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Abstract

Osteoarthritis (OA) is the most prevalent type of joint diseases. It is associated with the
progressive degradation of articular cartilage and disease progression can lead to total
destruction. In order to study the molecular changes in OA cartilage, I compared the
transcriptome of OA and healthy cartilage using two technologies, expression
microarrays and the recently introduced RNA sequencing (RNAseq) technology.
RNAseq is based on the next-generation sequencing, enabling the investigation of the
transcriptome in single nucleotide resolution. In this PhD project, I optimized the
cartilage RNA extraction protocol first and then used the optimized protocol to extract
RNAs from both OA and healthy cartilages samples. Before the RNAseq experiment,
the quality of the RNA samples was checked with real-time PCR and gene expression
microarray experiments. Using microarray and RNAseq data, I found novel OA
associated genes and canonical pathways. With the RNAseq data, the knowledge of the
OA transcriptome was further extended, including differentially expressed transcripts,
novel transcripts in cartilage, alternative splicing events and differential allelic
expressions. The performance of the RNAseq was also compared with the microarray

technology, revealed both advantages and the limitations of the technology.
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Chapter 1 Introduction

1.1 Osteoarthritis

Osteoarthritis (OA) is the most prevalent type of joint disease, which is associated with
the progressive degradation of articular cartilage and total destruction with the disease
progression. The deficiency of the cartilage cushion between bones of the joint
correlates with pain, stiffness and eventually loss of mobility (Fabio, 1998). It is
commonly observed in the joint of the hand, knee, hips and spine (Felson, 2006). OA
affects at least 5.2 million people in UK and around 60% people aged over 60 years of
age (Campian, 2002). Because of the high incidence rate of the disease and the long
term of medical needs of the OA patients, the disease creates a considerable social and

economical burden.

OA is a complex disease. The disease is now recognized as a different process from
aging but an age-related joint disorder, as aging decreases the chondrocytes’ ability to
maintain the healthy status, therefore the risk of OA development increases (Loeser,
2009). Pathology of the disease involves multiple factors, including mechanics,
environment and genetics.(Felson et al., 1997; Mahr et al., 2006; Iliopoulos et al., 2007)
Mechanical factors, such as increased body weight burden on the knee and hip joints
caused by obesity, are considered to have predominantly a role in the initiation of the
disorder (Pelletier ef al., 2001). Genetic factors also play an important role in OA
development. Since 1941, certain types of OA have been proved to be strongly related
to genetics (Stecher and Hersh, 1944). More recent studies have shown a greater
correlation of the disease status in identical twins than in non-identical twins, indicating
a role for genetic factors in OA predisposition (Fernandez-Moreno et al., 2008). In
recent years, a number of genome-wide associated studies (GWAS) have been
conducted to search for candidate genes associated with the OA susceptibility
(Nakamura et al., 2007; Mototani et al., 2008; Dieguez-Gonzalez et al., 2009; Valdes et
al., 2010). One of the largest studies, “arcOGEN” studied 7410 patients and revealed 5



loci that are significantly associated with the disease (Zeggini et al., 2012). Another
GWAS study of European and Asian population showed a single nucleotide
polymorphism of GDF5 is strongly associated with OA susceptibility (Chapman ef al.,
2008). The outcomes of these studies not only contribute to the understanding of the OA
mechanism but also can be used to identify high-risk individuals (Valdes and Spector,
2010). However, follow on studies of these have not answered neither the cause of the

disease or the cure so far.

The complexity of OA is also due to the fact that the whole joint is involved in the
disease process (Brandt et al., 2006). As chondrocytes are likely to be involved in the
initiation and progression, studies of molecular changes of chondrocytes during the
development of OA are more likely to provide insights into the genetic mechanisms of

this joint disease.

Different therapies have been used but so far none is able to reverse the OA progression.
Current treatments for OA can vary depending on the severity of the disease symptoms
but they all concentrate on pain relief and the symptom of inflammation. Non-
pharmacological treatments, such as self-management and exercise provide only limited
benefits comparing to pharmacological treatments. Pharmacological treatments, such as
the use of acetaminophen and nonsteroidal anti-inflammatory drugs are effective on
pain relief (Kennedy and Moran, 2010). However, these symptomatic treatments lack
the ability to stop or reverse disease progression and eventually many patients will need

joint replacement surgery, which currently remains the only cure.

In the surgery the affected joints are replaced with plastic or metal implants. It helps to
reduce the pain and reinstall some function of the joint. However, the surgery has risks
such as myocardial infarction and dislocation of the implants (Katz, 2006) and some
patients cannot be persuaded to undertake the surgery because of their concerns
regarding the associated risks (Hamel et al., 2008). Gene-based therapy, a novel
approach enabled by the advances in the knowledge of the disease and the
improvements of the gene transfer methods, promises site-specific treatment and long-
term solution of OA (Madry and Cucchiarini, 2013). This emphasizes the importance of
further our understanding of the molecular mechanisms of the OA and identification of

potential gene targets.



1.2 Articular cartilage
1.2.1 Cartilage and extracellular matrix

Cartilage is an avascular, aneural and alymphatic tissue that can be found in many
places in the human body. Articular cartilage surrounds the ends of long bones to
provide protection and cushion during use. Chondrocytes are the only cell type found in
cartilage. However, they represent less than 2% of total tissue mass and less than 5% of
the total volume (Adams et al., 1992; McKenna et al., 2000). Cells in cartilage are
enclosed by a highly cross-linked extracellular matrix (ECM) consisting mainly of
collagen and proteoglycans. More than 40 different molecules have been identified in
ECM with different structures, functions and distributions. Some of the molecules
whose functions have been revealed are related to the genetic disorder (Roughley,
2001). The structure of ECM provides protection for chondrocytes and the elasticity of
the tissue, which is necessary for drawing water back to the matrix after compressed.

This pumping action helps nutrition supply of chondrocytes.

As the destruction and loss of the articular cartilage is the most obvious feature of OA,
the pathology of cartilage degradation has received intensive interest of researchers.
Earlier studies in 1950s revealed composition differences between fibrillar cartilage and
healthy cartilage of the same joint (Matthews, 1953). Lately studies have presented
evidence showing changes of inflammatory mediator activities resulting in the cartilage
destruction (Loeser, 2008). As the sole cell type in cartilage, chondrocytes are often the
focus of research. Initial stages of OA features increased chondrocyte proliferation and
synthesis of ECM proteins, growth factors, cytokines, and other inflammatory
mediators (Loeser, 2008). With OA progression, cells enter into a catabolic state with
increased expression of a number of proteins including matrix metalloproteinase
(MMP) (MMPI, MMP3, MMPY9, MMPI3 MMPI4), aggrecanases (ADAMTSS,
ADAMTS4, ADAMTSY), regulatory proteins (/L1, TNFa, toll-like receptors, etc.), matrix
proteins (collagens type II and X, aggrecan, etc.) and several transcription factors, such

as SOX9 (Goldring and Goldring, 2010).



It is now known that OA involves not only the cartilage but also the ligaments,
periarticular muscle, nerve, subchondral bone, meniscus and synovial fluid (Brandt et
al., 2006; Loeser, 2008). However, supported by the fact that OA progress can be halted
by preventing cartilage loss (Glasson et al., 2005) and that chondrocytes are involved in
the initiation and progression of OA, detailed study of the molecular and genetic
changes occurring within cartilage during the disease development is more critical to

interpret the pathology of OA.
1.2.2 RNA extraction from cartilage tissue

RNA extraction from cartilage is problematic because of the low density of cells and
firmly cross-linked proteoglycan ECM network. Furthermore, as most cartilage material
is coming from patients who are undergoing joint replacement, limited amounts of
cartilage can be collected. The quality assessment of extracted RNA from cartilage also
appears to be complex (Clements et al., 2006). In addition, the current genome-wide
expression profiling technologies, such as cDNA microarray, are demanding both in
terms of the quantity and the quality of the input RNA required for accurate
measurements. Therefore, it is critical to use a protocol that can extract high quality
RNA from relatively limited amounts of cartilage. The guanidinium thiocyanate-phenol-
chloroform extraction method (Chomczynski and Sacchi, 1987) is commonly used to
extract RNA from cartilages. However this includes a few modifications of the original

method, such as:
1.  Tissue is snap frozen and milled under very low temperature (Fabio, 1998);

2. Trizol (Invitrogen Life Technologies), a mono-phasic solution of phenol

and guanidine isothiocyanate, is introduced into the method;

3. Membrane binding-washing system (RNeasy mini kit, etc.) is used to purify

RNA instead of precipitation, which increases RNA yields and purity.

The recently invented phenol/chloroform-free filter-based system (RNAqueous™) has
also been successfully demonstrated for RNA extractions from human and bovine
cartilage and showed better results in terms of RNA quality and yield (Ruettger et al.,
2010).



1.3  Next generation sequencing
1.3.1 The evolution of nucleotide sequencing

Sanger sequencing has been widely used to determine DNA sequence since it was first
introduced in 1977 (Sanger et al., 1977). The crux for Sanger’s method is to utilize
dideoxynucleotides, which will terminate a DNA chain after being added onto it. The
process usually starts with the amplification of DNA fragments by cloning, or
polymerase chain reaction (PCR). The amplified product is then mixed with fluorescent
labelled dideoxynucleotides triphosphates (ddNTPs) in four different colours (for A, T,
G and C), normal nucleotides and a polymerase which catalyzes the extension of a
DNA. After a number of rounds of denaturation, primer annealing and primer extension,
a set of DNA copies with labelled ends is generated. Each base of a DNA fragments can
be determined by using capillary-based technology to separate end-labeled DNA copies
by size. Modern Sanger sequencing can determine the sequence of DNA fragments with
1000 base pairs in length and costs approximately $0.50 per kilobase (Shendure and Ji,
2008).

The correct order of the sequence of Sanger sequencing is depending on the size
separation step and the sequence can only be viewed after this. Newly introduced
“sequencing by synthesis” approaches allow the sequence to be read in real-time
(Ronaghi et al., 1996). In these methods, the single-stranded DNA is immobilized on a
solid surface first and then a sequencing adaptor is hybridized. Using the single-strand
as template, the second stand is synthesised with the repeated cycle of incubation with
different deoxynucleotide triphosphates (ANTP) and washing. The DNA polymerase
catalyzed extension of a ANTP will release the pyrophosphate (PPi), which can trigger a
light emission through ATP sulfurylase and luciferase. The strength of the light signals
is correlated with the number of the same dANTP being added. By continuously
monitoring of the light signals, the bases and their orders of the DNA sequence will be
revealed. (Nyren et al., 1993; Ronaghi ef al., 1996).
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Figure 1.1 Basic work flow of NGS. The DNA is fragmented first then ligated with
sequencing adaptors to construct the sequencing library. As the adaptors are
complementary to the shorts sequences printed on the flow cell, these fragments can
be fixed on the surface of the flow cell. After several rounds of PCR amplification, a
cluster of identical short sequences is formed for each of the fragments. Multiple-
rounds of sequencing-by-synthesis is then started on each cluster, light signals emitted
are captured by a high-resolution camera and stored as images. Eventually a
sequencing read can be derived from a series of signals of a same position of the
images.

Next generation sequencing (NGS) is based on pyro-sequencing and cyclic array
strategy (Shendure et al., 2005). In NGS, different colour labelled ddNTPs are used
instead of normal dNTP. The mixture of the 4 ddNTPs are used to extend the templates
of the sequenced DNA instead of only one type dNTP in the extension cycle. A laser is
then used to excite the light signals and a high-resolution camera will take photos to
record the coloured signals. The incorporated ddNTPs are then chemically modified in
the washing cycle to allow further extension. As the DNAs are immobilized on a
surface, a sequence can be derived from a series of such coloured signals from the same
position of the photos. With high-resolution cameras, extensions of thousands of DNA
sequences can be recorded on one photo, which enabled parallel sequencing on a

massive scale.



Although this technique is provided by several commercial platforms, such as Roche
Applied Science 454 sequencer, Illumina Solexa Genome Analyze and the Applied
Biosystems SOLiD platform, the basic workflow of each is similar (Figurel.1). Starting
with random fragmentation of genomic DNA, the process then requires these uniform
sized fragments to be ligated with two unique adapters. Then PCR amplification of each
fragment is started at a fixed spot on the surface of a flowcell. After numbers of cycles
of sequencing-by-synthesis of these clones, colour changes of a spot are recorded by a
high-resolution camera on images. Sequence reads can then be determined by analysis
of these images. The key of NGS is to amplify one DNA fragment on a fixed spot, so
that the same position on an image always indicates a cluster of clones from a single
DNA fragment. Interestingly, compared to magnetic beads based amplification used by
454 sequencer and SOLiD system, [llumina Genome analyzer uses a unique bridge PCR
technique. NGS also allows reads to be generated from both ends of a DNA sequence,

called paired-end reading and theoretically increases the mapping accuracy.

To date (May 2014), the human genome can be sequenced to 15-fold coverage within a
week with cost of around £1,300, comparing to the 13 years world-wide efforts and $2.7
billion cost of the Human Genome Project launched in 1990 (Lander et al., 2001). Read
length has also achieved more than 100bp.

1.3.2 Applications of NGS

With the rapidly and continually dropping cost of sequencing in recent years, multiple
applications of the NGS have been developed and large number of studies have been
accumulated (240 NGS published studies by December 31, 2011 (Nyren et al., 1993). It
can certainly be used in whole genome re-sequencing, but because of the cost issue

most of re-sequenced organisms are small genomes. Other applications include:

RNA sequencing (RNAseq): A population of RNA can be deep sequenced after reverse
transcripted into cDNAs. Transcriptome derived by RNAseq not only can be used to
identify and quantify known/unknown genes but also contains rich information of single
nucleotide polymorphisms (SNPs), insertions and deletions (INDELs), structure of
transcripts and single base resolution of genes positions. Such information can be used
to determine alternative splicing events, RNA-editing events and allelic expressions,

etc.



ChIP-seq: By using chromatin immunoprecipitation (ChIP) before high-throughput
sequencing (Seq), this method allows binding sites of transcription factors and DNA-
binding proteins to be identified genome widely (Raha et al., 2010). By using ChIP-seq
technique, Dustin Schones reported that position shifting of nucleosome between

activated and rest human CD4 + T cells (Schones et al., 2008).

Exome sequencing: Instead of sequencing the whole genome, exons can be pulled out
from genomic DNA by using custom/commercial DNA tiling arrays to construct
sequencing libraries. It significantly reduces the sequencing cost while still represent the
most functionally relevant sequences. A number of studies have used the technique to
identify pathogenic variants for a variety of mono-allelic diseases (Choi et al., 2009; Ng

et al.,2009; Kim et al., 2010; Ng et al., 2010; Walsh et al., 2010).

Genome-wide  methylation  study:  The  combination of  Methyl-DNA
immunoprecipitation (MeDIP) assays with NGS provides positions of methylated
cytosine-phosphate-guanine (CpQ) sites of a whole genome. (Jacinto et al., 2008) But
considering the specificity of Anti-5-methyl cytosine antibody used in MeDIP, David
Serre’s group recently demonstrated a new approach called MBD- isolated Genome
Sequencing (MiGS), which utilize methyl CpG binding domain precipitation of
genomic DNA to select fragments with methylated CpG sites (Serre et al., 2010).
However, the specificity of this method is also in doubt. (Thu et al., 2010) Direct
sequencing of bisulphite treated DNA can reveal methylated CpG sites as well, as the
sodium bisulphite can convert unmethylated cytosine to uracil while methylated
cytosine remain unchanged. (Chatterjee et al., 2012) The downside of this protocol is
the expensive cost of sequencing the whole genome. While later introduced Reduced
Representation Bisulphite Sequencing (RRBS) (Meissner et al., 2005), on the other
hand, requires only sequencing 1% of the whole genome but still contain the sequences
from the majority of the promoter regions and other relevant genomic regions. (Gu et

al.,2011)
1.3.3 Data analysis of NGS

NGS is high-throughput, thus produces large amount of data. A typical sequenced
human exome with averagely 50-fold coverage expected, will contain more than 50

million reads of 70 base in length, the total length of which is greater than the whole



human genome, as the distribution of the reads is usually not evenly spread. Dealing
with data of this scale in an acceptable time length (several days) is demanding both in
terms of the computing resources as well as bioinformatics software. Sophisticated
workflows for the analysis of the data are also necessary. When study purposes are more
specific, the workflows can be more complicated. These are discussed in the following

sections.

1.4 Transcriptome
1.4.1 Transcriptome with RNA sequencing (RNAseq)

The transcriptome is the total set of the transcripts and their quantities in a cell,
including mRNAs, small RNAs and other non-coding RNAs. It reflects genes that are
actively expressed in a cell at a development stage or under a physiological condition
(Wang et al., 2009). Transcriptome analysis is necessary for studying gene expressions
and regulation of a genome, as it presents critical information on classification of
transcripts, transcriptional structures and abundances of genes. The human genome is
complex in terms of its structure variations (Korbel et al., 2007) and polymorphisms
(Sachidanandam et al., 2001), which also leads to the complexity of the transcriptome,
alternative splicing events for example (Pan et al., 2008). These strengthen the need for
accurate characterization of genes, such as their expression abundances in different
tissues/organisms, transcription starting sites (TSS) and alternative splicing patterns, in

order to understand better their functions and regulation in specific biological processes.

The transcriptome can be analysed using several techniques/methodologies. The
hybridization-based methods (microarrays) were introduced to map mammalian
genomes in 2002 (Kapranov et al., 2002). These methods are characterized by the step
where fluorescently labelled cDNA are allowed to hybridize with designed high-density
oligo-arrays. Since then, microarrays are widely used for genome-wide expression
profiling analysis. It is high throughput and relatively inexpensive but suffers a number
of limitations, such as sophisticated array design to ensure specific detections and also

to avoid hybridization between probing-oligonucleotides (Casneuf et al., 2007), limited



detection range and difficulties in comparison of results from different experiments.

(Wang et al., 2009)

The tag sequencing based methods, such as serial analysis of gene expression (SAGE)
(Harbers and Carninci, 2005) and massively parallel signature sequencing (MPSS)
(Brenner et al., 2000), were then developed and designed to address the problems
above. In these methods, instead of using hybridization a specific part of mRNAs are
sequenced first and then the products are mapped to the known genes in the databases to
determine which genes were detected and their relative abundances. These methods
have better specificity but are very time consuming and expensive for large-scale
genomes, owing to the Sanger sequencing as part of the process (Velculescu et al.,

1995).

Based on the newly invented NGS technology, RNAseq provides an innovative insight
of the transcriptome compared to the conventional techniques. Common RNAseq
protocols comprise the following steps: a set of RNAs are fragmented first and then
reversed-transcribed into cDNA by random priming; these uniform sized cDNAs are
then sequenced on a next generation sequencing machine using either single end or
paired-ends sequencing strategy. Millions of sequencing reads are then generated and
analysed with a bioinformatics workflow. The number of reads mapping to a gene is
expected to be proportional to the gene abundance, thus the expression of genes can be
inferred. Slight modification of the input material can adjust the sequencing focus, for
example adding a poly-A tail filtering step before the reverse transcription can reduce
the amount of reads from tRNA, rRNAs and other types of RNAs, thus increase the
yields of reads from mRNAs, while micro RNAseq protocols include a size selection on
RNAs before sequencing (Morin et al., 2008). More recently, stranded specific RNAseq
sequencing has been introduced to ensure only one strand of cDNAs were amplified for

sequencing (Levin et al., 2010).

With RNAseq, not only the gene expression changes can be measured in a more
sensitive and comprehensive manner comparing to expression microarray analysis, but
also information of other aspects of RNA molecules be measured, including expression
changes of individual transcript variants (Trapnell ef al., 2010), splicing patterns (Pan et

al., 2008; Sultan et al., 2008), sequencing variants (Barbazuk et al., 2007; Medvedev et
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al., 2009; Montgomery et al., 2010; Li et al., 2011a), accurate TSS mapping (Sultan et
al., 2008), allelic specific expressions (Heap et al., 2010) and RNA-editing events
(Picardi et al., 2010; Peng et al., 2012). Furthermore, as the technology does not require
previous knowledge of the sequence of a gene to detect its expression, it is also possible
to discover novel genes and transcripts (Pepke et al., 2009). Allelic expression analysis
and RNA-editing events were also of interest in the OA field. Therefore using RNAseq
on OA cartilage may provide novel insights into the molecular changes in OA. More
importantly, RNAseq requires relatively small amounts of RNAs to start (as low as
250pg (Ozsolak et al., 2010)). This is particularly useful when RNA material
availability is limited, such as healthy articular cartilage, although to ensure the
sequencing quality of my study, several micro grams of RNAs were used. Recent
advances in the technology even allow transcriptome profiling from a single cell (Tang

et al.,2009).
1.4.2 Transcriptome analysis of OA

At the start of this PhD project, there were a number of gene expression studies of OA
and OA vs. normal articular cartilage studies, while comprehensive and genome-wide
studies were rare before 2010. In 2001, Thomas Aigner’s group found that several
metalloproteinases were expressed differentially between early stage and end stage of
OA. (Aigner et al., 2001) Later in 20006, they reported different gene expression profiles
between normal and early/late stage OA chondrocytes (Aigner et al., 2006a). However,
the studies could be biased by using chondrocytes as the source of RNA. Interestingly,
the group also concluded that the gene expression profiles of cartilage with
macroscopically less damage or even a normal appearance from a late-stage OA joint
are still significantly different from healthy cartilage expression profiles. Similarly more
recent findings were reported that the chondrocytes from intact and fibrillated OA
cartilage of a single joint have the same total mRNA expression profiles.(Tew et al.,
2014) Other gene expression profiling studies suffer from the use of smaller data sets or
are based upon animal models (Meng et al., 2005; Sato et al., 2006; Appleton et al.,
2007; Dell'accio et al., 2008; Geyer et al., 2009; Swingler et al., 2009b). In 2010,
Karlsson et al., (Karlsson et al, 2010a) published the first comprehensive gene
expression comparison study of OA and healthy knee cartilage using genome-wide

cDNA microarray. In the study, over 1,400 genes reported as significantly changed with
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around 60 genes of them not previously associated with OA. The finding exhibits the
power of new technology in OA studies. However, the study did not correct the p-values
for multiple test correction, thus false positives are likely to be introduced. To conclude,
although OA is a complex and the most common form of joint disease and articular
cartilage is the most evidently affected tissue by the disease, a comprehensive and

accurate study of the molecular mechanism is still in need.
1.4.3 Bioinformatics for RNAseq data

The vast amount of data generated from next generation sequencing machines is only
useful if interpreted correctly using bioinformatic tools. The next generation sequencing
machines amplify and sequence a DNA fragment on a fixed spot, so that high-resolution
photos can be taken to record colour changes of a spot after each round of pyro-
sequencing. Hence, raw data of sequencing result should be considered as series of
images rather than readable text files. Though sequencing platforms always come with
software supplied by manufacturers to transform these images into sequencing reads. A
process called Base Calling, there is evidence suggesting that the bioinformatician
should make careful decision before using base calling software (Kao et al., 2009).
However, in reality, due to the difficulties in transferring and storing image files,
sequencing service providers usually conduct the base calling stage. Thus sequence

reads are the starting point of most bioinformatics analysis.

The analysis of RNAseq reads can be categorised into the following: gene/exon
expression analysis, transcripts expression analysis, identification of transcripts
(including their sequences and structures), identification of alternative splicing events,
and identification of RNA sequence variants. The variants can be further used for allelic
expressions analysis, identification of RNA-editing events expression quantitative traits
loci (eQTL) analysis etc. As the size of RNAseq data is usually large (> 3 gigabytes for
each sample in our experiment), all of the analysis of RNAseq data require intensive
bioinformatic efforts. In 2011, there were only a few commercial software packages
which could analyse RNAseq reads, such as Genespring GX 12 (Agilent Technologies,
Inc, California, USA) or CLC Genomics Workbench (CLC bio, Aarhus, Denmark). But
due to the cost of these software packages and their relatively limited functionality,

freely available open source software was more popular in the next-generation
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sequencing data analysis community. The major disadvantage of such open source
software is that each of the programs/packages performs only one aspect of the analysis
of RNAseq data. Thus for a complete analysis several pieces of software need to be
linked into a workflow. The programs/packages often lack interactive interface, thus
require at least a basic programming knowledge from the user. At the time, there were a
number of open source software tools available, such as FastQC (Andrews), GSNAP
(Wu and Nacu, 2010), Tophat (Trapnell et al., 2009), Bowtie (Langmead et al., 2009),
DESeq (Anders and Huber, 2010), Diffsplice (Hu et al., 2013) etc, although only some
of them were properly documented and maintained, and not all were published. As there
was no commonly recognized protocol for RNAseq analysis available and most of the
software tools present different characters in terms of running times, hardware
requirements, and focuses of software design, it was a challenge to choose which tools

to use to assemble a pipeline for our project.
Quality control of the raw reads

The quality control of short reads of sequencing data is the first step. RNAseq data is
produced by the high-throughput next generation sequencing machine, thus contains
millions of short reads, and the quality control is complicated. FastQC is simple to use
and allows a quick check of several statistics describing the quality of reads. Several
very useful statistics include: Total Number of Reads contained in the sequencing
results, Per Base Sequence Quality, Per Base Sequence Content, Per Base N Content,
Sequence Length Distribution and Duplicated/Over-Represented Sequences. Each of
these represents a unique insight of into the quality of reads: Total Number of Reads is
the most important quality indicator, as fewer reads in RNAseq results lack of detection
of genes that have relatively lower expression, thus reduces the integrity of the
transcriptome; Per Base Sequence Quality can reveal the fraction of low quality bases at
each read position, this represents the reliability of the reads; Per Base Sequence
Content exhibits base content of each read position of all reads, un-even distribution of
the content means the sequencing library is not random, either containing over-
represented sequences or biased fragmentation when generating the library using
hexamer random priming (Hansen et al., 2010); Per Base N Content can reveal if any
base position has “N”, which indicate the base can be any of the 4 bases; Sequence

Length Distribution shows if all reads are of the same length; Duplicated/Over-
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Represented Sequences detects over-represented sequences. FastQC also compares the
sequences with known sequencing adaptors to identify adaptor contamination. With this
information, one can decide the key parameters for quality control, such as the quality
score threshold, how many low quality bases need to be trimmed from the ends of
sequencing reads and whether adaptor need to be removed. Adaptor sequences can be
removed with Cutadapt (Martin, 2011). Trim Galore (Krueger) uses FastQC and
Cutadapt to automate the quality control of short reads including both low quality bases
removal and adaptor sequences removal. For paired-end sequence data, it also maintains
the reads in pairs after the QC process. Many aligners used to map reads require this

maintenance of paired ends.

Mapping Software (Aligner)

By 2011, several software tools had been developed to align short read sequences to
reference genomes. The earliest aligners include ELAND (Cox, 2007) and Maq (Li et
al., 2008). Their accuracy has been proven in several studies. (Schmidt et al., 2008;
Maher et al., 2009; Perkins et al., 2009; Xue et al., 2009) They both use similar
algorithms that are based on hash tables. Comparing to ELAND, Magq is distributed as
open source but it does not support multiple threads, which makes it very time
consuming when dealing with large dataset on common desktop machines. Compared to
aligners that are based on hash tables, aligners using Burrows-Wheeler transformation,
such as BWA (Li and Durbin, 2009) and Bowtie are faster and require much less
memory, but tend to be less sensitive. All of the aligners mentioned above only support
small gapped (less than 7bp) alignments, thus are not appropriate for mapping RNAseq
data, as a sequencing read may be originated from two or more exons that are not in a
close range on genomic DNA. In contrast, Novoalign (www.novocraft.com) and
GSNAP, which use hash tables of the reference sequences, allow mapping reads to
exon-exon junctions. Novoalign features better accuracy comparing to other aligners (Li
and Homer, 2010), while GSNAP can accept known splicing sites, SNPs and RNA-
editing events and tolerates these variants while mapping. Tophat, on the hand, utilizes
Bowtie to support gapped alignment in a two-round mapping procedure. In the first

round Tophat tries to map reads to the reference genome and identifies potential exons
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by searching the genome for regions with reads aligned and determine the spliced
junctions of them. In the second round, it aligns the reads that were not mapped in the
first round to the junctions of the exons. The algorithm of Tophat favours the mapping
of RNAseq data, since it does not rely on existing annotation of the reference genome. It

also has the ability to detect novel splicing events.

Before the advent of SAMtools in 2009 (Li et al., 2009), each mapping software had its
own file format to record alignment results, which often required conversion to be
recognized for the downstream analysis. SAMtools introduced the SAM format as a
standard format for mapping results and this was soon adopted by users. BAM format is
the binary format of SAM files but more compressed to save storage space of
alignments files. SAMtools also contains a set of tools to manipulate alignment files and

extract specific information from them.
Expression analysis

After mapping reads to the reference genome, many analysis tasks can be conducted
with existing software. In theory, the number of reads mapped to a gene is proportional
to the abundance of the gene. Software that identifies differentially expressed genes
uses counts of reads aligned to each gene as a starting point. Such count data is easily to
produce with tools such as the bioconductor package ShortRead (Morgan et al., 2009),
BEDtools (Quinlan and Hall, 2010) and htseq-count (Anders et al, 2014). As
ShortRead relies on the R (R Core Team, 2012) environment, which is slower compared
to scripts written in other programming languages (such as Perl, C or Java), BEDtools
and htseq-count are faster and easier to use. The later also produces results that can be
easily imported into DESeq. EdgeR (Robinson et al., 2010) and DESeq are the two
most common tools to determine differentially expressed genes/exons. Both of them
used a negative binomial model for gene counts of RNAseq data. They are also used to

determine differentially expressed exons when counts data of exons are the input.
Transcripts assembly

Since a good quality RNAseq library could contain 5-25% of reads (read-length) that
can be mapped to exon-exon junctions (Engstrom et al., 2013), it is feasible to assemble

expressed transcripts with RNAseq data to determine the structure and sequence of the
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transcripts, as well as transcript abundance. Several published software tools try to
achieve this with different algorithms. Velvet (Zerbino and Birney, 2008) is designed to
de novo assemble short reads using de Bruijn graphs into the genome or transcriptome,
depending on the origin of reads. The assembled transcriptome can then be used as
reference to mapping reads, thus abundances of the transcripts can also be estimated.
Trinity (Grabherr et al., 2011) utilizes the same similar algorithm but is focused on
assembling the transcriptome and includes the downstream expression estimations. Both
software tools do not require existing knowledge of the transcriptome, however,
constructing de Bruijn graphs is memory intensive. It may take more than 80GB RAM
for large mammalian genomes like that of homo sapiens (Illumina, 2009). In contrast,
Cufflinks (Trapnell et al., 2010) takes advantage of existing annotation of the reference
genome and use this as template to assemble transcripts. This saves running time and
reduces memory requirement. CummeBand (Trapnell et al., 2010), developed by the
same authors as Cufflinks, allows users to visualize the assembly results as well. There
is also a published protocol to use the software for the identification of differentially
expressed genes and transcript assembly from RNAseq data (Trapnell et al., 2012), as a
response of the popularity of Cufflinks in the field. BitSeq (Glaus et al., 2012)
determines differentially expressed transcripts in a unique way, which does not require
assembling the sequences of transcripts first. It uses existing knowledge of the
transcriptome and uses a Bayesian approach to estimate gene expressions from RNAseq

data.

Alternative splicing events

Alternative spliced events (ASEs) can also be identified by comparing multiple RNAseq
libraries. Several open source tools are available for this purpose. Cuftdiff (Trapnell et
al., 2010) use the assembled transcripts libraries of Cufflinks as input. Transcripts of
different libraries are compared first to determine duplicates, and then merged into a
total reference library without including any duplicates. Cufflinks is then used to
assemble transcripts of each RNAseq library again using the merged library as
reference. The abundances of the transcripts in each library are also estimated during

the process. Alternative spliced exons can then be identified. DEXSeq (Anders et al.,
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2012), developed by the same group as DESeq, requires no assembly step, which means
much less CPU time is required comparing to de novo assembly algorithms. It uses read
count data as input, which is the same as DESeq, when identifying differentially
expressed exons. But instead, DEXSeq identifies the exons that have differential usage
between RNAseq libraries. The usage of exons is derived by comparing coverage of
exons of the same gene. When an ASEs happens, the usage of one or more but not all
exons of a gene will be changed, thus DEXSeq can be used to identify ASEs and is
relatively fast but relies on accurate and complete annotation of the reference genome.
In contrast, Diffsplice does not require transcriptome annotation. It does not assemble
the full length transcripts neither, instead it detects splicing events by searching for
gapped aligned reads and measure the abundances of such events for determination of
ASEs. All of the above software rely on correct mapping and number of reads
originated from exons junctions (or spanned over the junction for paired-end reads),
thus an accurate aligner and extensive sequencing (eg: 500 times coverage of the

transcriptome (ENCODE, 2009)) are required.

Due to the complex composition of RNAseq data from the diversity of genes in terms of
their different isoforms, abundances, repeated sequences and sequencing variants they
may carry, the accuracy of all of the transcriptome assembly software and software for
ASE identification still need to be improved. (Schliesky et al., 2012; Engstrom et al.,
2013; Vijay et al., 2013). It is logical to believe that paired-end reads with longer length
can provide better coverage on exon junctions, better mapping accuracy and eventually
reduce the difficulties in transcriptome assembly. Furthermore, recently developed
strand specific RNAseq can also provide information of transcription directions
(Parkhomchuk et al., 2009). Together, these all will certainly improve the accuracy of
transcript assembly of RNAseq data.

Identification of sequence variants and their applications

With the single base resolution of transcriptome produced by RNAseq data, sequencing
variants on the RNA level can be determined, thus allelic-specific expression analysis
and RNA-editing event identification can be performed. To my knowledge, in 2011

there was no available software specializing in these two tasks. But for searching
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variants on RNA level, several tools that were developed for identification of DNA
variants could be adapted, such as Varscan (Koboldt et al., 2012), SAMTools and
GATK (McKenna et al., 2010)). Several aligners also have such function implemented,
such as Maq and Novoalign. When there is a heterozygous variation detected in a
transcript, allelic-specific expression of the transcript can be obtained from the coverage
of each base. In humans the most common form of RNA-editing change is adenosine to
inosine, which is translated modified to guanosine (Peng et al., 2012). A change that is
consistent with the pattern of RNA-editing indicates possible occurrence of the editing
event. When comparing RNAseq libraries of two conditions, whether the allelic-specific
expression and RNA-editing event is associated with the transcriptome expression
difference between the conditions can be tested. However there were no available
software tools for this sophisticated analysis during the time of the completion of this

PhD thesis, so I wrote in-house Perl scripts for the analysis.

Overall, RNAseq data analysis is still in its infancy and challenging, software tools and
algorithms are immature. It is similar to the early years following the emergence of the
genome microarray. The situation will change in the future when both the sequencing
technology and the analysis methods improve. The accumulation of the knowledge of

genomes and transcriptomes will also benefit the analysis.

1.5  Aims of the study
1.5.1 To define the transcriptome of OA and normal cartilage

In this project, we planned to study the differences of transcriptomes of OA and healthy
cartilage using both microarrays and RNAseq technology. By comparing the
transcriptomes, new evidence of known gene regulations in OA and novel regulation
factors would be revealed. From the RNAseq data, more information of the
transcriptome, including sequence of transcripts, transcription start sites, expression
levels, differential expressed genes, splicing patterns, sequence variants on the RNA
level and novel transcripts, would be obtained to understand the cartilage and the

disease on molecular level, and ultimately provide possible targets to cure the disease.

1.5.2 To define the workflow to analysis the RNAseq data
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As existing open source and commercial software for analysis of the next generation
sequencing results is not mature, we would take advantage of different characteristics of
popularly used and publication proven software and assign them in different parts of the
whole bioinformatics workflow. We will try to connect all of used tools into one
workflow. With more investigations on novel software, part/most of the workflow
would be adjusted and more functions would be added accordingly. Eventually, we
would develop a workflow that requires minimum adjustments to analysis RNAseq data

automatically.

1.5.3 To compare the accuracy of RNAseq and microarray in terms of detecting

differentially expressed genes

As this project was conducted in the early era of the RNAseq technology, it would be of
interest to compare the performance in identification of differentially expressed genes
using RNAseq and microarray platforms. This would reveal the advantages and

limitations of the RNAseq in gene expression studies.
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Chapter 2 Methods and materials

2.1 Reagents and commercially available kits
2.1.1 Reagents

Penicillin-streptomycin solution (10000 U/mL and 10 mg/mL respectively) and Nystatin
suspension (10000 U/mL) were obtained from Sigma-Aldrich (Poole, UK). Phosphate
buffered saline (PBS) was purchased from Lonza (Wokingham, UK).

2.1.2 Commercially Available Kits

RNeasy” Mini Kit and RNeasy” Midi Kit were purchased from Qiagen (Crawley, UK).
E.Z.N.A.™ DNA/RNA Kit was purchased from Omega (Georgia, USA)

2.1.3 Molecular Biology Reagents

Real time qRT-PCR primers and probes were purchased from Sigma- Aldrich (Poole,
UK). Moloney Murine Leukaemia Virus (M-MLV) reverse transcriptase and Platinum®
SYBR" Green qPCR SuperMix-UDG were purchased from Invitrogen. TagMan® Gene
expression Arrays and TagMan® Universal PCR Master Mix (2X) were purchased from
Applied Biosystems (Foster City, CA, USA). SYBR" Advantage® qPCR Premix (1X)
and ROX reference Dye (50x) were purchased from TaKaRa Biomedicals (Wokingham,
UK). GeneRuler™ 1 kb DNA ladder was purchased from Fermentas Life Sciences

(York, UK).

All other standard laboratory chemicals and reagents, unless otherwise indicated, were
commercially available from Sigma-Aldrich, Fisher Scientific, Invitrogen or BDH

Chemicals (Poole, UK).

2.2 Methods
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2.2.1 Cartilage sample collection

Human articular cartilage samples were obtained from consented patients undergoing
joint replacement surgery due to either end-stage hip OA or intracapsular neck of femur
fracture (NOF) with Ethical Committee approval from the Newcastle and North
Tyneside Health Authority. Joints were inspected macroscopically and scored using a
scheme adapted from Noyes classification(Kijowski et al., 2006) to include the presence
of osteophytes (Table 2.1) by a blinded experienced orthopaedic surgeon. This
adaptation to the Noyes classification (which is commonly used for athroscopic knee
cartilage scoring) was necessary because there are currently no accepted classifications
for the macroscopic scoring of hip cartilage (Sampson, 2011). Samples scoring <1 were
considered normal (control) while those scoring >5 were classified as osteoarthritic
(Table 2.1). After joints were washed extensively with PBS, macroscopically normal
full-depth cartilage was collected, snap frozen in liquid nitrogen and then stored at -

80°C prior to RNA extraction.

Score Criteria

0 No erosion, no osteophytes

1 Small erosion, no osteophytes

2 Small erosion, small osteophytes
3 Small erosion, large osteophytes
4 Large erosion, no osteophytes

5 Large erosion, small osteophytes
6 Large erosion, large osteophytes

Table 2.1 OA Scoring Criteria. Cartilage sample were scored from 0-6 according
to criteria based on the Noyes classification.

Bovine nasal cartilage was sourced from a local abattoir. Macroscopically normal
cartilage was processed removed into PBS containing antibiotics, cleaned thoroughly
and cut up into small pieces, then snap frozen in super-cooled n-hexane for RNA/DNA

extraction.
2.2.2 RNA extraction from bovine and human cartilage

Sample Preparation: The cartilage was ground with a freezer mill (Retsch, Mixer Mill

MM 200, Leeds, UK). Metal vials containing cartilage were cooled with liquid nitrogen
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whenever possible during the process. The cartilage was grounded with 5 cycles of 1

min grinding at an impact frequency of 25 Hz and 2 min cooling in liquid nitrogen.

RNeasy® Midi Extraction: RNA was extracted from ground powder of cartilage using
RNeasy” Midi kit (Qiagen, Limburg, Netherlands). Cartilage powder was mixed with
buffer RLT from the kit. After vortexing with B-mercaptoethanol, the homogenate was
centrifuged at 9500 x g for 1 hour at 4°C. Supernatant was transferred on to RNeasy”
Midi column. The column was then washed and RNA eluted according to
manufacturers’ instructions. The flow-through from the first column wash with Buffer
RWI1 was retained and used for extraction of contaminating DNA. The method
extracting the DNA is described in 2.2.3 of this chapter. RNA samples were quantified
using a NanoDrop® spectrophotometer (NanoDrop Technologies, Wilmington,

Delaware, USA) and stored at -80°C.

E.Z.N.A.™ DNA/RNA Kit Extraction: Different form other nucleic acid extraction
kits, E.Z.N.A.™ DNA/RNA Kit provides an approach to obtain pure DNA directly
without additional precipitation step. 150-300mg of cartilage were lysed with 700uL of
the lysis buffer provided in the kit, 350 uL of the buffer was used for cartilage samples
less than 150mg. For bovine cartilage, no more than 200mg were used in order to obtain
complete homogenate. Supernatant was loaded on to a DNA column of the kit after the
centrifugation of the homogenate. The flow through of DNA column was loaded onto
the RNA column provided in the kit. Both columns were then washed and RNA/DNA
eluted according to manufacturer’s instructions. RNA samples were quantified using the

NanoDrop® spectrophotometer and stored at -80°C.

TRIzol® RNeasy” Extraction: RNA was extracted from powdered cartilage using
TRIzol® Reagent (Invitrogen) and purified with RNeasy® mini kit. The TRIzol® was
immediately added to the samples in a ratio of 5 mL TRIzol® to 300 mg cartilage. This
solution was mixed thoroughly using a vortex and incubated at room temperature for 15
min to ensure tissue was fully disrupted. Insoluble material was removed by
centrifugation of the homogenate at 20,000 x g for 10 min at 4°C. The supernatant
containing RNA was mixed with chloroform in a ratio of 450 uL chloroform per 750 pL.
TRIzol®. This solution was then vortexed briefly and incubated at room temperature for

10 min prior to centrifugation at 12,000 x g for 15 min at 4°C. The colourless upper
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aqueous phase was recovered and mixed with a half volume of 100% ethanol. Samples
were applied to the supplied spin columns and centrifuged at 9,500 x g for 15 sec at
room temperature. The columns were washed and RNA eluted according to
manufacturer’s instructions. RNA samples were quantified using the NanoDrop® and

stored at -80°C.
2.2.3 DNA extraction from bovine and human cartilage

DNA was obtained from cartilage samples by using EDNA E.Z.N.A.™ DNA/RNA Kit.
150-300mg of cartilage was lysed with 700uL lysis buffer from the kit, 350 puL of the
buffer was used for cartilage sample less than 150mg. For bovine cartilage, no more
than 200mg was used to obtain complete homogenate. Supernatant was loaded on to
DNA column of the kit after the centrifugation of the homogenate. The column was then
washed and DNA is eluted according to manufacturer’s instructions. DNA samples were

quantified using the NanoDrop® spectrophotometer.
2.2.4 Quality assessment of nucleic acids samples

Agrose gel: 0.8% (w/v) Agarose gels were prepared by dissolving the required amount
of agarose in x1 TAE buffer through boiling. Ethidium bromide (3,8-Diamino-5-ethyl-
6-phenylphenanthridinium bromide) solution was added to cooled agarose at a final
concentration of 0.2 pg/mL. Gels were poured, allowed to set and the required amount
of RNA/DNA loaded in loading buffer. Bands were separated at 70V for approximately
40 min and visualized on a ChemiGenius II Biolmager (Syngene, Cambridge, UK).

The software also measures brightness of each band on the gel digitally. As the
brightness reflects the concentration of each band, RNA/DNA concentration was
calculated by comparing bands of samples to bands of RNA/DNA ladder used on the

same gel.

Agilent Bioanalyzer 2100: The quality of RNA samples was further checked on an
Agilent Bioanalyzer 2100 platfort. The Agilent 2100 Bioanalyzer is a microfluidics-
based platform that separates RNA molecules depending on their sizes and detects
quantification of each molecule. Result can be analyzed with 2100 Expert software

(Syngene, Cambridge, UK). A very important output value of the software is RNA

23



integrity number (RIN), which reflects degradation degree of RNA samples (Schroeder
et al., 2006).

2.2.5 Quantitative real time PCR (qRT-PCR)

Reverse Transcription Using RNeasy® Mini Kit: Complementary DNA (cDNA) was
synthesized from 0.25 pg of total RNA in a volume of 9 pL.. RNA was combined with
2 ng of random hexamers (p(dN)6) (GE Healthcare, Little Chalfont, UK) and incubated
at 70°C for 10 min. Samples were then transferred to ice and a reaction mixture
containing 10 mM DTT, 0.25 mM dNTP, 100 U MMLYV, 4 pL 5X First-Strand Buffer
(Invitrogen) and 2 uL. dH20 added to each sample giving a final reaction volume of 20
pL. The reactions were incubated at 42°C for 1 hour and subsequently diluted 1:50 in
dH2O0 for quantification of target gene expression or 1:250 in dH2O for quantification
of house-keeping gene expression. Diluted samples were stored at 4°C prior to analysis
and 4 pL aliquots were used in each PCR reaction. Undiluted samples were stored at -

20°C.

TagMan® Probe-Based Real-Time qRT-PCR: Real-Time qRT-PCR reactions were
prepared by combining 4 uL. cDNA with 4.7 uL TGE 2x buffer and 300 nM of each
primer and 150 nM probes in a final volume of 10 pL. Cycling conditions were: 95°C
for 10 min and 40 cycles of [95°C for 15 sec, 60°C for 1 min]. For TagMan® Gene
Expression Assays (Applied Biosystems), SuL. cDNA with 4.5 pL TGE 1x buffer and
0.5 pL assay solution in a final volume of 10 pL was used. Genes analyzed include:
COLIAI, COL241, C2, CTSK, GPC1, IL6R, MMP11, MMP13, NLRX1, PCSK1,
PCSK6, SPRINT1, TMPRSS4 and XRCCS5.

SYBR® Green Real-Time qRT-PCR: PCR reactions were prepared by combining
4.7uL ¢cDNA with 4.8 uL SYBR® Advantage” gPCR Premix (1X), 0.2uL ROX
reference Dye (50x) and 400 nM of each primer in a final volume of 10pL. Cycling
conditions were: 95°C for 10 min and 40 cycles of [95°C for 15 sec, 60°C for 1 min],
followed by a standard dissociation curve. Genes checked includes: TLR7 and SOD_2.

For both TagMan® probe-based and SYBR® Green qRT-PCR methods the relative
quantification of gene expression was performed using the ABI PRISM 7900HT

Sequence Detection System (Applied Biosystems). Target gene expression was
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normalized to 18S/GAPDH expression levels using the calculation 2", Statistical
analysis of differential expression between OA and NOF cartilage samples using real-
time qRT-PCR data was performed using the Mann-Whitney U test. P-values < 0.05

were considered statistically significant.
2.2.6 cDNA microarray

Extracted RNA samples were sent to Cambridge Genomic Services
(www.cgs.path.cam.ac.uk) for microarray expression profiling. Illumina whole genome
expression array HumanHT-12 V3 (Illumina Inc., [llumina United Kingdom, Saffron
Walden, UK) was used to profile gene expression of RNA samples according to the

manufacturer’s protocol.
2.2.7 RNAseq

RNA samples were extracted and then sent to ARK-genomics (www.ark-genomics.org)
for mRNA deep sequencing. The quality of RNAs was checked using the Agilent
(Agilent Technologies, Inc., California, U.S.) Bioanalyser 2100 and only RNAs with a
RNA integrity value (RIN) of greater than 7 was used for the sequencingx. During the
library preparation DNA analysis on the Agilent Bioanalyser 2100 was used to check for
the size range of the inserts. Kapa library Quant kits (Kapa Biosystems, Wilmington,
U.S.) was used to quantify the libraries and the amounts that were loaded onto the flow
cells. [llumina (Illumina Inc., California, U.S.) Truseq RNA sample preparation Kit V2
was used and standard library preparation protocol suggested by the manufacture was
followed. During the preparation, mRNAs were selected to construct the sequencing
libraries. [llumina Genome Analyzer IIx was used to sequence the libraries with one
library per lane. Illumina CASAVA (1.7.0) was used for the base calling and quality
score calculations. The raw sequencing data in FASTQ format was received via FTP

transfer.
2.2.8 Functional and pathway analysis of differentially expressed genes

Gene Set Enrichment Analysis (GSEA) was used to investigate enriched functions of
differentially expressed genes (Subramanian et al., 2005a). All expressed genes were
ranked according to their fold changes with differentially expressed genes placed into

the either end of the ranked list, depending on the change direction. The list was then
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used as input of GSEAPreranked tool to enrichments of sets of genes that were
classified according to the gene ontologies for molecular function, cellular component
and biological process(Ashburner et al., 2000). Results with P-value < 0.01 (Fisher’s
Exact test) and false discovery rate (FDR) < 0.25 were considered as significant.
Ingenuity Pathway Analysis (IPA) (Ingenuity Systems, www.ingenuity.com) was used
to identify canonical pathways associated with the differentially expressed genes. All of
the differentially expressed genes were included in the analysis. P-values < 0.05 were

used to filter results.
2.2.9 Protein interaction network analysis

The interactions of the protein products of up- and down-regulated genes in OA samples
were analysed with the use of the search tool STRING (Szklarczyk et al., 2011).
Because of the its limitation on number of input genes, differentially expressed genes
with only fold change > 2 were taken. I used STRING with three data sources (‘Co-
occurrence’, ‘Co-expression’ and ‘Experiments’) to detect and predict interactions
between proteins. Confidence threshold was set to 0.4, which is the default of the tool.
Genes were then ranked by their number of connections and significances (corrected P

value) of differential expression, the top 5% of genes in the list were classified as a hub.
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Chapter 3 Nuclear acids extraction

3.1 Introduction

In this project, we planned to analyse information of the both transcriptomes and the
methylome, thus both high quality RNA and DNA would need to be extracted from a
same cartilage sample. However, extraction of nucleic acids from cartilage tissues is not
as easy as from isolated cell lines, because of its low density of cells, highly organized
extracellular matrix and also the very limited availability of the samples. Others have
successfully isolated cells from cartilage, by enzymatic digestion, prior to nucleic acid
purification (Jakob et al., 2003). However, we decided to not do this because of
concerns of altering the transcriptome. In order to achieve the RNA quality requirement
for both microarray and RNAseq experiment, we tested several extraction procedures,
including our existing lab protocol and also other published methods (Ruettger ef al.,
2010) at the time. Both bovine nasal and human articular cartilage samples were used to
test the methods, as human cartilage is very limited. We used the RNA Integrity Number
(RIN) of the RNAs extracted with different protocols to evaluate the RNA quality. The
RIN is an algorithm developed to evaluate the RNA integrity using electrophoretic RNA
measurements from an Agilent 2100 bioanalyzer.(Schroeder et al., 2006) It ranges from
0-10 with higher values indicating better integrity. The recommended RIN for genome-

wide expression profiling experiments is usually > 7.

Qiagen (Qiagen, Crowly, UK) RNeasy® Midi Kit was used for both RNA and DNA
extraction in the lab. The protocol takes more than 5 hours for one sample, although
several samples could be processed in parallel. The technique requires more than 700
mg of cartilage as input. In contrast, Omega (Omega Bio-tek, Norcross, US)
E.ZN.A.™ DNA/RNA Kit and Qiagen RNeasy® Mini Kit require less of cartilage (100
mg or more) as input and less processing time, which can potential reduce the chance of

RNA degradation. Using TRIzol® reagent with RNeasy® Mini Kit could provide better
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RNA yields and quality, but might not work for human cartilage tissue samples
(Ruettger et al., 2010). Life (Life Technologies, Carlsbad, US) TRIzol® reagent can also
be used to purify genomic DNA, however it will compromise the genomic DNA and
reduces its digestion efficiency by restriction enzymes (Xu et al., 2008), and our priority
was to extract sufficient high quality total RNA to construct transcriptome analysis, thus
genomic DNA was not purified with the method. As NOF samples had never been
collected by ourselves before, to ensure that OA and NOF cartilage samples could be
distinguished, the quality of extracted RNAs were further verified using real-time PCR
for expressions of previously known to be differentially expressed between OA and
NOF cartilages. Sixteen genes were selected, including COL1A41, COL2A41, SOD2,
(Aigner et al., 2006a) MMP13 (Bau et al., 2002), MMP11 (Aigner et al., 2001), XRCCS5,
TLR7 (Zhang et al., 2008), PCSK1, PCSK6, (Malfait et al., 2008) C2, SPINTI (Milner
etal.,, 2010), IL6R (Kotake et al., 1996), NLRXI (Radwan et al., 2013), CTSK (Morko
et al.,2004), TMPRSS4 and GPCI (Zhang et al., 2003).

3.2 Results
3.2.1 Comparison of yields and quality of RNA extraction procedures

RNA was extracted from bovine nasal and human cartilage tissues by using three
different procedures: RNeasy” Midi Kit, E.Z.N.A.™ DNA/RNA Kit and TRIzol" with
RNeasy” Mini Kit. The concentration of the RNA products was measured using
Nanodrop. The RNA integrity numbers were obtained using Bioanalyzer. TRIzol® with
RNeasy” Mini Kit gave best yield among all of the approaches (Table 3.1), which is
around 5.7 ug RNA per gram of bovine nasal cartilage on average and 21.4 ug RNA

from a gram of human articular cartilage.
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TRIzol RNeasy

RNeasy Midi Kit E.Z.N.A. Kit Kit
(ug RNA/g (ug RNA/g (ug RNA/g
cartilage) cartilage) cartilage)

Bovine nasal 3.34£0.96 (n=10)  0.66+0.14 (n=13)  5.72+1.92 (n=8)

cartilage

Human articular

(knee/hip) 2.84 (n=1) 5.724+1.92 (n=8) 21.3842.55 (n=2)
cartilage

Human fat pad NA 48.48 (n=2) NA

Table 3.1: Comparison of Total RNA yields of different tissue samples using
different extraction procedures. “n” indicates the total number of RNA samples
extracted with each procedure. The standard error of mean is indicated as “+”.
Trizol/Mini protocol produced the best RNA yields from cartilage. The RNA from
human fat pad was used to ensure the protocol of using E.Z.N.A kit was working
properly. However, the kit could not extract sufficient amount of RNA from the
cartilage samples.

On average only 0.66 ug of RNA was eluted from the RNA column of EZN.A. ™
DNA/RNA Kit. To ensure that the small yield of the RNA was not due to user error with
the E.Z.N.A. ™ protocol being followed, human fat samples were used for the

extraction. As anticipated, the extraction of the RNA was successful and the yield of

RNA was more than from the cartilage samples.

RNeasy”™ Midi Kit produced similar amounts of RNA as the combination of TRIzol”
and RNeasy” Mini Kit when using the bovine cartilage samples, but less when using
human cartilage tissue. Comparing the RIN numbers of RNAs extracted from bovine
cartilage using the two procedures, using TRIzol® with RNeasy” Mini Kit was better
(Figure 3.1 and Table 3.2). The procedure also performed equally well when extracting
RNAs from the human cartilage sample (Table 3.3).
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Figure 3.1: Comparison of the quality of RNAs extracted from the bovine and
human cartilage using different procedures: The image is the pseudo-gel results
converted from the Bioanalyer data of the RNA samples extracted using different
procedures. The two bands of the rRNAs are clearer for samples extracted with
TRIzol RNeasy Mini Kit than RNeasy midi kit.

RNeasy Midi Kit TRIzol RNeasy Kit
Bovine cartilage 4.85 (n=2) 7.3 (n=2)
Human cartilage NA 7 (n=2)

Table 3.2: Comparison of RIN of RNA samples extracted from bovine
cartilage by using different extraction procedures. “n” indicates the total
number of RNA samples extracted with each protocol. RIN was obtained using
Bioanalyzer. Trizol/Mini protocol produced RNAs in better quality.
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NOF1_.1 NOF1 2 NOF13 NOFl4 OAl1 OAl12 OA21 OA22 OA31 OA32 OA33  Mean

8.54
RIN 8.6 8.2 8.4 8.9 8.1 7.4 9.1 8.9 8.6 8.7 9 1015

Yields 5 49 90.13 27.87 3047 5667 4547 5320 3387 2333 2547 413 3942
(ug/g) +6.73

Table 3.3 RIN and yields of RNA extracted from human femoral heads cartilage
using TRIzol RNeasy Mini Kit. The minimum RNA is 7.4. The average yield is 39.42
ug RNA from a gram of cartilage tissue.

The performance of the protocol of TRIzol® with RNeasy® Mini Kit on human articular
cartilage was then verified with additional 3 cartilage samples collected from human
femoral heads, including 1 NOF sample and 3 OA cartilage samples. The quality of the
RNA samples was again checked using a Bioanalyzer (Figure 3.2). The average yield
was 39.42ug RNA per gramme of cartilage tissue. The minimum RIN was 7.4 and the
mean was 8.54. As the performance of the procedure was consistent and it was the only
procedure produced RNAs with quality that met our requirements for microarray and
RNAseq experiments, the procedure was chosen to extract total RNAs for following

experiments.
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Figure 3.2: Quality of RNA extracted from both human OA and NOF cartilage
samples using TRIzol with RNeasy Mini Kit. The image is the pseudo-gel converted
from the Bioanalyer data of the RNA samples extracted using TRIzol with RNeasy
Mini Kit. It shows the clear bands of the rRNAs and the consistency of the RNA
quality across samples. Lane 6 has a late migration probably due to dirt on the
electrode cartridge used for the experiment.

3.2.2 Comparison of DNA extraction yields and quality

The priority of the study was to obtain the transcriptome of cartilage. RNA extracted
with RNeasy” Midi Kit did not meet the minimum quality requirement thus DNA was
not further purified using the kit. Unlike RNeasy™ Midi Kit, DNA extraction with
E.ZN.A.™ DNA/RNA Kit does not require an extra purification step, thus was
obtained along with RNA products. DNA was not extracted with the RNeasy™ Mini Kit
due to the concerns of TRIzol mentioned above. The DNA yield from bovine cartilage
by using E.Z.N.A™ DNA/RNA Kit is 11.52 (n=13, +1.22) ug per gram of cartilage and
3.86 (n=8, £0.20) ug for human cartilage. Some of the bovine DNA samples showed
obvious RNA contamination upon agarose gel electrophoresis as rRNA bands were
observed on the gel, but this was not observed for human cartilage DNA samples (see

Figure 3.3).
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A B

Figure 3.3: Agarose gel of DNA samples extracted from bovine (A) and human
(B) using E.Z.N.A. kit. Extra bands can be seen on the gel of the bovine DNA
samples. No other bands were observed on the gel of the human cartilage DNA
samples.

3.2.3 Expression profiles of the extracted RNAs using real-time PCR

In order to further confirm the RNA quality extracted using the TRIzol® with RNeasy™
Mini Kit, in total 46 RNA samples were extracted from 17 OA cartilage samples and 19
NOF cartilage samples using the protocol. The expression of 16 genes that were know
to be differentially expressed between OA and NOF cartilage were then determined
using qRT-PCR, including C2, CTSK, GPCI, IL6R, MMP11, MMP13, NLRXI, PCSK1,
PCSK6, SOD2, SPINTI, TLR7, TMPRSS4, XRCC5, COL1A1 and COL2A1 (Table 3.4
and Figure 3.4). Equally amounts of RNA were reversely transcribed. Two
housekeeping genes, /8S and GAPDH, were also measured and their expressions (Ct)
were determined to be 17.80 £ 0.31 and 23.65 + 0.08 respectively. When comparing the
expression of GAPDH and 18§ between the OA and NOF samples, GAPDH showed the
least variability in expression and was thus chosen for the normalization. GAPDH was
used to normalize Ct values of the other genes. Four RNA samples had more than 5
undermined cycle values for all genes (Ct > 40), thus considered as low quality samples
and removed from further analysis and experiments. Except MMP13 all of the other

genes were detected and found significantly differentially expressed (P-value < 0.05) in
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OA samples comparing to the NOF (Table 3.4 and Figure 3.4). This confirmed both the
quality of the RNA samples and also the expression profiles of the genes in OA

cartilage.

Log2Fold
Gene Change P-value Eéll::;;es
(OA/NOF)

2 2.66 2.78E-06 up
CTSK 2.49 5.21E-09 up
GPClI 2.39 5.98E-08 up
IL6R -1.13 1.16E-04  down

MMPI1 3.58 4.66E-05 up
MMPI13 0.87 5.39E-01 up
NLRX1 1.73 9.35E-07 up
PCSK1 -2.3 3.67E-05 down
PCSK6 1.31 1.23E-02 up
SOD2 -3.89 5.00E-12  down
SPINTI 1.33 2.01E-04 up
TLR7 -0.61 4.03E-02 down
TMPRSS4 -3.42 3.42E-05 down
XRCC5 0.75 3.34E-02 up
COL1A41 3.03 1.20E-02 up
COL2A41 4.07 2.31E-08 up

Table 3.4: Gene expression differences between OA and NOF. The table shows
the fold change in log 2 scale and the p-values (Mann-Whitney test) of the
changes. The known change of the gene and the related publication are also
included in the table. With the exception of MMP13, the remaining genes were
significantly differentially expressed in OA samples, which were as expected and
confirmed quality of RNAs extracted.
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Figure 3.4: ACt of the genes determined using real-time PCR. The boxplot shows
the AC values of the genes expressed in NOF samples (coloured in red) and OA
samples (coloured in blue).

3.3 Discussion

RNA extraction from cartilage tissue samples is difficult as shown in this study. RIN of
such RNA samples is rarely above 9.0, a value commonly observed for RNA extraction
from cell lines. This could be because of the room temperature procedures, which
increase the risk of RNA degradation. Importantly, the delay between surgical removal
of the joint and collection of cartilage could have an impact on the integrity of RNA.

Furthermore, how the consented tissues were treated within operating theatres was not
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possible to control. These confounding factors have not been taken into account or
tested when deciding that the TRIzol® with RNeasy” Mini Kit was the most effective.
Contents in ECM also play a role in the decrease of RNA yield, mainly because of a
blockage of columns and probably because of the actual composition of the cartilage
macromolecules. A recent report showed that newly developed membrane technologies

might provide a solution. (Ruettger et al., 2010)

When using the TRIzol® with RNeasy® Mini Kit protocol some of the RNA products
were not colourless but lightly pink. Though it was found latterly that by decreasing the
ratio of TRIzol® to chloroform when lysing the cartilage the pink carryover could be
avoided, in order to retain consistency between sample preparations the protocol was
kept unchanged. As TRIzol” is the only pink reagent in the process, it could be the
source of the suspicious colour. As TRIzol” was demonstrated to reduce digestion
efficiency of genomic DNA by restriction enzymes (Xu et al., 2008), thus DNA was not

purified after using TRIzol to extract RNA from cartilage samples.

The NOF RNA and cartilage samples used in the lab before were provided from
collaborators at University of East Anglia and this was the first time that we collect
NOF cartilage ourselves, thus we performed qRT-PCR experiment to ensure that the OA
and NOF samples could be distinguished. Except MMP13, all of the rest genes showed
differential expressions in OA samples as anticipated, indicating the reliability of the

NOF cartilage.

Overall, in comparison of the other available procedure to extract RNA from cartilage
samples, TRIzol” with RNeasy® Mini Kit produced high quality RNA with sufficient
yields for our study to proceed. Although using TRIzol® raised concerns of genomic
DNA quality, the procedure was chosen for this study to ensure the reliability of the

transcriptome analysis results.
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Chapter 4 Genome-wide cDNA Microarray ensured RNA quality and

revealed commonality as well as discord between hip and knee OA

4.1 Introduction

cDNA microarray technology has been used for expression profiling for several years
since its first introduction (Schena et al., 1995). The key advantage of the technology is
it is high-throughput compared to previous gene expression detection techniques, such
as standard RT-PCR. The expression of genes of the whole genome can be measured at
once with the technology, which has enabled genome-wide expression comparisons.
The availability of commercial cDNA profiling chips and standardization of the data
analysis method also ensured the reproducibility of profiling results, although data from
different laboratories and different platforms may present slightly differing results ("The
MicroArray Quality Control (MAQC) project shows inter- and intraplatform
reproducibility of gene expression measurements,' 2006). Benefitting from its high
throughput nature, a single microarray chip can have more than one probe targeting
different regions of the same gene or different isoforms of that gene, thus the expression

of the gene detected can be more reliable and reproducible.

The high-density of cDNAs printed on microarray chips provides high throughput
ability but also created obstacles to its interpretation, such as cross-hybridization and
down-stream data analysis. Because of the short length of the DNA oligonucleotides as
probes (~25mer), they have limited specificity thus a transcript molecule could cross-
hybridize on to a probe of another mRNA (Li and Wong, 2001). Both on the physical
probe design level and the data analysis level (Chu et al., 2002; Wu et al., 2005), the
problem has been largely addressed. The major concerns of the down-stream data
analysis include 1) the large amount of expression data of the whole genome together
with the technical background noise composed by the differences in the efficiency of

labelling reactions and 2) production differences between microarrays (Aris et al.,
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2004). The main aim of the data analysis is to remove or minimize the background
noise and preserve the true biological difference between samples. Over years, several
data normalization techniques have been developed, reported and made available in
several software packages in order to achieve this (Quackenbush, 2002; Leung and
Cavalieri, 2003). Comprehensive understanding of the technology and its characters
was also established in large scale microarray-reliability focused studies, such as the
MicroArray Quality Control (MAQC) project (Canales et al., 2006), their analysis
pipeline became standardized and distributed both freely and commercially. Some of
these are freely distributed with Bioconductor, such as lumi (Du et al., 2008) and afty
(Gautier et al., 2004). Commercial packages, such as Genespring (Agilent Inc), also
provide thorough and intuitive interface for the analysis, plus limited pathway analysis
function. In our microarray data analysis, Genespring was used because of its ease of

use.

Microarray experiment often results a list of genes, to get insight of the underlying
biology requires functional and pathway analysis. For this purpose, a number of
different software and databases of gene functions have been developed, covering
simple over representation approach to more advanced pathway topology based
approaches (Khatri et al., 2012). All of these rely on the existing knowledge of genes
and their protein products. Several commonly used tools include the Gene Set
Enrichment Analysis (GSEA) (Subramanian et al., 2005a), the Database for Annotation
Visualization and Integrated Discovery (DAVID) (Huang et al., 2008; Huang et al.,
2009) and the Ingenuity Pathway Analysis (IPA) (Ingenuity Systems,
www.ingenuity.com). GSEA and DAVID are freely available to the public while IPA is
commercialized featuring an intensive database of functions and interactions of genes

and proteins manually curated from published papers.

The first cartilage comparative study to use commercially available microarrays
compared gene expression changes within 5 OA and 5 normal human knee patient
cartilage biopsy samples (Karlsson et al., 2010b). However, in the study the authors did
not correct the p-values for multiple tests, so the differentially expression genes
identified in the study may include a number of false positives. The sample size of the

study was limited and included both male and female individuals.
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Here, we used Illumina Human HT-12 V3 whole genome expression arrays to profile
the transcriptome of cartilage collected from femoral heads OA and neck of femur
fracture patients, importantly all of which were female. We also compared our findings

to the similar study of knee OA.
4.2 Aims

The aim of the study was to investigate the gene expression of chondrocytes in hip OA
compared to the relatively normal hip cartilage to provide a comprehensive
understanding of disease pathology via identification of the pathways involved. To our
knowledge, this was the first study to analyse gene expression changes in human hip
OA at the whole-genome level. Furthermore, our project was to analyze the
transcriptomes using RNAseq, thus the microarray experiment would not only provide
many insights of the disease mechanisms but also will validate the subsequent RNAseq

analysis.

4.3 Methods
4.3.1 Identify differentially expressed genes

[llumina whole genome expression array HumanHT-12 V3 (Illumina Inc., Illumina
United Kingdom, Saffron Walden, UK) was used to profile gene expression of RNA
samples according to the manufacturer’s protocol. Raw expression data were analysed
using Agilent GeneSpring GX 11 (Agilent Technologies, Santa Clara, California).
Quality control of the raw data was performed and outlier samples were removed
following the method described in (Oldham et al., 2008). R package Combat was used
to adjust the data to remove any possible batch effect incurred during RNA preparation
after removal of outliner samples. (Johnson et al., 2007; R Core Team, 2012). The data
was then normalized with a quantile algorithm (Bolstad et al., 2003) and the baseline
was transformed to the median of all samples within GeneSpring GX. Those probes
with a flag value of ‘Present’ or ‘Marginal’ in > 80% of either OA or NOF samples were

selected for differential expression analysis.

4.3.2 Statistical analysis
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From the microarray analysis the significance of differentially expressed genes was
evaluated with a Mann-Whitney’s test, which is non-parametric, and then corrected for
multiple testing using the Benjamini-Hochberg (Benjamini and Hochberg, 1995)
method. Differentially expressed genes with a fold change >= 1.5 and P-value 0.01 were
included in further analyses. GSEA uses a permutation test procedure to evaluate the
significance of gene ontology (GO) term enrichments. Because these P-values are not
multiple testing corrected, a FDR (calculated as described (Subramanian et al., 2005b))
of 0.25 was used as threshold to control the number of false positives. The Fisher’s
exact test, implemented in IPA and other pathway analysis applications (Werner, 2008),
was used to assess the significance of the association between a pathway and the
differentially expressed genes. The Pearson product-moment correlation coefficient was
used to test the correlation of fold changes of overlap genes between the Karlsson

(Karlsson et al., 2010b) and our study.

4.4 Results
4.4.1 Cartilage sample collection

In total 29 cartilage samples were collected from femoral heads of female OA donors
(13 samples; median age = 71 yrs, shown in Table 4.1), and female NOF donors (16
samples; median age = 78 yrs). All donors were UK citizens of North European descent.
The OA cartilage samples had obvious OA signs including degraded and fibrous
cartilage with osteophytes and exposed subchondral bone. Compared to OA joints, the
NOF femoral heads had fully intact cartilage with little fibrillation and no exposed bone
(Fig. 4.1 A and B respectively).
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NOF Sample name Age OA Sample name Age

T030-3 73 DTOS1734-3 83
T021-3 84 DTOS1626-3 83
T032-3 82 DTOS1596-3 76
T014-3 84 DTOS1842-3 82
T012-3 81 DTOS1590-3 66
T018-1 94 DTOS1683-3 78
T003-3 85 DTOS1786-3 60
T007-3 71 DTOS1883-2 72
T013-3 72 DTOS1817-3 55
T023-3 68 DTOS1906-3 72
T011-3 69 DTOS1595-3 51
T024-3 80 DTOS1772-3 76
T023New-3 68 DTOS1567-3 64
T029-3-2 52
T035-3 92
T037-3 83
T031-2 89
NOF mean age 78.142.6 OA mean age 70.6+3.0

Table 4.1 Age of OA and NOF patients.

Figure 4.1 OA and neck of femur fracture (NOF) femoral heads and clustering.
A, A typical OA femoral head with exposed bone (black arrow) and fibro-cartilage
(white arrow). Macroscopically normal cartilage can be observed (*) which was
collected and processed as described. B, A typical NOF femoral head with a covering
of smooth healthy cartilage.
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4.4.2 Quality controlled microarray data

As obvious outliers can be observed in the hierarchical clustering result of the
microarray data (Figure 4.2 A), quality control on the samples before normalization of
the microarray data was performed following the method described in (Oldham et al.,
2008). Nine outliers were eliminated from the further analysis. In addition, two samples
with macroscopic scores (2 and 3) in the middle range, which reflect unclear tissue
types, were removed. Overall, microarray data of 19 samples were left having a mean
modified Noyes score of 5.2 and NOF 0.6 (shown in Figure 4.3). Following microarray
analysis, hierarchical clustering of cartilage samples based on expression of all genes
passing the quality filter showed perfect segregation of the OA and NOF samples
(Figure 4.2 B).

4.4.3 Differentially expressed genes and functional analysis

In total 1151 differentially expressed genes were identified (fold change <-1.5 or >
+1.5, P-value <0.01) between the two sample groups (shown in Additional Table A4.1
available online:

https://github.com/byb121/Thesis 2015/tree/master/Thesis 2015/Additional%?20tables

). These included 562 up-regulated and 589 down-regulated genes. Amongst these, 381
genes showed a > 2 fold change of expression level. A number of these genes have
previously been shown to be differentially expressed between hip OA and NOF
cartilage including ADAMTS1, ADAMTSS5, ADAMTS9, MMP1, MMP3, MMP23 and
SOD?2 (Kevorkian et al., 2004b; Davidson et al., 2006; Swingler et al., 2009a; Scott et
al., 2010b) consistent with the data herein. The most robust down-regulation was
observed for chemokine ligand 20 (CCL20) which showed more than 22 fold less
expression in the OA group. Of the up-regulated genes, over 50% of the top 25 genes
are expressed in the ECM including a number of collagen genes; COL2A1, COL3A1,
COL5A2, COLYAI and COL11A1, all of which have previously been reported to be up-
regulated in OA cartilage (Aigner et al., 2006b).
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Figure 4.2 Hierarchical clustering of all samples based on the expression profiles
before and after samples filtering. OA samples are in red background. NOF samples
are in blue background. A. Before filtering, outliers can be seen on the left side of the
figure. OA and NOF samples are not perfectly segregated. B. After filtering OA and
NOF sample are perfectly segregated into two groups, which is consistent with both
diagnosis and the blinded cartilage OA scores.
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Figure 4.3 Blinded OA cartilage phenotype scores based on the Noyes
classification of filtered samples. Closed bar, average NOF; open bar, average
OA. Error bars represent standard deviation, *** represents P<0.001.

The predominant functions of up and down regulated genes within the three Gene
Ontology (GO) categories (molecular function, cellular component and biological
process) were assessed (Table 4.2; gene names of each enriched term are listed in
Additional Table A4.2). In terms of ‘molecular function’, the results indicate increased
hydrolases activity and decreased protein kinase activity in OA cartilage. With regards
to ‘cellular function’, ECM was enriched in up-regulated gene lists, while nuclear
regions are enriched in down-regulated genes. Although both up- and down-regulated
genes lists contain approximately equal numbers, those with reduced expression were
classified into a greater diversity of biological processes, such as stress responses, cell

death and cellular processes.

Molecular Function - Up Regulated Genes:
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GO term DEG_Size SIZE FDR
HYDROLASE ACTIVITY HYDROLYZING O GLYCOSYL
COMPOUNDS 6 29 0
HYDROLASE ACTIVITY ACTING ON GLYCOSYL
BONDS 7 39 5.56E-04
CALCIUM ION BINDING 8 71 0.020
TRANSFERASE ACTIVITY TRANSFERRING HEXOSYL
GROUPS 4 68 0.037
ION BINDING 12 208 0.053
TRANSFERASE ACTIVITY TRANSFERRING GLYCOSYL
GROUPS 5 90 0.059
CATION BINDING 12 164 0.066
GLUTATHIONE TRANSFERASE ACTIVITY 1 15 0.083
ATPASE ACTIVITY COUPLED TO TRANSMEMBRANE
MOVEMENT OF IONS PHOSPHORYLATIVE
MECHANISM 3 15 0.119
DAMAGED DNA BINDING 0 18 0.121
OXIDOREDUCTASE ACTIVITY 11 223 0.126
PYROPHOSPHATASE ACTIVITY 11 198 0.166
Molecular Function - Down Regulated Genes:

GO term DEG_Size SIZE FDR
PROTEIN KINASE ACTIVITY 19 243 0.160
TRANSFERASE ACTIVITY TRANSFERRING
PHOSPHORUS CONTAINING GROUPS 22 358 0.175
PROTEIN SERINE THREONINE KINASE ACTIVITY 15 175 0.191
RNA BINDING 10 216 0.211
MRNA BINDING 5 20 0.224
Cellular Component - Up Regulated Genes:

GO term DEG_Size SIZE FDR
EXTRACELLULAR MATRIX 14 78 0
PROTEINACEOUS EXTRACELLULAR MATRIX 14 77 0
ENDOPLASMIC RETICULUM 10 253 0
GOLGI APPARATUS 9 192 0
EXTRACELLULAR MATRIX PART 11 47 0
COLLAGEN 8 19 2.77E-04
EXTRACELLULAR REGION PART 19 226 4.00E-04
ENDOPLASMIC RETICULUM PART 3 83 4.57E-04
ORGANELLE MEMBRANE 4 266 5.29E-04
EXTRACELLULAR REGION 23 291 6.21E-04
NUCLEAR ENVELOPE ENDOPLASMIC RETICULUM
NETWORK 2 79 0.002
MICROSOME 4 26 0.002
ENDOPLASMIC RETICULUM MEMBRANE 2 73 0.003
GOLGI APPARATUS PART 3 88 0.005
ENDOMEMBRANE SYSTEM 3 199 0.010
ER GOLGI INTERMEDIATE COMPARTMENT 1 20 0.011
VESICULAR FRACTION 4 28 0.012
MITOCHONDRIAL MEMBRANE PART 0 43 0.013
CYTOPLASMIC VESICLE 7 99 0.014
VESICLE 7 104 0.025
INTRINSIC TO ORGANELLE MEMBRANE 0 48 0.026
INTEGRAL TO ENDOPLASMIC RETICULUM 0 22 0.027
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MEMBRANE

CYTOPLASMIC MEMBRANE BOUND VESICLE 6 95 0.030
MEMBRANE BOUND VESICLE 6 97 0.033
INTRINSIC TO ENDOPLASMIC RETICULUM
MEMBRANE 0 22 0.036
Cellular Component - Down Regulated Genes:

GO term DEG_Size SIZE FDR
PORE COMPLEX 1 34 0.055
TIGHT JUNCTION 2 24 0.068
APICOLATERAL PLASMA MEMBRANE 3 26 0.068
NUCLEAR MEMBRANE PART 1 39 0.077
NUCLEAR PORE 1 30 0.153
Biological Process - Up Regulated Genes:

GO term DEG_Size SIZE FDR
CELLULAR CARBOHYDRATE METABOLIC PROCESS 11 99 0.002
SKELETAL DEVELOPMENT 14 80 0.003
ORGAN DEVELOPMENT 31 418 0.004
ORGANELLE ORGANIZATION AND BIOGENESIS 16 387 0.009
NERVOUS SYSTEM DEVELOPMENT 15 295 0.014
PROTEIN FOLDING 1 52 0.016
VESICLE MEDIATED TRANSPORT 4 171 0.018
CARBOHYDRATE BIOSYNTHETIC PROCESS 5 37 0.021
GLYCOPROTEIN METABOLIC PROCESS 0 71 0.100
GENERATION OF PRECURSOR METABOLITES AND
ENERGY 5 101 0.067
MEMBRANE ORGANIZATION AND BIOGENESIS 2 112 0.007
CARBOHYDRATE METABOLIC PROCESS 13 137 0.002
CHROMATIN MODIFICATION 0 47 0.103
PHOSPHOINOSITIDE METABOLIC PROCESS 0 26 0.096
PHOSPHOINOSITIDE BIOSYNTHETIC PROCESS 0 23 0.069
ESTABLISHMENT AND OR MAINTENANCE OF
CHROMATIN ARCHITECTURE 0 65 0.073
GLYCEROPHOSPHOLIPID BIOSYNTHETIC PROCESS 2 27 0.059
DNA REPAIR 1 109 0.135
EXTRACELLULAR STRUCTURE ORGANIZATION AND
BIOGENESIS 1 23 0.107
LIPOPROTEIN BIOSYNTHETIC PROCESS 0 23 0.123
Biological Process - Down Regulated Genes:

GO term DEG_Size Size FDR
CELL PROLIFERATION GO 0008283 29 392 0
RESPONSE TO EXTERNAL STIMULUS 20 207 4.88E-04
RESPONSE TO WOUNDING 13 128 0.008
NUCLEOCYTOPLASMIC TRANSPORT 4 73 0.008
NUCLEAR TRANSPORT 4 73 0.008
REGULATION OF BIOLOGICAL QUALITY 20 291 0.008
TRANSLATION 6 153 0.009
NEGATIVE REGULATION OF PROGRAMMED CELL
DEATH 13 129 0.009
NEGATIVE REGULATION OF DEVELOPMENTAL
PROCESS 13 161 0.009
INFLAMMATORY RESPONSE 8 89 0.010
NEGATIVE REGULATION OF APOPTOSIS 13 128 0.011
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REGULATION OF PROTEIN KINASE ACTIVITY 9 133 0.011

REGULATION OF TRANSFERASE ACTIVITY 9 137 0.012
REGULATION OF CELL PROLIFERATION 18 229 0.012
RESPONSE TO STRESS 37 409 0.012
PROGRAMMED CELL DEATH 29 356 0.012
APOPTOSIS GO 29 355 0.012
REGULATION OF CYCLIN DEPENDENT PROTEIN

KINASE ACTIVITY 3 39 0.013
REGULATION OF DEVELOPMENTAL PROCESS 21 353 0.014
REGULATION OF KINASE ACTIVITY 9 135 0.014
REGULATION OF APOPTOSIS 21 279 0.014
REGULATION OF PROGRAMMED CELL DEATH 21 280 0.014
NEGATIVE REGULATION OF CELL PROLIFERATION 10 120 0.015
RNA EXPORT FROM NUCLEUS 0 16 0.018
REGULATION OF NUCLEOCYTOPLASMIC TRANSPORT 2 17 0.028
ANTI APOPTOSIS 7 103 0.028
CALCIUM INDEPENDENT CELL CELL ADHESION 2 16 0.031
DEFENSE RESPONSE 12 170 0.036
NEGATIVE REGULATION OF MAP KINASE ACTIVITY 2 16 0.045
REGULATION OF CATALYTIC ACTIVITY 10 212 0.045
REGULATION OF CELL CYCLE 11 158 0.050
NUCLEAR EXPORT 2 29 0.056
TRANSCRIPTION FROM RNA POLYMERASE II

PROMOTER 29 380 0.060
IMMUNE RESPONSE 9 148 0.063
TRNA METABOLIC PROCESS 2 18 0.063
CELL DEVELOPMENT 33 464 0.086
REPRODUCTIVE PROCESS 10 104 0.094
NEGATIVE REGULATION OF TRANSPORT 1 17 0.099

Table 4.2 Functions Enrichment Analysis Result. Enriched functions of up and
down regulated genes are listed in the table and separated into 3 GO term
categories. DEG_Size, number of differentially expressed genes that contribute to
the enrichment of the term. Size, number of expressed genes associated with the
term. FDR, False discovery rate.

4.4.4 Molecular pathways and protein interaction networks

The entire list of differentially expressed genes was found to be significantly (P<0.05)
associated with 60 canonical pathways (Table 4.3), a number of which have previously
been associated with OA (Giatromanolaki et al., 2001a; Giatromanolaki et al., 2003a;
Velasco et al., 2010b; Huang et al., 2011b; Li et al., 2011b). Interestingly, the pathway
analysis identified a possible role for /L17 signalling in OA, generally based upon the
altered expression of AKT3, MAP2K2, MAPKI and NFKB2. In all, eight cancer
signalling pathways showed a significant over-representation within the dataset. Within

these cancer pathways a total of 45 genes were differentially expressed, with altered
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AKT3, CDKNIA, FZD2, FDZ4, FDZ7, FDZ9, MAP2K2, MAPKI, PDGFC and SMO

expression providing a common link between the majority of these pathways.

Ingenuity Canonical Pathways P-value Ratio
Aryl Hydrocarbon Receptor Signalling 1.62E-05 0.15
IL17A Signalling in Fibroblasts 2.29E-05 0.26
Colorectal Cancer Metastasis Signalling 2.75E-05 0.13
Glioblastoma Multiforme Signalling 4.47E-05 0.14
ILK Signalling 891E-05 0.13
Role of Osteoblasts, Osteoclasts and Chondrocytes in
Rheumatoid Arthritis 9.12E-05 0.12
Molecular Mechanisms of Cancer 1.00E-04 0.1
Glycosaminoglycan Degradation 1.15E-04 0.3
Role of Macrophages, Fibroblasts and Endothelial Cells in
Rheumatoid Arthritis 2.09E-04 0.11
Pancreatic Adenocarcinoma Signalling 4.57E-04 0.14
Factors Promoting Cardiogenesis in Vertebrates 5.37E-04 0.15
Basal Cell Carcinoma Signalling 7.24E-04 0.17
Role of IL17F in Allergic Inflammatory Airway Diseases 7.59E-04 0.2
IL17 Signalling 9.55E-04 0.16
Wnt/p-catenin Signalling 1.05E-03 0.12
TREMI Signalling 1.07E-03 0.18
PI3K/AKT Signalling 1.66E-03 0.12
Human Embryonic Stem Cell Pluripotency 1.95E-03 0.12
Ovarian Cancer Signalling 1.95E-03 0.12
p53 Signalling 3.09E-03 0.14
Arginine and Proline Metabolism 3.09E-03 0.15
Oncostatin M Signalling 3.16E-03 0.21
Interferon Signalling 3.16E-03 0.21
Hepatic Fibrosis / Hepatic Stellate Cell Activation 3.63E-03 0.12
Role of IL17A in Arthritis 3.98E-03 0.15
Role of NANOG in Mammalian Embryonic Stem Cell
Pluripotency 4.79E-03 0.12
O-Glycan Biosynthesis 5.13E-03 0.21
Bladder Cancer Signalling 5.89E-03 0.13
HIF1a Signalling 7.41E-03 0.12
Prostate Cancer Signalling 7.76E-03  0.12
Protein Kinase A Signalling 8.32E-03 0.09
Circadian Rhythm Signalling 8.51E-03 0.18
p38 MAPK Signalling 9.33E-03 0.12
PTEN Signalling 1.10E-02 0.11
IL-17A Signalling in Airway Cells 1.12E-02 0.13
Caveolar-mediated Endocytosis Signalling 1.12E-02 0.12
Corticotropin Releasing Hormone Signalling 1.17E-02 0.11
Inhibition of Angiogenesis by TSP1 1.35E-02 0.18
IL-8 Signalling 1.35E-02 0.1
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Role of Wnt/GSK-3a Signalling in the Pathogenesis of Influenza  1.58E-02 (.12

Endoplasmic Reticulum Stress Pathway 1.91E-02 0.22
Ascorbate and Aldarate Metabolism 1.91E-02 0.22
Production of Nitric Oxide and Reactive Oxygen Species in

Macrophages 1.95E-02 0.1
IL-12 Signalling and Production in Macrophages 2.69E-02 0.1
Role of Tissue Factor in Cancer 2.69E-02 0.11
Dendritic Cell Maturation 2.69E-02 0.09
Amyloid Processing 2.88E-02 0.13
Intrinsic Prothrombin Activation Pathway 2.95E-02 0.16
LXR/RXR Activation 3.39E-02 0.11
Role of IL-17A in Psoriasis 3.72E-02 0.23
Urea Cycle and Metabolism of Amino Groups 3.80E-02 0.16
NRF2-mediated Oxidative Stress Response 3.89E-02 0.09
VDR/RXR Activation 3.98E-02 0.11
Reelin Signalling in Neurons 4.27E-02 0.11
Hypoxia Signalling in the Cardiovascular System 4.27E-02 0.12
Glycosphingolipid Biosynthesis - Neolactoseries 4.37E-02 0.17
Cell Cycle: G1/S Checkpoint Regulation 4.57E-02 0.12
Atherosclerosis Signalling 4.68E-02 0.1
Ephrin Receptor Signalling 4.68E-02 0.08
Glioma Invasiveness Signalling 4.90E-02 0.12

Table 4.3 Associated pathways of the differentially expressed genes. Sixty pathways
in total were identified as associated with the differentially expressed genes. Several of
these (bold-italicised) have been previously reported as associated with OA. Six
pathways are related with /L7 signalling. The ratio column is the proportion of
differentially expressed genes divided by the total number of genes associated with a
pathway.

Network analysis was performed on differentially expressed genes with fold change > 2
using STRING. In total, 21 networks were found enriched in the genes, of which 12
consisted of only two nodes (Fig. 4.4). Five up- and 14 down-regulated genes were
assigned as hubs (Table 4.4). Gene SPARC and COL2A1 had the most interactions and
were concentrated to the largest network of 27 genes. Seven up-regulated collagens in

OA were also in this network.
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Figure 4.4 Protein interaction networks of genes. Network analysis was performed
on differentially expressed genes with fold change = 2 using STRING. Down-
regulated genes are in green and up-regulated genes are in red. Genes with no
interactions were not shown in the figure.
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Symbol Corrected p-value Fold Change Connections
SPARC 3.43E-05 5.65 7
COL2A1 1.50E-05 4.50 6
CDKNIA 2.56E-10 -6.44 5
CALMI1 1.16E-08 2.45 4
DDIT3 1.38E-07 -4.37 4
VEGFA 2.02E-05 -2.71 4
ATF3 4.89E-09 -5.07 3
TGM2 6.25E-08 -6.93 3
NOD2 1.55E-07 -4.49 3
BMP2 3.07E-07 -7.21 3
MYC 2.19E-06 -3.15 3
EIF4A3 6.08E-06 -2.04 3
PCOLCE 1.28E-05 3.40 3
MAFF 4.60E-05 -3.17 3
IRAK2 1.78E-04 -2.59 3
COL3Al 3.70E-03 4.04 3
NFIL3 1.08E-09 -3.50 2
HSPA4L 1.03E-08 -2.16 2
SPAG9 1.20E-08 -2.54 2

Table 4.4 Differentially expressed genes that have more than 5 interactions with

other differentially expressed genes.

4.4.5 Comparison of knee vs. hip OA gene expression

This is the first study to comprehensively investigate gene expression changes of hip
OA cartilage. However, as mentioned earlier, a similar study using knee OA versus
normal cartilage has been performed (Karlsson et al., 2010b). In total, 1423 genes
showed differential expression in this knee study, of which only 265 genes were also
differentially expressed here (Figure 4.5 A and Additional Table A4.3). In fact, of these
overlapping genes, only 183 (13% of the 1423) showed regulation in the same direction
although there was a significant positive correlation for such a trend (Figure 4.5 B and
C). Genes that increased in both tissues with disease included a large number of
collagens, including COL2A41, COL3A41, COL5A1, COL5A2, COL6A1, COL8A2,
COL1IAI, COLI2A1 and COLI3A1. Remarkably, given the small gene overlap,
pathway analysis showed that 35 out of 60 canonical pathways associated with our gene
list (P <0.05) are also associated with knee OA (Figure 4.5 D and Additional Table
A4.4). Ofthese, ‘Role of Macrophages, Fibroblasts and Endothelial Cells in
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Rheumatoid Arthritis” and ‘Role of Osteoblasts, Osteoclasts and Chondrocytes in
Rheumatoid Arthritis’ contained the largest number of overlapping differentially
expressed genes. The “TREMI1 signalling’ pathway contained the highest ratio of
differentially expressed genes (around 9% of all genes within that pathway).
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Figure 4.5 A comparison between hip and knee OA gene expression changes. A,
size-dependent Venn diagram of the differentially expressed gene lists from the two
studies. Only 265 genes were identified as differentially expressed in common
between both studies. B, 4-way Venn diagram of hip and knee differentially expressed
genes. DW, down-regulated; UP, up-regulated. C, scatter plot of fold changes of the
overlapped genes. X-axis represents the fold change result of the genes in this study
(hip) and Y-axis the knee OA study (Karlsson et al., 2010b). Green points indicate
genes that are significantly differentially expressed in the same direction in both
studies. Red points indicate genes that are regulated in the opposite direction. N,
number of genes in each quadrant. Despite the large discrepancy in differentially
expressed genes, the fold changes of these overlapping genes are significantly co-
related. D, size-dependent Venn diagram of the pathways identified as associated with
knee and hip OA gene lists.
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4.5 Discussion

To my knowledge, this is the first report of comprehensively relate gene expression
changes in humans between normal (NOF) and OA hip cartilage at the whole genome
level. Several studies have compared gene changes using similar samples via a real-time
RT-PCR technique but have generally focussed on specific genes, originally
metalloproteinase family members (Kevorkian et al., 2004b; Davidson et al., 2006), and
more recently the entire degradome (Swingler et al., 2009a). Although the datasets were
different, reflecting the differences in techniques, all the proteases expressed
differentially in both screens followed identical expression patterns in terms of direction
(up- or down-regulation), which validated our samples and the microarray analysis
approach that I have taken here and provided the confidence to proceed to the RNAseq

experiment.

Besides the RNA extraction method, a well-designed tissue collection and handling
strategy is required in order to obtain accurate and reliable expression profiles, because
many factors, such as the tissue storage time in different temperatures or reagents
(Mutter et al., 2004; Espina et al., 2009; Hatzis et al., 2011), can affect the RNA
integrity thus introduce variance into the data. In the microarray experiment,
considering the sensitivity of the technology and the difficulties in RNA extractions
from the human cartilage tissue, the RNA samples from all of our available tissues were
used, as the quantity of RNAs was the only concern at the time. Inevitably, a careful
quality control on the raw data was performed and 1/3 of the samples were marked as
outliers. However, there is no clear biological factor explaining the difference of
expression profiles between these samples and the others. RNA integrity numbers, age
of patients and Noyes scores of the outliers are all similar with those retained. This
implies that the difference lies in the tissue collection and handling method. Each joint
tissue might be handled differently before collection from operating theatres.
Furthermore, there were different time intervals between surgery completion and
collection as well as between collection and harvesting cartilage from the tissue. These
may introduce extra non-genetic differences between RNA samples. However, due to
the limited availability of tissue samples, especially NOFs, these were unavoidable and

required thorough quality control on the expression data.
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In total, 1151 genes were found differentially expressed with a fold change >1.5 and p-
value < 0.01, in line with the only other whole genome human cartilage study (Karlsson
et al., 2010b). Using functional enrichment analysis ‘receptor and transmembrane
receptor signalling activity’ appeared up regulated in OA. ‘Oxidoreductase activity’ was
significantly down-regulated which is in keeping with a previous report that found a
down-regulation of oxidative damage defence genes, including SOD2 and SOD3, in OA
cartilage (Aigner et al., 2006b; Scott et al, 2010a). A decrease in oxidative
defence/reductase activity would lead to an increase in reactive oxygen species and
oxidative stress, a process that has been demonstrated in OA and shown to negatively

affect chondrocyte function (Yudoh et al., 2005).

The Ingenuity canonical pathway analysis identified several pathways based upon /L1717
or cancer signalling. Common to these were a number of genes including MAP2K2,
MAPK]I and AKT3. In fact, these factors were also present in several other highlighted
pathways, including phosphatidylinositol 3-kinase (P/3K) signalling in B lymphocytes.
The CC-chemokine, CCL20 was the most down regulated gene identified from our
array and also appears to be an important target for /L7 signalling (Onishi and Gaffen,
2010). CCL20 binds to the receptor CCR6 and interestingly signals via the Akt and/or
ERK MAP Kinase pathway. CCL20 acts as a chemoattractant for CCR6-expressing cells
such as dendritic cells. There has been little research on CCL20 in OA pathogenesis but
it has been suggested that it contributes to ECM-bone remodelling (Lisignoli et al.,
2009). However, in rheumatoid arthritis (RA), CCL20 produced by synovial cells is
thought to play a pivotal role in the recruitment of arthritogenic Th17 (CD4" T cells that
secrete /L17A4) cells to the inflamed joint (Hirota et al., 2007).

SPARC was the most connected gene in the STRING analysis. The gene encodes
osteonectin and found up-regulated in OA in several studies (Nakamura et al., 1996;
Nanba et al., 1997). It plays a vital role in collagen mineralization (Termine et al., 1981,
Maurer et al., 1995), which explains its interactions with the collagen in the network.
ATF3 (activating transcription factor 3) is a transcription factor induced by various
stress signals and proposed to be a hub of the cellular adaptive-response network
(Yatsugi et al., 2000), it was also among the gene with the most STRING connections
from our study. MYC expression in OA cartilage correlates with apoptosis of the

chondrocytes (Hai et al., 2010). Both GADD450a and GADD45/ were also found in the
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enriched networks with both having been previously identified as down regulated in OA
cartilage as part of a microarray analysis. GADD45f has been proposed to play a role in
chondrocyte homeostasis via the regulation of collagen gene expression and the

promotion of cell survival (Ijiri et al., 2008).

Herein gene expression differences between hip and knee OA were also compared,
providing lists of genes and molecular pathways common to both disorders. Common
between the two tissues was an increase in a large number of ECM-associated genes,
especially collagens, purportedly as an ineffectual repair response (Dell'accio and
Vincent, 2010). Similar increases in matrix genes with OA have been reported by others
(Aigner et al., 2006b). Importantly, this work also highlights gene differences between
OA in both tissues. A clear difference in the hip and knee datasets is present when
examining the expression of metalloproteinases. The expression of the collagenase gene
MMP] and the aggrecanase gene ADAMTSS, along with ADAMTS1, were all increased
in knee OA cartilage but decreased in hip OA cartilage, an observation that has been
reproducibly observed (Kevorkian et al., 2004b; Davidson et al., 2006; Swingler et al.,
2009a). This could suggest the disease mechanisms are fundamentally different, reflect
the stage of disease at which hip or knee replacement surgery occurs, or be due to the
normal comparator group, healthy tissue (Karlsson et al., 2010b) or NOF fracture
herein. In a preliminary study, gene expression within NOF fracture or post-mortem was
largely similar, validating the use of NOF as a control tissue (Kevorkian et al., 2004b).
The OA femoral tissue used within this study was end-stage disease with significant
cartilage damage, as exemplified by the high score using the modified Noyes system
(Kijowski et al., 2006). However, I only examined gene expression in macroscopically
normal cartilage taken from the OA patients, yet significant gene expression differences
were observed between this cartilage and the NOF control tissue. This finding supports
the concept that even OA cartilage tissue of healthy macroscopic appearance is not
necessarily free of disease (Aigner et al., 2006b). The OA tissue used was taken from
patients undergoing joint replacement surgery therefore the gene expression herein will
likely be distinct from those occurring at initiation or during disease progression. The
relatively small number of overlapping differentially expressed genes between our hip
and the knee OA studies may reflect a difference in the tissues or the analysis
undertaken (Miklos and Maleszka, 2004). However, even taking this into consideration,

a remarkable number of pathways appeared to be conserved features of the disease in
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both tissues. These included ‘Role of Macrophages, Fibroblasts and Endothelial Cells in
Rheumatoid Arthritis’ and ‘Role of Osteoblasts, Osteoclasts and Chondrocytes in
Rheumatoid Arthritis’ perhaps unsurprisingly given their link to arthritis, and Wnt/b-
catenin, IL-8 and IL-17 Signaling. However, ‘Oncostatin M Signaling’ contained the
highest proportion of differentially expressed genes within a given pathway
(approximately 21%). Oncostatin M in combination with other pro-inflammatory
cytokines has been extensively linked to the induction of metalloproteinases by
chondrocytes (Rowan and Young, 2007). ‘triggering receptor expressed on myeloid
cells (TREM1) signalling’ also contained a high proportion of differentially expressed
genes from both tissue gene lists. TREM proteins are a family of cell surface receptors
that participate in diverse cell processes including inflammation, where they act in
concert with other receptors to amplify an inflammatory response, and bone
homeostasis where they play a role in osteoclastogenesis (Klesney-Tait et al., 2006).
The role of TREM signaling in chondrocytes and cartilage remains to be determined,
though TREM-1 is up-regulated in RA synovium (Kuai et al., 2009) and is proposed as
a new therapeutic target in the disease (Kim et al., 2012). A number of pathways
associate only with hip OA cartilage including pathways connected with proteoglycans
‘Glycosaminoglycan Degradation’ and ‘O-Glycan Biosynthesis’ and more novel
pathways such as ‘Circadian Rhythm Signaling’. Knee OA specific pathways included
‘IGF-1 Signaling’ and ‘Ephrin Signaling’, both of which have established links with the
disease or chondrocytes (Denko and Malemud, 2005; Kwan Tat et al., 2009).

In conclusion, to my knowledge this is the first study to compare gene expression
changes in osteoarthritic femoral hip cartilage to that of patients with no signs of OA at
the whole-genome level. These data have identified a number of novel pathways, such
as IL- 17 signaling along with a number of genes that appear integral to signaling,
including CCL20 and MAPK 1, and subsequent responses, such as A7F3, all of which
may have a role in OA pathogenesis. Importantly, by comparing gene expression
changes between hip and knee OA both commonality, such as the “TREM1 signaling
pathways’, and discord such as the ‘O-Glycan Biosynthesis’ in hip and ‘IGF-1
signaling’ in knee OA are observed. Although proteolytic loss of cartilage typifies OA
(Rowan et al., 2008) in both hip and knee joints, our observations add to the notion that
the molecular mechanisms underpinning such destruction may have some unique and

site specific differences. Exploitation of these may offer the potential for more tailored,

56



joint-specific therapies that circumvent the negative aspects associated with direct

metalloproteinase inhibition (Rowan et al., 2008).

57



Chapter 5 Transcriptome analysis of RNAseq data

5.1 Introduction

Via the microarray study, not only the quality of RNAs extracted from cartilage but also
the differences at the gene level between OA samples and NOF were identified. A
number of canonical pathways were found to be associated with these differentially
expressed genes. Apart from those well studied and largely expanded cancer pathways,
several known OA associated pathways were found among the list (Giatromanolaki et
al., 2001a; Giatromanolaki et al., 2003a; Velasco et al., 2010b; Huang et al., 2011b; Li
et al., 2011b) as well as number of other pathways that were not reported to be
associated with hip OA before, such as TREMI1 signaling and IL17 signaling pathways.
By comparing these pathways to those reported in a knee OA study, conducted with the
similar technologies, it was revealed that the molecular mechanisms underpinning the
cartilage destruction might have some specific joint site differences. In addition, 1151
genes were found significant differentially expressed (DE) in OA. Among these genes,
increased expression of collagens (COL241, COL3A1, COL5A2, COLYA41,

COLI11AI) and GDF10, and decreased expression of aggrecanases (4DAMTS5 and
ADAMTSY) were observed, all of which were previously characterized for OA in
numbers of publications (Cagnard et al.; Kevorkian et al., 2004b; Chou et al., 2013).
Growth factors GDFJ, a gene found associated with OA susceptibility through GWAS
studies (Evangelou et al., 2009) and which plays an important role in cartilage
maintenance (Francis-West et al., 1999), was also found significantly up regulated in
OA in our experiment. A large decrease in expression of SOD2 (fold change = -14.7)
was found, indicating the oxidative stress in OA and confirming the finding of (Scott et

al., 2010a).

Our results also highlighted the limitation of the microarray technology used to
determine gene expression, which suffers from the limited dynamic detection range,
high background noise and relatively low resolution. During quality control of the

microarray data, data from almost half of the probes on the [llumina (Illumina Inc.
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California, U.S.) chip were removed, because of either doubtable detection or very low
detected expression in all of the RNA samples. Within DE genes called, several other
well-described gene expression changes were not found. For example, up regulation of
ADAMTS?2 and MMP16 described in other studies were not found in ours (Kevorkian et
al., 2004a; Swingler et al., 2009b). Up-regulation of BMP2 was described as a
characteristic of OA chondrocytes (Fukui et al., 2003; Nakase ef al., 2003) but
significant down-regulation was found in our study. Plus, for the canonical pathways
that were found associated with the disease, only a small portion of genes involved in
them was found significantly differentially changed. One of the reasons of these
undetected DE genes could be the difference of tissues/animal models used in the study,
but could also be due to the limitations of microarray technology. Furthermore,
microarray technology is also incapable of detecting novel genes, as it depends on the
prior knowledge of gene sequences. Moreover, the nature of OA, as a complex disease,
involves multiple factors, such as differential allelic expression (DAE) of certain genes
(Raine et al., 2013; Syddall et al., 2013); alternative splicing was also shown to be
associated with the disease (Takada et al., 2011). Such information cannot be obtained
with microarray technology. Hence, to explore the transcriptome with a more sensitive
technology and to understand the molecular changes of OA comprehensively, the
recently emerged technology RNA sequencing was used to investigate the disease

transcriptome of the hip cartilage further.

The scripts used for the data analysis, including bash commands, Perl and R scripts, are
available on Github:
https://github.com/byb121/Thesis 2015/tree/master/Thesis 2015 /scripts .

5.2 Aims of this study

Although we are beginning to understand the disease processes that occur in cartilage as
OA progresses such research is still in its infancy. It is very likely that changes in the
regulation genes of cartilage cells, chondrocytes, play a strong role in the disease
process. Studies (Evans et al., 2004; Menendez et al., 2011; Ahmed et al., 2012) have
made progress in identifying these gene changes with the eventual hope that a drug can
be made to block the action of a given gene/pathway and treat the disease, but

technological limitations, combined with the difficulties in isolation of RNA/Nucleic
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acids from cartilage, have prevented to study all gene changes simultaneously.
However, recent advances of RNAseq now make it possible to identify novel gene

changes in OA cartilage.

5.2.1 Identification of gene expression changes in addition to those observed with

microarrays

RNAseq has several advantages in determining of transcripts abundance comparing to
the microarray. Its detecting range is not limited and suffers less background noise, thus
the normalization of RNAseq data is also less complicated. RNAseq can also be used to
identify novel transcripts expressed in cartilage and their abundances. The knowledge of
these can be complementary to the known molecular mechanism of OA as well as being

potential targets of the disease therapy.
5.2.2 Determination of transcript expression changes in OA

With RNAseq data, abundance of transcripts on a genome-wide scale can be
determined. A number of genes, often different genes, have been found differentially
expressed in OA in many studies, but in fact the abundances of transcripts determine the
phenotypes. Determining the DE transcripts of cartilage is a vital step to move our

understanding of OA mechanism to the transcript level.
5.2.3 Identification of alternative splicing on a genome-wide scale

Alternative splicing variants of transcripts of certain genes were found to be associated
with OA progression in cartilage (Berardi et al., 2001; Parker et al., 2002; DuRaine et
al., 2011), however, a genome-wide investigation of alternative splicing events between
NOF and OA cartilage is absent to date. With the RNAseq data, the splicing junctions
can be identified with/without assembly transcripts beforehand, as some of the RNAseq
reads will cover these junctions, especially when using paired-end sequencing

protocols.
5.2.4 Identification differential allelic expression on a genome-wide scale

Genome-wide association analysis of OA has revealed that a number of SNPs are
associated with susceptibility of OA (Zeggini et al., 2012). Several of them were further

studied with allelic expression analysis to investigate their effects on gene expression in
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cartilage (Ratnayake et al., 2012; Raine et al., 2013; Syddall et al., 2013). It is also
reported that the phenomenon of imbalanced allelic expression of certain genes is
associated with OA progression in different types of joint tissues (Southam et al., 2007;
Egli et al., 2009), therefore a genome-wide study of allelic expression of genes and their
association with OA will further our understanding of the relationship between the OA
susceptibility and SNPs, and hopefully some of them can be used as biomarkers for the
disease. With the transcriptome in single-base resolution derived from RNAseq data,
bases on both alleles of a single loci can be observed along with relative abundances of

each. This enables allelic expression on a genome-wide scale.

5.2.5 Identification of RNA-editing events and evaluation of their association
with OA

Genome-wide RNA-editing events can be identified with RNAseq data (Ramaswami et
al., 2013). With respect of the fact that thousands of such events can happen in human
(Ramaswami ef al., 2013) and some of them may alter the protein function, they ought

to be studied for their impact on OA.
5.2.6 To define a workflow for the analysis the RNAseq data

Existing open source and commercialized software for analysis of second-generation
sequencing results are not mature. Most of the available software can only do one
section of the whole pipeline for RNAseq data analysis. The exact approaches and
parameter for such analysis are not commonly recognized neither. Thus it is essential to

explore these factors in the project.

5.3  Methods
5.3.1 Overview of the workflow for RNAseq data analysis

At the start of the project there was no commonly recognized pipeline/software for the
analysis of RNAseq data available. As described, commonly used and commercially
freely available software has differing advantages, so the selection of the software
assigned to different part of the whole bioinformatics workflow is critical, but can vary

depending on the purpose of the analysis. For our RNAseq study, the aim was to reveal
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the difference of transcriptome characteristics between OA and NOF hip cartilage,
including differential expressions, alternative splicing events, transcript sequences and
differential allelic expressions, thus the software chosen for use in each step of our

pipeline was selected to favour the chance of detecting these differences.

Our pipeline is illustrated in Figure 5.1, which involves a number of software tools. To
improve the accuracy of mapping, FastQC was used to first check quality of the reads,
as it can provide several quality metrics of the reads, from which essential parameters
for processing reads in the next step can be deduced. Trim-galore (Krueger) was then
used to trim off low quality bases from both ends of reads and remove sequencing
adaptors when they were found at 3’ end. After quality control, Tophat was used to map
reads to the human reference genome hg19. To identify differentially expressed genes,
the number of reads that aligned onto each transcript for each sample was counted with
htseq-count (Anders et al., 2014), then DESeq (Love ef al., 2014) used to identify DE
genes. BitSeq (Glaus et al., 2012) was used to identify DE transcripts. In order to allow
BitSeq to estimate the coverage of transcripts and likelihood of a read correctly mapped
to its originated transcript, RNAseq reads were aligned to the human transcriptome
(cDNAs of known human transcripts, ENSEMBL 74) with Novoalign
(www.novocraft.com), which had better mapping accuracy comparing to other aligners
at the time (Ruffalo ef al., 2011) and also allows multiple placements (up to 100
different places) of a read. To assemble transcripts, Cufflinks (Trapnell et al., 2013) was
used after reads were aligned to the human genome (hg19) with GSNAP (Wu and Nacu,
2010), as the algorithm of the software supports gapped alignments and takes
advantages of known splicing sites and SNPs. Cuffmerge (Trapnell et al., 2013) was
then used to merge transcripts assembled using Cufflinks from different samples. The
coverage of the transcripts was estimated at the same time, so the sequences of
transcripts expressed in OA and NOF cartilage can be obtained along with the relative
abundances. Although Cufflinks uses known transcripts as template, it has the ability to
identify novel transcripts. For allelic expression analysis and identification of RNA-
editing events, the base variants at the mRNA level first need to be identified. This was
done with Samtools. A Perl script was written to extract the coverage of the variants
from mapped reads, thus the abundance difference between the transcripts from the two

alleles could be derived. In order to determine the association between the identified
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RNA-editing events and OA, in house R (R Core Team, 2012) scripts were used.

Fastq files
y
Quality control Quality check
MA FaStQC
Map to the genome Map to the transcriptome
Tophat2 GSNAP Novoalign
Count Call
reads variants
htseq-count Samtools
Test for DE Test for Test for Assemble Test for Test for DE
genes allelic RNA- and quantify alternative Transcripts
DESeq2 imbalance editing transcripts splicing Bitseq
Perl events Cufflinks events
Perl DEXSeq
DiffSplice

Figure 5.1 the workflow of the RNAseq analysis and software. Quality of the
fastq files was checked with FastQC, low quality bases (Q<=20) and sequencing
adaptor contaminations with Trim-glore. Quality filtered reads were then mapped to
the human reference genome hg19 with Tophat2 and GSNAP. In order to call DE
genes, reads mapped to each gene were counted with htseq-count from Tophat2
alignments then imported to R. DESeq2 were used to normalized the counts data and
test for DE genes. The sequence variants were called with Samtools from Tophat2
alignment. Common heterozygous variants (found in 80% of samples in either
condition) were used to calculate allelic imbalance of genes with the scripts written
in Perl. All of the common variants were used to identify RNA-editing events and
test if the frequencies of any RNA-editing event in the whole genome are
significantly different in OA samples comparing to NOF samples. A script written in
Perl was used for the test. In order to assemble and quantify transcripts, Cufflinks
was used with GSNAP alignments. The alignments were also used as input of
DEXSeq and DiffSplice to test for alternative splicing events in OA samples. To test
for differentially expressed transcripts using Bitseq, Novoalign was used to map
reads to the transcriptome with multiple placements allowed for reads so that Bitseq
can weight the read alignment to transcripts and test for differentially expressed
transcripts.

5.3.2 Quality assessment of raw reads
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Quality of the raw sequencing reads was inspected with FastQC. Low quality bases (Q
< 20) on the 3’ end of reads were trimmed off. Reads of length shorter than 20 after
trimming were discarded. Possible contaminations of sequencing adaptors were
removed with Trim Galore. Reads that passed the quality criteria were used as input for
the subsequent analyses. To further assess the sequencing quality, these reads were
mapped to the transcripts recorded in the ENSEMBL database (Version 75) with
Novoalign (Version 2.07.13) and the human genome hgl9 with GSNAP (Version 2012-
06-20). The mapped reads were counted with Samtools (Version 0.1.18) and BEDtools
(Version 2.15.0) (Quinlan and Hall, 2010) for number of mapped reads, number of reads
mapped to the transciptome, number of reads mapped to the human genome. Number of
reads mapped to genes were counted with htseq-count from the whole genome
alignments of samples and then normalized with bioconductor CQN (Hansen et al.,
2012) package. Genes that have Reads Per Kilo bases of the gene per Million bases of
read (RPKM) >= 0.3 in 80% of samples in either condition were considered as
expressed and the normalized counts of these were then used to calculated sample
distances to cluster samples and plot heatmaps with the function implemented in the
DESeq package. The RPKM of 0.3 was suggested as a threshold when RNAseq was
introduced in 2008 (Mortazavi et al., 2008).

5.3.3 Identification of differentially expressed genes

The reads were then mapped with Tophat2 to the human reference genome (hgl9).
Reads mapped to each gene were then counted with ht-seq count. Genes were defined as
annotated in GENCODE (GENCODE human genes V19). To filter unreliable gene
counts from lowly expressed genes in samples, the expressed copy number of each gene
for each samples were calculated as: Expressed copy number of a gene = (read counts
of the gene in a sample * read length)/(exonic length of the gene). The exonic length of
a gene is defined as the non-overlap total length of exons annotated for the gene. Genes
that have at least 1 copy in 80% of samples in either condition were considered as
expressed genes in hip cartilages. Bioconductor package DESeq2 (Version 1.4.2) were
then used to test for differentially expressed genes from the counts data of all genes. P-
values of detected expression changes were corrected with Benjamini & Hochberg
algorithm. Genes that were identified as expressed genes and have at least two fold

changes between OA and NOF samples with P-values < 0.05 were considered as
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differentially expressed genes for further analysis.
5.3.4 Identification of differentially expressed transcripts

Reads after quality control as described in (Chapter 5, 5.3.2) were then mapped to the
ENSEMBL transcript sequences (Version 74) with Novoalign (Version 2.07.13). Reads
were allowed to map onto multiple transcripts. Transcript abundances were measured
and differentially expressed transcripts were called with BitSeq (Version 0.7.0).
Transcripts that had at least 2 fold change between OA and NOF samples with positive

probability of log ratio either > 0.95 or < 0.05 were considered as significantly changed.
5.3.5 Assembly of transcripts and identification of novel transcripts

Following the protocol recommended by the authors of the Cufflinks (Trapnell et al.,
2012), quality controlled reads were mapped with Tophat2 (Version 2.0.10) and then
assembled with Cufflinks (Version 2.0.2). Transcripts that have fragments per kilo-bases
of transcripts per million reads (FPKM) in lower 20% of 80% samples of either
condition were not considered as expressed in cartilage. Expressed transcripts were
compared with transcripts recorded in GENCODE (Version 14) to identify known and

novel transcripts.
5.3.6 Identification of alternative splicing events

Human gene annotations were downloaded from GENCODE (Version 14) and
processed with the annotation preparation script provided in the DEXSeq (Version
1.0.2) package for non-overlapped exons. Reads that mapped onto exons were counted
and differentially used exons were tested using DEXSeq . Exons that have at least 2 fold
change with P value < 0.05 were considered as significant alternative splicing changes

between OA and NOF cartilage samples.
5.3.7 Allelic expression analysis

After quality controlled reads were mapped with Tophat (Version 2.0.10), sequencing
variants were identified with Samtools (Version 0.1.18) then filtered by the following

criteria:

a) The variants call quality score is > 13. The quality score that Samtools produced
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for each called variant is Phred scaled possibilities of the call being error (Quality

score = -10*IgP), thus 13 equals p-value of 0.05;

b) The total coverage of the variant in one of the samples is > 10, which means at

least 10 reads covered the position.

The variants that can be observed in 60% of samples in either group of samples were
analyzed further. The imbalanced rates were calculated as the ratio of the non-reference
allele depth to the total depth of the loci. The rates were tested with an in-house Perl
script plus further statistical analysis in R. The student T-test was used to test the

association between imbalanced rates and OA.
5.3.8 Identification of RNA-editing events

Identification of RNA-editing events is depending on the variants identified. In order to
identify RNA-editing events, sequencing variants were first called as described in the
above Methods section. Heterozygous variants that fit in the expected RNA-editing
changes (A-to-G change) were selected for further filtering. Each variant was then

filtered with the following criteria:
a) The variants call quality is > 13;
b) The total coverage of the variant in one of the samples is > 10.

The reads supporting any of the two alleles of the variant in all of the samples were then
counted and used to denote the frequency of editing events observed. The association
between potential editing events and OA were tested using an in house R-script
(Supplementary file S5.1) to compare the difference of the frequency of each editing
event in OA and NOF samples. A linear mixed-effects model was used to test the
association between the frequency of the editing events and OA. Fisher’s exact test was
used when one of the two alleles has no supporting reads in either group of the samples.
P-values <= 10e-8 were considered as significant changes. P-value threshold was
decided as: 0.05/(total number of the variants). The number 0.05 is a commonly

recognized false discovery rate threshold.
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5.4  Results
5.4.1 Cartilage and RNA Samples

In total 16 cartilage samples were collected from femoral heads of female OA donors
(10 samples; median age = 73 yrs), and female NOF donors (6 samples; median age =
81 yrs) (Fig. 5.1A). The ages difference between the two groups are not significant
(Mann-Whitney p value = 0.14). Macroscopic scoring, using the same scoring method
as described in Chapter 4, confirmed the two sample groups were significantly different
(P =0.0024) with OA samples having a mean score of 4.9 and NOF 0.8 (Figure 5.2 B).
In fact, there were total 29 OA and 16 NOF samples were collected, but only total
RNAs extracted from these samples had the required quantity and quality (~5ug with
RIN > 7) for RNAseq at the time.

RNA-seq Patient Age Joint Scores
%0 i p= 4
100+ o OA ' P=0.002 _
90+ = = NOF . E gg;
L -
o B0 —_]-'_L 4
> 704 1_._; ML) s
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A B

Figure 5.2 The ages of the patients and the modified Noyes scores of the joints.
The figure shows (A) the ages of the patients and (B) the modified Noyes scores of
the OA and NOF joints. Mean age of the NOF patients (81 years old) is greater than
OA patients (73 years old). The difference between the two age groups is not
significant using Mann-Whitney test (P = 0.14). The differences of the scores of the
joints are significant between the two groups.

5.4.2 Quality of short reads and mapping

Quality of raw reads was checked with FastQC. Several aspects of the reads quality
were plotted into figures, including: per base sequence quality, read length distribution
and per base sequence content. Each of these represents a unique aspect of the read
quality (Figure5.3). The quality scores drop along with positions of the reads. Low

quality bases (Q < 20) on the 3’ end of reads were observed in all of the samples (Figure
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5.3 Al). The length of all reads was 78bp, as we specified for the RNAseq experiment
(Figure 5.3 B1). DNA base contents (A, C, G, T) were found inconstantly distributed in
the first 13-14 bp of reads, which in fact is commonly observed across NGS data sets
and originates from the random hexamer priming (Hansen et al., 2010). The
enrichments of random 5bp DNA polymers were also checked. This was calculated as
the ratio of the observed frequency and the expected frequency of a polymer been seen
on a position of reads using FastQC. Figure 5.3 D1 shows the patterns of most enriched
polymers of one sample. Several short polymers were found enriched only within the
first 14 bp of the reads, indicating potentially enriched sequencing patterns on those
positions. The source of this polymer enrichment could be the bias from the hexamer
priming or possible sequencing adaptor contamination at those positions. There were
also polymers enriched between the 14" base pair to the end of the reads, which
indicates possible enrichment of duplicated reads. After quality control on the short
reads, these quality statistics were checked again. These low quality tails were not found
after removing low quality reads (Figure 5.3 A2). As low quality bases and sequencing
adaptors contamination were removed, length of reads were not uniform, but most of
the reads were still in their original length (Figure 5.3 B2). No short polymer
enrichment was found after the 14™ base pair of the reads after removing adaptors

contamination in the quality control step (Figure 5.3 D2).
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Figure 5.3: Quality control of the raw reads.

A: Box plots of base quality scores of read positions across all reads in a sample. The
x-axis is the position of the reads. The y-axis shows the quality scores of the bases.
Al: Before trimming off low quality 3’ ends, the quality scores drops to below 20
near the end of the reads. A2: After trimming no bases have scores under below 20.
B: Read length distribution. The x-axis is the length of reads, while y-axis shows the
number of reads in a length. B1: Before trimming of low quality bases, all reads
were in 78bp length. B2: After the trimming, the majority of the reads are still of
their original length but some of the reads were shortened.

C: Percentage of each DNA bases in all reads on each position of the reads. The x-
axis shows the positions of reads, the y-axis shows the base content in percentage on
each position. A non-normal distribution is observed on the first 13-14bp.

D: Enrichment of short polymers on each position of reads. The x-axis shows the
positions of the reads; y-axis shows the relative enrichment levels of random short
polymers. D1: Short polymer enrichment can be observed both within the first 14 bp
and beyond the position. D2: After trimming of low quality bases and removal of
sequencing adaptor contaminations, polymer enrichments after the first 14 bp were
removed, while for the first 14 bp, they remained, indicating the source of the
enrichments are different.
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The insert size of each sample was calculated using PICARD tool from the sequencing
data. The insert sizes provided by the sequencing service provider were taken as
expected, but how the insert sizes were determined by the company was not clear. The
two sets of data were compared in the Table 5.1. The empirically determined insert sizes
were shorter compared to the expected ones, however, samples with longer expected
insert sizes appeared to have longer empirically insert size as well. This trend illustrated

that the difference of the insert sizes could be from the different determining methods.

Empirically

Expected Empirically determined

Expected  standard determined standard

Sample Type insertsize deviation insert sizes deviation
N2080 OA 178 30 144.6 27.9
N1947 OA 183 30 143.0 34.2
N2049 OA 184 30 143.4 354
N2209 OA 189 30 153.5 31.7
N2004 OA 183 30 158.2 29.1
N1873 OA 180 30 151.7 31.7
N2062 OA 181 30 152.5 35.2
N2112 OA 195 30 156.7 54.1
N1901 OA 199 30 166.6 43.5
N1866 OA 198 30 166.7 40.3
N2002 NOF 190 30 150.7 32
N2024 NOF 189 30 155.3 33.7
N2060 NOF 196 30 165.9 30.8
N2064 NOF 185 30 157.5 37.1
N2059 NOF 198 30 163.0 46.3
N2120 NOF 180 30 142.1 354

Table 5.1: Expected insert size and empirically determined sizes. Expected insert
sizes and the standard deviations were provided by the sequencing service provider.

After removing 3’ tails of low quality reads and sequencing adaptor contamination, on
average around 27 million read pairs were retained for each sample, equaling on
average 95% of the raw reads; Over 50% of the reads retained their original length (78
bases) and 75% were at > 70bp long. When mapping reads to the sequences of
ENSEMBL (Version 74) human transcripts, on average 81.6% of reads passed quality

control could be mapped to the transcriptome, while 96.5% of reads can be mapped to
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the human genome (Table 5.2). These mapped reads are equivalent to an average 47
fold of coverage to the human transcriptome, when considering the length of
transcriptome is at approximately 80 million base pairs (calculated from the transcripts
recorded in ENSEMBL Version 74). Table 5.2 also shows that around 15% of reads that

mapped to the genome aligned to introns and intragenic regions.

Sample Type Number Number Reads Reads at Total Mapped to Mapped Transcri- Equivalent
of Reads of Reads Passed least Base Transcripto to the ptome Genome
before After QC QC (%) 70bp (%) after QC -me (%) Genome Depth Depth
QC (million (billion (%) (Fold) (Fold)
(million Pair) bases)

Pair)

N2080 0A 28.9 27.6 95.4 78.0 4.0 84.8 96.7 49.5 1.3

N1947 0A 29.5 26.4 89.5 68.7 3.7 83.2 96. 8 45.7 1.2

N2049 0A 22.2 20.9 94.1 68.3 2.9 81.2 96. 5 36.0 1.0

N2209 0A 29.0 27.8 95.9 73.7 3.9 86. 2 96. 3 49.1 1.3

N2004 OA 28.5 27.2 95.6 77.1 3.9 81.1 96. 2 48.8 1.3

N1873 OA 26.7 25.1 94.2 79.4 3.6 80. 7 96. 4 45.2 1.2

N2062 OA 30. 3 29.0 95.7 70.9 4.1 78.0 96.5 50. 6 1.4

N2112 OA 28.7 27.5 95.5 70.9 3.8 76.7 96. 1 47.8 1.3

N1901 OA 29.0 27.9 96. 1 75.6 4.0 78.6 96.3 49.6 1.3

N1866 OA 26.8 25.2 94.0 76.0 3.6 81.3 96.9 44.9 1.2

N2002 NOF 30. 6 29.1 94.9 73.0 4.1 83.6 96. 2 51.2 1.4

N2024 NOF 26.7 24.8 92.8 72.2 3.5 83.0 96.7 43.5 1.2

N2060 NOF 28.7 27.6 96. 2 75. 1 3.9 80. 7 96. 4 49.0 1.3

N2064 NOF 30.8 29.4 95.6 72.4 4.1 76.2 95.7 51.6 1.4

N2059 NOF 27.7 26.2 94.8 73.4 3.7 82.3 96. 4 46.2 1.2

N2120 NOF 29.3 28. 1 96.0 73.8 4.0 87.2 96. 1 49.6 1.3

Mean 28.3 26.9 94.8 73.7 3.8 81.6 96. 4 47.4 1.3

Table 5.2: Mapping statistics of reads. The table presents several mapping
statistics of the reads for each sample and their mean values of all samples.
Around 95% of these reads passed our quality control filtering. On average,
~96% of reads can be mapped to the human genome while ~81% can be mapped
to the transcriptome. These reads are equivalent to more than 47 fold coverage of
the whole transcriptome.

Mapped reads to the whole genome were counted for each gene and then normalized to
samples library sizes and GC content of genes in order to reveal whether expression
profiles of genes can define the differences between OA and NOF samples. 24838 genes
that had RPKM > 0.3 in 80% of samples in either OA or NOF samples were considered
as genes expressed in human hip cartilage. As expected, the hierarchical clustering of
cartilage samples based on expression of expressed genes and the Principal component
analysis (PCA) plots showed perfect separation of gene expression profiles of the OA
and NOF samples (Fig. 5.3 A and B).
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Figure 5.4 Distances between the samples. A. The heat map and the hierarchical
clustering plot based on the expression profiles of the samples. B. The PCA plot of
the samples based on the expression profiles of expressed genes. Both figures
confirmed that the expression profiles of the samples could separate the OA and
NOF samples into two groups. This confirmed of reliability of our expression

profiles from the RNAseq data.
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5.4.3 Differentially expressed genes in OA cartilage

With the raw counts data, the threshold of 1 expressed copy of a gene in 80% of either
group of samples was considered as expressed. In total, 14,507 genes were found
expressed in the cartilage samples. This number is smaller than the number of genes
when using RPKM of 0.3 for filtering. In total, 1028 genes were identified as
significantly differentially expressed with an adjusted P-value < 0.05 and at least 2-fold
change (Additional Table A5.1). 402 genes were found up regulated in the OA samples
and 626 genes were down regulated. These include 812 protein coding genes, 72 long
non-coding RNAs (lincRNA) and 144 other types of RNAs (miRNA, rRNA, snRNA,
pseudo-gene etc) (Figure 5.5). It was noticed that all of the differentially expressed

small RNAs are located on genomic repeated region.
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Figure 5.5 The composition of differentially expressed genes. The figure shows
the number of differentially expressed genes of each type recorded in the
GENCODE database.

Among the top 30 up-regulated genes and 30 down-regulated genes, down-regulated

genes have generally larger fold changes. In fact, within the top 50 genes with highest
fold changes, 45 of them are down regulated in OA cartilage. The expression of the
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most down regulated gene CCL20 in OA cartilage is only 1/60 in NOF cartilage
samples, which is consistent with the observation of the microarray results. The
expressions of matrix metalloproteinase 1 and 3 (MMP1, MMP3) and the heme
oxygenase HMOX]I in OA is less than 1/19 of their expressions in NOF samples. The
serum amyloid A1 (S4A417) are among the most down regulated genes with a 25-fold
change, but the variation of how many reads mapped to the gene in normal cartilage
tissue is relatively large, ranging from 22 to 573. Bone morphogenetic protein-2
(BMP2) has almost 14 fold less expression in the OA samples with a reliable p-value
(adjusted P-value = 7.43e-66), which again confirmed this observation from the
microarray data, although it is contradict with other studies suggested (Fukui ef al.,

2003).

In the up-regulated genes, MAM domain containing 2 (MAMDC?2) has the largest fold
change (>11 fold) in OA cartilage, while the function of the gene is unknown and it was
not associated with OA before. A gene encoding voltage-gated potassium

channel subunit, KCNSI, was found having almost 10 times more expression in OA
cartilage samples, interestingly this gene has been reported to be associated with
neuropathic pain (Costigan et al., 2010). Significant up regulated expression of the gene
encoding asporin (4SPN), type 1l collagen alpha I (COL2A1) and growth differentiation
factor 10 (GDF'10) were observed, as well as another matrix metalloproteinase MMP16,

which was not identified from the microarray data.
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Fold Change Adjusted P-

Gene name Gene type (OA/NOF) value OA mean count NOF mean count
CCL20 protein coding -59.3 3.54E-25 5 1075
MMP1 protein coding -29.0 3.94E-18 3 235
CSorf27 protein coding -25.7 2.26E-51 35 1106
SAAI protein coding -25.0 5.14E-16 3 171
HMOXI protein coding -22.8 1.24E-97 192 4771
TNPI protein coding -21.6 3.77E-23 3 97
WTAPPI1 pseudogene -19.6 2.07E-39 10 228
MMP3 protein coding -19.5 1.09E-46 3914 90144
RND1 protein coding -18.8 3.77E-51 56 1215
NOS2 protein coding -18.3 1.20E-36 291 6542
NOD2 protein coding -18.2 1.21E-44 25 539
AC008592.8 lincRNA -17.9 3.22E-17 6 184
G0S2 protein coding -16.7 1.75E-20 117 2801
LIF protein coding -16.0 1.50E-12 29 927
PTGS2 protein coding -15.7 5.73E-37 135 2516
ATF3 protein coding -15.5 8.91E-31 31 583
BIRC3 protein coding -14.3 6.45E-30 25 434
MYBPH protein coding -14.3 6.08E-23 38 697
BMP?2 protein coding -13.6 7.43E-66 453 6658
Cllorf96 protein coding -13.5 1.56E-28 1148 18649
LYVEI protein coding -12.6 4.93E-22 67 1056
TLR2 protein coding -11.9 4.65E-107 102 1254
ORM1 protein coding -11.6 1.82E-18 4 64
NR4A3 protein coding -11.4 2.00E-30 22 286
SOD2 protein coding -11.3 3.66E-15 4705 104828
GLRX protein coding -10.9 9.43E-23 240 3509
PTX3 protein coding 9.8 2.37E-15 20 254
CCDC7IL protein coding -9.6 1.94E-51 38 392
LCN2 protein coding -9.6 1.91E-17 43 510
STEAP4 protein coding 9.3 1.79E-11 428 5562
TSPAN1I protein coding 4.5 2.85E-11 395 80
AL645608.1 protein coding 4.5 3.20E-06 11 2
MMPI16 protein coding 4.5 2.26E-07 294 55
SPTSSB protein coding 4.5 7.58E-14 677 138
RP11-300E4.2 antisense 4.5 6.39E-05 20 3
RP1-39J2.1 lincRNA 4.6 1.82E-06 19 3
PARTI lincRNA 4.7 6.53E-20 595 120
NREP protein coding 4.8 1.99E-21 326 65
MXRAS protein coding 4.8 2.59E-09 3026 550
RNUS5A-1 snRNA 5.0 0.000791459 6 0
TNNI2 protein coding 5.0 0.000219433 153 18
IFITM10 protein coding 5.1 4.28E-22 3865 723
RPI11-231C14.5 pseudogene 52 5.50E-05 18 2
SERTAD4-AS1 antisense 5.2 3.30E-26 331 60
ZCCHCS protein coding 52 2.75E-15 123 22
CAPN6 protein coding 53 6.07E-06 475 63
RP11-460119.2  lincRNA 54  0.000120061 5 1
NCAM1 protein coding 5.7 3.23E-21 435 71
CTHRCI protein coding 5.8 3.19E-10 1176 168
NFATC2 protein coding 6.0 5.43E-08 1516 194
SYTS protein coding 6.0 4.87E-08 499 63
CRISPLD1 protein coding 6.3 1.75E-12 7544 1014
TPPP3 protein coding 6.4 5.67E-07 434 46
CCDC129 protein coding 6.7 2.29E-07 256 25
GDF10 protein coding 6.8 2.26E-23 15671 2104
COL2A1 protein coding 7.4 1.66E-08 679560 61785
SERTAD4 protein coding 7.8 2.07E-26 1829 214
ASPN protein coding 8.1 1.15E-32 3122 354
KCNS1 protein coding 99 1.37E-18 187 15
MAMDC2 protein coding 11.0 1.73E-22 179 13

Table 5.3 Top 30 up and down regulated genes. The table shows the top 30 genes
with highest fold change in down regulated genes and up regulated genes

respectively. The down-regulated genes have generally smaller fold change than up
regulated genes.
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Over 200 GO terms were found significantly enriched in down regulated genes and
around 110 terms for up regulated genes. (Additional Table A5.2 & A5.3) These terms
were separated into the 3 main categories of GO terms: Biological Process (BP),
Cellular Components (CC) and Molecular Functions (MF). Both up and down regulated
genes are involved in various biological processes, such as cell proliferation, metabolic
process, cell mobility, regulation of transcription from RNA polymerase II promoter and
intracellular protein kinase cascade, and other 35 BP terms. Down regulated genes also
showed strong association with cell death, inflammatory response, immune response,
nitric oxide biosynthetic process and Estrogen Receptor-nucleus signaling pathway,
while up regulated genes were found involved in several different biological processes,
including: extracellular structure organization, prenylcysteine catabolic process,
glycoprotein metabolic process, sulfur compound metabolic process and regulation of
sequence-specific DNA binding transcription factor activity. In terms of CC, only 3
terms are specific to up regulated genes only, which are proteinaceous extracellular
matrix, integral to plasma membrane and Golgi apparatus part. Extracellular region,
extracellular space and extracellular matrix terms were found associated with both sets
of genes as expected. Down regulated genes were also associated with cytosol, nucleus
and I-kappaB/NF-kappaB complex. MF terms showed that up regulated genes have
involved in extracellular matrix structural constituent, oxysterol 7-alpha-hydroxylase
activity, Wnt-activated receptor activity and arylsulfatase activity, while down regulated
genes are involved in 61 other molecular level activities. Polysaccharide binding, ion
binding and sequence-specific DNA binding were found associated with both sets of

differentially expressed genes.
5.4.4 Pathways of differentially expressed genes

The differentially expressed genes identified were uploaded to the Ingenuity Pathway
Analysis to investigate their associated pathways. 81 canonical pathways were found to
be significantly (P value < 0.05) associated with the genes. Several of them are known
to be associated with osteoarthritis, including PI3K/AKT Signalling, HIF1a Signalling,
LXR/RXR Activation, Inhibition of Matrix Metalloproteinases and G-Protein Coupled
Receptor Signalling (Woessner, 1991; Collins-Racie et al., 2009; Kerkhof et al., 2010)
(Additional Table A5.4). A number of pathways containing genes that were previously

shown to be differentially expressed in OA were also found associated with the gene set,
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such as Sonic Hedgehog Signalling, VDR/RXR Activation, Estrogen-mediated S-phase
Entry, Oncostatin M Signalling, Role of JAK family kinases in IL-6-type Cytokine
Signalling and BMP signalling pathway, etc. (Hopwood et al., 2007; Kapoor et al.,
2011; Beekhuizen et al., 2013) Twelve cancer pathways also showed significant
association largely based on several common genes contained in all of these pathways,

including MYC, CDKNIA, ABLI, TFDPI, NFKB2, FZDI, FZD?2 and FZDS.

Almost half of the pathways (38/81) involves RELA and NFKB2, both genes were
significantly down regulated in the OA samples (Table 5.4). MMPI and MMP3 were
also found to be more frequently involved in the associated pathways. There were other
17 genes listed in Table 5.4, all of which were involved in more than 10 associated

pathways.

Gene Name Frequency in the associated pathways

RELA 38
NFKB?2 34
NFKBIE 22
PDGFC 17
VEGFA 15
PRKACB 14
MMPI 14
CDKNIA 14
PTGS2 13
TNFRSFIB 13
PRKAR2B 13
ABLI 13
MYC 13
MMP3 12
NOS2 12
CCL2 11
TFDPI 11
UTGAS 10
RHOJ 10
PDGFA 10
RHOG 10
RND3 10

Table 5.4 Differentially expressed genes involved in 10 or more associated
pathways. The table shows the genes that are involved more than 10 OA associated
pathways identified in our analysis. RELA and NFKB2 are involved in almost half of
the associated pathways (38/81). MMPI and MMP3 were found to be involved in
more than 12 pathways.
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5.4.5 Differentially expressed transcripts

BitSeq was used to identify differentially expressed transcripts. The software does not
require the assembling sequences of transcripts before testing differentially expression.
This saves computing time but limits the analysis to the known transcripts within the
available annotation. In total, 4352 transcripts were significantly differentially
expressed between the NOF and OA patients. They represent 2488 different genes, 928
of which were also found as differentially expressed genes. (Additional Table A5.5) The
transcripts encoding collagenases, including COL1A42, COL2A41, COL3A41, COL5A1,
COL5A2, COL8A2, COLYA1, COL9A2, COL9A43, COLI11A1, COL11A2, COL16A1 and
COL27A41, were up regulated at transcript level in OA patients, while COL2A41,
COL5A1, COL5A2 and COL11A1 were also found up regulated in OA on gene level.
Most of transcripts of SOD2 were down regulated in OA. Comparing the protein-coding
genes that were identified as differentially expressed genes to the transcripts, over 90%
of the protein coding genes (745/812 genes) have differentially expressed transcripts, it
is consistent as expected, since the transcript expression make up an observation of gene
expression. In contrast, ~30% of genes that have differentially expressed transcripts

were not detected as differentially expressed genes in the previous analysis.
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Figure 5.6 Comparison of differentially expressed transcripts and protein-coding
genes. A): The Venn diagram shows the comparison between genes that have
differentially expressed transcripts and differentially expressed protein-coding genes
identified using DESeq. Over 90% of the genes have differentially expressed
transcripts, while only ~30% of the differentially expressed transcripts have
corresponding genes identified as differentially expressed. B): The Venn diagram
shows the comparison between the pathways associated with the differentially
expressed transcripts and the differentially expressed genes. The percentage of the
overlapped pathways is 42% of the all pathways associated with the transcripts, which
is greater than the percentage of the common genes in A.

Pathways analysis using the same method as for differentially expressed genes showed
that 147 pathways were significantly (P value < 0.05) associated with the differentially
expressed transcripts. (Additional Table A5.6) Comparing to the pathways that
associated with differentially expressed genes, 85 pathways are unique to the transcripts
sets (Figure 5.6B), including Inhibition of Angiogenesis by TSP1 and Wnt/B-catenin
Signaling, which are known to be associated with OA (Giatromanolaki et al., 2001b;
Velasco et al., 2010a). 62 out of 81 pathways associated with the differentially

expressed genes were also found associated with the transcripts data set.
5.4.6 Alternative splicing events in OA cartilage

Exon usages were tested with DEXSeq, significantly differentially used exons
(corrected P value < 0.05 and fold change of the usage > 2) were identified. The result
reflects the alternative splicing events in OA comparing to the NOF samples. In total,
467 exons of 262 genes showed more usage in OA samples and 431 exons of 281 genes

showed less usage. (Additional Table A5.7) 27 genes were found in both of the lists,
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amongst which SOD2, MMP3 and ADAMTS4 were found. SOD2 and MMP3 are among
the most down regulated genes. SOD2 has 14 exons that have more usage in OA
samples. However, considering the large fold change of down regulation of the gene and
the number of total known exons of the gene (42 exons in ENSEMBL 74), the over
usage of the exons could be caused by absent expression of the other exons. MMP3 has
one exon with over usage in OA and another exon with less usage comparing to NOF
samples (Figure 5.7 A). As there are only three known transcripts of the gene and the
two exons belong to two different ones, this implies the composition of the transcripts in
OA are different from NOF cartilage samples and transcript “ENST00000478394”
could comprise less of the total expression of the gene in the OA samples. ADAMTS4
have known alternatively spliced transcripts identified in the synovium of OA patients
(Wainwright et al., 2006). The alternative spliced transcript found in the study had a
shorter exon 9 comparing to the longest transcript of the gene. In OA cartilage, we
found the exon usage differences of two exons of the gene comparing to the NOF
samples, the same change of the exon 9 (exon 5 in the Figure 5.7 B, as DEXSeq counts

exons without the respect of the transcription direction) was identified.
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Figure 5.7 Alternative splicing isoforms of MMP3 and ADAMTS4. The alternative
spliced exons of MMP3 and ADAMTS4 are shown in the figure A and B respectively.
Normalized counts for each exon are shown with blue bars for OA samples and red bars for
NOF samples. All known exons are listed with respect to their relative genomic positions.
DEXSeq ignores the transcriptions direction of the transcripts and always count exons
according to their coordinates on the forward strand. The known transcripts in ENSEMBL
74 are listed below. Exons whose usages were significantly changed (log2 fold change
(OA/NOF) =1 or < -1 with adjusted P value < 0.05) were highlighted. A): The usage of the
second exon of MMP3 is down changed in OA with log2 fold change (OA/NOF) = -3 and
adjusted P value = 4.25e-4. The last exon is up changed with log2 fold change (OA/NOF) =
1.2 and adjusted P value = 2.55e-8. This indicates the isoform composition changed in OA
and possibly the second transcript comprise more expression of the gene in OA. B): The
usage of the eighth exon of ADAMPTS4 up changed in the OA samples with log2 fold
change (OA/NOF) =2.7 and adjusted P value = 2.78e-3, while the fifth exon down changed
in the OA samples with log2 fold change (OA/NOF) = 2.43 and adjusted P value = 1.90e-2,
which indicates the longest transcript comprise less of the total expression of the gene in OA
samples. The change of the exon 5 is consistent with the splicing form reported in
(Wainwright et al., 2006).
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DiffSplice uses a different approach to detect splicing patterns from DEXSeq and
focuses on the coverage of the exon junctions. By comparing the normalized coverage,
alternative splicing events can be identified. In order to test whether the approach can
lead to novel findings, our RNAseq data was also analyzed using the software. In total
249 alternative splicing events of 196 genes that have significantly (False discovery rate
< 0.05 and more than two-fold change) different frequencies between OA and NOF
samples. These events include 103 intron retention events, 32 alternative transcription
starting or ending sites, 6 exon skipping events and 108 un-catalogued events.
(Additional Table A5.8) Comparing the lists of genes that have alternative splicing

events identified with the two software tools, only 26 genes were found in both datasets.
5.4.7 Transcripts expressed only in OA/NOF and novel transcripts

Transcripts expressed in cartilages were assembled using Cufflinks, with respect of the
known gene annotation available in ENSEMBL. Comparing the assembled transcripts
from the NOF and OA samples, there are 680 transcripts expressed only in OA group
(cufflinks estimated coverage > 1 in at least 80% of OA samples) and 1468 transcripts
expressed only in NOF group (cuftlinks estimated coverage > 1 in at least 80% of NOF
samples) (Additional Table A5.9 and A5.10). They represent 674 and 1435 genes in the
OA and NOF samples respectively. Within these 15 genes have different transcripts
unique to each condition, in other words, they have alternative spliced isoforms
expressed in the OA samples compared to the NOF cartilage samples. One of the genes
SDC1 was previously reported up regulated in OA (Salminen-Mankonen et al., 2005).

Novel transcripts of the cartilage samples were obtained by comparing all of the
assembled transcripts to the transcripts in ENSEMBL. Transcripts that have novel
sequences with acceptable abundances (cufflinks estimated coverage > 1 in at least 80%
of either OA or NOF samples) for NOF and OA patients were selected as novel
transcripts, which are shown in the Additional Table A5.11 and A5.12. In total 56
transcripts of 55 known genes in OA samples and 151 transcripts of different known
genes in NOF samples were identified as novel. These sequences were recorded in a

text file in GTF format (Supplementary file S5.2).

5.4.8 Variants detected and Allelic expression analysis
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Samtools was used to identify variants on the RNA level in the cartilage samples. On
average, around 232,500 variants were detected for each sample. After selection of
heterozygous locus that commonly exists in samples (heterozygous variants observed in
at least 3 OA and 3 NOF samples), 12352 variants were used in the allelic expression
analysis. The result showed that allele ratios on 114 loci of 85 genes are significantly
different (P values < 0.05) between OA and NOF samples (Additional Table A5.13).
Only two genes, ALPK3 and SYNI, have different allelic expressions in OA and also
significantly down regulated in the OA cartilage. Six genes have more than 3 loci that
have different allele imbalanced status, including TRPV4, CDC27, CPSF3L,
EDARADD, GPI and RP11-262H14.1, the latter of which is a long non-coding RNA
with no reported function. There is evidence showing that TRPV4 may have a role in

maintenance of the joint. (Clark et al., 2010)
5.4.9 RNA-editing in OA cartilage comparing to NOF analysis

RNA-editing events are commonly observed in mammalians and are possible to detect
only with RNAseq data (Levanon et al., 2004; Danecek et al., 2012). We used our
RNAseq data to identify possible editing events and to test whether an event is
associated with OA. Samtools was used to call variants from the RNAseq data and
select heterozygous sequencing variants from the RNAseq data, then the number of
reads supporting each base in the heterozygous variants was counted as the frequencies
of an RNA editing event in the samples. A locus where a heterozygous variant with a
base change consistent with the main form of RNA-editing changes (A-to-I, translated
as A-to-G) in any of the 16 samples was selected. After quality filtering of the variants,
the base counts for the filtered loci were tested for the differential editing frequencies
between the OA and NOF samples using a generalized linear model in R. In total
128,067 loci where an A to G change was identified in at least one sample were used for

the test. But no editing event was found to be associated with the disease.
5.4.10 Validation

Comparison of differentially expressed genes identified from this RNAseq study and the
microarray study was made in Chapter 6. The strong and significant correlation (P-value
<2.2-e16 and r = 0.74) between the two data sets validated our expression profiles

derived from the RNAseq.
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5.5 Discussion

In this chapter, we demonstrated the application of RNAseq technology in comparing
the OA cartilage transcriptome with that of NOF cartilage. The advantages of RNAseq
compared to conventional expression profiling technologies are obvious: the high-
throughput capability and ability to reveal the quantification, the structure and the
sequence of transcripts in a single base resolution, which enable its application in the
detection of novel gene isoforms. Furthermore, expression profiling using the
microarray technology is only restricted to an organism with a known reference
genome. The detailed comparison of the two technologies in terms of their ability in
gene expression profiling is described in the next Chapter, which showed RNAseq
identified two times more of differentially expressed genes than the microarray. In
addition, using RNAseq we identified several characteristics of the molecular changes
in OA cartilage comparing to the NOF cartilage, including differentially expressed
genes, differentially expressed transcripts, alternative splicing events, novel transcripts
and allelic expression in the OA transcriptomes. RNA editing events were identified but

none of the events were found to be associated with the disease.
5.5.1 Findings about OA with the RNAseq data

With the RNAseq data, over a thousand genes were found differentially expressed.
These include several genes that were previously associated with OA but were not
detected in microarray experiment, such as ADAMTS2 and MMP16. Up-regulation of
BMP2 was observed, which confirmed the similar finding from the microarray data,
although the change is contradicted with other studies (Fukui et al., 2003; Nakase et al.,
2003). These may suggest the different mechanism of hip OA from the other types of
OA.

Several pathways that previously associated with OA were also identified, these
include: ‘iNOS Signaling’ (Cheng et al., 2011), ‘Acute Phase Response Signaling’
(Sipe, 1995), ‘PI3K/AKT Signaling’ (Huang et al, 2011a), ‘LXR/RXR Activation’
(Collins-Racie et al., 2009) and ‘HIF1a Signaling’(Giatromanolaki et al., 2003b). In the
associated pathways, 22 genes were involved in more pathways than other genes,
especially RELA and NFKB2 were involved in almost half of the associated pathways

(38/81). It indicates that the associated pathways were biased, as some of the
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differentially expressed genes were better studied than the other genes. However, these
genes could still be potentially interesting targets for studying the mechanism of the
cartilage destruction in OA, as they play roles in a number of biological processes and
their differentially expression could lead to significant changes to the metabolic status
of chondrocytes. In addition to the differentially expressed genes, the expressions of the
transcripts were estimated, their sequences and structures were also identified, and
differentially expressed transcripts were also identified. All this information constructs
the whole transcriptome of the OA and NOF cartilage samples. When comparing the
transcriptomes, alternatively spliced transcripts were identified as well. Both MMP3 and
ADAMTS4 were found significantly down regulated and also alternative spliced in OA,
suggesting the down regulation of the genes are correlated with the transcripts
composition changes. The previously reported splicing form of AMDATS4 in synovium
in OA patients was also identified in cartilage samples, suggesting the types of tissue
have the same regulation mechanism in OA. While identifying genome-wide
differential allelic gene expression, six loci of TRPV4 showed differentially imbalanced
status. There is evidence showing that TRPV4 may have a roll in maintenance of joint
health (Clark et al, 2010). The imbalanced allelic expression of the gene may
contribute to the OA susceptibility.

5.5.2 Issues related to the sequencing depth

Sequencing depth is an important parameter when designing an RNAseq study. The
ability of detecting expressions of transcripts in an RNAseq experiment is dependent on
the number of reads that can be mapped to the transcripts, while lowly expressed
transcripts have less chance to be sequenced, so some genes may not be detected if
insufficient sequencing depth is specified. The sequencing depth in our study is in line
with the RNAseq guideline of the Encyclopedia of DNA Elements (ENCODE)
Consortium (ENCODE, 2009) for expression profiling studies, but only half of the
amount of the reads recommended for reliable detection of the relatively low expressed
transcripts. In our RN Aseq experiments, the sequencing depth achieved for the
transcriptome is around 47 for each sample. With this depth, ~ 25,000 genes were found
with RPKM > 0.3 in 80% of either OA or NOF cartilage samples. In fact, a single read
mapped to a transcript indicates the expression of the transcript, while RPKM is an

ambiguous expression measurement of gene expressions. The threshold that I used in

85



the analysis is only a reflection of the confidence of the detection. The RPKM of 0.3
was suggested as a threshold when RNAseq was introduced in 2008 (Mortazavi et al.,
2008) and was followed in several other studies (Labaj et al., 2011; Sam et al., 2011),
thus it was chosen in this study to filter genes before hierarchically clustering of
samples. The RPKM were calculated after normalization with consideration of GC
contents bias and gene length bias (Hansen et al., 2012). However, genes with low
counts can create difficulties in estimation and modeling gene expressions when
identifying differentially expressed genes in RNAseq studies (Bullard et al., 2010).
Thus the expressed copy number of genes was calculated with the raw count data and
only genes have at least 1 expressed copy in samples were considered as expressed, as
this is the minimum requirement to indicate that a gene was sequenced at least once. In
fact, with the read length and the average RNAseq library size (number of total reads)
of our data, RPKM of 0.3 equates to ~1 expressed copy. However, when using 1
expressed copy as a threshold only ~14,500 genes were considered as expressed. The
10,000 genes difference can only be from the normalization, which implies their
ambiguous detections in the samples and suggests insufficient sequencing depth in at

least some of the samples.

The splicing events detected are also dependent on the sequencing depth. Because not
all of the sequencing reads are from the junctions of exons, correct assembly of a
transcript will require coverage of more than just 1 expressed copy. Our RNAseq data
does not have the sufficient coverage recommended by the ENCODE to assemble
transcriptomes. However, DEXSeq and DiffSplice were used to detect alternative
splicing events without assembling the transcripts. The two algorithms are dependent on
sufficient coverage of exons and exon junctions respectively in both comparing
conditions, in our case OA versus NOF. But it can be problematic when the coverage in
any of conditions is low. In my DEXSeq results, 14 exons of the gene SOD2 were
identified as alternatively spliced, which is likely the result of very low coverage of the
exons in OA samples. Successful splicing event detections are not only dependent upon
the sequencing depth but also several other aspects, such as the gene expression level in
the tissue, complexity of the transcript structure and the performance of the software
tool, which currently remains as a bottleneck in the assembly of the transcripts and

alternative splicing events detection (Schliesky et al., 2012).
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5.5.3 Duplicates removal

In RNAseq reads, it is possible to observe duplicated reads due to PCR artifacts and
optical duplication, which are from the same cluster on a flow cell but identified as from
adjacent clusters. However, the necessity of removing these is still an open discussion in
bioinformatics communities, as highly expressed genes could result in duplicated reads
as well and these reads cannot be differentiated from the duplicated reads of other
sources. Because this study was focused on the comparisons between OA and NOF
RNA libraries, the noise of the duplicates should not affect our analysis. But when the
RNAseq data was used to call variants on the mRNA level, the accuracy of the variants
can be affected by the duplicated reads. This could lead to false positives even after
applying filters on the variant call qualities and the coverage. In recent studies (Bahn et
al., 2012; Chen and Bundschuh, 2012) for variant calling of RNAseq data, the

duplicates were recommended to be removed for accurate variant detection.
5.5.4 Aligners for RNAseq

In my analysis, Novoalign, GSNAP and Tophat were used to map reads to the reference
genome and the reference transcriptome. Novoalign had better sensitivity (Chen and
Bundschuh, 2012) but limited support of mapping RNAseq reads, thus it was used to
map reads to the transcriptome. GSNAP can support the use of known SNPs and Tophat
performs a two round alignment strategy with the support of the use of known transcript
annotation, these features were particular useful for the RNAseq data mapping and
unique to the software at the time, thus both of them were chosen to map reads to the
reference genome. When using known SNPs, more reads can be mapped as mis-match
on the SNP sites are tolerated. This can be helpful when assembly transcripts and
identify alternative splicing events because more mapped reads can provide more
evidences to support exon junctions and assembled transcripts. But the mapping
accuracy is affected by the reliability of the SNPs as well, and it can be more
problematic when identifying variants at the RNA level, because un-reliable SNPs can
cause GSNAP to incorrectly score mis-matches and results false positive variants when
calling variants from the alignment. Therefore, Tophat was used for the alignments,
from which sequencing variants on the RNA level were called. As for the alignments for

gene expression profiling, in my opinion, the choice of the software has little impact on
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the results of differentially expressed genes, because all of the aligners treat the reads no

differently between samples.

The mapping algorithm for RN Aseq reads is a constant interest of the field in the recent
years and several aligners were published over the years, such as STAR (Dobin ef al.,
2013) and SMALT from the Sanger Institute. Comparison studies of the aligners
(Engstrom et al., 2013; Hatem et al., 2013) showed their different strengths and
weakness, and no single aligner outperformed the other ones. However, this gave end-

users the freedom to choose the right aligner for their different needs.
5.5.5 The analysis of differentially expressed genes

Within the 14,507 genes found expressed in the cartilage samples, the majority of them
are protein-coding genes with the expression of pseudo-genes, miRNAs, lincRNA and
snRNAs were also observed, a number of which were also found as differentially
expressed. However, the reads mapped to the snRNAs could be incorrectly mapped. As
most of these genes are located in repetitive regions, the mapping could be incorrect.
The read counts of them are therefore not as reliable as other type of genes. Compared
to the small RNAs, the low read counts of those differentially expressed miRNAs are
more reliable, plus there are no known exon overlapped with these genes, therefore the
differences of their expression between OA and NOF samples could be real. But
miRNAs are only ~22nt long and should have been lost in the sequencing library
preparation, so the detection of miRNAs in my data could be pri-miRNA or pre-
miRNAs per se. The software tool DESeq was used in this study to call differentially
expressed genes. In a comparison of the software with other tools (Seyednasrollah et al.,
2013), DESeq detected more differentially expressed genes than other software tools. It
also showed lowest false positive rate comparing to the other tools when number of
biological replicates increased. In our study, it identified more than a thousand
differentially expressed genes, which is twice of the genes identified in our microarray
experiment when using the same fold change and p-value cut-offs (see in Chapter 6.3

Results).

5.5.6 The analysis of differentially expressed transcripts and splicing events
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One of the advantages of RNAseq is that it can be used to assemble the sequences of the
transcriptome, which is all of the expressed RNAs in the cartilage samples for our data.
While in my analysis, de novo assembly was restricted because of the two factors: 1)
none of our samples achieved the recommended sequencing depth suggested in the
ENCODE best practice; 2) performing de novo assembly of the human transcriptome
requires large amount of memory (up to 80Gb (Illumina, 2009)), which was not
supported by our local set up at the time of this study. Therefore, Cufflinks was used to
assemble transcripts, as it utilizes the existing reference genome and annotations to
assemble transcripts. Consequently, it uses less memory and is easier to compare with
the existing gene annotations. Compared to the de novo assembly strategies, Cufflinks
performs better in several respects, including sensitivity, specificity and number of
assembled full-length transcripts, but with increasing sequencing depth the difference
has become smaller (Schulz ef al., 2012). Cuffdiff was developed by the same authors
of Cufflinks and was designed to call differentially expressed genes, transcripts and
alternative splicing events from the assembled transcriptome of Cufflinks. But in my
analysis, Cuffdiff was used but did not report any significant hits of differentially
expressed transcripts or alternative splicing events. However, when using BitSeq,
DEXSeq and DiffSplice, considerable numbers of differentially expressed transcripts
and alternative splicing events were identified. The overlap between the differentially
expressed protein-coding genes and transcripts also verified each other. This suggests
Cuffdiff did not work as expected. The cause of it is unclear, as the software was
successfully used in many other studies (Wu et al., 2012; Young et al., 2012; Garzia et
al., 2013). Compared to Cufflinks, DEXSeq and DiffSplice use different algorithms and
do not require assembled transcriptomes. The two tools also use different algorithms
from Cufflinks to identify and test for alternative splicing events, which also explains
that alternative splicing events of only 29 genes were commonly found in the results of
the two tools. DEXSeq relies on the existing transcripts annotations, so it lacks the
ability to detect novel splicing events. In the DEXSeq results of our RNAseq data, two
exons of the ADAMTS4 were found significantly differentially used between OA and
NOF samples, indicating the transcript composition changes in OA. In fact, splicing
event detection remains a challenge for RNAseq data. It is limited by the computational

ability of current assembly software tools (Schliesky et al., 2012), the quality of the
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input RNAs, the targeted transcript lengths and also the GC contents of the transcripts
(Rehrauer et al., 2013).

5.5.7 Variant detection at the RNA level, allelic expression analysis and RNA-

editing events identification

At the time of the study there were no published software or pipelines specifically
designed to identify sequencing variants on RNA level. However, as the principle is the
same as the identification of variants at the DNA level, Samtools was used to identify
variants for our RNAseq data. Because insertions and deletions could result in incorrect
mapping, in order to obtain accurate estimation of the coverage of the variants, only
heterozygous single nucleotide variants were chosen to evaluate the allelic expressions
of genes and frequencies of RNA-editing events. In my analysis, duplicated reads were
not removed, which could lead to false positives in detection of variants but better
accuracy in estimation of the coverage and the frequency of RNA-editing events. To my
knowledge, there was no existing software at the time to test differentially allelic
expression or differential frequency of RNA-editing events at the genome-widely, thus I
implemented my own methods in Perl and R script for the tests. In fact, the RNA-
editing events defined in the study were just changes that were consistent with the
RNA-editing change (A to I). Unfortunately, there was no DNA data to verify the

identifications.
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Chapter 6 Comparison of the two platforms: RNAseq and microarray

6.1 Introduction

As a new technology to quantify gene expression RNAseq has several advantages
compared to the microarray, including its single-base resolution, lower background
noise and larger dynamic detection range (Wang et al., 2009), In addition the RNAseq
data can potentially provide other information of a transcriptome, such as alternative
splicing events, etc. With the decreasing price of the NGS, RNAseq has become more
popular with a trend for replacing microarray in the last few years. However, several
studies have shown that not all genes detected using the microarray were also detected
in RNAseq data (Illumina, 2011). In order to compare the performance of the
microarray technology and the RNAseq in terms of gene expression profiling, we
compared the two data sets produced from the cartilage samples in this study to the
recently published quantitative analysis of gene expression in cartilage using RT-PCR

(Swingler et al., 2009b), in which over 500 genes were profiled.

6.2 Methods
6.2.1 Sources of the data sets for comparison

The data sets were obtained from different sources. The RT-PCR data was downloaded
from the supplementary files of the published manuscript (Swingler et al., 2009b). Our
microarray data was processed and probes were filtered as described in the Chapter 4.
Only the probes that passed the filtering criteria were considered as expressed in the
cartilage samples. As there were duplicated probes for a same gene on the microarray
chip, only the probe that has the lowest corrected P-values among the duplicates was

selected for comparison. Expressed genes in our RNAseq data were defined as genes
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that have at least 1 copy in 80% of samples in either group of the cartilages (described
in Chapter 5). Fold changes and corrected P-values of the genes in RNAseq data were
calculated as described in Chapter 5 for gene expression analysis. Genes that have more
than 2 fold expression changes in OA with P-values (or corrected P-values) < 0.05 in

each data set were defined as differentially expressed genes.
6.2.2 Identifier conversion

In order to compare the expression and fold changes of the genes, the gene identifiers
used in each data set were converted to ENSEMBL gene identifiers using the online tool

DAVID (Huang da et al., 2009).
6.2.3 Statistical analyses

The Pearson’s correlations of fold changes between the data set were calculated in R.
The P-values used in the RT-PCR study (Swingler et al., 2009a) were used in this
comparison. Differentially expressed genes in the microarray and the RNAseq data

were analyzed as described in Chapter 4 and 5.

6.3 Results
6.3.1 Detected genes in the data sets

The number of expressed genes that can be corrected detected is the most important
quality criterion for gene expression profiling technologies, thus we only compared the
expressed genes identified in the three datasets. Different numbers of genes were
investigated and identified as expressed in each data set, owing to the different
technologies, samples sizes and the quality filtering criteria. (see Table 6.1) In the
microarray data, there were almost 48 thousand probes used, but ~20% are designed to
target the same genes, thus in total ~38 thousand unique genes were profiled, amongst
which over 33 thousand genes had valid identifiers. In total 13202 genes were selected
as expressed in the microarray data. Restricted by the library preparation protocol, our
RNAseq data set in theory had the ability to investigate every transcript with a poly-A
tail, thus every mRNA can be considered as investigated genes. Among them, 14507

genes were considered as expressed in the cartilage samples. The RT-PCR data
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investigated 551 genes with valid identifier and detected 427 genes expressed in the
cartilage samples. Comparison of the detected/expressed genes in the data sets revealed
discrepancies of the two high-throughput platforms (Figure 6.1). The microarray data
detected 3474 genes that were not determined being expressed in the RNAseq data.
Seventy-two of them were also detected within the RT-PCR data. Among the genes
expressed in the RNAseq data, 4779 genes were not detected in the microarray data, 24
of which were detected with RT-PCR. There are 56 genes only detected with the RT-
PCR. In terms of the differentially expressed genes, only a fraction of such genes in the
RT-PCR data was also identified as differentially expressed using the other two
technologies. However, the RT-PCR data validated more differentially expressed genes
from the RNAseq data than the microarray data. Furthermore, comparing the number of
differentially expressed genes identified in the two high-throughput data sets, more than
half of the up-regulated genes (104/203) and 85% of the down regulated genes
(172/200) in the microarray were identified in the RNAseq data set, while the
microarray data only identified no more than 30% of differentially expressed genes

(272/1028) in the RNAseq data.
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Differenti-

Data set Genes ally
Sample Criteria to select Total with Expressed expressed
/Technology size expressed genes Genes  valid ID genes genes
OA=12
RT-PCR Median Ct <40 569 551 427 117
NOF=12
OA=9 Probes with valid flag value 37838
Microarray in > 80% of either group of 33425 13202 403
NOF=10 | samples (48784
probes)
0A=10 Genes have more than 1 All
RNAseq molecule detected in >80% 55765 14507 1028
NOF=6 of either group of samples mRNAs

Table 6.1 Number of genes in the 3 datasets. The table presents the technology
used to generate the data, the sample size, the criteria to select expressed genes, the
total number of genes interrogated, number of genes that have identifiers can be
converted to ENSEMBL identifiers, number of genes expressed and number of genes
which expressions were significantly changed (Fold change > 2 or <-2, P-values <
0.05) in OA cartilage samples comparing to NOF for each data set. As there are no
primers or probes used for RNAseq technology, we consider every mRNA was
interrogated in the analysis. With the same fold change and p-value thresholds,
RNAseq identified more than twice of the differentially expressed genes identified
using microarray, despite the similar number of genes found expressed in the
cartilages using the both technology.
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Figure 6.1: Comparison between detected genes. A. The Venn diagram of
expressed genes in each data set. In the 427 expressed genes in the RT-PCR data, 56
of them were not found expressed in RNAseq or microarray data. 274 genes were
found expressed in all of the 3 data sets. The overlapped expressed genes between
the microarray and the RT-PCR data are more than the overlapping genes between
RNAseq and RT-PCR data. B. The Venn diagram of up regulated genes in cartilages
in each data set. Six genes identified in RT-PCR data were identified in RNAseq
data, only 2 were identified in microarray data; C. The Venn diagram of down
regulated genes in OA cartilages in each dataset. Nine genes identified in RT-PCR
data were identified in RNAseq data, including the 4 genes identified in microarray
data.

Among the 427 genes detected in the RT-PCR data, 274 genes were detected by all of
the technologies. Their expressions are relatively higher than the other genes in the RT-
PCR data (Figure 6.2), while the 56 genes detected by only the technology were
expressed at the lowest levels compared to other genes. The genes that were not
expressed in the RNAseq data had lower expression levels than the other genes in the
RT-PCR data. The expressions of the 56 unique genes to the RT-PCR were also checked
in the RNAseq data, as these genes could be detected using RNAseq but did not pass
the criteria to be considered as expressed. None of the 56 genes had more than 0.5
molecule copy detected in the RNAseq data. Compared to the expressed genes, which
had around or more than 20 copies, these genes expressed at very low levels (Table 6.2).
Comparison of the Ct values of the 56 genes to all of the expressed genes in the RT-

PCR confirmed the relative lower expression of the 56 genes.
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Figure 6.2 Relative expressions of genes in the rt-PCR data grouped by
intersections of the 3 data sets. The figure shows the Ct values of genes in the
RT-PCR data. The genes are separated into 8 groups: All 3 sets: genes that were
commonly detected in the 3 data sets; Array PCR: genes that were detected in both
the microarray and the RT-PCR data but not in the RNAseq data; PCR only: genes
that were detected in the RT-PCR data only; RNAseq PCR: genes that were
detected in both the RNAseq and the RT-PCR data but not in the microarrays data.
Ct values for OA and NOF samples were separately denoted. The asterisks indicate
the significances of the comparison between the groups. “***” means the p-value
< 0.001. Comparing the genes commonly detected in all of the 3 data sets, genes
detected by the RNAseq had lower Ct values meaning more expression than the
other 2 groups of genes. Genes that were detected by RT-PCR only had highest Ct
values, which meant they have lowest expression levels. It implies that the
RNAseq data does not have enough coverage to detect the lowly expressed genes.
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RNAseq (copy of the molecule) RT-PCR (Ct)
Genes Genes All expressed
expressed in All expressed expressed in genes in RT-
RT-PCR only genes in RNAseq | RT-PCR only PCR
0.42 19.75 33.87 29.67
OA (#0.033, n=56)  (+1.59, n=14507) | (£0.15,n=56) (+0.45, n=370)
0.38 22.05 35.24 29.97
NOF  (+0.031,n=56) (£1.59, n=14507) | (+0.18, n=56) (+0.50, n=370)

Table 6.2: Mean expressions of genes expressed in RT-PCR only and other
expressed genes in the RNAseq and RT-PCR data set. For the RNAseq data, gene
expressions were measured with approximate number of molecule copies of genes,
which were calculated as: (number of reads mapped to a gene) * (read length) /
(exonic length of the gene). Ct values were used as an approximate measure of gene
expressions in RT-PCR data. The mean expression values for OA and NOF are listed
in the table. The standard error of mean “+” and number of genes “n” are listed. The
mean expression values of genes that were expressed in RT-PCR data were lower than
other genes in both RNAseq and in RT-PCR data, which indicates that these genes
were expressed at very lower levels comparing to the other genes.

6.3.2 Comparison of fold changes of genes in the datasets

The other quality criterion of a gene expression profiling technology is the accuracy of
expression quantification, as none of these technologies can provide absolute expression
levels of genes, fold changes of genes (OA/NOF) commonly detected between any two
of the data sets were compared and the correlation of the fold changes were tested
(Figure 6.3). There were 345 genes commonly expressed between the RT-PCR and the
microarray data. The correlation of the fold changes is significant (P-value =1.54e-4)
but is not strong (» = 0.19). Compared to the microarray data, RNAseq data showed
better correlation with the RT-PCR data (P-value = 5.77e-12 and r=0.38). The
correlation between the two high-throughput technologies is significant (P-value < 2.2e-

16, note: the smallest P-value that R can produce) with an » = 0.74.
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Figure 6.3: Comparison of the fold changes between data sets. A. The correlation
of fold changes between microarray and RT-PCR data. There were 345 genes in total
found expressed in cartilage in the both data sets. The p-value of the correlation is
significant but the correlation is not as strong as between RNAseq and RT-PCR data;
B. The correlation of fold changes between both RNAseq and RT-PCR data. Genes
that could be used for the test are fewer comparing to A, but the correlation is
stronger; C. The fold change correlation between microarray and RNAseq. There
were 9726 genes found expressed in the two data sets. The correlation is significant
(P-value < 2.2-e16, which is the smallest p-value that R can produce) and stronger (»
=0.74).

6.4 Discussion

The very lowly expressed genes that were only detected by the RT-PCR data imply the
insufficient coverage of our RNAseq data. As the protocol of the RNAseq library
construction involves amplification of the cDNA sequences, highly expressed
transcripts will have more chance to be sequenced than transcripts expressed at
relatively low levels. In our experiment, the RNAseq has achieved 47-fold coverage of
the whole transcriptome, which in fact exceed the requirement in the ENCODE
guideline (ENCODE, 2009), while there were still genes expressed in the cartilage that
did not receive enough reads to quantify them. This indicates that in order to investigate
lowly expressed genes more sequencing depth is required and, depending on the

expression levels of the genes, the requirement of the depth may increase exponentially.

To map the gene identifiers used in the different data sets, we tried to map all identifiers
to ENSEMBL, while in the RT-PCR and the microarray data some of the genes could
not be mapped. The reason could be the lack of updates of the annotations used in the

two datasets. This led to the difficulties in comparison of genes. However, the RNAseq
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has advantages in quantifying genes in latest annotation, because the generation of the
RNAseq data does not depend on any transcriptome knowledge thus the data analysis
can easily be adapted to the latest available transcriptome or genome annotation. In
comparison, the ability of the microarray platforms is restricted by the number of the
probes printed on the chips and the efficiency of these probes. The design of the probes
often represents the knowledge of the transcriptome at the time, but such knowledge
quickly becomes outdated, especially after the emergence of the next-generation

sequencing.

Owing to the insufficient coverage of the RNAseq data, the microarray detected more
expressed genes confirmed by rt-PCR data. This revealed an advantage of the
microarray platform in profiling lowly expressed genes, which may not be cost-
effective for RNAseq studies at the moment because of the uncertainty of how much
depth is needed to be achieved for reliable quantifications of such genes (Tarazona et
al., 2011). However, in terms of differentially expressed genes, the RNAseq data
identified more genes than the microarray platform, plus shared a better correlation with
the RT-PCR. This could be due to the performance of the probes of the array chip.
Several factors, such as cross-hybridization, can affect the performance of the probes on
microarray chips (Chou et al., 2004). Furthermore, the data analysis, especially the
normalization, of RNAseq data is relatively simpler than the microarray data, as it has
less background noise and single-base resolution. Although the number of sequencing
reads derived from transcripts can be biased by their lengths, abundances and GC
contents (Oshlack and Wakefield, 2009; Hansen et al, 2012), when identifying
differentially expressed genes the bias can be cancelled, as the same sequences are
compared between samples. In the comparison of the fold change correlations, the
RNAseq data also presented better correlation with the rt-PCR data than the microarray
data, indicating the better accuracy of the technology. Herein the whole comparison of
the two high-throughput technologies is based on gene expression profiling of human
cartilage. When considering an organism without available complete gene annotation,
such as most of plants and bacteria, the advantages of the RNAseq are even stronger.
Furthermore the same data can also be used to determine splicing events, transcript

sequences and other aspects of the transcriptome.

rt-PCR data showed worse fold change correlation with both of the microarray and
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RNAseq data in this project, comparing to the correlation between the later two. This
could largely because the cartilage samples used in the RNAseq experiment were just a
subset of the microarray experiment, while cartilage from completely different patients
were used in the rt-PCR study. The slight differences of RNA extraction protocol could
contribute as well. The also implied that the sample size used in the three experiments

were not sufficient to neutralize the genetic difference of individuals.

In fact, some of the discrepancies between the 3 datasets could also be from biological
factors. For example, a recent study showed that the circadian clock of cartilage tissues
regulated the gene expressions as well (Gossan ef al., 2013). In the study, 615 genes
were found to have a circadian pattern. This could explain why some of the
differentially expressed genes were found in one data set but not in the other two, and
also the fold change differences. Our samples were collected from the same operation
theatres and the isolation of RNA occurred at approximately the same time of data, but
not such information was available from the PCR study. Furthermore, the age of the
cartilage donors could have differed. Circadian rhythms are known to be altered by

chronological age (Gossan et al., 2013).

In conclusion, compared to the microarray, the RNAseq has better accuracy in terms of
quantifying genes and identification of differentially expressed genes, but may present
difficulties for lowly expressed genes when the sequencing depth is insufficient. The
analysis of the RNAseq data is still not as mature as for the microarray data, but with
the continually increasing interests in the technology, it will be as easy as microarray

data analysis in the next several years.
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Chapter 7 General Discussions

In order to understand the molecular changes in OA, in this project I investigated the
OA transcriptome with two different technologies, microarray and RNAseq. With both
technologies, more than a thousand genes were identified as differentially expressed.
Both up-regulation of collagens and down-regulation of aggrecanases were found,
including ADAMTS?2 that was only identified in the RNAseq data. When applied the
same P value and fold change threshold to the both gene sets, the number of DE genes
identified with RNAseq was around two-fold more than identified with microarray
technologies. Although the cartilages samples used in the RNAseq experiment were a
subset samples of the microarray datasets, the common DE genes of the two dataset
were no more than three hundred. Nevertheless, there is still a significant correlation of

fold changes between the two datasets.

With DE genes, over hundreds canonical pathways were found associated with OA.
These include known OA associated pathways, such as Wnt/B-catenin Signaling,
PI3K/AKT Signaling, HIF1a Signaling, LXR/RXR Activation, p38 MAPK Signaling,
iNOS Signaling and Acute Phase Response Signaling, with later two only identified in
the RNAseq data. Both of my experiments also associated more than 50 other canonical
pathways with OA, such as Oncostatin M Signalling, TREM1 signalling and IL-17
Signalling. Three genes CDKNIA, VEGFA and MYC were also identified as keys
genes(hubs) that linked the OA associated pathways and networks, among which MYC

was reported to be associated with chondrocytes apoptosis.

Because of the advances of the technology, in the RNAseq experiment more findings of
OA were discovered, in addition to the DE genes. As expected, most of protein-coding
DE genes have differentially expressed transcripts as well, but there are also DE
transcripts of genes with no expression change in OA. Most of collagens were found
have up-regulated DE transcripts in OA, while COL241, COL541, COL5A2 and
COLI1IAI were also found up regulated in OA on gene level. A known alternatively
spliced transcript of ADAMTS4 was also found in the OA cartilage, which leads to the
confidence of other alternative splicing events identified from the data, such as the

transcripts composition change of MMP3 in OA. Alternative splicing events have been
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found to be associated with a number of diseases (Garcia-Blanco et al., 2004), but it is
difficult to determine whether a DE isoform can contribute to the destruction of
chondrocytes without the overall gene expression change, however, these findings of
the DE transcripts and isoforms can still be useful in terms of understanding the whole

mechanism of OA progression.

The sequence and and the structure of the transcripts expressed in cartilage samples, and
those uniquely expressed in normal and OA hip cartilage were also identified in this
study. Due to the limitation of the analysis methods at the time, novel transcripts could
be missed, but such results can still be very informative for future probe designs and

other systematic studies of hip cartilages.

OA is a complex disease and have been studied for years from multiple different angles
including genetics and epigenetics in recent years (Reynard and Loughlin, 2012). In this
project, with the transcriptomes derived using the the two high-throughput technologies,
I added more understanding to the disease mechanism, in the hope of providing

interesting targets to conquer it in the future.
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Chapter 8 Future Work

Since the emergence of RNAseq technology, it has started to show the trend of
replacing the microarray technology. The knowledge of the RNAseq has expanded as
well, including the understanding of the RNAseq data itself and the algorithms/tools for
the analysis. All of the knowledge and the new algorithms/tools could be used to
improve my analysis of the RNAseq data.

The sequencing depth was recognized as the critical parameter of RNAseq for
identification of differential expressed genes (Tarazona ef al., 2011). Our RNAseq data
has a sequencing depth in line with the recommended depth of ENCODE (ENCODE,
2009) for moderate gene expression profiling. In total, 14,507 genes were found
expressed in the cartilage samples. With this depth, I managed to assemble transcripts,
identify alternative splicing events and differential allelic expressions. However, in
order to detect lowly expressed transcripts and increase the accuracy of expression
estimation, the sequencing depths of the samples need to be increased. Using the new
algorithms/tools published in the last several years, the whole analysis of the RNAseq

data could be improved.

The mapping algorithm for RN Aseq reads is a constant interest in the field and critical
for accurate estimation of gene expression. Several aligners were published over the last
several years since I undertook the work, such as STAR (Dobin et al., 2013), which
features better performance and significantly less computing time in comparison with
other aligners (Engstrom et al., 2013). The aligner was also recommended to be used as
the best practice from the GATK developers for the detection of variants (GATK-Team,
2014). The use of STAR could improve both the gene expression estimation and the
splicing event detection with less computing time. Besides the transcript assembly,
mapping the reads to the reference genome usually is the most time consuming stage in
an RNAseq data analysis pipeline, thus less computing time is also a desirable feature of

an aligner.
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In terms of de novo assembly of transcriptomes, several tool sets was published, such as
Velvet-Oases (Schulz et al., 2012), ABySS (Birol et al., 2009) and Trinity (Grabherr et
al., 2011). Trinity has implementation to support the use of computing grid, which
reduces the computing time and also the memory usage. With the improvement of our
local computing setup, it is not feasible to use Trinity to assemble transcriptomes. Plus
tools to estimate expression of transcripts are also provided in the software package,
which eases the use of the software. Compared to the strategies of BitSeq and Cufflinks,
which utilize the existing transcript annotations, Trinity can be used on organisms
without a reference genome or comprehensive annotation. After transcripts assembly,

alternative splicing events can also be easily identified.

Variant calling algorithms evolved from simple calling methods, like Samtools and
Varscan, to more advanced methods, such as freebayes (Garrison and Marth, 2012) and
HaplotypeCaller of GATK (McKenna et al., 2010). Instead of searching along the
genome for different bases from the reference, freebayes and HaplotypeCaller assemble
the reads first then compare the assembly to the reference. With this method, false
positives of mis-alignment caused by indels and low quality bases can be removed.
Variants at the RNA level can be identified more accurately using these more advanced
variant callers, thus allelic expression analysis and RNA-editing events identification
would also be more accurate. In fact, the recent published tool ‘REDI-tools’ (Picardi
and Pesole, 2013) provides the whole pipeline for RNA-editing event identification. It
also has functions to compare RNAseq data to corresponded DNA data, which eases the

RNA-editing analysis.

In the recent years, the methodology of the RN Aseq library preparation and sequencing
technology has also been developed. Strand specific RNAseq (Levin ef al., 2010)
becomes more popular and is replacing the standard paired-end sequencing strategy.
The strand specific RNAseq preserves the strand information of the transcripts. The
strand information of the transcripts completes the transcriptome and also helps to
differentiate reads from anti-sense transcripts of genes. Single cell RNAseq has also
been introduced (Tang ef al., 2011). The technique allows researchers to study how a
single cell response to the environmental stimulates at its different developmental

stages.
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My PhD project represents a pioneer and comprehensive transcriptome study of hip OA
cartilages using the RNAseq. The technology has received extensive interests from the
researchers since it was introduced because its irreplaceable advantages over the
microarray analysis. Both the application and the analysis of the technology are
continually improving, which not only extends the ability of the technology to suit
different research themes but also eases the analysis towards customized research
themes. Although the analysis is still not as straight forward as for the microarray data,
in the forthcoming years, with the knowledge and experience accumulation, such

analysis should become standard.
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Appendices

Supplementary S5.1 R script of association between RNA-editing events and OA

X <- as.numeric(Sys.getenv("SGE_TASK_ID"))

testEdit<-function(j){
Data20121011<-
read.table("Common_Heterozygous with_info_filtered_4 regression_newVersion.tx
t_Editing tested.txt_preprocessed", head=T, as.is=T, sep = "\t")
Data20121011<-Data20121011[Data20121011%$cRef!="-" &
Data20121011$cVar!="-",]
Data20121011<-Data20121011[Data20121011$cRef!="0" |
Data20121011%cvVar!="0", ]
VariantsID <- with(Data20121011, paste(Chromosome, Start, sep="."))
Data20121011%$VarID <- VariantsID
Data20121011%cRef <- as.integer(Data20121011%cRef)
Data20121011%cVar <- as.integer(Data20121011%cVar)
Data20121011$Disease <- as.factor(Data20121011$Disease)
Data20121011$Sample_name <- as.factor(Data20121011$Sample_name)

Allvariants <- unique(VariantsID)
library(1lme4)

###Control how to split the file
max <- 10000

x<- seq_along(Allvariants)

y<- X

Split <- split(y, ceiling(x/max))

Index <- Split[[j]]
AllvVariants.sub <- AllVariants[Index]
###Control how to split the file ### end

N <- length(AllVariants.sub)

AllResults <- vector(length=N, mode="character")
Mod@Warnings <- vector(length=N, mode="character")
ModlWarnings <- vector(length=N, mode="character")
NA.test.type <- vector(length=N, mode="character")

for (i in seq(N)){
Indx<-Data20121011¢$VarID==AllVariants.sub[i] #chrl5.100246942
cat(i," ",Allvariants.sub[i],": ")
YDat<-data.frame(Ref=Data20121011$cRef[Indx],
Var=Data20121011%$cVar[Indx])

if ((length(which(YDat$Ref>0))<2) ||
(length(which(YDat$var>0))<2)) {# handle @ count
AllResults[i] <- "NA"
NA.test.type[i] <- "@Reforvar"
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Ca't("@_NA", "\n")
next

}

XDat<-data.frame(Status=Data20121011¢Disease[Indx],
SampleID=as.factor(l:length(Indx[Indx])))

if(length(XDat$Status) == length(XDat$Status[XDat$Status =
length(XDat$Status) == length(XDat$Status[XDat$Status == "OA"])) {
AllResults[i] <- "NA"
NA.test.type[i] <- "1ConMissing"
cat("MissCon_NA","\n")

= "NOF"]) |

next
¥
if(length( which(XDat$Status == "OA") ) < 6 &
length( which(XDat$Status == "NOF") ) <= 3 ) {

AllResults[i] <- "NA"
NA.test.type[i] <- "TooFewSamples™
cat("TooFewSamples NA","\n")
next

¥

TotCounts<-rowSums(YDat)

#if (Trace) cat(i," ",as.character(vars[i]),": ")

Y<-unlist(apply(YDat,1,function(x){rep(c(0,1),x)}))

X<-as.data.frame(matrix(unlist(apply(cbind(TotCounts,XDat),1,
function(x){rep(x[-1],as.integer(x[1]))})),byrow=T,ncol=NCov))

WrkgDf<-cbind(Y,X)

names (WrkgDf)<-c("Read",names(XDat))

ConTab<-table(c(WrkgDf$Read,0,1),c(WrkgDf$Status,1,2) )-
diag(c(1,1))

TotReads<-sum(ConTab)

DiagCounts<- ConTab[1,1]+ConTab[2,2]

if (DiagCounts==0 || DiagCounts==TotReads) {
P.val.fish <--fisher.test(ConTab)$p.value
AllResults[i] <- P.val.fish
NA.test.type[i] <- "fisher"
cat("fisher", " ", P.val.fish,"\n")
next

}

He.glm<-tryCatch(1lmer(Read~(1|SampleID),data=WrkgDf),
error=function(e){return(NA)},
warning=function(w){

Mod@Warnings[i] <- "Y"
return(NA)}
)

HA.glm<-tryCatch(1lmer(Read~Status+(1|SampleID),data=WrkgDf),
error=function(e){return(NA)},
warning=function(w){

ModilWarnings[i] <- "Y"
return(NA)}

if ((class(HO.glm)[1]=="mer") && (class(HA.glm)[1]=="mer")) {

LoglLikel<-logLik(HA.glm)[[1]]
LoglLike@<-loglLik(HO.glm)[[1]]
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P.val=pchisq(2*(LogLikel-LoglLike®),1, lower=F)
NA.test.type[i] <- "glm"
AllResults[i] <- P.val
cat(P.val,"\n")
} else {
AllResults[i] <- "NA"
NA.test.type[i] <- "Error_War"
cat("Error_War"," ","NA","\n")

}

table.name <-
paste(paste("NewSlicingRestult/regression_array_test slice", min(Index),
max(Index), sep="_"),"txt", sep = ".")

result <- data.frame(Variants_id=AllVariants.sub, P_value=AllResults,
test_type = NA.test.type, Mod@ _warnings = Mod@Warnings, Modl warnings =

ModlWarnings)
write.table(result, file=table.name, row.name=F, col.name=F,

quote=F,sep="\t")
}

testEdit(x)

Supplementary file S5.2 Novel transcripts in cartilage in GTF format (Not printed)
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