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ABSTRACT 

Reinforced concrete deep beams have useful applications in 
construction. However, their design is not yet covered by the British 
Standard BS 8110: 1985 which explicitly states that "for the design of 
deep beams, reference should be made to specialist literature". 

A selection of literature on deep beams is considered. First, the 
major works that have led to design recommendations are reviewed. Then, 
the current major codes and manuals covering deep beams, namely the CIRIA 
Guide, the European CEB-FIP model code, the American ACI(318-83) (revised 
1986) code and the Canadian CAN3-A22.3-MB4 code are outlined; worked 
examples are given in order to illustrate their practical applications 
and compare their different approaches to deep beam design. The purpose 
of this literature review was to define the deep beam problem and 
identify the major questions still remaining unanswered together with the 
limitations of the present design documents on the subject. 

The nature of diagonal cracking in slender deep beams has recently 
raised a question as to the application of the shear-strength equation in 
cl.3.4.2 of the CIRIA Deep Beam Guide. The effectiveness of web 
reinforcement on serviceability and strength of deep beams in general is 
also an area where strong disagreement exists. A testing programme, 
consisting of 15 beams of height/thickness ratios ranging from 20 to 50 
and grouped in 3 different series, was performed to provide information 
on these two areas. The main variables were the height/thickness ratio 
and the quantity and arrangement of web steel. The beams were tested 
under concentrically applied two point-loads. Based on the test results 
and observations, modifications are given for the CIRIA equation and 
other formulae derived from stocky deep beam tests to be used in slender 
ones for analysis and design purposes. A new formula is also proposed 
for the prediction of the ultimate shear capacity. 

The stability of deep beams is another area which has received less 
attention in the past by researchers and designers who often avoided the 
problem by opting for stocky sections. To quote from the CIRIA Guide "as 
a possible criterion of failure, buckling can not be disregarded". 
However, information on such topic is very scarce in the literature. 
Currently, the only documents that provide design guidelines for buckling 
are the CIRIA Guide and the Portland Cement Association Design Aid, both 
of which are based on theoretical studies and engineering judgement. An 
experimental testing programme, consisting of 7 large scale beam-panels 
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with height/thickness ratios in the range of 20 to 70 and a constant 
span/depth ratio of 1.0, provided buckling data against which the 
reliability of the two design documents was assessed. These tests 
confirmed that both documents offer a safe buckling design with the CIRIA 
Guide being too conservative. 

Although deep beams are frequently continuous over several spans, very 
little published data exist for such beams. For this purpose, 
12 two-span continuous concrete deep beams with span/depth ratios less 
than 1.0 and having different quantities and arrangements of web 
reinforcement were tested under two point-loads. The specimens were 
heavily instrumented to obtain as much information as possible about the 
behaviour of the beams at each stage of loading. Applied loads and 
reactions were among the measurements made and enabled the actual bending 
moment distribution to be determined and compared to that of 
corresponding continuous shallow beams. Based on the test results and 
observations and in the light of other published work, recommendations 
are given for the bearing, shea: and flexural design of continuous deep 
beams. 
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NOTATIONS 

Unless otherwise defined, the meanings of the symbols used are 
as follows : 

A Area of reinforcement crossing the diagonal crack (fig.l.4) 
Ah Area of horizontal web reinforcement 
Av Area of vertical web reinforcement 
As Area of main longitudinal reinforcement 
Aw Area of typical web reinforcement 
An Area of reinforcement perpendicular to a diagonal crack 
a Shear-span (shear arm) 

b Thickness of a deep beam section. In Equ 5.5 and 5.6, b refers 
to the plate width. In Equ 5.3, b refers to the smaller 
dimension of the column section. 

bl Unit width of a beam-panel 

C 

d 

a 
e2 
al 
eadd 
E 
Et 
EI 
EI' 

f 
f'c 
fcr 
fcu 

Width of bearing. C also refers to the compression forca of 
the horizontal concrete strut (fig.2.6) 
Empirical coefficient equal to 1.4 for normal weight concrete 
and 1.0 for lightweight concrete. 
Empirical coefficient equal to 130 N/mm2 for plain round 
bars and 300 N/mm2 for deformed bars. 

Effective depth of a section, taken as the distance from 
the extreme compression fibre to the centroid of the 
longitudinal tension reinforcement 

Load eccentricity 
Eccentricity at the top (at loading points) 
Eccentricity at the bottom (at reaction points) 
Additional lateral deflection due to slenderness effect 
Modulus of elasticity 
Tangent modulus (section 5.3.1) 
Flexural stiffness 
Flexural stiffness of the equivalent panel (chapterS 
and appendix A) 

Safety factor (Equ 3.7) 
Compressive strength of a concrete cylinder 
Critical stress (Equ 5.5 and 5.6) 
Compressive strength of a concrete cube 
(characteristic strength of concrete) 
Maximum stress in the concrete strut (section 2.5) 
Maximum allowable crushing strength of concrete (section 2.5) 
Tensile splitting strength of concrete 
Yield stress of the reinforcement 
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h Depth of a deep beam section. In Equ 5.2 and 5.3, h refers 
to the depth of a column section. In Equ 5.6, h refers to a 
plate width 

ha Active height of a deep beam section as defined in the 
CIRIA Guide (section 2.3, fig.2.3) 

he Effective height as defined in chapter 5 and Appendix A 

I Second moment of area 

K Buckling coefficient as in section 5.3.1 and in Appendix A. 
In section 5.3.2, K is an effective depth factor. 

L Span length of a deep beam 
Le Effective length (chapter 5 and Appendix A) 
Lo Clear-span length, measured between faces of supports 

M Bending moment at a section 
Design bending moment 
Moment of resistance 
Initial moment as in clause 3.8.3.2 of BS 8110 (Appendix A) 
Additional moment due to slenderness effect (section 5.3.1 
and Appendix A) 

M2 Modification factors for the critical stresses due to 
interaction effects (section 5.3.1 and Appendix A) 

N Compressive axial load 
Nh Average equivalent horizontal stress (section 5.3.1 and 

appendix A) 
Nv Average equivalent vertical stress (section 5.3.1 and 

Appendix A) 
Nhcr Critical horizontal stress (section 5.3.1 and Appendix A) 
Nvcr Critical vertical stress (section 5.3.1 and Appendix A) 

p 
Ps 
Ph 
Pv 

Percentage of steel 
Percentage of main tensile steel 
Percentage of horizontal web steel 
Percentage of vertical web steel 

(section 4.4.2) 
(section 4.4.2) 
(section 4.4.2) 

R Reduction factor to allow for the early appearance of 
diagonal crack (Equ3.4, 3.6, 4.3) 

R'h 
R' v 
R' s 

Stress ratio = Nh/Nhcr (section 5.3.1 and Appendix A) 
Stress ratio = Nv/Nvcr (section 5.3.1 and Appendix A) 
Stress ratio = TIT'cr 

s Spacing of web reinforcement 
Sv Spacing of vertical web reinforcement 
sh Spacing of horizontal web reinforcement 

t Plate thickness (section 5.2.2) 
T Tension force (section 2.5, fig.2.6) 
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V Shear force 
Vu Design shear force 
Vn Nominal shear force 
Vc Shear force resisted by concrete 
Vs Shear force resisted by steel 
v Shear stress 
Vu Design shear stress 
Vc Shear stress resisted by steel 

x 

xe 
xcrit 

Clear-shear-span, distance between the inside face of a 
support block and the outside face of a load block 
Effective shear-span (Equ 2.8) 
Critical section 

y Depth at which a web bar intersects a diagonal crack 
(Equ 1.15, fig.1.') 

a Angle between the diagonal crack and the bar intersecting it 

~ = a/h. ~ also refers to a coefficient which depends on 
the type of reinforcement (Equ 2.9) 

~1 Stress block depth factor, (section 2.6) 

Vf Partial safety factor for loading 
Vm Partial safety factor for material 

~ Moment magnification factor taking account of the 
slendeness effect (Equ 5.') 

E1 Principal tensile strain 
E2 Principal compressive strain 
EX Longitudinal strain, tensile when positive. In section 7.7.2 

EX refers to the measured strain in x direction 
fy Measured strain in y direction 
fCU Ultimate concrete strain (= 0.0035 in BS 8110) 

9 Angle of inclination of the inclined strut (fig.2.6) 
91 Angle of inclination of a diagonal crack stocky deep beam 

(fig.3.6) 
92 Angle of inclination of a diagonal crack slender deep beam 

(fig.3.6) 
93 Angle defined in £ig.3.6 
9m Measured angle of inclination of diagonal cracks (table 3.') 

ac Compressive stress (fig.3.l3, section 3.5) 
ath Tensile stress due to in-plane bending (fig.3.l3, section 3.5) 
apc principal compressive stress (fig.3.l3, section 3.5) 
apt principal tensile stress (fig.3.13, section 3.5) 
ax Stress in x direction 
ay Stress in y direction 

~ Load capacity coefficient (chapter 5 and Appendix A) 
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~ Strength reduction factor, defined in cl.9.3.2 of ACI code 
~c Material resistance factor = 0.6 for concrete, given in the 

canadian code 
~s Material resistance factor = 0.85 for steel, given in the 

canadian code 

v 

T 

Tcr 

Load capacity reduction coefficient, taking account of 
isolated footings (section 5.3.2 and Appendix A) 

Coefficient accounting for the type of concrete (Equ 2.13) 
Coefficients defined in section 2.3, Equ 2.8 

Poisson's ratio for concrete 

Average equivalent shear stress (section 5.3.1 and Appendix A) 
Critical shear stress (section 5.3.1 and Appendix A) 
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CHAPTER ONE 

INTRODUCTION AND OVERVIEW OF PREVIOUS RESEARCH ON DEEP BEAMS 

1.1 GENERAL 

A beam having a depth greater than normal in relation to its span is 

called a deep beam. Although an exact definition of deep beams is yet to 

be agreed on universally [1] [33], it is widely accepted that deep beam 

action occurs at span/depth ratios less than about 2.5. 

Deep beams are used in multi-storey buildings as transfer girders to 

provide column offsets or as panel-beams supporting the floors and 

spanning between end columns. They also have useful applications in 

other civil engineering works such as rectangular tanks and bins, 

foundation walls and recently [102] [103] in offshore gravity type 

concrete structures. The tilt-up construction is another area where deep 

panel-beams span between isolated footings such as pile caps and support 

the roof of an industrial building. The behaviour of deep beams is 

significantly different from that of beams of more normal proportions and 

require special consideration in analysis, design and reinforcement 

detailing. Such difference in behaviour is still not yet fully 

understood, and it is only comparatively recently that design 

recommendations were given in official documents. 
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In the U.K, the current practice is based on recommendations put forward 

in CIRIA Guide [85] and, to date, there is no British code of practice 

for deep beam design. Other international recommendations are given in 

the European CEB-FIP [33], the American code ACI(318-83) (revised 1986) 

[1] and the Canadian code CAN3-A22.3-M84 (1984) [23]. 

However, the complexity of the problem is so great that, as yet, no 

adequate analytical or practical solution has been developed and 

consequently the design methods proposed in these documents are 

semi-empirical and not comprehensive enough to cover the range of 

reinforced concrete deep beams in application in practice. Recently 

[61], there was some concern that the CIRIA Guide [85], considered as the 

most detailed document on the subject, may not always be safe for the 

shear design of slender deep beams. Buckling is a possible design 

criterion [53] [58] for deep beams and is covered only in the CIRIA Guide 

[85]. However, due to lack of experimental data, the CIRIA design 

procedure for buckling had to be based on theoretical studies and 

engineering judgement. 

Although deep beams have been studied by a number of researchers over 

the last 20 years, continuous deep beams have not been extensively 

investigated. Existing knowledge in this area is very scarce and design 

procedures stem from elastic analYSis or are extrapolated from test 

results on simple span beams. 
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1.2 RESEARCH OBJECTIVES 

The purpose of this study is to present more information on areas not 

satisfactorily covered by existing design documents and give further 

clarifications where conflicting opinions have been given by previous 

researchers. In particular, it is specifically attempted to: 

1. Investigate clearly the nature of diagonal cracking in slender deep 

beams and the consequence of using the CIRIA design method [as] for 

shear. Suggested modifications are given for such method to be used 

for shear design of slender deep beams. 

2. Assess the effect of web reinforcement in deep beams in general. The 

parameters considered are the type of arrangement, the quantity of 

web steel and the shear-span/depth ratio 

3. Calibrate existing design methods for buckling of slender c~ncrete 

deep beams (namely the Portland Cement Association method [88] and 

the CIRIA method [as]) against test data, and assess their usefulness 

as design documents. This is achieved by comparing measured 

experimental buckling loads with those predicted by the two design 

methods. To calculate the CIRIA buckling loads, an analytical method 

is developed by the author, jointly with others, and is presented in 

internal technical reports [59] [60]. 

4. Investigate and present more information on the ultimate strength 

behaviour of continuous deep beams with particular attention devoted 

to the following : 

a. Crack formation and development of crack width 

b. Strain development 
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c. Vertical and lateral deflections 

d. Web reinforcement influence on the cracks, deflections and 

ultimate strengths 

e. Mechanism of 'flow of forces' and distribution of reactions at 

supports 

5. Develop design guidelines and hints for continuous deep beams. 

1.3 THESIS OUTLINE 

This work started with an overview of the major literature which has a 

direct bearing on the existing design documents for deep beams. This is 

presented in section 1.4 of this chapter. Its purpose is to trace the 

different parameters studied and the range of interest of each parameter, 

and critically examine the findings with a view of identifying eventual 

defects. This would also help in determining areas which requir~ further 

investigation. In chapter 2, the existing deep beam design guidelines 

given in the four major documents, namely the CIRIA Guide [85], the 

CEB-FIP model code .[33], the Canadian code [23] and the ACI(318-83) 

(revised 1986) code [1] are reviewed. Design examples are given to 

illustrate their practical applicatons and outline their different 

approaches to the problem. 

In chapter 3, an experimental programme is designed to give more 

information on the nature of diagonal cracking in slender deep beams. 

Based on the test results, a suggested modification to the CIRIA shear 
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design procedure is proposed so that it can be safely used for slender 

deep beams. The test results of the experimental programme described in 

chapter 3 were also used to assess the effectiveness of web reinforcement 

in deep beams. This is presented in chapter 4 which also outlines the 

general behaviour of single span deep beams. In this chapter, the author 

proposes a formula for predicting the ultimate load of a deep beam 

failing in shear and compares it to existing ones. 

Chapter 5 deals with the problem of buckling encountered in slender 

deep beams. An experimental programme is designed to give buckling data 

against which two existing design methods are assessed. 

In chapter 6, the experimental programme for continuous deep beams is 

described. It includes details of the test beams, the concrete mix 

design, the fabrication and curing of the specimens , the loading system, 

the instrumentation and the test procedure. In chapter 7, the behaviour 

of the continuous deep beams under load is described and the test results 

are presented and discussed which include cracks patterns, modes of 

failure, crack widths, diagonal cracking loads, ultimate loads, 

settlement of supports, reactions and bending moment distribution, 

concrete strains and stresses, deflections. Chapter 8 includes a further 

discussion and interpretation of the test results on continuous deep 

beams. Recommendations for their design are presented. 

Chapter 9 summarizes the principal findings of this study and gives 

some suggestions for further research work. 
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1.4 OVERVIEW OF THE PREVIOUS WORK 

1.4.1 GENERAL BACKGROUND 

A substantial amount of analytical and experimental work has been 

carried out on shear in reinforced concrete. Nevertheless, no generally 

accepted approach has been developed for the design of reinforced and 

prestressed concrete members subject to shear. This is reflected by the 

different codes and technical documents in existence over the world and 

their markedly different content, underlining the diversity of opinions 

on the structural behaviour of concrete. The degree of diversity in the 

interpretation of a particular structural action can be inversely related 

to the fundamental knowledge of the action. For example, a comparison of 

the design methods for the behaviour of reinforced concrete in bending 

shows minor differences in approach which reflects the designer's 

excellent knowledge of behaviour under such action as compared to that of 

shear. Thus, shear in general is a controversial topic in structural 

concrete [57] [4] [74] [75] [109] [50] [83] [24] and no single theory is 

capable of explaining all aspects of behaviour under such action. 

The earliest theories led to the conclusion that the shear stress on a 

section of a beam was constant below the neutral axis at V/bz ( b is the 

beam width and z the lever arm ) and varied parabolically to zero at the 

compression face above the neutral axis. To this day, this conclusion is 

still not fully justified, though, so far, its use has led to safe 

design. Nevertheless, it is widely agreed among researchers [4] [57] 
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[109] that the shear force is resisted by the combined action of the 
,C 

shear Vcz in the uncrrked compression zone, the shear force Vd from 

the dowel action of the longitudinal reinforcement and the shear Va due 

to aggregates interlock, that is : 

1.1 

The contribution of the different components is, however, not clearly 

quantified and difficult to predict. The absence of a generally accepted 

approach for shear design stems perhaps from the difficulty in unifying 

these three actions under a single rational theory. 

It is recognized [4] [46] [57] [110] that the failure mode of a 

reinforced concrete beam is strongly dependent on the shear-span/depth 

ratio a/h. Many other parameters have been observed to be significant, 

of which the steel ratio and the concrete strength are most important. 

Typically, for 6 > a/h > 2.5 the failure crack pattern of a beam that 

failed in shear is shown in fig.l.la. The failure crack develops 

from a normal flexural crack and extends rapidly to the load point. 

At the same time, a split develops along the main reinforcement 

towards the support. 

For a/h < 2.5, a typical shear failure of such beams is shown in 

fig.l.lb. A diagonal crack develops independently in the shear span 

and is straighter. It forms as a result of the splitting action of 

the compression force that is transmitted directly from the loading 

point to the support. 
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The two kinds of behaviour are described [4] [46] [51] as 'beam action' 

in the former case and 'arch action' in the latter case. In the beam 

action, the ultimate load is sensibly the same as the diagonal cracking 

load. An arch action, however, is an additional method for transmitting 

the load to the support, and the ultimate load is much higher than the 

diagonal cracking load. 

Deep beams are usually associated with the arch action and, hence, 

have a considerable strength reserve beyond diagonal cracking. Such arch 

action, and thus the 'tied arch' that can form, depends on the method of 

load application. 

1.4.2 MAJOR DEEP BEAM LITERATURE 

Much of the early work on deep beams was based on elastic analysis. 

Dishinger [42] was probably the first researcher to have started it and 

obtained stress distribution for continuous deep beams. His analysis 

illustrated clearly that, in an elastic deep beam, the distribution of 

bending stresses deviates completely from linearity. The Portland Cement 

Association used Dishinger's elastic solution to give design guidelines 

for reinforced concrete deep beams [89]. Since then, there has been 

several other elastic solutions for deep beams [9] [10] [26] [48] [112]. 

A thorough survey of literature on the early elastic work is reported in 

references [5] [28]. Generally, the methods used were Fourier - series 

solutions, the method of finite differences, and photoelastic techniques. 

Recently, with the spread of the computer use, the finite element 
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analysis became the pioneering elastic solution for deep beams [44] [85] 

[94]. 

All of these solutions, the finite element analysis included, assume 

an isotropic homogeneous material which obe~s Hooke~ law and, thus, are 

not valid after cracking has occurred in the beam. Nevertheless, they 

highlighted the differences between shallow beams and deep beams in that 

the usual hypothesis that plane sections before bending remain plane 

after bending does not hold for the latter. Consequently, the flexural 

stresses are not linearly distributed and there may be more than one 

neutral axis as found in the present tests (fig.3.l0). The vertical and 

shear strains are large compared to the bending ones and therefore make a 

significant contribution to the total deformation than is the case for 

shallow beams. A state of high biaxial stresses over the supports and 

under concentrated loads exists in deep beams. 

Design methods [26] [89] [112], based on working stresses and 

consistent with the then service load requirements as deSign criteria, 

were proposed •. 

The move from service load requirements to ultimate strength has meant 

that these methods can no longer be relied on for deSign and analysis. 

Instead, the research should be directed towards the ultimate load 

behaviour for which the elastic analysis could only predict the location 

and orientation of the cracks. 
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Leonhardt and Walther [80] were among the first to have initiated such 

turn in research by conducting ultimate load tests on reinforced concrete 

deep beams. Their work forms the basis of the current CEB-FIP 

international recommendations for the design of concrete deep beams [33]. 

It consisted of 13 beams tested to destruction; 9 of which were simply 

supported with span/depth ratio of 1, 2 were on continuous supports and 2 

indirectly loaded. 

Five of the single span beams were uniformly loaded on the top and 4 
~ 

tested under uniform bottom loads. It was found that, whil~ elastic 

solution provides a good description of the deep beam behaviour before 

cracking, the stresses measured after cracking differed significa~y from 

the theoretical elastic stresses. In particular, the actual tensile 

stresses in the reinforcement were much smaller than those values 
~e 

predicted fromlelastic solution. Furthermore, strain measurements on 

concrete and steel indicated that all of the test beams developed a 

marked 'tied arch' action, that is a truss frame having inclined concrete 

as compression members and main steel as tension ones. They noted that 

stresses in the. tension reinforcement decreased much less towards the end 

supports than the bending rr.oments, implying that the steel acted as a 

tension tie with approximately constant force from one end of the beam to 

the other. On this basis, the authors recommended that the flexural 

reinforcement be carried through to the support without curtailment. 

Failure at the support regions at lower loads was observed in beams with 

bent-up bars which were not effective in resisting shear forces and would 

only weaken the tension chord. Leonhardt and Walther [aD] suggested that 
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the main reinforcement should be distributed over a depth of 0.2 h and be 

adequately anchored at the supports and that this could be best achieved 
~ 

by horizontal hooks. In their view, unfav~able action could result from 

vertical hooks and contributes towards crushing of concrete at supports. 

Beams having light main reinforcement ( 0.134% ) failed in flexure. When 

the main steel ratio was increased to 0.268 %, failure changee to either 

crushing at the support or failure of the inclined concrete strut. For 

beams loaded at the bottom, they suggested the use of hanger bars at 

least over a depth equal to the span so that the arching cracks resulting 

from the relatively high vertical stresses could be restrained. 

In deep continuous beams, Leonhardt and Walther found that the bending 

moment distribution and reactions at supports differ completely from 

those of ordinary beams. Shear deformation reduces interior support 

moments ( and reactions ) and increases the mid-span moments ( and end 

reactions ). 

The authors concluded that, in general, shear and shear reinforcement 

are not the main concern in deep beams since the principal compressive 

stresses are always critical near the bearing and thus dictate the upper 

limit of the carrying capacity for such beams. 

De paiva and Siess [40] were another pair of researchers who have 

initiated the ultimate deep beam behaviour. They conducted a series of 

tests on deep beams in the transition range; the span/depth ratios, l/h, 

varied between 2 and 4. The beams were tested under static two 
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pOint-loads giving shear/span ratios, a/h, ranging from 0.67 to 1.33. 

The main reinforcement consisted of straight bars anchored at the 

supports. Web reinforcement, where used, consisted of either vertical or 

inclined stirrups. All the beams exhibited a tied arch behaviour after 

the diagonal cracks had developed (see fig.l.2). Such behaviour was 

confirmed from strain measurement along the tension reinforcement and 

along the top of the beam. The tied arch action was suggested earlier by 

Kani [50] to explain the behaviour of ordinary beams loaded close to the 

supports ( fig.l.lb ). 

De paiva and Siess [40] found that the web reinforcement had no effect 

on the formation of inclined cracks and seemed to have little effect on 

the ultimate strength of the beams. The failure modes of the specimens 

depended mainly on the amount of main reinforcement and changed from 

flexure to flexure-shear as the percentage of tensile steel was increased 

from 0.83 % to 2.56 %. The concrete strength was found to have more 

influence on beams failing in shear. An empirical equation, taking into 

account the effects of f'cI p, and a/h, cylinder compressive strength, 

percentage of tensile steel and shear-span/depth ratio respectively, was 

proposed for the pediction of the ultimate shear strength. However, such 

equation had a limited application since almost half ( 9 out of 19 ) the 

specimens failed in flexure. This makes the sample of shear failure 

rather small and leads to question of confidence in using it. Also, the 

small size of the specimens tested ( span of 610 mm, depth from 178 mm to 

330 mm) may have introduced scale effects. Indeed, Chana [25] showed 

that the shear strength tends to increase as the specimen size decreases. 
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To sum up, De paiva and Siess work had a great impact on deep beam 

research in that it served as a basis on which to build on for many 

researchers. 

At the beginning of the seventies, an important contribution to 

ultimate load behaviour was made by Crist [38] who conducted a series of 

static tests on nine large scale deep beams with span/depth ratios 

ranging between 1.6 and 3.8. Web reinforcement, where present, consisted 

of an orthogonal pattern of steel and the beams were loaded with 7 

pOint-loads to simulate a uniformly distributed load. The observed 

behaviour of the specimens was similar to that already described in 

De paiva and Siess tests [40], with the beams that had web reinforcement 

failing essentially in flexure and those without web reinforcement 

failing in shear. 

Using the lower boundaries of the test data, Crist developed equations 

for the shear strength of deep beams which form the basis of the actual 

ACI code recommendations for deep beams [1]. For this reason, it is felt 

important to reyiew the derivation of such formulae. It starts with the 

premise that the total shear capacity is made of a concrete contribution 

plus a web steel contribution; that is : 

1.2 

The critical section is assumed to occur at the middle of the diagonal 

crack. For uniformly distributed load, such section, defined from the 

centre line of the support, is given as 
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Xcrit = 0.2 L with Lid < 5 

where L is the span length and d the effective depth. 

The shear capacity of the concrete, that is the concrete 

contribution, is assumed to be : 

4 M V 
Vc = ( 3.5 - )( 1.9 ~c + 2500 pd ) bd 1.3 

3 V d M 

Where M is the bending moment at the critical section 

v is the shear force at the critical section 

f'c is the cylinder compressive strength of concrete 

P is the main steel ratio 

The second term on the right hand-side member represents the inclined 

cracking load of an ordinary beam [1], while the first term reflects the 

reserve shear capacity of deep beams beyond diagonal cracking. Vc is 

subject to the following restrictions : 

1.4 
M 

1 < ( 3.5 ) < 2.5 
3 v d 

The shear capacity of the web reinforcement, that is the web steel 

contribution, was developed from shear friction along the inclined crack 

as illustrated in fig.l.3a 

From shear friction analogy, fig.l.3a 

5 = Fn tan~ 1.5 

Where Fn is the normal force on the inclined crack 

tQn~ is the apparent coefficient of friction 
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5 is the shear force along the crack 

According to Crist [38], Fn is produced by tension in the 

reinforcement which results from crack widening as slip occurs. 

The vertical component of the shear along the crack is 

Vs = 5 sin8 1.6 

Assuming yielding of the web reinforcement at ultimate gives 

Fv = Av fy 1.7 

From fig .1.3b, we have 

l:CF'n) = XCFv) sinCa+8) 1.8 

and 

Fn = X(F'n) = XC F v) sin(a+8) 1.9 

Therefore 

Vs = XCFv) sinCa+8) tan<l> sine 1.10 

For ~niformly spaced horizontal and vertical web bars, 

equation 1.10 becomes : 

where Av is the area of vertical web reinforcement within a 

spacing Sv 

Ah is the area of horizontal web reinforcement within 

a spacing She 

Crist [38] developed a lower bound crack inclination from his test 

data as 

cos 28 = 1/12 ( 1 + Lold ) 1.12 
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where Lo is the clear span. 

Substituting this into equation 1.11 gives: 

AV 1 
v s = fydtan<%> ( (1 + Lo/d) + (11 - La/d» 

sv 12 
1.13 

Crist [38] originally suggested a value of 1.5 for the coefficient of 

friction tan<%>o It will be shown in chapter 2 that the ACI cc~:e uses a 

coefficient of 1.0 to err on the side of safety. Finally, Crist imposes 

the following restriction on the total shear capacity of the beam, 

Vu < 8 Vt'c bd 1.14 

In the shear friction analogy, any bar crossing the inclined crack 

should be considered, without making the difference as to whether the bar 

is meant for shear or for flexure. Crist, however, seems to make such 

difference in his model and ignores the effect of the main tensile steel 

acting as shear friction reinforcement. Also his model considers web 

reinforcement as equally effective at any location down the depth, so 

long as it intersects the inclined crack. 

To date, the most extensive experimental work on the behaviour of 

reinforced concrete deep beams is that carried out under the direction of 

Kong [63] [64] [65] [66] [68] [69] [70]. It was initiated at the 

university of Nottingham, followed on at Cambridge university and is 

going on at Newcastle university [58] [61]. 
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The early work was related to the strength and behaviour of stocky 

deep beams without web openings [63] [64] [65] [66] [68] [69] [70], and 

was extensively used in the production of the Constructional Industry 

Research and Information Association (CIRIA) Guide [85] published in 

1977. Tests on 135 beams made of normal and lightweight concrete were 

performed. The span/depth ratios ranged between 1.0 and 3 and the 

clear-shear-span/depth ratios ranged between 0.23 and 0.7. The beams 

were tested under two pOint-loads applied at the top. Of eight 

arrangements of web reinforcement used, inclined bars were found to be 

the most effective in controlling crack widths and vertical deflections 

and in increasing the ultimate shear strength of both normal and 

lightweight concrete beams. The other types of web reinforcement 

depended on the geometry of the beams. For deeper beams, horizontal bars 

at close spacing near the soffit were the next most effective. When the 

span/depth ratio increased, the e~ctiveness of horizontal bars 

diminished and that of vertical bars increased to become more effective 

at L/h of 3. 

From these t~sts, the authors were able to confirm that the 

clear-shear-span/depth ratio was a more important parameter than the 

span/depth ratio. With few exceptions, the cracks patterns and modes of 

failure of all the tested beams were similar despite the differences in 

web reinforcement and geometric and loading properties. A typical 

behaviour was this: on loading, the first cracks to form were flexural 

cracks in the central region of the beams. At higher loads, further 

cracks formed near the supports and propagated upward towards the loading 
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points. These cracks which formed at, or close to, the beam soffit were 

harmless unless the main reinforcement was light. When the load reached 

70 to 90 \ of ultimate, a new type of diagonal cracks suddenly appeared 

in the shear-span at a distance of about h/3 from the soffit. These 

diagonal cracks were often accompanied by a rather loud noise. On 

further increase in load, a diagonal crack would split the beam 

approximately along the line joining the loading and support bearing 

blocks. Failure of the inclined strut by crushing of concrete between 

two diagonal cracks was reported in very few cases. Another type of 

failure involved the propagation of the diagonal crack into the 

compression zone at the loading or support bearing block, followed by 

concrete crushing. From the numerous tests, Kong et al [68] made the 

following observations: 

1. The ultimate shear strength of a deep beam is made of a concrete 

contribution plus a steel contribution. It increases with a decrease 

in x/h, the clear-shear-span/depth ratio. 

2. The diagonal crack which forms in the shear-span is akin to the 

splitting of a concrete cylinder. Where stiff load bearing blocks 

are used, the diagonal crack is approximately the line jOining the 

inside face of the support to the ouside face of the loading block. 

That is an angle of inclination of cot-l(x/h). 

3. The angle of intersection of a bar with the diagonal crack is 

important. The more nearly a bar is perpendicular to the diagonal 

crack, the more efficient it is in resisting shear. 

4. After the diagonal crack has formed, the end portion of a beam tends 

to rotate about the nearest loading point. Thus, the ability of a 
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bar to restrain such rotation increases with the depth at which it 

intersects the diagonal crack. 

5. The main longitudinal reinforcement helps to restrain the growth of 

the diagonal crack and, thus, has a major contribution to the shear 

capacity. 

These useful test observations, together with the failure modes 

described previously, led the authors to come up with a semi-empirical 

equation for the ultimate shear strength of deep beams and was later 

adopted in section 3.4 of the CIRIA Guide [85]. However, the equation is 

valid for top loaded deep beams only and is as follows : 

Shear strength = concrete contribution + steel contribution 

x n Y 
V = Cl (1 - 0.35---) f t bh + C2 l:A--- sin2a 

h h 

where Cl is a coefficient equal to 1.4 for normal weight 
concrete and 1.0 for lightweight concrete. 

C2 is a coefficient equal to 130 N/mm2 for plain 
round bars and 300 N/mm2 for deformed bars. 

f t is the cylinder splitting tensile strength of 

1.15 

concrete; 'where ft is not available, it may be estimated 
from the cube strength fcu as ft = 0.5 ~u. 

A is a typical web bar that crosses the diagonal crack. For 
the purpose of this equation, the main longitudinal bars 
are also considered as web bars (see fig.l.4). 

y is the depth at which the web bar intersects the critical 
diagonal crack (dotted line in fig.1.4) 

a angle between the bar being considered and the diagonal 
crack, 0 < a < n/2 

n is the total number of bars, including the longitudinal 
bars, that intersect the critical diagonal crack. 
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Tests on reinforced concrete deep beams with web openings have also 

been conducted by Kong and his associates Sharp, Kubick, Beaumont and 

Appleton [71] [72] [73]. Their work gives a clear visualization of the 

effect of openings on the ultimate strength of deep beams. They 

presented a simple structural idealization of the normally complex load 

transfer mechanism and modified equation 1.15 accordingly so that it can 

take account of a rectangular opening. More recently, research began at 

Cambridge university on the strength and stability of slender concrete 

deep beams [47] and is now being continued at Newcastle university [114] 

[108] where the first test results have just been made public [58] [61]. 

It became clear [53] [61] that existing design documents [85] could be 

unsafe for the shear design of slender deep beams. 

Recently, Rogowsky, MacGregor, and Ong [96] have conducted tests at 

the university of Alberta on 7 single span deep beams and 17 two-span 

continuous deep beams, each span being 2000 mm in length. The 

shear-span/depth ratios ranged from 1 to 2.5. Various arrangements and 

amount of web reinforcement were used, including no web reinforcement, 

minimum and maximum horizontal web reinforcement and minimum and maximum 

vertical web reinforcement. The beams were loaded and supported through 

column stubs cast monolithically with the beams. Such loading and 

supporting system could be considered as the most realistic one reported 

in the literature. The loads were applied at the top centre of each 

span. 
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These 17 continuous beams together with the two b~ms tested by 

Leonhardt and Walther [80] represent the only test data available on 

continuous deep beams. In addition to the usual measurements made for 

single span beams, the authors monitored the support reactions; these 

were reported earlier by Leonhardt and Walther to differ completely from 

those of ordinary continuous beams. All the beams tested failed in shear 

by crushing of the concrete in the inclined compression struts. 

Horizontal web reinforcement was found to be ineffective. In contrast, 

vertical stirrups when used in sufficient number increased the strength 

of the beam and improved the ductility. The test specimens behaved 

essentially as 'trusses' or 'tied arches' after the formation of diagonal 

cracks. The authors concluded that the current design recommendations, 

based on tests on simply supported deep beams, are not realistic; they do 

not attempt to predict the strength of the tied arch which form after 

diagonal cracking. When compared with test results, the ACI code [1] was 

found unfit for the design of continuous deep beams. Design 

recommendations, based on plastic truss models of behaviour, were put 

forward by the authors for both simple and continuous deep beams [97]. 

These will be discussed in more details in chapters 7 and 8. 

Solutions using plastic truss models have been presented elsewhere 

[78] [82] and form the basis of the current Canadian recommendations for 

the design of concrete deep beams [23]. However, as stated by Kong and 
r 

Cha~ton [55], plastic concepts and the fundamental theorems have often 

been misunderstood by engineers and used wrongly. Indeed, the truss 

model (fig.l.s) used by Kumar [78] to obtain a theoretical lower bound on 
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the collapse load does not satisfy the equilibrium condition and 

consequently, as reported by Kong and KUbifk [79], his solution can not 

be a lower bound one. 

KUbi~k [77] presented a truss model which satisfied both the yield and 

equilibrium conditions. However, his model could not reflect all the 

possible failure modes which are likely to occur in deep beams. It does 

not recognize the diagonal splitting failure, most commonly encountered 

in deep beams, and deals only with flexure and bearing failures. In the 

truss model proposed by the Canadian code recommendations [23], the 

problem in a typical deep beam is one of excessive compressive stresses 

in the bearings and concrete struts [31] [32]. Yielding of the main 

steel can also be catered for. However, from the present author's 

experimental programme and from other investigators [64] [69] [93] [77], 

these failures occur only rarely and the main problem of deep beams is 

diagonal splitting for which a lower bound solution based on a truss 

model has proved to be unsafe [77]. 

In summary, xhe"elastic analysis cannot predict the ultimate behaviour 

of reinforced concrete deep beams. Laboratory tests are valuable tools 

for such purpose. Numerous investigations have been carried out through 

ultimate load tests. Those which have found their way into deSign codes 

or technical documents or served as basis for others have been reviewed. 

The significant findings of the works reviewed are as follows : 

1. deep beams sustain a considerable strength beyond diagonal cracking. 

Such strength is due to tied-arch action which develops after 
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inclined cracking. 

2. The concrete quality is important for beams failing in shear. 

3. The main reinforcement, as tension chord of the tied-arch, should not 

be weakened by cut-~ffs and should be well anchored at supports. It 

contributes considerably towards the shear capacity of a deep beam by 

restraining the diagonal cracks. 

4. There is strong disagreement about the effectiveness of web 

reinforcement particularly horizontal one. Nevertheless, web 

reinforcement was found not to affect the diagonal cracking load. 

5. The behaviour of a deep beam is strongly dependent on the 

shear-span/depth ratio. The span/depth ratio is of a lesser 

importance. 

6. The reactions and moment distributions in continuous deep beams could 

be different from those in ordinary beams. 
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CHAPTER TWO 

DESIGN OF REINFORCED CONCRETE DEEP BEAMS - USE OF NATIONAL CODES AND 

MANUALS -

2.1 INTRODUCTION 

The design of reinforced concrete deep beams is not covered by 

CP 110 : 1972 [36] nor by the new BS 8110 : 1985 [16], section 3.4.1.1 of 

which explicitly states that 'for the design of deep beams, reference 

should be made to specialist literature'. The new Eurocode [45] (still 

in the draft stage) for concrete structures does not include deep beams; 

it simply refers to the CEB-FIP : 1978 model code [33] which is one of 

the main design documents for such structural members. The other design 

documents are the American code ACI(3l8-83) (revised 1986) [1], the CIRIA 

Guide: 1977 [85] and the Canadian code CAN-A23.3-M84 : 1984 [23]. 

Another technical document based on elastic analysis but still in use is 

that published by the Portland Cement Association : Design of ~eep 

Girders [89]. .Based on an extensive on-going research work, Kong and 

associates [70] proposed some recommendations for the design of concrete 

deep beams. 

Of these documents, the PCA report [89] does not deal with the 

behaviour of the beam at ultimate and will not be reviewed here. 

Interested readers can consult reference [70] which clearly shows that 

such method is rather conservative and out of date. The CIRIA design 
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guide could be considered as the most comprehensive and technically 

advanced document on the subject. 

A review of the different approaches to deep beam problem adopted in 

the above mentioned design documents is given, illustrated with design 

applications. For the sake of comparison, the same design case is 

considered in all the methods. 

2.2 KONG ET AL RECOMMENDATIONS 

These design recommendations, which apply to beams loaded on top only, 
on 

are based on~extensive on-going research programme [63] [64] [65] [66] 

[68] [70]. At first they were proposed for deep beams having 

clear-shear-span/depth ratios between 0.23 and 0.7. Recent tests [58] 

together with those carried out by the author and described in chapter 3 

of this thesis showed that these recommendations could satisfactorily be 

extended to deep beams having clear-shear-span/depth ratios ranging from 

0.0 to 0.7. 

a) Flexural design : 

The design bending moment Mu should not exceed 

MU = Z As fy/l'm 2.1 

where l'm is the material safety factor for steel, usually 

taken as 1.15 

z is the lever arm, assumed to be 0.6h for L/h > 1 

and O.6L for L/h < 1 
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The lever arm expressions result in a conservative flexural design since 

a finite element analysis [95] revealed that z could exceed these values. 

However, the authors justified the use of the lever arm expressions by 

arguing that, according to the design method, the main reinforcement 

forms an integral part of the shear reinforcement as will be shown later 

in the design application. Therefore, an excess in flexural steel would 

help improving the shear strength. 

b) Shear design 

The design method is based on equation 1.15 which Kong et al [68] 

developed from their research work. Such equation is rewritten below 

x Y 
QuIt = Cl (1 - 0.35---) ft bh + C2 IA sin2a 2.2 

h h 

where the notations are exactly those used in equation 1.15 

and defined in fig.l.4. 

Equation 2.2 predicts the collapse load. When used for design, a lower 

bound limit of 75 % (derived from tests by Kong et al [70]) should be 

adopted. In addition, the partial safety factors should be used. For 

design purpose,- equation 2.2 becomes : 

x ft C2 
Q = 0.75 Cl (1 - 0.35---) bh + 0.75 

h ~ ~ 

where fm = 1.5 for concrete and 1.15 for steel. However, since 

f t is proportional to ~u' it could be reasonable to take 

fm = VI:S for concrete. 

2.3 

When using this design method, the total steel contribution, that is the 
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contribution given by the second term on the right hand side of 

equation 2.3, should be at least 20 \ of the design shear force and that 

the web steel proper should contribute at least 25 \ of that total steel 

contribution. 

Design Example Using Kong et al Recommendations 

The idealized loading and geometry of a deep beam, carrying two columns 

on top, are as shown in fig.2.l, where Q/2 is the column load plus an 

allowance for a distributed load including the self weight of the beam. 

The total applied load Q = 7600 kN. Design the reinforcement and the 

beam thickness, given feu = 40 N/mm2, fy = 460 N/mm2, f t = 3.2 

N/mm2 . 

From fig.2.l: span/depth ratio L/h = 6300/3500 = 1.B < 3 

clear-shear-span/depth x/h = (2000 - 500)/3500 = 0.43 < 0.7 

Both ratios are in the ranges required; hence, the design 

method applies. 

- Flexural strength 

Lever arm z = 0.6h = 2100 mm 

Q 
Design bending moment Mu = Yf x 2000 

2 

where Yf is the partial safety factor for dead and live loads. 

~ = 1.4 will be adequate for this design. 

Ultimate moment of resistance Mr = z As fy/Ym 

Equating the two moments gives : 
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1.4 x 3800xl03 x 2000 = 2100 x 3500 x As x 460/1.15 

As = 12666.7 mm2 • 

Provide 16 No.32 mm diameter bars in 4 layers of 4 bars each 

(12867.9 mm2). 

- Shear strength : 

Consider equation 2.3; the shear resistance of the concrete 

is given by the first term of that equation, namely: 

x f t 
0.75 C1 (1 - 0.35---) bh 

h ~ 

3.2 
0.75x1.4 (1 - 0.35 x 0.43) x 3500 x b = 6660.08 b 

1.5 

The beam thickness can be chosen so that the concrete resists 

more than 60 % of the design shear force Vu 

Vu = ~ Q/2 = 1.4 x 3800 = 5320 kN 

6660.08 b = 0.6 x S320x103 

b = 480 rnrn. 

Calculate the shear resistance of the beam with the main bars on1y~ 

3.2 
Q1 = 0.7Sx1.4 (1 - 0.35 x 0.43) x 480 x 3500 

1.5 

300 y 

+ 0.75x----- x 12867.9 x x 0.84 
1.15 3500 

An average value of Y = 3200 mm is adequate for this design. 

This will yield : 

Q1 = (3196.8 + 1927.1) kN = 5123.9 kN 

- 28 -



This shows that the main reinforcement resists a high proportion of the 

shear force and thus is important for bending as well as shear according 

to Kong et al [70]. 

The shear force to be resisted by the web steel is given by: 

5320 - 5123.9 = 196.1 kN 

The total steel contribution to the shear strength 

5320 - 3196.8 = 2123.2 kN > 0.2 Vu = 1064 kN 

The web steel should contribute at least 25 % of the total steel 

contribution, that is 0.25 x 2123.3 = 530.8 kN > 196.1 kN. Thus, the 

quantity of web steel is to be calculated on the basis of the minimum 

contribution value 530.8 kN as below 

y 
530.8x103 = 195 x IAw ----- sin2a 

3500 

Kong et al recommend the use of horizontal bars nearer to 

the bottom of the beam. Assuming an average value of 

Y = 0.65h for design purpose 

0.65x3500 
530.8x103 = 195 x Aw x ----------- x 0.84 

3500 

total web steel Aw = 4985.4 mm2 

Provide 26 No.16 mm diameter bars (5227.6 mm2) horizontally in both 

faces (13 in each face). Kong et al recommend [70] to use additional 

reinforcement such as U-bars near the supports where concrete is expected 

to be highly stressed. 

The detailing is shown in fig.2.2. 
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2.3 CIRIA DEEP BEAM DESIGN 

the CIRIA Guide [85] applies to beams having span/depth ratios of less thon 

2.0 for simple span beams and less than 2.5 for continuous span beams. 

It should be used in conjunction with the British code CP 110 : 1972 

[36]. However, the author sees no reason for it not to be used in 

conjunction with the new BS 8110 : 1985 [16] which supersedes the former 

code. The Guide defines an effective span and height as follows (see 

fig.2.3) 

L = Lo + (lesser of Cl/2 or O.lLo) + (lesser of C2/2 or O.lLo) 

ha = h or L whichever is the smaller 

the Guide limits the active height ha to a depth equal to 

the span and considers the excess height above the span as not 

playing any part in carrying the load. 

Effective support width Cl (or C2) = the smaller of actual length or 

O. 2Lo 

(1)- SIMPLE RULES 

Apply to uniformly loaded deep beams over two or more supports 

a) Flexural strength 

The Guide recommends that where L/ha > 1.5, it is necessary to 

check that the applied moment does not exceed the capacity of 

the concrete section : 

Mu < 0.12 fcu b ha
2 

where fcu is the concrete cube compressive strength 

b is the beam width 
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If L/ha < 1.5, this checking is unnecessary. 

The area of the main longitudinal steel is given by 

As > Mu / (0.87 fy z) 2.5 

where the lever arm z is to be taken as (0.2L + 0.4ha ) for 

single span beams and (0.2L + 0.3ha ) for multiple span beams. 

The reinforcement so provided should extend from one support to the other 

without reduction and should be distributed over a depth of O.2ha • The 

bars should be anchored to develop 80 \ of the maximum ultimate force 

beyond the face of the support. A proper anchorage contributes to the 

confinement of concrete at the supports and improves the bearing 

strength. 

b) Shear strength 

(i) Bottom-loaded beams 

following condition 

V·< 0.75 b ha Vu 

The shear force should satisfy the 

2.6 

where Vu is the maximum value of shear stress, taken from table 6 of 

CPIIO for normal weight concrete or table 26 for lightweight aggregates 

concrete. 

If the above condition is not satisfied, the geometry or loading of the 

beam should be changed. Hanger bars should be provided in both faces to 

resist the bottom loads at a design stress of 0.87f y • Horizontal web 

reinforcement should be provided over the lower half of the beam depth 

ha and over a length of span 0.4ha from the face of support. The 

area of this reinforcement should be at least 0.8 times the area of 

hanger steel per unit length. 
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(ii) Top-loaded beams : The shear force should not exceed the 

concrete capacity limits below 

V < 2 (bha2/xe) Vc for ha/b < 4 

V < 1.2 (bha
2/Xe) Vc for ha/b >4 

V < bha Vc 

2.7 

The effective clear-shear-span xe is taken as L/4 for uniformly 

distributed loading; Vc is the ultimate concrete shear stress taken 

from table 5 and 25 of CP 110 for normal weight concrete and lightweight 

aggregates concrete respectively. 

If conditions 2.7 are not satisfied, the geometry or loading of the beam 

should be changed. 

A nominal quantity of web reinforcement not less than that required for a 

wall under clauses 3.11 and 5.5 of CP 110, consisting of horizontal and 

vertical bars in each face, should be provided. The vertical bars should 

be anchored around the main longitudinal bars; the horizontal web bars 

should be anchored as links around the vertical bars at the ends of the 

beam. 

c) Bearing strength 

For deeper beams (l/h < 1.5), the bearing capacity is the governing 

design criterion, particularly for those having shorter shear spans. 

Under the simple rules, the bearing stress should not exceed 0.4 f cu • 

d) Crack control 

The minimum percentage of reinforcement in a deep beam should comply with 
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the requirements of clause 3.11 and 5.5 of CP 110. The maKimum bar 

spacing is limited to 250 mm. In a tension zone, the proportion of the 

total steel area related to the local concrete area in which it is 

embedded should not be less than (0.52~u)/0.87fy. This implies 

that after cracking, the full tensile strength of concrete is carried by 

the reinforcement stressed at 0.87fy • The maKimum crack width is 
Q a~ 

limited to 0.3 mm in~normal environment and 0.1 mm inlaggreSSive 

environment. To control these limits, bar spacings given in tables 2 and 

3 of the CIRIA Guide [85] should not be exceeded. 

(2)- SUPPLEMENTARY RULES 

The supplementary rules are to be used in conjunction with the simple 

rules. They cover the design of deep beams in general, including those 

under concentrated loads, indirect loading and indirectly supported. For 

clarity, only the design of deep beams under top loading will be 

reviewed. For flexural design, the simple rules, reviewed previously, 

apply without modification. 

a) Shear strength 

The ultimate shear capacity of a deep beam loaded at the top 

is given by : 

xe 
V/bha < Al (1 - 0.35----) Vfcu + A2 

ha 

n 100 A 'y sin2a 

I---------------
bh 2 a 

Where Al = 0.44 for normal weight concrete and 0.32 for 

lightweight aggregates concrete 
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A2 = 1.95 N/mm2 for deformed bars and 0.85 N/mm2 for 

plain round ones 

b is the beam width and ha the active height. 

A, Y, a and n are similar symbols as those defined in 

equation 1.15 and fig.1.4. 

The effective clear-shear-span xe is taken as : 

The clear-shear-span x (see fig.l.4) for a load which contributes 

more than 50 % of the total shear force at support. 

L/4 for uniformly distributed load over the whole span 

The weighted average of clear-shear-spans where more than one load 

acts and none contributes more than 50 % of the shear force at the 

support. The weighted average is calculated as !(Vr xr)/!V r , 

where Vr is an individual shear force and xr its 

clear-shear-span, V = IVr • 

For an orthogonal pattern of web reinforcement, the Guide 

presents equation 2.8 in a simplified form as below 

2.9 

Where Al is as in equation 2.8, ~= 1.0 for deformed bars and 0.4 for 

plain round bars; Vx is the concrete shear stress parameter which 

depends on fcu and xe/ha and is presented in a tabulated form; 

vms is the longitudinal steel shear stress parameter which depends on 

xe/ha and the main steel ratio and is presented in a tabulated form; 

vwh (vwv) is the horizontal (vertical) web reinforcement shear 

stress parameter which depends on the horizontal (vertical) web steel 

ratio and xe/ha and is presented in a tabulated form in the CIRIA 
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Guide [85]. 

The ultimate shear capacity is subject to the following condition 

2.10 

where Al is as defined in equation 2.9 

The Guide suggests that the total steel contribution to the shear 

strength of the beam should not be less than O.2V. Reinforcement which 

is not within the height ha is to be ignored. 

b) Bearing strength 

The bearing stress limit of 0.4fcu under the simple rules may be 

increased to 0.6f cu and O.8f cu at end supports and at internal 

supports for continuous beams respectively, provided that the concrete is 

adequately confined at the support zones. A proper anchorage of the main 

reinforcement helps to confine the concrete. The CIRIA Guide gives 
o . 

detailing requirements in clause 3.4.3 for addit1nal confining 

reinforcement. Under concentrated loads, the bearing stress may be 

limited to 0.8fcu provided that adequate confining reinforcement is 

present. 

Design Example Using the CIRIA Guide: 

Design the reinforcement and the beam thickness for the deep 

beam shown in fig.2.l. 

- Geometry : 

span/depth ratio L/h = 6300/3500 = 1.8 < 2 
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The CIRIA Guide rules are applicable 

Effec!tive span L = 6300 mm 

Active height ha = 3500 mm 

Effective support width C = C1 = C2 = 500 mm < 0.2 Lo = 1160 mm 

- Loading : 

Design bending moment Mu = Yf x Q/2 x 2000 

= 1.4 x 3800 x 2000 

= 1.064xl07 kN.mm 

Design shear force Vu = Yf x Q/2 = 5320 kN 

Two concentrated loads act on the beam; hence, the 

supplementary rules apply. 

- Flexural strength 

L/ha = 1.8 > 1.5 

equation 2.4 needs to be checked to ensure that the strength of 

the concrete in compression due to bending is adequate. 

Mu < 0.12 fcu bha
2 = 0.12 x 40 x b x 35002 

b > 1.064x1010 / 5.88x107 = 180.9 mm. 

Provided that the beam thickness is higher than 180.9 mm, the 

strength of the concrete in compression due to bending will be 

adequate. 

The lever arm z = 0.2L + 0.4ha = 2660 mm. 

From equation 2.5, the tensile reinforcement area is 

As > 1.064x1010 / (0.87x460x2660) = 9995.00 mm2 

Provide 21 No.25 mm diameter deformed bars (10311 mm2). The 
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reinforcement is arranged in 7 layers of 3 bars each, extending from 

support to support without curtailment and distributed over a depth of 

0.2ha = 700 !TUD. 

- Shear strength : 

the beam supports two concentrated loads applied at the top; 

consider an orthogonal pattern of web reinforcement. 

From equation 2.9 

V/bha = Alvx + /3(vms + vwh + vwv ) 

where Al = 0.44, /3= 1 (considering deformed bars) 

xelha = (2000 - 500) / 3500 = 0.43 

A reasonable value of the beam thickness may be determined 

from the maximum shear capacity condition (equation 2.10) : 

Vu/bha < 1.3 Al ~u 

b > 5320xI03 / (1.3xO.44x6.32x3500) = 420.3 !TUD 

take b = 450 !TUD 

Main steel ratio p = 10311 / 450x3500 = 0.65 % 

From the CIRIA Guide, table 4 Vx = 5.37 N/mm2 

From the CIRIA Guide, table 6 vms = 1.07 N/mm2 

Consider a nominal quantity of web reinforcement of 0.25 % 

each way, horizontally and vertically, consisting of 12 mm 

bars near each face at 200 mm spacing. From the CIRIA Guide, 

tables 7 and 8 : vwh = 0.21 N/mm2, Vwv = 0.015 N/mm2 

The total shear capacity is 

V = (0.44x5.37 + lxl.07 + lxO.21 + lxO.015) x 450 x 3500 

= 5761.0 kN > 5320 kN 
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The steel contribution is 

(lxl.07 + IxO.2I + lxO.015) x 450 x 3500 = 2039.6 kN 

0.2 Vu = 0.2 x 5320 = 1064 kN < 2039.6 kN 

- Bearing capacity 

Assuming adequate confinement of the concrete at the support 

regions, the bearing capacity can be increased to 0.6f cu . 

Bearing stress fb = Vu/bC = 5320xl03/(4S0xSOO) = 23.6 N/mm2 

0.6f cu = O.6x40 = 24 N/mm2> fb = 23.6 N/mm2 

The reinforcement detailing is shown in fig.2.4. 

2.4 CEB-FIP RECOMMENDATIONS FOR DEEP BEAMS 

The draft Eurocode No.2 : 1984 'common unified rules for concrete 

structures' [45] (still in draft form) does not have any guidelines 

concerning the design of reinforced concrete deep beams. It refers to 

the CEB-FIP : 1978 model code [33] for the design of these structural 

elements. 

According to the CEB-FIP recommendations, a deep beam should have a 

span/depth ratio L/h less than 2 for simply supported deep beams and less 

than 2.5 for continuous ones. For single span beams, the area of the 

main longitudinal reinforcement should be calculated as for normal beams 

using the largest bending moment in the span and a lever arm z taken as : 

z = 0.2 (L + 2h) for I < L/h < 2 

z = 0.6L for L/h < 1 
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These two expressions show that in deep beams the lever arm varies at a 

lower rate with the depth h. When the depth exceeds the span, the lever 

arm becomes independent of the beam depth. The main longitudinal 

reinforcement so calculated should extend without curtailment from one 

support to the other and be adequately anchored at the ends. Vertical 
~ 

hooks cause the development of Cr\kS in the anchorage zone and, thus, 

should be avoided. The required steel should be distributed uniformly 

over a depth of (O.25h - 0.05L) from the soffit of the beam. The CEB-FIP 

code recommends the use of small diameter bars which are more efficient 

in limiting the width and development of cracks under service loads and 

facilitate the anchorage at the supports. 

For continuous deep beams, the lever arm z is taken as 

z = 0.2 (L + 1.5h) for 1 < Llh < 2.5 

z = 0.5L for Llh < 1 

The main longitudinal steel in the span should be detailed as for simply 

supported beams. Over the support, half the steel should extend across 

the full length of 'the adjacent span; the remaining half is stopped at 

0.4L or o.4h, whichever is smaller, from the face of the support. 

The design shear force should not exceed the lesser of 

(0.10 bh f'c)/Vm and (0.10 bL f'c)/Vm 2.11 

where b is the width, h the beam depth, f'c the characteristic 

cylinder strength of concrete and Vm a partial safety factor 
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for material. 

The web reinforcement is provided in the form of a light mesh of 

orthogonal reinforcement consisting of vertical stirrups and horizontal 

bars placed near each face and surrounding the extreme vertical bars. 

The web steel ratio should be in the range of 0.25 \ in each direction 

near each face for smooth round bars and 0.20 \ for high bo/nd bars. 

Additional bars should be provided near the supports, particularly in the 

horizontal direction. 

The aim of the web reinforcement is mainly to limit the crack widths 

which may be caused by the principal tensile stresses. In addition to 

the orthogonal mesh of reinforcement, for beams loaded at the bottom edge 

vertical stirrups are required to transmit the load into the upper 

portion of the beam. 

Design Example Using the CEB-FIP Recommendations 

Consider again the beam in fig.2.1i design the reinforcement and the beam 

thickness. 

From fig.2.l, L/h = 1.8 < 2 

CEB-FIP recommendations apply. 

- Flexural strength : 

Lever z = 0.2 (6300 + 2x3500) = 2660 mm 

Design bending moment Mu = Vf x Q/2 x 2000 

Moment of resistance Mr = fy/Ym x As x Z 
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Equating the two bending moments gives 

1.4 x 3800xl03 x 2000 x 1.15 
AS = 

460 x 2660 

The longitudinal steel area As = 10000 mm2 

Provide 21 No.25 mm diameter bars (10311 mm2). 

The reinforcement is detailed in 7 layers of 3 bars each, 

extending from support to support without curtailment and 

distributed over a depth of (0.25h - 0.05L) = 560 mm from the 

soffit. 

- Shear strength 

The design shear force Vu = Vf x Q/2 < 0.10 bh f'c/rm 

with f'c taken as 0.8f cu = 32 N/mm2 

1.4 x 3800 < 0.1 x b x 3500 x 32/1.5 

b > 712.5 mm 

take b = 715 mm 

Web reinforcement 

Consider a bar spacing of 200 mm, say, the required area for 

each bar 

Aw = 0.2 % x b x s = (0.2 x 715 x 200)/100 = 286 mm2 

Provide an orthogonal mesh of 20 mm diameter deformed bars at 

200 mm centre to centre near each face (Av = Ah = 314 mm2 ). 

Near the supports the spacing is reduced to 100 mm. 

The detailing is shown in fig.2.5. 
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2.S CANADIAN CODE PROVISIONS FOR DEEP BEAMS 

The Canadian CAN3-A23.3-M84 : 1984 code [23] provisions for deep beams 

are based on a truss model consisting of compression struts and tension 

tie as in fig.2.6. 

Unless special confining reinforcement is provided, the concrete 

compressive stresses in the nodal zones, defined as the regions where the 

struts and tie meet (fig.2.6), should not exceed 

0.85 ~cf'c in nodal zones bounded by compressive struts and 

bearing areas. 

0.75 ~cf'c in nodal zones anchoring one tension tie. 

0.60 ~cf'c in nodal zones anchoring tension ties in more than one 

direction 

where ~c is a material resistance factor = 0.6 for concrete, 

f'c is the cylinder compressive strength of concrete. 

The nodal zone stress limit conditions together with the equilibrium 

condition determine the geometry of the truss such as the depth of the 

nodal zones and th~ forces acting on the struts and tie. The main 

tension tie reinforcement is determined from the tensile tie force. 

These reinforcing bars should be effectively anchored to transfer the 

required tension to the lower nodal zones of the truss to ensure 

equilibrium. The code, then, requires the checking of the compressive 

struts against possible crushing of concrete as below : 

f2 < f2max 2.12 
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where f2 is the maximum stress in the concrete strut 

f2max is the diagonal crushing strength of the concrete, given by 

2.13 

where A is a modification factor to take account of the type 

of concrete, A = 1.0 for normal weight concrete 

£1 is the principal tensile strain, crossing the strut 

Equation 2.13 takes account of the fact that the existence of a large 

principal tensile strain reduces considerably the ability of concrete to 

resist compressive stresses. 

For deSign purpose, £1 may be computed from 

2.14 

where £x is the longitudinal strain 

6is the angle of inclination of the diagonal compressive 

stresses to the longitudinal axis of the member (fig.2.6). 

The code requires the use of a minimum area of 0.002 bsv for 

vertical web re"inforcement in the form of stirrups, with a spacing not 

exceeding diS nor 300 mm, and 0.002 bSh for horizontal web bars near 

each face with a spacing not exceeding d/3 nor 300 mm. The function of 

this web reinforcement is mainly to control diagonal cracking and ensure 

ductility of the beam. 
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Design Example Using the canadian code : 

Design the deep beam in fig.2.1 to carry the two concentrated 

loads. 

- Geometry : 

The upper nodal zones are bounded by compressive struts 

and bearing areas; the permissible nodal zone stress is 

0.85 $cf'c = 0.85xO.6x4640 = 2366.4 psi = 16.32 N/mm2 

The bearing stress at the upper nodal zone is 

1.25x3800xI03 / (500xb) < 16.32 N/mm2 

b > 1.25x3800xI03 / (500x16.32) 

b > 582 mm 

where '1.25' represents the dead load factor in the Canadian 

code [23]. 

The upper nodal zone depth "a" is such that 

C/ba < 0.85 $cf'c 

a > C / (0.85 b $cf'c) 

where C is the compressive force in the horizontal strut. 

The lower nodal zones anchor a tension tie; hence, the 

maximum nodal stress allowed for is 

0.75 $cf'c = 0.75xO.6x4640 = 2088 psi = 14.4 N/mm2 

The bearing stress at the lower nodal zone is 

1.25x3800xl03 / (500xb) < 14.4 N/mm2 

b > 659.7 nun 
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take b = 660 nun 

The lower nodal zone depth "a'" is such that 

T/(bxa') < 0.75 ~cf'c 

a' > T / (0.75 b ~cf'c) 2.16 

For the equilibrium of the truss to be achieved, C and T 

should be equal. Dividing equation 2.15 by equation 2.16 

and rearranging gives : 

a' = (0.85/0.75) a 2.17 

From the equilibrium of the truss, fig.2.6, taking moment 

about the reaction point 

C (h - a/2) - T a'/2 = 1.25 x 3800 x 2000 2.18 

Substituting equations 2.15, 2.16 and 2.17 into equation 2.18 

and rearranging gives : 

a2 - 3286.3 a + 828.2x103 = 0 

hence, a = 275 nun 

a' = 311 nun 

- Flexural strength 

T = C = Q.85·~cf'c ab = 0.85xO.6x32x275x660 = 2962 kN 

As = T/(~sfy) = 2962x103 1 0.85x460 

= 7575.4 nun2 

where ~s is the material reduction factor for steel, 

taken as 0.85 in the Canadian code [23]. 

Provide 16 No.2S mm diameter bars, distributed in 4 layers of 4 bars each 

(7858.9 mm2). Horizontal hooks are to be used to provide the necessary 

anchorage length for the tensile steel. 
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- Check for crushing of concrete at the compression struts 

(i) The compressive stress in the horizontal strut : 

f2 = C/ab = 2962xl03/(275x660) = 16.32 N/mm2 

since the transverse tensile strain E1 = 0 (no steel crossing 

the strut) the maximum compressive stress allowed is 

f2max = $cf'c = O.6x32 = 19.2 N/mm2 > 16.32 N/mm2 

(ii) The compressive stress in the inclined strut : 

The compressive force is (fig.2.6) : 1.25 x 3800/sin58 = 5601 kN 

* The compressive stress at the top is : 

f2 = 560lxl03/(660x570.6) = 14.9 N/mm2 

Since no tension tie crosses this region, f2max = 19.2 N/mm2 

* The compressive stress at the bottom of this strut is : 

f2 = 5601x103/(660x588.8) = 14.4 N/mm2 

This region is crossed by a tension tie ( main steel ) and 

thus, the limiting stress is reduced by the effect of the 

transverse strain E1. Assuming an average strain of the tension 

tie bars of Ex = 0.001 (half the yield strain) and considering 

equation 2.14 : 

El = 0 .• 00]; + (0.001 + 0.002) / tan2(58) = 0.00217 

from equation 2.13 : 

f2max = 0.6x32/(0.8 + 170xO.00217) 

= 16.4 N/mm2 > 14.4 N/mm2 

- Web reinforcement : 

The code requires a minimum area of 0.002 bs horizontally and 

vertically. Considering 12 mm diameter bars; Aw = 226.2 mm2 
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s = 226.2/(0.002x660) = 171.4 mm 

s should be smaller than d/s or 300 mm for vertical bars and 

d/3 or 300 mm for horizontal bars. 

Use 12 mm diameter bars at 160 mm spacing horizontally and vertically 

near each face. The detailing is shown in fig.2.7. 

,2.6 AMERICAN CODE PROVISIONS FOR DEEP BEAMS 

For flexure, the ACI(318-83) (revised 1986) code [1] defines deep 

beams as structural members having a span/depth ratio of 5/4 for simply 

supported beams and 5/2 for continuous ones. The code does not give 

detailed guidelines for flexural design of deep beams. It is simply 

suggested to consider the non-linear distribution of strains and the 

possibility of lateral buckling. In the commentary to the code [2], the 

designer is advised to consult other documents such as [26] [89] when 

designing a deep beam for flexure. 

Contrary to the CEB-FIP model code [33], the emphasis of the American 

code is on sheaF design, because it is argued that the strength of deep 

beams is more likely to be controlled by shear. According to ACI(318-83) 

(revised 1986), the shear provisions can be applied to beams loaded at 

the top and for which Lo/d is less than 5, where Lo is the clear span 

and d the effective depth of the concrete section. 

A critical section for shear is defined by the code as that half-way 

between the load and the face of support for concentrated load and that 
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at OJ5Lo from the face of support for uniformly distributed load. 

The design is based on : 

2.19 

where Vu is the design shear force at the critical section 

Vn is the nominal shear strength 

$ is the capacity reduction factor for shear. 

and 

2.20 

where Vc is the shear strength provided by concrete 

Vs is the shear stre~gth provided by steel 

The nominal shear strength Vn should not exceed the following 

Vn < 8 iff' c J::xi for Lold < 2 

2.21 

Vn < 2/3 (10 + LoId ) 'If' c J::xi for 2 < Lold < 5 

where f'c is the concrete cylinder compressive strength 

b is the beam width. 

The shear provided by concrete is calculated from 

Mu Vu d 
Vc = (3.5 - 2.5-----)(1.9 Vf'c + 2500 P -----) J::xi 2.22 

Vu d Mu 

where Mu is the design bending moment at the critical section 

Vu is the design shear force at the critical section 

p is the ratio of the main steel area to the area of the 

concrete section (p = As/bd) 
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The second term on the right hand side member of equation 2.22 

is the concrete shear strength for normal beams, given in 

ACI(318-83) (revised 1986) [1]. The first term on the right hand 

side member is a multiplier to allow for strength increase in 

deep beams, subject to the restrictions below : 

MU 
(3.5 - 2.5------) < 2.5 

Vu d 

and 2.23 

VC <6Vt'C bd 

In the case where Vu exceeds ~vc' shear reinforcement in the 

form of an orthogonal mesh must be provided to carry the 

excess shear. The contribution of shear reinforcement, VS' 

is given by: 

AV 1 + Loid Ah 11 - Lold 
Vs = [----(----------) + ----(-----------)] fy d 2.24 

Sv .12 sh 12 

Combining between equations 2.19 , 2.20 and 2.24 gives~ 

Av 1 + Lold Ah 11 - Lold 
----(----------) + ----(-----------) = ---------- 2.25 

Sv 12 sh 12 fy d 

where Av is the area of vertical web reinforcement 

within a spacing sv. 

Ah is the area of horizontal web reinforcement 

within a spacing sh. 

fy is the yield strength of the web steel. 
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In the case where Vu is less than~Vc' an orthogonal mesh of web 

reinforcement should be provided with the area of vertical web steel not 

less than 0.0015 bsv and that of horizontal steel not less than 

0.0025 bSh. In any case, sv should not exceed d/5 or 18 inches, 

whichever is less; sh is limited to the lesser of d/3 or 18 inches. 

In equation 2.25, the coefficients in parenthesis represent weighting 

factors for the relative effectiveness of the vertical and horizontal web 

reinforcement; fig.2.8 shows the variation of such factors with Lo/d. 

It can be seen from fig.2.8 that the ACI code [1] considers horizontal 

web reinforcement as more effective than vertical one. From equal 

effectiveness at a clear-span/effective-depth ratio of 5, considered by 

the American code as the limit of deep beam action, horizontal bars 

become more effective as Lold decreases while the effectiveness of 

vertical bars diminishes to an absolute minimum. 

The revised edition of the American code contains a special clause 

dealing with continuous deep beams. For loads applied at the sides or 

from the bottom of a beam, the design for shear should be the same as for 

ordinary members. 

Design Example Using the American code 

Consider the beam in fig.2.l, design the reinforcement and the beam 

thickness. The imperial units version of the ACI code [1] has been 

considered throughout this thesis and conversions into S1 units, wherever 
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necessary, were made. 

- Flexural strength : 

L/h = 6300/3500 = 1.8 > 5/4 

The flexural reinforcement is to be designed using ordinary 

beam equations. 

Design bending moment Mu = 1.4 x 3800x103 x 2000 

= 1.064x1010 N.mm 

Allowing for multiple layers of large bars as main tensile 

reinforcement, the effective depth is taken as 

d = (3500 - 250) mm , say, 

Assuming a trial stress block depth a = 500 rom and considering 

clause 10.3.1 of the commentary to the code [2] : 

1. 064xlO lO 

AS = = --------------------- = 8566.8 N/rom2 

<l>fy(d - a/2) 0.90x460(3250 - 250) 

Check the initial assumption of 'a' [2] 

As fy 
a = 

.0.85f'c b 

where b, beam width, = 515 rom (to be checked from shear 

considerations) 

8566.8x460 
a = ------------ = 281.3 mm 

0.85x32x515 

After four iterations, the stress block depth a = 270.9 rom, 

giving As = 8251.7 mm, 
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Provide 18 No.25 mm diameter deformed bars in 3 layers of 6 bars each 

(8835 mm2). 

Calculate the balanced steel ratio Pb 

f'c 87000 
Pb = 0.85 ~l x ------------

fy (87000 + fy) 

where f'c = 32 N/mm2 = 4640 psi; 

~l is the stress block dept factor, from cl.lO.2.7.l 

of the code [1]: ~l = 0.85 - (640/l000)xO.05 = 0.818 

fy = 460 N/mm2 = 66700 psi 

the balanced steel ratio Pb = 0.0274. 

The maximum steel ratio permitted by ACI code is 

Pmax = 0.75 Pb = 0.75xO.0274 = 0.0205. 

The actual steel ratio is p = 8835.75/(5l5x3250) 

= 0.0053 < 0.0205· 

The minimum steel ratio allowed by ACI code is : 

Pmin = 200/fy = 200/66700 = 0.003 < 0.0053 

The actual steel ratio provided is well below the maximum and 

above the minimum allowed by ACI(3l8-83) (revised 1986) code [1]. 

- Shear strength : 

Lold = (6300 - 500)/3250 = 1.78 < 5 

Hence, the ACI code shear provisions for deep beams apply. 

The critical section for shear is at 0.5(2000- 250) = 875 mm from 
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the face of support or at (875 + 250) = 1125 mm from its 

centre line. 

Design shear force at the critical section 

Vu = 1.4 x 3800 = 5320 kN 

Bending moment at the critical section 

Mu = 1.4 x 3800 x 1125 = 5985xl03 kN.mm 

Equation 2.19 together with equation 2.21 give 

1 5320xl03 

b > (Vu/$)(-----------) = ----------------- = 512 mm 
8 fi' c dO. 85x8xO. 47x3250 

take b = 515 mm 

The ratio Mu/(Vu d) = 5985x106/(S320x103 x 3250) = 0.346 

Mu 
(3.5 - 2.5------) = 2.63 > 2.5 

Vu d 

take 2.5 

From equation 2.22; 

5320x3250 
= 2.5 [1.9x68.12 + 2500xO.0053x-------------

5985xl03 

Vc = 419.3 psi = 2.89 N/mm2 

This exceeds ~he limiting value of 6 Vf'c = 408.7 psi 

= 2.82 N/nun2 , 

take Vc = 408.7 psi = 2.82 N/mm2, 

The design shear stress Vu = Vu/bd = 5320x103/(51Sx3250) 

= 3.18 N/mm2 

$vc = 0.85x2.82 < Vu = 3.18 N/mm2 

Hence, web reinforcement must be provided in accordance with 

equation 2.25. 
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Av 1 + 1.78 Ah 11 - 1.78 3.18 - 0.85x2.82 
----(----------) + ----(----------) = ------------------

Sv 12 sh 12 0.85x460 

which simplifies to 

Av Ah 
0.23---- + 0.77---- = 1.03 

It is clear from this equation that according to ACI code [1], 

vertical web bars are less effective than horizontal ones 

particularly for deeper beams. Using the minimum requirements 

for Av and choosing 12 rom diameter deformed bars 

Av = 113.1 x 2 = 226.2 rom2 

the spacing is : 

Sv = 226.2/(0.0015x515) = 292.8 rom 

Sv should be smaller than d/5 = 650 rom or 18 inches (457.2 rom), 

take 12 rom diameter vertical bars spaced at 290 rom, near each face. 

For horizontal web bars: 

Ah/sh = (1.03 - 0.18)/0.77 = 1.10 

Choosing 16 rom diameter bars, gives 

Ah = 201.06x2 = 412.12 rom2 • 

sh should be smaller than d/3 = 1083 rom or 18 inches (457.2 rom). 

take 16 rom diameter horizontal bars at 300 rom spacing, 

near each face. The detailing is shown in fig.2.9. 
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2.7 DISCUSSION 

The review of the major deep beam design documents in use throughout 

the world reveals further that the deep beam problem is as yet not 

clearly understood. 

The CEB-FIP recommendations, based on Leonhardt and Walther's 

experimental work [80], make emphasis on flexural design and do not give 

specific guidance on how to determine the web reinforcement. In 

contrast, the ACI code provisions, based on the work of Crist [38], 

centre on shear design and refer to other documents for calculating the 

main reinforcement. The CIRIA Guide considers the findings of a number 

of researchers, of which the experimental works of Leonhardt and Walther 

[80] and of Kong et al [63] [64] [65] [66] [68] are the most used. It 

deals with both flexural and shear design of deep beams falling within 

specific ranges for certain parameters. The Canadian code, however, 

adopted the diagonal compression strut analogy [31] [32] and reduces the 

problem of a deep beam design mainly to that of excessive concrete 

stresses in the struts. Flexural reinforcement forming the tension tie 

is calculated from a 'truss' equilibrium. Of these documents, the CIRIA 

Guide is perhaps the most detailed and comprehensive one, though still 

irrational for shear. 

In conclusion, while flexural design of deep beams shows minor 

differences in approach, significant variations of the semi-empirically 

based shear design exist. This will continue to be the case in the 
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absence of a logical physical shear theory which implements all the 

possible failure modes. 
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CHAPTER THREE 

DIAGONAL CRACKING OF SLENDER CONCRETE DEEP BEAMS 

3.1 INTRODUCTION 

The expected advance in material technology and the expanding need for 

higher strength in compression have contributed to the development of 

high strength concrete [3]. Improvement in the placing, compaction and 

finishing techniques have resulted in lower water/cement ratios. In 

addition to this, the recent development of superplasticisers [15] [27] 

made the achievement of high concrete strengths possible. Consequently, 

slender elements are increasingly used in the construction industry such 

as columns, shear walls and deep beams in high rise buildings. Offshore 

construction is another field where very slender deep beams have been 

used [102] [103]. 

Although a substantial library work exists on deep beams in general 

[63] [64] [65] [66] [68] [92] [100], there is a need for a better 

understanding of the behaviour of slender deep beams. A recent 

comparison of the observed behaviour of slender deep beams [58] with that 

of stocky deep beams has revealed a significant difference; namely the 
c 

major diagonal cr~s in slender deep beams make a smaller angle of 

inclination with the horizontal than one would expect the diagonal cracks 

in the stocky deep beams [68] [70] [100]. This observation has important 

implications in deep beam design and in the application of the CIRIA 
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shear-strength equation [85] (equation 2.8 in this thesis). 

To provide more information on the diagonal cracking of slender deep 

beams and their design implications, a series of tests was carried out on 

concrete deep beams. The main parameter considered for this purpose was 

the slenderness ratio (height/thickness ratio). The experimental 

programme was also intended for investigating the effects of parameters 

such as the quantity and arrangement of web steel, the concrete strength 

and the shear-span/depth ratio on the serviceability and strength of 

slender deep beams. This will be discussed in chapter 4. 

3 .2 EXPERIMElITAL PRCXiRAMME 

3.2.1 DESCRIPTION OF THE TEST SPECIMENS 

The test specimens consisted of 15 slender concrete deep beams divided 

into 3 series: CA, CC, F. 

Series CA (f.ig.j.la, table 3.1) : consisted of 5 beams made of high 

strength concrete and having a height h 1000 mm, an overall length 1700 

rnm and a simple span L 1400 mm, giving a span/depth ratio of 1.4. The 

thickness varied from 40 mm to 20 mm to give slenderness ratios 

(height/thickness ratios) ranging from 25 to 50. The shear-span/depth 

ratio was 0.4 and the clear-shear-span/depth ratio 0.17 (table 3.1, 

fig.3.1a). The web reinforcement consisted of a rectangular mesh of 5 rnm 

hard drawn wires spaced at 200 rom vertically and horizontally • The main 
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reinforcement consisted of three deformed bars placed near the bottom of 

the beams (fig.3.2); previous investigations [64] [65] have shown that 

such arrangement of the main tension reinforcement could substantially 

increase the shear strength of the beams. Depending on the beams 

thicknesses (table 3.1), 12 rnm or 16 rnrn bar size was used. To prevent 

premature failure at the loading and reaction points, the beams were 

tapered locally and reinforcement cages of 230 x 230 rnm, consisting of 

2 x 2 x 25 mrn welded wire mesh, were used at these points. As can be 

seen from table 3.1, the main parameter considered in this series of 

beams is the slenderness ratio h/b. 

Series CC ( fig.3.la, table 3.1 ) : consisted of 6 beams made of 

moderately high strength concrete and were geometrically identical to 

series CA beams except that the thickness was kept constant at 30 mrn, 

giving a constant slenderness ratio of 33. As stated previously, the aim 

of this series was to investigate the nature of diagonal cracking as well 

as the effectiveness of web reinforcement which will be discussed in 

chapter 4. The web reinforcement of series CC consisted of 8 mrn deformed 

bars as these are the most likely type of reinforcement to be used in 

practice for structures of this kind [14] [39]. The quantity and 

arrangement of the steel varied as in fig.3.2 and table 3.1 and will be 

discussed in details in chapter 4. The main reinforcement for all the 

beams consisted of 3 deformed bars of 12 mrn diameter, placed near the 

bottom. Reinforcement cages similar to those used in series CA beams 

were used to prevent bearing failure. 
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Series F (table 3.1, fig.3.lc ) : consisted of 4 beams of moderately 

high strength concrete, identical to those in the continuous deep beam 

programme which will be discussed in chapters 6 and 7. The 4 beams were 

of height h 960 mm and thickness 47 mm, giving a slenderness ratio h/b 

of 20. Two overall lengths were used, 2000 mm and 1600 mm, giving spans 

of 1720 mm and 1320 mm respectively. For more details, see chapter 6. 

For reasons explained in chapter 4, section 4.1, the web reinforcement 

conSisted of 6 mm diameter plain round bars in two layers. The 

arrangement and quantity of the steel are as in fig.6.2 and table 3.1. 

The main reinforcement consisted of three deformed bars of 12 mm near the 

bottom • The main parameters considered for this series were the 

arrangement of the web steel and the clear-shear-span/depth ratio which 

varied from 0.21 to 0.0. It is to be noted that, due to the test rig 

restrictions, the clear-shear-span/depth ratio could not be isolated from 

the span/depth ratio and changing the former meant changing the latter as 

well. However, from previous investigations [66] [77], the effect of the 

clear-shear-span/depth ratio on the diagonal cracking and ultimate 

strength of deep beams is more important than the span/depth ratio. 

Series F beams -were tested in collaboration with an M.Sc student [8] and 

were primarily aimed at providing a comparison with the strength and 

behaviour of continuous deep beams in chapters 6, 7 and 8. 
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3.2.2 BEAM NOTATION 

Except for series F specimens, all the beams are identified by a 

letter e followed by letters A or C. The first letter, C, indicates that 

the beam was cast and tested solely by the author. The second letter 

indicates the order in which the series was cast and the geometric 

properties of the beam. Series F beams were the last to be cast and 

tested in collaboration with an M.Sc student to complement the author's 

work. After the series letter, the notation changes according to what 

the main parameter to be investigated is. 

- In series CA beams, the slenderness ratio h/b is given after the 

first hyphen and the eccentricity/thickness ratio is given after the 

second hyphen. CA-25-0.0 refers to a beam of series CA having an h/b 

ratio of 25 and being loaded concentrically (e/b = 0.0). 

- In series ec, the quantity of web reinforcement used is given after 

the hyphen and the letter after the slash indicates the type of 

arrangement. uetters V for vertical, H for horizontal, and 0 for 

orthogonal, were used. '0.0' indicates that no web reinforcement was 

used. CC-0.79/V refers to a beam of series CC with 0.79 \ of web steel 

in the form of vertical bars. Similarly, CC-O.O indicates a beam of 

series CC without web reinforcement. 

- In series F, the clear-shear-span/depth ratio is given after the 

first hyphen. After the second hyphen, the quantity and type of 
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arrangement of web steel are given. F-0.0-0.5/H refers to a beam of 

series F, tested with a clear-shear-span/depth ratio of zero and had 

0.5 \ of web steel in the form of horizontal bars. 

3.2.3 MATERIALS 

3.2.3.1 The concrete 

The concrete used for series CC and F beams is the same as that used 

for the manufacture of continuous deep beams in chapter 6. Details of 

the ingredients and mixing procedure will be given in section 6.5.1 of 

chapter 6. 

Due to the slenderness of the specimens, the concrete used for series 

CA beams was of higher strength. The mix was achieved by trial and 

adjustments and had the following properties: 

- 7-day cube strength of 70 N/rnrn2 

- Water/cement rat~o of 0.35 

- Aggregates/cement ratio of 2.3 

- Rapid hardening Portland cement was used 

The aggregates consisted of sand of 5 rnrn maximum size. 

Further details are given in chapter 6, section 6.4.2. 

- Melment LIO superplasticiser to improve the workability of the 

concrete. 
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The concrete strength at the day of testing is given in table 3.1. The 

cube strength fcu and the tensile strength ft were determined from an 

average of three cubes each in accordance with BS 1881 : 1983 [17] [18]. 

The cylinder compressive strength f'c was deduced from the cube 

strength fcu using equation 6.2. as explained in section 6.5.2. A 

typical stress-strain curve for this type of concrete, determined from 

cylinder tests, is given in fig.6.7. More details about the 

stress-strain characteristics are given in chapter 6, section 6.5.3. 

3.2.3.2 The reinforcement 

The properties of the reinforcing bars used in all the beams are given 

in table 6.2 • 

3.2.4 CASTING AND CURING 

The procedure of casting and curing of the test specimens is similar 

to that described in the continuous deep beam programme in chapter 6, 

sections 6.6.2 and '6.6.3. 

3.2.5 TESTING 

The beams were simply supported and tested under two point-loads 

(fig.3.l, plates 3.1 and 3.2). Special bearing blocks (fig.6.lS) allowed 

for the longitudinal translation and both in-plane and out-of-plane 

rotations. They also helped to restrain the concrete against local 
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crushing at the bearing zones. Loads were applied concentrically, as 

shown in the loading scheme of fig.3.lb. 

Lateral displacements were measured at discrete positions (fig.3.3) 

using 15 LVDT transducers and data logger. Concrete strains were 

measured with demountable strain transducers [35], 36 per beam, on the 

back face and with demec gauges on the front face (fig.3.3). More 

details on the instrumentation used in the testing is given in chapter 6. 

To facilitate crack observation, the beams were cast in smooth formwork, 

whitewashed before testing and a 100 mm square grid was marked on each 

face (plates 3.1) so that cracks could be accurately located. 

The testing procedure and equipment used will be described in 

chapter 6. Typically, the preparation and setting up of a beam for 

testing took three to four days and the testing itself took one day. 

During testing, safety was a primary concern; in addition to potential 

dangers caused by tests of this kind, premature buckling collapse is a 

common feature of .slender deep beams [58]. As a precaution, an 

additional LVD~ transducer was used as a deflection limit detector to 

cut-off the load immediately the vertical deflection exceeded a preset 

limit. 
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3.3 DISCUSSION OF THE TEST RESULTS ON DIAGONAL CRACKING 

3.3.1 CRACK DEVELOPMENT AND CRACKS PATTERNS 

The cracks patterns at failure of the beams, together with the load at 

which each crack was first observed and the extent of the crack at that 

load are shown in fig.3.4. Those cracks which were believed to be the 

cause of failure are marked boldly and cross-hatchings indicate crushing 

of concrete, in some cases as a result of severe spalling. Because very 

few test data are available on slender deep beams, their cracking 

behaviour, as observed in the present tests, will be described with 

reference to that of stocky deep beams as explained in the literature 

[63] [64] [66] [100] [91]. Three main types of cracks were observed, 

fig.3.s: 

1. Flexural cracks 

2. Inclined cracks, initiating from the soffit of the beam in the 

vicinity of the supports 

3. Diagonal cracks 

Each type of crack'will be discussed in detail. 

3.3.1.3 Flexural Cracks 

On loading, the first cracks to form were flexural cracks in the 

region of maximum bending moment (fig.3.s, crack [1]). The flexural 
C. 

Cr~ing load was typically 10 to 20 % of the measured ultimate load 

(table 3.2) and was somewhat lower than that of stocky deep beams of a 
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comparable span/depth ratio which could vary betwen 20 and 40 \ [100]. 

This is expected since elastic analysis shows that for a given slender 

section of thickness b and depth h, the stress in the maximum bending 

region is given by : 

Us1ender = M/Z 3.1 

where M is the bending moment and Z the section modulus. 

For a stocky section having a thickness of kb (k a coefficient ranging 

from 2 to 5), a similar depth h and subject to the same bending moment, 

the stress will be : 

Ustocky = M/kZ = us1ender/k 3.2 

Thus elastic analysis informs us that the flexural cracks should be 

expected to form earlier in slender sections • 

The cracks were in general very narrow. Typically, their width was 

0.02 mm when first formed and reached a maximum of 0.1 mm as the load was 

increased further. When vertical bars were present, vertical cracks 

formed along their 'positions (CC-0.79/V, CC-l.93/V) probably as a result 

of the slenderness of the beams and the small concrete cover ( crack [2] 

in fig.3.5). Their width reached as high as 0.3 mm ( CC-0.79/V, 

CC-1.93/V ) and then tended to close up as the diagonal cracks developed 

wider. Although some beams (CA-40-0.0, CA-33-0.0, CA-25-0.0, 

F-O.21-0.5/h) reached their full flexural capacity (table 3.6), no 

flexural failure occurred in the tests. This suggests that the flexural 

capacity given by equation 2.5 is a conservative one. This is because 
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the lever arm used in such equation and given by (O.2L + O.4h) is based 

on elastic analysis [33] [85]. 

In general, the main :einforcement had just started to yield when the 

beams failed (1800 to 2000 ~s) and in-plane deflections were below 

4 mm (fig.4.2). 

3.3.1.4 Inclined Cracks 

AS the load was further increased, inclined cracks would form near the 

inside faces of the supports and propagate upwards and inwards (fig.3.S, 

crack [3]). These cracks, which have the common property of initiating 

at or very near the soffit of the beam and without cracking noise, tended 

to be quite harmless except for the beams without web reinforcement 

(CC-O.O) or with vertical web reinforcement only (CC-O.79/V, CC-l.93/V, 

F-0.2l-0.S/V) where their width exceeded 0.3 mm before formation of 

diagonal cracks. They usually stayed very narrow at the level of the 

main tension reinforcement but widened above that level revealing the 

effectiveness Qf the main steel in restraining shear cracks. After the 

formation of the diagonal cracks, they too tended to close up and, in 

general, cracks initiating from the soffit of the beam hardly ever became 

critical. Only in two cases did the fractural failure occur along them 

(F-0.2l-0.S/V, CC-O.O). In beams with smallest clear-shear-span/depth 

ratio, the formation of these cracks was delayed ( F-O.O-O.S/V, 

F-O.O-O.S/H ). 
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Inclined cracks form probably as a result of combined action between 

in-plane shear forces and bending moments. 

3.3.1.5 Diagonal Cracks 

On further loading, diagonal cracks (fig.3.5, crack [4]) would form 

suddenly with a fairly loud cracking noise which could be easily heard 

within 10 m radius, particularly in beams of high strength concrete 

(series CA beams). The cracking phenomenon could be explained by this, 

when the limiting tensile strength of the concrete is reached in any of 

the shear spans as a result of increased shear in these regions, diagonal 

splitting occurs. From observation, the nature of splitting is similar 

to that of a split cylinder test. This diagonal cracking initiated not 

at the soffit but within the depth of the beam. During the testing, 

particular attention was devoted to observing where in the beam these 

cracks initiate first. However, due to the suddeneness of their 

formation, the positions could only be limited in the form of small 

approximate intervals which were then projected vertically and 

horizontally s~ch as those given in table 3.3. Crack widths were always 

maximum within these intervals. From table 3.3 two common intervals for 

all the beams for vertical and horizontal positions of initiation of the 

diagonal cracks can be deduced 

(0.35 to 0.45) h vertically 

( x/2 to face of support ) horizontally 

Where x is the clear-shear-span measured from the ouside edge of the 
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loading point. 

It is thus, tempting to consider the position defined by the centres of 

the two intervals, namely that at 0.4h from the soffit of the beam and 

half-way between mid-shear-span and support face, as the most probable 

position where diagonal cracks initiate. 

These cracks tended to be quite long at formation, 0.6h to 0.9h (see 

table 3.4), and propagated very little at subsequent loading. The 

diagonal cracking load, defined in these tests as the load at which the 

first diagonal crack formed, ranged from 30 to 60 \ of the ultimate load 

(table 3.2). In most cases the first diagonal crack became the critical 

one and caused splitting of the beam. In all ~hese repects, diagonal 

cracking in slender and stocky deep beams are similar. However, a 

significant difference was observed in these tests (table 3.4) in that 

the major diagonal cracks in slender deep beams were more inclined to the 

horizontal than those of stocky deep beams as reported in literature [S2J 

[64J [68J [69J [77J [92] and formed somewhat at a lower load. With 

reference to fig.3.6, the critical diagonal crack in a stocky deep beam 

can be represe~ted'by the dotted line joining the inside edge of the 

bearing block at the support to the outside edge of that at the loading 

point [85], making an angle 01 with the horizontal. By comparison, the 

diagonal cracks in slender deep beams generally made a smaller angle of 

inclination with the horizontal, and can more accurately be represented 

by the full line in fig.3.6, making an angle 02 with the horizontal. 

The test results for 3 different shear-spans presented in table 3.4 show 

that the measured angles of inclination of the diagonal cracks, 8m, for 
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all the test beams are closer to 62 angles than 81 or 63 (defined 

by the chain dotted line in fig.3.6). This observation has important 

implications in deep beam design and in the application of the 

shear-strength equation in clause 3.4.2 of the CIRIA Guide [85]. 

3.3.2 STRAIN MEASUREMENTS 

Strain measurements taken on the concrete surface in the 'inclined 

concrete strut' or notional load path (see fig.3.3) reveal that 

Perpendicular to the load path, the strains were tenSile as in 

fig.3.9. The maximum values always occurred in the lower half of the 

beam depth and were in the order of 100 to 200 ~s before diagonal 

cracking developed. 

Parallel to the load path (along line AB in fig.3.9), the strains 

were compressive. The maximum values were always below 1000 ~s 

before diagonal cracking. After diagonal cracking, these strains 

increased at a relatively faster rate; at 70 \ of ultimate loads, the 

maximum compressive strains reached 2000 ~s. 

This state of strains is similar to that in a standard concrete splitting 

test. 

Longitudinal strain distributions at mid-span sections of the beams 

are shown in fig.3.l0. It can be seen from that figure that strain 

distribution in deep beams is far from linearity and even more so as the 

span/depth ratio decreases. Moreover, fig.3.l0 reveals that, in deep 

beams, there can be more than one neutral axis. However, the region of 
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maximum tensile stresses due to bending is always the one near the beam 

soffit. Compressive stresses due to bending may not be a problem in deep 

beams, particularly for deeper ones as in CB beams in fig.3.10. 

3.3.3 FAILURE MODES 

Based on tests observations on stocky deep beams, Kong et al [64] 

identified 4 failure modes as follows : 

Mode 1: penetration of a diagonal crack into the compression 

zone at the loading or support region, resulting in 

immediate crushing failure of concrete there. 

Mode 2: splitting of the beam into two by a diagonal crack. 

Mode 3: crushing of the strut-like portion of the concrete 

between two diagonal cracks. 

Mode 4: crushing of the concrete at a load or support bearing block. 

Most of the beams in table 3.1 failed in mode 2, namely, by splitting 

along a diagonal crack and severe spalling of concrete (fig.3.4). Mode 3 

occurred only ~n one beam, CC-l.98/H and mode 1 occurred in two beams, 

CA-SO-O.O and CA-29-0.0. None of the beams failed in mode 4 due to the 

special precautions taken by tapering the bearing zones and using 

additional reinforcement there. It will be shown in chapter 7 though, 

that, for enhanced shear and flexural capacties, this type of failure 

could be frequent. It was observed, however, that beams with vertical 

bars only exhibited a new type of failure characterised by crushing of 

concrete, initiated by bond failure, along a vertical bar within the 
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shear-span (CC-0.79/V, CC-l.93/V, F-0.0-0.5/V). This will be discussed 

further in chapter 4 when comparing the web reinforcement effectiveness. 

Broadly, The failure modes (fig.3.4) are similar to those of stocky 

deep beams described by Kong et al [64] and elsewhere [91] [93] [100] and 

diagonal cracking appears to be the main cause of shear failure of 

slender deep beams. 

3.3.4 DIAGONAL CRACKING LOADS 

Since shear failure is characterised mostly by diagonal cracking, it 

is important to determine the load at which the concrete in the shear 

span first splits. In ordinary beams without shear reinforcement, this 

load represents the shear capacity of the beam [16]. In deep beams, 

however, the shear capacity could be more than twice that load [101] even 

when web reinforcement is not present. Table 3.5 gives the measured 

diagonal cracking loads for all the tested beams. In general, the beams 

had great strength reserve beyond diagonal cracking. 

Considerihg equation 1.15, the first term of that equation is a 

semi-empirical expression of the capacity of the concrete in the shear 

span, that is: 

x 
Vcr = Cl ( 1 - 0.35---- ) ft bh 

h 
3.3 

It is argued [52] that when this capacity is reached the 'concrete strut' 
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between the loading and supporting points fails in a splitting mode, 

resulting in the formation of a diagonal crack. Using expression 3.3, 

the diagonal cracking loads of the test beams were calculated and 

compared with the measured values (see table 3.5 and fig.3.7). It can be 

seen from fig.3.7 and table 3.5 that the above expression greatly 

overestimates the diagonal cracking loads. This is because equation 3.3 

is based on stocky deep beam tests; fig.3.8 shows that for such beams the 

prediction is more accurate. 

An attempt was made by the author to modify the above equation to 

reflect the main behavioural differences between stocky and slender beams 

observed during the tests; namely, the diagonal cracks are more inclined 

to the horizontal and appear earlier in slender deep beams. From 

measurement of angle of inclination of the diagonal cracking (table 3.4), 

it is clearly shown that 81' the angle considered for stocky deep beams 

(inclination of dotted line in fig.3.6) is higher than 8m and that 82 

(inclination of the full line in fig.3.6) is closer to the measured angle 

8m. Since the inclination of the diagonal crack seems to follow more 

closely the tr~nd of 82, the full line in fig.3.6, it would be more 

reliable to modify equation 3.3 accordingly by replacing the 

clear-shear-span x/h with the shear-span a/h (fig.3.1). The second 

difference in behaviour is the early appearance of the diagonal cracks in 

slender deep beams (30 to 60 % of ultimate loads as in table 3.2) as 

compared to stocky deep beams (50 to 90 \ of ultimate load). Hence, for 

application to slender deep beams, the following modified expression is 

proposed for estimating the diagonal cracking load : 
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a 
vcr = R Cl ( 1 - 0.35---- ) 0.52 ~u bh 

h 
3.4 

where R is a reduction factor reflecting the early appearance of diagonal 

cracks. R was determined from the present tests as 0.75. 

It is to be noted that the tensile splitting strength of concrete f t 

in equation 3.3 has been replaced by 0.52~u in equation 3.4 as used 

in the CIRIA Guide [85] and confirmed by tests in the present 

experimental work (fig.3.l1). This is because the author believes that 

the risk involved in assessing the compressive strength of concrete is 

much less than that associated with the determination of the splitting 

strength. It is often difficult to ensure that the loading strips are 

exactly in the middle of the cube or cylinder and that the cube or 

cylinder itself is exactly in the middle of the loading plate of the 

testing machine. Hence the splitting cylinder strength obtained 

indirectly from compressive strength may be more reliable than obtained 

directly from tests. 

Equation 3.4 was used to compute the diagonal cracking loads for all 

the test beams. The results given in table 3.5 and fig.3.7 show that a 

good prediction is obtained by the modified equation with a mean ratio of 

the measured cracking load to the predicted one of 1.04 • 

Diagonal cracking loads have also been calculated using ACI(318-83) 

(revised 1986) code [1] and are presented in table 3.5 and fig.3.7. 
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Comparing the computed inclined cracking loads according to ACI code as 

given in table 3.5 and fig.3.7 with the measured ones reveals that the 

mathematical model used in reference [1] greatly underestimates inclined 

cracking strength of slender and, no doubt, of stocky deep beams. The 

average values are : 

(Pcr)aci = 0.44 Pcrm 

where (Pcr)aci is the cracking load predicted by ACI code 

Pcrm is the measured cracking load from tests. 

This is because the mathematical model used is simply that used for 

ordinary beams, namely 

v d 
Vcr = [1.9 Vf'c + 2500 p-----] bd 

M 
3.5 

where M and V are the moment and shear respectively at the critical 

section as defined in chapter 2, section 2.6. 

ACI code assumes that diagonal cracking occurs at the same nominal shear 

stress as for ordinary beams but shear stress carried by the concrete is 

greater than the shear causing diagonal cracking. 

The present tests (series CC and F beams) showed that web 

reinforcement had very little or no effect on the diagonal cracking load 

as reported by previous investigators on stocky deep beams [40). This 

explains why both equations 3.4 and 3.5 are independent of the effect of 

web reinforcement. 
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3.4 APPLICATION OF THE CIRIA SHEAR EQUATION TO SLENDER DEEP BEAMS 

Section 3.4.2 of the CIRIA Guide [85] states that the ultimate shear 

capacity of a deep beam loaded at the top is given by equation 2.8, that 

is : 

Xe 
V/bha = Al(l - 0.35----) ~u 

ha 

100 A Y sin2a 
+ A2 1: --------------

bh 2 a 

3.6 

where the notation are as defined in equation 2.8 and fig.l.4. For the 

purpose of the discussion here, it is sufficient to note that xe/ha 

is the effective clear-shear-span/depth ratio of the beam, Y is the depth 

from the top of the beam at which a reinforcing bar intersects the 

critical diagonal crack and that a is the angle between a reinforcement 

bar and the critical diagonal crack, defined as the dotted line in 

fig.3.6 here. 

The CIRIA equation, being based on tests on stocky deep beams, assumes 

that in a shear failure the critical diagonal crack may be represented by 

the dotted line in fig.3.6. However, as explained in the previous 

section, the critical diagonal crack in a slender deep beam should be 

represented by the full line rather than the dotted line in that figure. 

Since the shear capaci t~{ depends on the inclination of the diagonal 

crack, this implies that equation 3.6, which is primarily intended for 

stocky deep beams and for which it should give a factor of safety of 

about 2, will tend to overestimate the shear capacity and reduce the 
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safety factor when applied to slender deep beams. Indeed, the test 

results show that the safety factor could be very low (1.21 for beam 

CC-l.98/h, 1.10 for beams CC-l.93/V and 1.08 for beam CB-25-0.182) or 

even unsafe for design (beam F-0.0-0.5/V had a safety factor of 0.95). 

For the same type of concrete, the same arrangement of web 

reinforcement and the same geometric and loading configurations such as 

the case of series CA beams, the safety ~actor decreases linearly as the 

s12nderness ratio h/b increases (see table 3.6, fig.3.12). Such trend is 

expressed by the following equation, developed from the test results of 

series CA beams : 

f = -0.0156 (h/b - 20) + 1.87 3.7 

measured ultimate load Where f = safety factor = ________________________ _ 
CIRIA design strength 

h/b is the slenderness ratio 

The average safety factor for all the beams is only 1.39 which is 

relatively low for a brittle and catastrophic shear failures such as 

those Observed in the present tests. 

To be applied to slender deep beams, equation 3.6 should be modified 

to reflect the difference in behaviour between stocky and slender deep 

beams as in the previous section, that is : 

(i) xe/ha should be taken as a/h (fig.3.6) 

(ii) a reduction factor R of 0.75 should be used with the 

first term on the right hand side of equation 3.6 
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(iii) The angle a and the depth Y should be measured from 

the full line in fig.3.6 and not from the dotted line. 

The modified CIRIA design equation for shear becomes 

a 
V/bha = R A1(1 - 0.35---) ~u 

h 

with R = 0.75 

100 A Y sin2a 
+ A2 ! --------------

bh 2 a 

3.8 

Equation 3.8 was used to calculate the shear strength capacity for all 

the beams tested and the results are given in table 3.6. It can be seen 

from table 3.6 that the modified equation increases the mean safety 

factor to 1.81 with a standard deviation of 0.31, which is closer to what 

is expected for a shear failure. 

The CIRIA Guide explicitly states that equation 3.6 is intended to 

apply over a range of 0.23 to 0.7 for xe/ha (x/h for the test 

beams). This was due to the lack of experimental data when such equation 

was developed. In the present tests the x/h ratio was reduced to zero 

(table 3.1, beams F-O.O-O.S/V, F-O.O-0.5/H). The results in table 3.6 

and elsewhere [58] show that it is reasonable to extend the range of 

application of the CIRIA equation from 0.0 to 0.7 for xe/ha. 

The shear strength capacities of the test beams were also calculated 

according to ACI code [1] which is the only document, other than the 

CIRIA Guide [85], making emphasis on the beam capacity to resist shear. 
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The results are shown in table 3.6 and reveal that the American code is 

reasonably safe for the shear design of slender deep beams. The average 

safety factor for all the beams is 2.13 wit~ a relatively higher standard 

deviation of 0.42 and thus more scattered results compared to the 

modified CIRIA equation (equation 3.8). 

3.5 MOHR CIRCLE ANALYSIS 

As stated previously, the main difference between the behaviour of 

stocky and slender deep beams is the nature of diagonal cracking. The 

interaction between in-plane shear and out-of-plane bending is believed 

to be the factor influencing the diagonal cracks in appearing earlier and 

being more inclined to the horizontal in thin deep beams compared to 

stocky ones. 

Due to the relatively high h/b ratio, slender deep beams deflect 

laterally when subject to compressive in-plane loads; even when these 

loads are applied concentrically as in the case of the present test 

beams. This lateral deflection in turn affects diagonal cracking. 

Maximum out-of-plane deflections recorded were 2.7 mm for series CA beams 

and 1.75 mm for series F beams. Those of series CC beams are presented 

as profiles in fig.4.3 where the maximum lateral deflection reached 4.25 

mm before failure (beam CC-l.96/0). It is to be noted, however, that 

except beam CC-l.96/0, none of the other beams of this experimental 

programme failed as a result of excessive lateral deflection, though, 

this type of failure can not be disregarded (see chapter 5). 
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In this section, an attempt is made to explain the interaction between 

in-plane shear and out-of-plane bending and its resulting effect, using 

Mohr circle. Consider a section of slender deep beam (section 1, 

fig.3.l3a) and assume that such section does not deflect laterally under 

compressive axial loading • Hence, the lateral bending moment of this 

'ideal' section is negligible or null. This is similar to a stocky 

section behaviour. A small element just below mid-depth of face A of 

this section (fig.3.13a) will have a state of stress as shown in 

fig.3.13c where: 

Uc = compressive axial stress = PIA 

Uth = tensile stress due to in-plane bending 

Upt = principal tensile stress, causing diagonal cracking 

upc = principal compressive stress, parallel to the 

diagonal crack 

T = shear stress 

6= is the angle between the horizontal axis and the 

diagonal crack. 

A real slender section of similar geometric and loading properties 

(section 1', fig.3~13b) is bound to deflect laterally even if the loading 

is applied concentrically, because of slenderness effect. The resulting 

maximum out-of-plane bending moment is at mid-depth and can be calculated 

from : 

Madd = P eadd 3.9 

where P is the applied axial load and eadd the lateral deflection at 

mid-depth. Consequently, a small element of section l' at the same 

position as that of section 1 and belonging to the face which is assumed 
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to be convex on loading (face A' in fig.3.13b) will have the state of 

stress shown in fig.3.13d where: 

a'c = compressive axial stress = PIA - (Madd Y)/I 

a'th = ath = tensile stress due to in-plane bending 

a'pc = principal compressive stress parallel to the diagonal 

crack 

. = a pt principal tensile stress causing diagonal cracking 

T' = T = shear stress 

6' = angle between the horizontal axis and the diagonal 

crack 

The Mohr circle representation of the state of stress for these two 

elements is shown in fig.3.13e where the full line represents that of 

section I and the dotted line that of section 1'. It can be clearly seen 

from that figure that the angle 26' is smaller than 26 which implies that 

at the same loading the angle of inclination of the diagonal crack is 

smaller for the section susceptible to out-of-plane deflection (6' < 6). 

The same figure shows that the principal tensile stress for the section 

susceptible to lateral deflection, a'pt, is higher than that of the 

section without lateral deflection, apt, and hence the slender section 

is more likely to exhibit diagonal cracking earlier. 

The Mohr circle representation reveals that, in slender deep beams, 

diagonal cracks are more inclined to the horizontal than in stocky ones 

and should be expected to form earlier. This supports the observations 

made by the author on the slender deep beams tested. 
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It can be expected from fig.3.l3e that, under eccentrically applied 

loading and thus higher lateral deflection, the diagonal cracks will form 

even earlier and will be more inclined to the horizontal than for the 

case of beams loaded concentrically. Indeed observations from recent 

tests [114] confirm this and the diagonal cracking load was found to 

depend on the eccentricity/thickness ratio e/b. 
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CHAPTER FOUR 

WEB REINFORCEMENT EFFECTIVENESS AND ULTIMATE STRENGTH OF SLENDER CONCRETE 

DEEP BEAMS 

4.1 INTRODUCTION 

A literature survey on reinforced concrete deep beams shows that 

little is known about their behaviour and strength as influenced by web 

reinforcement and that available information is rather scattered or 

conf licting. 

TO the author's knowledge, since the publication of the CIRIA 

Guide [as] in 1977, the only major work made public on the effects of 

different types of web reinforcement on ultimate shear strength and 

behaviour of top loaded deep teams is that of Smith and Vantsiotis [100] 

[101]. However, no reference was made to the CIRIA Guide in that work, 

and the American ACI (318-77) was the major design document considered 

for comparison ~ith test results. 

The design recommendations given in the CIRIA Guide assume that the 

effectiveness of vertical web reinforcement decreases with the 

clear-shear-span/depth ratio, x/h. This was based on earlier work by 

Kong et al [63] [64] [65] where the minimum value of x/h used was 0.23. 

Recently, as the present work was being undertaken, one of the co-authors 

of the CIRIA Guide [14] [39] emphasised the need for more research on the 
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effect of horizontal web bars on top loaded deep beams as a test evidence 

for both the CIRIA Deep Beam Guide [85] and the American ACI code 

provisions for deep beam design [1]. 

The experimental programme described in chapter 3 was designed to 

provide information on both the nature of diagonal cracking and the 

effect of web reinforcement on simply supported slender concrete deep 

beams. The former point has been dealt with in chapter 3. In this 

chapter, the effect of web reinforcement on concrete deep beams in 

general, and on slender deep beams in particular, will be investigated. 

Beams of series CC and F (10 beams in all) were designed to have 

different arrangements and quantities of web reinforcement. In addition, 

in series F beams the clear-shear-span/depth ratio was varied to provide 

information on the relation between x/h and the type of web 

reinforcement. 

Full description of the test beams and loading conditions are given in 

chapter 3. High yield deformed bars of 8 mm diameter were used as web 

reinforcement ~n series CC beams. This is because it is thought [14] 

[39] that this type of bars are more likely to be used in practice. 

However, due to the slenderness of the concrete sections used, the cover 

was not enough and cracks were observed along the bars on demolding the 

beams. Consequently, plain round bars of smaller diameter, 6 mm, were 

used in subsequent beams. The reinforcement patterns used are shown in 

figs.3.2 and 6.2 
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It was thought more appropriate to use a lower strength of concrete 

than that used in series CA beams so that the web steel effect could be 

better investigated. A concrete mix giving compressive strengths between 

55 and 60 N/mm2 after 28 days was used. 

4.2 PRESENTATION AND DISCUSSION OF THE TEST RESULTS ON WEB 

REINFORCEMENT EFFECTS 

4.2.1 CRACKING OF THE BEAMS AND CRACK WIDTHS 

At each load increment, usually 25 kN applied by each jack, cracks 

were marked on the beam together with the load at which the cracks 

occurred. Crack widths were then measured using a battery operated hand 

microscope with 40 times magnification. Fig.4.l shows the maximum cra:k 

width plotted against the total applied load. The loads at which the 

first diagonal crack occurred are also shown. 

Series CC beam .have the same geometric and loading properties; namely 

a span/depth ratio'of 1.4 and a clear-shear-span/depth ratio of 0.17. 

The main parameters which varied were the arrangement and quantity of web 

steel. It can be seen from fig.4.1b that the maximum crack widths were 

smallest in beams CC-l.98/H and CC-0.82/H which both had horizontal web 

bars. Although the maximum crack width in beam CC-O.O, which had no web 

reinforcement, was generally larger than in any other beam, particularly 

after diagonal cracking, it can be seen that this was not true for beam 

CC-0.79/Vand to a lesser extent beam CC-l.93/V (fig.4.1b). This shows 

- 85 -



the inefficiency of vertical web bars used in the two beams. Despite 

that the quantity of web steel was more than doubled from beam CC-O.79/V 

(0.79 %) to beam CC-l.93/V (1.93 %), the ability to limit crack width was 

not improved. Typical values of crack widths at 300 kN were 

0.72 rnm in beam CC-O.O ; 0.82 rnm in beam CC-0.79/V ; 0.64 rnm in beam 

CC-l.93/V ; 0.4 mm in beam CC-0.82/H ; and 0.2 rnm in beam CC-l.98/H. 

The maximum crack width of 0.3 rnm imposed by BS 8110 [16] for 

serviceability limit state was exceeded in all the beams at 300 kN except 

where closely spaced horizontal bars were used (beam CC-l.98/H); for that 

beam the 0.3 mm limit was reached at 400 kN. Table 3.2 shows the load at 

which the serviceability limit state of cracking was reached for all the 

beams. 

A close examination of fig.4.1b reveals that, for beams CC-O.O, 

CC-0.79/V, CC-l.93/V, that is beams without web reinforcement, 

with 0.79 % and with 1.93 % vertical web bars respectively, the 

load-maximum crack width curves show two stages of behaviour: 

An initial linear portion with a relatively steep slope before 

diagonal cr.acktng, 

A second portion with a reduced slope, indicating a relatively 

increased rate of crack width with the load after diagonal cracking. 

For beams CC-0.82/H and CC-l.98/H, with 0.82 \ and 1.98 % of horizontal 

bars respectively, the load-maximum crack width curves exhibited only the 

first stage of behaviour described above with a steeper slope before and 

after diagonal cracking. Beam CC-l.98/H with closely spaced horizontal 

bars had the smallest rate of increase of crack width with load. 
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Due to an existing crack along the position of a horizontal bar, beam 

CC-1.96/0 with orthogonal reinforcement failed prematurely by buckling at 

a load at which the diagonal crack formed and thus, it was not possible 

to assess the effectiveness of such type of web reinforcement after 

diagonal cracking. However, before diagonal cracking, the slope of the 

curve load-maximum crack width was steeper than in beams with vertical 

bars and orthogonal bars are more effective in controlling crack width 

than vertical ones. 

Slender deep beams present the additional risk of buckling as compared to 

stocky ones. This will be discussed in more details in section 4.2.3 and 

in chapter 5. 

In series F beams, it was further attempted to assess the 

effectiveness of web reinforcement with changing geometric and loading 

properties while keeping the web steel ratio constant at 0.5 \. However, 

due to test rig restrictions, it was not possible to achieve considerable 

variations in both the clear-shear-span/depth ratio and span/depth ratio 

(varied from 0.21 to 0.0 and 1.79 to 1.38 respectively). For the same 

geometric and ~oad±ng properties of x/h of 0.21 and L/h of 1.79, 

horizontal web bars were more effective. The 0.3 mm serviceability limit 

state of cracking was reached at 170 kN in beam F-0.2l-0.5/V (with 

vertical web bars) as compared to 250 kN in a similar beam with the same 

amount of horizontal web bars, F-0.2l-0.S/H. When both x/h and L/h were 

reduced, the load-maximum crack width curves (fig.4.lc) revealed a sharp 

distinct behaviour. Beam F-O.O-O.S/H with horizontal bars had 

approximately the same slope as beam F-0.2l-0.5/H. However, beam 
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F-O.O-O.S/V with vertical bars had the flatest slope and smallest 

diagonal crack as compared to the others. This reveals the adverse 

effect of vertical web reinforcement on cracks control as the 

clear-shear-span/depth ratio decreases. The serviceability limit state 

for cracking was reached at 250 kN in beam F-O.O-O.S/H as compared to 200 

kN in beam F-O.O-O.S/V. 

In general, the flexural cracks, which never reached the preset limit 

of 0.3 mm, were narrower and shorter in beams with horizontal web steel. 

The present tests (table 3.2, fig.4.1) clearly demonstrate that, for 

deep beams with shorter shear-spans, vertical web reinforcement is 

ineffective in restraining the diagonal cracking and could even have an 

adverse effect on both crack control and diagonal cracking load, no 

matter how much steel is used. Horizontal bars prove very effective in 

controlling diagonal cracking, particularly when closely spaced. 

The argument concerning the effectiveness of web reinforcement is 

based on slend~r deep beam tests. Since diagonal cracks are more 

inclined to the horizontal in slender than in stocky deep beams, the 

present argument is deemed to err on the safe side for stocky deep beams 

where horizontal bars will be more nearly perpendicular to diagonal 

cracks, an ideal arrangement for a web bar to be fully effective [7] [64] 

[65] [66] [92]. 
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4.2.2 IN-PLANE DEFLECTIONS 

Vertical deflections were measured at mid-span of the beams, using 

LVDT transducer attached to an operating unit controlling the load (see 

chapter 6 where full description of the equipment used in the testing 

programme is given). The plots of the total applied loads against 

vertical displacements of all the beams described in chapter 3 are shown 

in fig.4.2. The supports, made of concrete blocks, were assumed rigid 

enough for the settlement to be ignored in the simple span deep beam 

tests and, consequently, no allowances for supports settlements were made 

in plotting the load-vertical displacement curves of fig.4.2. 

In general, the deflection varied linearly with the load and reached 

only 3 to 4 mm at ultimate. In series ee, beams with horizontal web 

reinforcement had smaller deflections than those with vertical or 

orthogonal bars (fig.4.2b). Fig.4.2b shows that beam ec-o.o, having no 

web reinforcement, is the only one to exhibit two linear portions: 

An initial linear portion up to 400 kN 

A relatively flat second portion from 400 kN onward, where the 

deflection would increase at a faster rate with the load. 

The behaviour of such beam was similar to the moderately deep beams 

tested by De paiva and Siess [40]. The deflection was, at any load, 

higher in the beam without web reinforcement and highest at 

ultimate (4.5 rnm). The plots of series F beams (fig.4.2c) show that, at 

corresponding load levels and for the same geometric and loading 

properties, beams with horizontal web reinforcement had smaller 
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deflections than those with vertical web bars. 

On examining the plots for all the beams considered in the 

experimental programme (fig.4.2), it can be concluded that, for deep 

beams of this kind, in-plane deflection and, thus, the serviceability 

limit state of deflection, is not a problem. Indeed, with the exception 

of CC-O.O, all the beams exhibited only one stage (linear) behaviour up 

to ultimate as compared to the two-stage (bilinear) behaviour reported by 

De paiva and Siess [40] for moderately deep beams. 

4.2.3 OUT-OF-PLANE DEFLECTIONS 

Under axial c~mpressive loads, slender deep beams are more likely to 

deflect laterally, particularly when the applied loads are slightly 

eccentric as will be revealed in chapter 5. 

A number of parameters such as the height/thickness ratio h/b, the 

eccentriCity/thickness ratio e/b, the concrete strength and the 

arrangement of ~eb·reinforcement affect the out-of-plane deflection. The 

present tests have shown that beams with height/thickness ratio as high 

as SO (beam CA-50-0.0 in table 3.1) can be tested satisfactorily without 

the lateral deflection getting high enough to cause premature buckling 

collapse. This type of failure and the main parameters affecting it 

directly, namely, h/b ratio and e/b ratio, will be discussed in details 

in chapter 5. In this section it is attempted to discuss the arrangement 

of web reinforcement which limits best the out-of-plane deflection. This 
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parameter is reflected in series CC beams which have a common slenderness 

ratio h/b of 33, and are thus more likely to deflect, and different types 

of web reinforcement arrangement. Although series F beams had different 

web reinforcement arrangements, their lateral deflections were very small 

(less than 1.75 mm at ultimate) due to their relatively small slenderness 

ratio h/b of 20. 

Fig.4.3 shows the lateral deflection profiles for series CC beams. It 

can be seen from that figure that where vertical reinforcement was 

present, the out-of-plane deflection was smaller. The maximum deflection 

at ultimate was 0.84 mm in beam CC-0.79/V and 1.65 mm in beam CC-l.93/V. 

Beams with horizontal web bars exhibited larger deflections; 4.0 mm was 

recorded before failure in beam CC-0.82/H and 4.15 mm at ultimate in beam 

CC-l.98/H. These were in the same order as that of the beam without web 

reinforcement, CC-O.O, where the deflection was 3.5 mm just prior to 

failure. Following this, it can be concluded that vertical reinforcement 

is more effective in controlling excessive lateral deflection, a purpose 

for which horizontal bars were not effective. 

From fig.4.3, it can be seen that the lateral deflection profiles for 

beam CC-l.96/0 are almost uniform over the three sections and present the 

highest out-of-plane deflection; this was due to an existing horizontal 

crack before the test along the position of a bar. On loading, the beam 

deflected steadily up to buckling collapse at a relatively low load (see 

table 3.2). This highlights the danger resulting from imperfections in 

construction and their adverse consequences, particularly in slender 
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sections such as thin deep beams, and calls for a need of higher safety 

factors when designing them. 

4.2.4 ULTIMATE LOADS 

Table 3.2 shows the ultimate loads for all the beams described in 

chapter 3. However, for the purpose of assessing the effect of web 

reinforcement, concentration will be on series CC and F beams only. An 

examination of the concrete strengths fcu and ft for the two series 

of beams taken separately shows that the differences were very small 

(table 3.1) to be counted for the increase in strength and consequently, 

any strength variation was logically assumed to be due to web 

reinforcement effect. 

In general, beams with horizontal web steel had the highest ultimate 

loads, though the strength increase was only a limited one. In series 

CC, the beam without web reinforcement (CC-O.O) failed at the same load 

as that with 0.79 % of vertical web bars. The only difference being that 

failure in the former was more brittle with more damage to the concrete 

than in the latter. When the amount of vertical web steel was increased 

from 0.79 % to 1.93 %, an adverse effect on the strength was observed; 

beam CC-l.93/V failed at 350 kN, with a strength decrease of 22 \. The 

concrete spalled along two adjacent web bars within the shear span, 

starting at either ends and joining at mid-depth (see fig.3.4). In 

contrast, with 0.82 % of horizontal web bars, the strength was 7 % higher 

than for the beam without web reinforcement and for that with the same 
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amount of vertical bars. When the quantity of horizontal bars was 

further increased by more than twice, the strength further increased by 4 

%. This suggests that, although horizontal bars improve the ultimate 

strength of deep beams with shorter shear-spans, the strength increase is 

only a limited one. Thus, even when using the best arrangement of web 

steel, using higher quantity of web steel does not guarantee a 

substantial increase in strength. This is similar to the finding of Kong 

et al [65] [66] who argued that there is an optimum web reinforcement 

ratio above which no strength improvement is achieved. The estimation of 

such optimum needs further investigation. 

In series F beams, with the same geometric and loading properties, 

beam F-0.21-0.5/H with horizontal bars failed at 8 % higher load than 

F-0.2l-0.S/V with vertical bars. When the shear span decreases, previous 

investigators [66] [81] [85] [100] argued that the ultimate shear 

strength increases. The present tests show that, when horizontal steel 

formed the web reinforcement, the ultimate load increased with a decrease 

in the clear-shear-span/depth ratio. An increase of 20 \ in strength was 

aChieved as x/~ was decreased from 0.21 to 0.0. In contrast, when the 

web reinforcement consisted of vertical bars, the ultimate strength 

decreased with the clear-shear-span/depth ratio; 21 % of strength 

decrease was recorded as x/h decreased from 0.21 to 0.0 and failure was 

by splitting along a vertical bar. 

According to Kong et al [65] [66] and from the present tests on 

continuous deep beams (chapters 6, 7 and 8), a web bar is most effective 

- 93 -



when it is more nearly perpendicular to a diagonal crack, which is 

approximately parallel to the line joining the loading and support points 

(fig.3.6). Following this argument, it can be said that when such line 

forms an angle of 45 degrees with the horizontal, vertical and horizontal 

bars become equally effective. This situation corresponds to a 

shear-span/depth ratio a/h of 1.0. For values of a/h higher than 1.0, 

the angle of the line joining the support to the reaction points with 

horizontal bars is smaller than 45 degrees and that with vertical bars is 

higher than 45 degrees and thus, vertical bars are likely to be more 

effective. For values of a/h smaller than 1.0, the situation is reversed 

and horizontal bars become more effective. 

Following this argument and in the light of previous experimental 

evidence [65] [66] and the present tests, it can be concluded that 

vertical bars are not suitable as shear reinforcement for deep beams with 

shear-span/depth ratios less than 1.0. Horizontal bars should instead be 

used. It is recommended, however, that more tests be carried out so that 

the 'limit of effectiveness' of the two types of web reinforcement could 

be clearly defined.' 
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4.3 ULTIMATE LOAD BEHAVIOUR OF CONCRETE DEEP BEAMS 

Since the move from elastic to ultimate load behaviour in the 

mid-sixties by De paiva and Siess [40] and Leonhardt and Walther [80], a 

number of experimental investigations have been carried out on deep 

beams. The most important ones are those of Ramakrishnan and 

Anantanarayana [91], Crist [38], Kong et al [63 to 73], Smith and 

Vantsiotis [100], Rogowsky et al [96] and Subedi et al [104]. Some of 

these works have led to the design guidelines and recommendations 

described in chapter 2. However, there are still differences in opinions 

regarding deep beam behaviour and these are reflected in the different 

design methods adopted in the 4 major design documents [85] [33] [23] 

[1]. 

From the author's experimental observations on slender deep beams and 

in the light of other test evidence on stocky deep beams, it is attempted 

to describe the ultimate behaviour of deep beams in general. 

- On loading, the first cracks to appear are flexural cracks in the 

region of maximum bending moment. They form quietly, grow slowly in 

length and spread uniformly over the span as the load is increased (see 

fig.3.4). 

- On further increase in load (30 to 50 \ of ultimate in stocky deep 

beams, 20 to 30 \ in slender ones), inclined cracks form at the support 

regions at or very near the beam soffit. Usually these cracks extend 

upward towards the top centre and are harmless, except in beams without 

web reinforcement. 
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- At higher loads (50 to 90 % of ultimate in stocky deep beams, 

30 to 60 % in slender ones), distinctive diagonal cracks develop, running 

from support to load point. The formation of these cracks is usually 

sudden, complete and accompanied by a loud noise. According to a number 

of researchers [47] [52] [91], the splitting action of these cracks is 

similar to that in a standard concrete cylinder or cube test. 

Observations from the present tests agree with this analogy. Owing to 

the sudden formation of these cracks, their exact position of initiation 

is difficult to spot. However, the literature tends to converge around 

the central region of the shear span. Crack widths were also reported 

[98] to be widest at that part of the beam. Similar observations were 

made by the author from the present tests with the exact position of 

initiation of the diagonal cracking centred around O.4h, h being the beam 

depth. 

In the absence of a rational method, a number of researchers [47] [68] 

[91] have used the split-cylinder analogy as a possible approach to 

determine the ultimate strength of a deep beam. 

Compared to ordinary beams, deep beams have a marked strength reserve 

beyond diagonal cracking. The ultimate shear capacity is sometimes more 

than twice the diagonal cracking load ( table 3.2). This strength 

reserve could be explained by the fact that after diagonal cracking, a 

redistribution of the internal stresses occurs, resulting in the 

formation of a 'tied-arch' or 'truss' with the tensile reinforcement 

acting as a tension tie and the concrete parallel to the cracks as an 

- 96 -



arch rib. The arching action seems to be more pronounced in beams having 

smaller shear-span/depth ratios. Inclined concrete compressive struts 

between the loading and support points were clearly defined by the 

diagonal cracks in the beams tested by the author (see fiq.3.4). The 

uniformly distributed flexural cracks at the bottom part of the beams 

suggests that this region becomes equally stressed from one support to 

the other after diagonal cracking, reflecting a tie action. Such 

observation is supported by strain measurements along the tensile region 

where, as shown in fig.4.4, the strains at the supports increase rapidly 

after diagonal cracking. 

Kong and Sharp [71] have used the term 'notional load path' to refer 

to the lines joining the bearing block at the support to that at the 

loading and stated that the load is transmitted to the support mainly 

through that path. This idea is shared by many investigators [40] [91] 

[97] [100] who, from observations on crack patterns, believe that after 

diagonal cracking a deep beam is structurally converted into a truss or a 

tied arch with the inclined struts as the compression members and the 

tensile steel as the tension tie. 

In series F of the simple span beams and series CD and CE of the 

continuous beam tests, the author attempted to highlight such physical 

model or so called tied arch through strain measurements parallel to the 

inclined struts at three different transverse sections and along the 

tensile reinforcement. It can be seen from fig.4.5 which gives the 

strains at different positions from the centre of the strut after 
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diagonal cracking, that the strains are higher within the strut with a 

maximum peak at the centre. Outside the strut, the strains are small and 

even smaller at positions farthest from the centre of the strut. Fig.4.4 

shows that before diagonal cracking, the steel strain is highest at 

mid-span region where the bending moment is maximum (between the two 

point-loads). At the faces of supports the strains are relatively small. 

After diagonal cracking, the strain distribution along the tensile region 

is almost uniform and in some cases strains are higher near the supports 

where the bending moment is close to null. The strain measurements in 

fig.4.4 and fig.4.5 clearly reveal that the 'truss' or 'tied arch' model 

is a valid structural idealization of a deep beam behaviour after 

diagonal cracking. 

It is obvious that the type of tied arch or truss that can form 

depends on the method of load application as can be seen from fig.4.6 

which illustrates two physical models of deep beams proposed by Kotsovos 

[76]. The slope of the inclined strut, approximately equal to h/a, would 

change according to the load application. From the present tests, the 

width of these inclined struts could reasonably be taken as the width 

defined by the bearing plates plus O.OSh on either side (figs.4.5 and 

4.6) that is : 

w = C sinO + O.lh 4.1 

where C is the bearing length 

o is the angle of inclination of the inclined strut 
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A proper failure of a deep beam, that is excluding any premature 

failure such as buckling in slender deep beams, crushing at the bearing 

or anchorage failure, is related to the failure of the truss or tied arch 

described above. A flexural failure occurs when the tensile 

reinforcement forming the 'tie' is very low and is characterised by 

rupture of the tension tie or crushing of the concrete rib in compression 

at the 'crown'. This type of failure (fig.4.7) could be frequent in 

moderately deep beams or when the tensile reinforcement is light as 

observed by De paiva and Siess [40] and Leonhardt and Walther [SO] 

respectively. A shear failure takes place through the destruction of the 

inclined strut in one of the following ways : 

Splitting of the beam along the inclined strut, sometimes followed by 

a destruction of the concrete. 

Crushing of the concrete in the inclined strut. 

Crushing of the concrete at the compression zone at the loading or 

support regions after a diagonal crack has penetrated deeply into 

that zone. 

Most of the shear failures reported in the literature fit in one of these 

three failure modes, although other descriptions have been used. 

,t 
In the present tests, the end portion of the beam 01side the diagonal 

cracks (outside the inclined struts) tended to rotate about the nearest 

loading point. Such rotational motion which was observed earlier by 

other investigators [47] [77], was clearly visible at failure (see 

fig.4.S). Before failure, this rotational movement was restrained mainly 

by the tensile reinforcement at the level of the supports, explaining 
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further the high tensile strains recorded there after diagonal cracking. 

This also emphasises the importance of the tensile steel in resisting 

shear and highlights the increase in effectiveness of a web bar with the 

depth as reported earlier [47] [64] and reflected in the CIRIA design 

equation for shear (equation 2.8). This is in contrast with the ACI code 

[1] where the web reinforcement is assumed equally effective down the 

beam depth and the main tensile steel contribution to shear is only 

indirectly considered in equation 2.22 through the use of the steel ratio 

p. 

4.4 ULTIMATE LOAD PREDICTION OF DEEP BEAMS 

4.4.1 EXISTING FORMULAE 

Although numerous equations have been proposed [40] [41] [78] [91] 

[103] [107] for the ultimate strength prediction of deep beams failing in 

shear, only two have gained acceptance and found their ways into design 

documents. These are the formula of Crist [38], currently used in the 

American code ~1], 'and of Kong et al [68] used in the CIRIA Guide. The 

CIRIA shear equation as used in chapter 2 (equation 2.8) is a lower bound 

one and uses safety factors and thus gives design values rather than 

ultimate ones as in table 3.6. For ultimate values of shear strength, 

the original Kong et al [68] expression, namely equation 1.15 is used, 

that is : 

x A Y sin2a 
Qult = Cl (1 - 0.35---) ft bh + C2 !---------- 4.2 

h h 
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where all the symbols are as explained in equation 1.15. 

The ultimate load is given by : 

Pl = 2 Qult 

The first term on the right hand side of equation 4.2 represents the 

diagonal cracking load and has been dealt with in chapter 3. The second 

term represents the strength reserve beyond diagonal cracking. The 

ultimate loads for all the beams described in chapter 3 were calculated 

from equations 4.2 and are presented in table 4.1. In the same table, 

the measured ultimate loads are given. It can be seen from table 4.1 and 

fig.4.9 that equation 4.2, developed for stocky deep beams, overestimates 

the ultimate load of slender deep beams. The reason for this is the 

nature of diagonal cracking in slender deep beams, being more inclined to 

the horizontal and appearing earlier as compared to those in stocky deep 

beams. This has been discussed in chapter 3. 

Following the modifications proposed in chapter 3 by the author (as in 

equations 3.4 and 3.8), the ultimate load of a slender deep beam can be 

computed from :. 

where Qult is given by 

a A Y sin2a 
Qult = R Cl (1 - 0.35---) O.S2Vfcu bh + C2 I---------

h h 
4.3 

Using equation 4.3, the ultimate loads for all the beams of chapter 3 
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were calculated and are given in table 4.1. It can be seen from the same 

table and from fig.4.9 that the above modified equation agrees better 

with the test results; the average measured/predicted ratio was 1.12. 

The ultimate loads were also calculated using the ACI code [1] which, 

as mentioned, is based on Crist work [38]; equations 2.19 to 2.25 have 

been used. As a design document, the American code gives design values 

for the shear strength such as those presented in table 3.6. For 

ultimate load purpose, the reduction factor 0 is omitted and the ultimate 

load is given by : 

P3 = 2 Vn 4.4 

where Vn is the nominal shear strength as given by equation 2.20. The 

computed ultimate loads using the ACI code are presented in table 4.1. 

It can be seen from the same table and from fig.4.9 that, in general, ACI 

code [1] is very conservative; the average measured/predicted ratio is 

1.81. 

4.4.2 PROPOSED FORMULA 

The literature and the present tests reveal that diagonal splitting is 

the main type of failure of deep beams and that the splitting action is 

similar to that in a standard splitting test of a concrete cylinder. 

Such analogy is used to derive a formula for the ultimate shear strength 

of deep beams. 
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From the tests, it was observed (chapter 3) that the inclination of 

the diagonal cracks is best represented by the line joining the centre of 

the support block to that of the load bearing block (full line in 

fig.3.6). Consider a portion of a beam, such as shown in fig.4.10a. The 

load Q can be resolved in the direction of the line joining the centres 

of the load and support points, giving Q/sinO, and horizontally, giving 

QcotO (see fig.4.10a). The component Qcote causes the bending effect and 

aggravates the rotational motion of the end portion of the beam after 

diagonal cracking as noticed during the tests. The component Q/sinO 

cauSes the splitting. An idealised concrete cylinder of diameter h 

(fig.4.10a) is assumed to be split in the process. Strain measurements 

from the present tests (fig.J.9) and from the tests by Kubick [77] have 

shown that the strains along the line joining the centres of the load and 

support points, dotted line in fig.4.10a, are compressive and those 

perpendicular to that line are tensile. This suggests that the state of 

stress of a small element in the idealized concrete cylinder, fig.4.10a, 

is similar to that of a corresponding element in a real concrete cylinder 

having the same geometric properties. 

For such cylinder, the splitting tensile stress [57] is given by 

F 
f t = ------- 4.5 

n/2 bh 

where F is the splitting force 

b is the length of the cylinder and h its diameter 

(n/2 bh) represents the effective area of concrete 

resisting the spliting force F. 
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In fig.4.l0a, the splitting force is F = Q/sinO, hence 

Q/sinO 
4.6 

n/2 bh 

If a bar crosses the diagonal crack, as in fig.4.l0b, it will contribute 

to the concrete resistance against splitting, whether it being a main 

tensile reinforcement or a web bar. Such contribution depends on the 

angle of the bar with the diagonal crack. Experimental evidence from 

previous investigators [7] [64] [65] [92] and in chapter 7 of this thesis 

shows that a web bar is most effective when it is perpendicular to the 

crack. Consider a total area of steel, An' normal to the direction of 

the crack and assume that, just before splitting, the tensile strains 

(strains perpendicular to the crack) in the concrete and in the steel are 

equal (strain compatibility). The equivalent effective area of concrete 

resisting the splitting action will be : 

n/2 bh - An + aeAn 

and the tensile stress becomes 

Q/sinO 
4.7 

n/2 bh + (ae - l)An 

where ae is a modular ratio, given by Es/Ec. 

BS 8110 [16] recommends to use a value of 15 for a e • 

For the particular case of vertical web bars of total area Av, 

horizontal web bars of total area Ah and main longitudinal steel of 

total area As, An can be obtained by resolving Av, Ah, and As 
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in a direction perpendicular to the diagonal crack (fig.4.l0b); only bars 

crossing that line should be considered, that is : 

An = (Ah + As) sin 0 + Av cosO 4.8 

with Ah = Ph bh 

AS = Ps bh 

Av = Pv ab = Pv {3 bh 

where Ps' Ph, Pv are the steel ratios for flexural 

reinforcement, horizontal web reinforcement and vertical web 

reinforcement respectively ,and (3 = a/h. 

From fig.4.l0 

sinO = h / V<a2 + h2) = 1 / J(l + {32) 

cos = a / V<a2 + h2 ) = {3 / V<{32 + 1) 

After substitution and rearrangement, equation 4.7 becomes 

4.10 

Following the ~rgument in chapter 3, section 3.3.4, the 

tensile splitting strength of the concrete, ft, is replaced 

by 0.52VfCU (see fig.3.9); equation 4.10 becomes then: 

0.52 Vfcu bh 
Q = 

4.11 

which represents the ultimate shear strength. The ultimate 
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load for beams failing in diagonal splitting shear is 

P4 = 2 Q 

Equation 4.11 was used to calculate the ultimate loads for the test 

beams. As can be seen from table 4.1 and from fig.4.9, the prediction is 

satisfactory with a similar degree of accuracy as the modified Kong et al 

equation (equation 4.3). It errs on the safe side because the steel 

contribution towards the shear resistance is computed on a modular ratio 

basis. Compared to ACI method [1], which is very conservative, and to 

equation 4.2 (the original Kong et al [68] equation) which overestimates 

the ultimate loads of slender deep bea~s, both the modified Kong et al 

equation and the proposed equation gave better predictions with 

measured/predicted ratios of 1.12 and 1.10 respectively. 

Equation 4.11 can be used for design purpose, provided: 

A lower bound expression for the splitting tensile strength of 

concrete, ft, is used as in fig.3.11, namely f t = 0.4~u. 
Such lower bound value was obtained from test data. 

A safety factor for material is used; BS 8110 [16] recommends a value 

of 1. 25 for. shear. 
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CHAPTER FIVE 

INSTABILITY OF SLENDER DEEP BEAM-PANELS - COMPARISON OF TEST RESULTS WITH 

EXISTING DESIGN AIDS 

5.1 INTRODUCTION 

In the past, researchers and designers alike have always avoided the 

buckling problem in deep beams by opting for stocky sections. The tests 

described in chapter 3 have revealed that buckling is a possible design 

criterion, particularly for the more slender sections. Of the current 

design documents [1] [33] [23], only the CIRIA Guide [85] gives design 

guidelines for the buckling strength of deep reinforced concrete beams. 

It is stated [85], however, that in the absence of experimental evidence, 

such recommendations were based on theoretical studies and engineering 

judgement. 

In the late seventies, the development of the tilt-up method of 

construction highlighted the need for a buckling design procedure to deal 

with the slender load bearing panels. The Portland Cement Association 

responded to the building industry's need and came up with a buckling 

design aid for tilt-up load-bearing walls [88], based on numerical 

analysis on column models. 

Until recently [58], neither of the two buckling design procedures 

could be compared against experimental data. However, due to the nature 
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of the specimens, the recent tests reported by Kong et al [58] provided a 

direct assessment to the CIRIA Guide [85] only which, not surprisingly, 

was found very conservative. 

As a follow-up research programme, the present author carried out 

buckling tests on 7 slender deep beam-panels with height/thickness 

ratios, h/b, varying from 20 to 70. The test specimens were designed to 

model the conditions set up in the PCA Design Aid [88] as closely as 

possible so that a direct assessment of its usefulness as a design 

document could be provided and a comparison with the broader CIRIA 

procedure be made. 

Before the testing programme and results are presented, the buckling 

problem is discussed with reference to columns and plates and an overview 

of the two deep beam buckling design procedures is given. 

S.2 THE BUCKLING PROBLEM 

S.2.1 COLUMN ~UCRLING 

Strictly speaking, the term buckling refers to a process in which a 

structure moves from a neutral or unstable equilibrium to another 

equilibrium state which mayor may not be stable [58J. Under 

longitudinal loads, a slender column deflects essentially in a uniaxial 

curvature. The Euler formula for the elastic critical buckling load of a 

slender column is the earliest engineering design formula that is still 
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in use today. It takes the form 

5.1 

Where Pcri is the critical axial load necessary to bend the column 

EI is the column stiffness 

Le is the effective column length (height) 

For the application of the above formula, the column is assumed perfectly 

straight, made of homogeneous elastic material. In real structures, 

imperfections are always present and columns are not perfectly elastic. 

Several researchers have taken up the early Euler work and extended it 

to inelastic buckling behaviour by modifying the elastic modulus E. 

Concepts such as the 'tangent modulus load' and the 'double modulus load' 

have been introduced and are well documented and explained in most modern 

textbooks on stability [Ill] [6]. Interested readers can consult 

reference [49] where a thorough historic review of column buckling theory 

is given. 

In design, b~ck1ing failure is used more loosely to refer to failure 

with pronounced out-of-plane deformation. The need for simple design 

procedures led to the development of what is known as the 'additional 

moment concept', first used in the 1970 edition of the CEB-FIP code [34] 

and extended later into the British practice [16] [36]. This concept 

enables a slender column to be designed as a short column taking into 

account an additional bending moment due to out-of-plane deflection. 
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The additional moment concept consists broadly of estimating the 

maximum lateral deflection of the column subjected to axial load, using 

mathematical models. Then the additional bending moment is calculated as 

the axial load times (x) the estimated maxi~um lateral deflection. In 

the British practice, the mathematical model used for the lateral 

deflection is that developed by Cranston [37], namely 

h Le Le 
eadd = ____ ( ____ )2 (1 - 0.0035----) 5.2 

1750 h h 

Where eadd is the lateral deflection due to slenderness 

Le is the effective column height (length) 

h is the depth of the column section 

The recent BS 8110 [16] approximates equation 5.2 to 

1 Le 
eadd = _____ ( ____ )2 h = ~a h 5.3 

2000 b 

Where b is the smaller dimension of the column section. 

The American practice [1], uses a magnification factor to amplify the 

design moment of the column. The magnification factor itself depends 

directly on the critical Euler load as follows : 

> 1 5.4 
1 - Pu/4>Pcri 

Where Cm = 0.6 + o.4(Ml/M2) > 0.4 

Ml and M2 are the smaller and higher factored end moments 

4> strength reduction factor 
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Pu is the factored axial load at a given eccentricity 

Pcri = n 2 EI I Le2 

The wain draw-back of this method is the effect of creep and cracking and 

the non-linearity of concrete, making the estimation of the EI value 

rather difficult. 

5.2.2 PLATE BUCKLING 

Usually, a plate is restrained on all four edges, and thus, when 

subjected to compressive loads, is more likely to buckle in a biaxial 

curvature. Early work was concerned with the buckling of plates made of 

homogeneous isotropic material. The bulk of it was carried out by 

Timoshenko and is presented in many textbooks [Ill] [6]. 

The critical stress of a plate subjected to different loading and 

boundary conditions was presented as : 

fcr = k 
1 

(b/t)2 

Where k is plate buckling coefficient, depends on the type of 

5.5 

loading, the aspect ratio alb, and the boundary conditions 

b is the plate width 

t is the plate thickness 

E is the modulus of elasticity 

v is the Poisson's ratio 
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Subsequent reseachers [99] concluded that, at buckling the collapse of 

plates is prevented by the restraints along the unloaded edges and thus, 

unlike columns, they continue to carry some post-buckling loads. 

Von Korman, Sechler and Donnell [113] proposed an 'effective width' 

approach to explain the behaviour of a plate at ultimate conditions. 

According to them, the load acting on the full width of a plate is 

carried on two narrow strips along the unloaded edges. Failure is 

assumed to occur when these two strips reach yield. They suggested an 

expression to calculate the effective width and used equation 5.5 to 

estimate the yield stress of the plate. 

Work on the buckling of reinforced concrete plates is relatively 

scarce. The tests carried out by Ernst et al [43] and Swartz et al [105] 

[106] are probably the most important works on reinforced concrete plates 

available in the literature. Generally the plates buckled in a biaxial 

curvature at stresses lower than the concrete cylinder compressive 

strength f'c and showed no or very little post buckling strength. 

Swartz et al [105] proposed the following formula to estimate the 

concrete stres~ at 'the onset of buckling for simply supported plates 

fcr = 0.425 f'c B [-B + (4+B2)0.5] 

n 2 

Where B = ----------(l/r + r)2 (t/b)2 
6 EO (l-p) 

Where r = h/b if h/b < 1 and r = 1 if h/b > 1 

5.6 

h = plate length, b = plate width, t = plate thickness 

p = total steel ratio 
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f'c = compressive strength of concrete cylinder 

EO = peak strain at peak concrete stress. 

It is interesting to note that in Swartz et al [IDS] plate buckling 

tests, the height/thickness ratios varied between 77.0 and 128.0 and thus 

equation 5.6, based on such high h/b ratios, could be thought of as not 

practical. 

5.3 CURRENT DESIGN PRACTICE FOR THE BUCKLING OF SLENDER DEEP 

BEAM-PANELS 

The current major documents for the buckling design of slender deep 

beam-panels are the CIRIA Guide [85] and the Portland Cement Association 

Design Aid [88]. The buckling procedures given in these documents will 

be reviewed very briefly. 

5.3.1 CIRIA GUIDE PROCEDURE 

In the absence of experimental data, the CIRIA buckling procedure [85] 

had to be based on'theoretical studies. Its aim is essentially to ensure 

a safe design for deep beam panels to avoid buckling. Elastic stress 

distribution is used and can be obtained from Appendix A of the Guide or 

from other specific elastic analysis such as the finite element method. 

According to the CIRIA Guide, when a deep beam can not be defined as A 

short braced wall (clause 3.8.1.1 of CP 110 or 1.2.4 of BS 8110), the 

slenderness effect should be taken into account. An assumption, that a 
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deep beam is made up of an assembly of unit width column strips spanning 

vertically and horizontally, is considered and consequently the 

additional moment concept approach is used. The emphasis, however, is on 

the determination of the effective height and length of the deep 

beam-panel. Once these values are determined, the usual design procedure 

for a slender column is used, namely : 

Mt = Mi + Madd 5.7 

Where Mi is the initial end moment 

Madd is the additional moment caused by slenderness 

effect, Madd = N eadd 

Where N is the maximum axial-load/unit-width, determined from 

elastic stress distribution given in Appendix A of the 

Guide or from other specific elastic analysis such as 

the finite element method. 

eadd is the additional eccentricity, given by the 

above equations 5.2 and 5.3 according to CP 110 [36] 

and BS 8110 [16] respectively. 

The effective height (or length) to be used in the additional 

eccentricity expressions (equations 5.2 and 5.3) is determined according 

to three methods, namely 

1- The supplementary rules 

2- The single-panel method 

3- the two-panel method 

For the supplementary rules to be used, the following conditions should 

be satisfied : 
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The beam panel is adequately braced and rectangular in shape 

At least two opposite edges of the beam panel are laterally 

restrained 

The average shear stress (V/bha ) is less than 50 % of average 

vertical or horizontal axial compressive stress, whichever is 

great~r. 

When these conditions are fulfilled, he may be taken as 

For panels with all four edges restrained, he is taken as 1.1 x the 

shortest distance between centres of parallel lateral restraints 

For panels with one or two opposite edges free, he is taken as 

1.5 x the distance between centres of parallel lateral restraints 

For panels with both rotational and lateral movements restrained, 

he is taken as the clear distance between restraints. 

Where the above conditions are not satisfied, or where a more rigorous 

estimate of the effective height and length of the panel is required, 

then the single panel method or the two panel method, given in Appendix C 

of the Guide, should be used. The procedure starts by defining a 

rectangular equivaient panel having either free or simply supported edges 

and subjected to equivalent vertical, horizontal and shear stresses 

(Nv, Nh, T ) as in fig.123 of CIRIA Guide. The equivalent stresses to 

be used depend on whether the single panel method or the two panel method 

is to be conSidered. More details about the choice of the equivalent 

stresses is given in references [59] [60] [62] and in Appendix A of this 

thesis. 
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Average values of the elastic critical stresses are given in the Guide 

(figs.124 to 128) for vertical, horizontal and shear stresses, N'vcr, 

N'hcr and T'cr respectively, as functions of the flexural rigidity EI' 

and the panel dimensions; these take the form of 

K n 2 EI' k n2 EI' 4.7 n 2 EI' 
N'vcr = -------- N'hcr = -------- T' cr = ---------

a 2 aZ b2 
5.8 

From this, stress ratios are calculated 

T 
R'v = R'S = 5.9 

N'vcr N'hcr T'cr 

The procedure introduces new stress ratios R'l' R'2, R"2 where the 

suffix '1' and 'z' refere to the direct stress parallel to the long edge 

and short edge, respectively, of the panel, that is 

R'Z = R'v R"Z = R'Z/M'Z 

Where M'2 is a modification factor to eliminate the effect of the shear 

stress on the critical stress parallel to the short edge. 

Using R'l and R"2, the effect of a direct stress of one direction on 

the critical stress of the other direction is estimated by modification 

factors Ml and M2 from interaction diagrams given in fig.130 of the 

Guide. the modified critical stresses become, then, 

Nvcr = n 2 EI'/he
2 = M2 N'vcr 

Nhcr = nZ EI'/Le2 = Ml N'hcr 5.10 

The effective height he and length Le are determined from 
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equation 5.10 as follows: 

n2 EI' n 2 EI' 
he 2 = ---------- Le 2 = ---------- 5.11 

M2N'vcr MIN'hcr 

In the single panel method the equivalent applied stresses selected 

are upper bound values and should be used to analyse the cross-section. 

For the two panel method the effective height he and length Le are 

determined separately from two panels differing in equivalent loading 

only. The effective height he is determined from the first panel for 

which the equivalent load consits of an upper bound horizontal stress and 

a lower bound vertical stress. The effective length Le is determined 

from the second panel, having a lower bound horizontal stress and an 

upper bound vertical stress. In contrast to the single panel method, the 

actual stresses are used to analyse the cross-section, resulting in a 

more rational distribution of steel. The CIRIA Guide [85] buckling 

procedure is illustrated in more details with design examples in 

references [59] [60] [62] and in Appendix A of this thesis. 

5.3.2 PORTLAND CEMENT ASSOCIATION DESIGN AID 

According to the American practice [90], lateral buckling is likely to 

be a problem for deep beams having height/thickness ratios of more than 

25. Despite this, no specific guidance is given in ACI(318-83) (revised 

1986) [1] regarding their buckling design. However, a PCA Design Aid for 

tilt-up load-bearing walls [88] enables the buckling check to be carried 
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out for slender deep beam-panels, having height/thickness ratios between 

20 and 50. 

The PCA Design Aid was originally intended for the tilt-up method of 

construction to deal with reinforced concrete wall panels under uniformly 

distributed eccentric load applied at the top and continuous concentric 

reaction at the support. 

The web reinforcement considered consists of one central layer or two 
rn 

Symrtric layers of vertical bars. Horizontal reinforcement, though 

recommended for use, is not considered in the analysiS. The method, 

which assumes that the vertical edges are not restrained, uses a column 

model to calculate the load capacity according to a numerical integration 

procedure by Pfang and Siess [86] [87] and Newmark [84]. For design 

purposes, load capacity coefficients are presented in tabulated forms for 

different geometric and loading configurations. 

The 'oad carrying capacity is given by 

5.12 

Where ~ is the load capacity coefficient given in dimensionless 

form in Appendix A of the peA Design Aid 

bl is a unit width of the panel 

b is the thickness of the panel 

f'c is the cylinder compressive strength of concrete 

- 118 -



Where the wall panel rests on isolated footings instead of continuous 

ones, which reflects the case of deep beams, the PCA method assumes that 

the load is to be transferred to the footings through relatively narrow 

column-like strips. This will result in a reduction of the load capacity 

which is taken into account as follows : 

Peri 
'1= 

Pcrc 

Where '1 is the load capacity reduction coefficient < 1 

Pcri is the buckling load of the strip element of a 

panel on an isolated footing of specific dimensions, 

determined from an elastic analysis or a tangent 

modulus approach (both descr~bed in [111]). 

Pcrc is the buckling load of a strip element of a panel 

on a continuous support, taken as : 

Pcrc = n 2 EtI / (kL u}2 

Where Et is the tangent modulus 

I is the moment of inertia of the section 

k is the effective length factor 

Lu is the unsupported height of the panel. 

For design purpose, '1 is presented in a graphical form in the peA Design 

Aid. The load capacity of a slender beam-panel resting on isolated 

footings becomes : 

Pisol = '1 (rp bl b f'c) = '1 Pcont 5.13 
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Concentrated loads are assumed distributed over an effective width of 

the panel as defined in section 14.2.4 of ACI(318-83) (revised 1986) [1], 

namely the smaller of : 

a. centre to centre distance between loads 

b. width of bearing plus four times the wall thickness. 

In addition, the PCA design method takes account of transverse loads such 

as the lateral pressure due to wind. It is, however, limited to concrete 

having cylinder compressive strength less than 4000 psi (28 N/mm2). 

5.4 TESTING PROGRAMME 

The test specimens (fig.S.la) consisted of 7 slender reinforced 

concrete deep beams of height h 1400 mm, overall length 1700 mm, and 

simple span L 1400 mm giving a span/depth ratio of 1.0. The thickness 

varied from 70 mm to 20 mm, giving height/thickness ratios h/b ranging 

from 20 to 70. The upper end of the range is believed to be among the 

highest h/b ever tested in beam-panels. The PCA Design Aid [88] does not 

recommend slenderness ratios higher than 50; to quote from it 

'slenderness ratio"higher than 50 is not recommended because of lack of 

supporting experimental evidence'. 

The main reinforcement was so designed as to avoid flexural failure 

and consisted of high yield deformed bars of either 10 mm or 12 mm size 

used in numbers of 3 or 6, depending on the beam thickness (see fig.S.2, 

table 3.1). The web reinforcement used followed one of the patterns 

adopted in the PCA Design Aid, namely, a central layer of vertical bars 

- 120 -



restrained by horizontal ones. It consisted of 6 mm diameter plain round 

bars at various spacings to achieve a steel ratio of 0.5 \ both 

vertically and horizontally (fig.s.2). In addition, reinforcement cages 

were used at the loading and support regions to avoid concrete crushing 

there. The properties of the steel used are given in table 6.2 • 

Due to the concrete strength limitation of the PCA design method, a 

concrete mix (water/cement ratio of 0.7 and aggregates/cement ratio of 

5.0), giving lower strengths, was used. The average cube crushing 

strength was 24 N/mm2 at 7 days and 41 N/mm2 at the day of testing. 

The cylinder compressive strength f'c was deduced from the cube 

strength using equation 6.2. Table 3.1 gives the concrete strength 

properties for all the beams. 

Strictly speaking, the design tables given in the PCA Design Aid are 

meant for panels of practical scale with thicknesses ranging between 140 

mm and 241 mm and load-eccentricities between 25 mm and 210 mm. It is 

obviously difficult to test such specimens in a laboratory. However, 

following recent tests by Kong et al [58], the buckling strength depends 

more on the eccentricity/thickness ratio e/b and, with it being 

dimensionless, is more convenient to describe the buckling behaviour of a 

deep beam. Consequently, a load-eccentricity/thickness ratio e/b of 

0.182, corresponding to an eccentricity of 1.0 inch and a thickness of 

5.5 inches in the PCA document, was used to model the present test 

specimens. The beams were tested under two point-eccentric-loads and 

rested on two simple supports (plate 3.1) with concentric reactions as 
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shown by the loading scheme in fig.5.1b. The shear-span/depth ratio and 

the clear-shear-span/depth ratio were 0.29 and 0.12 respectively (table 

3.1). 

Displacement transducers (described in chapter 6, section 6.8.1) 

placed in 3 columns of 5 each, were used to measure the lateral 

deflection above the two supports and at mid-span (see fig.3.3a). In 

addition, due to the sudden nature of buckling, two dial gauges were 

placed on the back to signal an impending collapse (plate 3.2). This 

safety precaution proved very useful in giving warning of buckling 

danger. Strains were monitored by strain transducers (described in 

section 6.8.2) placed in various positions on the back face of the beam, 

as shown in fig.3.3a (see plate 3.2). On the front face, the strains 

were measured at each increment by mechanical demec gauges at locations 

shown in fig.3.3b. The hand measurements were usually stopped as soon as 

buckling danger was felt (lateral deflections exceeding 4 mm). 

This series of beams is indicated by a letter B which comes after the 

author's initial C: After the first hyphen the slenderness ratio h/b is 

given and the load-eccentricity/thickness ratio is given after the second 

hyphen. 
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5.5 TEST RESULTS 

5.5.1 CRACKS PATTERNS AND FAILURE HODES 

Fig.s.3 shows the cracks patterns at failure of the beams. The 

general trend of the cracks development is similar to that described in 

chapter 3 for the beams under concentric loading, with the diagonal 

cracks being the widest at formation and most harmful. With the beams 

having the same load-eccentricity/thickness ratio e/b, the failure mode 

depended mainly on the slenderness ratio h/b. 

a)- For h/b ratio greater than 25, failure was by buckling. The beams 

split horizontally approximately along mid-depth section; Plate 5.1 shows 

a ductile buckling failure. Horizontal cracks appeared simultaneously 

with failure and thus could not be used as a warning sign for collapse. 

The buckling strength was about 30 \ greater than the diagonal cracking 

load for beams with h/b ratios of 30 and 35 (CB-30-0.l82, CB-35-0.l82), 

20 % greater for those with h/b ratios of 40 and 50 (CB-40-0.l82, 

CB-50-0.l82) an~ that with h/b ratio of 70 (CB-70-0.182) buckled just 

after the formation of the first flexural cracks. 

b)- For h/b ratios smaller than (including) 25, the beams failed 

either in shear (CB-25-0.182) or at the bearing (CB-20-0.182). However, 

the lateral displacement profiles shown in fig.5.6 indicate that even 

beam CB-25-0.l82 was on the verge of buckling; its maximum lateral 

deflection just prior to failure was similar to those in beams which 
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failed by buckling. Consequently, beam CB-25-0.l82 is assumed to have 

reached its ultimate shear as well as buckling strengths. In contrast, 

beam CB-20-0.l82 had not yet reached its ultimate buckling strength when 

it failed. The bearing failure was probably caused by the primary moment 

at the loading pOints. The load was applied through a relatively high 

eccentricity of 13 mm. At ultimate, the offset load caused the bearing 

plates to rotate, resulting in concrete spalling and crushing. In 

practice, the local effect of the primary moment Pe could be dealt with 

by proper detailing. 

The failure modes were in agreement with the recommendations of the 

American practice [90]. However, test by Kong et al [58] showed that 

beams with slenderness ratios as low as 25 and e/b ratios as low as 0.1 

can fail by buckling. This is believed to be due to the quality of 

concrete used. High strength concrete such as the one used by Kong et al 

[58] and by the author in series CA beams improves the shear capacity 

(table 3.2). Consequently, a small eccentricity causes a premature 

failure by buckling which is less dependent on concrete strength than 

shear. A low s~rength concrete, such as the one considered in the PCA 

Design Aid and used by the author in series CB beams, does not improve 

the shear capacity and, thus, the specimens may fail in shear or by local 

crushing at the bearings. 
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5.5.2 ULTIMATE LOADS 

Table 5.1 shows the measured ultimate loads of the 7 beams. The 

ultimate loads estimated from the modified Kong et al equation for shear 

(equation 4.3) are given in the same table. It can be seen that the 

beams buckled at loads lower than the ultimate capacities, particularly 

for higher h/b ratios. Fig.5.4 shows that, for a constant e/b ratio, the 

buckling strength is very much dependent on the slenderness ratio; it 

decreased sharply as the h/b ratio increased. The same figure shows that 

beam CB-40-0.l82 had a distinctly low buckling load which was probably 

due to an experimental error in setting the load-eccentricity. This 

highlights the need for a higher safety factor in design against 

buckling, particularly that laboratory conditions can hardly be achieved 

in practice. 

5.5.3 LATERAL DEFLECTIONS 

Lateral deflections for all the beams were recorded over each support 

and at mid-spa~ section; the displacement profiles of those sections are 

shown in fig.5.6 • The maximum deflection often occurred at mid-depth, 

over one of the supports. At mid-span, the lateral deflection was always 

maximum at the unrestrained bottom edge and minimum at the restrained top 

edge. Such restraint was ensured by the relatively closely spaced 

loading jacks as compared to the widely spaced supports at the bottom. 
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In general, the deflections were very small until just before failure 

(see fig.5.6, last load increment) where the beams would creep rapidly 

towards buckling collapse. This was illustrated by two dial gauges 

placed on the back. The maximum deflection recorded was 7.6 mm 

(CB-40-0.l82) just prior to failure. To a naked eye, these displacements 

are not evident and the beam-panel may appear to be straight. Such is 

the imminent buckling danger without visible warnings. 

Curves, load versus maximum lateral displacement at mid-height, were 

plotted and are shown in fig.5.S. These curves indicate three stages of 

behaviour : 

1. An initial stage where the lateral deflections are relatively small 

2. A second stage with increased rate of change of deflection with load 

3. A third stage where, following a small increase in load, the 

deflection would increase continuously until failure. Indeed, just 

prior to failure, the specimen would creep very fast towards 

collapse. 

Stage 3 behaviour was mainly exhibited by the very slender deep beams 

(CB-40-0.182, C~-50-0.l82, CB-70-0.l82 in fig.5.5) for which stages 1 and 

2 were relatively short. Beam CB-20-0.182, having the smallest h/b of 

20, did not reach stage three and failed at the bearing while still in 

stage 2 behaviour. It can be concluded that, for slenderness ratios of 

20 or less, buckling may not be the main concern. 
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5.6 PREDICTION OF THE BUCKLING STRENGTH 

The buckling loads of the beam panels tested were predicted, using the 

CIRIA Guide [8S] and the PCA Design Aid [88]. These predicted loads were 

compared to the measured ones to assess the usefulness of the two 

methods. 

5.6.1 CIRIA GUIDE METHOD 

Strictly speaking, the CIRIA guidelines are intended for designing the 

reinforcement against buckling and are not directly applicable for 

predicting ultimate buckling,strengths. However, the author, jointly 

with others, have presented a way of adapting these guidelines to predict 

the ultimate buckling loads for deep beams (Appendix A). The procedure 

is clearly explained with illustrative examples in references [59] [60]. 

Load-moment interaction diagrams are required for the beams. These 

were constructed in accordance with the 'notes on the derivation of 

deSign charts' 9iven in Appendix A of BS 8110 : part 3, using the actual 

properties of the beams. In practice, the standard column charts in 

BS 8110 : part 3 could be used. As reviewed previously, three methods 

are given in the CIRIA Guide, namely : 

The supplementary rules 

The single Panel method 

The two panel method 
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It is stated that the CIRIA Guide should be used in conjunction with 

CP 110 : 1972 [36]. However, since this was superseded by BS 8110 : 1985 

[16], it is felt more appropriate to use it in conjunction with BS 8110. 

The CIRIA buckling procedure uses elastic stress distribution; Appendix A 

of the Guide gives stress distribution for different geometric and 

loading configurations. Stress distribution from other elastic analysis 

such as the finite element method can also be used. For the present 

case, the elastic stress distribution of the beams was taken from fig.57 

of the CIRIA Guide. 

As mentioned previously, the CIRIA procedure emphasises on the 

determination of the effective height he which, for series CB test 

beams (fig.5.1), was 2100 mm from supplementary rules, 1500 mm from the 

single panel method and 1790 mm from the two panel method (see Appendix A 

where detailed calculations are carried out for beam CB-40-0.182). 

In table 5.1, the factors of safety provided by the three methods are 

indicated by Rsr ' Rsp, Rtp' where 

measured buckling load 
R = ------------------------

pre~icted buckling load 

The particular method used to predict the load is indicated 

by a subscript to R, namely : 

Rsr supplementary rules 

RSp single panel method 

Rtp two panel method 

The following observations can be made 
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(i) The three CIRIA methods are conservative, with mean safety factors of 

Rsr = 41.1; Rsp = 19.1; Rtp = 7.3. Comparatively, the two panel 

method gave the most realistic results. Table 5.1 shows that both the 

supplementary rules and the single panel method are unduly conservative. 

It can be argued that, due to the nature of buckling, often sudden, 

catastrophic and unpredictable, and the rare occurence in practice of 

very slender elements, factors of safety such as those achieved by the 

two panel method could be acceptable. In this matter, Kong et al [58] 

have argued that the fact that a method is too conservative for some very 

slender deep beams should not rule out its use. 

(ii) For the three methods, the degree of conservatism increases as t~e 

h/b ratio increases. This is inhibited in the additional moment concept 

which, as pOinted out by Cranston [37], yields conservative results for 

high slenderness ratios. 

(iii) For practical design, the two panel method should be used. For the 

specimens having h/b ratios between 25 and 40, such method gave a mean 

safety factor of 5, which is not considered as high for buckling failure. 

Both the supplementary rules and the single panel method, though easier 

to use, need more refinement. 

5.6.2 PORTLAND CEMENT ASSOCIATION METHOD 

To a certain extent, the test specimens were designed to fulfil the 

requirements of the PCA Design Aid [88]. The material properties and the 

loading arrangement followed closely those in the PCA document. The 

section properties, however, were smaller than those covered by the 
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method. It is believed [58] that the slenderness ratio h/b and the 

eccentricity/thickness ratio e/b are the most important parameters 

affecting the buckling behaviour. Indeed, a close examination of the PCA 

design tables reveals that, for the same eccentricity/thickness ratio and 

the same steel ratio, the load capacity factors are independent of the 

panel thickness or the eccentricity and depend only on the h/b ratio. An 

example for e/b = 0.5 and steel ratio of 0.25 is given below: 

(height/thickness) 
b e h/b 

(mm) (mm) 20 30 40 50 

140 70.0 0.110 0.051 0.030 0.017 (table Al) 

165 82.5 0.110 0.050 0.026 0.018 (table AS) 

190 95.0 0.110 0.054 0.030 0.010 <table A9) 

Following this, the use of the PCA method to the present beam-panels 

seems to be justified. The e/b ratio of 0.182 adopted in the tests 

corresponds to table Al of the PCA Design Aid, which is presented here in 

a graphical form (fig.5.7). 

The reduction factor ~, accounting for the isolated footings, was 

determined from fig.7 of the peA Design Aid [88] as 0.73. From section 

5.3.2 of this chapter, the concentrated loads were considered distributed 

over an effective width taken as~ 

2 (C + 4b) 

Where C is the bearing width = 230 mm in the present tests 

b is the beam thickness 
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hence, for the test beam-panels in table 3.1, the PCA 

buckling loads are given by 

Ppca = 0.73x2(230 + 4b) ~ b flc 5.14 

with~, the load capacity coefficient, taken from fig.5.7. 

The calculation process is detailed for beam CB-40-0.l82 in Appendix A. 

Table 5.1 shows the ratios of measured buckling loads to the predicted 

PCA buckling loads; this is indicated by a subscript pca to R. 

It can be seen from table 5.1 and fig.S.8 that, compared to the CIRIA 

methods, the PCA method gives a safe and better prediction of the 

buckling strength and is easier to use. The mean safety factor was 2.76. 

However, the use of such method is limited by the material properties 

(concrete strength flc < 4000 pSi, reinforcement yield strength < 60000 

psi), a steel ratio between 0.15 and 0.75, and the loading arrangement 

(eccentricity at the loads only as in fig.S.lb). Moreover, it considers 

that the load capacity of a panel having slenderness ratio hlb higher 

than 50 is negligible. The present tests, together with those of Kong et 

al [58], reveal that beam-panels with slenderness ratios as high as 70 

(table 3.1, beam CB-70-0.l82) and 67 [58] have sensible buckling 

strengths which should not be neglected in practical design. 

In contrast, the CIRIA methods cope with wider ranges for such 

parameters. The two panel method, though relatively more conservative, 

could be considered as more suitable for practical use than the PCA 

method. Of course, for the particular case of tilt-up construction, the 

latter would be more convenient. 
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5.7 CONCLUSION 

For the same load-eccentricity/thickness ratio e/b, the failure mode 

is strongly dependent on the slenderness ratio h/b. Where h/b was higher 

than 25 the test beams failed by buckling with a significant reduction in 

the failure load. For h/b equal or smaller than 25, failure was other 

than by buckling. However, the displacement profiles showed a 

significant lateral deflection for the two beams which did not fail by 

buckling, indicating that their buckling strength was not much higher, 

particularly beam CB-25-0.l82. 

The buckling recommendations in both the CIRIA Guide [85] and the PCA 

Design Aid [88] were found to be safe. However, for slenderness ratios 

of around 20, the latter may not be safe, though shear or bearing may be 

the governing design criterion for such cases. 

In general, the buckling loads were better predicted by the PCA 

method. The disadvantage of this method is that its use is limited as 

discussed in section 5.6.2. Among the three methods given in the CIRIA 

Guide, the two panel method is the most realistic, though still 

conservative for higher h/b ratios. 

The tests showed that buckling failures are in general sudden, 

catastrophic and difficult to predict. Safety should, then, be the 

primary aim of a buckling design. For such purpose, it is advisable to 

use the two panel method of the CIRIA Guide. Where the PCA method is 
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applicable, an easier and less conservative design would be achieved. 
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CHAPTER SIX 

CONTINUOUS DEEP BEAMS - EXPERIMENTAL PROGRAHME-

6.1 INTRODUCTION 

Tests on reinforced concrete deep beams are very few compared to the 

thousand on ordinary beams reported in the literature. It is relatively 

difficult and rather expensive to carry out tests on large beams in 

general. The difficulty and the cost involved in testing slender deep 

beams (discussed in chapter 3) and continuous deep beams are even 

greater. Damage to equipment and injury to personnel are common factors 

associated with the tests. Probably for this reason experimental data on 

continuous deep beams is very scarce, despite that they are more likely 

to occur in practice than single span beams. 

Current design procedures [1] [33] [23] [85] are empirically based on 

data from single span deep beams and, as a result, could be inadequate 

for continuous ~nes [96]. In 1966, Leonhardt and Walther [80] reported 

tests on two continuous beams with span/depth ratio of 0.9. Recently, 17 

continuous beams having span/depth ratios ranging between 2 and 5 were 

tested in Canada by Rogowsky, MacGregor and Ong [96]. It is believed 

that these 19 tests represent most of the experimental data available in 

the literature on continuous concrete deep beams. This highlights the 

need for more laboratory tests in order to investigate their ultimate 

load behaviour, where knowledge is still very limited as compared to 
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elastic behaviour on which more work exists [42] [29] [13] [89]. 

In this direction, 12 reinforced concrete continuous deep beams were 

tested to destruction by the present author, using a relatively heavy 

instrumentation to obtain as much information as possible on the 

behaviour of the beams at each stage of loading. In addition, 4 similar 

single span beams were tested in collaboration with an M.Sc student [8] 

for comparison purposes. These 4 beams form series F and are described 

in chapter 3. The main parameters considered in this continuous deep 

beam programme are the effectiveness of the arrangement of web 

reinforcement, since conflicting opinions on this matter are numerous 

[96] [64] [65] [100], and the influence of the shear-span/depth ratio. 

This study is a part of a long term research programme [53] initiated 

in the early seventies in the U.K under the direction of Kong [63]. In 

this chapter, the author's experimental programme on continuous beams is 

described. However, because of the same procedure used in the making of 

the beams and the same testing equipment and instrumentation, details 

given in this c?apter hold for the single span deep beam programme in 

chapters 3 and 5. 
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6.2 DETAILS OF THE TEST SPECIMENS 

The test specimens consisted of 12 two-span deep beams, divided into 

two series, CD and CE, according to geometric considerations (see table 

6.1, fig.6.1). 

Series CD consisted of 7 beams of height h 960 mm, overall length 2000 

mm and span length L 860 mm, giving a span/depth ratio of 0.9. The 

thickness was constant at 47 rom, giving a height/thickness ratio of 

around 20 so that the slenderness effect could be at minimum. The 

shear-span 'a' and the clear-shear-span 'x' were kept constant for series 

CD beams at 430 mm and 200 rom respectively, giving a shear-span/depth 

ratio a/h and a clear-shear-span/depth ratio x/h of 0.45 and 0.21 

respectively (fig.6.l, table 6.1). 

Series CE consisted of 5 beams of height h 960 mm, overall length 1600 mm 

and span length L 660 mm, giving a span/depth ratio of 0.69. The 

thickness was similar to that of series CD beams, 47 rom, and the 

shear-span 'a' and the clear-shear-span 'x' were reduced to 230 rom and 

0.0 rom respectiyely, giving a/h and x/h of 0.24 and 0.0 respectively. 

This is believed to be among the smallest shear-spans ever tested in deep 

beams. 

The beams were tested under two pOint-loads applied at the top as in 

fig.6.l and plate 6.1. The main reinforcement for the maximum positive 

moments, that is in the spans, consisted of three deformed bars of 12 rom 

diameter placed close to the soffit and arranged in three layers at 30 rom 
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spacings. These bars extended from one end of the beam to the other and 

were left free of anchor plates at both ends. According to conventional 

elastic analysis of an ordinary two-span beam, the negative moment over 

the interior support is higher than that at span and was resisted by 

similar three deformed bars of 12 mm size. These bars were placed at the 

top in accordance with a normal beam detailing and 2/3 of them were 

extended to both ends (see fig.6.2). 

Various arrangements of web reinforcement were used, including no web 

r 
reinf1cement, minimum and maximum vertical bars, minimum and maximum 

horizontal bars and minimum and maximum inclined bars, of 6 mm diameter 

plain round bars for both series. Additional bars were used at the 

support and loading regions where the concrete is expected to be highly 

stressed. These consisted of a single layer of a reinforcing cage of 6 

mm size bars. In addition, two lifting loops were cast on either ends of 

each beam to facilitate handling of the beams with an overhead travelling 

crane. They also helped in securing the beams in the test rig before and 

after testing. Details of the reinforcement are shown in fig.6.2 

The concrete used in making the beams was of moderately high strength, 

similar to that used in series CC and F of the single span deep beam 

programme. Details of the mix properties and concrete strengths are 

given in section 6.5. 
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6.3 BEAM NOTATION 

In all the beam notations, the first letter C is of no important 

significance; it refers to the author's initial and indicates that such 

beams were cast and tested by him. This is followed by a letter 0 for 

continuous deep beams with higher shear-span/depth ratio and a letter E 

for continuous deep beams with smaller shear-span/depth ratio. After the 

hyphen, the percentage of web steel is given. The type of arrangement of 

web reinforcement is indicated after the slash by a letter V for 

vertical, H for horizontal and I for inclined. For beams without web 

reinforcement, the number 0.0 follows the hyphen. 

For example, CD-O.s/V refers to a continuous deep beam tested with a 

clear-shear-span/depth ratio of 0.21 and having 0.5 % of vertical bars as 

web reinforcement. CE-l.O/H refers to a continuous deep beam tested with 

a clear-shear-span/depth ratio of 0.0 and having 1.0 \ of horizontal bars 

as web reinforcement. CD-O.O refers to a continuous beam tested with a 

clear-shear-span/depth ratio of 0.21 and having no web reinforcement. 

6.4 MATERIALS 

6.4.1 CEMENT 

Ferrocrete rapid hardening Portland cement, conforming to BS 12 :1978 

[20] was used in the manufacture of all the beams. This choice was 

mainly due to the necessity for a quick reuse of the formwork. The 

cement was supplied by Blue Circle Group in bags of 50 kg and was kept in 
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a dry place, away from any moisture which might affect its properties. 

6.4.2 AGGREGATES 

The aggregates consisted of zone-M sand, with 5 mm maximum size, 

brought from Caistron quarry. The grading of the aggregates was 

determined by sieve analysis in accordance with BS 882 : 1983 [21] and is 

shown in fig.6.3. 

The sand-based aggregates were used with continuous grading without 

sieving or grading them. Immediately before mixing, an excess amount of 

wet sand was spread on the floor and mixed thoroughly for moisture 

uniformity. The moisture content was then determined using a 'speedy 

moisture tester' (fig.6.4a). Mixing formulae taking into account the 

instant moisture content would then be used to determine the mixing 

proportions. In addition to this, samples would be taken to the oven for 

24 hours to determine the oven-dry moisture content and, hence, check the 

reliability of the 'speedy moisture tester'. It was found that on 

average, the ov.en-dry moisture content was 1.42 % higher (see fig.6.4b). 

This was thought reliable considering the water absorption for an 

oven-dry aggregates, which would normally be counted for by up to 2.0% 

allowance. 
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6.4.3 STEEL 

High yield deformed bars were used as main reinforcement throughout 

the test (for both simply supported deep bea~s and continuous deep 

beams). Plain round mild steel bars were used as web reinforcement in 

continuous deep beams and in some Simple span beams (series CB and F). 

High yield deformed bars and hard drawn wires were also used as web 

reinforcement in the simply supported deep beams (series CC and CA 

respectively). The yield and ultimate stresses for the steel bars used 

were determined from tensile tests on bar specimens in accordance with 

BS 18 : part2 : 1971 [22] and are given in table 6.2. 

6.5 CONCRETE DETAILS 

6.5.1 MIX DESIGN 

The concrete mix was usually established from a set of trial mixes 

after a target strength was set. Three concrete mixes were used 

throughout the .tests described in this thesis, namely, high strength 

concrete mix (series CA beams), moderately high strength concrete mix 

(series CC, F, CD, CE beams) and lower strength concrete mix (series CB 

beams). 

The moderately high strength concrete mix was used in the continuous 

deep beams and consisted of the following properties: 

- water/cement ratio of 0.55 
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- aggregates/cement ratio of 3.5 

- a superplasticiser to achieve an acceptable workability. Melment LIO, 

classified as category A superplasticiser [27] was used for this purpose. 

25 ml superplasticiser per kg of cement was found to give satisfactory 

results without causing grout bleeding. 

This concrete mix resulted in a 7-day cube strength of 46 N/mm2 

6.5.2 CONCRETE STRENGTH 

The strength properties of the concrete at the day of testing for each 

beam are given in table 6.1. The concrete compressive strength feu and 

the tensile strength f t were determined from an average of three 

(lOOxlOOxlOO) rom cubes each. BS 1881 : part 117 : 1983 [18] allows the 

determination of the splitting tensile strength from cubes, using the 

formula 

f t = 2F / (1r 1 d ) 6.1 

where F is the maximum load applied to the cube 

1 is the length of the specimen 

d is th~ cross sectional dimension of the specimen 

(n/2)xld represents the effective area resisting 

the splitting action. 

The author carried out tensile splitting tests on (150x300) rom 

concrete cylinders and (100xlOOxlOO) rom concrete cubes cast from the same 

high strength concrete mix. The concrete specimens (cylinders and cubes) 

were tested simultaneously at various ages. The results are shown in 
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fig.6.S, which gives the concrete splitting tensile strength development 

with age for the two methods (cylinder splitting and cube splitting). 

Fig.6.S shows that about 90% of the tensile strength is achieved at an 

early age (within 7 days) and is the same for the two methods during that 

period. After 28 days, the average difference between the two testing 

methods was less than 7 % of the concrete cylinder splitting strength. 

This experimental data endorses BS 1881 : part 117 [18] in suggesting 

that the results of splitting tests on cubes and cylinders are 

practically the same. 

The cylinder compressive strength f'c' when needed, was calculated 

from the cube strength feu' using the following equation : 

f'c = 0.80 feu 6.2 

This relationship was determined from control tests on 10 (lOOxlOOxlOO) 

mm cubes and 10 (100x200) mm cylinders carried out by the author and from 

similar tests by Garcia [47]. In the author's tests, the cylinders were 

capped with mortar according to BS 1881: part 110: [19]. The results 

were used to pl~t the (f'c - feu) graph shown in fig.6.6 and 

establish the above relationship. 
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6.S.3 STRESS-STRAIN RELATIONSHIP 

The stress-strain characteristics under uniaxial compression for the 

three types of concrete were determined from 100x200 mm cylinders, capped 

with mortar according to BS 1881: 1983 [19]. Four TML type PL-30-11 

strain gauges with 30 mm gauge length were fixed to the concrete surface, 

two longitudinally and two transversally, and connected to a 'strain 

bridge' data logger which would display the reading in microstrain. The 

load was continuously applied by a digital Avery Denison compression 

machine which operates in load control only. Consequently, only the 

ascending portions of the stress-strain curves were determined and are 

shown in fig.6.7 for the three types of concrete used in the experimental 

work. 

The average values for the modulus of elasticity for the three types 

of concrete were 31 kN/rnm2, 28 kN/mm2, 24 kN/mm2 for high strength 

concrete, moderately high strength concrete and low strength concrete 
S 

respectively. It can be seen that, although the difference in compres~ve 

strength was very high from one type of concrete to the other (average 

values are 94 N/mm2, 58 N/mm2 and 41 N/mm2), the elastic modulus E 

did not change much. From this, it can be concluded that E does not rise 

in proportion to strength and hence existing expressions [lJ might 

overestimate the modulus of elasticity for high strength concrete as 

pointed out in reference [3]. 
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Readings from the transversal strain gauges helped in determining the 

Poisson's ratio. Average values are 0.23 for high strength concrete and 

0.20 for both moderately high and low strength concrete. 

6.6 BEAM MANUFACTURE 

6.6.1 FORMWORK 

Two sets of formwork with different sizes were used for casting the 

beams in upright positions so that a close tolerance on their thicknesses 

could be achieved. Geometric imperfections are not desirable in 

structural forms in general, and particularly in laboratory tests such as 

these. The formwork need~d to be stiff, carefully designed against 

lateral deflection from the wet concrete pressure which could produce 

barrel shaped beams, and allow for close control of the beam dimensions. 

Both formworks consisted of two panels fixed to timber whalings and 

studs stiffened by a rigid steel frames. On one side the frame was 

welded to the pase'to hold the formwork in an upright position. The 

other side could be moved to vary the thickness of the beam and to allow 

for fixing of the reinforcement and demolding. The base of the formwork 

was welded to the floor. The surface of the formwork was made of 

varnished plywood sheets in order to achieve a smooth finish. The 

thickness of the beams was achieved by end and bottom timber closures 

accurately cut to the required value. Depending on the size of the 

formwork, either one or two Dynapac external vibrator type ER02 were 
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bolted to the steel frame to compact the concrete. Fig.6.8 shows the 

details of the small formwork and fig.6.9 shows the process of demolding 

a beam from the big formwork. 

6.6.2 CASTING 

Before casting, the formwork was oiled and the end and bottom joints 

were sealed with petroleum jelly to avoid grout leakage. The reinforcing 

bars were fixed with the help of plastic spacers to hold them in their 

positions and allow for a concrete cover. The formwork assembly was then 

tightened up and the required thickness was checked at the top. A close 

adjustment was made possible by Ml2 counter bolted tie bolts at the t09 

together with several pieces of timber cut to the required thickness. 

The sand was then thoroughly mixed for uniformity and the instant 

moisture determined 50 that the mix proportions could be established. 

The concrete was mixed in a 2 cubic-feet pan mixer. The constituents 

were mixed dry for about 2 minutes after which the correct proportion of 

water was added and the whole was left mixing for a further 2 minutes. 

The superplast~ciser was th~n added and the stiff mixture was left until 

it would become more fluid. Depending on the beam Size, one or two 

batches were required. The concrete was subsequently placed in the 

formwork with continuous compaction, the control specimens were cast and 

Vibrated and the whole (beam and control specimens ) was covered with a 

soaked hessian and polythenesheets. 
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6.6.3 CURING 

Twenty four hours after casting, the beam and control specimens were 

demolded and covered again with a damp hessian and polythenesheets for a 

further six days (fig.6.10). The beam was kept in a vertical position to 

minimise the warping effect. At the seventh day, the cover was taken off 

and the beam and control specimens were left to cure in air until the day 

of testing. 

This curing method was compared with another method whereby the 

control specimens (cubes) were left constantly in water until testing. 

The control specimens, which consisted of (lOOxlOOxlOO) mm cubes, were 

tested at various ages. The results are plotted in fig.6.11 which shows 

that the two curing methods yield similar strengths up to 7 days. 

Afterwards, the method adopted, namely: moist curing for 7 days and 

subsequent air curing, resulted in higher strength. 

6.7 TEST RIG 

6.7.1 GENERAL ARRANGEMENT OF THE TEST RIG 

The general arrangement of the test rig is shown in fig.6.l2. It 

consists of two longitudinal heavy steel beams, top and bottom, connected 

to two pairs of vertical ties and two pairs of columns by cross beams. 

High strength friction grip bolts secured all the connections of the 

rigid testing frame which can accommodate tests up to 6000 kN. A metal 
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plate is bolted to the underneath of the top longitudinal beam to carry 

the jacks which themselves are bolted to tolleys. This enables them to 

move to any desired position within the length of the plate. However, 

such movement is a limited one and constrained the author from using the 

same span in series CD and CE of continuous beams. 

6.7.2 LOADING SYSTEM 

A servo-hydraulic jacking system, supplied by Dartec limited, was used 

for loading. It consisted of two single acting hydraulic jacks, a 

hydraulic power pack and a control unit as shown in fig.6.l3. The two 

jacks have a capacity of 600 kN each and are mounted vertically (plate 

3.1) as explained in section 6.7.1. They are connected at the top by 

small hydraulic hoses to a common manifold and, thus, exert both the same 

load. The oil which goes through the piston is returned through low 

pressure lines to the oil tank. In addition, any cross piston leakage 

escaping the low pressure return is collected by drain connections and 

returned to the oil tank. The hydraulic supply is controlled by a 

servo-valve and the pressure of the fluid is monitored by a pressure 

transducer. 

The control unit (plate 6.2) provides the necessary controls such as 

the on-off Switches, increase-decrease of pressure, operating the oil 

pump etc •••• The pressure is converted automatically into load and 

displayed as load per each jack. From an LVDT transducer placed on the 
~ 

test specimen and connectedlthe control unit, the vertical deflection is 
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given by a displacement indicator. In addition, the control unit 

provides safety shut-down facilities; each time a preset load or 

displacement was exceeded, the hydraulic pressure was cut off 

immediately. This facility proved very useful in limiting the damage 

after failure of the s?ecimen. 

The jacks were calibrated every year by Dartec limited as a part of a 

contract between the university of Newcastle upon Tyne and them as 

suppliers. In addition, they were occasionally calibrated by the author 

to check their performance. A typical calibration graph is shown in 

fi0.6.14 

6.7.3 LOAD AND SUPPORT BEARINGS 

In practice, reinforced concrete deep beams could have complex 

boundary conditions [53J. In laboratory tests, it is common practice to 

adopt ideally simple conditions such as the ones used by the author 

(shown in fig.6.1S). 

The top bearings (fig.6.1Sa) allowed for vertical displacement and 

out-of-plane rotation. The upper section (labelled D in fig.6.1Sa) of 

each bearing was mounted directly onto the body of the jacks. The lower 

part of each bearing (labelled E in fig.6.1Sa) consisted of a plate and a 

cylindrical segment bolted together through slotted holes to allow for 

any desirable load-eccentricity. The plate was bonded to the top of the 

beam at the desired loading position with a quick setting polyester 
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paste. It was then clamped to the beam sides with steel angles through 

slotted holes which allowed for different beam thicknesses. The clamping 

action eliminated the risk of any relative movement between the test 

specimen and the bearing. The bonding material, which would become very 

rigid, ensured an evenly loaded bearing area and protected the concrete 

from direct contact with the steel plates. The friction between the two 

cylindrical surfaces in fig.6.ISa was reduced by the use of 

polytetrafluoroethylene (PTFE) sheet bearings placed between them and 

thus, allowed for the out-of-plane rotation. 

At the supports, out-of-plane rotation, in-plane rotation and 

longitudinal translation were allowed for by the bottom bearings, the 

details of which are shown in fig.6.15b. The bottom bearing assembly 

consisted of a bearing plate (labelled A in fig.6.lSb) bonded to the 

soffit of the beam with a rigid polyester filler and clamped to the beam 

sides with steel angles, a rocker bearing (labelled B in fig.6.ISb) which 

allowed for the in-plane rotation, a steel block (labelled D in 

fig.6.1Sb) which transferred the load from the rocker bearing onto needle 

rollers (total pf 18 type FF352S) placed in a raceway of hardened steel 

plates (C and E in fig.6.1Sb). These needle rollers allowed for the 

longitudinal translation. Such movement was prevented by clamping bolts 

during the setting-up of the beam. PTFE sheet bearings provided 

frictionless contact between the cylindrical surfaces of the bearing 

plate and the rocker bearing (labelled A and B in fig.6.lSb 

respectively). The bottom bearing assembly rested on concrete blocks, 

put on the bottom longitudinal steel beam of the test rig (fig.6.l2). 
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For the internal support of the continuous deep beams, a load cell was 

placed between the bearing assembly and a smaller size concrete block 

(fig.6.17a) to measure the reaction. 

In the present tests, a great precaution was devoted to applying the 

load and reactions accurately at the desired line of action. A reference 

axis for the test rig with respect to the centres of the jacks was 

established. using a theodolite. The support bearing blocks were then 

aligned with the longitudinal axis of th~ jacks. This procedure, which 

was repeated every time the concrete blocks or the jacks were moved, 

eliminated any misalignment during the testing. 

6.8 INSTRUMENTATION 

6.8.1 DISPLACEMENT MEASUREMENTS 

In the single span deep beam tests as well as in the continuous deep 

beams, 15 linear variable displacement transducers (LVDT) were used to 

measure any lateral deflection. The LVDT's were fixed through aluminium 

clamps to a purposely erected steel frame a~ongside the test rig 

(plate 3.2). They were arranged in three columns on the back of the test 

beams and could be removed shortly before failure. Fig.6.16 shows their 

locations in continuous deep beams. The transducers were calibrated 

individually by the manufacturer and had working range of ±SO mm. They 

were energized by a constant input d.c of 6 volts and their output 

voltages were recorded by data logger. The vertical displacement was 
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measured by a similar LVDT placed in the middle of a span and connected 

to the control unit applying the load. 

Mechanical dial gauges of 25 mm travel and 0.01 mm sensitivity were 

used to record the support settlement (fig.6.l7a). For the simple span 

beams, a pair of similar dial gauges was used to monitor the out of plane 

movement of each support. 

6.8.2 STRAIN MEASUREMENTS 

On the back faces of the test beams, electrical demountable strain 

transducers were used to measure the surface concrete strains. For the 

continuous deep beams, strain transducers were arranged in sets of 45 

degrees rosettes to monitor the strains in the inclined load paths 

defined by the line joining the support and load bearings. In addition, 

in series CD beams individual strain transducers were used to measure the 

longitudinal strain distribution at mid-span. The arrangement and 

location of the strain transducers in continuous deep beams is shown in 

fig.6.l6. 

These demountable strain transducers were originally developed by Cook 

[35] at the Cement and Concrete Association. Those used by the author 

were manufactured in the Civil Engineering Department at the university 

of Newcastle upon Tyne. The general arrangement and dimensions of the 

strain transducers used in the present tests are shown in fig.6.18a. 

Each transducer has a gauge length of 100 mm and consists of an aluminium 
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strip, 6 blocks and two conical pins glued together by a super-glue 

(cyanoacrylate). Four electrical resistance strain gauges type 

Nll-FA-S-120-23 with 5 mm gauge length, supplied by Showa Measuring 

Instrument co. limited, were bonded in pairs on either side of the 

flexible strip using cyanoacrylate glue. The four gauges were wired up 

in full bridge circuit which is thought to be sensitive to the bending 

strain induced in the strip and insensitive to any axial strain. The 

bridge circuit was energized by a constant input of 6 volts d.c. supply 

connected to a data logger. Demec studJ were glued on the concrete 

surface in 100 mm gauge length and the transducer was held against them 

through the conical pins by means of restraining springs bonded to the 

concrete (fig.6.l8b). Any change in the gauge length will cause the 

aluminium strip to bend. Such bending will cause a change in electrical 

resistance and thus, the voltage of the strain gauge which is scanned by 

the data logger. 

The transducers were individually calibrated using an extensometer as 

seen in fig.6.18c. They were attached to demec studs in the same manner 

as they would be fixed to the test beam and a micrometer was used to vary 

the gauge length and hence apply direct strains. The output voltages 

from the data logger and the corresponding strains from the micrometer 

were used to plot calibration graphs. A typical one is shown in 

fig.6.l8d. The calibration procedure was repeated after each series of 

tests. 
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The advantage of using this type of strain measuring device was that 

after a brutal failure of the test beams, the transducer, if broken, 

would be reduced to its components which could be reassembled with the 

cyanoacrylate glue. 

On the front faces of all the test beams, 4 inches mechanical strain 

gauge (demec gauge) with a gauge factor of 2xlO-S was used to measure 

the strains at various locations, particularly at the level of main 

tension reinforcement and along the depth at mid span. Fig.6.l6 shows 

the location of the demec gauge readings in continuous deep beems. The 

mechanical gauge-based strain measurements were preferred on the front 

mainly to allow for clear marking of the cracks pattern and crack width 

measurement. 

6.8.3 CRACK WIDTH MEASUREMENTS 

Throughout the tests, particular attention was devoted to measuring 

crack widths, using a hand microscope, specification Ultra Lomara 2S0b. 

The microscope pas "a magnification of 40 times and an accuracy of 

0.01 mm. 
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6.8.4 REACTION MEASUREMENTS 

In an aim to measure the reaction distribution in continuous deep 

beams, 100 ton capacity load cell was used at the interior support, 

between the concrete block and the bearing assembly (fig.6.17a). 

The load cell was calibrated before the tests, using the Avery 

compression machine, and was found very reliable (fig.6.17b). One of the 

purposes of the calibration was to have an idea about the settlement of 

the load cell. Previous elastic work [85] predicted that differential 

settlement could be critical for multiple supports deep beams. It was 

found from the calibration that up to a load of 350 kN, which is the 

range of the maximum reaction recorded in the test, the load cell 

settlement was below 0.3 mm. 

From geometric and loading symetry (see fig.6.l), the reactions of the 

two exterior supports were assumed equal and were not measured. 

6.8.5 DATA LOGGING EQUIPMENT 

A 50lartron Merlyn system, consisting of an adjustable d.c. voltage 

supply, an integrated measurement unit and an apple II micro-computer 

(plates 6.2), was used to record the data. The integrated measurement 

unit has a capacity of 64 channels, of which, 15 were used for the 

displacement transducers and 36 for strain transducers. The software 

controlling the data recording system was supplied with the equipment by 

Solartron Instrumentation Group. The software was fed to the computer 
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through a diskette to select the channels used and to set up the required 

measurement conditions. Instructions typed into the computer were then 

transmitted to the integrated measurement unit which scans the selected 

channels at high speed and send back the information to the computer 

which outputs the data as voltage in a printer, a Video Display Unit and 

a diskette. Displacements and strains were determined afterwards using 

the appropriate calibration factors. 

6.9 PREPARATION AND TESTING OF THE BEAMS 

A few days before testing, the locations of strain measurements were 

marked on the beam. Demec studs were bonded with rapid-hardening 

araldite at the required locations on the concrete surface and the beam 

was whitewashed with an emulsion paint to facilitate cracks observation. 

A grid of lOOxlOO mm was then drawn on each face so that the cracks could 

be accurately located during the testing. Next, the restraining springs 

for the demountable strain transducers were glued to the concrete with 

araldite and the exact loading and support positions were established. 

In the single span 'deep beams, these positions were identified by 

recesses (local thickening of concrete) permanently incorporated in the 

formwork (fig.6.8) to prevent bearing failure. Due to the different 

geometric dimenSions, these recesses could not be used in continuous deep 

beams. Lines were marked on the loading and support locations as 

references for either concentric or eccentric (series CB) loads and 

reactions. After that the top bearings were bonded to their pOSitions 

with a quick setting polyester paste and clamped with steel angles. At 

- 155 -



this stage, for single span beams, the specimen could be lifted to the 

test rig, secured with safety ropes and a clamp, then the bottom bearings 

would be bonded to the beam. For continuous beams, the rather difficult 

procedure of fixing the bottom bearing would be started with the interior 

one before the beam is in the test rig. Once the bonding material is 

hard enough, the beam is lifted to the rig and the two end bearings were 

accurately placed with the help of a hand operated Enerpac jack which 

lifts the relevant beam end. 

Probably one of the most difficult tasks in testing multiple supports 

beams is to ensure that all the supports are at the same level. For this 

purpose, a theodolite was used to check the level of the three supports 

after the bearings were placed. 1 and 2 mm aluminium plates were used 

between the bearing assembly and the concrete blocks to adjust the level. 

A final adjustment to ensure the alignment of the centre line of the 

bearing assembly with that of the longitudinal axis of the jacks 

(reference axis) was then made. After this, the dial gauges, the LVDT's 

and the strain .transducers were secured in their positions. The testing 

would then begin after switching the load control unit and the data 

recording equipment on to warm up for few minutes. Operating the load 

control unit is itself a complicated process and took the author one full 

month to learn; particularly that the instructions manual supplied with 

the equipment was found misleading and not of straightforward 

application. After the jacks come down into contact with the beam, the 

bolts restraining the movement of the bearings were released, the clamp 
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securing the beam was removed and the initial readings were taken, the 

load was then applied in 50 kN increments. After each increment, the 

following measurements were taken 

load applied by each jack, read from the indicator on the control 

unit. 

Vertical deflection at mid-span read from the displacement indicator 

on the control unit. 

LVDT's and strain transducers were scanned and the voltage outputs 

recorded 

The internal support reaction was read from a load cell indicator 

dial gauge readings were taken for support settlement and for support 

movement in the case of single span beams 

Demec gauge readings were taken for the strain measurements on the 

front face 

The cracks were marked on the beam and graphically recorded on paper 

the crack widths were measured with the hand microscope. 

In addition, photographs illustrating the cracks development were taken 

at each load increment. 

The time required for the testing procedure varied between 3 and 5 

hours. After the test, photographic records were taken, the tested beam 

was then lifted away from the testing frame, and the bearing plates and 

restraining springs were removed to be cleaned for future reuse. 

The concrete control specimens for strengths were tested on the same 

day as the beam. 
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CHAPTER SEVEN 

CONTINUOUS DEEP BEAMS - BEHAVIOUR UNDER LOAD AND TEST RESULTS -

7.1 INTRODUCTION 

~ 
The experimental programlis described in chapter 6. In this chapter, 

the behaviour of the 12 continuous deep beams is described and their test 

results are presented and discussed. Based on the test results and 

observations, design recommendations for continuous concrete deep beams 

are given in chapter 8. 

7.2 FORMATION OF CRACKS AND CAUSES OF FAILURE 

The cracks patterns at failure of the 12 beams are shown in Fig.7.l. 

The load at which each crack was first observed is indicated together 

with the extent of the crack at that load. 

Despite dif~erences in web reinforcement, layout and quantity, the 

cracks patterns of series CD beams are similar. Those of series CE are 

similar between them but differ to a certain extent from those of series 

CD, particularly in orientation. This suggests that both the geometry 

and the loading characteristics have an influence on the behaviour of the 

beams. Such factors are usually taken into account by the parameters L/h 

and a/h, span/depth ratio and shear-span/depth ratio respectively. In 

the present tests, it was not attempted to isolate the effects of the two 
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parameters. It is, however, reported in the literature [66] that the 

latter parameter is more important in that it is a good indicator of the 

direction of the diagonal cracks. 

Before describing the cracking behaviour, it is worth defining some 

terms which are repeatedly used in this work. 

Flexural cracks: vertical cracks which form as a result of tensile 

stresses caused by bending action. They usually form at the maximum 

bending moment regions and are short at formation. 

Inclined cracks: Cracks which form as a result of combined actions of 

shear and bending within the shear-span. They usually form at or 

very near the soffit of the beam in the vicinity of the support and 

are inclined towards the loading points. 

Diagonal cracks: Cracks which form within the shear-span as a result of 

inclined tensile stresses caused by the direct transfer of load from 

the loading point to the support. These cracks are characterised by 

a loud cracking noise and are long at formation. They are parallel 

to the direction of load - support and initiate at about O.3h to O.4h 

from the soffit. A diagonal crack is harmful if not restrained by 

effective web reinforcement. 

It is also important to distinguish between two modes of failure 

common in deep beams but which are often considered as the same by many 

researchers who identify them simply as bearing failure. In the present 
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continuous deep beam tests, observation on the cracks development during 

the testing procedure and crack width measurements revealed that a beam 

could fail by crushing at the bearing in two ways: 

After a relatively wide diagonal crack extends deeper into the 

compression zone at a bearing point. This often occurred when no or 

less effective web reinforcement was present. Such failure is 

defined here as shear-bearing failure. 

When the diagonal cracks are effectively restrained by web 

reinforcement, they hardly reach the compression zone and, even when 

they do so, they may not precipitate the crushing of concrete there. 

Following this, if bearing failure occurs, it is because the concrete 

is exhausted and has reached its ultimate strain in this area. Such 

failure is termed proper bearing failure in this work and is 

characterised by a relatively higher load. 

These two types of failure occurred repeatedly in the present tests as 

discussed later. 

According t~ Kong et al [66] [67] [69] who used cine-camera to record 

support crushing failure, these two failure modes are quite different 

from each other. They pointed out that a proper crushing at a load 

bearing block occurs only in the presence of highly effective web 

reinforcement and that most of the so-called crushing failures in deep 

beams fit into the first definition, namely shear-bearing, identified as 

mode 3 by the authors (see chapter 4). 
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In general, flexural cracks appeared first in the span in the region 

of maximum bending moment and away from it, at locations where the latter 

is supposed to be very small or hogging. This can be clearly seen from 

the cracks patterns in fig.7.1, where the spread of the flexural cracks 

over the spans revealed that the regions which in theory should have been 

under compression were in reality under tension. The next cracks to form 

were the inclined ones, usually near the inside edge of the supports. At 

higher loads, diagonal cracks would form, often accompanied by a loud 

noise. These were the widest and the longest of the three types at 

formation. At subsequent loading, more diagonal cracks appeared and the 

crack width increased. Finally, depending on the effectiveness of web 

reinforcement arrangement, the specimens collapsed in one of the two 

failure modes described above. 

Because few tests have been carried out on continuous deep beams, it 

was thought useful to describe the cracking behaviour of each beam up to 

failure before making a summary of the principal characteristics. 

Series CD beam~ 

CD-O.S/v 

The load was applied in 50 kN increments. At 150 kN, the first 

flexural cracks appeared in the spans despite that according to the 

shallow beam bending moment distribution, the flexural cracks should 

appear first above the internal support where the hogging moment would be 

higher. As can be seen from Fig.7.l, these cracks were small and very 

narrow at formation. They did not form only at the location where the 
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span moment was maximum but also at locations where the bending moment 

was expected to be close to null or hogging. While the load was 

maintained at 150 kN, a very loud diagonal crack formed at the left 

interior shear-span. It appeared very long, 0.95h, and relatively wide, 

0.4 mm. At 200 kN, more flexural cracks formed at the soffit and new 

types of cracks appeared near the supports and tended to incline towards 

the loading points. One flexural crack formed within the right interior 

shear-span and extended to just below the right support in a similar way 

as a diagonal crack. At 300 kN, a long diagonal crack formed within the 

left shear-span, extending from the support to about 100 mm below the 

loading pOint. The crack width reached 0.55 mm at about 400 mm up from 

the soffit at the left interior shear-span. The flexural cracks reached 

0.1 mm in width and tended to close up as diagonal cracks developed on 

both sides of a span. Up to this level of loading only two tiny cracks 

formed at the top. Subsequent loading resulted only in the widening of 

the diagonal cracks, the maximum width of which reached 1.0 mm at 650 kN. 

Concrete spalling started at this load along the left interior diagonal 

crack. At 800 kN, a very long and wide (2.0 mm) diagonal crack formed at 

the right end spear-span, extending from support to loading point. As 

this load was maintained for measurements to be taken, the beam crushed 

at the right loading point. It was thought that such bearing failure was 

precipitated by the extension of the wide crack deep into the bearing 

area. Prior to failure the concrete was spalling severely along the 

crack at the left interior shear-span which reached 1.1 mm in width at 

700 kN. The cracks pattern of the beam (Fig.7.l) reveals clearly a 

'truss frame' with major cracks running diagonally from load point to the 
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nearest supports and small flexural and inclined cracks at the bottom 

from one end of the beam to the other. The concrete at the top central 

region was not cracked and contrary to the theory, no or very small 

tensile stresses seemed to be acting there. At the bottom, a value of 

1197 micro-strain was recorded along the tensile steel. 

CD-O.s/H 

At 50 kN, a vertical crack developed above the interior support, 

running from soffit to top with a maximum width of 0.1 mm at 300 mm up 

from the bottom. This was believed to be the result of 0.05 mm 

differential settlement at that load. At 100 kN, flexural cracks formed 

at the spans in a similar way as CD-0.5/V. They were narrow at 

formation, 0.02mm, and relatively short. At the same load, a flexural 

crack within the left interior shear-span developed into a diagonal one, 

extending upward towards the loading point. Its maximum width reached 

0.15 mm. At subsequent loadings, more flexural and inclined cracks 

formed at the spans with one of them developfing into a diagonal crack on 

the right interior shear-span at 150 kN. The serviceability limit state 

of cracking, p~eset at 0.3 mm by BS 8110 [16], was reached at 250 kN. At 

800 kN, a diagonal crack developed loudly on the left end shear-span 

extending deep into the load bearing zone, with a maximum width of 

0.7 mm. At this load level the cracks were finely distributed at the 

bottom spans, with inclined cracks at the faces of supports bending 

towards the loading points and small narrow flexural cracks (0.12 mm 

maximum crack width) in between. In addition to the long crack which 

crossed the whole depth, two small cracks formed at the top at the early 
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stages of loading but did not expand nor widen as the load was increased. 

The cracks distribution suggests that the beam was in tension from one 

end support to the other at the bottom while above the interior support 

at the top, such expected tension was negligible, even at ultimate. At 

850 kN the beam crushed at the left loading point and split along a 

diagonal crack. The tensile strain at the bottom reached 1283 

micro-strain at ultimate. In this beam, horizontal web reinforcement 

helped to restrain the diagonal cracks which stayed relatively narrow 

(just above 0.7 rom at ultimate) compared to CD-O.S/V with the same amount 

of steel used vertically (2.0 mm at ultimate). 

CD-C.5/I 

In this beam, inclined web reinforcement was arranged so as to be 

perpendicular to the line joining the centres of the support and bearing 

points since from observation on single span beam (chapter 3), the 

diagonal cracks are most likely to be parallel to that line. The same 

amount of web steel (0.5% in volume) as the two previous beams, namely 

CD-O.S/V and CD-O.S/H, was used. The reinforcement arrangement is shown 

in Fig 6.2. 

At 150 kN, flexural cracks appeared at the bottom in the spans with a 

maximum width of 0.08 rom. At the same load, a vertical crack formed 

above the interior support and almost reached mid-depth. At 250 kN, more 

flexural cracks spread along the spans, giving sign that the shallow beam 

bending moment distribution may not be valid for this kind of beams. In 

the shear spans inclined cracks started to develop at the top of flexural 

cracks. Subsequent loadings resulted in more flexural and inclined 
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cracks, both of which stayed very narrow. At 700 kN, the maximum crack 

width was 0.28 mm compared to 1.1 mm in the beam with the same amount of 

web steel used vertically, CD-O.S/V, and 0.6 mm in that having the same 

amount horizontally, CD-O.S/H. The diagonal cracks, the first of which 

occurred at 7S0 kN at the right end shear-span, were very much delayed by 

the use of inclined bars. At 800 kN another diagonal crack formed loudly 

on the left. These diagonal cracks did not go deeper into the loading 

zone and were very much restrained. Their maximum width reached 0.38 mm 

at 900 kN at about 0.4h from the soffit. At 1000 kN, the cracks pattern 

was that of two-fan shapes from the spans towards the corresponding 

loading points. At the top, above the internal sUF~ort, the concrete was 

still not cracked, a sign of non -existence of any hogging moment or if 

it existed it was negligible. The major cracks were still effectively 

restrained (0.4 mm maximum crack width). At this load the concrete in 

the bearing area at the left loading point reached its ultimate and 

crushed. 

CD-l.O/V 

In this beam, the quantity of web steel was increased to 1.0% in the 

form of vertical bars. This caused some shrinkage cracks to form, one of 

which crossed the whole depth along the position of a vertical bar at the 

left interior shear-span. With no horizontal bars present, this crack 

was fairly wide, particularly at mid-depth. Located in the path of a 

direct load transfer from loading point to support, it started to open 

soon after the application of the load. At 200 kN, the existing crack 

developed into a diagonal one, inclining towards the loading point at the 
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top and the support at the bottom and reached 0.55 rom in width. Flexural 

crac~had formed at 100 kN in the middle of the left span and spread over 

both spans as the load reached 250 kN. A vertical crack formed above the 

internal support at 200 kN, initiating at about 120 rom up and reaching 

just below mid-depth at 250 kN. At the same load, a flexural crack 

within the right interior shear-span developed into a diagonal one, 

bending towards the right support. At 350 kN, a long diagonal crack 

formed on the left end shear-span with a big noise. Concrete spalling 

started along the diagonal crack on the left interior shear-span which 

was 0.7 rom wide. At 550 kN, the diagonal crack width reached a maximum 

of 1.1 rom. Final failure occurred as a result of the opening of this 

diagonal crack at the left interior shear-span, almost splitting the 

beam, and its extension deeper into the load bearing area at a 

comparatively smaller load of 600 kN. The concrete at the hogging moment 

region was undisturbed by the loading and was uncracked at failure. 

CD-I.O/R 

The concrete web of this beam was reinforced with 1.0% of horizontal 

bars. Flexural cracks formed at 100 kN in both spans, even at regions 

where the theoretical bending moment was close to null or hogging. A 

flexural crack within the left interior shear span developed into a 

diagonal crack and extended upwards bending towards the left support; it 

appeared very narrow (0.05 rom). The flexural crack width was 0.02 rom 

when first formed. Earlier, a vertical crack had formed above the 

internal support. Subsequent loading resulted in the formation of 

inclined cracks near the faces of supports and more flexural cracks in 
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both spans. At 400 kN, a diagonal crack formed loudly on the left, 

extending from just above the support to just below the loading point 

(0.9h) and forming an angle of 70 degrees with the horizontal. This 

diagonal crack appeared relatively narrow (0.10 mm) compared to those in 

beams with vertical bars where their width often exceeded 0.3 mm at 

formation. At 450 kN, a similar diagonal crack appeared on the right. 

The horizontal bars used in this beam, though did not delay the formation 

of diagonal cracks, seemed to restrain effectively their width which was 

0.16 mm at this load level compared to 0.95 mm in the corresponding beam 

with vertical bars, CD-I.O/V, and was comparable to that in beam having 

half the amount of web steel in the form of inclined bars (0.18 mm in 

CD-O.S/I). The serviceability limit state of cracking was reached at a 

high load of 800 kN compared to CD-I.O/V where such limit was exceeded at 

the early stages of loading. At this load level, the two fan-shapes were 

clearly defined above both spans and no cracking occurred at the top. 

Failure occurred at 850 kN by concrete crushing at the loading area on 

the left. It is to be noted that, despite a diagonal crack reaching the 

loading area, it was very narrow at the top to precipitate the crushing. 

At failure, the concrete burst beneath the loading plates, spalling 

sideways and leaving a wedge shape in the middle. 

CD-I.OjI 

In this beam, 1.0% of inclined steel placed in a similar way as in 

CD-O.S/I (Fig.6.2) was used to reinforce the concrete web against 

potential cracks. As a result, not only they were effectively 

restrained, 0.38 mm at 950 kN, but also the shortest in length. At 
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failure the diagonal cracks reached 2/3 of the depth up from the soffit. 

Their formation was delayed compared to the beams with other types of web 

reinforcement. Flexural cracks spread throughout the two-spans and, as 

in all the beams tested, a vertical crack formed above the ir.terior 

suppport, reaching just below mid-depth. The flexural cracks did not 

follow the theoretical bending moment distribution, and no cracks formed 

at the hogging region whatsoever. At 1020 kN, the concrete failed at the 

left loading point, spalling sideways and leaving a form of wedge in the 

middle in a similar manner to beams CD-O.s/I and CD-I.O/H. The two fan 

shapes above both spans were clearly defined by the cracks, though not 

reaching the loading points as in other beams. This type of 

reinforcement proved very efficient in restraining the diagonal cracks 

which in most other beams, and indeed in deep beams in general, seem to 

be the main cause of failure. 

CD-O.O 

The concrete web of this beam did not have any reinforcement. It has 

always been a subject of argument by many researchers as to whether or 

not web reinforcement does contribute to the strength of a deep beam and 

what is the most effective way of reinforcing it. This pOint has already 

been dealt with in chapter 4 with single span beams and is further looked 

at in this continuous deep beam programme. 

Flexural cracks formed as in other beams at a load of 150 kN with a 

maximum width of 0.04 mm. At the same load, a vertical crack appeared 

above the interior support and developed soon into a very brittle 

diagonal crack, bending towards the right support. Its width 

- 168 -



reached 0.3 mm, the serviceability limit state of cracking. This was the 

same load level at which this crack width limit was reached in teams with 

vertical bars (CD-O.S/V, CD-l.O/V). In contrast, such limit was reached 

at 800 kN in beams CD-l.O/H and CD-l.O/I. At subsequent loadings, more 

diagonal cracks were formed in the shear spans, extending the full length 

from supports to loading points and opening wider. At 600 kN, the 

maximum crack width was 1.0 mm and spalling of concrete started along the 

widest crack. At 800 kN the diagonal cracks were wide open and danger 

was felt. The beam failed at the top of the crack on the right interior 

shear-span after it had extended to the loading area. Just prior to 

failure, three small cracks appeared at the top hogging moment region. 

Series CE beams 

In this series, the loading points were closer to the end supports, 

resulting in an end shear-span of 0.24 and a clear-shear-span of 0.). 

The interior shear-span was kept the same as in series CD beams 

(Fig.6.l). The specimens were reduced in spans due to the limitation of 

the test rig. 

Because of the sma~ler shear span, the diagonal cracks were expected to 

be almost vertical and, consequently, no inclined web reinforcement was 

used since horizontal bars would be nearly normal to those cracks. 

CE-0.5/V 

Since the shear arm was smaller in this series, the flexural cracks 

were expected to be delayed. Indeed, in this beam, flexural cracks 

formed after inclined cracks at 300 kN compared to 150 kN in CD beams 
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(table 7.1). Earlier, a vertical crack appeared above the internal 

support in a similar way as in CD beams and extended across the full 

depth at subsequent load increment. The first diagonal crack developed 

on the left end shear-span with a loud noise at 400 kN with a maximum 

width of 0.3mm at formation. At 500 kN, another diagonal crack formed 

loudly on the right interior shear-span, running from support to loading 

point. At this load level, two small cracks formed at the top part of 

the beam. At the spans, the cracks were finely distributed from one end 

of the beam to the other, in complete disagreement with the shallow beam 

bending moment distribution. The beam finally failed at 650 kN after the 

right interior diagonal crack opened wider and extended deep into the 

loading area, resulting in the crushing of concrete there. 

CE-0.5/H 

Flexural cracks appeared very narrow (0.02 mm) at the soffit, directly 

below the loading point, at 200 kN and spread at subsequent loadings 

throughout both spans. They reached a maximum of 0.1 mm in width and 

tended to close up after diagonal cracking. At 300 kN, a vertical crack 

developed with a maximum width of 0.08 mm above the interior support. 

The first diagonal crack formed at the left end shear-span, from support 

to about 100 mm below the loading point at 350 kN. At 500 kN a similar 

diagonal crack appeared on the right end shear-span. The serviceability 

limit state of cracking of 0.3 mm was reached at 600 kN; at 800 kN, the 

maximum crack width was 0.4 mm. The beam failed while the load was 

maintained at 800 kN at the load bearing area on the right. It was 

thought that the diagonal crack, though exceeded the serviceability limit 
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state of cracking, did not precipitate failure. No flexural cracks 

formed a the top central part of the beam. 

CE-l.O/V 

Short and narrow flexural cracks formed in both spans at 200 kN 

together with a vertical crack, 0.1 mm wide, above the interior support 

which crossed the whole depth. More flexural cracks formed at subsequent 

loadings at the soffit. The first diagonal crack opened suddenly on the 

left at 400 kN with a maximum width of 0.6 mm between 0.3Sh and 0.6Sh up 

from the bottom and extended into the bearing areas at both ends. This 

diagonal crack widened as the load was further increased, reaching 1.0 mm 

at 700 kN. Final failure occurred at the top of this crack by concrete 

spalling and crushing. In this beam, more flexural cracks formed at the 

top above the interior support, spreading almost all the way between the 

loading points at higher loads. 

CE-l.O/H 

In this beam, the cracks pattern resembles that of a single span beam, 

with no major cracks at the interior shear-spans and no cracks at the top 

central part of the beam. Diagonal cracks formed at both ends before 

failure but were restrained in width by the horizontal web bars. Failure 

occurred by proper concrete crushing at the right loading area at 924 kN. 

CE-O.O 

No web reinforcement was used in this beam, and consequently the 

vertical crack which formed above the interior support crossed the whole 
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depth and widened, reaching a maximum of 0.3 mm at 350 kN. Flexural 

cracks formed at 300 kN in both spans and at the top above the interior 

support. A diagonal crack developed wider (0.4 mm) on the right, running 

from support to loading point. At 500 kN, a flexural crack on the left 

end shear-span developed into a diagonal one, extending deep into the 

left loading area. It opened wider at subsequent loadings, reaching 

1.0 mm at 800 kN and brought about concrete failure at the loading zone 

on the right. 

The cracks patterns of series CE beams reveal that the bulk of the 

load was transmitted to the supports through the end shear-spans. 

Indeed, in almost all the CE-beams, diagonal cracks occurred in the end 

shear-spans only. According to the theory of shallow beams, the loading 

of series CE should have resulted in an even transfer of load through 

both, end and interior, shear spans (see table 7.3) 

The general behaviour can be summarized as follows: 

1. Flexural cracks were in general the first to appear. However, their 

formation was not in accordance with the shallow beam bending moment 

distribution which predicts cracking at the top part of the beam 

above the interior support. Instead these flexural cracks formed 

only at the soffit and spread over the whole span. According to the 

shallow beam bending moment distribution, the span regions next to 

the interior support should be under compression, with a hogging 

moment at the top (fig.7.6). All the beams tested had flexural 

cracks up to the faces of supports and uncracked concrete at the top. 
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Earlier, Leonhardt and Walther [80] argued that the bending moment 

distribution in continuous deep beams is completely different from 

that of shallow beams. A close examination of the cracks patterns of 

their two specimens tested reveals a similar distribution of flexural 

cracks at the spans and practically none at the top. In the 

moderately deep beams tested by Rogowsky et al [961 [97], the 

flexural behaviour was in a "transition" between that of shallow 

beams and deeper beams. Indeed, with span/depth ratios ranging from 

2.0 to 5.0 (as compared to 0.9 and 0.69 in the present tests and 0.9 

in Leonhardt and Walther's), flexural cracks formed at the spans and 

at the hogging regions above the interior support. It was reported, 

however, that the bending moments were different from those of 

shallow beams and were higher in the spans than at the support. 

2. One factor which has contributed to the change in bending moment 

distribution was the differential settlement between supports. 

Indeed, the present beams together with those of Leonhardt and 

Walther were allowed to settle. The average values of differential 

settlement were 0.29 mm and 0.21 mm in series CD and CE respectively. 

In Rogowsky" et "al tests [96] "Care was taken" to reduce differential 

settlement. In addition, the stiffnesses of their beams were small 

compared to those of the author's beams and, consequently, the 

settlement effect would be less critical in Rogowsky et aI's beams. 

This explains the slight difference in flexural behaviour in the two 

tests. 

3. Flexural cracks formed at tensile stresses ranging from 2.0 N/mm2 

to 3.4 N/mm2 and were small at formation. Typically, their width 
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was 0.02 mm when first formed and reached a maximum of 0.1 mm before 

decreasing after formation of diagonal cracks on both shear spans. 

Occasionally (with vertical web bars and with no web reinforcement), 

they exceeded 0.1 mm but were never wide enough to cause failure. 

This suggests that for beams in the deeper range, flexural failure 

may not be a problem. Tensile strains very rarely reached 2000 

micro-strain at the bottom. 

4. Inclined cracks are another harmless type of cracks which form near 

the faces of supports and bend towards the loading points. They 

usually appeared after flexural cracks. However, with the smaller 

shear arms of series CE beams, they were the first to manifest, 

suggesting that they are more closely related to the shear force than 

bending moment, though the rather complex interaction of the effects 

which result in their formation is still not fully understood. 

5. Most of the beams cracked vertically above the interior support at 

the early stages of loading. In beams without or with vertical web 

reinforcement, these cracks often crossed the full depth and reached 

up to 0.3 mm in width before closing up after full development of 

diagonal cr~cks. Such cracking was also reported by Leonhardt and 

Walther [80] but did not form in Rogowsky et al beams [96] [97]. 

Differential settlement is believed to be the cause of this type of 

vertical cracks. 

6. The behaviour of continuous deep beams and, indeed in deep beams in 

general, depends more on the diagonal cracks which form as a result 

of the direct transfer of load from loading points to supports. It 

is argued [52] that, when the strut between the loading and support 
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points reaches its capacity, the concrete reaches its tensile 

splitting strength resulting in the formation of a diagonal craCK 

which develops in a 'splitting fashion'. In the present tests, with 

equal end and interior shear-spans (series CD), diagonal craCKS 

formed earlier at the interior shear-spans than at the end ones. 

This was probably due to differential settlement, resulting in more 

tenSile stresses being added to those created by the diagonal 

compression. Plate 7.1 shows the progressive development of the 

three types of cracks with the loadings. 

7. Typically, the maximum width of a diagonal crack when first formed 

varied between 0.1 mm and 0.2 mm where inclined or horizontal web 

bars were used and rarely exceeded 0.4 mm at failure. Where vertical 

web bars or no web reinforcement were used, it was always above 

0.3 mm in width and exceeded 1.1 mm at failure. 

S. When not effectively restrained, these diagonal cracks opened wider 

and extended deep into the compression zones at both ends, resulting 

in concrete crushing at the highly stressed areas of the loading 

points. Plate 7.2a shows a typical case of such failure. 

9. In the pre~ence of horizontal web reinforcement (1.0\) and 

particularly with inclined web reinforcement, the diagonal cracks 

were very much restrained and did not cause collapse. The ultimate 

loads of the corresponding beams (CD-O.5/I, CD-l.O/H, CD-l.O/I, 

CE-l.O/H) were relatively higher and final failure occurred by proper 

crushing of the concrete at a load bearing area. This was 

characterised by the formation of a concrete wedge, as reported by 

Wong [115], clearly noticeable after failure. A typical example of 
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such proper crushing is shown in plate 7.2b 

7.3 CONTROL OF CRACKS 

Cracks are commonly regarded as a source of concern among designers 

not only because of the possibility of corrosive action on the 

reinforcement but also because they reduce the stiffness of a concrete 

member. Beeby [11] pointed out, however, that cracks simply initiate the 

corrosion process, and that limiting the crack width is not necessarily a 

protective measure against corrosion. He argues that appearance and 

water tightness would be the two possible reasons for limiting crack 

width. The present tests showed that cracks may suddenly open wider and 

extend into critical areas, leading to catastrophic failures. Thus, 

safety appears to be the primary reason for controlling cracks. 

In the test beams, cracks of 0.02 mm width were easily detected and 

the widest cracks were always the diagonal ones. Fig.7.2 shows the 

maximum crack widths for the two series of beams. Considering series CD 

beams, it can be clearly seen from fig.7.2a that inclined web 

reinforcement is the most effective arrangement that controls cracks in 

the concrete web of a deep beam. Horizontal bars are the next most 

effective. Vertical bars are not effective and, when used in greater 

number, may have an adverse effect on the serviceability and strength of 

the beams (CD-l.O/v in fig.7.2). The negative effects of vertical bars 

were also discussed in chapter 4 for the single span beams (CC-l.93/V). 
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Table 7.1 gives the loads at which both the 0.1 mm crack width limit, 

often required for liquid retaining structures, and the 0.3 mm crack 

width limit, required for all concrete structures under normal 

environment conditions, were reached in the tested beams. It can be seen 

from table 7.1 that in beams with no web reinforcement and in those with 

vertical web bars the 0.3 mm crack width loads were comFarable and the 

smallest. In these beams, the diagonal cracks were often very brittle. 

Beams with both 0.5% and 1.0% of inclined bars and those with 1.0\ of 

horizontal bars had the highest service loads. This is in line with the 

recommendations of the CIRIA Guide [85] and ACI (318-83) (revised 1986) 

[1] both of which emphasize on the use of horizontal bars and recognize 

the def/iciency of vertical ones at lower shear-span/depth ratios. In 

contrast, Rogowsky et al [96] [97] think that strength improvement can 

only be achieved with vertical bars and recommend their use for beams 

even at the deeper range. 

7.4 MEASURED LOADS 

7.4.1 DIAGONAL CRACKING LOADS 

A diagonal cracking load is defined here as the load at which the 

first majcr crack forms within a shear span. The diagonal cracking loads 

of both, end shear-span and interior shear-span for all the continuous 

beams tested are given in table 7.1. It can be seen from that table 

that, with equal end and interior shear-span (series CD beams), the 

diagonal cracking loads of the interior shear spans are lower than those 
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of the end ones. 1his was thought to be due to the effect of 

differential settlement at the interior support which will be discussed 

later. The diagonal cracks and their formation were similiar to those in 

the single span beams described in chapter 3. 

7.4.2 ULTIMATE LOADS 

The important strength reserve, commonly associated with single span 

deep beams, was also exhibited by the 12 continuous deep beams tested. 

Table 7.1 shows that the ultimate loads were in general more than twice 

the cracking loads of the end shear-spans and more than three times those 

at the interior shear spans even in beams without web reinforcement. 

This is in sharp contrast with the revised edition of the ACI code [1] 

which does not allow for such strength reserve. 

It is argued that web reinforcement may not increase the ultimate 

strength of a deep beam [23] [32] [76] and can only limit the crack width 

and provide some ductility. The present tests showed that restraining 

the crack width is.in itself a contribution towards an improvement of the 

ultimate strength. An increase of 256 in strength was achieved when 

inclined web reinforcement was used (CD-O.5/I and CD-l.O/I compared to 

CD-O.O). With horizontal bars, the strength increase was reduced to just 

Over 6% (CD-O.5H, CD-I.O/H). In beam CE-1.0/H where horizontal bars were 

more nearly perpendicular to the major inclined cracks, the strength 

increase was 15.5%. From this, it can be concluded that using a suitable 

arrangement of web reinforcement does increase the ultimate strength of 
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deep beams. Kong et al [64] reported test results with a strength 

increase of more than 30% when inclined web reinforcement was used. 

7.5 SETTLEMENT AT SUPPORTS 

Deep beams are very sensitive to differential settlement because of 

their high stiffnesses. In real structures, differential settlement may 

be caused by foundation settlements or shortening at supports. 

In the present tests, differential settlement was intentionally 

allowed to occur in order to study its effect on reactions, bending 

moment distribution and cracking. It was mainly due to the settlement of 

the load cell placed underneath the steel bearing assembly at the 

interior support and, to a lesser extent, the difference in size of the 

concrete support blocks which were identical at the ends and smaller at 

the interior (see fig.6.17a). 

Fig.7.3 shows the total settlement at the interior support, the 

settlement of an exterior support and the difference between them 

presented in forms of hystograrns. It is to be noted that, within the 

sensitivity of the dial gauges (to.Ol rom), the settlement of the two end 

supports were identical. As expected, differential settlements were 

higher in series CD beams because of higher reactions at the interior 

support and hence their more pronounced effects (see section 7.6). 

Differential settlements were in general proportional to the load, with a 

maximum of 0.37 mm and a minimum of 0.10 mm in beams which had the 
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highest (CD-l.O/I) and the lowest (CD-l.O/V) ultimate loads respectively. 

Fig.7.4 shows the variation of the settlement at both interior and 

exterior supports with the total load for most of the beams tested. The 

load-settlement curves at end supports are perfectly linear. The shape 

of those at interior support is attributed to the nature of the load cell 

which becomes stiffer at higher loads. The average values of 

differential settlement were 0.29 mm in series CD beams and 0.21 mm in 

series CE, representing 0.00034 x span and 0.00032 x span for the two 

series respectively. 

7.6 REACTIONS AT SUPPORTS AND BENDING MOMENTS 

7.6.1 REACTIONS AT SUPPORTS 

Fig.7.S shows the measured reactions at both interior and end supports 

as functions of the total load. In addition the theoretical reactions, 

calculated as in a shallow beam, have been plotted. It can be seen from 

fig.7.S that the measured interior reaction curves, though linear as 

expected, are far below the theoretical line. Those of the measured end 

reactions are above their theoretical line. For the increment at or 

close to failure, the measured reactions together with the calculated 

ones are presented in table 7.3. Fig.7.S and table 7.3 show that 

calculating the reactions in continuous deep beams according to a shallow 

beam theory, as is commonly done by designers, is erroneous and unsafe. 

For two-span beams with a point load at each mid-span as is the case of 
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CD beams, the theoretical reaction at the interior support would be 

0.69 x total load on both spans. In the present case, such reactions 

ranged from 0.42 to 0.46 of the total load. For a similar loading 

configuration, Rogowsky et al [98] reported a mean value of 0.62 x total 

load for their moderately deep beams where settlement was minimised as 

compared to the author's tests. The end reactions of series CD beams 

varied from 0.27 to 0.29 of the total load as compared to a theoretical 

value of 0.155. 

Series CE beams which have one pOint load at each span applied closer 

to the end support, had interior reactions varying from 0.32 to 0.36 of 

the total load compared to a theoretical value of O.SO. Fig.7.S shows 

that differences between interior and end reactions and thpir respective 

theoretical values were smaller in series CE beams than in those of 

series CD. This was attributed to the fact that in the former, 

differential settlements were smaller (see fig.7.3). However, in both 

series, while differential settlements were small enough to be 

unavoidable in real struct~res (see chapter 8), reactions were completely 

different from.those recommended by the present design document [1] [33] 

[85]; this will be discussed further in chapter 8. 
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7.6.2 BENDING MOMENTS· 

From the measured support reactions and the loads applied, the span 

and support moments were calculated. For the load increment at or near 

failure, the moments are given in table 7.3 and their distributions shown 

in fig.7.6. The theoretical bending moment distribution, determined as 

in shallow beams, is plotted in the same figure. It can be seen that the 

bending moments as measured from the tests reflect the flexural cracking 

behaviour and are entirely different from the theoretical ones. The 

moment at spans is higher than expected and that at a support is lower, 

becoming even sagging as in the case of series CD beams. Leonhardt and 

Walther [eo] reported that bending moments in deep beams may differ from 

those of shallow beams by up to 100%. Rogowsky et al [98] pointed out 

that the behaviour of the two-span specimens they tested was somewhat 

between that of a two span continuous shallow beam and two adjacent 

Single span beams for which the interior reaction would be 0.50 x total 

load. In the present case, the behaviour of the beams was much closer to 

that of two adjacent single span beams (fig.7.6). In addition to the 

reactions and bending moment distribution, such behaviour, particularly 

that of series CD beams, was confirmed by the cracking patterns and 

measured strains (see section 7.7). 

Differential settlements in the order of that recorded in the present 

tests would result in negligible bending moments in shallow beams. In 

deep beams, however, because of the high flexural stiffness, differential 

settlements as small as those in fig.7.3 result in high bending moments 
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that the designer can not afford to ignore. Such flexural stiffness is, 

however, still not clearly quantified in deep beams [85], particularly 

after cracking. 

7.7 STRAINS AND STRESSES 

7.7.1 STRAINS 

Strains were measured on the concrete surface at discrete positions 

using electrical demountable strain transducers on the back and 4 inches 

mechanical demec gauges on the front as shown in fig.6.l6. The strain 

transducers were arranged in rectangular rosettes so that the magnitude 

and direction of the principal strains could be determined. The rosettes 

were placed in the notional load paths, considered as the critical 

regions of a deep beam in general. It is to be noted, however, that 

these rosettes were soon crossed by cracks, rendering their results 

unreliable for the determination of the principal strain values. 

Nevertheless, the knowledge gained from the single span deep beam tests 

helped the author to predict the direction of the diagonal cracks in the 

continuous deep beams. Consequently, for every rosette one transducer 

was placed along the expected diagonal crack and another one 

perpendicular to it. The strains recorded by these two transducers were 

expected to be very close to the principal compressive and tensile 

strains respectively. Indeed, this was always the case before the 

rosettes were perturbated by cracks. A sample of strain values (in 

micro-strain) is given below: 
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Direct Direct Principal Principal 
Beam Compression Tension fl f2 

CD-O.s/v -166 8 12 -170 
CD-O.s/H -296 176 176 -297 
CD-l.O/H -408 61 64 -411 
CD-O.O -141 32 34 -142 
CE-O.s/v -246 36 SO -260 
CE-O.s/H -336 41 51 -346 

The graphs shown in fig.7.7 indicate that the load is transmitted to 

the supports through a limited area of concrete defined by the bands 

joining the bearing at a loading point to that at a support. These 

concrete bands are referred to as 'notional load paths' or 'inclined 

concrete struts' in this work. The strains are highest at the centre of 

the load path which tends to reduce in width as the beam gradually 

reaches its ultimate. It can be argued that at higher loads, the cracks 

reduce the area of concrete through which the load is transferred. This 

in turn results in a sharp increase of the compressive strains in the 

load path. Outside the notional load path, the strains are very small 

indeed. 

Fig.7.8 sho~s a 'typical distribution of ccmpressive strains along the 

load path. The maximum compressive strains occurred below the loading 

pOints and above the supports. In the middle part of the inclined strut, 

they hardly reached 1000 micro-strains, revealing that one important 

assumption of the plastic truss model proposed by Rogowsky et al [97] 

[98] is far from being fulfilled. Indeed Rogowsky et al's model 

conSiders crushing of concrete within the inclined strut and flexural 

failure as the two main failure modes in deep beams. Fig.7.9 shows 
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further that the maximum concrete strains recorded within the concrete 

web of the present test beams never reached the ultimate concrete strain, 

commonly accepted in design as 3500 micro-strain. The highe5t recorded 

values were: 

Beam Recorded Strain proportion of lCU 

CD - 0.5/1 2240 0.64 
CD - 1.0/I 3130 0.89 
CD - 0.0 2301 0.66 
CE - 0.5/V 2573 0.74 
CE - 1.0/H 2133 0.61 

It was stated earlier that the diagonal cracks formed instantaneously 

in a manner similar to the split action of a concrete cylinder; 

throughout the tests, it was attempted to monitor the tensile strains in 

the load paths. Fig.7.10 shows a typical strain distribution up to the 

formation of a diagonal crack. It can be seen that, in general, these 

cracks developed at tensile strains ranging between 300 to 400 

micro-strain. They may, however, form at lower than 300 micro-strain (at 

209 and 186 in CE-l.O/H and CE-O.O respectively). Furthermore, fi9.7.10 

reveals that, while strains parallel to the load path are compressive, 

those perpendicular to it are tensile throughout, supporting further the 

analogy between a split action in a deep beam and that in a concrete 

cylinder. 

Strains were also recorded on the concrete surface, along the bottom 

and top main steel. It can be seen from fig.7.11 that in contrast to the 

shallow beam bending moment distribution which predicts compression near 

the interior support, strains were tensile throughout the spans. An 
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examination of Rogowsky et al work [96] [97] reveals similar strain 

distribution for beams with span/depth ratio of 2.0. When this latter 

increased to 5.0, the strain distribution followed more closely the 

shallow beam bending moment. Leonhardt and Walther [80] reported tensile 

strains and stresses near the intermediate support more than 50~ of the 

maximum values in the span. At the top, very small tensile cr 

compressive strains were recorded (fig.7.ll) in comparison to those at 

the spans, explaining the absence of flexural cracks in most of the test 

beams. Compressive strains were also recorded at the top in Leonhardt 

and Walther tests. In Rogowsky et al tests [96] [98], strains at the top 

were tensile but much lower than those at the spans, particularly in 

their deeper beams. In general, despite crack disturbances, strains were 

not high enough to cause yielding of the tensile steel. It is, however, 

certainly wrong to distribute the longitudinal reinforcement according to 

the theoretical bending moment curve. 

Longitudinal strain distributions above the interior support and below 

the loading point are shown in figs.7.12 and 7.13. These profiles, 

though disturb~ by early cracks, reveal that the concrete above the 

interior support is in tension, highest at about 0.3h up. Such tension 

caused the vertical cracks which always formed above the interior 

support. A compressive region exists above mid-depth but strains are not 

high enough to cause concern. Below the loading point, which corresponds 

to mid-span in CD beams, tensile strains are highest at the soffit, 

though an area of high tension can occur above mid-depth (see fig.7.13). 

The mid-span strain profiles reveal the need for spreading the tensile 
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steel over a larger area. 

Vertical strains, which are usually neglected in shallow beams, can be 

very high in deep beams, particularly over a support. A typical vertical 

strain distribution above the interior support is shown in fig.7.14. As 

expected, these strains are compressive and highest above the support up 

to a depth of 0.3h up and then decrease gradually towards zero at the 

top. 

1.1.2 STRESSES 

Internal stresses can not be directly measured, they can only be 

estimated from strains. In an elastic homogeneous material, plane 

stresses are given by [30] : 

7.1 

E (Ey + VEX) 

------------
(1 - V 2 ) 

Where Ux and uy are the stresses in x and y directions respectively 

E is the Young's modulus of the material 

vis the Poisson's ratio 

EX and Ey are the measured strains in x and x directions 

respectively. 
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Reinforced concrete is not a homogeneous material and after initial 

cracking, it is no longer elastic and, thus, the above formulae are not 

valid at the post-cracking stage. Nevertheless, elastic analysis in 

general has been a powerful tool in the hands of reinforced concrete 

researchers. It can predict the stresses and the locations of the early 

cracks. Following this, an attempt was made to calculate the tensile 

stresses at which the early flexural cracks formed. The tensile strains, 

fX' were those measured during the tests on the concrete surface along 

the tensile reinforcement. The vertical strains, f y, were found to be 

maximum above the support and null at the top. Similarly, those below 

the loading points would be maximum at the top and null at the bottom. 

The stresses at which flexural cracks formed are given by : 

Since f y = 0, such equation simplifies to: 

7.2 

The Young's modulu~ E and the Poisson's ratiov are those of the concrete, 

determined from tests as 28 N/mm2 and 0.2 respectively (see chapter 6, 

section 6.5.3). Using equation 7.2, flexural cracking stresses were 

determined and are given below: 
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Beam 

CD-D.5/V 
CD-D.5/H 
CD-l.D/V 
CD-l.D/H 
CD-O.O 
CE-O.5/H 
CE-l.O/V 
CE-l.O/H 
CE-O.O 

Tensile Strains 
(ps) 
122 

81 
13 
61 
12 

100 
98 

111 
107 

Flexural Stress 
(N/rnm2) 

3.4 
2.4 
2.0 
1.9 
2.0 
2.8 
2.1 
3.3 
3.0 

In the present tests, every load increment lasted for about 15 minutes 

and hence could be considered as a short term loading, where creep 

strains are small enough to be neglected. Moreover, strain measurement 

revealed that a small concrete element within the load path is subject to 

a uniaxial compression, with tensile strains acting in a perpendicular 

direction. This is a similar stress-state as that of a concrete cylinder 

or cube under a compressive test. Consequently, the stress-strain curve 

of the concrete (fig.6.1) could be used to estimate the compressive 

stresses using the measured strains within the load path. Plots of total 

load against maximum stress are given in fig.1.15. It can be seen that 

the compressive stresses at failure were always below the cube strength 

given in table 6.1. On average the stress at failure was 39.0 N/mm2, 

representing 68% of the average cube strength (51.0 N/mm2). This 

confirms further that one of the assumptions on which the plastic truss 

model proposed by Rogowsky et al [91] [98] is based is not justified and 

crushing of the concrete within the load paths is not the main problem in 

deep beams. 
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7.8 DEFLECTIONS 

7.8.1 OUT-OF-PLANE DEFLECTIONS 

It was revealed in the single span deep beam tests that excessive 

out-of-plane deflection leads to premature failure by lateral buckling 

(see Chapter 5). It was also revealed that lateral buckling depends on 

the slenderness ratio, h/b; members with high h/b ratios are more prone 

to buckling collapse. The present BS 8110 [16] stipulates that the 

slenderness effect should be taken into account for h/b values higher 

than 15. The single span tests (chapters 3, 4, 5) showed that deep beams 

with h/b of 20 may not exhibit larger lateral deflections so as to 

precipitate buckling, provided the loads and reactions are concentrically 

applied. Indeed, this was also the case in the continuous deep beams 

which all had a slenderness ratio of 20. The maximum lateral deflections 

recorded just prior to failure ranged from 0.44 rom (CD-I.O/I) to 1.0 rom 

(CD-O.O) for series CD beams and from 0.39 rom (CD-0.5/V) to 1.57 rom 

(CE-O.O) for CE beams and were comparable to those of series F of the 

single span beams •. 

From the experience gained in the single span tests, lateral 

deflections higher than 4 rom are likely to cause buckling failure. 
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7.8.2 IN-PLANE DEFLECTIONS 

Owing to the high flexural stiffness of deep beams in general, 

vertical deflection is unlikely to be high enough to deter their 

serviceability which is rather controlled by excessive cracking. 

In the present continuous deep beams, the presence of the interior 

support has further reduced vertical deflection. It varied from 1.6 mm 

(CD-1.0/H) to 2.5 mm (CD-1.0/V) and from 1.3 mm (CE-O.S/H) to 2.0 mm 

(CE-0.5/V) in series CD and CE respectively as compared to those in the 

geometrically identical single span deep beams (series F in chapter 3) 

which ranged between 3.0 mm and 4.0 mm at relatively lower loads. 

Fig.7.16 shows the load-deflection curves for the 7 beams of series CD. 

SpeCimens with horizontal web reinforcement had the smallest deflections 

while those with vertical bars had deflections comparable to those 

without web reinforcement. 
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CHAPTER EIGHT 

CONTINUOUS DEEP BEAMS - INTERPRETATION OF TEST RESULTS AND DESIGN 

RECOMMENDATIONS -

8.1 INTRODUCTION 

Although deep beams such as transfer girders are frequently continuous 

Over several supports, very little published data exist on such beams. 

Their design is inadequately covered by the current codes and design 

manuals [1] [33] [85] if not at all [23]. 

The continuous deep beam tests conducted by the author were primarily 

aimed at providing an insight into their real behaviour. They help to 

demonstrate that the above mentioned design documents [1] [33] [85] could 

lead to severe cracking and might be unsafe for this type of structJral 

members. 

Indeed, in afl these documents, the bending moment distribution 

conSidered when designing a continuous deep beam is that used for shallow 

beams and a mere 10% increase is recommended for end reactions. The test 

results presented in chapter 7 showed that the actual bending moment 

distribution is completely different, with moments at spans higher and 

those at supports lower or even becoming sagging, rendering present 

design methods inadequate for continuous deep beams. 
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Another important conclusion which emerged from the tests is that the 

CIRIA Guide [85], considered as the main design document on deep beams in 

the British practice, tends to be too tolerant towards the bearing 

capacity, particularly under pOint-loads. In effect, most of the proper 

bearing failures in the tests occurred at bearing stresses below those 

allowed for, despite the use of proper additional reinforcement. 

8.2 SETTLEMENT EFFECT ON CONTINUOUS DEEP BEAMS 

One of the factors influencing the reactions and bending moment 

distribution and thus the internal stresses in continuous deep beams is 

the difference in settlement between adjacent supports. In a two-span 

beam where the interior support settles more, differential settlement 

creates a sagging moment at the interior support which will relieve its 

reaction and increase that at the exterior one. The hogging effect, 

created by the static condition, and the sagging one, created by relative 

settlement, are opposite and combine to give reactions and bending 

moments such as those in figs.7.S and 7.6 and tables 7.2 and 7.3. 

Differential settlement is a common problem in buildings in general. 

Terraced houses where Severe cracks form as a result in the cladding are 

just one example. In buildings with shallow beams and slabs, the adverse 

effects of differential settlement are usually contrdled by limiting the 

relative settlement between adjacent supports to (0.002 to 0.003) x span. 

To limit these effects to the same level in deep beams, it is argued [85] 

that differential settlement between adjacent supports should be less 

- 193 -



than 0.0003 x span. the CIRIA Guide [85] points out that such condition 

would not only be technically difficult to meet but might be often 

costly. The difference between the two limits is due to the fact that 

the resulting bending moment, being proportional to the flexural 

stiffness, would be more important in deep beams because of their high 

flexural stiffness. 

Differential settlements such as those measured in the present tests 

would have negligible effects if the beams were shallow. The average 

values recorded were 0.29 mm and 0.21 mrn in CD and CE series 

respectively, representing 0.00034 x span and 0.00032 x span. In deep 

beams, however, such order of magnitude of relative settlement would 

still have serious effects. In Rogowsky et al tests [98] differential 

settlement was limited to 0.00012 x span. 

8.3 REACTIONS AND BENDING MOMENT DISTRIBUTION 

In deep beams, it is believed [80] [98] that reactions at supports and 

bending moment distribution are also affected by shear deformation and 

the 'truss frame' action, particularly after diagonal cracking. These 

two phenomena reduce the hogging effect created by the static condition 

and increase the sagging moment at spans. Indeed, in the moderately deep 

beams of Rogowsky et al [96] where differential settlement was 

restricted, the two effects, namely shear deformation and truss action, 

were probably the main ones that caused the reactions and bending moments 

to differ from those of shallow beams. 
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Leonhardt and Walther [80] argued that the major oblique cracks cause 

a relief in the intermediate support reaction and increase that at the 

end one. They added that after the diagonal cracks develop, truss action 

begins resulting in a complete redistribution of internal stresses. 

Rogowsky et al [98] pointed out that shear deformation effect becomes 

even more important in deeper beams. Indeed, in the present tests even 

beams CD-l.O/v and CE-0.5/H, which had the smallest differential 

settlements (fig.7.3) of 0.00012 x span and 0.00015 x span respectively, 

had reactions at supports and bending moments completely di!ferent from 

those of shallow beams (figs.7.5 and 7.6). 

In general, diagonal cracks, characterising shear deformation, were 

very wide particularly in beams without web reinforcement or with 

vertical one where they often exceeded 1.1 rom before failure. The cracks 

patterns of fig.7.1, particularly those of series CD beams, all reveal 
the 

'truss frames'. This was confirmed by strain measurement ontconcrete 

surface in the load paths (fig.7.7) and along the tensile reinforcement 

(fig.7.1l). 

The moderately deep beams of Rogowsky et al, being two-span continuous 

and subject to two pOint-loads, can reasonably be idealized by the truss 

shown in fig.8.l. In this truss, inclined or diagonal members represent 

the concrete in compression and bottom and top horizontal members 

represent the tensile steel with forces acting in the tension chord at 

the bottom higher that those at the top. In the author's beams, the 

absence of cracks at the top suggests that the tension force at the top 
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chord was very small and could be neglected resulting in the truss shown 

in fig.8.2. Such difference was certainly due to the fact that the beams 

in this work were deeper and settlement was not restricted. 

To sum up, the reactions and bending moment distribution of the 

two-span beams tested were closer to those of two adjacent single span 

beams than to those of a two-span continuous shallow beam (fig.7.6, 

tables 7.2 and 7.3). Thus, designing continuous deep beams according to 

a shallow beam moment distribution is not safe. The span moments would 

be greatly underestimated and those at supports greatly overestimated. 

The hogging moments would be compensated by the three effects discussed 

previously, namely differential settlement, shear deformation and truss 

action. The net result might be such that horizontal tensile stresses 

would exist at interior supports (fig.7.6, CD beams). Such situation is 

more likely to occur in beams at the deeper range. 

In the next section, a contribution towards an effective flexural 

design of continuous deep beams is proposed. 
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8.' FLEXURAL DESIGN AND DETAILING OF MAIN STEEL 

According to the current codes and design manuals [33] [85], the 

longitudinal steel, both at spans and above supports, should be 

calculated on the basis of the highest moment at span and above support, 

calculated from shallow beam bending moment distribution. The formula 

used is as follows: 
M 

AS = 
z x fy/Pm 8.1 

where z is the lover arm, determined from elastic analysis as 

z = O.2L + O.3h. 

fy is the yield stress of the steel and Pm is the material 

safety factor, taken as 1.15 for steel 

Although equation 8.1 may have led to safe design so far, it is certainly 

based on a wrong assumption, that is the moments in continuous deep beams 

are the same as those in corresponding shallow beams. The fact that such 

formula has led to safe design is because the lever arm expression used 

is that derived from elastic analysis [33] [85]; that is before the 

concrete cracks. tn reality, after cracking, the lever arm increases, 
~~ 

particularly a~ support settles. 

Following the close similarity between the bending moment of two 

adjacents single span beams and that of a two-span continuous deep beam 

(fig.7.6), it is prudent to calculate the longitudinal steel at spans of 

a continuous deep beam on the basis of the maximum moments of 

corresponding Single span adjacent beams with similar geometric and 
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loading properties but without the continuity effect. The steel so 

calculated should be carried through the interior support to take any 

tenSile stresses resulting from the possibility of a sagging moment which 

might exist there. This detailing is also required by the truss action 

which aggravates the tensile stressses near the supports. 

In the beams tested, flexural cracks, though very narrow, were widest 

above the longitudinal reinforcement and extended 0.2h to 0.3h up. It is 

thus wise to distribute the area of steel so calculated over a band width 

of at least 0.2h from the soffit. Such distribution of tensile 

reinforcement will also prevent any congestion of steel at bearing areas 

which might contribute towards premature crushing of concrete there. 

For the longitudinal reinforcement above an internal support, the 

present tests showed that for deeper beams, this reinforcement could be 

safely omitted. For moderately deep beams, however, Rogowsky et al [97] 

suggested that the interior support moment calculated according to a 

shallow beam bending moment distribution should be reduced by 40%. This 

recommendation is based on ideal support conditions where relative 

settlement was minimised. In practical cases, the reduction would be 

greater, even for beams of such depth. From this, the author suggests 

that for the purpose of designing the tensile reinforcement above an 

internal support in a continuous deep beam, a corresponding shallow beam 

bending moment at support, reduced by 40%, should be used in equation 

8.1. This will, no doubt, result in a conservative area of steel. 

However, an efficient detailing of this reinforcement so as to contribute 

effectively to the shear strength by restraining the diagonal cracks will 
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offset the conservatism aspect of the design. the reinforcement so 

calculated should be distributed as follows: 

For beams in the deeper range, that is beams with L/h<l, the steel 

should be distributed over a depth extending from O.2h to the top. 

In the tested beams, tensile strains and crack widths over the 

interior support were highest at about 0.3h from the soffit 

(fig.7.l2). In beams without web reinforcement or with vertical 

bars, vertical cracks induced by settlement crossed the whole depth 

above the support (fig.7.l). Such detailing of the longitudinal 

steel will also restrain diagonal cracking which forms within the 

interior shear-spans and have a direct bearing on the ultimate 

strength. This view is shared by Leonhardt and Walther [SO] who 

suggest the arrangement of main steel above the interior support 

within a depth extending from L/4 to 3L/4 in the form of small 

diameter bars. 

For moderately deep beams such as those tested in Canada [96] 

(2<L/h<5), flexural cracks at top were contained within a depth of 

about 0.3h and. occasionally extended further down, particularly in 

the deeper ones (L/h = 2). It is tempting to suggest that 2/3 of the 

steel should be arranged within a depth of 0.2h from the top. The 

remainder should be distributed over the rest of the section down to 

O.2h from the bottom. 

For beams in between, that is with 1<L/h<2, no tests are available. 

However, the CIRIA Guide [85] recommends that a portion of steel 

equal 0.5(Lmax/h - 1) should be placed within O.2h from the top and 

the remainder distributed over a depth extending from 0.2h at the top 
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to O.2h from the bottom. 

It is wise, however, to suggest that more experimental work should 

be carried out on continuous deep beams, particularly in the range of 

1<L/h<2, so that more understanding of their behaviour will become 

available and lead to better design. 

Rogowsky et al [97] [98] have put forward a design method based on 

a plastic truss model. However, one of the basic assumptions of this 

model was not fulfilled in the present tests. Such assumption 

stipulates that failure of deep beams is mainly concrete crushing at 

a load path or flexural failure characterised by yielding of tensile 

steel. None of these failures occurred in the author's tests and 

both compressive strains within the load paths and tensile strains 

along the longitudinal steel were well below their ultimate values. 

Instead, proper concrete crushing at the bearing and failure 

precipitated by diagonal cracking occurred repeatedly. Both of these 

types of failure are not recognized by their model. According to 

many researchers [12] [64] [67] [91] [93], bearing failure and 

failure related to diagonal cracking are commonly associated with 

deep beams in general. The design method proposed by Rogowsky et al 

can only be applied to particular cases of moderately deep beams 

where flexure might be the problem. The plastic truss model is 

certainly not applicable and will not be safe for the present beams. 
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8.5 SHEAR CONSIDERATIONS 

In reinforced concrete, shear failures are not primarily caused by 

excessive shear stresses. They could be rather defined as those 

associated with the transfer of loads to the supports. Since the method 

of transfer in deep beams is very different to that in normal beams - it 

is an arching action rather than a bending one -, it is to be expected 

that the terms 'shear failure' and 'shear reinforcement' have somewhat 

different meanings in the two cases. 

In deep beams, failures which are caused or influenced by diagonal 

cracks are commonly referred to as shear failures. Since a diagonal 

crack is the result of concrete weakness in tension, it appears that 

tensile stresses rather than shear ~trerses are the causes of such failure in 

deep beams. Leonhardt and Walther's argument [eo] that this failure is 

initiated by excessive compressive stresses is not convincing. Due to 

the absence of a simple mathematical model to express the tensile 

stresses within the load paths, researchers and designers have been using 

shear strength as the main parameter to study and prevent this type of 

brittle failure. 

In the present experimental programme, the continuous beams tested did 

not fail in proper shear (diagonal failure) compared to the identical 

Single span beams. This is shown in figs.7.1 and 3.2 and in tables 8.1 

and 8.2 where the shear strengths of the continuous span beams and those 

of the Single span ones are respectively given. It can be seen from 
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these two tables that, at failure, the maximum design shear stress set by 

the CIRIA Guide [85] was exceeded in all the single span beams while, in 

the continuous ones, this was not always the case; some beams failed 

before this parameter was reached. Since failure in the two types of 

beams was different, a direct comparison of their strengths is 

inconclusive. Nevertheless, the addition of one support had increased 

the total ultimate load considerably; the ultimate loads of 4 continuous 

beams and their identical single span ones are given below: 

Single Span Ultimate Continuous Ultimate 
Beams Load (kN) Beams Load (kN) 

F-0.21-0.5/V 500 CD-O.S/V 800 
F-0.21-0.5/H 540 CD-0.5/H 850 
F-O.O-O.S/V 396 CE-O.S/V 650 
F-O.O-O.S/H 650 CE-0.5/H 800 

The increased ultimate loads together with the type of failures which 

occurred in the continuous beams suggest that bearing stresses are likely 

to be more critical than their shear capacity as compared to single span 

beams; this will be discussed in the next section. 

The CIRIA sh~ar 'formula (equation 3.6), which gives the maximum shear 

force within a shear span that a beam should be designed to carry, is 

also intended for use in continuous deep beams. However, following the 

arguments and test observations presented in chapters 3 and 4, it is not 

surprising to find equation 3.6 inadequate for the design of continuous 

deep beams of slender type; the safety factors obtained are indeed very 

small (table 8.1). Equation 3.6 was modified by the author to be used 

for slender deep beams and resulted in equation 3.8, reprinted below: 
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a 
V/bh = R Al (1 - 0.35---) ~u 

h 

100 A Y sin2a 
+ A2 l: -------------

bh2 
8.2 

where the meanings of symbols are as in equation 3.6. Improved safety 

factors were obtained (table 8.1) when this equation was used. It is to 

be noted that since proper shear failure (diagonal failure) did not occur 

in the continuous beams, the safety factors were smaller than those 

obtained for the single sF~n beams (table 8.2 and 3.6) whict all split 

diagonally. 

Table 8.1 shows that the CIRIA equation modified according to the 

author's recommendations given in chapter 3 can be used in continuous 

deep beams of slender type for shear design purpose. 

Regarding web reinforcement, the tests showed that the ideal way of 

reinforcing a concrete web so as to effectively restrain the growth of 

the diagonal cracks is to place the bars perpendicular to their expected 

direction. Indeed inclined bars were the most effective in controlling 

the cracks, both in length and in width, and in enhancing ultimate 

strengths.· The· next most effective were horizontal bars, particularly 
a. 

whenlsufficient amount was used. Vertical bars were found inefficient 

and could have adverse effects on cracking and strength when used in 

higher quantity. When no web reinforcement was used, the concrete was 

very brittle and made the tests look dangerous to perform. 
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In conclusion the author recommends that for shear consideration of 

concrete continuous deep beams, the CIRIA equation (equation 3.6) can be 

used for stocky beams. For continuous deep beams of slender type, such 

equation may not be safe for shear design and equation 8.2 should be used 

instead. 

Whenever possible, inclined bars should be used for a better control 

of cracks and resistance of tensile stresses within the load paths. This 

will in turn result in shear strength enhancement. From the view point 

of economy, it should be noted that under normal site conditions, this 

kind of reinforcement could be more expensive to bend and fix. However, 

according to the present tests, a lesser amount of inclined steel is 

required to produce similar or better results than a higher amount of 

horizontal bars, found to be the next most effective (CD-0.5/I and 

CD-l.O/H). Hence the cost involved in the handling and fixing of 

inclined bars might be offset by the quantity of steel required. 

Horizontal bars, particularly when used in higher quantity (around 1.0\) 

will also be effective. Vertical bars should only be used in moderately 

deep beams where the shear-span/depth ratio, a/h, is likely to exceed 

1.0. 
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8.6 BEARING CAPACITY 

Failure at the bearing is very common in deep beams [12], particularly 

with unstiffened supports. Often in practice, additional reinforcement 

is added to strengthen the bearing areas. However, the continuous beams 

tested in this work showed that such strength enhancement is limited. 

In the British practice, the CIRIA Guide [85] limits the bearing 

stress to O.4f cu • The Guide stipulates that at end supports and at 

internal supports for continuous beams, such bearing stress limit may be 

increased to 0.6fcu and 0.8f cu respectively, provided the stressed 

zone is adequately confined. Under concentrated loads, the bearing 

stress is allowed to rise up to O.8fcu provided adequate confining 

reinforcement is present. 

In this experimental programme, the concrete was adequately compacted 

and additional bars were used at the loading and support points 

(fig.6.2). Yet, most of the proper concrete crushing failures occurred 

at the bearings at ,stresses below the 0.8f cu limit allowed by the CIRIA 

Guide for similar conditions. The specimens that failed by proper 

concrete crushing at the bearing are given in table 8.3 together with the 

bearing stresses. In these beams, the crushing was very little or not at 

all affected by diagonal cracks. Where the concrete crushing was 

precipitated by cracks the bearing stresses were even lower as in table 

8.4. 
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In the American practice, clause 10-15-1 of ACI (318-83) (revised 

1986) [1] limits the bearing stress to : 

C1> x 0.85 x f' c 

where C1>is the strength reduction factor, taken as 0.7 for 

concrete bearing and f'c the compressive strength of a 

concrete cylinder, taken as 0.8 fcu in this thesis (see 

chapter 6, equation 6.2). 

That is: 

0.7 x 0.85 x 0.8 fcu = 0.48 fcu 8.3 

Such bearing stress was largely exceeded at failure, even in beams where 

diagonal cracks caused premature concrete cracking (see tables 8.3, 8.4). 

The American code does not allow for bearing capacity improvement which 

could be achieved by proper confinement of concrete and additional 

reinforcement. 

Following this, the author recommends that where concrete is not 

confined and no additional reinforcement is used at the bearing areas, 

the bearing stress ,should not be allowed to exceed the O.4fcu limit set 

by the CIRIA Guide. Where adequate confinement of concrete is present 

and additional bars are used at the bearing regions, the bearing stress 

limit should be increased to 0.6f cu at both, supports and loading 

points. Tables 8.3 and 8.4 show that the 0.6f cu limit is reasonably 

safe. Ideal conditions such as in the present tests are hardly 

achievable in practice where concrete strength is likely to be affected 

by poor concrete compaction and steel congestion. The 0.8f cu limit 
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given in the CIRIA Guide [85] may be too high and unsafe as, indeed, was 

in the author's continuous deep beams. 
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CHAPTER NINE 

GENERAL CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 

9.1 GENERAL CONCLUSIONS 

9.1.1 SINGLE SPAN DEEP BEAMS 

Tests conducted on simply supported slender concrete deep beams 

revealed the following major experimental observations: 

(1) The beams developed distinctive diagonal cracks running from support 

to loading point. These cracks, which formed well below the failure 

load (30% to 60%), were sudden, complete and accompanied by a loud 
t 

cr~ing noise. Their formation was akin to a splitting action of a 

concrete cylinder and could not be prevented by web reinforcement. 

(2) By comparison to stocky deep beams reported in the literature, the 

diagonal cracks of slender deep beams make a smaller angle with the 

horizontal and could be more accurately represented by the line 

joining the miqdle of the support to that of the loading point (full 

line in fig.3.6). In addition, they form relatively earlier. The 

two experimental observations are explained using Mohr circle 

analysis. 

(3) The diagonal cracks form as a result of the concrete within the load 

path reaching its ultimate tensile strength, initiating not at the 

soffit but at about o.4h up. Their width was always a maximum in the 

interval (0.3h - 0.6h) up. 
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(4) Equation 3.3, which was proposed earlier by Kong et al [68] for 

predicting the diagonal cracking load of stocky deep beams, was found 

not suitable for slender deep beams. Such equation was modified by 

the author as explained in section 3.3.4 to take account of the two 

distinct features listed previously, namely 

(i) the clear-shear-span, x, was replaced by the total shear-span, a. 

(ii) a reduction factor R was used, established as 0.75 from test 

data. 

The modified formula (equation 3.4) resulted in a better estimation 

of the diagonal cracking loads (table 3.5) 

(5) The nature of diagonal cracking in slender deep beams has important 

implications in deep beam design and in the application of the 

shear-strength equation in cl.3.4.2 of the CIRIA Deep Beam Guide 

(equation 3.6 in this thesis). Such equation would give reduced 

safety factors and could even be unsafe for slender deep beams. 

Instead, equation 3.8 which is a modified form of equation 3.6 

encompassing all the test observations (see section 3.4) should be 

used for the design of slender deep beams of height/thickness ratios 

of 20 and mpre; 

(6) For the same reasons, Kong et al formula (equation 4.2) was found to 

overestimate the ultimate loads of slender deep beams. Adopting the 

same modifications as in equation 3.8, the ultimate loads of the 

slender deep beams tested were better predicted by equation 4.3. 

Equation 4.11 proposed by the author on the basis of test results and 

observations also gave a satisfactory estimation of the ultimate 

shear capacities (table 4.1) and could be used for deSign purposesas 
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specified at the end of chapter 4, section 4.4.3. 

(7) After diagonal cracking, the specimens behaved more like trusses or 

tied-arches. Concrete compression struts were often defined by 

cracks running from loading points to supports. Concrete strain 

measurements confirmed the existence of these struts even if not 

specifically outlined by cracks. Strain measurements along the 

tensile reinforcement revealed strains at the faces of supports as 

high as those at the maximum moment region rather than the variation 

of strains expected from the bending moment diagram. This indicates 

the existence of a uniformly strained tension member caused by truss 

action. 

(8) The diagonal cracks, which in all the single span beams tested caused 

failure, were widest in beams without web reinforcement or with 

vertical bars. In these beams the serviceability limit state of 

cracking was often reached at formation of the first diagonal crack, 

though their ultimate loads were still more than twice the cracking 

load. This suggests that despite the important strength reserve 

associated with deep beams, the serviceability limit state of 

excessive c~acking is likely to be reached at service loads in beams 

where web reinforcement is non-existent or ineffective. Indeed, the 

present tests indicated that for deep beams the serviceability limit 

state of cracking could be a more important design criterion than the 

ultimate limit state. 

(9) Vertical web bars were found not to be effective in restraining 

diagonal cracks nor were they effective in improving the ultimate 

shear strength of deep beams. When used in higher quantity, this 
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type of reinforcement could have adverse effects on both 

serviceability and ultimate limit states particularly at lower 

shear-span/depth ratios. In contrast, horizontal bars are more 

effective in restraining the cracks. Strength enhancement can also 

be achieved with this type of reinforcement. However, increasing the 

steel quantity beyond a certain limit does not guarantee a strength 

improvement. There seems to be an optimum web steel ratio beyond 

which no gain in strength can be achieved. 

(10) The conclusion on the relative effectiveness of vertical and 

horizontal bars to control potential diagonal cracks is in line with 

both the CIRIA Guide and the American code ACI(3l8-83) (revised 

1986). The author agrees with these two documents that vertical bars 

could be effective in moderately deep beams where often the 

shear-span/depth ratio is higher than 1.0. 

An ideal web reinforcement is one that is placed directly 

perpendicular to a diagonal crack. The tests on continuous deep 

beams and data from other independent investigators confirm that 

inclined bars are the most effective type of reinforcement. They 

protect th~ concrete web effectively and result in a marked shear 

strength enhancement. Such layout of web reinforcement is, however, 

not recognized by the American code. 

(11) Shear strength appears to be strongly dependent on concrete strength. 

Beams of series CC made of moderately high strength concrete (feu 

around 60 N/mm2) had smaller ultimate loads compared to that of a 
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geometrically identical beam made of high strength concrete 

(feu = 97 N/mm2) despite the use of more web steel in the former. 

(12) Slender deep beams present the additional problem of excessive 

lateral deflection which could result in a premature buckling 

collapse. 

Buckling failure becomes more dominant as the slenderness ratio h/b 

increases. In other words, beams with higher h/b ratios are more 

likely to buckle particularly if the loads are slightly eccentric. 

(13) In the present tests when the loads were perfectly concentrically 

applied, failure was by shear even for h/b ratios as high as 50. 

When the loads were applied eccentrically, beams of h/b ratios higher 

than 25 buckled at loads below their ultimate shear capacities. The 

transition from shear failure to buckling is often accompanied by a 

significant reduction in the ultimate load. In addition to h/b 

ratio, the eccentricity/thickness ratio is another important 

parameter in out-of-plane buckling. 

(14) Buckling failures were sudden, catastrophic and without warning. 

They were always difficult to predict; thus, any deSign method should 

yield a hi~h safety factor. 

(15) The CIRIA Guide gives three methods for the buckling deSign of deep 

beams : the supplementary rules, the single panel method and ~he two 

panel method. All the three methods were found to be safe and 
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.r 
generally too conservative, particularly the su1lementary rules and 

the single panel method; these two methods need more refinement. The 

designer is advised to by-pass them and move directly to the two 

panel method. For those beams of h/b ratios of 25 to 40, this method 

gave an average safety factor of 5.0 which, for buckling failure, 

should not be considered too high. In general, the three methods of 

the CIRIA Guide are difficult to follow and apply to a practical 

design problem particularly for enginers with little or no experienc~ 

in the design of deep beams. 

(16) The Portland Cement Association method for predicting buckling 

strength of tilt-up panels is simple to apply to deep beams. Such a 

method was found safe and more realistic than all of the three 

methods in the CIRIA Guide. However, the simplicity and the realism 

of this method are offset by its restrictions on concrete and steel 

strengths, dimensions and boundary conditions. Where applicable, the 

author recommends its use for the buckling check of slender concrete 

deep beams and panels. 

9.1.2 CONTINUOUS DEEP BEAMS 

The important conclusions emerging from the continuous deep beams 

tested are as follows : 

(1) The potential diagonal cracks, having the greatest impact on the 

behaviour of the beams, are similar in all respects to those in the 

Simply supported beams. The selection of the different type of web 
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reinforcement and their ability to restrain the major cracks and 

increase the ultimate shear capacity is also valid for continuous 

deep beams. In addition, the tests showed further that with 

ineffective web reinforcement, diagonal cracks can extend into a 

compression zone and cause premature concrete crushing. 

(2) Proper bearing failure by concrete crushing at a loading point 

occurred with more effective web reinforcement at relatively higher 

loads. Nevertheless, the bearing stresses at failure were below 

those allowed for by the CIRIA Guide. Based on the test results, 

recommendations are given in chapter 8 whereby in no circumstances 

should the bearing stress be allowed to exceed O.6fcu . In current 

practice, with the presence of confining reinforcement, the bearing 

stress is permitted to rise up to O.Sfcu. 

(3) Differential settlement is an important factor influencing the 

reactions and bending moment distribution in continuous deep beams. 

In the beams tested, the reactions and bending moment diagrams were 

completely different from those of shallow beams. Thus, it is 

certainly wrong and may be unsafe to design continuous beams in the 

deeper range according to shallow beam support reactions and bending 

moment distribution. The moments at span would be greatly 

underestimated and those ~t interior supports overestimated. 

Equally, the reactions at end supports would be underestimated while 

those at interior ones would be overestimated. Using reactions and 

bending moment diagram of single span adjacent beams would be safer 

and more accurate. Based on the results and observations from the 

present tests and from others reported in the literature, 
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recommendations for the design and detailing of the main flexural 

steel at spans and above a support are given in chapter 8. 

(4) Shear deformation and truss action are two other factors which 

influence the reactions and bending moments in continuous deep beams. 

Truss shapes were defined in most of the beams by cracks and 

confirmed by strain measurements. 

(5) In general, the addition of one support has increased the ultimate 

load considerably and changed the failure mode from shear proper to 

shear-bearing or proper bearing failures. For shear consideration, 

the CIRIA equation modified as recommended by the author (equation 

3.8) can be used for continuous deep beams of slender type. 

Recommendations are given in chapter 8 for the selection of a more 

effective arrangement of web reinforcement to control cracks and 

protect the concrete web and to increase the shear capacity. 

9.2 SUGGESTIONS FOR FURTHER RESEARCH 

A major aim of this thesis was to investigate the effects of web 

reinforcement in deep beams; different arrangement and quantities have 

been used. However, the range over which the shear-span/depth ratio 

varied was not wide enough. It is suggested that more tests should be 

carried out in this direction with shear-span/depth ratios covering the 

whole range over which deep beam action is believed to occur (aid <2.5). 

The web reinforcement to be considered should be : no web reinforcement, 

minimum and maximum vertical reinforcement, minimum and maximum 

horizontal reinforcement and minimum and maximum inclined web 
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reinforcement. Consideration should be given to using high yield 

deformed bars rather than plain bars since the former are more likely to 

be used in practice. 

In the present work it was revealed that increasing the web steel 

ratio beyond a certain limit does not guarantee an increase in the 

ultimate shear strength. There seem to be an optimum limit beyond which 

no strength increase is achieved; this view is also shared by 

Kong et al [65] [66]. Varying the amount of the different types of web 

reinforcement will help in defining this optimum value of web steel 

ratio. Preference should be given to larger specimens to minimise the 

scale effect. 

The beam-panels tested for investigating the stability problem in this 

experimental programme (series CB beams) had unrestrained vertical edges. 

Consequently, they buckled in a uniaxial curvature similar to that of a 

slender column. In practice, however, the vertical edges are always 

restrained by cross-walls and, hence, buckling might be in a biaxial 

curvature similar to that of a plate under compression; the collapse 

loads will be relatively higher. Experimental tests on deep beams with 

restrained vertical edges are, thus, required to provide more information 

on the stability problem and to present a further assessment on the CIRIA 

buckling recommendations. Panels with restrained vertical edges are not 

covered by the PCA Design Aid [88]. 
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To this date, very little work existson continuous deep beams. In the 

range of span/depth ratios between 1.0 and 2.0, no data is available in 

the literature. More experimental work is required on continuous deep 

beams to provide a further understanding on their behaviour and, 

particularly, to assess the actual reactions and bending moment 

distribution. It would also be interesting to investigate the effects of 

shear deformation and truss action by reducing differential settlement. 

Deep beams are very stiff. Because of this high stiffness, smaller 

values of differential settlement are likely to have great effects on 

bending moments and cracks. Thus, the stiffness in deep beams in 

general, and in continuous ones in particular, needs to be fully 

investigated and defined. 
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APPENDIX A 

PREDICTION OF BUCKLING STRENGTHS 

A.I USE OF CIRIA GUIDE 

First time users of the CIRIA provisions for buckling [85] tend to 

find them difficult to follow. Strictly speaking, these provisions 

are intended for design and do not have a str~ightforward application 

for predicting ultimate buckling strengths. The author jointly with 

others [59] [60] have adapted the CIRIA's procedure to predict the 

ultimate buckling strengths of slender deep beams. This appendix 

gives an illustration on how such procedure can be adapted to 

calculate the buckling strengths of the beam-panels described in 

chapter 5 (series C3 beams); beam C3-40-0.182 of table 5.1 is taken 

as an example. 

A.l.1 Supplementary Rules 

Step 1 : Determine maximum compressive stress 

The maximum applied compressive stress (see comment (a»is at 

supports or under loads. Hence, 

Support Reaction (= P/2) 
Nv = 

Length of Support Bearing (= 0.23 m) 

= 2.17P (kN/m) 

where P is the buckling load in kN. 

Step 2 : Calculate effective height he 

From CIRIA Guide cl.3.2.2, he = l.Sh = 1.5 x 1400 = 2100 mm 
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Step 3 : Calculate additional and total moments 

From BS 8110 cl.3.8.3.1, 

he [ ____ ]2 .. ttL 

2000 b 

where Mt, Mi' Madd are the total, initial and additional 

moments per unit width respectively 

Nv is the load per unit width 

From BS 8110 cl.3.8.3.2, 

b he 
Madd = Nv eadd = Nv [ ____ ]2 

2000 b 

hence 

with further transformations, this equation becomes 

or 

Mt Nv 0. 4e l 0. 6e 2 eadd 
--------- = --------- (------ + + ------) 
fcu bl b2 fcu bl b b b b 

Nv Mt 
--------- = [b/(O. 4e l + 0. 6e2 + eadd)] --------­
fcu bl b fcu bl b2 

where bl is a unit width, fcu the cube strength and b the beam 

thickness. 

Substituting 

el = 0 (eccentricity at bottom, see fig.5.l); 

e2 = O.182b = O.182x35 = 6.37 mm (eccentricity at top, fig.5.l) 
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35 2100 
eadd = ------ [ ______ ]2 = 53 rom 

2000 35 

Nv Mt 
-------- = 0.52 --------
fcu bl b fcu bl b2 

Step 4: Buckling load 

This equation is drawn as a straight line OA which intersects the 

interaction diagram of beam CB-40-0.182 shown in fig.A.l, giving 

-------- = 0.015 
fcu bl b 

Nv = 0.015 x 42.2 x 35 = 22.15 kN/m 

Nv is the load per metre width at which the vertical strip of 

the panel will collapse; it is therefore the maximum vertical 

applied stress as stated on p.25 of CIRIA Guide. 

From step 1, 

Nv = 2.17P, where P is the CIRIA buckling load (kN) 

P = Nv / 2.17 = 10.2 kN 

The experimental buckling load (table 5.1) is 280 kN 

The factor of safety is Rsr = 280 / 10.2 = 27.4 (table 5.1) 

A.l.2 The Single Panel Method 

Step 1 : The equivalent panel 

The notional safe equivalent panel (fig.123 of CIRIA Guide) is in 

this case simply a rectangle of length and height equal to the 

actual values (fig.5.l : length = 1700 rom, height = 1400 rom). 

Step 2 : The equivalent applied stresses 

From p.105 of CIRIA Guide, the equivalent applied vertical 
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stress (see comment (a) below) is : 

Support Reaction (= P/2) 

Length of Support Bearing (= 0.23 m) 

= 2.17P (kN/m) 

The equivalent applied horizontal stress is taken from fig.57 of 

the CIRIA Guide at mid-height (see co~~ent (b) below) : 

0.33 P 
= 0.24 P 

span length (= 1.4 m) 

The shear stress applied at the ends of the equivalent panel may 

be taken as zero (see comment (c) below). That is T: 0 

Step 3 : The critical stresses 

From fig.127 of CIRIA Guide, 

vertical critical stress N' vcr = = 4.83 El' 

From fig.126 of CIRIA Guide, 

horizontal critical stress N'hcr = = 4.83 El' 

where k is a buckling coefficient given in a graphical form 

on p.111 of CIRIA Guide; k = 0.96 in this case. 

Step 4 The stress ratios R I v' R I h, R' s 

Nv (step 2) 2.17 P P 
R' v = --------------- = --------- = 0.45 

N'ver (step 3) 4.83 El' EI I 

Nh (step 2) 0.24 P P 
R'h = --------------- = --------- = 0.05 

N'hcr (step 3 ) 4.33 EI I EI I 

R' s = 0 since T = 0 (step2) 
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step 5 : The stress ratios R'i, R'2, R"2 

In this case, the shorter edges of the equivalent panel are the 

vertical ones; the CIRIA Guide introduces new stress ratios as 

follows : 

R'i = R'h of step 4 (= 0.05 P/EI') 

R'Z = R'v of step 4 (= 0.45 P/EI' ) 

R"Z = R'Z/M'Z (see corrunent (d) below) 

From fig.iZ9 of CIRIA Guide, for R's = 0, M'2·= 1.0 

Therefore 

R"Z = R'Z/l.O = R'Z = 0.45 P/EI' 

Step 6 : The modification factors Ml and MZ 

R"Z/R'i = R'Z/R'i = (0.45 P/EI')/(0.05 P/EI') = 9.0 

referring to fig.130 of CIRIA Guide, with ~ = 1700/1400 = 1.2, 

the modification factors are 

Ml = 0.10 and HZ = 0.91 

The modified critical stresses are then 

Nvcr = HZ x N'vcr (of step 3) 

= 0.91 x 4.83 EI' = 4.40 EI' 

Nhcr = Ml x N'hcr (of step 3) 

= 0.10 x ~.83 EI' = 0.48 EI' 

Step 7 : The effective height he 

where Nvcr = 4.40 EI' from step 6 

= 1.50 m = 1500 mm 

Step 8 The additional and total moments 
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From BS 8110 cl.J.3.J.l 

with similar transformations as in the Supplementary Rules, 

the tctal moment equation becomes : 

Mt Nv 0. 4e l 0. 6e 2 eadd 
--------- = --------- (------ + ------ + -----) 

fcu bl b2 fcu bl b b b 1) 

or 

-------- = [b/(0. 4e l + 0. 6e 2 + eadd)] 

Substituting 

el = 0 (eccentricity at bottom, See fig.5.1) 

e2 = 0.182b (eccentricity at top, see fig.5.1) 

b he [ ______ ]2 35 1500 = _____ [ ____ ]2 = 
32.1 mm eadd = 

2000 b 2000 35 

-------- = 0.97 ----------

Step 9 : Buckling load 

This equation is drawn as a straight line OB which intersects the 

interaction diagram of beam CB-40-0.182 shown in fig.A.I, giving 

-------- = 0.030 

Nv = 0.030 x 42.2 x 35 = 44.3 kN/m 

Nv is the load per metre width at which the notional column 
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strip of the equivalent panel will collapse; Nv is therefore 

the 'equivalent applied compressive stress' as defined on p.106 

of the CIRIA Guide. 

From Step 2, 

Nv = 2.17P, where P is the buckling load in kN 

P = Nv I 2.17 = 20.4 kN 

The experimental buckling load (table 5.1) is 280 kN 

The safety factor is Rsp = 280 I 20.4 = 13.7 as in table 5.1 

Comments 

(a) Appendix C of the CIRIA Guide defines stresses as force per unit 

width (kN/m) 

(b) The use of an upper-bound horizontal stress is to ensure a suitably 

low restraint of the conceptual 'vertical strip' by the conceptual 

'horizontal strip'. In the beam considered here, the stiffness of 

the 'horizontal strip' at mid-height is the most relevant. Hence in 

step 2, the upper-bound horizontal stress at mid-height has been 

taken. In practical deSign. the engineer could either use his 

judgement in choosing where to take the upper-bound stress or he 

could take the absolute maximum value from the relevant stress 

distribution figure in the CIRIA Guide as was done in a deSign 

example in reference (62]. Choosing the absolute maximum value will 

err on the safe side. 

(c) According to p.89 of the CIRIA Guide, the boundary shear stress may 

be taken as : 
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Support r~~ction ~= P/2) 
T= ------------------------- = 0.34 P kN.m 

Panel height ( 1.4 ml 

From fig.125 of the Guide, ----------- = 23.67 EI' 

T 
The applied shear stress ratio R's = = 0.014 P/EI' 

To eliminate the effec: of the shear stress, the modification factor 

M' 2 and the modified stress ratio R" 2 are determined as follows: 

R'2 (see step 5) 
------------------ = (0.45 P/EI')/(O.014 PIE!') = 32.1 

R'S (above) 

From fig.129 of the Guide and with$= 1.2, M'2 = 0.99 

Therefore, N"vcr = M'2 x N'vcr of step 3 

= 0.99x 4.83 EI' = 4.78 EI' 

Nv (step 1) 2.17 P p 

Hence R"2 = ------------- = --------- = 0.45 = R"2 of step 5 
N"vcr (above) 4.78 EI' EI' 

Hence, the influence of shear on the critical stresses is negligible. 

(d) The relation in step 5, namely 

R"2 = R'2/M'2 

is misprinted in the CIRIA Guide as 

R'2 = R'2 = R'2/M's 

A.I.3 Two panel method 

Step 1 : The equivalent panel 

As in the single panel method; length = 1700 mm, height = 1400 mm 

step 2 The equivalent applied stresses 
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PANEL No.1 

For Panel No.1, the effective height is calculated using an 

upper-bound horizontal stress and a lower-bound vertical stress. 

From p.l09 of CIRIA Guide, the lower-bound vertical stress is 

taken at mid-height of the panel. From fig.57 of the C:RIA Guide 

0.55 P 
Nv = ------- = 0.39 P k~/m 

l.~ 

where P is the buckling load in kN and 1.4 is the-span L in m. 

The upper-bound horizontal stress is also taken a mid-height of 

the panel (see comment (b) of Single Panel method i • 

From fig.57 of CIRIA Guide, 

0.33 P 
Nh = ------- = 0.24 P kN 

1.4 

PANEL No.2 

for Panel No.2, the effective height is calculated using an 

upper-bound vertical stress and a lower-bound horizontal stress. 

From p.108 of CIRIA Guide, the upper-bound vertical stress may 

be taken at one quarter of the panel height above the support 

level. From fig.S7 of the Guide 

2.48 P 
Nv = ------- = 1.77 P kN 

1.4 

Page 109 of the CIRIA Guide states that the lower-bound horizontal 

stress may be taken as two-third of thd maximum value. The maximum 

value was taken at mid-height of fig.S7 of the Guide as 0.33 

2/3 x 0.33 P 
Nh = -------------- = 0.16 P 

1.4 
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Step 3 : The critical stresses 

As in step 3 of the Single Panel methcd 

N'vcr = N'hcr = 4.83 El' 

Step 4 : The stress ratios R'v, R'h, R's 

P.r..NEL No.1 

(step 1 0.39 P 
R'v = -------------- = --------- = 0.0807 pIEl' 

N'vcr (step 3) 4.83 El' 

Nh (step 3) 0.24 P 
R'h = -------------- = --------- = 0.05 PIEI' 

N'hcr (step 3 4.83 El' 

R'S = 0 (as in step 4 of the Single Panel method) 

PANEL No.2 

Nv (step 1) 1.77 P 
R' v = --------------- = -------- = 0.366 PIEl' 

N'vcr (step 3) 4.83 El' 

Nh (step 1) 0.16 P 
R'h = --------------- = -------- = 0.0331 pIEl' 

N'hcr (step3) 4.83 El' 

R' s = 0 

Step 5 : The stress ratios R'l, R'2, R»2 

As in step 5 of the Single Panel method, for both panels 

R"2 = R'2 = R'v 

P.r..NEL No .1 

R"2 R' v 
= = (0.0807 P/El') / (0.05 P/El') = 1.6 

R'l R'h 
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P.1I.NEL NO .2 

R"2 
= 

R'v 

R'h 
= (0.366 P/EI') I (0.0331 P/EI') = 11.06 

R'l 

Step 6 : The modification factors Ml and M2 

P.1I.NEL No .1 

R"2 /R 'l=1.6 

With reference to fig .130 of eIRI'; Guide and with <J) = 1. 2, 

Ml = 0.39 and M2 = 0.636 

Therefore the modified critical stresses are 

Nvcr = 0.636 x 4.83 EI' = 3.07 EI' 

Nhcr = 0.39 x 4.83 E!' = 1.88 EI' 

PANEL No.2 

R"2 I R'1 = 11.06 

From fig.130 of the Guide: Ml = 0.089 and M2 = 0.93 

The modified critical stresses are : 

Nvcr = 0.93 x 4.83 EI' = 4.49 EI' 

Nhcr = 0.089 x 4.83 EI'= 0.43 EI' 

Step 7 : The effective height he 

PtI.NEL No .1 

= 1.79 m = 1790 wm 

PANEL No.2 

= 1.48 m = 1480 mm 

where Nvcr = 3.07 EI' 

where Nvcr = 4.49 EI' 

The effective height to be used is the larger of the two values, 
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that is he = 1.79 m = 1790 mm 

step 8 : The total moment 

Mt = Ny (O.4el + O.6e2 + eadd) 

After a similar transformation as in the Supplementary Rules, 

this equation becomes : 

-------- = [b/(0. 4e l + 0.6eZ + eadd)] 

where bl is a unit width, b the thickness and fcu the cube 

strength. 

Substi tuting 

e2 = O.182b = 0.182 x 35 = 6.37 mm 

b he 35 
[----J 2 = 

1790 
[ _____ ]2 = 45.77 mm eadd = 

2000 b 2000 35 

The aboye equation becomes 

-------- = 0.71 --------
? 

fcu bi b-

Step 9 : Buckling load 

This equation is drawn as a straight line OC which intersects the 

interaction diagram of beam CB-40-0.I82 shown in fig.A.I, gi~ing 

-------- = 0.02 

Ny = 0.02 x 42.2 x 35 = 29.54 kN/m 

Ny is the yertical load per unit length of the beam at which 
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buckling failure is considered to occur. Hence, for overall 

length L of 1.7 m, the CIRIA buckling load is 

P = Nv x 1.7 = 50.2 kN 

From table 5.1 the experimental buckling load is 280 kN 

The safety factor Rtp = 280 / 50.2 = 5.57 as in table 5.1 

A.2 USE OF ~~ DESIGN AID 

The Portland Cement Association DeSign Aid [a8] is used in conjunction 

with the P~erican ACI cede ell. 

Step 1 : The load capacity coefficient 

The capacity of a slender beam-panel is given by equation 5.12, 

namely : 

P = cP bl b f' c 

where cP is the load capacity coefficient given in the PCA [88] 

deSign tables. 

bl is a unit width 

b is the panel thickness 

f'c is the cylinder compressive strength of concrete 

Following the arguments in chapter 5, section 5.6.2, table Al of 

the PCA Design Aid is represented here in a graphical form in 

fig.5.7 and was used to read the capacity coefficient, cP, of 

the beep beams of series CB. For beam CB-~0-0.182 with an 

eccentricity/thickness ratio e/b of 0.182, a vertical steel ratio 

of 0.5% and a height/thickness ratio h/b of 40, the load capacity 

coefficient cP is 0.203. 

The cylinder compressive strength of concrete is 

- 239 -



f'c = 0.8 feu 
? 

= 33.76 N/mm-

Step 2 : Effective width 

(see equation 6.2) 

Each concentrated load is assumed distributed over an effective 

width of the panel as in section 14.2.4 of ACI(318-83) cede, 

that is : 

Ca) centre-to-centre distance between loads (= 600 mm, fig.S.l) 

(b) width of bearing plus four times the panel wall 

(C +~xb = 230 + 4x3S) = 370 mm 

For the two point loads, the effective width is (2 x 370) ~~ 

Step 3 : The reduction factor TJ for isolated footings 

From fig.7 of the PCA Design Aid, for hlL = 1400/1700 = 0.82. 

and C/L = 230/1700 = 0.1~, the reduction factor TJ is 0.73. 

Step 4 : Buckling load 

Taking account of the isolated footings, the load capacity becomes: 

Ppca = IPTJ2(230 + 4b) b f'c 

Ppca = 0.203 x 0.73 x 740 x 35 x 33.76 

= 129.6 kN 

The experimental buckling load is 280 kN 

The safety factor Rpca = 280 I 129.6 = 2.16 (as in table 5.1) 
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N .,. 

Table 3.1 Properties of Simply Supported Deep Beams Tested. 

------------------------------------------------------------------- ----------- ------------- -----------------------
ThicknesslSpan/ ITotal Shear-IClear-Shear-1 Cube Splitting Main Steel Web Steel ,. 

Beam II I Idepth ISpan/height ISpan/depth 1 Strength St rengtll ------ Hozontal Vertical 
b 1 L/h 1 a/h 1 "/h 1 fc~ f t Size % Sizel % Sizel % 

(mm) I 1 1 I (N/mlfl ) (N/lTlln2 ) (mm) (mm) 1 (mm) 
----------- ---------1------1------------1------------1----------- ----------- ------ ---1------
CA-50-0.0 20 1 1.4 1 0.40 1 0.17 1 96.4 5.25 12 1. 70 5 1 0.49 5 1 0.49 (A-40-0.0 25 1 1.4 1 0.40 1 0.17 96.0 5.02 12 1. 36 5 1 0.39 5 1 0.39 CA-33-0.0 30 1 1.4 1 0.40 1 0.17 97. 7 5.20 12 1. 13 5 1 0.33 5 1 0.33 (A-29-0.0 35 1 1.4 1 0.40 1 0.17 95.3 4.75 16 1.72 5 1 0.28 5 1 0.28 
CA-25-0.0 40 1 1.4 0.40 1 0.17 92.8 4.78 16 1. 51 5 1 0.24 5 1 0.24 
----------- --------- ------ ------------1------------ ----------- ----------- ------ ---1------ ----1-----(B-70-.182 20 1.0 0.29 1 0.12 41.L l.3l1- 10 o. ill- & 1 o. ~o 6 1 0.5"0 
(8-50-.182 28 1.0 0.29 1 0.12 41.0 2.96 10 0.60 6 1 0.50 6 1 0.50 
(B-40-.182 35 1.0 0.29 1 0.12 42.2 2.92 12 0.69 6 1 0.50 6 1 0.50 
(8-35-.182 40 1.0 0.29 1 0.12 36.9 2.70 10 0.84 6 1 0.50 6 1 0.50 
(B-30-.182 47 1.0 0.29 1 0.12 41.7 2.97 10 0.72 6 1 0.50 6 1 0.50 
CB-25-.182 56 1.0 0.29 1 0.12 40.4 2.98 12 0.87 1 6 1 0.50 6 1 0.50 
C8-20-.182 70 1.0 0.29 1 0.12 44.4 1 3.69 12 0.69 0.50 6 1 6 1 1 0.50 
----------- --------- ------ ------------1------------ -----------1----------- ------1------1----1------ ----1-----
CC-0.79/V 30 1.4 0.40 1 1 0.17 59.3 3.36 12 1 1.13 1 I 1 0.0 8 1 0.79 
((-1. 93/V 30 1.4 0.40 1 0.17 62.2 1 3.56 12 1 1. 13 1 I 1 0.0 8 1 1. 93 
CC-0.82/H 30 1.4 0.40 1 0.17 63.5 1 3.29 12 1 1. 13 1 8 1 0.82 I 1 0.0 
((-1.98/H 30 1.4 0.40 1 0.17 61.1 1 3.53 12 1 1. 13 1 8 1 1.98 I 1 0.0 
CC-l.96/0 30 1.4 0.40 1 0.17 61.0 1 3.43 12 1 1.13 1 8 1 0.99 1 8 1 0.97 
(C-O.O 30 1.4 0.40 1 0.17 62.1 1 4.19 12 1 1.13 1 I 0.0 I 0.0 1 1 1 
----------- --------- ------1------------1------------1-----------1----------- ------1------1----1------1----1-----
F-0.21-.5/V 47 1.79 1 0.45 1 0.21 1 56.2 1 3.60 12 1 0.75 1 I 1 0.0 1 6 1 0.5 
F-0.21-.5/H 47 1.79 1 0.45 1 0.21 1 58.7 1 3.72 12 1 0.75 1 6 1 0.5 1 I 1 0.0 
F-0.0-.5/V 47 1.38 1 0.24 1 0.0 1 54.6 1 3.17 12 1 0.75 1 I 1 0.0 1 6 1 0.5 
F-0.0-.5/H 47 1.38 1 0.24 1 0.0 1 51.2 I 3.39 12 I 0.75 I 6 I 0.5 1 I 1 0.0 

------------------------------------------------------------------------------------------------------------ ----------
• For series CC and F web steel ratio volume of web steel I volume of concrete 

II BEAM NOTATION: The first letter ( refers to the author's initial and then the notation changes according to the 
series main parameter. In series CA, A is the series letter; after the first 'hyphen the h/b ratio is given and 
the e/o ratio is given after the second hyphen. In series CB, B refers to the series letter, followed by h/b 
ratio and then elb ratio. In series CC, after the series letter C comes the web steel percentage and then the type 
of reinforcement. In series F, "/h is given after the series letter and the quantity and type of web steel are 
given after the second hyphen. 



Table 3.2 Failure Modes, Total Ultimate Loads, Flexural Cracking Loads, 
Inclined Cracking Loads, Diagonal Cracking Loads and 

#Beam 

0.3 mm Crack Width Loads - Single Span Deep Beams -

Failure 

modes 

Total 
Ultimo 
Load 

(kN) 

Flexural 
Cracking 
Load 
(kN) 

Inclined 
Cracking 
Load 

(kN) 

Diagonal 
Cracking 
Load 
(kN) 

0.3 
mrn 

Load 
(kN) 

-----------------------------------------------------------------------
CA-50-0.0 
CA-40-0.0 
CA-33-0.0 
CA-29-0.0 
CA-25-0.0 

shear 
shear 
shear 
shear 
shear 

422 
550 
630 
880 
980 

50 (0.12) 
50 (0.07) 
50 (0.08) 
50 (0.06) 
60 (0.06) 

50 (0.12) 
100 (0.18)' 
100 (0.16) 
150 (0.17) 
180 (0.18) 

2;50 (0.59) 
200 (0.36) 
300 (0.48) 
250 (0.28) 
300 (0.31) 

100 
/ 

200 
225 
300 

-----------------------------------------------------------------------
CB-25-0.182 shear 750 100 (0.13) 350 (0.47) 500 (0.67) 
-----------------------------------------------------------------------
CC-0.79/V 
CC-0.93/V 
CC-0.82/H 
CC-1. 98/H 
CC-1. 96/0 
CC-O.O 

shear 450 
shear 350 
shear 480 
shear 500 

buckling 250 
shear 450 

100 (0.22) 
50 (0.14) 

100 (0.21) 
100 (0.20) 

50 (0.20) 
100 (0.22) 

200 (0.44) 
100 (0.29) 
ISO (C.31) 
ISO (0.30) 
100 (0.40) 
150 (0.33) 

250 (0.56) 
300 (0.86) 
300 (0.63) 
250 (0.50) 
250 (1.0) 
250 (0.56) 

165 
165 
250 
400 
/ 

175 
-----------------------------------------------------------------------
F-0.21-0.5/V shear 500 
F-0.21-0.5/H shear 540 
F-O.O -0.5/V shear 396 
F-O.O -0.5/H shear 650 

100 (0.20) 
100 (0.19) 
150 (0.38) 
100 (0.15) 

150 (0.30) 
150 (0.28) 
200 (0.51) 
200 (0.31) 

300 (0.60) 
300 (0.56) 
200 (0.5l) 
300 (0.46) 

170 
250 
200 
250 

-----------------------------------------------------------------------

# Beam notation as in table 3.1. 

- Numbers in brackets are proportions of the total ultimate load. 
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Table 3.3 : Position of Initiation of Diagonal Cracks. 

-------------------------------------------------------------------
1 1 
1 Shear- 1 

Formation of Diagonal Cracks : 
interval of initiation as first observed 

I 
I 

Beam 1 span 1 ------------------------------------------ 1 
1 1 Along the depth 1 Along the shear-span 1 

-----------1--------1--------------------1-------------------------1 
CA-50-0.0 left 1 (0.35 - 0.5)h 1 (3/4x - x) I 

CA-40-0.0 left I (0.25 - 0.45)h 1 (x/2 - x) 1 

CA-33-0.0 right I (0.35 - 0.5)h 1 (3/4x - x) 
CA-29-0.0 left 1 (0.25 - O.45)h 1 (~/4 - x) 
CA-25-0.0 left 1 (0.25 0.45)h 1 (x/4 - x) 
----------- --------1--------- - --------1-----------------------
CB-25-0 .182 left & 1 / I / 

right I 1 

CC-0.79/V 
CC-l.93/V 
CC-0.82/H 
CC-l. 98/H 
CC-l. 96/0 
CC-O.O 

right 
left 
right 
left 
left 
left 

F-. 21-0. 5/V 1 left 
F-.2l-0.5/HI left 
F-0.0-0.5/vl left 
F-0.0-0.5/HI right 
-----------1--------
Common Interval 
for all the beams 

Most likely Position 

(0.35 
(0.35 
(0.30 
(0.30 
(0.35 
(0.25 

- 0.55)h 
- 0.5)h 
- 0.5)h 
- 0.45)h 
- 0.5)h 
- 0.45)h 

1 
I Close to 
1 

I 
1 
1 

(x/2 - x) 
face of support 
(x/2 - x) 
(x/4 - x) 
(x/2 - x) 
(x/4 - 3/4x) 

----------------------------------------------
(0.30 - O.45)h I 
(0.30 - 0.45)h 1 

along vertical bar 

(x/2 - x) 
(x/2 - x) 

(0.30 - 0.5)h 1 Close to face of support 

1 
(0.35 - 0.45)h I (x/2 - face of support) 

--------------------1-------------------------
0.4h 1 3x/4 

----------------------------------------------------------------------

* x = Clear shear span, starting from the outside face of the loading. 

** The diagonal crack considered in this table is not necessarily the 
first diagonal crack but the best observed in terms of location. 

- 243 -



Table 3.4 : Length and Inclination of Diagonal Cracks 

----------------------------------------------------------------- ---------
/ / Shear- / / Measured / CIRIA / Proposed 
/ Beam 1 span 1 Length 1 Angle 8m 1 Angle 81 1 Angle 82 
1 1 1 1 (degrees) 1 (degrees) 1 (degrees) 
1------------1-------- ---------1----------1----------1---------- ---------
/ C.~-50-0.0 1 L 0.8 h 1 66 / 80 1 68 

Angle 
83 

(degrees) 

58 
1 C.I\-40-0.0 1 L 0.9 h 1 74 1 1 
1 CA-33-0.0 1 L 0.6Sh 1 64 1 / 

1 CA-29-0.0 1 L 0.6 h 1 65 1 1 
1 CA-25-0.0 / R 0.9 h / 61 / - / ~ 
/------------ -------- ---------1----------1----------1---------- ---------
1 CC-0.79/V R 0.9Sh 1 65 1 80 / 68 
1 CC-l.93/V L 0.75h 1 68 1 1 
1 CC-0.82/H R 0.8h 1 62 / 1 

1 CC-l.98/H L 0.85h 1 67 1 1 
1 CC-l.96/0 L 0.7 h 1 64 1 1 
1 CC-O. 0 L 0.7 h 1 66 1 1 
1----------- - ------ ---------1----------1----------1---------- ---------1 
IF-0.2l-0.5/V L 0.75h 1 67 1 78 1 66 55.5 1 
/F-0.2l-0.5/H L 0.9 h / 62 / 78 / 66 55.5 1 

IF-0.0-0.5/V L 0.8 h 1 90 1 90 1 76.5 64.5 1 
IF-0.0-0.5/H R 0.8 h 1 74 1 90 1 76.5 64.5 1 

58 

----------------------------------------------------------------------------
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I\J ... 
CJ1 

Table 3.5 Diagonal Cracking Loads of Single Span Deep beams 
- Measured and Predicted -

--------------------------------------------------------------------------------
Modified ACI 

Kong et al Kong et al Code 
Beam Measured Equa. 3.3 Perm Equa. 3.4 Perm Equa. 3.5 Pcrm 

Pm Perl ------ Pcr 2 ------ Pcr3 ------
(kN) (kN) Perl (kN) Pcr 2 (kN) Pcr3 

--------------------------------------------------------------------------------
CA-50-0.0 250 268.8 0.93 184.4 1. 35 92.4 2.71 
CA-40-0.0 200 335.2 0.60 229.8 0.87 105.2 1.90 
CA-33-0.0 300 406.0 0.74 278.5 1.08 118.8 2.53 
CA-29-0.0 250 467.8 0.53 320.8 0.78 161.8 1.55 
CA-25-o.0 300 527.6 0.57 361.9 0.83 173.7 1. 73 
--------------------------------------------------------------------------------
CC-0.79/V 250 316.4 0.79 216.9 1. 15 101.4 2.47 
CC-1. 93/V 300 323.9 0.93 222.1 1. 35 102.8 2.92 
CC-0.82/H 300 327.2 0.92 224.4 1. 33 103.5 2.90 
CC-1. 98/H 250 321. 0 0.78 220.2 1. 13 102.4 2.44 
CC-1. 96/0 250 321. 0 0.78 220.2 1. 13 1 I 
CC-O.O 250 323.8 0.77 222.0 1. 12 102.8 2.43 

F-.21-0.5/v 300 456.6 0.66 311.4 0.96 125.6 2.39 
F-.21-0.5/H 300 466.7 0.64 318.4 0.94 127.6 2.35 
F-0.0-0.5/V 200 485.4 0.40 332.3 0.60 145.2 1. 38 
F-0.0-0.5/H 300 496.8 0.64 322.5 0.93 142.6 2.10 
--------------------------------------------------------------------------------
C8-50-0.182 250 350.0 0.71 246.6 1. 01 1 
CB-50-0.182 350 474.0 0.74 334.1 1. 05 1 
CB-50-0.182 450 592.0 0.76 417 .5 1. 08 1 
CB-50-0.182 500 694.7 o 72 489.6 1. 02 251.8 1.99 
CB-50-0.182 700 910.0 0.77 641.3 1.09 1 
--------------------------------------------------------------------------------
Mean 

Standard 
Deviation 

0.72 

0.13 

1.04 .2.26 

0.19 0.46 
--------------------------------------------------------------------------------
Note For beams failing in buckling, the ACI cracking load could not be 
calculated since equation 3.5 is dependent on the ultimate shear Vu' 



Table 3.6 : Shear Strength Values of Single Span Deep beams 
- Measured and Predicted -

----------------------------------------------------------------- -------------
1 
1 

1 1 1 Modified 

1 Beam 
1 1 CIRIA 1 Vrn 1 CIRIA Vrn ACI 
IMeasuredlEqua. 3.61 --- IEqua. 3.8 --- Code 
1 Vrn I Vl I Vl I V2 V2 V3 
1 (kN) I (kN) I I ( kN ) ( kN ) 

-------------1--------1---------1------1--------- ------ ------
CA-50-0.0 I 211 1 149.16 1 1.41 1 116.5 1.81 93.2 
CA-40-0.0 I 275 I 169.2 I 1.63 I 130.2 2.11 116.2 
CA-33-0.0 1 315 I 190.15 1 1.66 I 144.9 2.17 140.8 
CA-29-0.0 1 440 1 256.1 1 1.72 I 199.3 2.20 159.6 
CA-25-0.0 I 490 I 274.3 I 1.79 I 211.7 2.31 175.2 

-------------1--------1---------1------1--------- ------ -~----
CB-25-0.182 I 375 1 347.8 1 1.08 I 276.4 1.36 1 241.0 

-------------1--------1---------1------ --------- ------ ------
CC-0.79/V I 225 1 155.9 I 1.44 120.43 1.87 100.6 
CC-l.93/V 1 175 1 158.2 1 1.10 124.11 1.41 112.3 
CC-0.82/H 1 240 1 177.3 1 1.35 137.30 1.75 113.5 
CC-1.98/H I 250 I 206.7 I 1.21 163.82 1.53 111.3 
CC-l.96/0 1 125 I 179.8 I 141.8 111.2 
CC-O.O 1 225 1 158.1 1 1.42 180.60 1.87 84.2 

-------------1--------1---------1------ --------- ------ ------
1 F-0.21-0.5/vl 250 I 197.3 1 1.27 146.6 1.71 136.2 
I F-0.2l-0.S/HI 270 1 206.95 1 1.30 154.0 1.75 163.7 
1 F-0.0-0.5/V 1 198 I 208.7 I 0.95 159.32 1.24 131.7 
I F-0.0-0.5/H 1 325 1 210.9 I 1.54 162.6 2.00 152.8 
1-------------1--------1---------1------ --------- ------ -------
I Mean 1 I 1 1.39 1.81 
1-------------1--------1---------1------ --------- ------ -------
1 Standard I 1 I 
1 Deviation 1 1 1 0.22 0.31 

1 * 1 
Vrn I Mut 1 

--- 1 ----I 
V3 Muf I 

1 
------ -----1 

2.26 
2.37 
2.24 
2.76 
2.80 

0.761 
0.991 
1.131 
0.891 
1.001 

------ -----1 
1.56 0.54 

.2.24 0.81 
1.56 0.63 
2.11 0.87 
2.25 0.90 
1.12 0.45 
2.67 0.81 

1.83 0.91 
1.65 0.98 
1.50 0.43 
2.13 0.71 

2.13 

0.42 
-------------------------------------------------------------------------

Ultimate Moment at Failure 
* Mut/Muf = --------------------------

Flexural Capacity Moment 

- 2~6 -
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Table 4.1 

Measured 
Ultimate 

Beall, Load 
Pm 

(kN) 

CA-50-0.0 422 
CA-40-0.0 550 
CA-33-0.0 630 
CA-29-0.0 8BO 
CA-25-0.0 9BO 

Ultimate Loads of Sin9le Span Deep beams 
- Measured and Predicted -

Modified ACI 
Kon9 et al Kon9 et al Code 
Equa, 4.2 Pm Equa. 4.3 Pm Equa. 

P1 P2 P3 
(kN) Pi (kN) P2 (kN) 

477 0.88 371.3 1. 13 219.4 
543.4 1.01 416.B 1. 32 273.4 
614.2 1.03 465.4 1.35 331.2 
796.6 1. 10 635.7 1. 38 375.6 
856.4 1.14 676.8 1. 45 412.2 

Author's 
Method 

4.4 Pm Equa. 4.11 Pm 
P4 

P3 (kN) P4 

1.92 360.0 1. 17 
2.01 432.2 1. 27 
1.90 512.2 l. 23 
2.34 612.0 l. 43 
2.38 677.8 1. 44 

-----------------------------------------------------------------------------------------------------
C8-25-0.182 750 1120.6 0.67 885.4 0.85 566.9 1. 32 877.4 0.85 
-----------------------------------------------------------------------------------------------------
CC-0.79/V 
CC-1. 93/V 
CC-0.82/H 
CC-1.98/H 
CC-1.96/0 
CC-O.O 

F-0.21-0.5/V 
F-O.21-0.5/H 
F-0.O-0.5/V 
F-O.0-0.5/H 

Mean 

stand. devia. 

450 
350 
480 
500 
250 
450 

500 
540 
396 
650 

502 
509.5 
568.4 
658.7 

509.4 

639.2 
669.4 
676.2 
6B1.7 

0.89 
0.69 
0.84 
0.76 

0.88 

0.78 
0.81 
0.59 
0.95 

0.87 

0.16 

385.8 1. 16 
397.5 0.88 
438.2 1.09 
519.6 0.96 

failed by buckling 
386.5 

472.9 
495.2 
513.6 
522.7 

1. 16 

1.06 
1.09 
0.77 
1.24 

1. 12 

0.20 

236.7 
264.2 
267.0 
261.9 

198.2 

320.3 
385.2 
310 
359.6 

1.90 
1. 32 
1.80 
1.91 

2.27 

1.56 
1.40 
1.28 
1.81 

1. 81 

0.35 

387.0 
402.3 
427.6 
457.3 

392.0 

538.7 
570.3 
565.3 
571.4 

1. 16 
0.87 
1. 12 
1. 09 

1. 15 

0.93 
0.95 
0.70 
1. 14 

1. 10 

0.21 
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Table 5.1 Buckling Loads - Measured and Predicted -

---------------------------------------------------------------------------------------------
Supp. Rules Sing. Panel Two Panel PCA 

Beam Measured Equation ----------------------------------------------------------
Load 4.3 Load Rsup Load Rsp Load Rtp Load Rpca 
(kN) (kN) (kN) (kN) (kN) (kN) ------------------------------------------------------------------ ---------------------------

CB-20-0.182 800 1045.7 failed at the bearings 

CB-25-0.182 750 885.4 44.0 16.93 99.0 7.57 250.0 3.0 453.5 1. 65 

CB-30-0.182 620 691.2 22.6 27.47 56.4 11.0 133.2 4.65 284.6 2.18 

CB-35-o.182 560 611.3 13.6 41.2 30.6 18.31 75.2 7.45 168.0 3.33 

CB-4o-o.182 280 516.4 10.2 27.4 20.4 13.7 50.2 5.57 129.6 2.16 

CB-5O-0.182 280 387.0 4.0 70.56 B.6 32.57 22.0 12.75 62.8 4.46 

CB-7o-o.182 90 315.6 1.4 63.24 2.9 31.6 B.8 10.28 I I 

Mean 41. 13 19.12 7. 2B 2.76 
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Table 6.1 Properties of continuous deep beams tested. 

-------------------------------------------------------------------------------------------------------------------------
Total Clear- Main Steel Web Steel • 

Span I Shear- Shear- Cube Splitting Top Bottom Horizontal Vertical Inc lind 
Beall' depth Spanldepth Spanldepth Strength Strength --------------------------------------------------------------

L/h a/h x/h fcu f t Size % Size % Size % Size % Size % 
(N/mm 2 ) (N/mm 2 ) (mm) (mrn) (mm) (mm) (IT,m) 

-------------------------------------------------------------------------------------------------------------------------
CD-0.5/V 0.90 0.45 0.21 50.5 2.96 12 0.75 12 0.75 
CD-0.5/H 0.90 0.45 0.21 50.7 4.32 12 0.75 12 0.75 
CO-0.5/1 0.90 0.45 0.21 56.4 3.06 12 0.75 
CD-l.0/V 0.90 0.45 0.21 66.1 4.22 12 0.75 
CD-1.0/H 0.90 0.45 0.21 52.7 4.49 12 0.75 
CD-1. 011 0.90 0.45 0.21 5l.:.! 3.15 12 0.75 
CD-O.O 0.90 0.45 0.21 63.0 5.35 12 0.75 
CE-0.5/V 0.69 0.24 0.0 57.7 4.17 12 0.75 
CE-0.5/H 0.69 0.24 0.0 53.7 3.80 12 0.75 
CE-1.0/V 0.69 0.24 0.0 62.2 4.02 12 0.75 
CE-l.O/H 0.69 0.24 0.0 57.1 4.46 12 0.75 
CE-O.O 0.69 0.24 0.0 60.2 4.11 12 0.75 

volume of web steel 
• ~eb steel ratio 

volume of concrete 

Table 6.2 Steel Properties 

-----------------------------------------------------------------------------
Type of 

Steel 
Bar Diameter 

(mm) 
Young's M~dulus E 

(kN/mm ) 
Yield Str~ss 

fy (N/mm ) 
Ultimate 2tress 

fu(N/mm j. 

-----------------------------------------------------------------------------
Deformed 
Oars 

8 
10 
12 
16 

268 
183 
250 

I 

500 
516 
480 
460 

646 
666 
599 
607 

-----------------------------------------------------------------------------
Plain 
round 
oars 

2 
5 
6 

I 
400 
241 

346 
465 
410 

696 
526 

-----------------------------------------------------------------------------

I 0.0 6 0.5 I 0.0 
6 0.5 I 0.0 I 0.0 
I 0.0 I 0.0 6 0.5 
I 0.0 6 1.0 I 0.0 
6 1.0 I 0.0 I 0.0 
I 0.0 I 0.0 6 1.0 
I 0.0 I 0.0 / 0.0 
I 0.0 6 0.5 / 0.0 
6 0.5 I 0.0 / 0.0 
I 0.0 6 l.0 / 0.0 
6 l.0 I 0.0 / 0.0 
I 0.0 I 0.0 / 0.0 



Table 7.1 Fai lure Modes, Total Ultimate Loads, Flexural Cracking Loads, Diagonal 
Cracking Loads and the Serviceabi I ity L i Il,i t State of Cracking loads 
- Continuous Deep Beams -

Diagonal Cracking 
Fai lure Total Fle><ural Load (kN) 0.3 mm 0.1 mm 

Beam Mode Ultimate Cracking ---------------------- Crack Width Crack Width 
Load (kN) Load (kN) End In t e,- i 0'- Load (kN) Load (kN) 

SI-.ear-spal1 SI.ear - :;.pan 

CD-0.5/V Shear+Bearing 800 150 (0.19) 300 (0.38) 150 (0.19 ) 150 (0. 19) I 
CD-0.5/H Shear+Bearing 850 100 (0.12 ) 800 (0.94) 100 to.12) 350 (0.41) 50 
CO-0.5/1 Bearing 1000 150 (0. 15) 750 (0.75) I 750 (0.75) 250 
CO-l.O/V SI-.ear+Bear i ng 600 100 (0.17) 350 (0.58) 200 (0.34) 150 (0.25) I 
CO-1.0/H Bearing 850 100 (0.12 ) 400 (0.48) I 800 (0.94) 200 
CO-1.0/1 Bearing 1020 150 (0.15 ) 550 (0.54) I 800 (0.79) 450 
CO-O.O Sltea,-+Bear i ng BOO 150 (0.19) 500 (0.63) 150 (0.19 ) 150 (0.19) I 

N CE-0.5/V S"ear+Bea,~ i ng 650 ::~OO (0.46) 400 (0.62) 500 (0.77) 400 (0.61) I 
tJ1 CE-0.5/h Bearing BOO 200 (0.25) 350 (0.44) I 600 (0.75) 300 
0 CE-l. O/V Shear+Bearing 700 200 (0.29) 400 (0.57) I 360 (0.51) 200 

CE-1.0/H Bearing 924 200 (0.22) 300 (0.32) I 600 (0.71) 300 
CE-O.O Shear+Bearing 8UO 300 (0.38) 400 (0.50) / 350 (0.44) / 

- Nu,"tJers in t)rackets a,-e r>roportiol1s of the total ultimate load. 
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Table 7.2 Reactions at Supports at or close to Ultimate 
- Measured ones Compared to those calculated Accordi'19 to Shallow Beam theory -

Calculated Reactions as in 
Total Measured Reactions Continuous Sha 11 ow beams 

Beam Appl ied -------------------- ---------------------------

CO-O.S/V 
CO-0.5/H 
CO-0.5/1 
CO-1.0/V 
CO-1.0/H 
CO-1. 011 
CO-O.O 

CE-O.5/V 
CE-0.5/h 
CE-1.U/V 
CE-l. O/H 
CE-O.O 

Load 
(kN) 

800 
BOO 
900 
550 
800 
950 
800 

650 
700 
700 
924 
BOO 

2P End 
(kN) 

217.5 
210.0 
243.0 
150.0 
225.0 
26B.5 
237.0 

211. U 
244.5 
222.5 

I 
240.5 

Interior End Interior 
(kN) (kN) (kNJ 

365.0 124.0 ~~2.0 

380.0 124.0 552.0 
414.0 139.5 621.0 
250.0 85.3 375.5 
350.0 124.0 552.0 
413.0 147.3 655.5 

.326.0 124.0 552.0 

221:1.0 162.5 325.0 
211. 0 175.0 350.0 
255.0 175.0 350.0 

I I I 
319.0 200.0 400.0 

Table 7.3 Bending Moments at or close to Ultimate 
- Measured anl! Calculated -

Total MeasurecJ Ca I cu I ated Bend i ng Mo,"",n t as 
Appl ied Bending Moment in continuous Sha I low tJeams 

Beam Load 2P (kN .,") (kN.m) 
(kN) ----------------- ----------------------------

Span Support Span Support 

CO-O.S/V 800 93.5 15.1 53.3 -65.4 
CO-0.5/H BOO 90.3 B.6 53.3 -65.4 
CO-0.5/1 950 104.5 15.5 60.0 -73.5 
CO-1.0/V 550 64.5 10.B 36.7 -44.9 
CO-1.0/H 800 96.B 21.5 53.3 -65.4 
CO-l.0/1 475 115.5 26.7 63.3 -77 .6 
CO-O.O BOO 101. 9 31.8 53.3 -65.4 

CE-0.5/V 650 4B.5 -0.5 37.4 -32.5 
CE-0.5/11 700 56.2 10.9 40.3 -35.0 
CE-1.0/V 700 51.2 -3.7 40.3 -35.0 
CE-1.0iH 924 I / I I 
CE-O.O BOO 55.3 -13.3 46.0 -40.0 

Reactions of Two Adjacent 
Single Span Beams 

-------------------------
End Interior 

(kN) (kN) 

200.0 400.0 
200.0 400.0 
225.0 450.0 
137.5 275.0 
200.0 400.0 
237.5 475.0 
200.0 400.0 

211. 7 226.5 
228.0 243.9 
228.0 243.9 

/ / 
260.6 278.8 

Bending 
MOlflent of a 
Single Span 

Beam 
(kN.m) 

B6.0 
86.0 
97.0 
59.1 
86.0 

102. 1 
86.0 

48.7 
52.4 
52.4 

/ 
60.0 
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Table B.l : Shear Strengths at Ultimate - Continuous Deep Beams -

End SI·,ear span Interior Shear-span 
Beam --------------------------------------- Ma ... Design Measured/Predicted shear 

Vu Vu Vu Vu Stress # ----------------------------
(kN) (N/lI1m 2 ) (kN) (Nlnlln 2 ) (N/mm2) Equation 3.6 Equation 

CD-0.5/V 217.5 4.82 182.5 4.04 4.07 1. 14 1. 54 
CD-0.5/H 221.0 4.90 204.0 4.52 4.07 1. 11 1. 48 
CO-0.5/I 270.0 5.98 230.0 5.10 4.29 1. 30 1. 74 
CO-1.0/V 165.0 3.66 135.0 2.99 4.68 0.79 1. 07 
CO-1.0/H 238.0 5.27 187.0 4.14 4.38 1.08 1. 44 
CD-I. Oil 287.9 6.38 217.2 4.81 4.10 1.37 1.80 
CO-O.O 250.8 5.56 174.3 3.86 4.54 1. 21 1. 64 

CE-0.5/V 211. 0 4.68 114.0 2.53 4.34 0.92 1. 29 
CE-O.5/H 28U.U 6.21 12U.U 2.06 4.20 1. 28 1.65 
CE-1.0/V 222.5 5.00 1:.'7.5 2.83 4.50 1. 08 1. 32 
CE-l.0/H I I I I I I I 
CE-O.O 240.5 5.33 159.5 3.53 4.44 1. 10 1.45 

Note In some bearns the interior reaction could not be recorded at failure and the corresponding 
st·,ear values were e><trdpolated f,'om the ultimate loads accorcling to tile previous increll,ents 

'" These continuous beall'S are identical to the single span beams below. 
# The Ifla><i,"um design stress given in the CIRIA Guide (85) is 1.3 A1 \/fZu 

fable B.2 Shear Strength at Ultimate - Single Span Deep Beall'S -

Ma>< . Design Measured/Predicted SI,Bar 
Bea'" Vu Vu Stres2 -----------------------------

(kN) (r~ 111",,2) (N Inlll1 ) Equation 3.6 Equation 3.8 

F-0.21-0.5/V 250.0 5.54 4.30 1. 27 1. 71 
F-0.21-0.5/H 270.0 5.98 4.38 1. 30 1. 75 
F-O.O-O.:l/V 198.0 4.39 4.2:3 0.95 1.24 
F-O.0-0.5/H 325.0 7.20 4.10 1. 54 2.00 

3.8 



Table 8.3 : Bearing Stresses at Loading Points 
Beams which failed in proper concrete crushing -

Bearing C1R1A Guide ACI code Limit 
Beam Stress Limit: a.8f cu (equation 8.3) O.6f cl1 

N/mm2 N/rrun2 N/rrun2 N/rrun-

CD-0.5/1 46.3 45.1 27.1 33.8 
CD-1.0/H 39.3 47.0 28.2 35.2 
CD-1.0/I 47.2 41.0 24.6 30.7 
CE-0.5/H 37.0 43.0 25.8 32.2 
CE-1.0/H 42.7 45.7 27.4 34,3 

Table 8.4 : Bearing stresses at Loading Points 
- Beams where Concrete Crushing was precipitated by Cracks -

Bearing CIRIA Guide ACI code Limit 
Beam Stress Limit: O. 8fcu (equation 8.3) 0.6fc~ 

N/mm2 N/rrun2 N/mm2 N/mm 

CD-0.5/V 37.0 40.4 24.2 30.3 
CD-0.5/H 39.3 40.1 24.3 30.4 
CD-1.0/V 27.8 52.9 31.7 39.7 
CD-O.O 37.0 50.4 30.2 37.8 
CE-0.5/V 30.1 46.2 27.7 34.6 
CE-l.O/V 32.4 49.8 29.9 37.3 
CE-O.O 37.0 48.2 28.9 36.1 
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( a) 

h 2.5 (Cl/h<. 6 

( b) 

h alh t... 2.5 

Pjg.I.I: Cracks pattern of an ordinary beam 

reinforcement 
( tie of arch) 

arch action in a deep 
beam after inclined cracking 

fig.l.2: The tied-arch of De paiva and Siess l40j 

= ===':==:#-~ 

a) ~·o rees a lonr, inc I i ned crack plane b) Forces jn web reinforcement 
along inclined crack plane 

Fig.I.3: Shear capacity of web reinforcement. Crist [38J 
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y 1 " notional 
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· I~she.ar splitting 

" line _.L __ ' 
I
· , ~ typical bar 
.' ~ crossing the 
I I ~ splltting line 

Pig.I.4: Meaning of symbols in equation 1.15 

;...,.._._._. 

"+-+-.-_._._. --'-'-

/41 
Pig.I.S: The Jower-bound truss modeJ of Kumar (781 

- equiJlbrium condition not satisfied -
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Pig.2.1: Design example - geometry and loading -

1 
J 

~ 

1- J 16rnrn lJ-bars at 150-, 

(
additional barS) 
at supports 

r- 13 No 16mm each face 

~ 

'---16 No. 32mm 

(4 layers of 4 bars) 

~iC.2 .2: Reinforcement detailing - Kong ot al recommendations 
design exallple 
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0.2 ha 
~ ~ 

0.2 ha 

h 

effective soan l 

II 
max. effectIve support width: o.2Lc, I 

(I clear span Lo (2 

Fig.2.3: Dimensions of a deep beam - CIRIA Guide l85J. 

12 mm at 200 each face r--

It 12 m m at 200 each face 
II 

1 12 mm at 200 each face 

I 
! 

I . 
- ~O.2ha! ,-21 No '2Smm 

(7 x 3 bars) 
12 mm at 200 each face_ 

~jg.2.4: Reinrorcement detailing - CJRIA Guide 
design example-
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2Sh - O.OSL 0. 

Q2 Sh- o.05L 

jll 

20mm at 200 each face 

IL 20 m rn at 200 each face , ... 

20mm at 200 each face 

1- ' - 20mm at 200 each face 1 
I J 
! I 
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~. 

./ I " 
0.2h o~ O.i L whichever is I 

....,. less 
Q3h or OJ L whichever is 

,-21 No 25mm 

(7 x 3 bars) 
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O. 
Sh 
5L 

less 

Fig.2.5: Reinforcement detailIng - CEB-FIP design example -

width = 570.6 

width = SSS.S 
'Zone 

(3S00 x 1.25) kN 

a= 275 

C= 2962 kN 

. "', - I 

I \ 
. [\"J 

(3S00 x 1.25) kN 

\ , , 
\ \ , \ ' , \ 

\ '\ ' , \ , , 
\ '\ \ \ , 

\ , 
\' \ 

, \ ' \ , , . , 
\ \ 

\ , 

\ \ 
\ . , ' 

\ 

Fig.2.6: Deep beam truss model according to the Canadian 
code 1231. 
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12mm at 160 each face 

II 12 mm at 160 each roce 
II ... 

• 
./ f , 

J C6No 25mm (4 x 4 bars) 
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Pig.2.7: Reinforcement detailing - Canadla~ code design example -

factor 
0.9 

01 

o.s 
0.3 

0.1 

0 1 

./ 

,~ 

2 3 4 5 6 Lo/d 

Pig.2.8: ~ffectlveness factors 
for vertical and 
horizontal web 
reinforcement 
- ACI code (11 -

12 mm at 290 each face 

16 mm at 300 each face 

..... 
L... 1S No 25mm (3)( 6 bars) I -". 

Flg.2.9: Reinforce.ent detailing - ACI code 
design example -
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a) Dimensions of test beams - series CA. CC -

a 430 
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LX 200 1 P/2 1 P/2 
_~~_~l~.~ ______ ~==~ __ ~ 

I 
I 
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b) l.oadinG' scheme 

I I 
I I 
I I 
I I 
I I 

,~iE 
I 

1 I C +,230 1 

-~l .,f-~ ----20-00~L 1~72~0 -----1f'-f 1 
I 
r 

a 230 
1 +P/2 ~W2 

c) series f beams 

I I 

I I 
I I I 

I I 
I I ~ I I , , , 

J +-t --160---!0 L::...!.:13~20 __ -.f-t 1 
Fig,3.t: Details of test beams 
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, 
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, 
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Fig.3.2: Reinforcement detailing 
- series CA. CC beams -
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(a) back face 
I _ demountable strain transducer 

• LVOT displacement transducer 
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---- 4 inch Oemec gauge 
front face 

~ig.3.3: Arrangement of LVDT's and strain transducers 
- series CA and CC beams -
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Fig.3.4 : Cracks patterns at failure - series CA. CC. F beams 
the load at which each crack was first observed is indicated. 
(existing cracks due to warping arc referred to by E) 
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Fig.3.4: contd. Cracks patterns at failure - series CA. CC. F beams -
the load at ~hich each crack ~as first observed is indicated. 
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Fig.J.S: typical sequence of cracking in a deep beam 

a 
r t x 

I ! 
· I I . 
· I I . 
· I I . 

Fig.J.6: Representation of a diagonal crack: 
- dotted line for stocky deep beams 
- full line for slender deep beams 
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Fig.5.3: Cracks patterns at failure - series CB beams -
the load at which each crack was observed is indicated. 

- 287 -



-~ -
"'C 
Cj 
0 -

700 

600 

500 

400 e/b = 0.182 

300 

r r "\ 200 

(9-70 - Q.1S'2 100 

Fig.S.3: contd. Cracks patterns at failure 
- series CB beams -

0 
20 30 40 50 60 70 h/b 

-~ 

soo 
700 

600 

500 

400 

300 

200 

100 

Fig.S.4: Buckling load 
against h/b rat i o 

CB- 20- 0.182 

CB- 30 - 0.182 

(B- 35 - 0.182 

CB -SO -0.1S2 CB- 40-0.182 

CB -70 -0.182 

0~---~1------2~--~3--~-4~~~5~~-76--~~7~--­
lateral deflection (mm) 

Fig.S.S: Buckling load against lateral deflection 
at mid-height - series CB beams -

- 288 -



1400 CB - 20 - 0.1S2 
L M R 

1300 

-E 
E - 1000 SOO kN ~ 
0 700 kN VI 

E 600 kN 
e 700 400 kN "-

Cl.I 200 kN u c 
c:J -.~ 

"t:J 
400 

100 
L M R 

-1 0 1 2 3 4 5 -2 -1 0 1 2 3 4. 5 -2 -1 0 1 2 3 4 5 

1400 
1300 

-E 
E -~1000 
t 
0 
VI . 

E 
0 

J:: 700 
C1J 
u 
C 
c:J -!:1 

"t:J 

400 

100 

L 

L 

600kN 
450 kN 

lateral deflection (mm) 

( B - 25 - 0.1'0'2 
M R 

M R 
-1 0 1 2 3 4 5 6 7 -1 0 1 2 3 4 5 -1 0 1 2 3 

lateral deflection (mm) 

Flg.5.6: Lateral deflection proflles - serIes C8 beallts -

- 289 -



1400 

1300 

E 
E 

='= 1000 --0 
V) 

E 
0 

700 -l:: 
OJ 
u 
C 
C -.~ 

"'0 
400 

100 

1400 

1300 

-E 
E -_ 1000 

\.&:: -0 
V) 

E 
0 

700 '--OJ 
u 
C 
C -.~ 

"'0 
400 

L 

L 

620 kN 

500 kN 

400 kN 

CB - 30 - 0.1~2 

-1 0 12345 -1 0 123 

M 

lateral deflection (mm) 

CB - 40 - 0.1S2 

280 kN 
250 kN 

200 kN 
150 kN 

R 

M R 
~~01234567 ~01234567B 

lateral deflection (mm) 

Fig.5.6: contd. Lateral deflection proflles - serles CB beams -

- 290 -



1400 -. ______ -r-__ .....::C:.=:B_--=..3=-S -.....::0:.:.:..1S::..:,:.....-__ _ 

1300 

-E 
E 
:1000 
:E o 
II) 

E 
o 
.t: 700 

-0 400 

100 

560 kN 
480 kN 

~ 01 '234S67S ~01'234567 ~01'23456 
lateral deflection (mm) 

1400 -. ______ -r-_--=.C=-B ----=-:50:......---=0:.:..:.18:.::.2-... __ _ 

1300 

-E 

S1000 
:: ..... 
"I-

~ 
E 
o 
~ 700 
OJ 
u 

~ 
-0 400 

100 

-1 0 1 '2 -1 0 1 '2 3 4 5 -1 0 1 '2 3 4 5 6 
(ateral deflection (mm) 

Fig.5.6: contd. Lateral deflection profiles - series CB beams -
- 291 -



1400 --r ______ ~--C-B---70---0-.1S-,-_r__---

E 
E -

1300 

~1000 
o 
V) 

E 
o 

.t= 700 
OJ 
u 
c 
E 
.~ 
"C 

400 

100 

-1 0 1 2 3 4 5 6 7 S -1 0 1 2 3 4 5 -1 0 1 2 3 
lateral deflection (mm) 

Fig.5.6: r.ontd. Lateral deflection profiles- series C8 beams -

- 292 -



9-
..... o.s 
c 
.~ 
.~ 
"­
"­
OJ 

8 0.4 

OJ 

0.2 

0.1 

h/b=20 

h/b=25 

h/b=30 

h/b=35 

h/b=40 

h/b=SO e/h= 0.5 

O~--~----~--~~----~----~------~--
1 2 3 4 5 6 e (inch) 

(0.1S2) (0.363) (0.545) (0.727) (0.909) (1.09) (e/h) 

Fig.S.7: peA design table At interpolated 

-Z 
x 

1i3 700 
'-
::J 
VI 

~ 600 
E x 

SOO 

400 

300 

200 

100 

- load capacity coefficient against e/h -

x <> 

x <> 
<> • 

• 

100 200 

• 

• 
measured = predicted 

~ 

300 400 

X: s'lngle panel method 
<>: two panel method 
.: peA method 

500 predicted {kN} 
flg.5.8: Buckling loads - measured against predLcted -

- 293 -



f-

-,~ 

430 
_L 200 L t S60 
1 1 + I 

I I I I i 
I 

I I 
I I 

I I 

I 
I I I 

I I I I 

I I 

I , I I- r r i 1 
----.- . 

S60 L 
......., I i 

l"-

I I ! I I I I 
I 

I I 0 

I , 
, 

I I I 
I 

I I I 
I 

I 
I 

I ~ I i'" 
I 

--- I 1 1 } 

1 f;l<---_66_0 -16-00-,f'-t _66_o -----+1 ]. 

(b) series CE 

I 1 

47 

(a) series CD 
! 47 ,-
I 
I 

t e,=O 

(C) loading scheme 

Pig.6.1: Details and loading scheme of continuous beams 

, 3T12, 

(0-0.0 A 3T12 I 

Fig.6.2: Reinforcement detailing for cont1nuous beams 

- 294 -

• : 

• • • 



~ 
U) 

U1 

• 

3T12 

! 

(O-Q.SIV 

I 

(0-1.01 V 

I (O-O.5/H 

" 

3T12 

I 

~ 

I I 

R-6 at 230 

:11 

fl, 

• · • 

6 at115 

::0 
0-

P 
-to 

N 
~ 
C) 

C) 
...-­
~ 

13 
...0 
0= 

C) 

-.:t 
C"" -c:J 
-..0 
0= 

C) 

C"" 
~ -c:J 

-..0 
0= 

· • .•. 

• • • 

tl':' 

11., 
· • • .. 

tA 

• · • 

(O-tO/H 

1· I 

(0-0.5/1 

(0-1.0/1 
Fig.6.2: contd. ~einforce.ent detailing for continuous beams 

I 

& 



N 
1.0 
0'1 

I 

• 

r (t-QO 

• 

I 

rr- ",. ,\ , 0.51 

CE -tO/V . 

: ~ 3112 at 30 

: It 3T12 at 30 
• 

-I 

:11 

I 

R6 at 250 

:11 
a 

9 

R6 at 125 

CE-O.5/H ~ -- y 

tP' 
C> 

I I 
....:t 
('J -cJ 

-0 
a:: 

I: 

• 
I : . .. 

I .. 
I I 

C> ....... 
.-- .1--1 •• 

d 
...0 
a:: 

+--1' :' 
• CE-1.0/H • 

Fig.6.2: contd. Reinforcement detailing for continuous beams 

- except in beams without web reinforcement. 
additional bars at supports and loading points 
were omitted for clarity 

- tension bars at top and bottom are 
the same for all the bea.s 



100 

80 
en 

.S 
til 
til 
d 
a. 
~ 60 o 

40 

20 

o 

-7 
~ 
~ 

cu6 
'-
.2 
.~ 5 
o 
E 
't"'4 
"0 , 
~3 > 
o 

1 

f/ 

", 

'" '" r-'" 

75 150 

/ 
/ 

II 
/ 

, 
/ 

I 
/ 

/ 
/ I 

/ 

/ / 

/ 

/ 
/ 

I 
/ 

/ 
J 

/ 
/ 

I 

/ 
V 

/ 
/ 

I 
f 

/ 
I 

/ / 

/ 
V 

II 

I 
/ 

/1 
I 

Fig.6.3: Grading curve 
of aggregates 

--- average of sie ving tests 
M grading - limit of zone-

I 

300 600 1.18 2.36 5 
Micron ... mm 

Fig.6.4a: Speedy moisture tester 

Fig.6.4b: ~eliabiljty of 
Speedy moisture tester 
- moisture in X of 
wet weight of aggregates 

o~---~------~---~---~~---~---~~----
1 2 3 4 5 6 'speedy'moisture (%) 

- 297 -



--..... 
5 

4 

3 

2 

1 

o 1 3 7 14 21 2S 

0: based on (150 x 300)mm cylinders 

x: based on (100 x100 x100) mm cubes 

56 age (days) 
Fig.6.S: Development of tensile strength of concreLe, ft' with age 

(high-strength concrete) 

:E 
C'I 
C 

~ 60 
\I) 

c­
O) 

"0 
C --~40 

20 

O~~-2~0~--~~~~-6*0----~S~0~~10~0----
cube strength feu (N/mm2) 

Fig.6.6: Relation between cube and cyJlnder compressive strengths of concrete 
(high-strength concrete) 

- 298 -



+ 

... 

in 
+. 

----

~ 

\ 4 

I 

rr 
i 
I 

( 
• 
~ 
I 

• -~ 
I · ~ 

~ 
~ , 

-.; 
• \ 

~ 
" -r 
[ 

r\j­

E 
-€ 
~SO 
~ r- I I 
.!:: I.: hlgh-strl"ngth concrl"tl" 
OIl 

70 0: moderately high-strength concrete _~+-__ +-.....-----j 

.: low-strength concrete 

60 

SOr-----~--------~--------+_~~~----_+----~~--------~~~ 

40r------+--------~----~~----~~----_+--------4_--------~~~ 

30r--~--_¥~~~--4_--~----~--~-L-~ 

20~----_+7-~~~~------_ff----+_--_4----~~~ 
I I 

10 r---J(~~~----~----~----~~---~----_+----~-'~I--~ 

I , , 
0~--~~~--~10~OO~~1~500~--~20~OO--~2~50~O--~3~OO~O~----3~50~O---4~OOO--­

micro-strain 
Fig.6.7: Stress-strain curves for concrete 

1800 

600 \ 600 
1 1 

I 
ja, ~r; J 

:~~~ 
tie bolts 14 14 

"r 
, , • , , 

I ~ 
, • I , 

-- .. - ~ ~r=-=-=-=I-i 
• • • • , ',' . , 

L..;. 

~ ~ 
n dynapac external 

vibrator 

~ 
-I· 
~ 
~ 
~ , 
~ 

" I -+ 

m f-steel Pst _ 

~ 

+ 
~-

• 
~ 

f, 
~ 
~ .. ... 
~ 

~ 
~ 

• 
-, 1-
f 
\ 

,... ----
" :( 
'p' 

O[ 

l"-

§ 
.-

~ 
A-A 

ywood 

~~T!>er WllUling 

14~lf 
C-c 

Fig.6.8: Details of the small formwork 

- 299 -

_.-.1-



Fig.6 . 9: A beam being demolded f rom the bi g formwork 

Fig.G.IO: A beam being cured with the control specimens 
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fig.8.1: Flow of forces in moderately deep continuous beams 
of Rogowsky et 81 [96] [97) (2 < llh < 5) 

Fig.S.2: Flow of forces in the author's beams (L/h < 1) 
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fig.A.l: Interaction diagram for beam CB-40-0.182 
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Plate 3.1: Front view of a beam in the testing rig 
- loading arrangement -
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view of a beam in the testing 
- instrumentation on the back -
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Plate 3.3: Typical shear failure of a deep beam 

- splitting along a diagonal crack and spalling of concrete -
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Plate 5.1: TypIcal ductjle buckling faIlure 
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a) front 
view 

b) side view 



a) seroes CD beam 

b) series CE beam 

PJa~e 601: Con tinuous deep beams in the r ic ready f or tostin~ 
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Plate 6.2: The data logging system and the load control uniL 

I 
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Plate 7.1: Typical cracks development with load 
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flexural 
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inclined 
cracks 

diagonal 
cracks 



a) Typical shear-bearing failure (bearing failure precipitated 
by diagonal cracking) 

b) Typical proper bearing failure 

Plate 7.2: Types of failure of the continuous deep beams tested 
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