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Abstract 

Industrial manufacturing processes for pharmaceutical products require a high level of 

understanding and control to demonstrate that the final product will be of the required 

quality to be taken by the patient. A large amount of data is typically collected 

throughout manufacture from sensors located around reaction vessels. This data has 

the potential to provide a significant amount of information about the variation inherent 

within the process and how it impacts on product quality. However to make use of the 

data, appropriate statistical methods are required to extract the information that is 

contained. Industrial process data presents a number of challenges, including large 

quantities, variable sampling rates, process noise and non-linear relationships.  

The aim of this thesis is to investigate, develop and apply statistical methodologies to 

data collected from the manufacture of active pharmaceutical ingredients (API), to 

increase the level of process and product understanding and to identify potential areas 

for improvement.  

Individual case studies are presented of investigations into API manufacture. The first 

considers prediction methods to estimate the drying times of a batch process using 

data collected early in the process. Good predictions were achieved by selecting a 

small number of variables as inputs, rather than data collected throughout the process. 

A further study considers the particle size distribution (PSD) of a product. Multivariate 

analysis techniques proved efficient at summarising the PSD data, to provide an 

understanding of the sources of variation and highlight the difference between two 

processing plants. 

Process capability indices (PCIs) are an informative tool to estimate the risk of a 

process failing a specification limit. PCIs are assessed and developed to be applied to 

data that does not follow a standard normal distribution. Calculating the capability from 

the percentiles of the data or the proportion of data outside of the specification limits 

has the potential to generate information about the capability of the process. Finally, 

the application of Bayesian statistical methods in pharmaceutical process development 

are investigated, including experimental design, process validation and process 

capability. A novel Bayesian method is developed to sequentially calculate the process 

capability when data is collected in blocks over time, thereby reducing the level of noise 

caused by small sample sizes. 
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1 Introduction 

The global population has a need for affordable and quality medicines to support 

improvements to public health and to help fight disease. As a result, pharmaceutical 

companies need to develop efficient and robust large scale manufacturing processes 

that can be relied upon to produce the medicines that people need, at the lowest 

possible cost. Throughout the lifecycle of a pharmaceutical product, improvements will 

be continually made to the manufacturing process, as more knowledge is gained about 

the processes being run. To meet the requirements of the patient, a manufacturing 

process is required that consistently and cost effectively produces a high quality 

product. 

The manufacture of a pharmaceutical product is a complex process, involving the 

manufacture of the active pharmaceutical ingredient (API) and then the formulation of 

the API into a product that can be taken by a patient. The focus of this thesis is the 

manufacturing processes of API products, which comprise of a number of unit 

operations, including dissolution, distillation and crystallisation. The manufacture of API 

is generally a batch process. A number of raw materials will be added at different 

stages of the process and the resulting product is typically a solid powder that is the 

active ingredient within a medicine.  

During the manufacture of an API, key process variables are controlled to specific 

levels, including quantities of raw materials, temperature and pressure settings. 

However not all the inputs are controllable, for example the characteristics of raw 

materials or the ambient conditions of the plant can vary between batches. As a result, 

although the process is run with the same set up, variation in the inputs will result in 

variability in the final product. Process outputs describe the quality of the product and 

include the purity, crystallisation structure and particle size. Business objectives such 

as reaction yield, cycle time and cost are also important outputs.  

Due to the complexity of API processes, it is difficult to represent an entire process 

through physical models and hence empirical methods have become important for 

process and product characterisation. A number of measurements can be collected 

throughout a process providing a large amount of data, for example with temperature 

and pressure probes inside of reaction vessels. This data has the potential to provide 

important information about the source of variability in the process.  

By understanding the variation in batches that have previously been manufactured, 

inferences can be made about the behaviour of futures batches. More specifically the 

data from previous batches can be used to understand how variation in the inputs can 
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affect the outputs, for example to show the impact of the reaction temperature on the 

process yield. Typically there are a number of variables that will impact the process, 

and hence to understand and quantify these relationships, multivariate statistical 

techniques can be applied. These techniques form the basis of the research 

undertaken in thesis.  

The knowledge that is gained from the data analysis can be used to drive process and 

product improvements. For example, by identifying which inputs have the strongest 

relationship with the outputs, the key input variables can be controlled to minimise their 

impact on product quality. In addition, statistical models of the process will allow for 

optimal settings for the controllable inputs to be determined that will result in the 

desired outputs. From these analyses, the most important inputs can then be 

monitored so that the onset of a process change can be detected early and problems 

mitigated before they have an impact on product quality. The outcome of the analysis 

should be a process that is robust to variation in uncontrollable inputs and consistently 

and efficiently produces a product to the desired level of quality. In this thesis, a 

number of statistical methods for handling industrial process data are researched and 

then applied to specific investigations on an industrial pharmaceutical manufacturing 

process.  

1.1 Industrial Partner 

This research project was undertaken in collaboration with AstraZeneca, the industrial 

partner. AstraZeneca are a global pharmaceutical company with research interests in 

both small molecule and biopharmaceutical products. Research for new medicines is 

targeted at disease areas including cancer, cardiovascular, respiratory and 

inflammation. AstraZeneca are involved in the whole lifecycle of a product, starting with 

the identification of a potential medicine for an unmet medical need, through to safety 

and efficacy studies, clinical trials, regulatory submissions and manufacture. While the 

new medicine is being developed, production processes are scaled up from the 

laboratory through to large scale manufacturing. Manufacturing stages include the 

production of the active pharmaceutical ingredient, its formulation into the product 

taken by the patient, and the packaging of the product to be distributed to vendors. 

This thesis focuses on the manufacture of AstraZeneca’s API products. Research 

topics focus on the investigation of statistical methods that can be applied to 

manufacturing processes that are run undertaken by AstraZeneca. The specific 

processes under investigation have been established for a number of years and hence 

the priorities for process improvement are to increase robustness, reduce 

manufacturing costs and maintain a reliable supply chain to the customer. These 
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improvements will be achieved by working to reduce the potential for batch losses, 

reducing cycle times, cutting waste and improving process efficiency. Other priority 

areas for consideration are process safety and compliance with the principles of good 

manufacturing practice.  

A further consideration for AstraZeneca when planning process improvements is that of 

regulation. Since the final products are pharmaceuticals, the processes are registered 

with a number of regulatory authorities, including the United States Food and Drug 

Administration (FDA). The registration contains details of the manufacturing process, 

including ranges for various process parameters, such as reaction temperatures and 

timings of reactions. The processes must be run within the registered ranges for the 

final product to the approved for release to the customer. Therefore any changes to a 

process must be within the registered range of the process or else the process is 

required to be re-registered with the regulators. The purpose of regulation is thereby to 

ensure that the manufacturing processes have been well controlled so that product 

quality can be assured prior to the quality control (QC) testing being undertaken. 

However batch failures may still occur if there is poor understanding of the relationship 

between the critical process parameters and critical quality attributes. The ability of a 

process to consistently be run within the specification limits can be quantified through 

the use of process capability indices (Chapter 6).  

A large amount of data is collected on the production plants, from measurement probes 

such as temperature, pressure and flow rate meters located in and around the reaction 

vessels. AstraZeneca wish to make use of the information contained in the data to 

increase process understanding and consequently to make improvements that align 

with the company priorities. The data collected is also used to support problem solving 

investigations, for example to indentify when and why a change has occurred within a 

process.  

1.2 Data challenges  

The data that is collected by AstraZeneca presents a number of challenges that need 

to be addressed to allow the data to be analysed effectively.  

Quantity of data 

Measurements from sensors are collected every ten seconds, with some process 

stages taking hours or days to complete, as a result many thousands of data points are 

collected for a single batch. Therefore the data needs to be summarised to capture the 

underlying trends without removing useful information contained within the data. 
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Additionally, data from industrial processes may be limited in terms of the number of 

samples, particularly for a batch process when batches are not produced at a high rate. 

Therefore analysis techniques are required that are suitable for analysing small sample 

sizes. One approach is to utilise Bayesian statistics, since existing information can be 

combined with new data to produce inferences about a process (Chapter 7).  

Quality of Data  

The data may contain a lot of noise, which will hide the trends between variables. For 

example, poor control of a process variable may result in a large amount of variation in 

the data that does not necessarily impact on the process outputs, although critical 

process parameters are controlled to be within the acceptable ranges. Additionally 

some sensors are known to drift over time, resulting in a change to the measured data 

that does not correspond to a change in the process; however unacceptable drift is 

avoided by calibration. Appropriate statistical methods are required that can separate 

the signal from the noise, to extract the information that is contained within the data.  

Multivariate Data 

When a large number of measurements are collected from the same process, 

correlations will exist within the data. Consequently there are fewer underlying trends 

than the number of variables and traditional linear modelling techniques may not be 

suitable. Multivariate analysis techniques are thus required to handle the correlations in 

the data, both to highlight the trends in the data and for developing predictions models.  

Process Complexity 

A number of complex chemical reactions are involved in the manufacture of API 

products, which can result in non-linear trends between variables that must be 

captured by process models. In addition interactions between variables will add to the 

complexity of the data. Processes may be run across multiple stages, which will each 

impact the on characteristics of the final product. As a result, the relationship between 

input and output variables may not be adequately represented with linear models and 

hence suitable modelling techniques, for example neural networks (Section 3.5), are 

required that are able to capture the complex trends within the data.  

Batch Processes 

Since API processes are run as batch rather than continuous processes, batch to batch 

variation must be considered along with variation within a batch. With batches 
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processes the duration of certain process stages will vary between batches, resulting in 

data that is of different lengths for each batch. This type of data needs to be handled 

appropriately to allow batches of different durations to be compared. In addition the 

processing conditions can vary between batches, for example as a result of ambient 

conditions or a process shutdown. Consequently the data will exhibit a large amount of 

batch to batch variation and data analysis is required to determine how this variation 

can have an effect on the final product.  

1.3 Research Themes 

The following research themes were identified that are of relevance to the challenges 

identified at AstraZeneca and the data available to analyse the processes. 

 Multivariate data analysis is a widely applied statistical technique in the process 

industries (Chapter 3). Hence multivariate methods are investigated to 

determine the specific applications, benefits and challenges. These techniques 

then are applied to processes at AstraZeneca in Chapter 4 and Chapter 5. 

 Complex processes often exhibit non-linear behaviour. Therefore non-linear 

modelling methods are investigated (Chapter 3) and applied to the case studies 

in Chapter 4 and Chapter 5, to compare to the results from linear techniques. 

 AstraZeneca wish to monitor the capability of its processes with respect to in-

process specification limits. Various process capability indices, including the 

standard Ppk metric and distribution free metrics, are investigated that may be 

suitable for application to the data that is available (Chapter 6) 

 Bayesian statistics is growing in importance in the pharmaceutical industry 

(Chapter 7). Bayesian methods are investigated to determine how and where 

they have been applied to pharmaceutical processes, through a detailed 

literature review and then by identifying novel opportunities at AstraZeneca 

1.4 Aims and Objectives 

The aim of this thesis is to investigate and develop statistical methodologies to apply to 

data from API manufacturing processes to increase the level of process understanding 

and to identify potential areas for process improvement. To meet this aim, the following 

objectives were identified: 

1. Compile a literature review of the role of statistics in the manufacturing 

industries. 

2. Identify key statistical methodologies that are applicable to data from industrial 

batch processes. 

3. Compare advanced modelling techniques to predict batch drying times. 
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4. Apply multivariate and non-linear methods to analyse the particle size 

distribution of a product. 

5. Investigate and develop potential process capability indices to be applied to 

data from industrial processes. 

6. Investigate the uses of Bayesian statistics in process development. 

7. Develop a novel Bayesian methodology for calculating the process capability 

from data that is collected sequentially. 

For each investigation in to support objectives 3 to 5 and 7, potential statistical 

methods are identified, where necessary developed and then applied to the data 

available to gain information about the process being studied and to propose potential 

process improvements. Consideration was given to the specific complexities of data 

generated from API manufacturing processes, such as large data sets and batch level 

data. The importance of regulatory control is also considered. For each methodology, 

the practicality of implementation is assessed, to determine how much information is 

gained and how a method can be effectively applied to industrial process data.  

1.5 Thesis Outline 

Chapters Two and Three are a general introduction to the research topic of the thesis, 

focusing on statistical techniques that are relevant to the analysis of industrial process 

data. Chapters Four to Seven are individual case studies relating to the API 

manufacturing processes at AstraZeneca. The overall conclusions and contributions of 

the thesis are given in Chapter Eight, along with recommendations for future research. 

An initial literature survey is undertaken in Chapter Two that describes how statistics 

has become an important tool for contributing to improvements to manufacturing 

processes. Specific topics discussed include statistical process control, Quality by 

Design and continuous improvement methodologies such as Lean and Six Sigma.  

In Chapter Three, modelling methodologies are investigated that are applicable to data 

generated from API manufacturing processes, to gain process understanding and 

develop prediction models. In particular multivariate statistical analysis methods, 

techniques for handling batch data and artificial neural networks are considered. The 

background theory is presented along with examples of applications and a 

consideration of how the methods can be implemented.  

In Chapter Four, statistical methods are compared in terms of their applicability to 

make predictions of end process characteristics from data collected throughout the 

duration of a batch process. An investigation was undertaken into the length of time 

required for a drying process to be completed, using online temperature and flow rate 
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measurements. The aim was to estimate the duration early in the process so that plant 

resources could be planned for the batch completion. Linear models and artificial 

neural networks were investigated and applied to a small number of uncorrelated input 

variables. Additionally, multi-way partial least squares and case based reasoning were 

applied to the data that is collected throughout the duration of the batch.  

A study is presented in Chapter Five to understand sources of variation in the particle 

size distribution of a product. The resulting data is multivariate in nature, comprising of 

a frequency distribution of the proportion of particles of various sizes. Multivariate 

techniques are applicable to data from particle size distribution measurements, since 

the data comprises a series of particles sizes and the corresponding frequencies.  

Summarising the data in terms of a limited number of latent variables enables an 

efficient comparison to be undertaken between samples. Multivariate prediction 

methods and artificial neural networks are also applied to assess which process 

variables have the strongest influence on the particle size of the final product.  

Process capability indices are used to calculate the risk of data from a process falling 

outside of a specification limit, resulting in a batch failure. AstraZeneca uses process 

capability indices to identify the risk of a specification limit being breached for in-

process measurements. Standard process capability indices may not be appropriate for 

data that does not follow a normal distribution. In Chapter Six, alternative distribution 

free indices are investigated and a novel method proposed, which is applied to both 

simulated and process data to compare the accuracy and precision of the various 

capability indices.  

Bayesian statistical methods are an important area of research in statistics, allowing for 

existing information to be combined with information from data, to produce a posterior 

distribution that represents parameter being estimated. In Chapter Seven, Bayesian 

methods for experimental design, process validation and process capability are 

investigated to assess how each technique could enhance process development. A 

novel Bayesian approach to process capability is developed for application to data that 

is collected in sequential blocks, for which the process capability is reported for each 

individual block. When the sample size is small, Bayesian methods allow information 

from older data to be combined with the most recent data, in an attempt to produce a 

reliable estimate for the process capability. 
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2 Literature Review: Applications of Statistics to 

Manage Robustness and Quality in Pharmaceutical 

API Manufacture 

Statistics has been widely applied in the manufacturing and process industries to 

increase process efficiency, improve process control and optimise the quality of the 

final product. Statistical methods are typically implemented to make use of the data 

collected from production processes, with applications including process monitoring, 

modelling and data based continuous improvement initiatives. In addition to specific 

applications, areas of discussion in the literature have included the history of how and 

why statistics has become an important tool within the process industries and the 

advantages and limitations of the methods available. 

Examples of data based techniques are presented in the subsequent sections, with a 

particular focus on the challenges of pharmaceutical API manufacture, including 

process monitoring, operational excellence and process analytical technology (PAT). 

The influence of regulatory authorities and the importance of quality are also 

considered.  

2.1 The Role of Statistics in Industry 

The application of statistics has played an important role in the development of 

industrial processes during the past century, which has seen a ‘quality revolution’ of 

improvements to manufacturing processes. This change has been in part driven by the 

development of methodologies for the analysis of data (Box and Kramer, 1992, Does 

and Trip, 2001, Korakianiti and Rekkas, 2011). Industrial statistics has its origins with 

Fisher and Shewhart in the 1930s (Box, 1994). Fisher developed the basis of 

experimental design and the analysis of variance approach, whilst Shewhart (1931) 

proposed and implemented the first statistical process control (SPC) charts to visualise 

data and identify when a process may be moving out of statistical control (Section 2.2).  

From the 1950’s, the use of industrial statistics to improve quality progressed rapidly. 

Deming (1986) worked within the Japanese manufacturing industry to develop methods 

for improving quality through the control of variation in a process, with the aid of 

Shewhart’s control charts (Box and Kramer, 1992). Overall there was a shift in 

philosophy from detecting errors through end product testing, to preventing errors from 

occurring through good control of a robust process. Consequently the focus has shifted 

from the product to the process. Deming (1986) emphasised that alongside data based 
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methods, quality could only be achieved through a framework of total quality 

management, which requires commitment from all levels of management. 

In the 1980’s, Taguchi developed a design of experiments methodology that potentially 

identifies the most efficient experimental design that maximises the information gained 

from the experiment (Bendell et al, 1999). The approach is based on selecting an 

experimental design that allows interactions between input variables to be quantified. 

The results from the experimental work are then used to build a statistical model that 

relates the process conditions to the outputs of the process and consequently the 

process inputs can be selected to optimise the outputs (Section 2.3.1).  

More recently there has been an emphasis on lean and operational excellence 

methodologies to further optimise manufacturing processes (Karokianiti and Rekkas, 

2011). Operational excellence methodologies, including Six Sigma and continuous 

improvement, use data-based techniques to identify opportunities to reduce variation 

within a process and therefore enhance the quality and consistency of the final product 

(Section 2.4).  

In the pharmaceutical industry, there has been a push from the Food and Drug 

Administration (FDA) to consider product quality from the design stage of a new 

process by adopting Quality by Design (Section 2.3) and implementing process 

analytical technology (PAT) to increase the level of in-process monitoring to ensure the 

final quality of the product (Section 2.3.3). The implementation of QbD and PAT 

involves the use of data to increase the understanding of a pharmaceutical process 

and hence the use of statistical methods has gained importance. For example PAT 

methodologies emphasise the importance of process control and hence SPC and 

control charts are important tools in improving manufacturing processes. 

Pharmaceutical process can be highly complex and a large amount of data can be 

collected, therefore the implementation of QbD and PAT encourages the use of 

multivariate statistical methodologies (Chapter 3).  

QbD and PAT are applicable to both new and existing processes. At AstraZeneca, 

QbD methodologies are driving the use of statistical methods to improve process 

understanding, monitoring and control. For example, prediction methods are assessed 

in Chapter 4 to determine how measurements taken early in a batch drying process 

can be used to estimate the required drying time, allowing for drying times to be 

optimised and an increased understanding of the process variables that affect the rate 

of drying. Similarly in Chapter 5, multivariate methods are used to assess the factors 

that influence the particle size distribution (PSD) of a product, so that the PSD can be 



10 

controlled to a level that is not expected to affect the quality of the final product. 

Process monitoring can be achieved through the use of process capability indices, 

allowing adverse changes in the process to be detected. By monitoring the capability of 

in-process variables, product quality can be assured by control of the process rather 

than through end product testing. Methods for measuring the capability of in-process 

variables are explored in Chapter 6 and Chapter 7.  

Today a range of statistical methods are available for the analysis industrial data, 

including multivariate techniques (Chapter 3) and Bayesian methods (Chapter 7). 

However more complex methods may be more challenging to implement on an 

industrial process. For example, limited data processing systems may be available on 

the plant or a particular method may require that data satisfies an underlying 

assumption, such as normality.  

Although many complex methods exist, Ishikawa proposed that seven basic tools for 

quality were the most effective for making use of the data that is collected (Karokianiti 

and Rekkas, 2011). The tools are Pareto charts, cause and effect charts, check sheets, 

histograms, scatter plots, stratification and control charts. In particular, visualisation of 

the data can highlight the greatest potential sources of variation in the process and 

help identify areas for improvement. 

Banks (1993) suggested that the more straightforward statistical methods, such as data 

visualisation techniques, are the most effective because they can be easily 

implemented and interpreted. Bendell et al (1999) believed that the complexity of some 

techniques can result in statistical work being undervalued due to the challenges of 

interpretation. It is therefore important to find a balance between using a more complex 

method that is fit for purpose for the objectives of the analysis, and a method that is 

practical to implement and can be understood by others.  

2.2 Process Monitoring 

Process performance monitoring, in the form of statistical process control (SPC) charts, 

is used to visualise the performance of a process over time. SPC charts are used to 

detect changes in the process that could have resulted from failures or operational 

changes, leading to a process moving out of statistical control (Box and Kramer, 1992). 

SPC is believed to be one of the most widely applied statistical tools in the 

manufacturing industries (Stoumbos et al, 2000) and has been extended to handle 

multivariate data (Section 3.4.2).  
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Shewhart (1931) defines a process as being in a state of statistical control when, with 

some probability, an interval can be predicted within which future data will be expected 

to lie, i.e. the level of variability in the data is expected to fall within a given range. This 

type of variation is termed common cause variation and is inherent within the process; 

these sources of variation may include ambient conditions and measurement error. 

When a process is out of statistical control, special cause variation will result in data 

being observed outside of this range. For example, an excursion from normal operation 

may result from the failure of a component in the process or damage to a measurement 

probe. The aim of SPC is to determine when special cause variation has occurred, so 

an alarm can be raised and action taken to bring the process back into statistical 

control (Woodall, 2000).  

SPC charts can be used to generate alarms when it is expected that the process is out 

of control. When the process is expected to follow a normal distribution, control limits 

are set based on the mean and standard deviation of the process. For example a 

general rule is to generate an alarm if a data point occurs more than three standard 

deviations from the process mean, i.e. three sigma limits. 99.7% of the data is 

expected to fall within this range, so a data point outside the limits may indicate a 

change to the process. The Western Electric Rules set further control limits (Levinson, 

2010): an alarm is generated if two or more out of three consecutive points occur 

outside of two sigma limits, four or more of five consecutive point occur outside of one 

sigma limits, or eight consecutive points occur on one the same side of the process 

mean.  

The standard Shewhart x-chart is effective at detecting unusual observations and large 

changes in the mean of the process; however it can be insensitive to smaller changes 

(Box and Kramer, 1992). Alternative charts include the exponentially weighted moving 

average (EWMA) and cumulative sum (CUSUM) charts, which are more appropriate for 

detecting small changes to the process mean (Stoumbos et al, 2000). The EWMA chart 

tracks the mean by calculating a moving average, weighted towards the most recent 

data points (Roberts, 1959). The CUSUM chart plots the cumulative sum of the 

distances of each data point to the mean or target of the process (Johnson, 1961).  

From an SPC chart it is possible to determine how capable a process is of meeting the 

specification limits, which can be quantified by process capability metrics. Process 

capability is a concise summary that enables a comparison to be performed between 

different parts of a process, which can be tracked over time. An underlying assumption 

when calculating the process capability is that the process is in statistical control, which 
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can be determined from control charts. Process capability is discussed in more detail in 

Chapter 6.  

2.2.1 Opportunities of SPC 

The use of SPC supports the principles of process validation (FDA, 2011). Once the 

critical process parameters and quality attributes have been identified, control charts 

can be used to confirm that the process remains in control throughout its lifecycle.  

Plotting the data onto a control chart allows a visual representation of the data, so 

unusual trends can be identified (Box and Kramer, 1992). A control chart will indicate 

the extent and direction of a deviation, and suggest the time that the onset of a problem 

occurred, providing information that can be used for problem solving.  

Pharmaceutical manufacturing processes can have a long lead time between the early 

stages of the process and final QC testing. By monitoring the critical process 

parameters (Section 2.3) continually with SPC charts, an issue that could affect quality 

can be detected and addressed as soon as it occurs. Therefore an adverse trend may 

be halted before there is an impact on quality, or the amount of affected product can be 

minimised.   

2.2.2 Challenges of SPC 

For the development of an SPC strategy, alarm rules must be set so that they are 

effective at detecting a genuine change in the process, but minimise the rate of false 

alarms. Box and Kramer (1992) suggested that standard rules for SPC can be 

inefficient at detecting problems, i.e. a genuine change in the process may not cause 

the data to fall outside of the control limits, so an alarm will not be generated.  

A further challenge of SPC is that of multivariate data. When a number of correlated 

measurements are taken, the number of variables to be monitored can be reduced 

through the implementation of multivariate SPC (MSPC, Section 3.2.1.3). In addition 

MSPC can detect the presence of multivariate outliers, where a data point does not 

follow the correlation structure of the rest of the data.  

There are a number of assumptions about the data that must be met for an SPC 

strategy to be implemented successfully. For example it is assumed that the samples 

are independent, i.e. there is no autocorrelation between consecutive observations and 

that the underlying distribution of the data is normal (Box and Kramer, 1992). 

Autocorrelation in the data can cause a high false alarm rate, since several data points 

are likely to occur on one side of the mean (Stoumbos et al, 2000).  
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Although there has been a lot of research methodologies into undertaken for control 

charts and SPC, such as Bayesian and multivariate methods, there may be a gap 

between the techniques being developed and practical applications within the process 

industries (Stoumbos et al, 2000). Since a wide variety of methods are available, it is 

necessary to identify the most appropriate techniques that can effectively differentiate 

between common and special cause variability (Woodall, 2000), so that SPC can be 

effectively implemented.  

2.3 Quality by Design 

Traditionally, the validation of a new pharmaceutical manufacturing process has been 

based on the variation observed when the initial batches were manufactured. The level 

of variation observed in these initial batches is judged to be a suitable range for the 

long term process (Yu, 2008). Furthermore, the quality of each batch is confirmed by 

QC testing of the final product. However, the FDA (2009) promoted a more robust 

approach to process development, Quality by Design (QbD), in which quality is 

designed into the process. The International Conference on Harmonisation Q8 (ICH 

Q8) guideline for pharmaceutical development suggests that: 

“Quality cannot be tested into products; i.e. quality should be built in by design.” 

Quality by Design is a structured approach to the development of a pharmaceutical 

process based on scientific knowledge and information gained from data generated 

throughout the development of a manufacturing process. This approach enables an 

understanding how the variation in a process affects the quality of the product. The 

information gained is then used to develop a process which is optimised for product 

quality. The result should be a robust process that is tolerant to variation in the inputs 

and quality can be demonstrated by good control of the process rather than by QC 

testing (Yu, 2008).  

The QbD process begins by defining product quality in terms of the needs of the 

patient. From this definition, the critical quality attributes (CQAs) of the product are 

identified, which are measurable characteristics of the product that describe the quality 

of the product. The CQAs can be identified through a risk assessment which uses 

scientific knowledge to determine which features of the product will have the greatest 

impact on quality. Specification limits are set for the CQAs which must be met for the 

product to be released. For an API product, the CQAs may include particle size, 

crystallisation structure and level of impurities (am Ende et al, 2007). These attributes 

will affect how the drug product dissolves when taken by the patient and whether the 

product is free from harmful impurities.  
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Following the identification of the CQAs, a failure modes and effects analysis (FMEA) 

can be implemented to determine which parts of the manufacturing process are most 

likely to have a significant effect on the CQAs (Brueggemeier et al, 2012). From the 

FMEA, the critical process parameters (CPPs) will be highlighted, which potentially 

have the greatest impact on the CQAs. The CPPs must be controlled so that the CQAs 

will meet their specification limits. The CPPs may include characteristics of raw 

materials and process conditions such as temperatures and timings.  

The relationship between the CPPs and the CQAs must be well understood so that the 

process can be developed for the CQAs to meet their specification limits. Experimental 

testing and statistical modelling can be combined with scientific knowledge to build an 

understanding of this relationship. Two important tools in QbD are design of 

experiments (DoE) and process analytical technology (PAT).  

To complete a QbD process, a control plan is required to ensure that the process 

remains well controlled throughout the duration of the product life cycle (ICH Q8). The 

control plan will include monitoring the critical process parameters and quality 

attributes, and updating prediction models with new data that is collected.  

2.3.1 Design of Experiments 

The concept of design of experiments (DoE) originated with Fisher in the 1930s, and 

was developed by Taguchi (1987) as a method for the design and analysis of a set of 

experiments with the aim of determining how a set of inputs to a process affect the 

outputs or responses. More recently this methodology is used in QbD to quantify the 

relationship between the CPPs and the CQAs, to determine which potential CPPs have 

the greatest impact on the quality of the product, and to identify the optimal processing 

conditions to operate a robust process.  

DoE is an improvement over the one factor at a time experimental approach, in which 

each input is assessed individually. Studying factors individually does not allow 

interactions between variables to be considered, consequently important relationships 

between the input variables may be missed and the optimal processing conditions may 

not be found. When a DoE approach is implemented, the input factors are assessed 

simultaneously and the experiment is designed to maximise the information that is 

gained from as few experiments as possible (Eriksson et al 2008).  

The first stage of a DoE process is an initial screening study. A large number of input 

variables can be considered, to determine which could have an important influence on 

the response. Typically a high and low setting is defined for each variable, to cover the 

range of the potential operating space. Rather than testing every possible combination 
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of high and low settings, a fractional factorial design is typically implemented so that 

enough experiments are run to assess the main effects of each variable on the 

response. From the results of the screening design it may be possible to discount some 

variables that are shown not to have an effect on product quality (Fahmy et al, 2012). 

Additionally the results may indicate whether the optimal processing conditions are 

within the range of the screening study, or whether the ranges of some factors should 

be changed for further experimental work to ensure that the optimal conditions are 

found.  

Following the results from the screening study, a further experimental design can be 

carried out to provide a detailed representation of the process. Each factor may be 

tested at more than two levels, thereby allowing interactions and curvature to be 

quantified (Maltesen et al, 2012). Response surface modelling can be used to fit a 

statistical model to the results, to measure how each input to the process can affect the 

quality attributes. From the resulting model, predictions can be generated from specific 

combinations of input factors. Using an optimisation approach, various combinations of 

inputs can be identified that will produce optional outputs. These combinations of input 

settings define the optimal operating region of the process.  

When the optimal operating region has been identified, the robustness of the region 

should be tested. Robustness testing will determine how sensitive the quality 

measurements are to small changes in the inputs, such as ambient conditions and raw 

materials. By running a final set of experiments around the proposed operating space, 

it is possible to determine which process inputs have to potential to adversely affect 

product quality and therefore which inputs require the tightest control. Designing a 

process that is robust to variation will ensure that high quality is maintained throughout 

the lifecycle of the product.  

2.3.2 Design Space 

From the optimal operating region, the design space of the process can be identified, 

which is defined as: 

“The multidimensional combination and interaction of input variables (e.g., material 

attributes) and process parameters that have been demonstrated to provide assurance 

of quality.“ (ICH Q8).  

The design space is registered with the regulatory authorities, so the process can be 

operated anywhere within this space. Within the design space the normal operating 

range (NOR) for the process will be determined, in which the process will be designed 

to be operated. The NOR may be influenced by business objectives, such as process 
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yield, cost or duration (Burt et al, 2011). For a robust process, the NOR will fit well 

within the design space, so that some variation in the inputs will not move the process 

out of the design space.  

2.3.3 Process Analytical Technology  

For the implementation of a QbD programme, new methodologies are required to be 

applied to enhance the understanding and control of pharmaceutical manufacturing 

processes. One such methodology is Process Analytical Technology (PAT). The FDA 

(2004) defines PAT as:  

“… a system for designing, analyzing, and controlling manufacturing through timely 

measurements of critical quality and performance attributes of raw and in-process 

materials and processes, with the goal of ensuring final product quality.”  

The aim of PAT is to use scientific knowledge and statistical methods to understand the 

relationship between the inputs, such as raw materials and processing conditions, and 

the final product, which fits well into the QbD framework.  

The application of PAT can involve the collection of large amounts of data, including 

spectroscopic (Gabrielsson et al, 2006, Brülls et al, 2003) and process measurements, 

such as pressure and temperature (Kosanovich et al, 1996, Neogi and Schlags, 1998). 

Multivariate data analysis techniques (Chapter 3), such as principal component 

analysis and partial least squares, are required to handle the data and extract the 

information contained within (Kourti, 2006). 

From a model of the process, specification limits can be set for the critical process 

parameters, outside of which there is a risk to quality. SPC charts can be used to 

monitor the process to ensure that it stays in control and in specification. When there 

are a large number of correlated variables to monitor, multivariate analysis is used to 

reduce the dimensionality of the dataset, so that fewer variables are monitored but no 

information is lost, known as multivariate SPC (Section 3.4.2).  

Monitoring the CPPs in real time allows a potential problem to be detected as soon it is 

occurs, reducing the impact on the rest of the process. In addition, when a regression 

model is used to predict the CQAs from the CPPs, monitoring of the CPPs allows the 

quality of the final product to be assured before undertaking end product testing (Chew 

and Sharratt, 2010). 
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2.3.4 Opportunities  

The use of the Quality by Design framework allows for a structured, risk based 

approach to be applied to the development of a pharmaceutical manufacturing process. 

The tools allow a detailed understanding to be gained about the process, so that it can 

be operated to optimise the quality and reduce the risks of a quality failure.  

The adoption of QbD can lead to more flexible regulatory controls (ICH Q8). The whole 

design space is registered with the regulatory authorities even if the normal operating 

range is smaller. The company then has the flexibility to make changes within this 

design space, for example to optimise the yield of the process, without the need for 

regulatory approval. 

Quality by Design may be considered to be more suited to be applied to new process 

as they are developed, rather than to established processes. However QbD principals 

can be applied to make improvements to existing processes, which may benefit from a 

large database of information that has been collected during processing (Yacoub et al, 

2011). For example, Lourenco et al (2012) used QbD and PAT techniques to define the 

design space of a fluid bed granulation process, with the aim of reducing the variability 

in granule quality. Firstly PAT and multivariate analysis was applied to process data to 

gain process understanding, resulting in the identification of a seasonality effect. Then 

a DoE approach was applied to pilot scale batches to quantify the relationship between 

the CPPs and the CQAs. Finally a design space was identified to optimise the CQAs. 

This design space was within the registered range of the process, so re-registration 

was not required.  

2.3.5 Challenges  

One of the biggest challenges when implementing QbD is the additional cost that will 

be incurred early on in the development of a product. Compared to traditional 

pharmaceutical development, more time and experimental work will be required prior to 

knowing the outcome of the final clinical trials and hence the product is not guaranteed 

to be launched. A number of published examples of QbD are for products that were 

terminated by the end of phase III clinical trials (am Ende et al, 2007, Brueggemeier et 

al, 2012).  

For the development of an effective statistical model of a process, sufficient variation 

within the process is required so that the trends within the data can be fully captured 

(Doherty and Lange, 2006). Collecting this data may involve running the process 

outside of the normal operating range and could be done under experimental 

conditions with material that will not be passed on to the customer. In addition, 
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collecting the required data may require the installation of new sensors onto the 

processing plant (Doherty and Lange, 2006). To justify the additional costs, a benefit 

analysis may be required to estimate the expected long term savings that could be 

made from improving product quality and robustness. 

2.4 Operational Excellence and Continuous Improvement 

Quality by Design and Process Analytical Technology are suited to the application of 

new processes that are being developed. For processes that have been established for 

some time, such as those being studied at AstraZeneca, an alternative to QbD is 

continuous improvement techniques. The FDA promotes the use of continuous 

improvement technologies (ICH Q10) to reduce variation and optimise manufacturing 

processes.  

The priorities at AstraZeneca for process improvement include reducing waste, 

reducing the potential for failed batches, improving the yield of reactions and 

maintaining a reliable supply chain to the customer. The overall aim is to reach a state 

of operational excellence, where consistently high standards of quality, reliability, 

robustness and cost effectiveness are achieved.  

Achievement of these goals can be reached through a continuous improvement 

programme that aims to identify the areas within a process where improvements can 

be made. There are a number of tools available for continuous improvement, including 

Lean and Six Sigma. A combination of several improvement tools may be needed to 

fully achieve operational excellence (Kovach et al, 2005). 

2.4.1 Lean Sigma 

The concept of Lean Sigma for lean manufacturing was introduced by Toyota, who 

gained a reputation for producing cars with very high reliability (Liker, 2004). Lean 

manufacturing is an approach to manufacturing whereby the aim is to reduce waste 

and create a flexible and efficient process. Waste within a process can be defined by 

seven categories: over production, waiting, transport, inappropriate processing, 

unnecessary inventory, unnecessary motion of components and defects (Hines and 

Rich, 1997). 

Toyota created the Toyota Production System, which was based on five principles of 

Lean (Womack and Jones, 2003, Bicheno, 2004). Firstly, value should be defined by 

the requirements of the customer rather than by what the company can offer. Adding 

features to a product that do not bring a benefit to the customer will result in 

unnecessary cost and processing. Secondly value stream mapping is used to assess 
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the whole production process to determine which steps add value to the customer. A 

large number of non-value adding steps will result in inefficiencies in the process. 

Thirdly the flow of a process should be considered, so that time is not wasted by 

waiting for the next stage of a process to become available. By reducing the lead time 

of a process, customer needs can be met quickly. Next the production line should be 

run based on the demand from the customer, rather than building up a large stock of 

intermediate or final products. Making products ‘Just in Time’ allows the company to 

respond and adapt quickly to changing demands, allowing greater flexibility of the final 

product. Finally a Lean process is designed to result in perfection. Systematically 

standardising and error-proofing a process should reduce and remove the potential for 

defects to occur.  

2.4.2 Six Sigma 

Six Sigma is a structured data based approach to process improvement with the aim of 

increasing customer satisfaction through focusing on improving processes rather than 

fixing the resulting product, so errors are prevented rather than detected (Deshpande 

et al, 1999). There is an emphasis in quantifying information, including customer 

requirements, so that improvements can be measured and the benefits observed 

(Hahn et al, 1999).  

The Six Sigma methodology was first developed by Motorola in the 1980s, driven by a 

need to improve customer satisfaction to remain competitive. A Six Sigma project 

follows a series of five steps to achieve an improvement: define, measure, analyse, 

improve, control. Throughout a project, data and statistical techniques are used to 

identify the main sources of variability in the process and suggest where improvements 

are required to reduce the variation and optimise the outputs. The methods used 

include control charts, Pareto charts, cause and effect analysis, measurement system 

analysis and design of experiments. At the end of a project, there is an emphasis on 

standardising the process so that it will always happen in the same way and controlling 

improvements so that they remain in place after the project has finished. 

2.4.3 Opportunities 

The use of Six Sigma and continuous improvement techniques has produced 

substantial cost savings and quality improvements in a variety of industries, including 

electrical, pharmaceuticals and other high value products (Kovach et al, 2005). The 

application of Lean and Six Sigma tools to a manufacturing process allows areas for 

improvement to be identified and improvements to be made in a structured way so that 

their benefits are realised and quantified. Köksal et al (2011) suggested that the 

success of Six Sigma has been in part due to good training and affordable, user 
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friendly software that is available for data analysis, allowing practitioners without a 

strong statistics background to make use of statistical tools. 

A number of pharmaceutical companies have applied Lean and Six Sigma to their 

manufacturing processes, resulting in cost savings from the removal of waste, an 

increase in quality and efficiency, and reduced cycle times (Tolve, 2009). In particular 

AstraZeneca have collaborated with Lean experts from a Jaguar car assembly plant to 

understand how Lean methodologies from the car manufacturing industry can be 

implemented to remove waste from pharmaceutical manufacture (Tolve, 2009). Dassau 

et al (2006) presented an example of using Six Sigma to make iterative improvements 

to a penicillin production process. Process capability analysis identified the least 

capable unit operation and then process modelling and control techniques were used 

to drive improvements. This process was repeated to make improvements to the 

poorest performing stages of the process, resulting in a 40% reduction in batch time 

and 17% increase in yield.  

The benefits from continuous improvement projects may be expected to become 

smaller over time, after the most beneficial improvements have been implemented, 

however Box (1994) argued that rather than expecting diminishing returns, a process is 

constantly evolving as new inputs, technology, people and targets are available, so 

substantial gains can continue to be made.  

2.4.4 Challenges 

The setting up and implementation of a Lean or Six Sigma programme within a 

company requires a number of practitioners to be trained to use the tools, alongside 

their usual job. Therefore a successful programme requires commitment from all levels 

of management and also a willingness in the organisation to accept change (Nave, 

2002).  

When implementing the continuous improvement tools it is assumed the current 

process design is the most appropriate and hence the process can be optimised by 

making small changes rather than being re-designed (Nave, 2002). This is particularly 

important in the pharmaceutical sector, since any changes outside of the registered 

process will have to be approved by the regulatory authorities. Additionally, it is 

assumed that improvements will bring an overall benefit to the company, so for 

example an improvement will not involve high costs or substantially longer cycle times 

for a process.  
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2.5 Conclusions  

During the past century, the use of statistics has played an important role in the 

development of modern manufacturing processes, leading to large improvements to 

processes that subsequently lead to an increase the quality of the final product. By 

understanding and controlling the variation in a process, the focus of quality control has 

shifted from the product to the process, so that defects are prevented rather than 

detected. One of the most useful tools in the quality revolution has been the control 

chart, which allows the variation in a process to be visualised, so that abnormal events 

can be detected as soon as they occur. The use of SPC charts relies on assumptions 

about the distribution and independence of the data, to ensure that errors are detected 

efficiently without a large number of false alarms.  

In the pharmaceutical industry, there is a need to further develop manufacturing 

methods by increasing the level of process understanding, so that quality can be 

designed into a manufacturing process rather than tested into the final product. 

Through the use of risk assessment tools, including FMEA, combined with scientific 

knowledge, the most important parameters in the process can be identified and 

investigated to ensure that they are controlled to a level that is not expected to affect 

the critical quality attributes of the product. Using a design of experiments approach, 

the relationship between the inputs and outputs of the process can be identified, so that 

the optimal settings can be found to run an efficient and robust process.  

Although many complex statistical techniques are available, in some cases the more 

simple methods may be most effective at extracting information from data and using 

the knowledge to drive improvements to a process. Continuous improvement 

methodologies such as Six Sigma use graphical tools and data summaries to identify 

and implement improvements to a process, using data to justify decisions that are 

made.  

Overall a variety of techniques are available to make use of the data from a process, 

including methods for increasing understanding, making improvements and controlling 

a process, so that it can be run to optimise quality and robustness. Where possible, the 

more simple methods should be implemented initially. However when the process is 

complex or the data does not meet the required assumptions, then more complex 

methods may be necessary. In Chapter Three, methodologies are presented for the 

analysis of multivariate, non-linear or batch level data.  
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3 Modelling Methodologies 

Modern process industries have the capability to record a large amount of data, both 

during the production process and from the final product (Nomikos and MacGregor, 

1994). The data will contain a large amount of information about the process, such as 

how the measurements vary over time, the unit operations for which the greatest 

variation is observed and the differences between batches or samples. The trends in 

the data will show both the normal process behaviour and also indicate when a change 

or disturbance has occurred that could adversely affect the product. Information gained 

from exploring the data can be used to gain an enhanced understanding of how the 

processing conditions relate to the characteristics of the final product.  

A wide variety of methods exist for interrogating data and extracting information about 

the process or product. When there are a small number of variables, methods such as 

summary statistics (e.g. mean, median, standard deviation) and graphical 

representations can be effective tools for visualising the trends in the data. Statistical 

process control charts, such as x-bar and range charts, are widely used to monitor a 

process and detect the onset of abnormal occurrences. Multiple linear regression 

(MLR) can be applied to establish a linear relationship between the inputs and outputs 

of a process, allowing the most important inputs to be identified. A prediction model of 

the can be applied to optimise the processes, by determining the input settings that are 

expected to result in optimal outputs.  

MLR is a well established method for model development and is relatively simple to 

implement (Doherty and Lange, 2006). However when constructing a linear model, a 

number of assumptions are required to be satisfied for the information from the model 

to be accurate and useful. It is assumed that a linear relationship exists between the 

predictor and response variables. A linear model cannot be used to represent non-

linear relationships unless appropriate transformations of the input variables can be 

identified. Additionally MLR is not able to handle strong correlations between the input 

variables (Wold et al, 2001), resulting in erroneous regression coefficients. It is also 

assumed that the residuals from the model are independent, identically distributed and 

follow a normal distribution with constant variance.  

Advances in automation and computer technology have made it possible to collect data 

from a large number of sensors, throughout the duration of a process (Köksal et al, 

2011). When sensors are located close together, the resulting variables are likely to be 

correlated (MacGregor et al, 2005). Additionally chemical processes, such as API 

manufacture, will involve complex interactions between the variables. As a result, the 
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data collected will not satisfy the assumptions required to implement methods such as 

MLR, consequently alternative techniques have been developed to analyse more 

complex data, including multivariate analysis and non-linear modelling. For each 

specific problem, the most appropriate method needs to be identified, to maximise the 

information that can be extracted from the data.  

When there are a large number of correlated variables, multivariate analysis (MVA) 

methods are able to reduce the dimensionality of the dataset through the derivation of 

a smaller set of latent variables, which are a linear combination of the original variables 

(Section 3.2). MVA can be used to both explore the patterns within a dataset, through 

the use of principal component analysis (PCA), and to create a regression model 

between the inputs and outputs of a process, utilising multivariate regression methods, 

including partial least squares (PLS) and principal component regression (PCR).  

A further consideration is that many pharmaceutical processes are run as batch 

processes as opposed to continuous processes (Doherty and Lange, 2006). For a 

continuous process, data is collected for each variable over time, whilst for a batch 

process data is collected in a similar manner, but for each batch. The resulting dataset 

is three dimensional, requiring multivariate methods to be adapted by unfolding the 

dataset into a standard two dimensional data matrix, enabling the trends both within 

and between batches to be identified (Section 3.3.1). Additionally pattern recognition 

techniques, such as case based reasoning, can be applied to compare batch profiles 

and make inferences about new batches using information from a set of historical 

batches to identify batches with similar profiles (Section 3.3.2).  

Chemical processes will typically involve interactions between the variables and the 

presence of non-linear relationships between the measured variables and the output of 

the process. As a result traditional linear methodologies may not be able to provide an 

accurate representation of the process (Nascimento et al, 2000). Artificial neural 

network modelling is one approach for developing a non-linear relationship between 

inputs and outputs (Section 3.5). These models are created by finding the strongest fit 

to the data provided, without using any information about the underlying relationships in 

the process, and hence are termed black box models. 

The objective of this chapter is to explore modelling techniques that are appropriate for 

data generated from industrial processes. In particular, the analysis methods discussed 

in this chapter are applied to the case studies in Chapters Four and Five. In this 

chapter, multivariate analysis techniques, methods to handle batch data and artificial 

neural networks are introduced, along with a consideration of how these methods can 
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implemented to a manufacturing processes, with an emphasis on pharmaceutical API 

production.  

3.1 Multiple Linear Regression 

A simple regression method to find a linear relationship between a set of k input 

variables (x1, x2,... xk) and a single response variable, y, is multiple linear regression 

(MLR). The regression equation takes the form (Montgomery et al, 2012): 

𝑦 = 𝑏0 + 𝑏1𝑥1 + ⋯ + 𝑏𝑘𝑥𝑘 + 𝜀 Equation 3-1 

Where b0,... bn are the regression coefficients to be determined and  is error. It is 

assumed that the error values are independent of each other and follow the same 

normal distribution for any value of the input variables. 

Given a data set of n observations arranged in an (n x k) matrix of inputs, X, and an (n 

x 1) vector of responses, Y, then the vector of coefficients is found as: 

𝜷̂ = [𝑿𝑻𝑿]−𝟏𝑿𝑻𝒀  Equation 3-2 

When developing an MLR model, hypothesis tests can be applied determine whether 

each input variable is a significant predictor for the response. Each hypothesis test 

takes the form:  

H0: bi = 0 

H1: bj  0 

for j = 0 to k. A p-value is calculated for each significance test and typically a p-value of 

greater than 0.05 will suggest that the regression coefficient could be equal to zero and 

hence the input variable is not a significant predictor of the response.  

The level of the model fit is measured by the metric R2, with an R2 value close to one 

indicating a strong fit: 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)𝑛
𝑖=1

  Equation 3-3 

Colinearity of the input variables can be identified through the use of the variance 

inflation factor (VIF). For each input xj, the strength of the linear relationship with the 

other variables is measured by Rj
2. Then the VIF is calculated as (Fahrmeir et al 2013): 
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𝑉𝐼𝐹𝑗 =
1

1−𝑅𝑗
2  Equation 3-4 

In general, a VIF greater than ten is used to indicate a problem of high colinearity.  

3.2 Multivariate Analysis Techniques 

Large datasets from industrial processes will typically comprise of a number of highly 

correlated variables (MacGregor et al, 2005). For example in-process measurements 

including temperatures, pressures and flow rates may all follow the same trend over 

time since sensors located close together will exhibit similar behaviour. Additionally 

spectroscopic data measures the absorbance at a large number of wavelengths. The 

wavelengths will be correlated and hence multivariate techniques will be applicable for 

its analysis. 

Although there may be many variables in a dataset, there are typically fewer underlying 

sources of variability in the process. Using MVA, the dimensionality of the dataset is 

reduced to a smaller number of latent variables that will represent the majority of the 

variation in the data set (Wold et al, 1987a). An appropriate number of latent variables 

are selected that capture the main trends in the data, while the remaining latent 

variables will describe the noise in the process. By summarising the data in terms of a 

small number of latent variables, it is easier to present the data graphically to assess 

the patterns between samples and identify which variables indicate the main sources of 

variation. When there is high variation in individual measurements, summing a number 

of correlated variables can emphasis the trends and reduce the variability, in effect 

‘averaging’ out the noise. 

Multivariate methods are applicable to data sets with or without a response variable. 

When the objective of the analysis is to explore the relationships between the variables 

and the pattern between samples, an exploratory data analysis technique such as 

principal component analysis (PCA) can be applied (Section 3.2.1). For example, PCA 

may be applied to a set of process measurements recorded for a number of samples, 

to identify which measurements are correlated and which indicate the greatest causes 

of variation between samples.  

Alternatively, when the objective is to determine how a set of input variables may affect 

one or more response variables, multivariate regression techniques, including partial 

least squares (PLS) can be applied (Section 3.2.2). Unlike multiple linear regression, 

PLS models can handle correlations between the input variables and also multiple 

response variables. For a manufacturing process, PLS models can be used to predict 



26 

the final properties of a product using the process measurements, or to determine 

which variables have the greatest influence on the output variables of the process.  

Multivariate analysis methods have applications in a wide range of industries, including 

pharmaceuticals, petrochemicals, biotechnology, telecommunications and marketing 

(Eriksson et al, 2006). A number of examples in the pharmaceutical industry are 

present in Section 3.4. 

3.2.1 Principal Component Analysis 

Principal component analysis is applied to a data set, X, consisting of N samples, each 

with data for K variables. The data is reduced to a smaller number of principal 

components, where the weightings of the variables in the individual components are 

known as the loadings, P. The values of the components for each sample are the 

scores, T. When analysing a PCA representation, the scores show the trends between 

samples and the loadings indicate the relationships between variables.  

3.2.1.1 An Overview of PCA Methodology 

The individual principal components (PCs) are calculated iteratively, with each 

subsequent component explaining a smaller proportion of the variation in the data. 

Details of the PCA algorithm are given in Appendix 1. The first principal component is 

the linear combination of the original variables that describes the direction of greatest 

variation in the data (Kourti and MacGregor, 1995). The coefficients of the first principal 

component are denoted by the loadings vector p1. The second principal component 

then describes the next largest source of variation and is orthogonal to the first.  

For a data matrix X, the rows represent the (N) samples and the columns represent the 

(K) variables. Following the application of PCA, the (NxK) X matrix is represented as 

the product of two smaller matrices: T (NxA) and PT(AxK), plus an error matrix E(NxK) 

(Wold et al, 1987a), where A is the number of retained principal components (Equation 

3-5Figure 3-1): 

X = TPT + E  Equation 3-5 
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Figure 3-1: Data matrix representation of principal component analysis, with A retained 

components 

The columns of P are the loading vectors that provide the weighting for each original 

variable in each principal component. Variables with a large loading are indicative of 

the causes of variability captured by a specific principal component and may suggest 

where tighter control is required to maintain a robust process (MacGregor et al, 2005). 

The columns of T are called the scores vectors:  

T = XP.  Equation 3-6 

By summarising the data into a set of principal components, the observations can be 

examined through the scores to identify the main trends in the process. A comparison 

of the scores for all the observations can indicate clusters of samples exhibiting similar 

behaviour and also potential outliers. Through inspection of the corresponding 

loadings, those variables most likely to be associated with the trends in the 

observations can be identified.  

Geometrically, PCA can be interpreted as a projection of the data points into K-

dimensional space, where K is the number of variables (Eriksson et al, 2006). The first 

PC is the line in the K-dimensional space that represents the direction of greatest 

variation in the data. Then the second PC is the line in an orthogonal direction to the 

first PC that represents the next largest direction of greatest variation. The first two PCs 

define a plane into which all of the samples can be projected; the projections will show 

the scores for the first two PCs. The subsequent PCs that are found are orthogonal to 

the preceding components and describe decreasing amounts of variation in the data.  

3.2.1.2 Data Set Selection 

When applying principal component analysis, it is assumed that the data are normally 

distributed (Eriksson et al, 2006). Deviations from the normal distribution, particularly 

as a result of the presence of outliers can have a significant influence on the structure 

of the PCA representation. A strong outlier may influence the representation by causing 

the direction of greatest variation to be orientated in the direction of the outlier, i.e. 

pulling the plane towards itself and identifying a correlation structure that only applies 

to the one observation.  
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When applying multivariate data analysis it is recommended to standardise each 

variable to have a mean of zero and standard deviation of unity (Wold et al, 1987a). 

The aim of PCA is to identify the direction of greatest variation in the data, 

consequently variables that have a large standard deviation are likely to have large 

absolute loadings in the PCA representation. These variables may not be the most 

important in the process but can have a significant influence on the structure of the 

representation. Scaling the data so that each variable has the same level of influence 

on the PCA structure will allow the true structure of the data to be identified. However 

Wold et al (1987a) noted that variables that are close to being constant should not be 

scaled because this could introduce additional noise into the data. 

From some processes, it is possible to simultaneously collect more than one type of 

multivariate data. For example, process variables collected at the same time as 

spectroscopic data can be combined to use as inputs into a multivariate analysis 

(Gabrielson et al, 2006). For this situation, the data can be scaled so that the variance 

of each data set is equal, and hence each source of data will have similar influence on 

the resulting model. 

3.2.1.3 Selecting the Number of Principal Components 

A PCA representation of a dataset can contain as many principal components as the 

minimum of the number of variables or observations. However several of these 

components will only contain the noise within the data and so should be excluded. For 

the effective application of PCA, only those components that explain the majority of the 

variability in the process should be retained. There are a number of ways of selecting 

the number of components to be retained (Vallee et al, 2009). The most common 

methods presented in the literature involve assessing the amount of variation that is 

explained by each component (Mercier et al, 2013), and calculating the effect on the 

error as more components are retained (Mattila et al, 2007).  

The PCs are calculated in decreasing order of the amount of variation that is explained 

by each component, which is denoted R2X (Appendix 1). Plotting the cumulative 

variation that is explained by including each subsequent PC will typically identify a point 

at which the gain from adding more components becomes small, for example four 

components in Figure 3-2. When a component explains a small proportion of the 

variation, it can be assumed that the component just explains the noise. 

Alternatively cross-validation can be applied to compare the prediction errors of models 

with different numbers of retained PCs (Wold et al, 1987a). Samples are removed from 

the dataset either individually or in blocks and applied to the model after it has been 
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developed with the remaining samples (Section 3.2.1.5). This process is repeated until 

all the samples have been excluded once. The final model will be developed from the 

full set of samples.  

Including more PCs to explain the variation in the data will reduce the prediction error 

and improve the fit of the model. However when the PCs are added that only capture 

the noise, the model will become over fitted and the prediction error will start to 

increase. The optimum number of PCs is that which minimises the prediction error or 

maximises the model fit to new unseen data (Eriksson et al, 2006). Measures of the 

model fit include the squared prediction error (SPE, red line in Figure 3-2) and R2 of 

cross-validation, also denoted Q2 (green line), see Appendix 1 for details. The optimal 

number of components may minimise the SPE or maximise Q2. In the example in 

Figure 3-2 four components would be selected. 

 

Figure 3-2: Level of fit vs. number of retained PCs, Q2 and SPE are found from cross validation 

Vallee et al (2009) compared a number of methods for selecting the number of 

principal components to retain. Along with the methods mentioned above, Vallee et al 

(2009) also found the average variance explained, parallel analysis and variance of 

reconstruction error to be reliable methods. The first of these methods involves taking 

the average value of the amount of variance explained by each PC and retaining all 

those that explain more than the average value. In parallel analysis a second PCA is 

created with uncorrelated data of the same size as the original data. Then the PCs are 

selected that explain more than the corresponding PC in the second analysis. For the 

variance of reconstruction error method, each variable is reconstructed from the 

remaining variables to be the most consistent with the PCA model. This process is 

repeated as the number of retained PCs is varied. Then the number of components is 

selected to minimise the variance of the error from reconstruction. 
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Nomikos and MacGregor (1995a) suggested that if a PCA model is to be applied to 

future observations, cross-validation is the most appropriate method to select the 

number of PCs to maximise the predictive power of the model. If the PCA model is to 

be used to explore the current set of data, R2X may be sufficient to indicate the 

required number of retained PCs. 

3.2.1.4 Detection of Outliers 

An assessment of how close an observation fits a PCA model can be measured 

through the use of Hotelling’s T2 and the distance to model in the X space (DModX). An 

observation with a high value for either of these two measures may not fit with the 

pattern of the rest of the dataset and should be investigated to identify the cause of the 

deviance.  

3.2.1.4.1 Hotelling’s T2 

The Hotelling’s T2 statistic for an observation is a weighted average of the square of the 

scores for the PCs that are retained in the model (Eriksson et al, 2006). This metric 

denotes the distance of the observation to the origin in the model plane and can also 

be used to indicate whether an observation follows a multivariate normal distribution. 

For an observation i, with A retained principal components, Hotelling’s T2 is calculated 

as:  

Ti
2 = ∑

(𝐭𝐢𝐀)𝟐

stA
2

A

a=1

 Equation 3-7 

where stA
2  is the variance of tA, the Ath row of the scores matrix T. A large value of T2 

indicates that a sample may not be from the same multivariate normal distribution as 

the rest of the data. Confidence limits for T2 are dependent on the sample size and 

number of retained PCs, and can be obtained from an F-distribution.  

3.2.1.4.2 Distance to Model (DModX) 

DModX is calculated from the residual matrix E and shows the distance from the 

observation to the plane in the X-space and is calculated for each individual principal 

component (Nomikos and MacGregor, 1995b), which is equivalent to the square root of 

the squared prediction error when the model is applied to data that was used in its 

construction. So for the bth component and ith observation, the distance to model is 

calculated as: 
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DModXi = √∑(𝐄𝐚𝐤)𝟐

K

k=1

 Equation 3-8 

where Eik is the error for the ith oberservation and kth variable, from a representation 

with b retained principal components. Confidence limits for DModX can be obtained 

from an F-distribution.  

Hotelling’s T2 can be used to detect strong outliers that do fit within the range of the 

rest of the data. These observations will therefore be far from the origin and may 

potentially influence the structure of the PCA. DModX can be used to detect moderate 

outliers that do not follow the same underlying structure of the rest of the data and so 

may not fit closely to the model plane. A strong outlier may not have a high DModX 

because it can have high influence and pull the model plane towards itself. Hotelling’s 

T2 measures how well a data point fits with the rest of the data, whereas DModX 

measures how well a data point fits to the PCA model.  

3.2.1.5 Application to a Prediction Dataset 

Once built, a PCA representation can be applied to a new data set, Xnew, to assess 

whether the same patterns are present in the new dataset as the original (Wold et al, 

1987a). The loadings matrix from the original PCA model is used to predict the scores 

for the new dataset:  

Tnew = Xnew P  Equation 3-9 

The loadings and predicted scores are then used to infer the values in the new dataset: 

X̂new=TnewP
T
  Equation 3-10 

This method generates a set of predicted scores for the new dataset, which can be 

compared to the scores from the original data to see if the two datasets are similar. For 

each new observation, x, the squared prediction error (SPE) is calculated as: 

SPE = ∑(𝐱𝐧𝐞𝐰,𝐢 − 𝐱̂𝐧𝐞𝐰,𝐢)
2

K

i=1

 Equation 3-11 

The SPE shows how close the prediction is to the original data, so a large SPE 

suggests the new data is not from the same range or does not have the same 

correlation structure as the original data. The SPE is equivalent to the square of 

DModX when the PCA is applied to new data.  
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3.2.2 Partial Least Squares 

The relationship between a set of input and output variables can be assessed by 

extending the PCA methodology to build a regression model, using partial least 

squares (PLS) or projection to latent structures (Wold et al, 2001). Similar to PCA, the 

variables are reduced to a smaller set of latent variables that are again a linear 

combination of the original variables. Then linear regression is applied to find the 

relationship between the latent variables of the input and output data sets (MacGregor 

et al, 2005). The first latent variable is the direction of maximum correlation between 

the scores of the inputs and responses.  

Unlike multiple linear regression, PLS is able to handle data with multiple response 

variables, particularly when the response variables are correlated. Furthermore, a PLS 

model can be constructed from data containing more variables than samples and is 

able to handle missing data.  

In a manufacturing process, PLS models can be implemented to predict the properties 

of the final product using data captured earlier in the process (Lopes et al, 2004). PLS 

is also widely applicable to spectroscopic methods because the data can contain a 

large number of highly correlated variables (Haaland and Thomas, 1988). Using a PLS 

model, small changes in absorbance can be detected over a narrow range of 

wavelengths, allowing for the concentration of a particular compound to be monitored. 

Examples of applications are given in Section 3.4. 

3.2.2.1 PLS Method Overview 

The partial least squares algorithm is used to calculate a linear relationship between a 

set of K predictor variables, X, and a single or set of M response variables, Y, with N 

observations. The algorithm has been described in many sources, including Wold et al 

(2001) and Kumar (2004). The details of the algorithm are shown in Appendix 2 and 

are summarised below.  

First each data set is reduced to latent variables, t1 and u1, with associated weight 

vectors w1 and v1, such that there is the maximum possible correlation between t1 and 

u1: 

t1 = Xw1  Equation 3-12 

u1 = Yv1  Equation 3-13 
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The vectors t1 and u1 are the scores of the first latent variable for the input and output 

datasets respectively. To relate the inputs to the responses, a linear regression is 

found between t1 and u1, termed the inner regression: 

u1 = b1t1 + e1 Equation 3-14 

To relate the scores back to the original variables, the loadings, p1 and q1 are found by 

linear regression, to satisfy: 

𝐗 = 𝐭𝟏𝐩𝟏
𝐓 − 𝐄𝟏 Equation 3-15 

𝐘 = 𝐮̂𝟏𝐪𝟏
𝐓 = b1𝐭𝟏𝐪𝟏

𝐓 + 𝐅𝟏 Equation 3-16 

with error matrices E1 and F1.  

Subsequent latent variables are found following the removal of the contribution of the 

first latent variable from the data sets, and the above process is then repeated.  

3.2.2.2 Measures of model fit.  

The effectiveness of a PLS model is quantified by the amount of variation in the data 

that is explained by the latent variables (Eriksson et al, 2006). The measures R2X and 

R2Y define the proportion of variation that is explained by the input and response data 

respectively (Appendix 2). Q2 quantifies the level of fit for the predictions of the 

response variables, when cross-validation is used to develop the model (Appendix 2). 

The squared prediction error (SPE) denotes the error of predictions for new data: 

SPE = ∑ ∑(𝐲𝐢𝐣 − 𝐲̂𝐢𝐣)
2

M

j=1

N

i=1

 
Equation 3-17 

Where 𝐲𝐢𝐣 and 𝐲̂𝐢𝐣 are observations and corresponding predictions from the ith 

observation of the jth response variable.  

Similar to constructing a PCA representation, the Q2 and SPE metrics from cross 

validation can be examined as more latent variables are added to the model, to 

determine the optimal number of latent variables to be included. 

3.2.2.3 Non-Linear Partial Least Squares 

When constructing a PLS model, it is assumed that a linear relationship exists between 

the predictor and response variables. However the complexity of industrial processes 

may result in data that contains non-linear relationships, including curved relationships 
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between the input and response variables, or interactions between input variables. A 

number of authors have proposed adaptations of the PLS algorithm to allow the 

method to capture non-linear behaviour (Wold et al, 1989, MacGregor et al, 2005).  

The inner regression (Equation 3-14) assumes that there is a linear fit between the 

pairs of scores. Hence studying plots of the relationship between the input and output 

scores, t and u, will indicate whether a non-linear PLS model may be required. Wold et 

al (1989) recommend that in general linear models should be implemented initially, 

since these are more straight forward and interpretable. If linear models do not produce 

satisfactory predictions and the input-output scores plots indicate non-linearity, then a 

non-linear model may be more appropriate. However where it is known that non-linear 

mechanism is present in the process being studied, a non-linear model should be fitted 

from the start.  

In multiple linear regression models, additional terms such as quadratic or interactions 

can be added to the model as predictor variables. In the same way, new columns can 

be added to the input data for a PLS model to explain the non-linear relationships in the 

data (MacGregor et al, 2005). However Frank (1990) suggested that if there are a large 

number of predictor variables, then the X-matrix will become too large and the level of 

noise in the data will be increased. To limit the size of the input data matrix, it may be 

possible to identify those variables that are expected to show a non-linear relationship 

with the response, and use these variables to create additional terms. This method 

requires a detailed understanding of the process being studied and consequently may 

always be feasible.  

Alternatively, to represent a non-linear relationship, Wold et al (1989) proposed 

modifying the inner regression (Equation 3-14):  

ui = fi(ti) + ei = fi(Xwi) + ei, Equation 3-18 

where fi(ti) can be any function that is continuous and differentiable with respect to the 

terms wi. Wold et al (1989) used the example of a quadratic inner relationship: 

ui = c0,i + c1,iti + c2,iti
2 + ei Equation 3-19 

The coefficients c0,i, c1,i, and c2,i are estimated by least squares and ti
2 denotes that 

each element of the vector t is squared.  

The above two methods will produce similar results when the non-linear terms are 

simple quadratic transformations. The first method (MacGregor et al, 2005) is 

potentially more straightforward to implement, since the non-linear terms can be added 
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to the data matrix and the standard PLS algorithm applied. The second method (Wold 

et al, 1989) requires the PLS algorithm to be edited to modify the inner relationship 

between the input and output scores. However this method is more flexible since any 

appropriate function can be used to model the inner relationship. To select a suitable 

model, cross-validation can be used to compare models of different size and 

complexity, to determine which can provide good predictions for new data. For either 

method, it is assumed that an appropriate regression can be found between the input 

and output scores, so these methods can only be suitable to represent weak non-linear 

relationships.  

3.3 Analysis of Batch Data 

Many industrial processes, particularly in the pharmaceutical industry, are run as batch 

rather than continuous processes (Doherty and Lange, 2006). Process data recorded 

during the running of a batch process can be collected to show the evolution of a batch 

from start to finish. The data generated for each batch will show a profile of how each 

variable changes over time and hence the resulting data matrix is three-dimensional: 

batch by variable by time. This information needs to be analysed appropriately to be 

able to understand the differences between batches.  

Multivariate methods can be adapted to handle batch level data by unfolding the data 

matrix into a 2-D data set (Section 3.3.1). Alternatively, pattern recognition tools, such 

as case based reasoning (CBR) can be used to quantify the differences between the 

profiles of batches and use information from similar batches to make predictions about 

new batches (Section 3.3.2).  

3.3.1 Multivariate Analysis of Batch Data 

A dataset consisting of N batches, with J variables recorded over K time points is a 3-D 

(N x J x K) matrix. To apply PCA and PLS, the 3-D matrix must be unfolded to produce 

a 2-D matrix. Eriksson et al (2006) described two options for unfolding the data matrix, 

observation level or batch level, each resulting in different multivariate models being 

created (Figure 3-3). 
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Figure 3-3: Data handling for observation and batch level modelling of 3-dimensional data  

3.3.1.1 Observation Level Analysis 

The trend of each batch over time can be followed by unfolding the X matrix, so that 

batches are stacked vertically, producing a (NK x J) matrix (Figure 3-3). By applying 

PCA to the unfolded dataset, the resulting scores will show the evolution of each batch 

over time (Figure 3-4), allowing unusual batches that do not follow the trend of the 

other batches to be identified (Kourti and MacGregor, 1995). The control limits are 

three standard deviations from the mean, calculated from the individual scores at each 

time point. The scores plot will also identify time points at which differences between 

batches are observed, while the loadings plot will show which variables are indicative 

of these differences (Figure 3-5).  

Observation level unfolding can be extended to develop a PLS model in which the 

response variable represents the maturity of the batch (Kirdar et al, 2007). A maturity 

variable is created that indicates how far the batch is through the process. For example 

the maturity variable may run from 0 at the start to 1 at the end, or alternatively be 

represented by the concentration of a product that is forming. At any time during the 

running of a batch, the process variables can be used to predict the maturity of the 

batch, to infer how close a batch is to completion.  
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Figure 3-4: Scores plot from observation level modeling, 
red lines are three standard deviation limits 

Figure 3-5: Loadings plot from 
observational level modeling 

3.3.1.2 Batch Level Analysis  

An alternative way to unfold the data matrix is to have a single row for each batch and 

a column for each time point of each measurement (Wold et al, 1987b), resulting in a 

(N x JK) matrix (Figure 3-3). This method is known as multi-way PCA or multi-way PLS 

(MPCA or MPLS).  

By applying multi-way PCA or PLS, the data points for each batch are reduced so that 

each batch is represented by one score for each retained latent variable, allowing the 

differences between batches to be identified from a scores plot (Figure 3-6). The 

loadings will contain values for each variable and time point, so the loadings plots will 

highlight which variables are important at specific times during the process (Figure 

3-7).  

  

Figure 3-6: Scores plot from 
batch level unfolding 

Figure 3-7: Loadings plot from batch level unfolding 

When the data is unfolded for multiway analysis, additional variables can be added, for 

example that represent the initial conditions of the batch or inputs such as raw 

materials, thereby allowing non time specific information to be included in the data. 

Additionally, response variables can be included relating to information that is collected 
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at the end of the process, such as the final properties of the batch or the time required 

for the process to reach completion. Using MPLS, a prediction model can be 

constructed to infer the properties of a batch from the information that is collected 

during processing (Section 3.4.3).  

3.3.1.3 Online Process Monitoring 

Observation level modelling is particularly suited to online process monitoring. As data 

is collected throughout the duration of a batch, the scores until that time can be 

calculated without the need for data from the remaining time points. This method allows 

the progress of the batch to be monitored in real time and unusual behavoiur to be 

identified as soon as it occurs so that the source of the issue can be investigated 

quickly. 

The multiway approach is more challenging for use online, since all of the data for one 

batch is used to calculate the scores. Nomikos and MacGregor (1994) suggested a 

method for predicting the future observations for a batch that is in progress by 

assuming that future deviations from the mean trajectory of the batch will remain 

constant over time. However the observation level approach is preferred because new 

batches can be monitored over time, without the need for inferring missing data.  

3.3.1.4 Time Alignment 

Utilising either of the above methods to compare batch profiles may require the data to 

be time aligned so that time points are matched up that relate to specific stages of the 

process. For example, when a process operates across several stages, the duration of 

each stage may differ between batches and hence it will be necessary to align the data 

from each stage.  

One approach to addressing the issue of time alignment is to use a suitable indicator 

variable that will show how far the batch is from completion (Garcia-Munoz et al, 2003). 

The indicator variable must exhibit monotonically increasing or decreasing behaviour, 

an example could be the product concentration. For observational level PLS, the 

indicator variable will be used as the response variable. This method relies on a 

suitable indicator variable being available.  

Alternatively, when a process has fixed stages, the data within each stage can be 

aligned (Ramprasad et al, 2008). A polynomial function can be fitted to the data of each 

variable over time, and the length of the stage expanded or contracted so that the 

stage has the same duration for each batch. The data points for each batch may be 
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interpolated from the polynomial function, so that each batch has the same number of 

data points within a particular stage. An example is shown in Figure 3-8. Three batches 

are shown with different durations. The length of batch one is used as the standard 

batch time, batch two is contracted so that the original curve is represented by fewer 

data points, while batch three is expanded by interpolating between data points.  

 

Figure 3-8: Example of original and time aligned data 

3.3.2 Case Based Reasoning 

All of the multivariate prediction techniques described previously assume that a linear 

relationship exists between the predictor variables, or transformations of, and the 

response variables. An alternative technique to compare batch profiles is to use the 

concept of pattern recognition, or example case based reasoning (CBR).  

Originating from the field of artificial intelligence, case based reasoning uses pattern 

recognition to infer information about a new batch or case, by comparing its profile to a 

set of cases with known features or properties (Watson and Marir, 1994). Initially, a 

data set is created comprising a number of historical cases, or samples, with known 

features. A set of features is collected for each case, so that cases with similar features 

will have similar properties. Then when a new case becomes available, the features of 

the new case are compared to those of the historical cases, to determine the most 

similar historical case. The properties of the new case are then predicted to be the 

properties of the most similar historical case. Unlike multivariate methods, no 

assumptions are made about the shape of the data or the relationship between the 

variables.  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 2 4 6 8 10

M
ea

su
re

m
en

t

Time

Original Data

Batch 1

Batch 2

Batch 3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 1 2 3 4 5 6 7 8 9

M
ea

ur
em

en
t

Time

Time Aligned Data

Batch 1

Batch 2

Batch 3



40 

CBR can be used to compare the profiles of one or more measurements recorded 

throughout the duration of a batch. For example, in Figure 3-9 the profile of the new 

batch is compared to each of the other batches and the selected batch is the batch with 

the most similar profile to the new batch. The batch properties to be predicted could 

include measurements taken of the final product or the duration of a unit operation. It 

would be expected that batches with similar profiles would have similar properties 

(Montague et al, 2008). This method was applied in Chapter 4 to a study of batch 

drying times. The objective is to compare the profiles of process measurements of 

batches with known drying times to predict the drying time of a new batch. The 

predicted drying time will be the drying time of the batch with the most similar profile.  

 

Figure 3-9: Comparison of batch profiles to select the most similar profile to a new batch 

3.3.2.1 CBR Methodology 

For the comparison of a set of batches, a number of features, such as process 

variables, are selected that will represent important information about each batch. 

When features are collected over time, the data will show the evolution of each batch 

and the time that is taken for a processing step to be completed. For example the 

temperature profile will show the time taken to reach a particular temperature. The 

same set of features must be generated for each historical batch and each new batch 

that is subsequently produced. 

To compare two batches, the similarity of the features can be quantified by calculating 

the squared difference between each pair of features. For a set of features, f1,…,fn, 

collected for a new and a historical batch, the distance is calculated as: 

D = ∑ wi

n

i=1

(fi
new − fi

hist)
2

∑ wi

n

i=1

⁄  Equation 3-20 
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The weights w1,…,wn are used to indicate the importance of each feature within the 

comparison, so features that are expected to be the most important are given a larger 

weight.  

The values of the weights may be estimated from process knowledge of the most 

important variables. Alternatively a cross-validation approach can be applied to the 

batches in the historical dataset. By removing each batch individually and using the 

remaining batches to predict the response, the prediction accuracy can be compared 

as the weight values are varied, so that the weights can be optimised to minimise the 

prediction error.  

A new case is compared to a set of historical cases by calculating the distance, D, 

between the new case and each individual historical case. The historical case that 

provides the smallest value of D is selected as the most similar to the new case and 

the properties of this new case are predicted to be the properties of the selected 

historical case.  

For a batch process, a number of measurements can be collected over a period of 

time, which can then be used to calculate the difference between batches. For 

example, for two process variables, v1 and v2, collected over time points 1 to T, the 

difference is calculated as: 

D = ∑ w1(v1,new(t) − v1,hist(t))
2

+ w2

T

t=0

(v2,new(t) − v2,hist(t))
2
 Equation 3-21 

To extend to J variables, Equation 3-21 becomes: 

D = ∑ ∑ wj (vj,new(t) − vj,hist(t))
2

T

t=0

J

j=1

 Equation 3-22 

Data from an industrial process may contain missing data points. At a time point when 

either the new or historical batch has a missing value, the term in the summation of 

Equation 3-22 cannot be computed. The above method can be modified so that the two 

batches are only compared at times points for which both batches contain data. For 

each comparison with a historical batch, an average is taken of the terms that can be 

computed, so the value of D is not biased by the number of missing data points in any 

batch. If the set Tj is defined as the set of time points for which both batches contain 

data, for the variable vj, and Tj contains Nj points, then Equation 3-22 becomes: 
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𝐷 = ∑ ∑
𝑤𝑗

𝑁𝑗
(𝑣𝑗,𝑛𝑒𝑤(𝑡) − 𝑣𝑗,ℎ𝑖𝑠𝑡(𝑡))

2

𝑡𝜖𝑇𝑗

𝑁𝑗

𝑗=1

 
Equation 3-23 

 

3.4 Applications of Multivariate Analysis  

Multivariate analysis techniques have found applications in a wide variety of industries 

outside of the chemical processes for which the techniques were developed (Wold et al 

1987), because these allow relationships to be explored within correlated datasets. 

Applications in include marketing, sociology and finance. In sociology, characteristics of 

a population can be analysed to identify similarities and differences between groups of 

people. For example, Hutcheson and Sofroniou (2010) used PCA to analyse results of 

tests for various skills such as writing, coordination and memory, to highlight clusters of 

people with similar skills and to determine which skills are closely associated with 

others. 

In marketing, applications of PLS models have included developing prediction models 

for sales forecasting (Paliwal and Kumar, 2009) and assessing the drivers of customer 

satisfaction (Hair et al, 2014). In a study into brand preferences to mobile phones, Vinzi 

(2010) used PLS modelling to relate customer characteristics such as demographics, 

along with brand identity to determine the strongest factors that influences brand 

preferences.  

PLS has also found many applications in the finance industry, including bankruptcy 

prediction. For example, Yang et al (2011) used PLS models for feature selection of 

financial indicators, such as assets, liabilities and sales levels, to predict whether 

companies would go bankrupt in the next five years. 

In a process analysis context, multivariate data techniques fit well into the framework of 

process analytical technology (Section 2.3.3). The can be applied to explore the data to 

gain an understanding of the most important sources of variation within a process 

(Section 3.4.1). Process measurements are identified that have the greatest influence 

on the final quality of the product. These measurements are then monitored in real time 

to detect a shift from the normal operating range as soon as it occurs (Section 3.4.2). 

Additionally, PLS prediction models can be used to estimate the results from off-line 

testing, so information about a batch can be inferred from in-process measurements 

ahead of test results being generated (Section 3.4.3).  
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Process data from sensors placed around a reactor will typically generate highly 

correlated measurements and hence there are many examples of the application of 

multivariate analysis techniques to process data. Similarly data from particle size 

analysis can show the frequency density of various particles sizes, which also results in 

data that is suited to multivariate analysis (Section 3.4.4). 

3.4.1 Using MVA to enhance process understanding 

Multivariate techniques have been applied a number of times to tablet manufacturing 

processes, to gain understanding of the relationship between the inputs and outputs. 

For example, Huang et al (2009) used multivariate analysis to assess the impact of 

input material properties and process variables on tablet dissolution times. PCA 

analysis identified that the particle size distribution of the API material exhibited the 

greatest variation of the input variables, and PLS identified a number of material and 

process parameters that had the greatest impact on the dissolution time. Tomba et al 

(2013) used a similar methodology to identify three key process parameters that 

determined the tablet properties on a paracetamol manufacturing process. In order to 

reduce the number of input variables of a PLS model of a drug product manufacturing 

process, Cui et al (2012) systematically removed those variables that were ranked as 

least important and observed the effect on the Q2 and MSE of the model. A dataset of 

25 input variables was reduced to three with little effect on the model fit, and the 

remaining three variables were identified to be focused on for a control strategy.  

Bioprocesses present additional challenges of dynamic variables and processes that 

vary in length. Mercier et al (2013) applied PCA and PLS to process data from a 

biopharmaceutical cell cultivation process. Online process measurements such as 

substrate concentrations were recorded as an average over every 30 minutes to 

reduce the dataset to a manageable size. Two models were created: firstly data of the 

first seven days, which was the length of the shortest batch, and secondly data of the 

first 11 days, for batches that ran for at least 11 days. Both PCA models showed 

clusters of batches that corresponded to differences in batches sizes. PLS models to 

predict the products critical quality attributes showed a low fit, suggesting that the data 

that was captured did not exhibit enough variation to be related to the CQAs, or other 

sources of variation were present that were not captured.  

Observation level data unfolding can be applied to investigate how process variables 

evolve during the operation of a batch. Brülls et al (2003) used near-infrared 

spectroscopy to monitor the freeze drying process of a pharmaceutical product. By 

applying observation level PCA to the spectroscopic data, the trend over time of the 

scores from the first principal component gave a good indication of the rate of drying 
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and showed step changes that indicated when the phase of the drying process had 

changed.  

For the fermentation of an API product, Ferreira et al (2007) compared an MPCA 

model of the process data to an MPLS model that related the process data to the final 

product concentration. The retained components in the MPCA captured 75% of the 

variability in the process data, whereas the PLS only captured 53%, suggesting that not 

all of the variation of the measurements that were included had an impact on the final 

product.  

When MPLS is used to unfold batch data, each variable has a loading for each time 

point, so by investigating the loadings, the time periods in the process that have the 

greatest effect on the final product can be identified. For a fermentation process, Lopes 

and Menezes (2003) used MPLS to relate the process variables to the final API 

concentration. Loadings plots showed that measurements taken early in production 

had the largest weighting and hence greater control was required early in the process.  

To investigate the causes of a number of out of specification quality testing results for a 

batch drying process, Garcia-Munoz et al (2003) used MPLS to combine data relating 

to the chemical composition of the initial product with the drying process variables, to 

predict the chemical composition of the dried product. The duration of each batch 

varied, so each batch was separated into stages and an indicator variable, such as 

temperature and receiver level, used to align the data within each stage (Section 

3.3.1.4). From the loadings of the resulting model, the variables with the largest 

weights could be identified and further investigated to understand their effect on the 

product quality.  

3.4.2 Multivariate Process Monitoring 

When multivariate data is collected from a process, standard SPC charts can be 

extended to multivariate SPC (MPSC) charts, where the scores, SPE and Hotelling’s T2 

from a PCA model are trended (Kourti, 2006). By trending the scores rather than 

individual variables, the number of variables to monitor can be greatly reduced without 

losing information contained in the data. Additionally the presence of multivariate 

outliers can be detected.  

For continuous processes or batch processes where results are collected at one time 

point for every batch, data from a PCA model can be trended in the same way as for 

standard SPC charts. Rocha et al (2010) used MSPC to monitor NIR results from 

samples of a pharmaceutical formulation. The product concentration and impurity 



45 

levels could be estimated from the PCA scores of the NIR data, providing a rapid 

representation of the quality of the product. Control chart limits were calculated based 

on a set of ‘in-control’ samples, and then applied to new samples to determine when 

the process was moving out of statistical control.  

Real-time monitoring of data collected during a batch process can be implemented 

through observation level PCA and PLS. Gabrielsson et al (2006) demonstrated how 

process and spectroscopic data can be combined to enhance the monitoring of a 

process. Observation level PLS was applied to combine data from process variables 

with ultra-violet (UV) spectroscopic data from a chemical reaction, with the reaction 

time as the response variable. The two datasets were scaled so that the sums of 

squares were equal for each dataset. By trending the scores throughout a batch, 

potential deviations in the process were highlighted, allowing the onset of problems to 

be detected online and resolved quickly before the completion of the batch.  

For a powder blending process, Puchert et al (2011) used a control chart of Hotelling’s 

T2 to determine when the blending process was complete. From a PCA model built 

using NIR data of well blended samples, control limits were set for Hotelling’s T2 that 

identified when a batch was suitably blended. Using observation level PCA, NIR data 

collected online from a batch could then be applied to the PCA model and the 

Hotelling’s T2 values monitored until they fell inside of the control limits, suggesting that 

the blended process is complete.  

3.4.3 Prediction models 

The implementation of a prediction model of a process allows inferences to be made 

about the properties of the final product while the batch is still being manufactured. For 

batch processes, the time required for a process stage to complete may vary between 

batches. Prediction of the batch end point from online measurements will allow for 

efficient determination of the end of a process stage. End points can be estimated 

either by following the progress of the batch, for example by estimating the 

concentration of the product as it forms, or by using data collected early in the process 

to infer the time required to reach completion.  

The use of PLS modelling for end point prediction has been found to be applicable to 

drying processes to estimate the required drying time. For example, Lopes et al (2004) 

used a PLS model of on-line near-infrared spectroscopy data to predict the moisture 

content of an API product during a drying process. The resulting model could predict 

the moisture content with a high level of accuracy so that the on-line analysis could 

replace the standard off-line laboratory test, increasing the efficiency of the process. 
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Bioprocesses, such as fermentation reactions to produce therapeutic proteins, have the 

potential to gain large benefits from the use of process analytical technology (PAT) 

techniques (Lopes et al, 2004). Variation in raw materials and seed cultures and high 

sensitivity to process conditions can result in high batch to batch variability and 

processes that are difficult to monitor and control (Read et al, 2009). Additionally, 

products and impurities from bioprocesses can be difficult to characterise, so good 

understanding and control of the process conditions is necessary to ensure the quality 

of the final product. Testing samples off-line during processing will provide limited data 

of the state of the process, so PAT tools can be implemented to gain information from 

data that is collected online, such as pH, substrate concentrations and waste gas 

compositions.  

Furthermore, the time required for the fermentation process will be variable. Taking 

samples from a batch to be measured off-line creates a delay in information being 

available about the process. Kaiser et al (2008) showed how on-line measurements of 

fluorescence spectroscopy could be used to identify the optimal time to harvest the 

product from a bioprocess to produce a recombinant protein. Using PCA to reduce the 

spectroscopic data to two principal components, a change in the trend of the scores of 

the two PCs showed when the product had stopped forming and should be harvested. 

For a fed batch antibiotic fermentation process, Ramprasad et al (2008) used an MPLS 

model to predict the expected batch time and process yield, using process 

measurements such as temperature, pH and dissolved oxygen concentration as 

predictor variables. The model was found to produce good predictions for the batch 

length, from data collect during approximately the first 10% of the required processing 

time, allowing downstream operations to be scheduled well in advance.  

A further use of PLS models is to assess how the inputs to a process can be changed 

to optimise the outputs. Shi et al (2013) applied PLS modelling to identify the design 

space of a continuous hydrogenation process to manufacture an API product. Using 

data from historical experiments, a PLS model was developed between four process 

parameters and two CQAs: reaction extent and enantiomeric excess. Then an 

optimisation process was run by simulating the outputs across the scores space and 

identifying a potential design space.  

Muteki et al (2011) demonstrated how process parameters can be optimised based on 

the characteristics of raw materials. For a dry granulation process for tablet 

manufacture, a PLS model was created using the material attributes and process 

parameters in input variables, and the tablet hardness and dissolution process as the 
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responses. Then for a batch of raw materials, an optimisation process could be run to 

identify the setting for the process, including the roller speed and compaction force, to 

ensure that the tablet properties would be within the specification limits.  

3.4.4 Application to particle size data 

Multivariate analysis methods are also applicable to data generated from particle size 

distribution (PSD) measurements. PSD data consists of a series of sizes and the 

corresponding frequency densities from the sample that has been analysed. Although 

information can be summarised in terms of the mean or percentiles of the distribution, 

these methods do not use all of the information that is available. The PSDs of several 

samples can be compared graphically by overlaying the curves of each distribution and 

identifying whether differences exist. However to compare a number of samples 

effectively, the information from each distribution can be summarised using multivariate 

techniques. For example, principal component analysis could be used to identify the 

differences between samples by comparing the scores and loadings plots. If a small 

number of PCs are able to explain a large amount of the variation in the data, then little 

information will be lost by summarising the data.  

Ma et al (1999 and 2000) proposed using PCA to detect small quantities of large 

particles from PSD data obtained by laser diffraction measurements (Section 5.2.5). 

When collecting data, several sweeps are taken of a sample and the particle size 

distribution is obtained by taking the average light intensities recorded by each of a 

number of detectors. The signal will fluctuate across several sweeps due to movement 

of the particles in the measuring zone. If there are a small number of large particles 

present they will not be detected in every sweep, so their signal may be lost when the 

results are averaged. Ma et al (1999 and 2000) applied PCA to raw data from laser 

diffraction measurements to identify the sweeps that detected the large particles. 

Datasets were used for the laser diffraction analysis of aluminium oxide powder and a 

simulated dataset. The use of PCA allowed the individual sweeps to be analysed, 

rather than the average. It was seen that the second or third principal components 

were able to detect the presence of a small number of large particles. This method 

could be useful to detect large particles that may affect the content uniformity of a small 

number of tablets. When analysing the PSD of a pharmaceutical powder, a small 

amount of large particles will have a large impact on the content uniformity.  

Mattila et al (2007) developed a multivariate statistical process control approach by 

applying PCA to particle size data obtained from on-line laser diffraction on a mineral 

processing plant. Several datasets were compared and in each case two or three 

components were sufficient to explain 99% of the variation in the data and to minimise 
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the prediction residual sum of squares. Control charts of the squared prediction error 

and Hotelling’s T2 were used to detect disturbances in the process. Reducing the data 

from the whole particle size distribution into a small number of PCs enabled the 

process to be monitored efficiently and disturbances to be detected quickly.  

Sandler and Wilson (2009) applied PCA and PLS to understand the relationship 

between particle size and shape measurements, and the downstream packing 

behaviour of a pharmaceutical product. PCA of the size and shape measurements 

highlighted clusters of samples that used the same input material. Then PLS models to 

predict flow and density characteristics revealed that a small amount of highly circular 

particles can have a large effect on the behaviour of the particles.  

3.4.5 Application of Case Based Reasoning 

Montague et al (2008) showed how CBR and multi-way PLS could be applied to 

compare batch profiles from the first part of a batch to infer information about the end 

point of the batch. A lager fermentation process was considered and CBR and MPLS 

were used to predict the time that the process would finish so that the next batch could 

be prepared in advance. Temperature and alcohol measurements were recorded 

during the first part of the brewing process for a number of batches. For CBR these 

readings were compared to the same measurements from a new batch and the most 

similar historical batch used to predict the end time. Both CBR and MPLS produced 

comparable results for this case study. However when these methodologies were 

applied to a more complicated fed-batch pharmaceutical fermentation process, the 

CBR results showed a higher level of accuracy, exhibiting a 30% reduction in mean 

squared error compared to MPLS. This difference may be a result of the MPLS model 

assuming that a linear relationship exists between the input and response variables, 

which may not be the case. The case-based reasoning method does not rely on the 

data satisfying any assumptions, so is more suited to handling non-linear data.  

3.5 Artificial Neural Networks 

Creating a representation of a process using linear modelling techniques relies on the 

assumption that there is a linear relationship between the input and output variables, 

over the range that is being studied. For many complex processes, such as 

manufacturing processes, a linear model is not appropriate for producing a meaningful 

representation of the process (Sukthomya and Tannock, 2005). An alternative 

approach is to use mechanistic models based on first principles of physical or chemical 

relationships in the process. However these models can be difficult and time 

consuming to produce for complex processes (Hussain, 1999). 
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Artificial neural networks are a modelling approach for calculating non-linear 

relationships between input and output variables. Rather than creating a model based 

on the expected shape of the relationship, a set of non-linear functions are defined and 

optimised to find the highest level of fit to the data. Other than selecting the input 

variables to include in the model, no process knowledge is used to determine the 

structure of the model, so neural networks can be considered to be a black box 

modelling method (Wilcox and Wright, 1998). Although other modelling techniques, 

such as PLS, are based on the relationships inherent within the data rather than 

physical relationships, there is an assumption of linear relationships, whereas no such 

assumption is made for neural networks. In general, as less process knowledge and 

scientific principles used to create a model, a larger amount of data is required (Figure 

3-10). 

 

Figure 3-10: Model types and data requirements 

The development of neural networks has progressed over the past 40 years, beginning 

in the field of neuroscience, to represent the complex neurology of the brain 

(Grossberg, 1988), with applications including speech and image recognition 

(Lippmann, 1987). Since then, neural networks have found uses in a wide range of 

industries, including engineering, finance and management (Vellido et al, 1999). 

3.5.1 Methodology 

An artificial neural network is a collection of interconnected nodes that take the data 

from input variables, apply non-linear functions and produce an output that is a 

prediction of the response variable. The parameters of the network can then be 

optimised using an iterative process, to determine the best fit to the data that is 

available.  
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3.5.1.1 Network Structure  

Within a neural network, a node is a single processing unit (Himmelblau, 2000), Figure 

3-11. Multiple inputs into the node are summed to produce a weighted sum. A transfer 

function is then applied to the weighted sum to provide the output from the node. The 

transfer function can be any mathematical function, but is typically a continuous non-

linear function, such as the sigmoid function (Figure 3-12). During training of the 

network, the weights of the input variables are adjusted to provide the optimal 

predictions for the response variables.  

 
 

Figure 3-11: An individual node in a neural network Figure 3-12: The sigmoid function 

The nodes of a neural network are arranged in layers, with nodes connecting to other 

nodes in adjacent layers. Overall, information is passed from the input layer, through 

one or more hidden layers to the output layer (Figure 3-13). The input layer takes the 

signal into the network and, if necessary, scales the data appropriately for the transfer 

function that is used. There will be as many nodes in the input layer as there are input 

variables. The hidden layers are used to find the relationship between the data in the 

input and output layers. Finally the output layer is used to provide the output of the 

network, or the prediction of the response data. The output layer will contain as many 

nodes as there are response variables. The hidden and output layers each contain an 

additional bias node, which are constant values used to allow non-zero outputs to be 

produced from a zero values input.  

The simplest form of a neural network is a feed forward network with three layers: 

input, hidden and output (Himmelblau, 2000). In a feed forward network information 

flows in one direction from the input to the output layer. Alternatively in a recurrent 

network, information can be fed backwards to previous hidden layers. 
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Figure 3-13: Example of a network with 3 input variables, 4 hidden nodes and 2 output variables 

3.5.1.2 Network size  

The number of hidden layers and number of nodes in each hidden layer will depend on 

the complexity of the process being modelled. Since neural networks are a black box 

modelling approach, the topology of the network cannot be found from the expected 

relationships of the variables being modelled (Wilcox and Wright, 1998). For a 

successful network, enough nodes are required so that a reasonable fit can be found 

between the inputs and responses. However a network that is too complex may 

become over fitted, with some of the nodes modelling the noise in the data, resulting in 

poor predictions when the network is applied to new data. Although there is no rigorous 

method to find the ideal topology for a network, systematically adding or removing 

nodes or layers from a network and comparing the error level when applied to new data 

may suggest the optimal network structure for making predictions (Sukthomya and 

Tannock, 2005).  

3.5.1.3 Training, Validation and Test data sets 

As well as limiting the number of nodes in a hidden layer, the number of inputs into the 

network should be limited to variables that are expected to have a relationship with the 

response variables. Including potentially uninformative inputs may add noise to the 

network and increase the level of error in the predictions (Behzadi et al, 2009). It is 

useful if the number of samples in the data set is larger than the number of weights for 

which values need to be assigned, to reduce the level of over-fitting (Nascimento et al, 

2000).  
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When the structure of the network has been defined, the weights of the inputs to a 

node must be optimised using an iterative process. This stage is known as network 

training. For the training of a network two data sets are required, training and 

validation, each containing samples of the input and response data (Himmelblau, 

2000). Firstly the training data is used to optimise the values of the weights. After each 

iteration, the network is applied to the validation data to measure the error when 

applied to unseen data. The training algorithm is stopped when the error of the 

validation data starts to increase, suggesting that the network is becoming over fitted to 

the training data. An example is shown in Figure 3-14; the error of the validation data 

set is minimised after the fifth iteration, so the model produced at this point would be 

the selected to apply to new data.  

 

Figure 3-14: Mean squared error during network training 

The training data must cover the range of the input and output data for which the model 

is to be used, since neural network models cannot extrapolate outside of the training 

data range (Himmelblau, 2000). In the literature, suggestions for the ratio of training to 

validation data range from one to one, to four to one (Sukthomya and Tannock, 2005). 

Additionally a set of testing data can be used to compare different models, by testing 

their performance when applied to new data that has not been used in the development 

of the model.  

3.5.1.4 Training Algorithms  

A training algorithm is used to update the weights in the network. The most common 

training algorithm for a feed forward network is the back propagation algorithm 

(Sukthomya and Tannock, 2005). The network is trained using a set of training data 

and then applied to validation data. The algorithm proceeds as follows (Lippmann, 

1987, Himmelblau, 2000): 
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1. Initialise weights with small random numbers 

2. Apply the input data to the network to generate predictions for the output data 

3. Calculate the error between the actual and predicted output 

4. Calculate the gradient of the error with respect to each weight individually, to 

determine whether increasing or decreasing each weight will reduce the error 

5. Starting with the output nodes, adjust the weights to optimise the error 

6. Repeat from step two until the error of the validation data starts to increase 

The algorithm is named back propagation because updating of the weights starts with 

the output layer and works backwards through the network. Since each training session 

begins with randomly generated numbers, the final weights in the model differ each 

time the algorithm is executed.  

3.5.1.5 Dataset selection 

The data set used to train a neural network model must cover the whole range of inputs 

that may be fed into the model (Himmelblau, 2000). If suitable data is not used to train 

the network then the model may produce poor predictions (Karim et al, 2003) and will 

not represent the process enough to provide useful information.  

When possible, the data set can be taken directly from data that is automatically 

collected during the normal running of the process. Using readily available data will 

avoid any extra costs and may include a large number of data points. However to 

model the process thoroughly, a wider range of input data may be required, potentially 

outside of the normal operating range of the process. For example when optimising a 

process, the optimal settings may be not be included in the normal operating range and 

so may not be represented by the model (Sukthomya and Tannock, 2005).  

For the whole of the potential operating space to be covered, a designed experiment 

can be used to explore all possible combinations of input variables, resulting in a 

balanced data set with which to train the model (Coit et al, 1998). However the time 

and cost of running an experimental programme may limit the amount of data that can 

be collected, particularly if the product produced during the experimental work cannot 

be sold. A possibility is to obtain data collected from normal processing and then to use 

experimental work to cover areas of the operating space that are not included in the 

process data.  

When a mechanistic model of the process is available, an alternative approach is to 

simulate the data that would be collected from a designed experiment (Nascimento et 

al, 2000). The data from a computational model has the advantage of being free from 
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noise that would be observed in data collected on the process (Sukthomya and 

Tannock, 2004). Once developed, a neural network model is faster to run than a first 

principles model and so can be used in an optimisation algorithm to find the ideal 

settings for the process (Hussain, 1999, Mohammed and Zhang, 2013). 

3.5.2 Stacked Neural Networks 

When a neural network is trained, the training algorithm starts with a random set of 

numbers for the weights. Consequently each network that is trained will result in a 

unique set of values for the weights and will produce different outputs for the same 

input data (Zhang et al, 1997). The temptation may be to train a number of networks 

and then select the network that produces the minimum prediction error when applied 

to the testing data. However, the structure of a neural network is flexible so it is 

possible that a model can become over fitted to the data this is used to create the 

network and hence the model may not give good predictions when applied to unseen 

data.  

For good predictions, a neural network model is required to generalise well so that the 

trends in new data will be represented by the model. One solution is to create a 

number of networks and combine the outputs of each network, known as stacking. The 

concept of generalising by stacking was introduced by Wolpert (1992), who proposed 

running an algorithm a number of times and taking an average of each output. The aim 

of stacking was to achieve generalisation accuracy rather than learning accuracy, so 

that the resulting model is applicable to all data, rather than just the data used to create 

the model (Sridhar et al, 1996). When a neural network is trained a number of times, 

each resulting model may capture a different aspect of the process behaviour, so 

improved predictions may be achieved by combining the outcomes of all of the models.  

A stacked neural network is created by training a number of networks (f1, f2, …, fn) and 

the output of the stacked network is a weighted sum of the individual network outputs 

(Figure 3-15). So for input data, X, and weights u1, u2, …, un, the output of the stacked 

network is (Sridhar et al, 1996): 

𝑓𝑠𝑡𝑎𝑐𝑘(𝑿) = ∑ 𝑢𝑖𝑓𝑖(𝑿)

𝑛

𝑖=1

 Equation 3-24 

The stacking weights, ui, could be found through multiple linear regression. However 

the outputs from each network would be expected to be correlated, so it may be more 

appropriate to use principal component regression (PCR). Zhang et al (1997) proposed 

the following methodology:  
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Figure 3-15: Stacked neural network  

Create n neural networks, each time randomly resample the data to form different 

training and validation datasets. Create a matrix, 𝒀̂ of the outputs from each individual 

network, 𝒀̂𝟏, 𝒀̂𝟐, … , 𝒀̂𝒏: 

𝒀̂ = [𝒀̂𝟏, 𝒀̂𝟐, … , 𝒀̂𝒏] 
Equation 3-25 

Then the output from the stacked neural network is: 

𝒀̂𝒔𝒕𝒂𝒄𝒌 = 𝒀𝒖 
Equation 3-26 

where u is a vector of weights, u1, u2, …., un.  

Using principal component analysis, decompose 𝒀̂ into scores, T, and loadings P. By 

inspecting the variance explained by each principal component, retain k components 

that are shown to explain the majority of the variation in the data (Section 3.2.1.3), so 

that: 

𝑻𝒌 = 𝒀̂𝑷𝒌 
Equation 3-27 

Then from Equation 3-26, let u=Pk, for some (kx1) vector , so: 

𝒀̂𝒔𝒕𝒂𝒄𝒌 = 𝒀̂𝑷𝒌𝜽 = 𝑻𝒌𝜽 
Equation 3-28 

Since T is the scores matrix, the columns are orthogonal and therefore not correlated, 

so  can be found by least squares regression: 

𝜽 = (𝑻𝒌
𝑻𝑻𝒌)−𝟏𝑻𝒌

𝑻𝒚 = (𝑷𝒌
𝑻𝒀̂𝑻𝒀̂𝑷𝒌)

−𝟏
𝑷𝒌

𝑻𝒀̂𝑻𝒚 Equation 3-29 

where y is the vector of actual responses. Finally the weights are found as: 
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𝒖 = 𝑷𝒌(𝑷𝒌
𝑻𝒀̂𝑻𝒀̂𝑷𝒌)

−𝟏
𝑷𝒌

𝑻𝒀̂𝑻𝒚 Equation 3-30 

3.5.3 Application of Neural Networks to Manufacturing Processes 

Artificial neural networks have been widely applied in the manufacturing and process 

industries. The main advantage of using neural networks is the ability to learn the 

relationships present in complex non-linear processes, without the need to develop 

mechanistic models (Nascimento et al, 2000). In addition, there is a requirement that 

the data comes from a normal distribution (Lippmann, 1987).  

3.5.3.1 Identification of important process variables 

When constructing a neural network model, no indication is given of the importance of 

each variable for generating a good prediction of the response. An effective method to 

assess the importance of the input variables is to remove each variable systematically 

and measure the effect on the error when the model is applied to validation data 

(Sukthomya and Tannock, 2005). An increase in the error when a variable is removed 

suggests that the input is needed to predict the response, conversely when the error 

remains the same or reduces, the removed input may only be contributing noise and 

should be excluded from the model.  

Nascimento et al (2000) made use of this approach to reduce the number of input 

variables for a neural network model of a chemical production process. A total of 31 

input variables were reduced to 13 by comparing the model error with and without each 

variable. Behzadi et al (2009) applied neural networks to the validation of a 

pharmaceutical granulation process to determine which process conditions had the 

greatest influence on the properties of the final product and therefore required greatest 

control. The final model was used to assess how variation of each input variable would 

affect the properties of the product.   

Neural networks can be applied as part of a predictive process control system (Section 

3.5.3.3), however an initial task is to identify which variables to include and the 

structure of the model that will be used. For a spray drying process, Neshat et al (2011) 

created a neural network model to predict the weight of the granules that were 

produced, with inputs including the density and viscosity of input materials, and the 

temperature and pressure of the process. Then correlation analysis of the variables 

was used to determine an improved structure of the model, whereby the processing 

conditions were used to predict the exhaust air temperature, which was them combined 

with the input material characteristics to predict the granule weight. Gaining 
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understanding of the relationships between the variables then allowed a more effective 

predictive control system to be developed.  

3.5.3.2 Process optimisation 

Once a suitable neural network representation of the process has been developed, the 

model can be used to determine the optimal values of controllable inputs into the 

process, to produce the desired level of quality, energy use or cost efficiency of the 

process. In some cases, a first principles model can be used in a similar way to 

optimise a process. However the equations for a first principles model may take time to 

compute the predicted response, so the optimisation process will require a large 

amount of computer power. Once a neural network model is constructed, it is quick to 

run the model multiple times through an optimisation algorithm to find the required 

levels for the process inputs.  

Nascimento et al (2000) presented an example of a polymerisation process for which a 

neural network model was used to analyse multiple combinations of seven input 

variables to produce the optimal values of three quality measurements on the final 

product. Firstly a mechanistic model was developed and combined with experimental 

data to produce a noise free simulation of the process. Simulated data was then 

generated to cover the whole operating space and then used to fit a neural network 

model. The resulting model produced a large number of predictions over a grid of 

process conditions, enabling the identification of the settings that would produce a high 

quality product, while also considering the cost of the process. The optimal settings 

were successfully implemented on the industrial process.  

In a semi-conductor manufacturing process, Chou and Chen (2012) applied a design of 

experiments approach to collect data to be used to develop a neural network model. 

The process being studied involved depositing a dielectric material between two metal 

layers. Inputs variables included the composition of the material and the temperature of 

the process and the outputs were the defect rate of the devices produced, results of a 

voltage stress test and the amount of fluorine retained in the devices. Following the 

collection of data, a neural network model was fitted that allowed the optimal settings 

for the input variables to be determined, resulting in an increased yield and reduced 

production costs.  

A further advantage of neural networks is the speed that models can be run, enabling 

the continual optimisation of the controllable settings for a process based on 

measurements that are collected during a run. Mohammed and Zhang (2013) 

demonstrated how this approach could be applied to a polymer moulding process, by 
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controlling the temperature set point. Mechanistic models were found to be time 

consuming to run and hence not suitable for online control. The profile of a batch was 

divided into seven stages and at each stage the degree of cure was predicted from the 

temperature and degree of cure from the previous stage. Then predictions of future 

stages could be used to predict the final degree of cure from the final stage of the 

process and an optimisation process run to find the optimal temperatures at which to 

run the remaining stages. A stacked neural network consisting of 30 individual 

networks was developed to improve the accuracy of predictions to new data.  

3.5.3.3 Process monitoring and control 

In the literature, a common field for the application of neural networks in manufacturing 

is for process monitoring and control (Sukthomya and Tannock, 2005). When a 

mechanistic model is too complex to run, a neural network model can be used for 

online predictive control. A neural network model can be used to predict the future 

response of the system, over a specified time and a control signal calculated based on 

the expected deviation from the target of the controlled variable (Hosen et al, 2011). 

For example, for a packed distillation column, MacMurray and Himmelblau (1995) 

showed that a neural network approach to predictive control could provide a higher 

level of control than a first principles model. For a polystyrene manufacturing process, 

Hosen et al (2011) compared the performance of a combined first principles and neural 

network model to a conventional PID controller. The neural network approach achieved 

smoother control with less variation in the controller output.  

Statistical process control is used to detect faults in a process by identifying unusual 

patterns in the data. Neural networks can extend this method by attempting to link 

unusual patterns to specific faults in a process (Zorriassatine and Tannock, 1998). A 

neural network model can be established to detect specific abnormal patterns in the 

data, such as a shift or drift, and then to produce an output of the likelihood that a 

particular change has occurred (Guh, 2007). The type of change may then be used to 

determine the cause of the abnormal behaviour of the process (Cheng, 1997).   

Bioprocesses may be particularly difficult to represent with first principles models 

because they involve complex processes that vary between batches (Karim et al, 

2003). However, good control and fault detection is required to run an efficient process. 

For a protein production process, Karim et al (2003) implemented a neural network 

model to estimate the process yield online based on process conditions such as 

temperature and substrate concentrations. This method allowed a faster estimate of 
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the yield to be achieved compared to waiting for an offline analysis. Consequently a 

problem in the process could be identified and reacted to more quickly.  

Zhang (1999) applied stacked neural networks to a batch polymerisation process, with 

the aim of inferring product quality from in-process measurements, such as 

temperatures. Only nine batches were available to train the network, of which five were 

used as the training set and four as the validation set to determine when to stop the 

training algorithm. Since the dataset size was limited, bootstrap resampling with 

replacement (Efron and Gong, 1983) was used to select the training data for each 

network that was created. In addition, two unseen test batches were applied to the 

models after they had been constructed.  

In total 30 individual networks were created and combined to form a stacked network. 

Using principal component regression, two components were retained and the resulting 

loadings matrix used to determine the weightings for each individual network within the 

stacked network. Comparison of the individual models showed that those with the 

lowest mean squared errors (MSE) for the training and validation data did not have the 

lowest MSE for the testing data, suggesting that the individual models were not robust 

for application to new data. However when a stacked neural network was created, a 

consistently low MSE could be achieved for both the training and unseen data sets. 

Comparison of the number of individual networks within a stacked network found that 

the MSE reduced as more individual models were added into the stacked network, until 

the error stabilised at around 20 networks. Zhang et al (1997) recommended that 30 

networks are used to construct a stacked network. Stacked neural networks have been 

found to achieve greater generalisation to the dataset and produce more robust 

predictions, hence stacked networks are applied in the case studies in Chapter 4 and 

Chapter 5.  

3.6 Conclusions  

Data generated from industrial processes may not meet the assumptions required to 

use traditional multiple linear regression methods. Many alternative methods are 

available to make use of the data that is collected, including multivariate analysis for 

handling correlated data and artificial neural networks for modelling non-linear 

relationships. Multivariate methods can also be adapted to represent non-linear trends. 

For a batch process, when data is collected throughout the duration of a batch, 

multivariate methods can be extended to handle batch level data. Alternatively case 

based reasoning can be implemented to quantify the similarity of batch profiles without 

requiring the assumption of linearity.  
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The methodologies described in this chapter have found many applications to industrial 

processes. Representing the relationships between variables aids process 

understanding and provides information of the inputs that have the greatest impact on 

the product. Online predictions allow off-line measurements to be estimated and 

monitored in real time. Prediction models between the process settings and the final 

quality allow the optimal process conditions to be identified, to maximise the 

productivity of the process. For batch processes, the end of a processing stage can be 

predicted from data collected early in the batch or by continually predicting a maturity 

variable that will indicate when a process is complete.  

To make effective use of the data that can be collected from a process, the most 

appropriate methods must be identified for the data analysis. The methods described in 

this chapter are generally more complicated to use than traditional linear methods, so a 

good understanding of the methodology is required to make use of the results that are 

produced. It may be beneficial to start by using the most simple methods and using 

these results to determine whether a more complex technique is required. For 

example, assessment of the correlation between variables will determine whether 

multivariate methods are required. The pattern of the residuals from linear models will 

indicate whether non-linear methods should be used.  

The majority of the case studies presented in Section 3.4 and Section 3.5.3 applied 

one type of modelling technique, although Montague et al (2008) compared MPLS and 

CBR to two case studies. In the case study in Chapter 4, four different methodologies 

are applied to the same dataset, to identify which is the most appropriate for the 

process being studied. Initially multivariate models were considered appropriate, since 

the data is multivariate in nature. However, reducing the number of variables to a 

smaller number of measurements that are taken directly from the process data may 

result in a prediction model that is more straight-forward to run and more intuitive to be 

implemented on the production plant. Both linear and non-linear methods are also 

compared to determine the level of complexity that is required.  

Where possible, examples have been presented of applications within the 

pharmaceutical industry. However many relevant applications have been found from 

other sectors, including mineral processing (Mattila et al, 2003), polymerisation 

(Nascimento et al, 2000) and semi-conductor (Chou and Chen, 2012). The majority of 

the applications to pharmaceutical process were for secondary manufacturing, for 

example Huang et al (2009) and Behazadi et al (2009), or bioprocesses, for example 

Merica et al (2013) and Karim et al (2003). In the literature there are significantly fewer 
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applications to small molecule API production, although examples were found with Shi 

et al (2013) and Sandler and Wilson (2009).  

Therefore in the subsequent chapters of this thesis, the statistical methodologies 

presented in this chapter are applied to industrial process data collected from API 

manufacture at AstraZeneca. In particular methods are applied to predict the duration 

of a batch drying process (Chapter 4) and to represent the relationship between 

process variables and the particle size distribution of an API product (Chapter 5) 

Methods of estimating the process capability of an API process are investigated in 

Chapter 6 and Chapter 7. 

A specific challenge of the case study presented in Chapter 4 is the alignment of batch 

data when stages within each batch vary in duration (Section 3.3.1.4). Garcia-Munoz et 

al (2003) used an indicator variable to represent the extent of process. Ramprasad et 

al (2008) aligned the start and end times of each stage and used a polynomial fit to 

interpolate the data. However in the case study in Chapter 4, the duration of each 

stage is a result of the timing of a manual operation rather than the rate of the process. 

The rate of the drying process increases at the beginning of each stage and slows 

towards the end. Therefore in this case study it was more appropriate to remove data 

from stages than ran for longer than usual, and leave gaps in the data for stages that 

ran for less time than usual (Section 4.6.1.1).  

In Chapter 5 PLS is used to investigate how process variables may impact on the PSD 

of the final product. The majority of examples of using multivariate data analysis to gain 

process understanding make use of spectroscopic data and data from process 

variables, such as temperatures and chemical compositions (Section 3.4.1). Fewer 

examples show how particle size distribution data is also multivariate in nature and 

therefore applicable to multivariate modelling methods. Sandler and Wilson (2009) 

used PLS to analyse how the PSD can impact on the downstream packing process. 

Conversely in Chapter 5, MVA is applied to determine how the process variables can 

impact on the PSD.  
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4 Modelling of Filter Drying Times 

4.1 Introduction  

Data collected during a manufacturing process can provide valuable information about 

the outcome of a particular stage of the process. Through the application of regression 

methods, a prediction of the outcome can be attained while the process is running. The 

outcome of the process could be a quality characteristic of the final product or 

information on how a particular processing step will progress to completion. The 

methodologies presented in Chapter Three, multiple linear regression, artificial neural 

networks, partial least squares and case based reasoning, were found to be useful for 

predicting the outcome of a process from the in-process measurements (Section 3.3 

and 3.4.3).  

Of the manufacturing processes being studied at AstraZeneca, one particular unit 

operation for which improvements were required was the filter drying process. The filter 

dryers are used to drive off excess water from the solid product, until the water content 

of a sample is below a target specification limit. This test is used to ensure that the 

batch will pass the product strength test during the final quality control (QC) testing.  

Variation is seen in the performance of the filter dryers and the rate of drying for 

different batches. Batch drying times typically range from 50 hours to 90 hours and 

occasionally batches require drying for as long as 200 hours. The drying times increase 

over a period of time until a decision is taken to clean the filter; following a clean 

shorter drying times are observed. The drying process can be the rate limiting step of 

the overall process, so reducing the drying time would allow the capacity of the plant to 

be increased.  

4.1.1 Aims of the Case Study 

A large amount of data is collected online from measurement probes around the filter 

dryers. In particular the temperature inside the dryer and the flow rate of nitrogen gas 

passing through the filter are expected to be related to the rate of drying. There is the 

potential to investigate these data sources to gain more information about the variation 

in the drying times. The aim of this chapter is to investigate which measurements taken 

during the drying process are indicative of the rate of drying and then to build 

regression models to predict the drying time from the in-process measurements.  

The data collected from sensors on the plant will be investigated to determine which 

variables indicate the progression of the drying process, and whether there are early 
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indications of how long a batch will be required to be dried to pass the water content 

test. From a plant management perspective, it is useful to know in advance when a 

slow drying batch is expected, so that plant resources and upstream operations can be 

planned accordingly. Additionally, arrangements can be made in advance for the dryer 

to be cleaned at the end of a slow drying batch. 

Following the identification of the most important variables, a number of prediction 

methods were assessed to determine if it is possible to predict the drying time of a 

batch with better accuracy than the current method of following the profile of the outlet 

gas temperature. Both linear and non-linear models were investigated, along with 

methods that either utilise data from the whole profile of the batch, or use specific data 

points within a batch. Ideally a model should be simple enough to be implemented on 

the plant so that predictions can be generated automatically, however more complex 

methods will be considered to determine the greatest level of accuracy that can be 

achieved in a modelling context.  

If overall drying times can be reduced, the capacity of the plant would be increased, 

which is especially important during busy times in production. Additionally, the amount 

of energy required to dry each batch would be reduced. By ensuring that the product is 

produced with a consistent final water content, the milling and formulation stages of the 

process would potentially be easier to control, since there will be less variation in the 

input material. 

4.1.2 Drying Process 

The drying process is used to drive water off from the solid product to increase the 

purity of the API product. Prior to drying, the solid product is formed as a powder from a 

precipitation reaction, and then the batch is transferred to the filter dryer. The powder is 

collected onto the filter and the remaining liquid is collected in the filter receiver. 

Following the batch transfer from the precipitator, a fixed quantity of purified water is 

washed through the precipitator and dryer to the receiver. A further two washes of 

purified water are passed through the filter dryer to the receiver. The level of liquid in 

the receiver can be monitored to measure how quickly the water passes through the 

filter cake, indicating the resistance of the product in the cake (Section 4.2.2).  

Figure 4-1 shows a schematic of the filter drying process and the location of the inlet 

and outlet gas temperature and N2 low rate sensors. During the drying process, warm 

nitrogen gas is passed through the filter cake to drive off the remaining water. The 

temperature of the gas is controlled to 40oC by the Apovac system to prevent the 

product from changing form. The flow rate of the nitrogen gas, and the inlet and outlet 
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temperatures were identified by the process technical experts as the most likely to be 

indicative of the drying time; these variables are discussed further in Section 4.2. 

Measurements are recorded every ten seconds. Three filter dryers are run in parallel; 

the dryers are identical in design and set up, although some differences have been 

noted between the dryers.  

 

Figure 4-1: Schematic of the filter drying process  

At fixed points during the drying process, the agitator is used to mix the product to 

ensure that the batch is evenly dried and also to allow more water to be removed. As 

more water is removed, the gas is cooled and the outlet temperature falls (Figure 4-2). 

The agitator is applied after 18, 30, 36, 42 and 48 hours of drying, and again when the 

gas temperature reaches 28.5oC.  

When the outlet temperature reaches 29.5oC, it is assumed that no more water is being 

removed so a sample is taken to be analysed for water content, using a loss on drying 

(LOD) test. The reported LOD measurement quantifies the amount of material that is 

left when the water is removed. When the LOD result is found to be above the 

specification limit (95.3%), the drying is stopped and the batch removed from the dryer. 

If the LOD result is below the 95.3% target, drying is restarted and the time until the 

next sample is taken is determined by the first LOD result; for a lower result, more time 

is left until the next sample, which is specified in the batch sheet. 
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Figure 4-2: Typical outlet temperature profile, with agitator uses.  

When the drying process has finished the batch is removed using the agitator. Since 

the agitator does not touch the base of the filter, a small layer of product remains on 

the filter, known as a heel. The heel consists of around 10% of the material from one 

batch. Over several batches the amount of material in the heel builds up and 

compresses, causing the rate of drying to slow down. Eventually the heel is washed off 

by dissolving the remaining material in a solution and a new heel will form with the next 

batch. Typically the heel is washed off every ten to 30 batches.  

The initial loss on drying result can be as high as 97.5% for fast drying batches, 

suggesting that some batches are dried for longer than optimal with this sampling plan. 

However taking samples earlier to determine the drying end point more precisely can 

be undesirable. More specifically, taking a sample from the filter cake, the distribution 

of material can be disrupted, resulting in damage to the soft amorphous particles. If a 

crack forms in the cake, nitrogen gas can pass through the crack rather than the rest of 

the cake, resulting in slower drying. Additionally, each time a sample is taken, the flow 

of nitrogen gas through the dryer is stopped, the sample analysed and then the 

nitrogen is restarted, adding around an hour to the drying process. The ideal drying 

scenario is for the LOD test to be passed with the first sample, and with an LOD result 

just above 95.3%.  

4.1.3 Physical Models of a Drying Process 

Greater understanding of the mechanics of the drying process can be gained by 

studying physical models of drying and filtration processes. These models will indicate 

which inputs and characteristics of the process may indicate the rate of drying. 
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4.1.3.1 Heat Transfer Model 

Nere et al (2012) proposed a heat transfer model of an agitated filter dryer for an API 

process, highlighting that use of an agitator promotes heat transfer across the material 

on the filter and the timing of the agitator can be adjusted to optimise the drying 

process. This study focuses on the heat and mass transfer as heat travels to the 

product from the wall of the vessel, causing the solvent to separate from the product. 

Therefore the temperature of the vessel jacket can affect the rate of the drying, 

although it is important to maintain the temperature below the melting point of the 

product.  

To understand the kinetics of the drying process, the process can be separated into 

three phases (Nere et al, 2012). Phase 1 is the removal of the unbound solvent from 

the cake material, which occurs as the product is transferred onto the filter and the 

initial gas flow begins. Phase 2 consists of desolvation, the separation of solvent into a 

liquid form, and evaporation of the liquid solvent. In phase 3 the evaporated solvent is 

carried away by inert gas. It is assumed that gas flow rate is high enough so that phase 

2 is the rate limiting step of the process. The rate of desolvation and evaporation 

depend on the heat that is transferred from the vessel wall. In the case study at 

AstraZeneca the inlet gas is also heated and will provide heat to the material.  

In the proposed model (Nere et al, 2012), the material nearest to the vessel wall will dry 

first, and then heat is transferred through the dry solids to the wet solids, which are 

next to dry. There is assumed to be a temperature gradient from the vessel wall (Twall) 

through the dry solids to the wet solids (Tbed), which have a constant temperature 

profile. The heat transfer rate, Q, is calculated as: 

𝑄 = 𝑈𝐴(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑏𝑒𝑑) 
Equation 4-1 

where A is the heat transfer surface area. U is the heat transfer coefficient, which 

depends on the heat transfer coefficients of the first layer of solids at the vessel wall 

(hsolid) and the rest of the solid bed (hbed): 

1

𝑈
=

1

ℎ𝑠𝑜𝑙𝑖𝑑
+

1

ℎ𝑏𝑒𝑑
 Equation 4-2 

It is assumed that the material of the vessel wall has high thermal conductivity and 

hence provides no resistance to heat transfer.  

In this model it is assumed that the removal of unbound solvent does not limit the rate 

of the process. However in the case study as AstraZeneca, compression of the heel on 
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top of the filter may restrict the flow of gas and limit the rate of drying. Therefore the 

resistance caused by the filter and material must also be considered.  

4.1.3.2 Filtration Model 

Richardson et al (2002) describe the mechanics of a filtration process. Factors that 

affect the rate of filtration include the pressure drop across the filter, and the resistance 

of the filter cake, filter medium and initial layers of the cake. In this case study, the heel 

on the filter constitutes the initial layer of the cake. The level of resistance will vary from 

batch to batch, depending on the orientation of the particles in the cake and the extent 

to which the particles block pores in the filter cloth. For an individual batch, the 

resistance caused by the cake and the heel will affect the gas flow rate during drying, 

and therefore the rate of drying that will occur. 

The batch that is transferred to the filtration vessel consists of the solid precipitate and 

the solvent. The resistance to flow increases as the product is builds up on the filter, 

and can be observed by the rate at which the remaining solvent flows through the filter.  

Richardson et al (2002) derive the following model to describe the flow rate of the 

filtrate through the filter as the cake build up: 

1

𝐴

𝑑𝑉

𝑑𝑡
=

−Δ𝑃

𝑟𝑙𝜇
 Equation 4-3 

V is the volume of filtrate that has passed through the filter at time t, A is the area of the 

filter, P is the pressure drop across the filter, r is the specific resistance of the 

material, l is the cake thickness and  is the viscosity of the filtrate.  

From Equation 4-3, dt/dV describes the resistance to flow, which increases as the cake 

thickness builds up. If the volume of filtrate is proportional to the amount of cake 

deposited on the filter, then V is proportional to l. When the filtration is run a constant 

pressure, there is a linear relationship between the resistance and the volume of filtrate 

(Richardson et al, 2002). By plotting t/V against V as the material builds up on the filter 

and fitting a linear relationship, the intercept represents the resistance at the start of 

filtration, caused by the filter cloth and heel, and the gradient represents the resistance 

of the filter cake.  

In this case study, the filtrate volume can be measured by the liquid level that is 

recorded in the filter receiver, so the resistance can be estimated by monitoring the 

receiver level as the batch is transferred. Richardson et al (2002) commented that 

plotting t/V against V does not produce reproducible results because the inputs to the 

calculation depend on the exact timings at the start of the operation. However for the 
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case study at AstraZeneca, when the batch transfer is complete the flow rates of the 

subsequent water washes may provide information of the overall resistance of the 

batch and hence information of the expected drying time. Measuring the wash flow rate 

was found to produce consistent results and is described further in Section 4.2.2. 

4.1.3.3 Conclusions from Physical Models  

A physical model of the drying process in this case study must consider the heat 

transfer from the vessel wall and the nitrogen gas, as well as the resistance to gas flow 

caused by the material in the batch and the heel. The models presented above suggest 

that temperature, pressure and flow rate are key parameters in the drying process. 

These variables can be measured or estimated from sensors in the dryers.  

Nere et al (2012) recommend several settings that can be adjusted to optimise drying, 

however changes to the process are outside of the scope of this project. The focus for 

this case study is on empirical modelling to predict the drying time. The potential input 

variables and modelling methods are presented in the remainder of this chapter.   

4.1.4 Modelling Methods for the Prediction of Drying Times 

A range of modelling and prediction methods were discussed in Chapter 3 that could 

be applied to the drying times data. The most straightforward approach would be to 

take a limited number of measurements from specific points in the drying process as 

input variables and create a model with the drying time as the response. A linear model 

would be the most practical to implement on the production plant, since no statistical 

software will be required to implement the model. However many industrial processes 

exhibit non-linear characteristics and hence neural network models may provide a 

better representation of the process, resulting in improved predictions for new unseen 

data.  

A constraint of some linear models is that the input data points are required to be 

uncorrelated to satisfy the assumptions of the methods. In this study the data is 

recorded at regular intervals throughout the drying process and hence the profile of the 

batch can be monitored, rather than summarising the profile in terms of individual data 

points. Multivariate methods such as principal component analysis (PCA) and partial 

least squares (PLS) can handle variables with multiple time points, by reducing the size 

of the data set to a smaller number of latent variables. An alternative approach is case-

based reasoning (CBR), based on quantifying the differences between batch profiles 

and does not require any assumptions about the trends within the data. 

The aim of modelling is to predict the drying time with a high level of accuracy, using 

variables measured early in the drying process. This approach would remove the need 
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to take LOD samples to detect the drying end point, thereby reducing drying times by 

preventing batches from being dried for too long and removing the need for multiple 

LOD samples to be taken before drying is complete. A further benefit of increasing the 

understanding of the drying process would be the optimisation of the timings for 

performing a clean to remove the heel on the filter, so that the filters are not cleaned 

more frequently than necessary but very long drying times are prevented.  

4.2 Variables Associated with Drying Time 

The goal of the modelling task is to predict drying times early in the process, so data 

collected close to the start of the drying process should be used. In addition, to build a 

linear or neural network model, the trends in the data must be summarised to individual 

data points that are not strongly correlated with each other. A number of process 

variables are considered which are expected to be related to the drying time of a batch. 

These variables have been identified from discussions with process technical experts 

and from previous work undertaken to investigate the drying times. The variables 

considered are nitrogen flow rate, water wash flow rate and inlet and outlet gas 

temperatures and pressure.  

4.2.1 Nitrogen flow rate 

The flow rate of nitrogen during the drying process will indicate how quickly water is 

being driven off from the product by the circulating gas. However, it is known that as 

the heel on the filter becomes older, the rate of drying appears to slow. As the powder 

in the heel becomes more compressed, the flow of nitrogen through the batch is 

restricted and hence less water is driven off.  

Figure 4-3 shows the N2 flow rates during the drying of two batches, a fast and a slow 

drying batch. The fast drying batch is following the removal of the heel, so the nitrogen 

gas flow is fast, resulting in a short drying time of 52 hours. The slow drying batch is 

the 18th batch on the same heel, so the N2 flow rate is reduced, resulting in a drying 

time of 83 hours. The N2 flow rate is stopped temporarily when the agitator is used to 

mix the filter cake, and it may resume at a lower rate if the agitator removes cracks in 

the product, through which gas can pass. The flow rate can also drop towards the end 

of the drying process as the cake becomes more compact. 
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Figure 4-3: N2 flow rates of a fast and slow drying batch 

Measuring the N2 flow rate at the start of a batch will give an indication of the flow rate 

that is expected throughout the duration of the batch and will therefore suggest the time 

that the batch will take to dry. A potential summary of the N2 flow rate profile is to 

determine the average flow rate between each agitator run. However, batches with a 

low flow rate at the start tend to have a similar flow rate for the remainder of the batch. 

Hence if the flow rates between each agitator use are collected for several batches, 

correlations would be expected within the data collected for each batch and only one 

data point could be used as an input to a linear model.  

A further constraint of using the N2 flow rate in a prediction model is that one of the filter 

dryers, dryer one, does not have an in-range flow meter, and hence an alternative input 

is required for this dryer.  

4.2.2 Wash flow rate 

An alternative measure of the resistance of the heel is to assess the flow rate of the 

water that is washed through the product after the batch is transferred to the filter. At 

this time, purified water is washed through the product and collected into the receiver. 

The rate of change of the level in the receiver indicates the flow rate of the water 

through the cake and how much resistance is caused by the material on the filter. By 

measuring the flow rate of the filter washes, useful information is gained at the start of 

the process, before drying commences. In addition, the data of the wash flow rate 

measurement is more straightforward to collect than the average N2 flow rate between 

agitator runs.  

Figure 4-4 shows a typical profile of the receiver level as the batch is transferred to the 

filter and water is washed through. The time taken for each wash to be collected in the 

receiver can be used to measure the flow rate through the filter. By zooming in around 
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a particular wash, it can be seen that the change in level over time could be used to 

calculate the wash flow rate in m3/hr (Figure 4-5). 

 

Figure 4-4: Receiver level as batch is transferred to filter 

 

Figure 4-5: Measurements for flow rate calculation 

Over the build up of a heel, the wash flow rate drops as more batches are run in the 

dryer (Figure 4-6). For this particular heel, the drying times are not seen to increase 

until around 16 batches have been dried, after which the drying times for subsequent 

batches increase rapidly. When two consecutive batches require more than 80 hours of 

drying the heel is washed off.  
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Figure 4-6: Drying times and wash flow rates over one heel 

4.2.3 Temperature profile 

The temperature inside the dryer is measured by temperature probes on the inlet and 

outlet gas streams (Figure 4-1). The inlet temperature is generally more constant 

throughout a batch, although variation is seen in the readings when the gas flow is 

stopped and the agitator applied (Figure 4-7 and Figure 4-8).  

The outlet gas temperature is also affected when the agitator is in use, but overall it 

increases during the drying of a batch. When the temperature reaches 29.5oC the 

drying is expected to be complete. Batches that dry more quickly generally have a 

lower outlet temperature during the initial stage of drying, suggesting that more water is 

being driven off the batch and cooling the nitrogen gas (Figure 4-7). Conversely 

batches that take longer to dry have higher temperatures at the start of drying, since 

less water is being driven off by the nitrogen (Figure 4-8). These are the same batches 

as shown in Section 4.2.1. 

Since the outlet temperature is generally not constant throughout a batch, taking the 

mean over a time period may not provide a useful summary of the temperature data. 

An alternative summary is to compare fixed points during drying to describe the 

temperature profile. The agitator is generally started up at fixed times from the start of 

the process, so the temperature measurements around these times could be used to 

compare between batches. For example the temperatures immediately before and after 

agitation will be considered, along with the minimum temperature between agitator 

runs.   
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Figure 4-7: Temperature profile of a fast drying 
batch 

Figure 4-8: Temperature profile of a slow drying 
batch 

4.2.4 Pressure Profile 

The pressure drop across the filter is also an important variable in the rate of drying 

(Richardson et al, 2012). The pressure drop can be estimated from data collected of 

the inlet and outlet gas pressure. However the pressure drop data shows a high level of 

variation and does not shows a distinction between fast and slow drying batches. 

Therefore the pressure data will not be used for subsequent modelling. 

 

Figure 4-9: Pressure drop across the filter for fast (blue) and slow (red) drying batches, in the first 

30 hours of drying 

4.2.5 Comparison of Process Variables 

A number of measurements have been proposed to be used to predict the final drying 

time. Some of these measurements, such as readings from the same probe would be 

expected to be correlated and therefore cannot all be used to build a standard linear 

model.  

The correlation structure between the potential variables is assessed with data of the 

chosen measurements collected for a set of 16 batches from one dryer. For each batch 

the data were separated by agitator use and the following information was collected up 

to the fourth agitation (Figure 4-10): 
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 Minimum outlet temperature 

 Maximum outlet temperature, excluding the peak after agitation 

 Maximum outlet temperature immediately after agitation 

 Flow rate of the 1st filter wash  

 

Figure 4-10: Data points to be included in PCA model 

A principal component analysis was the undertaken, to assess the correlation structure 

within the data. The first principal component explained 74% of the total variation in the 

data. The loadings of the first component show that the N2 flow rates correlates well 

with the wash flow rate and the temperature measurements correlate with each other 

and the drying time, but negatively with the flow rates (Figure 4-11).  

Since it was not possible to collect N2 flow rate measurements for dryer one, the wash 

flow rate will be used as an input variable to indicate the N2 flow rate. The maximum 

temperature variables have similar loadings, suggesting that they all provide the same 

information. To apply the model early in the drying process, the measurements will be 

taken from around the first agitation. The temperature peak after the agitator is run is 

the most straightforward measurement to extract from the temperature profile and 

hence this measurement will be used as an input to the linear model.  

The PCA loadings suggest that there is a negative correlation between the flow rate 

and temperature measurements. The effect of correlated inputs on linear models can 

be assessed with variance inflation factors, which will indicate whether the correlation 

is too high to include both variables (Section 3.1).  
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Figure 4-11: Loadings from principal component model 

4.2.6 Final LOD Result 

A further cause of variation in the drying times is the final water content of the batch. 

The final loss on drying result can vary from 95.3% to 97.5%, meaning that some 

batches have drying times that are longer than required. Consequently, if the actual 

drying times are used as the response variable in predictive modelling, the model will 

over-estimate the time that is required for the LOD result to reach 95.3%. To prevent 

the model from over-estimating the drying times, the time that was required for the LOD 

to reach 95.3% must be inferred for each batch.  

The required drying times can be estimated by looking at the profile of the loss on 

drying results when more than one sample is taken (Figure 4-12). Data collected from 

batches that passed on the second LOD test shows that the average rate of drying 

between samples is 0.20%/hr. Therefore the expected time at which the LOD of batch 

would have been at the specification limit of 95.3% can be calculated as: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑑𝑟𝑦𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑑𝑟𝑦𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 −
𝑃𝑎𝑠𝑠 𝐿𝑂𝐷 𝑟𝑒𝑠𝑢𝑙𝑡 − 95.3

0.2
 

 

Equation 4-4 

 
Since information is not available on the drying rate of batches that passed on the first 

LOD, it will be assumed that the rate is similar to the drying rate for batches that 

passed on the second test.  

Batches that passed on the third or fourth LOD tests showed a slower rate of drying up 

to the sample that passed (Figure 4-13). The dataset was limited because only five 

batches required more than two samples to be taken. For these batches the average 
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drying rate was found to be 0.07%/hr. Therefore the adjusted drying time was 

calculated as: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑑𝑟𝑦𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑑𝑟𝑦𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 −
𝑃𝑎𝑠𝑠 𝐿𝑂𝐷 𝑟𝑒𝑠𝑢𝑙𝑡 − 95.3

0.07
  

Equation 4-5 

  

Figure 4-12: Loss on drying results for 
batches that passed on the second LOD 
test 

Figure 4-13: Loss of drying results for batches that 
passes on the third or fourth test 

The adjusted drying times were calculated for each of the batches in the dataset, to 

ensure that the most accurate predictions of the required drying time of a batch could 

be made. For batches that passed on the first or second LOD test, the adjusted drying 

time were calculated from Equation 4-4. For batches that passed with three or more 

LOD tests, the adjusted drying time were calculated from Equation 4-5.  

This approach makes a number of assumptions about the rate of drying. Firstly it is 

assumed the rate of drying at the end of batches that passed on the first sample is the 

same as the batches that passed on the second sample. In Figure 4-3 two samples are 

taken before the batch is finished and the flow rate is seen to drop after each sample is 

taken, suggesting that the rate of drying also slows down. Therefore it is likely that the 

batches that pass on the first sample may have a faster rate of drying that those that 

have more than one sample taken. An additional limitation when only two samples are 

taken is that a linear trend in the LOD results must be assumed between the first and 

second samples. The data in Figure 4-13 suggests that the trend is close to linear for 

all but one of the batches.  

The rate of drying for fast drying batches could be measured if more samples are taken 

before the batch has finished drying. Ideally, at least two extra samples would be taken 

before the end of drying to estimate how the drying rate changes as the LOD reaches 

95.3%. Then the drying rate could be compared to other characteristics of the drying 

process, such as the N2 flow rate, to assess if the drying rate at the end of a batch 

could be estimated from process data.  
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4.3 Data set 

Following the identification of potential process variables to be predictors for the drying 

time, an initial dataset was created consisting of drying times, LOD results, heel size, 

wash flow rate and temperature after the first agitation. From the LOD results, the 

adjusted drying times were calculated as described in Section 4.2.6. Batches were 

included from each dryer, over a time span of more than a year that included a range of 

drying times and heel lengths.  

A total of 101 batches were included in the dataset (Table 4-1). The batches were then 

separated into training and test data sets. The training data (68 batches) was used to 

build models, and the test data (33 batches) was used to determine how accurate the 

predictions were for new data. The distribution of drying times in each dataset is shown 

in Figure 4-14. 

For each filter dryer, the majority of batches have drying times of less than 70 hours, 

with a few batches having longer drying times. The batches to be included in the data 

sets were chosen to show an even spread over the range of drying times, so that the 

resulting models were not biased by having more batches with shorter drying times. 

Fewer batches are available for dryer three because a fault had been recently fixed 

that was previously resulting in prolonged drying times. Therefore data collected from 

older batches would not be expected to following the same trends as more recent 

batches. Only three batches from dryer one were found to have drying times greater 

than 70 hours, which is seen because on two occasions plant cleans occurred when a 

number of batches has been run on one heel, but before drying times started to 

increase above 70 hours. Therefore the heel was not left on the dryer for long enough 

to observe longer drying times.  

Overall there are fewer batches with longer drying times from dryers one and three, so 

there may not be enough variability in the data for these dryers to develop models that 

can predict longer drying times. For each batch, the adjusted drying time was 

calculated using the final loss on drying result, with Equation 4-4 and Equation 4-5.  

Dryer 
Training 
batches 

Test 
batches 

1 24 13 

2 26 13 

3 18 7 

Table 4-1: Data set sizes for linear modelling 
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Figure 4-14: Drying times in each data set 

4.3.1 Wash flow rate 

Comparison of the wash flow rate with the adjusted drying times suggests that the 

relationship may not be linear (Figure 4-15). Following a clean, the flow rate tends to be 

high at around 800m3/hr and drying times are short. The flow rate gradually reduces 

over consecutive batches, while the drying times remain consistently low (Figure 4-6). 

However once the flow rate drops to around 500m3/hr, the drying times start to 

increase. For the linear models, plots of the residuals will be studied to determine 

whether a transformation is necessary to fit a linear relationship between the inputs and 

the drying time.  

Figure 4-15 highlights a potential outlier in the data from dryer two exhibiting a very low 

flow rate. On further investigation it was found that this batch incurred a problem during 

the purified water washes, which resulted in slow washes but did not affect the overall 

drying time of the batch. Additionally a batch from dryer three has a very long drying 

time but not a particularly slow flow rate. During the drying of this batch several pauses 

in the nitrogen recirculation were noted, which may have reduced the rate of drying. 

Since the causes of the outliers have been identified, these batches were removed 

from the data set to prevent them from having a large influence on the fit of the models.  

The trend between the flow rate and the drying times is less consistent for dryer three 

than the other two dryers, with longer drying times being observed for higher flow rates. 

Consequently there may be difficulties when predicting the drying times for this dryer.  
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Figure 4-15: Adjusted drying time vs. wash flow rate, for training data, potential outliers circled 

4.3.2 Heel age 

Although in general drying times are seen to increase as the age of the heel increases, 

there is variation in the number of batches that are dried before a heel is required to be 

washed off. Consequently there is not a strong relationship between heel size and 

drying times (Figure 4-16) and the number of batches on a heel will not be included as 

a predictor variable in the linear model.  

4.3.3 Temperature peak 

The relationship between the drying times and the temperature peak after the first 

agitation appears to be approximately linear for the batches from dryer two (Figure 

4-17). However batches from dryer one appear to have short drying times across most 

of the temperature range, up to 23oC. Conversely batches from dryer three generally 

show a low temperature after the agitation, but these batches have drying times up to 

90 hours. Although the dryers are designed to be identical in set up, changes over time 

have resulted in differences in dryer behaviour.  

The drying times from dryers one and three showed a weak relationship with the 

temperature after the first agitation (Figure 4-17). On further investigation of the drying 

profiles, it can be observed that for some batches run in dryer three that have long 

drying times, the outlet gas temperature does not start to increase until after the 

agitator has been run for the first time (Figure 4-18). Therefore measuring the 

temperature around the first agitation does not provide sufficient information to enable 

a prediction of the drying time.  
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Figure 4-16: Adjusted drying time vs. number of 
batches since heel wash, for training data 

Figure 4-17: Adjusted drying time vs. outlet 
temperature after first agitation, for training 
data 

 

Figure 4-18: Comparison of two batches with fast (blue) and slow (black) drying  

For batches dried in dryer three, there is a positive correlation between the drying times 

and the temperature peak after the second agitation, suggesting that for this dryer a 

linear model may be appropriate with the inclusion of the additional temperature 

variable. However for batches that were run on dryer one, the correlation appears 

much weaker. For this data set, there are only three batches with drying times in 

excess of 70 hours, so there is not enough variation in the drying times to determine if 

there is a good underlying correlation. In general, the batches dried on dryer one 

finished quickly and hence there may not be enough batches with long drying times to 

make up a suitable data set with which to construct a model. 
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Figure 4-19: Adjusted drying time vs. temperature peak after second agitation, for dryers one and 

three 

Since difference trends have been observed between the three dryers, separate 

models are required for each dryer, to capture the individual trends and provide optimal 

predictions of the drying times. 

4.4 Linear Models 

Linear models were constructed to assess the strength of the linear relationship 

between the predictor variables and the drying times. The response variable is the 

adjusted drying time that was calculated as discussed in Section 4.2.6. Models were 

constructed using Minitab 16.  

4.4.1 Model for Dryer Two 

The data from dryer two appears to shows a strong relationship between the drying 

times and the wash flow rate and temperature profile, hence the first linear model was 

created for dryer two. The initial linear model was created with the flow rate and 

temperature peak after the first agitation as the predictor variables.  

4.4.1.1 Linear model 1 

The first linear model shows a good level of fit, with an R2 of 67%. However the 

residuals show curvature when plotted against the fitted values (Figure 4-20), with 

positive residuals observed for the highest and lowest fitted values, suggesting that the 

assumption of constant variance is not satisfied. It has been noted previously that the 

relationship between the wash flow rate and the drying times may be non-linear 

(Section 4.3), so a transformation may be necessary to find a linear model that satisfies 

the underlying modelling assumptions. 

Both predictor variables are shown to have a significant effect on the drying time since 

the respective p-values are less than 0.05 (Table 4-2). The constant term has a large 
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p-value, suggesting that the coefficient could equal to zero. However since the drying 

time would not be expected to be zero when the predictors are zero, the constant term 

will be kept in the model. 

The variance inflation factor (VIF) for the two predictor variables is 2.64 (Table 4-2), 

which suggests the correlation of the inputs causes a small increase in the variation of 

the model. However the effect is not large enough to require that one of the predictors 

should be removed from the model.  

Term Coefficient SE Coef T P VIF 

Constant -14.4 51.0 -0.282 0.780  

Flow rate -0.0358 0.0163 -2.19 0.039 2.64 

Temperature 4.75 2.127 2.23 0.036 2.64 

Table 4-2: Coefficients of linear model 1 

 

Figure 4-20: Residual plots for linear model 1 

4.4.1.2 Linear model 2: Log Transformation of Wash Flow Rate  

Figure 4-15 suggests that there could be non-linear relationship between the wash flow 

rate and the drying time, in particular a log transformation of the wash flow rate data 

may be appropriate to improve the plots of the residuals. Linear model 2 was 

constructed with an additional term of the log transformation of the flow rate (Table 

4-3). The residuals show an improved fit when plotted against the fitted values (Figure 

4-21). The p-value for the temperature term is large (0.64), suggesting that this term 

may not be required in the model. However when the temperature term is removed the 

MSE of the test data increases from 74 to 93 and hence this term will remain in the 

model.  
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The variance inflation factor (VIF) for the terms ‘flow rate’ and ‘Ln(flow rate)’ are 36 and 

46 respectively. The high VIF values suggest that there is too high correlation between 

these two terms and this correlation can increase the variation in the model. However 

when the ‘flow rate’ term is removed from the model, curvature is observed in the 

residuals (Figure 4-22), as in linear model 1. The high correlation of the flow rate 

variables may be the cause of the high standard error and subsequent low p-value of 

the temperature term.  

Term Coefficient SE Coef T P VIF 

Constant 444 170 2.61 0.016  

Flow rate 0.107 0.0532 2.01 0.057 36 

Ln (flow rate) -74.2 26.6 -2.79 0.011 45 

Temperature 1.09 2.29 0.48 0.638 3.9 

Table 4-3: Coefficients for linear model 2 

 

Figure 4-21: Residual plots for linear model 2 

 

Figure 4-22: Residuals vs. fitted values with ‘flow rate’ term removed 
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4.4.1.3 Comparison of linear models 1 & 2 

The predictability of models 1 and 2 were assessed by applying them to the training 

and test data (Figure 4-23 and Figure 4-24). Both of the linear models for dryer two 

show good predictability when applied to the training and test data sets, with R2 values 

of 78% for the test data for both models (Table 4-4). However the high correlation of 

the input variables in model 2 suggests that model 1 is the preferred model to 

implement. 

 
 

Figure 4-23: Predictions for model 1 Figure 4-24: Predictions for model 2 

 

 
Model 1  Model 2  

MSE (train)  99.0  73.2  
MSE (test)  74.4  73.5  
R

2

(train)  66.8%  75.4%  
R

2

(test)  78.3%  78.5%  
Table 4-4: Fits and errors of models 1 and 2 

4.4.2 Linear model 3 (Dryer Three) 

Linear model 3 was created for dryer three, with the temperature peak after the second 

agitation included alongside the wash flow rate and first temperature peak. An 

additional two new batches that had recently been manufactured were added to the 

data set to increase the number of batches with longer drying times, one each were 

included in the training and test data sets.  

For the resulting model, the flow rate has a large p-value and the coefficient for this 

term is close to zero, suggesting that the flow rate is uninformative as a predictor for 

the drying time (Table 4-5). It was noted from Figure 4-15 that there is no evidence of a 

strong correlation between the wash flow rate and the drying time for dryer three.  
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Removing the flow rate variable produces a model in which all the remaining variables 

are significant (Table 4-6). The residual plots appear reasonable (Figure 4-25) and the 

variance inflation factor is 1.1, which suggests that there is no significant correlation 

between the two temperature measurements.  

Term Coef SE coef T P VIF 

Constant -248.9 84.9 -2.95 0.01  

Flow rate 0.00 0.01 -0.35 0.73 1.32 

Temp peak 1 8.94 3.88 2.31 0.04 1.07 

Temp peak 2 6.04 1.68 3.59 0.00 1.32 

Table 4-5: Coefficients for linear model for dryer three 

The resulting model shows a reasonable level of fit to the training data (Table 4-7). 

However when the model is applied to the test dataset, none of the variation in the 

drying times can be predicted (R2=0). The test dataset is small, with only 8 batches, 

which may not be large enough to give a reliable indication of the predictability to new 

data. An alternative method to measure the prediction accuracy for new data is to apply 

cross-validation (Section 3.1.1.3). Using leave-one-out cross-validation, an R2 of 35.7% 

was attained for predictions to the new data (Figure 4-26), which suggests that the 

model predictions are poor when applied to new data.  

The poor predictability of the model for dryer three could be due to the data set lacking 

enough batches with longer drying times, hence the input variables do not show a 

strong relationship with the drying time over the range in which they have been 

collected. Additionally, non-linear models may be more appropriate and are 

investigated in Section 4.5.2 and Section 4.7.2.  

Term Coef SE coef T P VIF 

Constant -260.3 74.3 -3.50 0.00  

Temp peak 1 9.12 3.73 2.45 0.03 1.05 

Temp peak 2 6.31 1.45 4.34 0.00 1.05 

Table 4-6: Coefficients for linear model 3 
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Figure 4-25: Residual plots for linear model 3 

 

 
Model 3  

MSE (train)  93.9  
MSE (test)  183  
MSE (CV) 132 

R
2

(train)  66.9%  
R

2

(test)  0%  
R2(CV) 35.7% 

Table 4-7: Fit of model 3 

  

Figure 4-26: Predictions for model 3, with cross-validation  

4.4.3 Linear Model 4 (Dryer One) 

The process above was repeated with the data from dryer one. A linear model was built 

with the wash flow rate and the first two temperature peaks as predictor variables. 

Since there were only three batches with drying times longer than 70 hours there is 

limited variation in the data, so all of the train and test batches were used to build the 

model and leave-one-out cross-validation was applied to assess the accuracy of the 

model when applied to unseen data.  

Similar to dryer three, the wash flow rate was not found to be a significant predictor (p-

value=0.50) and was removed from the dataset. The resulting model shows strong 

curvature between the residuals and the fitted value, so a Box-Cox transformation of 
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the inverse of the drying time was applied to create the final model (Table 4-8 and 

Figure 4-27).  

Linear model 4 shows a poor level of accuracy for predicting the drying time (Table 4-9 

and Figure 4-28). The model cannot identify the difference between batches with drying 

times less than 70 hours, and drying times longer than 70 hours are all under-

predicted. As a result, non-linear modelling methods may be more appropriate for the 

data from this dryer.  

Term Coef SE coef T P VIF 

Constant -0.0422 0.0051 -8.23 0.000  

Temp peak 1 0.0008 0.0004 2.10 0.043 2.2 

Temp peak 2 0.0004 0.0002 1.68 0.103 2.2 

Table 4-8: Coefficients of linear model 4 

 

Figure 4-27: Residuals for linear model 4 
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Model 4  

MSE (train)  93.2  
MSE (CV)  123  
R

2

(train)  45.1%  
R

2

(CV)  44.3%  
VIF 2.2 

Table 4-9: Fit of linear model 4 

 
 

 

Figure 4-28: Predictions for model 4, with cross-validation 

4.5 Neural Networks 

The residual plots from the linear models suggest that the residuals do not satisfy the 

assumptions of independence and identically normally distributed. As an alternative 

modelling method, neural networks were investigated to represent the potential non-

linear relationship between the predictors and the drying time. Stacked neural networks 

(Section 3.4.2) were considered since they have been found to be more robust than 

standard neural networks for predicting the responses of unseen data. Neural networks 

were initially applied to the data from dryer two, since the strongest relationship 

between the predictors and response were observed for this dryer. Neural networks 

were constructed using the Matlab (2008b) Neural Networks toolbox, but adapted to 

generate stacked neural networks (Figure 4-29).  

 

Figure 4-29: Process for fitting stacked neural networks 

4.5.1 Dryer Two 

The dataset for dryer two comprised the same 39 batches as for the linear modelling 

analysis, of which 13 batches formed the tests dataset. The 26 remaining batches were 

split into 17 training and nine validation batches and were selected randomly for each 
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individual network that was created. Therefore over a stacked network each batch 

would be expected to appear in both the training and validation datasets.  

4.5.1.1 Network Structure  

In the development of a stacked neural network, a number of features must be 

determined: the number of principal components (PCs) to retain, the number of hidden 

nodes and the number of individual networks to be stacked.  

Firstly the number of PCs was determined. A stacked neural network was created 

comprising 30 individual networks, recommend by Zhang et al (1997), and one hidden 

node, since there are only two inputs. One PC was found to explain 90% of the total 

variation and hence one PC will be retained in all subsequent models in this section. To 

determine the optimal number of individual networks to stack, stacked networks were 

created with 10, 20, 30 and 40 individual networks. 20 repeated networks were fitted of 

each structure to show the variation between identically set up networks (Figure 4-30). 

A stacked network comprising 30 individual networks was found to minimise the error 

when applied to the test data; increasing the size to 40 networks did not reduce the 

error any further. Finally networks were assessed with one, two or three hidden nodes 

(Figure 4-31). One node was found to be sufficient to consistently minimise the error for 

the test data, adding more nodes may over fit the model to the training data and result 

in poorer predictions when applied to the testing data. 

 

Figure 4-30: MSE vs number of individual networks 

 

Figure 4-31: MSE vs number of hidden nodes 

4.5.1.2 Stacked Neural Network 

The final stacked neural network model was created from 30 individual networks, with 

one retained PC, one hidden node and two predictor variables: wash flow rate and first 

temperature peak. The model shows a high level of accuracy when applied to both the 

training and test datasets (Table 4-10 and Figure 4-32). The level of fit is similar to the 

linear model in Section 4.4.1, with similar R2 and MSE values, a full comparison of all of 

the modelling methods is given in Section 4.8. 
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Dataset  MSE  R2  

Training  72.4  75.7%  

Testing 68.6  79.9%  

Table 4-10: Fit of stacked neural 
network, dryer 2 

 

 

Figure 4-32: Predictions for stacked neural network, dryer 
two 

4.5.1.3 Individual Neural Network 

For comparison, an individual neural network was created from the dataset for dryer 

two, with one hidden node. The results were similar to the stacked network (Table 

4-11, Figure 4-33), although a slightly higher level of accuracy was achieved for the 

test dataset. This is because there is a large amount of variation between individual 

networks that are created from the same data, so an individual network can be 

selected that gives the highest possible fit to the test dataset. Conversely the stacked 

network will contain some networks that have a lower level of fit, so the overall fit is 

lower. However the stacked network is more likely to represent the range of trends that 

are seen in the data and hence will be more applicable to future data that is collected.  

 

Dataset  MSE  R2  

Training  70.0 76.2%  

Validation 87.5 71.8%  

Testing 56.3 83.5%  

Table 4-11: Fit of individual neural 
network, dryer two 

 
 

Figure 4-33: Predictions for individual neural network, 
dryer two 

4.5.2 Dryer Three 

The above process was repeated for the data from dryer three. The 19 training batches 

were divided randomly for each network into 12 training and seven validation batches, 

and the same eight test batches were used as for the linear modelling analysis. 30 
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stacked networks were used and two PCs were retained that explained 87% of the total 

variation.  

The results from the linear model found that wash flow rate was not a significant 

predictor for the drying time, so the neural network results were compared with and 

without the wash flow rate as an input variable (Figure 4-34). The error for the test data 

was minimised when the wash flow rate was included, suggesting that a non-linear 

relationship is present that cannot be represented with a linear model. One hidden 

node was required to minimise the error.  

 

Figure 4-34: MSE vs. number of hidden nodes, with and without flow rate variable 

The final stacked neural network for dryer three was fitted with one hidden node and 

three input variables: wash flow rate, 1st and 2nd temperature peaks. A good fit is 

observed between the actual and predicted drying times (Table 4-12 and Figure 4-35); 

in particular the neural network produced a much better fit than the linear model when 

applied to the test dataset (Section 4.4.2).  

 
 

 Dataset  MSE  R2  

Training  43.8  76.6%  

Testing  94.8  60.3%  

Table 4-12: Fit of stacked neural 
network, dryer 3 

 

Figure 4-35: Predictions for stacked neural network, dryer 3 
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4.5.3 Dryer One 

The data for dryer one only includes only three batches with long drying times, 

consequently a linear model was difficult to develop. For the neural network model, the 

training data was split into 15 training and eight validation batches, with the same 13 

test batches that were used in the linear modelling. For a stacked network comprising 

30 individual networks, two PCs were retained that explained 91% of the variation.  

Similar to dryer three, the flow rate variable was found not to be a significant predictor 

in the linear model. A comparison of stacked neural networks with and without the flow 

rate as an input suggested that the flow rate was not required to optimise the 

predictions for the test dataset (Figure 4-36). In addition, the error appears to be 

minimised when three hidden nodes were included in the network. This result is 

unexpected because the neural networks for the other two dryers only required one 

hidden node, but since the data set is limited for this dryer, the network may be more 

difficult to fit and hence more hidden nodes are required. 

 

Figure 4-36: MSE vs. number of hidden nodes 

The predictions for the neural network model show an improved fit compared to the 

linear model (Table 4-13 and Figure 4-37), particularly for the batches with drying times 

longer than 70 hours. However both models are unable to model the batches with 

drying times less than 70 hours. This may be because there is not enough variation in 

the input variables for batches with shorter drying times, or other unknown factors may 

be influencing the drying times.  

Include flow rate Exclude flow rate
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 Dataset  MSE  R2  

Training  50.1  78.6%  

Testing  31.9  83.8%  

Table 4-13: Fit of stacked neural 
network, dryer one 

 

 

Figure 4-37: Predictions for stacked neural network, dryer 
one 

4.6 Multi-way Partial Least Squares 

An assumption of the linear and neural network modelling methods is that the input 

variables are not correlated and hence individual variables were selected from the 

measurements that are collected throughout the running of each batch. However, 

reducing the information to two or three variables creates the risk of losing a large 

amount of information that is contained within the rest of the data. Alternative 

approaches that allow input data to be used from multiple time points throughout the 

batch include multi-way partial least squares (MPLS) (Section 3.2.1) and case based 

reasoning (Section 3.2.2). These two techniques are applied to the drying data and the 

results are compared to those from the linear and neural network models, to determine 

the most appropriate approach for predicting the drying times.  

The key variables measured during the drying process are the N2 flow rate, the inlet 

gas temperature and the outlet gas temperature. Dryer one does not have an in-range 

flow meter, and hence this dryer is excluded from the rest of the analysis. Data is 

collected every ten seconds, resulting in over 10,000 data points for each batch. To 

extract the data in a manageable amount, the data was extracted as an hourly average 

for each variable, during the running of each batch. Since the profiles of the variables 

do not change considerably from hour to hour, no significant information is expected to 

be lost by averaging. The data was then aligned for each batch (Section 4.6.1.1) and 

used to develop a MPLS model. The MPLS process is summarised in Figure 4-38. 
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Figure 4-38: Process for MPLS 

4.6.1 Dryer Two 

For the 39 batches in the dataset for dryer two, the N2 flow rate and the inlet and outlet 

gas temperature measurements were collected as hourly averages. Figure 4-39 shows 

a typical batch trend of the measured variables. The profiles generated from taking the 

hourly averages are similar to those produced directly by the plant data system (Figure 

4-7 and Figure 4-8). Changes are observed around the times that the agitator is used 

to mix the powder on top of the filter. The flow rate drops when the agitator is operated 

because the gas supply is stopped and a lower flow rate may result when the gas 

supply is restarted as the product can become more compressed. Data for each batch 

was collected up to the fifth agitation, which is scheduled to be 48 hours from the start 

of the drying process.  

 

Figure 4-39: Typical batch trend 
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The agitator is started manually by the operator, so the exact time that it is switched on 
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batch around the operation of the agitator, to ensure that the same information is being 

compared across the batches.  

To align the data from each batch, the time points were divided in stages, with each 

stage starting after the agitator was run (Table 4-14). The timings of agitator runs were 

found in plant’s control system. Figure 4-40 to Figure 4-42 show an example of batches 

before and after alignment, respectively. The data from each stage was lined up so that 

gaps were left when a stage was run for less time than usual (batch 2) and data 

removed when a stage ran for more time than usual (batch 3). The alignment process 

was the same for each input variable. Data alignment was done manually in Microsoft 

Excel 2007.  

Stage 
Time points 
(Hours) 

1 0-17 

2 18-29 

3 20-35 

4 36-41 

5 42-47 

Table 4-14: Time points in each stage of the drying process 

 

Figure 4-40: Example of data before alignment 

 

Figure 4-41: Example of data after alignment 
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Figure 4-42: Example of time aligning data (coloured by stage) 

4.6.1.2 MPLS Model Results  

An MPLS model was created using the three input variables each collected over 48 

time points and aligned so that the start of each stage is lined up (Figure 4-42). The 

data set was transposed to have a row for each batch and column for each time point 

and variable. Modelling was performed using the Simca P+ 12.0 software. The data 

was scaled so that each variable had a mean of zero and unit variance. Retaining two 

latent variables was found minimise the MSE and maximise the R2 when the MPLS 

model was applied to the test data (Figure 4-43). By retaining two latent variables, 

71.5% of the variation in the test data can be predicted (Table 4-15). Overall the model 

showed good predictions of the drying time (Figure 4-44).  

The scores and loading plots suggest that the flow rate is an important predictor 

throughout the drying process; with batches with a high flow rate having a shorter 

drying time (Figure 4-45 and Figure 4-46). The outlet gas temperature is also 

important, but large loadings are only observed after the first 12 hours of drying. Higher 

outlet gas temperatures are associated with longer drying times, since higher 

temperatures suggest that less water is being driven off the batch. The inlet gas 

temperature appears to have a weaker relationship with the drying time since larger 

loadings are only seen in the second latent variable (Figure 4-47).  

Bx1 Bx2 Bx3

10 17.90 17.75 17.75

11 17.80 17.75 17.90

12 17.80 17.80 18.00

13 17.83 17.85 18.20

14 17.85 17.88 18.40

15 17.88 17.91 18.55

16 18.00 18.04 18.75

17 18.20 20.30 19.00

18 18.50 19.35 19.45

19 19.40 19.40 19.70

20 18.80 19.50 19.75

21 18.70 19.60 19.80

22 18.85 19.80 20.50

23 19.15 20.30 19.45

24 19.50 21.00 19.45

... ... ... ...

Temperature

Time Bx1 Bx2 Bx3

10 17.90 17.75 17.75

11 17.80 17.75 17.90

12 17.80 17.80 18.00

13 17.83 17.85 18.20

14 17.85 17.88 18.40

15 17.88 17.91 18.55

16 18.00 18.04 18.75

17 18.20 19.00

18 18.50 19.45

19 19.40 20.30 20.50

20 18.80 19.35 19.45

21 18.70 19.40 19.45

22 18.85 19.50 19.80

23 19.15 19.60 20.60

24 19.50 19.80 21.30

... ... ... ...

Time

Temperature
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Figure 4-43: Fit to training and testing data as more latent 
variables are added 

 

 Dataset  MSE  R2  

Training  88.5 70.3% 

Testing  97.2 71.5% 

Table 4-15: Fit of MPLS model for 
dryer two 

 

 

Figure 4-44: Predictions for training and testing 
data 

 

 

Figure 4-45: Score of first two latent variables 

 

 

Figure 4-46: Loadings of first latent variable 
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Figure 4-47: Loadings of second latent variable  

The presence of non-linear trends can be assessed by comparing the input and output 

scores of the PLS model (Figure 4-48 and Figure 4-49). In both figures a linear trend is 

seen between the input and output scores. Along with the normal probability plot of the 

residuals (Figure 4-50), there is no evidence to suggest that non-linear PLS methods 

are required.  

 

Figure 4-48: Output vs. input  
scores, first latent variable 

 

Figure 4-49: Output vs. input  
scores, second latent variable 

 

Figure 4-50: Normal 
probability plot of residuals 

 

4.6.1.3 How many stages of data are needed? 

Ideally, the drying time should be predicted early in the batch so that information is 

available as soon as possible to plan up and down stream processes. The MPLS 

model created above requires data to be collected for the first 48 hours of the drying 

process. To determine how much data is required to produce good predictions, the 

above process was repeated to create five new MPLS models, with data included up to 

each of the first five agitator runs. The prediction accuracy for new data (Q2) increases 

as more data is included in the model (Figure 4-51). Q2 was calculated directly by 

Simca P+, using five-fold cross validation. Only a small difference is seen from the first 

to the fifth agitation, with Q2 increasing from 64% to 67%, showing that good 

predictions can be achieved early in the drying process.  
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Figure 4-51: Variance explained for models with different amounts of input data 

4.6.2 Dryer Three 

The MPLS analysis was repeated for batches dried on dryer three. When the models 

were applied to the test data, it was found that selecting three latent variables 

minimised the MSE and maximised the R2 value of the test data (Figure 4-52). 

A good level of accuracy was found for the training data, with an R2 of 95%, however 

when applied to the test dataset the value of R2 fell to 46% (Table 4-16, Figure 4-53). 

The loadings plots suggest that the most important input is the outlet gas temperature 

around the middle of the drying duration (Figure 4-55), which shows a positive 

correlation with the drying time (Figure 4-54). This finding agrees with the results from 

the linear model for dryer three (Section 4.4.2), where the flow rate was not found to be 

a significant predictor and the temperature after the second agitation, at 30 hours, was 

required to produce good predictions. Across the three latent variables high loadings 

are seen for all of the process variables and time points, so the MPLS models uses 

information from across the drying process (Figure 4-55 to Figure 4-57).  
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Figure 4-52: Fit to training and testing data as more latent 
variables are added 

 Dataset  MSE  R2  

Training  10 95.0% 

Testing  221 46.1% 

Table 4-16: Prediction accuracy for 
MPLS 

 

Figure 4-53: Predictions for training and testing data 

 

 

Figure 4-54: Scores of first two latent 
variables 

 

 

Figure 4-55: Loadings for first latent variable  
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Figure 4-56: Loadings for second latent variable 

 

Figure 4-57: Loadings for third latent variable 

4.7 Case Based Reasoning 

The final method to be assessed for predicting drying times was case based reasoning 

(CBR). This method makes no assumptions about the shape or trends within the data, 

with predictions being made by comparing batch profiles and identifying those that are 

most similar. The methodology was explained in Section 3.2.2. CBR analysis was 

conducted using Matlab 2008b.  

Profiles of a new and historical batch are compared by calculating the difference in 

variables measured at the same time points and then these are summed across the 

whole batch (Figure 4-58). Due to the time alignment (Section 4.6.1.1), the variables 

from the drying process included some missing data, so the difference is only 

calculated when neither batch has missing data. The difference, D, is calculated from n 

time points of the new and historical flow rate data (fnew, fhist) and m time points of the 

inlet and outlet temperature data (t_in and t_out:), for which there is no missing data. 

D =  
r

n
∑(fnew,i − fhist,i)

2
n

i=1

+
1

n
∑(t_innew,i − t_inhist,i)

2
n

i=1

+
1

n
∑(t_outnew,i − t_outhist,i)

2
n

i=1

 

Equation 4-6 

Since the flow rate and temperature data have different ranges, the difference between 

flow rate measurements will be greater than the differences between temperature 

measurements. Therefore a weighting, r, is included to ensure the influence of each 
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type of data is equal. The difference between data points can be calculated as either 

the squared or absolute difference.  

 

Figure 4-58: Process for CBR 

The value of the weighting, r, was calculated by applying CBR to the training data for 

dryer two and comparing the mean squared error for various values of r (Figure 4-59). 

The MSE was minimised when r was set to 0.05, and D was calculated from the 

absolute difference of the data points. Using the squared difference will accentuate 

large differences between batch profiles that may only be caused by a small number of 

noisy data points. In contrast the absolute difference places greater emphasis on 

differences that are occur over a larger number of data points and hence the absolute 

difference is more likely to represent true differences between batches.  

4.7.1 Dryer Two 

Case based reasoning was applied to the dataset from dryer two that had been used 

for the MPLS analysis. Since the N2 gas flow is stopped when the agitator is run, the 

flow rate measurement at this time is low and does not contain information about the 

rate of drying, so the flow rate data was removed for these time points.  

 

Figure 4-59: MSE for values of r 
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test dataset. CBR showed low prediction accuracy when applied to both datasets 

(Table 4-17). 

 Dataset  MSE  R2  

Training  170  42.8%  

Testing  211  38.1%  

Table 4-17: Prediction accuracy for CBR 

The low prediction accuracy may be attributed to the amount of noise within the 

dataset. The drying process, in particular the N2 flow rate, is influenced by processes 

that occur around the filter dryer. For example, liquid from the initial water washes is 

collected in a receiver that is emptied during drying. When the receiver is emptied the 

nitrogen flow is briefly stopped, causing a dip in the flow rate measurement. The data 

that had previously been aligned for each stage (Figure 4-60), was also filtered by 

removing dips in the flow rate that occurred whilst the dryer was running (Figure 4-61).  

In addition, the loadings from the MPLS model suggested that the inlet gas 

temperature has a smaller effect on the drying time compared to the flow rate and the 

outlet gas temperature. Consequently the inlet temperature data may add noise to CBR 

method by creating unnecessary variables that do not have a strong relationship with 

the drying time. Further CBR models were created, to determine whether filtering the 

data by excluding outliers or removing the inlet temperature would improve the 

predictions.  

 

Figure 4-60: Aligned flow rate data 

 

Figure 4-61: Aligned and filtered flow rate data 

The highest level of fit to the test data set was found when the filtered dataset was 

used and the inlet temperature data was removed (Table 4-18). However only half of 

the variation in the drying times can be predicted (Figure 4-62), so the level of accuracy 

is too low to give a good indication of the expected drying time.  
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MSE 
train 

MSE 
test R2 train R2 test 

Unfiltered 
Include T_in 170 211 43% 38% 

Exclude T_in 176 219 41% 36% 

Filtered 
Include T_in 176 222 41% 35% 

Exclude T_in 179 170 40% 50% 

Table 4-18: Level of fit for various datasets 

 

Figure 4-62: Predictions for CBR 

The results suggest that even though the data was collected as an hourly average and 

outliers were removed, the CBR method is unable to handle the amount of noise that 

remained in the data. Large differences caused by a small number of unusual data 

points can have a strong influence on the calculated difference between batches, 

causing similar batch profiles with some unusual data points to be labelled as very 

different.  

4.7.2 Dryer Three 

The CBR analysis was repeated for dryer three. The optimal value for the weighting, r, 

between the N2 flow rate and the temperature data was found to be 0.0005, suggesting 

that the temperature measurements have a much stronger relationship with the drying 

time than the flow rate. However, removing the flow rate data completely resulted in an 

increase in the prediction error.  

The results show that good predictions can be made for the test dataset, although the 

fit is poor for the training data (Table 4-19), suggesting that CBR will not always 

produce good predictions for this dryer. In particular the predictions for training batches 

with drying times less than 70 hours are very poor for the training data (Figure 4-63).  
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 Dataset  MSE  R2  

Training  97.1 48.2%  

Testing  57.5 75.9%  

Table 4-19: Prediction accuracy for CBR 

 

Figure 4-63: Predictions for CBR 

4.8 Comparison of Methods 

The modelling methods that were applied to the drying data can be grouped into 

categories: linear or non-linear methods and techniques that use individual variables or 

techniques that use the whole batch profile.  

Comparison of all four modelling methods when applied to the data from dryer two 

shows that the highest prediction accuracy for the test dataset was found for the linear 

model and the stacked neural network (Table 4-20). The results show that reducing the 

data set to two variables, wash flow rate and first temperature peak, does not reduce 

the amount of information that is captured about the drying time. Although non-linear 

trends were observed data, they are not so strong that a linear model is not able to 

provide accurate predictions.  

The MPLS model was also found to produce predictions with a good level of accuracy. 

With this method, the data collected at multiple time points was combined linearly and 

reduced to two latent variables that summarise the gas flow rate and the drying 

temperature, providing inputs that are similar to those of the linear model.  

The case based reasoning approach resulted in the lowest level of accuracy for the 

predictions of the drying time. This method may be the least able to handle the noise in 

the data and therefore cannot identify the differences in batch profiles that indicate the 

drying time. Although MPLS uses the same input data as CBR, MPLS reduces noise 

by linearly combining the data from all of the time points into a latent variable, in effect 

averaging out the noise.  
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The linear model has the advantage of being the most straight forward method to use 

on the manufacturing plant and can be implemented with an Excel Spreadsheet into 

which the values for the two input variables are added. 

Model MSE (train) MSE (test) R2 (train) R2 (test) 

Linear 99 74 67% 78% 

Stacked NN 72 69 76% 80% 

MPLS 89 97 70% 71% 

CBR  179 170 40% 50% 

Table 4-20: Comparison of prediction accuracy for dryer two 

For dryer three, the more accurate predictions for the test dataset were produced by 

the stacked neural network and the CBR methods (Table 4-21), suggesting that 

significant non-linear trends occur in for the data for this dryer. However for CBR, the 

accuracy for the training data is low. Of the three dryers, the dataset for dryer three is 

the smallest with 27 batches, so data from additional batches may be required to fully 

test the accuracy of the CBR method for making predictions. For the linear model, the 

R2 from the test data was zero. Cross validation was applied to determine whether a 

limited data set was limiting the performance of the linear model. The R2 improved 

slightly to 36%, but overall the fit of the model to new data is very poor.  

  MSE (train)  MSE (test)  R2(train)  R2(test)  

Linear 94  (CV) 132 67% (CV) 36% 

Stacked NN 44 95 77% 60% 

MPLS 10 221 95% 46% 

CBR  97 58 48% 76% 

Table 4-21: Comparison of prediction accuracy for dryer three, CV implies cross validation of all 

batches 

The results for the data from dryer one found that the neural network model was able to 

produce more accurate predictions than the linear model (Table 4-22). For this dryer, 

non-linear trends in the data were such that the linear model could not represent the 

relationship between the inputs and the drying time.  

 Model MSE (train)  MSE (test)  R2(train)  R2(test)  

Linear 93  (CV) 123  45% (CV) 44%  

Stacked NN 50  32 79% 84% 

Table 4-22: Comparison of prediction accuracy for dryer one, CV implies cross validation of all 

batches 
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4.9 Conclusions and Further Work 

The analysis has shown that the data collected throughout the drying process can be 

summarised in terms of two or three variables without losing information required to 

predict the drying times. The relationship between the summary variables and the 

drying time has shown the presence of non-linear trends, although a suitable linear 

model was developed for dryer two.  

Differences are seen in the trends for the three dryers. The linear models for dryers 

one and three required the temperature after the second agitation to be included as a 

predictor, but this variable was not required for dryer two. The neural network for dryer 

one suggested that the wash flow rate did not have a strong relationship with the drying 

time for this dryer. Although all of the dryers were set up in the same way, different 

parts have been replaced over time which could cause differences in the way that each 

dryer is run and in the measurements that are taken. In addition, the length of pipe 

work that the nitrogen gas travels through is different for each dryer, which may cause 

difference to the gas flow rate and temperature. Further investigation could be 

undertaken by the process technical team to understand the differences between the 

dryers.  

The poorest predictions were observed for batches made on dryer one. This dataset 

was limited with only three batches having drying times in excess of 70 hours. A future 

project could be to collect further data from batches with longer drying time with the 

intention of improving the models for this dryer. At present the availability of the 

required data is limited because few batches are observed with long drying times.  

The major benefit from this piece of work has been the implantation of a linear 

prediction model on dryer two that allows the plant managers to estimate the expected 

drying time early in the drying process. The linear model is straightforward to 

implement and is manually run in an Excel Spreadsheet. The input data is obtained 

from graphs of the outlet temperature and filter receiver level produced by the plant’s 

data recording system. The prediction model has been particularly useful to determine 

when to schedule a clean of the filter.  

Since a good level of fit was found for the linear model on dryer two, it may be possible 

to construct better linear models for dryers one and three if more batches with longer 

drying times could be added to the datasets. Linear models are the preferred models to 

use since they are the most simple to implement, requiring just an Excel spreadsheet. 

Therefore a recommendation was made to improve the linear models by collecting 

more data from batches with longer drying times. If a suitable level of fit can be found 
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for dryers one and three, then these models can also be implemented. Data collection 

and analysis could be supported through AstraZeneca’s Six Sigma programme.  

An original aim of this study was to predict the drying time with enough accuracy so 

that the loss on drying samples are not required to determine the drying end point. The 

outcome was in part limited by the available data that could be used as inputs to the 

model. A further measurement that has the potential to provide useful information is the 

humidity of the gas leaving the filter. At the start of drying, the humidity would be 

expected to be high as a large volume of water is removed from the product. As the 

product dries the humidity of the outlet gas should reduce, until the level is low enough 

to indicate that the product is suitably dry. An extension to this piece of work for 

AstraZeneca would be to install a humidity probe to the outlet gas line of each dryer, 

and determine whether the humidity provides a more accurate indication of the drying 

end point than the current method of measuring the temperature profile.  

Following the drying process, the material is transferred to the milling facility to reduce 

the particle size of the solid powder. In Chapter 5, the PLS and stacked neural 

networks techniques presented in this chapter, along with principal component 

analysis, are applied to data from the mill to understand the variation in the particle size 

distribution of the milled product. 
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5 Multivariate Analysis of Particle Size Distribution 

Data 

5.1 Introduction 

When an active pharmaceutical ingredient (API) is manufactured it typically takes the 

form of a solid powder. The particle size distribution (PSD) of the API will affect a 

number of important properties of the product during the formulation stage and will also 

impact on the quality of the final product (Iacocca et al, 2010). For example, smaller 

particles may produce greater uniformity of the drug content within tablets, whereas a 

small number of large particles in one tablet can result in a high dose that is out of 

specification (Orr, 1982). Additionally a greater overall surface area of the API particles 

will lead to more rapid dissolution and a higher release rate of the drug into the body 

(Simões et al, 1996). 

A number of methods are available to measure the particle size distribution of a 

powder, based on either the physical properties of the powder or the interaction of the 

particles with light (Section 5.2). Measurement methods differ in terms of complexity 

and accuracy, and range from sieving to microscopy and laser diffraction.  

The data that is produced from a particle size distribution measurement will consist of a 

number of size measurements and the frequency density of the particles at each size. 

Although information can be summarised in terms of the mean or percentiles of the 

distribution, these methods do not use all the information that is available. The PSDs of 

several samples can be compared graphically by overlaying the curves of each 

distribution and identifying differences. However to compare a number of samples 

effectively, the information from each distribution can be summarised using multivariate 

analysis techniques.  

This chapter consists of two sections. The first section introduces and compares 

methods for measuring the particle size distribution of a pharmaceutical powder 

(Section 5.2). The benefits and limitations of each method are considered, along with 

the assumptions underpinning the interpretation of the data. The second section 

focuses on an analysis of PSD data from an API product that is manufactured by 

AstraZeneca. Multivariate analysis methods were applied to understand the variation in 

the data and to assess the differences between batches produced on different 

processing plants (Section 5.3). Prediction models are then created to determine how 

the variation in the production and milling processes may affect the PSD of the final 

product (Section 5.4).  
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5.2 Measurement of Particle Size Distribution 

The particle size distribution (PSD) of a solid powder describes the range of sizes of 

the individual particles that make up the powder. The size can be quantified in terms of 

the length, surface area, volume or mass of the particles. The shape of the particles is 

also important and can be described by factors such as the surface area to volume 

ratio or the geometric shape of a particle (Allen, 1997). This section reviews a number 

of the PSD measurement methods that are commonly used for the characterisation of 

pharmaceutical powders.  

The most straightforward methods, such as sieving (Section 5.2.3), separate out the 

particles by their size and then the quantity of particles in each size range is measured. 

Alternatively microscopy (Section 5.2.4) is used to create an image of the particles, 

which is then used to estimate the particle sizes. Microscopy is the only technique that 

allows the particles to be individually viewed and measured. Laser diffraction (Section 

5.2.5) uses the interaction between the particles and laser light to determine the PSD; 

this method is complex but produces rapid and highly repeatable results. The choice of 

method depends on the size of the particles to be measured, the level of agglomeration 

in the powder and the cost, accuracy and speed of the measurement technique.  

The PSD measurement that is produced will depend on the response of the instrument 

that is used and hence measurements of the same powder will vary between 

instruments. To produce a reliable PSD measurement, several measurement 

techniques could be compared to find a good representation of the particle size 

(Shekunov et al, 2007).  

The simplest way to describe the PSD is to calculate the mean or median particle size. 

However these measures do not provide an indication of the range of sizes that are 

present. By also including percentiles, such as the 10th and 90th percentiles, more 

information relating to the fine and coarse ends of the distribution can be attained. 

Alternatively the PSD can be presented as a frequency density distribution. In this case 

the particle sizes are divided into groups and the proportion of particles within each 

group is calculated and presented as a graph of frequency densities.  

5.2.1 Equivalent Particle Diameter 

There are several challenges faced when determining and describing the particle size 

distribution of a powder. In practice particles typically have irregular shapes, so a 

measurement of the length of the particles will depend on the orientation in which they 

are measured. Many methods of particle size measurement assume that the particles 

are spherical and the calculation of the PSD from the measurements is based on this 
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assumption. Therefore data from non-spherical particles can involve complex 

interpretation to produce a representative particle size distribution (Shekunov et al, 

2007). 

Determination of the PSD of non-spherical particles through the application of a 

method that assumes that the particles are spherical involves the use of the equivalent 

particle diameter (Allen, 1997). To find the equivalent particle diameter, a property such 

as the length or volume of the particle is found and the equivalent particle diameter is 

given as the diameter of a spherical particle with the same length or volume. The 

properties of the particles that can be compared also include the mass, surface area or 

sedimentation rate. The type of measurement that is used for comparison is selected to 

best represent the important properties of the powder that is being studied, so particles 

that have the same equivalent particle diameter will have the same property of interest.  

In pharmaceuticals, the assumption of spherical particles is rarely satisfied, since 

crystallisation and milling processes are commonly used and these processes do not 

produce spherical particles (Iacocca et al, 2010). Therefore methods of particle size 

measurement which assume that particles are spherical will typically not produce a 

representative PSD of a pharmaceutical product.  

5.2.2 Sampling Error and Dispersion  

Measurement of the particle size distribution usually involves taking a sample of the 

powder, so it is essential that the sample is representative of the whole population and 

reflects the PSD of the product. When the particles are non-spherical, the orientation of 

the particles relative to the measuring device will affect the measurement that is taken, 

so a suitably large sample is required so that the particles will be measured from all 

angles and all orientations will be captured (Allen, 1997).  

The particle size distribution of a powder can also be affected by particles bonding 

together. Primary particles are the smallest particles present and are held together by 

molecular bonding. These particles can then become attached to each other to form 

aggregates or agglomerates (Tinke et al, 2008). Aggregates are structures that consist 

of primary particles held tightly together by atomic or molecular bonding at their crystal 

faces. Agglomerates are more loosely bonded structures where the primary particles 

are attached to each other by weaker Van der Waals forces. Since aggregates are held 

together tightly, a lot of energy is required to break them back up into the primary 

particles. However agglomerates are more loosely bonded and less energy is needed 

to break them up.  
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When making a particle size measurement, it is important that the sample is well 

dispersed to ensure that individual particles are measured rather than agglomerates 

(Tinke et al, 2009). Dispersion methods can be used to break up agglomerates, for 

example by shaking, stirring or the ultrasonic treatment of suspensions. De Villiers 

(1995) highlighted the importance of good sample dispersion by comparing three drug 

powders with different initial levels of agglomerates. The samples were dispersed 

either with a dry powder disperser or an ultrasonic bath for liquid suspensions and the 

PSDs were measured before and after dispersion. For all three powders a smaller 

mean particle size was measured after the sample had been dispersed.  

Conversely, tightly bonded aggregates may remain together during the formulation of a 

drug product and should therefore be included in the calculation of the PSD. These 

aggregates should be preserved during sample preparation so that they can be 

measured to give a true representation of the PSD of the final product (Iacocca et al, 

2010).  

5.2.3 Sieving 

Sieving is a simple and widely used method for particle size analysis that is suitable for 

particles greater than 20 µm in diameter (Allen, 1997). It is considered to be a low cost 

and reliable method that gives reproducible results (Rhodes, 1998). Particles are 

separated by their diameters by passing the product through a series of sieves with 

decreasing hole sizes. The sieves can be hand shaken or mounted onto a vibrator 

(Coulson, 2007). The diameter of spherical particles that pass through each layer of the 

sieve can be measured using standards of known particle sizes. The quantity of 

particles that is collected on each layer is then used to calculate the distribution of the 

particle sizes in a sample. The resolution of the measurements will be determined by 

the difference in the sizes of the consecutive sieves. 

Sieving is a low cost straight forward method that is easy to set up and implement. 

However the accuracy of the results is determined by the resolution of the sieves, 

hence results from sieving will not produce as detailed a particle size distribution as 

can be obtained from other methods.  

5.2.4 Microscopy 

An alternative approach for assessing the PSD is through microscopy. In this method 

an image is generated, enabling the variation in size and shape of individual particles 

to be viewed. Optical microscopy and scanning electron microscopy (SEM) are 

commonly used for the analysis of pharmaceutical powders in research and 

development (Shekunov et al, 2007). Optical microscopy can be used for particles in 
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the range of 1 to 100 µm, whilst SEM can be effective for particles as small as 0.001 

µm (Coulson, 2007). The particle size distribution is calculated through image analysis, 

which measures the size of individual particles observed by the microscope.  

Scanning electron microscopy has a much larger resolution and depth of focus than 

optical microscopy (Allen, 1997). To take a measurement, a fine beam of electrons is 

scanned across a sample, which interacts with the particles. The signal from the 

detected electrons depends on the size of particles in the sample and can be 

interpreted to display an image of the particles (Section 5.2.4.1).  

The use of microscopy for particle size analysis is important because it is the only 

method that allows the size and shape of individual particles to be observed and 

analysed (Allen, 1997). Microscopy can be used to validate the results from other 

techniques, since the particles can be measured individually and the accuracy of the 

alternative method determined (Tinke et al, 2008). 

As discussed previously, a number of methods for particle size analysis rely on the 

assumption that the particles are spherical and are well dispersed. To investigate these 

assumptions a qualitative view of the sample is required (Tinke et al 2009). A 

microscope image allows the variation in the particle size, shape and dispersion to be 

viewed and the presence of aggregates and agglomerates to be determined.  

For microscopy measurements, a sample of particles is dispersed in a liquid to create a 

suspension. A dilute sample is required to ensure that the particles do not overlap on 

the microscope slide, therefore enabling each particle to be measured individually 

(Iacocca et al, 2010). This limits the number of particles that can be measured at one 

time and hence the sample may not be representative of the whole distribution. The 

measurement time can also be slow (Bosquillon et al, 2001), limiting the use of 

microscopy for on-line analysis.  

When a microscopic image is produced, it shows a 2-dimensional representation of the 

particles. If the largest surface of the particle is parallel to the slide then the shortest 

dimension will not be measured, which can lead to an overestimation of the particle 

size (Allen, 1997).  

5.2.4.1 Image Analysis  

The microscopy measurements are converted to a PSD through the use of image 

analysis. From a microscope image, the particles first need to be distinguished from the 

background (Sarkar et al, 2009). A 2-dimensional image consists of a number of pixels, 
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each with a fixed intensity. The edge of a particle can be detected by observing a large 

change in the pixel intensity over a short space. When the particle edges have been 

identified, the area of the particle is filled in and the region around the edge left blank to 

represent the space between particles.  

When the individual particles have been identified the required size properties can be 

measured and collected to give a distribution. For spherical particles, the diameter of 

each particle can easily be measured. However for non-spherical particles there are a 

number of methods for characterising the size of a particle. A possible measure is to 

find the projected area of the particle and then calculate the diameter of a circle that 

has the same area (Yu and Hancock, 2008). An alternative measure is Feret’s 

diameter, which is the distance between two tangents in a fixed direction on either side 

of the particle. For the application of Feret’s diameter, it is assumed that the particles 

are randomly orientated across the microscope slide. The choice of metric to quantify 

the particle size will affect the resulting PSD, so the same metric must be used when 

comparing different samples. 

5.2.5 Laser Diffraction 

Laser diffraction (LD) is generally the preferred method for particle size analysis in the 

pharmaceutical industry (Iacocca et al, 2010). A measurement is taken by passing 

laser light through a sample of powder, which is scattered by the particles and the 

angle of the light scattering is measured and interpreted to give a particle size 

distribution (Section 5.2.5.2). Laser diffraction can be used to measure particles in the 

range 0.1 to 3600 µm, but a single instrument is not capable of measuring the whole 

range (Allen, 1997) and hence an instrument must be selected that is appropriate for 

the particles to be measured.  

LD has the advantage of a short analytical time and gives robust and precise 

measurements, which makes it possible to use for on-line process monitoring (Ma et al, 

2000). This method can analyse a broad range of particle sizes and is considered to be 

easy to use (Tinke et al, 2008). Furthermore, LD can be used for liquid, spray or dry 

powder samples (Shekunov et al, 2007).  

The calculation of the particle size assumes that the particles are spherical, which can 

limit the accuracy of this method for non-spherical particles. However LD 

measurements can be validated by comparing the results to a more accurate technique 

such as microscopy followed by image analysis. The difference between LD 

measurements and the results from other methods can also provide information on the 
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shape and structure of the particles, since the method errors may be a result of certain 

characteristics such as non-spherical particles (Kaye et al, 1999).  

The results from laser diffraction can vary between different instruments and 

manufacturers, since each will have a unique algorithm for interpreting the particle size 

from the light scattering results. These differences suggest that the resulting PSD that 

is calculated may not be completely accurate, but by validating the results with 

microscopy, a reliable representation of the PSD can be produced (Iacocca et al, 

2010). In addition, the high precision of LD allows for the detailed comparison of 

samples measured with the same instrument. 

5.2.5.1 Laser Diffraction Instrumentation 

For the measurement of the PSD with laser diffraction, a Helium-Neon laser is used to 

produce monochromatic light at a set wavelength (Allen, 1997). The light is passed 

through a stream of dispersed particles that are held in suspension. The light is 

scattered by the particles and a lens is used to focus the light onto a photosensitive 

silicon detector, which comprises several concentric rings. The detector measures the 

angle and intensity of the scattered light; with smaller particles scattering light at a 

wider angle.  

Typically a number of repeated measurements are taken and the results are averaged 

to give the PSD (Ma et al, 2000). For each measurement different particles may be 

detected because the particles move within the suspension. For example, if there are a 

few large particles present, they may not be measured in every sweep and their 

presence may not be captured when the results are averaged.  

5.2.5.2 Data Interpretation  

When the light interacts with a particle that is held in suspension, the light is both 

scattered and absorbed by the particle (Beekman at el, 2005). The light can be 

scattered by diffraction, reflection or refraction (Figure 5-1). The intensity and angle of 

the scattered light depends on the size and refractive index of the particle.  
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Figure 5-1: Light scattering by a particle (Adapted from Allen, 1997) 

A light scattering pattern can be converted into a size distribution using one of two 

theories, Mie or Fraunhofer theory. Both are based on the assumption that the particles 

are spherical and require knowledge of the refractive index of the particles (Allen, 

1997). Mie theory is more complex than Fraunhofer. The Fraunhofer method can only 

be used when the particle size is significantly larger than the wavelength of the incident 

light and is generally suitable for particles larger than 25 µm in diameter (Beekman et 

al, 2005).  

Mie theory was developed in 1908 and applies the Maxwell electromagnetic equations, 

which describe light scattering through a set of partial differential equations (Ma et al, 

2000, Beekman et al, 2005). The equations describe the light scattering effect that is 

expected for a given spherical particle size. Therefore derivation of the PSD from the 

light scattering requires the Maxwell equations to be inverted. Given the measured 

angles and intensities captured by the detectors, the PSD of the sample is calculated 

for the equivalent spherical particles. This is an iterative process that may not produce 

a unique solution. The algorithm that is used by a particular instrument will be held by 

the manufacturer and may not be readily available for comparison with other 

instruments (Iacocca et al, 2010).  

5.2.6 Comparison of Methods 

Different measurement methods make use of different physical properties of the 

particles to produce a PSD and hence the results will vary between methods (Haskell, 

1998). Consequently it is beneficial to compare several methods of PSD measurement 

to gain a good understanding of the PSD of the powder that is being studied.  

Tinke et al (2008) compared the particle size distributions generated for eight powders 

using both laser diffraction and static image analysis of optical microscopy images. The 

same samples were analysed using both methods, to avoid sampling error. The 

powders ranged from spherical particles to long rectangular shaped particles, with 

sizes between 10 and 500 µm in length. The results were compared by overlaying the 

particle size distributions for each sample and there was clear evidence of a strong 
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correlation between the two analytical methods. However the laser diffraction method 

produced a slightly smaller PSD for particles with a large length to width ratio, 

reinforcing the fact that greater differences are seen when the assumption of spherical 

particles is not satisfied.  

In the study by Tinke et al (2008), wet and dry dispersion techniques were also 

compared for a sample of spherical particles. Although the main peak of the distribution 

was the same for each method, the dry dispersion resulted in some of the particles 

touching each other and hence they were measured as single large particles, causing a 

second peak at a larger particle size for both the LD and microscopy methods. Overall 

it was concluded that the laser diffraction results correlated well with the image analysis 

measurements and hence the LD results could be considered to be representative of 

the particle size distribution.  

Bosquillon et al (2001) compared the particle size measurement of microscopy and 

laser diffraction for the analysis of dry powders with varying levels of aggregation. For 

each method the median particle diameter was calculated. Light microscopy and 

electron microscopy were used as reference techniques since the particles could be 

observed individually. These two microscopy methods were able to separate out the 

individual particles from the aggregates that were present, so the particle size 

measurements were not considered to be influenced by the presence of aggregates. 

Laser diffraction measurements were taken of the particles in both a dry state and 

when suspended in water, to determine if either method was capable of dispersing the 

particles and removing aggregates.  

For the less aggregated powders good agreement was observed between the median 

particle diameter estimates for all the methods. However for the most cohesive powder, 

only the LD method in a wet state was able to produce a measure close to that attained 

by light microscopy. The LD analysis in the dry state overestimated the particle sizes 

due to the presence of aggregates. The most aggregated powder could not be 

analysed by electron microscopy because there were too few individual particles 

compared with the number of aggregates. In summary this study showed that 

aggregation can have a significant effect on particle size measurements, thus sample 

dispersion should be considered when selecting a method.  

5.2.7 Conclusions 

The particle size distribution of a pharmaceutical product can influence a number of 

properties of a drug, including its behaviour during formulation, content uniformity and 

dissolution rate. A number of methods have been described that can be used to 
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measure the PSD of a powder, which vary in how the sizes are measured and the PSD 

calculated. Many techniques make the assumption that the particles are spherical and 

therefore may not produce accurate results for non-spherical particles.  

The presence of agglomerates and aggregates can also lead to an over estimation of 

the particle size, so appropriate dispersion techniques may be required to break them 

up. However if tightly bonded aggregates are expected to remain within a product then 

their presence should be measured and included in the PSD.  

Sieving is the most straight forward and inexpensive method to measure the PSD, but 

it lacks the speed and accuracy required to produce a detailed particle size distribution. 

Microscopy is an important method because it allows the individual particles to be 

viewed and measured. With microscopy the assumptions of spherical particles and 

sample dispersion can be assessed. Scanning electron microscopy can be used to 

measure particles as small as 0.001 µm, with image analysis then applied to calculate 

the PSD from the microscope images. 

Finally laser diffraction was considered, it is a fast and precise method that is suitable 

for use online. For LD, the interaction of laser light with the particles is measured and 

interpreted to produce a PSD. The response can vary with different instruments but this 

method can be validated by comparing the results with the PSD generated from 

microscopy and image analysis. It has been shown that there is generally good 

agreement between image analysis and LD results, but the presence of aggregates 

can result in the over estimation of the particle size by laser diffraction.  

The PSD analysis techniques described in this section were applied to a product 

manufactured at AstraZeneca, to gain an understanding of the PSD of the product and 

the factors that may cause variation in the particle size. The results are presented in 

the subsequent sections,  

5.3 Particle Size Distribution Study 

At AstraZeneca, a project was initiated to characterise the particle size distribution of a 

particular API product. The project was undertaken to measure the PSD of the product 

and then to understand the variation in the PSD by assessing the differences between 

plants and processes. A large amount of PSD data was collected, to which multivariate 

analysis methods were applied to interrogate the data and present the results.  

For the manufacturing process under consideration, a solid powder is formed and then 

isolated on a filter dryer. The powder is then milled to reduce and homogenise the 



119 

particle size. Following the API manufacture, the product is transferred to a different 

site for formulation into tablets. The product is produced in one of two processing 

plants, and can be re-worked in a recovery processes (Section 5.3.1).  

The first objective of this project was to create a baseline of the current particle size 

distribution of the milled product. Previously, the particle size had been measured using 

a sieve test to quantify the amount of material that passed through a fixed size sieve, to 

ensure that the required quantity of particles were below this size. The particle sizes 

were measured in more detail using scanning electron microscopy and laser diffraction 

measurements taken for a number of samples.  

Understanding more about the particle size distribution of the product will allow 

AstraZeneca to determine the range of particle sizes that are currently manufactured 

and which have been shown to be suitable for formulation into tablets. Consequently, if 

future changes are to be made to the process then the PSD of new material can be 

compared against the known PSD of the current material to determine if the changes 

have had an impact on the PSD. Samples were taken from both processing plants and 

from the main and recovery processes, hence from the analysis of the data it will be 

possible to determine whether there are differences between the product manufactured 

on the different plants and processes.  

Batch to batch variability in samples produced by the same plant and process will be a 

consequence of the variation in either the process to produce the solid API product or 

in the milling process itself. Variables collected during these processes were related to 

the final PSD of the product through partial least squares (PLS) and neural network 

models (Section 5.4). By understanding how the process can influence the final PSD, 

the company will have tighter control of the particle size, by either reducing the 

variation in the final product or by working to change the PSD profile if it is determined 

that a different PSD may be preferable the formulation into tablets.  

A future aim of this work is to link the PSD to the behaviour of the product during the 

formulation process. The particle size will affect how well the API mixes with the 

excipients used to make up the tablets. If the particles are too large or too small, then 

the API and excipients will not mix well, resulting in tablets being made with a product 

content that is outside of the specification limits. If data can be provided of the variation 

in the product content for the tablets manufactured from each batch of API, then it may 

be possible to determine the ideal range of particle sizes that will produce tablets with 

consistent product content, therefore increasing the yield of the tableting process.  
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5.3.1 Manufacturing Process 

The manufacture of the API being studied is a batch process that takes place in one of 

two processing plants. Primarily plant 1 is used for manufacture, but a second plant is 

brought into operation when greater capacity is required. The solid product is formed 

from a precipitation reaction, before being isolated on a filter dryer and then transferred 

to the milling facility.  

Product can be recovered from the liquors from the filter dryers and reprocessed in the 

recovery process, which can be run on either plant. There are significantly fewer 

batches manufactured on the recovery process compared with the main process and 

hence the majority of the data that has been collected is from the main process on 

plant 1.  

The main process is the same in both plants, but the batch sizes in plant 1 are 

approximately 1.5 times larger than those in plant 2 and hence the quantities of all the 

raw materials are scaled accordingly. The recovery process contains the same steps 

but begins with a different starting material, consequently different solvents are added 

at the start. From the precipitation stage, where the particles are formed, the main and 

recovery processes are the same 

5.3.2 Milling Process 

The aim of the milling process is to reduce and homogenise the particle size of the API 

so that the product is suitable for formulation into tablets. A schematic of the mill is 

shown in Figure 5-2. The material is transferred to the milling facility in an Intermediate 

Bulk Container (IBC), which is positioned at the top of the mill. Material is discharged 

from the IBC into the feed hopper which is attached to a set of weigh scales. The weigh 

scales are used to control the flow of product into the screw feeder. When the weight 

drops to a specified level, the valve from the IBC is opened and more material is 

discharged into the feed hopper. From the weigh scales, the loss in weight is used to 

calculate the overall weight throughput of material flowing into the mill. 

The material is carried into the mill in a stream of cooled nitrogen gas, which is used to 

provide an inert atmosphere. In the nitrogen gas flow, the product enters the milling 

chamber where impaction at the beater causes the particles to reduce in size. The 

milled material is then carried to the reverse jet filter, where the nitrogen gas is 

separated off and the product is discharged into approximately 15 kegs, depending on 

the batch size.  
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For each batch that is milled, a sample of material is taken as the product is discharged 

into the kegs. Samples are taken approximately 25kg into the batch discharge and 50 

kg before the end, this is usually from the second and penultimate kegs. The two 

samples are mixed together to create a ‘blend’ sample that is assumed to be 

representative of the whole batch. The sample is used for release testing by the Quality 

Control (QC) department.  

For the purpose of the PSD study, this sampling approach may not capture the full 

range of the PSD for a specific batch. Changes to the milling conditions during a batch, 

for example to the product feed rate, could cause variability to the PSD in different 

parts of the batch. Ideally a sample would be taken from every keg, or from a number 

of kegs, from the same batch and analysed separately to determine the variation in 

PSD across a batch. However any extra samples taken would reduce the overall yield 

of that batch, and the high cost of the material prevents the company from allowing 

extra samples to be taken. 

5.3.3 Particle Size Distribution Data  

The first stage in the analysis of the particle size distribution was to take samples from 

a number of batches to create a baseline dataset to determine the current PSD of the 

product. Most of the samples were from the main process on the first plant, but plant 2 

and recovery process batches were also analysed. The samples analysed consisted of 

the standard QC samples that are taken from every batch. All of the batches that were 

analysed for the baseline study were suitable for release.  

The particle size distribution measurements were taken with a Sympatec Dry 

Dispersion Laser Diffractor. Samples were initially analysed at the AstraZeneca’s Site 

A, to provide a baseline dataset of the current PSD of the product being manufactured. 

Following this work, a new Sympatec Helios Laser Diffractor was installed at Site B, 

where manufacture takes place, and a new set of samples were analysed. The two 

instruments are similar, but different algorithms are used to calculate the PSD from the 

laser diffraction measurements, so some differences may be expected. 

An initial comparison was undertaken of the material before and after milling, prior to a 

subsequent analysis that focused on samples taken after the batches were milled. The 

results of the analysis are presented in Section 5.3.4 and Section 5.3.5. 
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Figure 5-2: Mill Schematic 

5.3.4 Milled and Unmilled Material 

In the original characterisation study that was conducted at Site A, a comparison was 

performed of the API material before and after the milling process. Figure 5-3 

compares the PSD profiles of a sample of unmilled material and a sample of milled 

material from the same batch. Figure 5-3 clearly shows that the milled material 

comprises a higher percentage of finer particles than the unmilled material, shown by a 

shift to the left of the PSD for the milled material. All particle size values are removed to 

protect commercial confidentiality.  
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Figure 5-3: Unmilled and milled PSD of a plant 1 main process batch 

A number of samples of unmilled material that were produced on plant 1 and plant 2 

were analysed. The samples from plant 1 included product from both the main and the 

recovery process, which showed an approximately consistent profile (Figure 5-4). 

However the batches that were produced on plant 2 have a greater proportion of fine 

particles and a multimodal distribution (Figure 5-5). These two figures have the same x-

axis scale. Although the manufacturing processes are the same in each plant, the 

precipitation vessels are not identical. For the main process, the batch sizes are larger 

for plant 1 and the speed of the agitator in the vessels differ between the two plants, 

causing the rate of the precipitation reaction to differ. It is expected that the 

precipitation process happens more quickly in plant 2, leading to a greater number of 

fine particles forming.  

Scanning electron microscopy (SEM) images were taken of samples from each plant 

(Figure 5-6 and Figure 5-7), the two figures have the same magnification. These 

support the results from the laser diffraction measurements, showing that plant 2 

unmilled material contains some large particles that are similar to those found in plant 1 

material from the recovery process, but there are also a greater proportion of fine 

particles.  

Figure 5-8 and Figure 5-9 show the PSD of milled material from plant 1 and plant 2 

respectively, with the same x-axis scale. The material from plant 2 still has a slightly 

higher proportion of fine particles, but these graphs suggest that the mill is effective in 

increasing the similarity of the PSD from the two plants and reducing the overall 

particle size. Note that the x-axis scales of Figure 5-4 and Figure 5-5 differ to those of 

Figure 5-8 and Figure 5-9.  
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Figure 5-4: Plant 1 unmilled PSD profile, each 
sample shown in a different colour 

 
Figure 5-5: Plant 2 unmilled PSD profile 

 

Figure 5-6: SEM of plant 1 recovery process 
unmilled material 

 

Figure 5-7: SEM of plant 2 main process 
unmilled material 

 
Figure 5-8: Plant 1 milled profile, note the x-axis 
scale is different to the graphs of unmilled 
material 

 
Figure 5-9: Plant 2 milled profile 

5.3.5 Principal Component Analysis 

The data that is collected from the PSD measurements can be analysed through the 

application of multivariate analysis techniques. Strong correlations will exist within the 

PSD data and hence principal component analysis is an appropriate technique to 

summarise the data into a number of PCs, enabling the assessment of trends and the 

identification of potential outliers or unusual behaviour.  

Samples were initially analysed at Site A, with samples from more recent batches 

analysed at Site B. The majority of the batches were from the plant 1 main process, but 
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batches manufactured on plant 2 and from the recovery process were also included, 

depending on where batches were being manufactured at the time of analysis (Table 

5-1).  

Plant / Process Site A Site B 

Plant 1 Main 35 32 

Plant 1 Recovery 1 3 

Plant 2 Main 6 1 

Plant 2 Recovery 0 5 

Table 5-1: Number of batches analysed for each plant, process and location 

Frequency data was collected for 32 particle sizes. However for sizes larger than the 

23rd measurement the frequencies were zero for many of the batches, hence there was 

not enough information in the data to be able to compare batches and these particle 

sizes were removed from the analysis. The resulting data set contained 23 variables 

that reflected a range of particle sizes.  

5.3.5.1 PCA Model 1: Site A Data 

A principal component analysis representation was created of the PSD data from the 

35 plant 1 main process batches analysed at Site A, using the software SIMCA-P+ 

12.0.1 (Umetrics AB, Umeå, Sweden). The data was scaled to be mean centered with 

unit variance. A PCA model comprising the first three principal components captured 

99% of the variation in the data (Table 5-2). The Q2 value, 0.97, is close to the R2X, 

suggesting that the model is not over fitted and will be applicable to new data. 

Therefore PSD data from future batches can be applied to PCA model 1 to assess if 

there is a difference in the PSD.  

Number 
of PCs 

R2X 
(cumulative) 

Q2  

1 0.80 0.75 

2 0.93 0.83 

3 0.99 0.97 

Table 5-2: Model fit for PCA model 1 

From the PCA representation, the loadings identify which variables (particle sizes) 

have the greatest impact on the variation in the data, for the individual principal 

component. The loadings for the first principal component (PC) separate out the sizes 

above and below the main peak in the distribution (Figure 5-10), an example of an 

individual PSD is shown in Figure 5-11. Samples with a high PC score for this 

component will comprise a high proportion of fine particles. The second component 
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represents the height of the peak in the distribution, at around the 14th size 

measurement. The loadings from the third component identify further regions of the 

PSD where there are differences between batches, particularly around the tails of the 

distribution.  

 

Figure 5-10: Loadings for PCs 1, 2 and 3 (sizes are nominal values) 

 

Figure 5-11: Example of a PSD for a batch used to develop PCA model 1 

The principal component scores plots show the similarities in the profiles of all the 

batches in the dataset (Figure 5-12 and Figure 5-13). Two batches stand out as 

exhibiting unusual behaviour, with each batch outside of the 95% confidence bounds 

for at least one of the principal components. These batches are highlighted in red and 

green.  

The batch highlighted in red has a higher proportion of the most coarse particles 

compared to the rest of the batches and a lower peak height (Figure 5-14), identified 

through the scores in the first and second components. During the milling process for 

this batch it was noted that there were several spikes in the feed rate of the product 

into the mill, which may have caused the milling to be less effective, resulting in more 

coarse particles. The batch highlighted in green has a high proportion of fine particles 
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and low peak height compared to the other batches, which was identified from the 

second and third PCs, for which this batch had low score values. 

   

Figure 5-12: Scores plot for 
the first two PCs, 
highlighting two outliers 

Figure 5-13: Scores plot for 
PC1 and PC3, highlighting 
two outliers 

Figure 5-14: Profiles of plant 1 main 
batches, highlighting two outliers  

Within the dataset collected at Site A there was data from six batches from the main 

process on plant 2 and one from the plant 1 recovery process. These batches were 

applied to the PCA model as a prediction dataset and the scores values predicted 

(Figure 5-15). The Hotelling’s T2 and DModX values for the batches produced on plant 

2 all lay outside of the 95% confidence intervals (Figure 5-16 to Figure 5-17). The plant 

2 batches all had high scores in PC1, which corresponds to a high level of fine 

particles, and low scores in PC2 corresponding to a low peak height. These differences 

were also observed when the original PSDs were overlaid (Figure 5-18). It was shown 

previously that there are large differences between the unmilled material manufactured 

on the two plants (Section 5.3.4), although the milling process increases the similarity 

of the two products, differences in the particle sizes is still evident.  

For the batch from the plant 1 recovery process, the scores lie within the rest of the 

data from plant 1. However the DModX value falls just above the 95% confidence 

limits, suggesting the there is a slight difference in the PSD profile for the batch 

manufactured on the recovery process. The plot with the distributions overlaid shows 

that the peak for the recovery batch is slightly to the right, indicating that the material is 

more coarse than the rest of the plant 1 batches.  

It is important to note that despite the differences in PSD between plant 1 and plant 2 

material, all of the batches included were suitable for release, indicating that there is a 

range of acceptable particle sizes.  
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Figure 5-15: Scores plot for the first two PCs, 
with the prediction set 

 

Figure 5-16: Hotelling’s T
2
 for the prediction data 

set, 95% confidence level 

 

Figure 5-17: DModX (PC1) for the prediction data 
set, 95% confidence level 

 

 

Figure 5-18: PSD profiles of all batches analysed at Site A 

5.3.5.2 PCA Model 2: Site B Data 

From the dataset collected at Site B, the 32 batches from the main process on plant 1 

were used to create a second PCA representation. Three principal components were 

retained in the model, explaining 99% of the variation in the data (Table 5-3). For this 

dataset, no unusual batches were observed from the scores plots (Figure 5-19 and 

Figure 5-20) and the loadings exhibited similar trends to model 1 (Figure 5-21). 
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Number 
of PCs 

R2X 
(cumulative) 

Q2  

1 0.88 0.86 

2 0.97 0.96 

3 0.99 0.99 

Table 5-3: Model fit for PCA model 2 

 
Figure 5-19:Scores for the first two PCS, 
with 95% confidence bound 

 
Figure 5-20: Scores for PC1 and PC3, with 
95% confidence bound 

 

Figure 5-21: Loadings for PCs 1, 2 and 3, model 2 (sizes are nominal values) 

The dataset collected at Site B includes batches from the plant 1 recovery process and 

both processes on the second plant, these batches were applied as a prediction set to 

PCA model 2. Similar to the data collected at Site B, the scores from the plant 1 

recovery batches align fairly closely with the plant 1 main batches that were used to 

build the model, but form a cluster to one side (Figure 5-22). The Hotelling’s T2 and 

DModX values are all close to the 95% confidence limits and hence the differences are 

close to significant (Figure 5-23 and Figure 5-24)  

However the difference between batches produced on the two plants is much more 

pronounced. The Hotelling’s T2 and DModX values for these batches are much larger 

than the 95% confidence limits; these batches have a lower peak height and higher 
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proportion of fine particles (Figure 5-25). The results show that the plant where the 

product is manufactured has a greater influence on the particle size distribution than 

the process that is operated prior to the solid particles being formed.  

 

Figure 5-22: Scores plot of first two 
PCs, with the prediction data set 

 

Figure 5-23 Hotelling's T
2
 for the prediction data set 

 

 

Figure 5-24: DModX (PC1) for the prediction data set 

 

 

Figure 5-25: PSD profile of all batches analysed at Site B  

5.3.5.3 Comparison of Site A and Site B Data 

Different instruments were used to measure the particle size of the samples at the two 

sites, which may cause differences in the results. Separate PCA representations were 

created for the two datasets, so any differences in results can be investigated by 

applying each dataset as a prediction set to the model from the other site. The 

-20

-15

-10

-5

0

5

-10 -5 0 5 10

P
C

2
 S

c
o
re

s

PC1 Scores

PSD_feb_update.M1 (PCA-X), PS-PSD_feb_update

tPS[Comp. 1]/tPS[Comp. 2]

Colored according to Obs ID (Plant)

R2X[1] = 0.87624             R2X[2] = 0.0964741           

Ellipse: Hotelling T2 (0.95) 

E6 TMLR

E5 TMLR

E6 Telescope

E5 Telescope

SIMCA-P+ 12.0.1 - 2013-03-21 17:14:17 (UTC+0) 

0

50

100

150

200

250

P
la

n
t2

 M
a
in

P
la

n
t2

 R
e
c
o
v
e
ry

P
la

n
t2

 R
e
c
o
v
e
ry

P
la

n
t2

 R
e
c
o
v
e
ry

P
la

n
t2

 R
e
c
o
v
e
ry

P
la

n
t2

 R
e
c
o
v
e
ry

P
la

n
t1

 R
e
c
o
v
e
ry

P
la

n
t1

 R
e
c
o
v
e
ry

P
la

n
t1

 R
e
c
o
v
e
ry

H
o
te

lli
n
g
s
 T

2

Plant

T2Crit(95%) = 9.40909 T2Crit(99%) = 14.5522 SIMCA-P+ 12.0.1 - 2013-03-21 17:14:59 (UTC+0) 

Plant 2 

main

Plant 2 recovery Plant 1 recovery

0

2

4

6

8

10

12

P
la

n
t2

 M
a
i

P
la

n
t2

 R
e
c

P
la

n
t2

 R
e
c

P
la

n
t2

 R
e
c

P
la

n
t2

 R
e
c

P
la

n
t2

 R
e
c

P
la

n
t1

 R
e
c

P
la

n
t1

 R
e
c

P
la

n
t1

 R
e
c

D
M

o
d
X

Obs ID (Plant)

PSD_feb_update.M1 (PCA-X), PS-PSD_feb_update

DModXPS+[Comp. 1](Normalized)

Colored according to Obs ID (Plant)

M1-D-Crit[1] = 1.41      1 - R2X(cum)[1] = 0.1238 SIMCA-P+ 12.0.1 - 2013-03-22 09:58:27 (UTC+0) 

Plant 2 

main

Plant 2 recovery Plant 1 recovery

Plant 1 main

Plant 1 recovery

Plant 2 main

Plant 2 recovery

0

20

40

60

80

100

1
.1

1
.3

1
.5

1
.8

2
.2

2
.6

3
.1

3
.7

4
.3 5 6

7
.5 9

1
0
.5

1
2
.5 1
5

1
8

2
1

2
5

3
0

3
6

4
3

5
1

F
re

q
u
e
n
c
y

Particle Size (um)

PSD_feb_update.DS1 PSD_feb_update

SIMCA-P+ 12.0.1 - 2013-03-21 17:16:45 (UTC+0) 

0

20

40

60

80

100

1
.1

1
.3

1
.5

1
.8

2
.2

2
.6

3
.1

3
.7

4
.3 5 6

7
.5 9

1
0
.5

1
2
.5 1
5

1
8

2
1

2
5

3
0

3
6

4
3

5
1

F
re

q
u
e
n
c
y

Particle Size (um)

PSD_feb_update.DS1 PSD_feb_update

SIMCA-P+ 12.0.1 - 2013-03-21 17:16:45 (UTC+0) 



131 

Hotelling’s T2 and DModX statistics show how closely the data in the prediction data set 

fits the data used to create the initial PCA model.  

It is important to note that different batches were analysed at each site, and the 

batches analysed at Site B were manufactured after those analysed at Site A, so the 

differences could be attributed to either instrument or batch differences. Trending the 

scores for each dataset over time does not show a drift in values (Figure 5-26 and 

Figure 5-27), suggesting the particle size has not changed over time and hence any 

differences in the results from the two sites are due to either instrument differences or a 

step change in PSD.  

 

Figure 5-26: Scores from Site A model and batches, in make order 

 

Figure 5-27: Scores from Site B model and batches, in make order 

The majority of the batches analysed at Site A have a high Hotelling’s T2 when applied 

to the Site B model (Figure 5-28). However for the Site B data, many of the batches fit 

the Site A model, with these batches generally having a lower Hotelling’s T2 values. 

This difference suggests that there may be greater variation in the Site A dataset. The 

DModX values are large for both datasets when applied to the opposite model, 

suggesting that the underlying shape of the distribution may be different for each site 
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(Figure 5-29). Overlaying the plant 1 main process data for each site shows that 

samples analysed at Site B showed a higher proportion of coarse particles than those 

analysed at Site A (Figure 5-30).  

  

Figure 5-28: Hotelling’s T
2
 for Site A and Site B 

data applied to model 1 and model 2, 95% 
confidence levels shown  

Figure 5-29: Distance to Model for Site A and Site 
B data applied to model 1 and model 2, 95% 
confidence levels shown  

 

Figure 5-30: PSD of plant 1 main process batches analysed at Site A (black) and Site B (red) 

5.3.6 Percentiles 

An alternative method for analysing particle size distribution data is to compare the 

percentiles of the distribution. The 10th
 (D10), 50th (D50) and 90th (D90) percentiles are 

often used to summarise the information from a particle size distribution (Figure 5-31).  
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Figure 5-31: Percentiles of a particle size distribution 

The measured PSDs of batches manufactured on plant 2 showed a higher proportion 

of fine particles, which is reflected in the low D10 value, more specifically the lower 

10% of the PSD is more fine for plant 2 than plant 1 (Figure 5-32). The 50th and 90th 

percentiles highlight the difference between the data generated at Site A and Site B 

(Figure 5-33 and Figure 5-34), the batches analysed at Site B were measured to have 

a higher proportion of coarse particles and hence higher D50 and D90 values. It is 

important to note that it is not clear whether the differences are due to the 

measurements of the two laser diffraction instruments that were used or genuine 

differences between the material in the batches.  

 

Figure 5-32: 10
th

 percentile of particle size distribution data, for each batch  
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Figure 5-33: Median particle size for each batch 

 

Figure 5-34: 90
th

 percentile of particle size distribution data, for each batch 

5.3.7 Measurement Error 

Further understanding of the batch to batch variation can be achieved by analysing the 

variation in the PSD measurements. To determine the effect of changes in the 

manufacturing process, small changes in the PSD will need to be detected and hence 

the magnitude of the measurement error is required to be known to determine the size 

of a change in the PSD that can be identified.  

When the particle size measurements were recorded, each sample was analysed three 

times and the mean calculated. The repeatability of the particles size measurements 

was investigated by comparing the individual measurements from each batch, for the 

data from the plant 1 main batches analysed at Site B. Ideally the repeats within each 

batch should be similar so that differences between batches can be identified. If the 

variation in the repeatability of the measurement is too large, the batch to batch 

variability may not be fully captured and true differences in the PSD will not be 

identified.  

5.3.7.1 PCA Model 3 

The repeatability of the PSD measurements was quantified by creating a PCA 

representation using the 35 batches each with three repeats, generating a dataset of 

105 samples and 23 PSD variables. From the resulting PCA model, 85% of the 

variability in the data was captured by the first principal component (Table 5-4). Figure 
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5-35 shows the scores for this PCA model, colour coded for each batch. The three 

repeats for each batch tend to be grouped close together, suggesting that the analytical 

method has good repeatability.  

The variation in the data is caused by a combination of batch to batch variability and 

measurement repeatability. The contribution of each source of variation can be 

estimated by calculating the components of variation, the calculations for which are 

shown in Appendix 3. To measure the repeatability, the components of variance were 

found for the first set of scores from PCA model 3 (Table 5-5). The repeatability of the 

method contributes 2.4% of the total variation in the data, which is small enough to 

suggest that the measurement system is able to identify differences between batches 

(AIAG, 2002).  

Number 
of PCs 

R2X 
(cumulative) 

Q2 

1 0.85 0.83 

2 0.97 0.96 

3 0.99 0.99 

4 1.00 0.99 

Table 5-4: Fit of PCA model 3 

Source of 
Variation 

Variance 
Component 

% of 
Total 

Repeatability 0.48 2.4 

Batch to Batch 19.36 97.6 

Total 19.84 100 

Table 5-5: Components of variation for the 
scores of PCA model 3 

 

Figure 5-35: Repeatability of scores for PCA model 3, coloured by batch 

5.3.8 Conclusions of Principal Component Analysis 

An assessment of the particle size distribution of an API product has been undertaken, 

focusing on how the PSD may be affected by the manufacturing and milling processes. 

Three approaches have been considered for presenting the PSD data: (i) overlaying of 

the PSD curves, (ii) comparing the percentiles and (iii) performing principal component 

analysis. Overlaying the PSD profile provides the most detail about the distribution of 

each sample, but it is difficult to identify individual curves when there are a large 

number of samples. The percentiles of the distribution provide a summary of the 
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information contained within the profiles, but only a small amount of information is 

displayed on each graph. A PCA representation is able to capture a large amount of 

detail of the PSD data and display the results through scores and loadings plots. Two 

PCs have been found to explain up to 96% of the variation in the data. Therefore PCA 

can be used to summarise the data into as few data points as would be produced from 

calculating percentiles, but the majority of the information from the data is retained in 

the PCA representation. 

Comparison of the principal component scores highlights the differences between 

samples and inspection of the loadings indicates the areas of the PSD where 

differences occur. However, it is always desirable to refer back to the original overlay 

plot to confirm the relationship between samples. Through the use of PCA, differences 

between samples can be quantified in terms of Hotellings’ T2 and the distance to model 

(DModX) statistics.  

Two different laser diffraction instruments were used for making the PSD 

measurements and there appears to be a difference in the PSD results that were 

generated. In general batches analysed at Site B were measured to have a slightly 

higher proportion of coarse particles than those analysed at Site A. The difference 

could be caused by the measurement instruments using different algorithms to 

calculate the PSD from the measured data. In order to determine whether the 

differences are due to different instruments or different samples, samples from the 

same batches need to be tested on both instruments. These samples should be well 

blended and then separated to be tested on each instrument. If the differences are 

found to be caused by the PSD measuring instruments, it may be possible to work with 

the manufacturer to understand how the algorithms differ and cause a change in the 

calculated PSD. In future experimental work, if the PSDs of experimental batches are 

to be compared to the current PSD, only the dataset produced at Site B will be used to 

estimate the current PSD of the product.  

From the initial analysis of the data collected at Site A it has been shown that there are 

differences between the unmilled materials manufactured on the two plants; the 

material from plant 2 has a much higher level of fine particles. The milling process is 

effective in both reducing the overall PSD of the product and increasing the similarity 

between the material from the two plants. However the milled material that was 

produced on plant 2 does have a slightly higher level of fine particles. It was also 

concluded that there is little difference between the milled material from the main and 

recovery processes, suggesting that it is the plant where the particles are formed that 
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affects the PSD, rather than the manufacturing process that is used before the 

precipitation stage.  

The Hotelling’s T2 and DModX statistics both detected a significant difference between 

the material from the two processing plants. However all of the material was suitable 

for release, so using these metrics to detect a change to the PSD does not necessarily 

indicate that the material is unsuitable for release.  

5.4 Batch to Batch Variation 

Following the variation in the measurement system, the remainder of the variability in 

the PSD data is a result of differences between batches. This variation may be caused 

by factors upstream of the milling process, potentially during the precipitation and 

drying stages of the process, or by the milling process itself. Although the milling 

process has been shown to result in a large change in the PSD of the material, the 

particle size of the unmilled product will influence the final milled material. For example, 

the material produced on plant 2 has a higher proportion of fine particles and there 

remains a higher proportion of fines after milling.  

Gaining further knowledge on how the manufacturing and milling processes affect the 

PSD of the milled product will allow AstraZeneca to increase its level of understanding 

of the process, thereby aligning with the process analytical technology framework 

(Section 2.2.3). If changes are to be made to the process, for example as a result of a 

continuous improvement project, it will be possible to determine whether the changes 

are likely to have an impact on the PSD of the product. A future opportunity of this work 

is to link the PSD to the properties of the product that are seen during the formulation 

process. If an optimal PSD can be determined that shows the most desirable 

characteristics during formulation, then the manufacturing and milling processes may 

be modified to produce a milled product with the desired PSD, allowing for improved 

performance during the formulation process.  

Determination of the relationship between the manufacturing process and the final 

particle size distribution was based on data collected on a number of variables from 

both the manufacturing and milling processes (Section 5.4.1) and relating these to the 

PSD through the application of the modelling techniques partial least squares (Section 

5.4.2) and artificial neural networks (Section 5.4.3). 

Process data was collected for the initial set of batches that were analysed at Site A. 

Since differences have been identified between the PSDs of batches manufactured on 
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the different plants and from the recovery process, only batches from the main process 

on plant 1 are considered in this analysis.  

5.4.1 Process Data 

From the validation of the process, a number of critical and key process parameters 

have been identified that are expected to have the greatest influence on the quality of 

the product. These parameters are controlled to a level that has been found to ensure 

that the final product will be suitable for formulation and subsequent release.  

5.4.1.1 Manufacturing Process Data  

In total, 15 variables were collected from the manufacturing process (Table 5-6), 

starting from the formation of the solid particles during the precipitation stage. During 

the precipitation stage, calcium chloride (CaCl2) solution is added to the batch, causing 

the product to precipitate and form an amorphous solid.  

During precipitation it is essential that an amorphous rather than a crystalline solid is 

formed. Crystalline material is built up of a rigid structure and the crystals that form are 

hard solids. Conversely amorphous solids are much less structured, so the powder that 

forms is lighter and more easily soluble. The formulation process, where the powder is 

compressed into a tablet, is designed for the properties of amorphous material. 

Similarly the dose level of a tablet is selected for the dissolution rate of an amorphous 

solid and hence crystalline material would not produce the correct registered product.  

The temperature of the batch during the precipitation reaction must be well controlled. 

If the temperature exceeds the upper specification limit the batch will begin to melt and 

form the wrong product. A batch temperature below the lower specification limit has 

been found to result in variation in the quality of the product.  

The precipitation reaction happens rapidly, so it is important that the addition of calcium 

chloride happens continuously and is completed within a set time. It has been observed 

that a break in the addition of calcium chloride can cause the batch to crystallise and 

the material to thicken, causing blockages in the pipe that transfers the batch to the 

filter dryer. If the batch is allowed to crystallise then the material will be of the wrong 

polymorphic form and the correct API cannot be manufactured.  

Following the precipitation stage the batch is transferred to a filter dryer. Three dryers 

are operated in parallel. During the drying process, warm nitrogen gas is passed 

through the product to drive off the excess water. The batch temperature must be 

controlled so that the material does not melt, particularly during the beginning of the 
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drying process when the water content is very high. The filter jacket and headspace 

temperature are monitored to ensure that the batch does not exceed the upper 

temperature limit for the drying process. When the drying process has finished the 

water content is measured with a loss on drying (LOD) test, to ensure that the batch is 

suitably dry. The drying times vary between batches and when the drying times for a 

particular filter become too long, the filter is cleaned.  

Variable Units 

Water volume for calcium chloride kg 

Weight of calcium chloride  kg 

Batch size at precipitation L 

Minimum temperature  during precipitation oC 

Maximum temperature during precipitation oC 

Calcium chloride addition time Mins 

Minimum isolation temperature oC 

Filter dryer number 1, 2, 3 or 4 

Number of batches since filter clean Count 

Maximum drying temperature (first 12 hours) oC 

Maximum drying temperature (remainder) oC 

Maximum drying jacket temperature oC 

Loss on drying result %w/w 

Drying time Hours 

Batch weight after drying kg 

Table 5-6: Manufacturing process variables 

5.4.1.2 Milling Process Data  

The details of the milling process were described in Section 5.3.2. The milling process 

will determine the final particle size distribution of the product, so the critical milling 

parameters could potentially show a relationship with the PSD. Five process variables 

have been identified as critical process parameters: 

 Product weight throughput (kg/hr) – the rate of product being fed into the screw 

feeder 

 Screw feeder speed (rpm) – the setting determined by the operator 

 Nitrogen flow rate (m3/hr) – the gas flow rate carrying the product into the mill 

 Mill speed (rpm) – the rotational speed of the mill 

 Product temperature (oC) – inside of the mill  

Data for each measurement is captured every 10 seconds throughout the milling 

process, with the average milling time being 12 hours. To assess the relationship with 
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the PSD, the milling process data must be summarised to a smaller number of 

variables that will represent the useful information captured in the data. Data was 

collected for each of the key milling parameters, for the 34 batches in the dataset. For 

each parameter, the data was captured as an average of every five minutes while the 

mill was running.  

From each batch, two samples were collected from the powder being discharged from 

the mill, one near the beginning of the process and one close to the end. The two 

samples were blended before the PSD analysis was performed. It was therefore 

hypothesised that only the milling conditions towards the start and end of the process 

will have an effect on the PSD that is measured. The final milling data was reduced to 

the first 1.5 hours of the process for the initial sample and 4 hours towards the end of 

the process to capture the milling conditions of the second sample. More time points 

were included for the second sample because the material may be held up within the 

mill and hence the milling conditions from earlier in the process may have affected the 

PSD of the sampled product.  

The milling variables were collected at regular intervals during the process, so it may 

be appropriate to unfold the data and apply multi-way PCA or PLS (Section 3.2.1). This 

approach assumes that the data describes the evolution of a batch over time and that 

each batch follows a particular trend. However graphs of the data from the milling 

process (Figure 5-36 to Figure 5-39) show that changes to the milling conditions can 

occur at any time and the measurements do not follow a trend over time. A high or low 

value of one of the measurements could affect the PSD of the product, irrespective of 

the time that it occurs. Therefore alternative summaries of the data were investigated.  

  
 Figure 5-36: Example of product weight throughput Figure 5-37: Examples of screw feeder speed 



141 

  
Figure 5-38: Examples of nitrogen flow rate Figure 5-39: Examples of product temperature 

 

 

Figure 5-40: Examples of mill speed  

The weight throughput of product is approximately constant throughout the duration of 

a batch, but spikes are observed when a large amount of material drops into the 

system at one time (Figure 5-36). Weight throughput measurements are also negative 

when the weigh scale reads incorrectly after a drop of product. The spikes in the data 

may indicate process conditions that have an effect on the PSD and hence the 

maximum throughput for each batch should be captured. To provide more detailed 

information, the 90th, 75th, 50th, 25th and 10th percentiles of the weight throughput data 

were determined, along with the mean and minimum. Data summaries were collected 

separately for the start and end portions of the milling process.  

The screw feeder speed is generally constant throughout a batch, since the speed is 

set by the operator (Figure 5-37). The speed is seen to ramp up at the start of a batch 

and may be reduced if the weight throughput is too high. To summarise the screw 

feeder speed throughout a batch, the mean and mode will provide an indication of the 

average and most common speed that was applied during a batch.  

The nitrogen flow rate and temperature measurements show some variation during the 

running of a batch, but differences in the profiles can be identified between batches 

(Figure 5-38 and Figure 5-39). Therefore the median flow rate and temperature may 

provide good summaries to compare batches. At times during milling a high spike on 

the flow rate or low dip in the temperature is observed. These points occur immediately 

after the mill is paused during milling, for example when a keg is replaced for product to 

be discharged into. At these times product is not fed into the mill, so the spikes in 

measurements are not expected to indicate a milling condition that may affect the PSD. 
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The mill speed is seen to vary minimally; with readings generally lying between 5710 

and 5730 rpm (Figure 5-40). The median mill speed was used to capture the speed 

within each batch. 

5.4.2 Assessing the relationship with PLS Models 

The relationship between the process variables and the resulting particle size 

distribution was investigated by creating a PLS model, using the software SIMCA-P+ 

12.0.1 (Umetrics AB, Umeå, Sweden). The input variables were the 15 manufacturing 

variables and 26 mill variables, and the response was the 23 PSD distribution 

measurements. Data was collected for 34 batches. The data was standardised to have 

a zero mean and unit variance, to prevent variables with large magnitudes having 

greater influence on the structure of the model.  

5.4.2.1 PLS Model 1 

The first PLS model contained all the process variables. Retaining one latent variable, 

the model was able to explain 54% of the variability in the particle size distribution 

(Table 5-7). However the Q2 value is very low, suggesting that the PLS model may be 

over fitted as a consequence of the large number of input variables.  

Number of latent 
variables 

R2X 

(cumulative) 

R2Y 

(cumulative) 

Q2 

(cumulative) 

1 0.10 0.54 0.212 

2 0.22 0.66 -0.03 

Table 5-7: Model fit of PLS model 1 

The Hotelling’s T2 values (Figure 5-41) suggest that the first batch in the dataset could 

be an outlier. This is the same batch that was identified in Section 5.3.5.1 as displaying 

an unusual PSD profile with a high proportion of coarse particles. The distance to 

model value for this batch is not large, suggesting that the batch is drawing the model 

plane towards itself (Figure 5-42). The contribution plot for this batch shows that the 

high Hotelling’s T2 value is caused by variables relating to a high weight throughout and 

long drying time (Figure 5-43). Since there is only one batch in the dataset with a high 

weight throughput and a coarse PSD it is not possible to determine causality. This 

batch appears to be very different to the rest of the dataset and does not reflect the 

general behaviour of the process, hence it was removed from the model.  
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Figure 5-41: Hotelling’s T

2
 for PLS model 1 Figure 5-42: DModX for PLS model 1 

 

Figure 5-43: Contribution plot for batch 1 

5.4.2.2 PLS Model 2 

For the second PLS model, the first batch in the dataset was removed and the model 

refitted. This revised model was able to explain approximately half of the variability in 

the response data with one latent variable (Table 5-8). However less than 20% of the 

variation could be predicted when cross-validation was applied, suggesting that the 

model is again over fitted. More specifically, since there are a large number of input 

variables in the model, it may be possible to find a relationship between the input and 

response data, but this relationship does not hold when the model is applied to new 

data.  

Number of latent 
variables 

R2X 

(cumulative) 

R2Y 

(cumulative) 

Q2 

(cumulative) 

1 0.07 0.56 0.17 

2 0.24 0.59 -0.06 

Table 5-8: Model fit for PLS model 2 

The data set may contain a number of variables from the process that do not have an 

effect on the PSD and hence these variables will add noise to the model. SIMCA allows 

the importance of each variable to be compared through a VIP plot. The VIP for each 
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variable is the sum of the squared loadings, weighted by the amount of variation in the 

response that is explained by each latent variable. Eriksson et al (2006) suggested that 

variables with a VIP value greater than one are the most important for explaining the 

response variables.  

Figure 5-44 and Table 5-9 show that a number of variables have a low VIP in the PLS 

model and can therefore be removed from the dataset. In particular, variables taken 

from the drying and precipitation processes appear to have a greater influence on the 

PSD than the variables measured during milling. By removing the variables with lower 

importance, it may be possible to find a PLS model that is less over fitted.  

5.4.2.3 PLS model 3 

Using the information from the VIP plot, variables that were not expected to have a 

relationship with the PSD were removed. The remaining variables are summarised in 

Table 5-9. The resulting PLS model shows slightly improved predictability from the 

previous model, with a Q2 value of 0.36 for one latent variable (Table 5-10). However, 

since less than half of the variation can be predicted in new data, the model fit is still 

too low to have confidence of a strong relationship between the process variables and 

the PSD.  

Figure 5-45 shows the loadings for the variables in PLS model 3, for the first latent 

variable. The largest loadings for the predictor variables relate to the drying process. 

The drying time has a negative loading, along with the maximum dryer and jacket 

temperatures, which will be correlated since batches that are dried for longer reach 

higher temperatures. Furthermore the loss on drying result, which indicates the batch 

dryness, has a positive loading because batches that dry most quickly have greater 

LOD results. There is a negative correlation between the drying time and the scores 

from the first latent variable (Figure 5-46), which suggests that batches with a higher 

proportion of large particles have longer drying times. However it is not possible to 

determine whether batches with long drying times form larger particles, or larger 

particles cause batches to have longer drying times.  
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Precipitation 
 

Milling start 
 

Variable VIP  

 

Variable VIP  

Purified water for CaCl2 solution 0.05 

 

Max weight throughput 0.53 

Weight of calcium chloride 0.05 

 

P90 weight throughput 0.96 

Precipitation batch size 1.03 

 

P75 weight throughput 0.64 

Min temperature during precipitation 1.13 

 

Median weight throughput 0.05 

Max precipitation temperature  0.54 

 

P25 weight throughput 0.15 

Calcium chloride addition time 1.16 

 

P10 weight throughput 0.09 

Min isolation temperature 1.78 

 

Min Weight throughput 1.12 

Drying   
 

Mean Weight throughput 0.96 

 Mean screw feed speed 0.16 

Variable VIP  

 

Mode screw feed speed 0.38 

Dryer 1 1.72 

 

Median N2 flow rate 0.50 

Dryer 2 0.45 

 

Median mill speed 0.03 

Dryer 3 0.19 

 

Median product temperature 0.02 

Dryer 4 1.68 

 
Milling End 

Number of batches since filter clean 0.01 

 Max drying temp (1st 12 hours) 0.42 

 

Variable VIP  

Max drying temperature 0.93 

 

Max weight throughput 0.89 

Max drying jacket temperature 1.78 

 

P90 weight throughput 0.86 

Loss on drying result 2.84 

 

P75 weight throughput 0.60 

Drying Time 2.94 

 

Median weight throughput  0.92 

Batch weight after drying 1.03 

 

P25 weight throughput  0.33 

   

P10 weight throughput 0.44 

   

Min weight throughput 0.40 

  

 Mean Weight throughput 0.71 

   

Mean screw feed speed 0.08 

   

Mode screw feed speed 0.23 

   

Median N2 flow rate  0.45 

   

Median product temperature 0.68 

   

Median mill speed 0.48 

Table 5-9: VIP values from PLS model 2, variables to be removed in grey 
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Figure 5-44: VIP plot for PLS model 2, coloured by process stage 

Number of latent 
variables 

R2X 

(cumulative) 

R2Y 

(cumulative) 

Q2 

(cumulative) 

1 0.13 0.56 0.36 

2 0.28 0.61 0.30 

Table 5-10: Model for PLS model 3 

 

Figure 5-45: Loadings for PLS model 3, latent variable 1 

The minimum temperatures during and after the precipitation reaction also have large 

loadings in the PLS model. However the variation in the temperature measurements is 

small, around 1C and there is no evidence of a relationship with the PSD (Figure 5-47 

and Figure 5-48). The precipitation time (CaCl2 addition time) also has a large loading, 

but further investigation of the data shows that the trend is caused by one batch with a 

particularly long precipitation time (Figure 5-49). The mill weight throughput 

measurements at the end of milling have the largest loadings of the mill variables, 

however no strong relationship is seen with the particle size (Figure 5-50). 
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Assessment of whether non-linear relationships exists between the process variables 

and the PSD was performed by examining the scores for the input (t) and response (u) 

variables (Figure 5-51). The straight line pattern indicates that there is a linear 

relationship between the inputs and outputs of the model, suggesting that a linear PLS 

model is suitable. However, since no strong relationships have been identified, it may 

be beneficial to investigate any potential non-linear relationships in the data (Section 

5.4.3).  

 

Figure 5-46: LV1 (response) vs. 
drying time 

 

Figure 5-47: LV1 (response) vs 
min precipitation temperature 

 

Figure 5-48: LV1 (response) vs 
min isolation temperature 

 

Figure 5-49: LV1 (response) vs 
CaCl2 addition time  

 

Figure 5-50: LV1 (response) vs 
P90 weight throughput 

 

Figure 5-51: Response vs input 
scores  

5.4.3 Assessing the Relationship with Stacked Neural Network Models 

Stacked neural network models were developed to investigate whether a non-linear 

relationship exists between the process variables and the particle size distribution. 

Principal component analysis was applied to reduce the PSD data to one set of PC 

scores that represented 82% of the variation in the PSD data. These scores were used 

as the response variable.  

In Section 5.4.2, 16 process variables were identified as having the strongest 

relationships with the PSD. The variable “dryer” was removed since it is a categorical 

variable and numerical inputs were required. Additionally, the maximum and P90 

weight throughput (end) variables are highly correlated with a correlation coefficient of 

0.79, so only the maximum was included in the model.  
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Cross-validation was used to determine the structure of the stacked neural network 

model. The batches were divided into six groups of five or six and neural networks 

were repeatedly fitted using the cross-validation group as the test data set. The training 

data comprised of 19 batches, with the remaining eight or nine as validation samples. 

Using stacked neural networks consisting of 30 individual networks and retaining three 

principal components, one hidden node was found to be optimal at providing the 

smallest mean squared error for the test data set (Figure 5-52).  

 

Figure 5-52: MSEs for 30 stacked neural networks 

To determine which variables have the strongest relationship with the PSD, each 

variable was removed individually and a stacked neural network model was created. A 

low MSE when a variable was removed indicated that the particular variable does not 

add any information to the model and can therefore be excluded from the analysis. 

Conversely, an increase in MSE when a term is removed indicates that the variable 

should be included to minimise the model error. 

For computational efficiency, all of the batches were used as either training or 

validation batches and were randomly split into each group with a ratio of 70:30. Three 

repeated stacked networks were fitted for each variable that was removed and an 

average taken of the resulting mean squared errors (MSEs). With no variables 

removed from the dataset, the MSE was 2.9. Five variables were identified that 

resulted in a particularly low MSE when they were removed from the dataset (Figure 

5-53): Minimum and P90 of the weight throughput (start of milling), batch volume at 

precipitation, minimum temperature during precipitation and maximum temperature 

during drying.  
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Figure 5-53: Mean squared errors with variables removed from datasets, highlighting five variables 

to remove from the data set 

The stacked neural network model was refitted with these five variables removed, 

resulting in the mean squared error being reducing to 2.5. As before, each variable was 

removed individually and a further model fitted. An increase in MSE was seen when 

any of the remaining variables were removed from the dataset (Figure 5-54), 

suggesting that all of the remaining terms are useful for predicting the PSD. 

 

Figure 5-54: Mean squared errors with variables removed from dataset 

The largest increases in error were seen when variables relating to the drying times 

and the precipitation temperature were removed, suggesting that these have the 

strongest relationship with the PSD and agreeing with the results from the PLS analysis 

(Section 5.4.2.3). When cross-validation was applied to the stacked NN model the R2 

for prediction was 61%, suggesting that the neural network model achieves a greater 

level of fit than the PLS model, which had a Q2 of 36%. However the results from the 

neural network model do not explain how the variables are related to the particle size, 

other than to indicate which may be the most important variables. A greater scientific 

understanding of the process would be required to be certain of the relationships 

between the variables.  
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5.4.4 Discussion of Modelling Results 

The poor model fit for the three PLS models suggests that there may not be a strong 

linear relationship between the process variables and the particle size distribution, for 

the range of each variable that was included in the dataset. The neural network model 

was able to identify a better fit but, with the exception of the drying time, individual 

variables do not show a relationship with PSD (Figure 5-46 to Figure 5-49). 

While these results do not provide information in terms of explaining the batch to batch 

variation of the PSD, they do suggest that any variables that could have a significant 

effect on the PSD have been identified and are suitably controlled to a level that does 

not have a significant effect. A number of process variables, including the temperatures 

during precipitation and drying, are controlled to a level that has been found not to 

affect the quality of the product and hence have no impact on the particle size 

distribution. Similarly the screw feeder and mill speeds exhibit limited variation between 

batches, so the range of data is too small to identify the presence of a relationship with 

the particle size.  

For a more detailed understanding of the relationship between the process variables 

and the particle size distribution, it may be necessary to increase the range of each 

variable by running the process outside of the normal operating range. However this 

approach may result in material being produced that cannot be released and is 

therefore not feasible.  

A further limitation to the modelling is the sampling plan for milled material. Samples 

are taken from the start and end of each batch and blended together, which does not 

allow for changes in the PSD from the start to end of milling to be measured. This 

approach only allows differences in milling conditions to be compared batch-to-batch 

and not within a batch. Taking more samples throughout a batch and analysing them 

separately would allow an assessment of how changes to the milling conditions during 

a batch can affect the PSD.  

5.5 Conclusions 

A number of particle size distribution measurement techniques were initially discussed 

and of these laser diffraction and scanning electron microscopy were used to measure 

the PSD of an active pharmaceutical ingredient. The resulting data were analysed by 

principal component analysis, partial least squares regression and neural network 

modelling. 
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Laser diffraction (LD) was shown to produce detailed and repeatable measurements of 

the PSD for a number of batches. The ability of LD to produce results rapidly allowed 

for the comparison of material from a number of batches produced from different plants 

and processes. The difference in the material from the two plants was confirmed by 

examining the scanning electron microscopy images.  

Principal component analysis (PCA) was applied to the data that was generated from 

the laser diffraction analysis. The PCA method was captured 99% of the variation in the 

data with three components and highlighted differences between the two processing 

plants and identified batches that exhibited unusual behaviour. By reducing the PSD to 

a set of principal components, batches can be compared on a scores scatter plot, as 

opposed to overlaying each distribution. However batches that that show a different 

PSD to the rest of the data set may not show differences in the formulation stage of the 

process and further study is required to understand the relationship between PSD and 

the characteristics of the product formulation.   

Samples were analysed at two sites, using two different laser diffraction instruments. A 

comparison of the LD results showed an offset between the data generated from each 

site, however the same differences between the two processing plants were observed 

with both instruments. The results indicated that samples should only be compared 

when they have been analysed by the same instrument.   

The PLS algorithm was unable to identify a strong linear relationship between the 

process data and the particle size distribution. The stacked neural network model 

identified that the drying time may have the strongest relationship with the PSD. The 

lack of model fit may be due to the range of each variable may be too small to show a 

relationship; for example some variables are controlled to a level of +/- 1C. The most 

important variables in the process that may affect the particle size have previously 

been identified and are tightly controlled. As a result data from the normal operating 

range of the process may not show enough variation to identify any relationships with 

the PSD.  

This study into particle size distribution has suggested that the key parameters of the 

drying and milling process are well controlled within their process specification limits. 

Process capability indices are used to capture how well a process runs within its 

specification limits and are investigated in Chapter Six, with a focus given to data that 

does not satisfy a normal distribution. 
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6 Process Capability Indices for Non-Normal Data 

6.1 Introduction 

A process with a measurable customer requirement will typically have a set of 

specification limits to which the data from the process or product must conform. How 

well the data lies within the specification limits shows how capable the process is of 

meeting the customer’s target and can be quantified through the calculation of process 

capability indices (Spiring, 1995). 

Pharmaceutical manufacturing processes have a number of specification limits that are 

registered with regulatory authorities. Data from the process must show that these 

limits are met to allow the finished product to be released to the market. Specification 

limits may be for processing conditions, such as reaction temperatures, timings and 

quantities of reactants or for quality control testing of the final product. For a batch 

process, if a measurement lies outside of a particular limit, then the batch will fail and 

be rejected.  

In-process specification limits are used to confirm that a batch has been run under 

conditions that have been shown to produce a quality product and prevent impurities 

from forming. The limits are determined from knowledge gained during the 

development stage of the process and are registered with the relevant regulatory 

authorities. The monitoring of in-process measurements should confirm that the final 

product has been manufactured to the required quality, before being verified by quality 

control testing. This approach aligns with the US Food and Drug Administration’s (FDA) 

principles for process validation, where quality assurance through process control is 

encouraged over end product testing, since quality can never be fully measured by 

testing (FDA, 2011). 

The risk of a specification limit being breached can be quantified using process 

capability indices. The capability of a process describes how well the measured data 

sits within the specification limits and therefore shows the risk of a batch failure. 

Capability is a measure of the ability of the process to meet customer requirements 

(Spiring, 1995), with a highly capable process having a very low risk of failure. Process 

capability indices (PCIs) directly relate to the probability of a batch failing, so from the 

capability, the expected long term cost of batch failures can be calculated.  
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Most processes will have a number of specification limits for different measurements 

and stages of the process. A separate PCI is calculated for each registered range and 

the process is at most only as capable as the worst performing part of the process. By 

calculating a set of PCIs, the greatest risks to the process can be identified and 

prioritised for improvements to be made. Multivariate process capability techniques can 

also be used to handle multiple sets of specification limits (Section 6.1.3.3). By 

calculating the expected costs resulting from batch failures, the cost of improvement 

work can be justified.  

Many of the standard process capability indices are based on the assumption that the 

data satisfies a normal distribution. However, data from industrial processes may not 

satisfy normality due to the manner in which the process is operated and controlled; 

hence the results from standard process capability indices may not reflect the actual 

capability of the process.  

This chapter provides an introduction to the most commonly used process capability 

indices and how they should be interpreted and implemented. A number of non-

parametric indices have been proposed in the literature, based either on the percentiles 

of the data or the proportion of data outside of the specification limits, which are 

discussed in Section 6.2. In Section 6.3 a simulation study of these metrics is 

conducted to understand their performance on data sampled from different statistical 

distributions with varying levels of skewness. Since the underlying distributions are 

known, the true capability of the population from which the data is sampled is also 

known. The results are then analysed to determine how close the calculated 

capabilities are to those of the underlying distribution, and to determine the level of 

variation caused by differences between samples taken from the same underlying 

distribution. In Section 6.4, these non-parametric indices are then applied to data from 

a manufacturing process operated by AstraZeneca. 

6.1.1 Process Capability Indices for Normal Data 

A number of process capability indices are regularly used by industry, which show both 

the current performance of the process (Section 6.1.1.1), and its potential capability if 

process improvements were introduced (Section 6.1.1.3).  

6.1.1.1 Pp and Ppk 

Two commonly used measures to quantify the process capability are Pp and Ppk (Kane, 

1986, Kotz and Johnson, 1993). Pp measures how the width of the variation in the 

process data compared to the width of the specification limits (Figure 6-1): 
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Pp =
USL − LSL

6σ
 

Equation 6-1 

where USL is the upper specification limit, LSL is the lower specification limit, and  is 

the process standard deviation.  

To estimate the Pp value from a sample of data, P̂p is calculated from the sample 

standard deviation, s: 

P̂p =
USL − LSL

6s
 Equation 6-2 

 

Figure 6-1: Example of a distribution and the measurements used to calculate Pp 

Although the Pp measure does not indicate how much of the data sits within the 

specification limits, it shows the potential capability if the process measurement could 

be centred within the specification range without changing the level of variation. For a 

normal distribution, 99.73% of the data is expected to lie within the width of six 

standard deviations of the measurement. Consequently if six standard deviations is 

less than the specification width, the process has the potential to be capable, otherwise 

some data would be expected to lie outside of the limits.  

When the process is not centred within the specification range, a capable process is 

required to have a minimum of three standard deviations between the mean and each 

limit. The Ppk value measures the shortest distance from the mean of the process to the 

specification limits, in units of three standard deviations: 

Ppk = min {
μ − LSL

3σ
,
USL − μ

3σ
} Equation 6-3 

where, USL is the upper specification limit, LSL is the lower specification limits, µ is the 

process mean and  is the process standard deviation.  

To estimate the Ppk value from a sample of data, P̂pk is calculated from the sample 

mean, x̅, and the sample standard deviation, s: 

Measurement

LSL USL

Specification width

Data width
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P̂pk = min {
x̅ − LSL

3s
,
USL − x̅

3s
} 

Equation 6-4 

The Ppk metric shows the actual capability of the process that is being run. If the 

process is centred then Pp is equal to Ppk, otherwise Pp is greater than Ppk. Hence Ppk is 

the actual capability and Pp is the potential that could be achieved if the process is 

centred.  

6.1.1.2 Interpretation of Ppk Values 

From the calculated Ppk value, the shape of the normal distribution can be used to 

calculate the expected failure rate of a process. Figure 6-2 shows examples of 

processes with various Ppk values, and the amount of data which fall outside of the 

limits.  

Typically a process with a Ppk greater than one is considered to be a capable process, 

with at least 99.73% of the measurements within the specification limits (Figure 6-2a,b). 

The target for a highly capable process is 1.33 (Anjard et al, 1991). When a process 

has a Ppk of less than one, there is a risk of batches failing a specification limit. For 

example, a process with a Ppk of 0.67 (Figure 6-2c) would have an expected failure rate 

of 4.5%. The expected failure rate is calculated as:  

𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑢𝑡 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = (1 − Φ(Ppk ∗ 3)) ∗ 2 

here  is the standard normal distribution function.  

When comparing Ppk values, it is assumed that the data satisfies the shape of a normal 

distribution. If this assumption does not hold then the expected failure rate that is 

calculated from the Ppk value is not valid, and the value of Ppk may not accurately 

indicate the capability of the process (Section 6.1.4). It is also assumed that the data 

are randomly distributed about the mean and there are no step changes or drift over 

time in the process.  

   
a) Ppk = 1 b) Ppk = 2 c) Ppk = 0.67 

Figure 6-2: Typical processes with Ppk of 1, 2 and 0.67 respectively 

Measurement

LSL USL

Measurement

LSL USL

Measurement

LSL USL
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6.1.1.3 Cp and Cpk  

When using Pp and Ppk to measure the capability of a process, it is assumed that the 

process is in a state of statistical control (Section 2.2), that is the process mean is 

constant over time and the variation is random noise centred about the mean. However 

for some processes, a step or gradual change in the mean may occur, known as shift 

and drift respectively, or special cause variability. For example, a shift in the mean 

could be caused by a change of raw material added into the process, whilst a drift may 

be a result of an instrument calibration that changes over time. When the mean 

changes over time, the actual variation around the short term mean will be smaller than 

the overall variation of the whole data set (Figure 6-3).  

 

Figure 6-3: Example of a process where the mean shows shift and drift 

An alternative capability measure is thus to calculate the short term variation of the 

process, excluding any shift or drift in the mean. The metrics Cp and Cpk use equations 

(Equation 6-2 and Equation 6-4), but the standard deviation, s, is replaced with the 

short term variation, which is measured from the absolute difference between 

consecutive data points. The values of Cp and Cpk will show the potential capability that 

could be achieved if the causes of shift and drift could be avoided, so the only variation 

is random noise about the overall mean. A large difference between Cpk and Ppk 

suggests that the mean is not constant and the capability of the process could be 

improved if the mean could be controlled and kept constant.  

6.1.1.4 Comparison of Pp, Ppk, Cp, and Cpk  

Pp, Ppk, Cp, and Cpk are four metrics which provide information about the current 

capability of the process and the level that could be achieved if improvements are 

made based on the information gained from comparing the four metrics (Figure 6-4). 

Ppk quantifies the actual capability that is currently being achieved by the process. Pp is 

the potential capability achievable if the process is centred between the specification 

limits. Cpk is the potential if the process mean could be controlled by removing special 

cause variability. Cp is the overall potential capability if the process is centred and the 
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mean is constant. The size of the difference between the four values shows where the 

largest gains in capability could be achieved.  

 

Figure 6-4: Information from differences between process capability metrics 

6.1.2 Process Capability Analysis at Industrial Sponsor 

At AstraZeneca, a review was undertaken to determine how to monitor the capability of 

a process with respect to in-process specification limits. Previously measurements from 

batches were checked individually against the specification limits, but little analysis was 

done to assess the overall capability of the process. Limited process capability analysis 

was conducted using Ppk, but without checking for the underlying assumptions of the 

method (Section 6.1.3.2).  

The business required a system to quantify the capability of individual stages of a 

process, to highlight any risks to capability, indicate the need for improvements and to 

monitor the capability over time. A monthly capability review was initiated for in-process 

specification limits, where the Ppk values for each set of limits were displayed along 

with a ‘red, amber, green’ colour code to give a quick visual indication of the state of 

the process. A Ppk value less than one was coloured red, Ppk between one and 1.33 

was coloured amber, and process with Ppk greater than 1.33 was labelled green. 

However it was noted that a number of the data sets did not conform to the assumption 

of a normal distribution, and hence process capabilities indices for non-normal data 

were investigated (Sections 6.1.4 to 6.3) 

6.1.3 Implementation of Process Capability Indices 

Process capability indices have been widely applied in a range of industrial sectors, 

including in the manufacturing and service industries (Spiring, 1995). Process 

capability can be applied to any situation with a measurable customer requirement, to 

quantify how will well the targets are being met.  
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6.1.3.1 Benefits 

Process capability indices are dimensionless numbers and hence can be used to 

compare between measurements recorded in different units or magnitudes, allowing 

the capability to be compared across different stages of a process, or between different 

processes or locations (Anis, 2008). By comparing all stages of a process 

simultaneously, areas for improvement can be prioritised to focus on the lowest 

capability and targets can be set to achieve a minimum level of acceptable capability, 

for example a Ppk greater than 1.3. These comparisons are particularly appropriate for 

the manufacture of active pharmaceutical ingredients because there can be several 

stages and chemical processes, each with registered limits for the processing 

conditions. Process capability studies are also useful for setting performance targets, 

prioritising and implementing continuous improvement work and adopting a common 

language for process performance (Kane, 1986).  

By comparing the values of Cpk, Cp, Ppk and Pp, the potential capability of a process can 

be found. The difference between the four metrics will indicate whether improvements 

should be targeted at special cause variation, common cause variation or by adjusting 

the mean of the process (Section 6.1.1.4). The use of structured improvement 

methodologies such as Six Sigma (Section 2.4.2) can assist in delivering an 

improvement to the capability (Yu, 2008). The benefits of the improvement work can be 

demonstrated by trending Ppk values over time, allowing changes in capability to be 

monitored (Kane, 1986). 

The use of process capability also fits into the framework for Quality by Design (QbD, 

Section 2.3). In the implementation of QbD, the critical quality attributes (CQAs) and 

critical process parameters (CPPs) are identified, so the goal is to develop the process 

such that all the CQAs and CPPs all have high capability (Yu, 2007). Seibert et al 

(2008) suggested that the capability of a process parameter may be used to help 

determine whether it should be labelled as critical. For example when an important 

parameter is shown to have very high capability, it may not be necessary to treat the 

parameter as critical, since the risk of variation of the parameter impacting on the 

CQAs is very low. However it may still be necessary to periodically monitor these 

parameters to ensure that the capability remains high.  

An example of applying capability metrics to the development of a cell tissue 

engineering process is reported in Liu et al (2010). Pp and Ppk were used to compare a 

manual and an automated method for the culture and expansion of human cells. Both 

approaches had very low Ppk values, less than 0.3. However the automated method 
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had a Pp value of 1.3, suggesting that high capability could be achieved with the 

automated method if the process could be centred within the specification limits, 

leading to an improved automated method with higher capability.  

6.1.3.2 Challenges  

Before undertaking a process capability study, the data must be checked to ensure that 

it satisfies the assumptions of normality, stability and independence. If the assumptions 

are not met then the calculated indices may not reflect the true capability of the 

process, leading to improvement work and resources being targeted at the wrong part 

of the process (Anis, 2008). When calculating process capability metrics, it is important 

to use data that represents all of the variation that is normally seen in the process, so 

that the results are a true reflection of the capability of the process (Deleryd, 1998). 

The process must be run in a stable way so that the mean remains constant over time. 

If the process mean changes, the capability will only describe the current process and 

not indicate what is expected in the future (Deleryd, 1999, Palmer and Tsui, 1999). 

Additionally, measurements should be statistically independent, so there is no 

autocorrelation between consecutive data points (Porter and Oakland, 1991). The 

assumption of independence may be more difficult to achieve for a continuous process, 

since consecutive measurements may be expected to be similar. However for batch 

process when there is one measurement for each batch, each measurement may be 

expected to be independent of others.  

Deleryd (1999) surveyed a number of companies who use process capability, including 

several from the manufacturing industry. It was found that the greatest benefits were 

gained from an increase in process knowledge and the ability to make fact based 

decisions for improvement work. However Deleryd (1999) found that the biggest 

drawback to process capability studies was the resources required both for training in 

how to run process capability studies and for carrying out improvement work. 

6.1.3.3 Multivariate Process Capability Indices 

When one process has a number of specification limits, it may be beneficial to know 

the overall risk that a failure will occur, for example to compare between different 

processes. The risk can be calculated using multivariate process capability metrics. 

Additionally, when the process data is multivariate in nature, the specification limits can 

define a region in multivariate space, rather than individual limits for each 

measurement.  
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The set of specification limits can be thought of as a multivariate tolerance zone, such 

that if the data points are all within the limits then they are within the tolerance zone. 

The zone may be rectangular for individual limits or ellipsoidal for multivariate limits. 

The process capability is calculated from the risk of a result occurring outside of the 

tolerance zone (Chen, 1994, Zahid and Sultana, 2008), where the capability index is 

the ratio of the acceptable risk over the actual risk. The capability can also be thought 

of as the ratio of the radius of the tolerance zone to the radius of the zone required to 

have the acceptable level of samples within the limits, which is a multivariate equivalent 

of the definition of Pp. Chen’s (1994) approach makes the assumption that the data 

follows a multivariate normal distribution.  

An alternative non-parametric approach is to calculate the probability of a failure 

occurring, based on the failure rate of a sample of measurements (Polansky, 2001). 

This method looks at the number of samples that have seen a failure, but not how 

many specification limits were breached for a particular sample, or how close the data 

points are to the limits.  

6.1.4 Non-Normal Data 

The standard PCIs, such as Ppk, are based on the assumption that the data are 

normally distributed. Therefore the data is assumed to be symmetrical about the mean 

and the range is represented by six standard deviations. However for an industrial 

process, several sources of variation can result in the data not satisfying normality 

(Porter and Oakland, 1991). For example, variation in batches of raw materials can 

impact on the product, ambient conditions such as temperature and humidity may 

affect the control of the plant, and different operators may run the plant in different 

ways, all of which can result in data with a shape that is different to the normal 

distribution. Many sources of data may not be expected to follow a normal distribution, 

such as particle size distribution, pH and chemical impurity content measurements 

(Anis, 2008). 

In some cases, non-normality of the data may suggest that the process is not stable or 

in statistical control, for example if the process mean varies over time. However if the 

reasons for the non-normality can be explained and the process data is expected to 

remain within the current range, then it is appropriate to estimate the capability of the 

process. 

Examples of non-normal industrial process data are shown in Figure 6-5. For these 

processes assuming a normal distribution and calculating Ppk may not accurately 

quantify the true capability. Figure 6-5a shows the minimum speed of the mill recorded 
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for 89 batches, the data is highly skewed because the mill generally runs at a constant 

speed, but may be reduced at the start and end of a run. Figure 6-5b shows the 

recorded temperature of a reaction; the distribution appears to be bimodal, which could 

be caused by different operating conditions such as the reaction being run during the 

day or night. Figure 6-5c shows the gas recirculation flow rate in the mill. It is desirable 

to run the flow rate close to the lower limit but the flow rate is controlled so that it does 

not fall below the lower limit. For each data set, the causes of the trends within the data 

are being investigated by the relevant technical teams.  

There are several options for handling non-normal data to allow the process capability 

to be found, including the removal of outliers, transforming the data, fitting an 

alternative probability distribution or using a distribution free PCI.  

   
a) Ppk = 0.91 b) Ppk = 0.86 c) Ppk= 0.58 

Figure 6-5: Examples of non-normal process data, a) mill speed, b) reaction temperature, c) gas 

flow rate 

Removing extreme data points can improve the fit of the data to a normal distribution. 

However if the extreme points are part of the overall distribution of the data, then 

removing them from the data set will remove their influence on the calculated 

capability, making the process appear more capable than it is in practice. Outliers 

should only be removed from the dataset if a known error has occurred in collecting the 

data, such as a laboratory error occurring during quality control testing.  

6.1.4.1 Data Transformations 

Data can be transformed to increase its similarity to a normal distribution. The process 

capability can then be calculated on the transformed data. For example if the data is 

positively skewed then a log transformation can be applied to reduce the skew of the 

data. The Box-Cox transformation (Box and Cox, 1964) is commonly used to find the 

most suitable method to transform the data to a normal distribution. For this approach, 

a value of  is calculated to transform each data point, y, to y(): 

LSL USL LSL USL LSL USL
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𝑦(𝜆) = 

 𝑦𝜆 − 1

𝜆
   0 Equation 6-5 

 log (𝑦),   = 0 

The value of  is that which maximises the log likelihood function of , when it is 

assumed that the transformed data y(


) follows a normal distribution. Therefore  allows 

the data to be transformed to be as close as possible to a normal distribution.  

When a transformation is applied to the data the specification limits must also be 

transformed. However transforming the data and the limits will lose the scale of the 

data, making the interpretation of the results more difficult. Additionally this method 

relies on finding a suitable transformation that results in data that follows a normal 

distribution.  

Figure 6-6 shows the Box-Cox transformation of the data shown from Figure 6-5, with 

the Ppk values of the transformed data. Although the optimal values of  are found, the 

distributions still do not appear to be close enough to a normal for the standard Ppk 

metric to be applied. The Ppk values for the transformed data are generally similar to 

those for the original data.  

   
a) Ppk = 0.86 b) Ppk = 0.88 c) Ppk = 0.78 

Figure 6-6: Box-Cox transformations of process data  

6.1.4.2 Fitting an Alternative Distribution  

When a normal distribution is not an appropriate fit to the data, it may be possible to 

find an alternative distribution which can produce a better fit. To determine which to 

use, several choices of distributions can be considered, for example the gamma or 

beta distributions. From the chosen distribution, the 0.135 and 99.865 percentiles are 

found to represent the range of the data and replace the six standard deviations in the 

process capability calculation. Additionally the mean is replaced by the median of the 

data. This approach is known as the Clements method (Tang and Than, 1999, Ahmad 

et al, 2008).  

transformed data

LSL USLLambda = 5
transformed data

LSLUSL Lambda = -5
transformed data

LSL USLLambda = -2
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Rather than finding the optimal distribution for a data set, the percentiles of a data set 

can be estimated from the calculated skewness and kurtosis. Kotz and Johnson (1993) 

presented a table of values for the 0.135 and 99.865 percentiles of standardised data, 

for given skewness and kurtosis values. However Ahmad et al (2008) and Tang and 

Than (1999) both noted that estimates of skewness and kurtosis can be unreliable for 

small sample sizes.  

Tang and Than (1999) applied the Box-Cox and Clements methods to data simulated 

from Weibull and lognormal distributions, to determine how well the capability 

calculated from these samples compared with the capability of the underlying 

distributions. Ahmad et al (2008) conducted a similar study, based on the Weibull and 

lognormal distributions.  

Tang and Than (1999) found that with a lognormal (0, 0.5) distribution with a skewness 

coefficient of approximately 1.9, the Box-Cox method produced more accurate and less 

variable results than the Clements’ method, for a sample size greater than 100. 

However with a lognormal (0, 1) distribution, with a skewness coefficient of around 5, 

Ahmad et al (2008) found that the capability was underestimated when the Box-Cox 

method was applied to the data. These results suggest that transforming the data may 

be reliable when the level of skewness is not too strong. The Clements’ method was 

shown to overestimate the process capability when the data was highly skewed, but 

underestimate it when the skew was smaller.  

For each set of process data shown in Figure 6-5, a Weibull distribution was found to 

produce the closest fit (Figure 6-7). The first set of process data is highly skewed 

(skewness=-1.2) but does not follow a smooth curve, so the shape of the data is 

difficult to represent with a statistical distribution. The second data set appears to be 

bimodal, which also cannot be represented by any standard statistical distribution, 

therefore the capability cannot be estimated from the Clements method.  

A suitable fit could only be found for the third data set, the mill gas flow rate. For the 

gas flow rate, the estimated Ppk value of 0.99 appears to be appropriate since the data 

is close to the lower limit, but is all within the specification range.  
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a) Ppk = 0.86 b) Ppk = 1.16 c) Ppk = 0.99 

Figure 6-7: Weibull distribution fitted to process data 

Ideally a process capability index is required that does not rely on the data fitting a 

specific distribution or the application of a transformation, since a suitable fit cannot be 

guaranteed. Therefore distribution free process capability indices have been 

investigated  

6.2 Distribution Free Capability Indices 

A number of alternative process capability indices have been proposed in the literature 

which do not make any assumptions about the shape of the data. Indices have been 

found based either on the percentiles of the data, or the proportion of data that is 

outside of the specification limits.  

6.2.1 Capability Indices Using Percentiles 

In general, the basis for estimating the process capability using the Pp metric is to 

calculate the ratio of the width of the specification range to the width of the data. The 

Ppk measure extends this concept to looking at each side of the mean separately. The 

Pp and Ppk measures rely on the assumption that the data are centred about the mean 

and the width of six standard deviations represents 99.37% of the data. Consequently 

the objective of the Pp and Ppk measures is to assess how well 99.73% of the data fits 

within the specification limits.  

For data that does not follow a normal distribution, equivalent measures are required 

for the centre and dispersion of the data. One option is to use the median rather than 

the mean, since the median is less influenced by skewness and the presence of 

outliers. The width of the data can be measured by percentiles, which will show the 

range of a specified proportion of the data.  

Chen and Pearn (1997) proposed a set of process capability indices, denoted CNp and 

CNpk, which are based on the median, M, and the 0.135% and 99.985% percentiles of 

LSL USL LSL USL
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the data (P0.135 and P99.865). These percentiles are equivalent to the mean ± 3 standard 

deviation for a normal distribution:  

𝐶𝑁𝑝 =
𝑈𝑆𝐿 − 𝐿𝑆𝐿

𝑃99.865 − 𝑃0.135
 

Equation 6-6 

𝐶𝑁𝑝𝑘 = 𝑚𝑖𝑛 {
𝑈𝑆𝐿 − 𝑀

1
2⁄ (𝑃99.865 − 𝑃0.135)

,
𝑀 − 𝐿𝑆𝐿

1
2⁄ (𝑃99.865 − 𝑃0.135)

}  
Equation 6-7 

For data from a normal distribution, CNp and CNpk will be equal to Pp and Ppk. A method 

to estimate percentiles from a sample of data is given in Section 6.2.3. 

The performance of CNp and CNpk for estimating the process capability was investigated 

by Wu et al (2007). A large number of data sets were simulated from a variety of 

distributions, including the Beta, Gamma and Student’s t- distributions, with sample 

sizes ranging from ten to 3000. Percentiles and process capabilities were estimated 

from the samples and these values were compared to the underlying distributions to 

determine the relative bias of the estimates. The relative bias was defined as the ratio 

of the error to the true value of the capability of the underlying distribution.  

Wu et al (2007) found that in general the median tended to be well estimated from 

samples, since the relative bias was close to zero, but CNp and CNpk were 

overestimated. This was because the width of the data in samples was not generally as 

wide as the width of the actual underlying distribution. For example, for a sample of 

size 100, the largest data point of a sample must be at least as large as the value of 

P99.865 for the estimate to be correct. However the probability of this occurring is 

approximately 12.6% (1-0.99865100), so for at least 87.4% of samples P99.865 will be 

underestimated. As the sample size increases, the relative bias will reduce.  

The errors from estimating P0.135 and P99.865 were compared for several distributions. 

For a sample size of 50, the smallest relative biases were attained for the Normal, 

Student’s t-, Laplace and upper tail of the 2 distribution. The largest biases were 

recorded for the lower tails of the uniform, 2, Gamma and Weibull distributions. For 

these distributions, the true value of the percentile, 0.135, is close to zero so a small 

difference between the estimated and true value is perceived to be a large relative 

bias. 

The accuracy of the estimators could be further analysed by assessing the variation 

due to sampling and quantifying how much the individual estimates vary between 

samples. For each distribution, Wu et al (2007) calculated the average capability 

estimate from a number of samples, but did not discuss the variability. However, high 
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variability between samples may cause individual samples to have low accuracy. 

Ideally a capability estimate is needed which will consistently give good results for a 

sample of data.  

6.2.2 Asymmetric Data 

When the shape of the data is highly skewed, the median does not lie in the centre of 

the range of the data, so the distribution will be more dispersed to one side of the 

median. In this case it is beneficial to assess each side separately.  

Grau (2010) proposed modifying the percentile method to look at the dispersion on 

each side of the median separately, C#
pk: 

𝐶𝑝𝑘
# = 𝑚𝑖𝑛 {

𝑈𝑆𝐿 − 𝑀

(𝑃99.865 − 𝑀)
,

𝑀 − 𝐿𝑆𝐿

(𝑀 − 𝑃0.135)
}  

Equation 6-8 

where M is the median. The difference between CNpk and C#
pk depends on how far the 

median is from the centre of the data range. For C#
pk the variation in one tail of the data 

does not impact on the result in the other tail. However for CNpk the overall variation in 

the data is measured for both tails of the data.  

The use of CNpk or C#
pk depends on the interpretation of the shape of the data. Figure 

6-8 shows two processes with positive and negative skew. Both processes have 

0.135% of the data above the USL, so the USL is equal to P99.865, equivalent to a Ppk 

value of one.  

C#
pk assigns both processes a capability value of one, since in both cases the distance 

from the median to the USL is equal to the distance from the median to P99.865. However 

CNpk assigns a higher capability to the first process since the median is far from the 

upper limit. This process could be considered to be more capable because more of the 

data is far from the upper limit and a small shift in the median of the data will not cause 

a large proportion of the data to fall above the USL. However it could be considered 

that this process shows poor control, because there is a large positive skew towards 

the USL.  

Conversely CNpk assigns a lower capability to the second process because the median 

is close to the upper limit. Consequently as most of the data is close to the USL, a 

small shrift in the median could result in a large number of data points outside of the 

upper limit. It could also be argued that this process is well controlled at the upper end, 

since there is no long tail. The converse will also be true for the LSL. The overall 
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decision with regard to the process capability will depend on knowledge of the process 

being studied and how well it is controlled. 

  

Figure 6-8: Examples of data from two skewed processes, each with 0.135% of the data about the 

USL 

6.2.3 Method for estimating percentiles 

When an exact percentile lies between two data points, the value can be estimated 

from the points on either side. Chang and Lu (1994) proposed a method that uses 

interpolation to calculate the percentile from the two data points.  

The dataset of n points is sorted into ascending order: X1, X2,… Xn, where Xi ≤ Xj for all 

i<j. The percentile, P, is denoted as a percentage, so for the 99.865th percentile P is 

equal to 99.865%. To find the data point immediately below P, first calculate R: 

R =
(n − 1)P + 100

100
 Equation 6-9 

Let [R] equal the largest integer less than or equal to R. Then the percentile P is 

located between the data points X[R] and X[R]+1 (Figure 6-9). The value of R-[R] shows 

the proportion of the distance between X[R] and X[R]+1 where P% is located. Assuming n 

is greater than one and P is less than 100, the percentile P is given by: 

P = X[R] + (R − [R])(X[R]+1 − X[R]) Equation 6-10 

 

Figure 6-9: Location of percentile P between consecutive data points 

6.2.4 Capability Index Using the Proportion of Data Out of Specification 

An alternative description of the capability of a process is based on the likelihood of 

future observations lying outside of the specification limits. Chen and Ding (2001) 

USL = P99.865P0.135 Median

CNpk > 1

C#
pk = 1

USL = P99.865P0.135 Median

CNpk < 1

C#
pk = 1

X[R] X[R]+1

P
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proposed a method to calculate the process capability based on the percentage of data 

outside of the specification limits and then calculating the equivalent Ppk value that 

would be observed for normally distributed data, Spk(%): 

Spk(%) =
Φ−1(1 −

p
2⁄ )

3
 Equation 6-11 

where p is the proportion of the population that is outside of the specification limits, and 

 denotes the standard normal distribution function. Where data lies outside of both 

the upper and lower specification limits, p is the sum of the proportions outside of each 

limit.  

To calculate Spk from a sample of data, the proportion of data that is below each 

specification limit is found, denoted F(USL) and F(LSL), Figure 6-10. Then Ŝpk (%) can 

be calculated as: 

Ŝpk (%) =
Φ−1 (

1 + F(USL) − F(LSL)
2

)

3
 

Equation 6-12 

  

Figure 6-10: Definition of F(USL) and F(LSL) 

The metric Spk(%) can only be applied when some data lies outside of the specification 

limits. Otherwise F(USL) = 1 and F(LSL) = 0 and -1(1) does not exist. This method is 

thus only applicable to processes which exhibit poor capability, with observations lying 

outside of a specification limit. A process with data close to, but not outside of the limits 

would have a lower capability than a process where all the data lies well within the 

limits, but this difference would not be indicated by Spk(%). Therefore Spk(%) cannot 

differentiate between good and very good processes.  

6.2.5 Percentile of Specification Limit 

A potential novel improvement to the calculation of Spk(%) would be to determine the 

percentiles of the data that correspond to each specification limit, as opposed to the 

proportion of data below each limit: 

USLLSL

F(USL)

LSL USL

F(LSL)
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Ŝpk (percentile) =
Φ−1 (

1 + P(USL) 100⁄ − P(LSL) 100⁄
2

)

3
 

Equation 6-13 

where P(USL) and P(LSL) are the percentiles of the upper and lower specification 

limits respectively. That is, if the USL is the 95th percentile, then P(USL) is 95%.  

A difference between Ŝpk (%) and Ŝpk (Percentile) will be observed when, for example, 

the first data point outside of the limit lies far away from the limit. To calculate Ŝpk (%), 

the only information required is the percentage of data outside of the specification 

limits. However calculation of the percentile will depend on how close the data points 

on either side of a limit are to the limit itself and consequently more information is 

utilized, potentially improving the accuracy of the capability estimate.  

For example Figure 6-11 shows two sets of data, both with one data point above the 

USL (83%), so both data sets would have the same value of Spk(%), 0.46. It could be 

argued that data set A is more capable than set B, because the out of specification 

point in set A is just above the limit, whereas the out of specification point in set B is 

further outside the limit, suggesting that the capability is worse. The value of P(USL) for 

data set A is 90%, compared to 85% for set data set B, so the two data sets have 

Spk(percentile) values of 0.55 and 0.48 respectively.  

 

Figure 6-11: Examples of two data sets with different percentiles for the USL 

The method shown in Section 6.2.3 to find the value of a percentile (Chang and Lu, 

2004), can be adapted to find the percentile of a given value, for example a 

specification limit. For the USL, with the data sorted into numerical order, let r be the 

index of the highest data point below the USL, and X(r) the corresponding observation. 

The percentile of the USL is found as follows: 

P(USL) =
(r + α)100 − 100

n − 1
 where: α =

USL − Xr

Xr+1 − Xr
 

Equation 6-14 

0 2 4 6 8 10

Data set A

Data set B

USL



170 

When simulating data (Section 6.3), if there is no data outside of the specification 

limits, the values of Spk(%) and Spk(percentile) will be set to one, since this value 

describes a process with a low risk of data failing a specification limit.  

6.3 Assessment of Performance of Process Capability Indices 

for Simulated Data 

The performance of the process capability indices discussed in Section 6.2 is now 

investigated with respect to their application to simulated non-normal data. A number of 

alternative statistical distributions were considered which reflect trends that have been 

observed in the industrial process data (Section 6.3.1). For each distribution, the upper 

specification limit was set such that the same proportion of data lay above the limit, 

hence it can be assumed that the individual sets of data have the same underlying 

capability. By drawing repeated samples from each distribution, the median and 

variability associated with each of the process capability metrics can be quantified.  

A particular process capability index may exhibit good accuracy because the average 

from several repeat samples lies close to the true capability. However significant 

variation between individual values of the index could indicate that there is a large 

sampling variation, consequently an index calculated from an individual sample may 

not reflect the true underlying capability. For process data, sample sizes will typically 

be small, hence a process capability index must be able to exhibit good accuracy and 

precision for small samples, for example with less than 100 values. 

The indices, C#
pk and Spk(%) have previously been studied to calculate the mean 

difference between the true and estimated capability for a number of distributions 

(Grau, 2010, Chen and Ding, 2001). Only Grau (2010) considered the variation 

resulting from drawing repeated samples from the same distribution and calculating 

C#
pk, however the results were not compared to other indices. 

6.3.1 Alternative Distributions 

A number of distributions were considered that reflect the non-normal trends that have 

been observed in industrial process data, such as those in Section 6.1.4. The Gamma 

(3, 10) shows a positively skewed distribution, where 3 is the shape parameter and 10 

is the scale parameter (Figure 6-12). The Beta (3, 2) distribution has a more rounded 

shape, which can be seen when a process is controlled within certain limits, to prevent 

an upper tail from breaching a specification limit (Figure 6-13), both parameters define 

the shape of the distribution. Process data can also be bimodal (Figure 6-14). To 

generate this distribution, data from two normal distributions with the same variance 
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(one) but different means (ten and 14) were combined. Data from processes can show 

long tails on both sides of the main peak of the data (Figure 6-15), for example when 

poor control causes a large number of more extreme results. To generate this 

distribution, data from two normal distributions with different variances (0.5 and two) 

but the same mean (ten) were combined. The normal distribution is also included, to 

assess how the alternative PCIs compare to the values of Ppk (Figure 6-16).  

For each distribution, the 95th and 99.986th percentiles are shown (Figure 6-12 to 

Figure 6-16), these denote the specification limits used in this simulation study. In this 

study, only the upper specification limits of the distributions were considered, since all 

of the non-normal trends to be studied are captured in the upper tails of the 

distributions.  

   

Figure 6-12: Gamma(3, 10) Figure 6-13: Beta (3, 2) Figure 6-14: Bimodal 
distribution 

  

 

Figure 6-15: Peaked 
distribution 

Figure 6-16: Normal 
distribution 

 

6.3.2 Methodology for Simulation Study 

Simulations were run for each of the distributions described in Section 6.3.1. Two sets 

of upper specification limits were considered. Firstly the limits were set so that 5% of 

the distribution was above the USL, therefore it is assumed that each distribution has 

an underlying capability of 0.55. Secondly the limits were set so that 99.865% of the 

distribution was below the upper limit, which is equivalent to a process with a Ppk value 

of one. The USLs for each distribution are shown in Figure 6-17.  

For the Gamma, Beta and normal distributions, samples were generated of 100 

observations. The peaked and bimodal distributions were generated from two samples 

P99.865P95 P95 P99.865

P95 P99.865
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of normal distributions with different parameters, each of size 50. The two samples 

were combined to produce one dataset of size 100.  

For each sample generated, the following PCIs were calculated: Ppk, CNpk, C
#
pk, Spk(%) 

and Spk(percentile). Sample generation was repeated 10,000 times for each distribution 

to observe the variability associated with each estimator. The median and interquartile 

range (IQT) were calculated for each set of samples. Figure 6-17 shows an overview of 

the simulation study. Simulations were run using Matlab 7.7.0 

 

Figure 6-17: Methodology for simulation study 

6.3.3 Simulation Results 

Summary statistics for each distribution are shown in Table 6-1. For comparison, the 

distributions were scaled so that each had a mean of ten and a P95 of 11.6, consistent 

with a Normal (10, 1) distribution (Figure 6-18 to Figure 6-22). Each data point, x, in the 

distribution was scaled using the population mean and 95th percentile: 

Distribution Gamma(3,10)

Peaked:

Combine

N(10,0.5), N(10,2)

Beta(3,2)

Bimodal:

Combine

N(10,1), N(14,1)

Normal (10,1)

USL1 63.0 12.6 0.902 15.3 11.6

USL2 108.7 15.6 0.985 16.8 13.0

Start with USL1

Sample 100 data points

Calculate mean, 

standard deviation

Calculate Ppk

(Equation 7-2)

Calculate median, 

P99.965 (Equation 7-10)
Calculate proportion 

below USL: F(USL)

Set F(USL)=0

Calculate Spk(%) 

(Equation 7-12)

Calc percentile of 

USL: P(USL), 

(Equation 7-13)

Set P(LSL)=0

Calculate Spk(prcntl) 

(Equation 7-13)

Calculate P0.135

Calculate CNpk

(Equation 7-7)

Calculate C#
pk

(Equation 7-8)

Repeat sampling 10,000 times

Calculate median 

Ppk of samples

Calc IQR of 

samples

Calculate 

median CNpk of 

samples

Calc IQR of 

samples

Calculate

median C#
pk of 

samples

Calc IQR of 

samples

Calculate median 

Spk(%) of samples

Calc IQR of samples

Calculate median 

Spk(prcntl) of samples

Calc IQR of samples

Repeat for USL2

Each 
distribution
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𝑥−𝜇

𝑃95−𝜇
∗ 1.6 + 10  Equation 6-15 

Scaling was applied to a allow comparison of the statistics that are used to calculate 

the various PCIs in the simulation study.  

Figure 6-23 and Figure 6-24 shows the median capability estimates from the repeated 

samples, where the true capabilities of the simulated processes are 0.55 and one 

respectively. With the exception of CNpk, the median results are similar for the Gamma 

and peaked distributions, because they both exhibit a long tail on the direction of the 

upper limit and the process capability indices are concerned with the tail ends of the 

distribution. Similarly, the results are also comparable for the Beta and bimodal 

distributions, which both have short tails. Therefore, the peaked and bimodal 

distributions are excluded from the analysis of Ppk and Spk.  

 
Gamma Peaked Beta Bimodal Normal 

Mean 10 10 10 10 10 

Median 9.84 10 10.08 10 10 

SD 0.86 0.96 1.09 1.10 1.00 

Mean+3 SD 12.6 12.9 13.3 13.3 13.0 

P 95 11.6 11.6 11.6 11.6 11.6 

P 99.865 13.9 13.6 12.1 12.4 13.0 

Table 6-1: Summary statistics for simulated distributions  

 

  

Figure 6-18: Scaled Gamma distribution Figure 6-19: Scaled Beta distribution 

6 7 8 9 10 11 12 13 14

Mean Median Mean+3SD P 95 P 99.865 Series1

6 8 10 12 14 6 8 10 12 14
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Figure 6-20: Scaled bimodal distribution Figure 6-21: Scaled peaked distribution 

 

 

Figure 6-22: Scaled normal distribution  

 

Figure 6-23: Median capability results, underlying 
capability is Ppk=0.55 

Figure 6-24: Median capability results, 
underlying capability is Ppk=1.0 

 

6.3.3.1 Median results for Ppk 

Figure 6-25 and Figure 6-26 show the distributions of the capability estimates from the 

repeated samples, for the two capability levels. For the long tailed Gamma distribution, 

the capability tends to be overestimated since the distance from the mean to P99.865 is 

greater than three standard deviations of the distribution and hence three standard 

deviations does not capture the variability within the data (Table 6-1). In contrast, for 

the Beta distribution, three standard deviations overestimates the variability within the 
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data and hence Ppk underestimates the capability. As expected for Ppk, the average 

capability estimate for the normal distribution aligns with the true capability of the data. 

Comparing the samples with lower and higher underlying capabilities, the specification 

limits change very little for the Beta distribution (11.6 to 12.1), so the calculated Ppk 

values are similar for both capability levels and therefore are generally underestimated 

for the higher capability. However for the Gamma distribution, the specification limits 

are much wider for the higher capability, 11.6 compared with 13.9, so this process 

appears particularly capable.  

  

Figure 6-25: Simulation results for Ppk, 
underlying capability is Ppk=0.55 

Figure 6-26: Simulations results for Ppk, 
underlying capability is Ppk=1.0 

6.3.3.2 PCIs based on Percentiles 

In general the process capability is overestimated for the metrics CNpk and C#
pk, for both 

capability levels (Figure 6-27 and Figure 6-30). When samples are generated there will 

be cases where the data will not lie in the ends of the tails of the underlying distribution, 

so the percentiles of the sample will not reflect the full range of the distribution and 

consequently the process will appear more capable than it is in practice.  

The Beta distribution has a particularly higher than expected C#
pk for the lower 

underlying capability (0.55). The upper tail of this distribution is very short, so the 

estimate for P99.865 is close to the USL (P95), resulting in a capability estimate close to 

one. Since the upper tail is very narrow, the 5% of the distribution that is above the 

USL is very close to that limit, so the capability appears to be good (C#
pk=0.83). 

Conversely for the Gamma distribution, some of the out of specification results will be 

much larger than the USL, resulting in some samples with lower than expected 

capability and a lower median than the Beta distribution at the 0.55 capability level.  

As expected, the results for CNpk and C#
pk are similar for the symmetric distributions; 

peaked, bimodal and normal. However more differences are observed for the Gamma 

and Beta distributions. To use CNpk it is assumed that the median lies in the centre of 
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the data range, so there is equal variation above and below the median. For the 

Gamma distribution, there is more variation above the median than below and this is 

not captured by CNpk, so the estimated capability is high. Conversely for the Beta 

distribution, the variation above the median is small, so the capability is 

underestimated. With the exception of the beta distribution at the lower capability level, 

the median C#
pk value is as close as or closer than the median CNpk value to the 

underlying capability. Hence in general the accuracy is higher for C#
pk than CNpk, and 

C#
pk is the preferred method for estimating capability based on percentiles.  

  

Figure 6-27: Simulation results for CNpk, 
underlying capability is 0.55 

Figure 6-28: Simulation results for C
#

pk, 
underlying capability is 0.55 

  

Figure 6-29: Simulation results for CNpk,, 
underlying capability is 1.0 

Figure 6-30: Simulation results for C
#

pk, 
underlying capability is 1.0 

6.3.3.3 PCIs based on proportion of data out of specification 

For the two Spk metrics, the median capability estimates are consistent across the 

different distributions and are close to the expected capabilities, 0.55 and 1.0 (Figure 

6-31 to Figure 6-34). Also minimal differences are observed between the median 

values for the two methods, Spk(%) and Spk(percentile), suggesting that utilising the 

percentile of the limit as opposed to the percentage of failures does not affect the 

accuracy of the method.   

The difference between Spk(%) and Spk(percentile) is found in the individual values of 

the capability estimates. The values of Spk(%) change in steps as the number of data 

points outside of the specification limits change, so for a given samples size there is a 
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finite set of values that Spk(%) can take. This trend was particularly apparent when the 

underlying capability was set to one, with only four unique values of Spk(%) observed 

(Figure 6-32). In contrast, calculating the percentile between data points allows for a 

greater range of values, resulting in greater variability in the capability results (Figure 

6-34).  

  

Figure 6-31: Simulation results for 

Spk(%),underlying capability is Ppk=0.55 

Figure 6-32: Simulation results for 

Spk(percentile), underlying capability is Ppk=0.55 

  

Figure 6-33: Simulation results for Spk(%), 

underlying capability is Ppk=1.0 

Figure 6-34: Simulation results for 

Spk(percentile), underlying capability is Ppk=1.0 

6.3.3.4 Variation of Estimates 

The variation of the capability estimates can be quantified by the interquartile range of 

the repeated samples. In general, the Ppk estimates have the lowest sampling 

variability (Figure 6-35 and Figure 6-36). The mean and sample standard deviation 

calculations use all of the data in the sample and hence the results are more consistent 

for Ppk than for C#
pk and Spk, which consider fewer data points lying in the tails of the 

distribution.  

When the distribution has a long tail, C#
pk generally exhibits particularly large sampling 

variability, since the calculation depends on the largest data points and these results 

will vary between samples. However when applied to the Beta distribution, C#
pk exhibits 

low variation because the upper tail is short and hence greater consistency is observed 
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between samples. Compared to C#
pk, CNpk appears to exhibit larger variation for the 

Gamma and Beta distributions, but smaller variation for the symmetric distributions. 

Since the variation is largest for the Gamma distribution, C#
pk is preferred, to avoid high 

sampling variation. 

For the lower capability, the results from the Spk metrics are generally more variable 

than the Ppk results, again because only the largest values of the sample are 

considered in the calculation. The variation for Spk is consistent across the three 

distributions, because it is the number of out of specification results that is considered, 

rather than the distance from the specification limit. When the underlying capability was 

set to one, the interquartile range was zero for Spk because the majority of the samples 

had no out of specification results and hence of the capability estimates were set to 

one.  

 
Figure 6-35: Interquartile range results, when 
underlying capability is Ppk=0.55 

Figure 6-36: Interquartile range results, when 
underlying capability is Ppk=1.0 

6.3.4 Sample Size 

Data from industrial processes may be limited in terms of sample size, particularly for 

new processes or when a process is being investigated after a significant change has 

been implemented. The effect of sample size was investigated with the upper 

specification limits set so that 5% of the distribution is above the limit. The sample sizes 

considered varied between 30 and 100, in increments of 10, and a sample size of 1000 

was also considered. The peaked and bimodal distributions were again excluded 

because they exhibit the same trends as the Gamma and Beta distributions 

respectively. Additionally CNpk is excluded since C#
pk is the preferred metric that uses 

percentiles of the data, as discussed in Section 6.3.3.2.  

For Ppk, the median value changes minimally when the sample size is reduced (Figure 

6-37), since the expected values of the mean and standard deviation are invariant of 

sample size. The C#
pk estimates increase as the sample size is reduced (Figure 6-38). 

For a smaller sample, the data is less likely to fall in the tails of the distribution and 
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hence the sample appears to be narrower than the underlying distribution and the 

calculated C#
pk is larger than expected.  

The median values of Spk(%) are consistent as the sample size is reduced (Figure 

6-39), since the median number of data points above the USL does not change with 

sample size. However the value of Spk(percentile) increases as the sample size is 

reduced (Figure 6-40). Since the percentile of the USL is larger than the percentage of 

data below the USL, Spk(percentile) will be greater than or equal to Spk(%). When the 

sample size is reduced, there will be a greater distance between the two data points on 

either side of the USL, so Spk(percentile) can take larger values and hence the median 

is greater. For example, for a sample of 100 with five points (5%) above the USL, 

P(USL) will be between 95% and 96%. However for a sample of 40 with two points 

(5%) above the USL, P(USL) will be between 95% and 97.5% and hence the median 

Spk(percentile) from a number of samples will be greater with a smaller sample size.  

 

Figure 6-37: Median Ppk vs. sample size Figure 6-38: Median C
#

pk vs. sample size 

 

Figure 6-39: Median Spk(%) vs. sample size Figure 6-40: Median Spk(percentile) vs. sample size 

The variability was quantified by the inter quartile range of the individual process 

capability measurements from the repeated samples (Figure 6-41 to Figure 6-44). For 

Spk(%) and Spk(percentile), the interquartile range results were very similar for the three 

distributions and hence the lines are overlaid (Figure 6-43 and Figure 6-44).  
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As expected, the variability in the capability indices increases as the sample size 

reduces, because there is greater variation between the data in each sample. The 

metric C#
pk has a particularly high sampling error for the Gamma distribution when the 

sample size is below 50, and so may not provide a reliable capability estimate for 

smaller sample sizes (Figure 6-42). This trend was also noted by Grau (2010), where 

the distribution of repeated estimates was seen to become wider when the sample size 

was reduced from 250 to 50.  

Each distribution shows a reduction in variation when the sample size is increased from 

100 to 1000, indicating that a limited sample size will contribute to variability in the 

resulting capability estimate. Therefore where possible a larger sample size is 

recommended, especially when the underlying distribution is known to have a long tail.  

 

Figure 6-41: Sampling error of Ppk vs. sample size  Figure 6-42: Sampling error of C
#

pk vs. sample 

size 

 

Figure 6-43: Sampling error of Spk(%) vs. sample size  Figure 6-44: Sampling error of Spk(percentile) 

vs. sample size  

6.3.5 Discussion of Simulation Study 

The results from the Ppk metric are centred about the capability of the underlying 

distribution and show low sampling variation compared to the alternative metrics, 

especially for smaller sample sizes of 50 and lower. Therefore Ppk may be a reliable 

metric for data that is not too dissimilar to a normal distribution.  
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Of the metrics based on the percentiles of the sample, the capability tends to be 

overestimated because the samples do not reflect the full width of the distribution, 

particularly for smaller sample sizes. In general Ppk was found to be more accurate 

when the underlying capability is 0.55 and C#
pk was more accurate when the underlying 

capability was set to one. CNpk has been found to be effective for distributions that are 

symmetric or have low skewness, but C#
pk additionally provides a more reliable metric 

for data skewed towards a specification limit. However for a highly skewed Gamma 

distribution, sampling error can cause high variation in the C#
pk results that are 

calculated. 

The metrics based on the amount of data outside of the limits show consistent results 

for all of the distributions, with good accuracy when there is some data out of 

specification. The sampling variation is generally lower than for C#
pk, so for processes 

with some data outside of the limits, Spk may provide a reliable estimate of the 

capability. However when there are no failures in the data, Spk cannot be used to 

determine if the capability is greater than one. The Spk(percentile) metric was found to 

provide more detail than Spk(%), because more information about the location of the 

specification limit is used in the calculation. However the sampling variation for 

Spk(percentile) increases as the sample size reduces.  

6.4 Application to Process Data 

The performance of the distribution free capability indices is now assessed on data 

from an industrial process. Four in-process variables from a pharmaceutical 

manufacturing process were selected that all exhibited some form of non-normal 

behaviour. The data were scaled to have a minimum of zero and a maximum of ten 

(Table 6-2). The data for each variable must lie within a range that is registered with 

the regulatory authorities, to allow a batch of product to be released. The selected 

variables all have Ppk values below one, which suggests that they have poor capability; 

however none of the data lies outside of the specification limits. The sample sizes vary 

depending on the amount of data available for each variable.  

The results are summarised in Table 6-3. Since none of the data lies outside of the 

specification limits, the values of Spk(%) and Spk(percentile) cannot be calculated and 

hence they are set to one. 
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Variable Variable one Variable two Variable three Variable four 

N 89 89 49 92 

Mean 3.74 7.83 4.30 5.87 

Median 3.24 9.73 2.92 5.69 

Standard 
deviation 2.17 3.08 3.26 1.89 

6*SD 13.0 18.5 19.5 11.3 

Range 10 10 10 10 

Skewness 0.57 -1.23 0.49 -0.23 

Table 6-2: Summary statistics of process data  

  Variable one Variable two Variable three Variable four 

Ppk 0.58 0.91 0.86 0.79 

C
#
pk 1.02 1.10 2.40 1.06 

Spk 1.00 1.00 1.00 1.00 

Table 6-3: Process capability estimates for plant data 

6.4.1 Variable One 

Figure 6-45 shows a histogram of the data for variable one, the upper and lower 

specification limits and the percentiles used to calculate C#
pk. There is a large amount 

of data close to the LSL as the optimal operating conditions lie in this region; however 

the process is controlled such that the measurement should not fall below the lower 

limit. Both Ppk (0.58) and C#
pk (1.02) generally identify the capability as being low (Table 

6-3), because the data lies close to the lower limit. More specifically, by fitting a normal 

curve to the data the distribution extends to below the LSL, hence the Ppk value is well 

below one. The data is a similar shape to a beta distribution, for which Ppk tends to 

overestimate the capability, and C#
pk tends to underestimate (Section 6.3.3.2), hence 

the true capability of this process could be between 0.6 and one.  

6.4.2 Variable Two 

Variable two (Figure 6-46) displays a negatively skewed distribution, with the majority 

of the data falling close to the median. The C#
pk estimate is 1.1, which may be a good 

indication of the actual capability if the current dataset shows the whole range of values 

that would be expected from future observations. However if there is a risk of future 

observations lying below the LSL then the true capability of the process may be lower 

and the Ppk value of 0.91 may be more representative of the true capability. Of the 

distributions considered in the simulation study, the data is most similar to a gamma 

distribution, for which Ppk and C#
pk are generally over estimated. However since the 

shape of the data is unusual, more understanding of the sources of variation and 

control for this variable may be required to determine the actual capability. 
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Figure 6-45: Histogram of variable one  Figure 6-46: Histogram variable two 

6.4.3 Variable Three 

The distribution of variable three (Figure 6-47) appears to exhibit a bimodal distribution. 

For this data set, six standard deviations is wider than the range of the data (Table 6-2) 

and the normal curve extends beyond the data to the LSL, resulting in a low Ppk value 

(0.86). All of the data for this variable lies well within the limits, which suggests that 

there is good capability. The C#
pk result is very high (2.4) since the lower limit of the 

data is well above the LSL and is close to the median, hence C#
pk may provide a better 

estimate of the true capability. Generally Ppk underestimates and C#
pk overestimates 

the capability for a bimodal distribution, so the true capability is expected to be between 

0.86 and 2.4. The sample size for variable three is small, with 49 batches, so the 

results must be treated with caution since the sample may not completely reflect the 

underlying distribution. 

6.4.4 Variable Four 

From a sample of 92 batches, data has been observed close to both specification limits 

for variable four, but no values lie outside of the limits (Figure 6-48). The Ppk value 

(0.79) suggests that the capability is poor, which may be a reasonable estimate 

because a future observation occurring just outside of the current range of the data 

would fail a specification limit. The C#
pk result is slightly higher (1.06) because the P0.135 

and P99.865 percentiles are within the limits. The shape of the data approximately 

resembles a normal distribution and both capability metrics overestimate the capability 

for this distribution, hence both capability measures agree that the process capability 

should be improved.  

LSL USLP 0.135 P 99.865Median LSL USLP 0.135 Median P 99.865
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Figure 6-47: Histogram variable three Figure 6-48: Histogram of variable four 

6.4.5 Discussion of Process Data 

Some examples of data from industrial processes have shown non-normal trends, such 

as the process being controlled close to a specification limit or a small number of 

outlying results extending towards a limit. In these cases, calculating the percentiles of 

the data may provide a better measure of the data width than the standard deviation.  

The variables selected in this study all have Ppk values below one, which suggests that 

capability is currently poor; however none of the data lies outside of the specification 

limits. In all cases, the value of C#
pk appears to provide a likely estimate of the 

capability, but visualisation of the data and knowledge of the process control are 

required to gain an understanding of the risk of failing a specification limit.  

6.5 Conclusions 

Process capability indices have been found to be useful for summarising the risk of a 

process failing a registered specification limit that is required for a batch to be released 

to the market. Using process capability, many sets of specification limits can be 

compared to identify the greatest risks to the process and to justify the cost of 

improvement work. The capability can be tracked over time to highlight improvements 

and to ensure that they remain effective.  

The Ppk index is known to be appropriate for normally distributed data. However as a 

result of various sources of variation, industrial process data does not always exhibit 

normality and the Ppk metric may not provide an accurate representation of the 

underlying capability. While visualising the data and using process knowledge will 

provide a detailed understanding of the capability of a process, it is important to use a 

single metric to summarise the capability, allowing a number of variables to be 

compared efficiently and areas for improvement to be identified.  

LSL USLP 0.135 Median P 99.865 LSL USLP 0.135 Median P 99.865
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Several alternative process capability indices have been proposed in the literature for 

data that does not satisfy a normal distribution. Simulated and industrial process data 

have shown that the various capability indices will generate a range of results for the 

same dataset (Figure 6-23 to Figure 6-33). While none of the proposed indices show 

consistently good accuracy and low sampling variation when applied to samples from a 

variety of simulated distributions, each of the metrics appeared to outperform Ppk in 

certain situations.  

The Spk(percentile) and Spk(%) metrics produced consistent and accurate results in the 

simulation study with 5% of the data outside of the specification limits (Figure 6-31 and 

Figure 6-32). Similar results were seen across all of the statistical distributions, 

suggesting that these metrics could be applied to a variety of data sets where failures 

have occurred.  

For data with a higher underlying capability, C#
pk has been found to give the most 

accurate results for non-normal data (Figure 6-24), which is also reflected in the results 

from the process data. However the sampling variation is very high for data with long 

tails (Figure 6-42) so this metric should be used with caution for small sample sizes, 

particularly with less than 50 data points. The standard Ppk metric has been shown to 

have low sampling variation, particularly for small sample sizes, but is likely to 

overestimate the capability of data with long tails in the distribution and underestimate 

the capability for data with very short tails.  

This study has shown that a universal capability metric that is applicable to all data may 

not be possible, but by comparing several metrics and visualising the data, the 

underlying capability of a process may be estimated. The results of this study were 

shared and discussed with the Global Operations Statisticians Forum at AstraZeneca, 

who are using the methodologies and results to develop a best practice for process 

capability analysis.  

Process capability metrics have been found to be useful for tracking the capability over 

time (Section 6.1.3.1), for example to compare the capability month by month. However 

when a small sample size is available in each time period, the calculated capability 

estimate may be unreliable (Section 6.3.4) so it may be necessary to combine data 

from several time periods to create a large enough sample size. In Chapter 7, the use 

of Bayesian methods is investigated to calculate the capability using data from one 

time period but also using older data as prior information.  
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7 Bayesian Methods in Pharmaceutical Process 

Development 

7.1 Introduction 

In classical statistics, such as linear regression analysis, parameters are assumed to 

be fixed quantities that can be estimated from random samples of data taken from the 

population. An alternative approach is the use of Bayesian statistics, here it is assumed 

that each parameter is a random variable with an associated probability distribution 

(Lunn, 2012). 

The term Bayesian statistics stems from the application of Bayes Theorem, which is 

presented in Section 7.1.1. Section 7.1.2 provides a comparison with classical 

Statistics. Bayesian methods allow prior knowledge to be quantified and incorporated 

into an analysis (Section 7.1.3), allowing all of the available information to be utilised. A 

Bayesian analysis often requires the use of simulation based computational methods, 

which are presented in Sections 7.1.4 and 7.1.5. An overview of application is 

presented in Section 7.1.6. 

A research theme for this thesis is to investigate potential uses of Bayesian statistics in 

pharmaceutical manufacture. There are a limited number of examples in the literature 

of applying Bayesian statistics to manufacturing processes, compared to methods such 

as multivariate analysis (Chapter 3). However there are some examples of how the 

Bayesian approaches to formalising prior information and estimating distributions for 

parameters have been found to be beneficial for gaining information about a process 

(Section 7.2 to 7.4).  

In Sections 7.2 to 7.4 a number of applications of Bayesian statistics to pharmaceutical 

process development are presented, along with examples of case studies. In Section 

7.2, Bayesian applications to experimental design are presented, including a 

methodology for Bayesian D-Optimal designs and a method to maximise the expected 

accuracy of predictions from the resulting models. These models can be used to find 

the optimal operating conditions for a process and Bayesian methods can be applied to 

identify the design space in which the process has the highest certainty of meeting the 

required quality conditions (Section 7.3). In Section 7.4, a Bayesian approach to 

calculating the process capability is presented that measures the certainty that a 

process is capable. Section 7.5 concludes the examples of applications. 

In Section 7.6 a novel process capability methodology is proposed for the situation 

where the process capability is analysed over time. Bayesian techniques are proposed 
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to combine data from the current month of data with prior knowledge from previous 

months, to sequentially update the capability estimate. 

7.1.1 Methodology 

The origin of Bayesian statistics dates back to a manuscript on the subject of 

probability, written by Thomas Bayes in 1763. He proposed Bayes rule, a process for 

combining information from data with prior information to obtain posterior information 

(LeBlond, 2009). Bayes theorem (Equation 7-2) was stated by Laplace in 1774 

(Colosimo and del Castillo, 2007) and builds on from conditional probability (Equation 

7-1). For events A and B: 

P(A|B) =
 p(A and B)

p(B)
 Equation 7-1 

P(A|B) =
p(B|A) p(A)

p(B)
  

Equation 7-2 

Equation 7-2 is a function of event A and the denominator on the right hand side, p(B), 

is constant with respect to A, hence the relationship can be redefined as a proportion:  

p(A|B) ∝ p(B|A) p(A)  
Equation 7-3 

Therefore p(B) is a constant of proportionality that will ensure that the conditional 

probabilities of all possible values of A sum to one. 

An underlying theme of Bayesian statistics is that of making inferences about a 

parameter by combining two sources of information: the likelihood, or new information 

from data, and prior information that is already known. Both sources are captured as 

probability density functions of the parameters to be estimated. The prior and likelihood 

are then combined to form a ‘posterior’ distribution of the parameter of interest.  

Equation 7-3 can be applied to a statistical inference problem to estimate the 

distribution of a parameter, , where new data has been collected and some prior 

knowledge exists about . The prior information is captured as a probability density 

function, p(), and the new information from the data is termed the likelihood and 

denoted p(x|). Combining the likelihood and prior gives the posterior distribution for  

given the data: 

p(θ|x) p(x|θ)p(θ) 

Posterior  Likelihood × Prior 

Equation 7-4 
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 can be an individual parameter or a set of parameters, for example the mean and 

standard deviation of a normal distribution.  

7.1.2 Comparison with Classical Statistics 

There are a number of differences between Bayesian and classical statistics in the way 

in which the data is handled and interpreted. These differences are summarised in 

Table 7-1. In classical statistics parameters are treated as fixed values that are 

estimated from random samples of data. The level of uncertainty is captured through a 

confidence interval about the estimated value of the parameter, which will contain the 

true value for a given percentage of samples. For example, if data is repeatedly 

sampled and a 90% confidence interval calculated on each sample, 90% of the 

calculated intervals will contain the true parameter value. 

However in Bayesian analysis the data is treated as fixed and is used to estimate the 

distribution of parameters. The distribution shows the most likely values that the 

parameter will take and hence the width of the distribution indicates the uncertainly 

associated with the parameter estimates. A Bayesian interval shows the most likely 

range that a parameter will be found in, whereas a confidence interval shows the range 

in which future estimates are most likely to be found, and hence a Bayesian interval 

may be considered to be more intuitive (LeBlond, 2008).  

Since Bayesian methods assume that parameters are variables rather than fixed 

quantities, these methods may be more relevant to process data. Industrial processes 

are not fixed and can exhibit variation over time, hence Bayesian methods can be used 

to capture this variation.  

A further difference is the formal use of prior information in Bayesian methodologies. 

Information that is already known about a subject can be included informally in 

classical statistics. For example in an experimental design, existing knowledge is used 

to decide on which factors to include and what levels to run the experiment at, or in a 

process modelling context prior information is used to decide which terms to include in 

a model. In a Bayesian context, prior information is quantified can be used to design an 

experiment that is expected to result in the most information being gained, or to 

influence the values of model parameters when there is limited data available.  
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 Classical Statistics Bayesian Statistics 

Parameters Fixed values to be 
estimated 

Random variables with a 
probability distribution 

Data Random, due to sampling Fixed values 

Parameter Intervals Confidence intervals: 
Contain the true value for a 
specified percentage of 
samples 

Most likely range that the 
parameter will take 

Prior information  No formal use Quantified and influences 
the posterior distribution  

Table 7-1: Comparison of the philosophies of classical and Bayesian statistics  

7.1.3 Prior information  

When a statistical analysis is run to analyse a set of data, information about the subject 

may already exist that can be incorporated into the analysis. Prior information may 

originate from previous studies on the same subject or from scientific knowledge of 

what is expected to be true (Congdon, 2003). In a process development context, prior 

information may be obtained from previous development work, mechanistic models of 

the process or information in the literature about similar processes. Prior knowledge is 

considered to be subjective, since experts can disagree about the information that is 

known about a parameter being estimated (LeBlond, 2008).  

Within a Bayesian analysis, prior information is summarised as a statistical distribution 

for a particular parameter. In the case when data is available that specifically relates to 

the parameter, it can be used to calculate a prior distribution, otherwise knowledge 

about the parameter must be used to define a statistical distribution. For example a 

uniform distribution can be used to capture the range over which the parameter is 

expected to lie, or a normal distribution can be used to define the mean and variance of 

the expected value of the parameter.  

If there is no appropriate knowledge available, a wide prior can be selected so that it 

does not influence the results of the analysis. A prior for which all values are equality 

likely is termed a non-informative prior (Colosimo and del Castillo, 2007). 

The width of the prior distribution will influence the width of the posterior distribution. If 

there is a lot of prior knowledge about the location of a parameter, the prior will be 

narrow and hence the posterior will narrower. However if there is little certainty in the 

prior information, the prior distribution will be wider and the subsequent posterior will be 

wider. 
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7.1.4 Markov Chain Monte Carlo 

Implementation of a Bayesian analysis requires the calculation of the posterior 

distribution from the prior and the likelihood distributions. If the prior and likelihood are 

from the same family of distributions, for example both are normal distributions, the 

posterior can be found analytically by multiplying the functions of the prior and 

likelihood distributions. However in many cases the prior and likelihood do not allow the 

posterior to found analytically and so sampling methods are required to obtain the 

posterior distribution (Lunn, 2012).  

Calculation of the posterior distribution requires the constant of proportionality in 

Equation 7-4 to be obtained, which is equivalent to evaluating the integral 

∫ p(θ)p(x|θ)dθ. However evaluating this integral analytically can be difficult or even 

impossible and numerical integration methods can be computationally expensive. In 

Bayesian statistics, Markov chains are commonly used to generate samples from the 

posterior distribution and Monte Carlo integration is implemented to compute 

summaries of the posterior, such as the mean or percentiles. These two steps are 

collectively known as Markov Chain Monte Carlo (MCMC, Brooks, 1998). The posterior 

distribution is simulated by constructing a Markov chain that will converge to the 

required posterior distribution, termed the stationary distribution. Therefore, when run 

for a long time, the Markov chain will converge and provide samples from the posterior 

distribution.  

The Markov chain will produce dependant samples of , denoted 1, 2, 3,…, T, when 

the chain is run up to the time T. A Markov chain is defined such that the distribution of 

 at time t+1 (t+1) depends only on the location of t and not on any of the previous 

time steps. Additionally, the chain will theoretically converge to the same stationary 

distribution from any initial value of 0; the only difference would be the time taken for 

the chain to converge.  

The initial values of  that are generated before the chain has converged will not form 

part of the posterior distribution and these samples should be discarded. Convergence 

can be checked by viewing a trend plot of the samples (Figure 7-1) and determining 

when the chain remains in the same location. The samples before the chain has 

converged are known as the burn in samples.  
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Figure 7-1: Samples of  generated from a Markov Chain 

By removing the first T0 samples that represent the burn in samples, the remaining T-T0 

represent the desired posterior distribution. These samples can then be used to 

calculate summaries of the posterior distribution, such as the mean or standard 

deviation, using Monte Carlo integration. For a function of the data, g(), the expected 

value of g() is calculated as:  

𝐸[𝑔(𝜃)] = ∫ 𝑔(𝜃)𝑝(𝜃|𝑥) 𝑑𝜃 ≈
1

𝑇 − 𝑇0
∑ 𝑔(𝜃𝑡)

𝑇

𝑇0+1

 
Equation 7-5 

The use of MCMC methods can require a large amount of computational power and 

consequently the use of Bayesian statistics has developed rapidly over the past 30 

years, due to the increase in computer power that is available (Brooks, 1998, 

Ntzoufras, 2009). Examples of software include WinBUGS (Lunn et al, 2000), which 

has been developed to run Bayesian analyses using simulation methods, and 

MATLAB, which includes commands to run Bayesian simulations. 

7.1.5 MCMC Algorithms 

For the application of MCMC methods in Bayesian statistics, a Markov chain must be 

defined such that the stationary distribution is the required posterior. A number of 

algorithms are available to construct such a Markov chain, including the Metropolis-

Hastings (Hastings, 1970) and Gibbs Sampling (Geman and Geman, 1984). An 

overview of these two algorithms is given in Sections 7.1.5.1 and 7.1.5.2. The Bayesian 

analysis applied in this chapter is implemented in Matlab 7.7.0, which uses slice 

sampling (Section 7.1.5.3).  
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7.1.5.1 Metropolis-Hastings Algorithm  

The Metropolis-Hasting algorithm is explained in Brooks (1998). A Markov chain, 0, 

1,... is constructed such that the samples that are generated will converge to the 

required posterior distribution.  

The aim is to sample from an unknown posterior density, f(x), when a function c(x) 

is known that is proportional to f(x). An arbitrary function q(t-1 t) is defined that 

denotes the probably of the Markov chain moving from t-1 to t at time t. The algorithm 

proceeds as follows: 

1. Start with 0 such that f(0x) > 0 

2. At time t, sample * from q(t-1| t) 

3. Accept t = * with probability (t-1, *), otherwise t = t-1 

 

Where α = min {1,
f(𝛉∗|𝐱)q(𝛉𝐭−𝟏|𝛉∗)

f(𝛉𝐭−𝟏|𝐱)q(𝛉∗|𝛉𝐭−𝟏)
} 

 

4. Repeat steps 2 and 3 until the chain converges 

7.1.5.2 Gibbs Sampling 

The Gibbs algorithm is explained in Gelfand and Smith (1990). Suppose the aim is to 

estimate the distribution f(), where  = [1, 2,..., k], and each of the conditional 

distributions: 

f(i | j, for ij), i=1,..., k 

are known.  

The algorithm proceeds as follows: 

1. Start with arbitrary starting values of 1
(0), 2

(0),…, k
(0) 

2. At time t, sample:  1(t) from f(1
(t-1) | 2

(t-1),…, k
(t-1)) 

i
(1) from f(i

(t-1) | 1
(t),…, i-1

(t),i+1
(t-1),…, k

(t-1)) 

3. Repeat step 2 until the chain converges. Then the samples of i are from the 

distribution f(i) 
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7.1.5.3 Slice Sampling 

Slice sampling was developed by Neal (2003) and is used to find the density 

distribution for a parameter by sampling from the region under its density function. The 

method works by constructing a Markov chain that alternates between sampling from 

the vertical direction and sampling from a horizontal slice in the current vertical position 

(Figure 7-2, Figure 7-3). 

The algorithm is used to find the probability density function of a single or set of 

parameters, p(), using a known function, f(), that is proportional to the required 

density function. In a Bayesian sense, f() could be the product of the prior and 

likelihood densities that are proportional to the posterior distribution p(|x). A Markov 

chain is created to generate samples of  by sampling from the region under the f(). 

Then the samples of  are used to compute summaries of p() by Monte Carlo 

integration.  

To implement slice sampling, a new variable, y, is created such that the joint density 

p(,y) is uniform over the region U={(,y): 0<y<f()}. The joint density is defined as: 

𝑝(𝜽, 𝑦) = {
1/𝑍 𝑖𝑓 0 < 𝑦 < 𝑓(𝜽)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  ,  
Equation 7-6 

where Z is equal to the value of ∫ 𝑓(𝜽)𝑑𝜽 and hence Z is the constant of proportionality 

required to scale f() to a probability density function. The marginal distribution for  is 

given by: 

𝑝(𝜽) = ∫ 𝑝(, 𝑦)


−

𝑑𝑦 = ∫ 1/𝑍
𝑓(𝜽)

0

𝑑𝑦 = 𝑓(𝜽)/𝑍 
Equation 7-7 

Then it follows from the definition of Z that p() is the probability density function that is 

proportional to f(). If f() is the product of the prior and likelihood distributions, then 

p() is the corresponding posterior distribution.  

For the case where  is a single parameter, the algorithm for slice sampling proceeds 

as follows. Firstly an initial value of 0 is defined and then samples of (i, yi) are 

generated by alternately updating the values for  and y: 

1. Given i, sample yi uniformly between zero and f(i), Figure 7-2, i.e. sample 

from p(y|i) ~ Uniform (0, f(i)).  
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2. Given yi, sample i+1 from the range of  over which yi slices through the curve 

for f(), Figure 7-3, i.e. for the horizontal slice S={:yi<f()}, sample i+1 

uniformly over the slice S.  

Steps 1 and 2 are repeated to generate a chain of (i, yi). The samples of i are from 

the distribution of the parameter . Samples of yi are not required in the subsequent 

analysis. When  is multivariate, each parameter is sampled in turn to generate the 

chain (1,i, 2,i… n,i, y,i).  

 

 

Figure 7-2: Slice sampling step 1 Figure 7-3: Slice sampling step 2 

7.1.6 Overview of Applications 

An advantage of using Bayesian methods in process modelling applications is that the 

width of the posterior distribution captures the uncertainty both in estimating the model 

parameters and the variation inherent within the process. Therefore when a model is 

used to predict a critical quality attribute of a process, the posterior distribution will 

show the full range of values that the CQA may be expected to take. If there is high 

uncertainty in estimating the parameters, then the posterior distribution will be wide, 

indicating that more information may be needed to predict the true range of the CQA 

(Section 7.3). Additionally Bayesian methods can be applied to a mechanistic model of 

a process, when they are some parameters to be estimated. By sampling from the 

posterior distributions of the parameters and applying the mechanistic model with the 

sampled values, a posterior distribution for the model output is generated, which 

reflects the certainty of the model parameter estimates (Section 7.3.2.2 and Section 

7.3.2.3). 

Bayesian methods have been applied to many areas of statistical inference, including 

linear regression analysis, hierarchical modelling and time series analysis (Lee, 2012, 

Congdon, 2003). Hierarchical models are applicable for modelling data from different 

groups by allowing specified parameters to vary for each group. For example in the 

i

Sample yi

uniformly

f(i)

f()



yi

Sample i

uniformly from S 

f()



S
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social sciences, hierarchical models have been used to model data from surveys, by 

allowing the comparison of parameters from different countries or regional areas 

(Jackman, 2009). Additionally, in epidemiology, a binomial Bayesian analysis has been 

applied to model the spread of disease in different demographic groups (Geweke, 

1989).  

Bayesian methods have also been applied in the analysis of clinical trials (Berry, 2006), 

allowing data to be analysed as soon as it is collected during the trial. The results can 

influence the design of the remainder of the trial, for example to favour better 

performing therapies or to target patient groups that appear to respond better to the 

treatment. In statistical process control (SPC), Bayesian methods have been 

developed to improve upon the standard Stewhart chart (Section 2.2). For example 

Colosimo and del Castillo (2007) developed a Bayesian SPC methodology that 

quantifies the posterior probability that a problem has occurred and also accounts for 

known drift in a process that is not attributed to the problem. In general, Bayesian 

methods allow for a more flexible model structure to be developed than classical 

methods, so the most appropriate model can be found to fit the data that is available.  

In the subsequent sections (7.2 to 7.4), examples are presented how the theory of 

Bayesian statistics and Markov Chain Monte Carlo has been applied in the 

development of pharmaceutical manufacturing processes.  

7.2 Bayesian methods in experimental design 

In pharmaceutical process development, experimental design is used to gain 

information about a process, such as assessing how the variation of the inputs to the 

process can affect the outputs. For example, an experiment may be planned to gain 

knowledge of which are the most important factors and then to optimise the operating 

space or to make predictions from the process data. When a new process is developed 

using the Quality by Design framework, data from experimental studies is used to 

develop a design space in which the process will be validated and run (Section 2.3.2). 

Good experimental design is needed to maximise the information that is gained so that 

a robust process can be developed (Lunney et al, 2008, van de Ven et al, 2011).  

Bayesian methods allow previously known information to be included into the design 

and analysis of an experimental program. When designing an experiment, prior 

knowledge usually exists about the product or process being studied (Chaloner and 

Verdinelli, 1995). For example, prior knowledge may exist from data from previous 

experimental work or mechanistic models of the process being studied (Lunney et al, 

2008). The use of Bayesian methods allows the prior information to be quantified and 
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used formally to develop an experimental design (Dubé et al, 1996). Prior knowledge 

can be used to determine a number of features of the experimental design, including 

which factors should be included, the levels at which each factors will be tested and to 

provide an indication of the levels of quadratic and interaction terms that should be 

estimated.  

The number of experimental runs can be a limiting factor in experimental design. 

Bayesian designs provide more flexibility than standard fractional factorial designs, 

allowing the number of runs to be reduced while maximising the information that can be 

gained (Nabifar et al, 2011). Using Bayesian analysis, an experimental design can be 

run sequentially, with the prior information updated as each set of results is collected. 

Then the design for the subsequent runs is updated each time more results become 

available (van de Ven et al, 2011). When experiments are being run to gain information 

about a process, this approach allows the design space of the experiment to move so 

that the focus shifts towards those factors that appear to be the most important. In a 

process optimisation context, a sequential experiment can be moved towards the 

optimal region of the process, to gain more information about the space in which the 

process will be run.  

7.2.1 Bayesian modification of D-optimal designs 

In the context of process development, the objective of an experimental program may 

be to estimate how a set of factor variables, or inputs to a process, will impact on the 

final product or outcome of a process, such as the yield. To create an optimal design, 

one of the goals is to maximise the information that is expected to be gained from the 

resulting data. Since the outcome of an experiment cannot be known at the design 

stage, the information that will be gained can be estimated from the prior information 

and the experimental design (Chaloner and Verdinelli, 1995).  

A method to quantify the information that is gained from an experiment is to consider 

the variance of the model parameters. The optimal design will be selected to minimise 

the parameter variation and hence to maximise the certainty with which the parameters 

are estimated. Model parameter variance is measured in terms of the determinant of 

the matrix [XTX]-1, where X is the design matrix (Eriksson et al, 2008). The design that 

minimises det[XTX]-1 is termed a D-optimal design.  

When Bayesian methods are used to analyse the resulting data, the prior information is 

combined with the information gained from experiments (likelihood). Therefore the 

objective becomes to minimise the expected posterior variance of the model 
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parameters, known as a Bayesian D-optimal design (Dubé et al, 1996, DuMouchel and 

Jones, 1994).  

When prior information is obtained from a mechanistic model or from existing data, the 

prior can be specified as a multivariate normal distribution of the vector of parameters 

to be estimated,  (Dubé et al, 1996): 

 ~ mvN(μ, ), where μ and  are known.  

A linear regression model is the fitted to the data: 

y = X + , where  ~ mvN(0, Iσ2),  
 Equation 7-8 

where σ2 is the variance of the response and is assumed to be known. The posterior 

variance of y is [-1 + σ-2XTX]-1. Minimising the posterior variance is equivalent to 

selecting the Bayesian D-optimal to maximise the determinant of [I + σ-2XXT] (Nabifar 

et al, 2010). 

An alternative method for capturing the prior information was proposed by DuMouchel 

and Jones (2004) that is appropriate when there is more certainty about some model 

parameters than others. Suppose there are p primary terms that will be included in the 

model and q potential terms that are less likely be important, including high order terms 

such as quadratic and interaction terms. As before the prior information is captured in 

the form  ~ mvN(μ, ). The primary terms will have a wide prior distribution because 

the model coefficients are not expected to be zero. However the potential terms have a 

multivariate normal distribution of the form N(0, 2I), where I is the identity matrix, and  

is set to one if the data has been scaled to unit variance.  

To determine the posterior distribution, let K be a (p+q; p+q) matrix with ones for the 

last q elements on the main diagonal and zero otherwise:  

 

The posterior covariance matrix is given by [XTX + K/2]-1 and hence the Bayesian D-

Optimal design is selected to maximise det[XTX + K/2]. This method is appropriate if 

p q

p

q
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the number of experiments to be run is between p and p+q and hence it is not possible 

to estimate each factor (Jones et al, 2008).  

7.2.2 Maximising the prediction accuracy  

Van de Ven et al (2011) suggested that the Bayesian D-optimal approach can result in 

more experiments being run than are necessary because the focus is on estimating 

unknown parameters, as opposed to identifying the optimal design space of a process. 

As an alternative approach, van de Ven et al (2011) proposed that the aim should be to 

minimise the variation of the predictions, rather than the variation of the model 

parameter estimates. Adopting a sequential design approach, the design can be 

focused on the prediction accuracy for the region in which the process is most likely to 

be run. This approach, named the Iw criterion, avoids running unnecessary 

experiments to improve predictions for regions in which that process will not be run.  

For a particular point in the design space, x, the prediction variation is measured by:  

x(XTX)-1xT,  

where X is the design matrix.  

Over an experimental region, R, the average prediction variance can be found by 

dividing R into a grid, G(R), and finding the prediction variance at each point in G(R). 

The average variance across the experimental region is known as the I-criterion: 

I(𝐗) = ∑ 𝐱(𝐗𝐓𝐗)−1𝐱𝐓

𝐱ϵG(𝐑)

 
Equation 7-9 

When prior knowledge exists about the region within R in which the process is most 

likely to be run, I(X) can be extended to a weighted sum, where the weights, w(x), are 

selected to be larger in the region of interest: 

Iw(𝐗) = ∑ w(𝐱)𝐱(𝐗T𝐗)−1𝐱𝐓

𝐱ϵG(𝐑)

 
Equation 7-10 

For a sequential design, the weights can be updated as more information is generated. 

By selecting a design to minimise Iw(X), the experiment will be designed to provide the 

most accurate predictions in the region in which the process is expected to be run, and 

hence the properties of the final registered design space can be predicted will a high 

level of accuracy.  
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7.2.3 Implementation of Bayesian experimental Design  

The main advantage of using a Bayesian approach to experimental design is that prior 

information can be used formally rather than subjectively, allowing the experimental 

design to be optimised to gain the most information from the fewest number of 

experimental runs. Bayesian D-optimal designs are thought to be more powerful than 

traditional D-optimal designs for detecting non-linear effects such as quadratic and 

interaction terms (Lunney et al, 2008).   

When there is limited prior information about a process, it can be useful to run 

experiments in sequential blocks, so that information from one block can be used to 

develop the design for the next block. From the first block of experiments, the prior and 

likelihood are combined to form a posterior distribution for the parameters being 

estimated. This posterior can then be carried over and used as the prior for the next 

block (Dubé et al, 1996). This approach allows the focus of the design to evolve to 

concentrate on the parameters and input variables that are found to be the most 

important in the initial blocks of experiments.  

Dubé et al (1996) applied a sequential Bayesian D-optimal design to a multi-

component polymerisation process. The aim was to gain an understanding of how 

seven process variables affected the production rate and product quality. Initial prior 

information was gained from the running of a mechanistic model of the process and 

combining the output with knowledge from process experts to estimate the size of each 

factor to be modelled. The prior variance was estimated based on data from previous 

experimental work. The experiment was run in three blocks consisting of four, four and 

ten experimental runs respectively. After each block of experiments was run, the 

posterior distribution was calculated and used as the new prior distribution for the next 

block. Experiments were run until the posterior variability of the model parameters was 

considered to be suitably small and the response parameters could be estimated with 

the required level of certainty, allowing for a detailed study of the polymerisation 

kinetics of the process.  

A similar example was described in Vivaldo-Lima et al (2006) to determine the 

important process variables that influence the particle size in a polymerisation process. 

Six process variables were studied to determine their effect on two outputs: mean 

particle size and variation of particle size. A mechanistic model was used to generate a 

prior distribution, in the form of a multivariate normal model of the variables. The aim of 

the experimental work was to improve upon existing knowledge of the process, so a 

limited design of two sets of four runs was implemented, with the prior information for 

the second set updated with the posterior information from the results of the first set of 
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runs. The results highlighted the importance of the mixing process in controlling the 

particle size and allowed existing mechanistic models to be updated.  

7.3 Identifying a design space 

Bayesian methodologies have been found to be useful when applied to experimental 

designs that are used to identify the design space of a process. Following the collection 

of data, Bayesian methods can be utilised to analyse the data and identify a robust 

design space, in which the process can be run with an acceptably low risk of failing the 

relevant quality requirements. Typically, the data from experimental results is used to 

create a response surface model of the process that will allow the prediction of the 

expected outputs for a given set of inputs. Ranges of the input variables can then be 

determined for which the critical quality attributes of the process are predicted to fall 

within their specification limits. This region is defined as the design space of the 

process and is registered with the regulatory authorities. Ideally the process will be run 

within a subset of the design space: the normal operating range.  

The response surface model will predict the mean output for any point in the design 

space, but it does not take into account the variation inherent in the process and the 

uncertainty associated with estimating the model parameters. This approach can lead 

to a design space being identified in which the mean predicted response is favourable, 

but high variation results in a low probability of achieving the quality conditions for 

every batch. A more robust approach is to define the design space based on the 

probability that a favourable outcome will be achieved (Peterson, 2004).  

Through the use of Bayesian modelling, a posterior predictive distribution (PPD) can be 

calculated for the response variables; the width of the PPD reflects the variation in the 

process and the uncertainty associated with estimating the model parameters (Section 

7.3.1.1 and 7.3.1.2). Monte Carlo methods can be used to simulate the response for a 

particular set of input settings, to calculate the probability, or reliability, that the process 

outputs will all meet their desired quality conditions (Section 7.3.1.3). By determining 

the reliability at multiple points within the potential operating space, a reliability surface 

is created for the process, thus allowing for the identification of a design space that is 

robust to the variation in the process (Section 7.3.1.4).  

In some cases, wide variation in the PPD can result in the estimated reliability being 

too low to identify a suitable design space. Pre-posterior analysis can be applied to 

determine whether the variation is inherent in the process or is in the estimates of the 

parameters and thus the reliability could be improved by running further experiments 
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(Section 7.3.1.5). A number of applications of the use of Bayesian models within the 

quality by design framework are discussed in Section 7.3.2 

7.3.1 Methodology for the posterior predictive approach 

Peterson (2004) presented a methodology for implementing Bayesian modelling to 

identify the optimal design space to validate and run a process. A model of the process 

is created that combines prior information and experimental data to generate a 

posterior predictive distribution for the process outputs. The resulting model is then 

used to estimate the reliability that a set of quality conditions will be met, for a given set 

of inputs.  

7.3.1.1 Bayesian reliability  

Let Y=(Y1,..., Yp)
T be a vector of response variables that must satisfy specified quality 

criteria. A set of input variables, such as temperatures or raw material characteristics, 

is denoted x=(x1,..., xk)
T. The matrix A is the acceptance region, which is a set of 

quality conditions that must be satisfied for each of the responses, with probability Q. 

For example, A can be a (px2) matrix of upper and lower specification limits. The 

design space of the process is defined as: 

{x: P(YϵA|x, data) ≥ Q}, for a predefined value Q.  

The design space is the set of input factor settings that is expected to produce 

response variables that are within the acceptance region, with a suitably high 

probability. The value of Q is selected to define the required reliability of the process. 

The required reliability is not a set value and should be defined using a risk based 

approach, with consideration given to the phase of product development, complexity of 

the process, required performance and intended use of the product (Stockdale and 

Cheng, 2009). Additionally, the financial cost of a failure may be taken into 

consideration (Mockus et al, 2011a).  

The probability of the quality conditions being met for a given set of input variables is 

denoted p(x): 

p(x)=P(YϵA|x)  
Equation 7-11 

where x is a vector of settings for each input and p(x) is termed the Bayesian reliability. 

To indicate whether or not the quality conditions have been met, the discrete 

desirability function I(YϵA) can be used, where I(YϵA)=1 if the conditions are met, or 

zero otherwise. Samples are taken from the posterior predictive distribution of Y|x to 
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calculate I(YϵA|x) for each sample. Then the average of I(YϵA|x) is calculated to give 

p(x). 

7.3.1.2 Regression model 

To estimate the value of p(x), a regression model is built to identify a relationship 

between the input variables, x, and the response variables y (Peterson, 2004): 

y = Bz(x) + e 
Equation 7-12 

where B is a (pxq) matrix of regression coefficients, for the q model terms and p 

response variables. z(x) is a vector valued function of x that is used to create the terms 

in the model. For example if a quadratic model is being used, z=(1, x1, ..., xk, x1
2, ..., 

xk
2). e is the error vector that follows a multivariate normal distribution with zero mean 

and covariance matrix ∑. Data obtained from experimental work is used to estimate B 

and ∑. 

For the calculation of the posterior predictive density, f(y|x,data), a prior distribution 

must be specified for the model parameters B and ∑. If suitable information exits, an 

informative prior can be defined, for example from results of previous experimental 

work or a mechanistic model of the process (Peterson, 2008). Alternatively a non-

informative joint prior can be specified so that B and ∑ are proportional to |∑|(p+1)/2. 

Data from the prior distribution is combined with data from experimental work to 

determine the posterior distribution, f(B,∑x). Since an analytical solution may be 

difficult to obtain, Monte Carlo methods are used to simulate the posterior distribution. 

These samples are then used applied to Equation 7-12 to obtain a posterior predictive 

distribution for the process outputs: f(y|x). 

7.3.1.3 Simulating the Bayesian reliability   

Using Monte Carlo methods, the posterior distribution of the responses can be 

simulated for a given set of inputs, x. By generating N samples of the response vector, 

y1, y2, …, yN, the Bayesian reliability is estimated as: 

p(𝐱) ~ 
1

N
∑ I(𝐲𝐢 ∈ 𝐀|𝐱)

N

i=1

 Equation 7-13 

where A is the acceptance region and I(YϵA) is the discrete desirability function 

described in Section 7.3.1.1. The value of p(x) gives the probability, or Bayesian 

reliability, that a selected point in the design space will produce a response that will 

satisfy the quality conditions. 
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7.3.1.4 Identifying the optimal region 

Calculation of the optimal design space in which to operate the process is achieved by 

simulating the value of p(x), the Bayesian reliability, across multiple points of the 

potential operating space. Comparison of the p(x) values will determine which 

combinations of input settings are expected to produce a response that satisfies the 

quality conditions, with a suitably high reliability (Stockdale and Cheng, 2009). The 

optimal region is the region in which p(x) is greater than the required reliability.  

When there are up to three controllable factors, values of p(x) can be determined for a 

grid across the experimental region and the reliability visualised to identify the highest 

reliability. However, when there are a large number of factors, significant time and 

computational power will be required to cover the experimental region. An alternative 

method is to create a regression model for p(x) based on the process inputs, to 

represent the reliability space (Peterson et al, 2009). A number of points can be 

simulated to create a factorial design and then a regression model is fitted to estimate 

p(x) across the experimental region. Finally an optimisation procedure is applied to 

identify the region that has the greatest reliability.  

7.3.1.5 Pre-posterior analysis 

The variation in the posterior predictive distribution (PPD) has two potential sources: 

variation that is inherent within the process and uncertainty in the model parameters 

that are estimated (Peterson et al, 2009). When aiming to identify a suitable design 

space, the mean predicted response may be suitable but the reliability may be too low 

due to large variation in the posterior predictive distribution of the response, i.e. for a 

particular response some of the PPD lies outside of a specification limit.  

In this case it is useful to determine whether the high variation is due to the process or 

uncertainty in the model parameters. The results will indicate whether future work 

should be focused on understanding and reducing the process variation, or collecting 

more data to improve the estimates of the model parameters. If the parameters are 

highly uncertain, then the calculated PPD for the responses will be much wider than the 

actual variation that is seen in the process. Increasing the certainty of parameter 

estimates will reduce the width of the PPD and potentially increase the calculated 

reliability.  

Pre-posterior analysis is used to determine whether the variation in the posterior 

predictive distribution could be reduced by collecting more data and hence improve the 

estimate of the reliability that a process will meet the required quality conditions 
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(Peterson, 2004). The impact of collecting more data can be assessed by simulating 

new data that will result in the same values of 𝛃̂ and 𝚺̂ being estimated (Gilmour and 

Mead, 1995). The new and existing data is then combined and the posterior predictive 

distribution of the response and the Bayesian reliability of meeting the quality 

conditions is determined. The results are then compared to the original analysis to 

determine whether the reliability has improved with the addition of simulated data.  

7.3.2 Examples of applications of Bayesian modelling in process development 

7.3.2.1 Early phase synthetic chemistry 

Peterson (2008) presented an application of the Bayesian reliability method in early 

phase synthetic chemistry. A process under development for an API product was 

investigated to determine the operating conditions that would reduce the level of 

impurities that formed during the manufacturing process. Four input factors were 

studied: temperature, pressure, catalyst loading and reaction time. A 24 factorial design 

with eight axial points and six centre points was used to assess their effect on four 

response variables relating to the impurity levels following a reaction. Each of the 

response variables had an upper or lower specification limit.  

A response surface model was developed following the application of a logit 

transformation to the response data to improve the distribution of the residuals. The 

response surface was modelled as follows: 

𝐘 = 𝐗𝛃 + 𝐞 
Equation 7-14 

where Y = (logit(Y1), logit(Y2), logit(Y3), logit(Y4))
T, X = diag(m1, m2, m3, m4) and each 

mi contained the model terms for the response Yi. The model terms were a 

combination of linear, quadratic and first order interactions of the input variables. The 

vector  contained the coefficients for the model terms. The residuals follow a 

multivariate normal distribution, i.e. e ~ N(0, Σ).  

A non-informative prior of the form: 

f(𝛃, 𝚺) = |𝚺|−(r+1)/2 
Equation 7-15 

was used, where r is the number of responses, i.e. four. The prior information was 

combined with the experimental results using Monte Carlo simulation to determine the 

posterior distribution of (β,x). 
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For a given set of values for the input variables, the posterior predictive response of 

Equation 7-14 was simulated by sampling from the posterior distribution of (β,x). For 

each response, the posterior predictive distribution defined the probability of satisfying 

the specification limits at that particular point in the operating space. Calculating the 

product of the results from each response gave the resulting Bayesian reliability for the 

whole process.  

By simulating the response across a grid of the experimental region, the Bayesian 

reliability could be assessed across the potential operating space. Contour plots were 

used for a visual assessment of how the reliability varied when the input settings were 

changed (Figure 7-4). The plots show the Bayesian reliability as the four input 

variables, temperature, pressure, catalyst loading and reaction time are varied. The 

results suggested that the optimal operating conditions were found when the 

temperature and pressure were low, the reaction time was high and the catalyst 

loading was in the centre of the experimental range.  

 

Figure 7-4: Contour plot of Bayesian reliability (Peterson, 2008, Figure 2) 

The maximum reliability was found to be 71%, suggesting that the process may not be 

capable of consistently meeting the specification limits for the impurity levels. Stockdale 

and Cheng (2009) extended the work of Peterson (2008) and applied pre-posterior 

analysis to this example. It was found that by adding an additional four replicates to the 

original 30 experimental runs, the variation in the model parameters could be reduced 
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such that the maximum reliability could be as large as 83%. Additionally, it was 

suggested that if the variation in the process could be reduced by 30%, the residual 

error () would be reduced and the reliability could be as high as 98%. The results of 

the study suggested that a suitable design space for a capable process could be 

achieved if additional experimental work was undertaken and the variation in the 

process reduced.  

7.3.2.2 Quality by Design in a tablet manufacturing process 

When a mechanistic model is used to represent part of a process, a number of 

parameters within the model may be estimated from experimental data. By applying 

Bayesian modelling, the uncertainty in estimating the model parameters can be input 

into a mechanistic model, to produce a posterior distribution for the model response.  

Mockus et al (2011a) applied a Bayesian approach when implementing Quality by 

Design to a tablet manufacturing process, with the aim of controlling tablet hardness 

and the formation of an impurity over the product shelf life. A number of process 

variables were investigated from the wet granulation, drying, blending and tabletting 

stages of the process, to determine their effect on the CQAs: tablet hardness and 

degradation that results in the impurity forming over time. Process variables included 

compression force, median particle size, dryness and bulk density.  

A Bayesian linear model was used to predict the tablet hardness: 

log(Tablet hardness) = 𝐗𝛃 
Equation 7-16 

where X contains the process variables: compression force, median particle size, bulk 

density and the particle size*bulk density interaction, and β is a vector of the model 

parameters. Posterior distributions for the model parameters were estimated using 

Monte Carlo methods in WinBUGS (Lunn et al, 2000).  

A mechanistic model was used to predict the degradation over time: 

Lt = L0 + k1V0(1 − e−k2t) 
Equation 7-17 

where Lt is the level of impurity at time t, L0 is the initial impurity level and V0 is the rate 

of degradation. Posterior distributions for the parameters k1 and k2 were estimated from 

experimental data. For each batch, the values of log(L0) and log(V0) were estimated 

using linear models of the process variables: 



207 

log(L0) = b0 + b1 dryness + b2 particle size + b3 bulk density 
Equation 7-18 

log(V0) = c0 + c1 compression force +  c2 particle size +  c3 bulk density  
Equation 7-19 

Again, the posterior distributions for the parameters b0 to b3 and c0 to c3 were estimated 

from experimental data.  

For an assessment of the design space of the process, the tablet hardness and 

degradation were estimated for various values of the process variables. Samples were 

generated from the posterior distributions of the model parameters, first to predict 

log(L0) and log(V0) in Equation 7-18 and Equation 7-19, and then the results were 

carried through to Equation 7-16 to determine the posterior predictive distribution of 

degradation. Finally the posterior distributions for degradation and tablet hardness 

were used to calculate the Bayesian reliability of meeting the required specification 

limits. Contour plots were then used to visualise how the reliability varied across the 

potential operating space. From Figure 7-5 it is suggested that the lowest risk of failure 

could be found when the compression force and dryness are high, the bulk density low 

and the particle size in the middle of the range.  

7.3.2.3 Estimation of the distribution of the drying phase duration 

As part of a Quality by Design study for a lyophilisation process, Mockus et al (2011b) 

used Bayesian methods to estimate the parameters in a mechanistic model, with the 

aim of estimating the distribution of the drying phase duration. The case study relates 

to the development of the manufacture of a parenteral product that requires a low 

moisture content. During the lyophilisation process, the product is frozen, ice is 

sublimed to form a cake and the product cake undergoes desorption. The primary 

drying phase occurs during sublimation and comprises the majority of the lyophilisation 

time, in the order of days.  
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Figure 7-5: Contour plot of risk of failure, from Mockus et al (2011a), Figure 12 

The drying time can be predicted from a mechanistic model which requires the average 

resistance as an input. The average resistance (RP) can estimated from the nucleation 

temperature, Tn: 

RP = α + βTn + ε for ε~N(0, σRP
2 ) 

Equation 7-20 

A prior distribution was defined for Tn, where Tn ~ N(μT, σT
2). The values of μT and σT

2 

were estimated from data taken from 11 batches. Non-informative prior distributions 

were used for α, β and σRP
2. By combining the data of the average resistance and 

nucleation temperature with the prior distributions, posterior distributions were found for 

the model parameters in Equation 7-20. Sampling from these posterior distributions 

produced a posterior predictive distribution for the average resistance. Then by taking 

samples from the PPD of the average resistance as inputs into the mechanistic model, 

a posterior predictive distribution was found for the drying time.  

This approach allowed the distribution of the drying time to be estimated from a heat 

and mass transfer model, which was expected to be scalable. Therefore it will be 

possible to estimate the distribution of the drying time as the process is scaled up. This 

method also allowed the inputs into the mechanistic models to be varied, to determine 

their importance on the variation in drying times.  
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7.4 Process Capability 

Process capability indices (PCI) have been found to be a useful tool to represent how 

well data from a process falls within a set of specification limits and to highlight the risk 

of a failure (Chapter 6). When a sample of data is taken from a process, the calculated 

PCI provides a point estimate of the capability, but does not give any indication of the 

certainty of the capability estimate. To have some certainty that a process is capable, it 

is necessary to look at the range of values in which the true capability could lie. In 

particular, the lower limit of the true capability will indicate how low the capability could 

actually be in a process. A process may not be considered to be capable unless the 

whole range of values in which the true capability could lie is above the minimum value 

that is required for a process to be capable.  

The process capability indices presented in Chapter 6 are based on frequentist 

methods, so it is assumed that the mean and standard deviation of the process are 

fixed quantities. However processes are not expected to remain constant over time and 

so a Bayesian approach may be more appropriate. In a Bayesian context, it is 

assumed that the mean and standard deviation are stochastic variables, each with an 

associated probability distribution (Cheng and Spiring 1989).  

Confidence intervals on the Ppk metric can be found but are difficult to compute 

because the interval will depend on the distributions of both the mean and variance 

(Kotz and Johnson, 1993). However when Bayesian methods are applied a posterior 

distribution is found for the PCI, from which the percentiles can be derived. The lower 

percentile of the posterior distribution will give the lowest value that the capability is 

expected to take and if this value is suitably large, there is high certainty that the 

process is capable. This approach links to the methodology used to identify a design 

space (Section 7.3), since the focus is given to assessing the reliability that the process 

is capable, rather than finding the average capability estimate.  

7.4.1 Methodology 

In a Bayesian approach, the posterior predictive distribution of the process capability 

index (PCI) can be determined (Cheng and Spiring, 1989). The minimum required 

capability is denoted by w, for example w=1.33. For the process to be capable in a 

Bayesian context, it is required that the PCI is greater than w, with some probability p, 

for example p=0.95: 

P(PCI>w  data)>p 
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i.e. for p=0.95, 95% of the posterior distribution is required to be greater than w, then 

with 95% certainty the process is capable. The width of the posterior distribution will 

depend on the sample size n, so when the sample size is larger, the posterior 

distribution will be narrower and hence there will be greater certainty that the process is 

capable. 

7.4.1.1 Method for Pp 

Cheng and Spiring (1989) presented a Bayesian approach to determining the process 

capability when the process is assumed to be centred and the capability is measured 

by Pp. To calculate Pp, only the standard deviation, , needs to be estimated. For a 

sample of data, x=(x1, x2, …xn), that is assumed to come from a normal distribution, the 

likelihood of the data is: 

f(𝐱|μ, σ2) = (2πσ2)−n 2⁄ ∗ exp {− ∑(xi − μ)2 2σ2⁄ } 
Equation 7-21 

A non-informative prior distribution was used for μ and σ2:  

f(μ, σ2) =
1

σ
 , for − ∞ < 𝜇 < ∞ , 0 < 𝜎 < ∞ Equation 7-22 

The prior is chosen to maximise the difference between the information provided by the 

prior and posterior distributions, therefore minimising the prior information (Shaiu et al, 

1999). Combining the prior and likelihood distributions gives the posterior distribution. 

The marginal posterior distribution for  given the data is:  

𝑓(|𝑋) = 2 [Γ (
𝑛 − 1

2
)]

−1

[
(𝑛 − 1)𝑆2

2
]

𝑛−1
2

𝜎−𝑛 𝑒𝑥𝑝 {−
(𝑛 − 1)𝑆2

2𝜎2 } Equation 7-23 

A process is considered to be capable if: 

Pp > 𝑤 ⇒
USL − LSL

6σ
> 𝑤 ⇒

USL − LSL

6w
> 𝜎 

So the posterior probability that a process is capable is found by: 

p = P(Pp > 𝑤|X) = P (σ <
USL − LSL

6w
|X) = ∫ f(σ|X)dσ

(USL−LSL) 6w⁄

0

 
Equation 7-24 

Since the width of the posterior distribution depends on n, for given values of n, w and 

p, the minimum required value of Pp can be found, such that p% of the posterior 

distribution is greater than w, which is denoted C*(p). Then if a calculated value of Pp is 

greater than C*(p), the process can be considered to be capable in a Bayesian sense. 
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Examples of C*(p) values presented in Cheng and Spriring (1989) are shown in Table 

7-2. For example, for a sample size of 50, the calculated Pp value must be greater than 

1.2 for 95% of the posterior distribution to be greater than one.  

n C*(0.95) 

10 1.65 

20 1.37 

30 1.28 

40 1.23 

50 1.20 

Table 7-2: Values of C*(0.95), w=1 

7.4.1.2 Method for Ppk 

Pearn and Wu (2005) extended the above method to be applicable to Ppk, by finding 

the joint posterior distribution for μ and σ2.  

To find P(Ppk>w  x), first note that:  

min{USL-μ, μ-LSL} = d - μ-m 
 Equation 7-25 

 
where d=1/2(USL-LSL) is half of the specification width, and m=1/2(USL+LSL), is the 

mid-point of the specification range. Then the posterior probability that the process is 

capable is given by: 

p = P(Ppk > 𝑤|x) = P (
d − |μ − m|

3σ
> 𝑤|x)

= P(|μ − m| < 𝑑 − 3𝜎𝑤|x)

= ∫ ∫ f(μ, σ|x)dμ dσ
m+d−3σw

m−d+3σw

∞

0

 

 

Equation 7-26 

 

For given values of n, p, w and δ =
|x̅−m|

s
, the minimum required value of Ppk can be 

found, denoted C*(p), examples of which are shown in Table 7-3. As a result it is 

straightforward to determine whether a process is capable in a Bayesian sense, by 

comparing Ppk to C*(p).  

7.4.1.3 Illustrative example 

An illustration of how the above method works is now presented. Two processes are 

compared with Ppk values greater than 1.33. In each case, n=50, p=0.95, =0 and 

w=1.33 and hence from Table 7-3, C*(0.95) = 1.67, i.e. the calculated Ppk value must 

be greater than 1.67 for the process to be considered capable.  
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δ 

n 0 0.5 1 1.5 2 

10 2.47 2.33 2.27 2.25 2.23 

20 1.98 1.88 1.85 1.85 1.85 

30 1.81 1.74 1.72 1.72 1.72 

40 1.72 1.67 1.65 1.65 1.65 

50 1.67 1.62 1.61 1.61 1.61 

Table 7-3: Values of C*(0.95) for w=1.33, taken from Pearn and Wu (2005) 

Figure 7-6 shows the two posterior distributions for Ppk, where the calculated Ppk values 

are 1.7 and 1.5 respectively. In Figure 7-6a, less than 5% of the posterior distribution is 

below 1.33, so there is greater than 95% certainty that the process is capable. In 

addition, the calculated value of Ppk is greater than C*(p) and hence the process is 

capable in a Bayesian context. Conversely in Figure 7-6b, 21% of the posterior 

distribution is below 1.33 and the value of Ppk is less than C*(p), hence there is not 

enough certainty that the Ppk value is greater than 1.33. Therefore, even though the Ppk 

value is 1.5, the process is not considered capable in a Bayesian context. 

  

Figure 7-6 (a, b): Examples of posterior distributions for Ppk|data 

7.4.2 Application to process data 

A number of process variables have been selected to assess the results of the 

Bayesian approach to process capability (Figure 7-7 to Figure 7-11). These particular 

variables were selected because their distributions are all similar to the normal 

distribution. For each variable, the value of Ppk was compared to values of C*(95), for 

w=1, 1.3, 1.5 and 2, taken from Pearn and Wu (2005) and Table 7-4. In each case a 

sample size of 50 was used. 

Variables A and B have very high Ppk values, greater than two, and there is high 

certainty that the distribution of Ppk is greater than 1.5 (Table 7-4), so these variables 

are considered to be highly capable. Variables C and D also have high Ppk values, 
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greater than 1.5. However there is less than 95% certainly that Ppk is greater than 1.33, 

suggesting the capability is high but may not have reached the target of 1.33. The Ppk 

value for variable E is 1.07, suggesting the process is only just capable. Additionally, 

there is less than 95% certainty that Ppk is greater than one, suggesting that the 

capability needs to be improved.  
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Figure 7-7: Variable A 

Figure 7-8: Variable B Figure 7-9: Variable C 
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Figure 7-10: Variable D Figure 7-11: Variable E   

Variable Ppk δ 
w 

1 1.33 1.5 2 

A 2.14 0.68    1.22    1.62    1.82    2.41 

B 2.19 2.19    1.22    1.62    1.82    2.41 

C 1.54 0.54    1.22    1.62    1.82    2.42 

D 1.52 0.05    1.29    1.68    1.86    2.49 

E 1.07 0.16    1.27    1.64    1.84    2.46 

Table 7-4: C*(0.95) values for process variables, compared to Ppk values 

The examples above are all processes for which the Ppk value is greater than one. The 

Bayesian approach is used to determine whether there is a high certainty that the 

process is capable. A high level of certainty suggests that enough data has been 

collected to have confidence in the conclusions of the capability study. When the Ppk 

value is high but less than C*(p), a larger sample size is required to be certain that the 

process is capable. 
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When a process capability study is used to compare variables with lower capabilities, 

to identify the priorities for improvement, the Bayesian approach may not add any extra 

information other than to confirm that the capability is low. Therefore this Bayesian 

method is most appropriate for processes with a Ppk value greater than one.  

7.5 Conclusion from the reviewed applications 

The use of Bayesian methods in statistical analysis allows for all of the available 

information to be utilised to give the greatest possible certainty in the results. In 

addition, the output from a Bayesian analysis enables the certainly of the results to be 

quantified, so that rather than finding the most likely result to occur, the likelihood of a 

favourable result can be found. Bayesian methods are more computationally expensive 

and complicated to implement compared to classical methods. However the results 

provide a greater certainty of achieving the goals of the analysis, or highlight areas in 

which there is high uncertainly and hence more information is required.  

An issue in Bayesian statistics is the use of prior information, which is required to be 

quantified to be used formally in a Bayesian analysis. In a process development 

context, it is likely that some prior knowledge will exist as a process is scaled up from 

the laboratory to full scale manufacturing. The methods presented for process 

validation and process capability (Sections 7.3 and 7.4) both made use of a non-

informative prior distribution, so no prior knowledge was captured. However these 

methods could be adapted to incorporate relevant prior information. For example, when 

the process capability is reported at regular intervals, the most recent data can be used 

to calculate the capability index. A novel method would be to use information from older 

data to form a prior distribution. This method is developed in the following section.  

7.6 Bayesian approach to sequential Ppk calculations 

Process capability indices produce an overview of the capability of the process, for the 

time period over which the data is collected. A useful application of PCIs is to track the 

capability over time, allowing for the identification of changes in the behaviour of a 

process that could present a risk of failing a specification limit. For a particular process 

at AstraZeneca, the process capability of a number of in-process variables is presented 

every month to provide a summary of the state of the process. Typically the Ppk values 

are calculated from the set of batches manufactured in the past month. There could be 

up to 20 batches, but at times there are significantly fewer depending on demand, 

planned shut downs and process delays.  
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When the sample size is small, the calculated Ppk values may be unreliable because 

there could be high variation due to sampling. A confidence interval around the Ppk 

value indicates the range of values that the true Ppk could take, but the interval will be 

wide when the sample size is small. For example, with a sample size of 20, a 

calculated Ppk value of 1.33 would have a 95% confidence interval width of +/-0.42, 

suggesting that the true capability could be as low as 0.91. Therefore it is difficult to 

determine whether the process is truly capable.  

An alternative method is required for calculating a Ppk value when the sample size is 

small, so that the capability estimates can be updated every month with confidence in 

the Ppk value that is presented. A capability estimate is required for small sequential 

data sets, which allows the business to detect genuine changes to the process, without 

responding to variability in the capability metrics caused by small sample sizes. Such a 

metric would allow AstraZeneca to prioritise technical resources to investigate potential 

risks to the process specification limits.  

Bayesian methods have been found to be useful for finding a posterior distribution for 

the Ppk value (Section 7.4). These methods could be extended to sequentially update 

the capability every month, by combining the new data from the current month with 

older data from previous months. Using a Bayesian structure, the distribution of the Ppk 

from the previous month would comprise the prior information and the new data 

collected would be the likelihood. Then when the sample size is small, more 

information would be taken from the previous month to allow a reliable estimate of the 

current process capability to be calculated. 

In this section, the methodology is described for a novel Bayesian solution to the 

sequential calculation of Ppk values. This method is applied to simulated data to test 

how the Ppk results can detect changes in the mean or variability of the data, and then 

is applied to process data to determine how the method could be implemented at 

AstraZeneca.  

7.6.1 Methodology for Bayesian sequential Ppk 

A novel methodology is proposed for sequentially calculating the capability, using 

Bayesian techniques. For the proposed method, it is assumed that the process data 

will satisfy a normal distribution and hence the Ppk metric will accurately describe the 

process capability. There is scope to extend the method to be applied to non-normal 

data in future work.  
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The structure of the methodology is presented in Figure 7-12. Ppk is calculated from the 

mean and standard deviation of the data, so a posterior distribution for Ppk can be 

found from the posterior distributions of the mean and the standard deviation. Initially, a 

prior distribution must be specified for each parameter, either based on process 

knowledge or from previous data that has been collected. When there is limited prior 

knowledge, a very wide prior can be specified. Then data collected from the batches 

manufactured during the previous month will form the likelihood, which is combined 

with the priors to calculate the posterior distributions of the mean and standard 

deviation. By sampling from the two posterior distributions, values of Ppk can be 

calculated to provide a posterior distribution for Ppk.  

The posterior distributions of the mean and standard deviation from the previous month 

will then form the prior distributions for the next month. The priors are then combined 

with new data to update the posteriors and calculate the new posterior for Ppk. Markov 

Chain Monte Carlo (MCMC) methods are used to combine the prior and likelihood 

information to produce the posterior distribution. 

 

Figure 7-12: Structure of Sequential Ppk methodology 

The model structure is as follows:  
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 ~ N(m, v) 

The initial hyper-parameters, m and v, must be specified based on prior knowledge of 

the process mean. After the first sequential update, m and v will be taken from the 

mean and variance of the previous posterior distribution for .  

The standard deviation, , is restricted to be a positive number, so a Gamma prior is 

used: 

 ~ Gamma(a, b) 

where a is the shape parameter and b is the scale parameter. The initial hyper-

parameters must be specified by the user and could be based on the level of variability 

that is observed in the process data. After the first sequential update, a and b are 

estimated from the mean and variance of the posterior for : 

a = mean(σ)2/variance(σ) 
Equation 7-27 

b = variance(σ)/ mean(σ) 
Equation 7-28 

Likelihood 

For a sample of n data points, y1, y2,... , yn: 

yi~ N(μ, σ2), for i=1,..., n 

Posterior 

The posterior distributions are found by combining the information from the priors and 

the likelihood. At each iteration of the MCMC algorithm, samples are generated of the 

posteriors for  and ; these paired samples are then used to calculate samples of the 

posterior distribution of Ppk.  

7.6.2 Application to simulated data 

The ability of the Bayesian sequential Ppk method to represent the process capability is 

investigated using simulated data. The underlying distribution of the simulated data is 

known and hence the accuracy of the calculated Ppk values can be quantified. Initially 

the method is applied to data that is stable over time and then to data that exhibits 

changes in the mean or standard deviation.  
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7.6.2.1 Methodology for simulated data 

The simulated data comprised ten samples of size 20, to represent ten monthly 

updates. Initially a stable dataset was created, for which each sample was generated 

from a normal distribution with a mean of ten and variance of one. The upper 

specification limit was set to 14, so the Ppk of the underlying distribution is 1.33. The 

analysis was run in Matlab 7.7.0 and uses slice sampling (Section 7.1.5.3) in the 

MCMC algorithm.  

The prior distributions were specified as: 

 ~ N(10, 1) 

 ~ Gamma(2, 2) 

Since this is a simulated example and no prior information exists, the initial prior 

distributions were selected to have minimal impact on the subsequent posterior 

distributions. Both prior distributions include the underlying values of the parameters, 

but were wide so that they would have minimal impact on the posterior distributions. 

Choices of the prior distributions for the hyper-parameters are investigated in Sections 

7.6.2.3 and 7.6.2.4.  

The sampling and calculations proceeded as follows: 

Step 1: 

a. Set prior distributions as: ~N(10,1), ~Gamma(2,2) 

b. Sample 20 data points from N(10,1) 

c. Find the mean and SD of the sample to calculate Ppk (“data value” on graph) 

d. Combine the sampled data with the prior distributions using MCMC to generate 

paired posterior samples of  and  

e. From each pair, calculate a sample of the posterior distribution for Ppk. 

f. Find medians of the posterior distributions for ,  and Ppk (plot on graph)  

g. Find the mean and variance of posterior samples of , to give ~N(m1, v1) 

h. Find the mean and variance of posterior samples of , use Equation 7-27 and 

Equation 7-28 to find a1 and b1. 

Step 2 to end: 

a. Set priors distributions for the next step as ~N(m1, v1) and ~Gamma(a1, b1) 

Repeat b. to f. from step 1 

g. Find the mean and variance of posterior samples of , to give ~N(m2, v2)  
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h. Find the mean and variance of posterior samples of  to find ~Gamma(a2, b2) 

Repeat for ten samples. The initial ten samples that were generated were used in the 

subsequent analysis.  

7.6.2.2 Results for stable data 

Ten updates of the posterior distributions were generated from the ten samples. The 

medians of the posterior distributions were monitored and compared to the calculated 

values from the individual samples of data and the values of the underlying 

distributions (Figure 7-13). The trend of the median Ppk over the 10 updates is 

smoother than the Ppk values calculated individually from each data set. This result 

suggests that by combining the new data with the prior taken from the previous update, 

the variation from sample to sample is filtered out. When a process is stable over time, 

but the individual samples exhibit variation, calculating the Bayesian sequential Ppk will 

provide a value that is more representative of the true capability than the Ppk values 

calculated from individual samples.  

 

Figure 7-13: Results from ten updates of stable data 
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of the posterior distribution for Ppk reduces (Figure 7-14). Although the underlying Ppk is 
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and hence it cannot be shown that the process is capable in a Bayesian sense (Section 
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whereas a 95% confidence interval calculated from one month of data would have a 

width of approximately 0.84, suggesting that the Ppk value can be estimated with a 

higher precision with the Bayesian method.  

 

Figure 7-14: Posterior distribution Ppk for ten updates of stable data, red line is the underlying 

capability 
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the distribution of the prior rather than the data. This effect suggests that when the 

mean for the prior is within the range of the likelihood, the posterior will be similar to the 

data. When the mean of the prior is outside of the range of the data, the prior has a 

stronger effect and pulls the posterior towards it.  

Additionally, when the prior mean is greater than 16, the posterior median for σ 

becomes larger (Figure 7-16). This result suggests that some of the difference between 

the means of the prior and the data increases the overall variation in the model, which 

is captured as a larger σ. 

  

 Figure 7-15: Posterior distributions for , 
varying the prior mean, with SD=1  

Figure 7-16: Posterior distributions for σ, 
varying the prior mean, with prior SD=1  

The above analysis was subsequently re-run with the standard deviation for  

increased to two, to increase the range of the prior distribution. Figure 7-17 indicates 

that increasing the prior mean up to 20 is not seen to have an effect on the resulting 

posterior for . This result suggests that the wider prior allows the posterior to take 

more information from the data and hence all of the posterior medians are close to the 

mean of the data. Similarly the posterior distribution for σ remains constant when the 

prior mean is increased (Figure 7-18).  

  

Figure 7-17: Posterior distributions for , 
varying the prior mean, with prior SD=2 

Figure 7-18: Posterior distributions for σ, 
varying the prior mean, with prior SD=2 

10 12 14 16 18 20
8

10

12

14

16

18

20

22

Prior mean for mu

P
o

s
te

ri
o

r 
fo

r 
m

u

10 12 14 16 18 20
0

2

4

6

8

10

12

14

Prior mean for mu

P
o

s
te

ri
o

r 
fo

r 
s
ig

m
a

10 12 14 16 18 20
8.5

9

9.5

10

10.5

11

11.5

Prior mean for mu

P
o

s
te

ri
o

r 
fo

r 
m

u

10 12 14 16 18 20
0.5

1

1.5

2

2.5

3

Prior mean for mu

P
o

s
te

ri
o

r 
fo

r 
s
ig

m
a



222 

The results indicate that if the prior mean is uncertain, then a wide prior distribution for 

μ is necessary to capture the information from the data. If there is information available 

of the likely values of the data, then the range of the prior distribution should include 

these values. When no prior information exists, then a very wide prior should be used. 

In a process context, knowledge of the measurement being studied would indicate a 

potential range of values that a measurement could take.  

The use of a wider prior could result in wider posterior distributions and therefore less 

certainty in the Ppk estimate. The interquartile ranges (IQRs) of the posteriors for  and 

 were compared when the width of the prior was doubled (Table 7-5) and it was found 

that there was minimal change in the IQRs. Therefore it is more important to use a 

wide prior that is expected to include the range of the data than to use a narrower prior 

to reduce the posterior width.  

Prior SD for 
μ 

IQR of posterior for 
μ 

IQR of posterior for 
σ 

1 0.41 0.327 

2 0.43 0.337 

Table 7-5: Interquartile range for posterior distributions when prior mean set to ten 

7.6.2.4 Prior for standard deviation  

The prior distribution for the standard deviation is specified as a Gamma(a, b) 

distribution, where the shape (a) and scale (b) hyper parameters together define the 

location and width of the distribution. The values of a and b can be calculated by 

specifying the prior mean and variance for σ and applying Equation 7-27 and Equation 

7-28. 

A further study was undertaken to understand the effect of changing the hyper 

parameters for . With variance(σ) in the prior for  set to one and the mean for σ was 

varied between 0.5 and 5 (Figure 7-19), and one update run to generate posterior 

distributions for μ (Figure 7-21) and σ (Figure 7-22).  

When the prior mean of  was set to five, i.e. much larger than the standard deviation 

of the data, the posterior for  is wider and takes larger values. Similarly the posterior 

for μ is wider when the mean for σ is larger. As before, it appears that when the range 

of the prior for  includes the data value (one), the resulting posteriors for  and  

reflect the information in the data. However when the mean for  is increased to five, 

the prior distribution does not include the value one (Figure 7-19) and the resulting 

posterior takes more information from the prior. Additionally, when the prior mean for  
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was increased to five, the posterior for  becomes wider, suggesting that increased 

uncertainty in the model is reflected in wider posterior distributions.  

  

Figure 7-19: Prior distributions of , with 

variance()=1 

Figure 7-20: Prior distributions of , with 

variance()=2 

  

Figure 7-21: Posterior distributions for μ, 
varying the prior mean of σ, variance(σ)=1 

Figure 7-22: Posterior distributions for σ, 
varying the prior mean of σ, variance(σ)=1 

When the variance of the prior for σ is increased to two, the ranges of the prior 

distributions are wider (Figure 7-20) and hence changing the mean has less of an 

effect on the resulting posterior distributions (Figure 7-23 and Figure 7-24). As before, 

the results indicate that the prior has a smaller effect on the posterior when the range 

of the prior includes the value of the standard deviation that is calculated from the data.  

7.6.2.5 Change in process mean  

The Bayesian sequential Ppk has been shown to filter out sample to sample variation in 

the data. However it is also required to detect changes in the mean and variability of 

the process, which indicate a change in the process capability.  
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Figure 7-23: Posterior distributions for μ, 
varying the prior mean of σ, variance(σ)=2  

Figure 7-24: Posterior distributions for σ, 
varying the prior mean of σ, variance(σ)=2 

The dataset created at the beginning of Section 7.6.2 was modified to show changes in 

the mean and standard deviation of the underlying distribution and the sequential Ppk 

method applied. Firstly the dataset was changed to represent a drift in the mean from 

ten to eleven over five updates and then a shift of the same magnitude over one 

update (Table 7-6). Furthermore, each dataset was scaled to unit variance so that 

variation in the standard deviation of the data did not influence the resulting Ppk values. 

Finally the dataset was adjusted to represent changes in the standard deviation 

(Section 7.6.2.6). In each case, the initial prior distributions used were Normal (10,1) 

for the mean and Gamma (0.5,2) for the standard deviation, which is equivalent to a 

mean of one and variance of two. 

Following the median of the posterior Ppk over time shows that the sequential method is 

slow to reflect the changes in the mean. When the mean drifts from ten to eleven, the 

actual Ppk changes from 1.33 to one, but the posterior median after the final update is 

1.16 (Figure 7-25). When the mean shifts, the posterior Ppk catches up more quickly, 

reaching a median of 1.04 by the final update (Figure 7-26).  

 Drift of Mean  Shift of Mean 

Step 
Underlying value  Underlying Value 

  Ppk    Ppk 

1-5 10 1 1.33 10 1 1.33 

6 10.2 1 1.27 11 1 1.00 

7 10.4 1 1.20 11 1 1.00 

8 10.6 1 1.13 11 1 1.00 

9 10.8 1 1.07 11 1 1.00 

10 11 1 1.00  11 1 1.00 

Table 7-6: Underlying values of samples where the mean changes  

Additionally, the posterior standard deviation increases when the underlying mean 

changes. The results show that the posterior Ppk is unable to reflect actual changes in 
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the process mean from sample to sample, because too much dependence is given to 

the prior distribution. A potential solution is developed in Section 7.6.2.7. 

 

Figure 7-25: Results from ten updates, showing a drift in the mean from the 6
th

 update  

 

Figure 7-26: Results from ten updates, showing a shift in the mean at the 6
th

 update  

7.6.2.6 Change in standard deviation 

The above analysis was repeated to assess how the posterior Ppk could follow changes 

to the standard deviation of the data. The stable dataset was changed to show a drift in 

standard deviation from one to 1.33 over five samples and a shift from one to 1.33 

(Table 7-7).  
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Drift of standard deviation   Shift of Standard Deviation 

Step 

Underlying value 
Gamma 

Parameters   Underlying value 
Gamma 

Parameters 

  Ppk a b     Ppk a b 

1-5 10 1.00 1.33 100 0.100   10 1.00 1.33 100 0.100 

6 10 1.07 1.25 87.9 0.114   10 1.33 1.00 56.3 0.178 

7 10 1.13 1.18 77.9 0.128   10 1.33 1.00 56.3 0.178 

8 10 1.20 1.11 69.4 0.144   10 1.33 1.00 56.3 0.178 

9 10 1.27 1.05 62.3 0.160   10 1.33 1.00 56.3 0.178 

10 10 1.33 1.00 56.3 0.178   10 1.33 1.00 56.3 0.178 

Table 7-7: Underlying values of the samples where the standard deviation changes 

Similar to the results from changing the mean, the posterior standard deviation is slow 

to represent changes to the standard deviation of the data (Figure 7-27 and Figure 

7-28). When the underlying Ppk reduces from 1.33 to one, the median posterior Ppk only 

reduces to 1.17 and 1.15 for drift and shift respectively, after five updates. The results 

suggest that too much weighting is given to the prior distributions and hence the 

posterior cannot pick up changes in the new data. 

 

Figure 7-27: Results from ten updates, showing a drift in standard deviation from the 6
th

 update  
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Figure 7-28: Results from ten updates, showing a shift in standard deviation at the 6
th

 update 

 

7.6.2.7 Reducing the impact of the prior distribution 

For an effective Bayesian sequential Ppk method, a balance is required between 

filtering out the noise in the data and responding to actual changes in the process. This 

balance could be achieved by adjusting the influence of the prior distribution on the 

subsequent posterior. Reducing the influence of the prior distribution will increase the 

amount of information that is attained from the new set of data, allowing for the 

detection of process changes but also allowing more sample variation to be captured. 

This adjustment could be achieved by increasing the widths of the prior distributions 

and hence passing less information from the previous posteriors to the next update.  

7.6.2.7.1 Prior for  

Firstly the prior for the process mean () is assessed. From the previous posterior 

distribution, the width of the prior is increased by scaling the variance by factor, k1, so 

that the prior for  becomes: 

 ~ N(m, v*k1
2) 

This scale factor was applied to the five simulated datasets: stable data, drift and shift 

of the mean, and drift and shift of the standard deviation. The value of k1 was varied 

between one and 2.5. For each dataset the mean squared error (MSE) was measured 

from the difference between the median of the posterior Ppk and the calculated Ppk of 

the underlying distributions (Figure 7-29). The changes to the mean and variation were 
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implemented from the 6th update, so the MSEs were measured from the 6th to 10th 

updates.  

When the value of k1 is increased, the MSE increases for the stable dataset, because 

the prior has less influence and hence the posterior is more similar to the data and 

does not filter out as much sample to sample variation (Figure 7-29). However the error 

reduces for the datasets that show a change in the mean, because the posterior Ppk is 

more able to follow these changes. Little effect is seen on the datasets exhibiting a 

change in the standard deviation because the underlying mean remains constant; 

although the error increases slightly for the dataset exhibiting a shift in standard 

deviation, due to less noise being filtered out.  

7.6.2.7.2 Prior for  

The sequential Ppk is also required to follow changes in the underlying variability in the 

data, captured by . The prior for σ was widened by increasing the variance of the prior 

from the previous posterior distribution by a scale of k2. The resulting parameters for 

the Gamma prior distribution were calculated as: 

𝑎 = 𝑚𝑒𝑎𝑛(𝜎)2/(𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜎) ∗ 𝑘2) 

𝑏 = (𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝜎) ∗ 𝑘2)/𝑚𝑒𝑎𝑛(𝜎) 

Similar to the results for the mean prior, the error in the stable dataset increased when 

the value of k2 was increased (Figure 7-30). As expected the error reduces for datasets 

that exhibit a changing variance, since the posterior Ppk can follow these changes. 

Additionally as k2, increases the error also reduces for the datasets that exhibit a 

changing mean, the reasons for which are explained in Section 7.6.2.7.3. 

 

Figure 7-29: MSE when prior for  is widened  Figure 7-30: MSE when prior for σ is widened 
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7.6.2.7.3 How does the prior for  affect the posterior for ? 

When the underlying mean of the data changes, the accuracy of the posterior median 

for Ppk is seen to increase as the prior for  is made wider (Figure 7-30). However on 

closer inspection of the data, it can be observed that the accurate estimate for Ppk is a 

result of counteracting errors in the estimates of both the posterior mean and standard 

deviation. The reason can be illustrated when the prior variance is increased by a scale 

of two and the mean exhibits a shift change after the sixth update (Figure 7-31).  

The prior for  is narrow, hence the posterior  does not reflect the changes in the 

mean of the data. However, this change in the data mean is represented by an overall 

increase in the posterior variability of the data, so the posterior median for  is larger 

than the standard deviation of the data. As a result, the mean is underestimated, the 

standard deviation is overestimated and the calculated Ppk value is close to the 

underlying capability of the data.  

 

Figure 7-31: Posterior medians from ten updates, when k2=2 

When the priors for both the mean and standard deviation are widened (Section 

7.6.2.7.4), the posterior for  reflects the change in the mean. Hence the overall 

variability in the data is not seen to increase and the posterior for  remains close to 

the actual variation in the data. Therefore to accurately estimate the posterior median 

of Ppk when the mean is changing, it is required to widen the prior distributions of both 

 and .  
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7.6.2.7.4 Adjust both priors simultaneously 

The optimal adjustment to the widths of the prior distributions is investigated by 

simultaneously varying the values of k1 and k2 and calculating the MSE (Figure 7-32). 

The results suggest that setting k1 and k2 to 1.5 reduces the error for the datasets that 

exhibit a changing mean or standard deviation, but do not cause a large increase in the 

error for the stable data. Setting k1 and k2 to 1.5 allows the posterior to follow changes 

in the mean and standard deviation more closely but still filter out the sample to sample 

variation (Figure 7-33). Therefore the recommended values for k1 and k2 are both 1.5.  

 

Figure 7-32: MSE when the priors for  and σ are both varied, change  
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Figure 7-33: Results from ten updates, showing the posterior Ppk medians when there is no 

adjustment for the priors and when k1=k2=1.5.  

When the widths of the prior distributions are increased, the resulting posteriors are 

also wider. The interquartile ranges of the posterior distributions for Ppk with and 

without the adjustment were compared. It can be seen that after ten updates the 

posterior with the adjustment is approximately 1.5 times wider (Figure 7-34). 

Consequently if the posterior distribution is wider, it will be less likely that the whole 

distribution is above the target for capability (e.g. 1.33) and so the process may not be 

labelled capable in a Bayesian sense (Section 7.4).  
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Figure 7-34: Interquartile range of posterior Ppk, with and without the adjustment for the prior 

variances 

Whether or not the adjustment is preferred depends on the goal of the analysis. The 

adjustment may be preferred if the aim is to sequentially estimate the median Ppk of a 

process, because this method has been found to be more accurate at detecting 

changes in the mean and standard deviation. However, when the goal of the analysis is 

to determine the level of certainty that the process is capable, i.e. whether the process 

is capable in a Bayesian context, and if it can be assumed that the process is stable 

over time, then applying the adjustment may not be necessary and will result in a wider 

than necessary posterior distribution for Ppk.  

7.6.3 Application to process data  

The Bayesian sequential Ppk proposed in this chapter was applied to two sets of 

industrial process data that exhibited behaviour similar to a normal distribution. For 

each variable there is an upper specification limit that must be conformed to. Ppk values 
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and to highlight any potential changes. Therefore the required output from the 
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The mean for variable one appears to be stable over time but the standard deviation 

reduces, resulting in an increasing Ppk (Figure 7-35 and Figure 7-36). The posterior 

median appears to smooth out the variation in the Ppk values calculated directly from 

the data, but still highlights the increasing trend. If the process is drifting over time, for 
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third month, the whole posterior distribution is above 1.33, so the process is considered 

to be highly capable.  

For the second set of process data, the mean reduces over time and the standard 

deviation appears to vary from between months (Figure 7-37, Figure 7-38). The results 

for the sequential Ppk are similar to those of the standard Ppk, but the sequential method 

smooths out the noise in the standard deviation that occurs around month seven. The 

median posterior Ppk is below the target of 1.33 between months two to five, suggesting 

that the process should be targeted for improvement.  

 

Figure 7-35: Bayesian sequential Ppk applied to variable one 

  

Figure 7-36: Posterior Ppk for variable one, showing 
the target of 1.33 

Figure 7-37: Posterior Ppk for variable two, showing 
the target of 1.33 
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7.6.4 Summary of Bayesian sequential Ppk  

The Bayesian Sequential method for calculating the posterior distribution for Ppk has 

been developed to transfer information from one update to the next, but with a greater 

weighting being given to the new set of data. Use of this method required prior 

distributions to be specified for the mean and standard deviation of the data. It was 

found that in general the use of a wide uninformative prior distribution has little effect 

on the resulting posterior distribution for Ppk. Hence when the prior information is 

uncertain, a wide prior should be selected and the posterior distributions will reflect the 

information in the data.  

 

 

Figure 7-38: Bayesian sequential Ppk applied to variable two 

This method has been found to be effective at filtering out the variation caused by 

taking small samples of data, both with simulated and industrial process data. 

However, to detect changes in the mean and standard deviation of the process, it is 

necessary to increase the width of the prior distributions to increase the influence of the 

new data. An adjustment of the variation of the prior distributions of 1.5 has been found 

to provide a balance between smoothing the noise and detecting actual changes.  

Using the median of the posterior distribution, the Bayesian sequential Ppk has the 

potential to provide a reliable estimate of the capability of the process when the 

capability is tracked over time using small sample sizes.  
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7.7 Conclusions and further work 

Bayesian methodologies are an alternative to the classical or frequentist statistical 

methods that are traditionally used. The major difference with Bayesian statistics is that 

parameters are considered to be stochastic variables, which are described by a 

distribution rather than a point estimate. As a result, Bayesian methods are more 

complex to implement but can provide a higher level of certainty in the results that are 

obtained.  

In this chapter, three areas of application to pharmaceutical process development and 

manufacture were studied. Bayesian methods in experimental design allowed the use 

of prior information to optimise the design and maximise the information gained. When 

experiments are run sequentially, the design can be updated with the new information 

that is obtained, allowing for the design space to move towards the optimal operating 

space of the process. 

Following experimental work, Bayesian modelling can be used to identify the optimal 

operating space in which the process will be run, i.e. the region in which there is a high 

level of certainty of meeting the required quality specifications. By calculating the 

posterior predictive distribution of the process outputs, the overall Bayesian reliability of 

meeting a specification limit can be found. Then the design space can be visualised to 

assess how changing the process inputs can determine the quality of the outputs.  

When a manufacturing process has been established, the capability of meeting the 

required specification limits can be estimated though the use of process capability 

indices, including Ppk. By calculating the posterior distribution of Ppk, the level of 

certainly that the Ppk value is above the target for capability can be calculated, which 

indicates the certainty that the process is capable. A novel methodology has been 

proposed to extend the Bayesian process capability to sequentially update the 

posterior distribution for Ppk when data is analysed in sequential blocks. This method 

could be implemented at AstraZeneca to track the capability of process variables that 

are monitored monthly, allowing for the detection of adverse trends in the data but 

filtering out the variation that is seen when sample sizes are small. The methodology 

was shared with the Global Statistics Group at AstraZeneca, allowing the group to 

further develop and implement the methodology where appropriate.   

As a future project, the Bayesian sequential Ppk methodology could be further 

investigated to determine how the method can handle different levels of variation in the 

data and different changes in the underlying distribution of the data. Additionally it will 

be useful to determine the effect of the sample size for each update on the accuracy of 
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the estimated Ppk values. The method could also be further tested on industrial process 

data at AstraZeneca to assess how the results can be applied to determine areas in 

which process improvements are required.  

This methodology could also be further developed to be applicable to data from 

distributions other than the normal. Currently it is assumed that the data follows a 

normal distribution, however this assumption is not always valid for all industrial 

process data. The Clements’ method (Section 7.1.3.2) can be applied by fitting an 

alternative distribution to the data and then calculating the percentiles of the distribution 

that are used to calculate Ppk. The Clements’ method could be applied to the Bayesian 

sequential Ppk method by fitting an alternative distribution, such as the Gamma, and 

then finding posterior distributions for the parameters of the chosen distribution. Then 

by sampling from these posterior distributions, the percentiles of the chosen distribution 

could be calculated for each sample and used to determine the posterior distribution for 

Ppk.  
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8 Conclusions 

This final chapter concludes the thesis by reviewing the outcome of each chapter and 

then capturing the contributions, both for AstraZeneca and more generally.  

8.1 Chapter Three: Modelling Methodologies 

In Chapter Three, modelling methodologies were investigated to identify techniques 

that are appropriate to be applied to data from pharmaceutical manufacturing 

processes. Specific challenges of industrial process data include large multivariate data 

sets, batch data and non-linear relationships between variables.  

When the data is multivariate, principal component analysis (PCA) can be applied to 

analyse the trends between variables and samples, while partial least squares (PLS) 

allows a prediction model to be developed between process inputs and outputs. Batch 

data presents the additional challenge of a 3-dimensional structure, which can be 

unfolded at an observational or batch level and analysed with PCA and PLS. An 

alternative prediction method for batch data is case based reasoning, which is capable 

of handling non-linear trends in the data.  

A further method for representing non-linear relationships between variables is artificial 

neural networks, which is considered a ‘black box’ modelling approach. Each time the 

training algorithm is run the resulting network is unique and hence stacked neural 

networks are applied to capture all of the trends in the data that may be represented by 

different individual networks. In the literature, applications of the above techniques 

include process monitoring, optimisation and control in processes including 

fermentation, polymerisation and drying. 

8.2 Chapter Four: Modelling of Filter Drying Times 

The objective of Chapter Four was to develop a prediction model to estimate the 

duration of a drying process that is run by AstraZeneca, using data collected early in 

the process. Four modelling methods were investigated (Table 8-1). The most accurate 

results were found for the neural network models, suggesting that the data collected 

throughout the process can be captured by a small number of variables without loosing 

information about the expected drying times. The results also indicated that non-linear 

models may be required to represent the relationship between the process variables 

and the drying time. However the linear regression model was most accurate for one of 

the dryers, suggesting that with sufficient data a linear model may be suitable.  
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The multi-way PLS models produced similar results to the linear regression models, 

however the additional complexity of capturing and handling multivariate data means 

that linear models are preferred. Case based reasoning produced the poorest 

predictions of the drying time, suggesting that this method is unable to handle the noise 

that is contained within the data collected from this drying process. 

 Linear Non-linear 

Non-batch 
data 

Multiple linear 
regression 

Stacked neural 
networks 

Batch data 
Multi-way partial 
least squares 

Case based 
reasoning 

Table 8-1: Summary of modelling techniques 

8.3 Chapter Five: Multivariate Analysis of Particle Size 

Distribution Data 

The literature review in Chapter Five presented a comparison of particle size 

distribution (PSD) measurement methods, focusing on sieving, microscopy and laser 

diffraction. Laser diffraction is the preferred method for the analysis of pharmaceutical 

powders due to the fast and precise results that are obtained. Microscopy is also 

required to visualise the particles and determine whether the assumption of spherical 

particles is met.  

The objective of the PSD study at AstraZeneca was to characterise the PSD of a 

product and to understand the causes of variation between samples. The application of 

PCA highlighted the differences between samples manufactured on the two processing 

plants and also indicated the presence of unusual samples within the data set. PLS 

and stacked neural networks were investigated to represent the relationship between 

the manufacturing conditions and the PSD, indicating that the drying time or 

precipitation temperature may potentially be linked to the PSD. However not enough 

variation was observed in the normal operating range of the process to demonstrate 

any firm relationships and hence experimental work would be required to further 

investigate the process. 

8.4 Chapter Six: Process Capability Indices for Non-Normal 

Data 

Process capability indices (PCIs) are used to calculate the risk of a process breaching 

a specification limit and are applied to both in-process measurements and quality 

testing on the final product. The use of PCIs allows for several sets of specification 
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limits to be compared across a process and priority areas for improvement to be 

determined. The standard process capability metric, Ppk, relies on the assumption that 

the data satisfies the normal distribution. Many sources of variation in an industrial 

process can cause the shape of the resulting data to differ from the normal distribution.  

Distribution free PCIs have been investigated by simulating samples of data from 

known non-normal distributions. When no data is outside of the specification limits, 

calculating the percentiles of the data that correspond to the mean and three standard 

deviations of the normal distribution produced more accurate results than Ppk. However 

for distributions with a long tail towards the specification limit, the Ppk metric exhibits a 

smaller sampling variation. When there is some data outside of the limits, calculating 

the capability using the percentage of data outside of the limits was shown to produce 

the most accurate results and low sampling variation. This method was enhanced by 

calculating the percentiles of the data that correspond to the specification limits, 

providing more information about the process capability when there is only one data 

point outside of the limits.  

8.5 Chapter Seven: Bayesian Methods in Pharmaceutical 

Process Development 

Bayesian statistics is a branch of statistics whereby model parameters are considered 

to be random variables with an associated statistical distribution rather than being fixed 

values. In addition, Bayesian statistics allows for prior information to be combined with 

new information from data. A literature review was presented in Chapter Seven to give 

examples of applications of Bayesian statistics in pharmaceutical development. For 

example, when an experimental design is used to determine the optimal operating 

conditions for a process, prior information can be quantified and used to develop a 

design that will maximise the information that is gained from the results. Experiments 

can also be run sequentially to reduce the number of runs that are required. To 

optimise the process inputs, Bayesian modelling allows the certainty of the model 

parameters to be captured, so that an operating space can be found in which there is 

high certainty of meeting the process quality metrics.  

Bayesian methods are also applicable to process capability calculations. Using a 

Bayesian model, the uncertainly associated with estimating the mean and standard 

deviation can be quantified to determine the probability that a process is capable. A 

novel Bayesian process capability methodology was developed for the case when 

process capability is analysed sequentially as more data is collected. This method was 

applied to processes at AstraZeneca, for which the process capability is assessed 
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monthly but a small number of batches are manufactured every month. Older data was 

used to find prior distributions for the mean and standard deviation, and combined with 

new data to estimate the posterior distributions. It was found that the prior distributions 

required widening to ensure that the posterior distributions captured the information 

from the new data. Following the investigation and adjustment of the prior distributions, 

the Bayesian sequential Ppk was able to filter out variation that was observed between 

samples and follow changes in the mean and variance of the process data.  

8.6 Thesis Contributions 

The contributions from this thesis have enabled AstraZeneca to gain more knowledge 

and understanding of their manufacturing process and have provided examples of the 

application of statistical methodologies to industrial process data. In addition, novel 

methodologies were developed for calculating the capability of a process.  

8.6.1 Contributions to the Industrial Sponsor 

Four case studies were presented relating to processes that are run by AstraZeneca, 

with the contributions listed below.  

Predicting the duration of a drying process 

 Analysis of the measurements collected during the drying process to determine 

which variables are most related to the drying time. 

 Identified how the differences between the three dryers resulted in different 

trends in the temperature and flow rate measurements 

 Development and implementation of a linear model to predict the drying time 

early in the drying process, allowing plant managers to make decisions of when 

the next batch will be required and when the filter should be cleaned. 

Particle size distribution study 

 Captured a baseline of the current particle size distribution of the product being 

made. 

 Highlighted that there are differences between material manufactured on two 

different plants, but not between the main and recovery process streams. 

 Quantified the differences in results when samples were analysed on different 

laser diffraction instruments. 

 Determined that the current operating range of the process is not wide enough 

to indentify a relationship between the process variables and the resulting PSD. 
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Process Capability Indices 

 Initiated regular process capability analysis reports to track the capability of the 

process and to highlight any potential issues. 

 Investigated distribution free capability indices that allow for a meaningful 

process capability estimate to be obtained when the data does not satisfy the 

normal distribution. 

 Development of a Bayesian methodology to allow the process capability to be 

calculated monthly when a small sample size is collected every month. 

 Methods and results were shared with the Global Operations Statisticians 

Forum at AstraZeneca, to support the development of a best practice for 

process capability analysis 

8.6.2 General Contributions 

The general contributions of the thesis include the assessment of how various 

statistical techniques can be applied to industrial process data and then the 

development of novel methods for quantifying the process capability.  

 A comparison of modelling techniques for predicting the duration of a drying 

process, demonstrating how a number of modelling methodologies perform 

when applied to process data and assessment of the quantity of data was 

required to predict the duration of the drying process. 

 Demonstration of how multivariate analysis techniques can enhance the 

analysis of particle size distribution data, allowing for the size of the data set to 

be reduced. 

 Detailed comparison of distribution free process capability indices to determine 

the accuracy and sampling error when applied to data sampled from various 

statistical distributions, allowing for more robust process capability indices to be 

calculated. 

 A novel extension to a process capability metric by calculating the percentile of 

the data that corresponds to the specification limit, increasing the accuracy of 

the capability estimate when few samples are outside of the limit. 

 Literature review of the application of Bayesian statistics to the development of 

pharmaceutical manufacturing processes. 

 Development of a novel methodology to utilise Bayesian statistics to 

sequentially calculate the process capability sequentially, allowing the capability 

to be estimated when data is collected in blocks of small sample sizes. 
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8.7 Future work 

There exist a number of opportunities to build upon the work in this thesis, which are 

described in this final section.  

8.7.1 Models of drying time 

The models of the duration of the drying process could be improved by collecting more 

data for batches with long drying times. In particular the data set for dryer one only 

contained three batches with drying times longer than 70 hours, which may not be 

enough to fully reflect the trends in the input variables that indicate batches with long 

drying times. Fewer batches are observed with longer drying times, since the filters are 

generally cleaned when drying times start to increase, so it is required to monitor the 

process over time to identify that batches that should be added to the data set. Focus 

should be given to the multiple linear regression and neural network models, since the 

investigation concluded that it is not necessary to use multivariate methods to handle 

the data collected throughout the drying process. Additionally these models require 

fewer input data points and hence are more straightforward to implement.  

An additional piece of work is to implement the prediction models in the plant’s online 

control system, so that the predicted drying time can be generated as soon as the 

required data is generated and the information used to make decisions based on when 

the dryer is expected to become available and when a filter clean in required. Online 

implementation would require some logic to be derived to measure the inputs variables 

automatically. For the wash flow, rate this would require measuring the time and 

receiver water level at the start and end of the wash, based on the rate of change in the 

receiver level. The temperature peak after agitation could be measured as the 

maximum temperature over a specified time after the agitator has been used.  

8.7.2 Optimisation the particle size distribution  

There is an opportunity to further study the particle size distribution of the product and 

potentially adjust the manufacturing and milling conditions to optimise the PSD for the 

formulation process. The formulation process could be investigated to determine the 

relationship between the PSD and the critical quality attributes, to improve the process 

yield and therefore identify the optimal PSD. The relationship could be assessed by 

developing a PLS model between the PSD and the yield and other quality indicators of 

the formulation process. This model could be used to identify the range of the PSD that 

is expected result in an optimal formulation process. It may also be necessary to 

include as inputs variables relating to the formulation process that affect the outcome of 

the process.  



243 
 

Further investigation of the relationship between the manufacturing process and the 

PSD could allow the optimal processing conditions to be determined. It was concluded 

in Chapter Five that the process may be required to be run outside of the normal 

operating range to determine such a relationship and hence small scale laboratory 

work may be required, focusing on the variables that were identified as the most likely 

to have a relationship with the PSD. A design of experiments approach could be 

implemented to measure the effects of a number of input variables on the PSD. 

8.7.3 Development of Bayesian sequential Ppk  

The Bayesian method for sequential process capability calculations requires further 

analysis to determine the effectiveness of the method. The Bayesian sequential Ppk 

should be tested using data from a number of variables and over several months to 

determine how capable the method is of highlighting a potential change in the process 

capability whilst filtering out sample variation in the data. If necessary, adjustments 

may be required to improve the effectiveness of the method. For example the 

adjustment of the width of the prior distribution could be re-assessed with process data.  

In addition, to enhance the effectiveness of the capability estimates, a sequential 

method is required that does not rely on the assumption that the data satisfies the 

normal distribution. An option could be to find an alternative distribution that fits more 

closely to the shape of the data, similar to the Clements’ method discussed in Section 

6.1.3.2. For the parameters of the selected distribution, prior distributions would be 

defined and combined with process data to determine the posterior distribution. Then 

by sampling from the posterior distributions of the parameters, percentiles of the 

selected distribution could be sampled and applied to produce samples of the posterior 

for Ppk. 



244 
 

Appendix 1: Principal Component Analysis  

Calculating principal components from eigenvectors 

Principal components were originally derived from the eigen decomposition of the 

covariance matrix, XTX (Wold et al, 1987a). The eigenvectors (e1, e2,…, ek) are listed in 

decreasing order of their corresponding eigenvalues. The eigenvectors make up the 

principal components. The eigenvalues show the proportion of variation in the data that 

is explained by each principal component. So for component i, with eigenvector ei and 

eigenvalue λi, the proportion of explained variance is found by: 

𝜆i ∑ λj

K

j=1

⁄  

Eigenvectors are mutually orthogonal so the PCs define uncorrelated directions of 

variation. The retained PCs are always selected in order of decreasing eigenvalues.   

The loadings matrix consists of the eigenvectors that are to be retained in the model, 

so if A PCs are to be retained, then P = [e1, e2,…, eA]. It is necessary to constrain the 

magnitude of each loading vector, otherwise any multiple of the eigenvector is possible, 

so ||pi|| = 1.  

The scores matrix, T, is calculated as the product of the data X and the loadings P, so 

T = XP. The columns of P and T are orthogonal, since P consists of the eigenvectors of 

X, so pi
Tpj = 0 and ti

Ttj = 0, for i≠j.  

 

R2X and Q2 

R2X is the cumulative variance explained by the retained principal components 

(Eriksson et al, 2006):  

R2X = 1 −
RSS

SSX
 Equation 0-1 

Where:  

RSS = ∑ ∑(𝐄𝐢𝐣)
𝟐

K

j=1

N

i=1

 Equation 0-2 
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SSX = ∑ ∑(𝐗𝐢𝐣)
𝟐

K

j=1

N

i=1

 Equation 0-3 

 

The Q2 measures the proportion of the variation that can be predicted by a component. 

As each component is added to the model, the SPE (Section 1.1.1.5) from the cross-

validation is compared to the residual sum of squares (RSS) from the PCA model with 

one fewer component. The RSS is found from the error matrix E. If the SPE for a PCA 

with A components, SPEA, is larger than the RSS for a PCA with A-1 components, 

RSSA-1, then adding the Ath component does not increase the predictive power of the 

model (Wold et al 1987a). The Q2 for the Ath component is given by: 

QA
2 = 1 −

SPEA

RSSA−1
 Equation 0-4 

For the first PC, the RSS is found directly from the scaled and centred X matrix.  

The cumulative Q2 for a PCA model with A components is given by: 

Q2(cumulative) = 1 − ∏ (
SPEi

RSSi−1
)

A

i=1

 Equation 0-5 
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Appendix 2: Partial Least Squares 

PLS algorithm 

Partial least squares is used to find a linear relationship between a set of K predictor 

variables (X NxK) and a single or set of M response variables (Y NxM), with N 

observations.  

Firstly weight vectors w1 and v1 are found such that t1 and u1 have the maximum 

possible covariance (cov(t1, u1) = t1
Tu1), where: 

t1 = Xw1 Equation 6 

u1 = Yv1 Equation 7 

These vectors will describe the direction of maximum variation in the predictor and 

output variables. The vectors t1 and u1 are linear combinations of the original variables. 

A further constraint is thatw1 = v1= 1.  

A predictive model is built between X and Y by finding the inner relationship between 

the latent variables: 

u1 = b1t1 + e1, Equation 8 

where b1 is found by ordinary least squares regression and e1 is the error vector. 

Then the outer relationship is found that links the latent variables to the original 

variables. 

X = t1p1
T

 + E1 Equation 9 

𝐘 = 𝐮̂𝟏𝐪𝟏
𝐓 + 𝐅𝟏 = 𝐛𝟏𝐭𝟏𝐪𝟏

𝐓 + 𝐅𝟏 Equation 10 

Again p1 and q1 are calculated by least squares regression.  

To calculate the second latent variable, the contribution from the first is removed from 

X and Y: 

X2 = X – t1p1
T Equation 11 

Y2 = Y – b1t1q1
T Equation 12 

The second latent variables are found in the same way as the first. This process is 

repeated as additional latent variables are calculated. If A latent variables are chosen 

to be included, then X and Y are estimated as: 
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𝐗 = ∑ 𝐭𝐢𝐩𝐢
𝐓 +

A

i=1

𝐄 Equation 13 

𝐘 = ∑ 𝐮̂𝐢𝐪𝐢
𝐓

A

i=1

+ 𝐅 Equation 14 

 

R2Y and Q2  

R2Y denotes the proportion of variation in the response variables that is explained by 

the retained latent variables: 

R2Y = 1 −
RSS

SSY
 

where: 

RSS = ∑ ∑(𝐅𝐢𝐣)
𝟐

M

j=1

N

i=1

 

SSY = ∑ ∑(𝐘𝐢𝐣)
𝟐

M

j=1

N

i=1

 

 

Q2 denotes the proportion of variation than can predicted on new data by the retained 

latent variables: 

Q2 = 1 −
SPE

SSY
 

The SPE is found from cross-validation (Section 1.1.2.2).  
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Appendix 3: Components of Variance Calculation 

For a study with several repeated measurements from a number of batches, the 

variance components for batch and repeatability are found from the mean square (MS) 

in the analysis of variance table, as follows: 

Variance component for batch = MSbatch / number of repeats 

Repeatability = MSerror 
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