fact that the true model includes
three functional variables.

Table 4.6 summarises the percentage of successfully selected stopping points using differ-
ent criteria. The correct stopping point is after the fourth covariate enters the regression
equation according to the prediction RMSE in Table 4.5. The traditional stopping rules
seem unlikely to find the best stopping point, while AD is much more promising. By
using AD, the probabilities of successfully selecting the stopping points are almost 1 for
different discrete methods applied on functional coefficients.
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No. of variables RDP GQ BF
in the regression mean sd mean sd mean sd

1 0.3321 0.0356 0.3333 0.0355 0.3331 0.0356
2 0.2667 0.0321 0.2680 0.0323 0.2673 0.0325
3 0.0577 0.0072 0.0610 0.0125 0.0565 0.0107
4 0.0570 0.0070 0.0605 0.0117 0.0569 0.0085
5 0.0573 0.0071 0.0610 0.0120 0.0575 0.0073
6 0.0586 0.0073 0.0625 0.0145 0.0582 0.0075
7 0.0611 0.0082 0.0656 0.0150 0.0583 0.0076
8 0.0636 0.0083 0.0634 0.0093 0.0583 0.0075

Table 4.5: Summary of prediction RMSE’s after the m-th covariates enters the regression equation
(the first column).

RDP GQ BF
α 99.46 99.00 98.91

AD 100.00 99.64 99.64
Cp 0.00 1.36 15.04

AIC 0.00 1.36 15.31
BIC 0.00 2.90 15.04

R2 0.00 0.18 14.67
Adj R2 0.00 0.27 15.22

Table 4.6: The percentage of different stopping criteria successfully finding the stopping point.
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4.5.3 Scenario 2

The difference between Scenario 2 and Scenario 1 is that we replace one of the irrelevant
variable x4(t) such that the correlation between x4(t) and x1(t) is around 0.9. This also
indicates that the correlation between x4(t) and y is large. The aim of this scenario is to
see if the algorithm can still do the selection and estimation when one of the irrelevant
variable is correlated with the response as well as one of the relevant variables. The
data set we use here is generated from the one we showed in Scenario 1. Therefore the
response variable, true intercept and functional coefficients remain the same.

Figure 4.7 shows the correlation map of the data set. The correlation between x1(t) and
x4(t) is very high. Also the correlation between the response variable y and x4(t) is quite
high. Figure 4.8 and Figure 4.9 show the estimated parameters at iterations three and
eight. The plot from iteration three gives very good estimations to the true parameters.
It also indicates that the first three selections cover the three true variables. Figure 4.9
shows that at the end of the algorithm, the irrelevant variables might be selected, but with
very small coefficients.
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Figure 4.7: Correlation map of example data set from Scenario 2.

Summary of the repeated runs

We report the summary of the results from 1000 replications. Table 4.7 shows the predic-
tion RMSE’s after the m-th covariate joins the regression. The prediction RMSE’s using
different discrete methods reach their optimal values when the fourth variable joins the re-
gression equation. This suggests that the algorithm should stop after the fourth variable is
selected. Therefore the algorithm can give accurate prediction in the case when the vari-
ables are correlated. In the 1000 replications, 97.1% of the runs successfully selected the
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Figure 4.8: Estimated parameters at the third iteration for Scenario 2. Black lines are the true
functional coefficients; green lines are the estimations of the functional coefficients using the RDP
method; blue squares are the point estimations of the ones using the GQ method; red lines are the
estimation from the BF method.
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Figure 4.9: Estimated parameters at the eighth iteration for Scenario 2. Black lines are the true
functional coefficients; green lines are the estimations of the functional coefficients using the RDP
method; blue squares are the point estimations of the ones using the GQ method; red lines are the
estimation from the BF method.
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true variables in the first three iterations using the RDP method to represent the functional
coefficients. The percentage for using the GQ method and the BF method are 94.6% and
95.4%, respectively.

Number of RDP GQ BF
selected covariates mean sd mean sd mean sd

1 0.3337 0.0363 0.3351 0.0364 0.3346 0.0363
2 0.2681 0.0332 0.2700 0.0335 0.2691 0.0340
3 0.0585 0.0082 0.0629 0.0172 0.0582 0.0148
4 0.0576 0.0073 0.0607 0.0083 0.0575 0.0072
5 0.0579 0.0072 0.0610 0.0083 0.0580 0.0073
6 0.0591 0.0074 0.0623 0.0086 0.0586 0.0073
7 0.0617 0.0083 0.0652 0.0093 0.0588 0.0073
8 0.0637 0.0082 0.0635 0.0087 0.0587 0.0073

Table 4.7: Summary of prediction for RMSE’s after the m-th covariates enters the regression
equation (the first column).

Table 4.8 shows the percentage of successfully selected stopping points using different
criteria from 1000 replications. The correct stopping point is after the fourth covariate
enters the regression equation. The conventional stopping rules seem unlikely to find the
best stopping point, and the results are similar to those from scenario 1. By using AD

and α, the successful selection rates are very high for all three methods. The difference
to Table 4.6 in Scenario 1 is ignorable, meaning that the new stopping rules perform very
well even when some redundant variables are correlated to the relevant variables.

RDP GQ BF
α 98.82 97.18 96.27

AD 100.00 99.27 99.54
Cp 0.00 0.27 12.57

AIC 0.00 0.27 12.75
BIC 0.09 2.00 12.57

R2 0.00 0.00 12.39
Adj R2 0.00 0.00 12.20

Table 4.8: The percentage of different stopping criteria successfully finds the stopping point.

4.5.4 Scenario 3

We further introduce correlations to the data set in Scenario 3. We replace the irrelevant
variables x4(t) , x5(t) and x6(t) such that x1(t), x2(t) and x3(t) are correlated with x4(t),
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x5(t) and x6(t), respectively. This also means that the correlations between x4(t) x5(t)
and x6(t) and the response variable are all around 0.9. The aim of this scenario is to see
if the algorithm can do the selection and estimation when all the relevant variables are
correlated with other variables. We show the estimation with respect to the data set which
is generated from that used in Scenario 1. Thus the response variable, true intercept and
functional coefficients remain the same as before.

Figure 4.10 shows the correlation map of the data set. Clearly the response variable is
correlated with the first six variables. Figure 4.A.1 and Figure 4.A.2 in Appendix 4.A
show the results for one replication, which are very similar to those in Scenario 1 and 2.
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Figure 4.10: Correlation map of example data set from Scenario 3.

We now report the summary of the results from 1000 replications. Table 4.9 shows the
prediction RMSE after the m-th covariate joins the regression. The prediction RMSE’s
using different discrete methods reach their optimal values when the fourth variable joins
the regression equation. This suggests that the algorithm should stop after the fourth
variable is selected. Therefore the algorithm can give accurate prediction in the case
when the variables are correlated. In the 1000 replications, the percentages of successfully
selecting the true variables in the first three selection using the RDP, GQ and BF methods
are 93.6%, 90.1% and 92.0%, respectively. Even though these percentages drop from
previous two scenarios, the corresponding prediction RMSE’s are still good.

Table 4.10 shows the percentage of successfully selecting the right stopping points using
different criteria from 1000 replications. The percentage of successful selection from
different methods and stopping rules are shown in Table 4.9. It shows a similar result to
Table 4.5 and Table 4.7 from Scenario 1 and 2, respectively. The new stopping rules are
still performing well in this scenario when there are more correlated irrelevant variables.
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Number of RDP GQ BF
selected covariates mean sd mean sd mean sd

1 0.3321 0.0357 0.3337 0.0357 0.3330 0.0358
2 0.2667 0.0335 0.2690 0.0345 0.2677 0.0336
3 0.0588 0.0099 0.0661 0.0279 0.0597 0.0146
4 0.0575 0.0080 0.0615 0.0098 0.0581 0.0085
5 0.0578 0.0077 0.0616 0.0096 0.0583 0.0079
6 0.0592 0.0080 0.0626 0.0098 0.0586 0.0079
7 0.0613 0.0083 0.0647 0.0104 0.0587 0.0080
8 0.0626 0.0082 0.0638 0.0098 0.0588 0.0079

Table 4.9: Summary of prediction RMSE’s after the m-th covariates enters the regression equation
(the first column).

RDP GQ BF
α 97.90 94.03 93.94

AD 99.92 98.57 99.66
Cp 0.00 0.25 10.77

AIC 0.00 0.25 11.19
BIC 0.17 0.93 10.77

R2 0.00 0.00 10.68
Adj R2 0.00 0.00 10.68

Table 4.10: The percentage of successes in finding the stopping point for different criteria.

4.5.5 Scenario 4

Scenario 4 has two irrelevant variables correlated with one relevant variable. We replace
the irrelevant variables x4(t) and x5(t) such that both of them are correlated with x1(t). This
also means that the correlations between x4(t) or x5(t) and the response variable could be
large. We want to see if the algorithm can do the selection and estimation when one
relevant variable is correlated with more than one irrelevant variables. Similar to previous
scenarios, we show the estimation from the data set generated from that used in Scenario
1, such that the response variable, true intercept and functional coefficients remain the
same.

Figure 4.11 shows the correlation map of the data set. Now the response variable is
correlated with the first five variables, and the first functional variable is highly correlated
with the fourth and fifth variables. The estimates at iterations three and eight for one
replication are shown in Figure 4.B.1 and Figure 4.B.2 in Appendix 4.B. Both plots show
good results similar to those from previous scenarios.
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Figure 4.11: Correlation map of example data set from Scenario 4.

Hence, we report the summary of the results from 1000 replications. Table 4.11 shows the
prediction RMSE after the m-th covariate joins the regression. The prediction RMSE’s
using different discrete methods reach their optimal values when the fourth variable joins
the regression equation. This suggests that the algorithm should stop after the fourth
variable is selected. The algorithm gives accurate prediction in the case when the variables
are correlated. In the 1000 replications, the percentages of successfully selecting the true
variables in the first three selection using the RDP, GQ and BF methods are 100%, 99.81%
and 99.9%, respectively.

Number of RDP GQ BF
selected covariates mean sd mean sd mean sd

1 0.3319 0.0360 0.3333 0.0361 0.3328 0.0361
2 0.2660 0.0326 0.2679 0.0333 0.2666 0.0329
3 0.0579 0.0072 0.0633 0.0211 0.0577 0.0132
4 0.0571 0.0069 0.0608 0.0106 0.0574 0.0092
5 0.0575 0.0069 0.0610 0.0108 0.0578 0.0085
6 0.0588 0.0072 0.0624 0.0112 0.0582 0.0087
7 0.0612 0.0079 0.0652 0.0134 0.0586 0.0110
8 0.0635 0.0081 0.0635 0.0092 0.0585 0.0074

Table 4.11: Summary of prediction RMSE’s after the m-th covariates enters the regression equa-
tion (the first column).

Table 4.12 shows the percentage of successfully selected stopping points using different
criteria from 1000 replications. The correct stopping point is after the fourth covariate
enters the regression equation according to the prediction RMSE in Table 4.11. As ex-
pected, the conventional stopping rules are not good at finding the best stopping point in
this case. On the other hand, AD will almost certainly find the right stopping point.
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RDP GQ BF
α 99.74 98.01 97.58

AD 100.00 99.05 99.57
Cp 0.00 0.69 12.12

AIC 0.00 0.69 12.47
BIC 0.00 1.65 12.12

R2 0.00 0.09 12.03
Adj R2 0.00 0.17 11.95

Table 4.12: The percentage of successes in finding the stopping point for different criteria.

4.5.6 Scenario 5

In this scenario we generate 100 functional variables without any constraints on the cor-
relation between functional variables. The true model stays the same, i.e. the response
variable depends on the first three variables x1(t), x2(t) and x3(t). It is not feasible to
present the correlation map for all the 100 functional variables. Thus we only present the
correlation map for the first eight functional variables here in Figure 4.12. There are no
large correlations between any pairs of functional variables, but the correlations are gen-
erally larger than before. Moreover, the irrelevant functional variables may be correlated
with the response variables.
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Figure 4.12: Correlation map of example data set from Scenario 5.

Figure 4.13 shows the estimated parameters at iteration three for one replication. The
plot from iteration four gives reasonable estimations of the true parameters. The overall
shapes of the functional coefficients are well represented, but they are not as accurate as
the those estimated from the previous scenarios. This is as expected, since the correlations
between variables are larger than before.
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Figure 4.13: Estimated parameters at the eighth iteration for Scenario 5. Black lines are the true
functional coefficients; green lines are the estimations of the functional coefficients using the RDP
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estimation from the BF method.
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Summary of the repeated runs

Similar to the scenarios before, we run 1000 replicates in this scenario. In the 1000 repli-
cations, the percentages of successfully selecting the true variables in the first three selec-
tion using the RDP, GQ and BF methods are 99.9%, 96.9% and 98.1%, respectively. Ta-
ble 4.13 shows the prediction RMSE after the m-th covariate joins the regression. Recall
that the error generated in the data has standard deviation 0.05. The prediction RMSE’s
listed in Table 4.13 indicates good predictions, even though the estimation of the func-
tional coefficients are not extremely accurate.

The prediction RMSE’s using different discrete methods reach their optimal values at
different points when using different discrete methods for functional coefficients. When
using RDP method, the prediction RMSE suggests that the algorithm should stop when
the fourth variable enters the regression. The other two discrete methods both lead the
algorithm to stop at the sixth iteration. The prediction RMSE’s near the optimal points
are almost the same with each other, for example, when using RDP, the prediction RMSE
at iteration 4 is the same as the value at iteration 5, but the latter one has a slightly smaller
standard deviation. Even though the optimal points from prediction RMSE are not clear,
we still believe the algorithm should stop after the fourth variable enters the regression
equation, since the true variables are almost certainly covered in the first three selections.

Number of RDP GQ BF
selected covariates mean sd mean sd mean sd

1 0.3243 0.0394 0.3260 0.0395 0.3257 0.0397
2 0.2566 0.0336 0.2605 0.0359 0.2578 0.0339
3 0.0605 0.0105 0.0737 0.0423 0.0618 0.0203
4 0.0585 0.0072 0.0662 0.0194 0.0594 0.0115
5 0.0586 0.0072 0.0654 0.0170 0.0591 0.0101
6 0.0600 0.0076 0.0653 0.0168 0.0590 0.0101
7 0.0619 0.0081 0.0655 0.0162 0.0591 0.0101
8 0.0642 0.0086 0.0660 0.0168 0.0590 0.0101

Table 4.13: Summary of prediction RMSE’s after the m-th covariates enters the regression equa-
tion (the first column).

Table 4.14 shows the percentage of successfully selected stopping points using different
criteria from 1000 replications. The correct stopping point is after the fourth covariate
enters the regression equation according to the prediction RMSE in Table 4.11. Similar to
the previous scenarios, AD can almost certainly find the right stopping point, while other
methods have even worse performance than those in previous scenarios. When we use
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the estimated error variance in the calculation, the normalized squared error in Eqn (4.11)
tends to infinity, because the estimated error variance is almost zero.

RDP GQ BF
α 98.44 94.54 97.56

AD 99.90 95.22 98.15
Cp 0.00 0.00 0.00

AIC 0.00 0.00 0.00
BIC 0.00 0.00 0.00

R2 0.00 0.00 0.00
Adj R2 0.00 0.00 0.00

Table 4.14: The percentage of different stopping criteria successfully finds the stopping point.

4.6 Conclusions and Discussions

We propose the functional least angle regression algorithm in this chapter. It performs
very well. The relevant variables are usually selected prior to the irrelevant variables.
In general, the functional coefficients are estimated accurately. Accurate variable selec-
tion and parameter estimation lead to accurate prediction. The proposed algorithm is
consistently good under different circumstances. This is supported by our comprehen-
sive simulation studies, including scenarios involving many correlated or large number of
irrelevant variables.

However, when there are a large number of candidate variables, the computation cost
would increase. As the number of variables in the regression equation increases, the
computation cost for each iteration increases exponentially. This is due to the calculation
of the canonical correlation analysis in the algorithm to find the correlation between the
selected variables and the current response variable. The number of selected variables
increases or stays the same after each iteration. Thus the dimensionality of the calculation
increases faster and faster. Therefore, even though we can calculate the full solution path,
it would be better to have a good stopping rule, especially when the number of candidate
variables is large, so we can stop before we have the full solution path. The conventional
stopping rules as discussed in Section 4.4 require the error variance and the degrees of
freedom. The estimates of these terms in functional LARS make these methods difficult
to use. Because of the existence of the tuning parameters, the degrees of freedom do
not necessarily increase with the number of variables in the regression equation. Thus
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when the normalized squared error decreases, the penalty from the degrees of freedom
might not be big enough to define an optimal point. We proposed two new stopping rules.
They do not rely on either variance of the error or the degrees of freedom. One of them
could have an optimal point, the other one requires a threshold. Although an accurate
threshold is difficult to define, an empirical method based on the rapid decrease of the
value performs extremely well in all the scenarios in the simulation study.

The tuning parameters in functional the LARS algorithm bring robustness into the estima-
tion. If irrelevant variables are selected, the prediction would not be much worse. More
specifically, even if we select irrelevant variables into the regression equation, as long
as we have all the relevant variables, the prediction would not be much worse than the
perfect model without any irrelevant variables. This is also supported by the simulation
study.
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4.A Plots of estimated parameters for Scenario 3

●

●

●

●

19
.5

19
.7

19
.9

µ

Index

True Raw GQ Basis 0 20 40 60 80 100

−0
.1

0
−0

.0
5

0.
00

β1

Index

0 20 40 60 80 100

−0
.1

0
−0

.0
6

β2

Index

0 20 40 60 80 100

−0
.1

0
0.

00
0.

10

β3

Index

0 20 40 60 80 100

−1
.0

0.
0

0.
5

1.
0

β4

Index

0 20 40 60 80 100

−1
.0

0.
0

0.
5

1.
0

β5

Index

0 20 40 60 80 100

−1
.0

0.
0

0.
5

1.
0

β6

0 20 40 60 80 100

−1
.0

0.
0

0.
5

1.
0

β7

0 20 40 60 80 100

−1
.0

0.
0

0.
5

1.
0

β8

Figure 4.A.1: Estimated parameters at the third iteration for Scenario 3. Black lines are the true
functional coefficients; green lines are the estimations of the functional coefficients using RDP
method; blue squares are the point estimations of the ones using GQ method; red lines are the
estimation from BF method.
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Figure 4.A.2: Estimated parameters at the eighth iteration for Scenario 3. Black lines are the true
functional coefficients; green lines are the estimations of the functional coefficients using RDP
method; blue squares are the point estimations of the ones using GQ method; red lines are the
estimation from BF method.
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4.B Plots of estimated parameters for Scenario 4
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Figure 4.B.1: Estimated parameters at the third iteration for Scenario 4. Black lines are the true
functional coefficients; green lines are the estimations of the functional coefficients using RDP
method; blue squares are the point estimations of the ones using GQ method; red lines are the
estimation from BF method.
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Figure 4.B.2: Estimated parameters at the eighth iteration for Scenario 4. Black lines are the true
functional coefficients; green lines are the estimations of the functional coefficients using RDP
method; blue squares are the point estimations of the ones using GQ method; red lines are the
estimation from BF method.
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Chapter 5

Selection of Mixed Scalar and
Functional Variables Using Functional
LARS

In the previous chapter, we discussed functional least angle regression. The model we
considered there only involves functional variables in the candidates. In a more realistic
situation, there would also be scalar variables in the candidates. So we want our variable
selection method to be able to select both functional and scalar variables. In this chap-
ter, we focus on the model with scalar response and a mixture of functional and scalar
covariates:

y = β0 +

J∑
j=1

∫
X j(t)β j(t)dt +

M∑
m=1

zmγm + ε (5.1)

where y is the response; β0 is the intercept; X j(t) is the j-th functional variable with j =

1, . . . , J and J is the number of candidate functional variables; β j(t) is the j-th functional
coefficient; zm is the m-th scalar variable with m = 1, . . . ,M and M is the number of
candidate scalar variables; γm is the m-th scalar coefficient; ε is the noise follows normal
distribution with mean 0 and variance σ2. Both J and M can be large. The motion data
we are going to discuss in Chapter 7 include more than 500 functional variables and more
than 200 scalar variables.

We first extend the group lasso algorithm in functional variable selection to include mixed
scalar and functional variable selection. We also extend the functional LARS method
discussed in the previous chapter to deal with this more general problem by introducing
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additional normalizations.

The extensions of the existing algorithms are introduced in section 5.1, followed by addi-
tional normalizations to the functional LARS when selecting mixed scalar and functional
variables in section 5.2. A comprehensive simulation study using different algorithms
for data with complex correlation structures is in section 5.3. We specifically check the
performance of Modification II from Section 4.3.2 in the scenarios with the very complex
correlation structures.

5.1 Selection of Mixed Scalar and Functional Variables
Using Extened Group Variable Selection Methods

In the previous chapter, we treated each of the functional variables as one group of vari-
ables using any of the discrete methods. If we have both functional variables and scalar
variables in the candidate, we can also treat each of the scalar variables as one group of
variable with dimension one. It is, therefore, natural to use group variable selection when
there are mixed functional and scalar variables in the candidate.

There are a few algorithms in the literature working with functional variable selection
problems, such as Matsui and Konishib (2011); Mingotti et al. (2013); J.Gertheiss (2013).
These algorithms can be thought of as the combinations of group variable selection meth-
ods and the univariate functional regression. The same idea can be used when we select
from both scalar variables and functional variables in the regression, because group vari-
able selection methods are generally flexible with regard to the dimensions of the candi-
date groups.

Thus there are two aspects in this type of method: the first one is the group variable
selection method and the second one is the univariate functional or scalar regression. The
choice of group variable selection method is not necessarily crucial. Here we use group
lasso to illustrate the algorithms. We will also briefly discuss the solution of univariate
functional regression in order to check the accuracy of the result from using this idea.

5.1.1 Group variable selection

The first aspect of the problem we address is the group variable selection method. We
start by briefly introducing group lasso and its solution found by the shooting algorithm
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(Fu (1998)). More detailed derivation, which gives us the solution of the lasso method
using the shooting algorithm, is in Appendix 5.A.

Group lasso was initially proposed by Bakin et al. (1999) with a general but computa-
tionally very expensive algorithm. Later Yuan and Lin (2006) introduces some special
settings into the algorithm which greatly reduced computation time. Group lasso targets
on the following model:

y = β0 +

J∑
j=1

x jβ j + ε, (5.2)

where x j is the j-th group variables, β j is the corresponding coefficient. Without loss
of generality, we assume that the response variable and the group covariates are centred,
such that the mean values of the response and the group variables are zero, and thus the
intercept β0 = 0. The penalty is added to the least square equation:

G = (y −
J∑

j=1

x jβ j)
2 + λ

J∑
j=1

(βT
j K jβ j)

1/2,

where λ is the tuning parameter and K j is the kernel matrix for variable j.

The shooting algorithm solves this equation iteratively. At each iteration, it solves a one
dimensional regression problem with penalized least square, conditional on the values of
all the other coefficients. The computation burden at each iteration leads to expensive
computation cost for solving the early version of group lasso. The solution is given in
Appendix 5.B.

Yuan and Lin (2006) proposed an improved version of group lasso. They assume that x j is
orthonormal matrix for all j, and the kernel matrices K j = p jIp j , where p j is the dimension
of the j-th group variable. Thus xT

j x j = Ip j . These two assumptions can greatly reduce
computation time. The penalized least square is now:

G = (y −
J∑

j=1

x jβ j)
2 + λ

J∑
j=1

||β j||2,

where || · ||2 means the l2 norm. The Lagrange multiplier, under this setting for the j-th
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variable, is:

∂G
∂β j

= −xT
j r j + xT

j x jβ j + λs j

= −xT
j r j + β j + λs j = 0, (5.3)

where the response r j is:

r j = y −
J∑

j∗=1

x j∗β j∗ , j∗ , j,

and s j is: 
||s j||2 ≤

√p j β j = 0;

s j =
√p jβ j

(βT
j β j)1/2 otherwise.

When
xT

j r j − β j < λ
√

p j,

β̂ j = 0; otherwise, the solution of this version of group lasso is obtained by:

β j =

(
1 +

λ
√p j

||β j||2

)−1

xT
j r j

=

(
1 −

λ
√p j

λ
√p j + ||β j||2

)
xT

j r j. (5.4)

From Eqn (5.3), we can get:

xT
j r j =

β jλ(√p j + ||β j||2)

||β j||2
.

By taking l2 norm of both sides of the equation, we have:

||xT
j r j||2 =||

β j(λ
√p j + ||β j||2)

||β j||2
||2

=
||β j||2(λ√p j + ||β j||2)

||β j||2

=(λ
√

p j + ||β j||2)
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Thus Eqn (5.4) can be simplified as:

β̂ j =

1 − λ
√p j

||xT
j r j||2

+

xT
j r j.

The above solutions are obtained under the condition that the candidate groups of vari-
ables are orthonormal. In general, the groups of variables can be transferred into orthonor-
mal matrices by QR decomposition. More specifically, we have:

x j = Q jR j (5.5)

where Q j is orthonormal with dimension n×p j and R j is invertible with dimension p j×p j.
Q j is orthonormal, which means each column of Q j is a basis for x j. In other words, each
column of x j can be obtained by linear combination of the columns of Q j. Thus Q j can
be used to represent x j. So for a general x j, the solution can be written as:

β̂ j =

1 − λ
√p j

||QT
j r j||2

+

R−1
j QT

j r j.

5.1.2 Univariate regression

As we mentioned before, variable selection methods, with both scalar and functional can-
didates based on group variable selection method, are normally the combination of group
variable selection methods and univariate regressions. We discussed the solution of group
variable selection in the previous subsection. We now briefly review the solution of the
univariate regression. The solution of univariate regression with scalar variables is sim-
ple. Thus we omit the formula here and focus on the univariate functional regression. The
model in this section is:

y =

∫
x(t)β(t)dt + ε (5.6)

The conventional discrete method in functional data analysis is the basis function method.
As we discussed in Chapter 3, functional variables can be expressed by a set of known
basis functions. Here we use the same set up as in Chapter 3.

Suppose we have a functional variable x(t). Let Φk(t) be the known basis functions. Also
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assume that the basis functions are second order differentiable. Thus,

x(t) =

∞∑
k=1

CkΦk(t) ≈
K∑

k=1

CkΦk(t) β(t) =

∞∑
k=1

C̃β,kΦk(t) ≈
K∑

k=1

C̃β,kΦk(t),

where Ck and C̃β,k are coefficients for the basis functions used for the functional variable
and functional coefficient, respectively. We can use the same basis functions for all func-
tional items. It is impossible to have an infinite number of basis functions, so we use
K basis functions instead. If we calculate the basis functions on p equally spaced time
points, the basis function Φk(t) can be expressed by a K × p matrix Φ; while all the coef-
ficient matrices for functional variables are n × K, and coefficient matrices for functional
coefficients are 1 × K.

By using discrete values of the basis functions, the original functional variables can be
written as:

x(t) ≈ x = CΦ β(t) ≈ β = b̃Φ

Let us denote the second order derivative of the basis functions Φ(t) as L(t). The sec-
ond order derivative of the functional coefficient β′′(t) can be written as

∑K
k=1 C̃β,kLk(t).

Similarly, we denote L as the discrete values of L(t).

Thus the integration in the model Eqn (5.6) becomes:∫
x(t)β(t)dt ≈ CΦΦT b̃T/k (5.7)∫

β′′(t)β′′(t)dt ≈ b̃LLT b̃T/k. (5.8)

In our analysis, we treat the functional variable x(t) as a matrix of discrete data points x.
The univariate functional regression can be written as:

y =

∫
x(t)β(t)dt + ε

≈xΦT b̃T/k + ε

Since only b̃ j are unknown, we can treat xΦT/k as the new input variable.

The smoothness of the functional coefficient is one of the most important aspect of func-
tional regression. It can be controlled by the number and order of basis functions, or
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by the use of a roughness penalty. Different methods lead to different solutions for the
estimated parameter.

1. Control smoothness by basis functions
If we use basis functions to control the smoothness, the parameter b̃ is estimated by
the following least square function:

G = (y − (xΦT/k)b̃T )2.

Thus the estimated functional coefficient is:

β̂(t) ≈ ˆ̃bΦ

= yT (xΦT/k)T [ΦT xT xΦT/k2]−1Φ.

To avoid singularity, we use a small number of basis functions in this case. The
small number and low order of the basis functions used would lead to a low compu-
tation cost, but would also lead to poor estimation at the locations with rapid change
on the functional coefficient.

2. Control smoothness by basis functions and roughness penalty
Another way to control the smoothness of functional coefficients is to use a large
number, and high order of basis functions together with the roughness penalty. The
penalized least square becomes:

G =(y −
∫

x(t)β(t)dt)2 + ϕ

∫
[β′′(t)]2dt

≈(y − (xΦT/k)b̃T )2 + ϕ(b̃(Φ2Φ
T
2 /k)b̃T )

where Φ2 is the matrix representing the second order derivative of the basis func-
tions.

The estimation for β(t) from penalized functional regression is:

β̂(t) ≈ ˆ̃bΦ

= yT xΦT (ΦxT xΦT + ϕΦ2Φ
T
2 )−1Φ (5.9)

The roughness penalty allows us to use relatively large number and high order ba-
sis functions to fit the functional coefficient. The smoothness of the estimation is
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then adjusted by the roughness penalty. This penalty term also helps avoiding the
singular problem.

5.1.3 Mixed scalar and functional variable selection based on the
group lasso method

With centred and scaled response and candidate variables, the equation for the regression
model is

y =

J∑
j=1

∫
x j(t)β j(t)dt +

M∑
m=1

zmγm + ε. (5.10)

If we approximate x j(t) by x j, approximate β j(t) by b̃Φ, and also consider Eqn (5.7),
Eqn (5.8), the above equation can be written as:

y =

J∑
j=1

x jΦ
T b̃T

j /k +

M∑
m=1

zmγm + ε. (5.11)

Thus the variable selection problem Eqn (5.10) becomes Eqn (5.11), which is similar to
the group variable selection problem. The group lasso penalty is added to the least square
equation:

G = (y −
J∑

j=1

x jΦ
T b̃T

j /k −
M∑

m=1

zmγm)2 + λ PEN, (5.12)

where PEN is the penalty function. Each of the univariate functional regression meth-
ods corresponds to one type of PEN. Now we show the details of the difference in the
following subsections.

Control smoothness by basis functions

If we use basis functions to control the smoothness of the functional coefficient, the
penalty function would target on the functional coefficients. And thus the penalty function
is given by:

PEN =
∑

j

||b̃ j||2 +
∑

m

||γm||2.
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The functional coefficients are also the target of the penalty functions used in some func-
tional variable selection methods. For example, Matsui and Konishib (2011) uses Gaus-
sian basis functions to represent the functional variables, and then use group SCAD pro-
posed by Wang et al. (2007) to do the selection; Mingotti et al. (2013) uses B-spline basis
functions and the lasso method to do the variable selection.

The least square equation Eqn (5.12) becomes:

G = (y −
J∑

j=1

x jΦ
T b̃T

j /k −
M∑

m=1

zmγm)2 + λ(
J∑

j=1

√
p j||b̃ j||2 +

M∑
m=1

||γm||2).

The estimation of the j-th functional coefficient is:

β̂ j(t) ≈

1 − λ
√p j

||ΦxT
j r j||2

+

ΦxT
j r j,

and the estimation of the m-th scalar coefficient is:

γ̂m =

(
1 −

λ

||zT
mr j||2

)+

zT
mr j.

Instead of transferring the new group variables zm to orthonormal matrices, they are as-
sumed to be orthonormal. This approximation would bring some errors to the estimation,
but the error would be small if the variables are centred and scaled.

The advantage of using basis functions to control the smoothness of the functional co-
efficients is the low computational cost, since the dimension of each group would be
restricted to a small number to avoid the singularity. The disadvantage, however, of this
restriction is the inaccurate estimation of the functional coefficients, when the shape of
the curve is complex. We refer to this method as FGLB.

Control smoothness by basis functions and roughness penalty

J.Gertheiss (2013) proposed the functional variable selection method based on group lasso
with roughness penalty for the functional coefficients. They use B-spline basis functions
to represent the functional variable and the functional coefficients.

The roughness penalty is added to the kernel matrix such that the penalized least square
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becomes:

G = (y −
J∑

j=1

x jΦ
T b̃T

j /k −
M∑

m=1

zmγm)2 + λ(
J∑

j=1

√
p j(b̃T

j (ΦTΦ + ϕΦ2Φ
T
2 )b̃ j)1/2 +

M∑
m=1

||γm||2).

Apparently K = ΦTΦ+ϕΦ2Φ
T
2 is not a constant times an identity matrix in this equation.

The authors decomposite this kernel matrix by Choleskey decomposition and get K =

LT L. Thus the penalized least square becomes:

G =(y −
J∑

j=1

x jΦ
T b̃T/k −

M∑
m=1

zmγm)2 + λ(
J∑

j=1

√
p j(b̃T

j LT Lb̃ j)1/2 +

M∑
m=1

||γm||2)

=(y −
J∑

j=1

x jΦ
T L−1Lb̃T/k −

M∑
m=1

zmγm)2 + λ(
J∑

j=1

√
p j(b̃T

j LT Lb̃ j)1/2 +

M∑
m=1

||γm||2)

=(y −
J∑

j=1

x∗jb̃
∗T/k −

M∑
m=1

zmγm)2 + λ(
J∑

j=1

√
p j(b̃∗Tj b̃∗j)

1/2 +

M∑
m=1

||γm||2),

where

x∗j = x jΦ
T L−1

b∗j = Lb̃ j.

Additionally, the input variables are assumed to be orthonormal in the calculation rather
than transformed into orthonormal basis. More specifically, z∗Tj z∗j is assumed to be as
identity matrix times the dimension K.

One benefit of this is that the design matrices normally have high dimensions, which
might lead to short rank design matrices. The QR decomposition of these matrices brings
numerical error to the regression. Inverting the upper triangular matrix R j from the QR
decomposition would bring even more error to the regression. The final estimation of the
functional coefficient would be extremely inaccurate.

Thus the solution of the functional coefficient β j(t) in theory should be:

β̂ j(t) =


0 ||z∗Tj r j − z∗T z∗β∗j ||2 ≤ λ

√
K;

Φ(z∗Tj z∗j + λ
||β∗j ||2

)−1L−1z∗Tj r j otherwise.
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However, because they assume that z∗Tj z∗j = Ip j , the actual solution is :

β̂ j(t) =

1 − λ
√

K
||z∗Tj r j||2

+

ΦL−1
j z∗Tj r j

where 1 − λ
√

K
||z∗Tj r j ||2

is a constant, related to the shrinkage of the coefficients. The directions

of the functional coefficients are controlled by ΦL−1
j z∗Tj r j.

We can substitute the basis functions into the solution, such that the direction can be
written as:

β̂ j(t) ≈ ΦL−1z∗Tj r j

= ΦL−1L−1T xT∗
j r j

= ΦK−1xT∗
j r j

= Φ(ΦTΦ + ϕΦT
2Φ2)−1ΦTΦcT

j r j.

Recall that the coefficient estimated using penalized functional regression from Eqn (5.9)
is

Φ
(
ΦT xT xΦ + ϕΦT

2Φ2

)−1
ΦTΦcT y.

The solutions are fairly similar to each other. If the functional variables are centred and
scaled to have mean 0 and variance n − 1 column-wise before entering the regression
model, the error made by assuming z∗Tj z∗j = K IK would be small.

The solution for the scalar variable is same as before. The estimation for the m-th scalar
variable is:

γ̂m =

(
1 −

λ

||zT
mr j||2

)+

zT
mr j.

We refer to this method as FGLP.

The advantage of this algorithm is that it can give fairly accurate estimation of the the
functional coefficients even if they have complex shapes.

The disadvantages of this algorithm are the follows. Firstly, the estimation involves ap-
proximation, which would bring errors to the results. Secondly, there are two tuning
parameters in the algorithm and GCV cannot be used. So it would be computationally
expensive to find a good set of tuning parameters.
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5.2 Functional LARS with Scalar Variables in the Can-
didates

In the previous chapter, we introduced functional LARS for the variable selection problem
involving only functional variables. The algorithm works well when all the functional
variables are represented by using matrices with same dimension. In this chapter, we
introduce scalar candidates to the variable selection problem. Thus the dimension of the
variables would be different from each other. We need to modify the algorithm and deal
with certain issues in the algorithm that could be effected by the different dimensions.

There are two aspects in the algorithm that might be effected: firstly the calculation of the
correlation between the selected variables and the response variable; and secondly, the
calculation of the solution of equal correlation equation.

5.2.1 Correlation between one scalar variable and a group of scalar
and functional variables

The linear correlation between two scalar variables in the LARS is the Pearson’s correla-
tion coefficient.

ρ =
Cov(Z,Y)

√
Var(Z)Var(Y)

Recall that the general formula to calculate the functional canonical correlation in Eqn (3.22)
and the corresponding coefficient in Eqn (3.23):

correlation: ρ2 =
VT

X,yP−1
X,XVX,y

Vy

coefficients: b̃ =
P−1

X,XVX,y

ρ||y||2

The matrix PX,X is a block matrix. The (i, j)-th block is:

PXi,X j = WT xT
i x jW + δi, jPEN,
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where δi, j = I if i = j, and 0 otherwise; PEN is the penalty function. This is the general
expression we used in Chapter 3, and the matrix W depends on the choice of the discrete
method for the functional coefficient.

Similarly, VX,y is also a block matrix. The i-th block is:

VXi,y = WxT
i y.

Both scalar and functional variables are centred and scaled to have mean 0 and variance
1. For scalar variables, centring is obtained by subtracting the sample mean, and scaling
is obtained by dividing the sample standard deviation. Functional variables are centred
by the column mean and scaled by the column standard deviation.

The blocks corresponding to the scalar variables certainly have no penalties to add on. As
an example, suppose that there are two variables, x(t) and z. The covariance matrix PX,X

can be written as:

PX,X =

 WT xT
i x jW + δi, jPEN WT xT

i z

x jWz zT z

 .
Also, VX,y stays the same. In order to unify the formula, we can have W = 1 and PEN = 0
for the blocks corresponding to scalar variables. The cases with more functional variables
and scalar variables can be extended from this expression easily.

5.2.2 Equal squared correlation for scalar and functional variables.

Recall that the LARS algorithm uses the following equation to find the distance to move
on the direction unit vector with respect to the scalar candidate variable z:

Cor(r − αu, z)2 = Cor(r − αu, u)2

where u is the unit vector representing the direction of the current iteration. The iteration
number is omitted.

The group LARS from Yuan and Lin (2006) has a similar equation:

||(r − αu)T z j||
2
2/p j = ||(r − αu)T zi||

2
2/pi

where || · ||2 means the Euclidean norm of the vector; the group of variables zi is one of the
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variables selected; bi is the corresponding coefficient; z j is one of the candidate variables;
pi and p j are the dimensions of xi and x j, respectively. The dimensions pi and p j are used
to remove the effect of the difference in dimensions. Note that the direction vector u here
is not unit vector.

This equation is equivalent to:

(r − αu)T (z jzT
j )(r − αu)

p j
=

(r − αu)T (zizT
i )(r − αu)

pi

(r − αu)T
z jzT

j

p j
(r − αu) =(r − αu)T zizT

i

pi
(r − αu).

Clearly the normalization is on the matrices z jzT
j and zizT

i . These two matrices are the
only different elements between left and right hand sides of the equation. The dimension
of the matrix x could be the rank, trace and Frobenius norm of the matrix zzT if z is
orthonormal as required in the group LARS algorithm.

In functional cases, we write this equation in two versions for functional variable and
scalar variable, respectively. For functional candidates:

Cor
(
r − αu,

∫
x(t)β(t)dt

)2

/N f = Cor(r − αu, u)2/Nu, (5.13)

where the correlation between a scalar variable and the projection of a group of functional
variables is calculated by functional canonical correlation analysis.

For scalar candidates, we have:

Cor (r − αu, z)2 /Nz = Cor(r − αp, p)2/Nu, (5.14)

where N f , Nz and Nu are all constants for normalization.
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For functional candidate variables

We omit the subscript of the variables in the following derivation. If we substitute Eqn (3.20)
into left hand side of Eqn (5.13) and expand the right hand side of Eqn (5.13), we can get:

(r − αu)T xWK−1WT xT (r − αu)
(r − αu)T (r − αu)N f

=
[(r − αu)T u/(n − 1)]2

(r − αu)T (r − αu)uT u/(n − 1)2Nu

(r − αu)T xWK−1WT xT (r − αu)
(r − αu)T (r − αu)N f

=
(r − αu)T uuT (r − αu)

(r − αu)T (r − αu)uT pNu

(r − αu)T S̄ (r − αu) = (r − αu)T Ū(r − αu).

where S̄ = xWK−1WT xT

N f
,Ū =

u(uT u)−1uT

Nu
; x is the discrete data points of the functional variable

x(t). The estimated α is the solution of the quadratic function:

α2[uT (S̄ − Ū)u] − 2α[rT (S̄ − Ū)u] + [rT (S̄ − Ū)r] = 0 (5.15)

For scalar candidate variables

If we expand both side of Eqn (5.14):

[(r − αu)T z/(n − 1)]2

(r − αu)T (r − αu)zT z/(n − 1)2Nz
=

[(r − αu)T u/(n − 1)]2

(r − αu)T (r − αu)uT u/(n − 1)2Nu

(r − αu)T zzT (r − αu)
zT zNz

=
(r − αu)T uuT (r − αu)

uT uNu

(r − αu)T Z̄(r − αu) = (r − αu)T Ū(r − αu).

where Z̄ =
z(zT z)−1zT

Nz
. The solution of α is the solution of the quadratic function:

α2[uT (Z̄ − Ū)u] − 2α[rT (X̄ − Ū)u] + [rT (X̄ − Ū)r] = 0 (5.16)

The intuitions from Eqn(5.15) and Eqn(5.16) are identical. Thus we can unify the for-
mulas for scalar and functional cases. From the group LARS algorithm, the choice of
normalization method is not clear. As stated before, the choices we could try are the rank,
trace and Frobenius norm of the matrix. The findings will be listed in the simulation
section.
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5.3 Simulation Study

We have seen good results from the previous chapter for functional LARS. As the formu-
las in this chapter do not change the estimation of the functional coefficients, we believe
that the estimation accuracy would not change when we use different types of normaliza-
tion methods. The speed of the calculation largely depends on the dimension of each of
the functional variables. Since we use generalized cross validation to find a good tuning
parameter, the computation cost will be low by using the functional LARS.

In this simulation study, we have seven scenarios with increasingly complex correlation
structures. We focus on the performance of the three functional variable selection meth-
ods in the first four scenarios and we check the performance of the functional LARS with
Modification II in Section 4.3.2 in the Scenarios 5 and 6. We also include the scenario
when a large number of variables are in the candidate. In addition, we compare the per-
formance of functional LARS with different normalization methods. The stopping rule
for the two variable selection methods based on group lasso is 5-fold cross validation,
suggested by J.Gertheiss (2013). The stopping rule for functional LARS is AD proposed
in the previous chapter. We refer to functional LARS algorithm as f lars.

5.3.1 True model and data

The true model uses three functional variables and three scalar variables:

y =

∫
x1(t)β1(t)dt +

∫
x2(t)β2(t)dt +

∫
x3(t)β3(t)dt + z1γ1 + z2γ2 + z3γ3 + ε. (5.17)

In the regression equation, x j(t) are functional variables; zm are scalar variables. j =

1, . . . , 7, and m = 1, . . . , 5. Thus the variables are x1(t) to x7(t) and z1 to z5. The variables
are generated using the same idea as that used in the last chapter. The variables generated
are linearly uncorrelated with each other. Canonical correlation is used to measure the
relationship involving functional variables, and Pearson’s correlation is used to measure
the relationship between scalar variables.

We take one data set as an illustrative example. Figure 5.1 shows the seven uncorrelated
functional variables. Figure 5.2 shows the functional coefficients β1(t), β2(t) and β3(t).
The coefficients for scalar variables are: γ1 = 0.2201, γ2 = 0.2087 and γ3 = 0.1931. The
intercept is 10.
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Figure 5.1: Seven linear uncorrelated functional variables
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Figure 5.2: The true values of the functional coefficients
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5.3.2 Different Scenarios

We consider six scenarios in this simulation study. Each of the scenarios is repeated 1000
times. In each replication, 120 samples are generated, where 80 of them are used for
training, and the remaining 40 samples are used for testing.

The correlations between the variables are more complex in the later scenarios. Here we
list the details:

1. Seven functional variables and five scalar variables are generated. They are named
as x1(t), x2(t), . . ., x7(t), z1, . . ., z5. The variables are uncorrelated with each other.

2. Seven functional variables and five scalar variables are generated in Scenario 2,
namely x1(t), x2(t), . . ., x7(t), z1, . . ., z5. We replace functional variables x4(t) and
x5(t), such that they are both correlated with x1(t). All the other variables remain
uncorrelated with each other.

3. Similar to Scenario 2, we first generate 12 uncorrelated variables x1(t), x2(t), . . .,
x7(t), z1, . . ., z5 in Scenario 3. We replace scalar variables z4 and z5 such that they
are correlated with z1. All the other variables remain uncorrelated with each other.

4. We combines both correlation structures from Scenario 2 and 3 in Scenario 4. More
specifically, x4(t) and x5(t) are correlated with x1(t), and z4 and z5 are correlated with
z1. The scalar variables and functional variables are uncorrelated.

5. We introduce correlation between one functional variable and one scalar variable in
Scenario 5. We replace x6(t) such that it is correlated with z1. All the other variables
remains the same as the ones from Scenario 4.

6. Scenario 6 has the same correlation structure as Scenario 5. The special feature
for this scenario is that some irrelevant variables are more correlated with the re-
sponse variable than all of the true variables. We want to test the performance of
Modification II discussed in the previous chapter.

7. Scenario 7 has 50 scalar variables and 50 functional variables. We still use the
first three scalar variables and first three functional variables in the true model. We
generate these random variables independently from normal distributions, but we
do not try to control the correlation structure of them.
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Scenario 1

We set all candidate variables to be linearly uncorrelated with each other in Scenario 1.
Figure 5.3 shows the correlation map between all variables and the response from the
example data set. The last column shows the correlation between the response variable
and all of the candidate variables.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.43

−0.29

−0.15

0

0.14

0.28

0.43

0.57

0.71

0.86

1
             

 

 

 

 

 

 

 

 

 

 

 

 

x7(t)

x6(t)

x5(t)

x4(t)

x3(t)

x2(t)

x1(t)

z5

z4

z3

z2

z1

x1(t)x2(t)x3(t)x4(t)x5(t)x6(t)x7(t) z1 z2 z3 z4 z5 y

Figure 5.3: Correlation map of one of the simulated data set from Scenario 1

Comparison between algorithms We first compare the performance of three different
functional variable selection algorithms. We include the estimations from the algorithms
based on group lasso and functional LARS with the the RDP method and identity normal-
ization in this comparison. The comparison between other results from functional LARS
with different representative methods for the coefficients and different normalization is in
a later paragraph.

Figure 5.4 shows the estimations of the parameters for each of the variables. The top left
plot shows the true value and the estimations of the intercept; the right bottom plot shows
the true values and the estimations of the parameter for the scalar variables; the rest of the
plots show the true values and the estimations of the functional coefficients.

The intercept estimated from different algorithms are all close to the true value. The
shapes of the functional coefficients are also close to those of the true coefficients. How-
ever, the estimates from the algorithms using group lasso would diverge from the true
coefficient, if the true functional coefficient had sharp turns. Estimation from functional
LARS shows better performance in this situation.

As we mentioned above, the result in Figure 5.4 corresponding to f lars is suggested by
our stopping rule AD; the results corresponding to the other two algorithms are suggested
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Figure 5.4: Estimated parameters from f lars, FGLB and FGLP. Black lines are the true functional
coefficients; red lines and points are the estimations of the coefficients from f lars; green lines and
points are the estimations of the coefficients from FGLP; blue lines and points are the estimations
of the coefficients from FGLB. The colours of the lines and points remain the same meaning
through out all the simulations.
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by 5-fold cross validation. The stopping point chosen by AD gives excellent selection
of the variables, i.e. only β1(t), β2(t), β3(t), γ1, γ2 and γ3 are non-zero. However, the
variables chosen by FGLP and FGLB with 5-fold cross validation include irrelevant scalar
variables. We found that this is a typical problem when using FGLP and FGLB with 5-
fold cross validation. More specifically, 5-fold cross validation tends to reach the optimal
when some irrelevant variables are included. It is also worth noting that FGLP and FGLB

are more likely to select scalar variables rather than functional variables.

We present the estimation accuracy and selection accuracy of the three algorithms for this
data set in Table 5.1. The estimation accuracy is measured by the RMSE; the selection
accuracy is measured by the number of true variables selected and the number of irrelevant
variables selected. We have 6 true variables and 6 irrelevant variables in the candidates.
The prediction from functional LARS is the most accurate among the three algorithms;
the prediction from FGLP is slightly worse, while the prediction from FGLB is poor. This
confirms the estimation of the parameters in Figure 5.4.

RMSE expected unexpected
f lars 0.0640 6/6 0/6
FGLP 0.0660 6/6 3/6
FGLB 0.1177 6/6 2/6

Table 5.1: The estimation accuracy and the selection accuracy from three algorithms.

Comparison between different discrete methods and normalizations We present the
results for Scenario 1 from functional LARS using three different discrete methods for the
functional coefficients with four different normalization methods in Figure 5.5. Recall that
each of the RDP, GQ and BF discrete methods has four normalization choices: Frobenius
norm, rank, trace and the identity matrix. Thus we have 12 sets of outcomes from the
combinations between the discrete methods and the normalization methods. The results
using the RDP method for functional coefficients are in the top row; the results from the
GQ method are in the middle row; the results from the BF method are in the bottom row.
The same colour in different rows indicates the same normalization method. In each of
the plots, results corresponding to Frobenius norm, rank, trace and the identity matrix
are in red, green, blue and purple, respectively. Similar to previous plots, the true values
are drawn in black. The estimates of the functional coefficients corresponding to the GQ

method are point estimates from the 18-points rule.

From the plots, we can see that the outcomes from different discrete and normalization
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methods are identical to each other. The results are also fairly accurate with respect to
the true values of the parameters. In addition, the plots show that the selection made by
the algorithm using different discrete and normalization methods and the stopping rule
AD are accurate for this data set. The calculation from the combination of the RDP and
identity normalization stops with seven variables in the regression equation suggested by
AD. This could happen with very small probability. We will show more results from the
1000 replications later.

The prediction RMSE’s from functional LARS using different combinations of discrete
methods and normalization methods are shown in Table 5.2. Recall that the true error has
standard deviation 0.05. Thus we obtain accurate predictions. None of the combinations
has a large impact on the outcome for this data set.

Norm Rank Trace Identity
RDP 0.0631 0.0627 0.0643 0.0640
GQ 0.0639 0.0643 0.0653 0.0638
BF 0.0612 0.0614 0.0612 0.0605

Table 5.2: RMSE from different discrete methods for functional coefficients and different normal-
ization methods.

Simulation study results based on 1000 replications We focus on the following as-
pects of the algorithms: selection accuracy, estimation accuracy and computation time.
For each of the algorithms, we use the corresponding stopping rules to find the estimation
of the parameters for prediction. More specifically, we use AD for functional LARS and
we use 5-fold cross validation with prediction RMSE for FGLP and FGLB. The compar-
ison of selection accuracy has two parts, one is the percentage of true variables selected,
the other one is the the percentage of irrelevant variables selected. The comparison of the
estimation accuracy is only dependent on the prediction RMSE. The computation time
from all algorithms are calculated in the following ways. For the functional LARS, it is
the computational time up to the stopping point. For others the computational time is the
time up to the point at which we find the best tuning parameters.

Table 5.3 contains the average of the outcomes from 1000 replications using different al-
gorithms. We first compare functional LARS using different discrete methods and differ-
ent normalization methods. The first column of the table is the average prediction RMSE.
We can see that the functional LARS normalized by rank shows poor performance for all
three discrete methods. The Second column of the table shows the percentage of expected
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RMSE Expected (%) Unexpected (%) Time (sec)

f lars

RDP

Norm 0.0591 99.89 0.00 3.4058
Trace 0.0615 99.38 0.00 3.2836
Rank 0.1723 76.62 0.42 2.2518

Identity 0.0591 100 0.00 3.8382

GQ

Norm 0.0619 100 0.07 0.6083
Trace 0.0655 99.53 0.94 0.5999
Rank 0.1560 80.29 0.35 0.6203

Identity 0.0623 99.94 0.08 0.5799

BF

Norm 0.0585 99.94 0.21 0.7154
Trace 0.0709 98.44 3.75 0.7478
Rank 0.1434 82.32 0.44 0.7421

Identity 0.0586 99.94 0.06 0.7322
FGLP 0.0616 100 51.95 260.3309
FGLB 0.1166 100 23.86 1.0205

Table 5.3: Summaries of functional LARS with different discretizing and normalization methods,
FGLP and FGLB.

selected variables. It confirms that AD sometimes stops the algorithm before all the true
variables are selected when normalized by rank. Thus rank might not be a good choice
for normalization in functional LARS, if we use AD as the stopping rule. From the third
column, we can see that AD may select irrelevant variables with small probabilities. The
normalization using trace and rank are slightly worse than the others. In addition, the
prediction performance from trace is also slightly worse than the prediction from norm
and identity. The computation time from the RDP methods are certainly the longest.

By considering all four columns, we can say that: first of all, the best normalization meth-
ods are Frobenius norm and identity; secondly, for best selection or fastest computation,
we should choose thet RDP and the GQ, respectively. The difference in prediction accu-
racy from three methods are identical to each other.

The prediction RMSE from FGLP is comparable with the good ones from functional
LARS algorithm, but FGLB is not good enough. Both FGLP and FGLB successfully se-
lected all the true variables, but they also tend to select large proportion of irrelevant
variables. The computation time for FGLP is the longest due to the tuning for two tun-
ing parameters. The computation time for FGLB can only compare with the ones for
functional LARS using the RDP method.
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Scenario 2

The difference between Scenario 2 and Scenario 1 is that two irrelevant functional vari-
ables x4(t) and x5(t) are altered so that they are correlated with one of the relevant func-
tional variable x1(t). Thus the correlations between the scalar response and these two
functional variables are large. The correlation map is in Figure 5.6.
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Figure 5.6: Correlation map for one of the simulated data set from Scenario 2

The comparison between the estimations from three different algorithms and the com-
parison between the estimations between different normalizations are in Figure 5.C.1 and
Figure 5.C.2 respectively in Appendix 5.C. The figures are similar to those from Sce-
nario 1.

The models estimated by algorithms using group lasso and 5-fold cross validation tend to
include irrelevant variables in the covariates. For this data set, FGLP selects one irrelevant
functional variable and one irrelevant scalar variable, and FGLB selects two irrelevant
scalar variables. Compared to the true values of the parameters, estimates from functional
LARS and FGLP are more accurate than the ones from FGLB. Details of the results are
listed in Table 5.4. The table shows that the prediction RMSE from functional LARS
using the combination of RDP method and identity normalization is the best of the three
algorithms. All three algorithms successfully select relevant variables. The functional
LARS algorithm select no irrelevant variables, while the other two algorithms select two
irrelevant variables.

The estimations from functional LARS using different discrete methods and different nor-
malization methods are similar to each other and close to the true value of the parameters.
Table 5.5 shows the results from functional LARS using different discrete methods and
different normalization methods. All prediction RMSE’s are close to each other and indi-
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RMSE expected unexpected
f lars 0.0646 6/6 0/6
FGLP 0.0660 6/6 2/6
FGLB 0.1177 6/6 2/6

Table 5.4: The estimation accuracy and the selection accuracy for three algorithms.

cate accurate predictions.

Norm Rank Trace Identity
RDP 0.0634 0.0630 0.0638 0.0646
GQ 0.0642 0.0643 0.0653 0.0642
BF 0.0612 0.0613 0.0612 0.0601

Table 5.5: RMSE from different discrete methods for functional coefficients and different normal-
ization methods.

The results from 1000 replications are more credible. We put the summary of the replica-
tions in the Table 5.6. The functional LARS, normalized by rank using different discrete
methods, has inaccurate results in terms of the prediction RMSE. Similar to the previous
scenario, such poor results are caused by the inaccurate stopping points selected by AD.
From the second column we can see that the algorithm normalized by rank may stop be-
fore all the relevant variables are selected. Thus if we want to use AD as the stopping rule,
we should use other normalization methods. The third column shows the percentage of ir-
relevant variables selected. It appears that the probability of selecting irrelevant variables
is small when using any combination of discrete methods and normalization methods.

The prediction RMSE’s from FGLP are slightly worse than those from functional LARS.
The RMSE from FGLB is much worse than the others. Both methods successfully select
all the relevant variables, but they also select many irrelevant variables, especially the
FGLP method.

Functional LARS using the GQ and BF as discrete methods are the fastest algorithms.
However, their selection accuracy is not as good as that using the RDP method. FGLP

takes the longest time to find a good pair of tuning parameters, while FGLB takes a more
reasonable amount of time to find a good tuning parameter.

Scenario 3 and 4 Scenario 3 has correlated scalar variables and no correlated functional
variables, while Scenario 4 combines both Scenario 2 and 3. The data sets and the results
from these three scenarios are all similar. Thus we present the findings of Scenario 3 and
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RMSE Expected (%) Unexpected (%) Time (sec)

f lars

RDP

Norm 0.0586 99.74 0.26 3.1231
Trace 0.0613 99.21 0.20 3.3727
Rank 0.1707 76.66 0.50 2.0830

Identity 0.0601 99.33 0.56 3.8276

GQ

Norm 0.0621 99.35 0.68 0.9492
Trace 0.0661 98.61 1.70 0.5288
Rank 0.1577 79.72 0.59 0.5517

Identity 0.0630 99.13 0.97 0.5123

BF

Norm 0.0596 99.14 0.95 0.6556
Trace 0.0682 97.19 4.21 1.0814
Rank 0.1468 81.45 0.85 0.6619

Identity 0.0594 99.09 1.10 0.9101
FGLP 0.0617 1.00 50.63 250.7358
FGLB 0.1181 1.00 24.55 1.0692

Table 5.6: Summaries of functional LARS with different discrete and normalization methods,
FGLP and FGLB.

4 together with Scenario 2. The correlation maps of these two scenarios are in Figure 5.7.
In these scenarios, correlations between any functional variables and any scalar variables
are almost zero.
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Figure 5.7: Correlation map of one of the simulated data set from Scenario 3 and 4

The comparison between the estimations from three different algorithms and the compar-
ison between the estimations between different normalizations in Scenario 3 and 4 are in
the Figure 5.C.3, Figure 5.C.5, Figure 5.C.4 and Figure 5.C.6 in Appendix 5.C. Also the
summary tables Table 5.C.1, Table 5.C.4, Table 5.C.2 and Table 5.C.5 for the two com-
parisons are in the Appendix 5.C. For this data set, the new correlation structures have
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little effect on the estimates from the three algorithms and the estimates from functional
LARS with different discrete methods and normalization methods. The prediction RMSE
from functional LARS and FGLP are close to each other, but the one from FGLB is not
good.

The summary for the results from 1000 replications in Scenario 3 and 4 are in Table 5.C.3
and Table 5.C.6 in Appendix 5.C. We can get similar conclusions from these two tables.
By using AD as the stopping criteria, functional LARS normalized by rank may stop be-
fore finishing the selection of all the relevant variables. Thus the corresponding prediction
RMSE is larger than the others. The prediction RMSE from FGLP is slightly worse than
those from functional LARS. Even though FGLB selects all of the relevant variables, the
prediction RMSE is still poor. This is certainly caused by the inaccurate estimation of the
parameters.

Scenario 5

Previously we focused on the comparison between functional LARS with different dis-
cretization and normalization methods, also with the other two variable selection methods
extended from functional variable selection. In this scenario and the next one, we focus
on the selection and estimation when using Modification II from Section 4.3.2. Scenario
5 and 6 have the most complex correlation structure in our simulation study. Similar
to previous scenarios, we have seven functional variables x1(t), . . . , x7(t), and five scalar
variables z1, . . . , z5. The true variables are still the first three functional variables and first
three scalar variables. Irrelevant functional variables x4(t) and x5(t) are correlated with the
true variable x1(t), with correlation of about 0.9; the irrelevant functional variable x6(t) is
correlated with relevant scalar variable z1, with correlation 0.5. The correlation between
the response variable and some irrelevant variables could be large. The correlation map
is shown in Figure 5.8.

Recall that Modification II is designed to remove variables from the regression equation.
The variables should be removed when they are no longer useful. There are two aspects of
the performance we want to test: before the algorithm reaches the stopping point, whether
or not the modification remove relevant variables and whether or not it remove irrelevant
variables.

Modification II removes variables based on their contribution to the model. A functional
variable is removed from the model when the following two conditions are met. First, the
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Figure 5.8: Correlation map of one of the simulated data set from Scenario 5

variance of the projection of the variable is smaller than the maximum variance from the
same variable:

Var
(∫

x j(t)β
(k)
j (t)

)
< Var

(∫
x j(t)β

(k∗)
j (t)

)
for k∗ ∈ 1, . . . , k − 1.

Secondly, the variance of the variable is less than a certain percentage of the total variance
of the response variable:

Var
(∫

x j(t)β
(k)
j (t)

)
< κVar(y),

where κ is the threshold. In our simulation, κ = 0.1. This criteria also works for scalar
variables. We omitted the equations for scalar variables here.

For this data set, unmodified and modified functional LARS give the same results be-
fore the algorithms reach the stopping point suggested by AD. The estimation of the
parameters from unmodified functional LARS FGLP, FGLB are shown in Figure 5.D.1
and Figure 5.D.2 in Appendix 5.D. The result from modified functional LARS is omit
in the plots. The conclusion made from these figures are similar to those from previous
scenarios.

Table 5.7 shows the comparison of the prediction RMSE and the variable selected in the
corresponding iteration up to Iteration 9 from unmodified and modified functional LARS.
We only show the result using the RDP method and identity normalization here. The
results from the unmodified and modified algorithms are identical. The first six iterations
select these six variables for both unmodified and modified algorithms. This means that
the modification successfully avoid removing important variables from the model for this
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data set.

Iteration
RMSE Selection

Unmodified Modified Unmodified Modified
1 0.4132 0.4132 x1(t) x1(t)
2 0.3850 0.3850 z2 z2

3 0.3614 0.3614 z1 z1

4 0.3142 0.3142 z3 z3

5 0.2258 0.2258 x3(t) x3(t)
6 0.0591 0.0591 x2(t) x2(t)
7 0.0636 0.0636 z5 z5

8 0.0649 0.0649 z4 z4

9 0.0661 0.0661 x7(t) x7(t)

Table 5.7: Comparison of the prediction RMSE and the selection between unmodified functional
LARS and modified functional LARS from Scenario 5.

Each of the data set in the 1000 replications are checked such that the largest correlation
between the response variable and all 12 candidates falls onto one of relevant variables.
The results from 1000 replicates are omitted here, because the outcome from the un-
modified and modified functional LARS algorithms are identical to each other before the
corresponding stopping points. The difference made by the modifications happens after
all the relevant variables are selected. However, those differences have little influence
on the results. Thus it further confirms that the modification is extremely unlikely to be
triggered for any combinations of discrete and normalization methods before reaching the
stopping point if no irrelevant variables are selected before the relevant variables. This
also indicates that the threshold κ = 0.1 is a good choice for not removing the relevant
variables.

Scenario 6

Scenario 6 has the same correlation structure as that in Scenario 5. The only difference
is that one of the irrelevant variable x4(t) and x5(t) has the biggest correlation with the
response variable among all the 12 variables. In other words, Scenario 6 is the extreme
and rare case of Scenario 5. In order to obtain the required correlation structure,the data
generated here are checked such that the largest correlations between the response and
the 12 candidate variables falls on to x4(t) or x5(t). The correlation map is shown in
Figure 5.9.
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Figure 5.9: Correlation map of a simulated data set from Scenario 6

For this data set, unmodified and modified functional LARS give the different results
before the algorithms reach the corresponding stopping points suggested by AD. The
estimates of the parameters from unmodified functional LARS with the RDP and identity
normalization, FGLP, FGLB are shown in Figure 5.10. All the other estimated parameters
from unmodified and modified algorithms are shown in Figure 5.E.1 and Figure 5.E.2
respectively in Appendix 5.E.
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Figure 5.10: Estimated parameters from unmodified and modified f lars, FGLB and FGLP.

Table 5.8 shows the results from unmodified and modified algorithm. The irrelevant func-
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Iteration
RMSE Selection

Unmodified Modified Unmodified Modified
iter1 0.4761 0.4761 x4(t) x4(t)
iter2 0.4605 0.4605 x1(t) x1(t)
iter3 0.4134 0.4134 x2(t) x2(t)
iter4 0.3900 0.4040 z1 z1(drop x4(t))
iter5 0.3576 0.3478 z2 z2

iter6 0.2868 0.2752 x3(t) x3(t)
iter7 0.0641 0.0621 z3 z3

iter8 0.0630 0.0609 x6(t) x6(t)
iter9 0.0636 0.0608 x7(t) x7(t)

Table 5.8: Comparison of the prediction RMSE and the selection between unmodified functional
LARS and modified functional LARS from Scenario 6.

tional variable x4(t) is selected before all the other variables. The modification removes
one irrelevant variable x4(t) from the regression equation at iteration 4. As expected, the
prediction RMSE from modified functional LARS is smaller than that the from unmodi-
fied version after all the true variables are selected for inclusion in the regression equation.

It indicates that the threshold κ = 0.1 is a reasonable value for this data set. From our
experience, we tend to choose a small value of κ. When κ is large, it is more likely to
trigger the modification and remove variables. Thus when κ is large, it is possible that
some of the true variables could be removed and are never selected again.

Scenario 6 is also replicated 1000 times. Since Scenario 6 is actually the extreme and rare
case of Scenario 5, we have approximately a 6% chance to get one data set that satisfy
the requirements. Table 5.9 shows the summary of the results from these replicates. As
usual, functional LARS algorithm using rank as the normalization has most unsatisfying
performance among all the algorithms in the table. By using the modification, we can
successfully obtain correct variables in about 60% of cases. However, the prediction
RMSE is not improved much immediately after all the variables are selected. On the other
hand, the selection made by FGLP and FGLB are not as accurate as expected. Normally
these two algorithms select irrelevant variables for inclusion in the regression equation.
The prediction RMSE from FGLP is better in this case.
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RMSE Correct selection (%)
Unmodified Modified Unmodified Modified

RDP

Norm 0.0784 0.0834 18.90 54.33
Trace 0.0886 0.0935 18.90 51.81
Rank 0.1781 0.1500 9.29 33.86

Identity 0.0816 0.0910 15.59 59.69

GQ

Norm 0.0799 0.0862 14.17 65.98
Trace 0.0854 0.0888 14.17 61.73
Rank 0.1651 0.1382 8.19 39.21

Identity 0.0828 0.0874 10.39 65.51

BF

Norm 0.0777 0.0850 0.00 61.73
Trace 0.0869 0.0937 0.00 56.06
Rank 0.1637 0.1375 0.00 35.91

Identity 0.0778 0.0889 0.00 63.15
FGLP 0.0615 0.31
FGLB 0.1142 10.55

Table 5.9: Comparison of the prediction RMSE’s and the selection between unmodified functional
LARS and modified functional LARS from Scenario 6.

Scenario 7

In this scenario, we generate 50 functional variables and 50 scalar variables without any
constraints on the correlations between the variables. The true model remains the same,
i.e., the first three functional variables and the first three scalar variables are the true
variables. As the number of variables is large, we omit the correlation map in this case.

We show the results from the 1000 replications in Table 5.10. The best outcome is from
the functional LARS with the RDP method and normalised by the norm or the identity
matrix. The outcomes from the BF with the same normalizations are also very good.
The difference between the unmodified and modified functional LARS is small. The
functional LARS normalized by rank still gives unsatisfied results. The computational
time for FGLP is very long. Practically, when the number of variables is large, FGLP is
not a good choice. In addition, both FGLP and FGLB selected a large number of irrelevant
variables. Note that the percentage of the unexpected variables is calculated based on 94
irrelevant variables in the candidates.
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RMSE— Expected (%) Unexpected (%) Time (sec)
Unmodified Modified Unmodified Modified Unmodified Modified Unmodified Modified

RDP

Norm 0.0665 0.0645 99.23 98.85 0.18 0.23 14.9329 14.8827
Trace 0.0902 0.0884 94.02 94.36 0.28 0.31 13.7672 13.8482
Rank 0.3235 0.3240 58.94 57.71 0.65 0.67 10.8376 10.9249

Identity 0.0662 0.0645 99.54 99.35 0.22 0.23 15.6785 15.6053

GQ

Norm 0.0777 0.0690 98.53 98.27 0.55 0.62 3.6820 3.9109
Trace 0.0911 0.0820 95.54 95.84 0.67 0.72 3.4859 3.7339
Rank 0.3158 0.3111 58.78 62.09 1.84 1.54 3.9560 4.1507

Identity 0.1166 0.1054 92.42 94.98 1.34 1.22 3.6994 3.8699

BF

Norm 0.0674 0.0730 99.17 96.43 0.28 0.49 5.1893 5.7727
Trace 0.1120 0.1078 90.87 91.59 0.82 0.89 5.0884 5.5577
Rank 0.3120 0.3183 60.11 57.19 1.30 1.27 5.0217 5.2892

Identity 0.0755 0.0813 98.21 95.13 0.52 0.73 5.2248 5.5784
FGLP 0.1101 99.99 43.57 1718.6690
FGLB 0.3683 54.66 13.81 8.7383

Table 5.10: Comparison of the prediction RMSE’s and the selection between all algorithms from
Scenario 7.

5.4 Conclusion and discussion

We extend two existing functional variable selection methods to mixed scalar and func-
tional variable selection methods in this chapter. But our focus is on the functional LARS
with additional normalizations. The functional LARS algorithm works better than the
other two extended algorithms when there are both scalar and functional variables in the
candidates.

The algorithms are compared with the model selected using the corresponding stopping
rules. For functional LARS normalised by rank, the outcome is always worse than oth-
ers. This is because the stopping rule AD tends to stop the algorithm before the relevant
variables are all selected. Thus, even though functional LARS normalized by rank is
able to select relevant variables priorly, it is not a good choice to use while using AD to
find the stopping point. Among four normalization methods, Frobenius norm and iden-
tity matrix are the best ones. The selection made by using functional LARS with RDP

method is generally more accurate than other discrete methods. For FGLP and FGLB,
5-fold cross validation is applied. The combination of this criteria and the variable selec-
tion algorithms normally select with all the relevant variables and a few more irrelevant
variables. The extra irrelevant variables disturb the prediction outcome. In addition, by
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only using the basis functions to control the smoothness, FGLB would not give accurate
estimations of the functional coefficients, neither would the prediction using the estimated
coefficients.

The other aspect we considered in the simulation study is the computation cost. The
most expensive algorithm is FGLP, due to the tuning of two tuning parameters with cross
validation. The functional LARS algorithms are generally fast, except for the ones using
the RDP method. The computation cost for using RDP method as the discrete method is
certainly expensive due to the very high dimension of the functional variables.

In the first five scenarios, the performance of functional LARS is generally much better
than the ones from FGLP and FGLB. In the last scenario of the simulation, we look at
one extreme case with complex correlation structure. Functional LARS algorithm is able
to avoid selecting correlated variables for inclusion in the model in most of the cases.
Additionally, because the robustness of the algorithm, we can stop the algorithm one of
two iterations later in the worst cases to help facilitate convergence.
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Appendix

5.A Lasso and shooting algorithm

Lasso targets on the variable selection and parameter estimation in the linear model with
scalar variables:

y = β0 +

J∑
j=1

x jβ j + ε, (5.18)

where x j is the j-th variables, β j is the corresponding coefficient. We can always assume
that the the response variable and the covariates are centred and normalized, so that the in-
tercept β0 = 0 and ||x j||2 = 1 for all j. The variable selection and the parameter estimation
is done by the following penalized least square:

G = (y −
J∑

j=1

x jβ j)2 + λ

J∑
j=1

|β j|, (5.19)

where λ is the tuning parameter.

Shooting algorithm is proposed by Fu (1998), designed to solve lasso by iterative method.
It is replaced by LARS later for faster computation. The key idea of shooting algorithm
is to find the solution of β j in Eqn (5.19) conditional on the values of all the other coeffi-
cients. The process is repeated for j ∈ 1, . . . , J until all the β j converge.

Suppose J = 1, Eqn (5.19) can be rewritten as:

G = (y − xβ)2 + λ|β|, (5.20)
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Define s = ∂|β|/∂β. |β| is not differentiable when β = 0. Thus by subgradient we have: ||s||2 ≤ 1 β = 0;

s =
β

||β||2
= sign(β) otherwise.

Then we use Lagrange multiplier, and get:

∂G
∂β

= −xT y + xT xβ + λs = −xT y + β + λs, (5.21)

where xT xβ = β because x is normalized to have ||x||2 = 1.

Set ∂G
∂β

= 0, we have:

xT y − β = λs. (5.22)

s should have the same sign as β, thus the estimation of β is:

β̂ = xT y − λsign(β)

When β is small, and we have:

||xT y − β||2 < λ,

the estimation of β would be shrunk to zero. Thus β̂ can be written as:

β̂ = sign(β)(|xT y| − λ)+,

where (a)+ is equivalent to max(a, 0).

If J > 1, the above process is repeated through all variables. The response y is replaced
by

r j = y −
∑

j∗∈{1,...,J}, j∗, j

x j∗β j∗ ,

and the solution becomes:
β̂ j = sign(β) j(|xT r j| − λ)+

For a value of λ, the above solution is calculated from each j ∈ 1, . . . , J, until the values
of β j converge.
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5.B Group lasso and the solution from shooting algorithm

The variable selection and the parameter estimation is done by the following penalized
least square:

G = (y −
J∑

j=1

x jβ j)
2 + λ

J∑
j=1

(βT
j K jβ j)

1/2, (5.23)

where λ is the tuning parameter, K j is the kernel matrix for variable j. Initially the design
matrices x j and the kernel matrices K j have no special form, so the same idea from the
shooting algorithm can be used here. Suppose J = 1, we have:

G = (y − xβ)2 + λ(βT Kβ)1/2. (5.24)

Define s = ∂(βT Kβ)1/2/∂β. By subgradient, we have:
||s||2 ≤

(βT KKβ)1/2

(βT Kβ)1/2 β = 0;

s =
Kβ

(βT Kβ)1/2 otherwise.

By Lagrange multiplier:

∂G
∂β

= −xT y + xT xβ + λs = 0. (5.25)

This equation is difficult to solve, since we cannot separate the parameter β out easily. It
can be solved by optimization methods. In the multi-group-variable situation, the solution
of j-th coefficient β j is also from this equation, with respect to each of the groups of
variables. Similar to the scalar case, the response becomes:

r j = y −
J∑

j∗=1, j∗, j

x j∗β j∗ .

A sequential optimization algorithm is used to find β j for all j in Bakin et al. (1999). It is
certainly impractical when the number of variables is large.
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5.C Scenario 2, 3 and 4
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Figure 5.C.1: Estimated parameters from f lars, FGLB and FGLP. Black lines are the true func-
tional coefficients; red lines and points are the estimations of the coefficients from f lars; green
lines and points are the estimations of the coefficients from FGLP; blue lines and points are the
estimations of the coefficients from FGLB. The colours of the lines and points remains the same
meaning through out all the simulations.

RMSE expected unexpected
f lars 0.0640 6/6 0/6
FGLP 0.0661 6/6 3/6
FGLB 0.1180 6/6 2/6

Table 5.C.1: The estimation accuracy and the selection accuracy from three algorithms.

5.D Scenario 5

5.E Scenario 6
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Figure 5.C.3: Estimated parameters from f lars, FGLB and FGLP.

Norm Rank Trace Identity
RDP 0.0631 0.0627 0.0643 0.0640
GQ 0.0639 0.0643 0.0653 0.0638
BF 0.0612 0.0614 0.0611 0.0606

Table 5.C.2: RMSE from different discrete methods for functional coefficients and different nor-
malization methods.
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Figure 5.C.5: Estimated parameters from f lars, FGLB and FGLP.

RMSE Expected (%) Unexpected (%) Time (sec)

f lars

RDP

Norm 0.0585 100 0.00 3.1276
Trace 0.0613 99.44 0.00 2.9690
Rank 0.1696 77.25 0.53 2.0865

Identity 0.0591 100 0.00 3.8419

GQ

Norm 0.0612 100 0.02 0.5040
Trace 0.0652 99.48 1.08 0.4884
Rank 0.1519 81.11 0.40 0.5145

Identity 0.0615 100 0.03 0.4744

BF

Norm 0.0585 99.90 0.12 0.6509
Trace 0.0686 98.59 3.79 0.6459
Rank 0.1388 83.15 0.56 0.6454

Identity 0.0583 100 0.08 0.6252
FGLP 0.0615 100 51.03 271.5067
FGLB 0.1165 100 23.61 1.2410

Table 5.C.3: Summaries of functional LARS with different discrete and normalization methods,
FGLP and FGLB.

134



Chapter 5. Selection of Mixed Scalar and Functional Variables Using Functional LARS

●
●

●

●
●

9.79.89.910.010.1

µ

In
de

x

−0.020.020.060.10

β 1

se
q(

F
R

[1
], 

F
R

[2
], 

le
n 

=
 1

00
)

−0.050.050.150.25

β 2

se
q(

F
R

[1
], 

F
R

[2
], 

le
n 

=
 1

00
)

−0.15−0.10−0.050.000.05

β 3

se
q(

F
R

[1
], 

F
R

[2
], 

le
n 

=
 1

00
)

−1.0−0.50.00.51.0

β 4 x

−1.0−0.50.00.51.0

β 5 x

−1.0−0.50.00.51.0

β 6 x

−1.0−0.50.00.51.0

β 7 x

●
●

●

●
●

0.000.050.100.150.20

γ s
ca

la
r

x

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

9.69.79.89.910.0

In
de

x

−0.020.020.060.10

se
q(

F
R

[1
], 

F
R

[2
], 

le
n 

=
 1

00
)

−0.050.050.15

se
q(

F
R

[1
], 

F
R

[2
], 

le
n 

=
 1

00
)

−0.15−0.10−0.050.000.05

se
q(

F
R

[1
], 

F
R

[2
], 

le
n 

=
 1

00
)

−1.0−0.50.00.51.0
x

−1.0−0.50.00.51.0

x

−1.0−0.50.00.51.0

x

−1.0−0.50.00.51.0

x

●
●

●

●
●

0.000.050.100.150.20

x

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

9.49.69.810.0

Tr
ue

Nor
m Ran
k Tra
ce Id

en
tity

0.
0

0.
4

0.
8

−0.020.020.060.10

0.
0

0.
4

0.
8

−0.050.050.15

0.
0

0.
4

0.
8

−0.15−0.050.000.05

0.
0

0.
4

0.
8

−1.0−0.50.00.51.0

0.
0

0.
4

0.
8

−1.0−0.50.00.51.0

0.
0

0.
4

0.
8

−1.0−0.50.00.51.0

0.
0

0.
4

0.
8

−1.0−0.50.00.51.0

●
●

●

●
●

1
2

3
4

5

0.000.050.100.150.20

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

Fi
gu

re
5.

C
.6

:C
om

pa
ri

so
n

be
tw

ee
n

di
ff

er
en

td
is

cr
et

e
m

et
ho

ds
an

d
no

rm
al

iz
at

io
n

m
et

ho
ds

.

135



Chapter 5. Selection of Mixed Scalar and Functional Variables Using Functional LARS

RMSE expected unexpected
f lars 0.0646 6/6 0/6
FGLP 0.0661 6/6 2/6
FGLB 0.1180 6/6 2/6

Table 5.C.4: The estimation accuracy and the selection accuracy from three algorithms.

Norm Rank Trace Identity
RDP 0.0634 0.0630 0.0638 0.0646
GQ 0.0642 0.0643 0.0653 0.0643
BF 0.0612 0.0612 0.0611 0.0601

Table 5.C.5: RMSE from different discrete methods for functional coefficients and different nor-
malization methods.

RMSE Expected (%) Unexpected (%) Time (sec)

f lars

RDP

Norm 0.0593 99.59 0.27 2.9560
Trace 0.0637 98.67 0.30 3.1152
Rank 0.1687 77.26 0.59 2.0014

Identity 0.0600 99.33 0.59 3.4102

GQ

Norm 0.0631 99.22 0.63 0.4995
Trace 0.0674 98.37 1.52 0.4905
Rank 0.1556 80.51 0.44 0.5132

Identity 0.0641 99.11 0.79 0.4772

BF

Norm 0.0597 99.10 0.81 0.6467
Trace 0.0709 96.89 4.03 0.6390
Rank 0.1449 82.10 0.54 0.6400

Identity 0.0602 99.00 0.98 0.6243
FGLP 0.0616 100 50.97 265.8056
FGLB 0.1171 100 24.36 1.0849

Table 5.C.6: Summaries of functional LARS with different discrete and normalization methods,
FGLP and FGLB.
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Figure 5.D.1: Estimated parameters from f lars, FGLB and FGLP.
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Part II

Applications of Functional Regression
Analysis in Motion Data
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Chapter 6

Background and Preprocessing of the
Motion Data

Stroke is a major health problem. Globally, it is one of the most common causes for both
death and severe disability (Ian L. Dryden and Zhou (2009)). Advanced age can increase
the risk of stroke (Lip et al. (2010)). As the world population is significantly ageing,
the number of people suffer a first-time stroke is expected to increase from 16 million in
2005 to approximately 23 million by 2030 (Strong et al. (2007)). One of the common
disabilities after surviving stroke is hemiparesis. This means the left or right side of the
body is weak or loses its functions because of the brain injury caused by stroke. This
is a highly common syndrome for stroke survivors. Among the acute patients, who had
their first stroke within three month, 80% suffer hemiparesis (Party (2012)). This number
reduces to 50-70% for chronic patients, who had their first stroke after six months (Centre
for Disease Control (2012), Kelly-Hayes et al. (2003)).

Studies have confirmed that significant improvements can be achieved in upper limb func-
tion even for the patients who had stroke a few years ago (Laver et al. (2012)). But this re-
quires intensive, repetitive and challenging practice and exercises (P. Langhorne (2009)).
In addition, such treatment requires involvement of therapists. However, therapist time
is a limited and expensive resourced compare to the large population of stroke patients
(Party (2012)).

Similar rehabilitation programs can be carried at home by patients themselves. However,
improvements without therapists are questionable (Touillet et al. (2010)). On the other
hand, video games have been used for therapeutic purposes for a long time (Shi et al.
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(2013)). It can bring fun and focus to the treatment carried by the patients themselves
at home. The value of video games in such treatments has been proven by increasingly
strong evidence. Primack et al. (2012) determines more than one thousand publications
giving positive results up to February 2010.

In this chapter we introduce the detailed background of the motion data we are going to
analyse, including the design of the trial in Section 6.1. Signal data and the preprocessing
of signal data are in Section 6.2. After preprocessing the signal data, we obtain functional
variables and scalar variables for the modelling in the next chapter.

6.1 Backgroup Information about the Motion Data

Subjects and the trial There were 70 stroke survivors without significant cognitive or
visual impairment in the study. The inclusion criteria was that the patient should be able to
understand the information on the screen, grasp with their paretic hand, move their paretic
limb against gravity and do the most basic movements to calibrate the game. Patients have
a wide range of levels of abilities in their upper limb functions. None of these patients
have previously played video games. They were asked to participate in a home-based
rehabilitation programme using the Circus Challenge video games over a three month
period. There were no requirements for the lower limb ability of the participants. Thus,
the patients can either stand or sit to play the game.

Data were collected using a longitudinal design. According to the plan, each patient
should have eight assessments in three months time. The first four assessments were ar-
ranged weekly, and the following four were arranged fortnightly. For each patient, the
first assessment gave the baseline dependence level only. Patients had the video game to
play during their own time after the baseline assessment. In the following seven assess-
ments, patients were visited by the therapists and both assessment game and assessment
of the dependence level were carried out.

The video game Circus Challenge is a commercial game used to help patients recover
the upper limbs functions. It was produced for the company Limbs Alive by the profes-
sional video game studio Pitbull (http://www.pitbullstudio.co.uk) and computer scientists
from the project team. The video game contained a series of gaming scenarios within
which players participate in a number of circus oriented activities by completing the re-
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quired movements. The movements were designed and ordered by the therapists, in order
to help patients recover during an efficient and smooth process. Patients must move as
required by the game to score enough points to ensure successful completion of circus
activities in the game.

The corresponding assessment game is called the Circus Challenge Assessment game. It
is a simpler version of the full game. All the important movements in the commercial
game are included in the assessment game and ordered roughly according to the difficulty
levels. The data used in the model are from the assessment game rather than the full game.
Further details about the data is in the following chapter.

The dependence level The dependence level means the level of dependency of inde-
pendency of the patients in their daily life. The measurement used to quantify the pa-
tient’s dependence level is called Chedoke Arm and Hand Activity Inventory, or CAHAI
for short (http://www.cahai.ca/). The medical team in the project decided to use
CAHAI-9 as the reference clinical standard. CAHAI-9 has nine different tasks from daily
activities, such as dial 999 and open a jar. This assessment is a fully validated measure of
upper limb functional ability (S. Barreca (2005)). Each task uses seven points to quantify
the patients in general. A score of 7 means the patient is fully independent with regards
to that task, while a score 1 means that the patients is fully dependent. This gives us a
measure from 9 to 63 to represent the dependency level of the patients.

According to the time from stroke to first first assessment, patients included in the study
are split into two phases: chronic and acute. Chronic patients had their first stroke six
months time ago. Some patients had stroke years ago. Acute patients had their stroke
within the last six months. Such separation is because of the different behaviour of
recovery from acute patients and chronic patients. It is well known in the literature
(P. Langhorne (2009)) that generally, stroke patients recover with a relatively high speed
immediately after the stroke, and slow down over time. After half a year to one year, nor-
mally the recovery speed will reduce to a very low level. This is confirmed by this set of
motion data. Figure 6.1 show the clinical CAHAI-9 values against time for acute patients
and chronic patients respectively. Note that in the plots, the x axis for acute patients is
the time since stroke, and for chronic patients is the visit time. This is because the time
since stroke for chronic patients varies from a few months to a few years, which would
be difficult to visualize if using time since stroke. It is clear to see that the acute patients
have an increasing trend, while the trend for chronic patients is not obvious.
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Figure 6.1: Dependence level (CAHAI) against assessment time

The movements The therapists designed many movements in the commercial game.
The 40 most important movements were selected in the assessment game according to
therapists experience. These movements can be categorized as four types:

Mirrored Two hands are required to do the same movement, at the same time, mirror
each other with no phase lag.

In-phase Two hands are required to do the same movement, at the same time, but with a
phase lag.

Sequential Two hands are required to do the same movement alternately. To be more
specific, when one hand moves, the other hand is required to stay still with no
requirement about the posture. The order of which hand moves first does not effect
the result.

Coordinated Non-paretic hand is required to do a relatively complicated movement,
while the paretic hand is required to stay still with a certain posture. This group
has the hardest movements.

The most important movements are in the category “mirrored” and “in-phase”. This is
because the last two types may be too difficult for the patients to carry out. Thus the data
we have from the last two types of movements have less information than the ones from
the first two types.
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6.2 Device and the signal data

Our target is to model and predict the dependency level obtained from the clinical assess-
ments. The prediction will based on the motion data from the assessment game played by
the patients at home. These motion data are collected by 3-D tracking devices.

3-D tracking devices have been used in the research for a long time. The most accurate
devices are the camera based devices, such as VICON system (http://www.vicon.
com/). However, these devices are usually expensive, and have to be used in a laboratory
environment but not at home. These accurate devices might require complex set-ups
or calibrations before use every time. The Circus Challenge and the Circus Challenge
Assessment game are both rely on the home-based portable device from the company
Sixense (http://sixense.com/). This is one of the most state-of-the-art devices with
wireless controllers in the video game market. It is very easy to use. Each set of devices
contains one base unit connected to the computer to gain power and collect signals from
the controllers. This base unit provides a coordinate system in 3-dimensional space. The
origin is the base unit itself, with x axis going from left to right, y axis going from down
to up and z axis going from front to back. In our case, each set of devices also contains
three controllers: one for left hand, one for right hand and one on the belt round the waist.
The three controllers provide signals of the relative position in the 3-D space with respect
to the base unit during the game. The controllers use power from AAA batteries. The
controller has been designed for commercial video games, and provides greater accuracy
than any other game input device on the market. The technology powering the controller
is based on magnetic motion tracking (Hansen (1987)). The signals are not as accurate
as camera based devices, such as VICON. Because of the nature of the magnetic field,
the readings are not linearly correlated to the distance from the base unit, especially when
the target is far away from the base unit. However, we can get different readings when
the positions with respect to the base unit are different. According to the validation done
in Shi et al. (2013), this system is fairly accurate and approximately linear in the range
that covers most patients can reach. The other disadvantage using this system is that the
signals might be influenced by big metal objects such as radiators, if the device is too
close to them. According to therapists’ experience, the devices work well in a normal
home environment.

The data from the controllers are 60 Hz high frequency data. Therefore the signals can be
visualized as curves. For example, we show ten sample trajectories from different patients
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doing the movement forward roll in Figure 6.1. This movement asks the player to raise
the hands up to the chest hight, and draw a circle with diameter about half arm length
vertical to the torso.
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Figure 6.1: A few samples of the raw data on each of the axes and hands of the movement “forward
roll” (LA05)

The signals contain information about both position and orientation of the controllers.
For some movements, position data are more important than the orientation data, and vice
verse for some others. The movement we show in Figure 6.1 is more about the position
rather than the orientation.

6.2.1 Position data and calibration

It is clear that the position data are represented by the 3-dimensional signals from x, y and
z axes with respect to the base unit. However, from both gaming and modelling points of
view, the absolute distances from the base unit are not convenient to use, since they are
effected by not only the movements of the hands, but also many other factors. Therefore,
calibration and normalization are necessary before any game or data pretreatment for
modelling.

Calibration is done by a set of the most basic postures. The postures include the closest
and furthest reach when patients put the hands up, front and down. Figure 6.2 shows the
ideal standing of the patients with respect to the base unit. Ideally, the player should stand
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on the z axis one arm length away from the base unit, with the torso (segment between
two controllers) parallel to the x axis.

●

Ideal case: Top view

●

● ●
● ●

Screen

Base Unit

●●

Head

left controller right controller

X

Z

Figure 6.2: Top view of the ideal standing position. The coordinate system is centred at base unit.
Dashed line is the x axis and z axis.

However, it is not possible to guarantee such standing practically. Patients may stand with
a different angle and position, as shown in Figure 6.3a and Figure 6.3b. People may also
move during the game. In addition, patients have different arm lengths. Thus, any model
based on such data directly will lead to unreliable result. To solve these problems, we
need to carry out the following steps to normalize the data: centring, standardizing and
rotating.

Centring

By using the base unit as the reference point, the trajectories of the hands would be very
complicated. One patient may also change their standing position during the one as-
sessment game. However, if the reference becomes the shoulders, the movement will be
constrained in a sphere of radius one arm length. Therefore, the first step is to change the
reference point from base unit to the shoulders. This step will not change the shape of
the trajectories, however, because there are no sensors on the shoulder, the position of the
shoulders must be estimated.

We first transfer the reference point to the middle controller on the belt around patients
waist to remove the effect from changing standing positions. This can be done by sub-
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(a) One possible standing position
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(b) Another possible standing position

Figure 6.3: Possible standings of the players.

tracting the positions of the third controller from the positions of other two controllers:

(xc
1(t), yc

1(t), zc
1(t)) = (x1(t) − x3(t), y1(t) − y3(t), z1(t) − z3(t))

(xc
2(t), yc

2(t), zc
2(t)) = (x2(t) − x3(t), y2(t) − y3(t), z2(t) − z3(t))

where x, y, z are readings of the 3-D positions of the controllers. Subscripts are the indices
of the controllers and the superscript c means the centred signals.

The calibration data give us the information to estimate the shoulder positions. When
patients put their arms down to the lowest positions, we can have the x and z coordinates
for the shoulders. The y coordinate can be obtained by the arm length, which is given in
the clinical information of the patients. This posture is chosen because it is the easiest
posture, and thus the most reliable posture for us to calculate the shoulder position. By
some simple calculations, the shoulder positions can be obtained from this information.
The hand positions can therefore be transferred to the sphere, with radius one arm length
for further analysis.

These two transformations only shift the signals. Figure 6.4a and Figure 6.4b show the
coordinate system before and after two transformations respectively. The arrows are the
positive direction of each axis, the blue boxes are the controllers, the purple box is the
base unit.
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(a) Before transformation (b) After transformation

Figure 6.4: Three dashed lines and three gray arrows represent the coordinating system before any
transformation. The purple box represents the base unit and the three blue boxes are the positions
of the controllers. There are three smaller coordinating systems on two shoulders and the waist.

Standardizing

To make the position data more comparable, the values of the signals are standardized by
dividing the arm length of the corresponding patient. The unit of the values are standard-
ized to the number of arm lengths, and all the position data should be in the range from
-1 to 1.

Rotating

As shown in Figure 6.3a and Figure 6.3b, the simple shifting in the 3-D space is not
enough to make movements comparable across different samples. Rotation is also re-
quired. As an illustrative example, Figure 6.5 shows how to rotate the red coordinate to
the green coordinate. The rotation happens on the x-z plane, so we look at the two dimen-
sional plot here. For example, if the coordinate is rotated 30 degrees anti-clockwise, as
shown in red, it should be rotated back to the green coordinate. In other words, all of the
position data need to be rotated 30 degrees clockwise. We define this angle by using the
furthest position that the patient can reach on their left and right sides. These positions
can be found in the calibration movement and in some assessment movements.
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Figure 6.5: Rotation from the red triangle to the green triangle

6.2.2 Orientation data

The signals also include the orientation information of the controllers. Many different
methods are used to describe the orientation data and the commonly used ones are Euler
angles, rotation matrices, quaternions. The Euler angles are the easiest way to understand
the rotation. The idea is that any orientation can be obtained by three rotations around
each of the x, y, and z axes (Diebel (2006)). However, each orientation can be represented
by more than one set of such rotations. On the other hand, it is less obvious how the rota-
tion information is represented by a rotation matrix and a quaternion. Rotation matrices
and quaternions are both used in the motion data.

Rotation matrix

The rotation matrices representing the state of the rotation in this motion data are the
simplified version with dimension 3 by 3. The idea is to rotate a cube with each edge of
length 1 unit. As shown in Figure 6.6a, the cube is in the position such that vertices A, B

and C have coordinates (1, 0, 0), (0, 1, 0), (0, 0 ,1),respectively. The vertex at the origin
does not move in any case. This is the default state of the orientation. A rotation matrix
is built with the coordinates of these three particular vertices, where each column is the
coordinate of A, B and C in order corresponding to x, y, z axes, respectively. Thus the
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rotation matrix for the default orientation is
1 0 0
0 1 0
0 0 1


If any rotation happens to this default cube, the coordinates of the vertices A, B and C will
change, and give a new rotation matrix to represent the state of the new orientation. For
example, Figure 6.6b shows a rotation of 180 degrees around the x axis from the default
state of orientation. In this case, the rotation matrix is

1 0 0
0 0 −1
0 1 0



(a) Default state of orientation
(b) Rotate around x axis for 180 degrees from
default state of orientation

Figure 6.6: Illustrative example of a rotation matrix

Quaternion

It is clear that the rotation matrix requires nine numbers to store the information of ro-
tation, which adds a large burden to the storage since the recording frequency is 60 Hz.
There is another frequently used method to represent the orientation data, called quater-
nion.

A quaternion is a four dimensional vector, contains a vector and an angle related to the

152



Chapter 6. Background and Preprocessing of the Motion Data

rotation. Originally, a quaternion is a three dimensional complex number, containing one
real number and three complex number on three different directions. It was first described
by Sir William Rowan Hamilton in 1843. A quaternion can be written as:

q = (qx, qy, qz, qw) = (v, qw)

where v is a vector containing qx, qy, qz. The vector v is the axis of the rotation, and
qw = cos( r

2 ), where r is the angle of rotation. In our case q is a unit vector. Since
the quaternions represent the rotation of the controllers in this case, it is meaningless to
consider the complex part of the quaternion. Figure 6.7 shows a right circular cone in
three dimensional space, with vertex at the origin, vectors (0, 0, 1) and (−1, 0, 0) on the
surface of the cone. Vectors (0, 0, 1) and (−1, 0, 0) are the direction of positive z and
negative x axis. For illustration, we use an example quaternion to represent the rotation
from positive z axis to negative x axis through the surface of the right circular cone. The
rotation should be around the unit vector (−

√
2

2 , 0,
√

2
2 ), and the angle is π. Therefore, the

quaternion from (0, 0, 1) to (−1, 0, 0) is (qx = −
√

2
2 , qy = 0, qz =

√
2

2 , qw = 0). It seems that
the quaternion is the representation of the rotation rather than the orientation, but if we fix
the starting vector, the orientation state can be represented by the rotation.

Figure 6.7: Illustrative example of quaternion.

A quaternion has its own rules of elementary arithmetic, but in our case, only quaternion
multiplication has physical meanings. Suppose the unit quaternion is defined as q =

(qx, qy, qz, qw) = (v, qw), with q2
x + q2

y + q2
z + q2

w = 1. Then multiplication between two unit
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quaternion q1 and q2 can be written as:

q1 × q2 = (q1,x, q1,y, q1,z, q1,w)(q2,x, q2,y, q2,z, q2,w)

= (v1, q1,w)(v2, q2,w)

= (q1,wv2 + q2,wv1 + v1v2, q1,wq2,w − v1v2),

where v1v2 is a number from the vector multiplication.

Compared to Euler angles and rotation matrix, quaternions are much simpler to use. It is
often preferred for practical reason.

Usage of the orientation data

A rotation matrix has nine dimensions, since it represents the rotation by using the three
dimensional position of three vertices. A quaternion has four dimensions, since it rep-
resents the rotation by using the three dimensional position of a reference vector and an
angle. We can treat these signals equivalent to the signals from the 3D position data. How-
ever, directly applying the signals introduces a large number of variables to the analysis.
In addition to the extra space for data storage, it is also difficult to interpret the mean-
ings of each dimension of the signals. Most of the assessment orientation movements
requires simple rotations on a two dimensional plane around the third axis. For example,
the movement similar to rotating a door handle requires a hand to rotation around z axis
and move on the x-y plane. We use the following two transformations to highlight the
orientation information.

• Direction angle. The idea is from the direction cosine (Kuipers (2002)). Direction
cosines are the cosines of the angles between the vector and the three coordinated
axes, or the projection to each axis, if the vector is a unit vector. The direction
angle is calculated by using one of the three direction cosines. We often choose the
one from the plane on which rotation happens. It is easy to interpret the outcome.
However, the cosine value is same for an angle with or without sign, therefore, the
angles are limited in the range [−π/2, π/2].

• Projection angle. This is an extension of the direction angle. Rather than using
one direction cosine, the projection angle combines two of them from the plane on
which rotation happens. In other words, the rotation is projected to the plane on
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which rotation happens and calculate the angle in the range [−π, π]. It avoids the
limit of range in direction angle, since two cosines can define a angle properly.

6.3 Functional Variables

As we can see in Figure 6.1, the shapes of the curves are very smooth. Because of the
high sampling frequency, the data can be seen as densely sampled functions with small
amount of observation error. However, there are a few defects in the data set. First of
all, all the samples are recorded within a fairly long period, much longer than the neces-
sary time to complete one replication of the movement. Thus the samples would include
preparation movements and failed replications. Since we are only interest in one repli-
cation of the target movement, segmentation of the curves becomes necessary. Secondly,
the time periods of completing one replication for one movement from different patients
and different visits would be different, and thus different samples are not comparable. We
need to transfer the curves to functional objects to do the analysis. Finally, we align the
important features of the segmented and smoothed functional objects by registration.

Segmentation

The important features in the movements can often be represented by quadratic shapes
on some of the signals. However, automatic segmentation is extremely unreliable here
due to the complexity of the shapes from different samples. We therefore use automatic
segmentation to remove the preparation part and segment the desired part of the curves
manually. Take the data in Figure 6.1 as an example, according to the movement and the
scale of the three axes, the majority of the movement is on y-z plane. We can use either
the y or z axis as the reference to segment the curve. We show the segmented curves in
Figure 6.1 using y from non-paretic hand as the reference for the whole data set.

Smoothing

We use smoothing to transfer the data into functional objects. As we mentioned above,
different samples have different length. Because the segments we use are from very short
time periods, and the sampling frequency is very high, we therefore assume that all the
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Figure 6.1: Segmented standardized data of a few samples from “forward roll” (LA05)

segmented curves are recorded using the same time period. More specifically, we assume
t ∈ [0, 1] for convenience.

The noise level of the signals are relatively low. Thus the level of smoothness we introduce
to the functional objects should be low. We use penalized B-spline basis to calculate the
basis coefficients. If the number of data points of a curve is k, then the number of basis
function is max(k/3, 9), where max(a, b) means the maximum value of a and b. The order
of the basis function is set to be 6 and the smoothing parameter corresponding to the
roughness penalty is 10−7. We show the smoothed segmented curve as 100 discrete points
in Figure 6.2.

Registration

Because the shape of the functional variables are very simple, advanced registration meth-
ods seem to be over complicated here. We use the basic landmark registration (Ramsay
and Silverman (2005)) to align the important features. We decide the important feature to
the peaks or troughs on the quadratic shape. The registration is only done on the reference
axis. The same change is then applied to all the other axes.
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Figure 6.2: Smoothed segmented standardized data of a few samples from “forward roll” (LA05)

6.4 Scalar Variables

From the last section, we can see that it takes many steps including manual segmentation
to prepare the functional variables. We therefore have summary statistics of the signals
to represent part of the information in the data set. We still use automatic segmentation
to remove as much useless information as possible. Unlike the functional variables, the
summary statistics can be generated automatically.

6.4.1 Kinematic variables

According to the therapists, there are a few features that provide reliable and essential
information related to the upper limbs functions: speed, synchrony and accuracy. The
summary statistics of the curves or kinematic variables chosen for each of the movement
are as follows:

1. Overall speed: let pt = (xt, yt, zt), t = 0, . . . , t, . . . ,T be the vector of normalized
3D positions at time t; then T is the total time taken to perform the movement and
p0 = (x0, y0, z0) the starting position vector. The displacement distance at time
t is given by the Euclidean distance between the current position and the starting
position:

dt = ||pt − p0||2 =
√

(xtx0)2 + (yty0)2 + (ztz0)2. (6.1)
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where ||.||2 means the L2 norm or Euclidean distance. The vector formed with all
these displacement distances follows as d = (d0, . . . , dT ). Then, the cumulative

distance travelled by the upper limb can be calculated as D =
∑t=T

t=1 ||pt− pt−1||2. The
speed is more likely to be composed of summaries from the cumulative distance,
which is v = D/T . Because this method uses the ratio between cumulative distance
and the overall time as speed, multiple replicates appearing in the curves would
have little effect to the outcome.

2. Synchrony between two hands: due to the different requirements in the movements,
two summary statistics were used to account for synchrony:

• For mirrored and in−phase movements that requires activity from both hands
at same time without (mirrored) or with (in-phase) a phase lag, the maximum
or minimum cross-correlation between lags [5, 5] is used. The reason for
using cross-correlation rather than basic correlation is because of the high
sampling frequency of the signal. This statistic is robust with respect to the
number of replicates in the curves. For the other two types of movements,
cross-correlation is too sensitive. Therefore, it is more suitable to apply this
statistics in mirrored and in-phase movements.

• For sequential and coordinated movements, because these types of move-
ments requires one hand stay still when the other hand moves, the amplitudes
from two hands are more important. The standard deviation ratio is designed
for this problem. It is defined as:

SDratio = SD(dP)/SD(dNP) (6.2)

where SD(dP) means the standard deviation of the displacement distance from
paratic hand. It is expected to give a small number from this statistics for these
two types of movements. This statistics also works for mirrored and in-phase
movements, as two hands are expected to have similar standard deviation of
the displacement distance. It is expected to be close to 1 for mirrored and
in-phase movements.

3. Accuracy - the Range-of-Movement (ROM) is used as a proxy. This is defined as

ROM = range(d) = max(d) −min(d) (6.3)
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where max and min are the maximum and minimum respectively. Similarly, this
simple statistic is also irrelevant to the multiple replicates in the curves.

6.5 Conclusion

We have shown the process of preparing functional and scalar variables from signal data in
the chapter. First of all, we scale and transfer the signal data in 3D space without changing
the shape of the signals. For functional variables, we use segmentation, smoothing and
registration to transfer the signal data into functional objects. For scalar variables, we use
kinematic variables obtained by summarizing the signals with mild segmentation only.
We will use these variables in the regression model in Chapter 7.
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Chapter 7

Modelling of the Motion Data

From Chapter 6, we have all the scalar variables and functional variables prepared. We
now focus on the modelling of motion data using those variables. Among a large number
of models we studied, we present a few typical models here, including models with only
scalar variables and models with mixed scalar and functional variables. The latter ones
would rely on functional LARS from the previous part of this thesis.

From the last chapter, we can see that the variation in the acute patients is much more
significant and complex than the ones in chronic patients. Therefore, we focus on the
modelling of acute patients here. Even though the models are built with respect to the
acute patients, they can still be used to model the variation in the chronic samples.

We organize this chapter as follows. First we introduce the models we are going to com-
pare in Section 7.1. Then we show the details about the model learning and model predic-
tion together with a comparison of the outcome of the models for both acute and chronic
patients in Section 7.2. The numerical comparison is in the Section 7.3.

7.1 Models for Recovery after Stroke

In the last chapter, we obtain a large number of candidate scalar and functional variables.
Now our aim is to build a model that will explain the variation of the dependence level of
stroke patients measured by CAHAI-9, and use this model to do the same prediction for
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new patients. This model can be written as:

yi,k = f (xi,k;1(t), . . . , xi,k; j(t), . . . , zi,k;1, . . . , zi,k;m, . . .) + εi,k; (7.1)

i = 1, . . . ,Npatient; k = 1, . . . , ni; j = 1, . . . , J; m = 1, . . . ,M

where the response variable y represents CAHAI-9; xi,k; j(t) is the j-th functional variable
for patient i and visit k; zm is the m-th scalar variable; ni is the number of visits for the i-th
patient.

7.1.1 Linear regression with scalar variable

If we assume that the samples are independent from each other, we can use the following
linear regression model with scalar variables only:

yi,k = β0 +

M∑
m=1

zi,k;mγm + εi,k, (7.2)

where β0 is the intercept. We refer to this model as lm.

We select variables by lasso carried out by least angle regression. As we stated in the
previous part of the thesis, LARS is an efficient, accurate and valid algorithm for variable
selection and parameter estimation in linear regression problem. We are aware that there
does not exist a unique set of variables that can consistently give us the best prediction for
any subset of the samples and any kind of models. The variables selected in this linear
regression model are also used later in the models with scalar variables.

7.1.2 Auto-regressive time series model with scalar variables

It is reasonable to assume that the samples from different patients are independent, but the
samples recorded at different visits from the same patient should be dependent. We ob-
serve that the dependence level changes with time for acute patients. Thus we consider an
auto-regressive time series model with lag 1 or AR(1) in addition to the linear regression
model (7.2):

yi,k = β0 +

M∑
m=1

zi,k;mγm + αyi,k−1 + εi,k, (7.3)
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where α is the coefficient for the AR model.

Recall that for each patient, the data are collected weekly in the first month and fortnightly
in the following two months. Thus the time between observations is not always the same.
We can use an example to illustrate the relationship between time since stroke, visit and
weeks from Table 7.1. The unit of the numbers in the table is weeks. In addition to the
planned time gaps, some patients might not play as planned. The missing visits give more
variability to the time between observations for these patients.

t 5.4 6.4 7.4 8.4 9.4 10.4 11.4 12.4 13.4 14.4 15.4 16.4
k 1(baseline) 2 3 4 - 5 - 6 - 7 - 8
l 1(baseline) 2 3 4 5 6 7 8 9 10 11 12

Table 7.1: An illustrative example of the time for one acute patient. t is the time since stroke; k is
the index of visit; l is the index of the actual week.

Most of the studies using time series model focus on evenly spaced time series, due to
various reasons such as limited computation technologies (Eckner (2012)). The most
commonly used way to deal with this is to transfer the unevenly spaced time series to
evenly spaced time series by some types of interpolation (Adorf (1995)). Such inter-
polation would bring bias to the analysis when the observations of time series change
rapidly. However, our response variable is the dependence levels. It would be impossible
for the stroke patients to have large amount of change in dependence levels in a short pe-
riod. Thus the interpolation would not bring too much noise to the analysis. In addition,
instead of linear interpolation, we interpolate the missing observation using Gaussian pro-
cess. This is because the kinematic variables should changes smoothly over time. Also
GP is known to be good at interpolation estimation. More specifically, for each m, we
have:

zm =gm + εm (7.4)

gm ∼GPR(0, κ(l, l′; θm)); εm ∼ N(0, σ2
m).

We use the training data to learn this Gaussian process and interpolate the missing obser-
vation in both training data and testing data by predictions.

With all the missing observations interpolated, the model becomes:

yi,l = β0 +

M∑
m=1

zi,l;mγm + αyi,l−1 + εi,l, (7.5)
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where the index l represents the number of weeks since stroke for acute patients and
number of weeks since the baseline for chronic patients. The value of l should lie in
1, . . . , 12, but it could be larger for a small number of patients. We refer this model as
tsN.

From Table 7.1, we can see that there may be no observations for some of l. In this case,
we can recursively substitute yi,l by yi,l−1 on the right hand side of Eqn (7.5) until we have
the value of yi,l−1:

yi,l = β0 +

M∑
m=1

zi,l;mγm + αyi,l−1 + εi,l

= β0 +

M∑
m=1

zi,l;mγm + α

β0 +

M∑
m=1

zi,l−1;mγm + αyi,l−2 + εi,l−1

 + εi,l

= . . .

=

ti,l−ti,k−1−1∑
δ=0

αδ
β0 +

M∑
m=1

zi,l−δ;mγm

 + αti,l−ti,k−1yi,ti,k−1 +

ti,l−ti,k−1−1∑
δ=0

αδεi,l−δ. (7.6)

Note that the subscripts on the right hand side in Eqn (7.6) are changed. This is under the
assumption, with respect to l, that the previous available observation have index k − 1. It
means that we can predict the response at any time, even when we have no observations
at that time, using the previous available observation and the interpolated values.

7.1.3 Mixed effects model with scalar fixed effect and Gaussian pro-
cess random effects

The lag 1 auto-regressive model includes a linear regression part and a linear auto-correlation
term. The dependency of the response observations from the same patients is captured by
the linear auto-regressive parameter. It is shared across all the patients. We can generalize
this model by a mixed effects model using a Gaussian process, where a Gaussian process
can be used to capture the dependency between the observations from the same patient
non -parametrically. More specifically, we assume the dependence level of any of the pa-
tients follows a Gaussian process, since the dependence level must change smoothly over
time. The Gaussian process for all the patients shares the same set of hyper-parameters.
This model is modified from the Gaussian process functional regression model proposed
by Shi and Wang (2008).
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We use some kinematic variables, time since stroke at each observations and patient’s
baseline dependence level in the Gaussian process random effect model. From many
possible choices, we will report the results from three typical ones listed in Table 7.2.

ME1
model y = β0 + y(0)γ(0) + zγ + g(φ) + ε

parameters φfix = (1, y(0), z) φ = t

ME2
model y = β0 + y(0)γ(0) + g(φ) + ε

parameters φfix = (1, y(0)) φ = (t, z)

ME3
model y = β0 + y(0)γ(0) + g(φ) + ε

parameters φfix = (1, y(0)) φ = (t, z, z(1))

Table 7.2: Three different mixed effects models. g(·) is the random effect part using Gaussian
process.

In the table, β0 is the intercept; y(0) is the baseline measure of each patients; γ(0) is the lin-
ear coefficient corresponding to the baseline measure; ε ∼ N(0, σ2). z(1) is the movement
measure from previous week. All three models in Table 7.2 contain a fixed effect and a
random effect g(φ). We assume that

g ∼ GP(0, κ(φ,φ′; θ)),

where κ(·, ·) is the kernel function providing the covariance matrix for the Gaussian pro-
cess and θ is the hyper-parameter of the kernel function. We use the linear kernel and
the squared exponential kernel to build the covariance matrix suggested by Shi and Choi
(2011):

Covl,l′ =

M∑
m=1

αmφ
(m)
l φ(m)

l′ + ν exp
{
−

1
2

M∑
m=1

ωm(φ(m)
l − φ

(m)
l′ )2

}
.

Model ME1 only uses time t in the random effect. It is a straight forward extension from
the linear regression model Eqn (7.2). Model ME2 moves the kinematic variables to
the random effect part. Thus the fixed effect model has only the baseline measurement.
Model ME3 adds the kinematic variables from the previous week to the random effect
model. Similar to Eqn (7.4) in the time series model, the data from the previous week
may not exist in the observation, and are augmented by interpolation using the Gaussian
process approach discussed in Section 7.1.2.
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7.1.4 Mixed effects model using both scalar and functional variables

The models we have discussed so far use scalar variables only. The motion data also con-
tain many functional variables. In this subsection, we consider mixed effect models using
both scalar and functional variables. We do not use the time series model for functional
variables, because it requires us to interpolate missing functional samples, which we are
not able to do it at the moment.

As in the case of the previous mixed effects model, we have many choices about the
variables in the fixed effect and random effect respectively. We still use scalar variables
in the random effect part, but add functional variables to be fixed effect part.

fFE
model y = β0 + y(0)γ(0) + tγ(t) + zγ +

∑J
j=1

∫
x j(t)β j(t)dt + ε

parameters φfix = (1, y(0), t, z, x j(t)) -

fME1
model y = β0 + y(0)γ(0) + zγ +

∑J
j=1

∫
x j(t)β j(t)dt + g(φ) + ε

parameters φfix = (1, y(0), z, x j(t)) φ = (t)

fME2
model y = β0 + y(0)γ(0) +

∑J
j=1

∫
x j(t)β j(t)dt + g(φ) + ε

parameters φfix = (1, y(0)) φ = (t, z)

fME3
model y = β0 + y(0)γ(0) +

∑J
j=1

∫
x j(t)β j(t)dt + g(φ) + ε

parameters φfix = (1, y(0)) φ = (t, z, z(1))

Table 7.3: One fixed effect functional regression model and three mixed effects models. g(·) is the
random effect part using a Gaussian process.

Four models are listed in Table 7.3. The first model fFE is a fixed effect model while
others are mixed effects model. Similar to the models with scalar variables only, the
variables are selected from the fixed effect model.

The functional variables and the kinematic variables used in the models are selected in the
linear fixed effect model by functional LARS. We have a large number of functional vari-
ables and scalar variables in the data, but it is impossible to put all the functional variables
in the selection at the moment. This is because that we cannot interpolate missing values
for any functional variable. We can only use complete samples to do the analysis. Thus if
we put all of the variables together, we may end up with only a few samples with complete
observations. The variables used in the scalar fixed effect model will not necessarily get
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selected again. Detailed selection outcomes will be shown in Section 7.3.

The model fME1 uses time t in the random effect, and all the others in the fixed effect. The
model fME2 uses time t and the scalar movement variable z in the random effect and the
others in the fixed effect. The model fME3 added the previous scalar movement variable
to the random effect in Model fME2.

7.2 Model Learning and Predicting

We showed the models and the corresponding reasons for using them in the last section.
We will discuss the details about training and predicting procedures for each of the models
with respect to both acute patients and chronic patients in this section.

Due to the missing data problem with functional variables, we reduce the number of
candidate variables and remove a few samples. For acute patients, there are 173 samples
from 34 patients with 72 functional variables from 10 movements and 68 kinematic scalar
variables from 17 movements; for chronic patients, there are 196 samples from 36 patients
with 60 functional variables from 8 movements and 68 kinematic scalar variables from 19
movements. In addition to the functional variables and the kinematic variables, we also
include the time since stroke and the baseline measurement in the candidate variables.

7.2.1 Linear regression with scalar variables

The scalar variables used in the linear regression are selected by lasso calculated by
LARS. The stopping points are selected based on Mallow’s Cp. For acute patients, we
select seven kinematic variables from six movements and for the chronic patients we se-
lect eight kinematic variables from eight movements. Both of the models include baseline
dependence level and the acute model also selects time since stroke.

After we have selected the variables, we learn the models using only the training data and
get the estimated parameters by ordinary least square. These parameters are then used to
provide the predictions with respect to the rest of the data.
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7.2.2 Auto-regressive time series model

The AR(1) model is a non-evenly spaced time series model. We only fit non-evenly
spaced model for acute patients, as the time since stroke for chronic patients may range
from a few months to a few years. Thus assuming they have the same auto-regressive
structure is not sensible.

The parameters in non-evenly spaced time series model are learned by using a maximum
likelihood estimator. Recall the model in Eqn (7.6), we have:

yi,l =

ti,l−ti,k−1−1∑
δ=0

αδ
β0 +

M∑
m=1

zi,l−δ;mγm

 + αti,l−ti,k−1yi,ti,k−1 +

ti,l−ti,k−1−1∑
δ=0

αδεi,l−δ. (7.7)

In order to learn the model, we replace all the l’s by k’s in the subscript, as values related
to l are unknown.

To simplify the formula, we define ∆i,k = ti,k − ti,k−1, Ei,k = α∆i,k , ui,k = yi,k−1, Ai,k =∑∆i,k−1
δ=0 αδ

(
1 +

∑M
m=1 zi,k−δ;m

)
. Thus Eqn (7.6) can be rewritten as:

yi,k = Ai,kγ + Ei,kui,k + ε∗i,k

where ε∗is the error. We assume that ε ∼ N(0, σ2) and εi,k is independent with εi′,k′ . Thus

ε∗i,k =

∆−1∑
δ=0

αδεk−δ ∼ N
(
0,
α2∆i,k − 1
α2 − 1

σ2
)
,

and

yi,k ∼ N
(
Ai,kγ + Ei,kui,k,

α2∆i,k − 1
α2 − 1

σ2
)
.

We also define Di,k = α2∆i,k−1
α2−1 .

The log-likelihood is

` =
∑
i,k

log

 1√
2πDi,kσ2

 − (yi,k − Ai,kγ)2

2Di,kσ2

 .
It can be rewritten into matrix form:

` = −
n
2

log(2π) −
n
2

logσ2 −
1
2

log |D| −
(y − Aγ − Eu)T D−1(y − Aγ − Eu)

2σ2 , (7.8)
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where n is the sample size in total.

Using a Lagrange multiplier, we have

∂`

∂γ
= 0;

∂`

∂α
= 0;

∂`

∂σ
= 0,

but we are only interested in γ and α. To simplify the problem, we replace σ2 by exp v,
and then calculate ∂`/∂v instead of ∂`/∂σ.

For γ we have:
∂`

∂γ
∝ AT D−1(y − Aγ − Eu).

Thus

γ̂ = (ATD−1A)−1(AT D−1(y − Eu)). (7.9)

We transfer σ to a function of v to simplify the calculation. Since σ is not the parameter
of interest, this change does not affect the outcome. So we have:

∂`

∂γ
= −

n
2

+ (y − Aγ − Eu)T D−1(y − Aγ − Eu) exp(−v).

Thus

v̂ = log
2(y − Aγ − Eu)T D−1(y − Aγ − Eu)

n
. (7.10)

The partial differential for α is difficult to calculate and write. Fortunately we can write v̂

and γ̂ by α only, so we can use profile likelihood to find the estimations of the parameters.

The learning of this model can include the following two steps:

1. interpolate the covariates in the missing weeks using the observed values by a Gaus-
sian process;

2. use profile likelihood to calculate the estimates of the parameters.

The predicting is also done with two steps:

1. interpolate the covariates in the missing weeks using the observed values by a Gaus-
sian process learned from the training data;
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2. calculate predictions using the interpolated data and the estimated parameters.

Note that for the i-th patient, ŷi,k depends on ŷi,k−1. Thus the prediction procedure must be
done iteratively.

7.2.3 Mixed effects model with scalar variables

We have three mixed effects models with scalar variables. Recall that ME1 has baseline
dependence level and the scalar movements variables in the fixed effect, with only time in
the random effect. We move the kinematic variables into the random effect for ME2. In
addition to ME2, we also have the kinematic variables from previous week in the random
effect.

Mixed effects model ME1

Recall that the usage of a Gaussian process as random effect in the model is based on
the assumption that patients dependence level changes smoothly with time. For the i-th
patient, the model can be written as:

yi = ziγ + g(ti) + ε i (7.11)

g(ti) ∼ GP(0, κ(ti, t′i); θ) εi,k ∼ N(0, σ2)

The covariance of the Gaussian process is built by the kernel κ. We use the linear kernel
and the squared exponential kernel to build the covariance matrix as before. The log
likelihood for the i-th patient is:

`i = −
ni

2
log(2π) −

1
2
|Σi| −

1
2

(yi − ziγ)TΣ−1
i (yi − ziγ).

To simplify the problem, we can put the error, ε, in the Gaussian process, and treat the
variance σ as one additional hyper-parameter. The posterior distribution is the log likeli-
hood with respect to all the patients times the hyper-prior distributions. If we assume all
the hyper-parameters follow uniform distribution, the posterior distribution is:

p(θ,γ|D) ∝
∑

i

`i. (7.12)

We use maximum a posterior (MAP) to estimate the hyper-parameters.
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Since the Gaussian process is the random effect with mean zero, we can learn this model
iteratively. More specifically, we use ordinary least squares to estimate the coefficients
in the fixed effect, then use the residual to estimate the hyper-parameters using MAP. We
repeat these two steps until convergence. However, since the estimations from the later
iterations barely changes the result, we only use the estimates from the first iteration as
the outcome.

Thus the learning of this model has two steps:

1. learn the fixed effect with ordinary least squares and obtain γ̂,

2. use the residual from the fixed effect to learn the Gaussian process, and obtain θ̂.

Similarly the prediction also has two steps:

1. use γ̂ to give prediction for ŷ f ix,

2. use θ̂ to predict the ŷrandom, and sum up the two parts to have ŷ.

Mixed effects models ME2 and ME3

The other two mixed effects models ME2 and ME3 only differ slightly to the model ME1

from learning and predicting points of view. Model ME2 moves all the kinematic variables
to the random effect part while model ME3 also has the samples from previous week of
the kinematic variables in the random effect part in addition to the model ME2. Thus
the training and predicting for model ME3 also requires interpolation of the kinematic
variables from the missing weeks.

7.2.4 Mixed effects model with mixed scalar and functional variables

We consider four models with mixed scalar and functional variables. The variables in the
model are selected via functional LARS from model fFE. All the functional objects are
calculated using the RDP method.
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Fixed effect model fFE

Similar to the scalar case, we select variables in the following functional linear fixed effect
model:

y = β0 + y(0)γ(0) + tγ(t) + zγ +

J∑
j=1

∫
x j(t)β j(t)dt + ε.

Functional LARS is used here to select both scalar variables and functional variables. The
stopping points for both acute patients and chronic patients are based on the suggestions
from the two stopping rules we proposed in the Chapter 4, i.e., AD and the difference in
α. Table 7.1 shows the values from the two stopping rule corresponding to the iteration
number.

Acute Iter 2 3 4 5 6 7 8 9 10 11

Unmodified
AD 8.38 13.77 12.87 6.61 7.17 13.30 2.78 11.56 0.08 0.03

α×1000 141.36 213.35 179.92 88.31 94.76 174.22 36.37 148.83 0.87 0.36

Modified
AD 8.38 13.77 12.87 6.15 10.05 5.38 9.56 13.25 0.29 0.22

α×1000 141.36 213.35 179.92 88.31 135.65 71.06 133.26 176.10 3.48 2.89
Chronic Iter 2 3 4 5 6 7 8 9 10 11

Unmodified
AD 55.44 3.39 3.60 1.91 4.36 2.35 3.06 0.00 0.04 0.00

α×1000 830.40 48.27 47.60 24.90 55.23 29.73 38.50 0.03 0.43 0.02

Modified
AD 55.44 3.39 3.60 1.91 4.36 2.29 3.48 0.02 4.53 0.25

α×1000 830.40 48.27 47.60 24.90 55.23 29.73 44.03 0.21 57.31 3.23

Table 7.1: The changes of the stopping criteria with iterations for both unmodified and modified
functional LARS in both acute and chronic models.

For both types of patients, the first few variables selected by functional LARS are much
more informative than others. This is reflected by the distance α corresponding to these
variables is vary large compared to the later ones. In this case, the expected peak from AD

is no longer valid. However, consider both stopping rules, it is reasonable for both acute
and chronic models to stop the algorithm at iteration 9 and 8 respectively using either the
unmodified and modified algorithms.

For acute patients, modified functional LARS removes three variables from the regression
equation, including two kinematic variables and one functional variable. For chronic pa-
tients, modified functional LARS removes three variables from the regression equation,
including one kinematic variable and two functional variables. In the following anal-
ysis, results from the variables selected from both unmodified and modified functional
LARS will be used for comparison.
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Functional LARS selects the variables and gives the estimates of the parameters simulta-
neously, so we can use the estimated variables to perform the predictions.

Mixed effects models fME1, fME2 and fME3

Recall that the model fME1 for the i-th patient is:

yi = β0 + y(0)
i γ(0) + ziγ +

J∑
j=1

∫
xi, j(t)β j(t)dt + g(φi) + ε (7.13)

g(ti) ∼ GP(0, κ(ti, t′i); θ) εi,k ∼ N(0, σ2)

Similar to the previous mixed effects model, we use a two step procedure to learn this
model:

1. Use functional LARS to estimate the coefficients for the fixed effect part and obtain
the residual rfix;

2. use MAP to find the estimated hyper-parameters in the Gaussian process for random
effect with respect to rfix and obtain a new residual rran;

3. use functional LARS to update the coefficients for the fixed effect part with respect
to rran and update rfix;

repeat Step 2 & 3 until convergence.

In the step of learning for fixed effect, the coefficients related to the fixed effect part are
recalculated using only the training data. Because the variables are all pre-selected, the
stopping point will not be a problem any more. Thus, we estimate the coefficients by
functional LARS and stop after all the variables are in the regression equation. The
model fME2 and model fME3 are learned in a similar way.

The prediction procedure using these models is also similar to the mixed effects model
with only scalar variables. More specifically, we predict the fixed effect and random effect
separately, and sum them up to give the final prediction.

Model prediction for a new patient using Gaussian process as random effect

The dependence level of a new patient should follow a Gaussian process with the same
hyper-parameters from the training patients. For a Gaussian process, we need four ele-
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ments to carry out the prediction: the hyper-parameters, the input variables for prediction,
observed samples of the response variable and observed samples of the input variables.
The prediction can be thought as the weighted average of the observed samples of the
response variables. The weight is decide by the covariance kernel.

In the prediction procedure using random effect, we may have two types of predictions
after we finish training the model depending on the data structure. Type I is that we
have observed a few samples for the new patient including response variables and the
input variables. Type II is that we have no samples observed. For both types we have
hyper-parameters and input variables for prediction. We briefly describe one way to do
prediction for Type II data from Shi and Choi (2011). We assume that we observe from
each of the training patients the same set of input variables for prediction, and thus we
can have a set of outcomes from each of the training patients. The final prediction is
the average from all these outcomes. However, the accuracy from Type II prediction is
questionable.

In our problem, we have no observed samples of response variable for a completely new
patient. We have the following two choices. Recall that the first week only gives baseline
measurement; we can use the second week’s observation from the new patient as the
second baseline and use Type I prediction for the subsequent samples. Or we can use
Type II prediction to predict the first week’s observation and use Type I prediction for the
following samples. We use the first method. The main reason is the poor performance
of the second one. In addition, practically speaking, two baseline measurements are not
difficult to obtain. Also, we use one step ahead prediction from Shi et al. (2012) to predict
the response variable from later weeks.

7.3 Numerical Comparison

We split 34 acute patients into five folds with seven patients per fold for the first five folds,
and six patients in the last fold. Similarly we split 36 chronic patients into five folds and
assign eight patients into the last fold. Five-fold cross validation is then applied. More
specifically, we do the predictions for one of the fold by using models learned with the
other four folds. The splitting for both types of patients are randomly selected. In order
to remove the odds from the random splitting, we repeat this process 500 times for both
acute and chronic patients. We compare the models by using the prediction root-mean-
squared-error, as it is the aim of the study for this set of motion data.
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Scalar lm tsN ME1 ME2 ME3

Acute
RMSE 6.985 7.226 6.614 7.565 7.610

SD 0.229 0.287 0.179 0.141 0.147

Chronic
RMSE 3.904 - 4.047 4.270 4.319

SD 0.106 - 0.105 0.080 0.091
Unmodified fFE fME1 fME2 fME3

Acute
RMSE 6.212 6.212 6.507 6.587

SD 0.224 0.220 0.237 0.249

Chronic
RMSE 3.649 3.749 4.229 4.207

SD 0.094 0.094 0.120 0.123
modified fFE fME1 fME2 fME3

Acute
RMSE 6.200 6.061 6.513 6.568

SD 0.186 0.176 0.198 0.215

Chronic
RMSE 3.698 3.854 4.197 4.148

SD 0.090 0.095 0.108 0.116

Table 7.1: Model comparison using prediction RMSE

The results are listed in the Table 7.1. Consider the range of the response is from 9 to 63,
the prediction RMSEs from all the models above indicate fairly accurate predictions.

For acute patients, the best results come from the functional mixed effects model with
only time t in the random effect fME1 using the variables from the modified functional
LARS. The predictions from this model have a fairly small standard deviation. The same
model using the variables from unmodified LARS has a slightly worse prediction RMSE.
It represents that the variables selected from modified functional LARS actually improve
the prediction performance for acute patients. If we use only the scalar variables, the best
model is the mixed effects model with only time t in the random effect ME1.

The variables selected in the model with the best performance for acute patients are
‘LA05.lx’, ‘LA09.ly’, ‘LA28.rqx’ and ‘sp.P.LA05’. The first three variables are func-
tional variables and the last one is the scalar variable. We omit the variables about the
personal information here. The name of the functional variable contains the following
information: the movement number and the name of the coefficient. The names of the
scalar variables contains the following information: the kinematic variable, the side of the
limb and the movement number.

‘LA05.lx’ is the data from x axis on paretic limb for forward circle movement we used in
the example. The movement is mainly on y-z plane. But the variation on the x axis shows
the capability to keep stable when moving. ‘LA09.ly’ is the data from y axis on paretic
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limb for a sawing movement. This movement is mainly on z axis, but also requires the
arms to move at the elbow positions. Patients, who cannot control their arms very well,
might not be able to bend their arms to around 90 degree to do this movement. So the
variation on y axis is also informative. ‘LA28.rqx’ is the data from the x axis of the
quaternion on non-paratic limb for a orientation movement. The movement requires the
patient to rotate their hands around z axis. ‘sp.P.LA05’ is the speed of the paretic limb for
movement forward circle.

For chronic patients, the best model is the functional linear regression model fFE us-
ing variables selected from unmodified functional LARS. The standard deviation of the
prediction RMSE’s is very small. The same model using variables from the modified
functional LARS is slightly worse than the best one with a 0.05 difference in the predic-
tion RMSE. Thus the variables removed by the modification in functional LARS is not
making much differences to the outcome.

The variables selected in the model with the best performance for chronic patients are:
‘LA07.rx’, ‘LA28.lqz’, ‘rom.P.LA21’ and ‘rom.P.LA35’. The first two variables are func-
tional and the last two are scalar.

‘LA07.rx’ is the data from x axis on non-paretic limb for the movement which requires
patients to move their hands from bottom to neck. Similar to ‘LA05’, the movement is on
the y-z plane, but more capable patients should be more likely to keep their limbs stable
on the y-z plane. ‘LA28.lqz’ is the data from the z axis of the quaternion on paratic limb
for movement ‘LA28’. ‘rom.P.LA21’ is the range-of-movement of the paretic limb for a
movement which requires patients to move their hands from bottom to about chest hight,
and put one hand on the other. This movement is difficult for the paretic limb since it
requires a fairly precise hight. Patients who have poor capability might not be able to
move to that precise position. ‘rom.P.LA35’ is the range-of-movement of the paretic limb
for a movement which requires patients to move their hands like they are chopping with a
knife. Patients who have poor capability might move their whole arms rather than hands
and give very large values of range-of-movements.

The best model without the functional variables is still the linear regression. The results
from time series model and the mixed effects models confirm that taking count of the
within patient correlation may not be beneficial to the prediction for chronic patients.
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7.4 Conclusion

We have discussed six models with scalar variables only and four models with mixed
scalar and functional variables for acute and chronic patients in this chapter. The changes
in the dependence level for acute patients have more variation than those from chronic pa-
tients. This is reflected by the prediction RMSE’s from all the models. More specifically,
the prediction RMSE’s are generally larger than those from the chronic patients.

The models with scalar variables only can do well in predicting for new patients. By in-
volving the functional variables, the models can always be improved. For acute patients,
the best model with scalar variables only is improved about 10% and 5% by including
functional variables selected by the modified and unmodified functional LARS, respec-
tively. For chronic patients, this improvement is about 10% for both sets of variables. It
confirmed the quality of variables selected by the functional LARS and the improvement
by using modifications in the selection. In addition, the performance of the functional
linear regression models trained by functional LARS is satisfactory for both acute and
chronic patients.
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Conclusion and Future Work

This thesis is made of two parts. The first part is about a new variable selection algorithm
for functional linear regression. The second part is concerned with the modelling of a
motion data set using different models, including the functional linear regression model
which uses the new algorithm to select variables and estimate coefficients.

In the first part, we proposed a new functional variable selection algorithm called func-
tional least angle regression. It aimed ad doing variable selection for functional linear
regression model with scalar response and mixed scalar and functional predictors. The
algorithm is an extension of the least angle regression for multivariate linear regression
model with scalar variables only.

The key to the new algorithm is the calculation of the correlation between a scalar variable
and a group of scalar and functional variables. We use the modified functional canoni-
cal correlation here. Functional variables are represented by discrete data points and
the functional coefficients are represented by different methods, including discrete data
points, basis function and Gaussian quadrature. The last method is new and the perfor-
mances are satisfactory. The smoothness of the functional coefficients is controlled by the
roughness penalty functions while the smoothing parameters are estimated via general-
ized cross validation for fast computation. With this correlation analysis, we can achieve
selection of the variables and estimation of the parameters simultaneously. Two modifi-
cations are used to overcome the difficulties in the extreme cases. As the conventional
stopping rules are not useful for the new algorithm due to the failure of the calculation of
the degrees of freedom, we proposed two new stopping rules for practical use and further
reduce the computational cost as we can stop before the whole solution path is drawn.
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There are a few limitations in this algorithm. First of all, the computational cost for creat-
ing the solution path would increase exponentially as the number of candidate predictors
increases. Secondly the algorithm is incapable of capturing the non-linear relationship
between the response and the predictors.

The first limitation is due to the nature of the algorithm. With the help from the new stop-
ping rules, practical use is not affected. On the other hand, more research can be done to
overcome the second limitation. The linearity of this model is captured by the canonical
correlation analysis, which only measures the linear relations. In future research, we will
replace this correlation analysis with others to achieve non-linearity. As long as the cor-
relation analysis can give an estimated correlation coefficient and an estimated coefficient
to project a group of scalar and functional variables into a one dimension variable, the
idea of least angle regression can still be used.

In the second part, we analyse a motion data set. The motion data here contain rich
information. However, many pretreatments must be carried out to allow modelling of the
data set. With different types of predictors, different models are tested and compared. The
best model in general is the random effects model with functional regression in one part
and a Gaussian process in the other.

The ‘best’ model can still be improved. One way is to do variable selection properly.
More specifically, the variable selection should be carried out with respect to functional
regression and a Gaussian process together as a whole. Due to the practical reason, vari-
able selection for the Gaussian process is omitted in our model. Also, the model only
considers non-linearity in the scalar variables. The prediction accuracy would be further
improved if we can also include functional variables in the non-linear model.
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