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Abstract 

COPD comprising small airways disease and emphysema is a chronic, debilitating 

often fatal lung condition that approximately 20% of smokers develop.  Current 

therapies mostly target inflammation and airflow obstruction caused by small airways 

disease however there are no current therapies which treat emphysema, the 

pathogenesis of which remains poorly understood.  The microvascular hypothesis of 

COPD is a credible alternative to the classical hypothesis of inflammation and 

protease driven lung destruction, whereby an initial insult to the microvasculature 

leads to loss of alveolar structure which typifies emphysema.  I planned to 

investigate the role of the microvasculature in the pathogenesis of COPD by isolating 

susceptible lung microvascular endothelial cells (LMVECs) from individuals with 

emphysema in an attempt to mimic in vivo conditions more closely.  LMVECs were 

isolated from explanted emphysematous lungs removed at transplantation.  

Following successful isolation (71%) and characterisation of emphysema LMVECs, I 

sought to study cellular responses to cigarette smoke injury, namely apoptosis and 

endothelial to mesenchymal transition.  Apoptosis was investigated on tissue blocks 

via caspase 3 immunohistochemistry and by ex vivo methods including flow 

cytometry (annexin V), TUNEL and live cell imaging for activated caspase 3.  

Unfortunately cigarette smoke extract caused autofluorescence of cells and as all of 

these techniques employed the use of fluorescence for detection, any conclusions 

that can be made as to whether cells underwent apoptosis are limited. Endothelial to 

mesenchymal transition was investigated in response to TGFβ1 and cigarette smoke 

extract.  While there was evidence of down regulation of endothelial markers in 

response to cigarette smoke on confocal imaging there was no convincing evidence 

of upregulation of mesenchymal markers with no corresponding change in protein 

expression via western blotting.  One explanation may be that such changes in cell 

structure and endothelial cell expression may be more in keeping with endothelial 

activation rather than a true phenotypic switch.  In summary, this study presents a 

new model of emphysema, with attempts to gain insight into endothelial injury in the 

pathogenesis of COPD, highlighting the challenges and limitations of working with 

primary diseased cells in response to cigarette smoke injury. 
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Chapter 1: Introduction 

1.1 COPD: Background 

Chronic Obstructive Pulmonary Disease (COPD) is the fourth leading cause of death 

worldwide and a major cause of chronic disability which costs the NHS 

approximately £500 million per year [1].  This burden of disease is predicted to 

continue to increase in coming years due to both the aging population and ongoing 

exposure to the major risk factor that is cigarette smoking[2].  COPD is characterised 

by persistent airflow limitation that occurs due to inflammation of the small airways 

(bronchiolitis) and lung parenchyma, with destruction of alveolar septal walls leading 

to permanent abnormal dilation of air spaces (emphysema) [3].  Severity of COPD 

has previously been determined by degree of airflow obstruction as measured by 

FEV1, however there is marked heterogeneity among patients with COPD with poor 

correlation between FEV1, symptoms, quality of life and functional outcomes [4].  

This study however did identify that emphysema and continued smoking were the 

strongest predictors of disease progression.  Furthermore patients with emphysema 

are one of the identified subgroups of COPD who have lower survival rates and have 

higher rates of decline in lung function (as measured by FEV1) [5]–[7]..  Currently 

there are no medical therapies that target emphysema either by slowing the rate of 

septal destruction or allow alveolar regeneration.  Understanding further the complex 

pathophysiological mechanisms which lead to septal destruction may allow the 

identification of novel therapeutic targets which may translate into clinical benefits for 

this large patient population.   

 

Cigarette smoking is the leading cause of COPD, however only 20%[1]- 25%[8] of 

smokers develop this condition.  An individual’s cellular response to smoking injury is 

therefore important in the pathogenesis of emphysema, an example of the 

importance of interaction between the environment and an individual’s genes in the 

development of this condition.  This is further highlighted in susceptible individuals 

who develop COPD, in whom smoking cessation reduces the rate of loss of lung 
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function but often does not alter the natural history of the disease [9][10].  Research 

highlights that the triggered inflammatory response is amplified and persists despite 

smoking cessation [11], [12].  Despite awareness of the health risks associated with 

smoking highlighted by numerous smoking cessation campaigns, many individuals 

continue to smoke, making emphysema an ongoing major global health problem. 

 

1.2 Normal lung structure and function 

In order to understand COPD, it is important to discuss briefly normal adult lung 

structure and function [13].  The lungs are formed by ten anatomically defined 

bronchopulmonary segments which are divided into lobes, three on the right (upper, 

middle and lower) and two on the left (upper and lower).  The bronchial tree 

comprises the trachea, bronchi, bronchioles, alveolar ducts and alveolar sacs and is 

further subdivided into conducting airways (trachea, bronchi and bronchioles >2mm) 

and acinus/terminal respiratory unit (respiratory bronchioles and alveoli) which is the 

site of gas exchange.  Alveoli comprise flattened type I pneumocytes with 

interspersed rounded surfactant producing type II pneumocytes.  In close apposition 

to these specialised alveolar epithelial cells, lies the basement membrane and 

interstitial matrix, comprising elastin fibres.  This matrix provides a supporting 

structure for the alveolar-capillary unit while permitting free exchange of oxygen and 

carbon dioxide to facilitate gas exchange.   

 

The lungs have a dual arterial blood supply, being supplied both by the pulmonary 

arteries and the bronchial arteries which arise from the thoracic aorta and transport 

nutrients to the large airways and vessels [14].  The pulmonary arteries transport 

deoxygenated blood from the right heart to the capillary bed where gas exchange 

takes place.  Blood returns to the left heart via the pulmonary veins.  The pulmonary 

arteries branch similarly to the bronchial tree, with large capacitance vessels, 

muscular conducting vessels and smaller intra-acinar arterioles, which are found in 

close apposition to the respiratory bronchioles, to allow gas exchange.  The 
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pulmonary capillaries are found most distally in the alveolus, and have a vast surface 

area (~75-250m2) to allow effective transfer of oxygen and carbon dioxide[14]. 

 

1.3 COPD: clinical and pathological findings 

COPD was classically described as chronic bronchitis, a clinical diagnosis based 

upon symptoms (cough productive of sputum for 3 consecutive months over 2 

successive years), and emphysema, the histopathological finding of thin, dilated 

alveolar septa [15].  However, chronic bronchitis has almost entirely disappeared 

from the COPD literature, and is now best regarded as a distinct clinical entity which 

can occur in the presence of normal lung function or precede or follow airflow 

obstruction [3].  Small airways disease (bronchiolitis) was subsequently identified as 

the predominant site of airflow obstruction in COPD in 1968 [16].  The mainstay 

treatment options of inhaled corticosteroids, β2 agonists, anti-muscarinics and 

mucolytics attempt to treat the airflow obstruction that occurs predominantly as a 

result of small airway bronchiolitis [17], however there are currently no drug 

therapies for emphysema.  Lung volume reduction surgery, to reduce dynamic 

hyperinflation, and endobronchial techniques, which aim provide local volume 

reduction strategies, are somewhat crude attempts to treat emphysema [18].   

 

A unique proposition would be to abandon the old theories that emphysema is simply 

loss of lung tissue and replace them with the more challenging theory that within 

severely damaged emphysematous lungs there are areas of near normality in close 

proximity to emphysematous areas and also regions of alveolar bed with intense 

attempts to repair and replace lost tissue.  Regarding emphysema as a dynamic 

disease with active attempts at alveolar repair, rather than simply loss of lung tissue, 

allows speculation that these attempts at repair could be exploited and targeted to 

stimulate and allow reversal/ regeneration of emphysematous lung tissue. 
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1.4 Emphysema 

Emphysema, classically defined as abnormal permanent destructive dilation of 

airspaces distal to the terminal bronchioles [15], can be sub classified into four 

radiological and pathological entities [19]–[21].  Centrilobular emphysema is the 

commonest form observed and is that most closely associated with cigarette 

smoking.  As the name suggests it occurs predominantly in the respiratory 

bronchioles in the centre of the lobule.  Panacinar emphysema involves all airspaces 

distal to the terminal bronchioles and is found most commonly, but not exclusively, in 

patients with alpha-one antitrypsin deficiency who develop accelerated emphysema 

in association with cigarette smoking.  Paraseptal emphysema (distal acinar) 

involves the most peripheral air spaces adjacent to the pleura.  If greater than 10mm 

in diameter these are termed bullous.  Irregular emphysema, as the term suggests, 

irregularly affects the respiratory acinus and is found in association with scarring.  

Irregular emphysema does not tend to occur in association with cigarette smoking 

and rather should be considered as gas trapping in association with fibrosis [21].  

These phenotypes are however an oversimplification with most patients with 

advanced COPD displaying a combination of emphysema together with secondary 

traction bronchiectasis/ bronchial dilation and small airway fibrosis.  

 

1.5 Bronchiolitis and small airways disease 

Persistent exposure to cigarette smoke is associated with airway inflammation and 

subsequent tissue remodeling, comprising goblet cell proliferation and hypertrophy, 

airway thickening and luminal narrowing [22].  This involves complex orchestration of 

epithelial cells, endothelial cells, fibroblasts, neutrophils, macrophages and T cells.  

Small airway pathology in COPD was examined and reported by Hogg et al using 

lung tissue from patients at risk of COPD and those diagnosed with COPD (GOLD 

grades 1-IV) [12].  This work demonstrated increasing luminal occlusion with 

increased GOLD grade, increased airways inflammatory cells with increasing GOLD 

grade and increased airway wall thickness with increasing GOLD grade, concluding 

that progression of COPD is associated with luminal narrowing by mucus infiltrates 
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and increasing airway inflammation and was most strongly associated with 

thickening of the airway wall and component parts by a repair or remodeling process.   

 

1.6 Heterogeneity in COPD 

COPD encompasses a broad clinical and pathological spectrum of disease, with the 

majority of patients displaying a heterogeneous combination of emphysema and 

airways disease.  While small airways disease (narrowing and loss of terminal 

bronchioles) has been shown to precede emphysema in COPD [23], some patients 

exhibit marked emphysema without evidence of airflow obstruction and limited small 

airways involvement, highlighting further the broad spectrum of disease.  

 

The development and existence of these two distinct pathological processes 

following the same injury process (i.e. cigarette smoking) highlights the importance 

of regional variation in inflammatory response in determining the resulting pathology 

which leads to COPD in a given individual [22].  Why such disparate processes of 

small airway thickening and destructive emphysema occur in such close proximity 

poses a real challenge to researchers.  Such heterogeneity presents further 

challenges to the study of this disease as effectively the disease witnessed within a 

given individual is unique to them and thus they may not respond to all therapies in a 

predictable manner. The acceptance of the broad heterogeneity and the attempt to 

phenotype patients within the COPD spectrum is thus crucial in order to understand 

and develop new strategies for this condition.  

 

1.7 Classical hypothesis of COPD: Inflammation and Protease/ 

Antiprotease imbalance 

A large proportion of research into COPD has focused on the role of inflammation 

and imbalance between proteases which break down connective tissue elements 

and anti-proteases that protect against this [24], [25].  Chronic exposure to cigarette 
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smoking leads to recruitment of inflammatory cells into the alveolar spaces.  

Neutrophils and macrophages release elastolytic proteinases which cause 

destruction of elastin and the lung extracellular matrix [26].  This hypothesis was 

largely founded upon the observation of accelerated emphysema in individuals with 

alpha-one antitrypsin (A1AT) deficiency, who have reduced levels of the major 

neutrophil elastase inhibitor A1AT.  Individuals with A1AT deficiency tend to, 

although not exclusively, develop panacinar emphysema which differs from the more 

common centrilobular pattern witnessed in smokers with normal levels of A1AT.  

However other proteases and inflammatory cells also play an important role as 

witnessed by the development of very severe emphysema in individuals without 

A1AT deficiency.  A1AT replacement therapy does not altering disease progression 

[27] thus researchers have revisited alternative hypotheses of emphysema. 

 

1.8 Alternative Hypothesis of COPD: The role of the 

microvasculature 

The microvascular hypothesis of COPD dates back to the 1950s when Liebow 

identified paucity of pulmonary capillaries in emphysema and hypothesised that 

reduced blood supply was important in the pathogenesis of this condition [28].  A 

revival of this hypothesis has been based upon an emerging literature on the 

importance of the pulmonary microvasculature in maintaining lung structure and 

function [29], [30].  Damage to endothelial cells via cigarette smoking injury, similar 

to that which occurs in the systemic circulation, initiates a complex injury and repair 

pattern that may lead to emphysema[31]. 

 

Factors which lead to loss of the microvasculature are however unclear.  Cigarette 

smoking causes endothelial dysfunction in the systemic circulation, with imbalance of 

nitric oxide (NO), endothelin-1 (ET-1) and other vasoactive substances, and is 

implicated in the pathogenesis of ischaemic heart disease [32]–[34].  Endothelial 

dysfunction also occurs in the pulmonary microvasculature [14].  In response to a 

chronic injury such as cigarette smoking, cells may undergo necrosis, apoptosis, 
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senescence or a phenotypic change.  In emphysema, apoptosis and a phenotype 

change of endothelial cells into mesenchymal cells (endothelial to mesenchymal 

transition) may explain both the loss of alveolar septal capillaries and alveolar septal 

remodelling that occurs in emphysema.  I therefore planned to investigate apoptosis 

and EnMT in response to cigarette smoke with microvascular endothelial cells 

isolated from patients with emphysema.  

 

The initial stress/injury leading to the development of emphysema is most commonly 

cigarette smoking, however the initiating event in emphysema remains unknown.  

This largely relates to poor understanding of the natural history of this condition.  

Some have proposed inflammation of the respiratory bronchioles (bronchiolitis)[12] 

whereas other have suggested a primary hit to the alveolar bed [35], with secondary 

inflammation.  Liebow was the first to comment that the septa appeared almost 

avascular and further studies have confirmed that there is attenuation of the 

capillaries in this disease[36]. 

 

A major stumbling block to tackling emphysema is the belief that loss of alveoli is a 

terminal event and that neo-angiogenesis and re-alveolarisation are impossible.  

However alveolarisation already occurs in life, albeit in the first 2-3 years of life[37].  

Understanding initial lung development may therefore assist us in understanding of 

how the lung repairs itself and how we may manipulate this knowledge to develop 

therapeutics to target the smoking related lung damage that occurs in emphysema. 

 

1.9 Lung development 

Lung development in utero occurs in five overlapping stages: embryonic, 

pseudoglandular, canalicular, saccular and alveolar [37]–[39].  In the embryonic 

stage the lung primordium is formed from the foregut.  Lobar airways lined with 

endoderm are formed within the surrounding mesenchyme.  The pseudoglandular 

stage follows with the formation of all preacinar airways via branching of epithelial 
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lined primitive airways.  In the canalicular stage, the most distal airways enlarge with 

thinned epithelial cells which eventually form type I and II pneumocytes.  Surfactant 

is detectable from 24 weeks gestation indicating successful differentiation into type II 

pneumocytes.  During the saccular stage the enlarged distal airways develop crests 

with elastin and muscle which extend to form cup shaped alveoli.  Alveolarisation 

begins at 36 weeks gestation with the formation of secondary septa subdividing 

terminal saccules to form mature alveoli.  This process continues until 2-4 years of 

age, thus highlighting the potential for alveolarisation in adult life and challenging the 

theory that emphysema is an irreversible process. 

 

Furthering the link with the developing lung, alveolar enlargement similar to that in 

emphysema is witnessed in survivors of bronchopulmonary dysplasia (BPD), the 

chronic lung disease that occurs in premature infants (especially those born at less 

than 28 weeks, during the late canalicular or saccular stage of lung development) 

[40].  BPD is thought to occur due to the disruption of alveolar development that 

occurs with premature birth, with survivors attaining reduced maximal airway 

function, with the development of fewer larger alveoli with corresponding smaller 

surface for gas exchange in contrast to the loss of alveoli that occurs in COPD [41].  

Although BPD may appear disparate from COPD, occurring at the extremes of life, 

understanding alveolar development may allow targeted treatments for both of these 

conditions [40].  Investigation of BPD has led researchers to suggest that the 

pulmonary vasculature actively promotes alveolar growth during development and 

may play a crucial role in maintenance in postnatal life, challenging the conventional 

hypotheses that the development of blood vessels in the lung passively follows that 

of airways [42][43].   

 

1.10Endothelial cells and the alveolar interface 

The unique high flow, low pressure pulmonary circulation exists to effectively 

facilitate gas exchange between the air and lungs.  This vast surface area 

(approximately 75-200m2) functions in healthy individuals with large reserve[14].  
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This reserve within capillaries allows the lungs to accept high pulmonary blood flow 

without compromising gas exchange.  High blood flow does however not equate with 

high blood volume as only 10% of total blood volume is within the lungs at any time, 

of which only 10-15% is in the pulmonary capillary bed (less than 100ml)[14].   In 

time of increased demand, such as exercise, there is recruitment of pulmonary 

capillaries as cardiac output increases to accommodate increased flow.  Other 

functions of the pulmonary vascular bed include acting as a filter for blood clots, 

vasoactive substances and as a possible area of leucocyte sequestration.  Loss of 

this vast capillary bed as is thought to occur in emphysema has therefore many 

consequences.  

 

Endothelial cells form a physical barrier to the passage of molecules contained within 

blood to the tissues.   This is however an oversimplified view of the endothelium, 

which should not be regarded as a passive barrier, rather as an active interface 

where important metabolic processes occur which preserve vascular integrity and 

function[14]. The alveolar endothelium is unique in that it functions to allow gas 

exchange efficiently while minimising extravasation of fluid and substances into the 

alveolar bed.  This unique property is made possible by intercellular junctions which 

regulate endothelial cell permeability.  Four types of endothelial cell junctions are 

well described; tight junctions, gap junctions, adherens junctions and 

syndesmos[44].  Tight junctions are formed by occludins, which are a 

transmembrane integral proteins found between endothelial cells[45].  The frequency 

of tight junctions varies according to location in the vascular tree based upon the 

degree of permeability required, for example in large arteries they are numerous 

while in post capillary venules they are almost absent.  Gap junctions are formed by 

transmembrane hydrophilic channels termed connexons which allow exchange of 

ions and small molecules between adjacent cells[44].  Gap junctions tend to 

colocalise with tight junctions and support cellular communication between both 

endothelial cells and their supporting cells.  Adherens junctions are formed by 

cadherins, which are single chain transmembrane calcium proteins[46].  Endothelial 

cells express both specific and nonspecific cadherins.  VE-cadherin is found 
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exclusively on intercellular junctions of all endothelial cells[47].  Cadherins only 

localise at intercellular adherens junctions when cells contact each other.   

 

Platelet endothelial cell adhesion molecule (PECAM-1) also known as cluster of 

differentiation 31 (CD31) is a protein which belongs to the immunoglobulin family that 

is expressed by endothelial cells, platelets and leucocytes[48].  PECAM-1 can form 

homotypic bonds with PECAM-1 from neighbouring cells or can attach to 

glycosaminoglycans, and is widely used in histopathology as an endothelial marker.  

When endothelial cells are confluent, PECAM1 localises to the lateral edge of cells 

and appears to associate with adherens junctions, albeit with less affinity [47].  

PECAM1 is important for angiogenesis, vascular injury repair and control of 

leucocyte extravasation with expression in influenced by the cellular milieu.  For 

example, treatment of endothelial cells with TNFα redistributes PECAM-1 away from 

lateral cell surface borders with transmigration of leucocytes across the 

endothelium[49].  Maintenance of endothelial barrier integrity is critical to tissue 

health with disruption of the alveolar endothelium manifesting acutely as alveolar 

oedema as witnessed in pulmonary oedema and acute lung injury.  Chronic insult to 

the endothelial barrier may lead to hyalinisation, fibrosis or necrosis/apoptosis and is 

the study of this thesis with reference to cigarette smoking injury. 

 

1.11VEGF and the Lung 

Vascular Endothelial Growth Factor (VEGF) is a growth and permeability factor for 

endothelial cells [50].  It has an important role in vascular development in utero, 

underlined by the embryonic lethality of knockout models for the genes encoding 

VEGF and its receptors[51], however its normal biological activity in adult life is 

currently not fully understood.  The lung has comparatively high expression of this 

growth factor and over the last ten years it has emerged that VEGF may play a 

crucial role in maintaining lung structure and function, with a number of pulmonary 

pathologies associated with both reduced and increased levels of VEGF [50].   
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In pulmonary arterial hypertension the typical angioproliferative plexiform lesions 

have very high levels of VEGF which suggests this growth factor may play a pivotal 

role in pathogenesis[52].  Increased levels of plasma VEGF have been found in 

patient with Acute Respiratory Distress Syndrome (ARDS)[53]and may mediate 

barrier dysfunction and endothelial permeability with alveolar engorgement.  In 

emphysema, there appears to be reduced VEGF and VEGFR2[54], however there 

are also reports of increased VEGF within in the airways of patients with chronic 

bronchitis[55], thus within the same disease state regional variations in VEGF may 

exist and may explain the complex pathology witnessed in COPD[56].   

 

Five family members (VEGF (a-d) and Placental Growth Factor (PlGF)) have been 

identified, with VEGFa (referred to as VEGF) the most biologically active member 

that is believed to be of greatest importance[50].  VEGF binds to 2 tyrosine kinase 

receptors, VEGF receptor 1 (FLT1) and VEGF receptor 2 (KDR/FLK1) [57].  These 

receptors are regulated by both autocrine and paracrine mechanisms.  The 

KDR/FLK1 is the most studied which is thought to mediate most of the pro-

angiogenic effects of VEGF.  The FLT1 receptor is believed to play more of a 

modulatory role, acting as a decoy receptor to inhibit excessive proliferation.  VEGF 

is produced by macrophages and type II pneumocytes and acts predominantly on 

endothelial cells and type II cells [50].  Withdrawal of VEGF leads to endothelial cell 

apoptosis in vitro and in vivo[57].  Endothelial cells appear more susceptible to the 

effects of VEGF as cultured type II pneumocytes are exposed to VEGFR blockade 

do not undergo cell death [50].   

 

The gene which encodes VEGF is located on chromosome 6p21.3, with expression 

regulated by several factors including hypoxia, via hypoxia-inducible factor 1 (HIF-1) 

[58].  HIF-1 is a heterodimer composed of 2 subunits HIF-1α and HIF-1β.  Both 

proteins are constitutively expressed, however only HIF-1α responds to changes in 

oxygen tension.  Under normoxic conditions, the half-life of HIF-1α is less than 5 

minutes due to continuous proteolysis through the ubiquitin-proteasome pathway via 

an oxygen-dependant degradation domain (ODD).  Hypoxia slows degradation of 

HIF-1α via reduced proline hydroxylase, making HIF-1α resistant to degradation.  
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Thus in the presence of low oxygen tension, increased HIF-1 binds to a hypoxia-

responsive element (HRE) on the VEGF promoter region to cause induction and 

stabilisation of VEGF mRNA.      

 

VEGF has multiple effects on endothelial cells including activation of endothelial 

Nitric Oxide Synthase (eNOS), via c-Src and phospholipase C γ1, which mediates 

angiogenesis and produces NO with vasorelaxation and maintenance of endothelial 

function [50].  VEGF also leads to increased cellular proliferation and survival (via 

activation of bcl2 and inactivation of caspase 9 and Bad), prostacyclin production 

(via activation of prostacyclin synthase via MAPK) and increased vascular 

permeability [50], [59].  Thus reduced VEGF via cigarette smoking may not only 

cause imbalance between vasoactive substances such as NO and ET-1, but may 

induce apoptosis and reduce angiogenesis and may therefore be of great 

importance in emphysema.  

 

1.12 Apoptosis 

Apoptosis was first described in by Kerr, Wyllie and Currie in 1972 as a programmed 

cell death, distinct from necrosis, which is a passive uncontrolled form of cell death 

usually precipitated by lack of cellular energy or membrane damage [60].  Apoptosis 

differs from necrosis in that this programmed cell death requires energy in the form 

of ATP and can be triggered by a number of different stimuli.  The distinct 

morphological and cellular changes of apoptosis were described from observing the 

development of the nematode caenohabditis elegans.  The deletion of cells during 

development of the nematode was shown to an active, energy dependant process, 

triggering a number of stereotyped responses that were highly conserved across the 

species.  Apoptosis has since been shown to be an important factor in both 

development and in normal tissue homeostasis however has also been 

demonstrated to be a response to injury[61]. 
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Apoptosis begins with cell shrinkage and pyknosis of the nuclei, as a result of 

chromatin condensation[61].  This can be visualised with haemotoxylin and eosin 

staining and light microscopy as single cells or small clusters of oval cells which 

appear dark due to eosinophilic cytoplasm and dense nuclear chromatin fragments.  

Thereafter, plasma membrane blebbing occurs with karyorrhexis and fragmentation 

into apoptotic bodies during a process termed budding.  Apoptotic bodies are then 

phagocytosed by macrophages and degraded within phagolysosomes.   

 

In response to injury, cells may undergo necrosis, apoptosis, senescence or a 

phenotype change.  However not all cells in a population will respond in the same 

way to a specified stimulus.  Some may undergo necrosis while others undergo 

apoptosis.  These responses may happen independently, successively or 

simultaneously.  Furthermore, the cellular pathways by which apoptosis may be 

triggered are numerous, being broadly split into the intrinsic and extrinsic pathway 

which merge to form a final common pathway leading to the pattern observed in 

programmed cell death.  To further add complexity, the same stimulus may cause 

differing responses at different doses i.e. apoptosis at low dose and necrosis at high 

dose.  

 

While clear differences exist between the active energy dependant apoptosis and 

passive cellular necrosis, these processes can co-exist with the balance of 

apoptosis/ necrosis determined by availability of apoptosis associated caspase 

enzymes and energy (ATP).  Thus not only is cell death dependant upon stimuli, cell 

signaling and tissue, but rather depends crucially upon the local environment in 

which the injury occurs.  Necrotic cells can also undergo blebbing, with membrane 

disruption and pyknosis and so is not a feature exclusive to apoptosis, therefore it is 

important to highlight other features which may differentiate these two processes[61].  

In contrast with necrosis, where large numbers of cells are deleted, apoptotic cells 

are more likely to be found as individual cells, as the host deletes only cells which 

are deemed to be defective.   Another important contrast with necrosis is that 

apoptosis does not lead to secondary inflammation, as cells do not release their toxic 

contents prior to being phagocytosed and digested[61].  Thus while individual 
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morphological changes between necrosis and apoptosis on occasions can appear 

similar, by studying the distribution of lesions andmicroenvironment in which these 

are found, one can differentiate between these two differing cell death pathways. 

 

There are two main apoptotic pathways: the extrinsic (death receptor pathway) and 

the intrinsic (mitochondrial pathway).  These pathways were traditionally thought to 

be distinct and mutually exclusive, however new evidence suggests that these 

pathways are linked and that molecular events in one may influence events in 

another[61].  In addition to the two classical pathways, there exists an additional 

mechanism involving T-cell mediated cytotoxicity and perforin-granzyme-dependant 

cell death[62].  The pathways merge to form a final common pathway with the 

cleavage and activation of caspase-3 with resulting DNA fragmentation, degradation 

of proteins and phagocytic uptake.  Phagocytosis involves translocation of 

phosphatidylserine onto the surface of apoptotic cells which then acts as phagocytic 

receptors, facilitating recognition, engulfment and disposal. 

 

The extrinsic pathway or death ligand pathway is triggered mostly by TNFα, Fas 

ligand and TRAIL (TNFα-related apoptosis inducing ligand).  Autophosphorylation of 

intracellular death domains, lead to recruitment of the FADD (fas associated death 

domain).  Upon activation of FADD, procaspase 8 and 10 are cleaved to form their 

active caspases, which transmit this apoptotic signal via further caspase activation to 

the mitochondria.  The intrinsic pathway is triggered via damage to DNA such as 

oxidative stress and UV light.  DNA damage causes activation of p53, which induces 

cell cycle associated genes.    

 

1.13 Endothelial Apoptosis in Emphysema 

Apoptosis was first suggested to be important in the pathogenesis of COPD in the 

landmark study by Kasahara et al [63].  Chronic treatment (3 weeks) of adult Sprague 

dawley rats with a VEGF receptor blocker (SU5416) led to air space enlargement 
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associated with alveolar septal apoptosis.  Lung proliferation was not inhibited.  

Barium gelatin angiograms from autopsy studies of these animals showed peripheral 

pruning of the arterial tree, with pronounced loss of the microvasculature.  Treatment 

of rats with SU5416 and a caspase inhibitor prevented the alveolar septal apoptosis 

and development of air space enlargement, thus proposing that this VEGF receptor 

blockade model of emphysema was apoptosis dependant.  A clinical study by the 

same group reported increased apoptotic endothelial and epithelial cells in the 

alveolar septa of emphysematous lung tissue when compared with tissue from non-

smokers and smokers without emphysema via TUNEL staining and DNA ligation 

assays [54].  VEGF and VEGF receptor 2 mRNA and protein were also reduced in 

tissue from patients with emphysema.  However SU5416 treated rats also had an 8 

fold increase in isoprostane levels and 100 fold induction of cytochrome p450, both 

of which could catalyse the production of reactive oxygen species (ROS) in 

endothelial cells and contribute to apoptosis. 

 

Apoptosis in emphysematous tissue has been investigated by other researchers with 

similar findings, with apoptosis rates between 1 and 2% of alveolar cells[64]–[67].  

Yokohori et al reported increased rates of apoptosis and proliferation in alveolar 

septal epithelial cells in patients with emphysema compared to asymptomatic 

smokers and non-smokers [67].  In addition, they highlighted the dynamic nature of 

emphysema, with ongoing alveolar cell death and proliferation. In this study the 

predominant cell type undergoing apoptosis was epithelial cells and not endothelial 

cells.  Imai et al demonstrated apoptosis of septal endothelial, epithelial and 

myofibroblasts in emphysematous tissue via cell morphology showing cytoplasmic 

condensation, shrinkage, condensation of nuclear chromatin of cells next to normal 

cells on electron microscopy [64].  These findings were confirmed via DNA 

fragmentation and apoptosis-related protein expression.  Proliferation rates of septal 

cells were also increased, similar to the findings of Yokohori et al [67].  Furthermore, 

they reported a negative correlation between surface area and apoptosis, while there 

was no such relationship between surface area and proliferation.  This finding may 

be crucial, as in order for tissue to be lost, apoptotic rates must exceed rate of 

ongoing proliferation to not support maintenance of normal tissue structure.  Imai et 
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al also investigated the pathways via which apoptosis may be initiated [64].  The 

anti-apoptotic bcl2 was not found in emphysematous or normal tissue.  However the 

pro-apoptotic Bax and Bad were.  Bax expression is increased when cells die by loss 

of adhesion to the extracellular matrix (ECM).  Thus apoptosis may be triggered by 

disruption of the ECM with increased caspase 3.  There is also some evidence that 

apoptosis may be triggered by activation of cell surface death receptors via the Fas 

ligand [68].  Importantly, these authors highlight that increased apoptotic rates 

persist on smoking cessation [64].   

 

It has also been reported that A1AT may have anti-apoptotic actions which may 

partly explain the accelerated emphysema witnessed in individuals homozygous for 

the PiZ allele.  Petrache et al showed in vitro and in vivo in a mouse model that 

A1AT prevented caspase-3 activation and thus apoptosis [69], [70].  Such evidence 

further supports the key role apoptosis may play in the development of emphysema.  

 

1.14Apoptosis and Oxidative Stress 

Tuder et al went on to link increased levels of oxidative stress and apoptosis in the 

rodent VEGF blockade model of emphysema [71].  Oxidative stress is a highly 

relevant stress in emphysema as cigarette smoke contains around 1017oxidants for 

each inhalation [72].  SU5416 treated rats had increased levels of oxidative stress 

compared with control animals [71].  Co-treatment of SU5416 treated rats with the 

manganese superoxide dismutase (MnSOD) mimetic M40419 prevented the 

development of air space enlargement and emphysema.  In addition, 

M40419/SU5416 treated rats had less activated caspase 3 and TUNEL positive 

cells, than SU5416 treated alone.  Caspase 3 was localised in the centrilobular 

region, the area in which most airspace enlargement occurred in SU5416 treated 

rats and which is the area most affected in smoking related emphysema.  Co-

treatment also significantly increased proliferation rates, as evidenced by the marker 

PCNA.  SU5416 treated rats demonstrated reduced phosphorylation of the pro-

survival akt, whereas higher levels were evident in co-treated animals.  Apoptosis 
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predominated in areas of oxidative stress, which supports the hypothesis of 

apoptosis and oxidative stress being linked by a positive feedback mechanism.  

 

A second animal model supports the role of oxidative stress in the development of 

emphysema [73].  Nrf-2 deficient mice have reduced anti-oxidant abilities due to their 

lack of Nrf-2 which binds to anti-oxidant response elements and leads to 

upregulation of anti-oxidant genes and gene products.  Nrf-2 deficient mice exposed 

to cigarette smoke for 6 months developed emphysema, associated with increased 

markers of oxidative stress and increased numbers of apoptotic septal cells, 

compared to wild types.  In keeping with the microvascular hypothesis of 

emphysema, endothelial cells were the predominant apoptotic cell type in this model 

of smoking induced emphysema.  

 

Clinical studies also support this hypothesis linking the importance of oxidative stress 

and reduced VEGF on microvascular function, as a possible mechanism of 

emphysema.  Kanazawa et al showed that nitrogen oxide levels were increased in 

sputum from patients with COPD and correlated with severity [74].  In addition, 

peroxynitrite stress increased with severity of COPD while VEGF levels decreased.  

Induced sputum also showed increased neutrophils and levels of the pro-

inflammatory cytokine IL8, which in addition has been shown to induce superoxide 

anion release from neutrophils in vitro.    

 

There are a number of possible interactions between loss of VEGF, witnessed in 

emphysema, and oxidative stress that results due to cigarette smoking.  VEGF 

upregulates the anti-oxidant MnSOD and the anti-apoptotic factor bcl-2 [71].   VEGF 

signalling inhibition may lead to further oxidant/antioxidant imbalance via decreased 

eNOS and prostacylin synthase.  In addition, cigarette smoke may have a direct 

effect on the endothelium, reducing eNOS and prostacylin synthase, with less Nitric 

Oxide to scavenge free radicals and block caspase activity, with reduced 

Prostacyclin derived glutathione [50].  Thus interruption of the feedback loop 
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between oxidative stress and apoptosis or free radical scavengers may represent 

novel targets to prevent further septal destruction.  

 

1.15Senescence 

Cellular senescence, first described in 1961, is the phenomenon by which normal 

diploid cells cease to divide and is classically attributed to the aging process as a 

result of telomere shortening [75].  In addition, senescence can also be induced by 

DNA damage caused by reactive oxygen species (ROS) and activation of 

oncogenes [75]. Senescent cells are unable to replicate but remain metabolically 

active and frequently express pro-inflammatory ligands and stain positively for 

senescence associated β-galactosidase activity [76].  Thus in addition to potentially 

limiting tissue repair and renewal, senescent cells may further contribute to organ 

damage.  Given that COPD is more commonly found with advancing age [3] and that 

emphysema (often called senile emphysema) can be found incidentally on HRCT 

scanning of elderly patients who have never smoked and who have normal lung 

function, it has been proposed that cellular senescence may play an important role in 

the pathogenesis of COPD.  Senile emphysema does differ in that alveolar spaces 

are enlarged with loss of elastic recoil, however unlike true emphysema there is no 

destruction of alveolar walls [77], [78].  One mechanism by which senescence may 

play a role in emphysema is by limiting the ability of damaged alveolar cells to 

continue to proliferate in response to injury, thus imposing a finite number of 

divisions that a single cell can make.  Once cellular senescence occurs, cell 

proliferation attempts to repopulate apoptotic alveolar cells ceases and the 

homeostasis between cell death and proliferation is lost, which may in part account 

for emphysema [79], [80].  Studies to date have furthermore shown accelerated 

senescence of alveolar epithelial and endothelial cells in patients with emphysema 

[79].  Detailed study of senescence is beyond the scope of this study but this 

response to cell injury should be considered when interpreting results.    
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1.16Repair and remodeling in emphysema 

Emphysema was originally defined as “destruction of alveolar walls without fibrosis” 

[15], however it is now accepted that complex tissue remodelling occurs, notably in 

centrilobular disease.  The ability to repair a tissue after injury is an inherent property 

of all tissues.  In addition to septal destruction, attempts at, albeit ineffective, tissue 

repair, are important in the pathology witnessed [24], [25], [81]–[84].  The interplay 

between inflammation and repair/ fibrosis may be of greater importance in 

centrilobular emphysema, the disease pattern witnessed in smokers, compared with 

the more uniform destructive pattern of panacinar emphysema seen more commonly 

in A1AT disease [24].  In centrilobular emphysema, while there is loss of overall 

tissue, thickening of the interstitium occurs, with collagen deposition in alveolar 

septal walls and increased interstitial fibroblasts [84].  Gosselink et al reported 

differential gene expression between bronchiolar and immediate surrounding lung 

tissue, with the balance reported to be in favour of degradation of lung tissue 

surrounding thickened small airways [85].  However, in both this study [85] and 

others [86] ECM-related genes have been shown to be upregulated in severe 

emphysema in support of connective tissue remodelling in severe ‘end-stage’ 

disease in humans.  Vlahovic et al demonstrated morphometrically that while 

alveolar and capillary surfaces reduce with increased mean linear intercept, there 

was deposition of collagen and elastin in the remaining septa, in keeping with 

remodelling of the connective tissue matrix in alveolar walls [84].  Kononov et al 

showed in the pancreatic elastase model of emphysema that the resulting thickened 

elastin and collagen fibres undergo larger distortions than normal tissue [87].  

Mechanical failure threshold for collagen is also reduced, such that the normal 

mechanics of breathing are sufficient to cause failure of the remodelled ECM that 

contributes to emphysema [88].  This immature collagen may be weaker and more 

distensible that allows distension of airspaces and breaks may cause emphysema.  

In keeping with the microvascular hypothesis of COPD, these changes may occur 

via endothelial to mesenchymal transition (EnMT) with the production of immature 

weak collagen and mesenchymal cells that secrete matrix metalloproteinases 

(MMPs) which further degrade alveolar septa and ECM.   
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1.17Endothelial to Mesenchymal Transition (EnMT) 

Endothelial to mesenchymal transition (EnMT) is a cellular response to chronic injury 

characterised by cytoskeletal rearrangement of cobblestone like endothelial cells into 

spindle shaped mesenchymal cells[89].  Cells lose endothelial markers and gain 

mesenchymal markers and may exhibit a proliferative and invasive phenotype, 

interacting with the ECM, causing deposition of collagen.  EnMT was first observed 

in aortic endothelial cells in response to Transforming Growth Factor β1 (TGFβ1) 

and was proposed as a novel mechanism in atherosclerosis [89].  While this 

phenomenon was initially reversible, after prolonged exposure, cells lost this 

plasticity.  Frid et al later demonstrated this phenomenon in mature endothelial cells 

from main pulmonary arteries [90].  This EnMT was inhibited by TGFβ1 neutralising 

anti-bodies, underlining the importance of TGFβ1 as a driver of EnMT.   

 

Ziesberg and Kalluri went on to propose evidence of in vivo EnMT occurring in 

response to TGFβ1 in cardiac fibrosis via lineage tracing [91]. They created double 

transgenic mice (Tie1Cre;R26RstoplacZ), which express the lacZ gene in all cells of 

endothelial origin in spite of phenotypic alterations.  Via this method they showed the 

appearance of mesenchymal cells within the areas of tissue fibrosis that were lacZ 

positive and thus of endothelial lineage.  They presented further evidence in support 

via immunofluorescence with double labelling for β-galactosidase (βgal) and 

fibroblast specific protein 1 (FSP1 or S100A4).  The use of β-galactosidase in this 

experiment to indicate cells of endothelial origin is confounded by the fact that β-

galactosidase is commonly used as a marker of senescence [92], as it is highly 

expressed and accumulated is lysosomes in senescent cells.  The authors do not 

raise this issue or discuss the potential that the endothelial cells that appear to 

undergo EnMT may have been senescent.  This further highlights the fact that 

cellular senescence may be important in the pathogenesis of conditions arising from 

chronic inflammation (cardiac fibrosis and emphysema) and may provide the correct 

milieu for apoptosis and cellular plasticity such as EnMT.   Importantly, in this study 

EnMT could be reversed by the addition of recombinant BMP7, which has a number 

of implications for clinical translation.  EnMT was also reduced in SMAD 3 null mice, 
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suggesting that this TGFβ1-driven EnMT is occurring via activation of SMAD 

signalling pathways.   

 

1.18EnMT and endothelial dysfunction 

Endothelial dysfunction occurs in response to cigarette smoke with reduction in NO 

and increased ET-1[34].  In addition to the important vasomotor actions of these 

substances, there is emerging evidence that they may play an important role in the 

maintenance of vascular structure and function.  Change in the balance of 

endothelial derived relaxing and constricting factors may also contribute to the tissue 

remodeling witnessed in emphysema.  O’Riordan et al have shown that NOS 

inhibition promotes EnMT [93].  Using human umbilical vein endothelial cells 

(HuVECS), they showed via phase contrast microscopy that cells treated with 

TGFβ1, endostatin and ADMA (an endothelial NOS inhibitor) underwent a 

phenotypic change becoming spindle shaped and elongated in keeping with 

transition to a mesenchymal phenotype.  In addition, loss of endothelial markers and 

gain of mesenchymal markers was evidenced via western blotting.  In further support 

of the role that NO may play in maintaining cell phenotype, Vyas-Read et al found 

that inhibition of NOS with L-NAME led to a phenotype change of alveolar epithelial 

cells into mesenchymal cells (epithelial to mesenchymal transition) (EMT) [94].     

Exogenous NO applied to these TGFβ1 treated alveolar epithelial cells led to 

reduced α smooth muscle actin (αSMA) expression and reduced collagen 

expression, suggesting that NO may attenuate this phenotypic change.  Reports in 

the cancer literature highlight further the role that vasoactive mediators might play in 

maintaining cell phenotype, with evidence of ET-1 as a driver of EMT in ovarian 

cancer cells [95].  Activation of ETa receptors by ET-1 leads to EMT via signaling 

down an integrin-linked kinase pathway with reversal of this phenotype change in the 

presence of ETa receptor antagonism.  In the pulmonary microvasculature, cigarette 

smoke injury may promote EnMT via increased ET-1 and loss of protective NO, and 

thus agents to stabilize/restore microvascular function may prevent the loss of 

endothelial cells and tissue remodeling typical to emphysema.  
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1.19TGFβ1 and Emphysema 

TGFβ1 is a complex mediator of tissue repair and plays a crucial role in lung 

homeostasis [81].  Many different cellular responses are elicited by TGFβ1 via 

activation of a number of signalling pathways, including activation of MAP Kinase, 

PI3 kinase, Rho like GTPases and SMAD signalling, which mediate changes in 

target gene transcription. The signalling pathway activated and subsequent cellular 

response is not only determined by cell type but is also affected by the 

microenvironment [81].  TGFβ1 is secreted as a latent complex with activities 

regulated by binding to latent TGFβ binding protein (LTBP).  There is evidence that 

reduced activation of latent TGFβ1 and defects in downstream TGFβ1 signalling 

leads to spontaneous lung inflammation and emphysema [25].  Homozygous mice 

with a mutant allele for LTBP4 (which binds only TGFβ1) develop severe 

emphysema with the reduced TGFβ1 and phosphorylated SMAD2 in epithelial cells 

[96].  Furthermore mice null for integrin αvβ6-which mediates TGFβ1 activation 

develop age-related emphysema [97].  These knockout mice have increased 

expression of MMP12, which is a matrix degrading zinc dependant protein implicated 

in the pathogenesis of emphysema [98].  αvβ6-integrin expression on epithelial cells 

may also be downregulated via toll like receptor (TLR) signalling of alveolar 

macrophages in response to bacterial and viral invasion [81].  Thus chronic low-

grade bacterial infection, as may occur in response to altered epithelial cell function 

in response to smoking, may allow unopposed macrophage activation.  Mice lacking 

this integrin develop age-related emphysema that can be prevented by transgenic 

expression of active TGFβ1 [97].  In further support of altered SMAD signalling, 

SMAD3 null mice develop age related increases in alveolar spaces associated with 

presence of MMP 9 and 12 in the lung, suggesting that TGFβ1 downstream 

signalling via SMADs may play a pivotal role in ECM metabolism [99].  However it is 

important to note that these increases in alveolar spaces do not fully equate with the 

complex tissue repair and remodelling that occurs in human emphysema and thus 

such animal models are an oversimplification.  

 

TGFβ1 activation in the lung is most well described in idiopathic pulmonary fibrosis 

(IPF); with the presence of TGFβ1 activation associated the rapid disease 



23 

 

progression [81].  However it is now accepted that this factor may play an important 

role in other models of lung injury and repair.  The pathology of septal destruction 

and airspace enlargement witnessed in emphysema on the surface appears far 

removed from the rampant fibrosis associated with IPF, however it is clear that 

complex tissue remodelling occurs in emphysema.  Emphysematous areas express 

fibrosis-associated genes and proteases and it could be suggested that emphysema 

arises via ineffective repair and associated secondary fibrosis.  [81].  In IPF the as 

yet unidentified injury may be relatively minor with an exaggerated fibrosis response, 

while in emphysema, repeated cigarette smoking may alter the microenvironment in 

susceptible individuals with a diminished, ineffective repair response to injury.   

 

The levels of expression of TGFβ1 in COPD are still debated and likely reflect the 

heterogeneous nature of this condition.  Some researchers believe there is reduced 

TGFβ1 and TGFβ receptor expression in COPD lung tissue, with decreased release 

from alveolar macrophages[100], [101], while others the report increased levels, 

attributing this to increased production by abundant alveolar macrophages [102].  

Furthermore, the effects of cigarette smoke on TGFβ1 are also debated.  There is 

however good evidence that alterations in redox state and increased oxidative 

stress, as occurs in cigarette smoking, contributes to TGFβ1 activation [81].  In 

addition TGFβ1 itself induces intracellular ROS, thus causing positive feedback to 

amplify the signal.  Thus TGFβ1 likely plays as yet undetermined role in the 

development of emphysema, either via reduced activity, defective signalling or 

ineffective septal repair/ fibrosis in response to oxidative stress.  

 

1.20Matrix metalloproteinases in emphysema 

Matrix metalloproteinases (MMPs) are a family of zinc and calcium dependant 

proteolytic enzymes that are involved in tissue remodelling and repair [98].  MMPs 

can degrade most components of the ECM and so are believed to play an important 

role in the pathogenesis of emphysema.  Studies in mice have provided insights into 

how MMPs may contribute to this pathology.  MMP1, MMP2, MMP8, MMP9 and 
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MMP12 have all been implicated in emphysema [98].  Mice deficient in MMP12 

(macrophage elastase) exposed chronically to cigarette smoking fail to recruit 

macrophages to the alveolar bed and do not develop emphysema [103].  Increased 

expression of MMP1 (collagenase) in mice leads to airspace enlargement [104].  

Cigarette smoking increases MMP9 (gelatinase B) and MMP12 expression [98].  In 

addition to their ECM degrading properties, MMP2, MMP7, MMP9, MMP12 are able 

to cleave A1AT, which inactivates this important inhibitor of neutrophil elastase, 

which may contribute to septal destruction via increased elastin destruction [105].  

Recent studies in humans have provided further support for the role of MMPs in 

emphysema.  MMP 8 and MMP9 are increased in bronchoalveolar lavage (BAL) fluid 

of subjects with COPD/emphysema compared with non-smokers [98].  There is also 

emerging evidence for MMP2 in emphysema.  Baraldo et al showed upregulation of 

MMP2 in the lung periphery of patients with emphysema compared with non-

smokers and smokers without emphysema [106].  In addition, they showed positive 

correlation of MMP2 with radiological severity of emphysema.    MMP2 is expressed 

in structural cells such as endothelial cells and smooth muscle cells and 

macrophages.  In this study, MMP2 was observed in alveolar macrophages, alveolar 

walls, peripheral airways and small arterioles.   Interestingly, while expression was 

significantly increased in the alveolar walls of smokers with severe COPD, 

expression in smokers with mild/moderate disease had levels similar to that of 

smoking and non-smoking controls suggesting that MMP2 activation may be 

important in the development of more severe emphysematous disease.  Importantly, 

this increase in MMP2 was unrelated to current smoking status, being related rather 

to the presence of COPD/emphysema.  In addition to these ECM degrading 

properties, MMP2 may also have important immunomodulatory functions.  

Unrestrained expression of MMP2 may contribute to the aberrant type1 immune 

response that has been suggested to occur in emphysema [107]. 
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1.21Apoptosis and EnMT 

A link between apoptosis and vascular smooth muscle cell growth was first reported 

in 2006 by Sakao et al [108].  Apoptosis was induced in normal human pulmonary 

microvascular endothelial cells via VEGF receptor blockade (SU5416).   The media 

from these apoptotic cells was then applied to rat pulmonary artery smooth muscle 

cells cultured with varying degrees of sheer stress.  After 24 hours incubation, cells 

cultured in conditioned media showed increased proliferation compared to cells 

cultured in non-conditioned media and serum free media.  The media from apoptotic 

endothelial cells had increased concentrations of TGFβ1 and VEGF as assessed by 

RT-PCR, with the combination of high shear stress and SU5416 treatment having 

the highest of all gene expression.  Because both TGFβ1 and VEGF were increased 

in the apoptotic media, they investigated the role that each might play in vascular 

smooth muscle proliferation via co-incubation with neutralising antibodies for each.  

Using this method they demonstrated that TGFβ-1 but not VEGF mediated this 

proliferation.  Extrapolating these findings, one could propose that apoptosis of 

endothelial cells leads to increased TGFβ1 which may drive both EnMT and 

mesenchymal proliferation. 

 

These researchers provided further evidence linking apoptosis and EnMT, as a 

mechanism behind the vascular remodelling witnessed in pulmonary hypertension 

[109].  They induced apoptosis of normal human pulmonary of microvascular 

endothelial cells via VEGF receptor blockade (via SU5416 treatment for 5 days) and 

then maintained these cultures for a further 3 to 5 passages.  This treatment 

suppressed PGI2 gene expression but induced COX2, VEGF and TGFβ1 expression 

and caused transdifferentiation of mature endothelial cells (as evidenced by dil-

acetylated LDL uptake, lectin and factor VIII expression) into smooth muscle like 

cells (expression of αsma) with some transitional cells expressing both markers.  To 

investigate the characteristics of the cells undergoing apoptosis and 

transdifferentiation, cell type was investigated via magnetic cell sorting of cells for 

CD34 prior to SU5416 treatment.  CD34 is expressed by haematopoietic progenitor 

cells, endothelial cells and some fibroblasts. They observed that only cells positive 
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for CD34 underwent this transition.  They suggest that VEGF blockade causes 

apoptosis of susceptible endothelial cells, creating a selection pressure for CD34+ 

progenitor cells which, via changes in the microenvironment due to apoptotic cells, 

undergo EnMT.  In contrast to the previous study, this transdifferentiation was not 

inhibited by the addition of VEGF and TGFβ-1 neutralising antibodies suggesting in 

this case, that these mediators do not drive this phenotype change.    

 

1.22 Possible reversal of apoptosis and EnMT 

In addition to caspase inhibition and anti-oxidants such as MnSOD preventing 

apoptosis, prostacyclin has been shown to prevent endothelial cell apoptosis 

induced by cigarette smoke [110].  Treatment of normal human pulmonary 

microvascular endothelial cells with 0.5 and 1% cigarette smoke extract (CSE), 

prepared according to a standard method [111] reduced prostacyclin gene 

expression in a dose dependant manner with a maximal effect at 24 hours.  This 

reduction in prostacyclin may be via acrolein, a highly toxic unsaturated aldehyde 

found in cigarette smoke extract, as treatment with acrolein alone also lead to a 

reduction in prostacyclin.  Treatment of cells with 1 and 2% CSE increased apoptosis 

rates (assessed by annexin V staining via FACS) from 3% in control cells to 9%.  

Pre-treatment of these normal pulmonary microvascular cells with the prostacyclin 

analogue iloprost significantly reduced this apoptosis in response to CSE.   

 

There is also evidence which suggests that simvastatin can inhibit cigarette smoking 

induced emphysema via reduction of inflammation and MMP-9 production [112].  In 

addition to anti-inflammatory actions, simvastatin may have anti-oxidant functions 

important to maintenance of microvascular function and prevention of emphysema.  

ROS in the serum of smokers can reduce eNOS expression leading to endothelial 

dysfunction, thus simvastatin may restore endothelial function via the removal of 

ROS.  Removal of ROS may prevent both apoptosis and EnMT, mechanisms which 

may be involved in the complex tissue remodelling witnessed in emphysema.   
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1.23 Summary 

Emphysema is a common lung condition with poor survival and very limited 

therapeutic options.  A major stumbling block to research has been the notion that 

emphysema simply equates with loss of lung tissue and destruction.  Understanding 

the role that endothelial cell loss may play may lead to advances in our 

understanding.  Furthermore the potential for realveolarisation is an attractive 

proposition.  Thus attempts to study the fate of LMVECs in response to cigarette 

smoke may allow improved understanding of the pathogenesis of emphysema, and 

allow identification of potential new therapeutic targets.    
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Chapter 2: Hypothesis and Aims 

2.1 Hypothesis 

Cigarette smoke injury to human lung microvascular endothelial cells causes 

apoptosis and endothelial-to-mesenchymal transition with resulting emphysema in 

susceptible individuals.     

 

2.2 Aims 

In this study I planned to use emphysematous lungs removed at the time of 

transplantation to create a new disease model to study emphysema with cells from 

individuals who had developed disease.  All cell culture models have limitations 

including the use of cancer resection specimens (the surrounding tissue removed 

may have altered expression of VEGF) or normal tissue obtained from lungs not 

suitable for transplantation (the brain death process with subsequent inflammation).  

I therefore aimed to use this new model to investigate emphysema in the hope that it 

would provide a new way to study ex vivo cellular responses, as close to in vivo 

conditions as possible.   

 

The use of severely emphysematous lungs to study the pathogenesis of emphysema 

with reference to endothelial cells can attract criticism with regards the relevance of 

studying end stage disease to the question of pathogenesis.  However, research 

shows that in severely damaged emphysematous lungs there is ongoing evidence of 

repair and active inflammation and that within severely damaged lung there are 

some areas of near normality [86].  One may postulate that cells isolated 

successfully from emphysema lung tissue are likely to be a reliable model as 

severely damaged cells would not survive the isolation process, thus the cells 

isolated are likely to be susceptible yet relatively normal endothelial cells.  
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Isolating, purifying, cryopreserving and re-culturing microvascular endothelial cells 

from patients with emphysema, although challenging, may provide a way in which to 

study emphysema that potentially demonstrates in vivo cell responses in a cell 

culture model.  In contrast to immortalised cell lines, animal models and the use of 

normal human primary cells, this model may allow study of the cellular response to 

injury (in this case, cigarette smoke) that led to the disease in cells from susceptible 

individuals, ex vivo, with the potential to improve our understanding of how cigarette 

smoking causes emphysema.  

 

 I therefore investigated my hypothesis using severely emphysematous lung 

tissue obtained at transplantation.   

 Firstly, I attempted to establish a reliable and reproducible method to isolate 

and fully characterise microvascular endothelial cells from the excess 

emphysematous tissue obtained at lung transplantation. 

 Secondly, I planned to use these cells from multiple patients to investigate:    

• Whether these susceptible endothelial cells undergo apoptosis in 

response to cigarette smoke, in comparison with untreated cells and 

rates of apoptosis in cells isolated from normal individuals. 

• The characteristics of cells which were resistant to apoptosis. 

• Endothelial plasticity in response to cigarette smoking, examining cell 

activation and phenotype via change in cellular expression and 

matrix production in response to cigarette smoke extract. 

 

I also studied the immunohistochemistry findings of severely emphysematous lungs 

with reference to apoptosis and endothelial to mesenchymal transition, using tissue 

blocks obtained from the lung tissue from which cells were obtained. 
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Chapter 3: Materials and Methods 

3.1 General Reagents 

3.1.1 Immunohistochemistry 

Phosphate buffered saline (PBS) and bovine serum albumin (BSA) were purchased 

from Sigma-Aldrich.  Envision flex and flex plus reagents were purchased from 

Invitrogen.  TSA kits were purchased from Perkin-Elmer.   

3.1.2 Cell isolation 

Dulbecco’s Modified Eagle medium (DMEM), Roswell Park Memorial Institute 

(RPMI) and PBS were purchased from Sigma-Aldrich.  Type II Collagenase was 

purchased from Worthington (47A9338).  The Dynal magnet, Dynabeads M-450 and 

CD31 Dynabeads were purchased from Invitrogen.  The lectin UEA-1 was 

purchased from Sigma. 

3.1.3 Cell Culture 

Cell culture plastics were purchased from Fisher Scientific.  Cryopreserved normal 

human pulmonary microvascular endothelial cells were purchased from Promocell 

(C12281) and Lonza (CC-2527).  All cells were cultured in MV2 media (C-22121, 

Promocell).  Cells were passaged using PBS (Sigma) and cell dissociation solution 

(Sigma C5789).  

3.1.4 Cigarette Exposure Experiments 

Kentucky research filterless cigarettes (Lot 4A1) were gifted from AstraZeneca R+D 

Charnwood and were used for all experiments.  A vacuum pump was purchased 

Laboport (Mini pump N86 KN.18) and used in all preparation of cigarette smoke 

extract (CSE). 
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3.1.5 Flow cytometry 

PE conjugated Annexin V kits were purchased from BD Biosciences (556422).    

3.1.6 Western blotting 

4-12% Bis Tris Nu-Page pre-cast Gels, MES running buffer and ‘See blue’ indicator 

were purchased from Invitrogen.  BCA protein assay kits (#23225) and Supersignal 

West Pico Chemiluminescent (#34080) kits were purchased from Pierce 

Laboratories.  PVDF membrane was purchased from Amersham biosciences 

(#NF1016).  

3.1.7 Confocal microscopy 

DAPI was purchased from vectashield (H-1200). 

3.1.8 RT-PCR 

RNA was isolated from cells using Absolutely RNA microprep kit (400805) Agilent.  

cDNA was then obtained using Affinity script qPCR cDNA synthesis kit (600559) 

Agilent. 

3.1.9 ELISA 

Endothelin-1 ELISA kits were purchased from assay designs (#900-020A).  

3.1.10 TUNEL 

Fluorescein In situ cell death detection kits were purchased from Roche 

(11684795910). 
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3.2 Antibodies: primary and secondary 

3.2.1 Confocal Microscopy 

For characterisation and EnMT work, CD31 (sc-53411, Santa Cruz), Ve-Cadherin 

(sc-6458, Santa Cruz), Vimentin (M7020, Dako), aSMA (F3777, Sigma) and 

fibronectin (F3648, Sigma) were used to detect cell surface expression via confocal 

microscopy and counterstained appropriately with either FITC (Mouse) (F2012) 

(Sigma) or TRITC (Rabbit) (T6778) (Sigma) with DAPI nuclear staining (H-1200, 

Vectashield). 

3.2.2 Live Cell imaging 

DEVD-NucView 488 Caspase 3 substrate (Biotium Inc) was used to detect apoptosis 

via live cell imaging.  DEVD-Nucview is a fluorogenic enzyme which can freely pass 

into the nucleus.  Upon activation of the substrate (caspase 3) enzymatic cleavage of 

Nucview leads to fluorescence.   

3.2.3 Flow Cytometry 

For cell characterisation, FITC conjugated CD31 (#555445, BD Bioscience) was 

used to identify endothelial cells.  PE cy5 conjugated CD90 (# 555597, BD 

Bioscience) was used to identify fibroblast/ mesenchymal cells.  APC conjugated 

CD62E (E-selectin) (#551144, BD Bioscience) was used to detect response to 

stimulation with TNFα. 

 

Apoptosis was investigated using Annexin V (# 556422 BD Bioscience), as an early 

marker of apoptosis via detection of phosphatidylserine residues.  Necrotic cells 

were detected using 7AAD (BD Bioscience), which is fluorescent and has strong 

affinity for DNA but requires cell membrane disruption in order for it to bind, thus 

labeling only dead cells and not viable cells. 
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3.2.4 Western Blotting 

Recombinant human TGFβ1 (100-21) was purchased from Peprotech. CD31 (sc-

53411, Santa Cruz) and VE-Cadherin (sc-6458, Santa Cruz) were used to detect 

endothelial cell protein expression.  Alpha smooth muscle actin (ab32575, Abcam), 

Vimentin (M7020, Dako), and Fibronectin (F3648, Sigma) were used to investigate 

cellular plasticity and endothelial to mesenchymal transition.  β actin (A2228, Sigma) 

was used as a loading control. 

3.2.5 PCR 

Taqman probes were purchased to detect 18s (4331182) and VEGF KDR (4465807) 

(Applied Biosystems). 

3.2.6 ELISA 

Endothelin-1 ELISA kits were purchased from Assay Designs (900-020A). 
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3.3 Patients 

Ethical approval for the isolation and study of diseased cells was given by the 

Northumberland Local Ethics and Research Committee in January 2007 (REC 

reference 06/Q0902/57).  All patients awaiting lung transplantation at Freeman 

Hospital were invited to take part in the study.  Patients gave informed consent to 

donate their explanted lung for research purposes outlined in the study.  The study 

was performed in accordance with ICH-GCP.  Study patient information leaflet and 

consent form appear in Appendix 1. 

 

Ethical approval to obtain excess normal tissue from patients undergoing lobectomy/ 

pneumonectomy was given by County Durham and Tees Valley 2 Research Ethics 

Committee in July 2009 (REC reference 09/H0908/35).  Patients were identified 

according to the study protocol (Appendix 2) and excluded should they have 

evidence of emphysema/ fibrosis on radiology or pulmonary function testing.  The 

study was performed in accordance with ICH-GCP.  Study protocol, patient 

information leaflet and consent form appear in Appendix 2.  

 

Clinical data such as primary diagnosis, age, body mass index, arterial oxygenation 

(PaO2) and pulmonary function tests were obtained from each individual who 

donated tissue.  Smoking status and smoking history from each patient was also 

obtained.  Those with emphysema were also categorised according to the updated 

GOLD criteria (2003) [113], [114].  Clinical data is summarised in Table 1.  Further 

detail is provided in individual patient data sheets in Appendix 3. 
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Table 1: Patient demographics, histopathological diagnosis and clinical data 

Patient 
No: 

Gender Diagnosis Age BMI Smoking 
History 

(Pack yrs.) 

FEV1 
(%) 

TLC 
(%) 

KCO 
(%) 

GOLD 
stage 

1 M A1AT 
emphysema 

(Panacinar) 

46 28.7 15 18 133 15 IV 

2 F Emphysema 54 21.5 30 10 178 - IV 

3 F Emphysema 

(Centrilobular) 

53 20.9 30 22 131 32 IV 

4 F Emphysema 51 20.8 30 28 150 33 IV 

5 F Emphysema 

(Centrilobular) 

46 20.2 20 21 150 43 IV 

6 M Emphysema 

(Centrilobular) 

58 22.7 35 15 130 46 IV 

7 F Emphysema 

(Centrilobular) 

59 21.8 25 34 155 38 III 

8 M Emphysema 

(Centrilobular) 

44 23 15 14 138 69 IV 

9 F Emphysema 60 28.3 20 26 95 25 IV 

10 M Emphysema 45 21.3 27 26 156 42 IV 

11 M Emphysema 

(Centrilobular) 

55 20.8 55 17 130 24 IV 

12 F A1AT 
emphysema 

(Panacinar) 

40 26.1 25 16 136 33 IV 

13 M Emphysema 

(Centrilobular) 

47 22.3 30 17 150 42 IV 

14 M A1AT 
emphysema 

(Panacinar) 

52 21.2 15 22 127 71 IV 

15 F Normal 68 - 15 104 - - N/A 

16 F Normal 65 - 40 80 - - N/A 

17 F IPAH 60 26.4 0 83 107 109 N/A 
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3.4 General Methods 

3.4.1 Obtaining diseased lung tissue 

At the time of transplantation, the lung was inspected to confirm the macroscopic 

pathology was in keeping with pre-operative diagnosis and to exclude any 

unexpected pathology.  A lobe/part of lobe was then dissected and stored at 4°C 

until clinical pathology assessment (which was performed within 24 hours).  

Following routine clinical pathology, blocks of tissue were placed in neutral buffered 

formalin for fixation for histology experiments.  The remaining tissue (typically around 

50g) was used immediately for cell isolation.   

3.4.2 Obtaining normal tissue 

The operating surgeon performing lobectomy for suspected lung cancer identified a 

wedge of normal tissue within the tissue removed at surgery but discrete from the 

tumour resection margins.  This was stapled off from the remaining tissue and 

tumour and placed in media.  Both samples were transported to clinical pathology 

where the wedge sample was inspected and once confirmed to be free from disease, 

was used immediately for cell isolation.  Tissue samples ranged from 5-30g.   

3.4.3 Tissue preparation 

Tissue samples were fixed for 48 hours at room temperature (RT) in 10% neutral 

buffered formalin (Pioneer Chemicals, Surrey).  The tissue was then dissected into 

3mm thick blocks and processed overnight on a Leica Tissue Processor (LEICA TP 

1050 fully enclosed vacuum tissue processor), an automated way in which to take 

tissue through graded alcohols and into paraffin. The tissue was then positioned and 

set into a paraffin wax block on a Leica Histoembedder.  Blocks were stored at RT 

ready for use. 

3.4.4Sectioning 

4μm sections were cut with a Leica Jung RM2155.  Cut sections were floated on 

water (37°c) and transferred to Thermo Shandon Colourfrost Plus positively charged 

microscope slides. Positively charged slides are used to ensure that the tissue 
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remained adhered to the slide throughout the subsequent staining. The slides were 

dried overnight at 45°c and then stored at RT. 

3.4.5Immunohistochemistry 

4µm sections were dewaxed in xylene and taken through graded alcohols to water.  

Antigen retrieval was determined according to each antibody and included no pre-

treatment, vector unmasking fluid, microwave in low pH solution, microwave in high 

pH solution, boric acid at 65°C for 16 hours.  Endogenous tissue peroxidase activity 

was quenched with pre-treatment of sections with v/v hydrogen peroxide (0.5-6%) in 

methanol for 10 minutes.  Sections were then washed in PBS +0.05% tween 

(pH7.4).  Non-specific binding was blocked with 20% normal goat serum in PBS with 

1% BSA (pH7.4) or flex block for 20 minutes at room temperature.  Sections were 

then incubated in primary antibody diluted in PBS 1% w/v BSA pH7.4 for 30 minutes 

at room temperature.  Corresponding isotype controls (no primary antibody) were 

used in all experiments.   After incubation with primary antibody, sections were 

washed in PBS +0.05% tween (pH7.4) before applying corresponding HRP linked 

secondary antibodies.  HRP activity was detected using the chromagen DAB (Dako).   

Sections were counterstained with Gills haematoxylin, dehydrated through graded 

alcohols to xylene then mounted.   

3.4.6Cell Culture 

3.4.6.1 Isolation of microvascular endothelial cells from explanted lungs 

Tissue excess to pathology requirements was stored in DMEM prior to cell isolation.  

Alveolar macrophages were firstly removed by inflation of the tissue with PBS.  The 

alveolar macrophage rich fluid which seeps out of the tissue was then discarded.  

The pleura and macroscopic vessels and airways were also dissected and 

discarded.  The remaining tissue was finely chopped, washed in media and filtered 

through a 40µm filer to remove red blood cells.  Tissue pieces were incubated in 

0.2% type II collagenase (RPMI + 0.1% BSA) with gentle agitation at room 

temperature for 2 hours and then filtered, firstly through a large filter and secondly 

through a 100µm filter.  The filtrate was centrifuged (250G for 5 minutes), 

supernatant removed and cell pellet resuspended.  An automated cell count was 
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performed and cells plated onto 0.2% gelatin-coated flasks (10,000 cells/cm2)in MV2 

media (Promocell).  Following 24 hours incubation, the flasks were washed in PBS to 

remove non-adherent cells and red blood cells.  MV2 media was replaced and 

changed every 2-3 days. 

3.4.6.2 Passage of isolated microvascular endothelial cells 

At 70-80% confluence, cells were passaged using cell dissociation solution (Sigma).  

Cells were washed in PBS before incubation in cell dissociation solution for 

approximately 15 minutes at 37°.  Detached cells were removed and remaining 

adherent cell attachment disrupted with gentle scraping.  The detached cell 

suspension was centrifuged with the resulting pellet ready for cell separation.  

3.4.6.3 Preparation of UEA Dyna beads  

Dynabeads M-450 Tosylactivated (Invitrogen) were washed in 0.2M Sodium 

Tetraborate (pH 9.5) before being placed in the Dynal magnet (MPC-1, Invitrogen) 

for one minute.  The wash was then discarded.  After a further wash, the beads were 

resuspended in 1ml 0.2M Sodium Tetraborate (pH 9.5) containing 0.2mg/ml Ulex 

europaeus-1 lectin (UEA-1) (Sigma L5505) and incubated with gentle agitation at RT 

for 48 hours to allow coupling of the ligand to Dynabeads.  After incubation, the 

bead-ligand mixture was washed, by adding 1ml of PBS containing 0.1% BSA, 2nM 

EDTA (pH 7.4) and was placed in the magnet for 1 minute.  The wash was removed, 

and 2 further washes performed by resuspending beads in 1ml of PBS containing 

0.1% BSA, 2nM EDTA (pH 7.4) and incubated on the roller for 5 minutes before 

removal of the wash by magnetic separation.  After the final wash, beads were 

resuspended in 1ml of PBS containing 0.1% BSA, 2nM EDTA (pH 7.4) (bead 

concentration 4x108 beads/ ml) and stored until use in separation experiments. 

3.4.6.4 Separation of cells 

UEA and commercially available CD31 Dynabeads (25 µl each) were washed in PBS 

containing 0.1% BSA, 2nM EDTA (pH 7.4).  The cell pellet was then resuspended in 

2ml of PBS containing 0.1% BSA, 2nM EDTA (pH 7.4) containing the beads.  The 

cells/ beads suspension was incubated on a roller at 4°C (to reduce non-specific 

binding)for 20 minutes.  Following incubation, a further 5ml of PBS containing 0.1% 
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BSA, 2nM EDTA (pH 7.4) was added and the beads/cells mixture placed in a 

magnet.  The buffer containing cells unattached to beads was removed.  The 

beads/cells mixture was washed as above a further four times with the bead-

negative fraction removed each time.  The bead positive cells were re-suspended in 

media and counted using a haemocytometer.  Cells were plated onto 0.2% gelatin-

coated flasks at 2000-3000 cells/cm2.  The bead negative fraction, containing mostly 

fibroblasts, was at plated out similarly. 

3.4.6.5 Cryopreservation 

Once cells are a pure population, with no contaminating fibroblasts, cells were 

cryopreserved (1x106cells/ml) in MV2 media (Promocell) containing 1% DMSO 

(Sigma). 

3.4.6.6 Reanimation and Passage of cells 

Cryopreserved pulmonary microvascular cells isolated from patients in our centre or 

commercially available (Promocell and Lonza), were grown on sterile tissue culture 

flasks in complete MV2 media (Promocell) with supplemental antibiotic/ antimycotic 

(Invitrogen).  When the cells reached 70-80% confluence, cells were washed with 

PBS and cell dissociation solution (Sigma) added to detach the cells.  After 2-3 

minutes incubation, the detached cells were removed and centrifuged.   The number 

of cells in the resulting pellet was calculated using a haemocytometer and cells 

seeded at 2-5000 cells/cm2.  

3.4.6.7 Harvesting Cells 

Media was removed and stored at -80°C to allow later analysis.  Cells were washed 

in PBS to remove debris and then detached via gentle scraping.  Flasks were 

washed in PBS, and the resulting cell suspension centrifuged (250G for 4 minutes).  

The supernatant was removed.  The cell pellet was re-suspended in phosphosafe 

extraction buffer.  Cells were sonicated to lyse the cells.  
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3.4.7Preparation of Cigarette smoke extract 

Cigarette smoke extract (CSE) was prepared according to the method published by 

Carp and Janoff [111].  This method has been widely used for over 30 years, with 

some researchers making their own modifications, and is highly cited in the 

literature.  Briefly, the smoke of 1 Kentucky filterless research cigarette (Lot 4A1) 

was bubbled through 25ml endothelial MV2 media containing 5% FCS (Promocell), 

using a vacuum pump (Laboport), over approximately 6 minutes (to mimic the time to 

smoke a cigarette) to give a concentration of 100% CSE (Figure 3.1).  Due to the 

precious nature of the cells, the resulting CSE was sterile filtered through a 0.2u 

filter.  CSE was used to treat cells within 30 minutes of preparation.  To standardise 

CSE as much as feasibly possible it was made on each occasion by the same 

operator (LSM) and when analysed on a spectrophotometer had the same 

absorbance.  pH of CSE was also unaltered among CSE preparations and when 

compared with whole media.   

 

Figure 3.1 Apparatus used to prepare cigarette smoke extract (CSE). 
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3.4.8 Flow cytometry 

Cells were harvested using cell dissociation solution (Sigma), centrifuged and 

washed in PBS prior to staining.  100,000 cells/100ul were typically used for each 

analysis.  For characterisation experiments, cells were resuspended in PBS (100ul) 

and volumes of cell surface markers added according to optimisation experiments.  

Cells and antibodies were incubated for 30 minutes at 4°C to reduce non-specific 

binding.  Following incubation, cells were washed in 4ml PBS, centrifuged at 10,000 

rpm for 5 minutes, resuspended in 200ul PBS and analysed on facs scan LSR II.   

For apoptosis experiments, cells were resuspended in 100ul 1x binding buffer (BD 

bioscience).  5ul of Annexin V and 5ul 7-AADwere added to each and incubated at 

RT for 15 minutes, before analysis on FACS scan.  Data was analysed using Venturi 

software.  

3.4.9 BCA protein assay 

A BCA protein assay was performed on all samples to ensure equal loading 

concentrations for western blotting.  Standard dilutions of BCA (2000, 1500, 1000, 

750, 500, 250 and 125ng/ml) were prepared on a 96 well plate and read on an 

Opsys MR microplate reader (Dynex technologies) at 570nm.  A standard curve was 

constructed and used to determine protein concentration of unknown samples.  

Briefly, 80 µl of phosphosafe extraction buffer was added to 5µl of each sample.  

25µl of this mixture was added in triplicate onto a 96 well plate.  200µl of BCA 

working reagent was added to each sample and incubated at 37°C for 30 minutes 

before reading at 570nm.  Protein concentration was calculated according to the 

standard curve.      

3.4.10 Western blotting 

Samples were prepared on ice with equal loading according to BCA protein assay.  

To each sample equal volume of sample buffer (laemmli buffer/ β-ME, 10%(v/v) was 

added to denature the protein.  Samples were vortexed and heated for 5 minutes at 

95°C.  Samples were then loaded onto Nu-PAGE pre-cast gels (Invitrogen) together 

with See blue pre-stained indicator and ran in MES running buffer at 100V.  Gels 

were transferred overnight at 20V onto PVDF membranes in 1x transfer buffer 
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(0.02M tris, 0.192M glycine, 10% methanol).  The following day, PVDF membranes 

were blocked in TBS-T with 5% dried milk (marvel) for 60 minutes at room 

temperature.  Primary antibodies were then applied in 5% marvel TBS-T overnight at 

4°C.  The next day, membranes were washed twice for 10 minutes in TBS-T.  

Corresponding secondary antibodies were applied in 5% marvel TBS-T.  Following 

90 minute incubation, membranes were washed three times for 10 minutes in TBS-T.  

Membranes were then exposed to ECL Chemiluminescence solution (50:50 

concentration) (Amersham) with protein bands detected via Gel-Doc. 

3.4.11 Confocal microscopy 

Cells were seeded onto an 18mm coverslip and treated as per each experiment.  On 

completion of each treatment course, cells were washed in PBS and fixed with 

freshly prepared 4% paraformaldehyde for 30 minutes.  The paraformaldehyde was 

removed and cells stored in PBS.  For staining, the cells were quenched with 100mM 

glycine for 30 minutes.  Cells were then permeabilised with PBS plus 1% Triton X-

100 (PBST) for 30 minutes.  PBST was then removed and cells washed three times 

in PBS.   Cells were blocked with 5% BSA for 60 minutes.  Primary antibodies in 5% 

BSA were then applied for 60 minutes at room temperature and then washed with 

PBS with 0.2% tween and PBS.  Secondary antibodies were then applied in 5% BSA 

for a further 60 minutes before 3 washes in PBST and one final wash in PBS.  The 

cells on coverslips were thereafter mounted with 4’,6-diamidino-2-pheylindole (DAPI) 

stain and viewed on a Leica Sp2UV laser scanning confocal microscope and 

analysed with software from Leica (LCS 2.61).  

3.4.12 RT-PCR 

3.4.12.1 RNA isolation 

RNA was isolated using a commercially available micropreparation kit.  Briefly cells 

were lysed a mixture of βmercaptoethanol and lysis buffer (βME0.7ul and 100ul lysis 

buffer per <500,000 cells).  An equal volume of 70% ethanol was then added to the 

mixture and vortexed.  DNase were then deactivated by incubating with RNase-free 

DNase I and DNase digestion buffer followed by a series of high and low salt buffer 

washes and microcentrifuge.    RNA was isolated by incubation with an elution buffer 
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for 2 minutes at room temperature and then centrifuged.  RNA concentration was 

determined using a nanodrop.  A 2% agarose gel containing 4ul ethidium bromide 

was then cast and RNA samples run with loading buffer of 30% glycerol, 70% TAE 

(Tris-acetate-EDTA) and bromophenol blue in 1% TAE to assess quality of RNA.  A 

trackIt (Invitrogen) DNA ladder was used to identify molecular weight.  RNA was 

stored at -80°C until used for cDNA preparation. 

3.4.12.2 cDNA preparation 

cDNA was prepared from RNA using a commercially available kit.  Briefly each 

sample was made to RNA concentration according to nanodrop, with 3ul random 

primers and DEPC water to a total volume of 15.7ul.  This mixture was then 

incubated at 65°C for 5 minutes and then cooled to room temperature over 

approximately 10 minutes.  To each sample 2ul 10X affinity script, 0.8ul dNTP mix, 

0.5ul RNase block and 1ul affinity script were added.  This was then incubated at 

25°C for ten minutes to allow the primers to extend and then to 55°C for 60 minutes 

to allow the polymerase chain reaction to take place.  The reaction was then 

terminated by increasing the temperature to 70°C for 15 minutes.  cDNA was stored 

at -80°C until used for Q-PCR. 

3.4.12.3 Q-PCR 

Samples were prepared and plated onto 96 well optical plates (Applied Biosystems).  

Briefly, 10ul mastermix, 6.5ul RNAse free H2O and 1ul primers were added to each 

well.  2.5ul of cDNA (diluted according to optimisation experiments) was then added 

to each well.  Samples were then centrifuged and ran on the PCR machine and 

analysed on ABI Prism 7000 SDS software.  Real-time reaction products for each 

primer were confirmed on 2% agarose gel electrophoresis. 

3.4.13 ELISA 

Media from control and treated cells removed at the time of harvesting was used 

together with commercially available ELISA kits to detect levels of Endothelin-1 (ET-

1) released from treated cells.  Samples and standards were added to wells pre-

treated with ET-1.  After incubation, samples were washed.  HRP labelled 

monoclonal antibody to ET-1 was then added and incubated prior to further washing 
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to remove unbound antibody.  TMB substrate solution was then added which 

generates a blue colour when catalysed by HRP.  Stop solution (1N solution 

hydrochloric acid in water) was thereafter added with the resulting yellow read at 

450nm.  The amount of signal detected was directly proportional to the level of ET-1 

and so a standard curve was constructed from which the concentration of ET-1 

within the samples (unknowns) could be determined. 

 

3.4.14 Statistical Analysis 

Much of the work presented in this thesis is exploratory.  Statistical analysis was 

performed where appropriate and is reported in figures and text.  Excel and Graph 

Pad Prism were used for all statistical analyses.  Where the data was found to be 

parametric t-tests or ANOVA (for multiple comparisons) were performed.  For non-

parametric data, Mann Whitney U-tests were performed.  Statistical significance was 

taken as p<0.05. 
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Chapter 4: Endothelial Cell isolation and Characterisation 

4.1 Abstract 

The Pulmonary microvasculature plays an important role in the maintenance of lung 

homeostasis via its response to injury and role in repair.  Animal models, 

immortalised cell lines, primary cells isolated from large pulmonary arteries and 

human umbilical vein endothelial cells (HUVECs) have all been used to model the 

human microvasculature but each have limitations as to how truly they reflect in vivo 

conditions.  Commercially available human pulmonary microvascular cells have 

overcome many of these limitations, however the ability to study disease 

mechanisms in cells isolated from individuals with the disease in question, whose 

cells have been exposed to the milieu associated with disease, may mimic in vivo 

conditions more accurately.   Observing how these cells respond to injury may 

provide valuable insights into disease pathogenesis.  I therefore attempted to isolate 

pulmonary microvascular endothelial cells from individuals undergoing lung 

transplantation for severe end stage emphysema.  Cells were also isolated from 

excess normal tissue from patients undergoing lobectomy for cancer to act as 

controls. 

Methods:  Following informed consent, a lobe or part of lobe was dissected at the 

time of surgery.  The pleura, large airways and large blood vessels were removed 

and contaminating macrophages and neutrophils flushed from the peripheral lung 

tissue before digestion with collagenase.  This cell mixture was then cultured until 

colonies of cells were present.  Endothelial cells were purified from the cell mixture 

via selection with CD31 and UEA-1 magnetic beads and characterised by confocal 

microscopy and flow cytometry. 

Results:  Successful isolation was achieved from 10 (71%) of 14 emphysematous 

lungs.  Endothelial cells exhibited a classical cobblestone morphology with high 

expression of endothelial cell markers (CD31) and low expression of mesenchymal 

markers (CD90, αSMA and fibronectin). E-selectin (CD62E), which is reported to be 

absent on quiescent microvascular endothelial cells but inducible on intraacinar 

arterioles and venules upon stimulation, was observed in a proportion of the isolated 
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CD31 positive cells following stimulation with TNFα, confirming that these cells were 

of microvascular origin. 

Conclusions:  Susceptible human pulmonary microvascular cells from severely 

emphysematous lungs can be isolated with high yields.  Characterisation confirms 

these to be of high purity.  These cells provide a valuable research tool to investigate 

cellular mechanisms in the pulmonary microvasculature relevant to the pathogenesis 

of emphysema. 
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4.2 Introduction 

The pulmonary microvasculature, which comprises the luminal barrier of intra-acinar 

arterioles and venules and the alveolar capillary network, plays an important role in 

lung tissue homeostasis in health and disease [50][115].  Lung endothelial cell injury 

is hypothesised to be a key event in the pathogenesis of emphysema [116] and 

forms the increasingly credible “microvascular hypothesis” as an alternative to the 

classical hypothesis in which inflammatory cells are seen as the orchestrators of 

tissue destruction [117].  

 

Early cellular studies exploring the pulmonary circulation tended to use large vessel 

endothelial cells, typically from the main pulmonary trunk, and HUVECs (human 

umbilical vein endothelial cells) as a surrogate for the lung microvasculature [118].  

However, wide heterogeneity exists between endothelial cells isolated from different 

organs and between endothelial cells isolated from different vascular beds within 

organs [119]–[121].  The vascular bed of the lung is perhaps the best example of this 

heterogeneity, due to its numerous branching arteries, arterioles, capillaries and 

venules, which unlike the systemic circulation are exposed to low pressure and high 

flow.  The resulting large surface area has important metabolic functions that may 

contribute to disease when disordered [119].  Such complexity may explain differing 

results found between ex vivo models and the difficulties when trying to translate 

research into clinical practice.  The ability to study the disease in cells isolated from 

tissue from individuals in whom the disease has developed has been largely 

overlooked, instead relying on more readily available models and simply 

acknowledging the limitations of each.    

 

Immortalised cell lines are a widely used model in cell biology.  Originally derived 

from embryos and cancer tissue, cell lines can be used to high passage due to 

clonality of the cells, which escape the normal controls within the cell cycle [122].  

Such a model has the advantage that they provide a stable cell population that does 

not have a finite lifespan, however they do not always express markers characteristic 

of the tissue in which they originated[123][124] and their responses in vivo are 
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unlikely to reflect the true response of cells to injury[125][126], thus limiting their use.  

Microvascular endothelial cells (MVECs) isolated from animals are an alternative 

model.  MVECs have been isolated from bovine [127], ovine [128], and rodent lungs 

[121].  These animal cell models have the advantage that are provide an important 

way in which cellular response to injury and disease mechanisms can be studied, 

however these may not reflect the true in vivo response in humans.  Such studies 

have however provided valuable insights into the responses of rat lung 

microvascular endothelial cells to injury and also have afforded the development of 

methods to effectively isolate lung microvascular cells [129][130][131][121].  The 

development of successful isolation techniques has then allowed these to then be 

applied to isolation of human LMVECs.  

 

The emergence of commercially available primary cells in recent years has provided 

an alternative way in which to study cellular responses ex vivo [120].  While these 

cells are fully compliant with regulatory legislation, with information given regarding 

the patient age and in some cases smoking status, there exists no way in which to 

clarify whether the individuals from which these cells were isolated had normal 

pulmonary function or indeed whether they had evidence of respiratory disease.  

Therefore, the ability to isolate and compare cells from individuals characterised to 

be free from respiratory disease and from those who have developed severe disease 

is attractive.  Furthermore, the observation that only 20% of individuals who smoke 

develop emphysema [1] supports the view in this disease that it is an individual’s 

disordered cellular response to injury rather than the injury per se that leads to 

pathology.  The study of disease in cells isolated from individuals in whom the 

disease has developed therefore has clear relevance.  The demonstration that 

emphysema is not simply a disease of “loss of lung tissue” and rather a disease in 

which there is active response to injury and attempts at repair [25], adds further 

weight to the goal of isolating cells from individuals in whom the disease has 

developed and may provide valuable insights into the pathogenesis of emphysema.  

By comparing how these susceptible cells behave in contrast to cells isolated from 

individuals free from COPD may provide unique insights into the cellular responses 

to cigarette smoke which lead to COPD. 
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I therefore attempted to isolate human pulmonary microvascular endothelial cells 

(HPMVECs) from patients with severe end stage lung disease undergoing lung 

transplantation, obtaining clinical details such as lung function and smoking history to 

contextualise samples.  This approach allowed both the isolation of cells from well 

characterised patients with advanced diseases such as emphysema and pulmonary 

arterial hypertension (using tissue obtained at lung transplantation).  In addition, cells 

were isolated using the same method from healthy individuals with normal lung 

function without COPD (using excess tissue removed at lobectomy for lung cancer).  

All isolated cells were characterised and compared with normal LMVECs, using 

immunocytochemistry to confirm the cells were endothelial, uncontaminated by 

mesenchymal cells and of microvascular pedigree.   
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4.3 Subjects 

Ethical approval for the isolation and study of diseased cells was submitted and 

approved by the Northumberland Local Ethics and Research Committee in January 

2007 (REC reference 06/Q0902/57).  All patients awaiting lung transplantation at 

Freeman Hospital were invited to take part in the study.  Patients gave informed 

consent to donate their explanted lung for research purposes outlined in the study.  

The study was performed in accordance with ICH-GCP.  Study patient information 

leaflet and consent form appear in Appendix 1.   

 

Ethical approval to obtain normal tissue from patients undergoing lobectomy/ 

pneumonectomy was given by County Durham and Tees Valley 2 Research Ethics 

Committee in July 2009 (REC reference 09/H0908/35).  Patients were identified 

according to the protocol (Appendix 2) with subjects excluded should they have 

evidence of emphysema/ fibrosis on radiology or pulmonary function testing.  The 

study was performed in accordance with ICH-GCP.  Study protocol, patient 

information leaflet and consent form appear in Appendix 2.  

 

Clinical data such as primary diagnosis, age, body mass index, arterial oxygenation 

(PaO2) and pulmonary function tests were obtained from each individual who 

donated tissue.  Smoking status and smoking history from each patient was also 

obtained.  Those with emphysema were also categorised according to the updated 

GOLD criteria (2003) [113], [114].     
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4.4 Methods 

4.4.1 Obtaining diseased lung tissue 

At the time of transplantation, the lung was inspected to confirm the macroscopic 

pathology was in keeping with pre-operative diagnosis and to exclude any 

unexpected pathology.  A lobe/part of lobe was then dissected and stored at 4°C 

until clinical pathology assessment (which was performed within 24 hours).  

Following routine clinical pathology, blocks of tissue were placed in neutral buffered 

formalin for fixation for histology experiments.  The remaining tissue (typically around 

50g) was used immediately for cell isolation.   

4.4.2 Obtaining normal tissue 

The operating surgeon performing lobectomy for suspected lung cancer identified a 

wedge of normal tissue within the tissue removed at surgery but discrete from the 

tumour resection margins.  This was stapled off from the remaining tissue and 

tumour and placed in media.  Both samples were transported to clinical pathology 

where the wedge sample was inspected and once confirmed to be free from disease, 

was used immediately for cell isolation.  Tissue samples ranged from 5-30g.   

4.4.3 Cell isolation 

Contaminating alveolar macrophages were firstly removed via repeated inflation of 

the tissue with sterile PBS.  The pleura, visible arterioles, bronchioles and venules 

were then dissected to prevent overgrowth with mesothelial and epithelial cells and 

prevent contamination with macrovascular endothelial cells.  The remaining tissue 

was washed in RMPI containing 10% FCS and 1% PSA and finely chopped (1-2mm2 

pieces).  The tissue pieces were then washed through a 40µm filter to remove red 

blood cells before incubation with 0.2% type II collagenase (Worthington) in RPMI 

containing 0.1% BSA for 2 hours at room temperature.  Following incubation, the 

suspension was filtered through a 400-500µm mesh and then a 100µm sterile filter.  

The filtrate was centrifuged (250g for 5 minutes).  The supernatant was discarded 

and resulting cell pellet re-suspended in endothelial growth MV2 media (Promocell) 

containing 1% PSA.  An automated cell count was performed and cells plated onto 
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flasks pre-coated with 0.2% gelatin (w/v in MilliQ water, coated for 30min at room 

temperature, excess gelatin solution was removed before cell addition) at 

approximately 10,000 cells/cm2.  Cells were cultured at 37˚C in the presence of 5% 

CO2.    Non-adherent cells were removed after 24 hours in culture by gentle flushing 

with PBS over the flasks.  MV2 media was replaced every 3-4 days until the cells 

reach confluence. 

4.4.4 Endothelial cell purification 

When the cells reached approximately 80% confluence, they were passaged using 

cell dissociation solution (Sigma) and separated from any contaminating fibroblast 

and epithelial cells using CD31 Dynal beads (Invitrogen) and pre-prepared Ulex 

europaeus agglutinin-1 (UEA-1) coated Dynal beads.  UEA-1 binds to the α-L-

Fucosyl residues of glycoprotein present on the surface of human microvascular 

endothelial cells, thus in conjugation with magnetic beads allows the selection of 

endothelial cells from a mixed cell suspension [132].  The cells were re-suspended in 

PBS containing 0.1% BSA and 2mM EDTA (Dynal Buffer) and 25ul each of CD31 

Dynal beads and UEA-1 coated beads were added.  The cells/beads mixture was 

incubated on a rocker at 4˚C for 20 minutes, to minimise non-specific binding.  The 

beads were then washed in Dynal buffer and placed in a Dynal magnet.  The bead 

negative fluid was discarded.  After repeated washing and magnetic separation, the 

bead positive cells were counted and plated on 0.2% gelatin coated tissue culture 

flasks at approximately 3,000 cells/cm2 and incubated at 37˚C in the presence of 5% 

CO2.  Bead separation was performed over 3-5 passages of the cells until pure 

cobblestone cultures were obtained. 

4.4.5 Cryopreservation of cells 

When cultures appeared free from contaminating cells, cells were cryopreserved in 

MV2 media (Promocell) containing 1% DMSO (Sigma).  All emphysema cultures 

were cryopreserved and then later reanimated for characterisation and explorative 

experiments. 
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4.4.6 Commercial Human Pulmonary Microvascular Endothelial cells 

Commercial HLMVECs were purchased from Promocell (C12281) and cultured after 

reanimation at 37 ˚C with 5% CO2 using endothelial growth MV2 media (Promocell) 

supplemented with 1% PSA (as used with cells isolated from patients). 

4.4.7 Mycoplasma testing 

All isolated cells and commercial cells were routinely tested for mycoplasma infection 

using Myco Alert kits (LT07-218, Lonza).  Testing was carried out on all isolated cells 

prior to experimentation and on commercial cells on a monthly basis.  The cells 

showed no evidence of mycoplasma infection.  

4.4.8 Phase contrast Microscopy 

Cells were grown to confluence and images taken on canon image shot. 

4.4.9 Confocal microscopy 

Cells were cultured on 18mm glass coverslips in 12 well plates.  At confluence, cells 

were washed in PBS and fixed in freshly prepared paraformaldehyde (4%).  

Following fixation, cells were quenched in 100mM glycine for 30 minutes, before 

permeabilisation in PBS Triton X-100 (1%v/v) for 20 minutes.  Following 

permeabilisation, cells were washed with PBS containing 0.2% tween (0.2% PBST) 

and PBS.  After blocking with 5% BSA for 60 minutes, coverslips were incubatedwith 

primary antibodies (CD31 (Sc53411, Santa Cruz) Fibronectin (F3648, Sigma), 

αSMA, (F3777, Sigma) in 0.5% BSA overnight at 4˚C.  Cells were then washed as 

before with 0.2% PBST and PBS.  Fluorochrome pre-conjugated secondary 

antibodies (FITC: Mouse (F2012) and TRITC: Rabbit (T6778), Sigma) were then 

applied (0.5% BSA) for 60 minutes and then washed in 0.2% PBST and PBS.  The 

cells were then mounted with DAPI mounting medium (H-1200, Vector Labs) and 

viewed on a Leica Sp2UV laser scanning confocal microscope and analysed with 

software from Leica (LCS 2.61).  
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4.4.10 Flow cytometry 

Initial experiments to determine optimal concentrations of antibodies were conducted 

using microvascular endothelial cells purchased from Promocell.  Each cell 

population was stained using the same conditions. 

CD31/CD90 characterisation 

Cells at 70-80% confluence were used in all characterisation experiments.  Cells 

were harvested using cell dissociation solution (Sigma) with approximately 100,000 

cells per 100ul used for each stain.  Cells were washed and re-suspended in 100ul 

PBS and incubated with FITC conjugated CD31 (#555445 BD Bioscience) and PE 

cy5 conjugated CD90 (# 555597 BD Bioscience) for 30 minutes at 4°C, to reduce 

non-specific binding.  Cells were then washed in PBS, centrifuged at 250g for 4 

minutes, re-suspended in 200ul PBS and analysed on FACS Scan (Becton 

Dickinson).   

CD62E characterisation  

Cells were grown in 6 well plates and at 70-80% confluence were treated with TNFα 

(1ng/ml).  Following treatment cells were harvested using cell dissociation solution 

with approximately 100,000 cells per 100ul used for each stain.  Cells were washed 

and re-suspended in 100ul PBS and incubated with APC conjugated CD62E (E-

selectin) (#551144 BD Bioscience) for 30 minutes at 4°C, to reduce non-specific 

binding.  Cells were then washed in PBS, centrifuged at 250g for 4 minutes, re-

suspended in 200ul PBS and analysed on FACS Scan.     
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4.5 Results 

Cell isolation was attempted from 17 patients (11 emphysema, 3 alpha-one anti-

trypsin related emphysema, 2 normal, 1 pulmonary arterial hypertension) and was 

successful from10 (71%) of 14 emphysematous lungs.  Table 3 shows the baseline 

characteristics and clinical data from the 17 individuals in whom cell isolation was 

attempted.  In addition to diagnosis, smoking history, PaO2 and spirometry 

measures were included where available.  Those patients with emphysema was 

categorised according to disease severity based upon the GOLD classification[3].  

Cell yield from successful cultures is documented. 
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Table 2: Patient demographics and cell yield 

Patient 
No: 

Gender Diagnosis Age BMI Smoking 
History 

(Pack 
yrs.) 

FEV1 
(%) 

TLC 
(%) 

KCO 
(%) 

GOLD 
stage 

Cell Yield  

(passage number at 
cryopreservation) 

1 M A1AT 

emphysema 

46 28.7 15 18 133 15 IV 1.9 x10
6
 cells (passage 4) 

2 F Emphysema 54 21.5 30 10 178 - IV 2.5 x10
6
 cells (passage 4) 

3 F Emphysema 53 20.9 30 22 131 32 IV 9.4 x10
6 
cells (passage 5) 

5.4 x10
6
 cells (passage 4) 

4 F Emphysema 51 20.8 30 28 150 33 IV 5.6 x10
6
 cells (passage 4)  

28.8x10
6
 cells (passage 5) 

5 F Emphysema 46 20.2 20 21 150 43 IV Unsuccessful 

6 M Emphysema 58 22.7 35 15 130 46 IV Unsuccessful 

7 F Emphysema 59 21.8 25 34 155 38 III 12x10
6
 cells (passage 4) 

8 M Emphysema 44 23 15 14 138 69 IV 3.2 x10
6
 cells (passage 4) 

21.5x10
6
 cells (passage 6) 

9 F Emphysema 60 28.3 20 26 95 25 IV 5.2x10
6
 cells (passage 6) 

10 M Emphysema 45 21.3 27 26 156 42 IV 5.4x10
6
 cells (passage 4) 

11 M Emphysema 55 20.8 55 17 130 24 IV Unsuccessful 

12 F A1AT 

emphysema 

40 26.1 25 16 136 33 IV 18.2x10
6
 cells (passage 6) 

13 M Emphysema 47 22.3 30 17 150 42 IV 13.9x10
6
 cells (passage 4) 

14 M A1AT 

emphysema 

52 21.2 15 22 127 71 IV Unsuccessful 

15 F Normal 68 - 15 104 - - N/A 1x10
6
 cells (passage 3) 

16 F Normal 65 - 40 80 - - N/A Unsuccessful 

17 F IPAH 60 26.4 0 83 107 109 N/A 10x106 cells (passage 3) 
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4.5.1 Phase contrast microscopy 

Prior to the first passage, cells in culture were a mixed population of elongated cells 

and cobblestone cells together with red blood cells.  Following the initial bead 

separation, at the first passage, the bead positive fraction of cells displayed 

cobblestone morphology and grew in a monolayer in colonies (Figure 4.1A).  Small 

beads could also be seen attached to many of the cobblestone cells.  In contrast, the 

bead negative fraction (Figure 4.1B) consisted of elongated spindle cells which grew 

in sheets, becoming confluent more quickly.  At the first passage there were areas in 

which a mixed population of cells was still present (Figure 4.1C) with some 

elongated cells growing together with cobblestone cells.  For this reason, repeated 

bead separation was performed until cultures contained only cobblestone cells.  

  



58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.1:  Phase contrast microscopy 

(magnification x20) of cells following the initial bead 

separation (Patient 4).  A) Cobblestone cells 

growing in colonies. B) Bead negative fraction 

showing elongated spindle cells.  C) Areas showing 

a mixture of cobblestone cells and more elongated 

cells.   

1B 1A 

1C 
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4.5.2 Characterisation of cells via confocal microscopy 

Around passages 4-6, when cultures appeared free from contaminating spindle cells 

on phase contrast microscopy, cells were plated onto glass coverslips and 

immunocytochemistry performed with images taken via confocal microscopy.  Figure 

4.2 shows representative images for (a) commercially available LMVECs 

(Promocell), the standard to which we controlled our isolated cells, b) LMVECs 

isolated from a patient with emphysema (patient 8), (c) LMVECs isolated from 

excess normal tissue (patient 15) and contrasted with (d) the bead negative fraction 

from excess normal tissue (patient 15).  Cells stained positively for the endothelial 

cell surface marker CD31 (FITC green) (Figure 4.2 a-c).  Cells displayed contact 

inhibition with the formation of a lattice of tight junctions.  The bead negative cells 

showed no CD31 staining (Figure 4.2d).  The mesenchymal marker alpha smooth 

muscle actin (αSMA) (TRITC red) was absent on CD31 positive cells (Figure 4.2 a-c) 

but was present on the CD31 negative fraction (Figure 4.2d) in an elongated spindle 

shaped pattern (red).  CD31 positive cells (Figure 4.2 a-c) also had very low levels of 

the intracellular matrix protein fibronectin, in contrast to CD31 negative cells (Figure 

4.2d) which demonstrated high staining (red) in sheet like form.    

 

 

 

 

 

 

 

 

 

 

 



60 

 

Figure 4.2: Confocal Microscopy characterisation of cells 

 

 

 

 

 

 

 

 

 

Figure 4.2: Detection of immunocytochemical markers via confocal microscopy (CD31: FITC 
green, aSMA: TRITC red, DAPI: blue). (a) LMVECs (Promocell) were compared to (b) LMVECs 
isolated from patient 8 with emphysema and (c) _LMVECs isolated from excess normal tissue 
(patient 15).  Cellular expression on these cells was compared with that of the (d) bead negative 
fraction from excess normal tissue.  All images were taken at X 63 magnification.  

 

 

a) Promocell 

     LMVECs 

b) Patient 8 

     LMVECs 

c) Patient 15 

     LMVECs 

d) Bead  

Negative cells 
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4.5.3 Flow cytometry 

LMVECs (Promocell) and dermal fibroblasts (gifted by ICM, Newcastle) were used to 

determine the optimal concentrations of each antibody (CD90 and CD31) required 

for flow cytometry characterisation experiments (Figure 4.3a-e).  Once 

concentrations for each antibody alone were determined, a second set of 

experiments were conducted to determine the optimal concentration of CD31 (1ul) 

and CD90 (0.5ul) to separate a mixed population of HLMVECs and fibroblasts 

(Figure 4.3f).  Following these preliminary experiments, cells from 5 patients with 

emphysema and a normal donor were characterised using the established protocol.  

The cell populations isolated from all donors were characterised by high expression 

of CD31 and low expression of CD90 (Figure 4.4).  Cells from the normal donor 

(patient 15) were characterised at passage 2, as evidenced by the slightly lower 

number of CD31 positive cells (78%). 

 

CD62E (E-Selectin) expression on isolated CD31 positive cells at baseline and after 

stimulation with TNFα was also investigated.  CD62E is a cell surface adhesion 

molecule involved in leukocyte trafficking that is absent on microvascular endothelial 

cells but is inducible upon cytokine stimulation [133].   Capillaries do not express 

CD62E at baseline or upon activation.  I therefore hypothesised that the isolated 

CD31 positive cells would be CD62E negative at baseline and that a proportion 

representing microvascular cells excluding capillaries would become CD62E positive 

upon stimulation while a second subpopulation representing the capillaries would 

remain CD62E negative.  LMVECs (Promocell) were first investigated to determine 

the concentration of TNFα, CD62 antibody and appropriate time course required.  

Approximately 40-50% cells stained positively for CD62E at a low concentration of 

TNFα (1ng/ml) after 1 hour and 24 hours, across a range of antibody concentration 

(2.5ul-10ul) (Figure 4.5).   A similar percentage of cells were positive for CD62E with 

higher concentrations of TNFα(2-8ng/ml) (figure 4.6).  CD31 positive cells from 3 

patients with emphysema were selected at random and thereafter stimulated with 

1ng/ml TNFα for 1 hour and stained for CD62E to investigate whether these cells 

were microvascular in origin.  The emphysema cells demonstrated minimal baseline 
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CD62E expression (<5%) with a rightward shift in response to TNFα stimulation at 1 

hour with approximately 30% cells staining positively for CD62E (Figure 4.7).  Cells 

from one emphysema donor (patient 8) were used to further investigate CD62E 

expression on these isolated cells at further time points (2, 4 and 8 hours) (Figure 

4.8).  There was similar induction of CD62E expression that became maximal at 8 

hours and then fell at 24 hours to levels similar to previous experiments.  Due to the 

precious nature of these cells, this time course was not repeated in multiple donors, 

as having demonstrated that the CD31 positive cells isolated were negative at 

baseline for CD62E but inducible in a proportion of cells, I had confirmed these to be 

of microvascular origin. 

.   
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Figure 4.3:  Representative flow cytometry scatter plots showing CD31 (FITC) and CD90 (PE 
cy5).  Figure 4.3(a) shows scatter plot of unstained mixed cell population, LMVECs (Promocell) 
and fibroblasts. Figure 4.3(b) Endothelial cells stain positively for CD31 and 4.3(c) negatively for 
CD90.  Figure 4.3(d) Fibroblasts stain negatively for CD31 but (e) strongly positive for CD90.  
Figure 4.3(f) Mixed Endothelial cells and fibroblasts show separation of the cell populations. 
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Figure 4.4: (a) Representative scatter plots depicting CD31 (FITC):CD90 (PEcy5) 
characterisation of cells isolated from patients 2,3,4,7 and 8 with emphysema and patient 15 
(normal) via flow cytometry.  Scatter plots show a single cell population positive for CD31 and 
negative for CD90 confirming these to be of endothelial origin.     (b) Summary chart showing high 
percentage of CD31+/CD90- cells, with small number of cells negative for both markers (CD31-
/CD90-).  There was also a small percentage positive for both markers (CD31+/CD90+)using the 
gating of forward scatter and side scatter, however there were no cells which were significantly 
CD90+ when compared with staining on fibroblasts (Figure 4.3(e)). 

 

 

 

 

 

(a) 

(b) 

(a) 



65 

 

 

 

 

 

 

  

CD62 

CD62 CD62 CD62 

CD62 CD62 

1 HOUR 
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TNFα 1ng/ml UNSTIMULATED UNSTAINED 

Figure 4.5: Representative flow cytometry scatter plots showing the response of LMVECs 
(Promocell) to TNFα (1ng/ml) stimulation at 1 and 24 hours as detected by differing 
concentration of CD62E antibody (2.5-10ul).  Approximately 40-50% cells stained positively for 
CD62E at a low concentration of TNFα (1ng/ml) for 1 hour and 24 hours, across a range of 
antibody concentration (2.5ul-10ul).  Due to the precious nature of these cells the data 
represented reflects n=1. 
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Figure 4.6: Representative scatter plots and histograms for LMVECs (Promocell) in response to 
stimulation with increasing concentration of TNFα (0-8ng/ml).  A similar percentage of cells 
(~50%) were positive for CD62E following stimulation with higher concentrations of TNFα (2-
8ng/ml). 
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Figure 4.7: Representative scatter plots showing the response of microvascular endothelial 
cells from patients 4, 8, 10 with emphysema to TNFα (1ng/ml) stimulation for 1 hour as 
measured via CD62E immunostaining via flow cytometry.  The emphysema cells demonstrated 
minimal baseline CD62E expression (<5%) with a rightward shift in response to TNFα 
stimulation at 1 hour with approximately 30% cells staining positively for CD62E 
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Figure 4.8: Percentage CD62E positive cells (patient 8) determined via flow cytometry (Mean 
+/- SD; n=3) following treatment with TNFα (1ng/ml). Untreated cells did not express CD62E. 
The percentage of treated cells that expressed CD62E was maximal at 8 hours before falling at 
24 hours. The profile observed is most likely the result of TNFα induced transcriptional induction 
at early time points and cleavage of CD62E from the cell surface at 24 hours. 
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4.6 Discussion 

Microvascular endothelial cells have been isolated previously from a variety of 

tissues including human lung, however this is the first report of the ability to isolate 

these cells from emphysema lung tissue.  This method allows ex vivo study of a cell 

population which may be key in the pathogenesis of emphysema.    Importantly, this 

method allows the isolation and culture of large numbers of human LMVECs (Table 

1) with a high success rate (71%).  The isolated cells were successfully expanded 

following purification prior to cryopreservation and later re-animated for use in 

studies. All cells used in these experiments had been cryopreserved and later 

reanimated apart from cells from patient 15 (normal) which were used at passage 2 

and had not been cryopreserved.  The data presented include cells between 

passage 2 and 7, thus confirming that cells showed stability of phenotype. 

 

Certain steps were critical to the success of this method. The tissue could be stored 

for up to 24 hours from the time of transplant until histopathological processing, 

however once processing began, cell isolation had to follow immediately otherwise it 

was unsuccessful.  Careful dissection of the large vessels and removal of pleura to 

prevent overgrowth by contaminating mesothelial cells was also vital.  Daily 

observation of cell numbers and doubling time was also required in order to 

determine the optimal time for bead separation as time between each passage 

differed between donors and did not appear related to passage number or disease 

severity.  

 

Endothelial cell extraction employed bead separation with magnetic dynal beads for 

CD31 (endothelial cell surface marker) and UEA-1 (an endothelial based lectin).  

Other researchers have previously reported difficulties when using CD31 dynal 

beads, hypothesising that disruption of cell surface CD31 by beads inhibited the cell 

to cell interactions required for successful growth in culture [133].  I did not encounter 

such problems, although doubling time immediately post bead separation was more 

prolonged.   
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By passage 3-5, cells appeared free from contaminating spindle shaped cells 

(mesenchymal cells and fibroblasts) and were characterised according to a standard 

protocol developed using commercially available cells.  The commercially available 

cells were used both to set a standard against which the cells isolated could be 

characterised and to ensure the precious isolated cells were not used for preliminary 

optimisation of dose and time characterisation experiments.  Comparing the cells 

isolated from patients with emphysema to those isolated from lung resection 

operations and commercially available cells provided a further control.  

 

The immunocytochemical detection of cell surface markers via confocal microscopy 

confirmed the isolated cells were endothelial, staining positively for the endothelial 

marker CD31 with weak/absent staining for mesenchymal markers.   This was 

further confirmed by flow cytometry, with cells staining positively for the endothelial 

cell marker CD31 and negatively for the fibroblast marker CD90.  These approaches 

proved very cell efficient, requiring only small numbers of cells for full 

characterisation (~1x106), thus preserving large numbers of cells for use in future 

studies.   

 

Plant derived lectins have previously been employed to differentiate between 

microvascular and macrovascular endothelial cells [119].  I encountered difficulties 

with non-specific binding of the lectins Griffonia (Bandeiraea) simplicifolia and Helix 

pomatia previously used to differentiate between microvascular and macrovascular 

endothelial cells respectively both on single cells and on paraffin embedded tissue.  

As a result, I investigated E-selectin (CD62E) expression as an alternative method to 

differentiate between microvascular and macrovascular endothelial cells.  E-Selectin 

(CD62E) and P-Selectin (CD62P) are receptor molecules for monocytes and 

neutrophils that are expressed on activated endothelial cells [134].  CD62E, in 

contrast to CD62P which is stored in Weibel-Palade bodies in endothelial cells, is 

transcriptionally induced on microvascular endothelial cells in response to cytokine 

stimulation [133].  Capillaries are not thought to express CD62E [135], [136].  Thus 

quiescent microvascular cells do not express CD62E but following activation 

intraacinar arterioles and venules express CD62E, while capillaries remain negative 
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for CD62E.  In this study, the isolated CD31 positive cells showed very low (<5%) 

staining for CD62E at baseline.  In response to stimulation with TNFα, there was 

inducible staining in around 30-50% of the isolated cells at 1 hour.  Inducible CD62E 

in response to TNFα suggests these endothelial cells are microvascular.  

Furthermore, the presence of a subpopulation that was endothelial (i.e. positive for 

CD31) but did not up-regulate CD62E in response to TNFα suggests that the cells in 

this subpopulation are pulmonary capillary endothelial cells.  Importantly this 

subpopulation was greater in the cells isolated from patients with emphysema 

compared with commercially available cells from Promocell used in the optimisation 

experiments.  These pulmonary microvascular endothelial cells may therefore 

provide a more appropriate model than the current commercially available cells. 

 

Infection is undoubtedly the major challenge to successful isolation and investigation 

of human pulmonary microvascular endothelial cells.  Due to the inherent risks of 

introducing infection whilst culturing the cells, the lobe of lung was placed in DMEM 

containing 0.1% penicillin streptomycin and amphotericin (PSA) prior to processing.  

0.1% PSA was included in all MV2 media used in cell culture, the risk of infection 

being deemed greater than any adverse effect on growth kinetics the antimicrobials 

may have.  In spite of this, a number of cell cultures were lost to infection, mostly 

around P5-P6.  With cell aging, growth kinetics reduced, with greater time to 

confluence.  Thus cells spent longer time in culture at each passage, increasing the 

likelihood of infection.  Amphotericin was included as we encountered more fungal 

infections than bacterial infections.     

 

As with all ex vivo cell culture systems, inherent limitations are associated.  Cells 

were passaged 3-5 times prior to obtaining pure cobblestone cultures which were 

characterized as endothelial.  Cells therefore have a protracted culture period, with 

possible associated increased senescence and change in cell characteristic.  Cells 

were grown in MV2 media (Promocell) which included 5% fetal calf serum 

supplementation and other survival factors such as hydrocortisone (0.2ug/ml), 

recombinant human epidermal growth factor (5ng/ml) fibroblast growth factor 

(10ng/ml) vascular endothelial growth factor (0.5ng/ml) and insulin like growth factor 
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(Long R3) (20ng/ml).  The addition of hydrocortisone to cell culture media has been 

a contentious matter due to concerns over increased cell stress and how this may 

change cellular physiology.  The concentration of hydrocortisone in MV2 media 

(Promocell) is considerably lower than in other types of microvascular endothelial 

cell media and its omission led to cell death.   

 

Isolation of cells from patients with the disease in question, namely emphysema, was 

initially time consuming, requiring ethical approval and significant commitment in 

order to obtain fresh tissue at the time of transplantation.  Furthermore, full 

characterisation of these cells to confirm their pedigree once again was more 

laborious than the use of an immortalised cell line or indeed the use of commercially 

available cells.  However, following the initial outlay of work, one obtains a valuable 

resource that has been isolated and characterised via a standard methodology, with 

corresponding clinical data to further characterise the cells. This cell isolation method 

can also be applied to other respiratory diseases in which the pulmonary 

microvasculature may be pivotal such as pulmonary arterial hypertension and 

idiopathic pulmonary fibrosis.  Indeed large numbers of cells from IPAH were 

obtained at lower passage and with higher yield than the emphysema model.    
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Chapter 5: Endothelial cell apoptosis in emphysema 

5.1 Abstract 

Apoptosis has been suggested to be important in the pathogenesis of emphysema 

and is linked to loss of the microvasculature.  A number of researchers have shown 

in animal models that loss of VEGF leads to apoptosis and may lead to emphysema 

like changes.  Studies of human pathology have further confirmed apoptosis of 

alveolar cells however the predominant cell type is still debated.  It is also unclear, 

although a relatively simple scientific question that is sometimes alluded to as being 

a known fact, whether microvascular endothelial cells undergo apoptosis in response 

to CSE.  I therefore investigated apoptosis in response to CSE using the susceptible 

HLMVECs isolated from patients with severe emphysema.  In addition VEGFR2 

gene expression was also investigated. 

Methods: LMVECs (Promocell) were used for viability studies via flow cytometry.  

These studies were then repeated with cells isolated from individuals with 

emphysema and apoptosis detected via flow cytometry using Annexin V as a marker 

of apoptosis.  Cells were also TUNEL stained as a second method to detect 

apoptosis.  Due to inherent difficulties of ascertaining the most appropriate time point 

and concentration of CSE at which to look for apoptosis, fluorescent live cell imaging 

was employed to detect fluorescence generated upon activation of caspase 3 using 

DEVD Nucview-488.  q-PCR for VEGFR2 was thereafter investigated to examine 

gene expression in response to CSE. 

Results:  Cell viability studies confirmed cells were resistant up to 10% CSE and 

that the isolated emphysema cells were less viable at baseline and more susceptible 

to injury.  Fluorescence live cell imaging showed both short and prolonged low dose 

CSE treatment caused an increase in fluorescence counts in both LMVECs 

(Promocell) and in cells isolated from a patient with emphysema.  CSE treatment 

alone however caused autofluorescence of the cells and although control 

experiments were performed in attempt to quantify this, it was therefore not possible 

to determine whether these cells undergo apoptosis. q-PCR for VEGFR2 was 
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unchanged in normal HLVECs (Promocell) in response to CSE while HLMVECs 

isolated from emphysema tissue show a reduction in VEGFR2 in response to CSE at 

48 hours compared with untreated isolated cells.  The influence of the cell isolation 

procedure on apoptosis and VEFR2 was not determinable. 

Conclusions:  Apoptosis in response to CSE was studied in both commercial 

LMVECs (Promocell) and LMVECs isolated from patients with emphysema using a 

number of techniques including Annexin V, TUNEL and detection of caspase 3 

activation.  Unfortunately all of these techniques employed the use of fluorescence 

and as CSE itself causes autofluorescence, despite attempts to control for this, it 

was not possible to state whether cells undergo apoptosis in response to this injury. 

qPCR suggests that LMVECs down regulate VEGFR2 in response to CSE, in 

contrast to normal LMVECs (commercial primary cells) which may suggest a 

maladaptive response to CSE injury in cells from susceptible individuals.  

Unfortunately due to the number of cells isolated in the same manner from normal 

patients free from disease it was not possible to repeat this experiment in these cells 

thus limiting the conclusions that can be drawn from comparing commercial primary 

LMVECs with the emphysema LMVECs. 
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5.2 Introduction 

Apoptosis is an energy dependant programmed cell death for the deletion of 

unwanted individual cells that is important in morphogenesis and is also thought to 

be crucial for ongoing tissue homeostasis [61].  Apoptosis has long been recognised 

to play an important role in tumour biology[137] and more recently has been 

implicated in emphysema[138].  Rats treated with a VEGF receptor blocker 

(SU5416) develop airspace enlargement and loss of the microvasculature similar to 

emphysema that can be prevented by the addition of a caspase-3 inhibitor [63].  

Clinical studies support this animal model with increased apoptotic endothelial and 

epithelial cells in the alveolar septa of emphysematous lung tissue when compared 

with tissue from non-smokers and smokers without emphysema [54].  VEGF and 

VEGF receptor 2 mRNA and protein are also reduced in emphysema tissue [54].  

A1AT has also been reported to have anti-apoptotic actions [6],[7], accounting for the 

accelerated emphysema witnessed in individuals homozygous for the PiZ allele and 

further supports the key role apoptosis may play in the development of emphysema.  

These studies led other researchers to investigate apoptosis rates in 

emphysematous tissue with similar findings, with Yokohori and Imai also highlighting 

the dynamic nature of emphysema; the balance between co-existent alveolar cell 

death and proliferation determining the complex pathology witnessed[17,20]. 

 

The response of endothelial cells to cigarette smoking ex vivo is however less well 

studied.  Tuder et al presented an abstract entitled “Cigarette smoke extract 

decreases the expression of vascular endothelial growth factor by cultured cells and 

triggers apoptosis of pulmonary endothelial cells” [139]  at a meeting in 2000 

however while this data is noteworthy it has since not been published.  U937 

(monocyte cell line), HepG2 (hepatocellular carcinoma) and A549 (alveolar epithelial 

cell line) cells were treated with 10% CSE for 24 hours and reduced VEGF protein 

and mRNA was observed on western blotting and ribonuclease protection assays 

[139].  CSE treatment was also reported to induce a two fold increase in NO 

production in all cell lines studied [139].  They then investigated apoptosis in these 

cells lines and bovine pulmonary artery endothelial cells in response to treatment 
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with 10% CSE for 24 hours.  They reported “apoptosis and complete detachment 

from the culture dish of bovine pulmonary artery endothelial cell, while minimal 

detachment and apoptosis were seen with the U937, HepG2 and A549 cells”.  

Importantly they did not specify how apoptosis was measured and did not quantify 

relative rates of apoptosis.  Other researchers have published studies examining 

apoptosis in response to cigarette smoke extract but have not focused on endothelial 

cells, in contrast reporting apoptosis in alveolar macrophages[140], human lung 

fibroblasts[141] and in A549 cells, the alveolar type II cell derived line[142].  Michaud 

et al reported impairment of HIF-1alpha/VEGF in response to cigarette smoke 

extract on HUVECs but reported no toxicity up to 10%CSE and detected no 

apoptosis via TUNEL [143].   Later studies reported the ability of alpha-one 

antitrypsin [144] and prostacyclin [110] to attenuate apoptosis in cell culture models.  

Interestingly, these authors allude to apoptosis in response to cigarette smoke being 

a published and accepted finding and report simply the ability to reverse this.  One of 

these reports used pulmonary artery endothelial cells isolated from the main 

pulmonary arteries of 6 month old pigs, thus has the major limitations of species 

specific differences and that fact that these cells are PAECs and not LMVECs.  The 

cigarette smoke used in these experiments was also different to the standard 

method developed by Carp and Janoff [111].   Rates of apoptosis were surprisingly 

high also, with approximately 50% of cells undergoing apoptosis [144].  For these 

reasons, further investigative work was conducted to investigate the response of 

human pulmonary microvascular cells to cigarette smoke extract.  

 

Smoking a single cigarette exposes an individual to around 6000 compounds, a 

large number of which are toxic [72].  Developing a model to study the effects of 

cigarette smoking is therefore complicated by the sheer number of compounds which 

can be studied and also the variability in how an individual smokes (number of 

inhalations, volume of inhalation etc.).  Not withstanding these factors, a number of 

models of cigarette smoking have been developed to study the effects of smoking ex 

vivo [111][145], [146].  One of the most widely accepted methods is that developed 

by Carp and Janoff more than 30 years ago [111].  It involves entraining smoke and 

bubbling this through an aqueous solution, to produce a cigarette smoke extract.  
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This method has the major disadvantage that CSE is in the liquid as opposed to 

gaseous phase and some volatile and rapidly reactive compounds are lost.  It may 

also be less physiological, as endothelial cells are not directly exposed to cigarette 

smoke in vivo.  Other models have been developed which involve cells being 

exposed to cigarettes via a smoking chamber [146], which may be more 

physiological, however adding such complexity without large scale machinery such 

as a smoking robot can make the stress more variable and less reproducible.  Some 

researchers have also developed models using individual toxins such as acrolein 

[147], however this model does not reflect the likelihood that smoke related injury 

arises via compound effects rather than the sum of multiple independent toxicities.  

Rejecting a model because it does not perfectly reproduce some aspect of human 

smoking has been correctly stated as unscientific and likely to hamper advances in 

our understanding [72].  Instead, it is widely accepted that a model must act as a 

reasonable surrogate in which investigation of a hypothesis may be conducted.  In 

this thesis I have used the method developed by Carp and Janoff [111] due to its 

simplicity, highly published rate and relative reproducibility. 

 

There are a number of methods via which apoptosis may be studied.  Two of the 

commonest methods are the detection of phospholipid phosphatidylserine (PS) and 

activated caspase 3.  A key step in apoptosis is the changes in plasma membrane 

structure, with translocation of PS from the inner to the outer leaflet of the plasma 

membrane[148].  On the outer leaflet of the plasma membrane PS acts as a signal 

for phagocytic cells in the apoptosis cascade.  Annexin V is a 36kDa calcium 

dependant phospholipid binding protein with high affinity for PS[149].  This affinity 

has been exploited as a method for detecting apoptosis, with conjugation of Annexin 

V to a number of fluorochromes that can be detected via fluorescence, commonly via 

flow cytometry and confocal microscopy.  In these studies I have used flow 

cytometry to identify apoptosis via FITC Annexin V, together with 7-Amino-

Actinomycin.  7-AAD labels cells without an intact membrane, thus does not 

differentiate between cells which have died via necrosis and cells which have 

undergone apoptosis per se, as in the late stages of apoptosis cell membrane 

integrity is lost and cells appear indistinguishable from necrotic cells. 
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Detection of activated caspase 3 is another method which is frequently employed to 

investigate apoptosis[150].  Caspases (cysteine aspartase) are cysteine proteases 

which exist in their inactive pro-form in living cells.  The apoptosis pathways lead to 

cleavage of a number of pro-caspases to caspases, with the acquisition of their 

protease activity, which allows transmission of apoptotic signals to the 

nucleus/mitochondria.  Activated caspase 3 is therefore a useful marker of 

apoptosis.  Activated caspase 3 can be detected on cell lysates via western blotting 

or ELISA and on tissue via immunohistochemistry.  In these studies I have examined 

activated caspase-3 expression on emphysema tissue from which the cells were 

isolated in order to determine apoptosis in severe end stage emphysema. 

 

DNA fragmentation and degradation occurs late in apoptosis and can be detected 

via TUNEL (TdT-mediated X-dUTP nick end labelling)[151].  TUNEL uses the nicks 

that appear in DNA in apoptosis as a marker that can be detected.  Terminal 

deoxynucleotidyl transferase (tdt) identifies these nicks in DNA and catalyses the 

addition of dUTPs to these.  dUTPs are labelled with a marker, that can be detected, 

most commonly via fluorescence, thereby allowing apoptosis to be quantified.  In this 

study I have examined TUNEL staining both on cells exposed to CSE and on the 

tissue from which these cells were isolated.   

 

When studying apoptosis it is important to take into account cell type, time course, 

dose in addition to the dynamic nature of apoptosis.  Thus one could postulate that 

between commercially available lung microvascular cells and primary cells isolated 

from differing patients with emphysema, cells may undergo apoptosis at differing 

rates at differing time points.  In addition the dose of cigarette smoke extract that 

may trigger apoptosis may differ.  The ability therefore to image cells in real time via 

live cell imaging, over a wide variety of concentrations is attractive.  The emergence 

of fluorogenic enzyme substrates that are highly cell permeable have been exploited 

in order to capture apoptosis via live cell imaging.  DEVD-Nucview488 is a 

fluorogenic caspase 3 substrate that can be used for this purpose [152].  Ac-DEVD is 
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a highly negatively charged caspase-3 recognition site that is linked to Nucview488, 

a positively charged DNA binding dye.  In its stable state, DEVD-Nucview488 is 

highly bound and does not stain the nucleus, however due to its cell permeability can 

pass freely into the cell where it remains.  Apoptosis, with activation of caspase-3 

cleaves Ac-DEVD from Nucview488, which allows the positively charged 

Nucview488 to migrate to the nucleus and bind to DNA, causing excitation at 488nm 

that can be detected via fluorescence microscopy.  This method was therefore used 

in these studies, as it allows cell efficient investigation of apoptosis in precious 

primary cells in real time.   

 

I hypothesised that pulmonary microvascular endothelial cells undergo apoptosis in 

response to cigarette smoke extract and will investigate this using the above 

techniques.  Apoptosis was firstly investigated in the tissue from which microvascular 

endothelial cells were isolated via immunohistochemistry for activated caspase-3 

and TUNEL.  The receptor (KDR/FLK1) for the pro-endothelial survival factor, VEGF, 

was also assessed via immunohistochemistry.  The ex vivo work began with viability 

studies using LMVECs (Promocell) in response to CSE to identify a concentration 

which would stress cells but not cause mass cell death.  Apoptosis was then 

investigated via flow cytometry for Annexin V and 7-AAD.  Following these 

preliminary studies, viability studies were repeated on the primary cells isolated from 

emphysema tissue followed by investigation of apoptosis via Annexin V.  TUNEL 

staining on cells post CSE exposure was also investigated.  DEVD-Nucview488 was 

used to detect apoptosis in real time via live cell imaging in both commercially 

available normal cells and in emphysema cells isolated from patients.  Finally, 

VEGF-KDR mRNA expression in response to CSE was also investigated via qPCR 

and is reported in this chapter. 
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5.3 Materials and Methods 

5.3.1 Immunohistochemistry 

Immunohistochemistry for Activated caspase-3 (AF835 R+D 2.5ug/ml) and FLK1 

(Santa Cruz) were performed on 4um paraffin embedded tissue sections from 

emphysema and control tissue.  The Envision Flex system was used with reaction of 

the primary antibody, after blocking agent, with Flex HRP.  Immunoreactants were 

visualised using diaminobenzidine (DAB) substrate solution.  Isotype controls were 

included in each experiment to assess quality of staining.   

5.3.2 TUNEL 

TUNEL was performed on paraffin embedded tissue and cells isolated from 

emphysema tissue using commercially available kits from Roche (11684795910).  

Tissue was dewaxed through xylene to graded alcohol prior to antigen retrieval via 

low pH microwave treatment.  Endogenous tissue peroxidase was quenched with 

6% H2O2.   Cells were fixed in freshly prepared 4% paraformaldehyde and 

permeabilised on ice with 0.1% TritonX-100 in 0.1% sodium citrate.  A positive 

control was included for experiments on tissue and cells, by pre-treatment with 

DNase. After washes, TUNEL reaction mixture containing TdT and fluorescein-dUTP 

was added and incubated at 37˚C in the dark. Incubation with TdT catalyses the 

addition of fluorescein-dUTP to free 3'-OH groups (DNA breaks/nicks), thus allowing 

detection of apoptosis.  After washing, incorporated d-UTP was visualised by 

fluorescence microscopy.  Tissue sections had high background autofluorescence, 

and so converted via POD to HRP/DAB for visualisation by light microscopy. 

5.3.3 Cell culture 

Commercially available human pulmonary microvascular endothelial cells 

(Promocell) and cells isolated from emphysematous human lung were grown in 

complete MV2 media (Promocell) containing supplements and 5% FCS. Cells were 

grown in 25cm2 flasks (qPCR), on 6 well plastic plates coated with gelatin (cell 

viability and apoptosis via flow cytometry), on 18mm coverslips (TUNEL) and on 96 

well gelatin coated plates for live cell imaging.  
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5.3.4 CSE preparation 

Cigarette smoke extract was prepared according to the method by Carp and Janoff 

[111].  As outlined in figure 3.1, one Kentucky filterless research cigarette was 

attached via tubing to a vacuum pump and the smoke from this cigarette gently 

bubbled through 25ml endothelial cell culture media (containing 5% FCS), over 

approximately 6 minutes.  The resulting media was tar stained and final 

concentration stated as 100% CSE.  CSE was made on each occasion by the same 

operator (LSM) and when analysed on a spectrophotometer had the same 

absorbance.   pH of CSE was also unaltered compared with whole media.  Due to 

the precious nature of the cells, CSE was filtered through a 0.2um filter and then 

used within 30 minutes of preparation. 

5.3.5 Flow cytometry 

Initial cell viability studies were conducted using propidium iodide.  Apoptosis was 

investigated using Annexin V/7AAD kits purchased from BD Bioscience. (#559763 

BD Bioscience).  After stimulation, cells were harvested using cell dissociation 

solution (Sigma).  Cells were resuspended in 100ul 1x binding buffer (BD 

Bioscience).  5ul of Annexin V and 7-AAD were added to each tube and incubated at 

RT for 15 minutes, before analysis on FACS scan.  Flow cytometer settings were 

controlled using unstained cells, cells stained with Annexin V alone and 7AAD alone 

prior to each experiment.  Data was analysed using Venturi software.  

5.3.6 Live cell imaging via DEVD-Nucview488 

DEVD-Nucview 488 (stock concentration 1mM) was purchased from Biotium 

(10400).  Cells were grown on 96 well gelatin coated costar plates.  CSE treatments 

were applied in whole media, together with Nucview added (1ul stock per ml of 

media) and 100ul of media with DEVD-Nucview488 (final concentration 1uM) added 

to each well.  Cells were then placed in an incubator at 37˚C with 5% CO2 and 

observed with a fluorescence microscope in real time and analysed via Incucyte 

software. 
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5.3.7 VEGF-KDR qPCR 

RNA was isolated from cells using the Absolutely RNA microprep kit (400805) 

Agilent.  RNA yield and purity was determined via UV absorbance using a 

NanodropSpectrophotometer (ND-1000).  All RNA used had a ratio of absorbance at 

260 nm and 280 nm (A260/280) of 2.0 or above. Quality of RNA was further assessed 

via running samples on a 2% agarose gel containing 4ul ethidium bromide with 

loading buffer of 30% glycerol, 70% TAE (Tris-acetate-EDTA) and bromophenol blue 

in 1% TAE.  A trackIt (Invitrogen) DNA ladder was used to identify molecular weight.  

cDNA was thereafter prepared from RNA using an Affinity Script Multiple 

temperature cDNA synthesis kit according to RNA concentration.  cDNA was stored 

at -80°C until used for q-PCR. 

 

Samples for qPCR were prepared on 96 optical well plates (Applied Biosystems) by 

adding 10ul mastermix, 6.5ul RNAse free H2O and 1ul primers (18s and KDR) to 

each well.  2.5ul of cDNA was then added to each well.  Samples were ran on ABI 

PRISM 7000 Taqman real-time PCR machine (Applied Biosystems) and analysed on 

ABI Prism 7000 SDS software.  Real-time reaction products for each primer were 

confirmed on 2% agarose gel electrophoresis. 
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5.4 Results 

TUNEL staining was firstly employed to investigate apoptosis as this has been 

widely reported in the emphysema literature[64][54].  The commercial kit (Roche 

11684795910) recommended optimisation for each tissue with differing pre-

treatment protocols.  Pre-treatments including proteinase K, triton x100, low pH 

microwave and no pre-treatment were all assessed.  High autofluorescence in 

peripheral lung caused by elastin made the signal uninterpretable and so the signal 

was converted to peroxidise/DAB using the POD converter contained within the kit.  

The staining with TUNEL HRP-DAB was very variable with large areas of tissue 

showing high staining while some areas showed no staining.  A review of the 

literature supports this and highlights that TUNEL in archived paraffin-embedded 

tissue has at best 50% sensitivity[153].  The TUNEL technique relies on being able 

to detect breaks in DNA.  Fixation of tissue in paraffin-embedded archived blocks 

tends to be variable across the block being greater in the centre of the block and less 

in the periphery, thus explaining some of the variability observed in the stain.  

Secondly pre-treatments (antigen retrieval) such as proteinase K and microwave low 

pH can in themselves lead to breaks thus leading to false positives.  The use of 

frozen tissue sections may prove more reliable with TUNEL staining, but as with 

most tissues banked for research, all samples in this study were paraffin embedded.  

Some researchers have tried to optimise TUNEL staining in paraffin-embedded 

tissue, reporting sensitivity up to ~80%, however I rejected this method as such false 

positive and false negative staining could make the apoptosis work in vivo 

uninterpretable, as emphysema is a disease in which there are areas of relative 

normality next to areas of severe disease.  Activated caspase-3 

immunohistochemistry was therefore employed to investigate apoptosis in vivo. 
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5.4.1 Apoptosis of endothelial cells in emphysema in vivo 

Both (a) control and (b) emphysema tissue show DAB positive cells indicating the 

presence of apoptotic cells (activated caspase-3 positive cells) in health and disease 

and thus validate the immunostain.  Isotype controls also confirmed this staining to 

be specific (Appendix).  Activated caspase-3 positive cells were more frequent in 

alveolar septa of (d) emphysema tissue than (c) control tissue indicating increased 

apoptosis in keeping with other researcher’s findings. 

 

 

 

 

 

 

  

Figure 5.1: Immunocytochemistry images for a) control lung tissue and b) emphysema lung tissue 
(Image taken at x20 magnification).  Activated caspase 3 (DAB positive cells) indicate the 
presence of apoptotic cells in both (a) control and (b) emphysema tissue.  Further magnification 
(boxes) of the (c) control and (d) emphysema tissue shows that the positive (activated caspase 3) 
cells were a more frequent finding in alveolar septa of (d) emphysema tissue than (c) control 
tissue in agreement with the findings of other researchers of increased apoptosis in emphysema 
tissue. 

(a) (b) 

(c) (d) 
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5.4.2 Cell viability studies in response to cigarette smoke extract 

Human Lung Microvascular endothelial cells (LMVECs) (Promocell) at passage 3 

were grown to 70% confluence and then treated (n=3) with varying concentrations 

(0-100%) of cigarette smoke extract (CSE).  Cell viability was measured via flow 

cytometry using propidium iodide (PI) as a marker of cell death.  The results are 

shown in figure 5.2.  After one hour, cells showed no significant cell death up to 10% 

CSE, (Viable cells (mean ± sem): Control 76.18±3.12 vs 10% CSE 76.12 ±4.62, 

p=0.99) (Figure 6.3a).  Exposure to 100% CSE for 1 hour led to significant cell death 

with only 55.36% ± 1.47 remaining viable (p=0.004).  At 24 hours, there was no 

significant cell death up to 10% CSE (Control 79.26% ±3.47 vs 10% CSE 78.46 

±1.52, p=0.843) (Figure 5.3b).   However, exposure for 24hours to 100% CSE led to 

mass cell death with only 15.61% ±2.69 cells remaining viable (p=0.000).   

 

In order to verify this result and investigate cell viability at higher passage, LMVECs 

(Promocell) (n=3) at passage 5 were treated with the same varying concentrations of 

CSE as before (0-100%) (Figure 5.4).  Similar results were found with no change in 

cell viability up 10% after 1 hour (Control 75.26±3.12 vs 10% CSE 67.30±4.62, 

p=0.075) and 24 hours treatment (Control 73.10±3.47 vs 10% CSE 70.54±1.54, 

p=0.308).  Reduced cell viability was again observed with 100% CSE for 1 hour 

(57.83±1.47, p=0.001) and mass cell death at 24 hours (23.5±2.70, p=0.000).   

 

From these preliminary studies I chose 3% CSE as a stress stimulus for cells in 

initial apoptosis studies in Promocell LMVECs.   
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Figure 5.2: Flow cytometry data for LMVECs at passage 3 (Promocell) treated with 0-100% CSE 
and stained for propidium iodide.  After one hour CSE exposure, cells showed no significant cell 
death up to 10% (Viable cells (mean±sem): Control 76.18±3.12 vs 10% CSE 76.12 ±4.62, p=0.99) 
(Figure 5.3a).  Exposure to 100% CSE for 1 hour led to significant cell death with only 55.36% ± 
1.47 remaining viable (p=0.004).  At 24 hours, there was no significant cell death up to 10% 
(Control 79.26% ±3.47 vs 10% CSE 78.46 ±1.52, p=0.843) (Figure 5.3b).   However, exposure for 
24hours to 100% CSE led to mass cell death with only 15.61% ±2.69 cells remaining viable 
(p=0.000).  All data points represents n=3.    

a) 

b) 
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Figure 5.3: Flow cytometry data for LMVECs passage 5 (Promocell) treated with 0-100% CSE 
and stained with propidium iodide.  After 1 hour treatment with CSE, there was no change in cell 
viability up 10% (Control 75.26%±3.12 vs 10% CSE 67.30% ±4.62, p=0.075) (Figure 5.4a).  There 
was also no effect on cell viability with up to 10% CSE treatment at 24 hours (Control 73.10% 
±3.47 vs 10% CSE 70.54% ±1.54, p=0.308) (Figure 5.4b).  Following 100% CSE for 1 hour there 
was significant cell death with only 57.83 ±1.47 remaining viable (p=0.001) and mass cell death at 
24 hours with only 23.5%±2.70 remaining viable (p=0.000). All data points represents n=3.    

 

 

a) 

b) 
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5.4.3 Apoptosis in commercially available normal cells in response to 

cigarette smoke extract 

 

LMVECs (Promocell) at were grown to 70% confluence and then treated with 3% 

cigarette smoke extract (CSE).  Apoptosis was then investigated via flow cytometry 

via FITC conjugated annexin V with non-viable cells detected via 7-AAD (Figure 

5.4).There was no significant change in cell viability (P=0.23) among cells, untreated 

vs treated with 3% CSE for up to 72H.  There was no significant apoptosis detected 

in response to 3% CSE (P=0.39) across all time points.  Of the non-viable cells 

(necrotic/late apoptotic) there was a trend towards increased cell death after 

exposure to 3% CSE for 1 hour as compared with untreated/control cells and cells 

treated for 24,48 and 72 hours (P=0.087) although this did not reach significance.    
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ANOVA 

• Alive P= 0.233 

• Apoptotic P= 0.39 

• Dead P= 0.087 

Figure 5.4: Flow cytometry data for LMVECs (Promocell) treated with 3% CSE and stained for 
annexin V to detect apoptosis and 7-AAD to detect non-viable cells.  There was no significant 
change in viability (P=0.23) among cells treated with 3% CSE for up to 72H.  There was no 
significant apoptosis detected in response to 3% CSE (P=0.39).  Of the non-viable cells 
(necrotic/late apoptotic) there was a trend towards increased cell death after exposure to 3% CSE 
for 1 hour as compared with untreated/control cells and cells treated for 24,48 and 72 hours 
(P=0.087) but this did not reach significance.    
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5.4.4 Isolated Cells: Viability studies in response to cigarette smoke 

extract 

Cell viability and apoptosis was then investigated in LMVECs isolated from 

emphysema lung tissue (patient 10) at passage 5 (figure 5.5).  Cells were grown to 

70% confluence and then treated with varying concentrations (guided by previous 

viability studies conducted earlier in commercial LMVECs) of CSE.  Cells were 

treated (n=2) with 0-30% CSE for 24 hours and viability assessed via 7-AAD.  

Annexin V was also added to gain insights into apoptosis.  In this experiment, cell 

viability was generally lower with only 55.6% control cells viable.  In response to CSE 

there was no significant change in cell viability up to 10% CSE (p=0.065) however 

treatment with 30% CSE led to a large reduction in cell viability, with only 14.89% 

±4.32 viable at 24 hours (p=0.011).  Due to low baseline cell viability and relatively 

wide standard errors, it is not possible to comment on any trends that may be 

apparent in cells undergoing apoptosis, however these emphysema cells with lower 

baseline viability may be more susceptible to cell death, including apoptosis.     
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Figure 5.5: Flow cytometry data for emphysema cells (patient 10) (n=2) with varying 
concentrations of CSE (0-30%) for 24 hours and stained for 7-AAD to detect non-viable cells (and 
annexin V to detect apoptosis).  Cell viability was generally low with only 55.6% control/untreated 
cells viable at the time of analysis.  In response to CSE there was no significant change in cell 
viability up to 10% CSE (p=0.065).  30% CSE led to a large drop in cell viability, with only 14.89% 
±4.32 viable at 24 hours (p=0.011).   

 

 

P =0.065 

P =0.011 
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To examine viability of cells at later passage and at 48 hours, cells at passage 7 

(patient 10) were treated (n=2) with 0-12% CSE for 48 hours and viability assessed 

via 7-AAD (annexin V was added to gain insights into apoptosis) (figure 5.6).  The 

concentrations of CSE investigated in this 48 hour exposure were reduced in 

anticipation that a more prolonged exposure to CSE was likely to further reduce cell 

viability.  This assumption was made in order to try to investigate cells as efficiently 

as possible, gaining as much information from each experiment in a cell efficient 

manner, maximising the precious nature of these cells and time taken to grow cells 

sufficient for each experiment. 

 

Cell viability was again lower than in the commercially available normal LMVECs, 

with 68.6% control cells viable.  In response to CSE there was a stepwise decrease 

in cell viability in response to CSE compared with controls (Control 68.6%, 1% 

64.9%, 3% 57.38%, 6% 57.6%) (p=0.005).  12% CSE led to a large drop in cell 

viability, with only 27.9% ±2.9 remaining viable after 48 hours treatment (p=0.003).  

In this experiment, there appeared to be a stepwise increase in apoptosis however 

as this experiment was not designed to investigate apoptosis, further analysis was 

not performed.      
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Figure 5.6: Flow cytometry data for emphysema cells (patient 10) at passage 7 treated (n=2) with 
varying concentrations of CSE (0-12%) for 48 hours and stained for 7-AAD to detect non-viable 
cells.   Annexin V was added to detect apoptosis.  Cell viability was 68.6% in control/untreated 
cells.  In response to CSE, there was a stepwise decrease in cell viability in response to CSE 
(Control 68.6%, 1% 64.9%, 3% 57.38%, 6% 57.6%) (p=0.005).  12% CSE led to a large drop in 
cell viability, with only 27.9% ±2.9 remaining viable after 48 hours treatment (p=0.003).  

 

 

P =0.005 P =0.003 
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In order to study apoptosis over a time course, I investigated cell viability in control 

(untreated) cells (Patient 10) with media having been changed 24, 48, and 72 hours 

before FACS analysis, to investigate whether separate controls were required for 

each experiment or whether controls (n=3) for cells treated for 72 hours without 

media change could be used as controls for cells treated for only 24 hours.  This 

experiment was important as it would further help cell efficiency if there was no 

difference.  Figure 5.7 shows no change in cell viability in control cells (24 hours 

87.22%, 48 hours 82.5%, 72 hours 87.68%).  This experiment suggests that there 

was no difference in control cells for a 72 hour experiment with control cells for a 24 

hour exposure.         

 

Figure 5.7: Patient 10 cells (n=2) untreated with simple media change at 24, 48, and 72 hours 
prior to experiment.  7-AAD was used to detect non-viable cells (annexin V to detect apoptosis).  
Cell viability was unaffected by media changes and not significantly different across time points, 
(24 hours, 87.22%; 48 hours, 82.5%; 72 hours, 87.68%, p=0.236). 
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5.4.5 Apoptosis in cells isolated from patients with emphysema in 

response to cigarette smoke extract 

From cell viability studies, 3% CSE was used in these experiments an injury 

sufficient to stress cells without causing non-physiological mass cell necrosis.  Cells 

from patients 4, 8 and 10 were treated with freshly prepared 3% CSE in triplicate for 

72, 48, 24 and 1 hour prior to harvesting and labelling with annexin V and 7-AAD.   

 

Figure 5.8 confirms difference in baseline cell viability between donors with 

unstimulated cells from patient 10 and patient 8 approximately 70% viable, whereas 

only 55% of unstimulated cells were viable in cells from patient 4.  In patient 10 there 

was a significant change detected in apoptosis (ANOVA p=0.003) but this was of 

less apoptosis compared with controls after 3% CSE for 1 hour.  In patient 8 there 

was no significant apoptosis detected in response to 3% CSE (ANOVA, p=0.61) 

(Figure 5.8b).  In patient 4 there was also significant apoptosis detected (p=0.017) 

with an increase in apoptosis in cells treated for 48 hours compared with untreated 

cells (Figure 5.8c).  Figure 5.9d shows a representative scatter plot from flow 

cytometry with annexin V on the y axis and 7-AAD on the x axis, with four distinct 

populations of alive, apoptotic and dead cells (in G1 and G0).  In view of the 

difference in low baseline cell viability and conflicting results, I attempted to repeat 

this experiment in patient 4 in order to investigate whether low cell viability impacted 

upon susceptibility to apoptosis.  This was however not possible due to poor cell 

growth leading to insufficient number of cells and infection and so apoptosis was 

investigated further by more cell efficient methods.   
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Figure 5.8: Apoptosis in cells isolated from three emphysema donors (Patient 10 (5.8a) Patient 8 
(5.8b) Patient 4 (5.8c) treated (n=3) with 3% CSE for 1, 24, 48 and 72 hours).  A difference in baseline 
cell viability was observed between donors with control cells from patient 10 and patient 8 
approximately 70% viable, whereas only 55% of control cells were viable in cells from patient 4.  In 
patient 10 there was a significant change detected in apoptosis (ANOVA p=0.003) but this was of less 
apoptosis after 3% CSE for 1 hour compared with controls (5.8a).  In patient 8 there was no significant 
apoptosis detected in response to 3% CSE (ANOVA, p=0.61) (5.8b).  In patient 4 there was also 
significant apoptosis detected (p=0.017) with an increase in apoptosis in cells treated for 48 hours 
compared with control cells (5.8c).  Figure 5.9d shows a representative scatter plot from flow 
cytometry with annexin V on the y axis and 7-AAD on the x axis, with four distinct populations of alive, 
apoptotic and dead cells (in G1 and G0).   

a) b) 
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5.4.6TUNEL to detect apoptosis in cells isolated from patients with 

emphysema in response to CSE 

From flow cytometry experiments, 48 hours was chosen as a time point for which to 

stress cells and examine for apoptosis via TUNEL.  Cells were grown on 11mm 

coverslips in 12 well plates and at around 70% confluence were treated with freshly 

prepared CSE (0-9%) for 48 hours, before fixation in 4% paraformaldehyde and 

TUNEL staining.  DNAse was used as a positive control in order to induce DNA 

breaks that could be detected and a negative control (without enzyme) was also 

included to ensure quality of staining.  Figure 5.9 summarises the data.  There was 

no apoptosis detected in response to CSE (0-9%) compared with controls.  Positive 

and negative controls validated the staining.      

 

 

 

 Control Negative 

3% 5% 9% 

DNAse I 

Figure 5.9: TUNEL staining to detect apoptosis in cells isolated from a patient with emphysema 
(patient 3) following treatment with 3% CSE for 48 hours.  There was no apoptosis detected in 
response to CSE (0-9%) compared with controls.  Positive (treatment with DNAse to induce DNA 
breaks) and negative (no enzyme) controls prove staining.       
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5.4.7Live cell imaging and DEVD-Nucview488 to detect apoptosis 

Such inconsistent results and difficulty in defining the concentration with which to 

stress cells and at which time point to examine for apoptosis, led to the use of live 

cell imaging with a caspase 3 substrate (DEVD-Nucview 488) [152] to allow 

investigation of apoptosis over time in emphysema patients with multiple 

concentrations of CSE in a cell efficient manner.   

 

Emphysema cells were grown in 96 well plates at 10,000 cells per well (100ul) and 

investigated (n=3) over multiple concentrations (0-12%) of CSE across a time course 

(0-72 hours) via live cell fluorescence imaging.  Preliminary experiments using 

prolonged CSE exposure to LMVECs (Promocell, and patient 7 and 8) showed a 

dose dependant increase in fluorescence object counts over time, suggesting 

increased apoptosis (Figures 5.10-5.12).  However concerns over the level of 

fluorescence raised the issue as to whether this was simply a dose dependant 

increase in autofluorescence caused by increasing concentration of CSE.  The 

experiments were therefore repeated, examining fluorescence object counts when 

cells were treated with increasing concentration of CSE (0-12%) in the absence of 

DEVD-Nucview 488 i.e. measuring cellular autofluorescence induced by CSE.  Cells 

were treated for either the entire 72 hours (prolonged exposure), as the previous 

experiment, or with a short one hour exposure.  In the prolonged exposure 

experiment, cells demonstrated autofluorescence that increased proportionally with 

increasing concentration of CSE (Figure 5.13).  This became more marked at 

concentrations of 4% CSE and above.  In the short exposure experiment, cells 

treated with CSE for one hour only prior to detection of fluorescence counts, there 

was initially dose dependant increase in autofluorescence but was low level (less 

than 20 fluorescent object counts) across all concentrations of CSE studied (Figure 

5.14). 
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Figure 5.10:  Apoptosis as detected via live cell imaging Nuc-view Fluorescence counts over 72 hour time course in Promocell LMVECs.  
High counts were observed at the higher concentrations of CSE (5-12%).  At lower concentrations of CSE (1-4%) the same dose 
dependant rise was not observed, with control cells and cells treated with 0.5% CSE showing higher fluorescence than low dose CSE 1-
4% treated cells.   
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Figure 5.11:  Apoptosis as detected via live cell imaging Nuc-view fluorescence counts over 72 hour time course in cells from patient 7 
with emphysema (Patient 7).  Similar to the previous experiment using LMVECs (Promocell), high counts were observed at the highest 
concentrations of CSE (9-12%).  On these isolated emphysema cells, 5 and 6& CSE caused a slightly higher fluorescence count initially 
suggesting higher apoptosis.  At lower concentrations of CSE (1-4%) similar to the Promocell experiment fluorescence was generally 
stable throughout while untreated and 05% treated cells showed increasing fluorescence over time.     
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Figure 5.12:  Apoptosis as detected via live cell imaging Nuc-view fluorescence counts over 72 hour time course in cells from patient 8 
with emphysema.  High fluorescence counts were observed at the highest concentrations of CSE (9-12%) with 5 and 6% also showing 
higher fluorescence counts in this experiment.  Lower concentrations of CSE (1-4%) similar to the Promocell experiment fluorescence 
was generally stable throughout while untreated and 05% treated cells showed increasing fluorescence over time.     
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Figure 5.13: Mean autofluorescence of normal cells (Promocell) treated with varying concentrations of CSE (0-12%) as detected by 
fluorescence counts captured via live cell imaging over 72 hours.  In this experiment, there was a stepwise increase in autofluorescence 
with increasing concentration of CSE.  The highest fluorescence counts were observed at the highest concentrations of CSE (9-12%).  
At concentrations of 3% CSE or less, although greater than in control cells, autofluorescence was generally low. 
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Figure 5.14: Mean autofluorescence of normal cells (Promocell) treated with varying concentrations of CSE (0-12%) for one hour and 
then followed for 72 hours.  In this experiment, there was very low background autofluorescence with no difference between cells treated 
with 0.05% or 12% CSE. 

 

 

 



104 

 

In an attempt to model cigarette smoking closely, very short (fifteen minutes) CSE 

treatments to promocell cells and cells from 4 donors were conducted with the 

results shown below.  Patients 2, 4 and 8 showed no response/ change in 

fluoresence counts and therefore no apoptosis over 90 hours (Figure 5.15).  

Promocell LMVECs showed no change in fluoresence counts initially with a late rise 

(after 48 hours) in fluoresence counts that was not dose dependant and actually was 

greatest for the control (untreated cells) (Figure 5.16a).   Similarly patient 7 treated 

for fifteen minutes showed initially no change in fluoresence counts but a late rise 

(after 48 hours) with again the control cells and low concentration treated cells 

showing higher fluoresence counts than the cells treated with higher concentrations 

(Figure 5.16b).  These experiments suggest that such a short CSE treatment was 

not sufficient to stress cells, with some donors showing no treatment response and in 

others the control cells had more cell death than the treated cells.  This supports 

data which shows the effect of smoking a single cigarette persists for much longer 

than the time taken to smoke the cigarette. Therefore the short exposure (1 hour) 

and prolonged exposure experiments were therefore repeated and cellular 

responses further investigated.     
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Figure 5.15: Cells from patients 2,4, and 8 treated with varying concentration of CSE (0-12%) for 
fifteen minutes and then apoptosis detected via DEVD Nucview-488 fluorescence counts via live 
cell imaging over 96 hours.  There was no treatment effect observed in these cells in response to 
the very short fifteen minute treatment. 
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Figure 5.16: Promocell cells and cells from patient 7 treated with varying concentration of CSE (0-
12%) for fifteen minutes with apoptosis thereafter detected via DEVD Nucview-488 fluorescence 
counts via live cell imaging over 96 hours.  Promocell cells showed no change in fluoresence 
counts initially until a late increase (after 48 hours) in fluoresence counts that was not dose 
dependant and notably was greatest for the control (untreated cells) (Figure 5.17a).   Similarly 
patient 7 treated for fifteen minutes showed initially no change in fluoresence counts.  After 48 
hours, once again there was an increase in fluoresence counts that was most evident among the 
untreated (control) cells and cells treated at low concentration (Figure 5.17b).    
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LMVECs (Promocell) and from patient 7 were grown to confluence on 96 well plates 

and treated (n=3) for either 1 hour (short exposure) or a prolonged expsoure with 

CSE and imaged for 64 hours.  Although intitial experiments suggested that 

autofluorescence of cells was only encountered with the prolonged CSE exposure 

experiments (figure 5.13), all experiments included cells treated without DEVD 

Nucview-488 (n=3) to act as an internal control to assess autofluorescence in each 

individual experiment.  

 

Promocell LMVECs treated with 0-12% CSE for one hour prior to cell imaging 

demonstrated high fluoresence counts (1 hour post treatment) above 6% CSE with 

lower fluorescence counts in cells treated with 5% CSE and lower (Figure 5.17a).  

This is likely to represent CSE induced autofluorescence of cells and is confirmed by 

Figure 5.17b which shows stepwise autofluorescence of cells treated with CSE in the 

absence of DEVD Nucview-488.  Cells treated with concentrations of 4%CSE and 

above produced notable autofluorescence.  In cells treated with 6-12% this was 

maximal at the start of imaging and fell over time.  In 4% and 5% CSE treated cells 

this became maximal at 2 hours and then fell over time.  Thus higher concentrations 

(>4% CSE) were therefore excluded from the analysis.   The data for this experiment 

for concentrations up to 3% is presented in Figure 5.17c.  When examining cells 

treated with up to 3% CSE compared with untreated (control) cells, there is no 

significant difference in fluoresence object counts at the start of imaging, however at 

24 hours, the lines have become divergent, with statistically significant more 

fluoresencent object counts at 24 hours in the 3% CSE treated cells compared with 

control cells (P=0.05).  To further investigate thisthe autofluorescence data obtained 

during this experiment (figure 5.17b) was subtracted from the data in figure 5.17c to 

examine whether this divergence at 24 hours between control and CSE treated cells 

persisted (Figure 5.17d).  Figure 5.17d which shows divergence of lines at 24 hours 

with similar fluorescence counts for 1-3% treated CSE cells, however this failed to 

reach statistical significance and so did not confirm apoptsis.   
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Figure 5.17b:  Autofluorescence of CSE treated cells (Promocell) (0-12%) for one hour and then imaged for 64 hours.  Increasing 
autofluorescence was seen with increasing concentration of CSE.  This was apparent from concentrations greater than 3%.   
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Figure 5.17c:  Promocell HLMVECs treated with low dose (0-3%) CSE and followed for 64 hours.   
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LMVECs (Promocell) were treated with a prolonged exposure to CSE (concentration 

0-3%) and followed for 64 hours via live cell imaging to detect apoptosis via DEVD 

Nucview-488 Fluorescence counts.  At the start of imaging higher fluorescence 

counts were observed in the CSE treated than control cells (Figure 5.18a).  However 

this quickly became similar in all groups, including control (untreated cells).  At 24 

hours, there was divergence of the lines between the treated and untreated cells with 

greater fluorescence counts in the CSE treated cells.   By 36 hours fluorescence 

counts started to increase in the control (untreated) cells to such an extent that by 64 

hours there was an inverse relationship between CSE treatment and fluorescence 

counts.  Autofluorescence was investigated as before in tandem with this experiment 

with all concentrations examined in triplicate for fluorescent counts with increasing 

concentration of CSE in the absence of DEVD Nucview-488.  Control and 0.5% CSE 

treated cells had very low autofluorescence at baseline (Figure 5.18b).  Over time 

this increased.  Cells treated with 1 and 2% CSE had initial high autofluorescence 

that fell, remained stable and then demonstrated a late rise.  In this experiment, cells 

treated with 3% CSE had surprisingly low autofluorescence at baseline that then 

increased and remained high.  This result in not keeping with the previous however 

was similar across all values (n=3).  The autofluorescence observed in the 

experiment with 3% CSE treated cells cannot be easily explained.  To examine the 

effect of autofluorescence in this experiment, fluorescence counts observed in sham 

treated cells were subtracted from the fluorescence counts observed with the DEVD 

Nucview-488 cells as before (Figure 5.17c).  Control cells had no fluorescent counts 

at baseline but began to rise at 24 hours and became highest at 64 hours.  0.5, 1 

and 2% CSE treated cells had initially higher fluorescence counts that fell and then 

gradually rose with divergence from control cells at 24 hours, which may support 

CSE induced apoptosis.  As previous, the results observed for the 3% CSE treated 

cells in this experiment are difficult to interpret but are presented for completeness. 
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Figure 5.18a: Promocell LMVECs treated with low dose (0-3%) CSE and followed for 64 hours via live cell imaging to detect 
apoptosis via DEVD Nucview-488 Fluorescence counts.  Immediately after treatment at the start of imaging there was higher 
counts in the CSE treated than control cells.  However this quickly became similar in all groups.  At 24 hours there was divergence 
of the lines between the treated and untreated cells with greater fluorescence counts in the CSE treated cells.   At 36 hours 
fluorescence counts started to increase in the control (untreated) cells to such an extent that by 64 hours there was an inverse 
relationship between CSE treatment and fluorescence counts.    
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Figure 5.18b: Promocell HLMVECs treated with low dose (0-3%) CSE and followed for 64 hours via live cell imaging with no DEVD 
Nucview-488 added to detect background autofluorescence due to CSE.  Control cells at baseline had very low autofluorescence.  
Similarly cells treated with 0.5% CSE had similar low autofluorescence at baseline and then increased with time.  Cells treated with 
1 and 2% CSE had initial high autofluorescence that fell, remained stable and then demonstrated a late rise.  In this experiment, 
cells treated with 3% CSE had surprisingly low autofluorescence at baseline that then increased and remained high.  This result in 
not keeping with the previous however was similar across all values (n=3).     
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Figure 5.18c: Promocell HLMVECs treated with low dose (0-3%) CSE and followed for 64 hours via live cell imaging to detect 
apoptosis via DEVD Nucview-488 fluorescence counts with autofluorescence subtracted.  Control cells had no fluorescent counts 
at baseline but began to rise at 24 hours and became highest at 64 hours.  0.5, 1 and 2% CSE treated cells had initially higher 
fluorescence counts that fell and then gradually rose with divergence from control cells at 24 hours.  As previous, the results 
observed for the 3% CSE treated cells in this experiment are difficult to interpret but are presented for completeness. 
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LMVECs from patient 7were also treated with CSE for short 1 hour exposure and a 

prolonged exposure and analysed as previously.  LMVECs isolated from patient 7 

and thentreated with 0-12% CSE for one hour prior to cell imaging demonstrated 

high fluoresence counts (1 hour post treatment) above 5% CSE (Figure 5.19a)  

similar to the promocell cells (Figure 5.18a).  This CSE induced autofluorescence of 

cells is confirmed by Figure 5.19b which shows stepwise autofluorescence of cells 

treated with CSE in the absence of DEVD Nucview-488, most notably for the cells 

treated with 9 and 12% CSE.  Cells treated with concentrations of 5%CSE and 

above produced most autofluorescence and were therefore excluded from the 

analysis.   The data for this experiment for concentrations up to 4% is presented in 

Figure 5.19c.  Cells treated with up to 4% CSE compared with untreated (control) 

cells show no difference in fluoresence object counts at the start of imaging, however 

at 24 hours, the lines have become divergent, with statistically significant more 

fluoresencent object counts at 24 hours in the 1% CSE treated cells compared with 

control cells (P=0.048).This result was similar to that observed in Promocell 

LMVECs, but occurred at lower concentration of CSE in the emphysema cells 

(patient 7).  Tofurther investigate this,the autofluorescence data obtained during this 

experiment (figure 5.19b) was subtracted from the data in figure 5.19c to examine 

whether this divergence at 24 hours between control and CSE treated cells persisted 

(Figure 5.19d).  Figure 5.19d which shows divergence of lines between 24 and 48 

hours most notably for the lowest dose of CSE treatment (0.5% and 1% CSE) but 

this failed to reach statistical significance and so did not comfirm apoptosis.  
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Figure 5.19a:  Fluorescence counts of emphysema primary LMVECs (patient 7, EC295A) treated with varying concentrations of 
CSE (0-12%) for one hour and then imaged for 64 hours. 
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Figure 5.19b:  Autofluorescence of patient 7 cells (EC295A) (0-12%) for one hour and then imaged for 64 hours.  Increasing 
autofluorescence was seen with increasing concentration of CSE.   
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Figure 5.19c: HLMVECs isolated from patient 7 (EC295A) treated with low dose (0-3%) CSE and followed for 64 hours via DEVD 
Nucview-488 live cell fluorescence imaging. 
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Figure 5.19d: HLMVECs isolated from patient 7 (EC295A) treated with low dose (0-3%) CSE and followed for 64 hours via DEVD 
Nucview-488 live cell fluorescence imaging with autofluorescence subtracted. 
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Emphysema LMVECs (patient 7) were treated with a prolonged exposure to low 

dose CSE (concentration 0-3%) and followed for 64 hours via live cell imaging to 

detect apoptosis via DEVD Nucview-488 Fluorescence counts.  All cells treated had 

similar fluorescence object counts for the first 12 hours (Figure 5.20a).  Thereafter 

there was divergence of fluorescence counts with CSE treated cells (notably the 

lowest doses 0.5-1% CSE) showing greater counts than the control cells.  By 48 

hours fluorescence counts had begun to converge again, although the low dose CSE 

treated cells continued to be divergent.  Autofluorescence was investigated as before 

in tandem with this experiment with all concentrations examined in triplicate with 

increasing concentration of CSE in the absence of DEVD Nucview-488.  Control and 

0.5% CSE treated cells had very low autofluorescence (Figure 5.20b) and unlike the 

Promocell experiment this remained largely unchanged over time.  Cells treated with 

1-3% CSE demonstrated a stepwise increase in autofluorescence.  All cells including 

control cells showed a transient increase in fluorescence counts at 48 hours.  This is 

likely to represent a technical signaling error of the equipment and should not be 

interpreted as a real effect as was seen in all cells.  Autofluorescence (Figure 5.20b) 

was subtracted as before from original data (Figure 5.20a) to give fluorescence 

count data taking into account autofluorescence (Figure 5.20c).  There was no 

difference in fluorescence in the first 12 hours.  After 12 hours, cells treated with very 

low dose (0.5-1% CSE) had more fluorescence counts observed than control cells, 

suggesting apoptosis in response to CSE.  As in previous experiments, the results 

observed for 2-3% CSE treated cells in are difficult to interpret due to the high 

autofluorescence but are presented for completeness. 
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Figure 5.20a: HLMVECs isolated from patient 7 (EC295A) treated with low dose (0-3%) CSE and followed for 64 hours via DEVD 
Nucview-488 live cell imaging. 
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Figure 5.20b: HLMVECs isolated from patient 7 with emphysema (EC295A) treated with low dose (0-3%) CSE and followed for 64 
hours via fluorescence live cell imaging.  No DEVD Nucview-488 was added to allow detection of autofluorescence.  There was a 
stepwise increase in autofluorescence with increasing concentration of CSE, although in this experiment autofluorescence for the 
2% CSE treated cells was greater than the 3% CSE treated cells.  
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Figure 5.20c: HLMVECs isolated from patient 7 with emphysema (EC295A) treated with low dose (0-3%) CSE and followed for 64 
hours via fluorescence live cell imaging.  Autofluorescence was subtracted from each time point from the corresponding repeat 
experiment without DEVD Nucview-488 added.  Cells treated with 2 and 3% CSE appeared to be influenced by autofluorescence, 
with lower fluorescent object counts than control cells, after subtracting autofluorescence.  Both 0.5% and 1% CSE treatments in 
this experiment seemed to lead to more apoptosis as detected by fluorescence counts than control treated cells.  This was most 
apparent at 24 hours but persisted for the 0.5% CSE treated cells.  
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In summary, I attempted to systematically assess apoptosis in real time in a number 

of patients with emphysema employing DEVD Nucview-488 to detect caspase 

activation and thus apoptosis.  Unfortunately this technique employs fluorescence 

and unfortunately throughout this experiment it became apparent that CSE treatment 

of cells causes cells to autofluoresce thus limiting the use of this technique and 

limiting any conclusions that can be drawn from this data. The data suggests, while 

taking into account the effect of CSE induced autofluorescence of cells treated with 

both short (1 hour) and prolonged treatments, with careful controls, that low dose 

CSE may cause an increase in apoptosis.  This was witnessed in both normal 

HLMVECs (Promocell) (Figure 5.17, Figure 5.18) and in cells isolated from a patient 

with emphysema (patient 7) (Figure 5.19, Figure 5.20) over both a short exposure (1 

hour) and prolonged exposure.  The effect was generally maximal at 24 hours and 

was witnessed with low dose CSE.  Interestingly, the dose of CSE required to 

achieve this was lower in the emphysema cells than the Promocell, in keeping with 

my hypothesis that these cells are more susceptible. However due to the 

autofluorescence of cells no firm conclusions can however be drawn. 
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5.4.8qPCR for VEGF KDR 

The VEGF KDR/FLK1 receptor may play a key role in the pathogenesis of 

emphysema in relation to apoptosis of the microvasculature[26].  VEGF KDR cellular 

expression on normal and emphysema cells in response to CSE was therefore 

investigated via qPCR. 

 

Initial qPCR validation experiments were performed using untreated commercial 

HLMVECs (Promocell).  RNA was isolated as described and UV absorbance via 

spectrophotometry plotted with the ratio of absorbance at 260 nm and 280 nm 

(A260/280) found to be 2.12 confirming purity (Figure 5.21).   RNA quality was further 

assessed on 2% agarose gel electrophoresis with DNA ladder to investigate 

contamination with DNA (Figure 5.22).  Two discrete ribosomal bands corresponding 

to 28S and 18S were visualised in an approximate 2:1 ratio with little degradation.  

cDNA was thereafter prepared from RNA as described.   

 

Before using the comparative CT (ΔΔCT) method for relative gene quantification, 

validation experiments were performed to investigate the efficiencies of the gene of 

interest (VEGF KDR) and housekeeping gene (18S). Initially, the probe for gene of 

interest (VEGF KDR) and housekeeping gene (18S) were used with undiluted cDNA 

to determine at which cycle a signal appeared (Figure 5.24).   A 96 well optical plate 

was loaded with probes alone (no template control), template plus probe and RNA 

plus probe for both VEGF and 18S to confirm detection of PCR product (Figure 

5.23).  Negative controls (probe alone) and RNA plus probe were included to ensure 

there was no genomic DNA contamination with which probes reacted.  In this initial 

experiment 2 amplification plots were identified with 18S being relatively more 

abundant than VEGFR2 as evidenced by the earlier CT.  No other products amplified 

confirming no reaction with the negative control and RNA plus probe.      

 

  



127 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



128 

 

 

 

 

 

 

 

 

 

 

 

 



129 

 

 

 

 

 

 

 

  



130 

 

qPCR can be used to determine gene quantity via an absolute or relative method.  

Calculation of the number of gene copies can be determined from a standard curve if 

absolute quantification is required.  Change in gene expression in response to a 

treatment with reference to a standard housekeeping gene which does not change in 

response to this treatment i.e. relative quantification, is also a sensitive validated 

method[154] and was used in this study to determine the response of VEGFR2 

(KDR/FLK1) in response to CSE using 18S as a housekeeping gene, which has 

been reported to be unaffected by apoptosis [155].  Relative quantification requires 

construction of a dilution series from which ΔCT (difference between CT between 

GOI and housekeeping gene) can be determined.  This then allows the use of the 

ΔΔCT method which is a sensitive method to detect change that has been validated.   

A dilution series was performed, with cycle threshold (CT) plotted against log10 

dilution of primers with gradient and line of best fit (r2) calculated (Figure 5.24).  The 

ideal PCR increases one CT with each dilution, thus giving slope y=-log10= -3.3.  

The results obtained in the dilution series for 18S and VEGFR2 are in good 

agreement (r2=0.99) with gradient of slope validating the dilution series and thus the 

use of the comparative CT method.  
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Figure 5.24: Results from the dilution series to validate the comparative CT method.  A) 
Amplification plot showing CT for 18S and KDR multiple dilutions.  B) CT determined from 
amplification plot plotted against dilution (Log

-10
).  The ‘perfect PCR’ amplification increases one 

CT upon dilution (y=log
-10

= -3.3) thus the gradient of slope of both 18S and KDR is within 
acceptable limits with good correlation (r

2
=0.99) and so validates the use of the comparative CT 

method.    
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The comparative ΔΔCT method was then used to investigate relative change in 

VEGFR2 gene expression in response to 3% CSE at 0 (control), 24, 48 and 72 

hours.  Promocell cells were first investigated.  There was no significant change in 

CT across treatments in VEGFR2 expression (n=3) when controlled for 18S and 

expressed as a fold change (Figure 5.25a).  Cells isolated from four emphysema 

patients (Patient 2 (EC208A), Patient 7 (EC295A), Patient 8 (EC300C), Patient 10 

(EC326C)) were similarly investigated following a validation dilution series 

experiment as before.  Emphysema cells (n=3 for each donor) showed biological 

variation in their response that is common to experimentation with primary cells.  

There was however a trend towards a reduction in VEGFR2 in response to 3% CSE 

treatment that was significant at 48 hours (P<0.05).  Thus VEGFR2 gene expression 

is unchanged in normal cells (Promocell) in response to CSE (with a possible trend 

towards upregulation), while emphysema cells show a reduction in VEGFR2 in 

response to CSE at 48 hours.  This supports my hypothesis of a maladaptive 

response to injury in cells from a susceptible individual.     
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Figure 5.25: HLMVECs (Promocell (a) and isolated from patients with emphysema (b)) treated 
with 3% CSE for 0 (control), 24, 48 and 72 hours.  Cells were harvested and RNA and cDNA 
isolated as before.  Q-PCR was performed using 18S as a calibrator/ housekeeping gene.  Fold 
change CT fold change relative to housekeeping gene is presented for each of the treatments for 
(a) Promocell and (b) cells isolated from patients with emphysema.  In Promocell cells there was 
no significant change in VEGFR2 gene expression in response to CSE across the treatments 
(P=NS).  In the Emphysema cells, 4 patients were examined.  Patient 2 (EC208A), Patient 7 
(EC295A), Patient 8 (EC300C), Patient 10 (EC326C).  While there was variation between the 
donors, there was a trend towards reduction in VEGFR2 in response to CSE that was significant 
at 48 hours (P<0.05).  
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5.5 Discussion 

In this chapter I attempted to investigate apoptosis in vivo and ex vivo.  

Immunocytochemical detection of the apoptosis marker caspase 3 in emphysema 

lung tissue was more frequent in the alveolar bed compared with normal lung tissue 

in keeping with the findings of other studies which report increased apoptosis in 

emphysema.  I then went on to study apoptosis in vivo using the cells isolated from 

emphysema lung tissue.  Initially I hoped to study responses in diseased 

emphysematous tissue and normal control tissue, isolating the cells using the same 

method.  Unfortunately due to the time constraints of the study and the time taken to 

isolate emphysema cells, similar time could not be devoted to isolating enough 

normal cells from excess lung tissue for the same experiments to be conducted.  

Commercially available primary LMVECs (Promocell) which were also relatively slow 

growing, precious cells that were prone to infection and a greater challenge than a 

conventional cell line, were therefore used in initial viability and pilot studies and 

unfortunately were also used as to represent normal cells in more detailed later 

experiments.  This is a major limitation of this study.  There was however an internal 

control (untreated cells) in all experiments to allow assessment of response to 

treatment.   

 

Initial viability studies confirmed that normal LMVECs (Promocell) were viable up to 

and including 10% CSE at 24 hours.  However in view of the possibility that cells 

isolated from patients with emphysema would be more susceptible to cell injury, 

viability studies were also performed on these diseased cells.  These additional 

experiments confirmed that indeed the cells were more susceptible with lower 

baseline viability of these cells including the untreated controls.  The lower cell 

viability of isolated cells and death response to CSE at lower concentration and 

earlier time course suggests these cells are indeed more susceptible to injury and 

may explain the differences observed between these and normal LMVECs 

(Promocell). 
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Investigation of apoptosis in multiple emphysema donors with the chosen (3% CSE) 

stimulus/injury via flow cytometry yielded rather inconsistent results.  There was no 

clear apoptosis of cells that was measurable by flow cytometry or via TUNEL.  This 

was perhaps not unsurprising given the limitations of the model.  In essence, trying 

to stress primary cells with CSE, while not overtly killing them via necrosis with high 

concentrations of CSE, and assess this at a limited number (24,48,72 hours) of time 

points may explain the lack of results.  The dynamic nature of apoptosis and also the 

variation from one donor make this difficult to study.  Live cell imaging was therefore 

employed to overcome these difficulties.   

 

Investigating in triplicate the response in real time of cells to multiple concentrations 

of CSE via live cell imaging yielded more encouraging results.  There was a step 

wise increase in fluorescence counts with increasing concentration of CSE.  This led 

me to question whether CSE caused autofluorescence of cells.  Further experiments 

were therefore conducted as negative controls with no active Nucview-488 added i.e. 

any fluorescence counts above baseline were therefore autofluorescence of cells 

and not caused by cleavage of caspase3 and thus not indicative of apoptosis.  This 

experiment confirmed significant autofluorescence of cells in response to CSE and 

has highlighted a major challenge for researchers when studying the effect of 

cigarette smoking that has to my knowledge not been reported before.  

Autofluorescence of LMVECs in response to CSE suggests changes in cell structure 

which is fascinating from an endothelial biology perspective but from a practical point 

of view makes analysis of results obtained via fluorescence very difficult to interpret.  

The results presented in this chapter from the live cell imaging are presented in such 

a way to attempt to tease out whether there is an important signal i.e. apoptosis of 

cells in response to CSE.  Multiple experiments via live cell imaging show with 

careful controls and allowance for autofluorescence may suggest low dose CSE (0-

3%) may cause an increase in apoptosis.  This was witnessed in both normal 

LMVECs (Promocell) and in cells isolated from a patient with emphysema over both 

a short exposure (1 hour) and prolonged exposure.  The effect was generally 

maximal at 24 hours and was witnessed with low dose CSE.  Interestingly, the dose 

of CSE required to achieve this was lower in the emphysema cells than the 
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Promocell, in keeping with my hypothesis that these cells are more susceptible 

injury.  Unfortunately due to autofluorescence it is not possible to state conclusively 

that this increase in fluorescence count (after controlling for autofluorescence) is 

directly attributable to apoptosis and further experiments to detect apoptosis via live 

cell imaging that do not rely upon the use of fluorescence imaging is now required.  

 

Trying to link the apoptosis witnessed in response to low dose CSE with the seminal 

in vivo and ex vivo studies which showed emphysema arising due to loss of 

VEGFR2[63][54] led me to investigate VEGFR2 gene expression via Q-PCR in 

response to CSE.  After initial validation experiments, RNA and cDNA were prepared 

from emphysema cells treated with 3% CSE for 24, 48 and 72 hours and compared 

with untreated control cells.  This was repeated in emphysema cells isolated from 4 

donors and in Promocell (normal) cells.  In response to CSE there was no significant 

change in VEGFR2 in Promocell (normal) cells.  In 4 emphysema donors there was 

however a fold reduction in VEGFR2 that was significant at 48 hours.  Further work 

is required to investigate this preliminary signal. 
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Chapter 6: Alveolar septal remodelling in emphysema: the 

role of endothelial cell plasticity and mesenchymal 

transition. 

6.1 Abstract 

Classically, thin sparsely cellular septa are seen in emphysematous lungs, but in 

addition remodelling of the alveolar bed also occurs, with matrix deposition and 

increased collagen content and turnover.  Expansion of alveolar matrix may arise via 

proliferation of resident fibroblasts or recruitment of circulating bone marrow derived 

fibrocytes to the lung.  A further novel mechanism which may link matrix deposition 

with endothelial loss is endothelial to mesenchymal transition (EnMT).  EnMT has a 

well-documented role in embryogenesis, however the potential of mature cells to 

undergo this process has now also been demonstrated in epithelial cells and larger 

endothelial cells.  I therefore investigated plasticity of human lung microvascular 

endothelial cells in response to cigarette smoke extract and other inflammatory 

mediators, to investigate EnMT in emphysema.      

Methods:  LMVECs (commercially available cells and cells isolated from patients 

with emphysema undergoing lung transplantation) were stimulated with TGFβ, and 

CSE.  Endothelial plasticity was investigated on phase contrast microscopy, confocal 

microscopy and western blotting.  Change in cell function was also investigated via 

examination of matrix deposition from the cells and production of matrix 

metalloproteinases.  Paraffin embedded lung tissue was dual stained for an 

endothelial marker (CD34) and mesenchymal marker (aSMA) and co-localisation of 

markers investigated. 

Results:  Morphological changes in cell structure were detected following treatment 

with TGFβ1 and CSE when compared with untreated control cells.  In addition, cells 

appeared to downregulate the endothelial cell surface marker CD31 on confocal 

immunofluorescence.  Co-localisation of markers was also investigated but did not 

show evidence of dual staining of endothelial and mesenchymal markers.  Flow 

cytometry evaluation of CD31/CD90 suggested there was down regulation of CD31, 

no upregulation of CD90.  Furthermore there was no change in protein concentration 
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detected via western blotting across all treatments.  EnMT was also investigated in 

vivo via immunohistochemistry however there was no clear evidence of dual stained 

transitional cells in emphysema.  

Conclusions:  Endothelial cells change morphology in response to TGFβ1 and CSE 

and appear to down regulate endothelial cell surface markers.   This may however 

reflect endothelial activation with internalisation of cell surface markers as opposed 

to a true mesenchymal transition.  Immunohistochemistry for CD34/aSMA in 

emphysema show evidence of endothelial loss with associated sclerotic casts and 

increased mesenchymal markers.  Further work is required to determine whether 

these are transitional cells or whether this is simply a response of an endothelial cell 

to injury.    
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6.2 Introduction 

Complex changes occur in the alveolar wall of patients with emphysema.  In addition 

to well documented thin alveolar walls with sparse capillaries [25], thickening of the 

alveolar interstitium occurs in some regions, with collagen deposition and increased 

interstitial fibroblasts [87].  Although somewhat at odds with the classical description 

of emphysema as “destruction of alveolar walls without fibrosis” [15], 

emphysematous areas express several fibrosis associated matrix genes and 

proteases [82], with the balance of these factors dictating the direction in which 

damage proceeds, either towards fibrosis or septal destruction.  The relationship 

between endothelial loss and fibrosis has been studied in chronic heart and kidney 

disease with some researchers hypothesising that that immature fibrosis may 

originate from injured endothelial cells acquiring mesenchymal cell characteristics 

and potential [91][93].  This endothelial to mesenchymal transition (EnMT) has been 

reported by other researchers to be one of many cellular responses to chronic injury.  

Cytoskeletal rearrangements of cobblestone endothelial cells into spindle shaped 

mesenchymal cells have been described and put forward as evidence of EnMT [89].  

In addition to morphological changes, cells have been shown to down regulate 

endothelial markers and acquire mesenchymal markers.  Functionally, transitional 

cells may also demonstrate proliferative, invasive and secretory characteristics, not 

displayed by native endothelial cells [156].  This chapter aims to investigate the fate 

of lost endothelial cells in emphysema, in particular whether regional endothelial 

plasticity/ EnMT may contribute to endothelial loss and septal fibrosis witnessed in 

emphysema.   

 

EnMT is less well studied than epithelial to mesenchymal transition (EMT), of which 

there are over 3000 citations in the literature.  EMT is implicated as an important 

mechanism in cancer biology, kidney fibrosis, post lung transplant obliterative 

bronchiolitis and idiopathic pulmonary fibrosis [157].  The plasticity witnessed in 

EMT/EnMT is also a key event in utero during embryogenesis [39].  In recent years 

there has been controversy surrounding the origin of myofibroblasts in chronic 

inflammatory diseases [158].  A number of researchers report expansion of resident 
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tissue myofibroblasts, while others report phenotype transition (EMT/EnMT) or 

recruitment of circulating bone marrow derived progenitor cells.  Any one or 

combination of these mechanisms may give rise to myofibroblasts and may be 

dictated by the tissue in which the injury occurs [159].  In emphysema, there is 

disruption of the vasculature with endothelial loss, thus making it theoretically difficult 

for circulating bone marrow derived progenitor cells to reach the site of injury.  

Furthermore, resident myofibroblasts may be in low numbers in the delicate alveolar 

structures of the adult lung.  Therefore cellular plasticity may be an important source 

of myofibroblasts in emphysema linking microvascular injury and repair.  

 

EnMT was first described in aortic endothelial cells in response to Transforming 

Growth Factor β1 (TGFβ1) as a novel mechanism in atherosclerosis [89].  This 

plasticity was initially reversible but became irreversible with time.  The importance of 

TGFβ1 as a driver of this response to injury has been highlighted by many more 

studies [90], [157], [160], [161].  TGFβ1 driven EnMT has been reported in vivo in a 

mouse model of cardiac fibrosis via lineage tracing [91].   This could be reversed by 

the addition of recombinant BMP7 and was attenuated in SMAD 3 null mice, 

providing insights into the cell signalling pathways which support this plasticity.   

 

TGFβ1 is expressed in most tissues and is secreted by many cell types including 

epithelial, endothelial, smooth muscle cells, fibroblasts and also most immune 

system cells [162].  Levels of TGFβ1 in emphysema are still debated, with some 

researchers reporting reduced TGFβ1 and TGFβ receptor expression in COPD lung 

tissue [100], [101] while others report increased levels [102].  The effect cigarette 

smoking may have on TGFβ1 is also debated.  Alterations in redox state with 

increased oxidative stress that occurs in cigarette smoking is reported to contribute 

to TGFβ1 activation [81].  In addition, TGFβ1 itself induces intracellular ROS[163], 

thus causing positive feedback to amplify the signal.  Thus TGFβ1 may play a role in 

the pathogenesis of emphysema, via reduced activity, defective signalling or 

inappropriate septal fibrosis as an example of dysregulated repair in response to 

oxidative stress in the areas that remain.  Both TGFβ1 and CSE were used to stress 

cells in these experiments and investigated systematically. 
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EnMT/EMT has been defined in many ways with some researchers reporting 

morphological change and down regulation of endothelial cell surface markers with 

acquisition of mesenchymal markers as sufficient evidence of a phenotypic change 

[161].  Others have sought greater evidence such as change in protein expression of 

cell surface markers and functional change such as deposition of collagen and 

release of matrix metalloproteinases [156].  Due to the exploratory nature of this 

work, using diseased human primary cells,  cell morphology and cell surface marker 

expression in response to treatment with TGFβ1 was initially assessed, progressing 

later to look for evidence of change in protein expression and function.  More 

detailed examination of the signalling pathways behind such EnMT was also 

planned.  

 

The time between injury and observation of phenotype change varies between cell 

type and between the various methods reported by investigators.  Arciniegas et 

al[89] isolated and characterised adult bovine endothelial cells and used these in 

experiments between passage 11 and 30.  Cells were treated at ~20% confluence 

with control media or media containing 1ng/ml of TGFβ1.  The cultures were 

incubated for up to 20 days changing the media every 2-3 days.  After 3 days 

incubation, the TGFβ1 treated cells were enlarged compared with controls and 

displayed a ragged morphology, with only 50-60% cells staining positively for 

endothelial markers.  By 5 days, only 30-40% cells stained positively for endothelial 

markers while 40-60% stained positively for αsma.  Plasticity was further suggested 

by dual immunofluorescence with the endothelial marker factor VIII and αsma after 5 

days incubation.  Withdrawal of TGFβ1 after 10 days incubation caused cells to 

revert to their original polygonal morphology with positive endothelial markers with 

absent αsma, however this reversibility was not apparent following withdrawal of 

TGFβ1 at 20 days.  Frid et al reported the appearance of mesenchymal cells 

spontaneously over time (44% by passage 2) in endothelial cells isolated from adult 

bovine aortas and main pulmonary arteries [90].  This was only apparent in arterial 

cells purified on day one post isolation via FACs for Dil-Acetylated-LDL.  Cells which 

were left for more than 5 days prior to sorting did not give rise to mesenchymal cells.  
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These methods to investigate EnMT differ significantly in that Arciniegas reports 

plasticity in cells between passage 11 and 30, at a much higher passage than 

primary cells are normally used.  Frid in contrast reports this phenomenon was only 

seen in cells sorted on day one post isolation i.e. prior to the first passage.  From the 

morphological description of Arciniegas, the cells they observed may have become 

senescent (enlarged raggy morphology) with age related reduction in cell surface 

markers rather than showing a true phenotypic switch.  The description by Frid et al 

suggests they may have been witnessing appearance and rapid growth of small 

numbers of contaminating mesenchymal cells.   

 

Zhu et al isolated cells from porcine small arteries and examined evidence for EnMT 

following 1 day and 7 days hypoxia [161].  They reported morphological and cell 

surface expression change as evidence of EnMT at 7 days.  Zeisberg et al, in 

addition to lineage tracing in their mouse model, cultured coronary endothelial cells 

and between passages 3 and 5 treated cells with TGFβ1 (10ng/ml) or control media 

for 6 days [91].  They demonstrated change in morphology and immunofluorescence 

via confocal microscopy in the TGFβ1 treated cells compared with control cells.  

Zeisberg also demonstrated that the cell culture media from TGFβ1 treated cells 

contained more collagen I and fibronectin on ELISA.  Cell viability, investigated via 

MTT assay, was reduced not increased.  O’Riordan et al used HUVECs as a model 

of chronic kidney disease to examine endothelial plasticity in response to inhibition of 

nitric oxide for up to 72 hours [93].  Collagen XVIII expression was increased via 

western blotting and qPCR following treatment of HUVECs with the eNOS inhibitors 

ADMA and L-NAME when compared with untreated cells.  In addition the endothelial 

marker Tie-2 reduced and αsma increased when detected via immunofluorescence 

after treatment with ADMA.  Borthwick et al using primary bronchial epithelial cells 

obtained from patients with bronchiolitis obliterans observed change in cell surface 

markers, protein expression and function in cells treated with TGFβ1 and TNFα for 

72 hours [156].  Although this work was conducted in bronchial epithelial cells and 

not lung microvascular endothelial cells, this is the most similar model to date as it 

uses primary cells isolated from individuals who have developed the disease of 

study.  From these published experiments, cells were treated with TGFβ1 5ng/ml 
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and 10ng/ml and CSE 3% (based upon viability studies) for 1 hour and 24 hours 

initially with EnMT examined at 5 days and 7 days.  Later I examined plasticity in 

response to 3% CSE stimulation for 24, 48, and 72 hours.         

 

In addition to investigating EnMT in cell culture models using primary cells from 

patients with emphysema, I also investigated the relationship between endothelial 

loss and mesenchymal deposition/repair in vivo using immunohistochemical staining 

on paraffin embedded lung sections from the tissue from which cells were isolated.  

In addition I utilised dual staining to investigate the presence of cells staining positive 

for both endothelial and mesenchymal markers.  Such dual stained cells would 

investigate in vivo evidence of this phenomenon, with examination of the 

environment in which dual stained cells were found highlighting the biological 

relevance of this mechanism and giving important clues as to the pathogenesis.     
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6.3 Materials and Methods 

 

6.3.1 Immunohistochemistry 

Immunohistochemistry for CD31, CD34 and aSMA was performed on 4um paraffin 

embedded tissue sections from emphysema and control tissue.  Immunoreactants 

were visualised using diaminobenzidine (DAB) substrate solution and vector red 

substrate.  Isotype controls were included in each experiment to assess quality of 

staining.   

6.3.2 Cell culture 

Commercially available human pulmonary microvascular endothelial cells 

(Promocell) and cells isolated from emphysematous human lung and excess normal 

tissue were grown in complete MV2 media (Promocell) containing supplements and 

5% FCS. Cells were grown on 6 well plastic plates coated with gelatin (cell viability), 

in 75cm2 flasks (western blotting) and on 18mm coverslips (Confocal microscopy).  

6.3.3 CSE preparation 

Cigarette smoke extract was prepared according to the method by Carp and Janoff 

[111] as outlined previously and used within 30 minutes of preparation. 

6.3.4 Phase Contrast Microscopy 

Images were taken on a cannon image shot. 

6.3.5 Cell Viability 

Cell viability studies were performed via flow cytometry using 7-AAD to detect non-

viable cells, with FITC annexin V to detect early apoptotic cells.  All experiments 

were conducted in triplicate.    
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6.3.6 Confocal Microscopy 

Cells were fixed in 4% (w/v) paraformaldehyde as before, permeabilised, blocked in 

BSA and incubated with primary antibodies and detected using an appropriate 

fluorochrome-linked secondary antibody. DAPI was used as a nuclear counter stain. 

Images acquired using a LSM 510 laser scanning confocal microscope. 

6.3.7 Western blotting 

Cell lysates (5–20 μg determined via BCA protein assay) were separated via gel 

electrophoresis (4–12% bis-Tris gels, Invitrogen, Paisley, UK) and then transferred 

overnight onto PVDF membranes.  Membranes were then blocked prior to incubation 

with primary antibodies and detected with horseradish peroxidase (HRP)-labelled 

IgG conjugates (Abcam, Cambridge, UK). Antibody complexes were visualised using 

the SuperSignal West Pico chemiluminescent kit (Perbio Science).  β-actin and β-

tubulin loading controls were detected for each experiment. 
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6.4 Results 

6.4.1 Cell Viability in response to TGFβ1 and CSE at 24 hours 

Initial cell viability results were conducted using LMVECs (Promocell) prior to 

replication of work in the emphysema LMVECs.  Cells were treated with complete 

MV2 media containing TGFβ1 10ng/ml, CSE 3% or control.  Cells treated with CSE 

were exposed for 1 hour and 24 hours before replacement with complete media.  

Cells were harvested at 24 hours and viability examined via annexin V and 7AAD 

staining via flow cytometry.  Results (mean± sem, n=3) are shown in figure 6.1.  

There was no significant cell death in cells exposed to TGFβ1, or 3% CSE for 1 hour 

or 24 hours compared with controls (p=0.338).     
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Figure 6.1: Human pulmonary microvascular endothelial cells (HLMVECs) were treated in triplicate 

with complete MV2 media containing TGFβ1 10ng/ml, CSE 3% for 1 hour or 24 hours or control.  Cells 

were harvested at 24 hours and viability investigated via annexin V and 7AAD staining via flow 

cytometry.  There was no significant cell death in cells exposed to TGFβ1, or 3% CSE for 1 hour or 24 

hours compared with controls (p=0.338).   

ANOVA  Alive p=0.369 

  Apoptotic p=0.635 

  Dead p=0.338 
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Cell Viability in response to TGFβ1 and CSE at 7 days 

From the 24 hour viability experiment, I concluded that cell viability remained 

unchanged across the treatments.  I therefore examined cell viability after 7 days 

exposure to TGFβ1 and 7 days from treatment with 3% CSE for 1 hour and 24 

hours.  Cells were treated at time zero with complete MV2 media containing TGFβ1 

1ng/ml, TGFβ1 10ng/ml, CSE 3% or control.  Cells treated with CSE were exposed 

for 1 hour and 24 hours before replacement with complete media.  Cells were 

harvested at 7 days and viability examined investigated via annexin V and 7AAD 

staining via flow cytometry.  Results (mean± sem, n=3) are shown in figure 7.2.  Cell 

viability was much lower (approximately 40-45% viable) than at 24 hours with an 

apparent increase in apoptosis (p=0.001).  There was however no significant cell 

death in cells exposed to TGFβ1, or 3% CSE for 1 hour or 24 hours compared with 

controls (p=0.321).   
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Figure 6.2: Human pulmonary microvascular endothelial cells (HLMVECs) were treated in triplicate with 

complete MV2 media containing TGFβ1 1ng/ml, TGFβ1 10ng/ml and CSE 3% for 1 hour or 24 hours or 

control.  Cells were harvested at 7 days post treatment and viability investigated via annexin V and 7AAD 

staining via flow cytometry.  There was no significant difference in cell death in cells exposed to TGFβ1 or 

3% CSE for 1 hour or 24 hours compared with controls (p=0.321).  Cell viability was however much lower 

with only approximately 40-45% viable compared with approximately 70% at 24 hours (figure 6.1) and may 

account for apparent increase in apoptosis observed (p=0.001).    

 

ANOVA  Alive p=0.349 

  Apoptotic p=0.001 

  Dead p=0.321 
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Cell viability studies (Promocell LMVECs and cells isolated from emphysema 

patients) in response to CSE treatment for 1, 24, 48 and 72 hours was shown in 

chapter 5.  There was no significant cell death among cells treated with up to 3% 

CSE for 1, 24, 48 and 72 hours.  Control cells (untreated) with media change at 24, 

48 and 72 hours also showed no significant difference in viability.  Due the the 

precious nature of these cells, these experiments were not repeated and the data 

used to guide CSE treatment dose for investigation of EnMT.   
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6.4.2 Cell Morphology 

Examination of cell morphology 7 days post TGFβ1 10ng/ml (Figure 6.3b), 3% CSE 

for 1 hour on day one (Figure 6.3c) and 3% CSE for 24 hours on day one (Figure 

6.3d), revealed elongated spindle cells compared with untreated control cells (Figure 

6.3a).  TGFβ1 and CSE treated cells appeared less dense than control cells, but as 

evidenced in Figure 6.2, cell viability was unchanged despite these treatments.  In 

view of these morphological changes on phase contrast microscopy, cell surface 

marker expression was investigated similarly at 7 days via confocal microscopy.     

 

 

 

Figure 6.3: Cell morphology 7 days post TGFβ1 10ng/ml, 3% CSE for 1 hour on day 1 and 3% CSE 

for 24 hours on day 1 was examined and compared with untreated cells (controls).  Phase contrast 

microscopy images demonstrated untreated control endothelial cells maintained their cobblestone 

morphology at 7 days.  TGFβ1 treated cells were a mixture of elongated spindle cells and some 

cobblestone cells.  Similarly the 3% CSE treated cells that were elongated compared with untreated 

cells.   
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6.4.3 Cell surface marker expression of human pulmonary microvascular 

endothelial cells (HLMVECs) in response to TGFβ1 and control 

HLMVECs and fibroblasts 

 

Cells treated with TGFβ1 10ng/ml for 7 days and untreated cells (controls) were fixed 

and stained for the endothelial markers VE-Cadherin and PECAM-1 and the 

mesenchymal markers vimentin and fibronectin with FITC (green, mouse secondary) 

and TRITC (red, rabbit secondary) secondary antibodies.  DAPI was used to counter 

stain nuclei.  Isotype controls with secondary antibody alone were included for all 

experiments to exclude nonspecific staining (figure 6.4).   

 

 

 

 

 

 

 

 

Figure 6.4: Example of secondary antibody only for FITC mouse secondary antibody and TRITC 

rabbit secondary antibody, counterstained with DAPI to stain nuclei blue.  As demonstrated in both 

images there is no non-specific secondary antibody signal. 

FITC-secondary TRITC-secondary 
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Control HLMVECs were cobblestone shaped and stained positively for the 

endothelial cell surface markers VE-Cadherin (Figure 6.5a (i)) and PECAM-1 (Figure 

6.5a (ii)).  Control cells also stained positively for vimentin (Figure 6.5a (iii)).  

Vimentin is a cytoskeletal protein which maintains cell structure and form and 

facilitates endothelial cells’ ability to change shape during its many cellular tasks.  

There was also minimal fibronectin staining in control cells (Figure 6.5a (iv)).  In 

response to TGFβ 10ng/ml, HLMVECs appear to down regulate VE-Cadherin 

(Figure 6.5b (i)).  PECAM-1 staining was also altered being relocated from the cell 

surface to within the cytoplasm (Figure 6.5b (ii)).  Cells elongated (vimentin staining) 

(Figure 6.5b (iii)) with apparent increased fibronectin staining (Figure 6.5b (iv)).  In 

contrast and to act as an internal control to assess the quality of staining, fibroblasts 

were negative for the endothelial markers VE-Cadherin (Figure 6.5c (i)) and PECAM-

1 (Figure 6.5c (ii)).  Fibroblasts stained with vimentin showing dense spindle cells 

with bright cytoplasmic staining (Figure 6.5c (iii)) while there was dense deposition of 

fibronectin (Figure 6.5c (iv)).        
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 Figure 6.5: Confocal microscopy of cells at day 7 post TGFβ1 10ng/ml treatment compared with untreated 

HLMVECs and fibroblasts.  Control HLMVECs stained positively for the endothelial cell surface markers VE-

Cadherin (ai) and PECAM-1 (aii) and were also positive for the cytoskeletal protein vimentin (aiii).  Minimal 

fibronectin staining was shown in control HLMVECs (aiv).  In response to TGFβ 10ng/ml, HLMVECs down 

regulated VE-Cadherin (bi) and PECAM-1 (bii).  Cells demonstrated change in morphology to spindle cells 

(biii).  TGFβ1 treated cells showed increased fibronectin staining.  Fibroblasts stained similarly were 

negative for VE-Cadherin (ci) and PECAM-1 (cii) but showed bright dense packed spindle cells that were 

positive for vimentin (ciii) and increased fibronectin deposition (iv).   
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6.4.4 Endothelial cell surface marker expression in response to cigarette 

smoke extract 

LMVECs treated with 3% CSE for 1 hour and 24 hours were harvested at 7 days, 

together with untreated cells (controls), and were fixed and stained for the PECAM-1 

(endothelial marker) and vimentin, fibronectin and αsma (mesenchymal markers) as 

above with DAPI nuclear staining.  Similar to the previous experiment, untreated 

control HLMVECs at day 7 were cobblestone like and stained positively for PECAM-

1 (Figure 6.6a (i)) and for vimentin (Figure 6.6a (ii)).  Cells had very low staining for 

fibronectin (Figure 6.6a (iii)), but surprisingly were positive for α smooth muscle actin 

(Figure 6.6a (iv)).  In response to 3% CSE for 1 hour, LMVECs appeared to express 

reduced PECAM-1 (Figure 6.6b (i)) while acknowledging that overall cell 

number/viability seemed less as suggested by DAPI nuclear stain.  Cells became 

enlarged, spindle shaped and elongated and stained positively for vimentin (Figure 

6.6b (ii)) and also demonstrated apparent increased fibronectin staining (Figure 6.6b 

(iv)).  Cells treated with 3% CSE for 24 hours showed very reduced/absent PECAM-

1 staining (Figure 6.6c (i)) with reduced cell number/viability indicated by DAPI 

staining. Remaining cells appeared elongated and stained positively for vimentin 

(Figure 6.6c (ii)), fibronectin (Figure 6.6c (iii)) and α smooth muscle actin (Figure 6.6c 

(iv)).  Similar to the previous experiment, fibroblasts were negative for PECAM-1 

(Figure 6.6d (i)) with high positive staining for vimentin (Figure 6.6d (ii)), fibronectin 

(Figure 6.6d (iii)) and α smooth muscle actin (Figure 6.6d (iv)).                                    
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Figure 6.6: Confocal microscopy of cells at day 7 post 3% CSE treatment for 1 hour and 24 hours 

compared with untreated LMVECs and fibroblasts.  Control LMVECs stained positively for PECAM-1 

(ai) and were also positive for the cytoskeletal protein vimentin (aii).  Minimal fibronectin staining was 

shown in control LMVECs (aiii).  The cobblestone outline of control cells was demonstrated via 

positive α smooth muscle actin staining (aiv).   In response to3% CSE at 1 hour and 24 hours, there 

was marked loss of PECAM-1 (bi), (ci).  Cells stained positively for vimentin and became enlarged 

and elongated (bii), (cii) and similarly showed bright αSMA staining.  As in the similar experiment, 

Fibroblasts were negative for PECAM-1 (di) but showed bright dense packed spindle cells that were 

positive for vimentin (dii), increased fibronectin deposition (diii) and elongated αSMA positive cells 

(div).   
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6.4.5 Dual staining for CD31/ fibronectin in LMVECs treated with TGFβ1, 

CSE and TNFα with untreated dermal fibroblasts as a positive control. 

Following the observation that cells appeared to down regulate endothelial markers 

with possible upregulation of mesenchymal markers, LMVECs were dual stained for 

PECAM-1 (CD31) and fibronectin to investigate evidence of co-localisation of 

markers, as would be expected in transitional cells.  PECAM-1 (CD31) a mouse 

primary antibody was used with FITC (green) mouse secondary antibody.  

Fibronectin a rabbit antibody was used with a TRITC (red) rabbit secondary 

antibody.  Control cells displayed cell surface staining for PECAM-1 (green) with 

absent fibronectin staining (red) (Figure 6.7a).  Cells treated with TGFβ1 (10ng/ml for 

7 days) also demonstrated cells staining for positively for PECAM-1 (green) (Figure 

6.7b).  However some TGFβ1 treated cells appeared to lack PECAM-1 expression 

and instead expressed low levels of fibronectin (red) (Figure 6.7b).  One cell 

appeared to express both fibronectin and PECAM-1 which may be evidence of a 

transitional cell (arrow).   

 

Cells treated with 3% CSE for 1 hour (Figure 6.7c) and 24 hours (Figure 6.7d) at 7 

days had reduced cell surface expression of PECAM-1 (green).  Cells appeared to 

express increased fibronectin within the cytoplasm (red).  Interestingly the cells 

treated with CSE appeared more transitional than those treated with TGFβ1 (Figure 

6.7b), the archetypal orchestrator of phenotypic switch.      

 

In this experiment, some cells were also treated with TNFα.  Cells treated with TNFα 

alone markedly down regulated PECAM-1 (green) (Figure 6.7e-g).  Cells appeared 

elongated on phase contrast in keeping with reports in the literature [164] [165], but 

did not increase fibronectin expression or deposition.   The down regulation of CD31 

was more apparent in the TNFα treated cells than in either those treated with TGFB1 

(Figure 6.7b) or CSE (figure 6.7c-d).  No transitional cells were evident in this 

population. Control fibroblasts stained with the same dual staining protocol showed 

confluent fibronectin staining (red) and absent CD31 (green) (Figure 6.7h). 
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Figure 6.7: Dual staining of HLMVECs for PECAM-1/CD31(green, endothelial) and fibronectin (red, 

mesenchymal) detected via  Confocal microscopy at day 7 post TGFβ1 10ng/ml, TNFα 20ng/ml, 3% CSE 

treatment for 1 hour and 24 hours on day one compared with untreated cells and fibroblasts.  Control 

(untreated cells) stained positively for PECAM-1 but negatively for fibronectin (Figure 7.7a).  Cells treated 

with TGFβ1 10ng/ml showed some cells had absent PECAM-1 staining (green) with low levels of fibronectin 

staining (red).  Some cells appeared to have localisation of CD31 (green) and fibronectin (red) suggesting the 

possibility of transitional cells (arrow).  Cells treated with 3% CSE treatment for 1 hour and 24 hours on day 

had markedly reduced CD31 staining with increased fibronectin staining.  Cells treated with TNFα 20ng/ml 

showed down regulation of CD31 but with no similar increase in fibronectin.  Fibroblasts stained confluently 

with fibronectin (red) and had absent CD31 (green) staining.  

a) b) c) d) 

e) f) g) h) 
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6.4.6 Dual staining for CD31/αSMA in LMVECs treated with TGFβ1 and 

3% CSE for 1 hour, 24 hours, 48 hours and 72 hours at 7 days compared 

with untreated cells and dermal fibroblasts. 

 

Cellular plasticity was further investigated with dual staining via confocal microscopy 

using another more mature mesenchymal marker αSMA together with CD31.  αSMA 

a rabbit antibody was used with a TRITC (red) rabbit secondary antibody with the 

same PECAM-1 (CD31) (mouse primary antibody with FITC (green) mouse 

secondary antibody) as used in the previous experiment. 

 

Control fibroblasts stained with the same dual staining protocol showed elongated 

cells with strong αSMA (red) and absent CD31 (green) (Figure 6.8a).  Untreated 

LMVECs  displayed cell surface staining for PECAM-1 (green) with absent αSMA 

staining (red) (Figure 6.8b).  In this experiment the cells surface staining for CD31 on 

control cells was less clear than in previous experiments.   Cells treated with TGFβ1 

(10ng/ml for 7 days) also demonstrated cells staining for positively for PECAM-1 

(green) (Figure 6.8c).  However some TGFβ1 treated cells appeared to lack PECAM-

1 expression while expressing low levels of αSMA (red) (Figure 6.8d).  Some cells 

treated with 3% CSE for 1 hour (Figure 7.8e), 24 hours (Figure 7.8f), 48 hours 

(Figure 7.8g) and 72 hours (Figure 7.8h) at 7 days had reduced cell surface 

expression of PECAM-1 (green).  The most marked changes were witnessed in the 

cells treated for 72 hours.  Importantly, this was not a universal response with some 

cells continuing to express their native CD31 in a similar pattern to the untreated 

cells.  There was no clear evidence of cells expressing αSMA in response to CSE. 
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Figure 6.8: Dual staining of LMVECs for PECAM-1/CD31(green, endothelial) and αSMA (red, mesenchymal) 

detected via  Confocal microscopy at day 7 post TGFβ1 10ng/ml, 3% CSE treatment for 1 hour, 24 hours, 48 

hours and 72 hours compared with untreated cells and fibroblasts.  Fibroblasts demonstrated αSMA (red) in 

sheet like form with absent CD31 (green) staining (Figure 7.8a). Control (untreated cells) stained positively 

for PECAM-1 but negatively for αSMA (Figure 7.8b).  Cells treated with TGFβ1 10ng/ml showed some cells 

had reduced PECAM-1 staining (Figure 7.8c) with possible low levels of αSMA staining on some cells (Figure 

7.8d).  Cells treated with 3% CSE treatment for 1 hour (Figure 7.8e), 24 hours (Figure 7.8f), 48 hours (Figure 

7.8g) and 72 hours (Figure 7.8h) had reduced CD31 staining.  There was no clear evidence of increased 

αSMA staining in response to CSE   
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6.4.7 Examination of cell surface markers via flow cytometry 

Having identified possible change in cell surface markers, EnMT in response to 

TGFβ1 and CSE was further investigated via flow cytometry.  Cells were treated in 

triplicate at 70% confluence with TGFβ1 (1ng/ml and 10ng/ml) and CSE 3% for 1 

hour and 24 hours as previous.  Cells were harvested 7 days post treatment using 

cell dissociation solution and incubated with the cell surface markers CD31 

(endothelial) and CD90 (fibroblast), as used previously in the characterisation 

experiments (chapter 4).  Following incubation, cells were washed and centrifuged at 

1000rpm prior to resuspension in PBS and analysed via flow.   

 

All cells stained positively for CD31 and negatively for CD90 (data not shown).  

However there was a significant reduction in median fluorescence intensity in 

CD31staining (Figure 6.9) (ANOVA, p=0.028) that was not significant for TGFβ1but 

significant for CSE at 24 hours (p=0.047).  Although the cells were overall positive for 

the endothelial marker CD31, this data suggests a change in the cellular expression 

of this marker which may suggest loss of CD31.  CD90 was unchanged across all 

treatments with very low expression, this was however not unsurprising as CD90 is a 

mature fibroblast marker and such a marked phenotypic switch by 7 days would be 

unlikely.   

 

Following this experiment, I went on to examine CD31 and CD90 expression at days 

11 and 15 to examine whether changes in cell surface expression became more 

established at later time points (data not presented).  However this again showed all 

cells remained positive for CD31 and negative for CD90 with a reduction in the 

median fluorescence intensity observed for CD31 but with no change in CD90.      
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Figure 6.9:  Examination of cell surface expression in response to TGFβ1 and CSE via flow cytometry.  All 

cells were highly positively for CD31 and negative for CD90 however examination of median fluorescence 

intensity on the CD31 histograms identified a subtle but significant (p=0.028) leftward shift in the median 

fluorescence intensity between (6.9a) untreated and (6.9b) CSE treated cells.  This CD31 reduction was not 

significant in response to TGFβ1 but was in response to CSE at 24 hours (p=0.047) (Figure 6.9c).   

ANOVA  CD31 p=0.028 

  CD90 p=0.752 

p=0.047 
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6.4.8 Investigation of change in protein concentration of cell surface 

markers in response to TGFβ1 via western blotting 

 

Change in protein expression following treatment with TGFβ1 was thereafter 

investigated initially in commercial LMVECs (Promocell) but then repeated in 

emphysema cells and in normal cells.   

 

Cells were treated either with TGFβ1 5ng/ml or TGFβ1 10ng/ml in complete MV2 

media.  Some cells were also serum starved for 24 hours prior to treatment with 

10ng/ml TGFβ1.  Control cells had media changed at time zero.  Cells were 

harvested at 7days and lysed in phosphosafe extraction buffer prior to lysing via 

sonication at 4◦C.  Protein concentration of the cell lysates was determined via a 

BCA protein assay (Figure 6.10).   

 

20ug of protein was loaded for PECAM-1 (CD31), VE-Cadherin, VEGF KDR and 

αSMA.  5ug protein was loaded for fibronectin and vimentin.  Bis Tris 12% gels were 

ran at 100V and then transferred overnight at 100mAmps onto PVDF.  PVDF 

membranes were blocked in 5% marvel milk.  Primary antibodies were thereafter 

applied and left on a rocker at room temperature for a minimum 90 minutes at room 

temperature or at 4◦C overnight.  Membranes were washed and secondary 

antibodies applied.  Protein bands were detected using chemiluminescence and 

imaged.   

 

CD31, VEcadherin and VEGF KDR protein expression was unchanged in response 

to treatment TGFβ1 in LMVECs (Promocell) (Figure 6.11).  Fibronectin, Vimentin and 

αSMA was also unchanged following treatment (Figure 6.11).  Serum starvation of 

cells prior to treatment led to reduced vimentin, asma and fibronectin.  β actin was 

used as a loading control for each membrane and was unchanged across all 

treatments; a representative blot is also shown in figure 6.11. 
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This experiment was repeated multiple times in Promocell cells with the same result 

each time.  The experiment was also repeated in cells isolated from patient 15 with 

normal lungs (Figure 6.12) and in cells isolated from four patients with emphysema 

(Figure 6.13) and in patient 17 (idiopathic pulmonary arterial hypertension) (Figure 

6.14).   

 

Figure 6.10: Cell lysates were placed in phosphosafe extraction buffer and gently sonicated.  A BCA 

protein assay was then ran with standards prepared via serial dilution and plated in triplicate onto an 

elecsys optical plate.  Unknown samples (in this case cells 451.1 control, TGFβ1 5ng/ml, TGFβ1 

10ng/ml and Ss TGFβ1 10ng/ml) were also plated in triplicate.  The plate was incubated at 37◦C and 

read at 490nm after 30 minutes incubation.  A standard curve was constructed and protein 

concentration of unknown samples extrapolated from the curve.  Protein concentration (mg/ml) was 

determined and thereafter concentration to plate 20ug or 5ug for each western blot determined.   
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Figure 6.11: Normal LMVECs (Promocell) treated with TGFβ1 5ng/ml and 10ng/ml versus control 

(untreated cells) at 7 days.  One sample of cells was also serum starved (Ss) prior to treatment with 

TGFβ1 10ng/ml.  Western blots obtained showed CD31, VEcadherin and VEGF KDR protein 

expression was unchanged in response to treatment with TGFβ1.  There was no change in the 

mesenchymal markers fibronectin, vimentin and αSMA.  Serum starvation of cells prior to treatment led 

to reduced vimentin, asma and fibronectin, although endothelial markers were unchanged.  The cause 

of this is unclear.  βactin was used as a loading control and was unchanged across all treatments.   
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Figure 6.12: LMVECs isolated from excess normal tissue at lobectomy (patient 15) treated with TGFβ1 

5ng/ml and 10ng/ml versus control (untreated cells) at 7 days.  One sample of cells was also serum 

starved (Ss) prior to treatment with TGFβ1 10ng/ml.  Western blots obtained show the endothelial 

markers CD31, and VE-cadherin protein expression was unchanged in response to treatment with 

5ng/ml and 10ng/ml TGFβ1 at 7 days.  The mesenchymal markers fibronectin, vimentin and αSMA 

were also unchanged.  βactin acted as a loading control and was unchanged across all treatments.   
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Figure 6.13: LMVECs isolated from a patient with emphysema (patient 8) were treated with TGFβ1 

5ng/ml and 10ng/ml and compared with untreated (control cells) at 7 days.  One sample of cells was 

also serum starved (Ss) prior to treatment with TGFβ1 10ng/ml.  Western blots obtained show that 

CD31 and VE-cadherin protein expression (endothelial markers) were unchanged in response to 

treatment with 5ng/ml and 10ng/ml TGFβ1 at 7 days.  The mesenchymal markers fibronectin and 

vimentin were also unchanged.  βactin acted as a loading control and was unchanged across all 

treatments.   
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Figure 7.14: LMVECs isolated from patient with idiopathic pulmonary arterial hypertension (patient 17) 

treated with TGFβ1 5ng/ml and 10ng/ml versus control (untreated cells) at 7 days.  Limited markers 

were used in this exploratory experiment.  Western blots obtained show the endothelial marker VE-

cadherin protein expression was unchanged across the treatments at 7 days.  The mesenchymal 

markers fibronectin and vimentin were also unchanged across treatments.  βactin acted as a loading 

control. 
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In view of these persistently negative findings, A549 cells were treated similarly to 

the above experiments with TGFβ1 to investigate whether I could induce epithelial to 

mesenchymal transition as has been reported extensively by other researchers, 

including those in my own group.  The result shown in Figure 7.15 confirmed a 

positive control that epithelial cells but not endothelial cells undergo a possible 

phenotype switch in response to TGFβ1 as evidenced by down regulation of the 

endothelial marker E-cadherin with associated increased fibronectin and vimentin.  β 

actin was again used as a loading control and was unchanged, further validating 

these results. 

 

 

 

 

 

Figure 6.15: The epithelial cell line A549 was treated with TGFβ1 5ng/ml and 10ng/ml and compared 

with control (untreated cells) at 7 days.  Some cells were also treated after serum starvation (Ss) for 24 

hours prior to treatment.  Cellular protein expression was investigated via the epithelial cell marker E-

cadherin and the mesenchymal markers fibronectin and vimentin.  βactin was used as a loading 

control.Western blots show loss of the epithelial marker E-cadherin in response to treatment with 

TGFβ1 10ng/ml but not 5ng/ml.  Fibronectin and Vimentin were increased following TGFβ1 10ng/ml 

compared with untreated cells and those treated with TGFβ1 5ng/ml.  Response was similar in the 

serum starved cells treated with TGFβ1 10ng/ml and those treated with TGFβ1 10ng/ml without serum 

starvation.  A representative blot for β actin is shown.  A loading control was checked for each blot and 

confirmed equal loading further validating these results of loss of epithelial markers with acquisition of 

mesenchymal markers in response to TGFβ1 10ng/ml. 
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6.4.9 Investigation of change in protein concentration of cell surface 

markers in response to CSE via western blotting 

In view of the preliminary observations on confocal microscopy which suggested 

CSE may be a more potent stimulator of phenotypic change in endothelial cells, 

western blotting was performed on cell lysates prepared from cells treated with 3% 

CSE.  From the viability work, it was decided to investigate EnMT following treatment 

with 3% CSE for 1 hour and 24 hours at 7 days.  Initially experiments used LMVECs 

(Promocell) (Figure 6.16), but thereafter all work was repeated in cells isolated from 

patients with emphysema and in cells isolated from normal excess tissue obtained at 

lobectomy.  The endothelial and mesenchymal markers used in the TGFβ1 

stimulation experiments were used similarly in these experiments.  EnMT was also 

investigated at earlier time points, with cells treated with 3% CSE for 24, 48 and 72 

hours and EnMT investigated thereafter.   

 

LMVECs (Promocell) treated with TGFβ1 10ng/ml for 7 days or 3% CSE for 1 hour 

or 24 hours with cells harvested 7 days post exposure and compared with untreated 

cells showed no discernible change in CD31, fibronectin or vimentin (Figure 6.16).  

LMVECs (Promocell) treated with 3% CSE for 24, 48 and 72 hours showed no loss 

of CD31 (endothelial marker) and no upregulation of fibronectin, vimentin and aSMA 

(mesenchymal markers) (Figure 6.17).  This experiment was repeated in cells 

isolated from patients with emphysema (Figure 6.18-6.19), cells isolated from excess 

normal tissue (Figure 6.20) and using A549 cells (epithelial cell line) (Figure 6.21).  

There was no evidence of change in protein expression found in support of EnMT or 

EMT in response to CSE. 
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Figure 6.16: HLMVECs (Promocell) treated with TGFβ1 10ng/ml for 7 days or 3% CSE for 1 hour or 24 

hours with cells harvested at 7 days post exposure and compared with protein expression of untreated 

cells at 7 days.  Limited markers were used in this exploratory experiment.  There was no change in 

CD31 or vimentin or fibronectin in response to TGFβ1, 3% CSE for 1 hour and 24 hours.  βtubulin was 

used as a loading control. 
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Figure 6.17: HLMVECs (Promocell) were treated with 3% CSE for 24, 48 and 72 hours and 

compared with untreated cells (controls).  Protein expression was investigated via western blotting for 

the endothelial marker CD31 and for the mesenchymal markers fibronectin, vimentin and aSMA.  β 

actin was used as a loading control.  Western blots showed no change in CD31 expression on cells 

treated with 3% CSE across the 3 time points.  There was no increase in mesenchymal markers 

observed in response to CSE, indeed control cells expressed more fibronectin, vimentin and aSMA 

than treated cells.  Loading controls for each blot were confirmed using βactin, a representative blot is 

shown.  
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Figure 6.18: LMVECs isolated from emphysema lung tissue (patient 8) were treated with 3% CSE for 

24, 48 and 72 hours and compared with untreated cells (controls).  Protein expression was 

investigated via western blotting for the endothelial marker VE-cadherin and for the mesenchymal 

markers fibronectin, and vimentin.  There was no change in VE-cadherin or vimentin or fibronectin in 

response to 3% CSE for 24, 48, 72 hours.  βactin was used as a loading control. 
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Figure 6.19: LMVECs isolated from emphysema lung tissue (patient 4) were treated with 3% CSE for 

24, 48 and 72 hours and compared with untreated cells (controls).  Protein expression was 

investigated via western blotting for the endothelial marker CD31 and for the mesenchymal markers 

vimentin and aSMA.  There was no change in PECAM-1, aSMA or vimentin in response to 3% CSE 

for 24, 48, 72 hours.  βactin was used as a loading control. 
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Figure 6.20: LMVECs isolated from normal lung tissue (patient 15) were treated with 3% CSE for 24, 

48 and 72 hours and compared with untreated cells (controls).  Protein expression was investigated 

via western blotting for the endothelial marker VE-Cadherin and for the mesenchymal markers 

fibronectin, vimentin and aSMA.  There was no change in VE-cadherin or vimentin or aSMA in 

response to 3% CSE for 24, 48, 72 hours.  βactin was used as a loading control. 
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Figure 6.21: A549 cells were treated with 3% CSE for 24, 48 and 72 hours and compared with 

untreated cells (controls).  Protein expression was investigated via western blotting for the epithelial 

marker E-Cadherin and for the mesenchymal markers fibronectin and vimentin.  β actin was used as 

a loading control.  Western blots showed no change in E-cadherin expression on cells treated with 3% 

CSE across the 3 time points.  There was no increase in mesenchymal markers observed in response 

to CSE.  Loading controls for each blot were confirmed using βactin, a representative blot is shown.  
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6.4.10 Endothelial cell activation in response to cigarette smoke extract 

Endothelin-1, the potent vasoconstrictor peptide associated with cigarette smoke 

induced endothelial dysfunction in the systemic circulation, has been reported to be 

induced by TGFβ1 [160], [166].  Endothelin-1 release from cells treated with TGFβ1 

and CSE was therefore investigated via ELISA.   

 

Using a standard commercial ELISA kit, standards (0-100pg/ml) were titrated 

together with samples of media from endothelial cells treated with TGFβ1 5ng/ml and 

10ng/ml and 3% CSE for 24, 48 and 72 hours as in previous experiments.  Cells 

from 2 donors with emphysema (patient 7) and patient 8), from excess normal tissue 

(patient 15) and from Promocell were used for experiments.  A standard curve was 

constructed from the absorbance at 450nm (Figure 6.22) and then concentration of 

Endothelin-1 in media from cells treated (n=2 for TGFβ1 experiment, n=3 for CSE 

experiments) calculated and tabulated (Figure 6.23 & Figure 6.24).  Concentration of 

Endothelin-1 in media from commercial HLMVECs (Promocell) was too high and 

above the greatest standard concentration used (100pg/ml) and so these results 

were unable to be included.  It is difficult to interpret whether this reflects less ET1 in 

emphysema cells or whether lower cell viability and thus lower cell density 

accounted for this observation. 
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Figure 6.22: Standard curve using Endothelin-1 standards incubated with primary antibody and 

detected via enzyme linked immunoabsorbant assay (ELISA). 
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Cell supernatants showed a trend towards increase in endothelin-1 in response to 

treatment with TGFβ1 5ng/ml and 10ng/ml but this did not reach significance 

(p=0.078).   
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Figure 6.23: ELISA of cell supernatants to investigate endothelin-1 release in response to TGFβ1 in 

cells from normal tissue (patient 15 (451.1)) and from emphysema tissue (patient 7 (295A) and patient 

8 (300C).  Cell supernatants showed a trend towards increase in endothelin-1 in response to 

treatment with TGFβ1 5ng/ml and 10ng/ml but this did not reach significance (p=0.078), (all results 

n=2).    

 

P=0.078 
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Supernatants from cells treated with CSE did not show such a relationship with 

normal cells (patient 15) showing essentially unchanged levels of Endothelin-1, while 

there was a tendency to a reduction in endothelin-1 in (patient 8) but an increase in 

another (patient 7).  All results represent n=3, however due to the conflicting results 

no statistical analysis was performed and no further conclusions can be drawn from 

this experiment. 
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Figure 6.24: ELISA of cell supernatants to investigate endothelin-1 release in response to CSE in 

cells from normal tissue (patient 15) and from emphysema tissue (patient 7 and patient 8).  

Supernatants from cells treated with CSE showed no clear response, with normal cells (patient 15) 

showing essentially unchanged levels of Endothelin-1, while there was a tendency to a reduction in 

endothelin-1 in one emphysema donor (patient 8) but an increase in another (patient 7).  All results 

represent n=3.  No further conclusions should be drawn from this experiment unless repeated. 
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6.4.11 In vivo evidence of endothelial plasticity/ phenotype change 

To further investigate the existence of transitional cells and EnMT in the 

emphysematous lung, I attempted to perform dual staining for CD31 and aSMA via 

immunohistochemistry on paraffin embedded blocks from which emphysema lung 

from which cells were isolated.  In vivo evidence of EMT has been demonstrated in 

the post lung transplant airway via dual immunofluorescence [156] by colleagues in 

our institute and so I employed the same technique in order to investigate EnMT.  

Unlike airways, the alveolar bed has a very high autofluorescence due to elastin 

(Figure 6.25).  Figure 7.25a shows an arteriole (arrow), venule and surrounding 

alveolar bed with CD31 detected with a FITC secondary antibody.  Figure 6.25b 

shows the same section with no primary antibody applied i.e. no CD31, but with 

FITC secondary alone.  There is similar bright green staining suggesting 

autofluorescence.  This was further confirmed with no primary or secondary antibody 

applied with DAPI alone (Figure 6.25c) in which there was clear autofluorescence, 

rendering the stain uninterpretable.  No such difficulties were encountered with 

αSMA which gave a clear signal (red) with no autofluorescence (Figure 6.26).  In 

view of this, I therefore attempted to quench autofluorescence using pontamine sky 

blue.      
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Figure 6.25:CD31/αSMA immunohistochemistry on paraffin embedded blocks from emphysema lung 

tissue visualised via the FITC green channel.  CD31 with FITC secondary (a) allowed visualisation of 

an arteriole (arrow), venule and surrounding alveolar bed.  However the same section with FITC 

secondary alone applied (b) showed similar staining with visualisation of arteriole and supporting 

alveolar bed suggesting autofluorescence.  This was confirmed when no primary or secondary antibody 

was applied (DAPI alone) (c) in which there was clear autofluorescence, rendering the stain 

uninterpretable.       

Figure 6.26: CD31/αSMA immunohistochemistry on paraffin embedded blocks from emphysema lung 

tissue detected via the TRITC channel.  αSMA with TRITC secondary (a) allowed visualisation of an 

arteriole and surrounding alveolar bed.  The same section with TRITC secondary alone applied (b) 

showed no background autofluorescence. 
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Elastin and collagen are abundant in the lung and autofluoresce under ultraviolet 

light.  Elastin contains several fluorophores, one of which is a tricarboxylic amino 

acid with a pyridinium ring [167] which is similar to a fluorophore found in collagen.  

Studying the lung microvasculature therefore poses a problem as the internal elastic 

lamina of arterioles and the elastin associated with the alveolar bed emits a signal 

which is frequently more intense than any signal detected with the primary antibodies 

of study.  Supporting collagen around vessels and in the alveolar bed further 

compounds this.  Pontamine sky blue has been used to quench autofluorescence in 

a pre-treatment stage prior to antigen retrieval and immunostaining [168].  I therefore 

stained multiple sections of lung tissue in order to investigate whether I could 

achieve a clean CD31 immunofluorescent stain.   

 

HRP CD31 immunostaining requires pre-treatment with boric acid in order to bring 

out the microvasculature, thus adding further complexity.  The results are shown in 

figure 6.27.    Tissue pre-treated with boric acid prior to CD31 staining showed 

intense fluorescent green staining (a) in alveolar bed and external elastic lamina of 

vessels, consistent with the previous experiment and well documented 

autofluorescence.  Similarly pre-treatment with boric acid but with only FITC 

secondary antibody i.e. no CD31, showed high autofluorescence.  Pre-treatment of 

the section with pontamine sky blue followed by FITC secondary antibody alone (c) 

showed reduced but not complete attenuation of autofluorescence,  When tissue 

was pre-treated with pontamine sky blue and then boric acid as an antigen retrieval 

agent prior to antibody staining with CD31 followed by FITC secondary, there was 

very weak staining and no autofluorescence (d).  CD31 was only applied for 1 hour 

at room temperature and so it may be that a more prolonged incubation period i.e. 

overnight at 4◦C may have increased the signal.  This was confirmed by the same 

finding when incubated without primary antibody (e).  However when the section was 

pre-treated with pontamine sky blue and boric acid and stained for CD31 was viewed 

on the TRITC (red) channel, there was now intense autofluorescence detected (f).  

Thus pontamine sky blue fluoresces red, shifting the autofluorescence from green to 

red and so for such dual staining is unsuitable.  Due to such difficulties encountered 

trying to quench lung autofluorescence, I converted the stain to light microscopy 

immunocytochemistry.  
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Figure 6.27: CD31 immunostaining on paraffin embedded emphysema lung tissue.  Tissue pre-treated 

with boric acid (antigen retrieval agent) with CD31 showed intense fluorescent green staining (a) in 

alveolar bed and external elastic lamina of vessels.  However as before similar pre-treatment but 

without any primary antibody applied i.e. no CD31 produced similar staining suggesting 

autofluorescence.  Pre-treatment of paraffin embedded tissue with pontamine sky blue but no primary 

antibody (c) showed reduced but not complete attenuation of autofluorescence,  When tissue was pre-

treated with pontamine sky blue and then boric acid as an antigen retrieval agent prior to antibody 

staining with CD31 followed by FITC secondary, there was very weak staining but no autofluorescence 

(d).  CD31 was only applied for 1 hour at room temperature and so it may be that a more prolonged 

incubation period i.e. overnight at 4◦C may have increased the signal.  This was confirmed by the same 

finding when incubated without primary antibody (e).  However when the section was pre-treated with 

pontamine sky blue and boric acid and stained for CD31 was viewed on the TRITC (red) channel, there 

was now intense autofluorescence detected (f).    



185 

 

CD34 is an alternative marker of endothelial cells that has been used to investigate 

the lung microvasculature.  CD34 immunocytochemistry did not require antigen 

retrieval with boric acid and therefore in addition to CD31/αSMA, I also stained tissue 

for CD34/ αSMA due to concerns over the quality of CD31 on dual staining.  CD31 

and CD34 were detected via HRP/DAB (brown).  0.5% hydrogen peroxide was used 

to quench endogenous peroxidise.  αSMA was detected via ABC-AP kit with Vector 

red detection (red/pink).  Levamisole was used to quench the endogenous alkaline 

phosphatise (AP).  The CD31 stain was again very weak and difficult to interpret 

together with αSMA, however CD34 stained the microvasculature well together with 

αSMA and allowed interpretation.  Lung tissue sections were therefore 

immunostained for CD34/αSMA from normal excess tissue (Figure 6.28) and tissue 

obtained at transplantation for emphysema (Figure 6.29).  Sections were examined 

to determine the relationship between endothelial cells (CD34 positive cells) and 

matrix (αSMA positive cells), with evidence of transitional cells (co-localisation of 

CD34 and αSMA) sought.   

 

Normal excess paraffin embedded lung tissue immunostained for CD34 (brown) an 

endothelial marker and αSMA (red) a marker of matrix/mesenchymal cells 

demonstrated differentiation of brown/red immunostaining as shown in figures 6.28a) 

and b).  The vessel at higher power magnification 6.28b) illustrates the flat 

circumferential endothelial cells (brown) with associated supporting matrix cells (red) 

in close apposition but with clear distinction of red and brown.  Figure 6.28c) shows 

the alveolar bed of normal lung tissue.  The small alveolar capillaries (brown) can be 

clearly seen.  Figure 6.28d), at higher power supports this, with few αSMA positive 

cells.  No dual stained (transitional cells) were identified in sections of normal lung 

tissue. 

 

Emphysema lung tissue immunostained for CD34 (brown) and αSMA (red) shows 

the alveolar bed, with well-preserved capillaries (CD34+ brown cells) with a cluster of 

small vessels (CD34+ brown cells) (Figure 6.29a).  Lateral to these vessels is an 

area of thickened matrix with intense αSMA staining, with absent CD34 staining.  

Some peripheral fibrotic sprouts also stain positively for αSMA.  Two small 
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muscularised arterioles and the surrounding alveolar bed are captured in figure 

6.29b).  In this section there is intense αSMA of the vessels, but the CD34+ 

endothelial monolayer appears diminished.  Between the two vessels the alveolar 

bed is very thin, with loss of supporting structure including capillaries.  In this area 

there is a thickened septum with few very weakly positive CD34 cells but no dual 

stained cells.  Figure 6.29c) shows a thin septum and associated vessels.  The 

capillaries are relatively well preserved although in one part of the septum (arrow) 

there is low intensity CD34 (brown) staining with associated low intensity (αSMA) red 

staining, although these stains are not truly co-localised.  Figure 6.29d) shows the 

emphysematous alveolar bed, with marked regional loss of capillaries.  In this 

section there is a septum which appears to have flat cells typical of endothelial cells 

which stain red/brown (arrows).  These could represent transitional or activated 

endothelial cells. 

 

 

 

 

 

  



187 

 

 

 

 

 

Figure 7.26:Normal Tissue. Normal excess paraffin embedded lung tissue immunostained for CD34 (brown) an 

endothelial marker and αSMA (red) a marker of matrix/mesenchymal cells.  Figure a) shows a vessel and 

surrounding alveolar bed.  The vessel at higher power magnification b) illustrates clearly the flat circumferential 

endothelial cells (brown) with associated supporting matrix cells (red) in close apposition.  Importantly there is 

clear distinction of red and brown.  Figure c) shows the alveolar bed of normal lung tissue.  The small alveolar 

capillaries (brown) can be clearly seen with only low levels of αSMA.  Figure d), at higher power supports this, 

with few αSMA positive cells.  No dual stained i.e. transitional cells were identified in sections of normal lung 

tissue. 

 

Figure 7.28: Normal Tissue.  Normal excess paraffin embedded lung tissue immunostained for CD34 

(brown) an endothelial marker and αSMA (red) a marker of matrix/mesenchymal cells.  Figure a) shows 

a vessel and surrounding alveolar bed.  The vessel at higher power magnification b) illustrates clearly 

the flat circumferential endothelial cells (brown) with associated supporting matrix cells (red) in close 

apposition.  Importantly there is clear distinction of red and brown.  Figure c) shows the alveolar bed of 

normal lung tissue.  The small alveolar capillaries (brown) can be clearly seen with only low levels of 

αSMA.  Figure d), at higher power supports this, with few αSMA positive cells.  No dual stained i.e. 

transitional cells were identified in sections of normal lung tissue. 

X 20 X 30 

X 20 X 30 
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Figure 7.29: Emphysema Tissue.  Emphysema lung tissue immunostained for CD34 (brown), an 

endothelial marker, and αSMA (red), a marker of matrix/mesenchymal cells.  Figure a) shows the 

alveolar bed with a cluster of small vessels.  The microvasculature is well preserved, with no apparent 

loss of capillaries.  Just lateral to the vessels there is an area of thickened matrix with intense αSMA 

staining.  No cells in this region stain positively for CD34.  There are also some peripheral tissue 

sprouts which stain positively for αSMA.  Figure b) shows 2 small muscularised arterioles and alveolar 

bed.  In this section there is intense αSMA of the vessels, but the endothelial monolayer appears 

reduced.  Between the two vessels the alveolar bed is very thin with loss of supporting structure 

including capillaries with numerous reed-ghosts cells.  In this area there is a thickened septum with 

few very weakly positive CD34 cells but no dual stained cells.  Figure c) shows a thin, septum with 

associated vessels.  The capillaries are relatively well preserved although in one part of the septum 

(arrow) there is low intensity brown staining with low intensity red staining although not truly co-

localised to suggest transitional cells.  Figure d) shows peripheral lung tissue.  Again there is marked 

regional loss of capillaries.  In this section there is a long septum which appears to have flat cells 

typical of endothelial cells which stain a red/brown (arrows).  These may represent transitional or 

activated endothelial cells and may be evidence of in vivo EnMT. 
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7.5 Discussion 

Endothelial to mesenchymal transition (EnMT) has been reported by other 

researchers in large vessel endothelial cells, in animal models and in commercial 

lung microvascular endothelial cells.  In this chapter I have attempted to 

systematically investigate EnMT ex vivo and in vivo.  I have demonstrated 

morphological changes in cell structure that have been supported by change in cell 

surface markers on individual cells via confocal microscopy and reduction in 

endothelial surface expression via flow cytometry.  Following these preliminary 

supportive experiments I investigated dual staining for endothelial and mesenchymal 

markers on individual cells via confocal microscopy.  There was however no 

evidence of dual staining of cells.   

 

I therefore further investigated EnMT via protein expression on western blotting, 

examining both the response of cells to TGFβ1 and CSE.  These results however did 

not support a change in protein expression at 7 days, with no loss of endothelial 

markers or gain of mesenchymal markers.  To validate these findings, I repeated 

these experiments on multiple occasions and in different cells types (both 

commercial cells, and isolated emphysema cells and normal cells).  In the TGFβ1 

stimulation experiments, I also treated cells isolated from a patient with idiopathic 

pulmonary arterial hypertension (IPAH).  IPAH is a disease characterised by 

remodelling of the pulmonary arterioles, with proliferation and a resulting obstructive 

vasculopathy.  Cells isolated from patients with IPAH had a much shorter doubling 

time and produced a high cell yield at low passage.  Thus I hypothesised that EnMT 

may be most likely to be observed in such cells.  Once again there was no change in 

markers to suggest a phenotype change.  After such surprising and disappointing 

negative results I believed it important to prove that the technique and materials 

were sound as so treated A549 cells with TGFβ1 via the same protocol and showed 

that EMT occurred as reported by previous investigators.  No such phenotype 

change occurred however when A549 cells were treated with CSE. 
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Such results are interesting.  Cells clearly show areas of reduced CD31 expression 

however lack of measurable change on western blotting suggests that a full 

phenotypic switch has not occurred.  Such changes observed may be more in 

keeping with endothelial activation.  Endothelial cells play an important function in 

maintaining vascular homeostasis and generally exist in a quiescent form, with a 

monolayer of cells formed by tight adherens junctions and contact inhibition [14].  

This provides important anti-coagulant properties for the vessels and assists in 

laminar blood flow and leucocyte trafficking.  When disruption to this monolayer 

occurs, via mechanical injury, infection or chemical injury such as smoking, 

endothelial cells become activated in order to respond to this change in environment.  

This is an energy independent process which does not require protein 

synthesis[169].  Activation of endothelial cells may be transient but may become 

prolonged if there is a chronic insult or more potent injury.  Activated endothelial cells 

exhibit many of the qualities that mesenchymal cells display.  Activated endothelial 

cells are reported to lose their tight barrier function, to allow extravasation of fluid 

and migration of neutrophils into the area of injury.  This is archetypically seen in 

pneumonia, where there is oedema and expansion with inflammation of the alveolus.  

Activated endothelial cells also act as chemoattractants recruiting leucocytes to the 

area of injury may display proliferative and secretory actions as they respond to the 

injury.  Decrease in endothelial barrier function has been reported within 1-3 hours of 

treatment with TGFβ1 and VEGF in vitro with a possibly more rapid activation 

observed using in vivo models [170], [171].  Cells tend to remain in this activated 

state until the injury is removed or subsides.   

 

Endothelial cell activation is a normal physiological mechanism important for 

angiogenesis in both wound repair and has been studied in cancer biology 

specifically metastasis.  VEGF is an important activator of endothelial cells, with 

stimulation causing increased proliferation and migration with the ability to form small 

vessel sprouts [50].  Endothelin-1 also promotes proliferation and as shown in this 

chapter TGFβ1 stimulation increases ET-1 production, however TGFβ1 tends to 

inhibit cell growth [172].  Activated endothelial cells are also pro-coagulant, which is 

an important feature which facilitates protection against vascular injury [173].  While 
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not the focus of this study, it is important not to view endothelial cells in a one 

dimensional ex vivo model, rather relate their function to the three-dimensional 

characteristics including flow.  Thus endothelial cells must not be considered a 

passive monolayer of cells, but rather as a complex adapted system which maintains 

and restores vascular homeostasis.  Thus endothelial cells can behave with a more 

secretory phenotype which could be interpreted as a phenotypic switch, but rather as 

this data would support, it may simply represent endothelial cell activation.   

 

These observations are further supported by the observations that TNFα causes 

conformational changes and loss of endothelial cell surface markers, but no change 

in mesenchymal markers [164].  Mawatari et al were the first to examine the effect of 

human TNFα on cultured human microvascular endothelial cells from omental tissue 

removed at surgery [164].  They noted that “cobblestone like endothelial cells 

transformed into a disordered array of criss-crossed, elongated, spindle shaped 

cells” when incubated with TNFα and that this was accentuated when co-incubated 

with TNFα and epidermal growth factor (EGF).  Such description appears very close 

to the effects observed in these studies, and would suggest that what we are 

witnessing is an activation of endothelial cells in response to TGFβ1, TNFα and CSE 

rather than a true phenotypic switch. 

 

I initially planned to investigate change in function of the cells following stimulation 

particularly looking for evidence of change in matrix metalloproteinases and 

secretion of proteins such as collagen.  Due to the largely negative studies of EnMT 

this work was not pursued, although preliminary studies (work not shown) did not 

show any change in MMP 2 and MMP 9 via gelatine zymmography.  Similarly, 

western blotting of TCA precipitates for collagen I and collagen III did not show an 

increase compared to control cells. 

 

Dual staining for the endothelial marker CD34 and the mesenchymal marker aSMA 

on peripheral lung tissue was also conducted to look for in vivo evidence of EnMT.  

Normal tissue showed no evidence of endothelial cell injury and there were no dual 
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stained cells observed.  In emphysema tissue there were regions of alveolar 

endothelial cell loss and other regions in which there was expansion of the alveolar 

matrix with aSMA deposition.  Some of these areas were discrete but many of these 

alveolar changes were found in close apposition to each other.  Reed ghost cells are 

sclerotic casts of endothelial cells that are a marker of endothelial cell injury.  They 

were commonly observed in the alveolar bed of emphysema tissue.  Distal to these 

sclerotic casts, some of the alveolar bed appeared very thin and almost avascular.  

In some regions of the thin septa, flattened cells were seen typical of endothelial 

cells, but these cells were negative for endothelial cells and instead stained 

positively for aSMA.  No dual stained cells were easily identified in emphysema 

tissue.   

 

In these studies I did not find evidence of EnMT but did note change in cell surface 

expression and propose that EnMT should not be discounted, but rather questioned 

and further investigated in order to understand the response of microvascular 

endothelial cells to injury.  
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Chapter 7: Summary, Discussion and Future work 

7.1 Summary 

In this thesis I utilised severely emphysematous lungs obtained at transplantation to 

investigate the pathogenesis of emphysema.  The study was conducted to attempt to 

challenge the existing models of emphysema and allow close correlation between 

clinical characteristics, pathological findings and cell biology responses ex vivo.  This 

was logistically challenging, technically difficult and demanding work.  The potential 

gains from this model to improve our understanding of the pathophysiology of this 

complex disease were the impetus and reason for persisting with the construction of 

a new model and the investigation of the complex stress that is cigarette smoking.  

 

Returning to answer my original aims:   

 

 I attempted to establish a reliable and reproducible method to isolate 

and fully characterise microvascular endothelial cells from the excess 

emphysematous tissue obtained at lung transplantation 

Large numbers of microvascular endothelial cells were isolated from severely 

emphysematous explanted lungs with good success (71%).  These cells were 

fully characterised and proven to be of microvascular origin.  Cells were stable up 

to passage 7 and could be cryopreserved and later reanimated for use in future 

experimental work.  The methodology has been published and has been highly 

accessed.   

 

 To investigate whether these susceptible endothelial cells undergo 

apoptosis in response to cigarette smoke, in comparison with untreated 

cells and rates of apoptosis in cells isolated from normal individuals. 

Investigation of apoptosis was complex using these precious primary cells.   

Determining the concentration at which to stress cells in order to induce cell 

death via apoptosis and the time point at which to harvest cells and examine 
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them was complex and may have differed between donors as initial results were 

inconsistent as determined by annexin V staining on flow cytometry.  TUNEL 

staining of individual cells also did not confirm whether apoptosis was observed 

in response to cigarette smoke.  Live cell imaging was therefore employed.  This 

technique identified and reinforced the inherent problems of cellular 

autofluorescence while using cigarette smoke as an injury.  I attempted to control 

for this with the results suggesting that cells isolated from emphysema lung tissue 

may undergo apoptosis and earlier and at lower concentration than commercial 

normal lung microvascular endothelial cells.   This would be in keeping with my 

hypothesis that these cells are more susceptible to injury.  However due to 

autofluorescence such conclusions are not proven and need further investigation 

using methods which do not employ fluorescence as a method of detection of 

apoptosis.   

 

Further investigation of gene expression of these cells in response to cigarette 

smoking showed that cells from commercially available normal donors showed 

upregulation/ no change in VEGFr2 in response to cigarette smoke extract.  

Microvascular endothelial cells isolated from emphysema tissue in contrast 

showed a down regulation in VEGFr2 in response to cigarette smoking.  VEGFr2 

is the main receptor for human VEGF1 and is important for maintaining cell 

structure, function and defence.  Thus a downregulation in VEGFr2 in response 

to cigarette smoking appears to be a maladaptive response to injury in these 

susceptible cells. 

 

Unfortunately the controls used in these experiments were commercially 

available cells and not cells isolated from excess normal tissue as planned.  This 

was due to the time constraints of isolating and purifying large numbers of 

endothelial cells with sufficient donor numbers to allow repeat experiments to 

provide meaningful data.  Thus the focus was on isolating the microvascular 

endothelial cells from emphysema lung tissue and not from excess normal tissue 

as this was novel and unique exploratory work.  Each experiment however had 
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an internal control of being compared with untreated cells i.e. control and more 

than 1 normal donor was used for the experiments in normal cells.    

 

 To investigate characteristics of cells which are resistant to apoptosis. 

The characteristic of cells resistant to apoptosis was unfortunately not 

investigated and as such is beyond the scope of this thesis.  The properties of the 

cells which remain and are resistant to the insult of cigarette smoking should be 

the focus of further work to identify any protective mechanisms which they exhibit 

that could be exploited as a protective mechanism for therapeutic benefit.  

 

 To investigate endothelial plasticity in response to cigarette smoking, 

examining cell activation and phenotype via change in cellular 

expression and matrix production in response to cigarette smoke 

extract. 

Microvascular endothelial cells isolated from explanted severely emphysematous 

lung tissue were used to investigate endothelial plasticity in response to cigarette 

smoking.  Cells showed morphological changes and changes in cellular 

expression via confocal microscopy with elongation of cells, loss of contact 

inhibition, down regulation of endothelial markers.  Upregulation of mesenchymal 

markers was less clear.  There was however no change in protein expression of 

endothelial markers or mesenchymal markers on western blotting.  This raises 

the possibility that endothelial cells are activated in response to cigarette smoke 

extract, with change in cell morphology and expression, but without 

transcriptional change i.e. not a true phenotypic switch rather exhibiting cellular 

plasticity.  The same results were observed with both commercial normal cells 

and the cells isolated from emphysema lung tissue.  Preliminary studies 

confirmed that there was no change in matrix metalloproteinase production in 

response to CSE, however further work is required to examine change in function 

i.e. do activated endothelial cells exhibit a secretory function with attempts to lay 

down new matrix and assist with alveolar repair?   
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7.2 Implications of this study 

This study is to my knowledge the first study into the pathogenesis of emphysema 

using microvascular endothelial cells isolated from patients with severe emphysema 

who donated their explanted lung for research.  This ex vivo model which allows 

study of the microvascular hypothesis of COPD is unique as it is not only a human 

model using primary lung cells, the cells were isolated from individuals who had very 

severe disease, enough to warrant transplantation.  Thus biological mechanisms can 

be studied in response to the injurious stimulus, in this case cigarette smoke, which 

is believed to have precipitated the disease in cells that have been proven to be 

susceptible to the injury and which have taken part in the pathophysiology of the 

disease.  Although cell isolation was initially labour intensive, large numbers of cells 

were obtained that showed stability of phenotype up to passage 7 and could be 

cryopreserved for use in future experiments.  This study therefore challenges the 

current models used in lung science.  While some researchers might argue that 

proof of concept work must first be investigated in animal models or in stable cell 

lines or in normal cells, this study would argue and put forward that the information 

and results gained from studying these diseased cells is more relevant and closer to 

the in vivo response and is more likely to be translational.     

 

This thesis highlights two important mechanisms that may be relevant in 

emphysema, namely apoptosis and activation of endothelial cells in response to 

cigarette smoke.   

 

I attempted to systematically investigate apoptosis in this study however due to 

autofluorescence of cells in response to CSE no clear conclusions can be drawn.  

With attempts to control for autofluorescence (on live cell imaging) there was an 

apparent apoptosis of cells that occurred earlier and at lower dose of cigarette 

smoke extract in these cells isolated from individuals with severe emphysema.   
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However such preliminary findings need to be investigated further using methods to 

detect apoptosis that do not employ fluorescence.   

 

Endothelial cells appear to become activated in response to cigarette smoke.  

Endothelial activation is described more often in acute lung injury models and to my 

knowledge has not been reported in emphysema.  In this thesis I have not 

demonstrated a true endothelial to mesenchymal transition, but propose that I have 

demonstrated a degree of cellular plasticity, which remain of endothelial pedigree, 

but change shape and expression and may change function, although due to time 

constraints such studies of function were investigated briefly but not fully enough to 

be reported in this study.       

7.3 Limitations of this study 

One limitation of this study is the use of severe end stage emphysematous lung 

tissue to examine the pathogenesis of early emphysema and it could be suggested 

that using normal tissue from smokers may be a better model.  However I propose 

that very diseased cells are unlikely to survive the isolation process thus the isolated 

cells are likely to represent susceptible LMVECs from the disease in question.  I 

chose this model over the use of LMVECs isolated from cancer resection specimens 

or excess normal tissue obtained at surgery for other purposes as only 1 in 5 

individuals who smoke develop COPD so studying the disease in cells isolated from 

individuals who had developed the disease had potential advantages.  Furthermore 

each cell model has limitations including the use of cancer resection specimens (the 

surrounding tissue removed may have altered expression of VEGF) or excess 

normal tissue from lungs deemed unsuitable for transplantation (brain death causes 

a massive inflammatory response thus limiting the use of cells isolated from this 

model).  I propose that this model is relevant to studying the pathogenesis of COPD 

as even within severely damaged emphysematous lungs there is ongoing evidence 

of repair and active inflammation and that within severely damaged lung there are 

some areas of near normality but acknowledge its limitations. 
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This study was ambitious and novel, requiring a lot of preliminary work in order to 

achieve the model in which the cellular responses to cigarette smoke, namely 

apoptosis and endothelial to mesenchymal transition, could be studied.  Thus one of 

the inherent weaknesses of this study is the small number of repeats and small 

numbers of donors studied.  Additionally, as discussed before, many of the 

experiments using “normal control” cells from healthy lung tissue use commercially 

available cells rather than cells isolated in the same manner from excess tissue 

obtained at lobectomy as planned.  This was an unavoidable compromise of this 

thesis as I had to focus efforts on experimental work using primary cells rather than 

concentrating efforts on tissue banking sufficient cells in order to conduct multiple 

repeats on “normal cells”.  I am however unable to determine the effect of the cell 

isolation on the results as I have not been able to study similarly isolated cells from 

normal lungs.  While this is a limitation of this study, it should be acknowledged and 

emphasised that the novelty of this study is the investigation of responses of 

vulnerable cells from diseased individuals to the stimulus which caused the disease 

i.e. the response of microvascular endothelial cells from patients with emphysema to 

injury with cigarette smoke extract.  Thus although interesting and an important 

comparator to study normal cells, the information gained in this study from the 

response of the diseased cells alone compared to untreated affords important 

information which must not be disregarded or underestimated.  The results obtained 

from the commercially available normal cells should now be supported with repeat 

studies in cells isolated from excess normal tissue using the same methodology as 

described in this thesis. 

 

Similarly the number of samples tested for each experiment (n=) is relatively small 

throughout this thesis and reflects the precious nature of the microvascular 

endothelial cells isolated and also the difficulties in dealing with primary cells which 

can have slowed growth kinetics, which may in part reflect the underlying pathology.  

Thus it was not always possible to conduct each experiment in triplicate or more.  

Although this is conventional methodology, repeating the experiment in triplicate only 

demonstrates the ability to pipette exactly and treat/injure cells in a consistent 

manner, thus as long as results are in agreement, duplicate rather than triplicate 
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experiments are acceptable.  What is actually required but seldom reported is 

stressing different cell populations i.e. different donors at the same time with the 

same injury/stress.  In reality however, the ability to have all primary cells at the 

same level of confluence and same passage ready to treat on the same day is 

almost impossible.  Therefore one has to accept the limitations of work with primary 

cells and accept that the information gained from such experiments, although not as 

stringent as using a stable cell line population, is more insightful and meaningful as 

the cells reflect the in vivo situation more accurately. 

 

One of the major limitations of this study is the use of cigarette smoking as an injury.  

Cigarette smoke extract itself is a rather rudimentary stimulus.  It differs markedly in 

a number of ways from the true injury that occurs in vivo.  Firstly cigarette smoking 

tends to be a chronic injurious stimulus rather than the acute injury that is reported in 

this thesis.  This in itself makes it a challenging subject to research.  Cigarette smoke 

extract is in the liquid phase as opposed to the gaseous phase that is cigarette 

smoking.  This is a standard model that has been used for over 30 years and was 

the most standard and controlled way in which I could study cigarette smoking injury.  

The live cell imaging on cells was the closest I was able to achieve in terms of 

studying injury over time, although this was essentially still an acute injury.  It is 

unsurprising that apoptosis was difficult to detect and measure as clearly if 

microvascular endothelial cells underwent apoptosis in significant numbers in 

response to cigarette smoke, this would cause a chemical pneumonitis and not 

emphysema.    Similarly for cells to undergo measurable endothelial to mesenchymal 

transition acutely in response to cigarette smoke would cause large amounts of 

mesenchyme deposition with gross organ dysfunction.  This is an inherent problem 

in the study of chronic disease and surrogate models such as this and acute injury 

must be utilized with results extrapolated.   

 

Another limitation is the variability between emphysema donors and their cellular 

responses.  All patients who donated their lung for research had by definition very 

severe emphysema and fulfilled the criteria for transplantation.  However despite 

having severe airflow limitation and of similar functional class, the macroscopic 
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appearance of their lung tissue at times was quite heterogeneous and similarly the 

number of cells isolated and their responses in vivo differed.  This is an inherent 

limitation of studying patients in the real world and although may lead to greater 

spread of results, this limitation is offset by the valuable results that such studies 

bring.  Thus one must look for signals from such experiments and accept variability 

amongst results.    

 

Finally the disease COPD itself provides problems and limitations for researchers.  

Emphysema is one part of the disease COPD.  Various phenotypes found between 

patients with some patients exhibiting severe airflow obstruction with dynamic 

hyperinflation, while others have predominant bronchitic features with goblet cell 

hypertrophy and mucus hypersecretion.  Yet another group of patients have features 

of bronchiectasis, with chronic distal airway enlargement, scarring, impaired innate 

defences with colonization with pathogens which further damage lung anatomy and 

in turn affect physiology.  The patients in this study all had severe COPD with 

emphysema as characterized by hyperinflation, gas trapping and reduced diffusing 

capacity on pulmonary function testing.  How this study relates to patients with 

COPD with predominant small airways disease is uncertain and also to patients with 

extensive smoking history yet milder COPD.  Thus this study also highlights the 

problem with COPD classification and may suggest the need for further 

subclassification in research and clinical trials. 
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7.4 Future directions 

 

This model must now be continued to be used for the investigation of microvascular 

mechanisms in emphysema.  Indeed the cell isolation technique may be able to be 

refined and improved as newer techniques and equipment become available.  This 

may allow cells at even lower passage to be used in experimental work with cells 

reflecting even more closely the environment from which they were isolated.   

 

For the apoptosis arm of the study, apoptosis should be further investigated using 

techniques which do not employ the use of fluorescence.  If such studies confirm 

apoptosis in response to CSE, the characteristic of cells resistant to apoptosis 

should then be investigated as this may identify protective mechanisms which they 

exhibit that could be exploited as a protective mechanism for therapeutic benefit. 

 

Endothelial activation in emphysema must also be further investigated with a focus 

on change in function of the endothelial cells, focusing on secretion of matrix 

proteins and production of matrix metalloproteinases which are thought to play an 

important role in the pathogenesis of COPD and emphysema. 

 

Finally, ex vivo lung perfusion of explanted lungs could be used to incorporate a 

smoking model, whereby the same equipment used to recondition the lungs which 

the transplant recipient receives could be used to model smoking injury to the 

severely damaged emphysematous lung.  This study would be worthwhile as this 

thesis has highlighted that active attempts at repair are ongoing even in the most 

severely damaged emphysematous lungs and that some areas of near normality are 

also witnessed.  This would therefore allow three dimensional study with 

appreciation for dynamic volume stress and shear stress changes associated with 

blood flow and would have the additional benefit that the cigarette smoke injury 

would be in the gaseous phase and so again would be a close mimic of the in vivo 

situation. 
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