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Abstract

Abstract

Segmented Rotor Switched Reluctance Motors

This thesis introduces and researches the concept of a new form of switched
reluctance motor, in which the rotor is made from a series of discrete segments.
Single phase machines are initially examined and design rules established.
Predictions of air-gap force density are compared with toothed rotor equivalents and
it is shown that much greater force densities are theoretically possible with the
segmental design.

The thesis then proceeds to apply the concepts developed to two different three
phase configurations, which show particular advantages. Two demonstrator
machines are designed and built, and their method of construction described.
Measured static test results are initially presented for each machine and compared
with a conventional switched reluctance motor of the same dimensions, revealing

both the advantages and disadvantages of the two segmental rotor configurations.

Both demonstrator machines are then run as SRM drives, with the current to each
phase supplied from an asymmetric half bridge converter. The current and voltage
waveforms are monitored, along with measurements of mean torque output.
Waveforms are compared with those predicted by simulations and conclusions are

drawn regarding the performance of the drive systems.

The results of this work clearly demonstrate that segmental rotor SRMs have much
greater torque capability than conventional toothed geometries. Of the two
demonstrator machines constructed, one has a very high torque per unit loading, but
has relatively long end-windings; the other has slightly reduced torque per unit
|0ading but overcomes the problem of long end-windings. Both machines appear to

Outperform other forms of reluctance motor.
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1 Introduction

1 Introduction

1.1 General

Switched reluctance motors (SRMs) have generally been developed with the
intention of producing a low cost variable speed drive with a high mean torque
output. Extensive research has refined the design concept so that it is now well
understood, with dimensions established for optimisation of the maximum specific
output torque, maximum speed and the maximum efficiency of any conventional
SRM. This research accepts that further significant gains can not be made within the
existing SRM structure of a toothed stator and rotor then attempts to find more radical
changes to SRM design instead. New magnetic concepts are introduced, analysed
and developed into working prototypes, which seem to offer very significant

advantages over existing topologies.

1.2 Overview of Switched Reluctance Motors

The Switched Reluctance Motor (SRM) is a variable reluctance stepping motor that is
designed to convert electrical energy to mechanical energy efficiently. It belongs to
the class of machines that depend upon magnetic reluctance variation to produce

torque.

(a) One Tooth per Pole (b) Two Teeth per Pole
Fig. 1.1 Conventional SRM
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The SRM has a very simple, robust and rugged structure, as shown by the two
examples in Fig. 1.1. The stator and rotor are made of laminated iron. The rotoris a
brushless toothed structure with no windings or magnets; all windings are in the
stator. Consequently the rotor losses can be extremely low and the rotor can be very
strong, allowing high speed operation [1]. Moreover, the motor can work between —
100°C and +250°C because of the absence of windings or magnets on the rotor. It is

argued that the simplicity of construction makes the cost of this motor low [2-20].

Electric Motors

: b
AC
y
Asynchronous Synchronous
Induction
y y y
Brushless DC Sinewave Hysteresis Step Reluctance
Synchronous Switched
Reluctance Reluctance

Fig. 1.2 Classification of Electric Motors

As shown in Fig. 1.2, there are two types of reluctance motors: the synchronous
reluctance and switched reluctance. Synchronous motors are classed as singly

salient (only the rotor is salient) and are generally excited with sinusoidal current.
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Switched reluctance motors have both salient rotors and stators and are hence
classed as doubly salient. The phase windings are generally excited with pulses of
unidirectional current, with the timing of the pulses controlled as a function of the
rotor position.

The switched reluctance motor has many advantages over other electric motors used
in drive applications Fig. 1.3. The principal advantage is one of simple, low cost
construction. However the SRM has two main drawbacks: it has large ripples in the
torque characteristic and can suffer from high levels of acoustic noise. These effects
can be reduced by modifications to the magnetic circuit [21-32] and through the use

of novel control techniques [33-38].

Drive Motors
® Switched Reluctance Motor *Permanent Magnets |  [Induction Motor
Motors
Many Advantages
High Cost Copper losses
High Nondinear cic's Back (EMF)

Fig. 1.3 Motors used in Drive Applications

The block diagram of a typical switched reluctance drive is shown in Fig. 1.4. Unlike
induction motors or DC motors the switched reluctance motor can not run directly
from a simple DC supply or sinusoidal AC supply. It requires a power electronic
converter fed from a DC supply, so as to energise each phase with a current pulse at
the appropriate instants of time. The flux in the switched reluctance motor is not
constant, but must be established from zero every working step. A power converter
circuit must supply unipolar current pulses, timed accurately to coincide with the
rising inductance period of each phase winding. SRMs are electronically
Commutated, therefore, some means of rotor position detection must be provided. It
is therefore advantageous to feed rotor position information from a shaft mounted-
Sensor back to the control board. The power converter must also regulate the

magnitude of the current, to meet the (torque and speed) demand placed on the drive
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by the load. A phase current measuring device and current regulator should

therefore be present.

Unipolar

User Control Control Circuits Power Converter

Current Mesurement

<ma

Position Sensor I ni SRM

Fig. 1.4 SRM Circuit

When exciting one phase, torque is developed by the tendency of the rotor to adopt a
position of minimum reluctance or maximum phase inductance, and in doing so
convert some of the field energy to mechanical energy. Alternatively, the machine
may be viewed as being in a state where, when exciting one stator pole, all positions
are unstable, except the position of minimum reluctance: the rotor poles
consequently move to this stable position, known as the aligned position. The
instantaneous torque developed is time varying in magnitude and its average
depends on the excitation current waveform and its timing relative to the rotor
position. The control circuit controls the excitation level and sequence to adjust the

speed and torque of the switched reluctance motor [39-41].

1.3 SRM Design

Two US patents filed by Bedford and Hoft in 1971 and 1972 describe many of the
essential features of the modern switched reluctance motor [42]. In 1974 Lawrenson
et al [43] wrote one of the fundamental papers of switched reluctance motor design.
In this paper it was shown that the reluctance torque produced by an SRM is
fundamentally limited to a certain value when the diameter and the axial length are

kept constant. This will be discussed in detail in chapter (2).
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The electromagnetic analysis of doubly salient motors has progressed to the point
where the geometry of laminations can be optimised for particular applications.
There is software to predict the static characteristic of the SRM, to predict the
dynamic performance of the SRM and to develop control strategies [44].

In comparison to most other machine types, SRMs have a greater range of design
options. There are the apparent complications of different pole combinations,
different phase numbers, ranges of pole arcs from which to choose, etc. These pose
a completely new set of problems to the designer. The magnetic geometry of SRMs
has been effectively fixed for over twenty years. The basic structure consists of a
series of stator teeth or poles, magnetically connected together by a core back, and a
series of rotor teeth, with the magnetic circuit completed by a rotor core back.

The effect of the tooth width upon torque production [45-49] and acoustic noise [50-
52] is well established: the influence of pole number upon mean torque ascertained
[53], and designs which reduce torque ripple determined [54-56]. There has been
examination of the optimum shape of tooth tip and whether the tooth should be
tapered [49,57]. Multi-tooth per pole designs have been studied [58-59], but not
generally developed, so the geometry effectively remains fixed. Rotor and stator
teeth are generally straight or only slightly tapered: the tooth width of both rotor and
stator is typically 33-50% of the pole pitch and the tooth tips do not have substantial
pole shoes.

There has been greater diversity in the electrical design of SRMs. The majority
continue to use simple concentrated windings, wrapped around a single tooth,
because of their simplicity and short end-windings. However, there have been
developments using fully pitched windings to increase the electrical utilisation of the
machine, thus improving torque capability at the expense of increased end-winding
length.

SRM design depends upon accurate determination of the machine's relationship
between the excitation current and magnetic flux linking the windings. Whilst there
have been many design programmes developed using analytical approximations,
these are not general enough to encompass more radical design variations. For this
reason the finite element method has been chosen in this work to predict machine
characteristics. Complex geometries can be modelled, including magnetic saturation,

giving a highly flexible design tool. Because the structures studied give rise to an
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essentially two dimensional magnetic field only 2D finite element methods have been

employed throughout.

1.4 The Characteristic of the Switched Reluctance Motor

The Flux-Linkage versus Current characteristic of the SRM is very important in its
operation and performance. There are two extreme positions, which characterise this
motor, the aligned position where the inductance is maximised and the unaligned
position where the inductance is minimised. The area between them is proportional
to the torque. For comparison between the average torque capabilities of different
designs of SRM having (the same length and diameter) it is enough to look to the

area enclosed between the aligned and the unaligned position.

Fig. 1.5 Magnetic Flux Plot 12/8 Short Pitched SRM at the Aligned Position

In the aligned position the phase inductance is at its maximum value. At low current
levels most of the reluctance is in the air gap, but the long path through the stator
yoke can also absorb a significant MMF and reduce the aligned inductance
appreciably, even at low currents. So shortening the flux path increases the

inductance in the aligned position.
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Fig. 1.6 Magnetic Flux Plot of 12/8 Short Pitched SRM at the Unaligned Position

In the unaligned position the phase inductance is at its minimum, because the
magnetic reluctance of the flux path is at its highest as a result of the large air gap
between the stator and the rotor. The air gap reluctance is much greater than that of

the iron sections [60].

Aligned Position
Hiah Inductance. Low Reluctance

X Unaligned Position
Low Inductance, High Reluctance

Flux Linkage

Current

Fig. 1.7 Typical C/C’s of a SRM
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Fig. 1.7 shows the characteristic of the SRM and a typical flux linkage trajectory. The
characteristics are fixed for a given machine design, but the flux linkage trajectory
depends on the operation of the SRM. In the unaligned position the length of the air
gap is a maximum and the flux path is long. That means the flux density is low, so
there is no saturation or low saturation (the relation between the flux linkage and the
current at the unaligned position is linear or approximately linear). In case of the
aligned position the air gap is small, the flux path is short and flux density is high so
there is saturation; the highest saturation in the machine is at this position.

Fig. 1.8 shows a typical variation of torque with respect to position for a series of

different current levels, illustrating the nonlinear nature of torque variation.

Torque

b =y e * 6§
0 2.5 5 7.5 10 125 15 17.5 20 22.5

Position

Fig. 1.8 Typical Static-Torque C/C’s (e.g. 12/8 SRM)
1.5 Modelling and Simulation of the SRM Drive System

The machine performance has been predicted analytically from the fundamental

equation of the terminal voltage of any machine
V=Ri+ o
ot

Then by solving one of the following 1 *! order differential equations [61-62]:
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flux-linkage can be determined from this equation

R-i(0,y))d

The torque can be obtained indirectly from the co-energy
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A numerical approach to the simulation of SRMs has been introduced in [61]. The
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Fig. 1.9 The Block Diagram of SRM Simulation
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Fig. 1.9 is the block diagram of the SRM simulation package. The flux linkage
characteristic data is taken from an adaptive finite element solution of the magnetic
characteristics; it is stored in tables (one for the flux-linkage characteristic and one for
the torque), then loaded in to a simulation of the SRM using Matlab/Simulink [62].

1.6 Torque Ripple

Torque ripple is the primary disadvantage of SRMs and limits their applications.
Reluctance torque is developed when energising a pair of stator poles with a pair of
rotor poles at any unaligned position. As the rotor poles approach the aligned
position, inductance increases until the rotor poles align with the excited pair of stator
poles. While the inductance is increasing, torque is positive, since dL/d6 is positive.
As the rotor poles rotate past the excited stator poles, inductance begins to
decrease, making dL/d® negative, which means that a negative, or braking torque is
produced. To prevent this braking effect on the rotor the current is removed from the
phase before the aligned position is reached, de-energising the stator poles.
Subsequently, or simultaneously, a second phase is energised. [f the second phase
is energised when the inductance between the second pair of stator poles and the
rotor poles is increasing, positive torque is maintained and the rotation continues.
Continuous rotation is developed by energising and de-energising the stator poles in
this fashion. The total torque is the sum of individual torques described above. Since
only one phase is energised at a time in a traditional SRM, the torque developed by
the machine is not smooth [63]. Torque drops off steeply near the unaligned and
aligned positions. This rising and falling torque phenomenon is known as torque
ripple, which is a serious problem for some applications. There are four approaches
that can be used to minimise of the torque ripple of switched reluctance drive:

¢ Selecting the material for the rotor core [42].

¢ Shaping the magnetic circuit geometry [64-65].

¢ Shaping the phase current waveform [66].

e Applying appropriate control [67].

The optimum minimisation of torque ripple is achieved by the combined action of all

four approaches [68].
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1.7 Aims and Objectives of the this Thesis

This research aims to increase the torque density of switched reluctance motors
through the adoption of new magnetic topologies. A constraint upon any new
topology is that it should remain simple to construct and be suitable for mass
production.

The research has contributed the following developments:

(a) Introduction of the idea of using isolated segmental rotor poles in an SRM.

(b) Evaluation of the concept on simple single phase machines with linear motion.

(c) Development of a multi-phase rotating SRM with a segmental rotor and fully
pitched windings.

(d) Development of a multi-phase rotating SRM with a segmental rotor and single
tooth windings.

(e) Production of two three phase demonstrator machines.

(f) Presentation of static and running results and detailed comparison with
predictions.

(g) Demonstration that the new concepts significantly increase the torque capability
of SRMs.

(h) Comparison with conventional SRMs.

(i) Estimating the losses (iron and copper).

(j) Testing the new design when two phases are excited simultaneously.

1.8 Thesis Layout

Chapters 2-11 are laid out as follows:

Chapter 2: General development of the segmental rotor concept. This chapter
reviews methods for increasing the torque capability of SRMs then introduces the
concept of a segmented-rotor SRM. A basic evaluation of the concept reveals its
advantages and establishes some simple design rules.

Chapter 3: This chapter presents in detail the analysis, design and optimisation of a
three phase segmental-rotor SRM with fully pitched windings. A detailed design is

produced and compared to conventional SRM geometries.

1
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Chapter 4: The fully pitched segmented-rotor SRM has relatively long end-windings,
thus increasing the end-windings copper loss. This chapter introduces an alternative
design in which the windings are placed round a single tooth to reduce the end-
winding length. Once more, design rules are established and a demonstrator design
finalised.

Chapter 5: Comparisons between predictions for the new designs and a
conventional SRM are presented.

Chapter 6: This chapter details the construction and static testing of the machine
developed in chapter 3. Comparisons between predicted and measured results are
presented.

Chapter 7: This chapter deals with the construction and static testing of the machine
design developed in Chapter 4. Once more, measured results are compared with
predicted values.

Chapter 8: Discusses the mutual Interaction between phases.

Chapter 9: The magnetic flux distribution in different parts of the machine is
evaluated and used to estimate iron loss. These estimations of iron loss are
compared with those occurring in a conventional SRM.

Chapter 10: Running tests are presented for the two new machines.

Chapter 11: Conclusions.

12



2 General Development of the Segmental Concept

2 General Development of the Segmental Concept
2.1 Introduction

Chapter one has discussed the general merits of the SRM compared to other types
of electric motor. Machine designers have attempted to improve the performance of
SRMs, including ways to increase their output torque, decrease the losses, decrease
torque ripple and decrease acoustic noise. This chapter introduces a fundamentally
new design of SRM, which shows superior average torque capability compared to the
conventional design of SRMs. The new design introduces a new magnetic circuit
geometry, particularly in the rotor of the machine. The new rotor consists of isolated
iron segments, with each segment representing a separate rotor pole. The chapter
explains in detail the development of the segmental concept, including both magnetic
and electric aspects of the design. For clarity the concept is initially applied to a

geometrically linear, single phase, segmented-rotor SRM [69-70].

2.2 The Relation between the Flux-Linkage Characteristic and the SRM Output

The torque delivered by an SRM is given instantaneously by the rate of change of co-
energy in the machine. In moving from a rotor position, 6, through an angle 66 the
co-energy converted to torque is usually represented by the area between the flux-
linkage-current curves at angles 6 and 6 +360.

If current is applied at the unaligned position and removed at the aligned position
then the mean torque developed is given by the area between the two flux-linkage
characteristics at these extreme positions, divided by the angle traversed. Any SRM
designer can therefore attempt to increase the output torque of the SRM by
increasing this area. It should be noted that the inductance at the aligned position
can not be infinity because of many reasons, such as the permeance of the iron, and
the inductance at the unaligned position can not be zero because of cross slot
leakage flux. So one of the SRM designer’s considerations will be to increase the

area between these two lines as much as possible.

13
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2.3 The Limit of the Torque in a Conventional SRM

Stator
] SRR

Air Gap
« B, >
&« 2xn/N.

Rotor

Fig. 2.1.a Simple Linear Case of Doubly Salient Reluctance Motor

Fig. 2.1.a shows a simple rectilinear example of a conventional doubly salient
construction. The figure is used here to explain the torque limitations of conventional

designs of switched reluctance motor.

Flux-Linkage

Aligned Position

Unaligned Position

Current

Fig. 2.1.b The Non Linear Characteristic of the Switched Reluctance Motor

(The Flux-Linkage Trajectory under Current Control)
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Fig. 2.1.b shows typical flux-linkage/current curves for a range of positions and also a
typical flux-linkage locus traversed under current control. To increase the output
torque of the SRM the area contained by the locus must be increased. Clearly, either
the flux-linkage at the aligned position must rise or that at the unaligned position must
fall.

To maximise the aligned inductance Lnax one stator tooth must be aligned with one
rotor tooth. To minimise the unaligned inductance L, it is essential that there is no
overlap between rotor and stator poles. Therefore, a design constraint exists [71]
wherein the relationship B+ps < 2/N, must be satisfied where N, is the number of
rotor poles, Bs is the stator tooth width and B, is the rotor tooth width. Under the
above constraint Lny,s is limited by the leakage fields. The cross-sectional area of the
flux path in the aligned position is maximised when Bs=B=n/N;. The aligned
inductance, Lnax, is then limited by the permeance of the main flux path. At low
values of excitation this is dominated by the air gap length, whilst at high excitation

levels it is dominated by magnetic saturation of the laminations [71].

2.4 Summary of Previous Attempts to increase the Torque Capability of SRM

1-Decreasing the air gap length to increase the aligned flux-linkage. This will only
have a significant effect upon torque production during low levels of excitation.
Mechanical constraints impose a minimum air-gap length [72].

2-In [73-74] a complicated method was used to achieve both the maximum T/I? ratio
and the minimum torque ripple by selecting the optimal combination of current
waveform and pole configuration. The idea is based on a principle that there exists a
special combination of space harmonics of inductance and time harmonics of current
which improves the torque/current ratio and, at the same time, eliminates the torque
ripple. The pole configuration is designed to have a predominant 3" space harmonic
of inductance and the current is regulated to have a predominant 3™ time harmonic.
The method was very complicated and ignored some sources of the ripples such as
the effect of the converters [75-78].

3- Using multi-teeth per stator pole. An increase in the torque developed by a multi-
teeth stator pole configuration has been reported by Finch [79] (see Fig. 2.2).

15
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However, the machine proved difficult to wind and was acoustically noisy. For this

reason it has not been adopted by industry.

Fig. 2.2 Multi-Tooth per Stator Pole

4-By using two stators to drive one rotor [80] as shown in Fig. 2.3. This enables the

electric loading to be increased, but is very difficult to construct in a rotating machine.

Fig. 2.3 Two Stators Driving one Rotor

5-Using a fully pitched windings, which enables an increase in the MMF per pole.
Because this machine has longer end-windings it is only suitable for applications
where the axial length is greater than the length of a pole pitch [81-83].

6-The use of axially laminated rotors. Lipo [84-87] and Xu [88-89] made prototype

machines of this type, borrowing a technology developed for synchronous reluctance
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machines. The laminations were folded to form flux guides, providing maximum

inductance when a flux guide of the rotor is aligned with a slot.

Fig. 2.4 SRM with Axial Laminated Rotor

The axially laminated concept is limited as follows:

e There is isolation between each lamination, required to provide a flux barrier in
the unaligned position. Suppose, as an example, the ratio of the iron to the
isolation is 2:1, then the saturation level of the flux in the aligned position is limited
to 2/3 that of a solid pole.

e Bending the iron laminations is a difficult process, which is not suited to mass
production.

e Bending the iron introduces mechanical stress, which influences the magnetic

characteristics, particularly increasing the iron loss in the laminations.

S

Fig. 2.5 Cross Section of one Segment of an Axially Laminated SRM

7-Short Flux Loops by selecting the windings configuration: If the length of the
magnetic circuit is reduced then so is its reluctance, therefore any reduction in path
length should increase the flux-linkage for a given source MMF. This philosophy was
adopted by Hendershot [90] and Michaelides and Pollock [91]. The technique

"
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adopted by Michaelides and Pollock will be explained with reference to figures 2.6

and 2.7.

Fig. 2.6 5-Phase Short Pitched SRM (Only one Phase Excited)

Fig. 2.6 shows a 5-phase SRM with a short pitched windings and only one phase
excited. Magnetic flux exits from the stator pole, through the air-gap to the rotor pole,
through the rotor core back, out another rotor pole which is diametrically opposite,
back across the air gap and returns round one half the stator core back. Because

the core back paths are long this is referred to as a long flux loop.

Fig. 2.7 Five Phases Short Pitched SRM (Two Phases Excited Simultaneously)
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2 General Development of the Segmental Concept

Fig. 2.7 shows the same machine, with adjacent coils excited by opposite polarities.
When two phases are excited simultaneously the flux loops became much shorter
than the previous case and the magnetic reluctance is decreased. For a fixed MMF
the magnetic flux should therefore rise slightly, resulting in an increase in the torque
capability.

8-The idea of using isolated iron segments as rotor poles in reluctance motors was
established in synchronous reluctance motors as early as 1960 [92-96]. A patent by
Horst [97] seems to be the only prior attempt to apply this idea to switched reluctance
motors. His idea was to produce an SRM with improved rotor design which reduces
the flux path lengths and utilises all salient poles, thereby increasing power density
and reducing motor losses. Horst applied his idea to a 2-phase machine only. The
windings were disposed such that each stator pole is adjacent to two phase windings
of opposite polarity with the magnetic flux through each stator varying in direction
with the energisation of the various phases. Note how the air-gap length is distorted
to one end of a segment. This gives a preferred direction of rotation and may help

overcome the problem of rotor positions where zero torque occurs.

@
S

a) Cross section of the Horst SRM

b) One rotor segment
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)

c) Non magnetic material to fit between the segments
Fig. 2.8 Horst Design of SRM

Fig. 2.8.c shows the non-magnetic material provides structural integrity to the rotor
and holds the rotor segments firmly in place.

The limitations of Horst’s invention are as follows:

1-He did not present any information on how to determine the proper values of the
magnetic circuit parameters.

2-The shape of the segment was complex.

3-There was no discussion of the impact of the centrifugal forces at different speeds
on the segments and the fittings.

4-The concept was limited to a two phase machine.

5-There is no evidence that the concept was actually built.
2.5 The New Idea in this Thesis

The aim of this research is to produce a completely new topology whilst retaining the
simplicity of existing switched reluctance geometries. Complicated design will make
the analysis, the performance prediction and, most importantly, motor construction
both difficult and prohibitively expensive. The rotor of the conventional SRM will be
replaced by another rotor of a different topology; this will be shown to create a
greater reluctance variation that increases the output torque. Changing the rotor
topology randomly is a waste of time as the changes may not have a significant
impact. The new rotor must satisfy two points: to increase the saliency and to

shorten the flux loops.
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2.5.1 Describing the New Rotor

Magnetic

INon-magnetic
% Magnetic

P Non-magnetic

g\Magnetic

e \
!
A

Non-magnetic

Fig. 2.9 Variable Reluctance Rotor
Fig. 2.9 shows the proposed new rotor of the single phase segmented-rotor SRM.
The new rotor magnetic structure will be made from a series of isolated segments of
laminations in an attempt to increase the saliency ratio and thus increase the torque
capability. The segments collect the flux coming from the stator to close the
magnetic circuit. In the conventional design when the stator tooth is energised the
magnetic force pulls the rotor pole to the aligned position; magnetic flux enters the
rotor via one rotor tooth, crosses the rotor core back and then exits from another rotor
tooth. In the new design the flux enters the segment at one circumferential end and
exits from the other end, returning via an adjacent stator tooth. Consequently the flux

path is short, passing through a stator core back of arc equal to one tooth pitch [98].

In a conventional SRM the peak magnetic flux linking any one conductor is never
more than one half the magnetic flux flowing down an excited stator tooth. In the new
machine concept it is possible for the entire magnetic flux of a single stator tooth to
link each conductor, thereby increasing the flux-linkage of a winding. Consequently
the probability of the new design being able to deliver more torque than the

equivalent conventional SRM is high, assuming the motor is designed and optimised

properly.

The constraints and limitations of the new machine are fundamentally differ from
those of a conventional SRM design; hence this thesis will attempt to provide an

insight into the performance and limitations of this new machine.
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2.5.2 New and Conventional Topologies from the View Point of Design and

Optimisation

Design methods for conventional SRMs are well documented by several authors [99],
with many successful prototypes having been built and used in industry, but in the
case of the new SRM the basics of operation must be established first. To maximise
generality, the concept will first be developed for simple, single phase, rectilinear
examples and then applied to a multi-phase, segmented-rotor SRM.

The mechanical design of a segmental rotor is extremely important: a suitable means
of fitting the segments onto the rotor must not affect the magnetic operation of the
machine or introduce undue complexity, but the segments must be able to rotate at
high speeds without flying off or moving from their place of fitting. The rotor design
must not sacrifice the well-known advantages and features of the SRM (e.g. low cost,

robustness, wide temperature and speed capability).

Like all motors the design of the new segmented-rotor SRM can be considered in
three main parts [100-102]:

a) The magnetic circuit.

b) The electric circuit.

c) The mechanical design.

2.6 Simple Rectilinear Case of the New Design

stator

@ lo ® ®

N G — e S v S we—

A

rotor
segments

Fig. 2.10.a Rectilinear Representation of a Single Phase Segmental Rotor SRM,
Showing first the Aligned Position and then the Unaligned Position
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Fig. 2.10.b Magnetic Flux Plot, Showing the Single Phase Representation of
Fig. 2.10.a in the Aligned Position

Fig. 2.10.a shows a rectilinear, single phase, segmental machine in which each stator
coil encloses a single tooth. Fig. 2.10.b shows the magnetic flux distribution in the
aligned position. The magnetic flux flows down one tooth, through a rotor segment
and returns via the adjacent stator tooth. All the conductors in each slot only couple
with flux driven by their own magneto-motive force, with very little mutual coupling
between one slot and another. Torque production can therefore be envisaged on a
per slot basis in which the slot MMF drives flux round the slot and the slot permeance

is modulated by the rotor segments [69-70].
2.7 Design Rules for a Segmented Rotor SRM
The design concept has been progressed with the following rules:

1-In the aligned position the cross sectional area of the flux path should be equal at
all locations to make the flux density uniform. This prevents regions of increased
magnetic saturation and maximises the inductance in the aligned position.

2-In the unaligned position the segments must not form a bridge between the two
teeth adjacent to an excited slot. This will maximise the reluctance in the unaligned
position and ensure that the unaligned permeance depends principally upon cross-
slot leakage flux.

3-The rotor segments should be shaped so as not to compromise rule 1 above whilst
simultaneously ensuring that the shape does not unduly increase the unaligned

permeance.
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2 General Development of the Segmental Concept

4-Overall optimisation of the parameters of the machine such as stator tooth width,
the outside diameter of the rotor, the height of the pole shoe the angle of tapering of
the pole shoe and the segment etc. must be considered simultaneously with the

electric circuit, whilst not neglecting mechanical considerations.

The overall performance of the design concept will be judged by comparing it with the
equivalent conventional one. The comparison must be comprehensive, including
where possible the cost of construction, all sources of loss, mean torque and torque

ripple and converter requirements.
2.8 Maximising the Area between the Aligned and the Unaligned Position

2.8.1 Maximising the Inductance in the Aligned Position

In a conventional SRM when one rotor tooth aligns itself with the energised stator
pole this is called the aligned position. In the new segmented-rotor SRM the aligned
position is the position when one rotor segment magnetically shorts two stator teeth
and the permeance of an excited slot is at its maximum. This position occurs when

the segment is centrally placed under the excited slot.

Stator
Core back %

rotor segment

Fig. 2.11 One Segment links two Teeth in the Aligned Position

As shown in Fig. 2.11 the segment closes the flux path, making the flux path short.

Two stator teeth link the segment.
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Fig. 2.12 How to Minimise the Flux Path Reluctance in the Aligned Position

Fig. 2.12 shows an attempt to meet the design rules of section 2.8. The core back
width, the stator tooth width, the overlap arc between rotor segment and stator tooth
and the radial height of the rotor segment have all been made equal. Note to meet
these requirements the stator teeth have slot closure segments; without these it is not
possible to maintain a large enough overlap angle between the rotor segments and
the stator tooth tips.

2.8.2 Minimising the Reluctance in the Unaligned Position

In the unaligned position the segment must not close any flux path or part of it. As an
example see Fig. 2.13 where the gap between rotor segments has been chosen to
be equal to that of the stator slot opening. This ensures that neither the rotor or
stator geometry contribute unduly to the unaligned permeance.

Fig. 2.13 the Magnetic Flux Path is open in the Unaligned Position
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2.9 Optimum Value of the Tooth Width “t”

As the stator tooth width and rotor segment size is increased then the magnitude of
the magnetic flux path permeance is increased and the torque per unit MMF will rise,
providing the unaligned permeance is not too large. However, as the magnetic flux
path increases in size the slot area decreases, so there is progressively less room for
a winding. A global optimum of all dimensions is difficult to define, since it requires
knowledge of the thermal performance of the machine. However, it is useful to
explore the influence of tooth width upon the magnetic characteristics. The next
section is dedicated to understanding the influence of tooth width in a rectilinear,

single phase, segmented-rotor SRM.

2.9.1 Influence of Tooth Width in a Rectilinear Segmented Rotor SRM

In this section the tooth width will be varied and the Flux/MMF characteristics
determined for a specific geometry. The area enclosed between the aligned and
unaligned characteristics will be compared for both conventional and segmental

topologies in order to give a measure of air-gap force density.
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Rotor Pole 7

A- Aligned position B- Unaligned position
Fig. 2.14.a Conventional Design
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Fig. 2.14.a shows the simple rectilinear model for the conventional topology. The
design of this topology is taken as the standard design of the SRM (the core back
width is equal to half the tooth width). The figure shows one half tooth, one half slot
and the rotor and stator core backs. The boundaries of the figure form lines of
symmetry, so that finite element modelling of this region is enough to define a fuller
system with many teeth and slots. The MMF of the conductor in the slot can be
varied and a graph of the aligned and unaligned Flux’MMF characteristics plotted.
From the area enclosed between these characteristics a calculation of the mean air-
gap force density can then be made. The procedure is repeated for a range of tooth

widths and the various results compared.

.
. Stator Pole

\_‘\

Segment

a- Aligned position b-Unaligned position
Fig. 2.14.b New Segmental Design

Fig. 2.14.b shows the equivalent new rectilinear model. The figure shows half of one
stator pole and half of one rotor pole in both the aligned and the unaligned positions.
The stator core-back, the overlap and the height of the segment are equal to one half
the stator tooth width.

This has given two equivalent groups, one for the conventional design and one for

the new design. The value of the air-gap tangential force produced by each group

depends on many parameters, including the height of the poles, width of the tooth, air
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gap length and the shape of the segment. For each group a slot pitch, A, of 20.0 mm
is used, along with an air-gap length of 0.3 mm. A standard silicon steel
magnetisation curve is assumed for the magnetic components. The width of the
teeth, t, is varied, whilst other dimensions are heid fixed. Rotor teeth are chosen to
be deep enough so that the rotor core back does not play a major part in the
unaligned inductance, but stator cross-slot leakage flux is significant. The aligned
position and the unaligned position will be inspected for both designs for different
tooth widths.

30mm

15mm

20mm

A- aligned position B- unaligned position
Fig. 2.15 Two Half Poles of the Stator and One Segment of the Rotor

Fig. 2.15 illustrates the magnetic flux distribution in the segmental machine in both
the aligned and unaligned positions. The unaligned position is a position of unstable
equilibrium. Once the rotor is displaced from this position it experiences a force
seeking to move the segment from the unaligned position (maximum reluctance
position) to the aligned position (minimum reluctance position). The reluctance force
produced due to moving the segment from the position of minimum inductance to the
position of maximum inductance is proportional to the area between the aligned and

unaligned flux characteristics positions in both cases.
Fig. 2.16 shows the aligned and the unaligned positions for five different values of the

ratio of the tooth width to the pole pitch, t/x, varying from 0.3 to 0.7. In each case the

horizontal axis corresponds to the MMF per half slot and the vertical axis is the
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average magnetic vector potential of the conductors in the half slot.

corresponds to the average flux linkage per unit axial length.
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Fig. 2.16.a Flux versus MMF Characteristic (t/A=0.3)
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Fig. 2.16.c Flux versus MMF Characteristic (t/A=0.5)
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Fig. 2.16.d Flux versus MMF Characteristic (t/A=0.6)
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Fig. 2.16.e Flux versus MMF Characteristic (t/A=0.7)
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As might be expected, the aligned flux-linkage for the segmental rotor machine
corresponds closely with that of the conventional machine (shown as a dashed line in
the Fig. 2.16). However, the unaligned flux-linkage is substantially different. When
t/A<0.5 the segmental rotor exhibits a higher unaligned flux linkage, predominantly
due to the semi-closed nature of the stator slots, which increases the cross slot flux.
However, once t/A increases above 0.5 the opposite occurs, with the segmental
design having a lower unaligned flux-linkage. This is because the conventional
design has overlapping teeth, even in the unaligned position when t/A>0.5,
corresponding to an unacceptably high unaligned permeance, whilst the segmental
design always maintains a gap between rotor segments, across which unaligned flux

must pass [69-70].
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Fig. 2.17.a Average Air-Gap Force Density versus the Electric Loading,

Showing the Variation with t/A

Fig. 2.17.a shows the effect upon the mean force density. The conventional machine
can be seen to have a greater force density when t/A<0.4 but when t/A>0.5 the
segmental design offers greatly superior performance. As t/A rises beyond 0.5 in the
segmental design the force density continues to rise, even when t/A approaches 0.7.

By this time the force density is approximately 40% greater than that which can be
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achieved with the best possible conventional toothed design. Of course it is not
generally sensible to design a machine with t/A>0.5, because it results in a very
narrow slot, with insufficient room for the windings. Hence, unless other gains can be
found, the segmental design is no more than an academic novelty, with the magnetic

capability of increased torque production, but no practical application.

800 - ‘
— New Structure
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Fig. 2.17.b Variation of the (t/A).iticai With the Electric Loading

It is therefore possible to define ratio (V/A)qiticar : it is the value of t/A for fixed electric
loading; at lower values the conventional structure gives more torque and above it

the new structure gives higher torque.
Fig. 2.17.b shows the critical value of the ratio t/A depends on the value of the electric

loading. This (¥/A)citcal iNcreases with the electric loading and becomes fixed at a
value between 0.4 and 0.5.
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2 General Development of the Segmental Concept

Region 1: Very thin stator Region 2: Fixed MMF = 1500, Region 3: Very wide stator
tooth. The value of the flux is ' tooth. There isn't enough area
700 - small.___, P R Il el LRI A e e to room the conductors.
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Fig. 2.17.c Effect of Changing t/A on the Average Torque (Fixed MMF=1500)

There are three distinct regions of operation:

1-The tooth width is narrow when t/A 0<0.3. Both the conventional topology and the
new topology have low values of peak flux and force density.

2-The tooth width is very wide when t/A>0.7. There is not enough area for the
conductors in either topology.

3-Region 0.3<t/A<0.7 has a critical value of t/A, below which the conventional
topology gives the greater torque and above which the new topology produces the

greater torque.

Evaluation of the new topology indicates that it can be used to design a SRM capable
of giving much more torque than an equivalent conventional SRM, providing the

parameters are optimised properly and there is sufficient room for the windings.
This optimum value of t/A will depend upon other aspects of the design: so far only a

single phase machine has been considered, in multiphase machines other issues

influence the space available for the winding and therefore the optimum tooth width.
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2 General Development of the Segmental Concept

2.9.2 Selection of the angles of tapering of the segment and the pole shoe

The angles of tapering for the segment and the pole shoe should be equal to avoid
saturation in the aligned position. This section is dedicated to a search for the best
angle of tapering (both the segment and the pole shoe).

< > :

digned unaligned digned unaligned digned unaligned
Model 1 (angle 60 degrees). Model 2 (ange 33.7 degrees). Model 3 (ange 44 degrees)

Fig. 2.18.a Three Different Models of the New Design (the same dimensions of

Fig 2.15 except the angles of tapering)

0.011 +—— - = . e ———
60degrees

33.7degrees

43.9degree

0.009 -
0.008 -
0.007 -
0.006 -
0.005 -

0.004 -

Magnetic Vector Potential

0.003 -
0.002 -

0.001 -

0 250 500 750 1000 1250 1500
MMF

Fig. 2.18.b Aligned and Unaligned Positions for three Models have Different
Angles of Tapering
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2 General Development of the Segmental Concept

Fig. 2.18.b shows the impact of changing the angle of tapering on the characteristic
of the three models. There is not much influence because previous rules of the
design minimised the saturation in the aligned position and maximised the reluctance
in the unaligned position. An angle of 60 degrees appears best because the area
between the aligned and the unaligned is slightly greater than the other two cases.

Magnetic Flux Plot. Flux Density

BEREEEE | || Frem

Saturation

Model 1 (tapering angle 60 degrees, tA=0.5)
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2 General Development of the Segmental Concept

BN | (IR

Magnetic Flux Plot. Flux Density

Saturation
Model 1 (tapering angle 60 degrees, tA=0.5)

Fig. 2.18.c Magnetic Flux Plot, Flux Density and Saturation

Fig. 2.18 shows the impact of changing the angle of tapering on the aligned and the
unaligned positions (the design rules were applied in all three model, only the angle
of tapering was changed). The figure shows the flux density is uniform and the

saturation is very low.
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2 General Development of the Segmental Concept

2.9.3 Different Shapes of the Segments
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Fig. 2.19 Magnetic Vector Potential for two Different shapes of the Segment and

t/A=0.7 for both

Fig. 2.19 shows comparison between the trapezoidal segment and another shape, in

which a curved rotor segment is employed. Both segment shapes give virtually

identical Flux/MMF curves, so that it is impossible to differentiate between them in

the figure.
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2 General Development of the Segmental Concept

2.9.4 The Instantaneous variation of Force with Position

In addition to evaluating the mean force or torque density it is necessary to
understand the instantaneous variation with respect to position, since for some

applications a low torque ripple is required. Two cases will be evaluated for the new

topology; one with t/A=0.5 and one with t/A=0.7.

By B3 AN

Fasesnno

| | |

Fig. 2.20 Simple Rectilinear case of the New Design

Fig. 2.20 shows a simple rectilinear case of the new design (the dimensions as Fig.
2.15, the distance between the aligned to the unaligned is 10 mm). FluxMMF
characteristics were determined for a large number of positions, so that the
instantaneous variation of co-energy with position can be predicted. Fig 2.21 shows
both the flux-linkage curves and the derived force curves for a series of constant

currents, based upon a machine with 100 turns per pole.
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Fig. 2.21 Static Force Variation of the New Topology for two Different Tooth
Widths

Fig. 2.21 shows at low current the general shape of the force waveforms is somewhat
different to that which is commonly encountered in toothed rotor SRMs: The force
continues to rise almost linearly with rotor displacement from the aligned position until
approximately midway to the unaligned position. To help understand this, consider
the permeance variation at low currents, which is dominated by the air-gap
permeance. A simple approximation to the permeance variation can be made by
neglecting all fringing flux. This will be used to highlight the difference in torque
production between the conventional and segmented machines.

In toothed rotor SRMs the magnetic flux crosses two air-gaps of identical form. At full
alignment the permeance is at a maximum, and as the rotor moves away from
alignment the permeance falls linearly. Because the rate of change of permeance
has this linear (constant) variation over most of the current stroke the torque
produced at constant current is predicted to be constant.

With the segmental SRM the variation of air-gap permeance with position is more

complex. Magnetic flux flows down one tooth, into a rotor segment and returns via
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2 General Development of the Segmental Concept

an adjoining stator tooth. In the aligned position the reluctance of the two air-gaps
linking a rotor segment to adjoining stator teeth are equal but, as the rotor moves
from the aligned position, the reluctance of one air-gap falls whilst that of the other
rises. Hence, the initial rate of change of permeance is zero but, as the asymmetry
rises, the rate of change of permeance also rises, until it reaches a maximum at the
point where there ceases to be any overlap between the rotor segment and one of
the stator teeth.

A consequence of the above effects is that a segmental rotor SRM is likely to have
greater torque ripple than a toothed rotor SRM when operating at low excitation
levels. At higher excitation levels saturation effects become important and the
difference in torque ripple between the two machine types is likely to be much

smaller.

2.10 General Conclusions for the Rectilinear, Single Phase Case

A segmental rotor construction can be used to increase the performance of switched
reluctance motors, also offering gains over axially laminated rotor designs. In single
phase machines the air-gap force density exceeds that of a conventional SRM when
the active portion of the air-gap exceeds one half of a pole pitch. However, under
such circumstances there may be insufficient room for the windings. The influence of
the rotor segment shape has been studied, and it has been found that a trapezoidally
shaped segment offers a good compromise between the need for a low unaligned
permeance and a high aligned permeance. The angle of the trapezoidal segment
has also been shown to be optimal at around 60 degrees to the air-gap. The
permeance variation with rotor position is far from linear, leading to static force and
torque curves which are substantially different to those of a conventional SRM. For
an unsaturated machine the air-gap force rises almost linearly with displacement
from the aligned position until the point at which the rotor segment fails to overlap
both teeth adjacent to an excited slot. Once this position is exceeded the force falls

quite rapidly to zero at the unaligned position.
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3 Applying the Segmental Concept to a 3-Phase, Fully Pitched SRM

3 Applying the Segmental Concept to a 3-Phase, Fully Pitched SRM

3.1 Introduction

This chapter develops a design for a multi-phase segmented-rotor SRM. The
proposed motor will be 3-phase, with 12 stator teeth and 8 isolated iron segments
(each segment represents a rotor pole). In order to provide a good comparison with
other SRM prototypes, which have been built during earlier research work, the axial
length of the laminations is chosen to be 150mm, with the stator diameter also
chosen to be 150mm. The machine will have a radial / circumferential magnetic field,
with an inner rotor, in line with the vast majority of electrical machines. In this first
prototype the stator coils will span three teeth, making what is in effect a fully pitched
winding. The design developed in this chapter will be built and extensively tested.
Static tests enable measured parameters to be determined and rotational tests reveal
measured performance. The simulated results presented in this chapter will later be

compared with these measured results.

3.2 The Multi-Phase Rotating Segmental Rotor Switched Reluctance Motor

The previous chapter established that the use of isolated iron segments as rotor
poles will only increase the output torque if there is proper selection of the
parameters and windings.

Parameter selection will be undertaken by first establishing some design rules and
then comparing a series of different models of the new multi-phase segmented-rotor
SRM with an equivalent conventional SRM with the same outside diameter and
lamination stack length. A question appears directly - which design of the equivalent
conventional SRM should be used in this comparison?

Two designs of conventional SRM were finally chosen: both designs were 12/8 three
phase machines with short pitched windings, making the machine operate at the
same electrical frequency as the new segmental machine. The first “standard”
design has parallel sided teeth with a ratio of t/A, equal to 0.33 (t=ts), a core back
width equal to half the stator tooth width and a rotor diameter 60% the stator outside

diameter. As in the segmental design the air-gap length was chosen to be 0.3 mm.
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3 Applying the Segmental Concept to a 3-Phase, Fully Pitched SRM

The second design has a slightly wider core back and teeth, corresponding to the
ratio of t/A, = 0.4 (t. = ts). This design is used for low torque ripples applications [69-
70][103-107].

3.2.1 Design of the Multi-Phase, Segmented-Rotor SRM Evolved Using the
Following Steps

1-The stator core back, the stator tooth width, the length of rotor segment to tooth
overlap in the aligned position and the radial height of the segment were all made
equal so that the magnetic flux density was constant throughout the magnetic flux
path when in the aligned position. This was to maximise the saturation flux in the
aligned position.

2-The ratio of rotor diameter to stator outside diameter was chosen to be 60%. This
has been found to be close to the optimum for conventional SRMs and leaves plenty
of room for mechanical fitting of the rotor segments onto a non-magnetic shaft.

3-A series of designs were produced for gradually increasing values of stator teeth,
starting from the thinnest possible value which produces significant flux up until the
widest possible value which still leaves significant slot area for the conductors.

4-The magnetisation curve was obtained for each design using adaptive finite
element analysis. This was used to assess the new designs and to compare them
with the conventional design models.

5-With the segmental rotor machine there is no magnetic short circuit formed by the
rotor structure, so the magnetic flux must always enclose a single stator slot. Thus,
in moving to a multiphase design it is natural to split the structure so that a single unit
comprises of one stator slot, and that the design should have the capability to excite

only those slots of equal phase, as shown in Fig. 3.1
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3 Applying the Segmental Concept to a 3-Phase, Fully Pitched SRM

(b)
Fig. 3.1 Three Phase Segmental Rotor Design, Showing the Desired MMF

Pattern of a Single Phase (fully pitched)
(a) Aligned Position (b) Unaligned Position

The obvious manner in which to do this is to use a winding arrangement where each
slot contains only the winding of a single phase. An arrangement which does this is
shown in Fig. 3.1, with each coil spanning three slots [69-70].

As in the single phase design, the gap between rotor segments is chosen to be equal
to that of the stator slot opening so that neither the rotor or stator contribute
excessively to the unaligned inductance. The length of overlap between a rotor
segment and the tooth width is also made equal to the main stator tooth width, thus
equalising magnetic flux densities throughout the magnetic circuit in the aligned
position. From these two design rules the slot opening, x, and the tooth tip closure, y,

can be derived using the following equations:
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3 Applying the Segmental Concept to a 3-Phase, Fully Pitched SRM

Equating values with the rotor pole arc t+2x=A, (3.1)
From the arc of the stator pole é+ X+2y=»A, (3.2)

The principal difference between the three phase and single phase designs lies in the
required width of the stator teeth. In the single phase version each stator tooth had to
carry the flux from two rotor segments, and was of width, t. In the three-phase
version, with one phase excited, each stator tooth carries only the flux of one rotor
segment, so the tooth width can be reduced to t/2. It is this feature which is critical in
making a three phase segmental rotor SRM a sensible proposition because it allows
a high value of t/A, whilst retaining enough room for the windings [69-70].

The above reasoning is not entirely complete. Whilst the conventional, toothed rotor
SRM has short pitched windings placed around a single tooth, the segmental SRM
has windings which enclose a complete magnetic pole, comprising three teeth, so the
winding can be classed as fully pitched. Whilst the winding is identical to that
employed in conventional SRMs with fully pitched windings, the similarity ends there.
In the segmental rotor SRM torque results from changing self inductance, whilst in
toothed rotor SRMs with fully pitched windings the torque is produced by changing
mutual inductance, and therefore two or more phases need to be simultaneously
conducting.

Compared to a conventional short pitched windings SRM there are considerably
longer end windings, which produce additional copper mass and windings loss. The
importance of this additional loss is dependent upon the machine axial length and

pole number.

3.3 Designing New High Torque Three Phase 12/8 Fully Pitch Segmented Rotor
SRM

The design will initially be developed using MMFs and flux. In later chapters the
number of turns will be estimated according to the optimisation of the electric circuit
after considering the copper losses and the current density.

Appendix 1 shows a mathematical derivation of the critical dimensions of the
segmented rotor machine for a range of tooth widths, according to the above design

rules [108-109]. Four different models were then produced and are illustrated in Fig.
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3.2. In addition to showing the geometry, examples of adapted finite element
meshes are also given, alongside representative flux distribution plots with one phase
excited. Note how there is fine discretisation in the vicinity of the air-gap because it is
in this region that most of the magnetic energy is stored [110-111].

Note: W is the stator tooth width

Model 1

a) 12/8 segmented-rotor fully pitched model W=0.0035, t/A = 0.196 (aligned
position)
Model 2

b) 12/8 segmented-rotor fully pitched model W=0.007, t/A=0.3926 (aligned

position)
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Model 3

=0.01, t/A=0.56 (aligned

c) 12/8 segmented rotor SRM fully pitched model W
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12/8 segmented-rotor SRM fully pitched model W=0.01, t/A=0.56 (unaligned
position)
Model 4

d) 12/8 segmented-rotor SRM fully pitched model W=0.013, t/A=0.729 (aligned

position)
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12/8 segmented-rotor SRM, fully pitched model W=0.013, t/A=0.729 (unaligned

position)

Fig. 3.2 Different Models for the 12/8 Fully Pitched Segmented-Rotor for
Different Stator Tooth Width (W)

3.4 Finite Element Analysis of the Conventional Short Pitched 12/8 SRM

Figs. 3.3 and Fig.3.4 show magnetic flux plots for the conventional 12/8 SRM in both
the aligned and unaligned positions. Note how whilst excitation of one phase in the
segmental machine energises eight stator teeth, only four stator teeth are energised
in the conventional machine. The conductors of one phase in the conventional SRM
fill half of eight slots, with the other halves of these slots filled by the conductor of
other phases [112-113].

Note how in both the segmental and conventional machines the rotor diameter is

90.08 mm, resulting in a rotor pole arc as follows:-

A, = 2* T *r/8=(2%(22/7)*0.0454)/8=0.03566.
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a-aligned position b-unaligned position
Fig. 3.3 Conventional 12/8 Short Pitched SRM
(standard design: t,/A,=0.33 and t,=t)

a-aligned Position b-unaligned position
Fig. 3.4 Conventional 12/8 Short Pitched SRM
(wide teeth: t,/A,=0.4 and t,=t)
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For simplification the end-windings effect was initially ignored in the analysis.

Magnetic Vector Potential

Table 3.1 Dimensions of Conventional 12/8 Short Pitched SRM

Table 3.2 Dimensions of Conventional 12/8 Short Pitched SRM

0.05 -

0.045 -

0.04 -

0.035 A

0.03 -

0.025 -

0.02 -

0.015 A

0.01 -

0.005 -

Stator Outside Diameter 150 mm
Rotor Diameter 90.8 mm

Air Gap Length 0.3 mm
Stator Core-Back 5.88 mm
Rotor Core Back 5.88 mm
Stator Tooth Width 11.76 mm
Rotor Tooth Width 11.76 mm

(standard design: t/A,=0.33 and t,=t;)

Stator Outside Diameter 150 mm

Rotor Diameter 90.8 mm

Air Gap Length 0.3 mm
Stator Core-Back 7.046 mm
Rotor Core Back 7.046 mm
Stator Tooth Width 14.092 mm
Rotor Tooth Width 14.092 mm

Comparison between Different Designs of 12/8 SRMs
(Segmented-Rotor and Toothed-Rotor)

Fig. 3.5 Comparison between the New and Conventional Designs

(wide teeth: t,/A,=0.4 and t,=t,)

W=0.01

W=0.013

500 1000 1500 2000
MMF

2500
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The vertical axis in Fig. 3.5 represents the average magnetic flux linking any one turn
per meter of axial length. The horizontal axis represents the MMF driving the
magnetic flux around any one flux path. The area enclosed between the two curves

is in effect one half the co-energy per unit length of the entire machine.

- 0.0035 | 0.007 m 0.013

‘ 0.3926 H Ures
HEAR o TS e

S e ‘!'9“" s
ami;';:"?‘“‘ d positions 495 §76.758] 94.06

Table 3.3 Comparison between the Four Models of the New SRM, 2W is
equivalent to t here in the Segmented Rotor SRM

Table 3.4 Comparison between the Two Models of the Conventional SRM
Fig. 3.5 shows the magnetic vector potential of the aligned and the unaligned

positions for the four models of the new segmental design and the two models of the

conventional design versus the MMF per slot. Needless to say, the results are only
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valid for the particular dimensions of the machine models. They will now be
compared with respect to torque capability.

Regarding the models of the conventional SRM

1-For the ratio t/A =0.33, the area of one slot = 430 mm? and the area between the
aligned and the unaligned position curves give 42.1J per turn per unit length of co-
energy for MMF=3000 Amp-turn per slot.

2-For the ratio /A =0.4, the area of one slot = 344 mm? and the area between the
aligned and the unaligned position curves give 50.3J per turn per unit length of co-
energy for MMF=3000 Amp-turn per slot.

Consider the segmental designs. As the tooth width is increased the flux linking any
one coil rises. Because each coil links the flux of two stator teeth then for a given
stator tooth body width there is approximately twice the saturated flux-linkage of a
conventional SRM. Hence the two segmental designs with wider teeth can deliver
much more torque per unit MMF than the equivalent conventional designs.

A valid comparison between the range of designs must take into account the varying
slot area and end-windings length [114-115]. For initial comparison two extremes
have been taken as follows:

1. The current density has been fixed. This is valid when there is some form of
direct cooling of the conductors. A nominal r.m.s. value of 10 amps per square
millimetre has been chosen.

2. The loss per slot has been fixed. This is valid if there is good thermal conduction
across the slot and most of the temperature rise occurs between the machine frame
and surrounding air. In this initial comparison no account is taken of end-windings
losses. The relative effect of these losses is a function of axial length; end-windings
will be much longer in the segmental machine and so in neglecting them the results

will disproportionately favour the new design.
3.4 Comparison based upon Fixed Current Density
Assume a square wave of excitation in which one phase is conducting at any one

instant. Also assume that the entire area between aligned and unaligned flux-linkage

curves is enclosed.

57



3 Applying the Segmental Concept to a 3-Phase, Fully Pitched SRM

Current

A

T3 T

17T
=J— =1,/43
nns T (.‘; m \/-

Assume the winding current density J__ =10A/mm’

Assume the slot fill factor =0.4

a) New SRM 12/8 Fully Pitched

There are two coils per phase and each coil side fills one slot.
MMF (per phase)=+/3 (for the maximum value of the current)

*10(current density)*2 (two coils per phase)*Area of one slot * slot fill factor

12/8 segmental model 1: MMF1=+/3*10%2*615%0.4 =8521
12/8 segmental model 2: MMF2 =+/3 *10*2*403*0.4 = 5584
12/8 segmental model 3: MMF3 =/3*10*2*351*0.4 = 4863
12/8 segmental model 4: MMF4 = /3 ¥10*2%227%0.4 = 3145

b) Conventional Short Pitched 12/8 SRM

There are four coils per phase and each coil side fills one half slot.

MMF (per phase)=J§ (for the maximum value of the current)

*10(current density)*4 (two coils per phase)*half area of one slot * slot fill factor

Model t /A =033, t =t : MMES = /3 ¥10*4*(430/2) *0.4 = 5958

r N

Model t, /A=04, t =t,: MMF6 = /3 *10* 4 *(340/2) * 0.4 = 4766

58



3 Applying the Segmental Concept to a 3-Phase, Fully Pitched SRM

Calculation of the torque for comparison:

Average Torque per unit Length = [Number of the phases * the number of the loops

per cycle* area between the aligned to the unaligned position})/ 2=

The 12/8 new segmented-rotor SRM: has three phases and there are eight energy

loops per cycle. This is the same as the conventional SRM.

*

The average torque =32 8 area enclosed by the aligned and the unaligned
T

positions.

Comparison Based on Fixed Current Density
800 - \ : , ,

4

1- Casel new F.P.
2- CaseZ new F.P.

i Cased new [.f
5-Con. S.P. 033
6-Con. S.P. 04

Torque per unit Length per Turn

— -

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
MMF

Fig. 3.6.a Comparison Based on Fixed Current Density
Black dots represent the calculated MMF for each machine corresponding to a

current density of 10 A/mm?

The Y-axis in Fig. 3.6.a is the torque per unit length per turn. The MMF on the x-axis
is for two slots of the new design because there are two coils per phase in all the new
SRMs. So the entire resultant MMF per phase is from two coils; each coil fills two

stator slots completely linking one stator pole arc. But in the conventional SRMs the
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x-axis is the MMF for four coils because there are four coils per phase, each coil links

one stator tooth and fills two halves of two stator slots.

3.5 Comparison Based on Fixed Copper Loss

Copper Losses = J* *p * Copper Volume.
For constant losses: J* * Copper Volume=Constant;,
J? *Slot Area= Constant;

1
slotarea

Ja

Calculation of the current density.
The current density is inversely proportional to the square root of the slot area if the

overall loss is to be held constant.

a)for the new 12/8 full pitch SRM:

L 44032
107 *0.615
1
0| ————a 49.81
107 *0.403
1
R K
107 *0.351

f 1
o _3—(1 6637
107 *0.227

b)for the conventional short pitched SRM:
Model 1: /A = 0.33

JSaJ—_;l———a 48.22
10~ *0.43

Model 2: /A =0.4

J@LJ%Q 54.23
107 *0.34

a
a

Jl
J2
J3
J4
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3 Applying the Segmental Concept to a 3-Phase, Fully Pitched SRM

Taking the conventional machine with t/A = 0.33 as a reference and using a peak
MMF of 3500 AT it is now possible to determine the MMF in the other machines for

the same loss, as follows: -
MMF,0J;A; & MMF al A,

MMEF, _JA,
MMF,  JA,

* *
MME, = 3500%*40.3238*615 4186
48.22*430

MMF(s) for the new fully pitched 12/8 models
Model 1 4186
Model 2 3388
Model 3 3161
Model 4 2542

MMF(s) for the conventional 12/8 short pitched models

Model 1: 0.33 3500
Model 2: 0.4 3148
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Comparison Based on Fixed Copper Loss
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Fig. 3.6.b Comparison between the New SRM and the Conventional One
Based on Fixed Copper Losses

Black dots correspond to point of equal winding loss

Fig. 3.6.b shows the comparison between the new designs and the conventional
designs based on fixed copper loss.

It can be seen that, irrespective of whether fixed current density or fixed copper loss
criteria are applied, the new segmental designs 3 and 4, which are those with wider
teeth, give by far the greatest performance. For a fixed current density the maximum
performance occurs with design 3, because the loss of MMF with design 4 (wider
teeth give a lower slot area) more than compensates for the increase in flux. Note
how the torque produced is approximately double that of the conventional designs.
For a fixed winding loss design 4 outperforms design 3, as shown in Fig. 3.6b. The
conclusion is that the optimum value of tooth width is between that of model 3 and
model 4.

From the above table there is a ratio t/A between the 0.56 and 0.729 of models 3 and
4 which gives the optimum solution. These models were examined in more detail,
along with an additional model, employing an intermediate value of /A=0.67. This
latter ratio is useful for comparing the two types of SRM. For example one of the

conventional design, with the standard ratio (t/A=0.33), and the new optimum design,
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3 Applying the Segmental Concept to a 3-Phase, Fully Pitched SRM

ratio of stator tooth width / rotor pole pitch = 0.33 (t/A=0.67), to see the percentage

increase in the torque and the performance for the same ratio of the tooth width to

the pole arc.
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Fig. 3.7 Comparing the Aligned and the Unaligned Positions with the Best Two

Models

This comparison is given in Fig. 3.7, which shows the aligned and unaligned flux-

linkage curves for the three models of different tooth width (the magnetic vector

potential per coil versus the MMF per slot) (Appendix 1).
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Fig. 3.8 Studying the Gain in the Output when the Slot Area Decreases
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Fig. 3.8 shows the impact of changing the tooth width on both the torque and the slot
area. The target from these two graphs is to understand the effect of changing the
tooth width on both the torque and the slot area to get the highest possible torque
and at the same moment to leave enough slot area for the conductors.

When the tooth width is small the output is low. Starting to increase the tooth width
causes the torque to increase by a high ratio, because the Flux-Linkage trajectory is
in the linear region and has low saturation. But after that widening the tooth width
increases the torque only a small amount because the flux-linkage trajectory moves
into the deeply saturated region. So widening the tooth width must stop because
there is not enough area for conductors and at the same moment the gain in the
torque is small.

The choice of t/A=0.67 seems to give a good compromise between flux-linkage per

unit MMF and slot area and was therefore chosen for the prototype.

3.6 Searching for the Best Way to Fit the Segments to the Shaft

After finishing the design of the magnetic and electric circuit of the new motor the
mechanical design has to be considered. The first step in the mechanical design to
allow successful building of the new motor is the manner of fitting the segments to
the shaft. The fitting must not adversely affect the design of the magnetic circuit.

Fig. 3.9 shows how the segments will be fitted in the shaft. The eight rotor segments
will be constructed from stacks of separate laminations, which will be assembled onto
a non-magnetic shaft and will be held by a stainless steel wedging system. The
wedges fit into dovetails in the segments, and they will then be bolted to the shaft.

The segments will be also clamped axially using end-rings.
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Rotor Segments

“{H===> Non Magnetic Shaft (==

Rotor Segment Retaining Wedge

Fig. 3.9 Wedging System Used to Hold the Rotor Segments onto the Rotor
Shaft

A brief study of the shape of the dovetail segments was then undertaken. Two
examples are shown below; one which uses wide, shallow segments and one which

uses deeper, segments, so that the dovetails of adjacent segments may be located
further apart.
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3.6.1 Wide Fitting
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Fig. 3.10 Wide Fitting

Fig. 3.10 illustrates how wide fitting of the segments slightly decreases the reluctance
in the unaligned position, but the reluctance in the unaligned position is decreased by
a larger amount, so the area between the aligned curves is decreased, leading to a

reduction in torque capability.
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3.6.2 Deep and Tapered Fitting
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Fig. 3.11 New Way of Fitting the Segments to the Shaft

Fig. 3.11 shows how the deep and tapered fitting has very little impact upon the

magnetic characteristics. This design was therefore used in construction of the

prototype.
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3.7 The Characteristic of the New Complete-Optimised Fully Pitched 12/8
Segmented Rotor SRM

Fig. 3.12 Optimised New 12/8 SRM and the Magnetic Flux Plot
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Fig. 3.12 shows the magnetic flux plot of the aligned and the unaligned positions of
the new optimised 12/8 segmented-rotor SRM. The rotor segment is shaped to be
fitted properly in the shaft without affecting the magnetic circuit design. The flux plot
shows the cross leakage flux. The shaft and all the materials between the segments
are modelled as having free space permeability.

The data of the optimum design is given below, allowing for comparison with the

previous cases of the new design and the conventional design:

Area of slot=272 mm?
For the comparison of fixed current density
MMF optimum=+/3 *10*2*0.4*272=3768.94

For the comparison of fixed loss

1
J optimum Oy }—a 60.63
Optimum 10_3 * 0272

MME, =2783.41

Optimum

3.8 Checking the Flux Density in the New SRM

According to the key-design of this new type of SRM the flux density must be uniform
through the flux path in the aligned position to maximise the inductance in the aligned
position. Also one section of the flux loop in the unaligned position must be non-
magnetic so as to maximise the reluctance in the unaligned position. These two
things must be checked from the finite element particularly at high value of MMF (the

flux density and the saturation in different parts in the magnetic circuit).
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Fig. 3.13.a Aligned Position (MMF/Slot=3000)
Fig. 3.13.a shows the 12/8 new optimised segmented-rotor SRM in the aligned
position and the distribution of the flux density in the aligned position. The flux

density is approximately the same around the conductors.

Conductor _ Conductor

Non-magnetic
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Fig. 3.13.b Unaligned Position (MMF/Slot=3000)

Fig. 3.13.b shows the flux density distribution in the unaligned position of the 12/8
fully pitched segmented-rotor SRM. One section is completely non-magnetic. The

flux is the cross leakage flux only.
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Fig. 3.14.b Saturation in the Unaligned Position (MMF/Slot=3000)

Fig. 3.14 shows little saturation in the aligned and the unaligned positions.
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3.9 The Predicted Characteristics of the New Optimised Fully Pitched 12/8

Segmented-Rotor SRM (adaptive finite element model)

Fig. 3.15.a shows the flux distribution through the movement from aligned to
unaligned positions (all positions in mechanical degrees). To give accurate
representation of the Flux-Linkage characteristic models for different rotor positions

were built and solved by the adaptive finite element.
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22.5
Fig. 3.15.a 12/8 Segmented-Rotor SRM Magnetic Flux Plot for Different Rotor
Positions
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Fig. 3.15.b Magnetic Vector Potential per Coil versus the MMF per Slot of the
New 12/8 SRM
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Fig. 3.15.b shows the magnetic vector potential of the new SRM. It is assumed there
are two coils per phase. The characteristic of the magnetic vector potential per coil
versus the MMF per slot is believed accurate. Each point was obtained from
modelling using a 2D adaptive finite element model. No account of end-windings and
other end effects is included.

3.10 Overview and Comments on the New 12/8 SRM

Fig. 3.16 Simple Structure of the New Motor
The simple structure of the newly designed segmented-rotor SRM shown in Fig. 3.16
can be deceiving. The analysis, design and optimisation are indeed complicated

because several parameters must be chosen simultaneously.

Classical analytical equations to describe the machine performance are not suitable
in this case with high levels of magnetic non-linearity, coupled with non-sinusoidal
excitation techniques and non-sinusoidal spatial variation of parameters which
require analytical models to be over simplified, so that they no-longer adequately
represent the machine. The numerical finite element method presented is both

simple to implement and gives accurate results within a short time period.
3.11 The Segmented-Rotor SRM with Inner Stator
The inner rotor of the new segmented-rotor SRM has a draw back. The rotor

segments are relatively shallow, leaving a large volume for the shaft. This volume is

greater than the required to transmit the torque, but cannot be utilised magnetically.
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This means there are large areas inside the motor that are not used to produce
torque. This problem no longer occurs if the topology is reversed, with the stator on
the inside and the rotor outside. Outer rotor electrical machines are less common
that their inner rotor counterparts but are still frequently encountered. If the machine
is naturally cooled at its outer surface there is a reduced ability to remove heat from

the windings, so the SRM designer must give careful consideration to ventilation.

Rotor Segment

Stator

a) Inner Stator Segmented-Rotor SRM, General Rules of Designing Segmented-

Rotor SRM is used also here
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b) The aligned position

c) The unaligned position
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d) The comparison between the inner rotor and the outer rotor (same W)
Fig. 3.17 Design of the Inner Stator Segmented-Rotor SRM

Fig. 3.17 shows the design of the inner stator segmented-rotor SRM. For the purpose
of comparison the machine was selected to be the same outside diameter as the
inner-segmented rotor. The circle around the machine in Fig.3.17 (b&c) is just to
model the boundary with the adaptive finite elements. The general design rules,
which were developed in chapter (2), were applied here. The stator core back the
overlapping, the tooth width and the height of the segment all are equal. The t/A
used here is the same for the optimum design of this inner segmented rotor
(/2=0.67). The aligned and unaligned positions are shifted down for the outer rotor.
This result was expected because when the rotor became the outer the separation
between the segments increased so the reluctance increased in the unaligned
position; the unaligned position came down. Also the aligned position was not
reduced quite as much as the unaligned because the length of the flux path
increased a little in the aligned position so that the aligned inductance increased.
The slot area of the outer rotor machine is 424 mm? and in the inner rotor is 272
mm?. The conclusion here for this comparison is that the inner stator allows more
slot area for the conductors and the torque may be higher than with the inner rotor

design.
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3.12 Comparison between the Torque Capability of the Segmented-Rotor SRM

and one with an Axially Laminated Rotor

Fig. 3.18 Axial Laminations SRM to Compare with Model W=0.01
Segmented Rotor SRM (One Phase Energised)
Fig. 3.18 shows an axially laminated SRM. The segments are the same size as the

previous model3 of the new segmented-rotor 12/8 fully pitched SRM.
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Fig. 3.19 Comparison between the Segmented-Rotor and Axial Laminations
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Fig. 3.19 shows a comparison between the segmented-rotor SRM and an axially -
laminated SRM. Both have three phases with fully pitched windings and the size of
the segment is the same in both of them. The axial laminations gave less torque
than the segmented rotor because there are gaps between the laminations. These
gaps are needed to reduce the unaligned permaeance, but they also reduce the
aligned permeance. When the ratio of the iron to the gap is 2:1 the aligned saturated
flux-linkage is reduced by approximately one third, so the motor will deliver

approximately 2/3 of the torque of its equivalent segmented-rotor SRM [116-120].

Fig. 3.20 The Flux Follows the Same Shape of the Bent Iron Lamination

It may not be the minimum path (aligned position)

Fig. 3.20 shows that the flux is forced to cross through the segments following the

path defined by the bent iron of the axial lamination.
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3.13 Two Phase Segmented-Rotor SRM

Fig. 3.21 Two Phase Segmented-Rotor Fully Pitch SRM

Fig. 3.21 shows how the segmented-rotor can be used for a two phase machine. In
the aligned position all the segments are energised (i.e. all the 6 segments are able
to produce torque [121]. Horst in his patent [97] invented his SRM to be 2-phase so

that he could energise all the segments simultaneously.

12/6 fully pitched SRM.
Three coils per phase
Two phases only
All the segments are
energised in the aligned position

12/8 fully pitched SRM,
Two coils per phase
Three phases
Half the segments energised are
energised in the aligned position
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Fig. 3.22 Comparing the SRM Designed in this Thesis wit that of the Horst

Invention

Fig. 3.22 shows the area enclosed by the 12/6 is less than that of the 12/8. In
addition there are eight energy loops per cycle in the new SRM design discussed in
this thesis and only six energy loops per cycle for the 12/6 (similar to the Horst
design). So the new SRM presented in this thesis gives more torque than the Horst
design.

3.14 Conclusion

This chapter develops the segmental concept of a three phase segmented-rotor
SRM. It starts from the basis of segmental design and develops magnetic circuit
parameters as a function of the stator tooth width for the 12/8 fully pitched
segmented-rotor SRM. Different models were built for different values of stator tooth
width and compared with two conventional models of the SRM. The models of the
new design did not give precisely the best stator tooth width, consequently
comparison was used to discriminate between the best two models of the new
design. The optimum value of the tooth width was found to be between the two best

teeth widths from the new design models. From this result the value of t/A=0.67 was
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selected as a basis for the rest of design. The chapter discusses some items
regarding the choice of the stator pole arc between the magnetic circuit (tooth) and
the electric circuit (the windings) plus the way of fitting the segments in the rotor. An
axial lamination design was compared with one model of the new design to prove
that the new design performs better. The chapter presents another design of this
motor which uses the entire volume of the machine to produce torque by introducing

the inner stator segmented-rotor SRM, which allows more area for the conductors.
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4 Analysis and Design of 12/10 Short Pitched Segmented-Rotor
SRM

4.1 Introduction

Single phase machines were initially considered in chapter (2) and it was shown to
be possible to create greater air-gap force densities than with conventional toothed
rotors, once the ratio of effective tooth width to pole pitch exceeded 0.5. In chapter
(3) the general concept of the segmented-rotor was applied to three phase machines,
which naturally led to a design in which the coils span a number of slots. The
simulation has shown much more torque than a conventional SRM for a given frame
size. However, the machine has substantially longer end-windings that will reduce
the electric loading, and make it impractical for applications which combine a short
lamination stack length with a large pole pitch. This chapter seeks to solve this
problem by introducing a new machine topology, which permits the use of short pitch
windings, placed around a single tooth. This concept maintains the torque capability
of the previous design, but uses a much lower volume of copper. The chapter
develops the theoretical basis for the machine configuration and then presents
simulated results for a new 12/10 segmented-rotor SRM; illustrating both static torque

and flux linkage profiles [122-135].
4.2 The Concept of a 3-Phase, Short Pitched, Segmented-Rotor SRM

To develop a three phase design which is suitable for short stack length machines it
is essential that the winding spans a single tooth to keep the end-windings short,
whilst maintaining the condition that only the conductors of a single phase occupy
any one slot. To see how this can achieved, Fig. 4.1 shows the multi tooth winding

design in rectilinear form, illustrating the conductors of a single phase [136-145].
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Fig. 4.1 Rectilinear Representation of the Multi Tooth Winding Segmental SRM,
Showing First, Aligned Position and then Unaligned Position

(b)

It can be seen that each coil actually spans two rotor segments. If the region shown
shaded in Fig. 4.1 were removed then the coil would span a single rotor segment and
would have a shorter end-winding, wrapped around a single tooth. In the resulting
“single toothed winding” arrangement, which is illustrated in Fig. 4.2, the stator teeth
form two separate groups: double width teeth, which are enclosed by a winding, and

standard width teeth which are unwound.
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Fig. 4.2 Rectilinear Representation of the Single Tooth Winding Segmental SRM

Design, Showing First the Aligned Position and Then the Unaligned Position

The unwound teeth still have a function, as they act as return paths for the magnetic
flux. Excitation of a single phase now excites two adjacent slots and the phase
permeance is the sum of the two slot permeances. The tooth pitch of the wound
stator teeth must be equal to the rotor pole pitch, so that the permeance variation of

these two slots with respect to rotor position is in phase [122-124].
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Fig. 4.3 Flux Plots Showing the the Magnetic Flux Distribution in Both Three
Tooth and Single Tooth Winding Segmental Rotor SRMs

(a) Multi tooth design, aligned position (b) Single tooth winding design,
aligned position
(c) Multi tooth design, unaligned position (d) Single tooth winding design,

unaligned position
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Fig. 4.3 shows the flux distribution in both the multi tooth winding design and the
single tooth winding design, with a single phase excitation. Both the aligned position
and the unaligned position are shown. In both cases the rotor pole pitch is
maintained at 20 mm, the air-gap length 0.3 mm and the effective ratio of t/A is 0.67.
(In conventional toothed-rotor SRMs the ratio of tooth width, t, to rotor pole pitch, 4, is
used because it gives a measure of the magnetic utilisation of the machine. In a
segmental rotor machine the concept of tooth width is not so applicable, since the
rotor has no teeth. However, the notation t/A will continue to be used to denote the
wider definition of the proportion of the machine air-gap over an excited rotor pole
which carries air-gap flux in the aligned position.)

The two designs have identical slot shapes, cross-sectional areas and identical core
back depths. The unwound teeth of the single tooth winding design are the same
width as each of the teeth of the multi tooth winding design, whilst the wound teeth
are double this width. The flux plots for the two machines are very similar, except for
the fact that two stator slots and one stator tooth have been removed in the single
tooth winding design. As these regions carried no flux, their removal does not

significantly influence the level of flux-linkage [122-124].
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Fig. 4.4 Magnetic Vector Potential of a Phase Coil as a Function of Coil MMF for

Both Segmental Designs and a Conventional SRM
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Fig. 4.4 shows the flux-linkage curves per unit axial length for the two designs, as
might be expected, they are virtually identical. Indeed, in the unaligned position the
two permeances are within 1% of each other, whilst in the aligned position the
unsaturated permeances are almost identical and the saturated values are within 3%.
As the flux-MMF curves are identical, so is the force produced by any one phase.
Fig. 4.4 also shows flux-linkage curves for the equivalent conventional SRM with a
toothed rotor, indicating how its flux-linkage amounts to only one half of the

segmental designs.

i
s ~

Fig. 4.5 General Machine Arrangement for a 12/10 Three Phase SRM with Single
Tooth Windings

The reasoning above seems to suggest that the single tooth winding design has all
the advantages of the multi tooth winding design, but with shorter end-windings.
However, in reality the comparison is more complicated. The three phase coils of the
multi tooth winding design occupy a peripheral length of four rotor segments, whilst
the three phase coils of the single tooth winding design occupy five segments
because the wound teeth are increased in width. Consequently, in the single tooth
winding design the force exerted per unit area of air-gap is reduced to only 80% of
the multi tooth winding design when the MMF per phase is fixed. It can now be seen
that the single tooth winding design has much shorter end-windings, thereby
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permitting an increased phase MMF for a given loss, but utilisation of the magnetic
circuit is reduced, so that the force density per unit MMF is reduced by 20% [122-
124].

4.3 Design of a 12/10 Segmented Short Pitched 3-Phase SRM

The relationship between the output torque of the new motor and its dimensions,
number of poles, number of turns per phase, excitation current, current conduction
angles etc. is complex. Optimisation of each parameter in the magnetic circuit of this
motor separately is a very complicated process, requiring lots of adaptive finite
element models to be built. For this reason a series of design rules are produced,
based around intuitive maximisation of the flux-linkage in the aligned position and
minimisation of the flux-linkage in the unaligned position. Working within these

design rules the impact of varying tooth width will be once more explored.

4.3.1 General Design Rules

Fig. 4.6 shows the magnetic flux distribution of one phase in both the aligned position
and in the unaligned position. Simple design rules will be produced with regard to
these flux distributions. The rules will seek to keep equal flux density in all flux paths
when in the aligned position, as shown by the dimension “W” in Fig 4.6.a. Rules
concerning the size of slot openings and segment widths are also generated with
regard to the unaligned position of Fig. 4.6.b, making sure that neither the
permeance of the stator slot opening or the permeance between rotor segments is

unduly large.
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Fig. 4.6.b One Section of the 12/10 SRM (unaligned position)

For clarity a complete set of design rules for the single tooth winding design are given
below [122-124].
1. Only one phase winding is contained in any one slot.

2. All coils span a single slot.
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3. Only every other slot is wound in order to satisfy rules 1 and 2.

4. The pitch between two adjacent slots carrying the MMF of one phase is
equal to the rotor pole pitch so that the slot permeances of each phase all
vary in phase with each other.

5. The width of the gap between rotor segments is equal to that of the stator
slot openings. This ensures that neither the rotor nor stator contribute
unnecessarily to the unaligned permeance.

6. The width of the body of the wound stator teeth is equal to twice the width
of overlap between one rotor segment and the tooth tip in the aligned
position. This ensures that the flux density in the body of the tooth is equal
to that in the tooth tips.

7. The width of the body of the unwound teeth is equal to one half that of the
wound teeth, as two unwound teeth carry the return flux of one wound
tooth.

8. The radial depth of both the stator core back and the rotor segments is
equal to the width of the unwound tooth as they only ever carry the flux of

one unwound tooth.

4.3.2 The Impact of Stator Tooth Width

The previous section has described some general design rules. Now the same
question arises that appeared when designing the 12/8 segmented-rotor SRM - what
is the optimum value of the tooth width?

A series of finite element models were built for different values of the parameter “W”
in Fig. 4.6. As with the earlier 12/8 machine the area between the aligned and the
unaligned flux-linkage curves can then be used to estimate performance capability
and will be compared with that of a conventional SRM [126-127].

As in earlier work the rotor outside diameter will be selected to be 60% of the outside
diameter of the stator. The shaft and all the material between the segments will be
modelled as having free space permeability.

The rotor pole arc for the example 12/10 machine, which has a 150 mm outside
diameter, is given by: A, =2*1*0.0454/10=0.0285 m.
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Table 4.1 shows the range of stator tooth widths used for three models of the new

12/10 SRM. The values are selected to correspond to values of t/A varying from 0.33

to 0.7 [128].

2"W/Rotor Pole Pitch = t/\,

Table 4.1 Tooth Widths of the New Design and the Ratio of t/A
Figures 4.7, 4.8 and 4.9 illustrate these three models in both the aligned position and
the unaligned position.

a (aligned position) b (unaligned position)
Fig. 4.7 12/10 Segmented-Rotor SRM (Model1: W=0.00475 m, t/A=0.33)

a (aligned position) b (unaligned position)
Fig. 4.8 12/10 Segmented-Rotor SRM (Model 2: W=0.007 m, t/A=0.49)
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*‘a

>

a (aligned position) b (unaligned position)
Fig. 4.9 12/10 Segmented-Rotor SRM (Model 3: W=0.01 m, t/A=0.7)

Fig. 4.10 shows a comparison between the aligned and the unaligned flux-linkage
characteristics (per meter of axial length) for the three tooth widths, alongside those
of a conventional 12/8 SRM with short pitched windings. Clearly model 1 has teeth
which are too narrow, leading to a low aligned flux-linkage and hence a low torque
capability. As the teeth are widened, the co-energy per unit MMF increases until it is
much greater than that of the conventional 12/8 SRM. It should also be remembered
that each phase of the new 12/10 machine traverses this loop 10 times per
revolution, whilst each phase of the 12/8 only does so 8 times per revolution. Taking
this into account, the new designs of models 2 and 3 ( in which t/A=0.49 and t/A=0.7)

both give more torque than the conventional SRM.
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Fig. 4.10 Comparison between the Different Models of the New Design of 12/10

and the Conventional One

0.0047 § 0.007 0.01

257

Table 4.2
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Table 4.3

Table 4.2 and Table 4.3 show the areas of the slots and the areas enclosed by the

aligned and the unaligned positions for the models of the new design and the

conventional design in order to assess the new design.

The above comparison is based upon a fixed MMF per phase, but takes no account
of the varying slot area. In order to give a more valid evaluation, comparisons based
on fixed current density and fixed losses will be used in a similar manner to that of
chapter (3).

4.4 Comparison between the New SRM and the Conventional for Fixed Current

Density and Fixed Losses

4.4.1 Comparison Based on Fixed Current Density for each case

Assume the current density J_ =10A/mm®

Assume the fill factor =0.4
Assume two coils per phase.
New 12/10 short pitch 12/10 SRM.
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Model1

MMF1 = /3 *10%2*548* 0.4 = 7593.3
Model2

MMF2 = +/3*#10*2%392*0.4 = 5431.71
Model3

MMEF3 = /3 ¥10*2%257%0.4 = 3561

Comparison Based on Fixed Current Density
600 -

1 Casel new:/v SP..
550 - 2casez newSP.

3 Case3 new S.P.
500 "o

450 | -
400 -
350 -

300 -
250 +
200 -
150 -
100 -

50 A

0

Torque per unit Length per Turn

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
MMF

a

4.4.2 Comparison based on Fixed Loss

Copper Losses = J* * p* copper volume =Constant;.
For constant lossJ? * copper volume=Constant.

J? *Slot Area= Constant

f 1
Jo | ———
slotarea
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Calculation of the Current Density:

Sy ————a 4271
107 *0.548

JZ(I Tl———(l 50.5
V107~ *0.392

V| ————a 6237
107 *0.257

Taking the conventional machine with t/A = 0.33 as a reference and using a peak
MMF of 3500 AT it is now possible to determine the MMF in the other machines for
the same loss, as follows: -

MMF,aJ,A; & MMF, ol A,

MME, JA,
MMF, JA,

* *
MMF, = 3500%*42.71*548 —3050.77

48.22*430

MMF(s) for the new fully pitched 12/8 Models
Model 1 3951
Model 2 3342
Model 3 2706
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Fig. 4.11 Comparison between all the Models of the New SRMs and the
Conventional SRM

Fig. 4.11 shows the torque per unit axial length for each tooth width as a function of
slot MMF. In Fig. 4.11 black dots are placed on each curve to represent the MMF
equivalent to a winding r.m.s. current density of 10 A/mm?. The large slot area of
Model 1 gives a high MMF, but still gives a low torque because of the low flux-
linkage. Model 2 gives a marginally greater torque than Model 3, the lower torque
per unit MMF is compensated for by its increased MMF capability. Fig. 4.11.b has
black dots to represent points of equal total windings loss. In this case Model 3 has
the higher value of the torque per unit length per turn (Appendix 2).

Fig 4.11 (c) and (d) give a comparison with both a conventional 12/8 SRM and the
fully pitched windings design of chapter (3). The 12/10 segmental design appears to
perform much better than the conventional SRM, but is worse than the 12/8
segmental design with fully pitched windings. However, the comparison continues to
take no account of endwindings effects: in the fully pitched windings design this will
substantially reduce performance, with the impact depending upon the axial length of

the laminations.
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4.5 Detailed Characteristics of the chosen12/10 SRM

Fig. 4.12 shows the final design of the 12/10 machine, with t/A = 0.7. The rotor
segments are retained onto the shaft in the same manner as earlier and the rotor
“dove tails” are also illustrated. As in the 12/8 segmental design these features are
chosen to minimise any impact upon the magnetic performance whilst still ensuring

adequate retention.

a-aligned position b-unaligned position
Fig. 4.12 Magnetic Flux Plot of the Chosen 12/10 SRM (one phase excited)

Fig. 4.13.a and Fig. 4.13.b shows shading plots indicating first the magnetic flux
density and then the regions of magnetic saturation. In all cases a single phase is
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excited in isolation: red shows areas of high flux density (or saturation) and blue
indicates areas of low flux density (or saturation). In the aligned position similar flux
densities occur throughout the magnetic flux plot, though the saturation plot shows
how greatest values (and therefore the greatest points of saturation) actually occur in
the stator tooth tips and in the rotor segment. In the unaligned position there are
relatively low flux densities throughout [129-143]. The MMF/Slot for the figures shown
=3000.

Conductor /
P - Conductor
N g M )7

BRUNNECLL | CHEE

Conductor

Conductor

Fig. 4.13.a Flux Density in the Aligned Position of the Designed 12/10
Segmented-Rotor SRM (Model 3)

Conductor Conductor

BEREEEECL [ CEnm

Conductor

Fig. 4.13.b Flux Density in the Unaligned Position of the Designed 12/10
Segmented-Rotor SRM (Model 3)
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Conductor
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Fig. 4.13.d Saturation in the unaligned position 12/10 Short Pitched (Model 3)
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4.6 The Predicted Characteristics of the New Optimised Short Pitched 12/10

Segmented-Rotor SRM (adaptive finite element model)

Fig. 4.14 shows the predicted flux-linkage predicted characteristics of the 12/10
design, including a series of positions between the unaligned and aligned position.

The magnetic vector potential per coil versus the MMF per slot is shown.
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Fig. 4.15 The Predicted Static Torque Characteristic

Fig. 4.15 shows the predicted static torque characteristic based on the magnetic

vector potential in Fig. 4.14. This figure uses 270 turns per coil.
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4.7 Orientation of Magnetisation

There is the freedom to choose the magnetic orientation of each coil, and the effect
of this can be understood by initially considering excitation of a single phase. Each
phase is constructed from two coils, positioned at opposite sides of the machine.
The magnetic flux plots of Fig. 4.12 show that there is minimal coupling between the
individual coils of a phase. Consequently the magnetic characteristics of any one
phase are independent of the polarity of the two coils: both may have an MMF
directed radially inwards, both outwards, or one in each direction without having a
measurable effect upon the phase parameters [144].

Consider now the situation when two phases are simultaneously excited. There are
two mechanisms by which the two phases can interact; either due to mutual magnetic
coupling or due to cross saturation of their common magnetic flux paths. The mutual
inductance between phases is minimal, leaving only the cross saturation effect. In
conventional SRMs the rotor and stator core backs carry the flux of all phases: to
prevent cross saturation when multiple phases are excited it is often necessary for
the core back to be deeper than that magnetically required by one phase acting
alone. In the segmental machine the situation is somewhat different. Each portion of
stator core back and each wound tooth carries only the flux of one phase and
therefore can be sized accordingly. Only the unwound teeth, forming the flux return
path, contain the flux of two phases. If the phase coil MMFs all act inwardly then the
return fluxes of two excited phases are both outward and the flux in the unwound
tooth will be the sum of the two phase fluxes. The teeth have been dimensioned to
only take the flux of a single phase, and hence there is the possibility of cross-
saturation between phases reducing the torque. This is most likely to occur when the
machine is operating under voltage control and positive voltage is applied for more
than one third of a cycle. Under all other operating conditions the cross-saturation
effect will be negligible.

The above effect can be removed completely if the MMFs of adjacent stator coils are
directed in the opposite direction i.e. inwards, outwards, inwards, outwards etc.
When this occurs the unwound teeth carry the difference between the flux of adjacent
coils, and hence simultaneous excitation of two phases will actually reduce the
saturation conditions in this region. Note that with this arrangement the unwound

teeth carry bi-directional flux. In addition to having a minor influence upon the torque
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capability of the machine, the direction of the stator coil MMFs influences the iron

loss in the machine. This is covered in more detail in a later chapter.

4.8 Conclusion

This chapter has introduced a new machine design which seeks to overcome the
problem of high end-windings copper losses, encountered in the first design of a
segmented-rotor SRM. The new design has short pitched windings placed around a
single tooth, with only every other tooth having a winding. The reasoning behind the
design was first explained and then a series of design rules generated and used as a
basis for creating a design with a 150 mm outside diameter. The impact of tooth
width was then investigated and it was shown that optimum performance can be
produced when t/A is greater than 0.5. A design with t/A=0.7 was then developed

and flux/MMF characteristics calculated for a series of rotor positions.
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5 Comparison between the New Segmental Machines and

Conventional SRMs

5.1 Introduction

In Chapters 3&4 two different concepts of the new segmented-rotor SRM were
developed. These machines were compared with two designs of a conventional
SRM, using criteria of equal winding loss in the slots or equal current density to
represent different thermal situations. The comparisons made were rather simplistic,
neglecting many important effects, such as end-windings loss and torque ripple. In
this chapter a more detailed comparison is made, in which models for all the

machines are refined.

5.2 Basis of Comparison

Three machines are compared: the conventional design and the two segmental
designs. All three machines will have the same outside diameter (150 mm) and
lamination stack length (150 mm). It will also be assumed that the slot fill factor is
kept at constant value equal 0.46 for all three machines. Experience has shown that
this is the upper bound of what can be achieved in practice. End-winding length will
be estimated for each machine and incorporated into the models.

Each design will be developed on the basis of an equal number of turns (150 per
slot). The machines will be evaluated principally in terms of their torque capability for
a fixed winding loss of 300W. This loss is of the order of magnitude that can be
sustained by machines of this size without exceeding their steady state thermal limit.
By modelling the Flux-Linkage characteristics at a series of rotor positions the static
torque profiles will also be estimated. These will be used as a basis for estimating

torque ripple when operating under current control.

5.3 Characteristics of the Conventional 12/8 SRM

The two conventional SRM models used in earlier chapters corresponded to different

values of the tooth width to pole pitch (t/A). In this chapter the comparison focuses
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upon the design with t/A=0.33, as this design gave the highest average torque
capability of the two designs. The design had a core back width of one half the tooth
width, as it was considered that such a design should give the maximum magnetic
capability. However, such a narrow core back depth would not generally be chosen
for drive applications because the mechanical stiffness of the core is very low. This
results in high levels of acoustic noise, which is a generally known disadvantage of
SRMs. For this reason the core back depth of the design used in this chapter is
increased to 85% of the tooth width. The increased core back depth reduces the slot
area; hence the winding volume and MMF capability are also reduced [145].

Dimensions of the machine modelled are given in Table 5.1.

Fig. 5.1 12/8 Conventional SRM (wide core-backs)

Stator Outside Diameter 180 mm
Shaft Diameter 43.64 mm
Rotor Diameter 90.8 mm
Air Gap Length 0.3 mm

Stator Core-Back 10 mm
Rotor Core Back 10 mm
Stator Tooth Width 11.76 mm
Rotor Tooth Width 11.76 mm

Table 5.1: Dimensions of Wide Core-Back Conventional SRM
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Using 2D finite elements the machine was modelled at 10 discrete rotor angles,
ranging from the aligned to unaligned positions. Fig. 5.2 shows example magnetic

flux distributions for each of these angles.

W%‘%ﬁ

110



5 Comparison between the New Segmental Machines and Conventional SRM

20 22.5

Fig. 5.2 Conventional SRM Models for a Range of Rotor Positions

Fig. 5.3 shows the Flux-Linkage characteristic resulting from the above models. The
vertical axis represents the flux-linkage per phase, whilst the horizontal axis
represents the current per slot [146-147]. Each slot is assumed to contain 150

conductors.
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Fig. 5.3 Flux-Linkage Characteristic versus the Current for the Wide Core-

Backs Conventional SRM

For completeness, Fig. 5.4 shows a comparison between the current design of SRM,
with its wide core-back and the earlier model employing a narrow core-back. The
increased core back depth has resulted in increased flux-linkage at high excitation
levels in the aligned position, so the machine is capable of more torque per unit

MMF. Note: however, that the stator slot area is decreased by Wﬂzeg%,

resulting in a lower MMF capability.
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Fig. 5.4 Comparison between the Wide Core Back and the Thin Core Back
SRMs

The static torque characteristics for this machine can be derived from the Flux-
Linkage characteristic of Fig. 5.3 by determining the instantaneous variation of co-
energy and differentiating this with respect to position.

Static torque characteristics, derived for this machine in the above way, are shown

below.
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Fig. 5.5 Predicted Static Torque Characteristic for the 12/8 Conventional SRM
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5.4 Characteristics of the Segmented-Rotor 12/8 SRM
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Fig. 5.6 Flux-Linkage Characteristic of the 12/8 Segmented-Rotor SRM

(150 conductors/slot)

This characteristic (Flux-Linkage for this assumed number of turns) was determined

from the magnetic vector potential characteristic which was produced in chapter (3)
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Fig. 5.7 Static Torque Characteristic of the 12/8 Segmented-Rotor SRM

(150 conductors/slot)
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Fig. 5.7 shows the static torque characteristic of 12/8 segmented-rotor SRM based
on predicted Flux-Linkage characteristic using the 2D-FE.

5.5 Characteristic of the Segmented-Rotor 12/10 SRM

Z4 : ; ‘
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Fig. 5.8 Flux-Linkage Characteristic of the 12/10 Segmented-Rotor SRM
This characteristic was determined from the magnetic vector potential characteristic

which was produced in chapter (4).
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Fig. 5.9 Static Torque Characteristic of the 12/10 Segmented-Rotor SRM
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Fig. 5.9 shows the static torque characteristic of 12/10 segmented-rotor SRM based
on predicted Flux-Linkage characteristic using the 2D-FE.

5.6 Evaluation of Winding Turn Length
5.6.1 Conventional 12/8 SRM

Stator to

‘ =
! t ‘
K : |
¥ v 3 s

Fig. 5.10 One Stator Tooth and Two Stator Slots

Fig. 5.10 shows one stator tooth and two stator slots. There are four coils per phase.
Each caoil fills two halves of two stator slots, as shown below:

// ™,
N
/ \\\ \\\

// /A\\
V& 2
B P

The circumferential length of the section shown (y) from the end-winding turns is

estimated as follows:

1-The length is taken as average distance from the centre of the windings of the coil
on the right side of the tooth to the centre of the windings of the coil on the left side of
the tooth.

2-Rst_inner is the inner radius of the stator, Lps is the stator tooth height and t is the
stator tooth width.

3-The mean circumferential distance for one endwinding arc =(27/12)*
(Rst_innertLps/2). Subtracting the stator tooth width from this value approximately gives

the mean circumferential length between winding centres.
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5 Comparison between the New Segmental Machines and Conventional SRM

_,(2n(Rst _inner + Lps/2)/12) -t
= = 5

+1t)=0.02037m.

The axial length of the end-winding is assumed to equal 1.5 times the stator tooth
width [62]. This is based on measurements on some prototypes of the conventional
SRM.

Total length of one turn=2*0.15+2*(1.5*0.01176)+2*0.02037=0.37708m

5.6.2 New Segmented-Rotor 12/8 SRM Fully Pitched 12/8

Fig. 5.11 Cross Section of 12/8 Segmented-Rotor SRM Showing the Position of
R_Slot

R_slot is the radius of the centre of the slot = inner radius of the stator + half the
height of the stator pole=0.0457+0.0175/2=0.05445 m
S (the circumfrential length between the centre of slot A and slot B) =

21 *0.05445
12

*3=0.0855m

D/4

~ " Dis
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5 Comparison between the New Segmental Machines and Conventional SRM

Assume the axial length of the end-windings (from one end only)=D/4, where D is the
outer diameter of the machine [62] (once more this is based on measurements of

prototype conventional SRM with fully pitched windings).

Total length of one turn=4*D/4+2L+2S = 0.15+2*0.15+2*0.0855=0.621m.

5.6.3 New Segmented-Rotor Short Pitched SRM 12/10

Sye I
le oo, . g (
\ YN A9
\ N5 A y 83
| e - <« > Yf‘ ~ a § /'
> | > \ e o
b ;'/ 3 \ ( \ 4 :
L NI
\\\ W g i
=2 3
main stator pole

Fig. 5.12 Cross Section of 12/10 Segmented-Rotor SRM showing the Position of

R_cen_slot

Assume once more that the axial length of the end-winding length in the short pitched
segmented-rotor SRM is 1.5 times the main tooth width [62].

The main tooth width = 20mm

The mean circumferential arc of the endwindings is determined to be 34.4 degrees.
This gives a circumferential length of 33.3 mm at the mean radius of the slot.

(| 1t | )
u— length of the tooth L —u

L+1.5t

Fig. 5.13 One Stator Tooth and the Conductor

Hence the total length of one turn = 2*0.15 + 2*(1.5*0.02) +2*0.03332=0.426m
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5 Comparison between the New Segmental Machines and Conventional SRM

Volume of the Copper Weight of the Copper

12/8 Conventional SRM
6'(0.377°0.46°332*10°9= 8940°345.52'10¢=3.08 kg

34552104

12/8 Segmented-Rotor 6(0.62°0.46°272*109= 8940°466.24'10"M*=4.168 kg
SRM 466.24'10°9n*

12/10 Segmented-Rotor
SRM

aQ4n: TOTON .
67(0.42665'0.46'257109= 8940°302.634°10%=2.706 kg
302.631*10°4n?

Table 5.2: Volume and Weight of Copper in Each SRM

Yolume Including End-Winding Turns
=x"r*L(including end-winding)

12/8 Conventional SRM ='(0.075)*'(0.15+1.5°0.01176)=2.9624"104m*

12/8 Segme nted-Rotor l'(ﬂ.ﬂ?ﬁ):'(o.1540.075)=3.97ﬁ *109m?
SRM

12/10 Sngented_Rotor x'(0.075)*'(0.15+1.5'0.02)=3.18"10"3n*
SRM

Table 5.3: Volume of Each SRM

5.7 Current Capability for 300w of Winding Loss

5.7.1 The 12/8 Conventional SRM

Assuming four coils per phase each coil links one stator tooth and a fill factor of 0.46.

Copper loss for 3-phases

P=3)%pV,,
300=3*2*(J)?*0.0178*10°*0.37708*0.46*332*10°®
J=6.98 Amp/mm?
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5 Comparison between the New Segmental Machines and Conventional SRM

If the phase is excited with constant current for one third of a cycle then the peak
value of current is given by

I=+/3 *6.984*10°+0.46*332*10%/150=12.3Amp

5.7.2 The 12/8 Segmented-Rotor SRM

Copper losses of 3-phase P =3J°pV,,
300=3*2*(J*10%)%*0.0178*10®* 0.621*0.46*272*10°®
So J=6.00 Amp/mm?

1=4/3 *6*10°%%0.46*272*10%/150=8.68Amp

5.7.3 The 12/10 Segmented-Rotor SRM

Copper loss for 3 phase 12/10

P=3J%pV,,

Area of one slot = 0.257*10° m?.
300=6*[J**0.0178*10°*(0.42665*0.46*0.257*10%)]
J=7.463A/mm?

1=/3 J*Agong= /3 *7.463*10°%%0.46*0.257*10°%/150=10.18 Amp.

5.8 Mean Torque Capability

This section is dedicated to determine the average torque corresponding to the
calculated current based on 300W copper loss in each machine. It assumes ideal

excitation for each machine (rectangular pulse for 1/3 of a cycle).
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5 Comparison between the New Segmental Machines and Conventional SRM

5.8.1 The 12/8 Conventional SRM

[ —
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Fig. 5.14 Area which Gives Highest value of Torque During Running

(Assume ideal excitation, rectangle pulse for 15 mechanical degrees)
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Fig. 5.15 Average Torque versus the Current, 12/8 Conventional SRM

(15 mechanical degrees)

From Fig. 5.15 at current =12.3 Amp the torque is 24 Nm.
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5.8.2 The 12/8 Segmented-Rotor SRM

80 1

70 A

Fig.

60 1

55
50 -
45 -

w -
o o

——0
— 1
—3
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4
—5

—B

—_—38
________________________ 10
"

— 12
—13

——14

15

,,,,,,

1875 3.75 5625 75 9375 1125 13125 15 16.875 18.75 20625 225
Position

5.16 Area which Gives Highest value of Torque during Running

(Assuming ideal excitation, 1/3 of the cycle rectangle pulse)
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Fig. 5.17 Average Torque versus the Current 12/8 Segmented Rotor the (torque

for 15 mechanical degrees)

From Fig. 5.17 at current = 8.68 Amp the torque is 28 Nm.
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5 Comparison between the New Segmental Machines and Conventional SRM

5.8.3 The 12/1

0 Segmented-Rotor SRM

Assuming ideal excitation (1/3 of the cycle rectangle pulse) so the effective running

torque occurs over 12 mechanical degrees only (2/3 the cycle). Fig. 5.18 shows the

predicted instantaneous torque profiles when constant currents flow. Fig. 5.19 then

gives the mean torque for this excitation pattern as a function of current. Fig. 5.20

and Fig. 5.21 show the magnetic vector potential and flux-linkage in the three

machines, whilst Fig. 5.22 shows the co-energy converted per electrical cycle in each

case.
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Fig. 5.18 Area which gives the Highest Value of Torque during Running

Average running torque
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Fig. 5.19 Average Torque versus the Current (T for 12 degrees only)
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5 Comparison between the New Segmental Machines and Conventional SRM

From Fig. 5.19 at current = 10.18 Amp the torque is 36 Nm.

Magnetic Vector Potential

0.025 -

0.02 -

0.01

0.005 -

5 -

0.01 + -

12/8 seg

12/10 seg

T T T T T T T T T T T T T 1

300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200
mmf

Fig. 5.20 Comparison between the Magnetic Vector Potential for the three

Flux-Linkage

Machines

—
1

0.5 A

12/8 seg

12/10 seg

5 10 15 20 25 30
Current

Fig. 5.21 Comparison between the Flux-Linkage for the three Machines

(Assuming 150 Conductors / Slot)
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12/8 seg

12/10 seg

0.02 -

0.015 A

12/8 S.P. conventional

0.01 -

Magnetic Vector Potential

0.005 -

o "’IV T T T T & T T T T T T T T hs
0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200

mmf

Fig. 5.22 Areas Enclosed between the Aligned and the Unaligned Positions for
Fixed Copper Loss 300 Watts (Under Voltage Control)
Magnetic Vector Potential per Slot versus the MMF per Slot for each SRM

The area between the aligned and the unaligned positions is proportional to the
output torque. This area must be multiplied by eight for the 12/8 SRM and by 10 for
the 12/10 SRM in order to determine the energy converted to torque when rotating

through a complete revolution.
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5 Comparison between the New Segmental Machines and Conventional SRM

New New Convention
segmented | segmented 12/8
rotor 12/8 rotor 12/10

Average length

Of one turn 0.621m 0.426m 0.377m
Slot area mm? 279 257 332
J for 300Watts 6 7.463 6.98

MMF per Slot 150*8.683= | 150*10.18= 1560*12.3=

1302.48 1527 1845
Average torques 28 36 24
NM
Specific torque
(torque/copper 6790.74 11320.75 81015.39
volume)

Specific torque
(torque/mass of 6.478 13.3 7.79
the copper)

Table 5.4: General Comparison between the three SRMs

5.9 Torque Ripple

Torque ripple in the three machines will be compared at high current, assuming that
each machine is excited with constant current in a conducting phase, with each
phase conducting for one third of a cycle. The machine is assumed to be operating
at very low speed, so that commutation between phases is instantaneous. Torque

ripple is calculated using the predicted static torque characteristic [148-162].
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Fig. 5.23 Torque Ripple in the Conventional 12/8 SRM

T . -T )
o maximum intersection
Percentage Ripples = T [154]
maximum
Percentage ripple = 59.15%
——0
80 - —a—1
12/8 Segmented-Rotor SRM 2
Conduction Angle =1/3 of the Cycle | —3
70 _._;
—r—05
_7
15 Amp 5
9
10
"
0 Am 5
- : p —13
E e
(=]
-

Position

Fig. 5.24 Torque Ripple in 12/8 Segmented Rotor SRM

Percentage ripple = 54.41%
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Fig. 5.25 Torque Ripple in 12/10 Segmented Rotor SRM

Percentage Ripple = 49.31%

5.10 Conclusion

This chapter makes a comparison between the different SRMs, taking endwinding
effects into account. The output of each machine was calculated to assess the gain
from the new design before building any prototype. Whilst both segmental machines
are predicted to outperform a conventional SRM, the new short-pitched 12/10
segmented-rotor SRM has shown the best results, although it appears that torque

ripple is increased in the segmental designs.
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6 Building and Testing the New 12/8 SRM Prototype

6 Building and Testing the New 12/8 SRM Prototype
6.1 Introduction

This chapter describes the construction and static testing of a prototype of the new
segmented-rotor SRM, as designed in chapter 3. Measurements made upon the
prototype machine are then compared with those predicted using finite element
analysis. Finally the overall torque capability of the machine is assessed in relation

to that of other conventional switched reluctance machines [166-167].

The machine has three phases with an inner rotor and outer stator. Rotor and stator
laminations were laser cut and use a standard 0.5 mm lamination steel, often used in
induction motors, with the manufacturer’s trade name “Scotsil 400”. The laminations
were then coated with an insulation coating with the trade name “Kor-C” [178-179].
The rotor diameter, the outside stator diameter, the air gap length and the axial
length for the new design are equal to the same equivalent physical parameters of a
conventional 12/8 SRM which was built previously at the University of Newcastle.
This enables an experimental comparison of the results for the new segmented-rotor

SRM with an equivalent conventional SRM.

6.2 Manufacturing of 12/8 New Segmented-Rotor SRM

The prototype three phase segmented-rotor SRM has 12 teeth on the stator and 8
rotor segments. The windings are fully pitched in that they span one complete
magnetic pole of the machine. However, the machine should not be confused with a
SRM with fully pitched windings. Unlike the segmental machine, these latter
machines use the changing mutual coupling between phases to produce torque and
therefore require more than one phase to be excited at any one position. The
segmental machines have virtually no mutual coupling between the phases,
operating on a changing self inductance like a conventional short pitched winding
SRM. As the coils must span three stator teeth this topology requires each end-
winding of the machine to span one quarter of the machine, i.e. it is a four pole

winding. This gives substantially shorter end-windings than a 6/4 segmental
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6 Building and Testing the New 12/8 SRM Prototype

machine, in which the end-windings would have to span one half of the machine,
however they are still very substantially longer than those of a conventional short
pitched winding SRM. This is important for end-winding copper loss [69-70].

The new optimised SRM has a of ratio t/A =0.67. This ratio requires the stator teeth
to be of the same width as that of a conventional SRM with a t/A of 0.33. An
experimental machine with this t/A already exists, making comparison between the
two machine types much easier, as slot areas and stator magnetic dimensions are

similar.

6.2.1 Rotor Assembly

The eight rotor segments are constructed from stacks of separate laminations,
assembled onto a non-magnetic shaft and held by a non-magnetic steel wedging
system. It is essential that these components are non-magnetic so that they do not
affect the static characteristics of the machine. Of course eddy currents may affect
the dynamic performance, but it was judged that this would be of minor importance
since the wedges and shaft are well away from the areas of high flux density. The
rotor segments require both circumferential location and retention against centripetal
and magnetic radial forces when rotating. Circumferential location was achieved by
using flat bottoms on the rotor segment laminations, matched into channels in the
shaft. The wedges fit into dovetails in the segments, and are then bolted to the shaft.

The segments are also clamped axially using end-rings [170-171].

rotor segment

rotor segments

Non magnetic Shaft

L\ >
> «

Fig. 6.1 Wedging System used to hold the Rotor Segments onto the Rotor Shaft
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6 Building and Testing the New 12/8 SRM Prototype

LSRR 8 IS GO G L N Y

Fig. 6.2 Segment Stack and Assembled Rotor

Fig. 6.2 shows a photograph of the assembled rotor. To further increase mechanical
rigidity the rotor was then potted using an epoxy compound, before turning in a lathe
to give the required final outside diameter. The assembly arrangement was
calculated to give safe operation up to a maximum of 30,000 rpom. Higher speeds
would be possible if larger bolts were employed to hold the wedging system [172-
173].

}yf# ity
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Fig. 6.3 12/8 Segmented-Rotor SRM during its Building
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6 Building and Testing the New 12/8 SRM Prototype

Fig. 6.4 End-Windings Turns
Fig. 6.4 shows the details of the stator end winding. It is a standard double layer
winding, commonly used in AC machines. The end winding stands out 37 mm at
each end of the lamination stack, and is therefore significantly longer than in a

standard SRM, but certainly no longer than is typical in an induction motor [174-175]

(Appendix 3).

Fig. 6.5 Complete Rotor and Stator
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6 Building and Testing the New 12/8 SRM Prototype

Fig. 6.5 shows the complete stator and the complete rotor after building [176-180],
with measured details given in Table 6.1. The figure shows the casing fitting the
welded laminations. It was heated to expand then the welded laminations were put
in and left to cool to fit the laminations. The figure shows the ventilation ducts in the

stator casing and the fins for cooling.

Segmental Rotor SRM

Toothed Rotor SRM

Number of Phases 3 3
Number of Stator Slots 12 12
Number of Rotor 8 8
Segments/teeth
Outside Diameter 150.0 mm 152.6 mm
Stack Axial Length 150.0 mm 150.00 mm
(rotor and stator)
Rotor Outside Diameter 90.8 mm 89.6 mm
Air-gap Length 0.3 mm 0.25 mm

Stator Tooth Width

11.93 mm (parallel
sided)

12.05 mm at tip, with 12

degree taper

Arc of Stator Tooth Tip

22.5 degrees

15.0 degrees

Stator Core Back depth

11.9 mm

10.6 mm

Arc of Rotor

37.5 degrees

16.2 degrees

Segments/teeth.
Number of Series 300 204
Turns/Phase
Coil Span 3 slots (90 mechanical 3 slots (90 mechanical
degrees) degrees)
Wire Diameter 1.0 mm 1.20 mm
Slot fill-factor (copper 46% 42%
area to overall slot
area)
Resistance per phase 3.58 0 18250

@ 20 degrees C

Table 6.1 Dimensions of the Prototype Machine and a Fully Pitched Winding

Toothed Rotor SRM, Used for Comparison.
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6.3 Static Test of the 12/8 Segmented-Rotor SRM

Because the magnetic field in an SRM is not significantly affected by eddy currents,
the static and dynamic characteristics should be effectively identical. Furthermore,
because there is very low coupling between phases, excitation of one phase in
isolation should be enough to measure the major parameters. However, the
characteristics are substantially complicated due to the highly non-linear form of the

magnetic characteristics.

Rather than use inductance, it is more appropriate for analysis to use the variation of
flux-linkage with current in a SRM. The flux-linkage of any one experimental machine
is only a function of excitation current and rotor position. This section will present
measurements of the flux-linkage characteristics of this machine. It will also show
measurements of the shaft torque, indicating how that varies with both position and

excitation current.

6.3.1 Thermal Testing

Before proceeding with the magnetic testing the machine was first excited with d.c.
current to ascertain it's thermal performance. The machine was stationary for this
test, with all three phases connected in series and carrying a current of 3.05 amps.
Average temperature rise in the winding was derived from measurement of the
winding resistance and knowledge of the thermal coefficient of resistivity, whilst that
in of the case was measured using a thermocouple. Although the aluminium casing is
finned, there was no fan ventilation. It is interesting to see how approximately 60% of
the temperature rise is between the casing and ambient, with a time constant of close
to 80 minutes, and 40% between the winding and casing, with a time constant of 3
minutes.

Based upon these results it was determined that 100 degree centigrade rise

corresponded to a loss of 272W and r.m.s current of 4.67 A.
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T T 1
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Time

Fig. 6.6 Thermal Test of This Machine
6.3.2 Static Torque Characteristic

The torque production in a SRM comes from the tendency of the rotor poles to align
with the excited stator poles. The rotor moves from zero-torque unstable position
(unaligned position) to a zero-torque stable position (aligned poles). Between these
two positions, the value of static torque varies assuming a particular shape. The
torque versus rotor position characteristic (static torque characteristic) gives useful
information about the capability of the magnetic structure to generate average
torques during normal motor operations and gives an indication of likely torque ripple
[69-70][181].

The torque production as a function of rotor angle and phase current was examined
through a series of locked rotor tests. The torque produced in the SRM depends only
on angle and current and is independent of the speed. Initially these tests were
performed using a torque transducer coupled to the machine shaft via flexible

couplings at one end and clamped at the other. At some currents and angles the
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machine torque was large enough to significantly twist the couplings so the angle
must be read with each reading [69-70][181]. The results are displayed in Fig. 6.7.
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Fig. 6.7 Experimental Measurement of Static Torque Characteristic

The general form of the static torque curves is similar to that of a conventional SRM
when the machine is saturated, but differs significantly at low currents. In an
unsaturated conventional SRM the magnetic permeance rises almost linearly with
angle of overlap of the teeth, resulting in an almost constant torque during this
period. In the segmental machine the permeance does not vary in such a simple
manner: as the area of overlap on one side of the magnetic circuit increases, it
decreases on the other. This results in a static torque which rises to reach a peak at
approximately 12.5 degrees from the aligned position [69-70][181].

In toothed rotor SRMs the magnetic flux crosses two air-gaps of identical form. At full
alignment the permeance is at a maximum, and as the rotor moves away from
alignment the permeance falls linearly. For a standard 12/8 motor in which the teeth
of rotor and stator occupy an arc of 15 degrees, the simple approximation outlined
above predicts that the permeance falls to zero when the rotor is displaced 15
degrees from alignment, and remains so until the unaligned position is reached at

22.5 degrees. This variation is shown in Fig. 6.13. Because the rate of change of
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permeance is linear over most of the current stroke the torque produced at constant

current is predicted to be linear.

With the segmental SRM the variation of air-gap permeance with position is more
complex. Magnetic flux flows down one tooth, into a rotor segment and returns via
an adjoining stator tooth. In the aligned position the reluctance of the two air-gaps
linking a rotor segment to adjoining stator teeth are equal but, as the rotor moves
from the aligned position, the reluctance of one air-gap falls whilst that of the other
rises. Hence, as shown in Fig. 6.13, the initial rate of change of permeance is zero
but, as the asymmetry rises, the rate of change of permeance also rises, until it
reaches a maximum at a rotor displacement of 15 degrees. Consequently the torque
increases rapidly up until 15 degrees away from alignment, at which point there
ceases to be any overlap between the rotor segment and one of the stator teeth.
This type of torque variation can be seen in the measurements of Fig. 6.7. The static
torque profiles of the two SRM types are compared and differences explained in
terms of permeance variation. The segmental rotor machine is likely to lead to
slightly higher torque ripple under current control with flat current waveforms [69-
70][181].
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. 12/8 Segmented-Rotor SRM
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Fig. 6.8.a Comparison between Predicted and Measured Torque Characteristics
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Fig. 6.8.b Difference between the Measured and Simulated Torque

Fig. 6.8.b gives a comparison between measured static torque and those predicted
using two dimensional finite element analysis. The comparison is generally good,
both in terms of the shape of the curves and their magnitude. The simulation has
taken no account of three dimensional end effects, and so this comparison is
certainly as good as can be expected. At very large currents the discrepancy is

larger, when the simulation tends to overestimate the mean torque by about 3%.

Calculation of the static torque from the predicted Flux/MMF curves is accomplished
by integrating the flux linkage curves at a series of discrete positions as shown in Fig.
6.9, to determine the co-energy variation with current and position. This integration is
performed using first order approximations to the flux-linkage, thereby introducing
some numerical error into the solution. If a large number of discrete positions are
calculated then there is the danger of rounding error being introduced as the torque
is proportional to the rate of change of flux-linkage. Equally, if too few positions are
used then the calculated torque does not include the higher order variations with

respect to position [69-70].
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Change ir} the flux linkage

Current

Fig. 6.9 Each Step is Approximated to Rectangular Plus Triangular Sections

6.3.3 Mean Torque Capability

Fig. 6.10.a Winding Connection in 12/8 Fully Pitched Toothed-Rotor SRM
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Fig. 6.10.b The Fully Pitched conventional SRM which is included in the
Comparison of the Torque Capability and was Built before in the Lab of the

Newcastle University

The variation of mean torque as a function of total machine winding loss was
determined, the loss being found from the measured machine’s electrical resistance.
This loss estimate assumed that each phase conducted a constant current for one
third of a cycle, with the period of conduction symmetrical about the position of peak
torque. The same torque capability estimate was produced for a conventional SRM
with short-pitched windings (machine A) and with a fully pitched winding SRM (see
Fig. 6.10) with a toothed rotor structure (machine B). The latter was taken directly
from measurements, made upon a machine with the same outside diameter and
lamination stack length. No measured data was available for machine A, so
simulated results are presented instead [69-70].

The short pitched SRM immediately had a major advantage due to its smaller end-

windings: this resulted in it having only 65% of the total winding mass. Hence for a

given loss it could operate with 1/4/0.65 =1.24 times greater r.m.s. current density.
The machine has the same magnetic geometry as machine B, corresponding to
t/A=0.33.
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Mean Torque, Assuming Perfect Current Control
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Fig. 6.11 Comparison between the Conventional (both the Short Pitched and
the Fully Pitched) and the Segmented-Rotor SRMs

Fig. 6.11 give a comparison of mean torque capability as a function of winding loss
for the three machines under unipolar current control. Comparisons take into account
differing end-winding lengths and excitation periods. Curves for the segmental and
conventional fully pitched winding machines are by measurement, whilst that for the
conventional short pitched winding SRM is based upon simulation [69-70].

In comparing machines account is taken of the requirement to have two phases
simultaneously conducting in the conventional fully pitched winding SRM, and the
subsequent increase in winding loss. Fig. 6.11 shows how this machine has 340 W
of winding loss when delivering a mean torque of 24 Nm [69-70].

The segmental rotor machine has been shown to offer increased magnetic flux —
linkage over the other machines. It has an identical winding pattern and very similar

copper mass to machine B, but each phase needs to conduct for only one third of a

141



6 Building and Testing the New 12/8 SRM Prototype

cycle. It can deliver 24Nm of torque with only 260W of loss, which is well within the

steady state thermal capability of the machine.

If the three machines are viewed in terms of torque capability for a given loss, then

for 300W of winding loss (about 100 degree rise without forced ventilation); machine

A can deliver 18.4Nm, machine B 22.0 Nm, and the new segmental machine 26.1

Nm. Fig. 6.11 shows how these gains are apparent over a wide range of winding

loss values.

Two factors are dominant when comparing the torque capability of the machines.

1. The MMF capability of the segmental SRM is reduced because of the additional
length of the end-windings. The fully pitched windings increase the length of each

turn by approximately 55%. For both machines to have the same winding loss

this corresponds to a reduction in MMF capability to J1/1.55=80% of the
conventional toothed-rotor SRM.

2. Each turn of the segmental winding SRM links the flux of two stator teeth and is
therefore has approximately double the flux-linkage of the conventional SRM.

The combination of the above results in 40% more torque in the segmental machine.

Note however that there will be additional space and extra copper cost resulting from

the long end-windings.
6.3.4 Measurement of Flux-Linkage Characteristic

A range of experimental methods may be used for measurement of the flux-linkage

characteristics [182-186]. These include:-

1-Direct measurement using magnetic sensors that measure the flux inside the
motor. This method is not usually applied, as it is very expensive. It requires sensors
to be installed when the motor is assembled, thus complicating the motor design.
Furthermore, any one sensor can only give the flux density at one location, rather

than the desired mean flux-linkage of a coil.
2-Measurment of inductance using ac bridge methods. However, these are limited

effectively to low-power rated machines, since they require additional equipment to

superimpose an ac signal onto a large dc current that must be passed through the
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phase winding. At each angle a number of measurements must be made, which

makes the procedure time consuming.

3-Measuring the flux linkage indirectly: The preferred method of obtaining the motor's
magnetisation characteristics is to indirectly measure the stator flux linkage from
voltage and current measurements on the phase winding circuit. In these methods, a
voltage source is applied to the phase winding, and the terminal voltage and current
are measured. If the phase resistance is known, then the flux linkage can be found

from integration of the voltage.

In most integration techniques, the general principle is to apply a voltage pulse to the
motor winding with the rotor clamped to some fixed position. The current will rise up
to some level, and then the voltage is turned off. Through this time, integration takes
place to determine the instantaneous flux linkage, and, in practice, analogue or digital
integration can be employed.

These latter, locked rotor tests were undertaken to determine the flux-linkage
variation with current and position. A step change in voltage was applied to the
winding of a single phase and the current waveform measured. From integration of
the difference of the applied voltage and the resistive drop the flux-linkage was then
determined and is illustrated in Fig. 6.12 & Fig. 6.13.
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Fig. 6.12 Measured Flux-Linkage Characteristic of the 12/8 New SRM

versus the Current
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Fig. 6.13 Measured Flux-linkage curves as a Function of Current for a Single
Phase in Steps of Equal Angle, Running from the Unaligned Position to the

Aligned Position
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Fig. 6.14 Comparison between the Measured and Simulated Flux-Linkage
Characteristic
Fig. 6.14 shows a direct comparison between measured flux-linkage curves and
those predicted using two dimensional finite element analysis. The measured curves
are of similar form to the predicted ones, but display an increased flux-linkage,
particularly in the unaligned position. This is a direct result of the end-winding
leakage inductance, which has not been included in the two-dimensional finite

element model. Since the end windings are relatively long this effect is significant.

6.4 Conclusions

The chapter presents the design details of the first prototype of the segmented-rotor
SRM. A three phase version has been built and tested. Torque has been measured
as a function of both current and position, showing good agreement with predictions.
Comparisons with a conventional switched reluctance machine of the same outside
diameter and core length has shown a 41% increase in torque per unit copper loss at
thermal limit. The increased end-winding length requires more copper and so the
torque per unit copper mass is not increased. Measured flux-linkage characteristic
were well predicted but show some differences due to the end-winding effect not

being included in the two dimensional finite element model. The greatest difference
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between measured and predicted Flux-Linkage curves occur in the unaligned

position where the phase end-effects are most significant.
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7 Building and Static Testing of the 12/10 Segmented Rotor SRM
Prototype

7.1 Introduction

A three phase rotating demonstrator has been designed in accordance with the rules
developed in chapter (4). The machine has twelve stator teeth, with six coils (two per
phase), wound round every other tooth. The rotor comprises ten magnetically
isolated segments. This chapter briefly describes construction of the machine and

then presents the results of static tests.

7.2 Machine Construction

Fig. 7.1 One Set of Stator and Rotor Laminations before Assembly

Fig. 7.1 shows the cross section of the new 12/10 segmented-rotor short pitched

SRM. One stator lamination and ten rotor segments are shown.
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el a2

Fig. 7.2 Rotor of the 12/10 Single Tooth SRM, Showing the Individual Rotor
Segments

Fig. 7.2 is a photograph of the segmental rotor, showing the laminated segments
mounted onto a non-magnetic shaft. The method of assembly is identical to that of
the 12/8 multi tooth winding segmental machine [69-70] [187-190].

’ ‘ | ' ' ~;

Fig. 7.3 Casing fitted with the Stator after welding the Stator Laminations
Together
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Fig. 7.3 shows the casing of the new SRM, it was heated to expand then the welded
stator laminations was inserted inside it. The casing was then left to cool so it shrink

fitted the stator laminations.

¢\ 7 N

] L\
ra/ \

Fig. 7.4 Fixing the Bearing within the Stator

Fig. 7.4 and Fig. 7.5 are photographs of the single tooth winding stator, clearly
showing the winding arrangement, with each coil wound around a single tooth, and

only every other tooth wound. [122-124].

SERR R o a1 A
Fig. 7.5 Close up of the Stator of the 12/10 Segmental Rotor SRM, Showing the
Non Overlapping Windings, Placed around every other Tooth
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The machine was wound with 1.0mm diameter conductors, as in the multi tooth
winding segmental SRM. The two machines have virtually identical slot areas but,
because the effective slot fill factor fell from 0.46 to 0.41 there was a 10% reduction
in the number of series turns per phase, falling from 300 turns per phase to 270 turns
per phase. The mean end-winding length is reduced from 124 mm to 67 mm,

resulting in a reduction of 20% in the mean turn length [122-124]

7.3 Measuring the Flux-Linkage Characteristic

Locked rotor tests were used to determine the flux-linkage-current-position
characteristics. A d.c. voltage was applied to one phase and the current monitored.

The flux-linkage was then determined using the equation [191-192]:
t
y = _[[V — iR ]dt 6.1)
0

The resistance used in the above calculation was based upon d.c. resistance tests
made at 20 degrees centigrade, giving a resistance of 2.56 Q. During the test it was
assumed that the temperature remained constant and that during the transient the
effective resistance was unaffected by the changing magnetic field in the stator slots.
The rotor was mechanically locked at one end and the rotor position monitored using
a 12 bit digital encoder, mounted on the shaft of the machine. Locking of the rotor
was good enough to ensure that there was no measurable rotor twist during the

transient, so rotor position was constant.

The resulting family of flux-linkage/current curves is illustrated in Fig. 7.6
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Fig. 7.6 Measured Flux-Linkage Curves for the 12/10 Single Tooth Prototype

with a Single Phase Excited. Each Curve is at Constant Position, Running from

the Unaligned to the Aligned Position in 2.0 Mech. Degrees Steps

7.4 Measuring the Static Torque Characteristic

The prototype machine has also been subjected to static torque testing. Once more

the rotor was locked at one end, with a torque transducer placed between the locking

plate and the rotor shaft, with the rotor position measured as above.

Measured

torque/position curves are shown in Fig. 7.7.
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Fig. 7.7 Measured Static Torque Curves for the 12/10 Single Tooth Prototype
with a Single Phase Excited. Each Curve is for a Constant Current, Rising in 2.0
Amp Steps to 20.0 Amp

At high currents the torque variation with position is almost sinusoidal in shape, in a
manner consistent with conventional SRMs operating with high magnetic saturation.
At low currents the machine is operating in a magnetically linear mode, and
significant torque is produced between the aligned position and a displacement of 12
mechanical degrees, corresponding to one third of an electrical cycle. Once more
this is typical of any SRM, but unlike conventional machines the torque profile is not
flat within the torque producing region: it rises with displacement from the aligned
position, producing a peak at approximately twelve degrees. This is because the
permeance of a phase winding does not change linearly with position. This effect

was also encountered on the multi tooth winding segmental SRM (see chapter (6)).
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7.5 Comparison between Measured and Predicted Flux-Linkage Characteristics
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Fig. 7.8 Comparison of Measured and Predicted Flux-Linkage Characteristics

(predicted values shown dashed)

Fig. 7.8 compares the measurements with those predicted using two dimensional
finite elements. The measured and predicted curves for the aligned position are
within 2% of the peak flux-linkage, but the predicted unaligned flux-linkage is 17%
less than the measured value. Predicted values take no account of end-winding
leakage inductance, and this is judged to be the major cause of this error. This
leakage component is also present in the aligned position, but is reduced in its
influence at high excitation currents by saturation of the machine core [192-193].

7.6 Comparing the Predicted and the Measured Torque Characteristic
Finite element analysis was also used to predict the static torque performance

indirectly from the flux-linkage curves. Comparisons with measured values are

shown in Fig. 7.9 for different excitation levels.
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Fig. 7.9 Comparing the Static Torque Characteristic

In all cases the agreement between predicted and measured values is good, with the
predicted torques having the correct shape of the torque profile, but typically
overestimating the torque produced by 5%. This is a direct result of underestimating

the unaligned permeance, as discussed above [194-195].

7.7 Thermal Test Results

The machine was subjected to thermal testing whilst both static and when running at
constant speed under current control, fed from an asymmetric half bridge inverter.
Static test results indicated that a loss of 542 watts in the winding corresponded to an
overall temperature rise of 100 degrees centigrade, of which 52% was due to the
convection drop at the casing surface and 48% to a conduction drop in the winding
and core. Fig. 7.10 shows results taken from running tests with a r.m.s. current of
4.38 Amps at a speed of 512 rpm, corresponding to a winding loss of 177 W. This
indicated that a winding loss of 370 W would give 100 degrees rise. The disparity

154



7 Building and Static Testing of the 12/10 Segmented Rotor SRM Prototype

between static and running tests suggested that there are significant other loss
mechanisms whilst rotating — these will include iron loss, bearing loss and windage.

Note how, like the first prototype, the machine can be modelled by two thermal time
constants; one of three minutes associated with conduction and one of 45 minutes

associated with convection.
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Fig. 7.10 Thermal Test
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Single tooth Multi Tooth Toothed rotor
winding Winding SRM
Segmental Segmental
Rotor SRM Rotor SRM
Number of Phases 3 3 3
Number of Stator Slots 12 12 12
Number of Rotor 10 8 8
Segments/teeth
Outside Diameter 150.0 mm 150.0 mm 1562.6 mm
Stack Axial Length (rotor 150.0 mm 150.0 mm 150.00 mm
and stator)
Rotor Outside Diameter 90.8 mm 90.8 mm 89.6 mm
Air-gap Length 0.3 mm 0.3 mm 0.25 mm
Stator Tooth Width 20.0/10.0 mm 11.93 mm 12.05 mm at tip,
(parallel sided) with 12 degree
taper
Arc of Stator Tooth Tip 30.25/18.5 22.5 degrees 15.0 degrees
degrees
Stator Core Back depth 10.00 11.9 mm 10.6 mm
Arc of Rotor Segments/teeth. | 30.25 degrees 37.5 degrees 16.2 degrees
Number of Series 270 300 204
Turns/Phase
Coil Span in Mech. Degrees | 1 wide tooth: 36 3 slots: 90 3 slots: 90
Effective Wire Diameter 1.0 mm 1.0 mm 1.20 mm
Estimated turn length 435 mm 547 mm 591 mm
Slot fill-factor (copper area 41% 46% 42%
to overall slot area)
Resistance per phase @ 20 2.56 3.58 Q 1.825 Q

degrees C

Table 7.1. Dimensions of the Prototype Machines and a Fully Pitched Winding

Toothed Rotor SRM, used for Comparison.
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7.8 Torque Capability

Based upon measured torque capability, Fig. 7.11 shows the mean torque produced
as a function of winding loss for the prototype machine, alongside those for the multi
tooth winding segmental SRM and two conventional SRMs, one with short pitched
windings and one with fully pitched windings, detailed in table 7.1. All four machines
have the same outside diameter and lamination stack length and all results are
based upon measured static torque performances. For the purposes of this
comparison it is assumed that each machine is operating under current control with
one phase conducting at a time. Throughout the phase conduction period the phase
is assumed to conduct a constant current and the torque output is based upon the
mean measured torque over the period of conduction. Losses presented are based
solely upon winding losses, using the winding resistance of each machine when
running at an average winding temperature of 100 degrees centigrade.

At all loss levels the segmental machines produce substantially more torque than the
conventional SRMs. For 300W of winding loss, which is comfortably within the
thermal limit of all four machines, the conventional SRM produces 18.4 Nm, the fully
pitched winding conventional SRM 22.0 Nm, the multi tooth winding segmental SRM
26.1Nm and the new single tooth winding segmental SRM 26.5 Nm. Hence, in broad
terms the single tooth winding segmental machine is producing the same torque as
the multi tooth winding segmental machine. Whilst it has the same core volume as
the earlier segmental design, it is achieving the same performance with only 71% of
the copper volume [122-124][196].
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Mean Torque (Nm)
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—8— Fully Pitched winding conventional SRM
~ multi tooth winding segmental rotar SRM

—— single tooth winding segmental rotor SRM

Fig. 7.11 Mean Torque Production as a Function of Winding Loss for
Conventional and Segmental SRMs, assuming Perfect Current Control with
each phase Conducting for one Third of a Cycle. (Winding Temperature of 100
Degrees centigrade)

7.9 Conclusion

A novel design of switched reluctance motor, combining a segmental rotor with short
pitched windings has been built and extensively tested. Measured torque and flux-
linkage characteristics have been compared with those predicted using the finite
element method. The concept enables a large increase in the flux linking each turn
of the machine, thereby creating a large increase in torque density. The machine
delivers 44% more torque than a conventional SRM and equals the torque capability
of the previous segmental SRM design in which the windings span three teeth, whilst
using 29% less copper volume. In comparison to the earlier segmental design the
windings are used more efficiently because of the shorter end-winding length, but the
magnetic performance is reduced: these two effects approximately balance out to

give equal torque capability.
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The design offers an advantage over segmental rotor SRMs, with windings spanning
multiple teeth, due to the short length of the end-windings. This makes the concept
particularly suitable for machines of a relatively short axial length and removes this

limitation of the earlier multi tooth segmental designs.
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8 Mutual Interaction between Phases

8.1 Introduction

The chapter investigates the mutual interaction between phases in the new
segmented-rotor SRM with two different modes of operation. First, when the motor
operates with switched excitation in one phase and the second phase has a fixed
MMF. Second, when the motor operates with two phases excited simultaneously.
These two modes of operation are sometimes used in the conventional SRM to
increase the output torque and decrease the torque ripple. In addition, the chapter
tests these modes with the different possible connections in the short pitched
segmental SRM. Mutual inductance between phases can increase or decrease the
output torque according to the level of saturation in the teeth used by the two phases,

so the flux density in the teeth between the phases is investigated.

8.2 Testing the12/8 Segmented-Rotor SRM

8.2.1 Simulating the Machine when there is a Fixed MMF in another Phase

In practical operation there is often overlap of conduction between phases, and so it
is necessary to determine whether the presence of current in one phase affects the
characteristics of the other phases. In this section the 12/8 machine is simulated
using finite elements; one phase is excited whilst a fixed MMF is maintained in the
second phase. There are three things to be examined here [144][197-199]. First, will
the motor give significant output torque or will the torque production collapse?
Second, is the value of torque more or less than the case of no MMF in the second
phase? Third, what is the impact of the polarity of this MMF on the output and the

characteristics?
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BEEREEE. || FERE

Fig. 8.1 (a) Excitation of one Phase Whilst a Second has Fixed MMF, Showing
the Magnetic Flux Plot and the Flux Density Distribution
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Fig. 8.1 (b) Impact of Operating the SRM with Another Phase has a Fixed MMF

of 900 Ampere Turns per Slot

Fig. 8.1 shows the 12/8 segmented-rotor SRM with one phase excited and the other
containing a fixed MMF. The fixed MMF is selected to be 900 (equivalent to 6 Amps,

a medium level of excitation). The impact of this fixed MMF in the second phase on

the characteristic of the first phase is also shown in Fig. 8.1. The aligned and the

unaligned curves are shifted down but the area between them remains the same.

Calculation of the mutual inductance:

Mm=Y2 - _Y¥2

1

N=150 conductors/slot.

The unsaturated Flux-Linkage = 0.0316 (i, =0).

The saturated Flux-Linkage = 0.0702 (i, =0).

M (unsaturated) =0.0316 = 5.26 mH
M (saturated) =0.0702/6=11.7 mH.
These values are less than 4% of the unsaturated self inductance in the aligned

position.
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Suppose the fixed MMF in the second phase has its polarity reversed. Does it have

any more influence?

Fig. 8.2 (a) Excitation of one Phase Whilst a Second has Fixed MMF, Showing
the Magnetic Flux Plot and the Flux Density Distribution
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Fig. 8.2 (b) Changing the Polarity of the Fixed MMF shown in Fig. 8.1

Fig. 8.2 shows the impact of changing the polarity of this fixed MMF on the

characteristic. The characteristic is shifted up.

The mutual inductances (saturated and unsaturated) for this reversed connection are
unchanged. From the FE plot the flux density in the tooth used by the two phases in
the second connection has slightly higher flux density than in the first.

The mutual inductance between the phases in this 12/8 segmented-rotor SRM is very

low and has no significant effect upon torque production.

8.2.2 Testing the Machine with two Phases Excited Simultaneously

Occasionally an SRM may operate with two phases excited simultaneously for
particular reasons, such as to minimise the torque ripple or to increase the mean

output torque [197-202]. This section tests the same concept in the 12/8 segmented-
rotor SRM.
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8 Mutual Interaction between Phases

Fig. 8.3 Connection of the SRM

Fig. 8.3 shows cross section of the 12/8 segmented-rotor SRM with two phases
excited simultaneously. Wiliest Fig. 8.4 (a-d) shows the magnetic the finite element
results for this connection. The aligned and the unaligned characteristics do differ

than those of the case of one phase excited only.
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Fig. 8.4.a Adaptive Mesh for a Position between the Aligned and the

Unaligned Positions
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8 Mutual Interaction between Phases

Fig. 8.4.b Flux Plot for a Position between the Aligned and the Unaligned

Positions

Fig. 8.4.c Flux Density Distribution
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Fig. 8.4.d Saturation
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Fig. 8.4.e Flux-Linkage Characteristic when one Phase is Excited alone and

when Two Phases are Excited Simultaneously
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8 Mutual Interaction between Phases

Fig. 8.4.e shows the impact of exciting two phases simultaneously: the characteristics
shown are the sum of those of the two excited phases. Note how the area enclosed
between the aligned and the unaligned positions is virtually unchanged. So exciting
two phases simultaneously in this segmented-rotor SRM design does not appear to
increase the output torque. [144][122-124][179][203-207].

35 q

= == Summation of the torque of two measured phases separately
= Measured torque of two phases connected series 1Z/8 F.F

- = Sumnijation of FL sinulation

30 4 e

%
|

8Amp '_‘.-.’:

0 2.5 5 S 10 12:5 15 175
Position

Fig. 8.5 Comparison between Simulated and Measured Torques

Results when Two Phases are Excited Simultaneously (first connection).

So exciting two phases simultaneously in the 12/8 segmented-rotor SRM does not
increase the output. However, Fig. 8.5 shows the torque ripples decrease when two
phases are excited simultaneously. The torque characteristic became flatter than in

the case of only one phase excited chapter (6).
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35 - .

= ==  Summation of the torque of two measured '!hd\l"; separately
= Measured torque of two phases connected series 12/8 F.P
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.’; 7:5 1I0 12].5 1'5 17‘.5
Position
Fig. 8.6 Clarifying one Case of Fig. 8.5 at I=8 Amp
Measured and simulated static torques, first neglecting mutual coupling between
phases and then including it (I=8 Amp)
The summation of the torque of two phases when each is excited alone (measured
results or simulated results) does not include the mutual inductance effect. When
two phases are excited simultaneously (measured results or simulated results) then
this includes the mutual effects. The effect of the small value of the mutual coupling
between the phases is shown in Fig. 8.6.

Fig. 8.7 Changing the Connection of the Second Phase
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Fig. 8.8 The Impact of Saturation on the Torque for the Second Connection

Fig. 8.7 shows cross section of the 12/8 SRM when the polarity of one connection is
changed and Fig. 8.8 shows the torque in this case. The saturation in the teeth
between the phases has decreased the torque. So the first connection is best.
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Fig. 8.9 Comparison between the Torque for the two Possible Connections of

the Second Phase (all measured results)

Fig. 8.9 shows measured results of the torque for both the possible connections at a

fixed current (8Amp) and compares the torque from the summation of two phases
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8 Mutual Interaction between Phases

each of them excited separately. The difference between the curves is due to the
mutual coupling. For the first connection the torque is approximately that of the case
with only one phase excited alone, but with less ripple. In second connection the
torque decreased [197].

The importance of the polarity of excitation can be explained by considering the
magnetic flux patterns. Two adjoining phases both use the tooth separating them in
their flux path. When the two phases have current in the opposite direction
(corresponding to connection 1) then the fluxes are in opposite directions and so
saturation is actually reduced by the flow of current in two phases. When the phases
both carry positive current then the fluxes add in the adjoining teeth, saturation is

increased and torque is reduced.

8.3 Testing the 12/10 Short Pitched Segmented-Rotor SRM

The results of the first prototype may not be general since they depend on the
construction of the SRM. So this section tests the short-pitched segmented-rotor
SRM design for the same two modes of operation.

8.3.1 Testing the Machine when there is Fixed MMF in another Phase

This time the Fixed MMF is given a much higher value of 2700 ampere turns per slot

to magnify any effect. This corresponds to 20 amps of fixed excitation in the

prototype.
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Fig. 8.10.a Cross Section of the 12/10 Segmented-Rotors SRM showing the
Connection of the Fixed MMF in the Second Phase
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Fig. 8.10.b Flux Density when there is Fixed MMF =2700 in the second Phase
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- ! ; : '\E\Only One Phase:Excited '

Flux-Linkage

Fig. 8.10.c Comparing two Flux-Linkage Characteristics of the 12/10 SRM: when
there is Fixed MMF in the Second Phase and when there isn’t

Fig. 8.10 shows the characteristic of the 12/10 short pitched segmented-rotor SRM
when there is a high value of fixed MMF in the second phase. The flux density is

also shown.

Fig. 8.11.a Connection of the Fixed MMF is Reversed
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BEBRRERETT [ CEEun

Fig. 8.11.b Flux Density Distribution of the SRM shown in Fig. 8.11.b
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Fig. 8.11.c Comparing two Flux Density Characteristics: when the connection
of the Fixed MMF is reversed and when there isn’t Fixed MMF
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8 Mutual Interaction between Phases

Fig. 8.11 shows the 12/10 short pitched segmented-rotor SRM with a high value of
fixed MMF again, but with reversed polarity in the second phase. The FE flux density
plot and the magnetic characteristics are shown [197]. The area between the aligned
and the unaligned position is less than the previous case. The flux density in the
return flux path between the two phases has a high value hence the machine is
saturated in this case so the first connection is better [144].

Once more the effect of cross saturation between phases can be explained by
examining their common flux path, which occurs in the narrow teeth between them.
When the MMFs of adjoining coils are in the opposite directions the fluxes cancel and
saturation is reduced, whilst when they are in the same direction they add and

saturation increases.

8.3.2 Testing the Machine with two Phases Excited Simultaneously

This section searches for any benefit if the short pitched 12/10 segmented-rotor SRM
is operated with two phases excited simultaneously. The copper loss is expected to

be the double its normal value so the machine will not normally operate in this way.

Fig. 8.12.a The Connection of the SRM
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Fig. 8.12.c Flux Plot
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Fig. 8.12.d Flux Density Distribution
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Fig. 8.12.e Saturation
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Fig. 8.12.g Comparing Measured and Simulated Flux-Linkage Characteristics
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Torque

Fig. 8.12.h Comparing Torque Characteristics with Mutual Coupling and
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without Mutual Coupling (simulated results)

Fig. 8.12 shows the characteristic of the 12/10 segmented-rotor SRM when two

phases are excited simultaneously. In the short pitch connection there is little to no

mutual coupling between the phases because each coil links one stator tooth.
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Fig. 8.13 Comparing the Simulated and Measured Torques with Two Phases

simultaneously Excited
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Fig. 8.14.a Summation of Two Phases Torque based on Measurements
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Fig. 8.14.b Summation of two Phases Torque based on Simulated Results

The resultant torque characteristic doesn'’t include the mutual coupling as only one

phase at a time is excited.
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Fig. 8.14.c Comparing the Torque at 10 Amp with and without Mutual Coupling

When two Phases are Connected in Series

Fig. 8.14 compares the torque with and without mutual coupling between the phases.
It is clear that torque does not increase because the mutual coupling is very small.

But the torque ripple is decreased.

Fig. 8.15 Changing the Connection of the Second Phase
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Fig. 8.16 Measured Torque for the two Phases Excited Simultaneously when

the Polarity of the Second Phase is Changed

Fig. 8.16 shows the impact of the saturation in the teeth between the phases upon

the torque (the second phase connection is reversed).
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Fig. 8.17 Comparing the Torque for Different Connections with Two Phases
Connected in Series and Carrying 10 Amp. Two Different Connection Polarities

are Shown
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8 Mutual Interaction between Phases

Fig. 8.17 compares the torque for this reversed connection to see the impact of the
mutual coupling between the phases and the saturation in the teeth between the
phases. In the first connection the torque is similar to when only one phase is excited
but has less ripple. In the second the torque is decreased due to the saturation in the

teeth between the phases [197].
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Fig. 8.18 Energising two Phases Simultaneously to Show the Decrease in the
Torque Ripple

Fig. 8.18 shows the impact of exciting two phases simultaneously on both the
average and the torque ripple characteristic. Exciting two phases simultaneously
doesn’t increase the average torque but does decreases the torque ripple. The
copper loss is double the value when one phase is excited only, so it is unlikely that

this will be adopted as an operating mode.

8.4 Conclusion

The chapter tests the new segmented-rotor SRM in two modes of operation with the
two new prototypes. First, when there is fixed MMF in the second phase. Second,
when there are two phases excited simultaneously. The fixed MMF does not have

any significant effect on torque, it just shifts the flux-linkage characteristic up and
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down a little according to the connection of this fixed MMF. When exciting two
phases simultaneously the output increases slightly with one polarity of connection of
the second phase and decreases with the other, due to the saturation in the teeth
between the phases. The simulated resulted were validated experimentally using the

two new prototypes of the segmented-rotor SRM.
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9 Loss Estimation in the new Design and Comparison with a

Conventional SRM Design

9.1 Introduction

In previous chapters the design and construction of the new designs of segmented-
rotor SRM were described. This chapter is dedicated to estimate the losses in the
new designs and comparison of such losses with those in an equivalent conventional
SRM.

In addition to winding losses it is necessary to estimate iron loss in each machine
type. This calculation is complicated because flux waveforms in SRMs are non-
sinusoidal, so the general mathematical formula which is used to estimate the iron

loss in conventional electric machines can not be used here [208-209].
9.2 SRM Electromagnetic Losses

The losses in an SRM mainly comprise iron and copper losses, with the latter split
into hysteresis and eddy current components. Inclusion of iron loss is of importance
when efficiency optimisation is a key-target of the design, particularly in high speed
machines where the iron loss can dominate. Models of iron losses can either be
empirical or based on the solution of Maxwell's equations. In this chapter the
prediction of SRM iron losses is achieved by separating the eddy current losses from
those due to hysteresis. The eddy current losses are calculated by rewriting the
Steinmetz analytical equation in terms of the rate of change of the square of the flux
density rate of change [62][210-218].

The machine is split into three regions: the stator core back or yoke; the stator teeth
and the rotor segments. The mean magnetic flux density variation in each region will
be calculated and from this the iron loss predicted. The assumption of equal flux
densities throughout any one region will lead to some error, but will still enable a

reasonable estimate of iron loss to be produced.
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9.3 The Basis of the Comparison

The comparison between new and conventional designs can be done in many ways,
depending on which operating conditions are fixed and which are varied. The
converter d.c. voltage will be fixed at 560 V and the speed of the motors will initially
be fixed at 1500 rpm. Rather than use the actual number of turns in each machine,
the number of turns used in these calculations is chosen so that each machine just
enters full voltage control at a speed of 1500 rpm. The interval between the on/off
angles and the angle of advance (or switching on angle) will then be changed to
maximise the output torque without allowing the r.m.s. current density to increase
beyond 10A/mm? [219-220].

9.4 Estimating the Losses in the New 12/8 Segmented-Rotor SRM

9.4.1 Choice of the Number of the Turns

The number of turns was varied until full voltage control could be achieved at a speed
of 1500 rpm, without requiring excessively large winding losses. This ultimately
resulted in the choice of 264 turns per phase, which corresponds to the flux-linkage

and torque profiles outlined below.

Flux Linkage

Current 0 o

Position

Fig. 9.1 Flux-Linkage Characteristic (264 per phase)

186



9 Loss Estimation in the new Design and Comparison with the Conventional Design

Torque

Current 0 o

Position

Fig. 9.2 Static Torque Characteristic (264 per phase)

9.4.2 Determination of the Maximum Value of the |, in the Conductors

Area of one slot=0.272*10" m?.
Assume fill factor=0.4 and assume the current density J=10 A/mm?.

*
Area of one conductor =% =0.8242mm?,

Irms (Maximum)=10*0.824=8.24Amp.
The influence of the switching on angle will now be studied for three different

conduction angles. The torque and the current will be plotted as a function of the

switch on angle.
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Fig. 9.3 Selecting the Switch on Angle that Maximises the Torque without
Increasing the Current above 8.24 Amp
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Fig. 9.3 shows three charts for different on/off angles and different intervals. A
current limiter was used in the simulation to limit the r.m.s. current density
toJ =10Amp/mm’. From these three charts an interval between on/off angles of
22.5° can be seen to give the highest output torque. Fig. 9.4 shows the variation of
current density versus switching on angle for a fixed interval between on/off = 22.5°
with the current limiter removed. A switch on angle of -4.5 degrees provides the
greatest torque capability without requiring current limiting or exceeding a current

density of 10Amp/mm?2. This operating point was therefore chosen for iron loss

evaluation.
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Fig. 9.4 Selection of Switching on Angle for J=10A/mm?

9.4.3 The Waveforms from the Matlab Simulation of the SRM for these

Operating Conditions

Fig. 9.5, Fig. 9.6 and Fig. 9.7 show predictions of current waveforms, torque and flux-
Linkage loci under voltage controls with Vdc=560 and speed 1500.

189



9 Loss Estimation in the new Design and Comparison with the Conventional Design

Current

T 1

T T T T T T

0 T . s
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time (sec.)

Fig. 9.5 Phase Current

45 A

Torque (Nm)
N
(3]

20 . J A ‘[. {
| | |
15 1 -} ¢ | |
| | (
‘ 4
10 A { Tt
5
0 T T T T T T ° i 2 ] 1
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014  0.016 0.018 0.02

Current

Fig. 9.6 Total Torque

The average torque = 31.77 Nm
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Fig. 9.7 Flux-linkage Trajectory
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Fig. 9.8 Comparison between the Torque Capability of the New Design and a

conventional SRM

Fig. 9.8 shows mean torque predicted under perfect current control. From this figure
the ratio between the torques of the new to the old design = 22/12=1.833 at an MMF
equal to 14*132=1848 Ampere turns. The approximate maximum value of the torque
of the conventional 0.33 short pitched SRM=20 Nm. So for the new fully pitched
segmented-rotor SRM the torque is expected to be =1.833*20 = 36.66N.m.
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Note: The torque delivered by this machine is less than 36.66Nm because that would
represent all the area between the aligned position and unaligned position being filled

by the flux linkage trajectory. Here part of the area between the aligned and

unaligned positions is not used.

9.4.4 Flux Distribution in the Case of Excitation Overlap
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Fig. 9.9 Case when there is an Overlap between the Excitation, the Machine
Flux in the Stator Pole will be added
The flux in the yokes is equal to the flux linking the conductor in the slot immediately

below the core back portion.
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9.4.5 The Ratio of the Flux in the Segment to the Flux in the Yoke

From the fundamental basis of design of the 12/8 fully pitched segmented-rotor
switched reluctance motor the width of the stator yoke, width of the stator pole, height
of the segment and the overlap are all made equal. From this fundamental choice

two important things relating to the flux density in the magnetic circuit follow [69-70]:

1-If the flux of the main energised phase is F1 the flux in the yoke behind the
conductor will be F1. Simultaneous excitation of two or more phases will not affect
the yoke flux because any one portion of yoke only carries the flux of one phase.

2-Only in the aligned position is the flux density in the rotor segments at a maximum
and equal to the flux density in the core back and two stator poles surrounding the
conductor. At any other position it needs to be determined. 2-D finite element
modelling will be used to determine the ratio between the flux in the segment to that
in the yoke. This ratio of the flux in the segments to the flux in the yoke during its
movement from the unaligned position to the aligned position will be determined in
the absence of saturation; the ratio will then be assumed to be valid at higher

excitation levels.
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Fig. 9.10 Ratio between the Flux in the Segment to the Flux in the Yoke
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The points in Fig. 9.10 were obtained from adaptive 2D-FE solutions for different
rotor positions between the aligned and the unaligned positions, thereby giving the

ratio of flux in segments/flux in the stator core back).

9.4.6 The Flux in the Stator Poles

With respect to Fig 9.9 the flux in stator pole 1 is the sum of Flux1 and Flux2
Similarly, the flux in stator pole 2 is the sum of excitation of the Flux1 and Flux3 [221].
This results in the curves of Fig 9.10 for the chosen excitation conditions. Note how
the peak rate of change of tooth flux density is double that of the core back. This is

the opposite to that which occurs in conventional SRMs.
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Fig. 9.11 Flux-Linkage in the Stator Poles

9.4.7 The Flux Linkage in Rotor Segments

Fig. 9.12 below shows the amount of each phase flux-linkage which crosses the air-
gap and reaches the rotor segments. This is determined from knowledge of the
stator flux distribution, combined with the ratio of segment flux to yoke flux given in
Fig. 9.10. The flux linking any one segment is then determined from summation of

the phase fluxes as it passes under their respective teeth. Note how a segment sees
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an oscillatory flux, with alternative positive and negative peaks occurring as it

approaches adjacent teeth.

1.5

o
(2]
1

0.5 -

Flux-Linkage Stator pole*(Ratio of Flux-Linkage segment to
Flux-Linkage Yoke before Saturation)
o

1.5

Position (Mech. Degrees)

Fig. 9.12 Flux-Linking a Rotor Segment

9.4.8 Calculation of the Flux Density

(P yoke = ¢ yoke
2 *tooth width *length 2*0.0118*0.15

Peak flux density in the yoke =

(p pole
2 * tooth width * length

Peak flux density in the two stator poles =
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Fig. 9.13 Flux Density in the Yoke
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Fig. 9.14 Flux Density in Stator Teeth

The flux density in the segment =

(pfeg *Ratio of the flux in the segment to the flux in the yoke
2 * tooth width * length
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Fig. 9.15 Flux Density in the Segment
9.5 Calculation of Iron Losses

The iron losses consist of anomalous losses, hysteresis losses and eddy current
losses. The algorithm for the iron loss estimation has been developed in [62] [222-
228] for non-sinusoidal waveforms. The loss constants are dependent on lamination
material as well as the machine geometry. Low loss silicon steel, Transil 315-35, is
used here for loss estimation and table 9.1 shows the constants [62], which will be

used in subsequent calculations:

Ky' o4 Ks' Ke'

2.01"107 1.84 3.43"104 3.75*10*

Table 9.1 Constants of the Iron Loss Equation

9.5.1 Calculation of the Anomalous Losses

The anomalous loss density is instantaneously calculated using the formula:

K

a

‘' 8.76

dB|"’
dt
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The anomalous loss is then time averaged over an electrical cycle to determine its

mean value.
9.5.2 Calculation of the Hysteresis Losses

\ \ A *
P, =k, .f.B*, where at 1500 rpm f = Ll =200Hz

9.5.3 The Equation for Calculating the Eddy Current Losses
Instantaneous eddy current density is calculated using:

b __ k. dB
© 2m? o dt

As with the anomalous loss this value is time averages to determine the mean eddy

)2

current loss density.

9.6 Calculation of the Iron Loss in each part of the Machine

The table below shows the calculated iron loss components for each part of the
machine. Fig. 9.16 shows the results. Note how both the stator teeth and yoke both
contribute substantially to the overall iron loss, and how at 1500 rpm the iron loss
mechanism is dominated by hysteresis loss. Table 9.2 shows iron loss calculation for
this SRM.

Yoke Stator Teeth Rotor Segment
Volume (m°) 0.000768 0.000031 0.0000255
Anomalous 0.5645 0.5453 1.56
Loss Density
(W/kg)
Hysteresis loss 7.96 13.74 9.04
Density (W/kg)
Eddy Current 0.669 0.90 2.58
Loss Density
(Wikg)
Total Loss (W) 56.2 44.9 21.4

Table 9.2 Comparison of Machine Iron Losses in Different Sections of the 12/8
Segmented Rotor SRM

Total iron loss = 122.4 Watts
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Eddy currentloss  Anomalous loss
(watts) (watts)
6% 4%

Hysteresis loss
{watts)
90%

a Distribution of the iron loss in the stator poles

Eddy current loss Anomalous loss
(watts) (watts)
7% 6%

Hysteresis loss
(watts)
87%

b. Distribution of the iron loss in the yoke
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Anomalous loss
(watts)
12%

Eddy current loss
(watts)
20%

Hysteresis loss
(watts)
68%

c. Distribution of the iron loss in the segments

Fig. 9.16 Distribution of the Iron Loss in the 12/8 New SRM

Fig. 9.16 shows the relative iron loss distribution in each section of the new 12/8

segmented-rotor SRM.

9.7 Estimation of the Copper Losses

Copper losses of 3-phase machine
P =3J%pV,, =3*(10*10°)%*0.0178*10°*(132*2)*0.621*0.82424*10°=721.65 Watts.

Fig. 9.17 shows the relative distribution of the different loss in the 12/8 new

segmented-rotor SRM.
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copper loss (watts)
86%

Eddy current loss

(watts) Hysteresis loss AnoTvtla‘::; loss
1%, {watts) :
12% 1%

Fig. 9.17 Distribution of the Losses in the 12/8 New SRM

Output power of this motor=31.77*21*1500/60=4.99kW
Total Losses = 844 Watts

9.8 12/10 Segmented-Rotor SRM

The 12/10 segmented-rotor machine is illustrated in Fig. 9.18. This machine has total
freedom over the excitation polarity of each coil. The choice of excitation polarity
affects only the flux distribution and iron loss in the unwound teeth which act as
return paths, because only these teeth see the flux of more than one phase. The coil
polarity chosen has the MMF of adjacent coils alternating in polarity i.e. in, out, in, out
etc. This results in the flux in unwound teeth being proportional to the difference of
the flux between two phases, so overlap between phases will actually reduce
magnetic saturation in these teeth.
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Fig. 9.18 12/10 Short Pitched SRM Segmented-Rotor

9.8.1 Determination of the Number of Turns and the Current Density
A total of 200 turns per phase were required to produce similar operating
characteristics to the 12/8 segmental machine, with full voltage control occurring at

1500 rpm. Hence the number of turns per coil is 100, (two coils per slot so 50 turns

per slot).
40 -
Torque
Current (rms)
~— + . 10 A
T\1’
5
The interval between on/off angles 15 Mech. Degrees

0n

-10 -9 -8 -7 -6 -5 4 -3 -2 -1 0
Switching On Angle
a
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= i==n 10 5

The interval between on/off angles 18 Mech. Degrees \\T
0H

0

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1
Switching On Angle

R 4
4

b
Fig. 9.19 Optimisation of the Switching On Angle

Fig. 9.19 shows the results of an investigation to optimise the switching on angles
and the interval between on/off angles. The optimum value of switching on/off is —3°/

12°. These values deliver the most torque while keeping the current density to
10A/mm?.

9.8.2 Calculation of Current Density

Figures from 9.20 to 9.25 show the performance waveforms using the previous

calculated switching on and switching off angles.
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Fig. 9.20 Phase Current

Area of one slot = 0.257*10™° m? and assume fill factor = 0.4

*
Area of one conductor =% =1.028 mm?

Irms _9.469352

= =9.21143 A/mm?.
A (areaof oneconductor) 1.028

Jrms=

Flux Linkage

Position 0 Currant

Fig. 9.21 Flux-Linkage Characteristic
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Fig. 9.22 Static Torque Characteristic

9.8.3 Average Torque of the Proposed Machine
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12/10 Short Pitched Segmented Rotor SRM
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Fig. 9.23 Shape of Each Phase Torque and the Sum

Switching on angle at —3 Mech degrees. Switching off angle at 12 Mech degrees.
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Fig. 9.24 Flux-Linkage Trajectory

The mean torque produced under these conditions is 36.95 Nm
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F3

Flux-Linkage
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Position
Fig. 9.25 Flux Waveforms

F1 is the flux in stator pole 1.

9.8.4 Determination of the Ratio of the Flux in the Segment to the Flux in the

Yoke

As in the 12/8 machine the ratio of the flux in the segments to the flux in the yoke
during its movement from unaligned position to the aligned position is determined

with no saturation and is illustrated in Fig. 9.26 [122-124].
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Flux Segment / Flux Yoke

0 T T T T T T T T B g

0 2 4 6 8 10 12 14 16 18
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Fig. 9.26 Ratio of the Flux in the Segment to the Flux in the Yoke
Figures from 9.27 to 9.31 show the flux-linkage and flux density distribution in

different parts of the machine.

1.2

0.8 -

Fluxin Rp_2

Flux in Rp_1

0.6 -

Flux-Linkage

0.4 -

0.2 A

0 T T T T T T T T 1
0 4 8 12 16 20 24 28 32 36

Position (Mech. Degrees)

Fig. 9.27 Flux in the two Returning Poles
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Fig. 9.28 Flux-Linkage the Segment

9.8.5 Flux Density Variation

Flux Density in the main stator pole

0 T T T T T T ) ; T 1
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Fig. 9.29 Flux Density in Stator Pole
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Fig. 9.30 Flux density in Returning Paths
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Fig. 9.31 The Flux Density in the Segment
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9.8.6 Loss Calculations

The table below shows the calculated iron loss components for each part of the
machine. Hysteresis loss in the stator continues to dominate the iron loss
distribution. Table 9.3 compares the iron loss in different sections of the 12/10

segmented-rotor SRM.

Yoke Stator Teeth Unwound Rotor
Stator Teeth | Segments
Volume (m°) 0.000660 0.000374 0.000187 0.000272
Anomalous 0.91 0.91 0.895 3.29
Loss Density
(Wikg)
Hysteresis 10.92 10.92 14.8 2.67
loss Density
(W/kg)
Eddy Current 1.35 136 1.636 7.16
Loss Density
(W/kg)
Total Loss 69.11 36.3832 12 28.34
(W)

Table 9.3 Comparison of Machine Iron Losses in Different Sections of the 12/10
Segmented Rotor SRM
Total iron loss = 157.785Watts
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Eddy current loss Anomalous loss
(watts) (watts)
10% 7%

Hysteresis loss
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83%

a. Iron loss in the main stator pole

Eddy current loss Anomalous loss
(watts) (watts)
10% 7%

Hysteresis loss
(watts)
83%

b. Iron loss in the yoke
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Anomalous loss
(watts)
25%

Eddy currentloss |
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55%

Hysteresis loss
{watts)
20%

c. Iron loss in the segment

Eddy current loss Anomalous loss
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r

Hysteresis loss
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d. Iron loss in the returning path 1

Eddy current loss Anomalous loss
{watts) (watts)
10% 5%
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e. Iron loss in the returning path 2
Fig. 9.32 Distribution of Iron Loss
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Fig. 9.32 shows the relative iron loss distribution in each section of the new 12/10

segmented-rotor SRM.

9.9 Estimation of the Copper Loss

Total Copper loss: P =3J°pV,,
=3%(9.21143*10°)%*0.0178*10°°*200*0.4266536*1.028 *10°= 397.5 Watts

copper loss (watts)
72%

B s i S35

S

Eddy current loss
{watts)

5%
Hysteresis loss Anomalous loss

(watts) (watts)
20% 3%

Fig. 9.33 Distribution of the Losses

Fig. 9.33 shows the relative distribution of the different loss in the 12/10 new

segmented-rotor SRM.

Total losses =iron loss + copper loss = 555.2Watts
Output power of this motor = 27*36.95*1500/60 = 5804 Watts
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9.10 Short Pitched 12/8 SRM

Fig. 9.34 Conventional 12/8 Short Pitched SRM (standard design)

Fig. 9.34 shows the conventional SRM =t & t_ /A =0.33 used for the comparison

of its losses with the new segmented-rotor SRM. The dimensions of this machine are
taken as the standard dimensions of the conventional SRM. The width of the yoke is
half the width of the tooth in both the rotor and stator.
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Fig. 9.35 Magnetic Vector Potential versus the MMF (Conventional SRM)
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Fig. 9.35 shows the magnetic vector potential versus the MMF for one slot of the
convention SRM (one slot mean when all the conductors fill the slot area). For this

machine a total of 300 turns per phase were found to coincide with a base speed of

1500 rpm.

Figures are drawn here to the conventional SRM similar to the same figures of the
previous two SRMs to estimate the losses in this conventional 12/8 SRM (see Fig.
9.36 to Fig. 9.43) but using the data of this SRM.

Flux

Position Current

Fig. 9.36 Flux-Linkage Characteristic
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0 0
Gurt Position

Fig. 9.37 Static Torque Characteristic

Area of one slot =430 mm?, Assuming fill factor=0.4.
There are 300 turns / phase and four coils / phase.

* %k
Area of one conductor =W =1.1466 mm?
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Fig. 9.38 Current and Torque Wave Forms

Ims = 5.7Amp (on/off angles: 0/15 Mech. degrees)
I 57
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Fig. 9.40 Flux Density in the three Stator Poles

From Fig. 9.34 [229-235]:
Bsy1=Bsp2+Bsp1‘Bsp3: Bsy2=Bsp1'Bsp2‘Bsp3, Bsy3=Bsp1+Bsp3'Bsp2

il il —r\
Bsy1 —B sy‘] ’ Bsyz-B Sy2) BSY3_B Sy3
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Fig. 9.41 Flux Density in Stator Yokes and Rotor Poles1&3
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Fig. 9.42 Flux Density in Rotor Poles2&4 and Rotor Yoke 1
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Fig. 9.43 Rotor Yoke 2

9.11 Estimation of Losses in the Conventional Short pitched 12/8 SRM

Table 9.4 compares the iron loss in the different parts of the conventional SRM.

Yoke Stator Teeth | Rotor Teeth Rotor Core
Back
Volume (m°) 0.000400 0.000496 0.000233 0.0001438
Anomalous 2.4482 0.8651 0.497 0.94
Loss Density
(W/kg)
Hysteresis 10.927 10.672 3.21 3.4482
loss Density
(Wikg)
Eddy Current 5.427 1.362 0.5688 1.5
Loss Density
(Wikg)
Total Loss 60 50.7691 6.74 7.9243
(W)

Table 9.4 Comparison of Machine Iron Losses in Different Sections of the 12/8

Conventional SRM

Total iron loss = 86.893+13.1786+25.3944=125.45Watts
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9.11.1 Calculation of the Copper Losses

Total length of one turn=2*0.15+2*(1.5*0.01176)+2*0.0209=0.37708m
Copper loss for 3-phases
P =3J%pV,, =3%(10*10%)*0.0178*10°*300*0.37708*1.1466 *10°=692.64 Watts

Total losses = 818.09 Watts. Output Power=27*1500*20/60=3142.857Watts

Distribution of iron loss in the stator poles

Eddy current loss Anomalous loss
{watts) (watts)
1% 7%

P

Hysteresis loss
{watts)
82%

Distribution of iron loss in the stator yoke
Eddy current loss

(watts)
29%

Anomalous loss
(watts)
13%

Hysteresis loss
(watts)
58%
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Distribution of iron loss in the rotor poles

Eddy current loss Anomalous loss
{watts) {watts)
13% 12%

Hysteresis loss
{watts)
75%

Distribution of iron loss in the rotor yoke

Anomalous loss
(watts)
16%

Eddy current loss
{watts)
26%

»

(watts)
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Fig. 9.44 Distribution of the Iron Loss in the Conventional SRM

Fig. 9.44 shows the relative iron loss distribution in each section of the conventional
12/8 SRM.
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Copper loss (watts)
84%

Eddy current loss
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Fig. 9.45 Distribution of the Losses in the Conventional SRM

Fig. 9.45 shows the relative loss distribution in the conventional 12/8 SRM.

9.12 General Comparison

Table 9.5 shows the weight of the iron in each SRM in Kg

12/8 Segmented-Rotor 12/10 Segmented-Rotor 12/8 Toothed-Rotor
SRM SRM SRM
10.686 Kg 11.549 Kg 10.11 Kg

Table 9.5 Weight of the Iron in Each SRM
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Conventional 12/8 New 12/10 New
SRM SRM SRM
Slot Area 430 mm* 272 mm* 257 mm?
iron Loss 125.45 Watts 122.43 Watts 157 Watts
Copper Loss 692.46 Watts 721 Watts 397.45 Watts
Total Loss 0.818 KW 0.844 KW 0.555 KW
Output Kw 3.14 KW 4.99 KW 5.804 KW

Table 9.6 General Comparison between the SRMs

Table 9.6 compares the losses in the new segmented-rotor SRMs with the
conventional toothed-rotor SRM. The comparison shows the 12/10 SRM has lower
end-winding copper loss than the 12/8 segmental machine since the conductors of
each phase are closer to each other. It also has lower copper loss than the
conventional SRM because the slot area is much smaller, giving a lower winding loss

when the current density is fixed.

Iron loss in the two 12/8 machines is similar, but the 12/10 machine has
approximately 25% greater loss, coinciding with the 25% increase in electrical

frequency.

9.13 The Losses at Higher Speed

In this section the iron losses are compared for machines designed for operating at
higher speed. This comparison will be done in a simple manner: as the machine runs
faster the number of turns is proportionally reduced, so that the flux waveform

variation with position remains effectively constant.
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Table 9.4 shows the previous estimated losses in detail in each of the three SRMs at
1500 rpm.

Anomalous Hysteresis Eddy Copper

Current
EH Segmenistiotor SRM 7.586W 103.9W 10.9W 721.65W
12/10 Segmented-Rotor SRM 15.62W 113.677W 28.5W 397.46W
12/8 Toothed-Rotor SRM 13.178W 86.89W 25.394W 692.64W

Table 9.4: The Losses of the three SRMs at 1500 rpm

From the previous equations of the iron losses estimation: Increasing the frequency
by factor X increases the anomalous losses by factor (X)'* the hysteresis loss by a
factor X and the eddy current losses by a factor (X)°. This results in the following
overall variation in iron loss with speed.

5000 -

Comparison of the Total Losses in each SRM
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Fig. 9.46 Comparing the Losses at High Speeds
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Fig. 9.46 shows the losses at high speed. The new 12/8 segmented-rotor SRM has
only about 60% of the iron loss of the conventional 12/8 SRM, despite it having
almost the same volume and excitation frequency. This can be understood from

examination of the flux variations in each component.

In the 12/8 segmented-rotor SRM the peak rate of change of flux density occurs in
the stator teeth during the period when two adjacent phases are both increasing their
flux-linkage. This rate of change of flux density is double that of the core back, which
only ever sees the flux of one phase. Fig 9.13 shows how this peak rate of change of
flux density occurs for one third of a cycle. The eddy current loss is directly

proportional to the square of this value multiplied by the duration over which it occurs.

In the conventional SRM the peak rate of change of flux density occurs in the stator
core back, which sees the flux of all three phases. Fig. 9.41 shows how the same
flux density variation occurs for two thirds of a cycle. Consequently it seems that the

eddy current losses are effectively doubled.

9.14 Conclusion

The estimation of the iron loss has been introduced in this chapter for the new
segmental SRMs and compared to an equivalent conventional SRM. The methods
used split each machine into a few regions, evaluate the flux variation in those
regions, and then determine the flux density variation, assuming an even flux density
distribution. A modified iron loss formula for non-sinusoidal waveforms is used for
each type of SRM, splitting the iron loss into hysteresis loss density, anomalous loss
density and eddy current loss density.

At 1500 rpm the iron loss in all three machines is dominated by hysteresis loss. The
12/8 segmental machine has similar iron loss to a 12/8 conventional SRM at this
speed, whilst the 12/10 segmental machine has 25% greater iron loss because a
25% higher electrical frequency is employed.

At higher speeds of 15,000 rpm or more the iron loss is dominated by eddy current
loss and a different situation occurs in which the 12/8 segmental machine appears to
have only 60% of the iron loss of a conventional 12/8 SRM. This is thought to be

because the regions which have the greatest rate of change of magnetic flux density
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variation are the teeth, which only have the high rate of change of flux density for one
third of a cycle and only carry uni-directional flux. In the conventional SRM the core
back has the greatest rate of change of flux density, with the flux varying from peak
negative to positive values for two thirds of a cycle, thereby increasing the eddy
current loss density.
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10 Running Test of the Segmented-Rotor SRM

10.1 Introduction

This chapter tests the dynamic performance of the new segmented-rotor SRM. Two
prototypes of the new segmented-rotor SRM are tested under different running
conditions. The switching on or advance angle, the conduction angle and the speed
were changed to study the effect on the torque (average and ripple) and the
performance. The chapter tests the new SRMs using simulated results and uses

some measured results for validation.
10.2 Simulation of the SRMs

A Matlab based package for simulating the equations of the SRM (which were
introduced in chapter (1)) is used here to investigate the SRM with different operating
conditions [62]. Both the predicted and measured Flux-Linkage characteristics of the
SRM are used in the simulation, to inspect the degree of the accuracy of the

simulation by the measured results [62].
10.3 Testing of the SRMs

The machines were each coupled to a three phase asymmetric half bridge inverter
and subjected to an extensive series of running tests. The inverter employs IGBTs,
fed from a d.c. link, switching at 20kHz, with rotor position measured using a twelve
bit optical encoder. Rotor position and the phase currents are fed back into a DSP
based PI controller, which implements the phase current control. The current
demand for each phase is constant during its desired conduction period and zero for
the rest of a cycle. The machine is coupled to a d.c. load machine, via a torque
transducer, capable of measuring up to 100 Nm [62][122-124].
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10.4 The 12/8 Fully Pitched Segmented-Rotor SRM
10.4.1 Torque / Speed Envelope

The simulation package was used to predict the torque/speed envelope of the drive.
The converter voltage and the conduction angle were kept constant while the speed
and the switch on angle were changed. A fixed current demand (current density
J=10 Amp/mm?) was employed, with a conduction angle of 180 electrical degrees,
corresponding to 22.5 mechanical degrees. The family of characteristics for different
switch on angles are shown in Fig. 10.1. Note that zero degrees corresponds to the
unaligned position and a negative angle corresponds to phase advance before the
unaligned position. The curves show how at low speeds, under current control, peak
torque occurs from switching on at the unaligned position and off at the aligned
position, but at higher speeds, when the machine moves into voltage control an

increasingly large amount of phase advance is required.

Impact of Changing the Switching on Angle in 12/8 Segmented-Rotor
Fully Pitched SRM when the Conduction angle Fixed at Half Cycle
40 -

35 Torque/Speed Envelope

© . N
= 5 3 -~
g 20 :
(=] \
- ‘ 5 Ay T .
15 E L \\ h. \. . 5 §~~ B -~ &
- = =0 . \ % T o e R
10 o - - -'2 ‘\ & \ x: ) = " ’ : -~ -
& wels \‘ 3 . * b 1
> w75 . s -
51 -95 Y w L
0 ; ; e 2L AT REW
0 500 1000 1500 2000 2500 3000

Fig. 10.1 Simulation Results of Torque/Speed Envelope
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10.4.2 Comparing Simulated and Measured Results

A realistic control strategy for the SRM drive has to take into the consideration the

mutual dependence between the motor parameters, the excitation and the limitations
of the switching circuit. At low speed, the rate of increase of the current following the

switching-on is high because the back-emf at low speed is small, and peak current
has to be limited by chopping. But at high speed, the back-emf becomes dominant
so current peaks before commutation. When the SRM is to be operated as a variable
speed drive two different switching strategies are used. First, low speeds operation;
in which the current level has to be limited by chopping (current control). The second
at high speeds operation; in which both the switching on and conduction angles

should be controlled properly to enable the torque to satisfy the load conditions and

to be as smooth as possible [7].
In this section the dynamic test results are arranged according to the speed of the

SRM:
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800 - ,
12/8 Segmented-Rotor SRM, Voltage = 450 and Speed =431 rpm
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Fig. 10.2 12/8 Segmented-Rotor SRM Running at 431 rpm (conduction for half
cycle)

Fig. 10.2 shows the current and the voltage of the machine when it runs at a low
speed under current control. Applying positive voltage from the converter increases
the current until it reaches the current demand. The current limiter limits the current
to the required value. The running conditions of this test were set to give a large
torque from the machine. The conduction angle is half the cycle and the advance
angle is relatively high, both aspects combine to make the SRM deliver a large
torque. The current is fixed due to the current limiter, and negative voltage is applied
before the unaligned position to decrease the phase current to zero. The machine in
this test delivers 33.1 Nm. The measured Flux-Linkage characteristic is used in the
simulation and the simulated results can be seen to be very close to those measured.
Note how during the off period the appearance of considerable voltage induced in an

off phase. This may be due to capacitive coupling between phases.
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Fig. 10.3 12/8 Segmented-Rotor SRM Running at 577 rpm (conduction for third

cycle)

The above test, Fig. 10.3, is similar to the previous one, but the conduction angle is
reduced. The torque output is thus decreased. Note that the predicted Flux-Linkage

characteristic, generated using 2D FE, is used in this test in a comparison with the
measured results.
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Fig. 10.4 12/8 Segmented-Rotor SRM Running at 1070 rpm (conduction for third
cycle)

Fig. 10.4 shows the machine running at a medium speed, with a conduction angle of

1/3 of a cycle and 2.5 mechanical degrees of phase advance.
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Fig. 10.5 12/8 Segmented-Rotor SRM Running at 1318 rpm (conduction for half
cycle)

Fig. 10.5 shows dynamic performance of the SRM when running at high speed. The

current demand never reaches the demanded value and so the drive operates in true

voltage controlled mode throughout. Correlation between measured and simulated
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results is very good; in addition to predicting the mean levels of current accurately the
current waveshape is accurately simulated. Note that for this last test the SRM
delivered 18 Nm.

10.5 Testing the 12/10 Short Pitched Segmental-Rotor SRM
10.5.1 Torque/Speed Envelope

Similarly to the 12/8 machine the simulation package was used to predict
performance of the 12/10 machine, using a fixed current demand (J =10Amp/mm?).
The results are shown in Fig. 10.6, once more illustrating the requirement for phase

advance in order to produce significant torque at high speed.

Impact of Changing the Switching on Angle in 12/10 Segmented-Rotor Short
Pitched SRM when the Conduction angle Fixed at Half Cycle

Torque/Speed Envelope
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Fig. 10.6 Torque Speed Envelop

10.5.2 Predicted Torque Ripple

Fig. 10.7 shows simulated results of the instantaneous phase current and three
phase torque for conduction angles equal to a third and a half cycle when operating
at the same speed. It is clear from the figure that in all cases the torque ripple is

high. Advancing the switching on angle increases the mean output torque, but it also
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increases the torque ripple. However, increasing the conduction angle to 180

electrical degrees results in much lower levels of torque ripple than occur when the

conduction angle is only 120 electrical degrees.
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10.5.3 The Running Test
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Fig. 10.8 shows the test results of the 12/10 segmented-rotor SRM operating in what

is essentially current controlled mode, and in this case delivering 29 Nm. As in the

12/8 machine the correlation between measured and simulated results is very good.
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Fig. 10.9 12/10 Segmented-Rotor SRM Running at 900 rpm

In Fig. 10.9 the speed was increased, but the correlation remains good. Note,
however, how the actual controller does not achieve the demanded value quite as
quickly as the simulation predicts. This is almost certainly caused by a difficulty in
ensuring that the proportional and integral gains in the current controller of both the

simulation and actual controller are identical.

Fig. 10.10 and Fig. 10.11 show further examples of both simulated and measured
results for the 12/10 machine operating under full voltage control, with a range of
conduction angles. Once more the comparison between measured and simulated

values is very good throughout.
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Fig. 10.10 12/10 Segmented-Rotor SRM Running under full Voltage Control.

(Both the measured and the predicted Flux-Linkage characteristics used to see

the degree of the accuracy)
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Fig. 10.11 12/10 Segmented-Rotor SRM Running with High Speed
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Fig. 10.12 Running Test of the 12/10 Segmented-Rotor SRM (High Speed)
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10.6 Conclusion

This chapter has shown both machines operating successfully as rotating drives.
Performance of the drives correlates clesely with predictions made using a drive
simulation package. This package was based around the flux-linkage/current
characteristics of the machines. The results show that there are no unforeseen
problems during dynamic operation. Any significant effects, such as major induced
eddy currents, would affect the dynamic characteristics and result in a large
discrepancy between measured and predicted waveforms.

The chapter brings together much of the previous work presented in the thesis. The
running tests serve to validate previous work. This validation covers the previous
simulated results, which is extremely important because it is not possible to build
many prototypes of the segmented-rotor SRM. Now this simulation has been
validated, it can be used for other designs of the segmented-rotor SRM. Different
running results of both the two new SRMs were arranged according to the speed. In
addition, how to increase the output by increasing either the conduction angle or the

advance switching on angle has been described.
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11 Conclusion

This thesis has introduced a novel design of SRM in which a toothed rotor is replaced
with one containing a series of discrete segments. Each segment represents one
rotor pole. In single phase machines the air-gap force density has been shown to
exceed that of a conventional SRM when the active portion of the air-gap exceeds
one half of a pole pitch. However, under such circumstances there may be
insufficient room for the windings. In three phase machines the air-gap force density
has been calculated as a function of electric loading and shown to be almost exactly
double that of a conventional SRM. The principal reason for the increase in
performance is due to better magnetic utilisation of the machine, which has double

the active air-gap area of a conventional SRM.

Two different three phase machine topologies have been introduced, based around
some design rules which were established. Both machine designs are based around

the requirement to have only the windings of a single phase occupying any one slot.

In the first machine the conductors of each phase occupy every third slot and this
leads to a multi-tooth or, in this case, a fully pitched winding. A machine of this type
has been designed, built and tested. Torque has been measured as a function of
both current and position, showing good agreement with predictions. Comparisons
with other switched reluctance machines with the same outside diameter and core
length has shown a 41% increase in torque per unit copper loss at thermal limit. This
is primarily because each turn of the segmented-rotor SRM links almost double the
flux of a conventional SRM. The increased end-winding length requires more copper

and so the torque per unit copper mass is not increased.

The second design combines a segmental rotor with short pitched windings, placed
around a single tooth. In order to maintain one phase winding per slot it has been
necessary to place the winding round every other tooth. The concept enables a large
increase in the flux linking each turn of the machine, thereby creating a large
increase in torque density. The machine delivers over 40% more torque than a

conventional SRM and equals the torque capability of the first segmental SRM design
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with windings spanning three teeth, whilst using 29% less copper volume. In
comparison to the earlier segmental design the windings are used more efficiently
because of the shorter end-winding length, but the magnetic performance is reduced:
these two effects approximately balance out to give equal torque capability. The
design offers an advantage over segmental rotor SRMs, with windings spanning
multiple teeth, due to the short length of the end-windings. This makes the concept
particularly suitable for machines of a relatively short axial length and removes the
limitation of the earlier multi tooth segmental designs. The concept has many of the
attributes desired for a fault tolerant drive: the windings are magnetically, thermally
and mechanically isolated from each other to a greater degree than in a conventional
SRM. The machine may therefore be particularly suitable for such applications.
However, the high torque density achieved suggests that its applications may be

more widespread

Measured flux-linkage and torque characteristics in both machines are in line with
those predicted using the finite element method. During operation as a drive,
supplied with current from three asymmetric half bridges the machines continue to
perform in line with predictions. Static torque at thermal limit is over 30 Nm in a

machine of 150 mm outside diameter and 150 mm lamination stack length.

The mutual coupling between the phases was studied by testing the segmented-rotor
SRMs with two modes of operation; one in which a fixed MMF is applied to one
phase, whilst the other is excited with a varying current, and one when two phases
are excited simultaneously with the same current. The mutual inductance between
phases has bee. shown to be less than 4% of the self inductance, so that it never has
a major impact. For some winding polarities the effect of mutual flux between phases
has a beneficial effect, whilst for others it adds to saturation levels and detracts from

torque production.

A modified formula of estimating the iron losses for non-sinusoidal waveforms has
been used to estimate the iron losses in the segmented-rotor SRMs, along with those
in a conventional toothed-rotor SRM. The segmental rotor SRMs have short flux

paths and, unlike conventional SRMs, the magnetic flux in any one section of the
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core back is only ever the flux of a single phase. Consequently the rate of change of
flux is low and this helps reduce the core back iron loss. However, the stator teeth
share the flux of more than one phase and, depending upon the orientation of

magnetisation of the coils, this can lead to increased stator tooth loss.
The machine requires similar converter arrangements to that of a conventional SRM.
The ratio of aligned and unaligned permeance is also similar, so there appears to be

almost identical converter volt-ampere requirements.

The thesis finally advocates the new design of SRM as a replacement for

conventional SRMs because of the excellent results shown.
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Appendix1

Determination of Parameters in a Fully Pitched Segmental SRM 12/8
Choose all teeth to be same width

landa s

t
-
x
landa s
t
-«

A

A

A

A

AN/

Make rotor and stator slot arcs equal, so stator and rotor leakage should be similar
Consider the above diagram

Equating values with the rotor pole arc

2+ 2x=4, (1)

AA1



Appendix

From the arc of the stator pole

t+x+2y=24;
As 30
Ar 45
t (deg) |X a slot
width
5.00 17.60 [3.76 25.00
6.00 16.50 |[3.75 24.00
7.00 16.50 |[3.75 23.00
8.00 1450 |3.75 22.00
9.00 13.50 [3.76 21.00
10.00 |12.50 |[3.75 20.00
11.00 [11.50 |[3.75 19.00
12.00 |10.50 |3.75 18.00
13.00 [9.50 3.75 17.00
14.00 |[8.50 3.75 16.00
156.00 |7.50 3.75 15.00
16.00 |6.50 3.75 14.00
17.00 |5.50 3.756 13.00
18.00 |4.50 3.75 12.00
19.00 |[3.50 3.75 11.00
20.00 |2.50 3.75 10.00

(2)
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Appendix 2
Determination of Parameters in a Short Pitched Segmental SRM 12/10

Choose intermediate teeth to be one half width of main teeth

Make rotor and stator tooth tip arcs equal, so stator and rotor leakage should be

similar
[ t

landa s

Y

landar

Consider the above diagram

In the unaligned position the rotor and stator pole tips are the same arc. Hence
20+2)+y=24, (1)

From the arc of the stator pole

t
t+z+x+a+—=4;
2

A3
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hence z+x+a+2=/1$ (2)
2

From the overlapping angle between rotor and stator in the aligned position

§+t=t+z hence y=2z (3)

sub (3) in (1) to get

2t+4z =1, (4)

Finally, in the aligned position, equate rotor and stator angles to determine x

A, —y-2t=x (5)

If 2,and A, are known, then for any value of t it is possible to determine z from (4),

then y from (3), x from (5) and a from (2)

As 30
Ar 36
t (deg) |Z y X a slot

width

5.00 6.50 13.00 |13.00 |3.00 22.50

6.00 6.00 12.00 (12.00 (3.00 21.00

7.00 5.50 11.00 |11.00 |[3.00 19.50

8.00 5.00 10.00 (10.00 |3.00 18.00

9.00 4.50 9.00 9.00 3.00 16.50

10.00 |4.00 8.00 8.00 3.00 15.00

11.00 |3.50 7.00 7.00 3.00 13.50

12.00 |[3.00 6.00 6.00 3.00 12.00

12.60 |2.70 5.40 5.40 3.00 11.10

13.00 |2.50 5.00 5.00 3.00 10.50

14.00 (2.00 4.00 4.00 3.00 9.00

15.00 |1.50 3.00 3.00 3.00 7.50

A4
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Appendix3
Winding of Fully Pitched Segmental SRM

Winding has been wound to give:

e 4pole

¢ 3 phase

e Double Layer

e Fully Pitched (i.e. 1-4, spanning 3 teeth)
e 4 coils per phase, all connected in series
e 2 coils per slot

e wire diameter 1.00 mm equivalent.

e ClassF.

e Both ends of each phase are brought out.

Number of turns per coil has been maximised, giving a final total of 75,

corresponding to a slot fill factor of 0.455.
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